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Foreword

Quantitative approaches for solving production planning and inventory management
problems in industry have gained growing importance in the past years. Due to the
increasing use of Advanced Planning Systems, a widespread practical application of
the sophisticated optimization models and algorithms developed by the Production
Management and Operations Research community now seem within reach.

The possibility that products can be replaced by certain substitute products exists
in various application areas of production planning and inventory management.
Substitutions can be useful for a number of reasons, among others to circum-
vent production and supply bottlenecks and disruptions, increase the service level,
reduce setup costs and times, and lower inventories and thereby decrease capi-
tal lockup. Considering the current trend in industry towards shorter product life
cycles and greater product variety, the importance of substitutions appears likely to
grow. Closely related to substitutions are flexible bills-of-materials and recipes in
multi-level production systems.

However, so far, the aspect of substitutions has not attracted much attention in
academic literature. Existing lot-sizing models matching complex requirements of
industrial optimization problems (e.g., constrained capacities, sequence-dependent
setups, multiple resources) such as the Capacitated Lot-Sizing Problem with
Sequence-Dependent Setups (CLSD) and the General Lot-Sizing and Scheduling
Problem for Multiple Production Stages (GLSPMS) do not feature in substitution
options.

This was the point where J. Christian Lang initiated his PhD project. In his
project, he devised a graphical modeling framework for substitution options. Using
this framework, he developed the following extensions of existing dynamic lot-
sizing models to include product substitutions:

1. Uncapacitated and capacitated single-level dynamic lot-sizing models with sub-
stitutions

2. A capacitated single-level dynamic lot-sizing model with substitutions and
sequence-dependent setups

3. An extension of the Multi-Level Capacitated Lot-Sizing Problem (MLCLSP) by
flexible bills-of-materials

v
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4. An extension of the General Lot-Sizing and Scheduling Problem for Multi-
ple Production Stages (GLSPMS) to map substitutions and flexible production
sequences

In addition, he developed exact and heuristic solution approaches for model
categories 1 and 2 to solve problems with acceptable computational efforts, and
analyzed these approaches in extensive computational experiments.

He also came up with a number of very interesting and illustrative exam-
ples of application areas where substitutions are of importance. He delved into
one of these areas, blood transfusion inventory management, and developed a
simulation-based optimization model for this complex stochastic optimization prob-
lem, demonstrating the potential of automated optimization approaches also for
inventory management with substitutions.

J. Christian Lang’s PhD thesis is a very innovative piece of research. It contains
a large number of new aspects and inventive ideas: It contributes a comprehensive
classification scheme, extensive literature review, and a novel modeling approach for
lot-sizing with substitutions. The new models and solution methods that his thesis
provides have promising potential for successful use in practice. Hence, his work
represents a significant scientific advance and will serve as a valuable resource for
researchers and practitioners.

Darmstadt Wolfgang Domschke
July 2009
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Chapter 1
Introduction

Striving for operational and strategic excellence, companies have continuously been
trying to improve their business processes in the past years. As sophisticated plan-
ning processes are often seen as a key enabler for efficient business processes, this
has led to an increased focus on developing methods to optimize processes using
mathematical methods in cases where decision problems are too complex to be
solved by a human decision maker. In order to transfer such methods into prac-
tice, IT-based systems such as Advanced Planning Systems (APS) that make use of
these optimization methods to support and automate planning processes and execute
the resulting plans are essential.

In companies handling physical goods, the planning processes for production and
logistics often involve a high amount of complexity. This complexity results on the
one hand from the fact that companies frequently have multiple locations in various
countries and offer a large product variety associated with high manufacturing com-
plexity. On the other hand, companies are increasingly embedded in complex global
supply networks with a large number of actual or potential suppliers and customers.
From the viewpoint of an individual company, its suppliers and customers and the
actors further upstream or downstream are referred to by the term Supply Chain
(SC). Thus, each company may be part of multiple “subjective” supply chains of
other companies (Bretzke, 2006).

The notion of Supply Chain Management (SCM) promises to tackle the deci-
sion problems in today’s complex environment by a holistic approach for designing
and steering transportation, inventory and production processes in a network with
suppliers, locations and customers. The ideal goal in this approach would be an opti-
mization of the overall system – i.e., a company, its suppliers and customers – e.g.,
with respect to profit or service level goals, in contrast to the isolated optimization of
subsystems frequently leading to suboptimal solutions for the entire system. How-
ever, the term SCM is often used in a less revolutionary way, referring to the design
and control of the supply network of a multi-division multi-location company with
actual and potential suppliers and customers, where supplier and customer deci-
sion processes are not included explicitly. Including these raises profit distribution
questions and, from a scientific view, often leads to game-theoretic approaches. For
literature on these aspects see, e.g., Bretzke (2006).

J. C. Lang, Production and Inventory Management with Substitutions,
Lecture Notes in Economics and Mathematical Systems 636,
DOI 10.1007/978-3-642-04247-8_1, c� Springer-Verlag Berlin Heidelberg 2010
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The concept of flexibility in logistics and production has recently attracted
increasing attention. Various types of flexibility can be distinguished (Naim et al.,
2006). Flexibility in this context refers to certain instruments by which a company
can perform logistics and production processes in a slightly different way than usual.
Exploiting flexibility instruments can help the decision maker to increase system
performance with regard to a chosen goal.

Substitution of products by compatible products is one such flexibility instru-
ment. E.g., a manufacturer that produces parts for ship and locomotive motors from
steel cylinders (unfinished parts) using a milling machine can use a longer steel
cylinder as a substitute if the required shorter length is not in stock and reduce
the length by a conversion step. Similarly, when handling a large variant number
of electronic control units (ECU) that cover different sets of features (e.g., in the
automotive sector), an ECU variant can often be substituted by another variant that
covers a superset of its features. The products among which substitution takes place
could be different products manufactured by the company itself as well as products
sourced from one or more suppliers.

In multi-level production settings, substitutions correspond with flexible bills-
of-materials (BOMs) for discrete goods and with alternative recipes for continuous
goods, as the usage of alternative BOMs / recipes equals substitutions of input or
intermediate goods. For example, if a component of an electronic assembly can be
substituted by another one, the BOM associated with that assembly is flexible.

Substitutions are particularly useful in cases where capacitated production
resources are tight or the supply side and thus the inventory of goods is scarce. Clas-
sical deterministic production planning optimization models do not include product
substitutions. The same holds true for the most stochastic inventory control models.
However, neglecting substitution options might result in potentials for increased
efficiency that remain unused.
Five possible benefits of substitutions can be distinguished:

� Increased service level: Stock-outs due to supply or production bottlenecks can
be avoided by performing substitutions.
� Reduction of holding costs: As substitutions lead to a “risk pooling” effect

between products in a stochastic setting, they might reduce the required level of
safety stocks.
� Reduction of setup costs and times: By producing larger lot sizes of a smaller

number of products (that can substitute for other products not produced), the
total setup costs and times can be reduced.
� Exploitation of unit cost variations: If a substitute product becomes cheaper,

one can “switch” to this substitute and use it to replace the previously used
product.
� Reduction of wastage: If the considered products are perishable, substitutions

can be used to reduce the amount of outdated inventory, e.g., by consuming
substitute stocks first if they have an earlier expiry date.
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1.1 Definitions

Product substitution means that demand for a certain quantity of a product is
fulfilled using another product. Usually, there is a preferred product for satisfying a
specific demand, which can optionally be substituted by certain alternative products
(substitutes).

We distinguish product substitution from resource substitution, where resources –
e.g., employees or machines – can be substituted by certain others regarding a
specific activity to be performed.

Customer-driven substitution means that the customer substitutes one product by
another, whereas firm-driven substitution means that the supplier decides on using
a substitute (Hale et al., 2000).

These categorizations are shown in Fig. 1.1, which depicts the different substi-
tution types together with two flexibility instruments, namely transshipments and
emergency orders. The latter term refers to orders for express deliveries from a
location at an upper echelon to a lower echelon.

Substitution between products may either take place by directly replacing product
B by product A or by performing a conversion activity on A so that it can replace
B. If product A can substitute product B, we say that there is a substitution option
from A to B. Product A is then called a substitute for product B.

Note that in the following, we use the term substitution referring both to sub-
stitution in single-level production structures and to flexible BOMs in multi-level
production structures. We do so because substitution in single-level production
structures can always be seen as a special case of flexible BOMs.

Flexibility instruments in
logistics / SCM

Transshipments Substitution
Emergency

orders

Resource
substitution

Product
substitution

Firm-driven
product substitution

Customer-driven
product substitution

...

Fig. 1.1 Substitution and other flexibility instruments – classification
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1.2 Motivation

Existing production planning and inventory control optimization models, inte-
grated in APS and other IT-based planning systems, already represent a significant
improvement to manual planning processes that have been in place in companies
previously. However, though product substitution options exist in various real-world
production planning and inventory management problems and promise raising effi-
ciency, it seems that software solutions taking product substitution into account in
optimization models are rarely used in industry and, concerning standard software,
in the stage of being developed.

Only a very small number of publications on dynamic lot-sizing models with
substitutions exists. The existing models and the corresponding solution approaches
lack certain assumptions required to make them realistic:

� They assume that there are no initial inventories at the beginning of the planning
horizon. Making this assumption in lot-sizing models without substitutions did
not cause any loss of generality as one could simply transform gross into net
demands. However, as we will illustrate later, it does cause a loss of generality
if substitutions are possible.
� Production resources are assumed to be uncapacitated in all models known to

the author, except for the model considered by Begnaud et al. (2006). However,
production bottlenecks often exist in real-world production planning.
� Setup costs and times are assumed to be sequence-independent in all models,

though the costs and duration of setup activities often depend on the sequence
of products in practical problems.
� To the best of our knowledge, the model of Begnaud et al. (2006) is the

only generic multi-stage lot-sizing and scheduling model with flexible BOMs.
However, it cannot map exogenous resource downtime and assumes sequence-
independent setups.

In the area of stochastic inventory control with substitution, a considerable
amount of literature has been published, but often with very restrictive model
assumptions that make it difficult to apply the solution approaches in practice:

� Most models assume a single period, there are only few models for inventory
control with substitution assuming an arbitrary number of periods.
� Also, most models are intended for a special case of substitution options:

They assume a downward substitution structure, where products can be ordered
according to their quality and a product can substitute all other products with
lower quality.
� Several models describe a decision problem involving only two products.

Two additional motives for this work are that the terminology used in literature
with respect to product substitution is not sufficiently standardized and a classifi-
cation of existing models by the characteristics of substitution options is missing.
Hence, we intend to standardize the terminology regarding substitution and flexible
BOMs and develop a classification scheme to categorize the existing models.
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Regarding stochastic inventory control with substitutions, the combination with
lateral stock transshipments in multi-location inventory systems has rarely been
considered in literature, though this combination occurs in several real-world opti-
mization problems. Transshipments are a flexibility instrument just as substitutions:
This term refers to movements of stocks between locations on the same echelon. A
typical example for companies that perform transshipments are shoe retailers: If a
pair of shoes of a certain type and size that a customer wants to buy is out of stock
at one outlet, the retailer transships the pair from a nearly outlet where it is still in
stock.

1.3 Goals

The goal of this thesis is to contribute to the integration of substitutions and
flexible BOMs into dynamic lot-sizing and inventory control models: We aim at
integrating product substitution in some of these models and stimulating further
research in this area by providing a unifying conceptual framework and classifi-
cation. In addition, we intend to develop efficient solution approaches for solving
the decision problems mapped in these models. This is done by using and adapting
available methodology from the research fields of mixed-integer programming and
simulation-based optimization.

Concerning dynamic lot-sizing models, we aim at integrating product substi-
tution in well-known capacitated lot-sizing models. This is done by successively
considering more complicated models, starting off from a simple uncapacitated
model. The situation assumed in one of the capacitated models of this work is as
follows: A company produces various goods in larger quantities on several produc-
tion lines (e.g., machines). Each product is assigned to exactly one production line.
It is assumed that the sequence of activities on a certain production line is the same
for all products (flow shop). Thus, each production line can be modeled as a single
capacitated production resource. As these resources are limited and running almost
at full capacity, each of them poses a possible production bottleneck.

In order to start producing a certain product on a resource, setup activities (e.g.,
cleaning a machine) have to be performed. These incur setup costs and require a
certain setup time. We will also consider the case where the setup costs and times
for a product depend on the product that was previously produced on the resource
(so-called sequence-dependent setups).

The production type is make-to-stock, i.e., the production planning is mainly
performed based on demand forecasts, not primarily based on customer orders. The
production takes place in larger lots to reduce the total setup costs and times, and
thus to have more capacity available for production. Hence, produced goods often
have to be kept in stock because parts of the produced goods are not immediately
sold and/or shipped to customers, but stocked for demands at future points in time.
This incurs holding costs, which represent capital lockup, storage costs and other
aspects. Producing goods incurs variable production costs, among others the costs
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of input products. If substitutions are performed, these may cause substitution (con-
version) costs, e.g., the costs of labor time of manual activities necessary to use one
product as a substitute for another.

The decision problem is now composed of the following questions:

� Which products should be set up at which points in time in which quantities,
while observing the constrained production capacities?
� How should the produced units be used to satisfy demands, i.e., should substi-

tutions be performed and if yes, how many units of which product should be
used to replace another product at which point in time?

This problem is a combined lot-sizing and scheduling problem, as its solution
determines both the lot-sizes and the production sequences on the resources.

With respect to stochastic inventory control, we focus on multi-location blood
bank inventory management as one specific area of application where both substi-
tutions and transshipments are relevant. Here, blood transfusion units are produced
and stored at multiple locations and can be transshipped between these. If trans-
fusion units of a patient’s ABO/Rhesus blood type are not available in sufficient
quantity or out of stock at a hospital, transfusion units with a compatible blood type
can be used as a substitute. In practice, such blood bank inventory systems are often
run with manual inventory control performed by human decision makers.

The idea is now to develop an inventory policy for the system that can be config-
ured by setting various parameters, such as target inventory levels and critical levels.
Such a policy could be implemented in a real-world setting using an IT solution.
Our goal is to develop a simulation-based optimization algorithm that automatically
improves the parameters of the policy by evaluating various configurations by means
of discrete-event simulation. We intend to devise this solution approach sufficiently
generic so that it can be adapted as well to other applications.

1.4 Outline

2 starts with an explanation of how the models considered in this work fit into the
conceptual framework of the Supply Chain Planning matrix and how they could be
integrated into Advanced Planning Systems. After this, we develop a classification
of dynamic lot-sizing and scheduling problems by aggregating several existing clas-
sifications and adding further criteria for substitutions, flexible bills-of-materials and
flexible production sequences, intending to make it as comprehensive as possible.
This classification scheme is used to categorize several known dynamic lot-sizing
and scheduling problems, which we explain in detail as they are the basis of the
models with substitution options described in Chaps. 4–7. Subsequently, we give
a compact overview of available methods for solving these deterministic dynamic
lot-sizing problems by means of algorithms for mixed-integer linear programming
(MILP).
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As Chap. 8 deals with a stochastic transshipment problem that includes
substitutions, we explain transshipment problems and present a classification
scheme for transshipment models. We review selected existing approaches for such
models, and afterwards focus on the methodology of simulation-based optimization
used in Chap. 8.

The purpose of Chap. 3 is to explain in a clear and illustrative way how product
substitution and flexible BOMs can be modeled. First, we introduce basic terms
regarding product substitution. After this, a number of real-world examples for
product substitution are given, showing the evident practical relevance of the topic.
We then present four modeling approaches, namely blending models, substitution
graphs, substitution hypergraphs, and task-oriented modeling and compare them.
After developing classification criteria for substitution models complementary to
the classifications in Chap. 2, we finally focus on important aspects to be consid-
ered when performing product substitutions in practice: We examine conditions
where substitution can be beneficial, describe requirements for organizationally
implementing substitutions, and potential pitfalls that should be kept in mind.

Chapter 4 reviews the literature on production planning and inventory control
with substitution and related fields of research, with a focus on dynamic lot-sizing
problems. We briefly review the literature on assortment problems, which can be
seen as a tactical counterpart to dynamic lot-sizing problems with substitutions.
Three existing dynamic lot-sizing models – two with substitutions, one with flexible
BOMs and production sequences – are described and classified using the criteria
developed in the previous chapters. Also, we explain how two of these models can
be transformed into the more general third model. In the remainder of the chapter,
we shortly discuss related topics, amongst others stochastic inventory control with
substitutions and flexible bills-of-materials, and point out their relations to the topic
of this work.

In Chap. 5, we develop two single-level lot-sizing models with substitutions. One
of them is uncapacitated, the other one assumes capacitated production resources.
Both of them incorporate initial inventories, allow for general substitution struc-
tures, and use the concept of demand classes. We formulate the problems as
mixed-integer linear programs and develop Simple Plant Location-based reformu-
lations as well as new valid inequalities. Also, we develop approximate extended
formulations that only contain a subset of the disaggregated constraints. These
various formulations are compared in extensive computational experiments on
generated problem instances.

Chapter 6 deals with a single-level capacitated lot-sizing problem that assumes
substitution options as well as sequence-dependent setup costs and times. The model
is motivated from a real-world application described in Chap. 3. First, we formulate
the model as an MILP model. Subsequently, we devise MIP-based heuristics by
adapting the principles of Relax&Fix as well as Fix&Optimize heuristics to the
model. Solution quality and running times of different variants of the developed
heuristics are compared using generated problem instances.

In Chap. 7, we develop two lot-sizing models for multi-level production with
flexible BOMs. One of them is an extension of the multi-level capacitated
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lot-sizing problem and uses hypergraphs to model substitutions. It is appropriate for
applications with discrete products and assembly structures, but cannot map flexible
production sequences. We show that it can be transformed into one of the models in
Chap. 4, and examine the ambiguity of echelon stocks arising in the model.

The second model, which is an extension of the general lot-sizing and scheduling
problem for multiple production stages, uses state-task networks to model flexible
BOMs. It is more general than the former model, as it can also map by-products
(also: co-products) and flexible production sequences.

Chapter 8 considers a stochastic inventory model that incorporates both trans-
shipments and substitutions. It uses a simulation-based optimization approach for
determining parameters of a critical-level inventory policy. The approach is illus-
trated with the practical application in multi-location blood bank inventory manage-
ment mentioned in Sect. 1.3. We model the blood bank system by discrete-event
simulation and develop a novel pattern search SBO algorithm for improving param-
eters of the inventory policy. Using this algorithm, we improve inventory policies
with and without transshipments and/or substitutions and compare the quality of the
resulting solutions.

Chapter 9 completes this work by summarizing its results and highlighting
potential avenues for future research.



Chapter 2
Production and Operations Management:
Models and Algorithms

This chapter intends to give an overview of the literature on dynamic lot-sizing
models and stochastic transshipment models. These two types of models are used as
a basis for developing models with substitution in the following chapters. Section 2.1
contains a classification of models for dynamic lot-sizing / production planning, and
selected models. In Sect. 2.2, we give a brief overview of available methods for solv-
ing deterministic dynamic lot-sizing problems modeled using mixed-integer linear
programming (MILP). Section 2.3 introduces transshipment problems and presents
a classification scheme for transshipment models. Section 2.4 reviews selected solu-
tion approaches that can be applied to stochastic inventory control models such as
transshipment problems.

Dynamic lot-sizing models and transshipment models are linked to certain plan-
ning tasks in an Advanced Planning System (APS): In the conceptual framework
of Advanced Planning and the Supply Chain Planning (SCP) matrix (Fleischmann
et al., 2005, p. 87) that is shown in Fig. 2.1, the combined lot-sizing and schedul-
ing models considered in this work cover the planning tasks lot-sizing and machine
scheduling. In addition, they are linked to the topic short-term sales planning, as
a Capable-To-Promise (CTP) logic (Fleischmann et al., 2005, p. 91, Kilger and
Schneeweiß, 2005, p. 185) could make use of the models to check whether customer
orders could be fulfilled. Also, some lot-sizing models include supplier selection,
capacity planning and other mid-term/tactical planning tasks in addition to short-
term planning tasks. Transshipment models are used to optimize short-term planning
tasks related to warehouse replenishment, transport planning, and short-term sales
planning: Transshipments are executed to fulfill customer demands in case of local
stock-outs. These replenishments from warehouses on the same echelon have to be
implemented using available transportation capacities.

Thus, in the software architecture of an APS (a generic, idealized architecture is
shown in Fig. 2.2), the lot-sizing models considered in this work will most likely be
used for optimization in a Production Planning and/or Scheduling software module.
Transshipment models would be used for the optimization of operational decision-
making in the Transport Planning and Demand Fulfilment & Available-To-Promise
(ATP) software modules. For details on the functionalities and architectures of APS,
the reader is referred to Meyr et al. (2005a,b).

J. C. Lang, Production and Inventory Management with Substitutions,
Lecture Notes in Economics and Mathematical Systems 636,
DOI 10.1007/978-3-642-04247-8_2, c� Springer-Verlag Berlin Heidelberg 2010
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Fig. 2.1 Supply Chain Planning (SCP) matrix (Fleischmann et al., 2005, p. 87)
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Fig. 2.2 Idealized APS software module architecture covering the SCP matrix (Meyr et al., 2005b,
p. 109)

2.1 Dynamic Lot-Sizing

A vast amount of literature on production planning problems, especially on dynamic
lot-sizing problems and simultaneous lot-sizing and scheduling problems, has been
published.1 This is due to the ubiquity of lot-sizing and scheduling decision prob-
lems in manufacturing firms and the large variety of production types in these firms,
which often require specialized models. Most of the publications use MILP for

1 We subsume dynamic lot-sizing problems as well as simultaneous lot-sizing and scheduling
problems under the term “production planning problem”. Note that in literature, “(aggregate)
production planning” may also refer to Master Planning (Rohde and Wagner, 2005) models.
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modeling and solving these problems. The models found in the literature can be
distinguished according to the following groups of classification criteria (similarly
to Meyr, 1999, p. 45):

1. Context of model
2. Production system characteristics
3. Modeling technique
4. Decision variables
5. Objective(s)

The classification criteria of these groups will be described in detail in the following
section.

2.1.1 Classification of Models

The classification framework presented here is based on classification criteria con-
tained in Domschke et al. (1997), Drexl and Kimms (1997), Meyr (1999), Jans and
Degraeve (2006), and Quadt and Kuhn (2008). The list of classification criteria is
indeed not exhaustive, but gives a sufficient overview to serve as a basis for clas-
sifying the dynamic lot-sizing models with substitutions presented in this work.
Figures 2.3–2.6 summarize them in an abbreviated form.

2.1.1.1 Context of Model

Tactical vs. Operational Models

Production planning models differ in the planning horizon and level of aggregation
that they use: Some models are meant to be used with a long planning hori-
zon (e.g., 1 year), others with a short planning horizon (e.g., 1 week). The former
models belong to the group of tactical or strategic production planning models and
can include strategic decisions such as capacity expansions that have a long-term
impact on the production system. The latter models are used for routine short-
term production planning decisions and are termed operational production planning
models.2

Centralized vs. Decentralized Production Planning

There is a general difference between production planning models that assume a
single central decision maker and models that assume multiple actors/agents who

2 Also see Fleischmann et al. (2005, p. 81f.) and Meyr (1999, p. 11ff.). regarding the classification
of planning levels.
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Classification
criteria

Level of aggregation

Products
Items

Product families

Resources
Resources

Resource groups

Time

Other

Planning horizon
Tactical

Operational model

Lot-sizing / scheduling

No lot-sizing

Lot-sizing

Simultaneous lot-sizing
and scheduling

Centralization of planning
Centralized

Decentralized

2. Production system characteristics (see figures 2.4 and 2.5)

3. Modeling technique (see figure 2.6)

4. Decision variables

Flexibility of lot-sizes

All-or-nothing production?

Batch production

Integrality
Integer lot-sizes

Continuous lot-sizes
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None

Minimum lot-sizes

Maximum lot-sizes

Production sequences

Product-to-machine assignments

Capacity flexibility

Sales quantities

Demand fulfilment (substitution etc.)

Transportation quantities

5. Objective

Number

Single objective

Multiple objectives

Type

Costs

Profit

Discounted Cash Flow

Time-oriented

Other

Linear

Non-linear

Expected value

Robustness criterion

1. Context of model

Variables included

Linearity

Uncertainty

Fig. 2.3 Classification criteria for production planning models – 1/4

steer subsystems of the entire production system, e.g., subsidiary companies of a
corporate group or plant managers with some autonomy. The former case allows
for a centralized optimization of the system, whereas the latter case, which we will
not consider in this work, requires the design of coordination mechanisms (see,
e.g., Ertogral and Wu, 2000). For example, Drechsel and Kimms (2008) consider a
capacitated lot-sizing model with transshipments and multiple players using a game-
theoretic approach.
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2. Production system
characteristics

Production type
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figures 3.16 - 3.18)
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Fig. 2.4 Classification criteria for production planning models – 2/4

Aggregation

In tactical/strategic models, it is often necessary to aggregate certain entities (e.g.,
products or machines) of the production system (Fleischmann et al., 2005, p. 85).
Aggregation means, e.g., that the model plans production quantities for prod-
uct types instead of individual products and considers constrained capacities of
entire production lines or groups of machines instead of individual machines. One
important reason for aggregation is that demand forecasts in medium- or long-term
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2. Production system
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Fig. 2.5 Classification criteria for production planning models – 3/4

models on the level of individual products could involve too much uncertainty,
whereas forecasts on the level of groups of products will presumably have smaller
errors. Also, detailed and accurate data on products and resources might not be
available and expensive to obtain, especially in large companies with complex
product portfolios and manufacturing systems. Thus, it often makes sense to con-
sider products and resources on an aggregated level. Another reason is that the
model size would explode when considering the manufacturing system on the finest,
most disaggregated level. Such a large model is difficult to solve, it might take a
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3. Modeling
technique

Time Time horizon
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Fig. 2.6 Classification criteria for production planning models – 4/4

prohibitively long time to be solved and require more memory than available even
on high-end computers.

Another dimension of aggregation – in addition to products and resources – is
time: The longer the periods considered in a production model (e.g., days, weeks, or
months), the higher the level of aggregation of time. Also, one could use a fine time
grid in the earlier part of the model’s planning horizon (e.g., hours or days) and a
coarser time grid (e.g., weeks) in the later part of the time horizon, as data regarding
this part is very uncertain anyway. Furthermore, by interpreting the elements of a
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model in different ways, e.g., “product” as an individual product in one case and as
a setup family in the other case, the same mathematical model can sometimes be
used for different levels of aggregation.

Mixed Aggregation Levels

Multiple levels of aggregation might also be combined in a single model. For exam-
ple, if there are joint setups for product families on a capacitated resource, i.e., no or
a negligibly short setup activity is necessary when changing over between products
in the same family, two levels of aggregation (individual products and setup fami-
lies) of a certain entity type (products) appear in a single production planning model
that maps such joint setups.

Choice of Aggregations

The number of aggregation levels for products is often three, namely individual
products, setup families, and product types (also: items, families, and types). How-
ever, depending on the application, a larger or smaller number of aggregation levels
might be more appropriate. The same holds true for aggregation of resources. Here,
the resources (workers, machines, etc.) of an entire production line can often be
considered as a single aggregated resource in case of a flow production type. When
constructing aggregations of products or resources, the question is which attribute(s)
should be used as a criterion for aggregation if several are available. Aggregation
implicitly contains clustering decisions that cluster entities on a lower level into
aggregates on a higher level. In practice, these aggregations might already be preset
by the terminology used in a company. Yet, it could be useful to reconsider these
clustering decisions.

Decomposition

As the size and complexity of a complete model of the production system might be
prohibitively high, production planning problems are often decomposed into various
subproblems. These subproblems could, e.g., refer to the production planning at
different plants or to certain subsets of resources.

Hierarchical Production Planning

The idea of hierarchical production planning (Hax and Meal, 1975) is to sequen-
tially solve production planning models on different levels of aggregation, starting
from the most strategic, most aggregated model (also see Jans and Degraeve, 2006).
A solution to a model of this type results in decisions that set limitations for
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decisions in the less aggregated models solved subsequently. E.g., the “higher-level”
model sets production quantities for product types, which then limit the quantities
for subtypes and individual products in lower-level models. Each model approxi-
mately anticipates the decisions that will be taken in lower-level models. As this
anticipation makes some simplifying assumptions and the models are interwoven,
hierarchical production planning yields solutions that are suboptimal in most cases.
In each step from a higher-level to a lower-level model that is more disaggregated,
the data given and decisions taken in the level above have to be disaggregated,
which is a non-trivial task that can be performed in different ways, influencing the
quality of the overall production plan obtained. The “right” number of levels (and
thus models) in a hierarchical production planning approach might depend on the
characteristics of the considered setting.

2.1.1.2 Production System Characteristics

Discrete vs. Continuous Products

The products handled in a production system can be discrete (indivisible) or contin-
uous (divisible). If discrete products are produced in large quantities, they are often
modeled as continuous products (Meyr, 1999, p. 27), presumably without much loss
of planning accuracy (also see de Araujo et al., 2007). Continuous products are typi-
cal for the process industry, whereas discrete products are typical for manufacturing.
In some companies, both continuous and discrete products are present at different
stages in the production system (e.g., in the food industry).

Production Type

Regarding the layout type and process structure of a production system, lot-sizing
models can be differentiated into models designed for job-shop production and
flow production systems (Buschkühl et al., 2008). The term flow production sys-
tems refers to cases where the production layout and activities are organized into
a series of production stages: On each production stage, certain intermediate goods
are produced using a single or multiple resources available on that stage and then
transferred to the next stage. Intermediate goods can also denote certain states of
an item that goes through the production process. Flow production models assume
that each intermediate and finished good and each resource belongs to exactly one
production level/stage. An example of a flow production type is given in Fig. 2.7:
It shows a system with two production stages, on each of which tasks performed
on certain machines (used exclusively on that stage) produce intermediate and fin-
ished goods, respectively. In contrast, the term job-shop production refers to settings
where no clear – physical and organizational – serial order of production stages
exists: Instead, several resources are situated at different locations within a plant
without a flow structure, and the resource sequences of the intermediate goods
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Fig. 2.8 Example – resource sequences in a job-shop production environment

required for a finished good may differ among the finished products. In addition, the
same resource could be used for producing a product and another product that con-
tains this product as a predecessor. Figure 2.8 illustrates possible resource sequences
that can occur in a job-shop environment: Resources 1 and 2 are used in a different
order in the resource sequence for product 6, compared to product 3. Also, in the
resource sequence for product 8, resource 1 manufactures both intermediate product
7 and its successor product 8.

Referring to the relation between production and demand, one can distinguish
a make-to-order (MTO) from a make-to-stock (MTS) production approach. In the
former approach, production is triggered by confirmed customer orders. Thus, the
inventories of finished goods are usually low in an MTO environment. In the latter
approach, production quantities are mainly based on demand forecasts, they are not
linked to individual customer orders. Thus, products are stocked by the manufac-
turer until required to fulfil customer demand in an MTS environment. In practice,
also hybrid (combined) MTO and MTS production approaches occur (Denton and
Gupta, 2004).
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Number of Products

Another classification criterion is the number of products considered in the model.
Some models only consider a single product, others a fixed number of products or,
in the most general case, an arbitrary number of products.

Production Structure

Regarding the production structure (Gozinto graph), models can be classified into
single-level models, models with a fixed number of levels (e.g., two) or an arbitrary
number of levels (multi-level models). Multi-level (also: multi-stage) production
structures can in addition be differentiated into serial, convergent, divergent (with
by-products, e.g., in the chemical industry), and general structures. Production
structures can also be cyclic.

The majority of models assumes fixed bills-of-materials (BOMs), where a list
with unique quantities of input goods required for one unit of a finished product
exists. However, in practice, BOMs are sometimes flexible, i.e., alternative com-
binations of input goods can be used to manufacture a product. In the process
industry, alternative recipes (which correspond to flexible BOMs in manufactur-
ing) are sometimes available for producing a product (Crama et al., 2001; Kallrath,
2005). Flexible BOMs are closely related to substitution because the usage of
alternative BOMs corresponds to substitutions of input or intermediate goods.

For an in-depth discussion of the topic flexible BOMs and recipes, see Sects. 3.2.3
and 3.2.4. A compact summary of classification criteria for dynamic lot-sizing
models with flexible BOMs / recipes developed in these sections is contained in
Fig. 3.17.

Resources

Regarding the number of resources, models can be classified into single- and multi-
resource models. Note that “resource” could refer to a worker, group of workers,
a single machine, a group of machines, a production line, a reactor, or a group
of reactors. In most models, it is predetermined which production task for which
product is performed on which resource, i.e., the assignment of tasks (and thus
intermediate/finished products) to resources is assumed to be unique. In contrast,
some models also contain decisions on product-resource assignments. The flexi-
bility regarding these assignments is a special case of alternative (also: flexible)
production sequences. E.g., in the process industries multiple production sequences
on different sets of resources are often available for producing a certain prod-
uct. These production sequences are frequently also linked to differing BOMs. In
these cases, flexible production sequences coincide with flexible BOMs. However,
the classification criteria fixed vs. flexible BOMs and fixed vs. flexible production
sequences can be seen as orthogonal: In some applications, production sequences
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could be flexible but the BOMs fixed, or vice versa. The four possible resulting
combinations are illustrated by Fig. 2.9. A simple example of flexible production
sequences would be that two alternative resource sequences exist for producing a
certain product P1, e.g., the resource sequences R1–R2–R3 and R4–R2–R5.

In multi-level models with exactly one resource per level that is only used on
this level, the resource structure is termed serial. The case where multiple resources
are available on a production level of a flow production system is termed lot-sizing
with parallel machines. Such settings with parallel machines are a special case of
alternative production sequences. If the parallel machines have the same character-
istics (costs, capacities and capacity consumption), this is termed identical parallel
machines. Otherwise, i.e., if the characteristics of resources on the same level dif-
fer, this is named heterogeneous parallel machines. Figure 2.10 shows a case with
a serial resource structure as well as another case with parallel machines on each of
three stages of a flow production system.

Some models assume that production resources are uncapacitated, i.e., pro-
duction times are zero and production quantities unlimited. This assumption is
valid if the production resources are not scarce at all, if there are no production
bottlenecks. However, this assumption often does not correspond to practical pro-
duction planning problems. Hence, in most cases it is more realistic to assume
capacitated resources, with non-zero production times and limited production quan-
tities. Regarding the flexibility of resources capacities, one can distinguish models
with fixed capacities from models with some capacity flexibility (e.g., by allowing
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overtime production). The available capacities are either constant over the time
horizon or time-varying.

Resource downtime can be classified into exogenous and endogenous down-
time (Meyr, 1999, p. 48), where exogenous downtime is caused by technical and
other restrictions, whereas endogenous downtime is decided on in the production
planning model, e.g., downtime caused by low order volumes. Times for recurring
maintenance that can be scheduled with some flexibility, downtime, e.g., due to
external legal restrictions, and setup times are subsumed under the term exogenous
downtime. Some lot-sizing models allow for modeling exogenous downtime.

Inventory

One can distinguish models with limited inventory capacities (upper limits for inven-
tory) from models with unlimited inventory. In practice, storage space for input
goods, semi-finished and finished products is usually limited. This limitation could
be a real constraint in some cases whereas in other cases, storage space is limited
but still ample, so that this constraint can be neglected. In the process industries,
lower limits for inventory (e.g., contents of tanks) are sometimes necessary due to
technical restrictions. In addition, some multi-level models assume that there are
work-in-progress (WIP) buffers on all stages, whereas others assume that no buffer
inventories are allowed between levels.

Especially in short-term production planning, initial inventories that are in stock
at the beginning of the planning horizon cannot be neglected. Initial inventories can,
in most cases, be eliminated from mathematical models by transforming gross into
net demands by subtracting initial inventories.

Another aspect that significantly complicates production planning problems is
perishability: Some (input and output) goods only have a limited shelf life, after
which they expire (e.g., blood transfusions). Others have a quality that deteriorates
over time, influencing the purpose for which the products can be used. Also, stocked
products might get obsolete due to technological advances or market changes.

Setups

In order to produce a certain product on a resource, setup activities could be nec-
essary before a lot (in the process industry also: campaign) of the product can be
started. These activities can incur setup costs and require a setup time during which
the resource is not available for production. Both setup costs and times for a product
can be sequence-dependent, which means that they depend on the product previ-
ously manufactured on the resource. Lot-sizing decisions are usually only included
in operational production planning models, but also in tactical production planning
models if lot-sizes are large and take a long time (e.g., months) to be produced.

The so-called triangle inequality (Haase, 1996; Meyr, 1999, p. 48) for sequence-
dependent setup cost and times is fulfilled if it is never faster or cheaper to perform
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two subsequent changeovers from product A to B and B to C than to perform a single
changeover from A to C. Mathematically, this can be expressed as follows with stik
denoting the setup time and fik the setup cost for a changeover from product i to k:

stAB C stBC � stAC (2.1)

fAB C fBC � fAC (2.2)

This triangle inequality is violated in some cases in the process industries, e.g., if
there is a product B that cleans the resource while being produced. Some models
assume that the triangle inequality has to be fulfilled and thus cannot map these
cases, e.g., the capacitated lot-sizing problem with sequence-dependent setups
(CLSD) (Haase, 1996) in which each product can be set up at most once per period.

If the setup state can remain as before during idle time segments (without produc-
tion on the resource), this is termed preservation of setup state. In other models, a
loss of setup state occurs as soon as the production resource is idle or after a certain
time. “Joint setups” for product families are included in some models (Anily et al.,
2005): Here, only negligible or no setup activities are required when changing over
from one product of a product family to another of the same family. Setup activities
are only necessary if a change to a product belonging to another family occurs.

Transfer of Lots

Furthermore, some multi-level models assume that units of a product produced in
a lot are not transferred to the next production activity until this production lot has
been completed, whereas other models assume that parts of a lot can already be
transferred to the next production activity before the lot has been completed.

Supply Side

Production planning models usually assume that the supply side is unconstrained,
i.e., input goods are available in unlimited quantities, but one could also assume that
the procurement quantities for input goods are limited to certain maxima. The latter
assumption will likely coincide with settings where substitutions of input goods
come into consideration. In addition, note that lot-sizing models can also be applied
to procurement order lot-sizing instead of production lot-sizing.

Lead Times

If production planning models also map purchasing/order decisions or
intra-company transportation aspects, lead times become relevant. In addition, min-
imum and maximum waiting times between stages can be necessary in multi-level
systems, e.g., due to technical restrictions such as ensuring a certain tempera-
ture/state of a product.
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Tool Management

In various production systems, tools (e.g., milling cutters) are required and often
shared among products (Jans and Degraeve, 2006). Tools are only available in
limited quantities and might have a limited lifetime. As they are interrelated with
products and machines – production downtime occurs if required tools are not avail-
able at the right time –, some approaches have been developed to include tool
management decisions in lot-sizing and scheduling models (Jans and Degraeve,
2006).

Setup Resources

The concept of common setup resources (Tempelmeier and Buschkühl, 2008) is
related to tool management: While tools are required for production activities, com-
mon setup resources are required for setup activities. In practice, setup personnel
are often responsible for performing setups at more than one machine. If the limited
availability of personnel for setup activities is not included in a model, this might
lead to unnecessary downtime if setup activities are scheduled to be performed at
overlapping times and no sufficient setup resources are available.

Remanufacturing

The topic reverse logistics, especially remanufacturing, enjoys growing interest in
the production planning and inventory control literature (Jans and Degraeve, 2006):
In addition to regular production of new products, there is a return flow of used
products from customers that can be reused either immediately or after recondi-
tioning/repair. Usually, testing procedures are performed to check whether a used
product is suitable for remanufacturing. Remanufacturing frequently also involves
disassembly and reassembly operations. Instead of reusing a product as a whole, one
could also reuse only certain components of a product or materials contained in it.
A number of lot-sizing models that include remanufacturing options in addition to
regular production have been developed (see, e.g., Bayindir et al., 2007; Inderfurth,
2004; Li et al., 2007). Remanufacturing decisions are also combined with final order
lot-size decisions for spare parts in some models (Kleber and Inderfurth, 2007). The
so-called final order is the last regular production lot of a product before the end of
its production life-cycle.

Demand Side

Regarding the demand side of production planning models, the most rigid assump-
tion is that all occurring demand has to be met immediately at fixed points in time
without any delay, and the problem becomes infeasible if this is not possible with
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the given production capacities. This assumption can be softened by allowing for
backorders (also: backlogging), lost sales or specifying delivery time windows dur-
ing which demand can be satisfied (also see Jans and Degraeve, 2006). Backordering
means that demand can be fulfilled by production after the due date at a specific
penalty cost that increases the longer the delay is. Lost sales denote that demand
which cannot be fulfilled at the due date is lost entirely, i.e., it cannot be fulfilled
later, and a certain penalty cost is incurred. Another option is to assume delivery
time windows for demands (Lee et al., 2001; Brahimi et al., 2006; Wolsey, 2006):
For each customer order, an earliest and latest admissible delivery date is given.
Demand can be fulfilled without penalty between these dates. Note that also com-
binations of these assumptions are possible, e.g., delivery time windows combined
with backlogging costs that are incurred for deliveries after the “latest” delivery date.

Another possibility is to specify service level constraints for certain types of
demand: E.g., one could add a constraint that 99% of the demand of a certain high-
priority customer group for a specific product should be satisfied on time.

The inclusion of backorders, lost sales, or similar softening assumptions implic-
itly requires that the period demands can be fulfilled partially. This might not be the
case in practice if each of the customer orders that ultimately represent the demand
in a period has to be fulfilled completely or gets canceled (all-or-nothing order
fulfillment).

Most typical production planning models assume that the sales/demand quanti-
ties are predetermined, apart from models that allow for lost sales. Those contain
a downward flexibility of the sales quantities as all quantities between zero and an
upper limit are possible. Another smaller group of models assumes that sales quan-
tities for various demand classes / market segments are not fixed, but flexible in a
certain range, which leads to a profit (margin) maximization instead of a cost min-
imization objective (also see Jans and Degraeve, 2006). Using this approach, it is
possible to optimize production systems with high- and low-margin products that
compete for the same scarce resources.

Substitution

The majority of models assume that demands refer to precisely specified products,
and can only be satisfied by production of these. In various practical cases, this
assumption is too rigid, as the demand for a certain product can also be fulfilled
by substitute products. E.g., demand for a low-quality product can sometimes be
met by supplying a similar product with higher quality at the same sales price. In
such cases, the unit costs of the low-quality product are usually lower than those of
the high-quality product. Such product substitutions may require that the substitute
is converted into the substitutable product, which may incur additional conversion
costs. Also, applications exist where substitutions can be performed immediately
without any conversions. Conversion costs can include actual transformation costs
as well as opportunity costs of substitutions. For details on their semantics see
Sect. 3.3.4.1.
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Substitution of input and intermediate goods corresponds to flexible BOMs. Only
few papers on lot-sizing with substitutions have been published (see, e.g., Balakr-
ishnan and Geunes, 2000; Geunes, 2003; Hsu et al., 2005, which we review in
Chap. 4).

For the sake of understanding, we develop our comprehensive taxonomy for
lot-sizing with substitutions in Sect. 3.3 after introducing the required model-
ing framework in Sect. 3.2. This classification scheme is condensed in
Figs. 3.15–3.17.

Multi-location Models

Lot-sizing models are usually applied to production planning at a single loca-
tion. However, models have been developed that integrate production planning and
inventory management with transportation decisions, i.e., inbound logistics and dis-
tribution, for multi-location manufacturing companies. Such models that coordinate
production, inventory and transportation planning and control are called supply
chain optimization models (also see Jans and Degraeve, 2006). According to the
terminology used in literature on Advanced Planning and APS (see, e.g., Rohde
and Wagner, 2005), such models belong to the category of Master Planning models,
rather than Production Planning models.

The locations in these models could be plants, warehouses, retail outlets, loca-
tions of suppliers, or locations of customers. The multi-player capacitated lot-sizing
model of Drechsel and Kimms (2008) belongs to the category of such multi-location
models. It assumes that transshipments between the locations of the players are
possible. Additional aspects that can be incorporated in multi-location models are
multiple transportation modes, e.g., cheap but slower truck or train transportation
vs. costly but fast air freight service, and carrier selection decisions (for a recent
survey, see Meixell and Norbis, 2008).

Strategical and Tactical Decisions

Another area of research are production planning models that include strategical
and/or tactical decisions such as capacity expansion, acquisition or subcontracting
and supplier selection (Jans and Degraeve, 2006): In addition to the short-term
capacity flexibility provided by overtime options, one can allow for expansions
of production capacities by adding new production resources, upgrading existing
resources, or by externally obtaining additional capacities. Such capacity expan-
sions have a longer time range and are thus tactical actions. In terms of APS (see,
e.g., Meyr et al., 2005b), models containing such decisions would be employed in
the modules Master Planning or Strategic Network Planning.

In production planning models with supplier selection (Aissaoui et al., 2007),
several suppliers are available for supplying input goods. The decision on selecting
a combination of suppliers for the input goods is performed simultaneously with
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production planning decisions. The suppliers differ in various characteristics, e.g.,
pricing, quality, production capacities, reliability, and lead time. Supplier selection
models can be differentiated into single-sourcing models where exactly one sup-
plier is selected for each input good, and multiple-sourcing models where one or
more suppliers are selected for each input good. Make-or-buy decisions can also
be included in lot-sizing models and combined with supplier selection decisions.
Some models that include external sourcing also consider quantity discounts (Haase,
2001; Xia and Wu, 2007). In addition, product portfolio decisions could be included
if sales quantities are flexible and/or substitutions possible (also see Sect. 4.1 on
assortment problems).

2.1.1.3 Modeling Technique

In practice, the state of a manufacturing system changes over time. Some of these
state changes are exogenous, e.g., input good deliveries from suppliers or arrivals of
customer orders, some of them endogenous, e.g., product changeovers on machines
that result from the production plan (Meyr, 1999, p. 49). Exogenous state changes
result from external impacts on the manufacturing system that cannot be influenced
by the planner’s decisions. Endogenous state changes follow from implemented
decisions made by the planner. Due to the commonly high interaction between a
manufacturing system and its environment, it seems useful to distinguish between
the internal and external dynamics of a system based on this difference between
endogenous and exogenous state changes (Meyr, 1999, p. 49). State changes of a
system either happen as a discrete event at a single point in time (e.g., the setup of
a machine if the setup time is zero) or as a continuous process over a time interval
(e.g., the inventory reduction of a tank with a liquid). Frequently, continuous state
changes are modeled as discrete state changes because these are easier to model
with MILP. Note that the terminological boundary between exogenous and endoge-
nous might be blurred because, e.g., stochastic input good delivery arrivals from
suppliers would not happen if the decision maker had not placed the corresponding
order beforehand.

Time Horizon

The time horizon in production planning models is either assumed to be infinite or
finite (Domschke et al., 1997, p. 70f.). An infinite time horizon mostly coincides
with the assumption that manufacturing system and its environment is static, i.e.,
the system of course changes over time, but with a recurring pattern. A finite time
horizon is mostly combined with the assumption that the system is dynamic, i.e., the
external dynamics do not show a simple recurring pattern. In the following, we will
focus on dynamic models with a finite time horizon.
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Time Structure

When developing production planning models, the time horizon is usually
segmented into a number of periods (also: time buckets) with a certain fixed, iden-
tical duration. Both exogenous and endogenous state changes are attached to the
beginnings or ends of these periods. That is, the same time structure is used to map
internal and external dynamics. As the lengths of all periods are identical, such
models cannot map state changes at arbitrary points in time but only at the begin-
nings or ends of periods, which might result in unprecise planning results unless a
large number of short periods is introduced.

However, some newer lot-sizing and scheduling models distinguish an exogenous
from an endogenous time structure, e.g., the Discrete Lot-sizing and Scheduling
Problem (DLSP) with sequence-dependent setup costs (Fleischmann, 1994) and
the General Lot-sizing and Scheduling Problem (GLSP) (Fleischmann and Meyr,
1997). So-called macro-periods map the exogenous time structure, micro-periods
the endogenous time structure. In contrast to other models with a single-level time
structure, these models thus have a multi-level time structure. Each macro-period
contains one or more micro-periods. Thus, the lengths of micro-periods are assumed
to be shorter than the lengths of macro-periods. The underlying assumption is that
endogenous state changes are required more frequently than occurring exogenous
state changes. Both exogenous and endogenous time structure are either fixed (i.e.,
state changes can only occur at certain fixed points in time) or flexible (i.e., state
changes can happen at arbitrary points in time). Here, “fixed points in time” refers
to beginnings or ends of time periods that are predetermined. The lengths of periods
might be non-identical. Arbitrary points in time for state changes can be modeled
by treating period lengths and beginnings or ends of periods as decision variables
instead of parameters, and by allowing state changes that are not bound to begin-
nings and ends of periods. An example of a two-level time structure is given in
Fig. 2.11. Each of the four macro-periods contains a certain set of micro-periods.
The beginnings and ends of micro-periods may be flexible, i.e., decision variables.
Two examples of production plans for a resource are shown below the macro- and
micro-periods, assuming given beginnings and durations of micro-periods: One
where the state changes are bound to beginnings and ends of micro-periods and
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micro-periods

state changes
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state changes
within micro-

periods 

1 T=42 3

1 104 82 3 5 6 7 9 11 S=12
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Fig. 2.11 Example of a two-level time structure
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another plan where also state changes within micro-periods are possible. Such state
changes within a micro-period could for instance be as follows:

� A changeover started in the previous micro-period ends after some time in the
micro-period, and production of a product begins.
� Production of a product ends, following by some idle time.
� A changeover to another product starts, either immediately after production or

after some idle time.

If models have time buckets with rather short durations (e.g., hours), these are
called small time bucket (STB) models. Models with time buckets that have a longer
duration (e.g., weeks or months) are called large time bucket (LTB) models. Note
that this classification criterion refers to the macro-periods when considering models
with a multi-level time structure. A closely related classification criterion is the
maximum number of lots or maximum number of endogenous state changes within
a period. In some models, only one product can be produced per period, others
allow for two or an arbitrary but fixed number of products. STB models only allow
for a small number (e.g., 1 or 2), whereas LTB models allow a large number of
lots / endogenous state changes per period. In addition, many models only allow
that each product is set up maximally once per period, whereas others allow multi-
ple setups for the same product within a period. The latter might be advantageous in
the process industries in cases where the triangle inequality is violated.

Dealing with End-of-Horizon Effects

So-called end-of-horizon effects can occur in the last periods of a production plan-
ning model: As final inventories are assumed to be worthless in a large number of
lot-sizing models, there is no tendency in their optimal solutions to produce units to
stock in the last periods. This leads to solutions where the production plan empties
the inventory towards the end of the planning horizon, and no lots are produced in
the last periods. This might yield production plans that are nonsensical from a prac-
tical point of view. Several means to counteract these end-of-horizon effects have
been developed, such as defining salvage values for products or final inventory (also:
terminal inventory) targets, or rewarding lots in the last periods with bonuses, i.e.,
by decreasing the setup costs for these lots (Stadtler, 2000). Production planning
models are often used in a rolling-horizon environment where, as new data becomes
available, the model is solved repeatedly with updated data (Chand et al., 2002) in
a replanning cycle of a certain duration. Only the decisions in the first period(s) of
the optimal solution are actually implemented. Hence, end-of-horizon effects could
be alleviated by the usage of a model in a rolling-horizon environment.

Setups and Periods

Another modeling aspect is whether setup states are assumed to remain preserved
between periods (so-called setup carry-over or linked lot-sizes) or get lost (Suerie



2.1 Dynamic Lot-Sizing 29

and Stadtler, 2003). Oftentimes, the assumption that setup states get lost is only a
simplification for modeling reasons.

Models also differ in another aspect: Some assume that each setup has to fit into
one period, which requires that the maximum setup time is shorter than a chosen
fixed period length, whereas others assume that a setup activity can stretch over
period boundaries, e.g., a setup activity starts somewhere in period t and ends in
period t C 1.

Lead Times

In some cases, lead times between production stages are assumed for modeling
reasons: For example, in the multi-level capacitated lot-sizing problem (MLCLSP)
(see, e.g., Stadtler, 1996; Buschkühl et al., 2008) there is a minimum lead time of
one period before produced units can be used on the next production stage to avoid
violations of temporal constraints.

Stochastic Lot-Sizing

In most manufacturing companies, there is some degree of uncertainty in produc-
tion planning, both with respect to the environment (suppliers, customers, etc.) and
the manufacturing system itself. However, most dynamic lot-sizing models make
the simplifying assumption that demands, processing times and all other data are
deterministic. Some research has been performed to overcome this limitation by
developing stochastic lot-sizing models and appropriate solution techniques (see,
e.g., Huang, 2005; Raa and Aghezzaf, 2005; Beraldi et al., 2006; Brandimarte, 2006;
Guan et al., 2006; Snyder, 2006; Leung et al., 2007a,b; Tempelmeier, 2007). Such
models often assume that only some parameters are stochastic, e.g., the demands,
and all other data deterministic. Different approaches for modeling uncertainty can
be used, e.g., two-stage and multi-stage Stochastic Programming (SP) or Robust
Optimization (RO).

Soft Constraints

When mathematically modeling dynamic lot-sizing problems using MILP, con-
straints are usually mapped as hard constraints, and a problem is considered
infeasible if not all of these can be fulfilled. However, in practice constraints are
often not as hard as specified in a model. For instance, a machine might continue
with a task for another 10 min even if the planned daily operating time of x hours has
already been exceeded. Also, even if a machine runs 24 h per day, it might be possi-
ble to slightly increase its throughput/capacity because it is by default run below its
technical limits.

For these reasons, rather than specifying all constraints as hard constraints, it is
often more realistic to convert some of them into soft constraints. Violations of those



30 2 Production and Operations Management: Models and Algorithms

soft constraints are not assumed to result in infeasibility of a solution, but associated
with certain penalty costs.

In the following, we name several constraints types of dynamic lot-sizing models
that are typical candidates for being relaxed into soft constraints:

� Capacity constraints can be relaxed by allowing for overtime production. A
similar approach is to introduce an fictional period 0 at the beginning of the
planning horizon with unlimited production capacities and high penalty costs
for production (Fleischmann and Meyr, 1997). Also, one could assume that
external procurement of input, intermediate and finished goods is possible at a
certain penalty cost (Meyr, 2004a).
� Demand satisfaction constraints can, e.g., be relaxed by allowing for lost sales

or backlogging.
� Other possible relaxations include penalties for minimum safety stock viola-

tions and exceedance of perishable product shelf lives.

Another reason for converting hard into soft constraints could be that, when solv-
ing MILP lot-sizing models with heuristic or exact algorithms, it is sometimes very
difficult to find an initial feasible solution that satisfies constraints. In such cases,
penalty costs can serve to guide the algorithm to solutions that preferably do not
violate the soft constraints. Another potential advantage of using soft constraints is
to trace data errors in problem instances that seem infeasible.

2.1.1.4 Decision Variables

Flexibility of Lot-Size Decisions

If the endogenous time structure of the model is fixed, i.e., the durations of micro-
periods are fixed and endogenous state changes can only occur at beginnings or ends
of periods, there are only two options for the production on a resource in a certain
period: Either, one product is produced throughout the entire period, or no pro-
duction at all takes place (so-called all-or-nothing production) (Meyr, 1999, p. 53).
In this context, a lot consists of the total production of several subsequent micro-
periods during which the same product is produced. Thus, only integer multiples of
the production quantity of a single period can occur, given that all periods have an
identical length.

Another field of research are production planning models with batch production,
where lots can only be created by combining several production orders for the same
product. Family batching means that lots can also be formed by combining orders
for products belonging to the same product family (Meyr, 1999, p. 53).

If the products are continuous or discrete but the production quantities rather
large, one can use continuous decision variables for lot-sizes. However, if a man-
ufacturing system with rather small production quantities and discrete products is
considered, it might make sense to use integer variables for lot-sizes to avoid a
loss of planning accuracy and ambiguity of solutions depending on the rounding
procedure used.
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In some applications, especially in the process industries, technical restrictions
might require to specify minimum and maximum lot-sizes or that lot-sizes always
have to be a multiple of a certain base size (Meyr, 1999, p. 54).

Other Variables

Depending on the assumptions for the scope of the model and the flexibility of
the manufacturing system, the model might contain (amongst others) the following
decision variables in addition to setup variables, inventory levels and production
quantities:

� Substitution quantities for possible substitutions
� Variables describing demand fulfilment, e.g., lost sales or backlogging variables
� Additional variables describing production sequences if the model includes

scheduling decisions
� Variables for product-to-machine assignments if these are not fixed
� Variables for capturing capacity flexibility (e.g., overtime variables)
� Sales quantities if these are flexible in the model
� Transportation quantities if it is a multi-location model

2.1.1.5 Objective(s)

The common objective in deterministic dynamic lot-sizing models is to minimize
the total cost over the entire time horizon. Other objectives, such as time-related
objectives, e.g., the minimization of deviations from due dates, are often mapped
to monetary objectives by including them using penalty costs. The cost minimiza-
tion objective usually contains variable holding costs for inventory that represent
capital lockup and storage costs, and fixed setup costs. These two cost categories
are partially conflicting objectives, as a reduction of the total setup costs often leads
to an increase of the holding costs due to lot-size-induced inventories. In addition to
holding and setup costs, various other cost and revenue categories can be included
in the objective function, e.g.:

� Variable production costs have to be included if one or more of the following
cases apply:

– Alternative production sequences.
– Heterogeneous parallel machines.
– Flexible BOMs exist.
– Product substitutions are possible.
– The variable production costs are time-varying.

