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Section I
Nature-Inspired Computing

Chapter I
Artificiality in Social Sciences / Jean-Philippe Rennard ................................................................. 1

This chapter provides an introduction to the modern approach of artificiality and simulation in social
sciences. It presents the relationship between complexity and artificiality, before introducing the field
of artificial societies which greatly benefited from the fast increase of computer power, gifting social
sciences with formalization and experimentation tools previously owned by the “hard” sciences alone.

Chapter II
Multi-Cellular Techniques / Carl Anderson ..................................................................................... 16

Social insects—ants, bees, wasps, and termites—and the distributed problem-solving, multi-agent
paradigm that they represent, have been enormously influential in nature-inspired computing. In
this chapter, we provide a very brief history of the field, detailing some of the key phenomena,
mechanisms, and lessons learned and a quick tour of some of the different types of applications to
which this knowledge has been put to use, including but certainly not limited to distributed problem
solving, task allocation, search, and collective robotics.

Chapter III
Stochastic Optimization Algorithms / Pierre Collet and Jean-Philippe Rennard ....................... 28

When looking for a solution, deterministic methods have the enormous advantage that they do find
a global optimum. In order to get some kind of result, one needs to revert to stochastic algorithms
that only sample the search space without exploring it thoroughly. Such algorithms can find very
good results, without any guarantee however that the global optimum has been found, but there is
often no other choice than using them. Here is therefore a short introduction to the main methods
used in stochastic optimization.
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Chapter IV
Evolutionary Algorithms / Pierre Collet ........................................................................................... 45

Evolutionary computation is an old field of computer science that started in the end of the 1960s
nearly simultaneously in different parts of the world. Each paradigm has evolved separately, appar-
ently without knowledge of what was happening elsewhere, until people finally got together and
shared their experience. This resulted in strong trends that still survive, even though it is now
possible to outline a generic structure for an evolutionary algorithm that is described in this chapter.

Chapter V
Genetic Programming / Pierre Collet ............................................................................................... 59

The aim of genetic programming is to evolve programs or functions (symbolic regression) thanks to
artificial evolution. This technique is now mature and can routinely yield results on par with (or
even better than) human intelligence. This chapter sums up the basics of genetic programming and
outlines the main subtleties one should be aware of in order to obtain good results.

Chapter VI
Evolutionary Multi-Objective Optimization in France / Carlos Artemio Coello Coello .............. 74

This chapter provides a brief introduction of the use of evolutionary algorithms in the solution of
multi-objective optimization problems (an area now called “evolutionary multi-objective optimiza-
tion”). Besides providing some basic concepts and a brief description of the approaches that are
more commonly used nowadays, the chapter also provides some of the current and future research
trends in the area.

Section II
Social Modeling

Chapter VII
Simulation in the Social Sciences / Robert Axelrod ......................................................................... 90

Advancing the state of the art of simulation in the social sciences requires appreciating the unique
value of simulation as a third way of doing science, in contrast to both induction and deduction. This
chapter offers advice for doing simulation research, focusing on the programming of a simulation
model, analyzing the results, sharing the results, and replicating other people’s simulations.

Chapter VIII
Multi-Agent Systems Research and Social Science Theory Building / Harko Verhagen ......... 101

This chapter describes the possible relationships between multi-agent systems research and social
science research, more particularly sociology. It gives examples of the consequences and possibili-
ties of these relationships, and describes some of the important issues and concepts in each of



these areas. It finally points out some future directions for a bi-directional relationship between the
social sciences and multi-agent systems research which hopefully will help researchers in both
research areas, as well as researchers in management and organization theory.

Chapter IX
A Dynamic Agent-Based Model of Corruption / Rajesh Chakrabarti ....................................... 111

The author builds an agent-based model wherein the societal corruption level is derived from indi-
vidual corruption levels optimally chosen by heterogeneous agents with different risk aversion and
human capital. The societal corruption level, in turn, affects the risk-return profile of corruption for
the individual agents. Simulating a multi-generational economy with heterogeneous agents, The
author shows that there are locally stable equilibrium corruption levels with certain socio-economic
determinants.

Chapter X
Human Nature in the Adaptation of Trust / Bart Nooteboom ...................................................... 123

This chapter pleads for more inspiration from human nature in agent-based modeling. As an illus-
tration of an effort in that direction, it summarizes and discusses an agent-based model of the build-
up and adaptation of trust between multiple producers and suppliers. The central question is whether,
and under what conditions, trust and loyalty are viable in markets. The chapter explores a line of
further research on the basis of notions of mental framing and frame switching on the basis of
relational signaling, derived from social psychology.

Chapter XI
A Cognitively Based Modeling of Scientific Productivity / Isaac Naveh and Ron Sun ............ 141

This chapter proposes a more cognitively realistic approach to social simulation. It begins with a
model for capturing the growth of academic science. Using this agent model, results comparable to
human data are obtained. It is found that while different cognitive settings may affect the aggre-
gate number of scientific articles produced by the model, they do not generally lead to different
distributions of number of articles per author.

Chapter XII
Nature-Inspired Knowledge Mining Algorithms for Emergent Behaviour Discovery in
     Economic Models / David Al-Dabass ...................................................................................... 153

Economic models exhibit a multiplicity of behavior characteristics that are nonlinear and time-
varying. ‘Emergent’ behavior appears when reduced order models of differing characteristics are
combined to give rise to new behavior dynamics. In this chapter we apply the algorithms and
methodologies developed for nature-inspired intelligent systems to develop models for economic
systems.



Chapter XIII
The Grid for Nature-Inspired Computing and Complex Simulations / Riccardo Boero ............. 171

This chapter deals with the usage of Grid technologies for nature-inspired algorithms and complex
simulations. The chapter, as a whole, acts a guide presenting applicative ideas and tools to exploit
Grid technological solutions for the considered purposes.

Section III
Economics

Chapter XIV
Agent-Based Computational Economics / Charlotte Bruun ........................................................ 183

This chapter argues that the economic system is best perceived as a complex adaptive system, and
as such, the traditional analytical methods of economics are not optimal for its study. It is argued
that agent-based computational economics (ACE) should be perceived as a new methodological
approach to the study of economic systems rather than a new approach to economics, and that the
use of ACE should be anchored in existing economic theory.

Chapter XV
Data Gathering to Build and Validate Small-Scale Social Models for Simulation /
     Juliette Rouchier ........................................................................................................................ 198

This chapter discusses two different approaches that gather empirical data and link them to model-
ing and simulations with agent-based systems: experimental economics which built reproducible
settings and quantitatively defined indicators, and companion modeling which accompanies ob-
served social groups when they negotiate over renewable resource issues. The chapter wishes to
put forward that, although both approaches have different goals, some evolutions in research pro-
tocol could enhance qualities of both.

Chapter XVI
Modeling Qualitative Development / Andreas Pyka ..................................................................... 211

This chapter introduces agent-based modeling as a methodology to study qualitative change in
economic systems. It is shown that agent-based models can cope with the challenges of an evolu-
tionary setting and fulfill the requirements of modeling qualitative change. The chapter also gives
an illustrative example of an agent-based model of innovation processes organized in networks of
actors.

Chapter XVII
Agent-Based Modeling with Boundedly Rational Agents / Eva Ebenhöh and
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This chapter introduces an agent-based modeling framework for reproducing micro behavior in eco-
nomic experiments. It gives an overview of the theoretical concept which forms the foundation of the
framework as well as short descriptions of two exemplary models based on experimental data.

Chapter XVIII
Heterogeneous Learning Using Genetic Algorithms / Thomas Vallée ......................................... 246

The goal of this chapter is twofold. First, assuming that all agents belong to a genetic population,
the evolution of inflation learning will be studied using a heterogeneous genetic learning process.
Second, by using real-floating-point coding and different genetic operators, the quality of the learn-
ing tools and their possible impact on the learning process will be examined.

Chapter XIX
Modeling the Firm as an Artificial Neural Network / Jason Barr and
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The purpose of this chapter is to make the case that a standard artificial neural network can be
used as a general model of the information processing activities of the firm, and to present a
synthesis of Barr and Saraceno (2002, 2004, 2005), who offer various models of the firm as an
artificial neural network.

Chapter XX
Evolutionary Modeling and Industrial Structure Emergence / Halina Kwasnicka and
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In the first part of the chapter, an outline of the evolutionary model of industrial dynamics is pre-
sented. The second part deals with a simulation study of the model focused on identification of
necessary conditions for emergence of different industrial strictures. One of the important conclu-
sions from this chapter is that evolutionary analysis may be considered as a very useful and comple-
mentary tool to teach economics.

Chapter XXI
Population Symbiotic Evolution in a Model of Industrial Districts / Ugo Merlone and
     Pietro Terna ................................................................................................................................ 301

This chapter considers a model of industrial districts where different populations interact symbioti-
cally. The approach consists of the parallel implementation of the model with jESOF and plain C++.
We consider a district decomposition where two populations, workers and firms, cooperate while
behaving independently. We can find interesting effects both in terms of worker localization conse-
quences and of the dynamic complexity of the model, with policy resistance aspects.

Chapter XXII
Competitive Advantage of Geographical Clusters / Vito Albino, Nunzia Carbonara, and
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This chapter deals with complexity science issues from two sides: from one side, it has used com-
plexity science concepts to give new contributions to the theoretical understanding of geographical
clusters (GCs); from the other side, it presents an application of complexity science tools such as
emergent (bottom-up) simulation, using agent-based modeling to study the sources of GC competi-
tive advantage.

Chapter XXIII
A Simulation of Strategic Bargainings within a Biotechnology Cluster / Alain Berro and
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This chapter introduces artificial life as a means of exploring strategic relations dynamics between
firms and local authorities within a local biotechnology cluster. The results show that the firms
adjust their bargaining strategies according to their assessment of gains which might be collectively
generated. The results also bring to light that the local authorities play a regulatory role against
opportunism and that they are the key players in local coordination. Stemming from these simula-
tions, the authors develop promising new avenues of theoretical and empirical research.

Chapter XXIV
Knowledge Accumulation in Hayekian Market Process Theory / Nicole J. Saam and
     Wolfgang Kerber ....................................................................................................................... 352

This simulation model is an example of theory-driven modeling that aims at developing new hypoth-
eses on mechanisms that work in markets. The central aim is to model processes of knowledge
accumulation in markets on the theoretical basis of Hayek’s concept of “competition as a discovery
procedure,” in which firms experiment with innovations that are tested in the market, and the
superior innovations are imitated by other firms through mutual learning. We show that limited
imitability can hamper this process through the emergence of a certain kinds of lock-in situations
which reduces the number of changes in the position of the leading firm.

Chapter XXV
On Technological Specialization in Industrial Clusters / Herbert Dawid and
     Klaus Wershing .......................................................................................................................... 367

In this chapter an agent-based industry simulation model is employed to analyze the relationship
between technological specialization, cluster formation, and profitability in an industry where de-
mand is characterized by love-for-variety preferences. The main focus is on the firms’ decisions
concerning the position of their products in the technology landscape.

Chapter XXVI
Simulating Product Invention Using InventSim / Anthony Brabazon, Arlindo Silva,
     Tiago Ferra de Sousa, Robin Matthews, Michael O’Neill, and Ernesto Costa ............. 379

This chapter describes a novel simulation model (InventSim) of the process of product invention.
Invention is conceptualized as a process of directed search on a landscape of product design pos-



sibilities, by a population of profit-seeking inventors. The key finding of the experiments is that if
search heuristics are confined to those that are rooted in past experience, or to heuristics that
merely generate variety, limited product advance occurs. The results demonstrate the importance
of human direction and expectations in invention.
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Section IV
Design and Manufacturing

Chapter XXVII
Human-Centric Evolutionary Systems in Design and Decision-Making / I. C. Parmee,
     J. R. Abraham, and A. Machwe .............................................................................................. 395

The chapter introduces the concept of user-centric evolutionary design and decision-support sys-
tems, and positions them in terms of interactive evolutionary computing. This improved understand-
ing can contribute to the iterative improvement of initial machine-based representations.

Chapter XXVIII
Genetic Algorithms for Organizational Design and Inspired by Organizational Theory /
     Tian-Li Yu, Ali A. Yassine, and David E. Goldberg ............................................................. 412

Modularity is widely used in system analysis and design such as complex engineering products and
their organization, and modularity is also the key to solving optimization problems efficiently via
problem decomposition. We first discover modularity in a system and then leverage this knowledge
to improve the performance of the system. In this chapter, we tackle both problems with the alli-
ance of organizational theory and evolutionary computation.

Chapter XXIX
Autonomous Systems with Emergent Behavior / Giovanna Di Marzo Serugendo .................. 429

This chapter presents the notion of autonomous engineered systems working without central con-
trol through self-organization and emergent behavior. It argues that future large-scale applications
from domains as diverse as networking systems, manufacturing control, or e-government services
will benefit from being based on such systems. The goal of this chapter is to highlight engineering
issues related to such systems, and to discuss some potential applications.

Chapter XXX
An Evolutionary Algorithm for Decisional Assistance to Project Management /
     Samuel Rochet and Claude Baron .......................................................................................... 444



This chapter explores the use of evolutionary algorithms to help the decision maker. It introduces
the industrial context, and presents the authors’ methodology to connect the design and project
management processes, expressing the problem as a multi-objective optimization one. The authors
detail the scenario selection process and demonstrate which performances are obtained.