In these cases, variable production costs are not irrelevant any more as they
were in basic lot-sizing models.
� Conversion costs (also: substitution costs) that might be incurred by substitu-

tions. These could, e.g., represent the costs of labor time of manual activities
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necessary to use one product as a substitute for another. Also, if the objective
does not explicitly contain sales prices or unit costs of substitutable prod-
ucts, they may include opportunity costs of substitutions. The interpretation of
conversion costs is treated in detail in Sect. 3.3.4.1.
� Sales prices have to be included if sales quantities are flexible, which leads to a

profit (margin) maximization objective.
� Overtime and other capacity flexibility costs.
� Backlogging and lost sales costs.
� Transportation costs.
� Costs for preserving the setup state of a resource if applicable.

Commonly, the cost minimization objective is modeled as a linear function, but also
non-linear costs could be considered, e.g., to model quantity discounts in models
with suppliers selection.3 As an alternative to cost-oriented objectives, models with
Discounted Cash Flow (DCF) oriented objectives have been developed that cor-
rectly map financial aspects in tactical/strategic models with a longer time horizon
(Helber, 1994; Fleischmann, 2001).

Regarding stochastic lot-sizing models, the question is whether taking the
expected total cost or revenue as an objective is the right approach, because expected
cost minimization or revenue maximization might lead to production plans that yield
poor results in some scenarios. Hence, robust optimization approaches for finding
solutions that perform well even in adversarial scenarios might be more suitable
(Scholl, 2001; Gebhard and Kuhn, 2007).

In the following subsections, we review selected dynamic lot-sizing models:

� The simple, uncapacitated, single-product Wagner–Whitin problem (WWP)
� The capacitated lot-sizing problem (CLSP)
� The capacitated lot-sizing problem with sequence-dependent setups (CLSD)
� The general lot-sizing and scheduling problem (GLSP)
� The multi-level capacitated lot-sizing problem (MLCLSP)
� The general lot-sizing and scheduling problem for multiple production stages

(GLSPMS)

3 Note that the assumption of linear holding costs underlying most dynamic lot-sizing models is
only a simplification: Usually, “snapshots” of the current inventory of a product are taken at the
ends/beginnings of (macro-)periods to approximate the actual average inventory in each (macro-)
period. For an exact calculation of holding costs based on (marginal) inventory changes within
each period, it would be necessary to multiply the holding costs per quantity and time unit with
the integral over the inventory level as a function of the current time. This is because the inventory
of a product can change within a period if the production speed is finite. For example, considering
the CLSD that assumes fixed production speeds (see Sect. 2.1.4), the inventory level as a function
of time would be a piecewise linear function. However, the common approach of approximating
it seems sufficiently precise for practical purposes. Beyond this, the general idea of using holding
costs can be criticized because it is difficult to measure these opportunity costs due to capital lockup
in practice. Also, it should be noted that lot-sizing problem data like demand forecasts are subject
to uncertainty anyway, which might render the mentioned imprecision of holding costs calculations
insignificant. On the accurate calculation of holding costs in dynamic lot-sizing models, also see
Stammen-Hegener (2002, p. 143f.).
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Though being too simplistic to capture the complexity of real-world lot-sizing
problems, the WWP is the root of the more sophisticated dynamic lot-sizing models,
and is hence included here. CLSP and CLSD are single-level big-bucket models,
the latter with sequence-dependent setups. The GLSP is a single-level model with a
two-level time structure. The MLCLSP is a straightforward extension of the CLSP
for multi-level production structures. A more realistic and detailed model is the
GLSPMS, a multi-level model that enhances the GLSP.

Note that different publications often use the same name (e.g., CLSP) for slightly
different models: Frequently, there are subtle or also larger differences in the
model assumptions: Oftentimes, one paper assumes time-varying whereas the other
assumes time-invariant values for certain parameters (e.g., production costs). Some-
times setup times are included, sometimes not. Also, the models can differ as to
the usage of a relaxation (e.g., backlogging, overtime) and the assumption of initial
inventories.

2.1.2 The Wagner–Whitin Problem

The most basic dynamic lot-sizing problem is the Wagner–Whitin Problem (WWP)
(Wagner and Whitin, 1958). Its assumptions are as follows (also see Domschke
et al., 1997, p. 115):

� Lot-sizing for a single, continuous product (can also be interpreted as order
instead of production lot-sizing).
� All parameters are deterministic.
� Finite time horizon with T periods.
� Time-varying demand that has to be satisfied at the beginning of each period.
� Production takes place at the beginning of each period (and can also fulfill the

demand of that period).
� Uncapacitated production with infinite speed.
� No setup carry-over.
� Time-varying fixed setup costs and linear holding costs.
� Time-invariant variable production costs that are thus irrelevant for finding the

optimal solution.
� No lead times.
� All occurring demand has to be fulfilled immediately (no relaxation).
� No initial inventories (without loss of generality).
� Cost minimization objective.
� Continuous variables for lot-sizes.

Using the notation given in Table 2.1, the WWP can be formulated as follows:

Minimize F.q; x; I / D
TX

tD1

.ft xt C ht It / (2.3)
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Table 2.1 Notations for WWP

Symbol Definition

Constants
T Number of periods

Indices and sets
t D 1; : : : ; T Periods

Parameters
dt Demand for product in period t

ht Non-negative holding cost for storing one unit of product in
period t

I0 Initial inventory of product
ft Fixed setup or order cost for product in period t

M Sufficiently large number

Variables
qt Production or order quantity of product in period t

It Inventory of product at the end of period t

xt Binary variable that indicates whether a setup for the product
occurs in period t

subject to

It D It�1 C qt � dt t D 1; : : : ; T (2.4)

I0 D 0 (2.5)

qt � M � xt t D 1; : : : ; T (2.6)

qt ; It � 0 t D 1; : : : ; T (2.7)

xt 2 f0; 1g t D 1; : : : ; T (2.8)

The objective (2.3) is to minimize the sum of setup and holding costs. The inventory
balance equations are given by (2.4). Equation (2.5) specifies that the initial invento-
ries are zero. Equation (2.6) enforces that the setup variable xt is one if production
takes place in period t , i.e., if qt > 0. Equations (2.7)–(2.8) define the variable
domains.

2.1.3 The Capacitated Lot-Sizing Problem

The capacitated lot-sizing problem (CLSP) (see, e.g., Karimi et al., 2003) is a
well-known big-bucket single-resource capacitated lot-sizing model that allows to
produce all products in each period. Its assumptions can be summarized as follows:

� Lot-sizing for multiple, continuous products (set of products P ).
� All parameters are deterministic.
� Single-level time structure.
� Finite time horizon with T periods.
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� An arbitrary number of products can be set up in each period (big bucket
model).
� No scheduling (sequencing) of products within periods (resulting from the

model assumptions, all permutations of the products’ lots within a period result
in the same objective value).
� Time-varying demand for products that has to be satisfied at the end of each

period.
� Demand always refers to exactly specified products (no substitution).
� Single capacitated production resource with finite speed, all products share this

resource.
� Capacity consumption per unit produced differ among products.
� No setup carry-over.
� Single production level.
� Time-varying sequence-independent setup costs.
� Time-invariant linear holding costs.
� No setup times.
� Time-varying variable production costs.
� No lead times.
� All occurring demand has to be fulfilled immediately (no relaxation).
� No initial inventories (without loss of generality).
� Cost minimization objective.
� Continuous variables for lot-sizes.

It can easily be extended to a multi-resource version or a version with setup carry-
overs (the Capacitated Lot-Sizing Problem with Linked Lot-Sizes (CLSPL), Suerie
and Stadtler, 2003).

Using the notation given in Table 2.2, a CLSP formulation is given by:

Minimize F.q; x; I / D
X

i2P

TX

tD1

.pit qit C hi Iit C fitxit / (2.9)

subject to

Iit D Ii;t�1 C qit � dit i 2 P; t D 1; : : : ; T (2.10)

Ii0 D 0 i 2 P (2.11)
X

i2P

�
�

p
i qit C sti xit

� � Kt t D 1; : : : ; T (2.12)

qit � M � xit i 2 P; t D 1; : : : ; T (2.13)

qit ; Iit � 0 i 2 P; t D 1; : : : ; T (2.14)

xit 2 f0; 1g i 2 P; t D 1; : : : ; T (2.15)
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Table 2.2 Notations for CLSP

Symbol Definition

Constants
m Number of products
T Number of periods

Indices and sets
i 2 P D f1; : : : ; mg Products

t D 1; : : : ; T Periods

Parameters
dit Demand for product i in period t

hi Non-negative holding cost per period for storing one unit of product i

pit Unit production cost of product i in period t

Ii0 Initial inventory of product i

fit Fixed setup or order cost for product i in period t

Kt Capacity of resource available in period t

sti Setup time for product i (in capacity units)
�

p
i Capacity required for manufacturing one unit of product i

Variables
qit Production quantity of product i in period t

Iit Inventory of product i at the end of period t

xit Binary variable that indicates whether a setup for product i occurs in
period t

The objective (2.9) is composed of setup costs, variable production costs, and
holding costs. The inventory balance equations are given by (2.10), analogously to
the WWP. Equation (2.11) specifies that the initial inventories are zero. The con-
strained capacity of the production resource is modeled by (2.12): It ensures that the
capacity consumption by setup and production activities never exceeds the available
capacity in a period. Equation (2.13) enforces that the setup variable xit is one if pro-
duction of product i takes place in period t , i.e., if qit > 0. Equations (2.14)–(2.15)
define the variable domains.

2.1.4 The Capacitated Lot-Sizing Problem
with Sequence-Dependent Setups

The capacitated lot-sizing problem with sequence-dependent setups (CLSD) (Haase,
1996) is an extension of the CLSP by sequence-dependent setup costs and times.
As the objective value of a solution also depends on scheduling decisions within
a period due to this differing assumption, the CLSD is a combined lot-sizing and
scheduling model. Its assumptions can be summarized as follows:

� Lot-sizing for multiple, continuous products (set of products P ).
� All parameters are deterministic.
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� Single-level time structure.
� Finite time horizon with T periods.
� An arbitrary number of products can be set up in each period, provided that the

durations of required changeovers fit into the capacity (big bucket model).
� Scheduling (sequencing) of products within periods.
� Time-varying demand for products that has to be satisfied at the end of each

period.
� Demand always refers to exactly specified products (no substitution).
� Single capacitated production resource with finite speed, all products share this

resource.
� Capacity consumption per unit produced differ among products.
� Setup carry-over is possible.
� Single production level.
� Time-varying sequence-dependent setup costs and setup times (these consume

capacity).
� Each product can be set up at most once per period, thus the setup costs and

times need to fulfill the triangle inequality (see Sect. 2.1.1.2).
� Setups have to be completed within a single period.
� Time-invariant linear holding costs.
� Time-invariant production costs that are thus irrelevant for finding the optimal

solution.
� No lead times.
� All occurring demand has to be fulfilled immediately (no relaxation as, e.g.,

backlogging).
� No initial inventories (without loss of generality).
� Initial setup state is given (machine set up for a certain product).
� Cost minimization objective.
� Continuous variables for lot sizes.

Using most of the CLSP notation given in Table 2.2 and several additional
symbols introduced in Table 2.3, the CLSD can be formulated as follows:

Minimize F.q; x; z; I; v/ D
X

i2P

TX

tD1

 
hiIit C

X

k2P

fikxikt

!
(2.16)

subject to

Iit D Ii;t�1 C qit � dit i 2 P; t D 1; : : : ; T (2.17)

X

i2P

 
�

p
i qit C

X

k2P

stikxikt

!
� Kt t D 1; : : : ; T (2.18)
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Table 2.3 Notations for CLSD

Symbol Definition

Indices and sets
i 2 P D f0; : : : ; mg Products including dummy product 0

0 2 P Dummy product for modeling time during which a resource
is not set up for any product

Parameters
fik Setup cost that is incurred when the setup state of the

machine changes from product i to k

stik Setup time for changeover from product i to k

zi1 Binary parameter that indicates whether the resource is
already set up for i at the beginning of the first period

Variables
xikt Binary variable that indicates whether product k is set up

immediately after product i in period t

zi t Binary variable that indicates whether the machine is
already set up for product i at the beginning of period t

vi t Auxiliary variable: the larger it is, the later product i is
scheduled in period t

�
p
i qit � Kt

 
X

k2P

xkit C zi t

!
i 2 P; t D 1; : : : ; T (2.19)

X

i2P

zi t D 1 t D 1; : : : ; T (2.20)

X

h2P

xhit C zi t D
X

k2P

xikt C zi;tC1 i 2 P; t D 1; : : : ; T (2.21)

vkt � vi t C 1 � jP j .1 � xikt / i; k 2 P; i ¤ k; t D 1; : : : ; T (2.22)

qit ; Iit ; vi t � 0 i 2 P; t D 1; : : : ; T (2.23)

Iit � 0 i 2 P; t D 1; : : : ; T (2.24)

vi t � 0 i 2 P; t D 1; : : : ; T (2.25)

xikt 2 f0; 1g i; k 2 P; t D 1; : : : ; T (2.26)

zi t 2 f0; 1g i 2 P; t D 2; : : : ; T C 1 (2.27)

The objective (2.16) is to minimize the sum of holding costs and sequence-dependent
setup costs. A dummy product 0 is introduced for modeling the state where the
resource is not set up for any product: If a changeover to this product occurs,
this means that the previous setup state for another product gets lost and the
resource is not set up for any real product. The inventory balance equations are
given by (2.17). The constrained capacity of the production resource is modeled
by (2.18): It ensures that the capacity consumption by production activities and
sequence-dependent setup times never exceeds the available capacity in a period.
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Equation (2.19) enforces that production of product i only takes place in period t if
the resource was already set up for i at the end of period t � 1 or a changeover to
i is performed in t . Equation (2.20) means that exactly one product is set up on the
resource at the end of each period t � 1 and thus at the beginning of each period t .
The so-called “setup state flow preservation / sub-tour elimination” is modeled by
(2.21). It maps the following aspects:

� If a product was set up at the beginning of a period t and no changeover takes
place in the period, it is still set up at the beginning of the next period t C 1.
� If a changeover to a product i occurs in a period t and no further changeover

from i to another product is performed in the period, i is still set up at the
beginning of the next period t C 1.
� If a changeover to a product i occurs in a period t and a further changeover from

i to another product is performed in the period, i is not set up at the beginning
of the next period t C 1.

Equation (2.22) creates a production sequence for the products within each period
using the auxiliary variables vi t . If vkt > vi t , this means that product k is scheduled
for production later than product i in period t , i.e., immediately after i or with
some other products in between.4 The production sequence associated with a CLSD
solution can easily be determined by sorting the product indices in P in ascending
order of the vi t values. Equations (2.23)–(2.27) define the variable domains.

2.1.5 The General Lot-Sizing and Scheduling Problem

The general lot-sizing and scheduling problem (GLSP) (Fleischmann and Meyr,
1997; Meyr, 1999, 2000, 2002) is a single-level lot-sizing and scheduling prob-
lem with a two-level time structure. The assumptions of its most general version
with sequence-dependent setup costs and times, multiple heterogeneous parallel
machines, setup state preservation as well as the possibility of setup loss can be
summarized as follows:

� Lot-sizing for multiple, continuous products (set of products P ).
� All parameters are deterministic.
� Two-level time structure.
� Finite time horizon with T macro-periods and S micro-periods.
� Each macro-period contains a predetermined set of micro-periods, the number

of micro-periods can differ among macro-periods.
� The beginning and length of each macro-period are fixed by the capacities of

the preceding macro-periods and its own capacity.
� Micro-period beginnings and lengths are flexible, except for the beginnings of

micro-periods that are the first micro-period within a macro-period.

4 This constraint group is based on the same idea as the Miller–Tucker–Zemlin subtour elimination
constraints for the Asymmetric Traveling Salesman Problem (ATSP) (Domschke, 1997, p. 106f.).
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� Only a single product can be set up and produced in each micro-period.
� Scheduling (sequencing) of products within macro-periods.
� Time-varying demand for products that has to be satisfied at the end of each

macro-period.
� Demand always refers to exactly specified products (no substitution).
� Multiple capacitated production resources with finite speed.
� Heterogeneous parallel resources.
� Capacity consumption per unit produced differ among products.
� Setup carry-over is possible.
� Single production level.
� Time-invariant sequence-dependent setup costs and setup times (these consume

capacity).
� Changeovers are performed at beginnings of micro-periods.
� Setups have to be completed within a single period.
� Time-invariant linear holding costs that are incurred for inventory at the end of

each macro-period.
� Time-invariant production costs that differ among the parallel resources and

thus have to be included.
� Time-invariant costs for preservation of setup state for a product on a certain

resource (per time unit).
� No lead times.
� All occurring demand has to be fulfilled immediately (no relaxation).
� Initial inventories.
� Minimum production quantity after changeover.
� Minimum time for resource staying in idle state (without production).
� Initial setup state given for each resource.
� Cost minimization objective.
� Continuous variables for production quantities.

The GLSP is formulated using the notations contained in table 2.4:

Minimize F.q; x; z; I; ‰/ D
X

i2Pnf0g

TX

tD1

hi Iit

C
X

i2P

X

r2R

SX

sD1

 
prisqris C pris‰ris C

X

k2P

frikxriks

!
(2.28)

subject to

Iit D Ii;t�1 C
X

r2R

X

s2St

qris � dit i 2 P nf0g; t D 1; : : : ; T (2.29)

X

i2P

X

s2St

 
�

p
riqris C ‰ris C

X

k2P

strikxriks

!
D Krt

r 2 R; t D 1; : : : ; T (2.30)
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Table 2.4 Notations for GLSP

Symbol Definition

Constants
m Number of products
T Number of macro-periods
S Number of micro-periods
nr Number of resources

Indices and sets
i 2 P D f0; : : : ; mg Products including dummy product 0

0 2 P Dummy product for modeling time during which a resource is not set
up for any product

t D 1; : : : ; T Macro-periods
s D 1; : : : ; S Micro-periods
r 2 R D f1; : : : ; nrg Resources

Pr Set of products that are manufactured using resource r

St Set of micro-periods belonging to macro-period t (� S)
t .s/ Macro-period t to which micro-period s belongs

Parameters
dit Demand for product i in macro-period t

hi Non-negative holding cost per macro-period for storing one unit of
product i

pris Unit production cost of product i on resource r in micro-period s

pris Cost for preserving setup state of product i on resource r in
micro-period s per capacity unit

Ii0 Initial inventory of product i

Krt Capacity of resource r available in macro-period t

frik Setup cost that is incurred when the setup state of resource r changes
from product i to k

strik Setup time for changeover from product i to k on resource r

�
p
ri Capacity required for manufacturing one unit of product i on

resource r

mri Minimum production quantity for product i after changeover on
resource r

zri1 Binary parameter that indicates whether resource r is set up for i at
the beginning of the first micro-period

Variables
qris Production quantity of product i on resource r in micro-period s

Iit Inventory of product i at the end of macro-period t

xriks (Binary) variable that indicates whether a changeover from product k

to product i is performed on resource r in micro-period s

zris Binary variable that indicates whether resource r is already set up for
product i at the beginning of micro-period s or a changeover to it
is completed in s

‰ris Time during which setup state of product i on resource r is preserved
in micro-period s without production (in capacity units)
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�
p
riqris C ‰ris � Kr;t.s/ � zris r 2 R; i 2 P; s D 1; : : : ; S (2.31)

qris � mri .zris � zri;s�1/ r 2 R; i 2 P; s D 1; : : : ; S (2.32)
X

i2P

zris D 1 s D 1; : : : ; S (2.33)

xriks � zri;s�1 C zrks � 1 r 2 R; i; k 2 P; s D 1; : : : ; S (2.34)

qris; ‰ris � 0 r 2 R; i 2 P; s D 1; : : : ; S (2.35)

Iit � 0 i 2 P nf0g; t D 1; : : : ; T (2.36)

xriks � 0 r 2 R; i; k 2 P; s D 1; : : : ; S (2.37)

zris 2 f0; 1g r 2 R; i 2 P; s D 2; : : : ; S (2.38)

The objective (2.28) is to minimize the sum of holding costs, variable production
costs, sequence-dependent setup costs and setup state preservation costs. As in the
CLSD, a dummy product 0 is introduced for modeling the state where the resource
is not set up for any product: If a changeover to this product occurs, this means that
the previous setup state for another product gets lost and the resource is not set up
for any real product. The inventory balance equations are given by (2.29). The con-
strained capacity of each production resource is modeled by (2.30): It ensures that
the capacity consumption by production activities and sequence-dependent setup
times never exceeds the available capacity in a period. The time during which the
setup state is preserved without production is captured explicitly by the ‰ris vari-
ables because setup state preservation incurs costs in the GLSP. This is also the
reason why the capacity constraint is an equation instead of an inequality as in the
CLSD. Equation (2.31) enforces that production of product i on a resource r only
takes place in micro-period s if the resource was already set up for i at the end of
micro-period s � 1 or a changeover to i is performed in s. Minimum production
quantities after the changeover to a product are enforced by (2.32). Equation (2.33)
means that exactly one product is set up on the resource at the end of each micro-
period s � 1 and thus at the beginning of each micro-period s. Equation (2.34)
ensures that the changeover variable xriks becomes one if i was set up at the end of
the previous micro-period s � 1 and k is set up at the end of s, which implies that a
changeover must have been performed. Equations (2.35)–(2.38) define the variable
domains. The variables xriks do not need to be defined as binary variables because
their value will always be 0 or 1 in an optimal solution and should as well be binary
in every good solution. This is due to (2.37) and their nonnegative coefficients in the
objective.

2.1.6 The Multi-Level Capacitated Lot-Sizing Problem

The multi-level capacitated lot-sizing problem (MLCLSP) (see, e.g., Stadtler, 1996;
Buschkühl et al., 2008) is an extension of the CLSP by multiple production levels.
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Its assumptions can be summarized as follows:

� Lot-sizing for multiple, continuous products (set of products P ).
� All parameters are deterministic.
� Single-level time structure.
� Finite time horizon with T periods.
� An arbitrary number of products can be set up in each period, provided that

their setup times fit into the capacity (big bucket model).
� No scheduling (sequencing) of products within periods (resulting from the

model assumptions, all permutations of the products’ lots within a period result
in the same objective value).
� Time-varying demand for products that has to be satisfied at the end of each

period.
� Demand always refers to exactly specified products (no substitution).
� Multiple capacitated production resources with finite speed, multiple products

may share a resource.
� No parallel (alternative) resources.
� Capacity consumption per unit produced differ among products.
� No setup carry-over.
� Multiple production levels, Gozinto factors are given (units of direct predeces-

sor product required per unit of successor product).
� Predecessor and successor products may share the same resources.
� Time-invariant sequence-independent setup costs and times.
� Setups have to be completed within a single period.
� Time-invariant linear holding costs.
� Time-invariant production costs that are thus irrelevant for finding the optimal

solution.
� Lead times between production stages, minimum of one period.
� All occurring demand has to be fulfilled immediately (no relaxation).
� Initial inventories.
� Unlimited work-in-progress buffers for intermediate goods.
� Cost minimization objective.
� Continuous variables for lot-sizes.

Using the CLSP notation given in Table 2.2 and the additional symbols intro-
duced in Table 2.5, the MLCLSP can be formulated as given below. Note that setup

Table 2.5 Notations for MLCLSP

Symbol Definition

Indices and sets
P s

i � P Set of successor products of i

Parameters
gik Number of units of product i required for producing one unit

of its successor product k (Gozinto factor)
li � 1 Lead time of product i (time unit: number of periods)
sti Production setup time for product i
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times are measured in capacity units, whereas lead times are measured in the number
of periods.

Minimize F.q; x; I / D
X

i2P

TX

tD1

.hi Iit C fi xit / (2.39)

subject to

Iit D Ii;t�1 C qit � dit �
X

k2P s
i

gikqk;tCli i 2 P; t D 1; : : : ; T � li (2.40)

Iit D Ii;t�1 C qit � dit i 2 P; t D T � li C 1; : : : ; T

(2.41)
X

i2Pr

�
�

p
i qit C stixit

� � Krt r 2 R; t D 1; : : : ; T (2.42)

qit � M � xit i 2 P; t D 1; : : : ; T (2.43)

qit ; Iit � 0 i 2 P; t D 1; : : : ; T (2.44)

xit 2 f0; 1g i 2 P; t D 1; : : : ; T (2.45)

The objective (2.39) is to minimize the sum of holding and setup costs. The
inventory balance equations are given by (2.40) and (2.41): Due to the multi-level
production structure, they include the consumption of units of a product by succes-
sor products with the respective Gozinto factors. Equation (2.41) is required because
there is no inventory consumption caused by production of successor products in
the last li periods due to the lead time between production stages. The constrained
capacity of each production resource is modeled by (2.42): It ensures that the
capacity consumption by setup and production activities never exceeds the available
capacity in a period. Equation (2.43) enforces that the setup variable xit is one if pro-
duction of product i takes place in period t , i.e., if qit > 0. Equations (2.44)–(2.45)
define the variable domains.

2.1.7 The General Lot-Sizing and Scheduling Problem
for Multiple Production Stages

The general lot-sizing and scheduling problem for multiple production stages
(GLSPMS) (Meyr, 2004a) is a multi-level lot-sizing and scheduling problem with a
two-level time structure. It enhances the GLSP and is intended for a flow shop pro-
duction environment, where each intermediate or finished good and each resource
belongs to exactly one production stage and the stages have a unique order. The
assumptions of its most general version with production quantity splitting and setup
time splitting can be summarized as follows:

� Lot-sizing for multiple, continuous products (set of products P ).
� All parameters are deterministic.
� No lead times.



2.1 Dynamic Lot-Sizing 45

� Two-level time structure.
� Finite time horizon with T macro-periods and S micro-periods.
� Each macro-period contains a predetermined set of micro-periods, the number

of micro-periods can differ among macro-periods.
� The beginning and duration of each macro-period are fixed.
� Micro-period beginnings and lengths are flexible, apart from some micro-

periods with explicitly fixed beginnings; these fixed beginnings are required for
micro-periods that are the first micro-period in a macro-period and for modeling
predetermined fixed exogenous downtime of resources.
� Only a single changeover is possible between each pair of micro-periods.
� Scheduling (sequencing) of products within macro-periods.
� Time-varying demand for products that has to be satisfied at the end of each

macro-period.
� Demand always refers to exactly specified products (no substitution).
� Multiple capacitated production resources with finite speed.
� Multiple production levels, Gozinto factors are given (units of direct predeces-

sor product required per unit of successor product).
� Heterogeneous parallel resources on each production level.
� Resources may be shared between production levels, i.e., between predecessor

and successor products.
� Capacity consumption per unit produced differ among products.
� Setup carry-over is possible.
� Time-invariant sequence-dependent setup costs and setup times (these consume

capacity).
� Changeovers are started towards the end of a micro-period and may continue

into the subsequent micro-period (setup time splitting).
� Time-invariant linear holding costs that are incurred for inventory at the end of

each macro-period.
� Time-invariant production costs that differ among the parallel resources and

thus have to be included.
� Time-invariant costs for preservation of setup state for a product on a certain

resource (per time unit).
� All occurring demand has to be fulfilled immediately (no relaxation).
� Initial inventories.
� Quantities produced in a micro-period can be used for satisfying (successor)

demand in the same micro-period (after they have been produced).
� Limited work-in-progress buffers for intermediate goods within micro-periods,

thus production on a predecessor stage is possible while a setup is performed
on the successor stage (production quantity splitting is necessary to model this
and the previous aspect).
� Minimum production quantity after changeover.
� Minimum time for resource staying in idle state (without production).
� Initial setup state given for each resource.
� Cost minimization objective.
� Continuous variables for production quantities.
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Table 2.6 Notations for GLSPMS

Symbol Definition

Indices and sets
e.t/ Last micro-period of macro-period t

ˆ Set of micro-periods
ˆf ix Set of micro-periods with fixed beginnings
ˆo

r Set of micro-periods during which production on r is forbidden
ˆl Set of micro-periods that are the last micro-period in a

macro-period

Parameters
dis Demand for product i in micro-period s (D 0 for all s 2 ˆnˆl )
I max

i Upper inventory limit for product i

ws Fixed beginning for micro-period s

I
w;max
ri Upper inventory limit for units of product i produced on

resource r that are not consumed before the next
micro-period

zri1 D xri i1 Binary parameter that indicates whether resource r is set up for
i at the beginning of the first micro-period

Variables
xriks Binary variable that indicates whether a changeover from

product k to product i is performed on resource r starting at
the end of micro-period s � 1 and continuing into
micro-period s

zris Binary variable that indicates whether resource r is already set
up for product i at the beginning of micro-period s or a
changeover to it started in s � 1 is completed in s

Iis Inventory of product i at the end of micro-period s

q0
ris Quantity of product i produced on r in micro-period s

available for consumption in the same period
q

C1
ris Quantity of product i produced on r in micro-period s

available for consumption in the next period sC 1

ws Beginning of micro-period s (on continuous time axis)
yb

rs Setup time consumed on resource r at beginning of
micro-period s

ye
rs Setup time consumed on resource r at end of micro-period s

Using the GLSP notation given in Table 2.4 and the additional symbols intro-
duced for MLCLSP and GLSPMS in Tables 2.5 and 2.6, the GLSPMS can be
formulated as given in the following. Note that in contrast to the GLSP that uses
inventory variables Iit on the macro-period level, the GLSPMS keeps track of the
inventory on the micro-period level and hence requires Iis inventory variables for
each micro-period. Also, the xriks variables have a different meaning than in the
GLSP: They indicate that the changeover from product i to k is already started
towards the end of the previous micro-period s � 1, not exactly at the beginning of
s. In addition, note that we assume for the sake of generality that setup state preser-
vation costs may differ among the products. Hence, we added the index i to pris , in
contrast to prs defined in the original formulation of Meyr (2004a).



2.1 Dynamic Lot-Sizing 47
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yb
r1 D ye

rS D 0 r 2 R (2.62)

qris; ‰ris � 0 r 2 R; i 2 Pr; s D 1; : : : ; S (2.63)

Iis � 0 i 2 P nf0g; s D 1; : : : ; S (2.64)

xriks � 0 r 2 R; i; k 2 Pr; s D 2; : : : ; S (2.65)

zris 2 f0; 1g r 2 R; i 2 Pr; s D 2; : : : ; S (2.66)

ws � 0 s D 1; : : : ; S C 1 (2.67)

q0
ris; qC1
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The cost minimization objective (2.46) is composed of holding costs, variable
production costs, sequence-dependent setup costs and setup state preservation costs.
As in the CLSD and GLSP, a dummy product 0 is introduced for modeling the state
where the resource is not set up for any product: If a changeover to this product
occurs, this means that the previous setup state for another product gets lost and
the resource is not set up for any real product. The inventory balance equations are
given by (2.47): Due to the multi-level production structure, they include the con-
sumption of units of a product by successor products with the respective Gozinto
factors. In addition, the inventory increase is split in a part q0

ris that originates from
production in the same micro-period s and a part that originates from production in
the previous micro-period s � 1. This production quantity splitting is necessary to
ensure that the usage of units produced in a micro-period by a successor product in
the same micro-period is always temporally feasible in the real-world application,
i.e., no units are “consumed before they have been produced”. Note that qC1

ri0 has to
be defined as a constant with value 0. Equation (2.48) limits the inventory of each
product to a certain maximum level. The constraints (2.49) fix the beginnings of a
subset of the micro-periods to certain points in time.

The constrained capacity of each production resource is modeled by (2.50):
It ensures that the capacity consumption by production activities and sequence-
dependent setup times never exceeds the effective duration of each micro-period.
This duration of a micro-period s is the difference wsC1 �ws of the beginning of the
subsequent period and its own beginning. It is necessary to introduce wSC1 because
the duration of the last micro-period S has to be fixed as well. As setup activities
overlap micro-period boundaries in the GLSPMS, setup time may lie both at the
beginning and the end of each micro-period (yb

rs and ye
rs , respectively). The time

during which the setup state is preserved without production is captured explicitly
by the ‰ris variables because setup state preservation incurs costs in the GLSPMS.
Hence, the capacity constraint is an equation as in the GLSP. Equation (2.51) ensures
that no production takes place on r in a micro-period s during which production is
forbidden. Equation (2.52) enforces that production of product i on a resource r

only takes place in micro-period s if the resource is already set up for i at the begin-
ning of s or a changeover to i is performed in s. Minimum production quantities
after the changeover to a product are enforced by (2.53).
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Equation (2.54) means that exactly one product is set up on the resource at
the beginning of each micro-period s. Equation (2.55) ensures that the changeover
variable xriks becomes one if i was set up in micro-period s � 1 and k is set up in s,
which implies that a changeover must have been performed. Equation (2.56) splits
up the setup time of a setup activity that starts in s �1 and continues into s, and thus
overlaps the micro-period boundaries: A part ye

r;s�1 of the setup time is scheduled
at the end of s � 1, the remaining part yb

rs at the beginning of s. Note that all yb
r1

and ye
rS should be fixed to 0. The splitting of production quantities into a part q0

ris

that can be used in the same micro-period s where the production takes place and
another part qC1

ris that cannot be used before the next period s C 1 is implemented
by (2.57). Equation (2.58) specifies upper limits for the work-in-progress buffers
after resources between successive production stages. Equation (2.59) makes sure
that exactly one changeover occurs in each micro-period. Note that if xri is D 1, this
denotes that product i remains set up. If we omitted (2.59) in the model, it would
still be fulfilled in every optimal solution, but not in every integer feasible solution
to the GLSPMS. Equations (2.63)–(2.69) define the variable domains.

Examples that show the necessity of (2.60) and (2.61) are given by Meyr
(2004a): Certain cases exist where feasible solutions to the GLSPMS with these
two constraints omitted would be inapplicable to the real-world problem: If the
linkage between production stages was ignored, temporal constraints could be vio-
lated within micro-periods though the production and setups on r1 and r2 seem
capacity-feasible.

Figure 2.12 illustrates why (2.60) is required: The predecessor i is assumed to
be slower than its successor k. In this context, the proposition that a predecessor i

is slower than its successor k denotes that gik�
p
r1i > �

p

r2k , i.e., the production time

resource 2
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Fig. 2.12 Example showing necessity of (2.60), adapted from Meyr (2004a)
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for producing the number of units of i required for one unit of k is longer than the
production time for one unit of k (excluding the production time for predecessors).
Without (2.60), the schedule shown in Fig. 2.12a could be contained in a “feasible”
solution. In the schedule, the split changeover time ye

r2;s�1 at the end of s � 1 is
so long that the production of the faster successor k would have to stop before the
production of the required quantity q0

r1i;s�1 of its predecessor i has been completed,
assuming that there are no stocks of i at the beginning of s � 1. Thus, it might
not be possible to implement the resulting schedule due to its violation of temporal
constraints.

Equation (2.60) ensures that the changeover to and production of a slower pre-
decessor product i on resource r1 and the split changeover from a faster successor
product k on resource r2 (on the next production stage) to another product all fit into
the duration ws � ws�1 of a micro-period s � 1.5 Here, only the production q0

r1i;s�1

of i that can be used in s � 1 is considered. A schedule with the property enforced
by (2.60) is shown in Fig. 2.12b.

The necessity of (2.61) is exemplified by Fig. 2.13: The predecessor product i is
now assumed to be faster than its successor product k. Without (2.61), the schedule
shown in Fig. 2.13a could be contained in a “feasible” solution. Due to the slowness
of the successor product k and the duration ye

r2;s�1 of the split changeover on its
resource, one would have to start the production of k before the production of its
predecessor i has started, which is impossible if we again assume that there are no
stocks of i at the beginning of s � 1. Thus, even with (2.60) added to the model,
it might not be possible to implement the resulting schedule as it might still violate
temporal constraints.

Hence, (2.61) is required. It enforces that the split changeover to a faster prede-
cessor product i on resource r1 and the production of a slower successor product k

on resource r2 (on the next production stage) as well as the split changeover from k

to another product all fit into the duration ws � ws�1 of a micro-period s � 1.6

5 The constraint (2.60) is slightly more restrictive than necessary. It always ensures tempo-
ral feasibility of a solution, but excludes some feasible solutions (F. Seeanner 2009, personal
communication): (2.60) is always enforced, no matter whether both the slow predecessor i and
its successor k are actually produced on resources r1 and r2, respectively, in s � 1. If i is not pro-
duced on r1 in s� 1, (2.60) still enforces that ws �ws�1 � yb

r1;s�1C ye
r2;s�1, which unnecessarily

limits the duration of split setups on r1 and r2 involving other products. Considering the case that
k is not produced on r2 in s � 1, (2.60) is still enforced although the solution shown in Fig. 2.12a
would not violate temporal constraints. Equation (2.60) can be formulated in a less restrictive way
by introducing setup splitting variables for each possible changeover from one product h to another
product j , i.e., by introducing additional indices h and j for the yb and ye variables. These vari-
ables yb

rhjs and ye
rhjs denote the setup time consumed by a changeover from product h to j on

resource r at the beginning and end of micro-period s, respectively (F. Seeanner 2009, personal
communication). With these variables, one can reformulate (2.60) so that only relevant durations
of changeovers involving the products i and k are included.
6 Just as (2.60), (2.61) is more restrictive than necessary and can be reformulated in a less restric-
tive way using the variables yb

riks and ye
riks mentioned in footnote 5 (F. Seeanner 2009, personal

communication). A schedule with the property enforced by (2.61) is shown in Fig. 2.13b.
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Fig. 2.13 Example showing necessity of (2.61) adapted from Meyr (2004a)

2.1.8 Comparison of Models

The CLSP and CLSD can be mapped to the GLSP by introducing additional con-
straints (Meyr, 1999, p. 82f.). The same holds true for the Proportional Lot-Sizing
and Scheduling Problem (PLSP) (Meyr, 1999, p. 83). Also, the Discrete Lot-Sizing
and Scheduling Problem (DLSP) and the Continuous Lot-Sizing and Scheduling
Problem can immediately be mapped to special cases of the GLSP (Meyr, 1999,
p. 82f.). The GLSP itself could be mapped to a single production level version of
the GLSPMS where no production quantity splitting and setup time splitting are
allowed.

Comparing the (multi-resource version of) CLSD and the GLSP, a main differ-
ence is that the CLSD cannot deal with the case where multiple setups of the same
product within a (macro-)period would be efficient due to a violation of the trian-
gle inequality in the problem instances (Meyr, 1999, p. 76): It only allows a single
setup of each product in a period. In contrast, the GLSP allows multiple setups of a
product within a macro-period.

The MLCLSP and GLSPMS compare as follows: First, the MLCLSP does not
consider sequence-dependent setups and setup carry-overs. However, the MLCLSPL
(Suerie and Stadtler, 2003) includes setup carry-overs, and one could also develop a
multi-level formulation of the CLSD. Second, a critical assumption of the MLCLSP
is that there is a minimum lead time of an entire period (li � 1) between produc-
tion stages to ensure feasibility of the resulting solution. This assumption is made
solely for modeling reasons and might result in production plans that are subopti-
mal from a practical point of view. The requirement that li � 1 can be explained as
follows: When setting li D 0, the entire production qit of a predecessor product i in
a period t could immediately be used for satisfying the demand gikqkt induced by a
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successor product k 2 P s
i in the same period. This might not be feasible in practice

because the units of i have to be produced within t before they can be used by k

later on in that period. The GLSPMS handles this difficulty by introducing the pro-
duction quantity splitting variables q0

ris and qC1
ris as well as the constraints (2.60) and

(2.61). Thus, no minimum lead time between production stages is required. Third,
the GLSPMS allows for modeling exogenous resource downtime, e.g., due to pre-
determined scheduled machine maintenance on resource r : This can be included by
fixing the beginnings of two adjacent micro-periods s and s C 1 to values ws and
wsC1, adding them to the set ˆf ix , and adding s to the set ˆ0

r .

2.2 Solution Techniques for Dynamic Lot-Sizing

In this section, we provide a high-level overview of solution methods available for
solving deterministic dynamic lot-sizing problems modeled as mixed-integer linear
programs (MILP).

2.2.1 Overview

Generally, exact algorithms that yield optimal solutions and guarantee their opti-
mality can be distinguished from heuristics that generate feasible, preferably good
solutions. Oftentimes, the running times of exact algorithms are too high to use
these algorithms, as the user of an algorithm wants to obtain a good solution after a
limited and ideally short amount of time. Hence, heuristics are preferable for many
real-world problems because they frequently yield good solutions within a short
computation time. Before even starting to solve an MILP formulation of a lot-sizing
problem with an algorithm, one often tries to reformulate the problem so that it can
be solved more efficiently.

Reformulations of lot-sizing problems are often based on analogies to other
MILP problems or on analogies of their LP relaxations to certain other linear pro-
gramming models, e.g., Warehouse Location Problems, Shortest-Path Problems, or
Minimum-Cost Network Flow Problems. Another way of reformulating a problem
is to add certain valid inequalities to the mathematical model a priori. These valid
inequalities cut off certain non-integer solutions from the feasible solution space,
and ideally provide the convex hull. Their purpose is also to sharpen the bounds
obtained from solving the LP relaxation of the problem. However, when adding
certain groups of valid inequalities to a lot-sizing model a priori, one should trade
off the exclusion of non-integer solutions and improvement of the bounds against
the increased model size: By adding additional valid inequalities, the number of
constraints increases, and thus the time for solving the LP relaxation presumably
increases. Also, decompositions of a problem can be used for solving a prob-
lem more efficiently, e.g., the Dantzig–Wolfe decomposition (see, e.g., Degraeve
and Jans, 2007). In addition, in some approaches the solution space is reduced by
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considering only solutions that fulfill certain properties (see, e.g., Haase and Kimms,
2000).

Typical exact algorithms for MILP are:

� Pure Branch&Bound (B&B) algorithms
� Branch&Cut (B&C) algorithms that combine B&B with the generation of

cutting planes
� Branch&Price (B&P) algorithms that combine B&B with column generation

(Barnhart et al., 1998)7

� Branch&Cut&Price (B&C&P) algorithms that combine B&B with the genera-
tion of cutting planes and column generation (Ralphs et al., 2001)

Heuristic algorithms can be categorized into construction heuristics that generate
initial feasible solutions and improvement heuristics that start from a feasible solu-
tion and try to find better solutions. However, the terminological boundary between
construction and improvement heuristics is blurred because improvement heuristics
could also start from a solution that is feasible for a relaxation of the original lot-
sizing problem (e.g., with backlogging or lost sales) but infeasible for the original
problem. Heuristic approaches to lot-sizing MILP models can be classified into the
following categories (also see Silver, 2004; Jans and Degraeve, 2007; Buschkühl
et al., 2008):

� “Pure” constructive heuristics that generate feasible solutions
� Exact algorithms that are truncated after a certain time before reaching the

optimum
� “Pure” meta-heuristics (Jans and Degraeve, 2007) (e.g., Tabu Search, Simulated

Annealing, Genetic Algorithms, Scatter Search, Particle Swarm Optimization,
Ant Colony Optimization, Threshold Accepting as well as countless hybrids of
these algorithms, see, e.g., Caserta and Rico, 2009)
� Decomposition and aggregation heuristics (Buschkühl et al., 2008) (e.g., time-,

product-, or resource-based decomposition, product- or resource-based aggre-
gation)
� Lagrangean (relaxation or decomposition) heuristics (Fisher, 1981), see, e.g.,

Tempelmeier and Derstroff (1996); Toledo and Armentano (2006)8

� Combinations of (meta-) heuristics and exact algorithms
(Puchinger and Raidl, 2005), e.g., Relax&Fix heuristics (Stadtler, 2003) or
combinations of local search heuristics with a minimum cost network flow
solver (Meyr, 2000)

In the following subsections, we briefly review selected solution approaches
for lot-sizing: Valid inequalities are considered in Sect. 2.2.2, reformulations in
Sect. 2.2.3, combinations of exact algorithms and heuristics in Sect. 2.2.4, and
selected other approaches for lot-sizing with sequence-dependent setups in
Sect. 2.2.5.

7 See Desrosiers and Lübbecke (2005); Huisman et al. (2005); Lübbecke and Desrosiers (2005);
Ralphs et al. (2001, 2003); Vanderbeck (2003, 2005); Wilhelm (2001) for additional literature.
8 For additional literature see, e.g., Diaby et al. (1992a,b); Thizy and van Wassenhove (1985).
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2.2.2 Valid Inequalities

Valid inequalities (also: cuts or cutting planes) are inequalities that are valid for all
integer-feasible solutions of an MILP. They are often violated by solutions feasible
for the LP relaxation that do not fulfill the integrality constraints for some integer
and binary variables. Cuts are added to improve the bounds yielded from the LP
relaxations, which helps to prune B&B nodes, and ideally to effect that the optimal
solution of a node’s LP relaxation becomes integer-feasible.

There are three common approaches for using valid inequalities when practically
solving lot-sizing problems:

1. Add valid inequalities to the model formulation a priori even before starting an
algorithm (standard MIP solver or specialized algorithm). This results in a larger
(possibly huge) model formulation whose LP relaxation usually yields tighter
bounds.

2. Add valid inequalities to a so-called pool of user cuts, a feature that is offered by
some standard MIP solvers (e.g., CPLEXr). The user can insert cuts of which
he expects that they speed up the B&C procedure into a set (“pool”). The solver
uses these cuts during B&C by adding them to the LP relaxations of B&B nodes
where they are violated. In this approach, the solver might spend a significant
amount of time on checking whether user cuts are violated without gaining any
advantage from the cuts, especially if the cut pool contains a large number of
“weak” valid inequalities: As the solver uses no specialized separation heuristic
for the cuts, a “brute-force” enumeration of all cuts in the cut pool might be
necessary.

3. Implement a specialized separation heuristic for each group of valid inequalities
and integrate such separation heuristics into a B&C algorithm: This heuristic
is applied at each node of the B&B tree to find cuts belonging to a certain
group of valid inequalities that are violated by the optimal solution of the
node’s LP relaxation. This approach critically depends on the computation time
required for the separation heuristic and the number and “strength” of the cut
it returns.

A general difficulty is how to select groups of valid inequalities that could be effec-
tive for a certain lot-sizing problem. Since no structured approach for this selection
exists, empirical analysis of algorithm performance on instances of the problem
class to be solved is often the only choice. Also, as some groups of valid inequali-
ties contain an exponential number of cuts, it is not practicable to add all of these in
approaches (1) and (2). A vast amount of literature on valid inequalities for lot-sizing
models has been published (see, e.g., Pochet and Wolsey, 1991, 2006; Marchand
et al., 2002; Belvaux and Wolsey, 2000, 2001; Pochet, 2001; Wolsey, 1997, 1998,
2003a,b; Pochet et al., 2005).

As a comprehensive overview of valid inequalities for lot-sizing models would
go beyond the scope of this work, we only give examples of valid inequalities for the
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uncapacitated WWP: The so-called .l; S/-cuts can be formulated as follows (Pochet
and Wolsey, 2006, p. 218):

X

t2S

qt �
X

t2S

lX

t 0Dt

dt 0xt C Il l D 1; : : : ; T; S � f1; : : : ; lg (2.70)

These valid inequalities can easily be generalized to uncapacitated multi-product
lot-sizing problems. Taking the subset of these cuts with l D 1; : : : ; T and S D flg
results in:

qt � dtxt C It t D 1; : : : ; T (2.71)

By inserting the inventory balance equation (2.4) for It , we see that (2.71) is
equivalent to the setup/inventory carryover cuts

It�1 � dt .1 � xt / t D 1; : : : ; T (2.72)

In Sect. 5.3.3, we will define valid inequalities for uncapacitated lot-sizing with
substitutions that are based on (2.70)–(2.72). Another group of valid inequalities for
the WWP that contains (2.72) as a special case is (Vyve and Wolsey, 2006):

It�1 �
kX

�Dt

d�

 
1 �

�X

�Dt

x�

!
t D 1; : : : ; T; k D t; : : : ; T (2.73)

2.2.3 Reformulations

Reformulations of lot-sizing problems are frequently based on analogies to other
MILP models, e.g., the Simple Plant Location (SPL) problem or the network flow
formulation of Shortest Route (SR) [also: Shortest Path (SP)] problems. Other
reformulations, e.g., substitute inventory variables in order to eliminate minimum
inventory levels from the model, or introduce echelon stock variables in multi-
level models (Belvaux and Wolsey, 2001). In addition, also models to which valid
inequalities are added a priori are termed reformulations. As one example of a
reformulation, we present an SPL-based CLSP reformulation using the notations
contained in Tables 2.2 and 2.7:

Minimize F.x; y/ D
TX

tsD1

X

i2P

 
fits xits C

TX

tdDts

ci ts td yits td

!
(2.74)
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Table 2.7 Additional notations for SPL-based reformulation of CLSP

Symbol Definition

Parameters
cits td Costs per unit to satisfy demand for product i in period td from

a production lot in period ts

Variables
yits td Demand quantity for product i in period td that is satisfied

from a production lot in period ts

subject to

tdX

tsD1

yits td D ditd i 2 P; td D 1; : : : ; T

TX

tdDts

yits td �
TX

�Dts

di� � xits i 2 P; ts D 1; : : : ; T

yits td � ditd � xits i 2 P; 1 � ts � td � T

X

i2P

�
p
i

TX

tdDts

yits td � Kts ts D 1; : : : ; T

xits 2 f0; 1g i 2 P; ts D 1; : : : ; T

yits td 2 f0; 1g i 2 P; 1 � ts � td � T

(2.75)

In this reformulation, transportation variables yits td are introduced that denote
the demand quantity for product i in period td satisfied from a production lot in ts .
The costs cits td associated with these variables include the corresponding variable
production costs and holding costs:

cits td D pits C .td � ts/ hi (2.76)

The lot-size variables qit and inventory variables Iit are no longer necessary.
Equation (2.75) ensures that the demand quantity for each product in each period
is satisfied. The model includes both aggregated and disaggregated setup forcing
constraints: The aggregated variant (2.75) forces the setup variable xits for product i

in period ts to be 1 in the optimal solution of the LP relaxation if all demand in ts
and consequent periods that could be satisfied from the lot is fulfilled by it. The
disaggregated variant (2.75) is redundant to (2.75), but tightens the lower bound
obtained by the LP relaxation: It ensures that if the entire demand for product i in a
period td is fulfilled using only units produced in period ts , the corresponding setup
variable xits becomes 1 in the optimal solution of the LP relaxation. The meaning
of (2.75) equals the capacity constraint (2.12) in the CLSP, but is now formulated
using the yitstd variables.



2.2 Solution Techniques for Dynamic Lot-Sizing 57

Eppen and Martin (1987) develop a shortest-route reformulation for a
CLSP variant. Tempelmeier and Helber (1994) extend this reformulation to the
MLCLSP. Stadtler (1996) compares the performance of several formulations for the
MLCLSP with initial inventories and overtime, including an SPL-based reformula-
tion and a shortest-route reformulation. Approximate extended formulations (Vyve
and Wolsey, 2006; Stadtler, 1997) only add a subset of valid inequalities of a certain
class to an extended model formulation a priori. By varying a control parameter, the
user can determine the size of this subset and thus find a good tradeoff between the
size of the approximate extended formulation and the strength of its LP relaxation.
Denizel et al. (2008) show the linear equivalence of an SPL and SP reformulation
of the CLSP with setup times: They prove that every feasible solution to the LP
relaxation of the SPL reformulation is also feasible for the LP relaxation of the SP
reformulation and has the same objective value, and vice versa. For further literature
on reformulations, see, e.g., Belvaux and Wolsey (2001); Pochet (2001); Wolsey
(2003a,b); Pochet et al. (2005); Pochet and Wolsey (2006).

2.2.4 Combinations of Heuristics and Exact Algorithms

Puchinger and Raidl (2005) classify combinations of (meta-)heuristics and exact
algorithms as shown in Fig. 2.14.

Combinations of exact algorithms and metaheuristics are termed collaborative if
the algorithms exchange information, but are not part of each other. In this case, the
exact algorithm and metaheuristic are either executed one after another, in parallel,
or intertwined. In integrative combinations of exact algorithms and metaheuristics,
either an exact algorithm is the “master” algorithm and invokes a metaheuristic or
vice versa.

A recently popular combination of exact algorithms and heuristics for lot-sizing
are Relax&Fix (R&F) [also: Fix&Relax (F&R)] heuristics. They belong to the class

combinations of
(meta-)heuristics

and exact algorithms

sequential execution

integrative
combinations

collaborative
combinations

incorporating (meta-)heuristics
in exact algorithms

parallel or intertwined
execution

incorporating exact algorithms
in (meta-)heuristics

Fig. 2.14 Possible combinations of exact and heuristic algorithms (Puchinger and Raidl, 2005)
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Fig. 2.15 Example – Relax&Fix

of integrative combinations where an exact algorithm (mostly B&C) is integrated
into a heuristic: The idea of R&F heuristics is to solve a series of MILP problems in
each of which the integrality constraints of some of the binary decision variables of
the problem (i.e., a subset of the setup variables) are relaxed, i.e., these variables can
take arbitrary continuous values between 0 and 1. Thus, R&F heuristics belong to
the class of MIP-based heuristics. Only the setup variables in a certain time window
are treated as binary decision variables.

In the following, we exemplary describe the procedure of a R&F algorithm,
which is also visualized in Fig. 2.15: Considering a CLSP with T D 16 periods,
a (simplified) R&F heuristic that uses a time windows size of four periods would in
a first step solve an MILP P1 where only the setup variables xit with t 2 f1; 2; 3; 4g
are binary and 0 � xit � 1 for t � 5. In the next iteration, a new MILP P2 is created
for which the values xit with t 2 f1; 2; 3; 4g are fixed to the “optimal” values x�i t
obtained by solving P1 to optimality. In P2, only the xit with t 2 f5; 6; 7; 8g are
binary and 0 � xit � 1 for t � 9. Again, the “optimal” values x�i t obtained from P2

are used for fixing the values of xit with t 2 f5; 6; 7; 8g. In addition, the variables xit

with t 2 f1; 2; 3; 4g remain fixed to the values obtained from P1. The R&F heuris-
tic proceeds in an analogous way for a problem P3. After that, P4 is reached, where
all xit with t � 12 are already fixed and xit with t 2 f13; 14; 15; 16g binary. When
solving this last problem of the series of MILP problems, two cases can occur:

1. A feasible solution is returned in which all setup variables are fixed. This solution
is returned as the result of the R&F algorithm.

2. The subproblem (P4) has no feasible solution. In this case, repair mechanisms
could be used that “unfix” setup variables – which had already been fixed in a
previous iteration – to find a feasible solution. However, these repair mechanisms
might fail.

The time windows of subsequent MILP problems solved during R&F can also
overlap, e.g., the first time windows could consist of periods 1, 2, 3 and 4, the second
time windows of periods 3, 4, 5 and 6, etc. In this case, only the setup variables that
do not overlap with the next time windows are fixed in each of the problems solved
sequentially. An example for such overlapping time windows in R&F is shown in
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Fig. 2.16 Example – Relax&Fix with overlapping time windows

Fig. 2.16. Note that instead of relaxing the domain of certain setup variables to
continuous values between 0 and 1, one could also fix all or some of them to 0 or 1.

Stadtler (2003) describes a R&F heuristic for the MLCLSP. Federgruen et al.
(2007) develop a heuristic for a multi-product lot-sizing problem with a joint setup
for a single product family incurring setup costs that is a generalization of R&F. The
model is a big-bucket model resembling the CLSP that additionally contains min-
imum inventory level constraints. In addition, they extend the algorithm to include
setup costs for individual products in addition to the joint setup costs. Akartunalı
and Miller (2009) apply a R&F algorithm to an MLCLSP variant with setup times
that assumes zero lead times between production stages and explicitly distinguishes
between finished products and intermediate goods. Absi and Kedad-Sidhoum (2007)
describe R&F heuristics for a multi-resource CLSP with heterogenous parallel
machines, setup times, backlogging, minimum lot-sizes and safety stock level vio-
lation penalties. Beraldi et al. (2008) develop a R&F heuristic for a small-bucket
multi-resource capacitated lot-sizing model with identical parallel machines and
sequence-dependent setup costs. The model is derived from applications in textile
and fiberglass industries where a large number (hundreds) of machines is present.
Hence, it does not use separate variables for each machine. Instead, its decision vari-
ables count the number of machines set up for a certain product and also the number
of changeovers on machines from a certain product to another in each period. Inter-
estingly, Beraldi et al. (2006) develop a R&F heuristic for a stochastic dynamic
lot-sizing problem. The model assumes multiple capacitated resources (identical
parallel machines), sequence-dependent setup costs, and no holding costs. Demands
are deterministic, whereas the capacity consumption factors (processing times) are
stochastic. De Araujo et al. (2007) propose a R&F heuristic for a GLSP variant with
a single resource and backlogging. Förster et al. (2006) describe a R&F heuristic for
solving a real-world tactical production planning problem of a brewery.