Chapter XXXI
How Genetic Algorithms Handle Pareto-Optimality in Design and Manufacturing /
     Nirupam Chakraborti ............................................................................................................... 465

An informal analysis is provided for the basic concepts associated with multi-objective optimization
and the notion of Pareto-optimality, particularly in the context of genetic algorithms. A number of
evolutionary algorithms developed for this purpose are also briefly introduced, and finally, a number
of paradigm examples are presented from the materials and manufacturing sectors, where multi-
objective genetic algorithms have been successfully utilized in the recent past.

Section V
Operations and Supply Chain Management

Chapter XXXII
Evolutionary Optimization in Production Research / Christos Dimopoulos ............................... 483

This chapter provides a short guide on the use of evolutionary computation methods in the field of
production research. The aim of the chapter is to present researchers, practitioners, and managers
with a basic understanding of the current use of evolutionary computation techniques and allow
them to either initiate further research or employ the existing algorithms in order to optimize their
production lines.

Chapter XXXIII
Ant Colony Optimization and Multiple Knapsack Problem / Stefka Fidanova ........................... 498

The ant colony optimization algorithms and their applications on the multiple knapsack problem
(MKP) are introduced. The purpose of the chapter is to compare a variety of heuristic and phero-
mone models and different variants of ACO algorithms on MKP.

Chapter XXXIV
A New Way to Reorganize a Productive Department in Cells / Alessandro Brun and
     Marta Zorzini ............................................................................................................................. 510

The authors propose an algorithm for the reorganization of a production department in cells, start-
ing from a situation of job shop, chasing the main goal of group technology (GT)—that is, to gather
pieces with similar technological cycles and to associate every group of items (family) to a group of
machines (cell) able to realize all the necessary activities. To get this result, a behavioral pattern
has been developed, having its origin in the ants’ way of sorting food, larva, and pupa in an anthill.



Chapter XXXV
Agent-Oriented Modeling and Simulation of Distributed Manufacturing / Kuldar Taveter
     and Gerd Wagner ...................................................................................................................... 527

This chapter proposes an agent-oriented method for modeling and simulation of distributed produc-
tion environments. The proposed method views a manufacturing enterprise as consisting of active
entities—agents. The method makes use of the Radical Agent-Oriented Process (RAP) methodol-
ogy introduced by Taveter and Wagner (2005) which is based on Agent-Object-Relationship (AOR)
modeling. The method is aimed at the creation of environments for modeling and simulation of
distributed manufacturing.

Chapter XXXVI
Application of RAP/AOR to the Modeling and Simulation of a Ceramics Factory /
     Kuldar Taveter ........................................................................................................................... 541

This chapter describes the application of the RAP/AOR methodology proposed by Taveter and
Wagner (2005a, 2005b) to the modeling and simulation of a real ceramic factory. The chapter
addresses the modeling of the ceramic factory from the interaction, information, and behavior
aspects of the framework. The method is aimed at the creation of simulation environments and
automation systems of distributed manufacturing.

Chapter XXXVII
Building Distribution Networks Using Cooperating Agents / Neil Urquhart .............................. 557

This chapter examines the use of emergent computing to optimize solutions to logistics problems.
These problems are based on real-world data in terms of geography and constraints. The author
hopes that this chapter will inform researchers as to the suitability of emergent computing in real-
world scenarios and the abilities of agent-based systems to mimic social systems.

Chapter XXXVIII
Games, Supply Chains, and Automatic Strategy Discovery Using Evolutionary Computation /
     Tim Gosling, Nanlin Jin, and Edward Tsang ........................................................................ 572

The use of evolutionary computation is significant for the development and optimization of strate-
gies for dynamic and uncertain situations. This chapter introduces three cases in which evolution-
ary computation has already been used successfully for strategy generation in the form of work on
the Iterated Prisoners Dilemma, Rubinstein’s Alternating Offers Bargaining Model, and the Simple
Supply Chain Model. The authors hope that the chapter will promote this approach, motivate fur-
ther work in this area, and provide a guide to some of the subtleties involved in applying evolution-
ary computation to different problems.

Chapter XXXIX
Applications of Neural Networks in Supply Chain Management / Ioannis Minis and
     Nikolaos Ampazis ...................................................................................................................... 589



This chapter focuses on significant applications of self-organizing maps (SOMs), that is, unsuper-
vised learning neural networks in two supply chain applications: cellular manufacturing and real-
time management of a delayed delivery vehicle. Neural networks have and will continue to play a
significant role in solving effectively complex problems in supply chain applications, some of which
are also highlighted in this chapter.

Chapter XL
An Object-Oriented Framework for Rapid Genetic Algorithm Development /
     Andrés L. Medaglia and Eliécer Gutiérrez ........................................................................... 608

Java Genetic Algorithm (JGA) is a computational object-oriented framework for rapid development
of evolutionary algorithms for solving complex optimization problems. This chapter describes the
JGA framework and illustrates its use on the dynamic inventory lot-sizing problem.

Chapter XLI
Applications of JGA to Operations Management and Vehicle Routing / Andrés L. Medaglia
     and Eliécer Gutiérrez ................................................................................................................ 625

Two of the most complex activities in Productions and Operations Management (POM) are inven-
tory planning and operations scheduling. This chapter presents two problems related to these ac-
tivities, namely, the Capacitated Lot-Sizing and Scheduling Problem and the Capacitated Vehicle
Routing Problem. The purpose of this chapter is to illustrate how to use JGA to model and solve
complex business problems arising in POM.

Chapter XLII
Solving Facility Location Problems with a Tool for Rapid Development of Multi-Objective
     Evolutionary Algorithms (MOEAs) / Andrés L. Medaglia, Eliécer Gutiérrez, and
     Juan Guillermo Villegas ........................................................................................................... 642

The low price of coffee in the international markets has forced the Federación Nacional de Cafeteros
de Colombia (FNCC) to look for cost-cutting opportunities. An alternative that has been considered
is the reduction of the operating infrastructure by closing some of the FNCC-owned depots. These
bi-objective optimization models are solved by means of NSGA II, a multi-objective evolutionary
algorithm (MOEA). From a computational perspective, this chapter presents the Multi-Objective
Java Genetic Algorithm (MO-JGA) framework, a new tool for the rapid development of MOEAs
built on top of the Java Genetic Algorithm (JGA). We illustrate MO-JGA by implementing NSGA
II-based solutions for the bi-objective location models.

Chapter XLIII
Worker Performance Modeling in Manufacturing Systems Simulation / Peer-Olaf Siebers .... 661

The intentions of the chapter are twofold: firstly, to raise awareness of the importance of consider-
ing human performance variation in such simulation models; and secondly, to present some concep-



tual ideas for developing a multi-agent based approach for representing worker performance in
manufacturing systems simulation models.

Section VI
Information Systems

Chapter XLIV
Toward an Agent-Oriented Paradigm of Information Systems / Hong Zhu ................................ 679

This chapter presents a meta-model of information systems as a foundation for the methodology of
caste-centric agent-oriented software development, which is suitable for applications on the Internet/
Web platform and the utilization of mobile computing devices. In the model, the basic elements are
agents classified into a number of castes. This chapter also illustrates the advantages of agent-
oriented information systems by an example.

Chapter XLV
Caste-Centric Development of Agent-Oriented Information Systems / Lijun Shan,
     Rui Shen, Ji Wang, and Hong Zhu ......................................................................................... 692

Based on the meta-model of information systems presented by Zhu this year, this chapter presents
a caste-centric agent-oriented methodology for evolutionary and collaborative development of in-
formation systems. The features of agent-oriented information systems in general and our method-
ology in particular are illustrated by an example throughout the chapter.

Chapter XLVI
Evolving Learning Ecologies / Jon Dron ........................................................................................ 708

This chapter describes the application of self-organizing principles to the field of e-learning. It
argues that traditional managed approaches to e-learning suffer from deficiencies both in cost and
adaptativity that are addressed through the application of nature-inspired processes such as stigmergy
and evolution. The chapter describes some example applications and explores some of the remain-
ing challenges in the field, most notably in encouraging pedagogically useful structures to evolve.

Chapter XLVII
Efficient Searching in Peer-to-Peer Networks Using Agent-Enabled Ant Algorithms /
     Prithviraj Dasgupta .................................................................................................................. 721

In this chapter we describe a mechanism to search for resources in unstructured peer-to- peer
(P2P) networks using ant algorithms implemented through software agents. Traditional resource
search algorithms in P2P networks use an uninformed or blind search among the various nodes of
the network. We describe and compare different reinforcement strategies used by ants to perform
efficient resource search in P2P networks.
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Commerce and Negotiation

Chapter XLVIII
An Annealing Protocol for Negotiating Complex Contracts / Mark Klein, Peyman Faratin,
     Hiroki Sayama, and Yaneer Bar-Yam ..................................................................................... 739

Work to date on negotiation protocols has focused almost exclusively on defining contracts consist-
ing of one or a few independent issues and a relatively small number of possible contracts. Many
real-world contracts, by contrast, are much more complex, consisting of multiple interdependent
issues and intractably large contract spaces. This chapter describes a simulated annealing-based
approach appropriate for negotiating such complex contracts that achieves near-optimal social
welfare for negotiations with binary issue dependencies.

Chapter XLIX
Agents for Multi-Issue Negotiation / John Debenham ................................................................. 750

This chapter describes a generic multi-issue negotiating agent that is designed for a dynamic infor-
mation-rich environment. The agent strives to make informed decisions by observing signals in the
marketplace and by observing general information sources including news feeds.

Chapter L
An Introduction of Evolutionary Computation in Auctions / Asunción Mochón, Yago Sáez,
     David Quintana, and Pedro Isasi ........................................................................................... 771

The aim of this chapter is to give a background about auction theory and to present how evolution-
ary computation techniques can be applied to auctions. Finally, an explained example shows how a
genetic algorithm can help automatically find bidders’ optimal strategies for a specific dynamic
multi-unit auction—the Ausubel auction—with private values, drop-out information, and with sev-
eral rationing rules implemented. The results suggest that the approach leads to strategies that
outperform sincere bidding when rationing is needed.

Chapter LI
Virtual Organization Support through Electronic Institutions and Normative Multi-Agent

Systems / Henrique Lopes Cardoso, Ana Paula Rocha, and Eugénio Oliveira .............. 786

This chapter exposes our work towards the development of an agent-based electronic institution
(EI) providing a virtual normative environment that assists and regulates the creation and operation
of VOs, through contract-related services. It includes a presentation of the EI framework, knowl-
edge representation structures for norms in contracts, and a description of two main institutional
services, namely negotiation mediation and contract monitoring.



Section VIII
Marketing

Chapter LII
Co-Evolving Better Strategies in Oligopolistic Price Wars / Robert Marks, David Midgley,
     and Lee Cooper ......................................................................................................................... 806

Using empirical market data from brand rivalry in a retail ground-coffee market, we model each
idiosyncratic brand’s pricing behavior using the restriction that marketing strategies depend only on
profit-relevant state variables, and use the genetic algorithm to search for co-evolved equilibria,
where each profit-maximizing brand manager is a stimulus-response automaton, responding to past
prices in the asymmetric oligopolistic market. It is part of a growing study of repeated interactions
and oligopolistic behavior using the GA.

Chapter LIII
Social Anti-Percolation and Negative Word of Mouth / Tom Erez, Sarit Moldovan, and
     Sorin Solomon ............................................................................................................................ 822

Many new products fail, despite preliminary market surveys having determined considerable po-
tential market share. This effect is too systematic to be attributed to bad luck. We suggest an
explanation by presenting a new percolation theory model for product propagation, where agents
interact over a social network.

Chapter LIV
Complexity-Based Modelling Approaches for Commercial Applications / David Collings
     and Nicola Baxter ...................................................................................................................... 836

In this chapter we discuss the use of agent-based modeling to produce decision support tools to
enhance this understanding. We use the example of modeling opinion diffusion within a customer
population and its effect on product adoption to illustrate how the agent-based modeling technique
can be an ideal tool to create models of complex socioeconomic systems. We consider the advan-
tages compared to alternative, more conventional approaches available to analysts and manage-
ment decision makers.

Section IX
Finance

Chapter LV
Genetic Programming for Spatiotemporal Forecasting of Housing Prices / Mak Kaboudan ... 851

This chapter compares forecasts of the median neighborhood prices of residential single-family
homes in Cambridge, Massachusetts, using parametric and nonparametric techniques. Prices are



measured over time (annually) and over space (by neighborhood). To demonstrate their efficacy,
forecasts of the median prices are first obtained using a standard statistical method: weighted least
squares. Genetic programming and neural networks are then used to produce two other forecasts.

Chapter LVI
Multiattribute Methodologies in Financial Decision Aid / Mattia Ciprian, Massimiliano
     Kaucic Giulia Nogherotto, Valentino Pediroda, and Danilo DiStefano .......................... 869

This chapter introduces the capability of the numerical multidimensional approach to solve complex
problems in finance. The authors with the examples in the chapter would like to demonstrate how
a multidimensional approach based on the mimic of nature could be useful to solve modern complex
problems in finance.