Another type of MIP-based heuristics is introduced by Helber and Sahling
(2008); Sahling et al. (2009): In the Fix&Optimize (F&O) heuristic that they apply
to the MLCLSP, a series of MILP is solved in each of which most of the binary
variables are tentatively fixed to 0 or 1. Only a selected subset of binary variables
of the original model is treated as decision variables and “optimized” by a run of
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an MIP solver. The generation of MILP subproblems that are solved sequentially is
performed using three types of decompositions:9

1. Product-oriented decomposition: In each subproblem, only the setup variables of
a single product are binary, all other setup variables are fixed to 0 or 1.

2. Resource-oriented decomposition: In each subproblem, only the setup variables
of product that are manufactured on the same resource are binary (and also only
those of a subset of periods), all other setup variables are fixed to 0 or 1.

3. Process-oriented decomposition: In each subproblem, only the setup variables of
a pair of products where one product is a successor of the other are binary (and
also only those of a subset of periods, e.g., the first or second half of the planning
horizon), all other setup variables are fixed to 0 or 1.

Initially, all setup variables are fixed to 1. In order to ensure that each of the gen-
erated subproblems has a feasible solution, a highly penalized overtime option
is added to the MLCLSP model. “Optimal” setup variable values obtained from
the optimal solution to a subproblem are used to tentatively fix these variables
in successive subproblems. The three decompositions can be employed alterna-
tively or also serially, e.g., first subproblems are generated with the product-oriented
decomposition, second with the resource-oriented decomposition, and third with the
process-oriented decomposition. Figure 2.17 exemplifies the principle of F&O with
an example showing the iterations (subproblems) of the product-oriented decom-
position for a small example with three products. The F&O heuristic seems to
outperform Tempelmeier and Derstroff (1996) and Stadtler (2003) with respect
to solution quality. Its key advantage is that the algorithm scheme could easily
be applied to extensions of the MLCLSP, e.g., by minimum lot-sizes or parallel
machines. In addition, other decompositions could be integrated in the algorithm.

Another group of combinations between exact algorithms and heuristics are
LP-based rounding heuristics: Roughly speaking, they solve LP relaxations of lot-
sizing problems and try to construct a feasible solution for the problem by rounding
fractional values of setup variables in the optimal solution to the LP relaxation. They
belong to the class of integrative combinations where an exact algorithm (for solv-
ing the LP relaxations) is integrated into a heuristic. Alfieri et al. (2002) describe
LP-based rounding heuristics for the CLSP without setup times which are com-
bined with an SPL-based or shortest-path reformulation and a primal/dual simplex
or interior point algorithm for solving the LP relaxation. Computational experi-
ments show that the reformulations yield much better lower bounds, the heuristics

9 The usage of decompositions in R&F and F&O resembles the decompositions methods in SAPr

APO: The Supply Network Planning (SNP) Optimizer offers decompositions by time, product, and
resource (Kallrath and Maindl, 2006, pp. 84 and 89). The subproblems into which the problem is
decomposed are solved sequentially. The time decomposition uses time windows as in R&F. The
product decomposition optimizes the variables associated with a certain subset of products in each
subproblem. It thus differs from the product decomposition in F&O that only considers one product
per subproblem. So-called SNP priority profiles can be specified to provide the SNP Optimizer with
information that helps decompose the problem using the product or resource decomposition in an
appropriate way.
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Fig. 2.17 Example – Fix&Optimize with product-oriented decomposition

generate near-optimal solutions, and none of the two reformulations clearly dom-
inates the other with respect to running times of the heuristics. Denizel and Süral
(2006) describe reformulations for the CLSP with setup times and develop LP-based
heuristics based on the reformulations. In their computational analysis, the SPL-
based and shortest-path reformulation perform better for the LP-based heuristics
than a standard formulation with a set of cuts added a priori. Pochet and Van Vyve
(2004) apply a generic iterative production estimate (IPE) heuristic to a multi-level
capacitated lot-sizing problem with setup times. It belongs to the category of LP-
based heuristics. The approach is based on the observation that the fractional values
in the optimal LP relaxation solution are oftentimes far from the optimal values of
the MIP, i.e., rounding and similar heuristics might produce rather bad solutions:
Their idea is to modify the formulation in a way that the fractional values in the
optimal solution to the LP relaxation are closer to the values of the optimal MIP
solution. The IPE heuristic seems to perform well, it quickly finds feasible solutions
for all considered instances and the solution quality outperforms other examined
heuristics, except for a R&F heuristic that proved better on small and medium-size
instances and instances with a strong formulation.

2.2.5 Selected Approaches for Lot-Sizing
with Sequence-Dependent Setups

An overview of scheduling, lot-sizing and combined lot-sizing and scheduling
models with sequence-dependent setups is given by Zhu and Wilhelm (2006). They
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also categorize publications on combined lot-sizing and scheduling models with
sequence-dependent setups by the solution approaches used.

Suerie and Stadtler (2003) develop a reformulation and valid inequalities for the
CLSP with setup carry-overs that assumes sequence-independent setups.

Haase and Kimms (2000) devise a reformulated CLSD variant that only considers
efficient sequences, where a sequence (of products manufactured within a period) is
called efficient if it is not dominated by any other sequence. A sequence A is said to
dominate another sequence B if its total setup cost is less than that of B, it contains
the same products as B, the first product in A is identical with the first product in B,
and the last product in A is identical with the last product in B.

Gupta and Magnusson (2005) develop a three-stage heuristic for a CLSD vari-
ant with sequence-dependent setup costs and sequence-independent identical setup
times. Their MILP formulation contains more binary variables than the formulation
of Haase (1996) and, as Almada-Lobo et al. (2008) show, requires an additional set
of constraints in order to avoid disconnected subtours in the production sequences.
The heuristic is composed of an initial step for finding a feasible solution, a sequenc-
ing step that tries to find a better production sequence within each period, and an
improvement step in which a backward-oriented heuristics attempts to move and
combine production lots of different periods to reduce the total cost. Almada-Lobo
et al. (2007) develop another CLSD reformulation as well as a specialized heuristic
for the problem, but do not directly compare their approaches with those of Gupta
and Magnusson (2005) on the same test instances.

2.3 Transshipment Problems

This section gives a condensed overview of the literature on transshipment prob-
lems. We use the term “transshipment problem” referring to stochastic inventory
models with transshipments between locations. However, note that the term is
homonymous in literature, as it may also stand for deterministic linear minimum-
cost network flow problems. The content of this section is presented in Lang (2008)
in an abbreviated form. Most transshipment models belong to the class of stochas-
tic inventory control models. For basics on inventory control policies such as the
.R; Q/ and .s; S/ policies, the reader is referred to, e.g., Domschke et al. (1997,
p. 166ff.) and Tempelmeier (2006, p. 61ff.).

2.3.1 Basics

The goal in so-called transshipment problems (Archibald, 2007; Herer et al., 2006;
Minner et al., 2003) is to decide for a multi-location inventory system whether one
or more transshipment(s) between pairs of locations should be performed at a certain
point in time, and which quantities should be transshipped between the locations.
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Fig. 2.18 Example of a two-echelon transshipment network

Such transshipments are primarily an emergency recourse to preserve a certain ser-
vice level despite local stock-outs that are caused, e.g., by low safety stocks or
irregular demand behavior. In this context, a transshipment is a delivery of units of
one or more products from one location to another location on the same echelon. The
term replenishment is used to refer to shipments from a location to another location
at a lower echelon. An example of a two-echelon transshipment network structure
is depicted in Fig. 2.18. Usually, a trade-off has to be made between differing lost
sales / backlogging costs at the locations as well as the transshipment costs.

The reasons for performing transshipments are often similar to those for substi-
tutions. Analogously to the reasons for substitutions given in Chap. 1, five benefits
of / reasons for transshipments can be distinguished:

� Increased service level: Local stock-outs due to supply or production bottle-
necks can be avoided by performing transshipments from other locations.
� Reduction of holding costs: As transshipments lead to a “risk pooling” effect

between locations in a stochastic setting, they might reduce the required level
of safety stocks.
� Reduction of fixed costs: It might be possible to reduce the total fixed and

variable transportation cost by joint replenishments for neighboring locations.
� Exploitation of unit cost variations: If unit costs of an input product differ

between locations, one could buy it where it is the cheapest and transship it.
� Reduction of wastage: If the considered products are perishable, transshipments

can be used to reduce the amount of outdated inventory, e.g., by transshipping
and consuming stocks at another location first if they have an earlier expiry date.

2.3.2 Classification of Models

Manifold variations of the transshipment problem exist. Hence, we will list several
criteria for classifying transshipment models, some of which are also contained in
Bhaumik and Kataria (2006):
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� Uncertainty: Deterministic vs. stochastic (demand and/or lead times)10

� Number of products: Single-product vs. multi-product
� Number of periods: Single-period vs. multi-period
� Number of locations: Two-location vs. multi-location
� Number of echelons: Single-echelon vs. multi-echelon
� Cost/demand characteristics: Identical for all locations vs. heterogenous
� Correlation of demands of locations: Correlated vs. uncorrelated
� Inventory review: Period vs. continuous review
� Demand observation: Observation of total period demand vs. demand stream

(e.g., Poisson process)
� Time of transshipments: Preventive vs. reactive transshipments (before vs. after

demand observation)
� Lead times: Non-zero lead times for replenishments/transshipments?
� Feasibility of transshipments: Is there always sufficient time for a transship-

ment, or would a transshipment require more time than allowable in some
cases?
� Flexibility on demand side: Backlogging vs. lost sales
� Replenishment policy: Replenishment policy given vs. to be determined (most

models assume that the parameters of the replenishment policy have been set in
advance)
� Cost types: Only variable vs. also fixed replenishment/transshipment costs
� Capacities: Uncapacitated vs. capacitated production / transshipments /

inventory
� Objective: Expected cost minimization vs. service level target vs. robustness

measure
� Partial order fulfilment: All-or-nothing vs. partial order fulfilment allowed?
� Initial inventories: Does the model assume that initial inventories are in stock

at the beginning of the planning horizon?
� Substitution options: Are substitute products available for the considered

products?
� Multiple transportation modes: Are multiple transportation modes available that

differ w.r.t. lead time, costs, and/or capacity?
� Due dates: Do all customer orders arrive with the characteristic that they should

be fulfilled as soon as possible, or rather with specified due dates?
� Perishable products: Are the considered products perishable?
� Multiple demand classes: Is the demand differentiated into classes with differ-

ing priorities?

The following cost types could be included in transshipment models:

� Variable replenishment / production / procurement costs
� Variable transshipment costs
� Fixed (joint) replenishment costs, where “joint” refers to a group of products
� Fixed (joint) transshipment costs

10 All transshipment models considered in this work are stochastic.
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� Holding costs
� Lost sales / shortage costs
� Backlogging costs

In terms of the transshipment policy used, one can distinguish between partial
and complete pooling of the locations’ stocks: If the locations share their entire
inventory with other locations (by transshipments) and do not reserve a part of the
stocks for local demand, this is termed complete pooling. In contrast, if each location
reserves a proportion of the inventory for demand occurring at that location and does
not transship this proportion, this is called partial pooling. The term no pooling
refers to multi-location inventory policies without transshipments.

A stream related to transshipment problems is the research on inventory rationing
and inventory control with multiple demand classes with differing priorities (Kleijn
and Dekker, 1998; Kranenburg and van Houtum, 2007). E.g., in an inventory system
with one product and two demand classes, the basic idea is to ration the product as
follows: If its inventory falls below a critical level, only high-priority demand is
fulfilled, low-priority demand is backlogged or not fulfilled at all. Transshipment
policies with partial pooling resemble critical-level policies.

Another stream of research connected with transshipment models is the litera-
ture on Vehicle Routing Problems with Pickups and Deliveries (VRPPD) (see, e.g.,
Berbeglia et al., 2007; Desaulniers et al., 2002; Parragh et al., 2008b). VRPPD are
related to transshipment problems insofar as the latter in practice involve vehicle
routing decisions, because transshipments have to be performed with a vehicle
fleet. However, standard transshipment models abstract from routing aspects. The
problem setting in Pickup and Delivery Problems (PDPs), which are a subclass of
VRPPD, is as follows (Parragh et al., 2008b): Given are a number of transportation
requests for a single product, each of which specifies that a certain quantity has to
be transported from a location A to another location B. The goal is to minimize the
total transportation costs by finding the best vehicle routing that executes all trans-
portation requests. Both single- and multi-vehicle PDP variants are described in the
literature.

The replenishment and transshipment policy combination can be categorized as
follows:

� Type of replenishment policy: order-up-to vs. (s,S) vs. (R,Q) vs. other policy
� Transshipment policy: fixed critical levels vs. remaining-time policy in which

the transshipment policy’s decisions depend on the remaining time until the
next replenishment from an upper echelon arrives
� Partial transshipments from multiple locations possible vs. only full transship-

ments of the entire transshipment quantity from single location
� Are transshipments confined to be within location subgroups / regions?
� Transshipment policy considers total stock of a product in all locations vs. only

stock at receiving and potential transshipping location
� No vs. partial vs. complete pooling (limit for maximum proportion of inventory

at potential transshipping location to be shared, critical level policy?)
� “Collect” orders to see whether a transshipment makes sense (batch order pro-

cessing) instead of making the transshipment decision right away for each
customer demand arriving?
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The operational transshipment problems commonly considered in the literature
assume that the transshipment network structure is already given. Another group
of problems worth investigating could be tactical/strategic transshipment network
design problems that determine the optimal transshipment links between locations,
e.g., by clustering locations into subgroups.

2.4 Solution Techniques for Transshipment Problems

This section reviews selected approaches for solving the transshipment problems
described in the previous chapter. First, we review selected existing solution
approaches for stochastic transshipment models in Sect. 2.4.1. Section 2.4.2 intro-
duces into the methodology of simulation-based optimization. This methodology
will be used in Chap. 8 for solving an optimization problem in multi-location blood
bank inventory management with substitutions and transshipments. In addition, a
brief introduction to robust optimization is given in Sect. 2.4.3.

2.4.1 Existing Approaches for Transshipment Problems

Existing solution approaches for stochastic transshipment problems can be classified
as follows:

� Does it determine replenishment policy parameters in addition to transshipment
policy parameters?
� Does it return an optimal or heuristic replenishment policy?
� Does the procedure for determining a replenishment policy take transshipments

into account?
� Does it return an optimal vs. heuristic transshipment policy?
� Which approach for determining the transshipment policy is used?

– Network-flow based approach
– Newsvendor problem-based approach
– Other (e.g., simple heuristic rule)

Archibald (2007) considers a transshipment problem with periodic review, zero
transshipment lead times, and only variable replenishment and transshipment costs.
In addition to transshipments, the model allows for emergency orders that are
fulfilled from the supplier. The transshipment policies used are remaining-time
policies. The general idea of the solution approach is as follows: In case of a
stock-out, it considers all pairs of the stock-out location and another location, and
treats them as an isolated two-location system, for which an optimal transship-
ment policy is known. The so-called �-heuristic transships in order of increasing
transshipment cost from locations from which a transshipment would be optimal in
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the isolated two-location system. The ˛-heuristic transships to all locations if the
considered source location would transship to at least one location (considering iso-
lated two-location systems) and is thus comparatively “aggressive”. In contrast, the
!-heuristic is more “conservative”: It only transships to a location if the considered
source location would transship to all locations (considering isolated two-location
systems).

Axsäter (2003b) focusses on a transshipment problem with continuous review.
The key idea of his approach is to choose the best transshipment option assuming
that no further transshipments take place after the transshipment to be performed
next. If no value ı > 0 exists, no transshipment is performed, where ı is calculated
as the expected cost if no transshipment is performed minus the transshipment cost
and expected cost after the transshipment.

Minner et al. (2003) consider a transshipment model with an (s,Q) replenishment
policy, fixed replenishment costs, non-zero replenishment lead times, lost sales, and
fixed as well as variable transshipment costs. Transshipment lead times are assumed
to be 0 in the model, i.e., there is always sufficient time for a transshipment. In con-
trast to the assumptions of Evers (2001), the model additionally allows for partial
instead of full transshipments, includes fixed transshipment costs, and takes replen-
ishments into account that are in transit from the central warehouse. The developed
heuristic uses cost trade-offs and is based on the ideas employed in the heuristic
devised by Evers (2001).

Chou et al. (2006) develop a robust optimization approach for a transship-
ment problem with only variable replenishment and transshipment costs and zero
transshipment lead times.

Herer et al. (2006) consider a transshipment model with heterogenous locations
and periodic review. Demand distributions are assumed to be stationary, and the
model only includes variable replenishment and transshipment costs. Replenish-
ments with a lead time of one period are placed after the demand in the previous
period has been observed. Transshipments are performed after demand observation
and have no lead time. The model in addition assumes complete pooling among the
locations, and an order-up-to replenishment policy for each location. They propose
an algorithm that is a combination of a heuristic and an exact algorithm: A gradient
algorithm heuristically improves the order-up-to levels of the replenishment policy
and internally solves minimum cost network flow problems (MCNFP) to determine
the optimal transshipment policy for each period. Opportunity costs obtained from
the optimal MCNFP solution are used to estimate the gradient for the gradient algo-
rithm. Two variants of this model with capacitated transportation (Özdemir et al.,
2006a) and capacitated production and lost sales (Özdemir et al., 2006b) have been
developed. Zhao and Sen (2006) compare a stochastic decomposition approach with
the algorithm of Herer et al. (2006).

Other recent publications on transshipment problems include Axsäter (2003a);
Cheung and Lee (2002); Comez et al. (2006); Iravani et al. (2005); Lee et al. (2007);
Nonås and Jörnsten (2005, 2007); Wee and Dada (2005); Zhang (2005); Banerjee
et al. (2003).
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2.4.2 Simulation-Based Optimization

This subsection gives a condensed introduction to simulation-based optimization
methods, based on the content of the more elaborate and in-depth overview of Lang
(2005). Many stochastic optimization problems encountered in real-world appli-
cations are too complex to be described in closed-form mathematical models and
solved analytically. One approach for tackling such problems is to use simulation.
The purpose of simulation models is to forecast the behavior of complex, stochastic,
real-world systems. Usually, simulation models are used to evaluate the conse-
quences of single decision alternatives without actually implementing these in the
real-world system, as this might result in negative effects (Domschke and Scholl,
2005, p. 31).

Simulation models can be categorized along the following three dimensions
(Law, 2006, p. 5f.):

� Static vs. dynamic simulation models: A static simulation model represents a
system by a “snapshot” at a certain point in time, whereas a dynamic simulation
model maps a system’s behavior over time.
� Deterministic vs. stochastic simulation models: If a simulation model does

not contain any random influences, it is termed deterministic, and otherwise
stochastic.
� Continuous vs. discrete simulation models: Continuous simulation models map

a system that changes continuously over time, whereas discrete simulation
models map systems in which state changes only happen at certain points of
time.

A frequently considered case are dynamic, stochastic, discrete simulation models,
which are also named discrete-event simulation models (Law, 2006, p. 6).

In most cases, only a comparatively small number of alternatives is evaluated
using simulation software, and one of these alternatives is selected using a certain
decision criterion. Thus, the classical approach in simulation is to perform simu-
lations automatically using software, whereas the choice of an alternative happens
manually.

In the approach of Simulation-Based Optimization (SBO), this choice of the
“best” alternative is performed automatically by an algorithm that uses a simulation
model to compute objective values for solutions that are generated in an iterative
heuristic SBO algorithm. Many SBO algorithms can be seen as local search algo-
rithms (for stochastic local search algorithms see, e.g., Hoos and Stützle, 2005). A
SBO algorithm repeatedly varies variable values of a solution, evaluates the new
solution by simulation, and after a certain number of iterations, returns the best
solution found. SBO is mainly used for discrete-event simulation models, but can
also be applied to other simulation models. The typical architecture of SBO software
systems consists of two components – a simulation model and an optimization com-
ponent (algorithm) that uses this simulation model (April et al., 2003). Whenever
the optimization component evaluates a solution, it forwards the solution’s variable
values to the simulation model. This in turn executes one or more simulation runs
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Fig. 2.19 Idealized SBO
system architecture

optimization component
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and returns an objective value to the optimization component, which uses the value
as an information in the search for good solutions. This basic principle is illustrated
by Fig. 2.19.

Analogously to “classical” optimization (e.g., MILP), the objective estimated by
simulation in SBO corresponds to the objective function of an optimization problem
and the variables of the simulation model to the decision variables of the problem.
Unlike it is the case for many common optimization problems, “true” objective
values cannot be calculated exactly in SBO, but only be approximated by simulation.

Section 2.4.2.1 gives several examples for real-world applications of SBO.
The elements and mathematical formulation of an SBO model are describes in
Sect. 2.4.2.2. As many models with differing assumptions are subsumed under
the term SBO, we provide a classification of SBO models in Sect. 2.4.2.3. Sec-
tion 2.4.2.4 focusses on specific aspects of SBO problems that make them in general
hard to solve. Common Random Numbers, an approach for dealing with these
aspects, are explained in Sect. 2.4.2.5. A taxonomy of SBO algorithms is devel-
oped in Sect. 2.4.2.6 and complemented by several selection criteria. Finally, the
principle of Pattern Search, one specific class of SBO algorithms, that will be used
in Chap. 8 is illustrated in Sect. 2.4.2.7.

2.4.2.1 SBO Applications

Real-world applications for SBO can be found in various areas. Generally, one can
distinguish applications of SBO into two categories (Fu, 2001):

� Design of the structure of a system: In this case, SBO is used to support singular,
non-recurring decisions with a long-term impact.
� Operation of a system: Here, SBO is used to optimize operational aspects of a

system.

However, the boundary between SBO models for design and operation of systems is
not clear: E.g., a supply chain SBO model for determining parameters of replenish-
ment policies neither clearly deals with design nor operation of the system, as these
parameters are updated in a certain cycle and kept constant in between in order to
avoid planning nervousness. In the following, we give several examples for pos-
sible applications of SBO in Operations Research, naming possible objectives and
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decision variables of the SBO problems (for additional examples see Fu, 2001; April
et al., 2006).

� Inventory control: Given a simple single-product inventory system operated
using a (s,S) policy, determine good policy parameters regarding the total
average costs composed of ordering, holding and backlogging costs that are
to be minimized (Fu, 2001).
� Production system design: Considering a simulation model of a semiconductor

production system, maximize the number of produced wafers by choosing the
best configuration of the production system (Fu, 2001). Another example is
the choice of the optimal number of machines on multiple levels of a flow
production system with buffers (Law and McComas, 2002).
� Call centers: Given a simulation model of a call center, minimize the total oper-

ating costs while maintaining a certain service level, where the call center head
count could be a decision variable of the SBO problem (Fu, 2001).
� Financial portfolio optimization: Maximize the expected Return on Investment

(ROI) of a portfolio of stocks while ensuring that a maximum acceptable risk
level is not exceeded, with the proportions of different stocks in the portfolio
used as decision variables in the SBO problem (Fu, 2001).
� Project portfolio optimization: Maximize the Net Present Value (NPV) of a

project portfolio, with a constraint on the standard deviation of the NPV. The
SBO decision variables could describe the subset of potential projects to be
implemented (April et al., 2004).
� Machine maintenance: Minimize the average of the sum of maintenance and

downtime opportunity costs of machines by appropriately choosing a mainte-
nance schedule (Gosavi, 2003).
� Revenue management: Choose booking limits for various flight ticket booking

classes in a way that the airline’s marginal profit is maximized (Bertsimas and
de Boer, 2005).

2.4.2.2 Elements of an SBO Model

A SBO model is an optimization model that is based on a simulation model and
describes an optimization problem (the SBO problem). It consists of variables with
specified domains, a result function that can be estimated by simulation runs, an
objective function that is either identical with the result function estimation or
derived from it, and may also contain constraints on the variables. The decision
alternatives in an SBO problem are usually not given explicitly, but specified implic-
itly by the variable domains and constraints. A solution (also: design, configuration)
to an SBO problem completely describes a decision alternative for the problem, and
consists of values for one or more variables. These variables could be variables with
a continuous, integer, binary or mixed domain. The dimension of an SBO model is
defined as the number of variables of the model.

In SBO, uncertainty is usually modeled by assuming certain probability distri-
butions for all uncertain factors in the model. Using random number generators,
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simulation software (standard software or specialized code) then generates various
scenarios by sampling values for all random variables required for the simulation.
In this context, the term scenario refers to the values of various exogenous factors in
a certain situation/setting that could occur in the modeled system. A scenario is not
necessarily a snapshot at a single point in time, but rather the realization of a process.
In terms of statistics and computer science, a scenario can be understood as a series
of random numbers and is usually implemented by pseudo random number genera-
tors that are initialized with certain random seeds. It is a description of all simulated
stochastic events, that are relevant for simulation the effects of an SBO solutions.
Note that there is a mutual dependency between the individual action performed dur-
ing the simulation resulting from a certain SBO solution and the scenario: A single
action might trigger certain stochastic events (e.g., an order that triggers deliveries
with stochastic lead times). In order to simulate those events, further random num-
bers are required. In a simulation run, the implementation of a simulation model is
executed for a single SBO solution and a single scenario.

A simulation result is a value that is returned from a single simulation run from
a virtual “result function”. The simulation result could be scalar, or also a more
complex data type, e.g., a vector or matrix. In the latter case, the entries of the
vector or matrix are referred to as components. One should distinguish between the
sampled value of a result function that is returned from a single simulation run, and
its expected value, i.e., the “true” value of the result function. The sampled value of
the result function is only an estimate of this true value.

The (sample) objective function (also: (sample) performance measure, loss
function, utility function) has a real-valued domain and can be determined by math-
ematically combining multiple components of the result function. Also, it might be
necessary to perform more than one simulation run for calculating the objective,
e.g., one might want to simulate an SBO solution on multiple scenarios in order
to examine the robustness of the solution quality under these different scenarios.
However, in the most simple case that is usually assumed in the literature, the result
function is a simple scalar with real-valued domain and identical with the objective
function, and only a single scenario is used for evaluating a solution. Similarly as for
the result function, one should differentiate the sample value of the objective func-
tion resulting from specific scenarios used from the expected value of the objective
function, i.e., its “true” value.

Formally, the standard SBO optimization problem can be described as follows
(Fu, 2002, p. 195): The decision maker’s goal is to minimize the expected value
of an objective function. A set of feasible solutions X is given. A single solution
is described by a variable vector x 2X with p variables. E.g., with respect to a
transshipment problem modeled as an SBO problem, the variable vector could con-
tain order-up-to levels for the locations’ replenishment policy as well as critical
levels for a transshipment policy. The result function is represented by r.x; !/,
where ! represents a scenario that can be described by values for several ran-
dom variables. A sample objective value is denoted by f .x; !1; : : : ; !s/, where
!1; : : : ; !s are the scenarios used for calculating it. In the simplest case, the num-
ber of scenarios used for calculating the objective value is s D 1. In order to
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evaluate f .x; !1; : : : ; !s/, the system is sequentially simulated for the solution x on
all scenarios !1; : : : ; !s , and the objective function estimate is calculated from the
simulation results r.x; !1/; : : : ; r.x; !s/. f .x/ denotes the objective value estimate
resulting from simulating the solution with arbitrarily chosen scenarios.

The expected value of the objective function for a solution x is denoted by
J.x/ D E.f .x//. The ideal goal of the SBO problem is to find a solution x� that
minimizes the “true” objective J.x/, i.e., we search for:

x� D argminx2X .J.x// (2.77)

However, the difficulty is that this true objective J.x/ cannot be calculated exactly
if there is no finite number of scenarios. Instead, one has to revert to noisy samples
of the objective function obtained from simulation runs that only estimate the true
value.

2.4.2.3 Classification of SBO Models

In the literature, a large variety of stochastic optimization models with differing
assumptions are subsumed under the term “SBO model”. In the following, we pro-
pose a taxonomy for categorizing SBO models. They can be classified along the
following dimensions that include modeling criteria as well as technical aspects
related to the implementation of the simulation model:

� Domain of the result function: A simulation model returns either a scalar or a
more complex data type. E.g., a transshipment simulation model could return a
service level measure in addition to the total costs incurred by the replenishment
and transshipment policy.
� Variance of the objective function: The variance of the objective function (w.r.t.

to different random seeds used in simulation runs) could be relatively low, or
high, so that a larger number of simulation runs has to be performed to obtain a
sufficient approximation of the “true” objective.
� Relation between result and objective function: The objective function either

immediately equals the result function or is calculated from (possibly multiple)
components of the result function.
� Information on objective function: The common case is that the objective func-

tion is only given as a “black box” by the simulation model, but it could also be
available in closed mathematical form in some cases.
� Information on gradient of objective function: One can differentiate between

(seldom) cases where the partial derivatives of the SBO objective function can
be calculated exactly and other cases where these can only be approximated.
� Number of variables (dimension): The number of variables of an SBO prob-

lem can range from one or two up to hundreds of decision variables. However,
typical SBO algorithms seem no appropriate method for solving large-scale
optimization problems with tens of thousands of variables.
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� Type of variables: The SBO decision variables could be variables with a con-
tinuous, integer, binary or mixed domain. A SBO model can contain variables
with heterogeneous types.
� Variable bounds: Some SBO models specify lower and/or upper bounds for the

decision variables.
� Constraints: Constraints could be specified on the variables – e.g., that s <

S in an (s,S) replenishment policy – as well as the components of the result
function – e.g., that the service level is � 95%.
� Description of search space: The most common case in SBO is that the search

space is specified implicitly by the variable domains and constraints. How-
ever, in some SBO approaches, the search space is given explicitly as a set
of solutions.
� Duration of a simulation run: One simulation run on a single solution and sce-

nario could take only few milliseconds, but depending on the complexity of the
simulation model, it might take several minutes or even hours to complete.
� Applicability of variance reduction techniques: Some simulation models are

more suitable for applying Variance Reduction Techniques (VRT) such as Com-
mon Random Numbers (CRN) (see Sect. 2.4.2.5) than others, because it is diffi-
cult to synchronize the random numbers when simulation different solutions in
some cases.

2.4.2.4 Specifics of SBO

When choosing, designing and implementing SBO algorithms, the following spe-
cific traits of SBO should be considered:

Determining Initial Solutions

There is no generic heuristic for finding good initial SBO solutions: As most SBO
algorithms are heuristic improvement algorithms, they need an initial solution to
start from. However, there is no generic procedure for finding a good initial solution,
and in some cases it might even be hard to find an initial feasible SBO solution.
Possible approaches are to create the initial solution manually, generate it randomly,
or use a problem-specific construction heuristic.

“Expensive” Evaluation of the Objective Function

In contrast to other methodologies in optimization, the computation of objective
values by simulation consumes the better part of the total computation time. Hence,
SBO algorithms have to use simulations runs sparingly in order to be efficient and
not to waste a large portion of the computational budget on simulating the “wrong”
solutions.
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Fig. 2.20 Effect of objective
function “noise” in SBO
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“Noisy” Objective Function

As mentioned before, only estimates of the “true” objective function are available
in SBO due to the random sampling of scenarios. These estimates contain random
noise that often distorts the objective value into a certain direction. This problem is
illustrated for an SBO minimization problem with a single variable in Fig. 2.20: The
variable values are shown on the x-axis. The curve represents the unknown expected
value of the objective function, and the vertical lines show the deviations of objec-
tive value estimates (obtained by simulation) from their expected value. One can see
that the suboptimal solution xa is chosen as the “best” solution although the optimal
solution w.r.t. the true objective is x�. Thus, there is always a non-zero probability
of error in SBO that one solution is considered to be better than another solution
though this is not the case. The noise in the objective can be reduced by calculating
each objective value estimate using a larger number of scenarios. However, when
averaging over scenarios, the error only reduces by factor 1=

p
N when increasing

the number of scenarios by factor N (Spall, 2003, p. 14). Typically, SBO algorithms
generate a large number of scenarios while running and do not evaluate all solutions
on the same scenarios. Another possible approach is to use the same, fixed set of sce-
narios for evaluating all SBO solutions. A danger in the former approach is that if the
objective variance is too high, the SBO algorithm might become almost “blind”, i.e.,
it cannot properly distinguish whether a solution is actually better that another or this
observation is caused by distortions due to the noise in the objective function. The
latter approach in turn might lead “over-fitting” of a solution to the subset of solu-
tions if this subset is not representative for the distributions of the uncertain factors.

Curse of Dimensionality

The size of the solution space of combinatorial SBO problems (i.e., with integer and
binary variables) increases exponentially with the number of variables (so-called
“curse of dimensionality”, see Spall (2003, p. 14). This, together with the noisy
objective function, further complicates an efficient search for good solutions.
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“No Free Lunch” Theorems

Roughly speaking, the so-called “no free lunch” theorems (Wolpert and Macready,
1997; Spall, 2003, pp. 18ff., 273ff.) express that averaging over all possible instances
of optimization problems, no algorithm performs better than another one. Improved
performance of an algorithm on a certain class of problems due to specialization
for these problems implicates that the algorithm performs worse on other problem
classes.

Referring to SBO, the “no free lunch” theorems denote that averaging over
all possible types of objective functions, no SBO algorithm performs better than
another one w.r.t. the quality of returned solutions. Thus, they suggest that generic
SBO algorithms that perform well on all types of SBO problems cannot exist. How-
ever, one cannot conclude from their propositions that there is no SBO algorithm
that performs better on typical SBO problems than random search, as the search
landscape belonging to a specified local search neighborhood for an SBO problem
usually has some “structure” that can be utilized: This structure can be described by
criteria such as the fitness-distance correlation, which describes the relation between
the quality of a solution and its distance to a local optimum, and the ruggedness,
which measures the correlation of the quality of neighbor solutions (Hoos and Stüt-
zle, 2005, Chap. 5). The latter can, e.g., be measured by sampling neighbor solutions
of an SBO problem. So-called plateaus in the search landscapes are areas, i.e., sets
of (indirectly) neighboring solutions, for which the objective function has the same
value, making it difficult for an SBO algorithm to find better solutions.

2.4.2.5 Common Random Numbers

Simulation results contain stochastic elements if the simulation runs for evaluating
solutions are based on randomly generated scenarios: Depending on the scenario(s)
used for calculating the objective value estimate for a solution, different values are
returned. Due to this noise in the objective function, solutions cannot be evaluated
exactly, and a precise comparison of solutions is not possible. So-called Variance
Reduction Techniques (VRT) aim at reducing the variance of the objective func-
tion (Law, 2006, p. 577f.). One such approach is called Common Random Numbers
(CRN) (Law, 2006, p. 578ff.):

Here, the term variance refers to the variance of the difference between the sam-
ple objective functions of two solutions. The idea of CRN is to use completely or
partially identical scenarios for calculating the objective values of a pair of solutions
instead of using a different solution for evaluating each scenario. The reason why
this reduces the variance of the objective value difference is as follows: Each of the
sample objective functions f .x1/ and f .x2/ of the two solutions x1 and x2 can be
interpreted as a random variable R1 D f .x1/ and R2 D f .x2/, respectively. From
statistics, it is known that Var.R1 �R2/ D Var.R1/CVar.R2/�2 �Cov.R1; R2/.
Thus, the higher the positive correlation of the objective estimates, the lower
the variance of the difference R1 � R2. CRN try to ensure that the correlation
Cov.R1; R2/ actually becomes positive.
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In order to use CRN in implementations of SBO algorithms, the random number
generators that create the scenarios for multiple simulation runs on differing solu-
tions have to be synchronized (Law, 2006, p. 582ff.). “Synchronization” means that
ideally, each individual random number generated and used with a certain seman-
tics in a simulation run is used with the very same semantics in another simulation
run. Solely using the same random seed for two simulation runs on different solu-
tions is usually insufficient for ensuring a proper synchronization. Instead, more
sophisticated techniques have to be used, which we motivate from the following
example:

Assuming a .s; S/ inventory system with random lead times, multiple types of
random values are required for simulating the system: Demand quantities, demand
inter-arrival times, and lead times. These random value types are needed intermit-
tently during the simulation for simulating demand and replenishment arrival events.
If a single random number stream (generator) would be used for simulating all three
random value types for different solutions, the scenarios would differ unintendedly:
The number of orders triggered depends on the choice of s and S . Hence, for one
solution, a particular single random value would be interpreted as an order quantity,
whereas it would be interpreted as a stochastic lead time for another solution. This
problem can be circumvented by using a separate random number stream with its
own random seed for each type of random values.

If a complete synchronization of the random numbers is technically impossible
or very difficult, already a partial synchronization (so-called partial CRN) of some
of the random value types can reduce the variance of the objective value difference
significantly (Spall, 2003, p. 396ff.).

2.4.2.6 SBO Algorithms: Taxonomy and Selection Criteria

Based on the classifications contained in (Tekin and Sabuncuoglu, 2004; Fu, 2002;
Swisher et al., 2000), SBO algorithms can be categorized as follows:

� Algorithms for SBO problems with a finite search space, explicitly defined
by a set of solutions: Ranking & Selection, Multiple Comparisons (Tekin and
Sabuncuoglu, 2004) and Ordinal Optimization (Fu, 2002)
� Stochastic Approximation algorithms (SA), e.g., Finite Differences Stochastic

Approximation (FDSA) and Simultaneous Perturbation Stochastic Approx-
imation (SPSA) (Spall, 1998; Fu, 2006)
� Response Surface Methodology (RSM) algorithms (Hood and Welch, 1993),

e.g., Sequential RSM with linear regression or neural networks
� Sample Path Optimization (SPO) (Gürkan et al., 1994)
� Metaheuristics, e.g., Genetic Algorithms (GA), Tabu Search (TS), Scatter

Search (SCS), or Particle Swarm Optimization (PSO)
� Direct Search (DS) algorithms such as Pattern Search (PS) (Lewis et al., 2000)
� Random Search (Andradóttir, 1998)

A large number of SBO algorithms exist. When facing the question which of
those should be chosen for solving a specific SBO problem, the following criteria
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can be used to compare the algorithms:

� Effectivity: How good are the solutions yielded by the SBO algorithm?
� Efficiency: How many simulation runs does the SBO algorithm require to find

a solution with a pre-specified minimum quality? How much computation time
does the SBO algorithm itself consume, excluding the computation time for
simulation runs?
� Versatility: Is the algorithm only suitable for a special class of SBO problems?

(e.g., only problems with unbounded continuous variables).
� “Robustness”:11 Does the algorithm only perform well on SBO problems with

a certain special structure, or does it lend itself for a broader class of SBO
problems?
� Need for manual configuration: Is extensive parameter tuning required to make

the SBO algorithm work well for a specific type of SBO problems?
� Implementation effort: How complex and time-consuming is an implementation

of the SBO algorithm?

In the literature, only few empirical comparisons of SBO algorithms have been
performed, see, e.g., Tekin and Sabuncuoglu (2004) for selective comparisons of
some SBO algorithms.

2.4.2.7 Direct Search: Pattern Search

The notion Direct Search (Lewis et al., 2000) refers to a class of gradient-free algo-
rithms, which were among the first algorithms applied to SBO problems (Bowden
and Hall, 1998). Direct Search algorithms are iterative local search algorithms that
start off from an initial solution. In each iteration, a step to another solution con-
tained in a specified neighborhood of the current solution is performed. The most
common type of Direct Search algorithms are so-called Pattern Search (PS) algo-
rithms. We illustrate the principle of Pattern Search by describing a basic version of
a Pattern Search SBO algorithm (Lewis et al., 1998):

Given are a stochastic objective function f .x/ to be minimized (implemented as
a simulation model), d real-valued variables, and an initial solution x0. The solution
chosen in iteration k of the algorithm is denoted by xk . ık > 0 is a step size param-
eter and ei the i -th standard basic vector with a 1 as the i-th entry and 0 for all other
entries.

The algorithm successively considers all solutions x0i D xk ˙ ıkei for i D
1; : : : ; n – this is a so-called search pattern – until a solution x0i is found that seems
better than the current solution xk , i.e., x0i with f .x0i / < f .xk/. If no such solu-
tion exists, the step size is halved by setting ıkC1 D 1=2 � ık. If a better solution was
found, it is used as xkC1 and the step size is doubled by setting it to ıkC1 D 2ık. This
loop is repeated until a termination criterion (e.g., maximum number of iterations) is

11 This criterion refers to the behavior of an algorithm, and should not be confused with the
robustness criteria for solutions used in Robust Optimization.
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Fig. 2.21 Example of pattern
search steps for an SBO
problem with two variables
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met. Thus, the algorithm increases its step size if it was “successful” and decreases
it if no better solutions were found in the neighborhood defined by the search pat-
tern and the step size. The described pattern search algorithm can be interpreted as
a first-improvement local search algorithm. Figure 2.21 illustrates two successive
iterations of the algorithm for an SBO problem with two variables: At the beginning
of iteration k, the current solution is xk . Assume that the algorithm then considers
the four moves (“left, right, up, down”) with the current step size ık and only finds
one better solution x0i by the move (“right”) that increases variable 1. This solution
is assigned to xkC1, and the new step size ıkC1 is obtained by doubling ık .

Lewis et al. (1998) describe a Generalized Pattern Search (GPS) scheme that
assumes a “custom” search pattern and procedure for updating the step size. This
scheme underlies modern GPS, which were, e.g., applied to an SBO problem by
Sriver and Chrissis (2004). Several other PS algorithms based on the GPS scheme
have been developed, e.g., a PS algorithm for problems with continuous bounded
variables (Lewis and Torczon, 1999) and another PS algorithm for problems with
linear constraints (Lewis and Torczon, 2000).

If the search pattern and step size updating procedure meet certain conditions,
global convergence of PS algorithms can be proven. Here, “global convergence”
does not denote convergence to a global optimum, but to a local optimum from an
arbitrary initial solution (Kolda et al., 2004). Roughly speaking, one has to ensure
that every solution can be reached from every other solution in a finite number of
steps. For details, see, e.g., Lewis et al. (1998).

2.4.3 Robust Optimization

Robust Optimization (RO) (Mulvey et al., 1995; Kouvelis and Yu, 1997; Ben-Tal
and Nemirovski, 2002; Scholl, 2001) approaches for decision under uncertainty
employ risk-averse objectives, e.g., the minimization of the maximum regret or
an optimization of the result occurring for a solution in the worst-case scenario.
In contrast, most models in classical stochastic optimization pursue a risk-neutral
optimization of the expected value of, e.g., a cost function. Both approaches have
shortcomings: Risk-neutral stochastic optimization might yield solutions that seem
excellent on average, but lead to extremely poor results in scenarios that could
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eventuate with a non-negligible probability. Robust optimization might in turn gen-
erate solutions that are too conservative and miss out on opportunities for economic
benefits. This is especially the case if the decision maker using an RO approach
does not fully understand it, and unintentionally chooses a robustness criterion that
is more risk-averse than his/her own preferences.

In the RO literature, the chosen techniques of modeling uncertainty differ: Some
RO approaches assume scenarios with given probabilities (Mulvey et al., 1995),
some scenarios without probabilities, others that solely interval data for uncertain
parameters are known (Kouvelis and Yu, 1997). Using a more general approach,
one could assume probability distributions for random variables. Also, in the liter-
ature various, completely different concepts are subsumed under the homonymous
term robustness, amongst others feasibility robustness (also: solution robustness)
and optimality robustness (also: model robustness) of solutions. Feasibility robust-
ness criteria measure how likely it is that a solution is feasible to the problem, which
is not known in advance if this depends on the eventuating scenario, e.g., due to con-
straints that include uncertain factors. Optimality robustness criteria measure how
much the quality (result value) of a solution varies in the different scenarios that can
occur. Even within the concept of optimality robustness, the existing mathematical
definitions for operationalizing it are diverse, e.g.:

� Expected value-variance criterion (e.g., linear combination of � and �2)
� Mini-max/Maxi-min criterion (worst-case optimization for minimization and

maximization problem, resp.)
� Minimization of the maximum regret (the maximum deviation of a solution’s

result in a scenario from the scenario-optimal solution)
� Expected value-semi-variance criterion
� Quantile-based criteria, e.g., a Value-at-Risk (VaR) measure such as the 95%

quantile of a cost function

Feasibility robustness can, e.g., be included by adding chance constraints to a model
or adding penalty costs for violations of these constraints to the objective (“com-
pensation”) (see, e.g., Scholl, 2001, p. 105). In addition to such generic robustness
criteria, one can also use robustness or flexibility criteria that are specific to a certain
optimization problem or application (problem-specific robustness criteria).12

As a review of the vast amount of literature on RO would go beyond the scope of
this work, we refer the reader to the excellent overview given and framework devel-
oped by Scholl (2001). Note that in the optimization literature, the word “robust” is
used very ambiguously and can also refer to certain properties of algorithms, rather
than solutions.

12 E.g., Liao and Rittscher (2007b) consider a supplier selection problem where the flexibility pro-
vided by options for increasing or reducing supply quantities and for reducing supplier lead times
is valued in the objective function. Such options that give additional flexibility can increase the
(problem-specific) robustness of a solution to the problem.



Chapter 3
Graphical Modeling of Substitutions
and Flexible Bills-of-Materials

This chapter deals with the modeling of product substitution and flexible BOMs.
In Sect. 3.1, we describe several real-world applications where product substitution
occurs. Section 3.2 presents four approaches for modeling substitution: Blending
models, substitution graphs, substitution hypergraphs, and task-oriented modeling.
Complementary classification criteria for product substitution models are developed
in Sect. 3.3. Finally, Sect. 3.4 focusses on conditions where substitution can be ben-
eficial, requirements for organizationally implementing substitutions, and potential
pitfalls that should be kept in mind.

3.1 Applications

Product substitution occurs in several real-world applications:

� Production of aluminium tubes: Balakrishnan and Geunes (2000) describe a
production planning problem occurring at a aluminium-tube manufacturer:
Blooms are intermediate products that are used to produce finished tubes. These
tubes are ordered by customers in variants that differ in their dimensions (outer
diameter, wall thickness, and length) and material specifications. When pro-
ducing a tube from a bloom, its outer diameter and wall thickness are reduced
and its length is increased (“drawing”). This tube-drawing process is somewhat
flexible, so that different blooms can be used to produce a tube with specific
attributes. Thus, substitutions among the blooms are possible and the BOM for a
certain tube is flexible. Computational results show for the considered case that
manufacturing costs can be reduced by approximately 8:7% if BOMs flexibility
is exploited.
� Steel parts for ship and locomotive motors: In another real-world application at

a manufacturer of metal parts for ship / locomotive motors known to the author,
substitutions are performed if there is a supply bottleneck for the preferred input
product: The metal parts are produced with a CNC turning machine from steel
cylinders. These steel cylinders, the raw parts, have a diameter that varies over
its length, a certain length and material. If a required steel cylinder is not in
stock, a set of rules can be used to determine other steel cylinders that are

J. C. Lang, Production and Inventory Management with Substitutions,
Lecture Notes in Economics and Mathematical Systems 636,
DOI 10.1007/978-3-642-04247-8_3, c� Springer-Verlag Berlin Heidelberg 2010
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compatible for producing the required end product: E.g., one can use another
steel cylinder whose diameter is higher than that of the preferred product over
the entire length, and use it as a substitute, of course increasing the amount
of wastage in the turning process. These substitutions can help reduce delayed
deliveries significantly.
� Microchip production: In the semiconductor industry, there is often a random

yield in production processes. E.g., when producing CPUs, some of the pro-
duced CPUs can run at 2:4 GHz frequency, some of them only at 2:2 GHz due
to the random quality of the products. If there is a higher demand for 2:2 GHz
CPUs, one could sell CPUs that would be capable of running at 2:4 GHz as
2:2 GHz CPUs. Thus, the products of the semiconductor manufacturer can be
ordered by ascending quality, and higher-quality products can substitute lower-
quality products. For product substitution in the semiconductor industry, see,
e.g., Gallego et al. (2006).
� Retail computer manufacturers such as DellTM or Lenovo R� offer a variety

of different PC/notebook configurations in their portfolio. If there is a sup-
ply bottleneck for a certain component (e.g., graphics card, display type, or
CPU) contained in a configuration, the manufacturer could offer a slightly dif-
ferent configuration with a cheaper, equivalent, or more expensive substitute
(down-selling, alternative-selling and up-selling, resp.) for that component to
the customer. Either, the manufacturer charges the same price for the con-
figuration, or forwards the change of the component price to the customer.
Optimization models for this industry that include substitution are considered
by Ettl et al. (2006a,b); Ervolina et al. (2009).
� Spare parts: In the inventory management of spare parts, sometimes more

than one spare part type would be a feasible replacement for the broken part
(Kennedy et al., 2002). In such cases, substitutions can be advantageous to
shorten machine downtime (if a substitute can be delivered faster than the pre-
ferred spare part) and also reduce holding costs due to demand pooling among
substitutable spare parts.
� Blood transfusions: As already mentioned in Chap. 1, substitutions by a com-

patible blood type can be performed if a patient’s blood type is not in stock at a
hospital (Katsaliaki and Brailsford, 2007). This is also done in practice: In the
UK, this “mismatching” is performed in approx. 5% of all cases (BSMS, 2003).
� Car wiring harnesses: At a car manufacturer known to the author, a large num-

ber of variants of car wiring harnesses (CWHs) exist (more than 2,000). Each
of these variants supports a certain set of car features. A variant X that sup-
ports a superset of the features supported by another variant Y may be used
as a substitute for Y. The situation occurring at the car manufacturer is as fol-
lows: Sometimes, a CWH already assigned to a specific customer car order is
found to be defective. The CWHs have a rather long lead time. Hence, in that
case, one could take another, compatible CWH as a substitute that was previ-
ously already assigned to another customer order and is at a later position in the
“queue” of CWHs. However, such substitutions might cause a “domino effect”



3.1 Applications 83

by triggering additional substitutions for the CWHs that were detached from
their assigned customer order to substitute a defective CWH.
� Windshield interlayer production: Car windshields contain an interlayer plastic

“sheet” between two layers of glass. Several variants of these interlayers exist
that are produced on the same production line and sold to customers on rolls.
They differ in various attributes: Width and thickness of the foil, length of the
foil on a roll, color and material, surface of the foil (coarse vs. even), and cooling
(either the foil has to be cooled or an “anti-adhesive paper” has to be added on
the roll to prevent the foil from adhering). Non-negligible sequence-dependent
setup times and costs occur when changing over from one foil variant to another.
Some substitution options exist for these rolls: Foil with a larger width can
replace a smaller width, which requires cutting activities and increases wastage.
Slightly thicker foil can substitute thinner foil, even foil can substitute coarse
foil. Also, one could deliver uncooled foil to a customer who requested cooled
foil, given that the customer agrees with it. In this production system, substitu-
tions can help reduce the total setup costs and the total duration of setups, which
increases the capacity available for production and thus the effective output of
the production system.
� Medicine: Pharmacies often offer an identical or similar drug from another phar-

maceutical company to the customer if the drug specified on the prescription is
not in stock. Also, they might offer several smaller packages if the requested,
larger packaging size is not available.
� Online grocery stores (also: e-groceries) (Boyer et al., 2003; Boyer and Hult,

2005; Delaney-Klinger et al., 2003; Scott and Scott, 2006; Sleight, 2001;
Woudhuysen, 2001): e-groceries such as Tesco.com1 provide online stores
where customers can shop groceries. The groceries are directly shipped to the
customers’ homes, either from dedicated warehouses or from supermarkets. If
some of the products contained in a customer order are not in stock at the ware-
house/supermarket from which the customer is served, e-groceries sometimes
perform substitutions (Apte and Viswanathan, 2007): E.g., if the ordered orange
juice brand is currently out of stock, an orange juice of another brand is deliv-
ered. These substitutes are usually sold for the same price and have a higher
quality or larger quantity. However, as profit margins are usually low in this
type of business, an efficient inventory and substitution policy is crucial to avoid
losses due to substitutions.
� Software components: Substitutions also occur in the context of tangible, non-

physical products such as software components: If a certain software component
A covers all functionalities that another component B offers and, in addition,
runs on a compatible platform, it might be possible to substitute B by A. Substi-
tutions of software components are only feasible if the architecture of a software
system is flexible, which is, e.g., promised by the Service-Oriented Architecture
(SOA) paradigm. Web service composition models that contain substitution

1 http://www.tesco.com/.



84 3 Graphical Modeling of Substitutions and Flexible Bills-of-Materials

aspects are, e.g., developed by Canfora et al. (2005); Chang et al. (2005);
Berbner et al. (2006); Di Penta and Troiano (2005). Lang et al. (2008) develop
an optimization model for software supplier selection and product portfolio
planning that includes substitution of software components.

3.2 Modeling Approaches

Different ways of modeling substitution and flexible BOMs in production plan-
ning and inventory control models exist. In this section, we describe the following
approaches:

1. Blending models
2. Substitution graphs

(a) Standard substitution graphs for single-level production structures
(b) Substitution hypergraphs for multi-level production structures

3. Task-oriented modeling

(a) State-Task Networks (STN)
(b) Resource-Task Networks (RTN)

In general, one can distinguish approaches that model flexible BOMs explicitly
from approaches that model them implicitly. The first and third approach model
BOMs flexibility implicitly, whereas the second models substitution options explic-
itly. Similarly, one can distinguish models where an infinite number of alternative
BOMs exists for fulfilling a certain demand from other models where a finite number
of alternative BOMs is given.

Another approach for implicitly modeling substitution would be to define a
problem-specific function based on the attribute values of two products A and B
that returns 1 if A may substitute B and 0 otherwise. The relations defined by such
functions implicitly represent substitution graphs, which we will introduce later.

An additional aspect is whether substitution options can be described by clear-cut
yes–no data, or are modeled in a soft way, e.g., by similarity measures for products:
In this work, we only consider models of the former type, where one can exactly say
whether one product can substitute another and all substitutes are equally suitable,
but may differ regarding their costs. In the latter approach, one could introduce
a distance metric between products that is calculated from attribute values of the
products and measures the (dis-)similarity of two products. The smaller the dis-
tance from product A to B, the more suitable is product A as a substitute for B.
Instead of measuring distances between products, one could also measure the dis-
tance between a customer’s requirements and various products that could be offered
to the customer.
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3.2.1 Blending Models

In industrial blending models (Crama et al., 2001), the goal is to determine quantities
of several continuous input products that are blended to obtain an output product that
fulfills certain properties while minimizing a cost objective. Each production plan
with specified quantities for the input products that fulfills these properties is consid-
ered feasible. The properties could, e.g., be that the output product contains exactly
x% of substance A, at least y% of substance B, and at most z% of substance C. The
compositions of the input products, i.e., the quantities of the substances contained
in them, and their (usually) differing unit costs are given. Also, co-products may
result when blending the input products. Note that in most blending models, there
is an infinite number of admissible production plans because the quantity variables
are continuous.

Blending models are directly related to product substitution, as the input products
of the blending process are to some extent substitutable by each other. According to
Crama et al. (2001), blending models can be categorized along two dimensions:

� Type of industry: Food, oil (with subcategories), steel industry, steel industry,
chemical, energy, agriculture, and miscellaneous applications
� Planning level / degree of integration:

– Product design models that solve the blending problem separately, without
integration with other production planning models

– Long- or mid-term planning models where the blending problem is inte-
grated in a long- or mid-term (master) planning model

– Short-term planning and scheduling models that contain blending decisions

Another modeling approach is based on an analogy to set covering problems,
and resembles blending models: The decision maker has to compose a product from
various components, each of which covers a certain set of features. These feature
sets may overlap between components. Overall, the product has to fulfil a set of
features demanded by a customer. In such models (e.g., considered by Lang et al.,
2008), a component A can substitute another component B if A covers all features
of B, given that no incompatibilities between components exist.

3.2.2 Substitution Graphs

The substitution options for a specific set of products can be represented and visual-
ized by a substitution graph.2 It is a directed graph that contains one vertex for each
product and one (directed) arc for each substitution option. An arc from product A
to product B denotes that A is a substitute for B. The substitution ratio could be 1:1,
e.g., one unit of product A substitutes one unit of product B, or in the more general
case x:1, e.g., x units of A substitute one unit of B.

2 The content of this section is partly presented in Lang and Domschke (2008).
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Fig. 3.1 Substitution structures

3.2.2.1 Substitution Structures

Downward (also: one-way) substitution graphs have a chain structure with the
highest-quality product at the tail and the lowest-quality product at the head of the
chain. An example is given in Fig. 3.1a: Here, product P4 can substitute all other
products, product P3 only P1 and P2, P2 only P1, and the lowest-quality product P1
cannot replace any other product. Downward substitution graphs occur in settings
where products are downward compatible, where cheaper products can be upgraded
to better, more expensive products. General substitution graphs may consist of more
than one connected component and may contain cycles. Figure 3.1b shows a general
substitution graph with two connected components and a cycle: Substitution options
exist only within, not across the two product groups P1, P2, P5 and P3, P4, P6. In
the latter group, P3 can substitute P6 and the other way around.