Chapter LVII
Multi-Objective Optimization Evolutionary Algorithms in Insurance-Linked Derivatives /
     M. J. Pérez, J. García, L. Martí, and J. M. Molina ............................................................ 885

This work addresses a real-world adjustment of economic models where the application of robust
and global optimization techniques is required. The problem dealt is the search of a set of param-
eters to calculate the reported claim amount. Several functions are proposed to obtain the reported
claim amount, and a multi-objective optimization procedure is used to obtain parameters using real
data and decide the best function to approximate the reported claim amount. Results show the
advantages of MOEAs in the proposal in terms of effectiveness and completeness in searching
solutions, compared with particular solutions of classical EC approaches (using an aggregation
operator) in problems with real data.

Chapter LVIII
Modeling an Artificial Stock Market / Stéphanie Lavigne and Stéphane Sanchez .................. 909

This chapter presents an artificial stock market created to analyze market dynamics from the
behavior of investors. It argues that information—delivered by financial intermediaries as rating
agencies and considered as cognitive institution—directs the decisions of investors who are hetero-
geneous agents endowed with capabilities of learning in a changing environment. The objective is
to demonstrate that information influences market dynamics as it allows the coordination of the
decisions of investment in the same direction: information is a focal point for investors and contrib-
utes to generate a speculative dynamic on the market.
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A CURE FOR THE DISMAL SCIENCE

I earn a living solving real economic and strategic problems for real businesses. After a number of
years of this regimen, I have lost my taste for big theories of human behavior—especially economic
theories. My version of game theory consists of playing the game and forgetting about the theory.
That’s because my incentive system is based not on the aesthetics of theorem proving, but rather
on my ability to ease the pain of suffering managers. I no longer derive any satisfaction from
irrelevant elegance. The foundations of economics have for so many years ignored the realities of
human behavior and decision making that it has become a joke for business practitioners, manag-
ers, and consultants. I believe that the mutual distaste of practitioners and theorists is coming to an
end as a new breed of economists is emerging. These new economists embrace the complexities
and subtleties of human behavior; they acknowledge the dynamic, evolving nature of the economy;
they design economic experiments that involve, God forbid real people; while they do not reject
mathematics as a tool, they do not view it as a purpose; they believe that computational experi-
ments can take them beyond confined, provable situations. The handbook that Jean-Philippe Rennard
has assembled is a wonderfully diverse collection of points of view from this new breed of econo-
mists and social scientists, a vibrant cross-section of the field of economics as I hope it will evolve
in the near future.

The main thread throughout this collection of essays is human behavior, individual or collective,
and how it can be understood, modeled, approximated, or even enhanced using a range of tech-
niques and approaches from “complexity science.” Evolutionary algorithms, co-evolution, swarm
intelligence, social networks, multi-objective decision making, and agent-based modeling are some
of the techniques employed. That there is a need for such approaches is crystal clear from the
viewpoint of practical applications. Let me use some examples from consumer behavior and mar-
keting to illustrate why in particular agent-based modeling (ABM) is the keystone of the new
computational edifice.

When a customer makes a purchase or switch decision, it is often the result of a history. Im-
pulse decisions, while they do happen, are the exception rather than the rule. That does not mean
that most decisions are rational, simply that they cannot be explained by just looking at the time they
happen. When a wireless phone customer decides to switch carriers, such a decision is the result of
all the interactions and experiences this customer had with his carrier as well as with other sources
of information. Failing to recognize the temporal dimension of decision making can lead to dramatic
prediction errors. ABM, and only ABM, can explicitly deal with all aspects of time: learning, wait-
ing, simmering, habituation, forgetting, and so forth. For example, in the casino industry, common
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wisdom holds that customers have a fixed budget and stop playing when their budget is ex-
hausted. An ABM fed with real slot data from a loyalty card program showed that in reality
customers stop playing when their total experience over time (TEOT—a combination of the
dynamics of their wins and losses weighted by demographic attributes and day of the week, and,
yes, budget) reaches a threshold. TEOT is a much better predictor than budget or any combina-
tion of demographic attributes which enables a major casino owner and operator to implement
effective real-time marketing and promotional offers. Of course the dirty little secret is data and
how to use it effectively to estimate complex time-dependent models of decision making. When
the data exists, in the absence of a coherent theoretical framework, not to mention theorems, one
has to perform rigorous computational experiments based on statistical machine learning tech-
niques.

Another example is health insurance, where a customer’s demographic attributes are not suffi-
cient to predict which plan he or she will select. Instead, the characteristics of each plan are
viewed through a looking glass that puts more weight on certain characteristics as a function of the
customer’s experience with his current plan, which is a combination of his and his family’s health in
the past year and satisfaction or dissatisfaction with the health care afforded by the plan. Further-
more, if specific adverse health events have happened in the recent past, they strongly affect the
way the possibility of catastrophic losses is perceived. By using an ABM that explicitly deals with
the effects of experience and recency, prediction error could be reduced by an order of magnitude
at Humana, a leading U.S. health insurer. No amount of traditional econometric modeling with
demographic attributes as explanatory variables would have been able to achieve this level of
accuracy.

In retail, the layout of a supermarket is known to be a key sales driver, yet shopper behavior is
an emergent property with a strong spatio-temporal component that is never taken into account in
traditional econometric modeling: while the trajectory of a shopper in a supermarket is influenced
by the shopper’s shopping list, the trajectory in turn influences what the shopper buys beyond the
shopping list. Through the use of a spatial behavioral model of shoppers in a supermarket, Pepsi
was able to predict hot spots in any supermarket as a function of the supermarket’s layout and the
demographic attributes of its shopper population. With the knowledge of hot spot locations, Pepsi
could determine the best location not only for its products, but also for promotional signs. Here
again, the dirty little secret is data and how to use it. Not only did we have to develop special
estimation techniques to infer trajectories and reconcile them with scanner data, data collection
itself was a challenge: shoppers were given “smart carts” equipped with tags for path tracking.