3.2.2.2 Demand Class-Specific Substitution Options

In practical applications, it might happen that product P1 is a feasible substitute for
product P2 if customer X has ordered P2, but not if customer Y has ordered P2, e.g.,
due to additional compatibility constraints of customer Y. The demand class concept
(Hsu and Bassok, 1999) can be used to incorporate substitution options of a prod-
uct that depend on its intended usage (demand class-specific substitution options).
Figure 3.2 illustrates how the two differing substitution graphs for the customers X
and Y and products P1 and P2 of the example introduced above can merged by intro-
ducing demand classes. For both customers X and Y, the demand for P1 can only
be satisfied by P1 itself. Hence, one demand class D1 that refers to P1 is introduced
that contains the demand of X and Y for P1. In contrast, demand for P2 of cus-
tomer X can also be satisfied by substituting with P1, whereas customer Y does not
accept P1 as a substitute for P2. Thus, we have to add two demand classes for P2:
One that represents demand of X for which substitution by P1 is allowed (D2X),
another one that represents demand of Y which can only be satisfied by P2 itself
(D2Y).
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Fig. 3.2 Example – substitution graphs with demand classes and merging substitution graphs for
two customers

A substitution graph with demand classes contains a vertex for each (input)
product and for each demand class. Arcs from products A and B to demand class
D denote that both of them may fulfill demand of class D, i.e., they are mutually
substitutable regarding this specific demand class. Demand quantities are associ-
ated with demand classes only. Substitution graphs containing only products can
be mapped to substitution graphs with demand classes by introducing one demand
class for each product, whose demand can be fulfilled by the product itself and all
substitutes of the product.

3.2.2.3 Modeling Transitive Substitution Options

Substitution options are either transitive, i.e., if product A is a substitute for B and
B is a substitute for C, A can also substitute C, or intransitive, i.e., A is not neces-
sarily a feasible substitute for C. Intransitive substitution options could, e.g., occur
due to technical restrictions or “soft” constraints specified internally or by a cus-
tomer. Examples for both transitive and intransitive substitution options are given
in Fig. 3.3. In the case of transitive substitution options, the model could be limited
to a maximum of one conversion step per item or allow multiple conversions of an
item at successive points in time.

Three alternative ways of representing substitution graphs can be distinguished
in the case of transitive substitutability:

1. One could explicitly include arcs for both direct and indirect substitution options,
where the latter refer to such substitutions that are made possible by perform-
ing multiple conversion steps sequentially. This representation would obviously
contain several redundant arcs.
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2. One could omit those arcs corresponding to indirect substitution options, as they
are redundant due to the transitivity (e.g., the arc from A to C). An example for
this is shown in Fig 3.4a, where the conversion cost of each substitution option
is given next to the corresponding arc.

3. One could introduce arcs for all indirect substitution options from products to
demand classes and remove all arcs between products. This alternative, where
the substitution options implied by the transitivity have been “flattened” and the
cost of required conversion steps added up, is illustrated with an example in
Fig. 3.4b.

In the following, substitution graphs will always be interpreted in the way that all
substitution options contained in them are transitive, i.e., if a substitution graph
contains arcs (A,B) and (B,C), this means that A can substitute C.

3.2.2.4 Substitution Ratio

In the simplest case, the quantity ratio in substitution options (substitution ratio)
is assumed to be 1:1. That is, one quantity unit of the substitute can substitute
for exactly one quantity unit of the original product. However, consider the
example where an online grocery customer orders a package of eight chocolate
bars, but the warehouse only has separate chocolate bars in stock and hence delivers
eight separate chocolate bars instead of one package. In that case, the substitution
ratio is 8:1.



3.2 Modeling Approaches 89

3.2.2.5 Substitution Triangle Inequality

Similarly to the triangle inequality properties introduced for sequence-dependent
setup times and costs, one can categorize substitution structures by asking whether
they fulfil the substitution triangle inequality: It means that the costs of converting
product A into product B and successively B into C are the same as or higher than
those of directly converting A into C. With conversion costs for substituting product
j by i denoted by rij , it can be formulated as follows:

rAB C rBC � rAC (3.1)

The models with multiple conversion steps described in this work do not assume that
the substitution triangle inequality holds true. The inequality is irrelevant for models
that only allow for a single conversion step, or one could interpret this single step in
a way that it stands for the “shortest path” of multiple conversion steps.

3.2.3 Substitution Hypergraphs

In this section, we focus on an approach for modeling flexible BOMs in multi-level
production structures and develop corresponding model classification criteria.

3.2.3.1 Modeling Approach

We begin by defining the terms we use in the context of multi-level substitution
models: By component, we name an indivisible, atomic good that is produced
or purchased. An assembly consists of specified quantities of one or more of the
following entities: (1) components, (2) other assemblies, which we refer to as sub-
assemblies, and/or (3) so-called abstract products, which are “placeholders” for
parts of the assembly that can be implemented by several substitutable components.
An abstract product can be interpreted as an “internal demand class”. The demand
for an abstract product can be satisfied by two or more components or assemblies,
these are substitutable w.r.t. this abstract product. In the following, we use the term
internal demand class synonymously with abstract product.

To visualize some exemplary multi-level substitution structures in the follow-
ing subsections, we use so-called directed hypergraphs (see, e.g., Ausiello et al.,
2001; Gallo and Pallottino, 1992; Gallo and Scutella, 1998a,b). In contrast to “nor-
mal” graphs, hypergraphs do not contain arcs from one vertex to another vertex, but
hyperedges that go from one set of vertices to another set of vertices. In a directed
hypergraph, the arcs between sets of vertices are directed.

In multi-level substitution models, a directed substitution hypergraph is con-
structed as follows to model the substitution options: We introduce one vertex for
each component and each internal or external demand class. In addition, for each
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assembly we introduce a set of vertices containing all entities required for that
assembly. For each possible way to fulfil demand of a demand class using some
components or assemblies, we introduce an arc from the vertex or set of vertices
that correspond to these components or assemblies to the vertex corresponding to
the demand class.

Note that the resulting substitution hypergraph is a special directed hypergraph
whose arcs originate from a set of one or more vertices and end in a set with
exactly one vertex. The Gozinto factors for entities, i.e., components, subassem-
blies and abstract products, that are part of an assembly are added to the hypergraph
as weights of entity-assembly pairs. The weights of arcs from components or
assemblies to an abstract product represent substitution ratios.

An example of a simple substitution hypergraph with five products, two assem-
blies, one external demand class, and Gozinto factors assumed to be 1 is depicted in
Fig. 3.5a. The rounded boxes represent assemblies. Demand of the demand class D1
can either be satisfied by assembly A1 or A2. Assembly A1 consists of products P1
and P2, but product P2 may be substituted by product P3. This is modeled by intro-
ducing an abstract product D2 that can be implemented either by product P2 or P3.
Alternatively to introducing abstract products, one could add an arc for each substi-
tution option between two products from the substitute to the substitutable product.
This is illustrated by Fig. 3.5b. However, this method has the drawback that it can-
not model demand-class specific demand for components. Assembly 2 consists of
products P4 and P5, for which no substitutes exist.

P1

P2 P3

(a) Substitution hypergraph with
abstract product

D1

P4D2 P5

A1 A2

P1

P3

(b) Substitution hypergraph without
abstract product

D1

P4P2 P5

A1 A2

P1

P2 P3

(c) corresponding AND-XOR graph
representation

D1

P4 P5

XOR

XOR

AND ANDA1 A2

Fig. 3.5 Substitution hypergraph vs. AND-XOR graph representation for multi-level models
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Fig. 3.6 Example of a substitution hypergraph for a multi-level model

An example of a more complicated substitution hypergraph is given in Fig. 3.6.
Here, the external demand (demand class 3) is for an assembly A1 that consists of
two parts, namely the abstract products D1 and D2. The first abstract product either
needs subassembly A2 or A3, the second either subassembly A4 or product P6,
which could, e.g., be a finished assembly purchased from a supplier. In subassembly
A4, product P8 can be substituted by product P9.

One can always transform a directed hypergraph into a so-called AND-XOR
graph representation (Ozturan, 2004). This is done for the first example in Fig. 3.5c.
The AND-XOR graph contains all vertices of the hypergraph. In addition, an
AND vertex is added for each hypergraph vertex set that is the source of a hyper-
edge. All vertices that are contained in the vertex set have an arc to the AND vertex.
One XOR vertex is introduced for each vertex or vertex set of the hypergraph in
which multiple hyperedges end. For each hyperedge, we introduce an arc going
from the “normal” or AND vertex corresponding to the source vertex or vertex set
of the hyperedge to the “normal” or XOR vertex corresponding to the destination
vertex or vertex set of the hyperedge.

With regard to substitution graphs, the AND and XOR vertices of this graph can
be interpreted as follows:3 An AND vertex corresponds to an assembly (rounded
box). Edges from vertices to an AND vertex indicate that the components or
(sub-)assemblies corresponding to these vertices are required for this assembly.
An XOR vertex denotes several options to satisfy demand of a certain demand
class or abstract product. Each arc ending in an XOR vertex stands for one way of

3 Wedekind and Müller (1981) developed an approach for modeling variant BOMs that is similar
to AND-XOR-graph representations of substitution hypergraphs.
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satisfying the demand of the corresponding demand class or abstract product. The
AND-XOR representation of a substitution hypergraph is more suitable to include
Gozinto factors, since they can be added as weights of the arcs that end in AND
vertices.

3.2.3.2 Classification Criteria

Number of Components and Assemblies

Models may be restricted to a certain number of components and/or assemblies.
E.g., Thomas and Warsing (2007) consider a model with two components and one
assembly.

Demand Level

We distinguish models where external demand only occurs for final assemblies
from others where external demand may also occur for subassemblies and individ-
ual components.

Level of Substitution

Substitution options in multi-level models can exist for both components and sub-
assemblies. An example with substitutions only on the component level is depicted
in Fig. 3.7, an example where also substitutions of subassemblies are allowed, i.e.,
assembly level substitutions, is shown in Fig. 3.5a.

Interacting Substitution

Whether a certain substitute can be used within an assembly may depend on its com-
patibility with other parts of the assembly. This setting in multi-level substitution
models, where compatibility issues between components have to be considered, is

Fig. 3.7 Substitution of
components only

P1

P2 P3

D1

D2
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(b) Corresponding compatibility
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Fig. 3.8 Interacting substitutions

termed interacting substitution in Balakrishnan and Geunes (2000). Chen (2003)
uses the synonym “linked substitutes”. The aspect of material compatibility is also
addressed in Ball et al. (2003). In the automotive industry, so-called code-rules
describe interdependencies between potential features of a car (Meyr, 2004b). Such
code-rules implicitly define the set of feasible BOMs by excluding infeasible com-
binations of features using Boolean logical expressions (Röder and Tibken, 2006).
Code-rules are related to interacting substitutions as they could specify feasible
substitutions in applications with interacting substitution. An example of incom-
patible components is given in Fig. 3.8a . Here, if product 2 is used for the internal
demand class 1, product 4 cannot be used for internal demand class 2 and vice versa.
For assemblies with two parts, such incompatibilities can also be represented in a
compatibility matrix as shown in Fig. 3.8b. The reasons for incompatibility may
either be functional (e.g., a technical restriction) or non-functional (e.g., a customer
requirement).

Disassembly Options

The subject areas of remanufacturing and disassembly are related to multi-level
substitution models, as parts of used products returned by customers can be reused
and hence function as substitutes for new parts. In addition, substitution and disas-
sembly could also be combined in the domain of service parts inventory control, as
it could be expedient to disassemble a certain service part if only a component of it
is needed that is currently not individually in stock. Disassembly options can be rep-
resented using disassembly graphs (see, e.g., Schultmann et al., 2002). An example
of a disassembly graph and the corresponding Gozinto (hyper-)graph are depicted
are Fig. 3.9. In this example, there are two alternative ways of disassembling A1:
One can either disassemble it into product P1 and subassembly A2, or subsequently
disassemble this subassembly A2 into products P2 and P3 if a unit of P2 or P3 is
needed.
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P1
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P2 P3
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(a) Assembly graph
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A1

A2

(b) Disassembly graph
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Fig. 3.9 Disassembly in substitution models

3.2.4 Task-Oriented Modeling

State-Task Networks (STN) (Kondili et al., 1993; Crama et al., 2001) are a modeling
framework for production processes (primarily in the process industries) that uses
directed graphs with two types of nodes:4

� State nodes: They represent raw, intermediate and finished products within the
production process. In practice, these “products” are often different states of an
item that goes through the production process.
� Task nodes: These represent process activities. Each task consumes certain

quantities of input products and produces quantities of one or more output prod-
ucts by an operation that transforms the input products. Co-production can be
modeled by tasks that produce more than one output product.

These two types of nodes are illustrated by Fig. 3.10. An arc from a state to a task
node denotes that the state is an input product for the task, an arc from a task to a
state node that the state is an output product of that task. An example of an STN
is given in Fig. 3.11: Task 1 transforms state 1 (input product) into another state 2
(output product). Task 2 uses state 2 to produce state 3. Task 3 is a production
activity with co-products, it produces both state 4 and 5.

STN can model product substitution (and flexible BOMs) by introducing several
tasks that produce the same product but use different input products. This is illus-
trated by Fig. 3.12: Task 1 uses products (states) 1 and 2 to produce product (state)
4, which can be interpreted as a demand class). In contrast, task 2 uses products 2

4 STN are related to the Production Process Model (PPM) concept described, e.g., by Stadtler
(2005, p. 202f.) and Richter and Stockrahm (2005, p. 443f.): A PPM consists of one or more oper-
ations (manufacturing stages), each of which consists of several activities and is associated with
a primary resource. Each of the activities may use one or more secondary resources, consume
certain input materials, and produce certain output materials. Precedence relations are defined for
activities belonging to the same operation, and visualized as arcs between activity nodes. Also,
minimal and maximal lead times between activities can be specified. In contrast to STN, in which
task nodes are always connected by a state node in between, there are direct arcs between activities
in PPM. Operations are connected by pegging arcs from an output material of one operation to an
input material of another operation. PPMs seem suitable to model flexible production sequences
similarly to STN by defining alternative routings (Stadtler, 2005, p. 205).
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Fig. 3.10 STN task node
with state nodes belonging to
its input and output products
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and 3 to produce the same product 4, i.e., it substitutes product 1 by 3. Also, STN
can model flexible production sequences by multiple “paths” of tasks that use the
same input products. Gozinto factors can be included in STN as weights for arcs that
go into task nodes. Additionally, data on the output quantities of a task (per unit) is
given that can be added to the arcs originating from task nodes.

Resource-Task Networks (RTN) (Pantelides, 1994) are another modeling frame-
work proposed as an alternative to STN:5 RTN are directed graphs that contain

5 There are certain analogies between STN, RTN and the graphical modeling language of Oracler

Strategic Network Optimization (SNO) (formerly: PeopleSoft SNO). The entities in an SNO model
are time periods, commodities, nodes, and arcs (Wagner and Meyr, 2005, p. 377f.). “Commodity”
either refers to a (physical) good or consumed time. Thus, an SNO commodity representing a
physical good corresponds to an STN state node or an RTN resource node that stands for a prod-
uct/state. Considering the various types of nodes in SNO, SNO process nodes roughly correspond
to STN/RTN tasks, and SNO machine nodes to RTN resource nodes that represent processing
equipment items. Interestingly, SNO automatically transforms models developed with its graphical
language into LP/MILP models.
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Fig. 3.13 RTN example

task nodes and, in contrast to STN, resource nodes instead of state nodes. Prod-
ucts (states), processing equipment items (reactors, machines, etc.), workers and
utilities (hot water, steam, etc.) are modeled as resource nodes. Each processing
equipment item is modeled as a resource node by treating it as if it was “consumed”
at the beginning of the usage by a task and “produced” after completion of the task
(Pantelides, 1994, p. 267). For that reason, Figs. 3.13 and 3.14 contain arcs both
from and to each resource representing a processing equipment item.6 An arc from
a resource to a task denotes that the task consumes that resource, and an arc from
a task to a resource that the task produces the resource. A task may require and
produce multiple resources. An example of an RTN is shown in Fig. 3.13.

RTN can model product substitution similarly to STN by introducing several
tasks that produce the same output product but use different input products. In con-
trast to STN, input and output products are modeled by resource nodes instead of
state nodes. In addition, RTN allow for modeling alternative production sequences
that also differ regarding the resources (i.e., workers, reactors, or machines) they
use: For each alternative set of resources available to perform it, a separate task
node is introduced (Pantelides, 1994). Such resource substitutability aspects can
also be added to STN-based models, but in STN, there is usually a single task node
representing all alternative sets of resources available for performing the task. A
simple example of an RTN with both substitution and flexible resource assignments
is shown in Fig. 3.14: Task 1 uses products R1 and R2 to produce product R4
on machine R5. In contrast, task 2 uses products R2 and R3 to produce the same
product R4 on machine R5, i.e., it substitutes product R1 by R3 but uses the same
resource. Task 3 consumes the same products as task 1, but is performed on another
machine R6.

6 This differs from the approach chosen in the Oracler SNO modeling framework: Here, the usage
of a machine/reactor would be modeled as a commodity flow (of the “commodity machine time”)
from an SNO machine node to an SNO process node. Thus, there would only be one arc – from
the resource to the task, not reversely – in the corresponding graph.
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Fig. 3.14 RTN example with
product substitution and
flexible resource assignments
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Table 3.1 Comparison of substitution modeling approaches

Criterion/approach Blending Su. graphs Su. hyper-graphs STN RTN

Modeling of su. Implicit Explicit Explicit Implicit Implicit
# BOMs Infinite Finite Finite Finite Finite
Discrete products ✗ X X X X
Continuous products X X (X) X X
Manufacturing ✗ X X (X) (X)
Process industry X X (X) X X
MTS (X) X X (X) (X)
ATO ✗ ✗ X ✗ ✗

MTO X X X X X
Single-level production X X ✗ X X
Multi-level production (X) ✗ X X X
Co-products (X) ✗ ✗ X X
Multi-resource usage X ✗ ✗ ✗ X

3.2.5 Comparison of Modeling Approaches

When encountering a production or inventory management problem with substitu-
tions or flexible BOMs in practice, the question is which of the approaches presented
in Sects. 3.2.1–3.2.4 should be used to model it. Table 3.1 intends to serve as a
guideline for choosing the most suitable approach. The primary decision whether
to consider substitutions at all depends on the level of aggregation of products in
a model: For example, if the level of aggregation of products into groups/families
in an aggregated mid-term Master Planning model is so high that substitutions are
only possible within the same product group, substitutions options might become
insignificant (see Sect. 3.4).

Blending models, STN and RTN model substitution implicitly, whereas substitu-
tion graphs and hypergraphs model it explicitly. None of these two options is clearly
better than the other. Blending models are especially appropriate for applications
with continuous products and an infinite number of feasible BOMs. “Normal” sub-
stitution graphs are suitable for applications with single-level production structures,
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a finite number of feasible BOMs and no blending. Also, they seem the best choice
for cases where substitution decisions are made after production in inventory and
transportation planning. Substitution hypergraphs appear predominantly suitable for
discrete products and multi-level production, and for ATO manufacturing environ-
ments. The task-based STN and RTN modeling approaches are appropriate for both
continuous and discrete products, and, at least in their basic version, cannot model
blending. They can also map flexible production sequences in addition to flexi-
ble BOMs. Also, they can model co-products. Note that substitution graphs and
hypergraphs can be transformed into STN/RTN models (see Sect. 4.2.3).

3.3 Model Classification Criteria

In this section, we introduce a classification framework that complements the
taxonomy of production planning / dynamic lot-sizing models in Sect. 2.1.1. The
framework is primarily intended for classifying dynamic lot-sizing models with
substitutions and flexible BOMs / recipes. However, a number of the criteria can
also be applied to stochastic inventory control models with substitution or to models
in the area of demand fulfillment. The classification criteria are summarized in the
Figs. 3.15–3.17. The framework contains the criteria developed in Sect. 3.2 as well
as further criteria delineated in the following. The criteria are grouped into seven
categories:

1. General modeling aspects
2. Demand
3. Model context
4. Substitution characteristics
5. Conversions
6. Production
7. Special criteria for multi-level production/assembly

In the following, we develop additional criteria for the categories 2–6.

3.3.1 Demand

3.3.1.1 Information and Activeness of Customers Regarding Substitutions

In this work, we only consider models with firm-driven substitution. Concerning the
activeness and information of customers w.r.t. firm-driven substitution, four cases
can be differentiated:

1. The customer knows that the supplier may perform substitutions and explicitly
decides to allow certain substitutions when buying/ordering. This is, e.g., the case
for flexible products (Gallego and Phillips, 2004). Another example are cases
where the customer wants a product that fulfils his/her functionality requirements
and does not care how this functionality is implemented.
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Classification
criteria

1. General modeling aspects

Approach

Blending model

Substitution graph

Substitution hypergraph

Task-oriented (STN/RTN)

Mapping of substitutions
Explicit

Implicit

Substitution options based on
product features?

"Softness" of
substitution options

Precise yes/no data

Soft, e.g. using
similarity measure

2. Demand

Link of substitution
options and demand

Substitution options are the same
for all customers/usages

Demand class-specific
substition options

Information
and activeness
of customers

Information

Customer knows that
supplier may perform
substitutions

Customer is not aware of
substitutions (hidden)

Activeness

Customer always accepts
substitutions

Customer decides on
allowed substitutions
beforehand

Customer may reject
substitutions

Substitution
acceptance

Deterministic

Stochastic

Linkage of substitutions to
customer orders

Substitutions on product level

Substitution on product
instance level

3. Model context (see figure 3.17)

4. Substitution characteristics (see figure 3.17)

5. Conversions (see figure 3.18)

6. Production (see figure 3.18)

7. Special criteria for multi-level production / assembly  (see figure 3.18)

Fig. 3.15 Classification criteria – substitutions and flexible BOMs / recipes – 1/3

2. The customer is not aware of performed substitutions, which is, e.g., possible
if “hidden” components of an assembly are substituted. Also, cases where the
customer neither determines nor knows how his functionality requirements are
implemented belong to this category.

3. The customer does not explicitly decide to buy a product that the supplier may
substitute, but will be aware of substitutions performed by the supplier. Rejec-
tions of substitutions by customers may occur on delivery. One example for this
case is the substitution procedure of some online groceries.
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Classification
criteria

3. Model context

Planning level
of substitution

Operational substitution

Tactical substitution

Strategical substitution

Substitute sources

Intra-company

Make-or-buy

Supplier selection

4. Substitution
characteristics

Production levels
with substitutions

One (simple)

Multiple (flexible
BOMs / recipes)

# feasible BOMs / recipes

Finite

Infinite

Structure

No substitution

Downward Upgrading

General

Cycles?

Cyclic

Acyclic

Transitivity of substitution options

Transitive

Intransitive

Substitution ratio

1:1

M:n

Substitution triangle inequality fulfilled?

Substitute
preference
order

All substitutes are equally suitable

One preferred product, all other
substitutes are equally suitable

Clear preference order for
substitutes is specified

Partial or exclusive substitution?

Partial

Exclusive

Fig. 3.16 Classification criteria – substitutions and flexible BOMs / recipes – 2/3

4. The firm proposes one or more substitutions when the customer is ordering, e.g.,
interactively in an online shop. The customer may then either decide for a specific
substitution, accept a longer lead time for the original product, or choose not to
order the product or a substitute from the firm. This case can be considered a
hybrid of firm- and customer-driven substitution.

Cases 1 and 2 are similar from a modeling point of view because the substitu-
tion acceptance rate (see Sect. 3.3.1.2) is 100%. Cases 3 and 4 have to be modeled
differently as the substitution acceptance is stochastic.

3.3.1.2 Substitution Acceptance

A simplification often made is to assume that the customers accept 100% of the sub-
stitutions performed, i.e., to assume deterministic substitution acceptance. However,
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Fig. 3.17 Classification criteria – substitutions and flexible BOMs / recipes – 3/3

though we are considering the case of firm-driven substitution, customers might in
practice reject some of the substitutions. This case is called stochastic substitution
acceptance. The substitution acceptance behavior could be modeled as a “black
box”, or dependent on type, price, quantity or other attributes of the substitute
offered.

In this context, note that the company could either sell the substitute at the same
price as the original product or offer a higher or lower price. A higher price could,
e.g., be offered if the substitute is a superior “upgrade”, a lower price if the substitute
is an inferior “downgrade”.
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3.3.1.3 Linkage of Substitutions to Customer Orders

One can differentiate substitutions on the product level from substitutions on the
product instance level: If produced units were not yet assigned to customer orders
when they are employed as substitutes, we term this substitution on the product
level. The case where produced units have to be detached from customer orders for
which they were already set apart in order to substitute another product is called
substitution on the product instance level.

3.3.2 Model Context

3.3.2.1 Planning Level of Substitution

Firm-driven product substitution can be triggered on different planning levels. We
distinguish operational, tactical and strategical product substitution: By operational
substitution, we mainly refer to substitutions that are performed in operational,
short-term planning models, i.e., in short-term production planning and scheduling
and demand fulfilment models. Tactical substitution characterizes substitutions that
are performed, e.g., due to temporary scarcity of a product, caused either by sup-
ply or production bottlenecks, or to respond to price changes of input products.
Substitutions that take place as a result of product life-cycle management of the
company or its suppliers are assigned to the category of strategical substitution.
The models considered in this work are predominantly tailored to operational and
tactical substitution.

3.3.2.2 Substitute Sources

The substitution decisions can have various interpretations as products interrelated
by substitution options can either be purchased externally, produced internally or
both. We distinguish the following three main cases of substitute sources. These
cases are not mutually exclusive because combinations are possible as well:

1. The substitution options are intra-company, i.e., between products manufactured
by the company.

2. Substitution decisions imply repetitive make-or-buy decisions, as substitution
options between internally manufactured products and purchasable products
exist.

3. Substitution decisions imply repetitive supplier selection decisions, as certain
demands of the company can be satisfied using either of several products –
substitutable among each other – from external suppliers.
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3.3.3 Substitution Characteristics

3.3.3.1 Substitute Preference Order

Concerning the existence of a preference order among the substitutes that could
fulfil the demand of a certain class, one can distinguish three cases:

1. All feasible substitutes are equally suitable for fulfilling demand of the class.
2. There is a preferred product for satisfying the demand, but all other products are

considered equally suitable.
3. A clear preference order among the substitutes exists, i.e., they can be ordered

descendingly by their suitability.

3.3.3.2 Partial vs. Exclusive Substitution

Sometimes, it might be advantageous from a cost perspective to substitute only a
part of the product quantity ordered by a customer. This case, where, e.g., for an
order of 100 quantity units of a product, 70 quantity units of exactly this product
and 30 quantity units of a substitute are delivered, is called partial substitution. The
opposite, where it is only feasible to either substitute 100% of a customer order
by exactly one product or not to substitute at all, is termed exclusive substitution.
Examples for both cases are given in Fig. 3.18. They assume the substitution graph
shown in Fig. 3.18a. Note that partial substitution of divisible goods has an analogy
to the blending models mentioned in Sect. 3.2.1: Frequently, multiple input products
are blended that partly contain the same substances, which can be interpreted as
partial substitution.

3.3.4 Conversions

3.3.4.1 Interpretations of Conversion Costs

In Sect. 2.1.1.2, p. 24 and Sect. 2.1.1.5, we already introduced the notion of conver-
sion costs. These can contain one or more of the following elements, depending on
the production planning model under consideration:

P2
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supply
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Fig. 3.18 Partial vs. exclusive substitution
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1. Conversion costs in the narrow sense:

(a) Variable transformation costs that are caused by performing physical
conversion activities, e.g., labor or machine operating costs for manually
or automatically performing conversion activities, repackaging converted
products; or costs of auxiliary materials required for conversions.

(b) Fixed costs of setup activities required for starting physical conversions.

2. “Virtual conversion costs” that represent opportunity costs of substitutions:

(a) If the objective does not contain the unit costs p1 and p2 of a product 1 and
its substitute 2, the conversion costs should include the unit cost difference
p2 � p1.

(b) If the objective does not incorporate the sales prices sp1 and sp2 of a prod-
uct 1 and its substitute 2, the sales price difference sp2 � sp1 should be
added to the conversion costs.

(c) Another possibility could be to include approximate expected costs caused
by product returns due to rejected substitutions.

In a model with profit maximization objective and variable sales quantities that
contains unit costs and sales prices, it is unnecessary to include the respective
opportunity costs in the conversion costs, as they would otherwise be counted
twice. Also, if a cost minimization objective contains unit costs and lost sales
costs, there is no need to include opportunity costs in the conversion costs.

3. Variable and/or fixed costs that quantify the administrative overhead caused by
substitutions.

4. In addition, the conversion costs could, e.g., include transfer payments or dis-
counts given to customers that aim at increasing the substitution acceptance
rate.

In the models developed in this work, we assume that conversion costs data only
include conversion costs in the narrow sense.

3.3.4.2 Setup Times

In models with substitution, conversion activities might require non-zero setup
times.

3.3.4.3 Production and Conversion Capacities

As mentioned in Sect. 2.1.1.2, lot-sizing models in general can be grouped into
capacitated and uncapacitated models. The term capacity usually refers to produc-
tion capacities. Regarding substitution models, a possible extension is to assume
certain capacities for conversion (substitution) activities, so-called conversion
capacities. Incorporating these conversion capacities, one can distinguish three
classes of capacitated models: (1) models with limited production capacities, but
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unlimited conversion capacities, (2) models with limited separate production and
conversion capacities, where “separate” means that production and conversion do
not share any resources, and (3) models with limited joint production and conversion
capacities, where production and conversion share some or all resources.

3.3.4.4 Product Type Quantities

The numbers of input and output product types of conversion activities may either
be identical or different. The numbers are identical if conversion activities only gen-
erate products that are already contained in the set of input products. They differ
if conversion activities generate some new products (e.g., by certain finalizing or
specializing steps) that do not equate to any of the input products.

3.3.4.5 Time of Conversion

Regarding the time of conversion, three modeling options are distinguishable:
(1) conversion activities are performed as early as possible, i.e., as soon as a deci-
sion has been made into which product a quantity unit should be transformed,
(2) conversion activities are performed as late as possible, i.e., at the beginning
of the period in which a converted quantity unit of a product is to be used to fulfil
demand, or (3) the time of conversion can be chosen arbitrarily. The latter option
will likely be used in models with limited conversion capacities to ensure that a fea-
sible solution observing the capacity limits in every period exists. Simple examples
for the three options mentioned above are given in Fig. 3.19. They assume the same
substitution graph as depicted in Fig. 3.18a. The figures show the inventory levels
over time for a product P2 and its substitute P1. The examples assume that initial
inventories of P1 and P2 are zero, P2 is set up at time t D 2 (with infinite production
speed), and a demand for P1 occurs at t D 4.

Due to the substitution options, an ambiguity regarding the calculation of the
holding costs arises: Assume that the unit holding costs per time unit of P1 are
lower than those of a higher-quality substitute P2. If the decision maker decides at
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some point in time to produce units or use stocked units of product P2 to substitute
demand for P1 at a later point in time, possibly requiring a conversion, how do we
calculate the holding costs for the units of P2 that are used to substitute P1? Three
possible ways of calculating them are:

1. Calculate them using the higher holding costs of P2 for the entire time
2. Calculate them using the higher holding costs of P2 until the decision is made

that the units are used to substitute for P1, and use the lower holding costs of P1
after that point

3. Calculate them using the higher holding costs of P2 until the units of P2 are
actually converted into P1, and use the lower holding costs of P1 after that point

The first option might overestimate the true holding costs. The second one would
lead to incorrect results in a rolling horizon planning environment where preliminary
substitution decisions could be undone in successive periods. From an academic
point of view, the calculation of the holding costs seems problematic in the context
of substitution. However, if the difference between the holding costs of P1 and P2
is relatively small, it appears questionable whether the optimal plans resulting from
the mentioned options will differ significantly.

3.3.5 Production

3.3.5.1 Yield

Several substitution models originating from applications in the semiconductor
industry incorporate random yields (see, e.g., Hsu and Bassok, 1999) of production
processes in contrast to deterministic yields. Uncertain yields occur, e.g., in the pro-
duction of microprocessors, where the maximum speed of a microprocessor depends
on some random quality attributes that can only be determined after production
(also see the example in Sect. 3.1). In this setting, substitution is possible because
microprocessors are also suitable for running at lower speeds than their maximum
feasible speed, i.e., the substitution graph has a downward structure. In addition to
random yields of internal production activities, one could also assume random qual-
ity of goods purchased from external suppliers and output products of conversion
activities.

3.4 Implementing Product Substitution

In this section, we examine the conditions under which substitution can be benefi-
cial, requirements for implementing substitutions in terms of business processes and
IT systems, and potential pitfalls that should be considered.
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Note that, in practice, product substitution options are often just one out of
many aspects to be considered when modeling production and inventory sys-
tems (referring to the process industry, see, e.g., Kallrath, 2005). There might be
other potential process improvements with higher priority, whose implementation
promises a higher gain of efficiency.

One should ensure that substitutions are worth the effort before implementing
them. Before contemplating to implement substitutions in a production or inventory
system, one should check which the possible benefits of substitutions mentioned in
Chap. 1 may apply in the considered case:

� Increased service level: Is the service level already sufficient without substitu-
tions? If yes, there might not be a need for performing them.
� Reduction of holding costs: Are holding costs a significant cost factor in the

considered case?
� Reduction of setup costs and times: Presume that substitutions can help reduce

the total setup costs and the total duration of setups. This increases the capacity
available for production and thus the effective output of the production sys-
tem. Even if this is the case, is the reduction of total setup costs and times by
substitutions big enough to compensate the effort for performing them?
� Exploitation of unit cost variations: Do substitute products in a price range

similar to the preferred product exist?
� Reduction of wastage: Are the considered products perishable?

The key precondition for performing substitutions is that substitution options
(including flexible BOMs) exist and they are feasible. Three types of feasibility can
be distinguished:

1. It has to be technically possible to substitute one product by another (technical
feasibility). Sometimes, it may at the first look seem trivial to substitute one prod-
uct by another product, but unexpected problems in production processes may
occur. E.g., if a very similar powder from another supplier is used to substitute
the default product in a chemical production process, it might happen that due
to slight differences between the products, it lumps in the production line and
causes a failure. Thus, substitutes have to be chosen carefully.

2. Substitutions have to conform to legal requirements in the country where the
production takes place and/or the products are sold (legal feasibility). E.g., legal
restrictions may prohibit the exploitation of flexible BOMs in pharmaceutical
companies due to regulations for approval of drugs.

3. It is necessary that the customers to whom the products are sold accept the
substitutions (customer feasibility).

However, even if all these feasibility conditions are fulfilled, product substitu-
tions are not necessarily useful: Two additional conditions are that the business
processes and IT systems of the company can handle substitutions and the sub-
stitutions are economically beneficial (or regarding another objective). The former
condition can be operationalized as follows:
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� Data on substitution options (and flexible BOMs) can easily be determined or
have already been captured in the IT systems: Which are the feasible substitutes
for each product? How high are the conversion costs?
� The production and logistics processes are flexible enough to implement sub-

stitutions, i.e., the personnel and production resources can actually implement
them.
� The business divisions and/or functional units (logistics, production, sales, etc.)

of the company are willing to cooperate in implementing substitutions and/or
there is sufficient top management support. This is especially important if sub-
stitutable products are manufactured by different divisions of a company who
might not have an incentive to give parts of their production away as substitutes
for another division’s products.

The following points are indicators that the latter condition is fulfilled:

� Conversions are not required for substitutions or only cause low costs, short
expenditures of time and low resource usage.
� Production resources are scarce.
� The product lead times are long and/or stochastic.
� The demand quantities are uncertain and subject to high variation.
� The fixed production setup costs are relatively high compared to the conversion

costs, holding costs, and unit cost differences of substitutable products.
� The lost sales or backlogging costs are high.
� The one-time costs of creating the conditions for implementing substitutions

are acceptable:

– Costs for training of workers.
– Costs for adapting machines.
– Costs for adapting IT systems.

� The additional overhead costs caused by substitutions (and flexible BOMs) are
acceptable.

Note that adaptations for substitutions may cause a temporary loss of efficiency of
production processes due to learning curve effects.

Another point to be considered is the planning level on which substitutions
should be incorporated. In some cases, it might be useful to include them in (mid-
term) Master Planning models, in other cases only in short-term lot-sizing and
scheduling models or in short-term transportation and inventory planning.

Substitutions might be irrelevant in mid-term production planning if the aggrega-
tion of products is chosen in a way that products and their substitutes always belong
to the same product groups: If substitutions are only possible among products of the
same group and demand forecasts are on the aggregation level of product groups,
substitutions will not be considered here, but potentially in short-term models with
a lower level of aggregation.

Also, it might make sense to only consider a subset of the feasible substitutions in
an application, e.g., only those that are economic, critical for increasing the service
level, or easy to implement.
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Substitutions can cause several negative effects:

� Substitutions by higher, more expensive substitutes (upgrades) reduce profit
margins. Thus, a too high number of substitutions might indicate that demand
forecasts lack accuracy, safety stock levels are set too low, demand fulfillment
rules need improvements, or measures for counteracting supply bottlenecks are
indicated.
� Substitution on a component level of assemblies might significantly increase

the number of product variants and complicate error analysis and maintenance.
E.g., if dozens of variants of a certain assembly were delivered to customers due
to component substitutions, this makes it harder to trace technical weaknesses
of the product.
� Myopic consumption of products designated for high-priority, high-margin

demand may occur if the stocks are inconsiderately used as substitutes for
low-priority, low-margin demand. For example, a successive customer order
for a high-margin product might get lost if production resources are scarce and
production times rather long, and the stocks of the product were previously
consumed as a substitute for a low-margin product.
� Substitutions that are performed on the product instance level, i.e., among units

that were already assigned to customer orders, can cause domino effects by
triggering additional substitutions for the substitute products. This can cause
organizational overhead, and in some cases it might be better to delay the deli-
very to the first customer instead of performing a chain of substitutions and
delaying the delivery to another, perhaps more important customer.
� Customers might get annoyed by substitutions if they perceive the substitute

as worse than their preferred product. E.g., customers of e-groceries might
decide to stop buying from the e-grocery if they receive unwanted substitutes
too frequently.
� If customers start to realize that they frequently receive a better substitute when

they try to buy a certain cheaper product, they might decide to always buy the
cheaper product although they want the better one. This results in lost revenue
for the company, and can be termed cannibalization of substitute products (also
see Gallego and Phillips, 2004). E.g., customers of a rental car agency might
decide to always reserve a cheap compact car as they know that this car will
likely not be available at the station and they will get a larger one in that case
(which is an example of resource substitution).



Chapter 4
Literature Review

This chapter reviews the literature on lot-sizing with substitution and related fields of
research. In Sect. 4.1, we briefly review the literature on and highlight applications
of assortment problems, which can be seen as a tactical/medium-term counterpart to
dynamic lot-sizing problems with substitution. Sect. 4.2 describes three existing pro-
duction planning models with substitution/flexible BOM. Related topics, amongst
others stochastic inventory control with substitution and flexible bills-of-materials,
are briefly discussed in Sect. 4.3.

4.1 Assortment Problems

The early roots of the literature on lot-sizing with product substitution can be seen
in the so-called assortment problem (Sadowski, 1959). The goal of the basic assort-
ment problem is to determine, given a set of products with a downward substitution
structure, the subset of products to be produced or stocked and their respective
production/order quantities. Its cost minimization objective is composed of produc-
tion/stocking costs and substitution costs. The survey paper of Pentico (2008) gives
a comprehensive overview of the assortment problem and introduces the following
criteria for classifying its manifold variations:

� Deterministic vs. stochastic demand
� Finite vs. infinite number of products/sizes (“discrete vs. continuous demand

pattern”)
� One or multiple product dimensions
� Number of products to stock/produce: fixed vs. to be determined
� Linear vs. non-linear substitution cost structure
� Stationary vs. non-stationary stocking pattern

Basic assortment problems correspond to single-period lot-sizing problems with
product substitution, most of them with downward substitution. Pentico (1988) and
Jones et al. (1995) describe reductions of assortment problems to SPL problems:
Pentico (1988) solves an assortment problem by reducing it to an SPL prob-
lem and using the algorithm of Erlenkotter (1978). Jones et al. (1995) describe a

J. C. Lang, Production and Inventory Management with Substitutions,
Lecture Notes in Economics and Mathematical Systems 636,
DOI 10.1007/978-3-642-04247-8_4, c� Springer-Verlag Berlin Heidelberg 2010
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single-period deterministic lot-sizing problem with downward substitution whose
objective is composed of fixed plus variable production cost, which is equivalent to
an assortment problem. It is solvable in polynomial time, as it is reduced to an SPL
problem with a special structure that can be solved using a shortest-path algorithm.

Hardung and Kollert (2005) describe a real-world assortment problem in the
automotive sector: A car manufacturer has to decide which variants of an electronic
control unit (ECU) it should produce. Each variant covers a certain set of features,
and it is possible to install a variant in a car that supports some features not required
for this car. As each additional ECU variant increases the overall handling costs, it
is not desirable to manufacture all variants for which demand might occur. Instead,
some variants are substituted by others that contain a superset of their features.
The resulting decision problem of finding the optimal “variant combination”, i.e.,
the set of variants to produce and stock, is transformed into a Warehouse Location
Problem (WLP).

A stochastic assortment problem of an Integrated Steel Manufacturer (ISM) is
modeled and solved by Denton and Gupta (2004). The goal is to determine the
semi-finished products that should be made to stock and the corresponding pro-
duction quantities. Demands and yields are stochastic. Semi-finished products, e.g.,
steel slabs, can be used to fulfill demand for more than one finished product. Con-
version steps are necessary in some cases: E.g., the with of a slab can be reduced
by roughing. Also, often more than one semi-finished product is applicable for ful-
filling demand for a certain finished product. Only a part of the demand is fulfilled
by semi-finished products made to stock, make-to-order production is used for other
demand. The decision problem is decomposed into a strategic assortment problem
and an operational problem that determines production quantities for the individual
periods of the planning horizon. Both problems are modeled as two-stage stochastic
linear programs.

4.2 Lot-Sizing with Substitutions

In the following, we present three production planning models with substitutions /
flexible BOMs from the literature:

� We first consider the Requirements Planning problem with Substitutions (RPS)
(Balakrishnan and Geunes, 2000), a dynamic uncapacitated multi-product lot-
sizing model with product substitution, in Sect. 4.2.1.
� The Substitution With Conversions Problem (SWCP) (Hsu et al., 2005), another

dynamic uncapacitated multi-product lot-sizing model with product substitu-
tion, is summarized in Sect. 4.2.2.
� The Multi-Level lot-sizing problem with Flexible Production sequences (MLFP)

(Begnaud et al., 2006), a big-bucket capacitated multi-level lot-sizing prob-
lem that allows for flexible BOMs and production sequences, is described in
Sect. 4.2.3. It uses a modeling approach that resembles State-Task Networks
(STN).
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All those lot-sizing models assume that lot-sizing decisions are made simultane-
ously with the substitution decisions. However, one can distinguish two additional
cases in addition to this one:

� Substitution and lot-sizing decisions are made simultaneously.
� Substitution decisions are made before lot-sizing decisions (pre).
� Substitution decisions are made after lot-sizing decisions (post).

Another production planning model with substitution is developed by Chen
(2003): It is a deterministic capacitated multi-period multi-level assembly model
with general substitution, but no fixed setup costs. Order quantities for components
are already preset. Holding costs of components are zero. The model incorporates
earliness and tardiness costs, and assumes that the conversion costs are zero. Also,
it includes interacting substitutions (see Sect. 3.2.3.2), i.e., compatibility aspects
between components.

Static Economic Order Quantity (EOQ) type lot-sizing models with substitution
are considered by Drezner et al. (1995) and Gurnani and Drezner (2000).

4.2.1 The Requirements Planning Problem with Substitutions

The Requirements Planning problem with Substitutions (RPS) (Balakrishnan and
Geunes, 2000) is a dynamic uncapacitated multi-product lot-sizing model with
product substitution. Its assumptions can be summarized as follows:

� Lot-sizing for multiple, continuous products (set of products P ).
� All parameters are deterministic.
� Single-level time structure.
� Finite time horizon with T periods.
� An arbitrary number of products can be set up in each period (big bucket

model).
� Demand refers to demand classes (set of demand classes D).
� Time-varying demand of demand classes that has to be satisfied at the end of

each period.
� Each demand class can be satisfied by certain products (demand-class specific

substitution options).
� General substitution structure.
� Substitution ratios are arbitrary.
� Uncapacitated production.
� No setup carry-over.
� Single production level.
� Time-varying sequence-independent setup costs.
� Time-varying linear holding costs.
� Time-varying variable production costs.
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� Time-invariant variable conversion costs for satisfying demand of a certain class
with a specific product.
� All occurring demand has to be fulfilled immediately (no relaxation).
� No initial inventories.
� Cost minimization objective.
� Continuous variables for lot-sizes.

Using the notation given in Table 4.1, the RPS can be formulated as follows:

Minimize F.q; x; I; s/ D
X

i2P

TX

tD1

0

@fit xit C pit qit C hit Iit C
X

j2Di

rij sijt

1

A

(4.1)

Table 4.1 Notations for RPS

Symbol Definition

Constants
m Number of products
n Number of demand classes
T Number of periods

Indices and sets
i 2 P D f1; : : : ; mg Products

j 2 D D f1; : : : ; ng Demand classes

t D 1; : : : ; T Periods
V D P [D Vertex set of substitution graph
E � P �D Arcs of substitution graph denoting feasible substitutions: .i; j / 2 E

if product i can fulfil demand of class j

G D .V; E/ Substitution graph
Di D fj j .i; j / 2 Eg Set of demand classes whose demand can be fulfilled by product i

Pj D fi j .i; j / 2 Eg Set of products that can fulfil demand of class j

Parameters
djt Demand of class j in period t

hit Non-negative holding cost for storing one unit of product i in period t

pit Unit production cost of product i in period t

rij Substitution cost for fulfilling demand class j by product i per unit
fit Fixed setup or order cost for product i in period t

aij Number of units of product i that substitute for one unit of demand
class j

Variables
qit Production or order quantity of product i in period t

sijt Quantity of product i used to fulfil demand of class j in period t

Iit Inventory of product i at the end of period t

xit Binary variable that indicates whether a setup for product i occurs in
period t
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subject to

Iit D Ii;t�1 C qit �
X

j2Di

sijt i 2 P; t D 1; : : : ; T (4.2)

Ii0 D 0 i 2 P (4.3)

djt D
X

i2Pj

a�1
ij sijt j 2 D; t D 1; : : : ; T (4.4)

qit � M � xit i 2 P; t D 1; : : : ; T (4.5)

qit � 0 i 2 P; t D 1; : : : ; T (4.6)

Iit � 0 i 2 P; t D 1; : : : ; T (4.7)

xit 2 f0; 1g i 2 P; t D 1; : : : ; T (4.8)

sijt � 0 .i; j / 2 E; t D 1; : : : ; T (4.9)

The objective (4.1) is to minimize the sum of setup, unit order/production,
holding and substitution costs. Equation (4.2) represents the inventory balances.
Equation (4.3) denotes that there are no initial inventories. Constraint (4.4) enforces
that demand is always satisfied completely using the available substitution options
(product usage and substitution). It takes the substitution ratios aij between prod-
ucts and demand classes into account. Due to constraint (4.5), quantity units of a
product can only be purchased or produced in a period if setup takes place for the
product in that period (setup forcing). Equations (4.6)–(4.9) define the domains of
the variables.

Balakrishnan and Geunes (2000) reformulate the RPS as a generalized fixed-
charge minimum cost network flow problem with arc gains and losses. Based on this
reformulation, they show that every RPS instance has at least one optimal solution
with the following properties:

� Zero Inventory-Production (ZIP) property: For every product and period, the
product is either produced in that period or stocks of the product are carried
over from the previous period, but not both.
� Homogeneous Product Lots (HPL) property: For every demand class and period,

the solution fulfills the entire demand of the demand class in the period using
only one product (that is a feasible substitute for the demand class).
� Most Recent Usage (MRU) property: The entire demand of a demand class in

a period is fulfilled using only units from the most recent batch of exactly one
product.

Assuming that setup and variable production costs are constant or decrease over
time, also the Immediate Usage (IU) property holds for at least one optimal solution:
If a product is produced in a period, it is used to fulfill demand of at least one
demand class in that period, i.e., no stockpiling due to increasing future production
costs takes place. In addition, Balakrishnan and Geunes (2000) develop dynamic
programming algorithms with exponential worst-case complexity for the RPS and
two extensions with backlogging and a two-level assembly structure. Geunes (2003)
reduces the RPS to an SPL problem and solves it using the algorithm of Erlenkotter
(1978).
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4.2.2 Substitution with/without Conversion Problems

The Substitution With Conversion Problem (SWCP) (Hsu et al., 2005) is another
dynamic uncapacitated multi-product lot-sizing model with product substitution. It
differs from the RPS in three assumptions: First, it does not distinguish demand
classes from products. Second, it allows for multiple conversion steps. Third, it
assumes fixed 1:1 substitution ratios. Its assumptions can thus be summarized as
follows:

� Lot-sizing for multiple, continuous products (set of products P ).
� All parameters are deterministic.
� Single-level time structure.
� Finite time horizon with T periods.
� An arbitrary number of products can be set up in each period (big bucket

model).
� Time-varying demand for products that has to be satisfied at the end of each

period.
� Multiple conversion steps in successive periods are allowed.
� Feasible substitutes are specified for each product.
� Substitution ratios are 1:1.
� Uncapacitated production.
� No setup carry-over.
� Single production level.
� Time-varying sequence-independent setup costs.
� Time-varying linear holding costs.
� Time-varying variable production costs.
� Time-invariant variable conversion costs for satisfying demand of a certain class

with a specific product.
� All occurring demand has to be fulfilled immediately (no relaxation).
� No initial inventories.
� Cost minimization objective.
� Continuous variables for lot-sizes.

Using the same notation as for RPS (see Table 4.1) and setting D D P , SWCP
can be formulated as:

Minimize F.q; x; I; s/ D
X

i2P
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subject to

Iit D Ii;t�1 C qit C
X

j2Pi

sj i t �
X

j2Di

sijt � dit i 2 P; t D 1; : : : ; T (4.11)
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Ii0 D 0 i 2 P (4.12)

qit � M � xit i 2 P; t D 1; : : : ; T (4.13)

qit � 0 i 2 P; t D 1; : : : ; T (4.14)

Iit � 0 i 2 P; t D 1; : : : ; T (4.15)

xit 2 f0; 1g i 2 P; t D 1; : : : ; T (4.16)

sijt � 0 .i; j / 2 E; t D 1; : : : ; T (4.17)

The objective (4.10) is to minimize the sum of setup, unit order/production,
holding and substitution costs. The SWCP allows for multiple conversion steps
in contrast to the RPS and does not distinguish products from demand classes.
Hence, the inventory balances (4.11) additionally contain the inventory increase
resulting from conversions of a substitute into the product as well as the primary
demand for the product. Equation (4.12) denotes that there are no initial inventories.
Due to constraint (4.13), quantity units of a product can only be purchased or pro-
duced in a period if setup takes place for the product in that period (setup forcing).
Equations (4.14)–(4.17) define the domains of the variables.

Hsu et al. (2005) also consider another model called Substitution WithOut con-
version Problem (SWOP), which only allows a single conversion step and assumes
that the substitution costs are 0, and show that it can be reduced to a special case of
SWCP. They reformulate SWCP as a minimum concave-cost network flow problem,
and show that SWOP and SWCP are NP-hard. In addition, they develop dynamic
programming algorithms with exponential/factorial worst-case complexity as well
as an extension of the Silver-Meal heuristic. Their computational experiments
should be interpreted with care, as they generate instances with the same normal dis-
tribution for the unit production cost of all (high-quality and low-quality) products,
irrespective of their position in the downward substitution structure. This results
in instances where producing high-quality products can be cheaper than produc-
ing low-quality products, which might be an unrealistic assumption and, according
to our computational experiences, makes the problem instances significantly easier
to solve.

4.2.3 The Multi-level Lot-Sizing Problem with Flexible
Production Sequences

The Multi-Level lot-sizing problem with Flexible Production sequences (MLFP)
(Begnaud et al., 2006) is a big-bucket capacitated multi-level lot-sizing problem that
allows for flexible BOMs and production sequences. It uses a modeling approach
with tasks that resembles State-Task Networks (STN) (see Sect. 3.2.4): Instead of
production quantity variables for products, the model contains variables that specify
how many times / for how long a task is executed. Begnaud et al. (2006) develop a
single-resource as well as a multi-resource version of the MLFP.
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4.2.3.1 Assumptions

The assumptions of the more general multi-resource MLFP can be summarized as
follows:

� Lot-sizing for multiple, continuous tasks (set of tasks A).
� Executing one time unit of a task requires certain quantities of one or multiple

input products and (simultaneously) produces one or multiple output products.
� All parameters are deterministic.
� Single-level time structure.
� Finite time horizon with T periods.
� An arbitrary number of tasks can be set up in each period (big bucket model).
� Time-varying demand for products that has to be satisfied at the end of each

period.
� Multiple capacitated production resources.
� Each task can be executed on every resource.
� Executing one time unit of a task consumes a certain amount of capacity of

exactly one resource.
� Execution of one unit of a task does not simultaneously consume multiple

resources, but the same task can simultaneously be executed on multiple
resources.
� No setup carry-over.
� Multiple production levels.
� Time-varying sequence-independent setup costs for tasks.
� Time-varying linear holding costs.
� Time-varying variable production costs for tasks.
� All occurring demand has to be fulfilled immediately (no relaxation).
� No initial inventories.
� Cost minimization objective.
� Integer variables for lot-sizes of tasks.

4.2.3.2 Formulation

Using the notation given in Table 4.2, the multi-resource MLFP can be formulated
as follows:

Minimize F.q; x; I / D
X

i2P

TX

tD1

hit Iit C
X

a2A

X

r2R

TX

tD1
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subject to

Iit D Ii;t�1

C
X

a2A

X

r2R

.�ia � �ia/qrat � dit i 2 P; t D 1; : : : ; T (4.19)

Ii0 D 0 i 2 P (4.20)
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Table 4.2 Notations for MLFP

Symbol Definitions

Constants
m Number of products
n Number of demand classes
T Number of periods
nr Number of resources
na Number of tasks

Indices and sets
i 2 P D f1; : : : ; mg Products
j 2 D D f1; : : : ; ng Demand classes
t D 1; : : : ; T Periods
r 2 R D f1; : : : ; nrg Resources
a 2 A D f1; : : : ; nag Tasks

Parameters
dit Demand for product i in period t

hit Non-negative holding cost for storing one unit of product i in period t

prat Unit production cost of task a on resource r in period t

frat Fixed setup cost for task a on resource r in period t

�ia Number of units of product i required for executing one unit of task a

�ia Number of units of product i produced by executing one unit of task a

Krt Capacity of resource r available in period t

�
p
ra Capacity required for executing one unit of task a on resource r

Variables
qrat Units of task a performed on resource r in period t

Iit Inventory of product i at the end of period t

xrat Binary variable that indicates whether a setup for task a on resource r

is performed in period t

X

a2A

�p
raqrat � Krt r 2 R; t D 1; : : : ; T (4.21)

qrat � M � xrat a 2 A; r 2 R; t D 1; : : : ; T (4.22)

qrat 2 ZC0 a 2 A; r 2 R; t D 1; : : : ; T (4.23)

Iit � 0 i 2 P; t D 1; : : : ; T (4.24)

xrat 2 f0; 1g a 2 A; r 2 R; t D 1; : : : ; T (4.25)

The objective (4.18) is to minimize the sum of holding, setup, and unit production
costs. The inventory balances (4.19) consider the inventory changes caused by the
execution of tasks as well as those caused by primary demand. Equation (4.20)
denotes that there are no initial inventories. The capacity constraints (4.21) ensure
that the tasks executed on each resource in a period do not exceed the resource
capacity. The qrat variables describe “execution quantities”, i.e., they indicate how
often activity a is repeated / for how long it is executed. The multiplication with
�

p
ra in (4.21) converts these execution quantities into time/capacity units. Due to

constraints (4.22), units of a task can only be executed in a period if setup takes
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place for the task in that period. Equations (4.23)–(4.25) define the domains of the
variables.

4.2.3.3 Transformation of RPS and SWCP into Special Case of MLFP

The RPS can be transformed into a special case of the MLFP as follows:

� Introduce one MLFP product for each RPS product and demand class.
� Introduce one task for each RPS product. This task requires no input product

and produces one unit of the corresponding product per unit. The setup costs
and variable production costs of that task equal those of the corresponding RPS
product.
� Introduce one task for each feasible conversion .i; j / 2 E of an RPS product i

into an RPS demand class j . This task requires one unit of i and produces a�1
ij

units of j . Its setup costs are 0, and its variable production costs equal the RPS
conversion costs rij .
� The holding costs of MLFP products corresponding to RPS products equal the

holding costs of those. However, the holding costs of MLFP products corre-
sponding to RPS demand classes have to be set to a high penalty value M , as
the RPS assumes that no storage takes place after conversion of a product for a
demand class.
� As the RPS is uncapacitated and we need at least one MLFP resource, introduce

one resource r D 1, set all �
p
a1 D 0 and all K1t D 0. Thereby, the resource

effectively becomes unlimited.

Similarly, the SWCP can be transformed into a special case of the MLFP:

� Introduce one MLFP product for each SWCP product.
� Introduce one task for each SWCP product. This task requires no input product

and produces one unit of the corresponding product per unit. The setup costs and
variable production costs of that task equal those of the corresponding SWCP
product.
� Introduce one task for each feasible conversion .i; j / 2 E of an SWCP product

i into another SWCP product j . This task requires one unit of i and produces
one unit of j . Its setup costs are 0, and its variable production costs equal the
SWCP conversion costs rij .
� The holding costs of MLFP products equal those of the corresponding SWCP

products.
� As the SWCP is uncapacitated and we need at least one MLFP resource, intro-

duce one resource r D 1, set all �
p
a1 D 0 and all K1t D 0. Thereby, the resource

effectively becomes unlimited.

Note that instead of allowing each task to be executed on an arbitrary resource
as done in the MLFP, one could also specify a set of tasks Ar that can be executed
using resource r for each resource. This would be useful in cases where some tasks
can only be executed on specified subsets of resources.
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The approach chosen in the MLFP is to “decouple” tasks from resources, i.e.,
interpret activities with the same input and output quantities on different resources
as the same task. Alternatively, one could always interpret activities on different
machines as different tasks, as done when using RTN.

A possible extension of the MLFP would be to allow that the execution of a task
can simultaneously consume multiple resources, which would be equivalent to a
more general RTN-based lot-sizing model.

4.3 Related Aspects

Numerous topics in supply chain management, logistics, production, operations
management and economics are related to product substitution and flexible bills-
of-materials. As a complete review of all related literature would go beyond the
scope of this work, we only describe the relation of each of the topics to substitution
and point the reader to some literature. The references are summarized in Table 8.8
contained in the appendix, grouped by the topics. Parts of the content of this section
are presented in Lang and Domschke (2008) in an abbreviated form.

One related stream of research is the literature on stochastic inventory control
with substitutions, which mostly analyzes single-period models with downward sub-
stitution (see, e.g., Bassok et al., 1999; Hale et al., 2000; Rao et al., 2004; Liu
and Lee, 2007; Yao and Zheng, 2003; Gallego et al., 2006). Some of the models
assume that the downward substitutable products are manufactured by production
processes with random yields, i.e., processes that output products with varying qual-
ity (Gerchak and Grosfeld-Nir, 1999; Bitran and Dasu, 1992; Hsu and Bassok, 1999;
Duenyas and Tsai, 2000), which are typical for the semiconductor industry.

Inventory control for perishable products (Nahmias, 1982) is linked to substi-
tution because blood transfusions, which are substitutable products, are one of the
typical examples of perishable products.

As already indicated in Sect. 1.1, substitution options correspond to flexible
bills-of-materials in multi-level assembly/production structures. Ram et al. (2006)
describe a “Material Requirements Planning (MRP) problem with flexible BOM”
which is a blending problem as it can be found in the process industry (see Crama
et al. (2001)). Depending on the application, material compatibility has to be
ensured when employing flexible BOMs (Ball et al., 2003). I.e., incompatible com-
binations of components / materials for producing a product have to be excluded
(also see Sect. 3.2.3.2).

Customer-driven product substitution typically occurs in retailing: For instance,
if a supermarket customer cannot buy his/her desired orange jam as it is out of stock,
he/she might instead buy another type of jam.

Component commonality means that multiple products in a multi-level produc-
tion system have certain components / intermediate products in common. This topic
is linked to postponement, which denotes that certain finalizing production steps of
an intermediate product are postponed. Postponing the decision into which finished
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product an intermediate product is converted provides more flexibility than making
the decision as early as possible. Postponement in turn is related to substitution:
Assuming that there are some substitution options and, due to demand uncertainty,
the decision maker does not want to make the substitution decisions right now,
he/she can postpone them for as long as possible.

Substitution might also play a role in assembly-to-order (ATO) and build-to-order
(BTO) systems (DeCroix and Zipkin, 2005; Gunasekaran and Ngai, 2005), but no
literature considering flexible BOMs in that context is known to the author.

The relation between flexible BOMs and the topics remanufacturing and disas-
sembly has already been discussed in Sect. 3.2.3.2.

Lot-sizing models that incorporate supplier selection and multiple sourcing
(Aissaoui et al., 2007) are also related to product substitution, as they contain
substitution options between similar or equivalent products of various suppliers.
Similarly, lateral transshipments (Minner et al., 2003; Axsäter, 2006; Archibald,
2007) between locations bear an analogy to product substitution (also see Chap. 1):
Stocks of a products stored at different locations can be interpreted as substitutable
if transshipment links exist.

Emergency orders (see Sect. 1.1) can be seen as a flexibility instrument comple-
mentary to substitutions and transshipments.

The literature on production planning with resource substitution (see, e.g.,
Henrich et al., 2007) is closely related to what was referred to by alternative pro-
duction sequences in Sect. 2.1.1.2: Resources can be termed substitutable if they can
perform the same activities or output the same products.

Another wide field of research is the literature on product design as well as prod-
uct variant, line, family and portfolio design. Assuming that the considered products
are to some extent substitutable or have flexible BOMs, product variant and portfolio
design can be seen as the long-term decision problem to which substitution models
are the corresponding short-term model. This research field is also related to assort-
ment problems and component commonality (see, e.g., Boysen and Scholl, 2008).
Product substitution could already be considered in the product design stage, e.g.,
by designing products in a way that they become downward compatible to another
product or use components for which substitutes exist. The anticipation of substi-
tution decisions in the future could make sense in such strategic models, e.g., for
spare parts inventory management.

As mentioned in Sect. 2.3.2, Vehicle Routing Problems with Pickups and Deliv-
eries (VRPPD) are related to transshipments.

Another class of models related to substitution are cutting stock problems (see,
e.g., Poltroniere et al., 2008): The case where finished products can be produced
from more than one type of rolls by employing cutting activities can be interpreted
as a flexible BOM. Decisions have to be made that specify which roll is used to
produce which product using which cutting steps. The former type of decisions can
be interpreted as substitution decisions.

The research on inventory rationing and inventory control with multiple demand
classes with differing priorities (Kleijn and Dekker, 1998; Kranenburg and van
Houtum, 2007) is related to transshipments (see Sect. 2.3.2), and due to the analogy
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of transshipments and substitutions, also with substitution: The usage of a high-
quality product as a substitute for a lower-quality product could be limited by a
critical level policy.

The topic of substitution also occurs in the field of revenue management (Birge
et al., 1998; Shumsky and Zhang, 2007; Gallego and Phillips, 2004; Karaesmen
and van Ryzin, 2004): E.g., if an airline upgrades an economy class customer to a
business class seat, this can be interpreted as downward substitution of resources.
Products for which substitution is possible are called flexible products in revenue
management.

Substitution is also considered in some publications on demand fulfillment, ATP
and CTP models, e.g., by Fleischmann and Meyr (2003); Chen et al. (2001). Accord-
ing to Quante et al. (2009), one can distinguish revenue management and demand
fulfillment models by two criteria:

1. Replenishment consideration

(a) No replenishments take place during the entire planning horizon.
(b) Replenishments are exogenous, i.e., given as data.
(c) Replenishments can be decided upon.

2. Demand / price consideration

(a) Demands and prices are exogenous, i.e., fixed.
(b) Prices are fixed, sales quantities (customer order acceptance) are decision

variables.
(c) Prices are decision variables, sales quantities (customer order acceptance)

exogenous.

The lot-sizing models developed in this work belong to the categories 1(c) and
2(a) / 2(b). The blood bank simulation model belongs to categories 1(b) / 1(c) and
2(a).

Another literature stream deals with the coordination of pricing, production, and
procurement decisions. In such models, prices are not given as data, but decisions
variables. Karakul and Chan (2008) consider a joint pricing and procurement model
that includes substitution.

Being one example of an Advanced Planning System (APS), SAPr Advanced
Planner and Optimizer (SAPr APO) incorporates product substitutions (in SAPr

APO documentation also: product interchangeability) to some extent: Substitute
products and substitute preference orders can be specified in rules-based ATP
(Dickersbach, 2006, p. 120ff.), while considering stocks of a product at different
locations as different virtual products (“locationproducts”). Product interchange-
ability can also be modeled for products that substitute a discontinued product
(Dickersbach, 2006, p. 421ff.), and by adding products that are substitutable among
each other into the same form-fit-function class. According to the author’s knowl-
edge, support for substitutions has been integrated in the heuristic algorithm for
Production Planning and Detailed Scheduling (PP/DS). For details on substitutions
in SAPr APO, also see its online documentation (SAP, 2008).
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The idea for using hypergraphs to model flexible BOMs (see Sect. 3.2.3) emerged
from the publication of Ozturan (2004) on optimization models for electronic barter
exchanges, which are however insignificant in practice. On the online platform of
an electronic barter exchange, participants can offer an item and specify which
other items they would accept in exchange for that item. Such offers describe the
“acceptable substitutes” for a certain item.

The concept of substitution also occurs in economics and especially production
theory (Varian, 2007; Domschke and Scholl, 2005, p. 85f.): Good 2 is said to be
a perfect substitute for another good 1 w.r.t. to a certain consumer if the actor is
willing to substitute 1 by 2 at a constant substitution ratio (Varian, 2007, p. 38).
Referring to the substitutions graphs described in Sect. 3.2.2, substitute products in
a substitution graph are always perfect substitutes. The marginal rate of substitu-
tion (MRS) is defined as the slope of the indifference curve of the quantities of two
goods (Varian, 2007, p. 48), i.e., it describes all quantity pairs of goods 1 and 2 that
have the same utility for the consumer. It is �1 if one product is a perfect substi-
tute for the other. The concept of the cross price elasticity of demand is related to
customer-driven product substitution and describes how strongly the demand for
good 1 changes as the price of good 2 changes. Production functions (Varian, 2007,
p. 323) can model that one production factor can partially or totally be substituted
by other production factors. For instance, a production function can describe a set-
ting with perfect substitutes. Other examples of substitutive production functions
are Cobb–Douglas production functions and production functions describing linear
technologies (Domschke and Scholl, 2005, p. 85f.). The technical rate of substitu-
tion (TRS) is the slope of the isoquant curve of the quantities of two production
factors (input goods), i.e., it describes all quantity pairs of goods 1 and 2 that lead to
the same output (Varian, 2007, p. 328). It is thus analogous to the MRS, but refers
to production output instead of consumer utility.



Chapter 5
Efficient Reformulations for Uncapacitated
and Capacitated Lot-Sizing with Substitutions
and Initial Inventories

5.1 Introduction

This section considers extensions of two well-known single-level lot-sizing models,
namely the Wagner–Whitin Problem (WWP) and the Capacitated Lot-Sizing Prob-
lem (CLSP), that incorporate product substitution options.1

The literature published on lot-sizing models with substitution until now does
not cover two aspects that are important in real-world production planning prob-
lems: Initial inventories are not taken into account. While these can be neglected
easily without loss of generality in standard lot-sizing models by netting demands,
this cannot be done if substitutions are possible, as the net demands depend on
substitution decisions which are part of the optimization problem. E.g., consider a
lot-sizing problem with two products A and B whose initial inventory is 60 and
20 units, respectively. In addition, assume that A can substitute B, and the gross
demand for A and B in period 1 is 40 and 30, respectively. In this case one can-
not say that the net demand of B in period 1 is 30 � 20 D 10, because it could
be optimal due to the cost parameters and demand in subsequent periods to par-
tially substitute B by A in period 1, so that B is not set up in period 1. In addition,
no models and algorithms for lot-sizing with substitution and capacitated resources
have been developed. If production bottlenecks exist, it is necessary to consider pro-
duction capacities in combination with substitutions: Capacitated resources can on
the one hand be the reason for substitutions, on the other hand limit the amount of
substitutions (e.g., if a machine that could produce substitutes is working almost to
full capacity).

Our uncapacitated model differs from the RPS (Balakrishnan and Geunes, 2000)
in the following assumptions: Initial inventories are allowed to be ¤ 0, and the
substitution ratios are 1:1 instead of x:1. The difference between the SWCP and
SWOP (Hsu et al., 2005) and our model is that the SWCP and SWOP are restricted
to downward substitution structures and assume no initial inventories. In addition,
the SWCP permits multiple conversion steps in successive periods in contrast to our

1 This section is an extended version of the publication Lang and Domschke (2008).

J. C. Lang, Production and Inventory Management with Substitutions,
Lecture Notes in Economics and Mathematical Systems 636,
DOI 10.1007/978-3-642-04247-8_5, c� Springer-Verlag Berlin Heidelberg 2010
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model, whereas the SWOP only allows a single conversion step and assumes that
the substitution costs are 0.

5.2 Outline

We focus on dynamic deterministic lot-sizing models with firm-driven product
substitution. The models that we formulate allow for general substitution structures
and use the concept of demand classes. Additional assumptions are a single-level
production structure, multiple products and demand classes, a maximum of one
conversion step, and initial inventories. The first model that we formulate – named
Lot-Sizing Problem with Substitution and Initial Inventory (LSP-SI) – is an unca-
pacitated Wagner–Whitin-type model with product substitution, whereas the second
model – referred to as Multi-Resource Capacitated Lot-Sizing Problem with Substi-
tution (MR-CLSP-S) – is an extension of the multi-resource CLSP with production
setup times and lost sales / overtime by product substitution options. The cost min-
imization objective function contains variable substitution costs as an additional
cost type. The remainder of this section is structured as follows: We first formu-
late the LSP-SI and describe how to reduce it to a special case of the Capacitated
Facility Location Problem (CFLP). Based on this transformation, we develop an
SPL-based extended formulation of the model. In addition, we devise valid inequal-
ities for the original formulation. After introducing the MR-CLSP-S, we extend the
SPL-based reformulation of the LSP-SI to include the additional assumptions of the
MR-CLSP-S. The efficiency of the reformulations and valid inequalities is examined
in extensive computational experiments. In these experiments, we also compare the
complete SPL-based reformulations to approximate extended formulations.

5.3 The Lot-Sizing Problem with Substitution
and Initial Inventory

In this section, we consider an uncapacitated, deterministic, single-level, multi-
product, multi-period dynamic Lot-Sizing Problem with Substitution and Initial
Inventory (LSP-SI). Its detailed assumptions are as follows: Initial inventories of
the products are in stock at the beginning of the first period. One quantity unit of
a product satisfies demand of exactly one quantity unit of a demand class, i.e., the
substitution ratio is 1:1. Only certain products can be used to satisfy demand of
a specific demand class. The model embraces general substitution graphs. Conver-
sion of units of a product is carried out immediately before shipping to the customer,
thus no converted goods are kept in stock. The decision variables model setup and
lot size decisions and the allocation of stocks to demands, i.e., the substitution
decisions. The objective is to minimize the sum of fixed setup cost and variable
order/production cost, holding cost and substitution cost.



5.3 The Lot-Sizing Problem with Substitution and Initial Inventory 127

5.3.1 Model Formulation

The notation for the LSP-SI is given in Table 5.1. For the ease of notation, we do not
explicitly distinguish the indices of products and demand classes. However, note that
in the vertex set V , we have to draw a distinction between product and demand class
vertices with identical indices. Using this notation, the LSP-SI can be formulated as
a linear mixed-integer programming model:

Minimize F.q; x; I; s/ D
X

i2P

TX

tD1

0

@fitxit C pitqit C hit Iit C
X

j2Di

rij sijt

1

A (5.1)

subject to

Iit D Ii;t�1 C qit �
X

j2Di

sijt i 2 P; t D 1; : : : ; T (5.2)

Table 5.1 Notations for LSP-SI model

Symbol Definition

Constants
m Number of products
n Number of demand classes
T Number of periods

Indices and sets
i 2 P D f1; : : : ; mg Products
j 2 D D f1; : : : ; ng Demand classes
t D 1; : : : ; T Periods
V D P [D Vertex set of substitution graph
E � P �D Arcs of substitution graph denoting feasible substitutions: .i; j / 2 E

if product i can fulfil demand of class j

G D .V; E/ Substitution graph
Di D fj j .i; j / 2 Eg Set of demand classes whose demand can be fulfilled by product i

Pj D fi j .i; j / 2 Eg Set of products that can fulfil demand of class j

Parameters
djt Demand of class j in period t

hit Non-negative holding cost for storing one unit of product i in period t

pit Unit production cost of product i in period t

rij Substitution cost for fulfilling demand class j by product i per unit
Ii0 Initial inventory of product i

fit Fixed setup or order cost for product i in period t

Variables
qit Production or order quantity of product i in period t

sijt Quantity of product i used to fulfil demand of class j in period t

Iit Inventory of product i at the end of period t

xit Binary variable that indicates whether a setup for product i occurs in
period t
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djt D
X

i2Pj

sijt j 2 D; t D 1; : : : ; T (5.3)

qit � M � xit i 2 P; t D 1; : : : ; T (5.4)

qit � 0; Iit � 0; xit 2 f0; 1g i 2 P; t D 1; : : : ; T (5.5)

sijt � 0 .i; j / 2 E; t D 1; : : : ; T (5.6)

This formulation is referred to as LSP-SIORIG . The objective (5.1) is to minimize
the sum of setup, unit order/production, holding and substitution cost. Equation (5.2)
represents the inventory balances. Constraint (5.3) enforces that demand is always
satisfied completely using the available substitution options (product usage and sub-
stitution). Due to constraint (5.4), quantity units of a product can only be purchased
or produced in a period if setup takes place for the product in that period (setup
forcing). Equations (5.5)–(5.6) define the domains of the variables. The LSP-SI is
NP-hard. This can be shown easily by reducing the NP-hard Uncapacitated Facility
Location Problem (UFLP) to a special case of the LSP-SI with only a single period
(i.e., T D 1), zero initial inventory, no holding cost and no variable production cost.
Also, Hsu et al. (2005) proved that SWOP, a special case of LSP-SI, is NP-hard (for
a proof see Sect. 5.8).

5.3.2 Facility Location Based Reformulation

Reformulations based on analogies to facility location problems have been devel-
oped for various lot-sizing problems, see, e.g., (Bowman, 1956; Krarup and Bilde,
1977). We develop a stronger SPL-based reformulations for the LSP-SI which is
based on the fact that the LSP-SI can be transformed into a Capacitated Facil-
ity Location Problem (CFLP) (Sridharan, 1995). This transformation resembles
the reduction of RPS to an SPL problem in Geunes (2003), and is described in
detail in Sect. 5.7. The reformulation enables us to solve the LSP-SI using standard
MIP solvers because it significantly improves the lower bounds obtained by the LP
relaxation and thereby reduces running times to an acceptable duration.

The following variable redefinitions are required for the SPL-based reformula-
tion: We introduce decision variables y0

ijt that denote the amount of initial inventory
of product i used to fulfill demand of class j in period t . In addition, we need a
transportation variable yijts td for each possible substitution .i; j / 2 E that denotes
the quantity of product i produced in period ts used to fulfill demand of class j in
period td . Additional notation required for the formulation is described in Table 5.2.
The values Cit , c0

ijtd
, and cijts td are calculated as follows:

Cit D
X

j2Di

TX

�Dt

dj� (5.7)
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Table 5.2 Additional notations for SPL-based reformulation of LSP-SI

Symbol Definition

Indices and sets
ts Setup period
td Demand period
Parameters
Cit Maximum total demand for product i in periods t; : : : ; T

c0
ijtd

(Negative of the) savings per unit caused by using initial inventory of product
i to fulfil demand of class j in period td

cijts td “Transportation cost” per unit for fulfilling demand of class j in period td
from a replenishment of product i in period ts

c0
ijtd

D

8
<̂

:̂
rij �

TP
tDtd

hit if .i; j / 2 E

M otherwise

(5.8)

cijts td D

8
<̂

:̂
pits C rij C

td�1P
tDts

hit if td � ts ^ .i; j / 2 E

M otherwise

(5.9)

The objective function (5.10) of the reformulation is composed of the fixed cost,
the (negative of the) savings caused by using initial inventory, and the cost for ful-
filling demand by replenishments. c0

ijtd
, the negative of the savings, is calculated by

(5.8). We calculate the “transportation cost” cijts td for fulfilling demand of class j

in period td from a replenishment of product i in period ts as given in (5.9). The
complete CFLP/SPL-based reformulation – referred to as LSP-SISPL – is:

Minimize F.x; y0; y/ D
X

i2P

0

@
TX

tsD1

fits xits

C
X

j2Di

TX

tdD1

0

@c0
ijtd

y0
ijtd

C
tdX

tsD1

cijts td � yijts td

1

A

1

A (5.10)

subject to

Ii0 �
X

j2Di

TX

tD1

y0
ijt i 2 P (5.11)

X

i2Pj

TX

tsD1

yijts t C y0
ijt D djt j 2 D; t D 1; : : : ; T (5.12)



130 5 Efficient Reformulations for Lot-Sizing with Substitutions

yijts td � djtd � xits .i; j / 2 E; 1 � ts � td � T (5.13)

y0
ijt � 0 .i; j / 2 E; t D 1; : : : ; T (5.14)

yijts td � 0 .i; j / 2 E; 1 � ts � td � T (5.15)

xit 2 f0; 1g i 2 P; t D 1; : : : ; T (5.16)

Here, constraint (5.11) limits the usage of initial inventory of a product i to the
available quantity. Constraint (5.12) enforces that all demand is fulfilled either by
initial stocks or replenishments. The disaggregated setup forcing constraints (5.13)
significantly tightens the lower bound obtained by the LP relaxation: Referring to
the LP relaxation of (5.10)–(5.16), it ensures that if the entire demand of a specific
demand class j in a period td is fulfilled using only units of product i produced in
period ts , the corresponding setup variable xits will be 1 in the optimal solution of
the LP relaxation. Alternatively, one can use the weaker aggregated variant (5.17)
of the setup forcing constraints:

X

j2Di

TX

tdDts

yijts td � Cits � xits i 2 P; ts D 1; : : : ; T (5.17)

It forces the setup variable xits for product i in period ts to be 1 in the optimal
solution of the LP relaxation if all demand in the current and consequent periods
that could be covered by the lot is effectively fulfilled by it.

Instead of including all jEj T 2 disaggregated setup forcing constraints into the
model, one may opt for inserting only some of them to reduce the number of con-
straints in the model. We will examine two such approximate extended formulations,
with one and two lookahead periods, respectively (also see Stadtler, 1997):

1. An SPL-based reformulation named LSP-SISPL�A1 which only contains the
valid inequalities of (5.13) with td D ts . I.e., a setup variable is forced to be
1 if the production quantity fulfills the entire demand of at least one demand
class in the setup period.

2. An SPL-based reformulation named LSP-SISPL�A2 which only contains the
valid inequalities of (5.13) with td D ts and td D ts C 1. I.e., a setup vari-
able is forced to be 1 if the production quantity fulfills the entire demand of at
least one demand class in the setup period or in the consequent period.

In these reformulations, all constraints of the aggregated variant (5.17) have to be
added to the model to ensure that setup variables become 1 whenever corresponding
production takes place. Otherwise, it could happen that a setup variable xit is 0

though the production quantity is > 0, e.g., considering LSP-SISPL�A1 if yij;t;t D 0

but yij;t;tC1 > 0.



5.4 The MR-CLSP with Substitution 131

5.3.3 Valid Inequalities

In this section, we introduce valid inequalities for the LSP-SI that are generalizations
of the known .l; S/-cuts and setup/inventory carryover cuts for uncapacitated lot-
sizing (Pochet and Wolsey, 2006, p. 218). The following valid inequalities are a
generalization of the .l; S/-cuts:

X

t2S

qit �
X

t2S

X

j2Di

lX

t 0Dt

djt 0xit C Iil i 2 P; l D 1; : : : ; T; S � f1; : : : ; lg

(5.18)

A proof is given in Sect. 5.9. Taking the subset of these cuts with l D 1; : : : ; T and
S D flg results in:

qit �
X

j2Di

djtxit C Iit i 2 P; t D 1; : : : ; T (5.19)

By inserting the inventory balance equation (5.2) for Iit , we see that (5.19) is
equivalent to

Ii;t�1 �
X

j2Di

�
sijt � djtxit

�
i 2 P; t D 1; : : : ; T (5.20)

Another group of valid inequalities is (5.21). It is based on the fact that, if none of
the substitutes i 2 Pj for demand class j is set up in a period t , the total inventory
carried over from the previous period of these substitutes has to cover the entire
demand djt .

X

i2Pj

Ii;t�1 � djt

0

@1 �
X

i2Pj

xit

1

A j 2 D; t D 1; : : : ; T (5.21)

Note that, if we consider a special case of the LSP-SI “without substitution”, i.e.,
with P D D, Pj D fj g, and Di D fig, we see that (5.18) and (5.21) con-
tain the well-known .l; S/-cuts and setup/inventory carryover cuts, respectively, for
uncapacitated lot-sizing as a special case (see Sect. 2.2.2).

5.4 The Multi-Resource Capacitated Lot-Sizing Problem
with Substitution

The Multi-Resource Capacitated Lot-Sizing Problem with Substitution (MR-
CLSP-S) extends the LSP-SI by introducing multiple capacitated production resour-
ces with time-varying capacities and fixed production setup times. We develop two
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Table 5.3 Notations for MR-CLSP-S

Symbol Definition

Constants
nr Number of resources
Indices and sets
r 2 R D f1; : : : ; nrg Resources
Pr Set of products that are manufactured using resource r

Parameters
Krt Capacity of resource r available in period t

l
p
i Capacity required for setup of product i (production setup time)

�
p
i Capacity required for manufacturing one unit of product i

ocrt Overtime production cost for resource r in period t per unit
gjt Lost sales cost for demand class j per unit in period t

Variables
Ort Overtime production on resource r in period t

ojt Lost sales of demand class j in period t

versions of the model, one where overtime production is possible, one where lost
sales are allowed. Both the overtime and lost sales assumption avoid infeasibility of
instances and make the problem easier to solve. Due to the inclusion of setup times,
the feasibility problem of a MR-CLSP-S without overtime / lost sales would be NP-
complete, because MR-CLSP-S contains CLSP as a special case (a proof for CLSP
is given by Maes et al., 1991). Each product requires exactly one of the resources
for production. We assume that only production activities consume resources. Sub-
stitution activities are assumed to be uncapacitated. The notation given in Table 5.3
is used to model the production capacity constraints.

We obtain a formulation of the MR-CLSP-S by adding the following capacity
constraints to the original LSP-SI model:

Krt C Ort �
X

i2Pr

�
l

p
i xit C �

p
i qit

�
r 2 R; t D 1; : : : ; T (5.22)

Lost sales can be included by replacing (5.3) by (5.23):

djt � ojt D
X

i2Pj

sijt j 2 D; t D 1; : : : ; T (5.23)

ojt � 0 j 2 D; t D 1; : : : ; T (5.24)

A SPL-based reformulation of the MR-CLSP-S can easily be developed by adding
the following capacity constraints to the SPL-based LSP-SI reformulation:

Krts C Orts �
X

i2Pr

0

@l
p
i xits C �

p
i

X

j2Di

TX

tdDts

yijts td

1

A r 2 R; ts D 1; : : : ; T

(5.25)
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Lost sales can also be included in the SPL-based formulation by replacing
(5.12) by:

djt � ojt D
X

i2Pj

TX

tsD1

yijts t C y0
ijt j 2 D; t D 1; : : : ; T (5.26)

In the original and SPL-based formulation, the overtime and lost sales cost, respec-
tively, has to be added to the objective function:

FMR-CLSP-S,Overtime D FLSP-SI C
X

r2R

TX

tD1

ocrtOrt (5.27)

FMR-CLSP-S,Lost sales D FLSP-SI C
X

j2D

TX

tD1

gjt ojt (5.28)

5.5 Computational Experiments

In this section, we compare the original formulations of the LSP-SI and MR-CLSP-S
with (a) SPL-based (approximate) extended formulations, (b) formulations with
valid inequalities added a priori, and (c) formulations with valid inequalities added
as cuts during the branch-and-cut algorithm. The comparison is performed by ana-
lyzing the running times of an MIP solver (ILOG CPLEXr 10.2) on various types
of problem instances. The instances are not solved to optimality, but a relative MIP
gap tolerance of 10�4 (CPLEXr default setting) is used. We examine the follow-
ing research questions: (1) Which model formulation is the most efficient for the
LSP-SI? What is the influence of the amount of initial inventories and the substi-
tution structure (downward vs. general) on the hardness of the problem instances?
(2) How do the running times scale for larger instances depending on the chosen
formulation? (3) With regard to the MR-CLSP-S, do running times differ signifi-
cantly between the model variants with lost sales vs. overtime? In addition, what is
the influence of (4) the “scarcity” of resources and (5) the number of resources on
the running times?

The common setup for our experimental designs is as follows: As real-world
instances of the LSP-SI and MR-CLSP-S were not available, an instance generator is
used to generate synthetic instances. We simultaneously vary multiple factors of this
instance generator (e.g., number of products, number of periods, initial inventories
and substitution structure) and then analyze the impact of these factors on the MIP
solver running times. The problem instances are generated using a Common Ran-
dom Numbers (CRN) technique (see Sect. 2.4.2.5), e.g., to compare running times
on instances with and without initial inventories, we use the same random seeds
for generating demand data and cost parameters for both types of instances. For
each instance generator configuration (number of products and periods, substitution
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structure, etc.), 20 replications (problem instances) are generated to ensure that the
results are reliable and meaningful. ILOG CPLEXr 10.2 is used for solving the
problem instances, with a time limit of 10 min and default values for all other set-
tings. The experiments were implemented in JavaTM and run on a computer with
2:4 GHz Pentiumr 4 CPU, 2 GB memory and Windowsr XP.

5.5.1 Problem Instances

The characteristics of the generated problem instances (such as demand distribution,
substitution structure, cost parameters, and resource capacities) are chosen in a way
that the instances are difficult: The substitution decisions are nontrivial, substitutions
do happen in the optimal solutions and, in the case of the MR-CLSP-S, the limited
production capacities influence substitutions.

We generate instances with two types of substitution structures: downward and
general substitution structure. In addition, we generate instances with zero as well as
positive initial inventories and uncapacitated as well as capacitated instances. The
distribution assumptions of the test instances are given in Table 5.4, grouped into
generator settings that all instances have in common and settings that are specific to
downward/general substitution and capacitated instances.

Every instance with downward substitution has the same number of products and
demand classes and every demand class corresponds to a product, i.e., m D n and
P D D. Demand class j can be fulfilled by product j and all “better” products i

with i � j , i.e., Pj D fj; : : : ; mg. The unit cost is set in a way that the higher a
product is in the hierarchy, the more expensive it is. In preliminary experiments, we
found that this assumption makes instances significantly more difficult compared to
normally distributed unit costs that were assumed by Hsu et al. (2005). The substi-
tution cost for using a product i to fulfil demand of class j has a mean that increases
with the number of “steps” in the downward substitution hierarchy, which we define
as i � j .

For the general substitution instances, the substitution structures are created
assuming that the products have two attributes (e.g., width and height). Let aid

denote the value of attribute d for product i . Substituting a product j by a prod-
uct i is allowed if product i has a value greater than or equal to product j for both
attributes, i.e., if ai1 � aj1 and ai2 � aj 2. A practical example for such substitution
structures are metal plates whose width and height can be reduced by processing
steps. Thus, we assume that the unit cost is a linear function of the product of the
two attributes’ values, i.e., of the product’s surface size if the attributes represent
width ai1 and height ai2. The numeric values in the unit cost formula were chosen
in such a way that the resulting unit costs were between 25 and 40. We assume that
the mean of the substitution cost increases with the “distance” between the product
and its supposed substitute. We define this distance as the absolute value of the dif-
ference of the products of the attributes’ values of the two products. The reasoning
behind this choice of the substitution cost is that, with the attributes representing
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Table 5.4 Instance generator settings

Parameter Assumption

Common
Demand Normally distributed, stationary over time, but different mean � and

variation coefficient (standard deviation divided by mean) �=� for
each demand class. Values < 0 are cut off, i.e., we repeatedly sample
values until a value � 0 is returned. � 	 N .50; 20/,
�=� 	 N .0:2; 0:1/

Setup cost 	N .1000; 500/ with values < 0 cut off
Holding cost 2% of the unit cost (specified below for the two instance types)

Initial inventory 0 or normal distribution with � D 5% 
 P
j2D

TP
tD1

djt =jP j and

�=� D 0:4. Values < 0 are mapped to 0

Downward substitution
Unit cost 20C 2i , where the product index i corresponds to the position of the

product in the downward substitution hierarchy
Substitution cost Cost for using product i to fulfil demand of class j 	 N.5; 3C .i � j //

General substitution
Product width ai1 	 U.100; 200/

Product height ai2 	 U.10; 20/

Unit cost 20C ai1ai2=200

Substitution cost Cost for using product i to fulfil demand of
class j 	 N.5; 3C d .i; j / =60/, where d .i; j / D ˇ̌

ai1ai2 � aj1aj2

ˇ̌

Capacitated instances
Resource consumption �

p
i 	 N .20; 5/

Setup times l
p
i 	 N .200; 50/

Capacities Krt 	 N.�; �/ with � D NKmin
r 
 “capacity availability” factor,

e.g., 105%, and �=� D 0:1, where NKmin
r D 1

T

TP
tD1

Kmin
rt and Kmin

rt is

the minimum resource capacity required to ensure feasibility of the
solution where all demand is fulfilled using its preferred product by
production in the demand period

Lost sales cost 10 times as high as the production cost of the preferred product of the
demand class

Overtime cost 100 per capacity unit and period

width and height, we assume that the duration and resource consumption of the
conversion step are correlated with the difference in surface size of product and
substitute. The numeric values in the substitution cost formula were chosen such
that the resulting substitution costs were between 5 and 55.

Problem instances with capacitated production, i.e., instances of the MR-CLSP-S,
are generated as follows: In instances with multiple resources, each product is ran-
domly assigned to a resource. To generate the resource capacities, we first determine
minimum capacities Kmin

rt required to ensure feasibility when all demand is ful-
filled using its preferred product by production in the demand period. After that,
we calculate the mean NKmin

r of Kmin
rt for every resource. Then, the capacity Krt is

generated with a normal distribution whose mean is NKmin
r multiplied by a “capacity

availability” factor.
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5.5.2 Solution Approaches

In our computational experiments for the LSP-SI, we compare the formulations
LSP-SIORIG , LSP-SISPL, LSP-SISPL�A1, LSP-SISPL�A2, as well as the follow-
ing alternatives with certain groups of valid inequalities added to the formula-
tion LSP-SIORIG : LSP-SIO�AP1 with (5.20) added a priori, LSP-SIO�AP 2 with
(5.21) added a priori, LSP-SIO�UC1 with (5.20) added as CPLEXr user cuts, and
LSP-SIO�UC 2 with (5.21) added as CPLEXr user cuts. The CPLEXr branch-
and-cut algorithm checks user cuts for violation in the optimal LP relaxation
solution of every subproblem and adds them if violated. In the computational exper-
iments for the MR-CLSP-S, we denominated the formulations analogously, i.e.,
MR-CLSP-SORIG , MR-CLSP-SSPL, etc.

5.5.3 Experimental Designs, Results and Interpretation

In the following, we examine five experimental designs: Sect. 5.5.3.1 describes a
design with small uncapacitated instances, Sect. 5.5.3.2 a design with larger unca-
pacitated instances. Section 5.5.3.3 contains a design with capacitated instances,
one group of them with lost sales, the other one with overtime. The design in
Sect. 5.5.3.4 serves to analyze the effect of the tightness of production capacities on
the hardness of instances. Finally, the design in Sect. 5.5.3.5 compares the running
times for instances with 1, 2, and 3 resources.

5.5.3.1 LSP-SI: Influence of Substitution Structure, Initial Inventories
and Problem Size

In experiment 1 we generated downward and general substitution LSP-SI instances.
We analyzed both instances with initial inventories D 0 and D 5% of total demand
(InI D “No” and “Yes”, respectively). The number of periods was varied from 8,
10, to 12. For downward substitution instances, we varied the number of products
(demand classes) from 6, 8, to 10, for general substitution instances from 12 to 16.
We chose to consider general substitution instances with a larger number of products
than the downward substitution instances for two reasons: First, general substitution
instances turned out to be somewhat easier to solve, presumably because their sub-
stitution graphs often consist of several (unconnected) components. Second, our
opinion was that settings with downward substitution and more than a medium
number of products, e.g., 10, are infrequent in practice. In both experiments, we
compared all eight solution approaches for the LSP-SI mentioned above.

We observed that the SPL-based formulations were clearly superior to all other
formulations, regardless of problem size, substitution structure, and initial inven-
tories. A comparison of the running times on downward and general substitution
instances is given in Table 5.5. Here, the abbreviation “DW” stands for downward
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Table 5.6 Percentage of LSP-SI instances solved within 10 min (experiment 1)

Type I nI m D n T ORIG O-AP1 O-UC1 O-AP2 O-UC2
(%) (%) (%) (%) (%)

DW Yes 10 10 20 20 20 20 20

No 10 10 65 85 55 65 55

GE Yes 12 8 100 100 100 100 100

10 90 95 85 85 90

16 8 80 100 80 95 80

10 30 25 30 25 25

No 12 8 100 100 100 100 100

10 90 95 90 95 90

16 8 100 100 100 100 100

10 55 55 55 55 60

substitution and “GE” for general substitution instances. Each table cell contains the
median calculated over 20 replications of the instance type. We chose to calculate
median values because we could not determine average running times in those cases
where some instances were not solved within the time limit. Because the number of
replications is even, the median is calculated as med D 1=2

�
rt.10/ C rt.11/

�
, where

rt.k/ is the running time at position k in the list of running times in ascending order.
Thus, we can only calculate the median exactly if rt.10/ and rt.11/ are below the time
limit. Otherwise, we only know that the true median without time limit would be
>med . Table 5.6 contains the percentages of instances solved within the time limit
of 10 min. Here, we only report percentages for downward substitution instances
with 10 products and 10 periods, as all smaller downward substitution instances
were solved within the time limit by all formulations. The average optimality gap
for instances that could not be solved within 10 min was 0:82%. The percentages of
the SPL-based formulations were excluded as these solved all instances within the
time limit.

In general, running times on instances with initial inventories were somewhat
higher than those on instances with no initial inventories. One possible explana-
tion for this effect is that the existence of initial inventories might make it harder
for the MIP solver to generate effective cuts. Referring to the SPL-based reformu-
lation, it is obvious that less setup variables are fixed to 1 by the disaggregated
setup forcing constraints if parts of period demands are fulfilled from initial inven-
tories. Adding the valid inequalities to the original formulation (LSP-SIO�AP1 and
LSP-SIO�AP 2) seems to improve running times slightly compared to LSP-SIORIG .
Yet LSP-SIORIG , LSP-SIO�AP1, and LSP-SIO�AP 2 could not compete with the
SPL-based formulations: Their running times quickly exceeded the time limit for
instances with 10 or more periods and a moderate number of products (10 in the
case of downward substitution, 16 in the case of general substitution). In contrast,
most of the running times of LSP-SISPL were below 1 s. In addition, we found
that the running times for the approximate extended formulations LSP-SISPL�A1
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and LSP-SISPL�A2 were between two and four times worse than those of the full
SPL-based formulation LSP-SISPL, but most of them were also below 1 s and thus
by far better than those of LSP-SIORIG . In the next experiment, we examined
whether this also holds true for larger problem instances.

5.5.3.2 Larger LSP-SI Instances: Approximate Extended Formulations

In the second experiment, we compared the running times of LSP-SISPL,
LSP-SISPL�A1, and LSP-SISPL�A2 on larger instances with general substitution
structure, both with and without initial inventories. The number of periods was var-
ied from 10, 15, to 20 and the number of products (demand classes) from 20, 30,
to 40.

A comparison of the running times on these instances is given in Table 5.7. The
percentages of instances solved within the time limit are stated in Table 5.8. Here,
we only report percentages for instances with 30 and 40 products and 20 periods,
as all smaller instances were solved within the time limit by the considered formu-
lations. The average optimality gap for instances that could not be solved within
10 min was 0:12%. We found that the running times of LSP-SISPL were the short-
est. Those of LSP-SISPL�A1 and LSP-SISPL�A2 were in most cases slightly worse, in
some cases marginally better for instances with initial inventory, while these approx-
imate extended formulations contained a much smaller number of (disaggregated)

Table 5.7 Median running times on large general substitution LSP-SI instances in seconds
(experiment 2)

I nI mD n T SPL SPL-A1 SPL-A2

Yes 20 10 1:39 1:90 1:95

15 4:73 5:91 6:22

20 9:48 11:22 12:50

30 10 4:41 5:85 5:92

15 15:85 19:98 22:26

20 38:84 31:77 36:96

40 10 9:16 13:12 13:67

15 39:41 38:66 35:73

20 129:86 127:63 150:58

No 20 10 0:3 0:85 0:86

15 0:77 2:76 2:95

20 1:45 5:32 5:61

30 10 0:72 2:19 2:38

15 1:81 6:85 7:25

20 3:34 12:11 13:78

40 10 1:38 4:44 4:71

15 3:68 12:31 13:59

20 7:73 26:5 27:7
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Table 5.8 Percentage of larger general substitution LSP-SI instances solved within 10 min
(experiment 2)

I nI m D n T SPL SPL-A1 SPL-A2
(%) (%) (%)

Yes 30 20 100 95 95

40 20 90 90 90

No 30 20 100 100 100

40 20 100 100 100

constraints. For instances without initial inventory, the formulations LSP-SISPL�A1

and LSP-SISPL�A2 were approximately four times slower than LSP-SISPL, but all
instances could be solved within the time limit using either of the three formula-
tions. Both on instances with and without initial inventory, LSP-SISPL�A2 seems to
perform slightly worse than LSP-SISPL�A1.

5.5.3.3 MR-CLSP-S: Lost Sales vs. Overtime

In experiment 3, we focussed on capacitated instances. We generated one group
of MR-CLSP-S instances with lost sales and another group with overtime. Within
each of the two groups, we created instances with downward as well as general
substitution structure. We then compared the running times of MR-CLSP-SORIG ,
MR-CLSP-SSPL, MR-CLSP-SSPL�A1, and MR-CLSP-SSPL�A2 for these instances.
Common settings for all instances were a number of eight periods, initial inventories
D 5% of total demand, a single production resource (nr D 1) and a capacity avail-
ability factor of 120%. For downward substitution instances, the number of products
(demand classes) was varied from 6, 8, to 10, for general substitution instances from
8, 12, to 16.

A comparison of the running times on these instances is given in Table 5.9.
The SPL-based formulations solved all instances within the time limit. The per-
centages of instances solved within the time limit by the original formulation are
stated in Table 5.10. The average optimality gap for instances that could not be
solved within 10 min was 1:73%. We observed that the SPL-based formulations
MR-CLSP-SSPL, MR-CLSP-SSPL�A1, MR-CLSP-SSPL�A2 did not dominate the
original formulation MR-CLSP-SORIG as clearly as it was the case for the (uncapac-
itated) LSP-SI. On downward substitution instances with six products, the running
times of the SPL-based formulations and MR-CLSP-SORIG were almost the same.
Yet on instances with more products, the SPL-based formulations performed better
than MR-CLSP-SORIG . This observation is in line with Denizel and Süral (2006)
and Alfieri et al. (2002), who observed that CLSP reformulations performed better
than standard formulations for LP-based heuristics. The running times for instances
with lost sales and overtime were very similar.
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Table 5.9 Median running times on MR-CLSP-S instances with lost sales / overtime in seconds
(experiment 3)

Type Lost sales Overtime mDn ORIG SPL SPL-A1 SPL-A2

DW No Yes 6 4:50 2:20 2:28 2:45

8 40:27 3:22 3:38 3:91

10 >600 6:44 7:05 6:34

Yes No 6 3:20 2:27 2:38 2:61

8 42:14 3:45 3:41 4:06

10 >600 6:09 8:40 8:66

GE No Yes 8 8:73 2:21 2:77 2:70

12 >600 12:39 13:06 12:31

16 >600 19:78 18:20 18:75

Yes No 8 8:78 2:71 3:32 2:88

12 >600 13:19 14:55 13:63

16 >600 16:23 22:87 22:74

Table 5.10 Percentage of MR-CLSP-S instances with lost sales / overtime solved within 10 min
(experiment 3)

Type Lost sales Overtime m D n ORIG (%)

DW No Yes 6 100

8 95

10 25

Yes No 6 100

8 100

10 40

GE No Yes 8 100

12 35

16 0

Yes No 8 100

12 20

16 0

5.5.3.4 MR-CLSP-S: Scarcity of Production Capacity

In experiment 4, we generated MR-CLSP-S instances with three levels of the
capacity availability factor, namely 105%, 120%, and 150%. We compared the
running times of MR-CLSP-SORIG , MR-CLSP-SSPL, MR-CLSP-SSPL�A1, and
MR-CLSP-SSPL�A2 on MR-CLSP-S instances with downward and general substi-
tution structure. We only analyzed instances with overtime, as their running times
were very similar to those of instances with lost sales in experiments 4 and 5. Com-
mon settings for all instances were a number of eight periods, a single production
resource and initial inventories D 5% of total demand. For downward substitution
instances, the number of products (demand classes) was varied from 6, 8, to 10, for
general substitution instances from 8, 12, to 16.
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Table 5.11 Median running times on MR-CLSP-S instances with different capacity availability
levels in seconds (experiment 4)

Type Capacity availability mDn ORIG SPL SPL-A1 SPL-A2

DW 1:05 6 3.91 1:78 1:74 1:77

8 132.72 4:92 5:25 5:07

10 >600 15:91 12:55 14:45

1:2 6 3.09 1:43 1:69 1:61

8 91.95 4:02 4:05 4:12

10 >600 7:34 8:31 7:95

1:5 6 1.20 0:89 0:98 0:98

8 28.34 1:73 1:80 1:96

10 >536.73 3:34 3:07 3:23

GE 1:05 8 19.37 3:52 3:67 3:37

12 >600 12:88 15:73 13:36

16 >600 27:73 24:03 24:17

1:2 8 8.81 2:13 2:76 2:70

12 >600 12:28 14:90 12:35

16 >600 19:66 18:22 18:63

1:5 8 2.28 0:98 1:23 1:20

12 140.22 2:41 3:63 3:73

16 >600 7:69 7:79 8:28

A comparison of the running times on these instances is given in Table 5.11. The
SPL-based formulations solved all instances within the time limit. The percentages
of instances solved within the time limit by the original formulation are stated in
Table 5.12. The average optimality gap for instances that could not be solved within
10 min was 1:67%. Our finding was that running times of all considered formula-
tions were significantly higher for instances with scarcer production capacity, i.e.,
with lower capacity availability value. Compared to MR-CLSP-SORIG , the running
times of the SPL-based formulations grew slower depending on the scarcity of the
production resource.

5.5.3.5 MR-CLSP-S: Number of Resources

In experiment 5, we generated MR-CLSP-S instances with 1, 2, and 3 resources.
The running times of MR-CLSP-SORIG , MR-CLSP-SO�AP1, MR-CLSP-SO�AP 2,
MR-CLSP-SSPL, and the approximate extended formulations MR-CLSP-SSPL�A1

and MR-CLSP-SSPL�A2 were compared on MR-CLSP-S instances with downward
and general substitution structure. Common settings for all instances were a number
of eight periods, initial inventories D 5% of total demand, and a capacity avail-
ability factor of 120%. We only analyzed instances with overtime. For downward
substitution instances, the number of products (demand classes) was varied from 6,
8, to 10, for general substitution instances from 8, 12, to 16.
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Table 5.12 Percentage of MR-CLSP-S instances with different capacity availability levels solved
within 10 min (experiment 4)

Type Capacity availability m D n ORIG (%)

DW 1:05 6 100

8 90

10 20

1:2 6 100

8 100

10 30

1:5 6 100

8 100

10 50

GE 1:05 8 100

12 0

16 0

1:2 8 100

12 35

16 0

1:5 8 100

12 80

16 5

A comparison of the running times on these instances is given in Table 5.13.
The percentages of instances solved within the time limit are stated in Table 5.14.
The average optimality gap for instances that could not be solved within 10 min
was 1:29%. With regard to downward substitution instances, we made the following
observation: When the number of resources was 1, the SPL-based formulations were
clearly better than MR-CLSP-SORIG , MR-CLSP-SO�AP1, and MR-CLSP-SO�AP 2.
Yet, when we considered instances with more resources (e.g., 3), the running
times of MR-CLSP-SORIG , MR-CLSP-SO�AP1, and MR-CLSP-SO�AP 2 decreased,
while the median running times of the SPL-based formulations increased. The run-
ning times of MR-CLSP-SORIG , MR-CLSP-SO�AP1, and MR-CLSP-SO�AP 2 were
similar to or better than those of the SPL-based formulations for nr > 1 in most
cases.

This seemingly surprising observation is caused by the automatic cut gener-
ation of CPLEXr: On instances with multiple resources, CPLEXr is able to
generate a large number of cuts for MR-CLSP-SORIG already at the branch-and-
bound root node that significantly sharpen the lower bound (LB). In contrast,
CPLEXr generates only few cuts for MR-CLSP-SSPL. In fact, the LB obtained
for MR-CLSP-SORIG after cut generation was better that the LB obtained from
the LP relaxation of MR-CLSP-SSPL in some cases. E.g., when examining an
instance with nr D 3 and m D 8, we observed the following (the data is summa-
rized in Table 5.15): With MR-CLSP-SORIG , the optimal LP relaxation objective
at the root node was 80,063.6 before and 88,172.0 after cut generation, i.e., the LB
was significantly sharpened by the cuts added. With MR-CLSP-SSPL, the optimal
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Table 5.13 Median running times on MR-CLSP-S instances with different numbers of resources
in seconds (experiment 5)

Type nr m D n ORIG O-AP1 O-AP2 SPL SPL-A1 SPL-A2

DW 1 6 3.22 2.43 2.71 1:45 1:70 1:63

8 92.44 56.15 58.48 4:05 4:11 4:05

10 >600 >600 >594.73 6:45 7:08 6:55

2 6 2.00 2.21 2.51 8:58 8:67 10:32

8 56.64 43.21 40.77 21:47 27:05 23:48

10 >589.62 309.91 >495.66 35:91 39:78 36:93

3 6 1.32 1.36 1.18 9:29 9:09 10:77

8 27.16 21.24 33.44 46:97 54:59 51:38

10 247.68 203.11 201.91 186:00 383:70 350:49

GE 1 8 9.03 3.73 5.79 2:27 2:80 2:71

12 >600 415.97 481.62 12:41 12:92 12:25

16 >600 >600 >600 17:05 18:30 19:70

2 8 9.51 7.18 8.45 8:08 9:20 8:30

12 >600 >600 >600 32:05 39:97 41:16

16 >600 >600 >600 194:18 235:38 239:40

3 8 10.09 7.37 11.71 22:75 22:82 25:03

12 >600 >600 >600 178:13 131:50 188:81

16 >600 >600 >600 >600 >600 >600

Table 5.14 Percentage of MR-CLSP-S instances with different numbers of resources solved
within 10 min (experiment 5)

Type nr m D n ORIG O-AP1 O-AP2 SPL SPL-A1 SPL-A2
(%) (%) (%) (%) (%) (%)

DW 1 6 100 100 100 100 100 100
8 100 100 100 100 100 100

10 25 45 50 100 100 100
2 6 100 100 100 100 100 100

8 100 95 100 100 100 100
10 50 60 50 100 100 100

3 6 100 100 100 100 100 100
8 100 100 100 90 90 95

10 60 65 65 70 65 65
GE 1 8 100 100 100 100 100 100

12 35 65 55 100 100 100
16 0 0 0 100 100 100

2 8 100 100 100 100 100 100
12 25 35 45 100 100 100
16 0 0 0 85 80 85

3 8 100 100 100 100 90 95
12 25 30 35 85 80 75
16 0 0 0 40 40 35
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Table 5.15 Effect of MIP solver cut generation on tightness of lower bounds and running times
of original and SPL formulation, examined on two instances with nr D 1 and 3

nr Data ORIG ORIG, no cuts SPL SPL, no cuts

1 Running time (s) 48.5 >600 2.9 2.5
LB before cuts 79,985.7 79,985.7 87,309.5 87,309.5
LB after cuts 84,532.7 - 87,447.6 -
# cuts at root 326 0 37 0

3 Running time (s) 10.8 >600 97.4 112.4
LB before cuts 80,063.6 80,063.6 86,816.5 86,816.5
LB after cuts 88,172.0 - 87,574.6 -
# cuts at root 300 0 55 0

LP relaxation objective at the root node was 86,816.5 before and 87,574.6 after cut
generation, i.e., the cuts added at the root node did not sharpen the LB as much
as for MR-CLSP-SORIG . The LB obtained for MR-CLSP-SORIG was even bet-
ter than the LB obtained for MR-CLSP-SSPL. For instances with nr D 1, we did
not observe this effect. Considering an instance with nr D 1 and the same CRN
as the previous instance, we found that the cuts added by CPLEXr improved
the LB significantly for MR-CLSP-SORIG , but the LB for MR-CLSP-SSPL was
better. With cut generation turned off, (i.e., with a pure branch&bound algorithm),
MR-CLSP-SSPL performed better than MR-CLSP-SORIG . Using CPLEXr with
cuts turned off, MR-CLSP-SORIG exceeded the time limit for both nr D 1 and 3,
whereas running times changed only slightly for MR-CLSP-SSPL. These results
suggest that, though reformulations like the SPL or shortest-path formulation of lot-
sizing problems usually yield sharper LBs, it depends on the cut generation and
other features of the MIP solver used whether the usage of reformulations actually
decreases running times. Similarly, Stadtler (1996) observed that the original inven-
tory and lot-size ML-CLSP formulation works better than proposed reformulations
on one set of test instances.

When considering instances with general substitution and more than one
resource, we found for nr D 2 and m D n D 8 that the SPL-based formulations
yielded running times similar to LSP-SIORIG , LSP-SIO�AP1, and LSP-SIO�AP 2.
However, on general substitution instances with a larger number of products
(m D n D 12), the SPL-based formulations were clearly better than LSP-SIORIG ,
LSP-SIO�AP1, and LSP-SIO�AP 2, in contrast to our observations for downward
substitution instances.

5.6 Conclusions

In this section, we described SPL-based reformulations for two dynamic lot-sizing
problems with product substitution – the uncapacitated LSP-SI and the capacitated
MR-CLSP-S. We exemplified the problem that net demands cannot be calculated
exactly if product substitutions are possible. In addition, we developed two classes
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of valid inequalities for uncapacitated lot-sizing with product substitution. We
compared the original formulations of the LSP-SI and MR-CLSP-S to SPL-based
(approximate extended) reformulations and formulations to which the new classes
of valid inequalities were added. The comparison was performed by computational
experiments with an MIP solver on generated instances. A main finding was that
the SPL-based formulations of the LSP-SI dominated the original formulation as
well as the formulations with valid inequalities added in terms of running times in
most cases. Adding the valid inequalities to the model seems to slightly improve
running times. In our experiments on the MR-CLSP-S, we found that instances
with lost sales and overtime required very similar running times. The scarcer the
production capacity was, the higher the running times. For all instances with one
production resource, the SPL-based formulations clearly dominated the original
formulation. Yet, when increasing the number of resources, the distance between
the SPL-based formulations and the original formulation shortened: On instances
with downward substitution and more than one resource, the running times of the
SPL-based reformulations were similar to or even worse than those of the original
formulation. Both for the LSP-SI and MR-CLSP-S, running times on SPL-based
approximate extended formulations – which only contain a subset of the disaggre-
gated constraints and thus are significantly smaller – could compete with those of
complete SPL-based reformulations.

5.7 Transformation of LSP-SI into a CFLP

We transform the LSP-SI into a Capacitated Facility Location Problem (CFLP)
(Sridharan, 1995). This transformation illustrates the SPL-based reformulation of
the problem and enables us to solve the LSP-SI using CFLP algorithms. The nota-
tion given in Table 5.16 is used for the CFLP (for a formulation see, e.g., Sridharan,
1995). To distinguish the CFLP symbols from LSP-SI symbols, the superscript w
was added to the former.

The analogies between the entities and model elements in the LSP-SI and the
CFLP resulting from the transformation are summarized in Table 5.17.