Customers experience, learn, adapt, adjust. Their decisions are path dependent: in other words,
decisions are dependent upon a contingent history. Existing statistical or econometric techniques do
not deal satisfactorily with path dependence. When done properly (and that’s a big IF) ABM com-
bines the statistical rigor of existing techniques with the ability to accurately model the temporal
components of decision making. As a result, not only does predictability go through the roof, the
outputs of what-if scenarios also become more reliable because behavioral models are fundamen-
tally causal rather than correlational. Knowing that two variables are correlated is good enough to
predict the past, but robustly predicting the future requires understanding the underlying causal
mechanisms of decision making.



xxx

At the risk of repeating myself, taking data seriously is the dirty little secret of success. We
must not lose sight of data in the excitement of playing with our synthetic little worlds. It is ok for
the theory to be ahead of the data, but not by light-years. A case in point is the over-theorization of
social networks in the last few years. In my experience good social network data (whatever that
means) is a rarity. The data is often inadequate, ranges from incomplete to sparse, is noisy, sensi-
tive to minute details, and lacks such important characteristics as frequency, quality, and nature of
the interactions. In other words it is unusable in practice for predictive purposes. For example, in
1954 pharmaceutical giant Pfizer was interested in determining how physicians decide to adopt a
new drug so that it could more effectively market its products through detailing and traditional
media. By knowing how physicians acquire reliable information and who they trust, Pfizer could
market its new drugs more effectively, optimizing the allocation of marketing resources among
detailing, media advertisement, continuing medical education, and so forth. They funded a landmark
social network study aimed at showing the effect of interpersonal influences on behavior change in
relation to the adoption of Tetracycline, a powerful and useful antibiotic just introduced in the mid-
1950s. Pfizer hoped tetracycline would diffuse rapidly because it was a tremendous improvement
over existing antibiotics. The Pfizer-funded study contained two major advances over previous
studies in that it relied on a behavioral measure of time of adoption by looking at prescription
records and used network analysis to identify opinion leaders. However, numerous subsequent
studies of this work revealed a number of weaknesses in the collection and analysis of the data, and
the consensus among social network scientists today is that the study is inconclusive: the uptake in
tetracycline adoption cannot be assigned with confidence to social network effects. Over the last
fifty years, in a movement that accelerated over the last ten, social network researchers have been
developing more and more complex models of network diffusion, but there is very little data to back
them up; there is a lot of “anecdotal” evidence, a euphemism for poor statistical work on ambigu-
ous data.

One of the issues facing those who want to study the influence of social networks on the
diffusion and adoption of innovations to design marketing interventions is the lack of reliable
data. There are situations, however, where the community of adopters is sufficiently small that it
can be mapped accurately. My team and I studied the adoption of a new drug used exclusively in
intensive care units (ICUs), where the number of individuals (doctors, nurses, pharmacologists)
involved in the decision to prescribe the drug is between 10 and 20 in a given hospital. The study
revealed that the temporal structure of the social network is the key to prescription behavior.
While a snapshot of the social network is unhelpful (we found no correlation between such
snapshots and probabilities of adoption), its dynamics over time are a great predictor of the
speed with which the drug is adopted: this can be explained by the fact that in many hospital
ICUs, physicians work only a few months per year and teach or work in other departments for
the rest of the year, so that the only opportunities physicians have to interact is when their
assignments overlap for a few days. We discovered that the degree of overlap correlates posi-
tively with the speed of adoption, suggesting that ICUs that are organized to provide more over-
lap between physicians are more favorable marketing targets. Promoting the drug to these ICUs
first accelerates adoption. ICUs that are more difficult to penetrate can be targeted in a second
marketing wave, as it is easier to market a product when you can tell your customers that their
competitors or peers are already using it.
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So, where does that leave us? Clearly, from the perspective of a practitioner, there is a need for
the various approaches advocated in this book’s chapters. The authors are leading the way in
defining a cure for the dismal science. I am convinced that it is only by combining these new
approaches with a relentless focus on data and reality that the cure will gain credibility.

Eric Bonabeau
Icosystem Corporation, Cambridge, MA
January 17, 2006
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WHY SOCIAL SCIENCES NEED NATURE-INSPIRED COMPUTING

For nearly four billions years, life has invaded Earth. Throughout eras geological upheavals have
deeply transformed the environment. Here, deserts left place to a tropical environment; there ices
were replaced by conifers forests …. Despite these transformations, life is so vigorous that one
can find it on the top of the highest mountains, in the depths of oceans, as well as in clouds or deep
underground.

Life has proved its capacity to cope with deep transformations—its ability to overcome mass extinc-
tions and to rebirth after disasters. These adapting and surviving capabilities have inspired computer
scientists who try to conceive algorithms imitating nature, hoping to confer in them some of the aptitudes
of living beings.

Darwinian natural adaptation has been transferred into evolutionary algorithms; artificial
neural networks are a metaphor of nervous systems; ants foraging behaviors gave rise to ant
colony optimization; birds flocks or fish schools inspired particle swarm optimization; artificial
immune systems mimic the biological ones; insect or animal autonomy and abilities inspired distrib-
uted artificial intelligence, multi-agent systems, and artificial societies.

In the fields of social sciences, economics, and management, two types of contributions must be
emphasized:

• Social insects, buffalo herds, or human societies show that social life dominates the macro-
fauna. This fascinating characteristic of living systems, and more particularly the study of social
insect behavior, inspired the rebirth of artificiality. Starting with artificial life and artificial intel-
ligence, modern artificiality now reaches social sciences with the development of artificial soci-
eties which contributes to renewed approaches of social and economic phenomena.

• Living systems are supple and able to adapt to huge transformations in their environment.
Transposition of these properties into algorithms provide with ground-breaking tools able to
deal with complex problems.

After a six-chapter introduction to nature-inspired computing for modeling and optimization, the
first volume of the handbook is oriented toward social sciences (sociology and economics) model-
ing and experiments; the second volume mainly handles modeling, exploration, and optimization for
management.
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VOLUME I

The core hypothesis of artificial societies is that human societies are complex adaptive systems
(CASs) whose properties emerge from non-linear interactions between their members. Since the
famous Jurassic Park by Steven Spielberg, everyone has been aware of the existence of “chaos”
and “complexity.” Despite the highly disputable treatment of chaos in that movie, it addressed a core
problem of modern science that Nobel Prize recipient Illya Prigogine nicely termed “The End of
Certainty” (Prigogine, 1997).

At least since the French philosopher René Descartes in the 17th century, science has mainly
been based on analysis. Analysis tries to understand reality by breaking down observed phenom-
ena, thanks to the fundamental hypothesis that a global process is the result of the mere (linear)
aggregation of its components.

At the end of the 19th century, French mathematician Henri Poincaré proved that analysis is
unable to describe most systems based on non-linear interactions. Those systems are now said to
be more than the sum of their parts (Waldrop, 1992). The resulting complex dynamic is unpredict-
able. The only way to know their state at a given step is to compute each step. The usual analytical
method is of little help; the necessary mathematics are still to be invented. Non-linearity thus
challenges the traditional approach, which tries to understand a system by analyzing its compo-
nents: “The key feature of non-linear systems is that their primary behaviors of interest are proper-
ties of the interactions between parts, rather than being properties of the parts themselves, and
these interactions-based properties necessarily disappear when the parts are studied independently”
(Langton, 1989, p. 41, original italics). How do we study processes that are “more than the sum of
their parts?” How do we analyze properties that cannot be forecasted? The solution proposed by
computer scientists is termed bottom-up modeling.