CFLP Structure, Capacities and Demands

We create the corresponding CFLP instance for a given LSP-SI instance as follows:
In the CFLP, each pair of demand class j and period t forms a customer k with

Table 5.16 Notations for LSP-SI! CFLP transformation

Symbol Definition

Parameters
aw

h Capacity of warehouse h
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Table 5.17 Analogies between LSP-SI and CFLP elements in the transformation

LSP-SI CFLP

Product setup in a period Opening of a warehouse
Fixed setup cost of a product in a specific period Fixed opening cost of a warehouse
Demand for a product in a specific period Demand of a customer
Initial inventory of a product Capacity of a warehouse
Unit conversion cost� holding cost saved (for initial

inventory); Unit
productionC conversionC holding cost (for
replenishments)

Unit transportation cost from a
warehouse to a customer

index k.j; t/ D .t � 1/ � n C j , whose demand d w
k.j;t/ is equal to the demand djt

of class j in period t . The CFLP contains a warehouse h with index h.i/ D i for
each product i representing the initial stock of the product, with a capacity aw

i equal
to the initial inventory Ii0. If a warehouse i 2 P delivers yw

i It 
nCj quantity units
to customer t � n C j , this means for the LSP-SI that the same quantity of initial
inventory of product i is used to satisfy demand of class j in period t . Moreover,
we introduce a warehouse for each pair of product i and period t , whose index is
h.i; t/ D t �mC i . Its opening decision corresponds to the decision whether product
i should be set up in period t . As there is no limit on lot sizes in the LSP-SI, we
assign a sufficiently large M to its capacity aw

h.i;t /, e.g., M D Cit [see (5.7)]. A
transportation quantity yw

h.i;ts /Ik.j;td / in the CFLP denotes for the LSP-SI that this
quantity from the lot of product i set up in period ts is used to satisfy demand of
class j in period td .

Cost Parameters

The CFLP cost data are chosen in such a way that the CFLP objective equals the
LSP-SI objective minus a constant. This constant is the sum of holding cost HI0 that
would be caused by keeping all initial inventory in stock without consuming any of
it till the end of the planning horizon:

HI0 D
X

i2P

TX

tD1

hit Ii0 (5.29)

To ensure that FCFLP D FLSP�SI � HI0 , we choose the warehouses’ opening cost
vector f w and the transportation cost matrix cw as follows: The opening cost of
the first m warehouses i 2 P , whose capacities correspond to the products’ initial
inventories, is set to 0. The unit transportation cost of the warehouses i 2 P to a
customer k.j; td / equals the negative of the saving that we achieve by taking one
unit of initial inventory from stock in period td to satisfy demand of class j . For
feasible conversions, this saving is the holding cost per unit of product i from period
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t  = 1 t = 2 … t = T

D1 D2 D3 D1 D2 D3 D1 D2 D3Warehouses

Customers

t = 1
P1

P2

D1

t = 2
P1

P2

…

P1

D2

t = T
P1

P2

P1

P2

D3

Initial
inventory

P1

P2

Unit cost for fulfilling demand of D2 in
t = 2 using initial inventory of P1

Unit cost for fulfilling demand of D3 in
t = 2 using units of P2 from lot in t = 1

Fig. 5.1 Example for the transformation of the LSP-SI into a CFLP

td to T minus the additional cost rij for converting the item to accommodate demand
of class j . The corresponding formula is given by (5.8), i.e., we set cw

i Ik.j;td / D c0
ijtd

.
Considering the choice of the transportation cost from warehouse ts � m C i to

customer k.j; td /, we have to forbid (a) infeasible conversions with .i; j / … E

and (b) fulfillment of demand from future periods to previous periods (td < ts)
since backlogging is not allowed. This explains the two cases in (5.9). We set
cw

h.i;ts/Ik.j;td / D cijts td . Thus, the transportation cost is the sum of production/order
unit cost pits , substitution cost rij and the total holding cost from the replenishment
arrival period ts till the demand occurrence period td .

The LSP-SI ! CFLP transformation is illustrated with an example in Fig. 5.1.
The example is based on a substitution graph with two products and three demand
classes. The matrix on the right side of Fig. 5.1 depicts the cost matrix of the corre-
sponding CFLP with 2 � .T C 1/ warehouses (rows) and 3 � T customers (columns).
White cells correspond to forbidden transportation links, gray cells to allowed
transportation links that denote feasible substitutions.

5.8 Proof that LSP-SI is NP-Hard

The LSP-SI is strongly NP-hard. We prove this by reducing the Uncapacitated
Facility Location Problem (UFLP) [also: Simple Plant Location Problem (SPLP)],
which is known to be strongly NP-hard, to a special case of the LSP-SI. Given an
instance of UFLP, we reduce it to a special case of LSP-SI with only a single period
(i.e., T D 1), zero initial inventory, no holding cost and no variable production cost.
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We show that this special case is strongly NP-hard using the following mapping:
Products of the LSP-SI represent warehouses and demand classes represent cus-
tomers of the UFLP, i.e., P D W and D D C . The setup of products corresponds
to the opening of warehouses in the UFLP. Substitution decisions correspond to
transportation decisions in the UFLP.

The parameters of the LSP-SI are set as follows: All initial inventories Ih0, hold-
ing cost hh1 and unit order/production cost ph1 are 0. The number of products m

equals the number of warehouses mw, the number of demand classes n is identical
with the number of customers nw. The product setup cost is equal to the fixed cost
for the corresponding warehouse, i.e., fh1 D f w

h . Substitution from each product h

to all demand classes in D has to be feasible because each warehouse can deliver to
any of the customers. Hence, E D P � D. The unit cost for converting product h to
demand class k equals the transportation cost from warehouse h to customer k.

To transform a LSP-SI solution into a solution for the respective UFLP, the setup
variable value xh1 of product h in period 1 is assigned to xw

h denoting the construc-
tion of warehouse i . Furthermore, we obtain the transportation quantity yw

hk from
shk1. It is easy to see that the optimal LSP-SI solution yields a corresponding opti-
mal UFLP solution, as the constraints, variable domains and objective functions are
equivalent. Since the depicted reduction of UFLP to a special LSP-SI is obviously
polynomial and UFLP is strongly NP-hard, this shows that LSP-SI is NP-hard in the
strong sense.

5.9 Proof for Product Substitution (l,S)-Cuts

To prove that (5.18) is class of valid inequalities, we show that

X

t2S

qit �
X

t2S

X

j2Di

lX

t 0Dt

djt 0xit C Iil (5.30)

holds for all i 2 P; l D 1; : : : ; T; S � f1; : : : ; lg if .x; q; I; s/ is an integer
feasible solution of a LSP-SI instance. Considering a certain integer feasible solu-
tion .x; q; I; s/, we define Ti as the set of periods in which product i is produced:
Ti D ft j xit D 1g. As qit D 0 and xit D 0 for all t … Ti , (5.30) is equivalent to

X

t2S\Ti

qit �
X

t2S\Ti

X

j2Di

lX

t 0Dt

djt 0 C Iil (5.31)

If S \ Ti D ;, (5.31) obviously holds true because the left side of the inequality is
0 as all qit are 0. For the case that S \ Ti ¤ ;, with ti defined as the first period in
S when a lot of product i is produced, i.e., ti D min ft j t 2 S \ Ti g, we obtain by
recursively inserting the inventory balance (5.2) into itself l � ti times that:



150 5 Efficient Reformulations for Lot-Sizing with Substitutions

Iil D Ii;ti�1 C
lX

tDti

qi t �
lX

tDti

X

j2Di

sijt (5.32)

Inserting (5.32) for Iil in (5.31) yields:

X

t2S\Ti

qit C
X

j2Di

lX

tDti

sijt �
lX

tDti

qi t C
X

j2Di

X

t2S\Ti

lX

t 0Dt

djt 0 C Ii;ti�1 (5.33)

We prove (5.33) by showing that the following two inequalities hold true (0 � Ii;ti�1

obviously applies because the variables are nonnegative):

X

t2S\Ti

qit �
lX

tDti

qi t (5.34)

X

j2Di

lX

tDti

sijt �
X

j2Di

X

t2S\Ti

lX

t 0Dt

djt 0 (5.35)

(5.34) holds true because S \ Ti � fti ; : : : ; lg. Equation (5.35) is fulfilled because
ti 2 S \ Ti holds by definition and sijt � djt due to (5.3), as these propositions
imply the first � in:

X

j2Di

lX

tDti

sijt �
X

j2Di

X

t2S\Ti

djt �
X

j2Di

X

t2S\Ti

lX

t 0Dt

djt 0 (5.36)

The second � in (5.36) holds true because the left side is contained in the right side
and all addends are positive. Thus, (5.33) holds true which proves that (5.18) is a
class of valid inequalities for the LSP-SI.



Chapter 6
MIP-Based Heuristics for Capacitated
Lot-Sizing with Sequence-Dependent
Setups and Substitutions

6.1 Introduction

In this section, we consider a single-level capacitated lot-sizing problem with
substitutions and sequence-dependent setups. The model was designed to map
the industrial optimization problem in windshield interlayer production planning
described in Sect. 3.1. Rather than building a specific model for this application,
we aimed at devising a model and appropriate solution approach for a more gen-
eral model that can capture the characteristics of this application as well as those of
similar production planning problems. Why should it make sense to consider sub-
stitutions and sequence-dependent changeovers in one model, rather than treating
each of the two aspects in separate subproblems that decompose the overall prob-
lem? The idea is that substitutions affect the optimal production sequencing and
vice versa, as it might be beneficial to save setup times by refraining from produc-
ing certain products and substituting them by others, at least in some settings. This
reduces the time spent with “worthless” changeovers, and thereby increases the total
capacity available for production.

Figure 6.1 illustrates this idea: Assume that an initial production sequence as
shown exists. As visible, the remaining unused capacity in period shown as a dark
gray box is rather small. Setup times are assumed to be sequence-dependent. Also,
we assume that product 4 can be substituted by product 1. The box 3 ! 2 denotes
that a changeover from product 3 to product 2 takes place. In a first step, a better
sequence can be obtained by moving product 2, which was the second product in
the sequence in period t , to the end of the sequence. Due to the sequence-dependent
setup times, this could result in a solution with a smaller total setup time and larger
remaining unused capacity as shown in the second sequence. In a second step, one
could exploit the substitution option by removing the setup of product 4 and instead
producing more of product 1 to fulfill the demand for product 4. However, this
change might increase the total cost due to substitution costs. If the substitution ratio
is 1:1 and the setup time between products 1 and 4 greater than 0, the change further
decreases the total setup time and increases the capacity available for production.
One could now, for instance, initiate a setup to another product and start producing
it at the end of period t , as the resource would otherwise be idle in this time window.

J. C. Lang, Production and Inventory Management with Substitutions,
Lecture Notes in Economics and Mathematical Systems 636,
DOI 10.1007/978-3-642-04247-8_6, c� Springer-Verlag Berlin Heidelberg 2010
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5 3 P3

beginning of 
period t

3 2 P2 2 1 P1 1 4 P4

end of 
period t

5 3 P3 3 1 P1 1 4 P4 4 2 P2

5 3 P3 3 1 P1 (and P4) 1 2 P2

P1 P4

time

move P2 to 
end of 

sequence

substitute
P4 by P1

Fig. 6.1 Example – considering substitutions when choosing production sequences

6.2 Outline

The remainder of this chapter is structured as follows: The assumptions and
mathematical formulation of the considered model – the Capacitated Lot-sizing
problem with Sequence-Dependent setups and Substitutions (CLSD-S) – are con-
tained in Sect. 6.3. Section 6.4 deals with the task of obtaining efficient or at least
good production sequences for the model. Such sequences will be used to con-
struct initial solutions for F&O heuristics. Section 6.5 describes several variants of
R&F and F&O heuristics for the CLSD-S. The chapter starts by introducing nota-
tions for defining subproblems of several CLSD-S decompositions in Sect. 6.5.1.
Time-oriented, product-oriented and substitute-oriented CLSDS-S decompositions
are described in Sect. 6.5.2. Sections 6.5.3 and 6.5.4 explain the mechanics of a
R&F and F&O implementation developed for the model. After that, we introduce
a two-stage Relax&Fix&Optimize algorithm in Sect. 6.5.5 that combines the two
approaches by executing R&F first and then running F&O for post-optimization.
We compare several algorithm variants by testing them on generated test instances,
with assumptions following the structure of the real-world optimization problem
in windshield interlayer production. Section 6.6 describes the design, results and
interpretations of these computational experiments.
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6.3 The Capacitated Lot-Sizing Problem
with Sequence-Dependent Setups and Substitutions

6.3.1 Assumptions

The model developed in the following – termed Capacitated Lot-sizing problem
with Sequence-Dependent setups and substitutions (CLSD-S) – is an extension
of the Capacitated Lot-sizing problem with Sequence-Dependent setups (CLSD)
(Haase, 1996) by product substitution options. Its assumptions are as follows:

� Lot-sizing for multiple, continuous products (set of products P ).
� All parameters are deterministic.
� Single-level time structure, big bucket model.
� Finite time horizon with T periods.
� An arbitrary number of products can be set up in each period, provided that the

durations of required changeovers fit into the capacity (big bucket model).
� Scheduling (sequencing) of products within periods.
� Demand refers to demand classes (set of demand classes D).
� Time-varying demand of demand classes that has to be satisfied at the end of

each period.
� Each demand class can be satisfied by certain products (demand-class specific

substitution options).
� General substitution structure.
� Substitution ratios are arbitrary.
� Single capacitated production resource with finite speed, all products share this

resource.
� Capacity consumption per unit produced differ among products.
� Setup carry-over is possible.
� Single production level.
� Time-invariant sequence-dependent setup costs and setup times (the latter

consume capacity).
� Each product can be set up at most once per period, thus the setup costs and

times need to fulfill the triangle inequality (see Sect. 2.1.1.2).
� Setups have to be completed within a single period.
� Time-invariant linear holding costs.
� Time-invariant production costs.
� Time-invariant variable conversion costs for satisfying demand of a certain class

with a specific product.
� No lead times.
� Lost sales and overtime production are allowed, with high penalty costs.
� Initial inventories.
� Initial setup state is given (machine set up for a certain product).
� Final inventory targets specifying the minimum final inventory quantity to be

built up for each demand class.
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� Cost minimization objective.
� Continuous variables for lot sizes.

We chose to assume that both lost sales and overtime are allowed. The reasoning
behind these two assumptions is as follows:

(1) First, production capacities are frequently “soft” constraints as machines
could run longer than the planned daily operating time or their throughput could be
increased if they are by default run below their technical limits. Second, the overtime
assumption is required for F&O (see section 6.5.4): With overtime allowed, even a
production sequence containing all products can fulfill the capacity constraint, as
the overtime amount may be set arbitrarily high. Thus, this simplifies determining
an initial feasible solution. The overtime penalty costs are set very high to effect that
F&O later finds a solution without overtime.

(2) If finding a feasible plan that fulfills all demand on time is impossible and
later delivery dates cannot be agreed upon with certain customers, these potential
sales get lost. In addition, we wanted to make it easier for R&F (see section 6.5.3)
to find integer-feasible solutions to subproblems, hoping that R&F will later find a
solution without lost sales due to the associated penalty costs.

6.3.2 Formulation

Using the notation given in Table 6.1, the CLSD-S can be formulated as given below.
As in the CLSD, a dummy product 0 is introduced for modeling initial setup states
where the resource is not set up for any product.

Minimize F.q; x; z; I; s; v; o; O; sf / D
TX
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Table 6.1 Notations for CLSD-S

Symbol Definition

Constants
m Number of products
n Number of demand classes
T Number of periods

Indices and sets
i 2 P D f0; : : : ; mg Products including dummy product 0

j 2 D D f1; : : : ; ng Demand classes
t D 1; : : : ; T Periods
V D P [D Vertex set of substitution graph
E � P �D Arcs of substitution graph denoting feasible substitutions: .i; j / 2 E

if product i can fulfil demand of class j

G D .V; E/ Substitution graph
Di D fj j .i; j / 2 Eg Set of demand classes whose demand can be fulfilled by product i

Pj D fi j .i; j / 2 Eg Set of products that can fulfil demand of class j

Parameters
djt Demand of class j in period t

hi Non-negative holding cost for storing one unit of product (per period)
pi Unit production cost of product i

rij Conversion cost for fulfilling demand class j by product i per unit
Ii0 Initial inventory of product i

fik Setup cost that is incurred when the setup state of the resource
changes from product i to k

Kt Capacity of resource available in period t

stik Setup time for changeover from product i to k

�
p
i Capacity required for manufacturing one unit of product i

oc Overtime production cost per capacity unit
gj Lost sales cost for demand class j per unit
aij Number of units of product i that substitute one unit of demand class j

zi1 Binary parameter that indicates whether the resource is already set up
for i at the beginning of the first period

I
f
j Final inventory target for demand class j

Mit Large number

Variables
qit Production quantity of product i in period t

sijt Quantity of product i used to fulfil demand of class j in period t

Iit Inventory of product i at the end of period t

xikt Binary variable that indicates whether product k is set up immediately
after product i in period t

zi t Binary variable that indicates whether the resource is already set up
for product i at the beginning of period t

vi t Auxiliary variable: the larger it is, the later product i is scheduled in
period t

Ot Additional capacity required for overtime production in period t

ojt Lost sales of demand class j in period t

s
f
ij Quantity of product i used to build up final inventories for demand of

class j at the end of period t
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�
p
i qit � Mit

0

@
X

h2P;h¤i

xhit C zi t

1

A i 2 P; t D 1; : : : ; T (6.5)

X

i2P

zi t D 1 t D 1; : : : ; T (6.6)

X

h2P;h¤i

xhit C zi t D
X

k2P;k¤i

xikt C zi;tC1i 2 P; t D 1; : : : ; T (6.7)

vkt � vi t C 1 � jP j .1 � xikt / i; k 2 P; i ¤ k; t D 1; : : : ; T (6.8)

I
f
j �

X

i2Pj

a�1
ij s

f
ij j 2 D (6.9)

IiT �
X

j2Di

s
f
ij i 2 P (6.10)

qit � 0 i 2 P; t D 1; : : : ; T (6.11)

Iit � 0 i 2 P; t D 1; : : : ; T (6.12)

vi t � 0 i 2 P; t D 1; : : : ; T (6.13)

xikt 2 f0; 1g i ¤ k 2 P; t D 1; : : : ; T (6.14)

zi t 2 f0; 1g i 2 P; t D 1; : : : ; T C 1 (6.15)

sijt � 0 .i; j / 2 E; t D 1; : : : ; T (6.16)

ojt � 0 j 2 D; t D 1; : : : ; T (6.17)

Ot � 0 t D 1; : : : ; T (6.18)

s
f
ij � 0 .i; j / 2 E (6.19)

The objective (6.1) is to minimize the sum of holding costs, unit production costs,
substitution costs, sequence-dependent setup costs, overtime costs, and lost sales
costs. The inventory balance equations are given by (6.2). Constraint (6.3) enforces
that demand is either satisfied using the available substitution options, taking the
substitution ratios aij into account, or counted as lost sales otherwise. The con-
strained capacity of the production resource is modeled by (6.4): It ensures that the
capacity consumption by production activities and sequence-dependent setup times
never exceeds the available capacity in a period. Equation (6.5) enforces that pro-
duction of product i only takes place in period t if the resource was already set up
for i at the end of period t � 1 or a changeover to i is performed in t . As the value
Mit has to incorporate the final inventory targets so that they can be built up in any
case, we set it as follows:

Mit D
X

j2Di

 
TX

�Dt

dj� C I
f
j

!
(6.20)
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Equation (6.6) means that exactly one product is set up on the resource at the end
of each period t � 1 and thus at the beginning of each period t . The so-called
“setup state flow preservation / sub-tour elimination” is modeled by (6.7), which
corresponds to (2.21) in the CLSD. Equation (6.8) creates a production sequence
for the products within each period using the auxiliary variables vi t , analogously
to (2.22). Equation (6.9) ensures that at least the minimum required final inventory
is built up using feasible substitutes for each demand class. Equation (6.10) deter-
mines that not more than the available final inventory of each product is allocated to
demand classes that can be satisfied by the product.

We introduced final inventory targets in the model to deal with end-of-horizon
effects (also see Sect. 2.1.1.3). The reason why we assumed specified final inventory
targets for demand classes rather than products is as follows: If we chose the latter
approach, it would not be possible to eliminate a substitutable product from the
portfolio of manufactured products because production would still be necessary to
build up the specified final inventory. A substitution for the final inventory of the
considered product would not be possible. This is turn might lead to solutions that
cannot realize savings by substitutions. Equations (6.11)–(6.19) define the variable
domains.

In the following, a solution that fulfills all constraints (6.2)–(6.19) but might
still require overtime or lost sales is termed “feasible”. We say that a solution
is “capacity-feasible” if it does not use overtime (i.e., Ot D 0 8 t/, and name it
“demand-feasible” if the ˇ service level is 100% (i.e., ojt D 0 8 j; t).

6.4 Determining Efficient or Good Sequences

A sequence (of products manufactured within a period) is called efficient if no other
sequence containing the same set of products and having the same first and last
product exists that has a lower total setup cost than the considered sequence (also see
Sect. 2.2.5 and Haase and Kimms, 2000). If setup times are assumed to be greater
than zero, the efficiency concept for sequences can alternatively be based on setup
times. However, note that a sequence that is efficient regarding the setup costs might
be inefficient regarding the setup times and vice versa. Haase and Kimms (2000)
assume that the setup costs of changeovers are a linear function of the setup times,
i.e., they assume a close connection between setup costs and times.

We will need efficient or at least good sequences as a sequence containing all
products is required for the initial fixation of binary variables in the Fix&Optimize
algorithm described in Sect. 6.5.4. We begin with a sequence containing all products
to ensure that every possible subset of the products can be selected for production
by removing products from this initial sequence.

Given a set of products P s that the sequence should contain and the pre-specified
first and last product b and l of the sequence, the problem of determining an efficient
sequence can be reduced to an Asymmetric Traveling Salesman Problem (ATSP)
(for ATSP textbook literature see, e.g., Lawler et al., 1985; Reinelt, 1994; Gutin
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and Punnen, 2002): This ATSP contains one corresponding city for each product
i 2 P s . The transportation costs cik from a city i to another city k equal the setup
cost fik (or setup time stik) for changing over from the product corresponding to
city i to the product corresponding to city k. If the first and last product b and l are
not identical, one can deal with this by merging the first and last product into one
ATSP city h, setting chi D fbi and cih D fil , and introducing no separate cities for
i and k.

We will use an effective implementation of the Lin–Kernighan heuristic called
LKH (Helsgaun, 2000, 2007) for solving these ATSPs. LKH is known to produce
high-quality solutions even for very large TSP instances, so that we consider it
sufficient for determining good sequences, rather than choosing an exact algorithm.

6.5 MIP-Based Heuristics

As the CLSD-S seems too hard to be solved by using standard MIP solvers, we
devise and analyze several variants of MIP-based heuristics for the CLSD-S in
this section. These heuristics – Relax&Fix (see Sect. 2.2.4) and Fix&Optimize (see
Sect. 2.2.4 and Sahling et al., 2009) – are based on decompositions of the origi-
nal problem that result in multiple subproblems with a smaller number of binary
variables.

The structure of this section is as follows: In order to describe time-, product-,
and substitute-oriented CLSD-S decompositions in Sect. 6.5.2, we introduce a for-
mal notation for expressing their subproblems in Sect. 6.5.1. The Relax&Fix and
Fix&Optimize algorithm schemes are presented in Sects. 6.5.3 and 6.5.4. A simple
hybrid of these heuristics called Relax&Fix&Optimize is described in Sect. 6.5.5.
Finally, Sect. 6.5.6 explains the time limits and stopping criteria used when solving
subproblems within these heuristics.

6.5.1 Subproblems with Relaxed or Fixed Binary Variables

In each of the CLSDS-S subproblems of a decomposition used in R&F or F&O,
some of the binary variables xikt and zi t are fixed to certain values or relaxed to
continuous variables with fractional values between 0 and 1 allowed. Only a subset
of binary variables is actually optimized as such in the subproblem. The notation
used for defining the sets of fixed and relaxed variables is given in Table 6.2.

The sets Vx and Vz are defined as:

Vx D f.i; k; t/ j i ¤ k 2 P; t D 1; : : : ; T g (6.21)

Vz D f.i; t/ j i 2 P; t D 1; : : : ; T C 1g (6.22)
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Table 6.2 Notations for CLSD-S subproblems

Symbol Definition

Indices and sets
d 2 D Ordered list of decompositions
s 2 Sd Ordered list of subproblems of decomposition d

S
p
s Set of subproblems of considered decomposition that were

solved before subproblem s

Vx Set of all index combinations (i,k,t) referring to xikt variables
V rel

x;s � Vx Set of index combinations referring to xikt variables relaxed
continuously in subproblem s

Vf ix
x;s � Vx Set of index combinations referring to xikt variables that are

fixed to the value xikt in subproblem s

Vopt
x;s � Vx Set of index combinations referring to xikt variables that are

neither fixed nor relaxed and can thus be optimized in
subproblem s

Vz Set of all index combinations (i,t) referring to zi t variables
V rel

z;s � Vz Set of index combinations referring to zi t variables relaxed
continuously in subproblem s

Vf ix
z;s � Vz Set of index combinations referring to zi t variables that are fixed

to the value xikt in subproblem s

Vopt
z;s � Vz Set of index combinations referring to zi t variables that are

neither fixed nor relaxed and can thus be optimized in
subproblem s

Parameters
t .s/ Period corresponding to subproblem s in time-oriented decom-

positions
p.s/ Product corresponding to subproblem s in product-oriented

decompositions
xikt Value to which binary variable xikt is fixed
zi t Value to which binary variable zi t is fixed
exikt Value of xikt in current solution
ezi t Value of zi t in current solution
ı Parameter for substitute-oriented decomposition

Note that the following conditions should hold:

Vx D V rel
x;s [ Vf ix

x;s [ Vopt
x;s s 2 S (6.23)

Vz D V rel
z;s [ Vf ix

z;s [ Vopt
z;s s 2 S (6.24)

Also, the sets of relaxed, fixed and optimized variables of course must not overlap
in a subproblem.

Using the above notations, a subproblem s is defined by (6.1)–(6.18), with (6.14)
and (6.15) replaced by:

xikt D xikt .i; k; t/ 2 Vf ix
x;s (6.25)

zi t D zi t .i; t/ 2 Vf ix
z;s (6.26)



160 6 MIP-Based Heuristics for the CLSD-S

0 � xikt � 1 .i; k; t/ 2 V rel
x;s (6.27)

0 � zi t � 1 .i; t/ 2 V rel
z;s (6.28)

xikt 2 f0; 1g .i; k; t/ 2 Vopt
x;s (6.29)

zi t 2 f0; 1g .i; t/ 2 Vopt
z;s (6.30)

6.5.2 Decompositions

In this section, we describe time-oriented, product-oriented, and substitute-oriented
decompositions for the CLDS-S. The product- and substitute-oriented decomposi-
tions will only be used for F&O, whereas some of the time-oriented decompositions
(TD1, TD2, and TD4) can be used in R&F as well as F&O. Note that we only spec-
ify the sets Vopt

x;s and Vopt
z;s for the decompositions. When using a decomposition for

R&F, the other variable sets for a certain subproblem are derived from the specified
sets as follows:

Vf ix
x;s D

0

@
[

&2S
p
s

Vopt
x;&

1

A nVopt
x;s (6.31)

Vf ix
z;s D
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A nVopt
z;s (6.32)

V rel
x;s D Vxn �Vopt

x;s [ Vf ix
x;s

�
(6.33)

V rel
z;s D Vzn

�Vopt
z;s [ Vf ix

z;s

�
(6.34)

In contrast, F&O does not relax any variables not contained in Vopt
x;s and Vopt

z;s , but
fixes all of them:

Vf ix
x;s D VxnVopt

x;s (6.35)

Vf ix
z;s D VznVopt

z;s (6.36)

V rel
x;s D ; (6.37)

V rel
z;s D ; (6.38)

6.5.2.1 Time-Oriented Decompositions

We developed several variants of time-oriented decompositions (TD) of the CLSD-S.
In each of these, the number of subproblems equals the number of periods, i.e.,
jSd j D T . Considering the most basic TD variant TD1, in the subproblem s 2 S

corresponding to period t D t.s/ only the variables xikt are optimized as binary
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period t

(a) TD1 and TD2

t+1

4 2 16 3 3 7

before solving subproblem 4 5 11 3 3 7

after solving subproblem

period

(b) TD3

t t+1

before solving subproblem

after solving subproblem

4 5 11 3 3 7

4 8 96 2 2 7

Fig. 6.2 Examples of possible “moves” in F&O using the different time-oriented decompositions

variables. All other variables are either relaxed continuously (in the case or R&F)
or fixed (in the case of F&O):

Vopt
x;s D f.i; k; �/ 2 Vx j � D t.s/g (6.39)

Vopt
z;s D ; (6.40)

Thus, using TD1 in F&O, the production sequence in period t can be changed by
solving the corresponding subproblem. However, the first and last product in the
period remain fixed. This is illustrated by Fig. 6.2(a). In the figure, white boxes
stand for fixed products and changeovers, whereas gray boxes represent production
and changeovers that can be “optimized”. Assuming that the initial sequence is as
shown in the figure, the initial setup of product 4 and the changeover to 3 at the end
of t are fixed in the subproblem for period t , but the setups in between products 4

and 3 are variable. For instance, instead of setting up products 1 and 5, the solution
obtained by solving the subproblem might set up products 6 and 2 in between 4 and
3 if this yields a better objective value.

In variant TD2, additionally the setup carryover variables zi;tC1 are optimized:

Vopt
x;s D f.i; k; �/ 2 Vx j � D t.s/g (6.41)

Vopt
z;s D f.i; �/ 2 Vz j � D t.s/ C 1g (6.42)

The actual difference between TD1 and TD2 is rather small, as fixed values of xikt

automatically imply the value of zi;tC1. However, we define TD2 as we use it for
R&F, whereas we use TD1 in our variants of the F&O heuristic.

Variant TD3 additionally allows to optimize all changeover variables of the
subsequent period t C 1, and thus optimizes all xikt , zi;tC1, and xik;tC1:

Vopt
x;s D f.i; k; �/ 2 Vx j � D t.s/ _ � D t.s/ C 1g (6.43)

Vopt
z;s D f.i; �/ 2 Vz j � D t.s/ C 1g (6.44)
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TD3 allows to change the entire production sequence in period t C 1, except for the
last product in the sequence which is fixed. Referring to the example in Fig. 6.2(b),
the changeover to product 3 in period t and the changeover to product 1 in t C 1

are no longer fixed, but can be replaced by setups of other products. In the example,
products 2 and 9 are set up instead of 3 and 1. The changeover to product 7 in t C 1

remains fixed. TD3 represents an overlapping time decomposition, where the binary
variables optimized in adjacent subproblems overlap.

The time decomposition variants differ in the number of binary variables in
each subproblem. TD1 requires the smallest number of binary variables, whereas
TD3 requires the highest. However, TD3 also promises to lead to better solutions
as it optimizes more solution variables simultaneously. When deciding between
these variants, there is thus a tradeoff between the computation time for solving
a subproblem and the solution quality improvements achieved by solving it.

6.5.2.2 Product-Oriented Decompositions

In the product-oriented decompositions (PD) of the CLSD-S, there is one subprob-
lem for each product i 2 P . All product decompositions described in the following
are based on an obtained integer-feasible solution. In the basic product decomposi-
tion PD1, we optimize all variables required for removing those setups of product
i D i.s/ in the considered solution whose production does not overlap period bound-
aries. We let h.t/ denote the product that is produced immediately before i in period
t and k.t/ the product produced immediately after i in period t . PD1 allows to
remove the production of i in t and directly change over from h.t/ to k.t/. The set
eT i � f1; : : : ; T g contains all periods in which i is neither set up at the beginning nor
the end of the period in the considered solution. Thus, the variables to be optimized
are as follows:

Vopt
x;s D ˚

.h; i; �/ 2 Vx j i D i.s/ ^ � 2 eTi ^ h D h.�/
�[

˚
.i; k; �/ 2 Vx j i D i.s/ ^ � 2 eT i ^ k D k.�/

�[
˚
.h; k; �/ 2 Vx j � 2 eT i ^ h D h.�/ ^ k D k.�/

�
(6.45)

Vopt
z;s D ; (6.46)

An illustration of PD1 is given in Fig. 6.3(a): Assuming that the initial F&O
sequence is as indicated, PD1 allows to remove the setup of product 1 in period
1 by immediately changing over from product 4 to 2.

PD1 does not enable F&O to remove production lots of a product that stretch
over two or more periods. For this purpose, one can add additional variables to
the sets of variables to be optimized. This is done in the product decomposition
PD2, which was developed by (F. Sahling 2008, personal communication) for an
MLCLSP extension with sequence-dependent setups: Consider each production of
a product i that starts in a period ts with a changeover from another product h to i ,
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before solving subproblem

after solving subproblem

period

(a) PD1, subproblem for product 1

1 2

4 32 2 1

3 4

1 51

4 31 2 2 1 51 1

period

case 1after solving 
subproblem

1 2 3 4

4 32 2 3 53

4 2 2 5 53 5case 2

(b) PD2, subproblem for product 1

4 31 2 2 1 51 1before solving subproblem

before solving subproblem

period 1 2 3 4

6case 1 32 2 1 1 51

after solving 
subproblem

32 1 1 5

4 1

24 1 6 6

32 524 1 6 1 16

case 2

case 3

(c) PD3, subproblem for product 6

4 31 2 2 1 51 1

Fig. 6.3 Examples of possible “moves” in F&O using the different product-oriented
decompositions

stretches through potentially multiple periods ts; : : : ; te , and ends in period te with
a changeover from i to another product k. ts and te may also be successive periods,
i.e., the case where te D ts C 1 is included. PD2 ensures that F&O can do the
following two changes to the solution:

1. Entirely remove the production of i in periods ts; : : : ; te , and instead let h remain
set up until the beginning of te , where a changeover from h to k occurs.

2. Entirely remove the production of i in periods ts ; : : : ; te , and instead immediately
change over from h to k in ts , and let k remain set up until te or even later.

These two changes are demonstrated in Fig. 6.3(b), referring to the subproblem
corresponding to product i D 1: When removing the production of product 1 in
the periods ts D 2; : : : ; te D 4, one can either let product h D 3 remain set up until
period te D 4 where a fixed changeover to product 5 has to be performed (case 1),
or immediately change over from h D 3 to k D 5 in period ts D 2 (case 2).

In addition, for the case that h D k, we want to allow F&O a third type of change
that lets h D k remain set up from ts ; : : : ; te , without any changeovers in between.
Note that change 1 is not possible if a changeover to h from k or a product scheduled
after k in te is contained in the considered solution. Also, note that change 2 is
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not possible if a changeover from k to h or a product scheduled before h in ts is
contained in the considered solution.

In order to allow change 1, we add the index combinations of the following vari-
ables to Vopt

x;s and Vopt
z;s : xhits , xikte , xhkte as well as zi t and zht for all t D tsC1; : : : ; te .

For change 2, we have to add the index combinations of the following variables to
the sets: xhits , xhkts , xikte , as well as zi t and zkt for all t D ts C 1; : : : ; te . For change
3, we need to add xhits , xikte , as well as zi t and zht for all t D ts C 1; : : : ; te .

Compared with PD1, PD2 additionally includes all index combinations to Vopt
x;s

and Vopt
z;s required for allowing feasible changes 1 and 2.

In another product decomposition named PD3, we also allow to insert production
lots into periods where product i is not produced in the current, integer-feasible
solution. The insertion position in the current sequence of a period is not allowed
to be arbitrary, but only the cheapest insertion is allowed. This cheapest insertion is
determined based on the sequence-dependent setup costs in a manner similar to the
cheapest insertion heuristic for the TSP: Considering a product i and period t , we
insert i between a product h and product k that is immediately produced after h in
the production sequence in period t , i.e.,exhkt D 1. We chose those products h.i; t/

and k.i; t/ for which the setup cost �.h; i; k/ increase is the lowest:

�.h; i; k/ D fhi C fik � fhk (6.47)

.h.i; t/; k.i; t// D argminh;k2P jexhktD1 f�.h; i; k/g (6.48)

In the subproblem s for product i D i.s/, we iterate over all periods and, for each
period t where i is not produced in the current solution, add the index combinations
of the variables xh.i;t /;k.i;t /;t , xh.i;t /;i;t , and xi;k.i;t /;t to Vopt

x;s . Setup carry-over vari-
ables are not optimized, i.e., Vopt

z;s D ;. An example of the effect of PD3 is shown
in Fig. 6.3(c): As to the subproblem for product i D 6, PD3 allows to insert product
6 at the cheapest position in period 2, which we assume to be the position between
products 3 and 1 (case 1).

In PD3, we also incorporate the case where a product h is already set up at the
beginning of a period t during which i is not set up at any point and no changeover
occurs, and h remains set up until period t C 1 where a changeover to k occurs: We
allow to insert i between h and k by changing over from h to i in t and from i to k

in t C 1. That is, we allow to insert a product “into the carryover” between periods
t and t C 1. This is done by adding the index combinations of the variables xhit ,
xh;k;tC1, and xi;k;tC1 to Vopt

x;s , and adding zh;tC1 and zi;tC1 to Vopt
z;s . This is illustrated

in the case 2 in Fig. 6.3(c): Product 6 is inserted into the carryover from period 3

to 4, between products 1 and 5.
Also, we allow to insert i between two products h and k if a changeover from h

to k occurs in a period t and k remains set up in the entire period t C 1: The index
combinations of the variables xhit , xhkt , and xi;k;tC1 are added to Vopt

x;s and those of
zk;tC1 and zi;tC1 to Vopt

z;s . This change is named case 3 in Fig. 6.3(c): Product 6 is
inserted into the carryover from period 2 to 3, between products 3 and 1.
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In addition, let PD4 denote a decomposition that combines PD2 and PD3, i.e.,
for PD4 Vopt

x;s and Vopt
z;s are the union of the corresponding sets of PD2 and PD3.

6.5.2.3 Substitute-Oriented Decompositions

It might be useful to optimize the setups of a product and its substitutes simultane-
ously in order to properly incorporate substitutions in the solution process, rather
than optimizing the setup variables of the products sequentially, separately for each
product. Hence, we decided to implement and test decompositions that are based on
the substitution structure of the problem: For each demand class that can be satisfied
by � ı products, we define a subproblem that simultaneously optimizes the setups
of all substitutes for the demand class. Thus, the set of demand classes for which a
subproblem will be solved is defined as follows:

Dsd;ı D ˚
j 2 D j jPj j � ı

�
(6.49)

ı is a parameter with a default value of 2, which implies that subproblems are only
created for demand classes for which substitutions are actually possible. Instead,
one could also set ı D 1 so that subproblems are solved for all demand classes. This
could be useful if we want to entirely replace the product-oriented by a substitute-
oriented decomposition, and wish to optimize the binary setup variables of every
product in at least one subproblem.

This type of substitute-oriented decomposition can be based on either of the
product-oriented decompositions presented in the previous section. We use the name
SDı;	 to refer to the substitute-oriented decomposition that is based on PD	 and
uses the parameter value ı. In the subproblem associated with j 2 Dsd;ı , Vopt

x;s and
Vopt

z;s are the union of those sets of all subproblems of PD	 that correspond to
substitute products i 2 Pj of the considered demand class j .

6.5.3 Relax&Fix

The control flow of the implemented Relax&Fix heuristic is depicted in
Algorithm 6.1. In the following, we drop the indices x and z in symbols like Vx;s

and Vz;s to simplify the notation: V refers to the index combinations of all binary
variables (both xikt and zi t ), Vopt

s to the index combinations of all binary variables
to be optimized in a certain subproblem, etc. Also, we let Vopt

denote the index
combinations of binary variables that are optimized in the current state of the prob-

lem, and let V rel
denote the index combinations of binary variables that are relaxed

continuously.
In all its variants, R&F is based on a time-oriented decomposition. The algorithm

starts by calling function RelaxContinuous, which manipulates the problem
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so that all binary variables are relaxed continuously, i.e., added to Vrel
: The

subproblems s 2 STD are solved in ascending order of the indices of the
corresponding periods t.s/. To this end, function OrderByPeriodAscending
returns the subproblems of the specified time-oriented decomposition in ascending
order of the period indices. The subproblems are saved in that order in list LS. The
algorithm iterates over all subproblems d 2 STD .

In every iteration, it first calls function ClearChanges to clear all changes
that were performed on the problem by removing relaxations or fixations of binary
variables, i.e., by adding all binary variables to the set Vopt

; resp. After that, it
calls function Solve to run an MIP solver on the problem with the current fixa-
tions and relaxations of binary variables. If no feasible solution to the subproblem
can be found within a specified time limit, the algorithm stops and returns with-
out a feasible solution. Otherwise, function FixToCurrentValues is used to
fix all binary variables optimized in the subproblem to their current values, i.e.,
either 0 or 1.

The algorithm terminates normally after all subproblems of the time-oriented
decomposition have been solved. The R&F heuristic may be combined with either
of the time-oriented decompositions TD1, TD2, an TD3.

Algorithm 6.1: Relax&Fix heuristic

Input : Problem instance, time-oriented decomposition TD

Output: Feasible solution if found
RelaxContinuous(V);1
LS  OrderByPeriodAscending(STD);2
foreach s 2 LS do3

ClearChanges(Vopt
s );4

(status, solution) Solve();5
if statusD TimeLimitExceeded then6

return (status, ;);7
end8

FixToCurrentValues(Vopt
s );9

end10
return status, solution;11

6.5.4 Fix&Optimize

This section describes the general control flow of the implemented Fix&Optimize
and also delineates priority rules for the decompositions given in Sect. 6.5.2.
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6.5.4.1 Algorithm Scheme

Algorithm 6.2 outlines the control flow of Fix&Optimize. The algorithm starts
by generating an initial feasible solution using a specified function Generate
InitialSolution as described in Sect. 6.4. If this function succeeds in find-
ing a solution, all binary variables are fixed to their values in that solution. After
that, the algorithm applies several decompositions in their order in the list LD. For
each decomposition d 2 LD, it iterates over all subproblems s 2 Sd . The order in
which the subproblems are considered is determined by a priority rule PRd . The
subproblems are solved in descending order of their priority values. This order is
determined and saved in the list L.

For each subproblem s, the following steps are performed: First, save the current
fixations of binary variables. Second, clear all fixations of variables contained in
Vopt

s . Third, solve the subproblem using an MIP solver. If no feasible subproblem
solution is found within a specified time limit, the algorithm stops. Otherwise, it
checks whether the found solution should be accepted using a criterion specified in
a function Accept. If yes, the optimized variables are fixed to their values in the
new solution. If not, the solution is discarded and the variable fixations that were
cleared for solving the subproblem are restored. The algorithm terminates normally
after all subproblems of all decompositions have been solved.

For the sake of simplicity, we will use an Accept function that accepts all new
solutions. As a “warm start” from the current solution is performed for every sub-
problem, the new solution will be identical to or better than the current solution. In
contrast, Sahling et al. (2009) use a more complex Accept function: As long as
no capacity-feasible solution (i.e., with zero overtime in all periods; see Sect. 6.3.2)
has been found, every better new solution is accepted. As soon as a first capacity-
feasible solution has been found, it only accepts better capacity-feasible solutions.
However, there might not be a need to do so if the overtime costs are set sufficiently
high, as this acceptance criterion makes the F&O implementation more complex.

Note that F&O can be interpreted as a local search algorithm (Hoos and Stützle,
2005) in which the neighborhood of a solution is determined by the variables in
Vopt

s to be optimized in the current subproblem of the used decomposition: The
neighborhood of a solution is implicitly given by the integer-feasible solutions to the
current subproblem. “Moves” are performed by fixing binary variables to their new
values after solving a subproblem. If each of its subproblems is solved to optimality,
F&O can be seen as a local search with best-fit neighbor selection.

F&O has a certain analogy to the metaheuristic Variable Neighborhood Search
(VNS) (Hansen et al., 2008): Each of the subproblems of each of the decompositions
d 2 LD implicitly defines a neighborhood, and moves using these neighborhoods
are executed in sequential order. Similarly, VNS uses multiple neighborhoods and
changes between these to “escape” local optima. However, the described F&O algo-
rithm scheme does not repeatedly switch back and forth between neighborhoods as
possible in VNS.
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Algorithm 6.2: Fix&Optimize heuristic

Input : Problem instance, list of decompositions LD, subproblem priority rule PRd for
each decomposition d

Output: Feasible solution if found
(status, solution) GenerateInitialSolution();1
if statusD TimeLimitExceeded then2

return (status, ;);3
end4
FixToCurrentValues(V);5
foreach d 2 LD do6

L OrderUsingPriorityRule(Sd , PRd);7
foreach s 2 L do8

SaveFixedValues(Vopt
s );9

ClearChanges(Vopt
s );10

(status, solution) Solve();11
if statusD TimeLimitExceeded then12

return (status, ;);13
end14
if Accept(solution) then15

FixToCurrentValues(Vopt
s );16

else17

RestoreFixedValues(Vopt
s );18

end19

end20

end21
return status, solution;22

6.5.4.2 Priority Rules

For each of the decompositions, several potential priority rules come into question.
We decided to use/compare the following priority rules:

� Time-oriented decompositions: Always consider the subproblems in ascending
order of the period indices 1; : : : ; T .
� Product-oriented decompositions

– Consider subproblems in ascending order of the product numbers i 2 P

(PRi;ASC ). This rule that only depends on the (arbitrary) numbering of the
products serves as a comparison to assess the following two rules.

– Consider subproblems in descending order of the number of demand classes
jDi j that the corresponding product i can fulfill (PRjDi j;DESC ).

� Substitute-oriented decompositions

– Consider subproblems in ascending order of the demand class numbers
j 2 D (PRj;ASC ).
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– Consider subproblems in descending order of the number of substitutes
jPj j that are available for the corresponding demand class j (PRjPj j;DESC ).
This rule is based on the idea that substitutions should first be considered
for demand classes with a high number of substitutes.

6.5.4.3 Generating Initial Feasible Sequences

An implementation of the function GenerateInitialSolution is required
for the F&O heuristic. In contrast to the ML-CLSP where a trivial initial fixation
with all binary setup variables fixed to 1 always has a feasible solution, this approach
is not practicable for the CLSD: If we set all xikt and zi t to 1, the resulting sub-
problem will be infeasible. Hence, it is required to generate an initial production
sequence containing all products for every period to ensure that the problem has a
feasible solution. A trivial yet suboptimal way of doing so would be to randomly
generate a production sequence for period 1 that starts with the product set up ini-
tially and contains all products, then carry over the last product in that sequence to
the second period, again create a random sequence with all products in period 2, etc.

Another approach is to generate a good production sequence with all products (a
cycle) by solving an ATSP as described in Sect. 6.4. After obtaining a cycle with
all products by running the LKH heuristic (Helsgaun, 2000, 2007) one can easily
generate a sequence as follows (F. Sahling 2008, personal communication): Start
with the product set up initially (with zi1 D 1), and then repeat the setup cycle again
and again throughout all periods – setting up each product exactly once in each
period.

6.5.5 Two-Stage Relax&Fix / Optimize Algorithm

Alternatively to using the ATSP approach sketched in Sect. 6.5.4.3 for generat-
ing initial sequences in F&O, one can use R&F for generating an initial feasible
solution. This can easily be done by inserting the R&F heuristic into the function
GenerateInitialSolution. This results in a two-stage algorithm, which first
generates an initial feasible solution using R&F and then uses F&O for further
improving the solution. We will refer to this combination of the two approaches
by the term Relax&Fix&Optimize (R&F&O).

6.5.6 Time Limit and Stopping Criterion for Subproblems

When solving medium- or large-size CLSD-S instances with either of the MIP
heuristics described in this chapter, it might not be advisable to solve each of the
subproblems to optimality because this could take hours just for a single instance.
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Hence, it makes sense to specify a different stopping criterion for R&F/F&O
subproblems. One simplistic approach is to set an overall, absolute time limit TL for
the MIP heuristic (e.g., 5 min), and divide this time equal among all subproblems:
Assuming that there are in total ns subproblems to be solved, the time limit for each
subproblem is set to TL=ns . However, in this way, one would risk that the heuristic
terminates after TL=ns time units without a feasible solution because no feasible
solution to the first subproblem has been found within this time limit, even though
the absolute time limit TL has not been exceeded yet.

Hence, we try to invest this computational budget in a smart way, Again, an
overall time limit TL is given. At any point, the heuristic aims at allocating the
remaining time T r equally to the nr

s remaining subproblems to be solved. Based on
this idea, it determines a specific subproblem time limit T r=nr

s for each subproblem
before solving it. If no feasible solution to the current subproblem has been found
by the MIP solver within T r=nr

s , the algorithm keeps solving this subproblem until
TL is exceeded or a feasible solution to the subproblem has been found. If, instead,
a feasible solution to the subproblem is found by the MIP solver earlier than T r=nr

s ,
the heuristic lets the MIP solver keep running to improve the solution until the sub-
problem time limit T r=nr

s is reached. If an optimal solution to the subproblem is
found earlier than T r=nr

s , the leftover time budget is divided among the remaining
subproblems.

6.6 Computational Experiments

In this section, we analyze the solution quality and performance of several R&F and
F&O variants and compare them with a standard MIP solver. In detail, we examine
the following research questions:

1. Do substitutions occur in the solutions yielded by the algorithms?
2. Do the MIP heuristics work better than a standard MIP solver?
3. Which R&F or F&O variant performs best in terms of solution quality and/or

performance?

In the following, we first describe the employed test instance generator in
Sect. 6.6.1. Section 6.6.2 explains the design of our computational experiments.
Section 6.6.3 specifies the algorithm variants that we compare in the experiments.
The computational results are presented and interpreted in Sect. 6.6.4.

6.6.1 Problem Instances

We could not obtain sufficient problem data for solving the real-world CLSD-S
application in windshield interlayer production planning (see Sect. 3.1) from the
company. This was on one hand due to difficulties of gathering the required data,
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on the other hand due to reasons of confidentiality. Hence, we decided to generate
problem instances artificially, while trying to make their structure as realistic as pos-
sible. We made the instances difficult by setting capacities rather tight and ensuring
that substitution decisions are nontrivial.

The notation used for describing the instance generator is given in Table 6.3.
Most distribution assumptions of the test instances are contained in Table 6.4, the
more complex assumptions are delineated in the following.

Every instance has the same number of products and demand classes and every
demand class corresponds to a product, i.e., m D n and P D D. Each product can
be described by values of several features f 2 F . We assume that feature values are
integer and � 0, and distinguish three groups of features:

1. Features for which substitutions are not allowed, in the sense that a feasible sub-
stitute k has to have the same value for each of these features of product i :

f k D 
f i 8 FNO � F .

2. Features for which downward substitution is possible, i.e., it is required that a
feasible substitute k has to have the same or a higher value for each of these
features than product i : 
f k � 
f i 8FDW � F . Higher values of a feature mean
that the feature value is higher in downward substitution hierarchy.

3. Features for which downward substitution of a product i is possible, but only by
a substitute product k whose corresponding feature value is maximally 1 higher:

f k D 
f i _ 
f k D 
f i C 1 8 FDWC1 � F .

Note that the LSP-SI and MR-CLSP-S instances with general substitution described
in Sect. 5.5.1 also assume a substitution structure based on product features: In these
instances, one product can substitute another if its width and height are greater than
those of the other product.

Based on the application in windshield interlayer production planning mentioned
in Sect. 3.1, we assume that there are nf D 3 features, namely the mix, thickness,
and width of the foil. We excluded the attributes roughness, cooling, and packaging
in order to get medium-size instances where substitution options exist. If we had
included those in addition, only few substitution options would be generated, as the
chance that a product can substitute another gets smaller with an increasing number
of attributes. The distribution assumptions and substitution characteristics for the
features are contained in Table 6.5. U int .a; b/ stands for a uniform distribution with
integer values between a and b.

The idea for generating the unit cost data is as follows: We assume that the unit
cost pi of a product i is a linear function of its feature values 
f i except for feature
1 (mix), which has a special meaning: A certain unit cost base value pb


 is associated
with each of its possible values. For all other features, a weight wp

f (which could also
be negative) is multiplied with the value 
f i . The overall unit cost of a product i is
obtained by summing up the unit cost base and all of the weighted feature values:

pi D pb

1i

C
X

f 2F nf1g
wp

f 
f i (6.50)

The unit cost base values for feature 1 are set as follows: pb
0 D 5 and pb

1 D 10.
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Table 6.3 Notations for CLSD-S instance generator

Symbol Definition

Constants
nf Number of features

Indices and sets
f 2 F D ˚

1; : : : ; nf

�
Features

FNO � F Features for which substitutions are only possi-
ble by products with an identical value for this
feature

FDW � F Features for which downward substitution is pos-
sible

FDW C1 � F Features for which downward substitutions of a
product i are possible, but only by a substi-
tute product k whose corresponding feature
value is maximally 1 higher, i.e., 
f k D 
f i

or 
f k D 
f i C 1

Parameters
pb


1i
Unit cost base for products with value 
1i for

feature 1

wp

f Cost weight for feature f

wc
f Conversion effort weight for feature f

ws
f Changeover effort weight for feature f

˛ Production times weight for generating capacities
ˇ Setup times weight for generating capacities
� “Capacity availability” factor
Random values

f i Value of feature f of product i

N �0.�; �/ Normal distribution with values <0 are cut
off, i.e., it repeatedly samples values from
a N.�; �/ distribution until a value �0 is
returned

Derived values
!st , !f Auxiliary values
stcycle Total setup time of setup cycle corresponding to

TSP tour that contains all products
Kmin;p Total capacity required for producing the approx-

imate net demand (incorporating initial and
final inventories) for all products excluding
setup times

Kmin;s Approximate total capacity required for
changeovers if each product is produced
in every period

K
min

Approximate required capacity per period
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Table 6.4 Instance generator settings

Parameter Assumption

Demand Normally distributed, stationary over time, but different
mean � and variation coefficient �=� for each
demand class: 	 N �0.�; �/ with � 	 N .50; 20/

and �=� 	 N .0:2; 0:1/

Setup cost See (6.55)
Unit cost See (6.50)
Substitution cost See (6.51)
Holding cost 2% of the unit cost
Initial setup state Resource is set up for randomly chosen product

Initial inventory 	 U int .1:5�i ; 4�i / with �i D 1
T

TP
tD1

dit

Final inventory 4�i with �i as defined above
Resource consumption �

p
i 	 N .20; 5/

Setup times See (6.54)
Capacities See (6.58)
Lost sales cost 500 times as high as the production cost of the preferred

product of the demand class
Overtime cost 100 per capacity unit and period

Table 6.5 Assumptions for distributions and characteristics of product features

Feature Name Distribution Substitution w
p

f wc
f ws

f

1 Mix U int .0; 1/ No substitution – – 0.5
2 Thickness U int .0; 2/ Downward, diff. � 1 1.5 0.5 0.5
3 Width U int .70; 100/ Downward 0.3 0.2 0.05

The product substitution ratios aij are assumed to be 1 in all cases. We calculate
the conversion cost for feasible substitutions using feature weights wc

f that indicate
the conversion effort when substituting a product by another product that has a dif-
ferent value for feature f (see Table 6.5). The underlying assumption is that the
more the features of a product and its substitute differ, the higher the conversion
effort. The conversion cost for feasible conversions .i; k/ 2 E is calculated by the
following equation, where X is a random variable with the distribution N.5; 3/:

rik D

0
B@

1P
f 2F

wc
f

�
X

f 2F

(
wc

f if i ¤ k

0 if i D k

1
CA � X (6.51)

The sequence-dependent setup times and costs are generated using changeover
effort weights ws

f that denote how much the setup cost and time for changing from
one product i to another product k depends on whether k has a different value for
feature f than i (see Table 6.5). We assume that the setup costs components sum
up if i and k differ in multiple features, whereas the setup time only depends on
the differing feature that causes the highest effort. That is, we assume that the setup
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activities for changing multiple features can be parallelized. Hence, a sum is used
in (6.53) and a maximum operator in (6.52).

In order to generate stik and fik , we first sample random numbers Y from a
normal distribution N�0.1; 0:2/ with values < 0 cut off. Using these random num-
bers, both stik and fik are calculated using the same random value, so that they are
correlated:

!st D 1

max
n
ws

f j f 2 F
omax

n
ws

f j f 2 F; 
f i ¤ 
f k

o
(6.52)

!f D 1P
f 2F

ws
f

X

f 2F j 
f i¤
f k

ws
f (6.53)

stik D !st � 4000 � Y (6.54)

fik D !f � 40000 � Y (6.55)

Resource capacities are set in a way that they are, averaged over all periods, corre-
lated with the capacities required for a feasible production plan without overtime.
The tightness of the capacities can be adjusted by instance generator parameters.

The procedure for generating the capacities is as follows: We first calculate the
minimum resource capacity required for producing sufficient quantities of each
product to fulfill the net demand, while considering initial and final inventories in
an approximate way that ignores potential substitutions:

Kmin;p D
X

i2P

�
p
i

 
TX

tD1

dit � Ii0 C I
f
i

!
(6.56)

The corresponding capacity consumption by setups is estimated by the total setup
time of a good setup cycle containing all products. This is done by solving an ATSP
with the LKH heuristic where, roughly speaking, one city exists for each product
and the transportation costs equal the sequence-dependent changeover times (for
details see Sect. 6.4). With stcycle denoting the total length of the obtained tour and
assuming that each product is produced in every period, the capacity consumption
by setups is estimated as follows:

Kmin;s D T � stcycle � m � 1

m
(6.57)

The term .m � 1/=m is required because, if every product is set up in every period,
there are on average .m � 1/=m changeovers per period. Kmin;s overestimates the
capacity consumption by setups because, usually, only a subset of the products will
be set up in each period. Hence, we weight Kmin;p with a factor ˛ D 1:0 and Kmin;s

with a factor ˇ D 0:4 and weight the sum with the capacity availability factor
� D 1:2 to obtain an approximate required capacity for product i . We then divide
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by the number of periods to obtain an approximation of the required capacity K
min

per period:

K
min D 1

T
� � � �˛ � Kmin;p C ˇ � Kmin;s

�
(6.58)

Using these values, we generate the resource capacities Kt by setting all of them to

K
min

.

6.6.2 Experimental Design

The setup for our experimental design is as follows: As real-world instances of the
CLSD-S were not available, we use the instance generator described in Sect. 6.6.1
to generate synthetic instances. The generated instances are of medium size, they
contain 20 products and 10 periods. We generate 20 problem instances to ensure
that the comparison of algorithm variants is not skewed due to a non-representative
sample of instances. This is done using the base case parameters of the instance
generator. Several factors of this instance generator could be varied in further exper-
iments, e.g., the tightness of capacities and the setting whether overtime and/or lost
sales are allowed.

ILOG CPLEXr 11.2 is used for solving CLSD-S instances and subproblems
in R&F and F&O. All problems and subproblems are not solved to optimality, but
a relative MIP gap tolerance of 10�4 (default setting) is used. The overall, abso-
lute time limit for each MIP heuristic is 5 min. The stopping criterion described in
Sect. 6.5.6 is used to determine subproblem time limits based on the remaining time
and remaining number of subproblems to be solved: CPLEXr is configured in a
way that after this subproblem time limit, it stops solving a subproblem as soon as
an integer-feasible solution to it has been found. If no feasible solution to a sub-
problem has been found until the absolute time limit is reached, the heuristic returns
without a feasible solution.

The running times reported in the following include everything, i.e., the running
times of CPLEXr used for solving subproblems as well as those of our heuristics
and those of the LKH heuristic used for solving ATSPs to generate initial sequences
in F&O. The algorithms and experiments were implemented in JavaTM and run on
a computer with 2:0 GHz Intelr Pentiumr Dual-Core CPU, 2 GB memory and
Windows VistaTM.

6.6.3 Solution Approaches

In our computational experiments, we compare the following algorithms:

� CPLEXr B&C with the standard time limit of 5 min (termed CPXstd )
� CPLEXr B&C with a longer time limit of 1 h to obtain a good lower bound

(referred to by CPX1h)
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� R&F with decompositions TD2 and TD3 (termed RFTD2 and RFTD3)
� Several variants of F&O and R&F&O, which either use the LKH heuristic to

generate an initial fixation or R&F with TD2

Tables 6.6 and 6.7 describe all of these algorithm variants in detail, along with
the names used for referring to them in the following. Note that the substitute
decomposition of an algorithm variant is always based on its specified product
decomposition. Thus, if the column “SD” contains the value 2 and the column “PD”
the value 4, this means that the used substitute decomposition is based on PD4 and
uses ı D 2, i.e., we use SD2;4.

We will explain the content of the table by exemplarily describing algorithm
variant RFOTPS;B : The strings “RFO” and “TPS” in its name mean that it is an
R&F&O heuristic that first runs R&F, then F&O with a time-oriented decomposi-
tion, after that with a product-based decomposition, and finally with a substitute-
oriented decomposition. “B” indicates that the algorithm configuration is variant
“B” in the group of R&F&O algorithm variants with time-, product- and substitute-
oriented decomposition that we run in our experiments. RFOTPS;B is run with a
5 min time limit. It uses TD2 in R&F and TD3 in the F&O stage. Decomposition
PD4 is used with priority rule PRjDi j;DESC , and finally, decomposition SD2;4 is
used with priority rule PRjPj j;DESC .

The reasoning behind the choice of algorithm variants in Tables 6.6 and 6.7 is
as follows: Algorithm CPXstd is used as a comparison to see whether the heuris-
tics actually return better solutions than CPLEXr within the same computational

Table 6.6 Algorithm variants (1/2)

Name Type Time R&F F&O PD PD SD SD Decomposition
limit TD TD priority priority order
(min) rule rule

CPXstd B&C 5 – – – – – – –
CPX1h B&C 60 – – – – – – –
RFTD2 R&F 5 2 – – i; ASC – – –
RFTD3 R&F 5 3 – – i; ASC – – –
FOP;A F&O 5 – – 1 i; ASC – – P
FOP;B F&O 5 – – 2 i; ASC – – P
FOP;C F&O 5 – – 4 i; ASC – – P
FOP;D F&O 5 – – 4 jDi j; DESC – – P
FOS;A F&O 5 – – 1 i; ASC 2 j; ASC S
FOS;B F&O 5 – – 1 i; ASC 1 j; ASC S
FOS;C F&O 5 – – 1 i; ASC 1 jPj j; DESC S
FOS;D F&O 5 – – 4 i; ASC 2 j; ASC S
FOS;E F&O 5 – – 4 i; ASC 1 j; ASC S
FOS;F F&O 5 – – 4 i; ASC 1 jPj j; DESC S
FOT;A F&O 5 – 1 – – – – T
FOT;B F&O 5 – 3 – – – – T
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Table 6.7 Algorithm variants (2/2)

Name Type Time R&F F&O PD PD SD SD Decomposition
limit TD TD priority priority order
(min) rule rule

FOTP;A F&O 5 – 3 4 i; ASC – – T!P
FOTP;B F&O 5 – 3 4 jDi j; DESC – – T!P
FOTS F&O 5 – 3 4 i; ASC 1 jPj j; DESC T!S
FOTPS;A F&O 5 – 3 4 i; ASC 2 jPj j; DESC T!P!S
FOTPS;B F&O 5 – 3 4 jDi j; DESC 2 jPj j; DESC T!P!S
FOTPS;C F&O 5 – 3 3 i; ASC 2 jPj j; DESC T!P!S
FOTPS;D F&O 5 – 3 3 jDi j; DESC 2 jPj j; DESC T!P!S
FOTPS;E F&O 5 – 3 1 i; ASC 2 jPj j; DESC T!P!S
FOTPS;F F&O 5 – 3 1 jDi j; DESC 2 jPj j; DESC T!P!S
RFOT R&F&O 5 2 3 – i; ASC – – T
RFOTS R&F&O 5 2 3 4 i; ASC 1 jPj j; DESC T!S
RFOTPS;A R&F&O 5 2 3 4 i; ASC 2 jPj j; DESC T!P!S
RFOTPS;B R&F&O 5 2 3 4 jDi j; DESC 2 jPj j; DESC T!P!S

budget. CPX1h serves to yield good lower bounds and to obtain a good solution to
judge the solutions returned by the MIP heuristics.

The R&F variants RFTD2 and RFTD3 are executed to see whether they can
compete with the F&O heuristics.

After that, we examine several variants of F&O that only use one of the three
types of decompositions, i.e., either a time-, product- or substitute-oriented decom-
position (FOT;ı, FOP;ı, and FOS;ı, where ı stands for an arbitrary variant of
the algorithm type). For each of the decomposition types, multiple configurations
with different variants of the decomposition type and different priority rules are
considered.

Also, we examine F&O variants in which either a product- or substitute-oriented
decomposition is executed after a time-oriented decomposition (FOTP;A, FOTP;B ,
and FOTS ). As a further variant, we consider F&O variants in which the time-
oriented decomposition is run first, after that a product-oriented and finally a
substitute-oriented decomposition (FOTPS;ı).

Based on the experiences regarding the F&O variants, we then compare four
R&F&O variants that are based on settings which performed well for F&O.

6.6.4 Results and Interpretation

Table 6.8 describes the symbols used for presenting the computational results. We
define the ˇ service level as follows:

ˇ-SL D 1 �

TP
tD1

P
j2D

ojt

TP
tD1

P
j2D

djt

(6.59)
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Table 6.8 Notations for computational results

Symbol Definition

rtmed Median running time (minutes)
rtmin Minimum running time (minutes)
rtmax Maximum running time (minutes)
rf Proportion of instances for which a feasible solution (may require

overtime or backlogging) has been found by the algorithm (in %)
rdf Proportion of instances for which a feasible solution without backlogging

has been found by the algorithm (in %)
rcf Proportion of instances for which a feasible solution without overtime

has been found by the algorithm (in %)
rcdf Proportion of instances for which a feasible solution with neither

overtime nor backlogging has been found by the algorithm (in %)
rsubst Average proportion of substituted demand in feasible solutions (in %)
gap Average relative MIP gap of feasible solutions to best known lower

bound (in %)

dev
best

Average deviation from best feasible solution found by any of the
algorithms (in %)

ˇ-SL Average ˇ service level in feasible solutions (in %)
rot Average proportion of periods with overtime in feasible solutions (in %)

The results of the experimental design are summarized in Tables 6.9 and 6.10.
The findings w.r.t. the behavior of CPLEXr were as follows: When run with a
5 min time limit (CPXstd ), CPLEXr returned a feasible solution for only 13 out
of 20 instances. The solution quality of CPXstd was rather poor, with an average
relative MIP gap of 1,794.19% in feasible solutions. Also, most of the solutions (17
out of 20) still contained overtime or lost sales. Using a 1 h time limit (CPX1h),
the solution quality was much better. The average gap to the best solution found
for an instance (by any of the algorithm variants) was only 1:10%, i.e., compared
with all other algorithm variants, CPX1h found the best solution in the majority of
cases. However, the average gap was 29:24%, and CPX1h did not even find a single
feasible solution for 4 out of 20 instances. Also, CPX1h could not find an optimal
solution for any of the instances. Hence, all reported relative MIP gaps are based
on the best known lower bound, not on the optimal objective value. Thus, the exact
optimality gaps are likely smaller than the gaps stated in the following.

Comparing the average substitution ratio in solutions yielded by CPXstd and
CPX1h, one can see that it drops from 10:48% in the bad solutions obtained by
CPXstd to 3:87% in the better solutions of CPX1h. This might indicate that a high
substitution ratio is correlated with lower solution quality for the considered type of
instances.

Regarding R&F, variants RFTD2 and RFTD3 returned feasible solutions for all
instances. RFTD2 with time decomposition TD2 yielded better solutions than variant
RFTD3 that uses the overlapping time decomposition TD3: Its running times were
somewhat lower, and its average gap of 185:40% was better than the average gap of
498:12% of RFTD3 . This might be due to the increased number of binary variables
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in subproblems of TD3, which seems to make them harder to solve and not worth
the effort. Hence, we decided to use time decomposition TD2 for the R&F stage of
all R&F&O variants.

Considering the F&O variants that only use the product-oriented decomposition
(FOP;ı), we found that the running times were very low for all of them (below 4 s).
However, the resulting solution quality was rather poor, with all average gaps greater
than 1,500%. None of the obtained solutions were capacity-feasible, i.e., all of them
required overtime. The variants PRi;ASC and PRjDi j;DESC did not differ much. The
observations for F&O variants that only use the substitute-oriented decomposition
(FOS;ı) were similar: They only required a few seconds of running time, but all
average gaps were around 1,500%, and all solutions still required overtime.

In contrast, the two F&O variants FOT;A and FOT;B that only use a time-oriented
decomposition performed better in terms of solution quality: FOT;A required median
running times around 100 s, and returned feasible solutions for all instances, with
an average gap of 191:85%. For 19 out of 20 instances, the solution contained no
overtime. However, the average ˇ service level of 99:65% was rather poor, i.e.,
significant lost sales occurred in the solutions. FOT;B was clearly better than FOT;A:
It returned solutions with an average relative MIP gap of 73:42% and an average gap
of 32:36% to the best found solution, while requiring slightly higher running times
(median: 161:7 s). Thus, the overlapping time decomposition TD3 seems to work
better with F&O than the non-overlapping TD1. This is contrast to R&F, where
the non-overlapping TD2 yielded better results than TD3. For F&O, the increased
number of binary variables in subproblems of TD3 compared to TD1 appears to be
rewarded by higher solution quality. Hence, we decided to employ TD3 in the F&O
stage of all F&O variants that use a time-oriented decomposition.

When running a product-oriented after a time-oriented decomposition (variants
FOTP;A and FOTP;B ), we observed that the resulting solution quality of both of them
was similar to FOT;B , with the main difference, that the percentage of demand-
feasible solutions (i.e., solutions without lost sales) was higher for FOTP;ı than for
FOT;B . The running times of FOTP;ı were somewhat lower than those of FOT;B

(a median of about 80 s for FOTP;ı vs. about 160 s for FOT;B ). This is presum-
ably because the time allocated to each subproblem is smaller in FOTP;ı due to
the higher number of subproblems, and some of the subproblems of the product-
oriented decomposition could be solved quickly. FOTP;B on average returned better
solutions than FOTP;A, which suggests that PRjDi j;DESC works better than PRi;ASC

here.
For an F&O variant that runs a substitute-oriented decomposition after a time-

oriented decomposition (FOTS ), we found that the running times were similar to
those of FOTP;A and FOTP;B , and the solution quality was minimally worse.

As to the F&O variants that sequentially run a time-, product- and substitute-
oriented decomposition (FOTPS;ı), we made the following observations: They
clearly work better with product- and substitute-oriented decomposition based on
PD3 or PD4 (which combines PD2 and PD3) instead of PD1. This indicates
that the additional solution changes enabled by PD2 and PD3 are of use in the
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algorithm. PRjDi j;DESC does not clearly perform better than PRi;ASC and vice
versa.

For FOTPS;A–FOTPS;D , the solution quality was comparable to FOT;B and
FOTP;ı. Though, one positive difference was that FOTPS;C yielded a higher per-
centage of both capacity- and demand-feasible solutions than FOT;B and FOTP;ı
(80% vs. 45% / 75% / 65%).

When comparing FOT;ı, FOP;ı, and FOS;ı, it appears that the time-oriented
decomposition is the most effective one for the considered CLSD-S instances.
The solutions get slightly better w.r.t. to the ˇ service level and required over-
time when executing a product- and/or substitute-oriented decomposition after the
time-oriented decomposition (see, e.g., FOTPS;C ).

None of the R&F&O variants (RFOı) appears competitive with the good F&O
variants. In fact, all of them worked even worse than the simple RFTD2 regarding
both running times and solution quality. This is likely caused by the fact that the
number of subproblems is very high in RFOı, especially in RFOTPS;ı, which con-
tains T CT CjP jC jDsd;ı j subproblems. Therefore, the total time budget has to be
divided among a large number of R&F and F&O subproblems, so that the time bud-
get allotted to each subproblem might get too small to find good solutions. However,
RFOT returned a high percentage of both capacity- and demand-feasible solutions
(80%).

6.7 Summary and Conclusions

In this chapter, we considered a dynamic capacitated lot-sizing and scheduling prob-
lem with sequence-dependent setups and substitutions, the CLSD-S. The model
assumptions were derived from a practical application in windshield interlayer
production planning. After formulating the problem as an MILP model, we dealt
with the topic of determining efficient or good production sequences. These are
required for generating initial feasible solutions for Fix&Optimize, which is one of
the CLSD-S MIP heuristics developed in Sect. 6.5. The described Fix&Optimize
algorithm can make use of three types of decompositions: Time-, product-, and
substitute-oriented decompositions. In addition to Fix&Optimize, we also devised
Relax&Fix heuristics, which use only a time-oriented decomposition, and a hybrid
of the two heuristic types named Relax&Fix&Optimize.

A main finding was that the R&F and F&O heuristic principles could easily
be adapted for incorporating substitutions as they are very generic, and the inclu-
sion of substitution options does not change the structure of the lot-sizing problem
concerning its binary variables.

We conducted computational experiments by running several variants of the MIP
heuristics on synthetic instances created by an instance generator, which is docu-
mented in Sect. 6.6.1. Summing up, the main conclusions from the computational
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experiments are as follows:

� The best variants of the MIP heuristics were able to find feasible solutions
with an average relative MIP gap of circa 75% for about 80% of the generated
instances, which contain 20 products and 10 periods.
� The solutions found by CPLEXr within 1 h are on average better than those

of all MIP heuristics, with an average relative MIP gap of 29:24%. Compared
with all MIP heuristic variants, CPX1h found the best solution in the majority
of cases. However, CPX1h could not find a feasible solution for 20% of the
instances.
� F&O with time-oriented decomposition seems superior to R&F and R&F&O in

terms of running times and solution quality.
� The relative MIP gaps of the solutions returned by well-performing F&O vari-

ants are still rather high for the considered type of instances (e.g., 72:65% for
FOTP;B ).
� R&F works better with the non-overlapping time decomposition TD2 than with

the overlapping time decomposition TD3.
� Regarding the time-oriented decomposition in F&O, the overlapping time

decomposition TD3 performs better than the non-overlapping time decompo-
sition TD1.
� As to the product-oriented decomposition in F&O, PD3 and PD4 seem to yield

better results than the simple PD1. Concerning the priority rules, PRjDi j;DESC

and PRi;ASC lead to similar results.
� The considered variants of F&O with only a substituted-oriented decomposition

did not differ much in terms of solution quality and performance.
� In general, the time-oriented decomposition in F&O seems to have the highest

positive impact on solution quality regarding the CLSD-S. Adding the product-
and/or substitute-oriented decomposition apparently increases the probability
that a solution without overtime and lost sales will be found.
� The F&O variants found to perform best seem able to generate feasible solutions

for medium-sized instances in less than 100 s, with a solution quality that is not
outstanding, but at least acceptable.



Chapter 7
Multi-Level Lot-Sizing Models with Flexible
Bills-of-Materials

In this chapter, we develop two lot-sizing models for multi-level production with
flexible BOMs:

� The Multi-Level Capacitated Lot-Sizing Problem with Substitution (MLCLSP-
S), which is an extension of the MLCLSP (see Sect. 2.1.6) and uses hypergraphs
to model substitution
� General Lot-sizing and Scheduling Problem for Multiple production Stages

with Flexible Production Sequences (GLSPMS-FPS), which is an extension of
the GLSPMS (see Sect. 2.1.7) that uses STN (see Sect. 3.2.4) to model flexible
production sequences and flexible BOMs

The purpose of the former model, the MLCLSP-S, is to show how flexible BOMs
modeled by hypergraphs can be integrated in multi-level lot-sizing models. The
MLCLSP-S would be suitable for applications with discrete products and assem-
bly structures, but is less appropriate for flexible production structures as they
can be found in the process industries. The model cannot map flexible production
sequences.

The latter model, the GLSPMS-FPS, uses a more general approach for modeling
both flexible BOMs and flexible production sequences. It can also map by-products
and offers all advantages that the GLSPMS has compared to the MLCLSP (see
Sect. 2.1.8).

7.1 The Multi-Level Capacitated Lot-Sizing Problem
with Substitutions

The Multi-Level Capacitated Lot-Sizing Problem with Substitutions (MLCLSP-S) is
an extension of the MLCLSP (see Sect. 2.1.6) by flexible BOMs. The model was
developed with an application with discrete products, an assembly structure and
flexible BOMs in mind.

J. C. Lang, Production and Inventory Management with Substitutions,
Lecture Notes in Economics and Mathematical Systems 636,
DOI 10.1007/978-3-642-04247-8_7, c� Springer-Verlag Berlin Heidelberg 2010
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7.1.1 Assumptions

The assumptions of the MLCLSP-S can be summarized as follows:

� Lot-sizing for multiple, discrete products (set of products P ).
� The set of products contains components as well as assemblies.
� All parameters are deterministic.
� Single-level time structure.
� Finite time horizon with T periods.
� An arbitrary number of products can be set up in each period, provided that

their setup times fit into the capacity (big bucket model).
� No scheduling (sequencing) of products within periods (resulting from the

model assumptions, all permutations of the products’ lots within a period result
in the same objective value).
� Demand refers to demand classes (set of demand classes D).
� The set of demand classes contains internal demand classes (abstract products)

as well as external demand classes (see Sect. 3.2.3).
� Time-varying demand of demand classes that has to be satisfied at the end of

each period.
� Each demand class can be satisfied by certain products (demand-class specific

substitution options).
� Assemblies are composed of certain quantities of multiple (concrete) products

and abstract products.
� Substitution hypergraph is given implicitly as an AND-XOR-graph.
� Substitution ratios are arbitrary.
� Multiple capacitated production resources with finite speed, multiple products

may share a resource.
� No parallel (alternative) resources.
� Capacity consumption per unit produced differ among products.
� No setup carry-over.
� Multiple production levels, Gozinto factors for assemblies are given.
� Predecessor and successor products may share the same resources.
� Time-variant sequence-independent setup costs and times.
� Setups have to be completed within a single period.
� Time-invariant linear holding costs.
� Time-varying variable production costs.
� Lead times between production stages, minimum of one period.
� Time-invariant variable conversion costs for satisfying demand of a certain class

with a specific product.
� All occurring demand has to be fulfilled immediately (no relaxation).
� Initial inventories.
� Unlimited work-in-progress buffers for intermediate goods.
� Cost minimization objective.
� Integer variables for lot-sizes.
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7.1.2 Formulation

Using the notations introduced in Table 7.1, the MLCLSP-S can be formulated as
given below. The substitution hypergraph is specified as an AND-XOR graph (see
Sect. 3.2.3) in the model: AND nodes of the corresponding AND-XOR graph corre-
spond to assemblies and XOR nodes to internal or external demand classes. Edges
from products i 2 P to assemblies k 2 A correspond to positive gc

ik values, arcs
from internal demand classes j 2 I to assemblies k 2 A correspond to positive ga

jk

values. Edges from products i 2 P to demand classes j 2 D correspond to positive
aij values.

Minimize F.q; x; I; s/ D
TX

tD1

0

@
X

i2P

.fit xit C pitqit C hi Iit / C
X

.i;j /2E

rij sijt

1

A (7.1)

subject to

Iit D Ii;t�1 C qit �
X

j2Di
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X

j2Di
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X

i2Pj

a�1
ij sijt D djt j 2 D; t D 1; : : : ; T (7.4)

X

i2Pj

a�1
ij sijt D

X

k2A
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jkqkt j 2 I; t D 1; : : : ; T (7.5)

qit � M � xit i 2 P; t D 1; : : : ; T (7.6)
X

i2Pr

�
sti xit C �

p
i qit

� � Krt r 2 R; t D 1; : : : ; T (7.7)

qit 2 ZC0 i 2 P; t D 1; : : : ; T (7.8)

Iit � 0 i 2 P; t D 1; : : : ; T (7.9)

xit 2 f0; 1g i 2 P; t D 1; : : : ; T (7.10)

sijt 2 ZC0 .i; j / 2 E; t D 1; : : : ; T (7.11)

In the MLCLSP-S, variable production costs have to be included in the objective
(7.1) due to the substitution options, in contrast to the standard MLCLSP objective.
For the sake of generality, we additionally assume that the variable production costs
are time-varying. The inventory balance equations are given by (7.2) and (7.3): (7.2)
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Table 7.1 Notations for MLCLSP-S

Symbol Definition

Constants
t D 1; : : : ; T Periods
nr Number of resources

Indices and sets
i 2 P (Concrete) products
i 2 C � P Components
k 2 AD PnC Assemblies
j 2 B Demand classes
j 2 I � B Internal demand classes (abstract products)
j 2 D D BnI External demand classes
t D 1; : : : ; T Periods
V D P [ B Vertex set of substitution graph
E � P � B Arcs of substitution graph denoting feasible substitutions:

.i; j / 2 E if product i can fulfil demand of internal or external
demand class j

G D .V; E/ Substitution graph
Di D fj 2 Bj .i; j / 2 Eg Set of demand classes whose demand can be fulfilled by product i

Pj D fi 2 P j .i; j / 2 Eg Set of products that can fulfil demand of class j

r 2 R D f1; : : : ; nrg Resources
Pr Set of products that are manufactured using resource r

Parameters
djt Demand of class j in period t

hi Non-negative holding cost per period for storing one unit of
product i

pit Unit production cost of product i in period t

rij Substitution cost for fulfilling demand class j by product i per unit
Ii0 Initial inventory of product i

fit Fixed setup or order cost for product i in period t

li � 1 Lead time of product i (time unit: number of periods)
Krt Capacity of resource r available in period t

sti Production setup time for product i

�
p
i Capacity required for manufacturing one unit of product i

ga
jk Number of units of internal demand class j required for one unit

of assembly k (Gozinto factor)
gc

ik Number of units of concrete component or assembly i required for
one unit of assembly k (Gozinto factor)

Aj D
n
kjga

jk > 0
o

Set of assemblies that require the internal demand class j

aij Number of units of component or assembly i that substitute for
one unit of internal or external demand class j

Variables
qit Production or order quantity of product i in period t

Iit Inventory of product i at the end of period t

xit Binary variable that indicates whether a setup for product i occurs
in period t

sijt Quantity of product i used to fulfil demand of class j in period t
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denotes that the inventory of component or assembly i at the end of period t is the
inventory at the end of the previous period plus the production quantity minus the
demand of internal and external demand classes fulfilled by units of i and minus the
units of i consumed for producing successor products. Equation (7.3) is required
analogously to (2.41) as there is no inventory consumption by production of succes-
sor products in the last li periods due to the lead time between production stages.
The demand of internal or external demand classes fulfilled by the product i is rep-
resented by the sum of conversion quantities sijt over all demand classes that can be
satisfied by the product. The quantity of i consumed for producing successor prod-
ucts is given by multiplying the production quantities of successor products with the
respective Gozinto factors and summing these terms up.

Equation (7.4) ensures that the external demand djt is always satisfied com-
pletely using the available substitution options. It is assumed that all ga

jk are zero
for all external demand classes j 2 D. Equation (7.5) ensures that the demand of
an internal demand class j 2 I caused by the production of assemblies that require
units of j are fully satisfied by feasible products. It is assumed that all djt are zero
for all internal demand classes. The setup forcing constraints (7.6) and capacity con-
straints (7.7) equal those of the MLCLSP. Equations (7.8)–(7.11) define the variable
domains.

Alternatively to distinguishing between the sets P and D in the model, one could
also define the sets in the model in a way that the set P contains partly overlapping
sets: A set C of components, a set B of abstract products, a set D of external demand
classes, and a set A of assemblies.

7.1.3 Example of Substitution Hypergraph

Figure 7.1 illustrates an exemplary AND-XOR substitution graph for the MLCLSP-
S: It is assumed that the problem instance has three demand classes and 12 products.
Demand class 1 is an external demand class, i.e., D D f1g, whereas 2 and 3 are
internal demand classes, i.e., I D f2; 3g. The set of products P D f1; : : : ; 12g can
be partitioned into the set of assemblies A D f1; 2; 6; 9g and the set of components
C D f3; 4; 5; 7; 8; 10; 11; 12g.

In the graph, the products are labeled P1; : : : ; P12 and the demand classes
D1; D2; D3. The single arc .P1; D1/ going into D1 denotes that the external
demand class D1 can only be fulfilled by assembly P1. P1 consists of gc

21 D 3

units of subassembly P 2 and ga
31 D 2 units of another “flexible” part D3. Assem-

bly P 2 consists of gc
32 D 4 units of a component P 3 and ga

22 D 1 unit of a flexible
part D2. This internal demand class D2 can either be satisfied by a42 D 2 units of
component P 4 or a52 D 1 unit of component P 5. The flexible part D3 may either
be a63 D 1 unit of subassembly P 6 or a93 D 1 unit of another compatible sub-
assembly P 9. Assembly P 6 is composed of gc

76 D 4 units of P 7 and gc
86 D 1 unit

of P 8. Assembly P 9 is composed of gc
10;9 D 2 units of P10 and gc

11;9 D gc
12;9 D 1

unit each of P11 and P12.
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P1

P2 D3
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P3 D2

P5P4

P9P6
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a11 = 1
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21 = 3 ga

31 = 2

gc
32 = 4 ga

22 = 1

a42 = 2 a52 = 1

a63 = 1 a93 = 1
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86 = 1gc

76 = 4 gc
10,9 = 2 gc

12,9 = 1
gc
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XOR

XOR

AND
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Fig. 7.1 Example of an AND-XOR substitution graph for the MLCLSP-S

7.1.4 Transformation into Special Case of MLFP

Note that it is possible to transform the MLCLSP-S into a special case of an
extension of the MLFP (see Sect. 4.2.3) with setup times:

� Introduce one MLFP product for each MLCLSP-S product (component or
assembly) and demand class.
� Introduce one MLFLP resource for each MLCLSP-S resource with the same

capacity values as the corresponding MLCLSP-S resource.
� Introduce one task for each MLCLSP-S component i 2 C . This task requires no

input product and produces one unit of the corresponding component per unit.
The setup costs and variable production costs of that task equal those of the
corresponding MLCLSP-S component. It has the same setup time and capacity
consumption per unit as the corresponding MLCLSP-S component.
� Introduce one task for each feasible conversion .i; j / 2 E of an MLCLSP-S

product i into an MLCLSP-S demand class j . This task requires one unit of i

and produces a�1
ij units of j . Its setup costs are 0, and its variable production

costs equal the MLCLSP-S conversion costs rij .
� Introduce one task for each MLCLSP-S assembly k 2 A. This task requires

ga
hk units of each internal demand class h as well as gc

ik units of each prod-
uct i and produces one unit of the corresponding assembly per unit. The setup
costs and variable production costs of that task equal those of the corresponding
MLCLSP-S assembly. It has the same setup time and capacity consumption per
unit as the corresponding MLCLSP-S assembly.
� The holding costs of MLFP products corresponding to MLCLSP-S products

equal the holding costs of those. However, the holding costs of MLFP products
corresponding to internal and external MLCLSP-S demand classes have to be
set to a high penalty value M , as the MLCLSP-S assumes that no storage takes
place after conversion of a product for a demand class.
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7.1.5 Echelon Stocks and Flexible BOMs

An obvious consequence of flexible BOMs is that echelon stocks cannot be specified
exactly as the Gozinto factors are ambiguous. Hence, standard cuts for multi-level
capacitated lot-sizing that use the concept of echelon stocks cannot be applied in
the usual way. One approach for circumventing this problem developed by Begnaud
et al. (2006) is to work with “minimal values” for Gozinto factors, i.e., to calculate
the minimum quantity gmin

ik of product i that will be contained in product k consid-
ering all possible production sequences for k. The Gozinto factors are “replaced”
by these minimal values. However, this approach only works if all possible ways
of producing k use at least one unit of i . This property is violated as soon as it is
possible to fully substitute i by another product j . In that case, gmin

ik becomes 0,
which might render the corresponding valid inequalities useless.

7.2 The General Lot-Sizing and Scheduling Problem
for Multiple Production Stages with Flexible Production
Sequences

The General Lot-sizing and Scheduling Problem for Multiple production Stages
with Flexible Production Sequences (GLSPMS-FPS) extends the GLSPMS (see
Sect. 2.1.7) by an STN-based approach (see Sect. 3.2.4) for modeling flexible pro-
duction sequences and flexible BOMs. The model can be seen as a combination of
the GLSPMS and the MLFP (see Sect. 4.2.3).

7.2.1 Assumptions

The assumptions of the GLSPMS-FPS are as follows:

� Lot-sizing for multiple, continuous tasks (set of tasks A).
� Executing one time unit of a task requires certain quantities of one or multiple

input products and (simultaneously) produces one or multiple output products.
� All parameters are deterministic.
� No lead times.
� Two-level time structure.
� Finite time horizon with T macro-periods and S micro-periods.
� Each macro-period contains a predetermined set of micro-periods, the number

of micro-periods can differ among macro-periods.
� The beginning and duration of each macro-period are fixed.
� Micro-period beginnings and lengths are flexible, apart from some micro-

periods with explicitly fixed beginnings; these fixed beginnings are required for
micro-periods that are the first micro-period in a macro-period and for modeling
predetermined fixed exogenous downtime of resources.
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� Only a single changeover is possible between each pair of micro-periods.
� Scheduling (sequencing) of products within macro-periods.
� Time-varying demand for products that has to be satisfied at the end of each

macro-period.
� Demand refers to products, some or all of which are substitutable.
� Multiple capacitated production resources with finite speed.
� Each task can only be executed on a specified subset of resources.
� Executing one time unit of a task consumes a certain amount of capacity of

exactly one resource.
� Execution of one unit of a task does not simultaneously consume multiple

resources, but the same task can simultaneously be executed on multiple
resources.
� Multiple production levels.
� Heterogeneous parallel resources.
� Resources may be shared between production levels, i.e., between predecessor

and successor products.
� Capacity consumption per execution unit differ among tasks and also among

resources regarding a certain task.
� Setup carry-over is possible.
� Time-invariant sequence-dependent setup costs and setup times (these consume

capacity) for tasks.
� Changeovers are started towards the end of a micro-period and may continue

into the subsequent micro-period (setup time splitting).
� Time-invariant linear holding costs that are incurred for inventory at the end of

each macro-period.
� Time-invariant production costs for tasks that differ among the parallel resources

and thus have to be included.
� Time-invariant costs for preservation of setup state for a task on a certain

resource (per time unit).
� All occurring demand has to be fulfilled immediately (no relaxation).
� Initial inventories.
� Quantities produced in a micro-period can be used for satisfying (successor)

demand in the same micro-period (after they have been produced).
� Limited work-in-progress buffers for intermediate goods within micro-periods,

thus production on a predecessor stage is possible while a setup is performed
on the successor stage (production quantity splitting is necessary to model this
and the previous aspect).
� Minimum task execution quantity after changeover.
� Minimum time for resource staying in idle state (without production).
� Initial setup state given for each resource.
� Cost minimization objective.
� Continuous variables for task execution quantities.
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7.2.2 Formulation

Table 7.2 contains the notations used for formulating the GLSPMS-FPS. We added
dimension units to parameters and variables in the table to ease understanding.
M U stands for monetary units, T U for time/capacity units, AUa for task execution

Table 7.2 Notations for GLSPMS-FPS

Symbol Definition

Constants
m Number of products
T Number of macro-periods
S Number of micro-periods
nr Number of resources
na Number of tasks

Indices and sets
i 2 P D f1; : : : ; mg Products
t D 1; : : : ; T Macro-periods
s D 1; : : : ; S Micro-periods
St Set of micro-periods belonging to macro-period t (� S)
e.t/ Last micro-period of macro-period t

ˆ Set of micro-periods
ˆf ix Set of micro-periods with fixed beginnings
ˆo

r Set of micro-periods during which production on r is forbidden
ˆl Set of micro-periods that are the last micro-period in a macro-period
r 2 R D f1; : : : ; nrg Resources
a 2 A D f0; : : : ; nag Tasks including dummy task 0

0 2 A Dummy task for modeling time during which a resource is not set up
for any task

Ar Set of tasks that can be executed using resource r

Parameters
dis Demand for product i in micro-period s (D 0 for all s 2 ˆnˆl ) ŒQUi 

I max
i Upper inventory limit for product i ŒQUi 

ws Fixed beginning for micro-period s ŒT U 

I
w;max
ri Upper inventory limit for units of product i produced on resource r

that are not consumed before the next micro-period ŒQUi 

hi Non-negative holding cost per macro-period for storing one unit of
product i ŒM U=QUi

Ii0 Initial inventory of product i ŒQUi 

pras Unit production cost of task a on resource r in micro-period s

ŒM U=AUa

pras Cost for preserving setup state of task a on resource r in micro-period
s per capacity unit ŒM U=T U 

frab Setup cost that is incurred when the setup state of resource r changes
from task a to b ŒM U 

strab Setup time for changeover from task a to b on resource r ŒT U 

�
p
ra Time required for executing one unit of task a on resource r

ŒT U=AUa

(continued)
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Table 7.2 (continued)

Symbol Definition

mra Minimum execution quantity for task a after changeover on resource r

ŒAUa

�ia Number of units of product i required for executing one unit of task a

ŒQUi =AUa

�ia Number of units of product i produced by executing one unit of task a

ŒQUi =AUa

zra1 D xraa1 Binary parameter that indicates whether resource r is already set up
for task a at the beginning of the first micro-period

gmin
ik Minimum quantity of product i required for producing one unit of its

successor product k (lower bound for Gozinto factor) ŒQUi =QUk

gmax
ik Maximum quantity of product i required for producing one unit of its

successor product k (upper bound for Gozinto factor) ŒQUi =QUk

Variables
Iis Inventory of product i at the end of micro-period s ŒQUi 

q0
ris Quantity of product i produced on r in micro-period s available for

consumption in the same period ŒQUi 

q
C1
ris Quantity of product i produced on r in micro-period s available for

consumption in the next period sC 1 ŒQUi 

ws Beginning of micro-period s (on continuous time axis) ŒT U 

yb
rs Setup time consumed on resource r at beginning of micro-period s

ŒT U 

ye
rs Setup time consumed on resource r at end of micro-period s ŒT U 

q�
ras Units of task a performed on resource r in micro-period s ŒAUa

qris Production quantity of product i on resource r in micro-period s

(auxiliary variable) ŒQUi 

xrabs Binary variable that indicates whether a changeover from task a to
task b is performed on resource r starting at the end of
micro-period s � 1 and continuing into micro-period s

zras Binary variable that indicates whether resource r is already set up for
task a at the beginning of micro-period s or a changeover to it
started in s � 1 is completed in s

‰�
ras Time during which setup state of task a on resource r is preserved in

micro-period s without production ŒT U 

units of task a, and QUi for quantity units of product i . The GLSPMS-FPS can be
formulated as given in the following:

Minimize F.q; x; z; I; ‰� ; q0; qC1; w; yb; ye/

D
TX

tD1

X

i2P

hi

 
Ii;e.t/ C

X

r2R

qC1
ri;e.t/

!

C
SX

sD1

X

r2R

X

a2Ar

0

@prasq
�
ras C pras‰

�
ras C

X

b2Ar

frabxrabs

1

A (7.12)
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subject to

q0
ris C qC1

ris D qris r 2 R; i 2 P; s D 1; : : : ; S (7.13)

qris D
X

a2Ar

�iaq�
ras r 2 R; i 2 P; s D 1; : : : ; S (7.14)

Iis D Ii;s�1 C
X

r2R

�
q0

ris C qC1
ri;s�1

�

� dis �
X

r2R

X

a2Ar

�iaq�
ras i 2 P; s D 1; : : : ; S (7.15)

Iis � I max
i i 2 P; s D 1; : : : ; S (7.16)

ws D ws s 2 ˆf ix (7.17)

wsC1 � ws D yb
rsCX

a2Ar

�
‰�

ras C �p
raq�

ras

�C ye
rs r 2 R; s D 1; : : : ; S (7.18)

q�
ras D 0 r 2 R; a 2 Ar; s 2 ˆo

r (7.19)

‰�
ras C �p

raq�
ras � M � zras r 2 R; a 2 Ar; s D 1; : : : ; S (7.20)

q�
ras � mra

X

b2Arnfag
xrbas r 2 R; a 2 Ar; s D 1; : : : ; S (7.21)

X

a2Ar

zras D 1 r 2 R; s D 1; : : : ; S (7.22)

xrabs � zra;s�1 C zrbs � 1 r 2 R; a; b 2 Ar; s D 2; : : : ; S (7.23)

ye
r;s�1 C yb

rs D
X

a;b2Ar

strabxrabs r 2 R; s D 2; : : : ; S (7.24)

qC1
ris � I

w;max
ri r 2 R; i 2 P; s D 1; : : : ; S (7.25)

X

a;b2Ar

xrabs D 1 r 2 R; s D 2; : : : ; S (7.26)

ws � ws�1 � yb
r1;s�1C

�p
r1a

q0
r1;i;s�1

�ia

C ye
r2;s�1 s � 2; r1; r2 2 R; a 2 Ar1; b 2 Ar2;

i; k 2 P; �ia > 0; �kb > 0; gmax
ik > 0;

gmax
ik

�ia

�p
r1a >

1

�kb

�
p

r2b (7.27)

ws � ws�1 � yb
r1;s�1C

�
p

r2bq�
r2;b;s�1 C ye

r2;s�1 s � 2; r1; r2 2 R; a 2 Ar1; b 2 Ar2;

i; k 2 P; �ia > 0; �kb > 0; gmax
ik > 0;

gmin
ik

�ia

�p
r1a <

1

�kb

�
p

r2b (7.28)
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yb
r1 D ye

rS D 0 r 2 R (7.29)

q�
ras; ‰�

ras � 0 r 2 R; a 2 Ar; s D 1; : : : ; S (7.30)

Iis � 0 i 2 P; s D 1; : : : ; S (7.31)

xrabs � 0 r 2 R; a; b 2 Ar; s D 2; : : : ; S (7.32)

zras 2 f0; 1g r 2 R; a 2 Ar; s D 2; : : : ; S (7.33)

ws � 0 s D 1; : : : ; S C 1 (7.34)

qris � 0 r 2 R; i 2 P; s D 1; : : : ; S (7.35)

q0
ris; qC1

ris � 0 r 2 R; i 2 P; s D 1; : : : ; S (7.36)

yb
rs; ye

rs � 0 r 2 R; s D 1; : : : ; S (7.37)

The GLSPMS-FPS introduces a dummy task 0 for modeling the state where the
resource is not set up for any task: If a changeover to task 0 occurs, this means
that the previous setup state for another task gets lost and the resource is not set up
for any real task. This dummy task serves the same purpose as the dummy product
introduced in the GLSPMS. No dummy product is required in the GLSPMS-FPS.

The q�
ras variables describe “execution quantities”, i.e., they indicate how often

activity a is repeated / for how long it is executed. The multiplication with �
p
ra in

(4.21) converts these execution quantities into time/capacity units. The minimum
execution quantity mra ensures a minimum duration of a production lot and a min-
imum lot size for task a on resource r in combination with the parameters �

p
ra

and �ia.
The objective (7.12) consists of holding costs, variable task execution (produc-

tion) costs, setup state preservation costs, and sequence-dependent setup costs. The
splitting of production quantities into a part q0

ris that can be used in the same micro-
period s where the production takes place and another part qC1

ris that cannot be used
before the next period s C 1 is implemented by (7.13). This splitting is necessary
for formulating the constraints (7.27) and (7.28), which we explain in Sect. 7.2.3.
Equation (7.14) is required to set the correct values of the auxiliary variables qris .

The inventory balance equations are given by (7.15): As the model is based on
STN, the equations contain the inventory changes caused by the execution of tasks
as well as those caused by primary demand. In addition, the inventory increase by
production is split in a part q0

ris that originates from production in the same micro-
period s and a part that originates from production in the previous micro-period
s � 1. As in the GLSPMS, this production quantity splitting is necessary to ensure
that the usage of units produced in a micro-period by a successor product in the same
micro-period is always temporally feasible in the real-world application. Again, qC1

ri0

is a constant with value 0. Equation (7.16) limits the inventory of each product to a
certain maximum level. The constraints (7.17) fix the beginnings of a subset of the
micro-periods to certain points in time.

The constrained capacity of each production resource is modeled by (7.18): It
strongly resembles (2.50) and ensures that the capacity consumption of tasks and
their sequence-dependent setup times never exceed the effective duration of each
micro-period. The time during which the setup state of a certain task a is preserved
without production is captured explicitly by the ‰�

ras variables because setup state
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preservation incurs costs as in the GLSPMS. Hence, the capacity constraint is an
equation as in the GLSP and GLSPMS. Equation (7.19) ensures that no produc-
tion takes place on r in a micro-period s during which production is forbidden.
Equation (7.20) enforces that execution of task a on a resource r only takes place
in micro-period s if the resource is already set up for a at the beginning of s

or a changeover to a is performed in s. Minimum execution quantities after the
changeover to a task are enforced by (7.21).

Equation (7.22) means that exactly one task a is set up on the resource at the
beginning of each micro-period s. Equation (7.23) ensures that the changeover vari-
able xrabs becomes one if task a was set up in micro-period s �1 and b is set up in s,
which implies that a changeover must have been performed. Equation (7.24) splits
up the setup time of a setup activity that starts in s �1 and continues into s, and thus
overlaps the micro-period boundaries: A part ye

r;s�1 of the setup time is scheduled at
the end of s � 1, the remaining part yb

rs at the beginning of s. Note that all yb
r1 and

ye
rS should be fixed to 0 or omitted from the model.

Equation (7.25) specifies upper limits for the work-in-progress buffers after
resources between successive production stages. Equation (7.26) makes sure that
exactly one changeover occurs in each micro-period. Note that if xraas D 1, this
denotes that task a remains set up. Equations (7.27) and (7.28) will be explained in
Sect. 7.2.3. Equations (7.30)–(7.37) define the variable domains.

Substitution options can be mapped in the GLSPMS-FPS by introducing two or
more tasks that consume different input products but have the same output prod-
uct(s) (also see Sect. 3.2.4). The substitution options are implicitly described by
the �ia and �ia parameters, and substitution decisions can be derived from the q�

ras

variable values of a solution.
An obvious consequence of flexible production sequences is that echelon stocks

cannot be specified exactly (see Sect. 7.1), which complicates the development of
valid inequalities for the model.

7.2.3 Ensuring Temporal Feasibility within Micro-Periods

In addition, the GLSPMS-FPS requires two additional constraint groups that corre-
spond to (7.27) and (7.28) in the GLSPMS. However, developing these constraints is
not as straightforward as it might seem at first glance: As the GLSPMS-FPS allows
for flexible production sequences, various ways can be feasible for producing a cer-
tain product, each potentially corresponding to a different BOM containing different
predecessor products. Hence, three problems arise:

1. In many cases, one cannot state for all possible BOMs of a certain product k

whether another product i is a (direct or indirect) predecessor of it. E.g., there
might be one task a that produces k from an intermediate good i and another
task b that produces k from another intermediate good j . In this example, i is
predecessor of k in the former case, whereas it is no predecessor in the latter
case. This is illustrated by Fig. 7.2(a).
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Fig. 7.2 Examples of possible STNs in GLSPMS-FPS
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Fig. 7.3 STN example where i is an indirect predecessor of k

2. Even if all of several (alternative) tasks producing a certain product k consume
one or more units of i , the Gozinto factor gik (as it was used in the MLCLSP)
becomes ambiguous as soon as the ratios �ia=�ka differ between various tasks
a 2 A. Each of these ratios denotes the (direct) Gozinto factor for the pair of
products with respect to a certain task a. Fig. 7.2(b) illustrates this in an example
with two tasks a and b.

3. The multi-level production structure of the model further complicates the situ-
ation, as there might be a myriad of ways of producing a certain product, each
using a different flow of tasks and potentially a different BOM. E.g., even if we
know for sure that all possible ways of producing k require units of i , it depends
on the actual way used whether the predecessor i is “slower” or “faster” than its
(direct or indirect) successor k because the ways might use different resources
and the (indirect) Gozinto factor might be ambiguous. Fig. 7.3 demonstrates this
with an example where product k is used by a task b on resource r2 and always
requires units of i which is produced by task a on resource r1, no matter which
of the shown alternative ways of producing k is actually used.

In the following, we say that product i is a direct predecessor of product k and
k is a direct successor of i if a task a 2 A exists with �ia > 0 and �ka > 0. We
define the set of input products of a task a as P i

a D fi ji 2 P ^ �ia > 0g, and
analogously the set of output products of a as P o

a D fi ji 2 P ^�ia > 0g. We define
the set of tasks that consume i as Ai

i D faja 2 A ^ �ia > 0g, and analogously
the set of tasks that produce i as Ao

i D faja 2 A ^ �ia > 0g. A product i is
termed an indirect predecessor of product k and k an indirect successor of i if a
sequence p1; p2; : : : ; pn�1; pn of products exists so that i is a direct predecessor
of p1, p1 a direct predecessor of p2, : : :, pn�1 a direct predecessor of pn, and pn a
direct predecessor of k. Direct and indirect successors are defined analogously. Note



7.2 The GLSPMS with Flexible Production Sequences 199

that all these definitions of direct and indirect predecessor and successor concepts
only refer to potential relationships. Even if one product is potential predecessor of
another product, some ways of producing the latter might exist that do not consume
its potential predecessor.

7.2.3.1 Calculating Minimal and Maximal Values for Gozinto Factors

In Sect. 7.1, we already mentioned the approach of calculating the minimum quan-
tity gmin

ik of a product i that will doubtless be required for producing one unit of a
product k. In order to develop the constraints corresponding to (2.60) and (2.61), we
will need this value as well as the maximum quantity gmax

ik of i that can be required
for producing one unit of k.

A dynamic programming approach for calculating all gmin
ik values with

O.jP j2jAj/ complexity is given by Begnaud et al. (2006): Assuming that the pro-
duction structure is acyclic, the products in the set P can be renumbered in a way
that each product has a lower index than its successors. With gmin

i i set to 1 for
all i 2 P , the gmin

ik values can then be calculated recursively using the following
formula by iterating from k D 1; : : : ; jP j and i D k C 1; : : : ; jP j:

gmin
ik D min

a2Ao
k

8
<̂

:̂

P
j2P

gmin
ij �ja

�ka

9
>=

>;
(7.38)

Analogously, with gmax
i i set to 1 for all i 2 P , the gmax

ik values can be calculated
recursively with O.jP j2jAj/ complexity as follows by iterating from k D 1; : : : ; jP j
and i D k C 1; : : : ; jP j:

gmax
ik D max

a2Ao
k

8
<̂

:̂

P
j2P

gmax
ij �ja

�ka

9
>=

>;
(7.39)

The meaning of (7.38) is illustrated by Fig. 7.4: Assume that the minimum quan-
tities of i contained in each of the intermediate products j1; j2; and j3 have already
been calculated, with “best” production sequences with respect to the consumption
of i corresponding to them. The minimum quantity of i that can be contained in k

if produced by task a1 can be determined by summing up the minimum quantities
of i contained in the intermediate products required for producing one unit of k

with task a1. The reason why this sum is necessary is exemplified by Fig. 7.4: If
i is potentially used in more than one input product j 2 P i

a of task a, this might
increase the minimum quantity contained in k. The same calculation is performed
for the alternative task a2. Comparing the minimum required quantities of i of all
alternative tasks that output k then yields the sought-after value for gmin

ik .
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Fig. 7.4 Illustration of
recursion (7.38) for
determining gmin

ik values
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Correspondingly, the idea contained in (7.39) is as follows: Suppose that the
maximum quantities of i contained in each of the intermediate products j1; j2; and
j3 are already known, with “worst” production sequences with respect to the con-
sumption of i corresponding to them. The maximum quantity of i contained in k

if produced by task a1 is given by the sum of the maximum quantities of i con-
tained in the intermediate products required for producing one unit of k with task
a1. The maximum quantity of i in k when using the alternative task a2 can be cal-
culated analogously. The correct value for gmax

ik can be obtained by comparing the
maximum required quantities of i of all alternative tasks that output k.

7.2.3.2 Constraints for Potentially Faster Successors

The constraint (7.27) described in the following corresponds to (2.60) in the
GLSPMS. Figure 7.5 illustrates why (7.27) is required: Without (7.27), the schedule
shown in Fig. 7.5a could be contained in a “feasible” solution. The task b (executed
on resource r2) consuming units of a product k is assumed to be potentially faster
with respect to the consumption/production of k than another task a (executed on
resource r1) that could produce the potential direct or indirect predecessor i of k.
In this context, the statement that b is potentially faster than a w.r.t. k and its pre-
decessor i denotes that at least one production sequence with corresponding (fixed)
BOM exists where k is faster than i according to the definition of “faster” for the
fixed-BOMs case in the standard GLSPMS. Mathematically this can be expressed
as follows:

gmax
ik

�ia

�p
r1a >

1

�kb

�
p

r2b (7.40)

In (7.40), gmax
ik can be interpreted as the “worst-case” consumption of i for pro-

ducing k, i.e., the highest possible consumption with a feasible BOM. The left-hand
side thus represents the maximum production time of task a on resource r1 to output
units of i required for supplying predecessor units for one unit of k. The right-hand
side denotes the production time of task b on resource r2 during which exactly one
unit of k is consumed.
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(a) Practically infeasible solution that may occur without (7.27)
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Fig. 7.5 Example showing necessity of (7.27)

In the schedule shown in Fig. 7.5, the split changeover time ye
r2;s�1 at the end of

s � 1 is so long that the faster execution of task b consuming k would have to stop
before a sufficient quantity of task a has been executed to output q0

r1i;s�1 units of i .
If less than q0

r1i;s�1 units of i are produced, it is not guaranteed that the maximum
quantity of predecessor i consumed in s �1 can be satisfied, assuming that there are
no stocks of i at the beginning of s � 1. Thus, it might not be possible to implement
the resulting schedule due to its violation of temporal constraints.

Equation (7.27) ensures that the changeover to and execution of a task a pro-
ducing predecessor i on resource r1 and the split changeover from task b producing
successor k on resource r2 (on a subsequent production stage) to another task all fit
into the duration ws�ws�1 of a micro-period s�1.1 Here, only the execution quantity
of a required for the production of q0

r1i;s�1 of i that can be used in s�1 is considered.

The term �
p
r1a

q0
r1;i;s�1

�ia
represents the capacity consumption of the execution quantity

of task a required for outputting q0
r1i;s�1 units of i .

Note that (7.27) also considers the case where two tasks a and b are directly
linked by a product i , i.e., �ia > 0 and �ib > 0: This setting is described by the
constraints of (7.27) with i D k. The corresponding STN fragment is visualized in

1 Analogously to (2.60) (see footnote 5 on p. 50), (7.27) is more restrictive than required for ensur-
ing temporal feasibility. It can be reformulated by introducing variables yb

rabs and ye
rabs that denote

the setup time consumed by a changeover from task a to b on resource r at the beginning and end
of micro-period s, respectively.
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Fig. 7.6 STN example where
tasks a and b are directly
linked by a product i D k
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Fig. 7.7 Example showing necessity of (7.28)

Fig. 7.6. As mentioned earlier, gmin
i i and gmax

i i are simply set to 1 for all i 2 P . A
schedule with the property enforced by (7.27) is shown in Fig. 7.5(b).

7.2.3.3 Constraints for Potentially Slower Successors

We will now consider constraint (7.28) that corresponds to (2.61) in the GLSPMS:
The necessity of (7.28) is exemplified by Fig. 7.7: Without (7.28), the schedule
shown in Fig. 7.7(a) could be contained in a “feasible” solution. The task b (executed
on resource r2) consuming units of a product k is now assumed to be poten-
tially slower with respect to the consumption/production of k than another task a

(executed on resource r1) that could produce the potential direct or indirect prede-
cessor i of k. In this context, the statement that b is potentially slower than a w.r.t.
k and its predecessor i denotes that at least one production sequence with corre-
sponding (fixed) BOM exists where k is slower than i according to the definition
of “slower” for the fixed-BOMs case in the standard GLSPMS. Mathematically this
can be expressed as follows:
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gmin
ik

�ia

�p
r1a <

1

�kb

�
p

r2b (7.41)

Note that comparing (7.41) to (7.40), not only the > sign is replaced by <, but
(7.41) also contains gmin

ik instead of gmax
ik . gmin

ik can be interpreted as the “best-
case” consumption of i for producing k, i.e., the lowest possible consumption with
a feasible BOM. The left-hand side thus represents the minimum production time of
task a on resource r1 to output units of i required for supplying predecessor units for
one unit of k. The right-hand side denotes the production time of task b on resource
r2 during which exactly one unit of k is consumed.

Regarding the schedule shown in Fig. 7.7 that may result without (7.28), the
situation is as follows: Due to the relative slowness of the task b compared to a

and the duration ye
r2;s�1 of the split changeover on resource r2, one would have to

start the execution of task b consuming k before the production of its (potential)
predecessor i by task a has started, which is impossible if we again assume that
there are no stocks of i at the beginning of s � 1. Thus, even with (7.27) added to
the model, it might not be possible to implement the resulting schedule as it might
still violate temporal constraints.

Hence, (7.28) is required. It enforces that the split changeover to a task a produc-
ing predecessor i on resource r1 and the execution time of a slower task b producing
of a slower successor k on resource r2 as well as the split changeover from b to
another task on r2 all fit into the duration ws �ws�1 of micro-period s �1.2 A sched-
ule with the property enforced by (7.28) is shown in Fig. 7.7(b). Note that (7.28)
also considers the case where two tasks a and b are directly linked by a product i

analogously to (7.27) due to the constraints (7.28) with i D k.