Since core properties disappear when the components are studied independently, bottom-up
modeling is based on the gathering of interacting components. Such constructions and the study of
the dynamic resulting from non-linear interactions of the simple components constitute the “bottom-
up method.” Instead of modeling the global dynamic of the studied system (“top-down method”
usually based on differential equations), one merely models the components to study the potentially
emerging regularities.

Bottom-up modeling is based on multi-agent systems (MASs). Agents are a kind of “living
organism,” whose behavior—which can be summarized as communicating—and acting are aimed
at satisfying its needs and attaining its objectives (Ferber, 1999, p. 10). MASs are a gathering of
interacting agents. In social sciences (mainly sociology and economics), they are the base of artifi-
cial societies.

Section II: Social Modeling includes seven chapters providing a global view of this research.
Chapters by Robert Axelrod and Harko Verhagen demonstrate the huge potential contribution of
artificial societies to social sciences. Corruption, trust, and academic science are then studied in
the light of MASs, showing the cross-fertilization of social sciences and multi-agent systems.

Section III: Economics includes thirteen chapters providing global coverage of the use of na-
ture-inspired computing for economics. After an introduction to agent-based computational eco-
nomics (ACE), original research using multi-agent systems, evolutionary algorithms, or neural net-
works to deal with fundamental economic forces are presented. Clusters, innovation, and technol-
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ogy are then particularly emphasized to enlighten the complex cross dynamics of space and tech-
nology.

VOLUME II

Management is confronted with challenges of growing difficulty:

• The complexity of the environment, the unprecedented speed of its evolution, and the unman-
ageable resulting mass of information require specific powerful tools.

• The never-ending search for productivity has made optimization a core concern for engi-
neers. Quick process, low energy consumption, and short and economical supply chains are
now key success factors.

The six-section, thirty-two-chapter second volume provides comprehensive coverage of the
contributions of nature-inspired computing to management. It shows its ability to solve problems
beyond the capabilities of more traditional methods.

Section IV: Design and Manufacturing presents pioneering research, particularly using evolu-
tionary algorithms. Applied to design, project management, as well as to manufacturing, this re-
search clearly demonstrates the capacity of nature-inspired algorithms to stimulate design creativ-
ity and to manage complex associated issues.

Section V: Operations and Supply Chain Management contains twelve chapters. After an intro-
duction to evolutionary optimization and ant colony optimization for operations management, main
nature-inspired tools are used to solve very diverse operations and supply chain management prob-
lems (scheduling, organization of production, distribution, etc.). The section includes the presenta-
tion of a powerful Java framework designed to use evolutionary computation to solve operations
and supply chain problems.

Section VI: Information Systems presents the novel agent-oriented paradigm of information
systems and provides innovative research, demonstrating the power and suppleness of nature-
inspired computing when applied to information management, e-learning, and peer-to-peer sys-
tems.

Section VII: Commerce and Negotiation includes a synthesis of agents for multi-issue negotia-
tion, and presents original research on automatic negotiations and auctions using agent-based mod-
eling and evolutionary computation. This research outstandingly leads the way toward future vir-
tual organizations.

Section VIII: Marketing uses evolutionary computation and agent-based modeling to analyze
price wars and word-of-mouth, and to contribute to the understanding of complex socio-economic
systems to provide a decision support tool for commercial organizations.

Section IX: Finance uses genetic programming, evolutionary computation, neural networks, and
agent-based modeling to deal with complex financial problems. They are applied to housing prices,
financial decision aid, insurance-linked derivatives, and stock-market simulations.
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The fifty-eight chapters of this two-volume handbook provide a unique cross section of re-
search using nature-inspired computing for economics and management. Social scientists, econo-
mists, and people dealing with management science will find both an introduction and a valuable
presentation of state-of-the-art research in these fields, giving them a unique reference tool for
their own research. Students in computer sciences, social sciences, and management will find all
the necessary material to master the field and to help them in their training. Managers, engineers,
and practitioners will find a great deal of efficient and powerful tools to help them solve difficult
problems, and to anticipate the use of tools that will undoubtedly be part of tomorrow’s key success
factors.

Jean-Philippe Rennard
Grenoble Graduate School of Business, France
March 15, 2006
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INTRODUCTION

The “sciences of the artificial” deal with syn-
thesized things which may imitate natural things,
which have functions and goals and which are
usually discussed in terms of imperatives as
well as descriptives. Imitation with computer is
now usually termed simulation and is used to
understand the imitated system (Simon, 1996).

Artificiality has invaded science over the
last thirty years, and physicists, chemists, or
biologists now daily use widespread computing
tools for simulations. Social sciences did not set

ABSTRACT

This chapter provides an introduction to the modern approach of artificiality and simulation
in social sciences. It presents the relationship between complexity and artificiality, before
introducing the field of artificial societies which greatly benefited from the fast increase of
computer power, gifting social sciences with formalization and experimentation tools previously
owned by the “hard” sciences alone. It shows that as “a new way of doing social sciences,”
artificial societies should undoubtedly contribute to a renewed approach in the study of
sociality and should play a significant part in the elaboration of original theories of social
phenomena.

this trend aside (Halpin, 1999). This chapter
will first introduce the essential link between
complexity and artificiality before presenting
the highly promising field of artificial societies.

Complexity and Artificiality

Since the seminal book of Herbert Simon in
1969 (Simon, 1996), the sciences of the artifi-
cial knew a jerky evolution. In the field of
artificial intelligence, the excessive ambitions
of the sixties were considerably lowered in the
seventies, before knowing a new wave of opti-
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mism in the mid-eighties. The renewed interest
toward artificiality originates in new approaches
of artificial intelligence and in the success of
the highly innovative related fields of artificial
life (Langton, 1989) and artificial societies
(Gilbert & Conte, 1995; Epstein & Axtell, 1996).
Artificial life is at the crossroad of the rebirth of
artificiality and offers many nice examples
illustrating this revival, like this one:

Many ant species tend to form piles of corpses
(cemetery) in order to clean their nest.
Experiments with different species showed
that if corpses are randomly distributed,
ants tend to gather them in some clusters
within a few hours.

Deneubourg et al. (1991) proposed a simple
model of corpses gathering (see also Bonabeau,
Dorigo, & Théraulaz, 1999). They designed
virtual ants having the following behaviors:

• The probability for an ant to pick up a
corpse is pp=(k1/(k1+f))2 with k1 a thresh-
old constant and f  the fraction of per-
ceived corpses in the neighborhood.

• The probability for an ant to deposit a
corpse is: pd=(f/(k2+f))2 with k2 a thresh-
old constant. Deneubourg et al. (1991)
computed f as the number of items per-
ceived during the last t periods divided by

the largest number of items that can be
encountered during the last t periods.