7.2.4 Transformation of GLSPMS into Special Case
of GLSPMS-FPS

The GLSPMS can be transformed into a special case of the GLSPMS-FPS. The
basic idea of this transformation is as follows:

� Introduce one GLSPMS-FPS product for each GLSPMS product.
� Introduce one GLSPMS-FPS resource for each GLSPMS resource with the

same capacity values as the corresponding GLSPMS resource.
� Introduce one GLSPMS-FPS task for each GLSPMS product. Task k requires

gik units of product i and produces one unit of product k per execution unit. The
variable production costs of that task equal those of the corresponding GLSPMS
product. The changeover time and sequence-dependent setup costs between two

2 Just as (7.27), (7.28) excludes some temporally feasible solutions and can be reformulated using
the variables yb

rabs and ye
rabs explained in footnote 1.
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tasks are the same as the changeover time and sequence-dependent setup costs
between the corresponding GLSPMS products.
� In addition, convert the dummy product 0 into a dummy task 0.
� The holding costs of GLSPMS-FPS products equal the holding costs of the

corresponding GLSPMS products.
� Set gmin

ik D gmax
ik D gik .

One can see that (2.60) is a special case of (7.27) and (2.61) a special case of (7.28).



Chapter 8
Blood Bank Inventory Control
with Transshipments and Substitutions

8.1 Introduction

In this section, we focus on the combination of two flexibility instruments (also see
Chap. 1) that are available for the control of multi-location multi-product inventory
systems:1

1. Lateral stock transshipments
2. Product substitutions

As mentioned in Sect. 2.3, the reasons for performing transshipments and substi-
tutions (see Chap. 1) are often similar. They are summarized in Table 8.1.

Both transshipments and substitutions can be differentiated into two types:
preventive and reactive. Preventive (also: proactive, planned) transshipments are
performed before a stock-out actually occurs, whereas reactive (also: emergency)
transshipments are initiated after the location has run out of stock for a product
(Herer et al., 2006). The latter require that the transshipment lead time is short
enough to be able to fulfill the demand. Preventive substitution means that we
start using substitutes before a stock-out of the requested product occurs, e.g., to
reserve some stocks for high-priority demand. Reactive substitutions are performed
if the requested product is already out of stock. These aspects are summarized in
Table 8.2.

8.1.1 Analogy Between Transshipments and Substitutions

A close analogy exists between T&S, which is also indicated in Axsäter (2003a):
Considering an inventory system with multiple locations, transshipments and a
single product, we can reinterpret stocks of the product at each location as a dif-
ferent “virtual product”. With this reinterpretation, transshipments correspond to
substitutions between the virtual products. Transshipment links can be interpreted as

1 This section is an extended version of the working paper Lang (2008).

J. C. Lang, Production and Inventory Management with Substitutions,
Lecture Notes in Economics and Mathematical Systems 636,
DOI 10.1007/978-3-642-04247-8_8, c� Springer-Verlag Berlin Heidelberg 2010
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Table 8.1 Benefits of transshipments and substitutions

Benefit Substitutions Transshipments

Increased service level Avoid shortages due to supply
or production bottlenecks of
a product

Avoid shortages due to
supply or production
bottlenecks at a location

Reduction of fixed costs Produce larger lot sizes of a
smaller number of products

Joint replenishments for
neighboring locations

Exploitation of unit cost
variations

“Switch” to cheaper substitutes Buy product where it is the
cheapest and transship it
if unit costs differ
between locations

Reduction of holding costs
(in stochastic settings)

Lower safety stocks due to
“risk pooling” between
products

Lower safety stocks due to
“risk pooling” between
locations

Reduction of wastage
(in case of perishability)

Consume substitutes with
shorter expiry date first

Transship and consume
stocks from other
location with shorter
expiry date first

Table 8.2 Preventive vs. reactive transshipments and substitutions

Type Preventive Reactive

Transshipments Transship from location with excess inventory
if another location will run out of inventory
soon

Transship to location when
stock-out occurs

Substitutions Start using substitutes before stock-out of
preferred product occurs

Use substitutes when
stock-out occurs

Table 8.3 Analogies between transshipment and substitution model entities

Substitutions Transshipments

Substitution graph Transportation network
Substitution option Transportation link
Substitution/conversion cost Transshipment cost
Conversion time Transshipment lead time
Conversion capacity Transportation capacity

substitution options between the virtual products, transshipment costs from location
A to B as substitution/conversion costs of using virtual product A to substitute B .
Similarly, transshipment lead times correspond to durations of conversions between
virtual products and maximum capacities of transshipment links to capacitated
production resources for converting virtual products. The other way around, consid-
ering an inventory system with a single location, multiple products and substitution
options, each product can be interpreted as a “virtual location”, and substitutions
between products as transshipments between virtual locations. These analogies
between transshipments and substitutions are summarized in Table 8.3.
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8.1.2 Outline

The remainder of this section is structured as follows: After describing how to
combine T&S in a multi-location inventory model, we highlight several cases where
this combination occurs in practice. Subsequently, we focus on the inventory control
of blood banks as one practical example. We describe the characteristics of blood
bank systems, briefly review relevant literature and develop a discrete-event sim-
ulation model of a multi-location blood bank system with T&S. Simulation-based
optimization is used to improve the parameters of a replenishment, transshipment
and substitution policy for the system, which is compared to other policies in
computational experiments.

8.2 Combining Transshipments and Substitutions

Instead of studying transshipments and substitutions in separate models, one can
consider multi-location inventory models where both T&S are possible. In such
models, four ways of fulfilling an order for a product at a certain location can be
distinguished:

1. The order is fulfilled using stocks of the product from this location (no substitu-
tion, no transshipment).

2. The order is fulfilled using stocks of a substitute at this location (substitution).
3. The order is fulfilled using stocks of the product from another location (trans-

shipment).
4. The order is fulfilled using stocks of a substitute from another location (substitu-

tion and transshipment).

These four options are illustrated with an example that contains two products and
locations in Fig. 8.1. Options (2)–(4) can serve as an emergency recourse in case of
a local shortage of the ordered product.

By considering each location-product pair as a separate virtual product respec-
tively location, models with both T&S can be mapped to substitution models (and
consequently to transshipment models based on their analogy).

Inventory systems with a combination of transshipments and substitutions occur
in various practical settings:

� When managing the usage of empty containers for freight transportation, one
has to ensure that enough empty containers are available at each location to
transport commodities. This can be done by transshipping empty containers
from other locations if there is a shortage at a location. Alternatively, compati-
ble empty containers with differing attributes (e.g., dimensions) stocked at the
location could be used as substitutes, as a certain product to be shipped would
often fit into various container types (Chang et al., 2008).
� In the e-grocery business, customers order grocery products online and get

them delivered to their homes. If a customer orders a product that is not in
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Fig. 8.1 Combining substitutions and transshipments

stock at the warehouse/supermarket from which the order will be fulfilled,
e-groceries sometimes perform substitutions by shipping a similar (substitute)
product to the customer. Alternatively, transshipments from other locations
could be performed (Scott and Scott, 2006).
� Car rental companies frequently face the problem that customers want to rent

a car type at a location for a specific time window where no car of that type
is available at the location. In such situations, customers often get upgrades to
larger and better cars without paying more, which is a form of resource substi-
tution. Alternatively, a car of the requested type could be transshipped from a
nearby location given that enough time is left (Fink and Reiners, 2006).

Another application area where both T&S are relevant is blood bank inventory
control.

8.3 Blood Bank Inventory Control

In blood bank systems, blood is collected from eligible donors and processed into
various (perishable) blood products at Regional Blood Centers (RBC). There are
three main blood products: Erythrocytes (red blood cells), thrombocytes (blood
platelets) and blood plasma. The blood transfusions are distributed to hospitals,
where they are stored in Hospital Blood Banks (HBB). Blood transfusions are
needed for routine and emergency surgeries as well as other treatments. Usually,
blood with the same ABO/Rhesus group is given to a patient. If there is a shortage of
transfusions of that blood group, a compatible blood group can be used as a substi-
tute (so-called “mismatching”): E.g., red blood cells (erythrocytes) with blood group
O� can substitute all other blood groups (Katsaliaki and Brailsford, 2007). A substi-
tution graph describing the substitution options between red blood cell transfusions
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Fig. 8.2 Red blood cell product compatibility – transitive substitution graph (including blood
group distribution in the USA)

of the 8 main blood groups is shown in Fig. 8.2. It also contains the percentage blood
group distribution in the USA population (Edwards, 2006). In the UK, mismatching
is performed in approx. 5% of all cases (BSMS, 2003). In addition, transshipments
of blood from other hospitals (on the regional level) or regions (on the interregional
level) can help prevent shortages (Prastacos, 1984). An aspect not considered in this
section is that there might be competing suppliers from which RBCs or HBBs can
purchase blood products. The typical structure of a blood supply chain consisting of
several RBCs and hospitals is illustrated by Fig. 8.3.

In addition to the substitutability between blood groups, there are further charac-
teristic aspects of blood bank inventory control:

Blood products are a typical example for perishable products (Nahmias, 1982):
Red blood cells have a lifetime of 35 days, blood platelets a lifetime of only 5 days.

The supply of fresh blood is stochastic and constrained, as it depends on the
number of people who donate and on the donors’ blood groups. The number of
potential donors can be influenced by advertisements that aim at motivating people
to donate blood and by special blood donation events, but only to some extent. The
eligibility to donate depends on age, health status, disease risk assessment (e.g.,
HIV) and time since last donation. Tests performed on donated blood may yield that
the blood cannot be used.

The actual usage of blood transfusions does not coincide with the demand:
Before a scheduled surgical procedure, doctors request a quantity for the patient
that is usually higher than the expected consumption, as shortages of blood dur-
ing surgeries might put lives at risk. Moreover, for several types of surgeries, blood
transfusions are only required with a low probability.
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Fig. 8.3 The blood supply chain

In some cases, blood of donor and patient is incompatible due to irregular
antibodies although it would be compatible according to the ABO/Rhesus sys-
tem. Hence, it is common practice to perform compatibility tests of patient blood
and donor blood product by mixing samples (so-called serological crossmatching)
before using blood transfusions. Blood that has been tested for compatibility usu-
ally stays in the HBB but is assigned to a particular patient (assigned inventory). If
the assigned blood has not been used within a certain period (so-called crossmatch-
release period), it goes back into the (virtual) pool of unassigned inventory. The
temporary reservation of blood stocks for individual patients impedes risk pooling
and thus raises the level of required safety stocks: Safety stocks are kept individ-
ually for each patient who might need a blood transfusion, though it is unlikely
that many of the patients will actually receive the entire quantity assigned to them.
Because of the difference between blood demand and actual usage, the crossmatch-
to-transfusion ratio – defined as the quantity assigned to particular patients divided
by the quantity actually transfused – is significantly greater than 1.

In practice, blood bank systems are often decentralized systems with several
decision makers that may have conflicting objectives. E.g., hospitals usually want
a minimum number of shortages (a high service level) of blood transfusions while
being cost-efficient. Hence, they tend to avoid stocking rare groups such as AB+
or BC because these are substitutable by more frequent groups, which can lead to
a scarcity of other groups, especially of O�, and often causes stocks of these rare
groups to perish at RBCs. The latter in turn incurs avoidable costs for the RBCs, and
might lead to shortages in other locations if blood is scarce. In addition, the actors in
blood bank systems often do not sufficiently share information on inventory levels,
demand forecasts, shortages, etc.
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Due to recent progress in medical research, the proportion of inventory assigned
to particular patients might be reduced significantly: In the so-called Type & Screen
procedure (Georgsen and Kristensen, 1998; Chapman et al., 2000; Pereira, 2005),
no serological crossmatching is performed. Instead, only the blood group of the
patient’s blood is determined (Type) and a screening for antibodies is performed
(Screen). If the antibody screen returns positive (usually in < 1% of the cases), an
identification of the antibodies is conducted. The same is done for the blood of all
donors. The results are stored in an information system, so that computer (also: elec-
tronic) crossmatching between stocked blood transfusions and a patient’s blood is
possible, which removes a possible source of human errors. Computer crossmatch-
ing with blood group determination and antibody screen could be used as a standard
procedure for compatibility testing. Yet, there is a residual risk of incompatibility.
Hence, one option is to perform a serological crossmatching in advance in addition
to blood group determination and antibody screen if the probability that a patient
will require a transfusion is high (Type, Screen & Crossmatch).

The survey paper of Prastacos (1984) gives an overview of the decision fields in
blood bank management. Pierskalla (2005) covers various aspects of blood supply
chain management. Cohen and Pierskalla (1979) used simulation to model hospital
blood bank inventory control and applied a simulation-based optimization approach.
Substitutability between blood groups has been considered by Kopach et al. (2003)
and Katsaliaki and Brailsford (2007). BSMS (2003) contains the results of a survey
among UK hospitals regarding mismatching practice. Jennings (1973) described
policies for initiating transshipments between hospital blood banks. Hemmelmayr
et al. (2007) developed a solution approach for determining blood delivery strategies
including vehicle routing decisions, based on a deterministic integer programming
model. They compared a (centralized) vendor managed inventory (VMI) strategy
(Campbell et al., 2002) to decentralized inventory management by hospitals.

8.4 Blood Bank Simulation Model

8.4.1 Assumptions

The assumptions of the discrete-event simulation model are as follows: We simulate
a regional blood bank system with one RBC and multiple hospitals, i.e., a two-
echelon system. The system is operated using a vendor managed inventory (VMI)
strategy: The RBC centrally manages the blood stocks of the regional hospitals.
Only red blood cells are considered, as this is the most common blood product.
There are eight products: red blood cell transfusions of each of the blood groups.
They are perishable and expire after 35 days. Blood transfusions are assumed to
be indivisible. The blood supply at the RBC and demands at the hospitals are
stochastic with stationary distributions. The RBC blood product supply is modeled
as a Poisson process, the demands at the hospitals as Compound-Poisson processes
with log-normally distributed quantities (Prastacos, 1984; Katsaliaki and Brailsford,



212 8 Blood Inventory Control with Transshipments and Substitutions

2007). The cost and demand characteristics differ between the hospitals. There are
some large and several smaller hospitals (with regard to the mean blood demand).
Small hospitals have a larger demand variability than larger hospitals. The demand
processes of the hospitals are uncorrelated.

Hospitals can place orders for regular replenishments from the RBC at fixed
points (e.g., once daily), the replenishments have a deterministic lead time that is
less than the interval between orders. It is assumed that the RBC operates vehicles
that drive fixed delivery routes covering all hospitals every day. Only preventive
transshipments are allowed, transshipments in response to stock-outs are not pos-
sible. Transshipments can be initiated at any time and have a deterministic lead
time. Blood demand is either fulfilled immediately or counted as “lost sales”. Par-
tial fulfillment of orders is allowed. In case of a stock-out of a certain blood group,
it can be substituted by ABO/Rhesus-compatible blood (reactive substitution). We
assume that all hospitals use the Type & Screen approach for compatibility testing
and thus do not keep any assigned inventories. For simplicity, we assume that there
are no capacity limits for transshipments, substitutions and hospital inventories. Ini-
tial inventories are stocked at the RBC and the hospitals at the beginning of the
simulation.

8.4.2 Replenishment, Substitution and Transshipment Policies

We use the notation given in Table 8.4 to describe the replenishment, substitution
and transshipment policies. Note that the set Pi of substitutes for blood group i also
contains i itself. Older units of a blood group (with earlier expiry date) are consumed
and delivered/transshipped first, i.e., a FIFO strategy is used for consumption and
transshipments, but only if the time until expiry is more than a certain number of
days. A periodic review order-up-to replenishment policy (an (r,S)-policy) is used. If
supply is scarce, it is rationed according to the hospitals’ order-up-to levels, taking
current inventory levels and transshipments in transit into account. qih quantity units
of blood group i are delivered to hospital h:

qih D min

8
ˆ̂<

ˆ̂:
Sih � Iih � I tr

ih ;
Sih � Iih � I tr

ih
P

g2H

�
Sig � Iig � I tr

ig

�I RBC
i

9
>>=

>>;
(8.1)

I
s;t r
ih is defined as:

I
s;t r
ih D

X

�2Pj

I tr
�h (8.2)

We implemented the following critical-level policy for controlling substitutions:
When an order for a certain quantity d of transfusions of red blood cells with group
i arrives at hospital h, it is fulfilled using transfusions with group i stocked at
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Table 8.4 Notations for simulation model

Symbol Definition

Indices and sets
i; j 2 P Products (red blood cells of each blood group)
E � P � P Arcs of substitution graph denoting feasible substitutions: .i; j / 2 E if blood

group i can substitute blood group j

G D .V; E/ Substitution graph
Di Set of blood groups that can be substituted by blood group i : Di D

fj j .i; j / 2 Eg
Pi Set of blood groups that can substitute blood group i : Pi D fj j .j; i/ 2 Eg
g; h 2 H Hospitals

Parameters
Sih Order-up-to level for blood group i at hospital h

CLs
ih Critical level for substitutions using blood group i at hospital h

CLt
ih Critical level for transshipments of blood group i at hospital h

Lt
ih Level for initiating transshipments of blood group i to hospital h

St
ih Transshipment order-up-to level for blood group i at hospital h

State
d Requested quantity of a demand event
I RBC

i Inventory of blood group i at RBC
Iih Inventory of blood group i at hospital h

I s
ih Inventory of blood group i and substitutes at hospital h

I tr
ih Quantity of transshipments of blood group i in transit to hospital h (not

including deliveries from RBC)
I

s;t r
ih Quantity of transshipments of blood group i and substitutes in transit to

hospital h (not including deliveries from RBC)
qih Quantity of blood group i delivered to hospital h in replenishment
qt

ih Intended transshipment quantity of blood group i for hospital h

hospital h. If there is a stock-out of i at h or the remaining inventory Iih is less than
the ordered quantity d , we look for an ABO/Rh-compatible transfusion j 2 Pi ni

(see Fig. 8.2) stocked at h for which the total inventory of substitutes I s
jh is greater

than a critical level CLs
jh. A substitute preference order is given for each group i

(see Table 8.6). I s
jh is defined as:

I s
jh D

X

�2Pj

I�h (8.3)

We take at most I s
jh � CLs

jh quantity units of j , and if the demand d is still not
fulfilled completely, we look for other substitutes j 0 2 Pi ni with I s

j 0h
> CLs

j 0h

and proceed in the same way as for j . The critical levels, e.g., serve to protect AB�
from being taken as a substitute for AB+ if AB� is scarce, so that A� or B� is
used. Also, the critical level of B� redirects substitute demand of BC to the other
substitute OC which is less rare than B�. If no substitute can be found this way and
a portion of the order is still unfulfilled, we try to fulfill the remaining demand using
substitutes in the preference order ignoring the critical levels. The reasoning behind
this is to fulfill the demand for blood using hospital stocks whenever possible.
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The implemented transshipment policy works as follows: If the sum of inventory
I s

ih and quantity in transit I
s;t r
ih of substitutes for i becomes � Lt

ih, we try to initi-
ate emergency transshipments from other hospitals. Every other hospital k is only
“willing” to transship a blood group i as long as the stocks I s

ik of substitutes for i

remain greater than a critical level CLt
ik . In a first attempt, we try to transship i . If

it is also scarce at the other hospitals, we try to transship substitutes. The intended
transshipment quantity qt

ih of i and/or substitutes is determined using a transship-
ment order-up-to level St

ih: qt
ih D St

ih�I s
ih�I

s;t r
ih . We transship from other hospitals

in decreasing order of the maximum quantities of i and substitutes for i that they
are willing to transship.

8.5 Simulation-Based Optimization Approach

In this section, we first introduce the considered simulation-based optimization
problem. After this, we describe the SBO algorithm used for solving the problem in
a generic form as well as its adaption to the problem.

8.5.1 Optimization Problem

The optimization problem based on our simulation model is as follows: We want to
determine parameters of the T&S policy as well as the replenishment policy, i.e.,
the variables of the optimization problem are the parameters Sih, CLs

ih, CLt
ih, Lt

ih,
and St

ih for all blood groups i 2 P and all hospitals h 2 H .
The objective function that we chose is to weight the number of occurred short-

ages and the number of transshipments that were performed, which results in a
certain tradeoff between service level and transshipment costs. Note that this weight-
ing of quality of medical service – and possibly loss of human lives – and costs
reflects the ethical problems of applying OR in health care. However, this weighting
is only used as a means to obtain solutions that are better than the initial solutions
with regard to both objectives.

The optimization problem contains four groups of linear constraints and the
nonnegativity constraints (8.8):

CLs
ih � Sih i 2 P; h 2 H (8.4)

CLt
ih � Sih i 2 P; h 2 H (8.5)

St
ih � Sih i 2 P; h 2 H (8.6)

Lt
ih � St

ih i 2 P; h 2 H (8.7)

Sih; CLs
ih; CLt

ih; Lt
ih � 0 i 2 P; h 2 H (8.8)
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Equations (8.4)–(8.6) ensure that the (critical) levels never exceed the order-up-to
level Sih. Equation (8.7) excludes solutions where the transshipment order-up-to
level St

ih is less than the point Lt
ih for initiating transshipments.

8.5.2 Pattern Search Algorithm

For an overview of Simulation-Based Optimization (SBO) methods, see Fu (2002).
We use an algorithm that resembles Pattern Search (PS) algorithms for linearly
constrained continuous optimization (Lewis et al., 1998; Lewis and Torczon, 2000).
Alternatively, one could apply metaheuristics like genetic algorithms (GA), but it
seems questionable whether these will have acceptable running times: Objective
function evaluations are very “expensive” in SBO in terms of computation time.
GA require many objective function evaluations to assess each solution in a new
population, whereas PS uses those sparingly. PS is a heuristic iterative local search
algorithm that starts from an initial feasible solution and, in every iteration, explores
a neighborhood that is defined by a certain pattern of search directions and a step
size vector.

E.g., a pattern could contain search directions for each variable that decrease/
increase it while leaving all other variables unchanged. The steps that the algo-
rithm performs are multiplicative, i.e., it increases/decreases variables by a certain
percentage. We found that when using multiplicative (relative) instead of additive
(absolute) steps, it is easier to ensure that steps are in due proportion to the cur-
rent variable values. This becomes especially important when changing variables
simultaneously. If no feasible neighbor solution (that fulfills all variable bounds and
constraints) is better than the current solution, this solution remains current solution
in the next iteration. The step size vector is updated after every iteration by a proce-
dure specified below. We use the notation in Table 8.5 to describe the pattern search
algorithm.

The algorithm for a minimization problem can be described as follows:
An initial solution x0 and step size vector �0 are given. For iteration k D 0; 1; : : ::

1. Compute objective value f .xk/ of current solution.
2. Determine a step sk D scale.�k/dr using a linearly constrained exploratory

moves algorithm with a problem-specific pattern of search directions.
3. If a step sk with f .perform_step.xk; sk// < f .xk/ to a feasible neighbor has

been found, perform this step: xkC1 D perform_step.xk; sk/. Otherwise set
xkC1 D xk . The function perform_step.xk; sk/ returns a new solution xkC1 with

xkC1;v D

8
ˆ̂<

ˆ̂:

xkv � skv for skv > 0
xkvjskv j for skv < 0

xkv for skv D 0

(8.9)
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Table 8.5 Notations for PS algorithm

Symbol Definition

Indices and sets
v D 1; : : : ; p Variables
k Iteration counter
r D 1; : : : ; nd Search directions
Hs , Hl Set of small resp. large hospitals

State
�k Step size in iteration k (vector)
�kv Step size of variable v in iteration k

Variables
xk Solution vector in iteration k

xkv Variable v in iteration k

Other
S0

ih Order-up-to level for group i at hospital h in initial solution
x0 Initial solution
dr r th direction under consideration for exploratory move
sk Step in iteration k (vector)
f .xk/ Estimate of objective function value by simulation run for solution xk

˛ Initial step size parameter
ˇ, � Parameter for updating step size after successful resp. unsuccessful iterations
ı, 	 Minimum/maximum step size
�,� Parameters for upper variable bounds

4. Determine new step size vector �kC1.
5. Stop if termination criterion is met (time limit, maximum number of iterations,

or local optimum).

The function scale.�k/, if necessary, scales the current step size vector by a
factor that is chosen large enough so that for each variable v changed in this iter-
ation (i.e., with drv ¤ 0), the new rounded value bxkC1;v C 0:5c differs from the
old rounded value bxkv C 0:5c. It is necessary because the simulation model rounds
variables internally to integers because of the indivisibility assumption for blood
transfusions. Without scaling of steps, the algorithm would often perform small
steps that would result in only few or no effective changes in the solution.

All entries in the initial step size vector �0 are set to ˛. The step size vector is
updated as follows: If the iteration was successful, subtract ˇ from each entry of the
step size vector that belongs to a variable changed in this iteration, i.e., if f .xk C
sk/ < f .xk/, set �kC1;v D �kv � ˇ for all v with skv ¤ 0. Otherwise, set �kC1;v D
�kv C � . Ensure that step sizes do not get too small or large by applying �kC1;v D
max fı; min f�kC1;v; 	gg. The idea of this procedure is to decrease the step size after
successful moves to intensify the search in promising regions and to increase it after
unsuccessful moves to escape local optima. The progressive decrease of the step
size resembles the cooling process in simulated annealing algorithms.
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8.5.3 Adaption of PS Algorithm

Referring to the blood bank SBO problem, a solution vector xk contains the
following p D 5 � jP j � jH j variables: Sih, CLs

ih, CLt
ih, Lt

ih, and St
ih for all blood

groups i 2 P and all hospitals h 2 H . In addition to the constraints (8.4)–(8.8), we
add upper variable bounds to restrict the search space: For each order-up-to level
Sih respectively (critical) level CLs

ih, CLt
ih, Lt

ih, and St
ih, the upper bound is set

to a multiple � respectively � > 1 of the order-up-to level S0
ih of blood group i at

hospital h in the initial solution:

Sih � �S0
ih i 2 P; h 2 H (8.10)

CLs
ih; CLt

ih; Lt
ih; S t

ih � �S0
ih i 2 P; h 2 H (8.11)

Neighbor solutions that violate (8.10) or (8.11) are repaired by setting variables
that cause infeasibility to their respective upper bounds. In addition to patterns of
search directions that only manipulate variables individually while leaving the other
variables unchanged, we also examine patterns with search directions that simulta-
neously vary multiple variables: We group the order-up-to and critical level variables
of a blood group by the size of hospitals. For this purpose, we partition the hospi-
tals into a set of small hospitals Hs and a set of large hospitals Hl according to
their average blood demand. This distinction is made because we assume that the
traits of good/optimal blood group order-up-to and critical levels differ depending
on the average demand and demand variability of a hospital (see Pereira, 2005),
while good/optimal levels are similar for hospitals that have almost the same size.
The idea is to speed up the algorithm by simultaneously changing the order-up-to or
critical levels of a blood group i for all hospitals with the same size in a single itera-
tion, rather than only manipulating single variables. This is important for algorithm
performance, as the evaluation of a single solution on one scenario takes several
seconds.

We used patterns of search directions for the blood bank SBO problem that
contain the following sets of search directions:

(a) Increase or decrease the order-up-to level Sih for a single blood group i and
hospital h, while leaving all other variables unchanged

(b) Increase or decrease either the (critical) level CLs
ih, CLt

ih, Lt
ih, or St

ih for a
single blood group i and hospital h, while leaving all other variables unchanged

(c) Simultaneously increase or decrease the order-up-to levels Sih for a single blood
group i and all hospitals with a certain hospital size (either all h 2 Hs or h 2
Hl ), while leaving all other variables unchanged

(d) Simultaneously increase or decrease either the (critical) levels CLs
ih, CLt

ih, Lt
ih,

or St
ih for a single blood group i and all hospitals with a certain hospital size

(either all h 2 Hs or h 2 Hl ), while leaving all other variables unchanged

The corresponding vectors dr for the search directions contain a value of C1 for
variables that are increased, �1 for variables that are decreased and 0 for variables
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that remain unchanged. The linearly constrained exploratory moves algorithm in
step (2) of the PS algorithm examines the (feasible) neighbors in a generated order
and performs a step to the first neighbor found with a better objective (first improve-
ment). In every iteration, the order is generated randomly using weights for the
above sets of search directions: First, the order of search directions in each of the
sets is shuffled randomly. Then, the search directions of the sets are combined by
iteratively taking the next search direction from a set that is selected randomly using
a discrete probability distribution based on the weights. Thus, the higher the weight
for a set of search directions, the earlier they are considered when examining the
neighborhood. The procedure terminates when all search directions of the individual
(shuffled) lists have been added to the combined list.

8.6 Computational Experiments

We first briefly describe the research questions that we address with our experi-
ments. After this, we describe setup, design, and results of the experiments used to
examine these questions:

1. What is the impact of performing T&S on the service level of the blood bank
system? Does the combination improve system performance?

2. Which parameters of the replenishment, substitution and transshipment poli-
cies influence system performance the most? Where should the effort in the PS
algorithm be put?

3. Is it more efficient to change variables simultaneously in the PS algorithm?
4. Should policy parameters be chosen differently for small and large hospitals?

8.6.1 Setup

The simulation model, SBO algorithm and experiments were implemented in JavaTM

using the simulation library DESMO-J (Page and Kreutzer, 2005).

8.6.1.1 Simulation Model Parameters

In the following, we describe the base case settings for the blood bank simulation
model. We tried to choose these as realistic as possible, based on interviews with
an RBC logistics/sales manager. We consider a system with seven hospitals, two of
them large, the others small. Each run simulates the system for 365 days of simula-
tion time. We assume that the blood groups of supply and demand are distributed as
given in Fig. 8.2, i.e., for each supply/demand event, the blood group is drawn from
a discrete distribution with these probabilities.
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Table 8.6 Blood types preference order

Donor / Recipient O� O+ A� A+ B� B+ AB� AB+

O� 1 2 2 4 2 4 4 8
O+ 1 3 3 7
A� 1 2 3 6
A+ 1 5
B� 1 2 2 4
B+ 1 3
AB� 1 2
AB+ 1

The average daily demand at a location is 100 and 110 for the two large and
20, 18, 25, 22, and 21 for the five small hospitals. The demand at each location is
modeled as a Compound-Poisson process. The quantity of an individual demand
event is generated using a log-normal distribution with � D 2:0 and � D 1:0 by
rounding it up to the next integer value. This results in a mean demand of about
2:5 units per demand event. The mean inter-arrival time of the Compound-Poisson
process is set in a way that the mean daily demand equals the desired quantity.

The supply of red blood cell transfusions at the RBC is modelled as a Pois-
son process, i.e., new blood transfusions arrive one by one. The average supply is
assumed to be 101% of the total average demand of all hospitals, i.e., we consider a
situation where slightly more blood than consumed is available.

When substitutions are necessary, substitutes are selected in the preference order
given in Table 8.6: The decision maker tries to take substitutes in ascending order of
the preference values, i.e., substitutes with lower preference number are taken first.

We assume that the RBC has initial inventories that cover the total demand of
approximately 3 days, while each hospital has initial inventories that cover the hos-
pital’s demand for about 5 days. The age of each transfusion (in days) is drawn from
a U.1; 34/ uniform distribution. The blood type proportions in the initial inventories
follow the assumed blood type distribution.

The interval between the fixed points for replenishment orders is assumed to be
1 day, the replenishment lead time from the RBC to each of the hospitals 20 h, and
the transshipment lead time between each pair of hospitals 3 h. These assumptions
would correspond to a setting in a rural area where the next RBC is far away from
the hospitals, and the distances among a group of hospitals are smaller. No units
that expire in less than 5 and 3 days respectively are delivered from the RBC and
transhipped between hospitals.

In the objective function, the number of shortages is weighted with factor 0:95,
the number of transshipments with 0:05. We also tried other weightings in experi-
ments not included here, and found that with this tradeoff, the PS algorithm often
returned solutions with a significantly better service level that required less or only
a moderate number of additional transshipments.
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8.6.1.2 PS Algorithm Parameters

The PS algorithm parameters are chosen as follows: ˛ D 1:2, ˇ D 0:01, � D 0:1,
ı D 1:05, 	 D 2:0, � D 4, and � D 2. The algorithm terminates when a time limit of
16 h is reached or no improvement has been found in the last 10 iterations.

The following initial solution is used for the PS algorithm: The order-up-to levels
S0

ih are set to 5 days of supply, i.e., to cover the average direct demand (without
potential additional demand caused by substitutions) for blood group i at hospital
h of 5 days. We chose these initial order-up-to levels as such simplistic approaches
seem to be in use in practice, in order to see how much improved solutions differ
from the status quo. The levels CLs

ih equal 2 days of supply for i at h, CLt
ih 3 days

of supply. The levels Lt
ih for initiating transshipments correspond to a half day of

supply, the transshipment order-up-to levels St
ih to 1 day of supply. All variables are

rounded up to obtain integer values.
During the PS algorithm, the objective value of each solution is computed by

averaging over 20 fixed scenarios, where each scenario is represented by specific
random seeds for supply and demand distributions. In each simulation run, all vari-
able values of the solution are rounded internally. In order to measure the quality of
returned solutions objectively, solution metrics are computed by averaging over 20

scenarios that differ from those used in the PS algorithm.

8.6.2 Experiment Designs, Results and Interpretation

8.6.2.1 Impact of Transshipments and Substitutions

In our first experiment, we analyze the impact of performing T&S (research ques-
tion 1) by comparing the following policies: (1) neither substitutions nor substitu-
tions, (2) substitutions, (3) transshipments, (4) both transshipments and substitutions
are allowed. Table 8.7 contains various metrics that describe both the initial solu-
tions and the solutions returned by the PS algorithm. A consistent numbering of
algorithm and problem configurations is used to identify configurations that occur
in more than one experiment. The algorithm was run with the sets of search direc-
tions (c) and (d) (simultaneous changes of order-up-to / critical levels) with weight
0:5 for each of the two sets. The search directions manipulating CLt

ih, Lt
ih, or St

ih

variables were excluded from set (d) for policies (1) and (2) as they are not required
for these policies.

The results show for initial and SBO solutions that with respect to the number of
shortage events, the combined T&S policy performs the best, the substitutions-only
policy slightly worse, and the transshipments-only policy clearly inferior but still
better than the policy without T&S. The SBO solutions have a significantly higher
service level than the solutions before optimization. Comparing the transshipments-
only with the T&S policy, we see that the latter performs much less transshipments.
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Fig. 8.4 SBO algorithm progress

The substitution ratio decreases from approx. 1% in the initial to 0:5% in the SBO
solutions for substitutions-only and T&S policy.

When examining the simulation results, we found that with substitutions-only
and T&S policy, demand for O� made up the biggest share (about 90%) of the
total shortage quantity averaging over the scenarios. It was followed by A� and B�
with shares between 3% and 6% and the other blood groups near 0%. When using
the transshipments-only policy and policy without T&S, the shares were distributed
differently: Almost no shortages occurred for the frequent groups OC and AC (due
to low demand variance), whereas the share was between 10% and 25% for each of
the other blood groups.

Figure 8.4 depicts the SBO algorithm progress over time for configurations 5–8.
The elapsed time (in hours) is displayed on the x-axis, the objective value of the
best solution found so far in percentage of the initial solution on the y-axis. Though
a local optimum still has not been reached after 16 h, it seems that the algorithm
progress has almost stagnated at the time limit for each the four policies.

8.6.2.2 Pattern of Search Directions

In a second experiment, we compare the solutions obtained using different sets of
search directions (research questions 2 and 3) in the PS algorithm: (1) sets (c) and
(d) (simultaneous changes of order-up-to / critical levels) with weight 0:5 for each of
the two sets, (2) sets (a) and (b) (individual changes of order-up-to / critical levels)
with weight 0:5 for each of the two sets, (3) set (c) (simultaneous changes of order-
up-to levels), and (4) set (d) (simultaneous changes of (critical) levels). We optimize
a policy that performs both T&S. Table 8.8 contains metrics describing the results
of this experiment.

When changing variables individually instead of simultaneously (config. 9), the
algorithm performed a larger number of iterations within the time limit, but the
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Table 8.8 Computational results – experiment 2 (T&S)

Configuration 4 8 9 10 11

Initial sol. / SBO In. SBO SBO SBO SBO

Order-up-to levels simult. – Yes No Yes No
(Critical) levels simult. – Yes No No Yes
Order-up-to levels indiv. – No Yes No No
(Critical) levels indiv. – No Yes No No

# Shortage events 206.60 85.20 128.20 81.85 181.00
Shortage quantity 393.10 170.60 244.25 160.10 373.15
# Transshipments 657.65 225.75 401.10 287.05 564.75
Quantity transshipped 1,386.45 844.75 914.25 786.40 2,268.85
ˇ Service level (%) 99.66 99.85 99.79 99.86 99.68
Substitution ratio (%) 1.11 0.47 0.69 0.45 1.10
# Iterations – 90 114 112 59
Running time (h) – 16 16 16 16

returned solution is worse. Manipulating only the critical levels does not seem to
have a high impact on the service level (config. 11). Interestingly, the PS algorithm
yielded the best results with search directions that simultaneously change only the
order-up-to levels (set (c), config. 10). In the returned solution, the number of short-
ages was lower than in the solutions returned by the algorithm using the other three
sets of search directions. This result can be explained as follows: When changing
both order-up-to and critical levels (set (1), config. 8), the algorithm spends a sig-
nificant amount of time on examining changes of critical levels. These, as indicated
by config. 11, have a lower impact on the service level than the order-up-to levels.

8.6.2.3 Difference Between Small and Large Hospitals

To address research question 4 – should policy parameters be chosen differently for
small and large hospitals? – we analyze the solution for a policy that performs T&S.
It is obtained from the PS algorithm in experiment 1 (configuration 8). The solution
is summarized in Table 8.9, which contains the percentage change of variables in
the SBO solution compared to the initial solution for small and large hospitals. It is
computed after averaging the variables expressed in days of supply.

There is a clear difference between small and large hospitals in the SBO solu-
tion. The order-up-to levels for all blood groups are increased for small hospitals
(the 100% changes result from the integrality of initial variable values and steps
with integral changes). The order-up-to levels of large hospitals for O�, OC and
BC are reduced slightly, presumably to release RBC stocks of these blood groups
for small hospitals through the rationing mechanism in (8.1). In addition, the
order-up-to levels are increased for the comparatively rare blood groups B�, AB�
and AB+ in large hospitals. The critical level for substitutions using O� at small
hospitals is increased, presumably to divert demand to other substitutes, e.g., to OC
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as a substitute for BC in cases where both O� and OC are scarce. The critical
levels for transshipments of O� and OC are increased for small hospitals. The rea-
son could be that transshipping them when the inventory level at the transshipping
location is already low causes stock-outs at the small hospitals. Due to a 100%
decrease of Lt

ih, transshipments of O� and A� to small hospitals are only initiated
if the inventory is 0. It seems that transshipping these rare blood types is often too
risky for the (potential) transshipping location. The transshipment order-up-to levels
for O� and A� are increased for small hospitals, so that the transshipment quan-
tities get larger. Note that the SBO solution should be interpreted with care: First,
some of the solution variables might be “over-fitted” to the considered scenarios.
Second, a heuristic was used and much better solutions with differing characteris-
tics might exist. Third, the interpretation of the Sih values is difficult because, due
to the rationing performed in (8.1), rather the proportions between the Sih values of
the various hospitals than the absolute values are important.

8.7 Conclusions

We highlighted several possible applications for T&S models and then focussed
on the blood bank model. The SBO algorithm returns solutions that are clearly
better than the initial solutions. We found in our experiments that the combina-
tion of T&S improves the service level compared to performing only substitutions
or only transshipments. The difference between a substitutions-only and a T&S
policy is rather small, presumably the latter policy would perform considerably
better when including emergency transshipments. Changing variables simultane-
ously instead of individually seems to speeds up the SBO algorithm. The choice of
order-up-to levels has a higher impact on solution quality than the choice of critical
levels. Policy parameters, amongst others the relative proportions of blood group
order-up-to-levels, should be chosen differently for small and large hospitals.

8.8 Limitations

Model, algorithm and computational experiments have several limitations: Our
model does not include demand forecasts, which could be used in practice, given
that RBC / hospital software solutions can handle blood “reservations” for scheduled
surgeries. Also, it does not allow fulfilling demand with emergency transshipments
and/or emergency deliveries from the RBC, which would further improve the service
level.

The considered decision rules for replenishments, substitutions and transship-
ments are rather simplistic, and could be replaced by more intelligent decision rules.
Also, the used initial solution could be replaced by a better one that is derived from
mean and standard deviation of demand. The assumed substitute preference order



226 8 Blood Inventory Control with Transshipments and Substitutions

is one out of many possible preference orders, and other preference orders might
be better both from an economic and medical point of view. In addition, the cur-
rent policy employing critical levels can lead to suboptimal control of the system:
If the inventory of A� has fallen below the critical level for substitutions using
A�, it might, e.g., happen that O� is used to substitute for A+ although A� is still
in stock at the hospital. This would be unwanted as O� is the most precious blood
group because it is the “universal donor”, and one should thus always consume other
substitutes first before falling back on O�.

In addition, the multi-objective setting could be handled using a more sophisti-
cated approach than simply weighting the objectives, as this weighting is critical
from an ethical perspective.

The computational results strongly depend on the simulation model parameters.
In addition, it cannot be said with 100% confidence whether one strategy is better
than another (e.g., substitutions-only vs. T&S), as the SBO algorithm does not return
optimal solutions. The PS algorithm with its specific settings might not be the best
approach, it could be compared to other algorithms. Also, the computational effort
of the algorithm is rather high, as typical for SBO.



Chapter 9
Conclusions and Future Research

9.1 Conclusions

This section briefly recapitulates the foremost motives of this work and summarizes
its main contributions and findings. It complements the conclusions already drawn
in Sects. 5.6 and 8.7.

Only a limited number of publications on lot-sizing and scheduling models with
substitutions / flexible BOMs exist. The terminologies pertaining to substitutions
used in the various publications differed significantly. In addition, there was no
classification scheme available for substitution models.

Therefore, we first developed a general classification scheme for production plan-
ning models in Chap. 2 by aggregating several existing classifications and inserting
criteria for substitutions, flexible BOMs and flexible production sequences. Also, we
exemplified and differentiated the terms “flexible BOMs” and “flexible production
sequences”. We developed a precise terminology for substitutions in Sect. 1.1. In
order to illustrate the practical relevance of the topic, we described a number of prac-
tical applications in Sect. 3.1. After that, we presented four approaches for modeling
substitutions / flexible BOMs: Blending models, substitution graphs, substitution
hypergraphs, and task-oriented modeling. In Sect. 3.3, we developed classification
criteria for substitution models supplementing those in Chap. 2. Also, we describe
crucial points to be considered when implementing substitutions in practice (see
Sect. 3.4).

The developed categorization framework was used in Chap. 4 to classify the
existing models. In this chapter, we also described how various other aspects in
SCM, logistics, production, operations management and economics are related to
substitutions and flexible bills-of-materials.

The models in the existing publications on lot-sizing with substitution did not
include several aspects relevant in real-world problems, amongst others initial inven-
tories and sequence-dependent setups, and hardly any literature on capacitated and
multi-level lot-sizing with substitutions was available. Hence, we decided to develop
production planning models with substitutions that include these aspects: In Chap. 5,
we developed an uncapacitated as well as a capacitated single-level lot-sizing model
with substitutions, both of which incorporate initial inventories. We found that in

J. C. Lang, Production and Inventory Management with Substitutions,
Lecture Notes in Economics and Mathematical Systems 636,
DOI 10.1007/978-3-642-04247-8_9, c� Springer-Verlag Berlin Heidelberg 2010
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these models, initial inventories cannot neglected without loss of generality by net-
ting demands, as the net demands depend on the substitution quantities chosen in a
certain solution (see Sect. 5.1).

Motivated from a real-world application in windshield interlayer production (see
Sect. 3.1), we developed a single-level capacitated lot-sizing model with sequence-
dependent setup times and costs in Chap. 6.

Chapter 7 introduced two multi-level lot-sizing and scheduling models with
flexible BOMs: The MLCLSP-S integrates the substitution hypergraphs model-
ing approach into the MLCLSP. The GLSPMS-FPS is a hybrid of the GLSPMS
and MLFP models. Thus, it has the same advantages that the GLSP has over the
CLSD – it can model exogenous resource downtime and sequence-dependent set-
ups that violate the triangle inequality. Also, just as the MLFP, it can map flexible
BOMs, flexible production sequences and by-products.

An important observation was that echelon stocks cannot be specified exactly if
BOMs are flexible because the Gozinto factors become ambiguous (see Sect. 7.1),
as they depend on which substitute is actually used. Hence, standard cuts for multi-
level capacitated lot-sizing that use the concept of echelon stocks cannot be applied
in the usual way.

In addition, we showed several relations between various lot-sizing and schedul-
ing models with substitutions and flexible BOMs: The RPS and SWCP were
transformed into special cases of the MLFP (see Sect. 4.2.3.3). Also, we described
how the MLCLSP-S can be reduced to a special case of an extension of the MLFP
by setup times (see Sect. 7.1.4). Moreover, we delineated a transformation of the
GLSPMS into a special case of the GLSPMS-FPS in Sect. 7.2.4.

In stochastic inventory control, substitutions had – to the best of our knowledge –
not been considered together with transshipment, though this case occurs in several
applications, e.g., blood bank inventory management.

Therefore, we decided to develop a simulation model for a blood bank system
with substitutions and transshipments, serving as an illustrative example of a multi-
location transshipment and substitution problem (see Chap. 8). In Sect. 2.3, we gave
an introduction to transshipment problems and developed a comprehensive model
categorization to serve as a basis for describing this model.

Owing to the gap regarding production planning and inventory control models
with substitutions and flexible BOMs, there was also a lack of solution approaches,
of algorithms for such models.

Hence, we developed reformulations and valid inequalities for the LSP-SI and
MR-CLSP-S in Chap. 5 to make the models solvable with standard MIP solvers in
an acceptable time, and also tested the newer approach of approximate extended
formulations in this context. We performed computational experiments on prob-
lem instances generated by a self-developed instance generator. These experi-
ments showed that the reformulations are superior to the original formulations
and those with valid inequalities added a priori, except for instances with multiple
resources and downward substitution. Using approximate extended formulations,
the MIP solver running times were almost as good as with complete Simple Plant
Location-based reformulations.
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As instances of the capacitated lot-sizing model with sequence-dependent setups
developed in Chap. 6 were too hard to be solved immediately by MIP solvers, we
decided to develop heuristics for this model. We chose to devise MIP-based heuris-
tics by adapting the principles of Relax&Fix and Fix&Optimize, as the literature
on those indicates that they yield good results for other lot-sizing models regarding
solution time and quality. Computational experiments were performed on generated
instances whose structure follows that of a practical application in windshield inter-
layer production planning, and which have rather tight production capacities. The
instances were of medium size, with 20 products and 10 periods. We found that cer-
tain F&O variants performed best, and yielded feasible solutions without overtime
and lost sales in less than 100 s for 70–80% of the instances. Yet, averaging over all
instances – including those for which no solution without overtime and lost sales
could be found – the gap to the best known solution was still around 35%.

Regarding the blood bank inventory control application, we decided to use
discrete-event simulation to model the system (see Chap. 8). This enabled us to build
a rather realistic, accurate model, compared to an analytical modeling approach
that would have required a multitude of simplifying, unrealistic assumptions. We
designed a critical-level-type policy for operating the inventory system. The param-
eters of this policy were improved using a simulation-based optimization algorithm
(see Sect. 2.4.2). We assumed two objectives, the number of shortages and the num-
ber of transshipments, and, for the sake of simplicity, weighted those. An adapted
pattern search algorithm was devised that automatically improves the policy param-
eters. We made sure to design it in a generic way so that it could be applied to other,
similar SBO problems.

9.2 Future Research

In the following, we point out various opportunities for future research in the field
of production planning and inventory control with substitutions and flexible BOMs.

9.2.1 Multi-Location Inventory Control with Transshipments
and Substitutions

We see various opportunities for extending the blood bank simulation model of
Chap. 8:

� It could be made more realistic by including knowledge about demand and sup-
ply forecasts that are based on “reservations” for surgeries and donor appoint-
ments.
� A more intelligent policy for substitutions and transshipments could be devel-

oped that remedies some of the drawbacks of the critical level policy.
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� The initial solution could be generated by adapting formulas from stochastic
inventory control.
� One could include emergency deliveries from the RBC.
� Emergency transshipments could be integrated into the model in addition to

preventive transshipments.

On the algorithmic side, the PS algorithm could be enhanced by more intelligent
neighborhood examination methods and step size updating procedures or additional
strategies to escape local optima, or meta-heuristics like genetic algorithms could
be used.

Regarding the considered application in blood bank inventory management, addi-
tional research questions could be examined using the model, e.g., the influence
of the substitute preference order and supply/demand ratio on the system’s perfor-
mance. Also, the multi-objective problem with the tradeoff between shortages and
transshipments and emergency deliveries could be examined by approximating the
efficient frontier.

In addition, an empirical study with detailed historical blood supply, reserva-
tions and demand data of the RBC and hospitals in a region could help examine the
possible benefits of combining T&S in a practical setting.

The solution approach for the multi-location blood bank model could be adapted
to other cases where both transshipments and substitutions are relevant, to examine
the benefits of considering them in a combined model. For example, the usage of
substitutions by online groceries (see section 3.1) could be investigated in detail.

9.2.2 Production Planning with Substitution and Flexible BOMs

Regarding possible extensions of the models considered in this work, the following
research directions could be of interest, provided that there are corresponding real-
world applications:

� Extend the MR-CLSP-S or CLSD-S by fixed conversion costs and/or times, and
constrained resources for performing substitution activities. However, note that
this case can be seen as a special case of the GLSPMS-FPS.
� Develop multi-location production planning models that include both substitu-

tions and transshipments.
� Develop production planning models with substitutions and joint/family setups.

With regard to the CLSD-S and the MIP heuristics developed for it, several
research avenues could be explored, such as, for instance:

� Extend the model and heuristics by including multiple resources and/or fixed
conversion costs/times.
� Formulate a profit maximization objective instead of a cost minimization

objective.
� Add individual service level constraints for demand classes.
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� Develop a CLSD-S reformulation with sequence variables analogously to the
CLSD reformulation devised by Haase and Kimms (2000), and adapt the MIP
heuristics for this reformulation.
� Conduct additional computational experiments with other instance generator

settings to analyze the behavior and sensitivity of the MIP heuristics in terms
of running times and solution quality (e.g., a different number of products and
periods, different capacity availability values, or other relaxations, for instance
only overtime, only lost sales, or backlogging).

Concerning solution methods for the models MLCLSP-S and GLSPMS-FPS, the
following approaches seem promising:

� Develop specialized valid inequalities and appropriate separation algorithms.
� Investigate SPL, shortest-path, or other reformulations of the models, e.g.,

hybrid I&L and SPL formulations.
� As reformulation-based solution approaches will presumably have prohibitively

high running times on MLCLSP-S and GLSPMS-FPS instances of realistic size,
there will be a need for heuristics to solve them. To this end, the MIP-based
heuristics developed for the CLSD-S could be generalized.

Case studies with real-world data could be performed to examine the bene-
fit of substitutions in practical settings. The availability of data on substitution
options / BOMs flexibility in Advanced Planning Systems (APS) would of course
simplify such case studies.

9.2.3 Substitutions and Flexible BOMs in Advanced Planning
Software

Another avenue for future research is to analyze the functionality that the latest ver-
sions of Advanced Planning software products – e.g., SAPr Advanced Planner and
Optimizer (APO) and the Oracler Advanced Planning Suite – offer regarding sub-
stitutions and flexible BOMs. Also, one could examine the modeling frameworks
and solution approaches they use, which, of course, requires that detailed documen-
tation is available. This, together with an empirical analysis of the requirements of
industry clients, might hint to useful adaptations and extensions of the models and
algorithms considered in this thesis.
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Additional Related Literature

Table A.1 Literature on aspects related to product substitution

Aspect

Stochastic inventory control with substitution
Bassok et al. (1999) Bitran and Dasu (1992)
Cai et al. (2004) Chand et al. (1994)
Chen and Chen (2004) Deniz et al. (2005)
Duenyas and Tsai (2000) Gallego et al. (2006)
Hale et al. (2000) Hsieh and Wu (2009)
Hsu and Bassok (1999) Ignall and Veinott, Jr. (1969)
Liu and Lee (2007) Pasternack and Drezner (1991)
Silver and Moon (2001a) Silver and Moon (2001b)
Tang and Yin (2007) Yadavalli et al. (2006)
Yao and Zheng (1999) Yao and Zheng (2003)
Hsieh and Wu (2009)

Inventory control with random yields
Birge et al. (1998) Bitran and Dasu (1992)
Duenyas and Tsai (2000) Gerchak and Grosfeld-Nir (1999)
Hsu and Bassok (1999) Liu and Lee (2007)
Ng and Lam (1998) Rao et al. (2004)
Yadavalli et al. (2006)

Inventory control for perishable products
Karaesmen et al. (2008) Lystad et al. (2006)
Nahmias (1982)

Flexible bills-of-materials / material compatibility
Ball et al. (2003) Hohenegger et al. (2007)
Pels (2006) Ram et al. (2006)
Ramdas (2003) Woss (1997)

(Continued)
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Table A.1 (Continued)

Aspect

Customer-driven product substitution
Agrawal and Smith (2003) Bitran et al. (2005)
Chen and Plambeck (2008) Chong et al. (2004)
Ernst and Kouvelis (1999) Gaur and Honhon (2006)
Honhon et al. (2006) Kok and Fisher (2007)
Li et al. (2006) Mahajan and van Ryzin (2001)
Netessine and Rudi (2003) Rajaram and Tang (2001)
Shah and Avittathur (2007) Shah and Avittathur (2007)
Smith and Agrawal (2000) Yang and Schrage (2009)
Zhang and Chen (2004) Ganesh et al. (2008)

Component commonality
Boysen and Scholl (2008) Fixson (2007)
Jans et al. (2008) Ma et al. (2000)
Silver and Minner (2005) Swaminathan and Tayur (1998)
Swaminathan and Tayur (1999) Thonemann and Brandeau (2000)
van Hoek (2001)

Postponement
Chen and Chen (2004) Kerkkänen (2007)
Ma et al. (2000) Silver and Minner (2005)
Swaminathan and Tayur (1998) Swaminathan and Tayur (1999)
van Hoek (2001)

Inventory rationing and multiple demand classes
Arslan et al. (2007) Benjaafar and ElHafsi (2006)
Duran (2007) Kleijn and Dekker (1998)
Kocaga and Sen (2007) Kranenburg and van Houtum (2007)
Moon and Kang (1998) Teunter and Haneveld (2008)

Revenue management of substitutable/flexible products
Birge et al. (1998) Faber (2005)
Gallego et al. (2004) Gallego and Phillips (2004)
Karaesmen and van Ryzin (2004) Shumsky and Zhang (2007)

Assembly-to-order / build-to-order
DeCroix and Zipkin (2005) DeCroix et al. (2005)
Gunasekaran and Ngai (2005) Lu and Song (2005)
Thomas and Warsing (2007)

Remanufacturing and disassembly
Bayindir et al. (2005) Bayindir et al. (2007)
Inderfurth (2004) Li et al. (2006)
Li et al. (2007) Schultmann et al. (2002)

Supplier selection and multiple sourcing
Aissaoui et al. (2007) Basnet and Leung (2005)
Benjaafar et al. (2007) Burke et al. (2007)
Degraeve et al. (2000) Degraeve et al. (2004)
Demirtas and Üstün (2008) Elmaghraby (2000)

(Continued)
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Table A.1 (Continued)

Aspect

Freling (2003) Gupta and Krishnan (1999)
Hsu et al. (2006) Huang and Keskar (2007)
Sonmat (2005) Tempelmeier (2002)
Xia and Wu (2007) Zhao and Klabjan (2005)

Emergency orders
Axsäter (2007) Axsäter (2006)
Gallego et al. (2007)

Resource substitution
Begnaud et al. (2006) Henrich et al. (2007)
Klein and Luss (1991) Klein et al. (1993)

Product, product family and portfolio design
Balakrishnan and Chakravarty (2008) Boysen and Scholl (2008)
de Weck et al. (2003) D’Souza and Simpson (2003)
Gupta and Krishnan (1999) Hardung and Kollert (2005)
Hölttä-Otto (2005) Jiao et al. (2006b)
Jiao et al. (2006a) Krishnan and Ulrich (2001)
Lang et al. (2008) Nepal et al. (2009)
Ramdas (2003) Simpson (2004)
Suh et al. (2004) Suh (2005)
Thonemann and Brandeau (2000)

Substitution, APS and ATP/CTP
Chen et al. (2001) Chen (2006)
Dickersbach (2006) Ettl et al. (2006a)
Ettl et al. (2006b) Faber (2005)
Zhao et al. (2005)

Flexibility in production and logistics
Naim et al. (2006) Petkova and van Wezel (2006)

Pickup and delivery problems
Berbeglia et al. (2007) Desaulniers et al. (2002)
Parragh et al. (2008a) Parragh et al. (2008b)

Coordination of pricing, production, and procurement
Karakul and Chan (2008) Kuyumcu and Popescu (2006)
Levis and Papageorgiou (2007) Tang and Yin (2007)
Yano and Gilbert (2004)

Hypergraphs
Ausiello et al. (2001) Gallo and Pallottino (1992)
Gallo et al. (1993) Gallo and Scutella (1998a)
Gallo and Scutella (1998b) Ozturan (2004)

Cutting stock problems
Poltroniere et al. (2008)
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