To put it simply, virtual ants tend to pick up
isolated corpses to drop them in dense zones.
The result (see Figure 1) is close to the real
phenomenon.

Highly simple virtual individuals (“agents”)
without any knowledge of the global process
manage to carry out cemetery building. Fur-
thermore, it “suffices” to define different types
of objects to obtain sorting capabilities, like for
example larval sorting observed in anthills. The
gathering or the sorting process emerges from
the interactions of simple agents.

Emergence

Emergence can be defined as the qualities or
properties of a system which are new com-
pared with the qualities or properties of the
components isolated or differently organized
(Morin, 1977). According to Gilbert (1995b):

Emergence occurs when interactions among
objects at one level give rise to different
types of objects at another level. More
precisely, a phenomenon is emergent if it
requires new categories to describe it that
are not required to describe the behavior of
the underlying components. For example,
temperature is an emergent property of the
motion of atoms. An individual atom has no
temperature, but a collection of them does.

Most authors consider that emergence re-
lies on three conditions:

1. The global process is distributed, there is
no central control, and the result depends
on the interactions between components.

2. The process is autonomous, there is no
external controller.

Figure 1. Virtual ant cemetery

1 2

3 4
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3. The process is not at the same level as the
components. The language or concepts
used to describe the emergent process are
different from the language or concepts
used to describe the components. The
“test of emergence” thus relies on the
surprise engendered by the difference
between the language L1 used to design
components, and the language L2 used to
describe the resulting process (Ronald,
Sipper, & Capcarrère, 1999). According
to Steels (1997), this change of language
is sufficient to characterize emergence.

We can clarify this concept with the classi-
cal and very general formalization proposed by
(Baas, 1994), which is based on three elements:

1. A set of first-order structures 
1

1
1 1{ }iS i J, ∈

with J1 some index set finite or not. First-
order structures are primitive objects, ab-
stract, or physical; they can be organiza-
tions, machines, as well as fields or con-
cepts.

2. An observational mechanism Obs.
3. Interactions Int.

The new kind of structure resulting from the
observed interactions of first-order structures
is: 

1 1 1

2 1 1 1( )i i JS R S Obs Int ∈= , , , where R is the result
of the interaction process and 

1

1 1( )iObs Obs S≡ .
Baas calls S2 a second-order structure, and

2

2
2 2{ }iS i J, ∈  families.

The properties of the new unity resulting
from the collection S2 can be measured with an
observational mechanism Obs2. Then P is an
emergent property of S2 if 2 2( )P Obs S∈ , but

1

2 1( )iP Obs S∉  for all i1.
The property P belongs to the emergent

structure S2, but is absent from the components.
The S2s can interact to form a third-order

structure and so on. An N-th-order structure
is then:

1

1 1 1
1 1( )

N

N N N N
i N NS R S Obs Int i J

−

− − −
− −= , , , ∈

Baas calls it a hyperstructure and he con-
siders that “complexity often takes the form of
a hyperstructure” (Baas, 1994, p. 525, original
italics). According to Simon (1996), hierarchies
are necessary to allow the evolution of complex
structures.

Baas distinguishes two different types of
emergence:

• Deductible or Computable Emer-
gence: A process or theory D exists
which allows to determine 2 2( )P Obs S∈
from 

1

1 1 1( )iS Obs Int, , . That is typically the
case of engineering constructions or “trivial
emergence” like temperature evoked
above.

• Observational Emergence: The emerg-
ing property P cannot be deduced (e.g.,
consequences of Gödel’s theorem).

Bedau (1997) considers less drastically that
weak emergence characterizes emerging prop-
erties that can only be derived by simulation.
Most of the recent modeling works deal with
this type of weak emergence (Chalmers, 2002).

Despite the thousands of pages published on
emergence, or the recent emphasis on the
reduction principle (the macro-behavior is
reducible to the interactions of the components)
(e.g., Holland, 1999; Kubik, 2003), we are still
far from an ontological concept of emergence
(Emmeche, Koppe, & Stjernfelt, 1997), but
considering its success, emergence is undoubt-
edly epistemologically a fertile concept.

Bottom-Up Modeling

Emergence is a key feature of those famous
non-linear systems which are said to be more
than the sum of their parts (Waldrop, 1992).
Non-linear systems do not obey the superposi-
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tion principle. Their dynamic cannot be re-
duced to the simple (linear) combination of their
components ones.

We have known since at least the end of the
nineteenth century and Henri Poincaré (1892)
that the dynamic of such complex systems is
unpredictable. The only way to know their state
at a given step is to compute each step. The
usual analytical method is of little help; the
necessary mathematics are still to be invented.
Even the small body of mathematics which
directly deals with non-linearity depends upon
linear approximations (Holland, 1999). Non-
linearity thus challenges the traditional approach
which tries to understand a system by analyzing
its components: “The key feature of non-linear
systems is that their primary behaviors of inter-
est are properties of the interactions between
parts, rather than being properties of the parts
themselves, and these interactions-based prop-
erties necessarily disappear when the parts are
studied independently” (Langton, 1989, p. 41,
original italics).

How to deal with emergence? How to study
processes which are “more than the sum of
their parts”? How to analyze properties that
cannot be forecasted? The solution proposed
by computer scientists is termed bottom-up
modeling.

Bottom-up modeling is a very new way of
building artificial systems. Since core proper-
ties disappear when the components are stud-
ied independently, bottom-up modeling is based
on the gathering of interacting components.
Corpses clustering or larval sorting models are
then based on the building of rather simple
agents (see below) which interact both with
one another and with the environment. Such
constructions and the study of the dynamic
resulting from non-linear interactions of the
simple components constitute the “bottom-up
method.” Instead of modeling the global dy-
namic of the studied system (“top-down method”
usually based on differential equations), one

merely models the components to study the
potentially emerging regularities.

This synthetic method is at the heart of the
revival of artificiality. Commenting on the first
workshop on artificial life, C. Langton stated: “I
think that many of us went away…with a very
similar vision, strongly based on themes such as
bottom-up rather than top-down modeling,
local rather than global control, simple rather
than complex specifications, emergent rather
than pre-specified behavior, population rather
than individual simulation, and so forth”
(Langton, 1989, p. xvi, original italics).

The 19th century ended with Poincaré’s
discovery of the limits of the analytical method
faced with non-linear systems. The twentieth
century ended with the unprecedented quick
spread of a machine able to deal with these
systems. Computers are in fact surprisingly
adapted to the analysis of non-linear systems.
Besides their ability to iteratively compute equa-
tions which do not have analytical solutions,
computers—particularly since the development
of object oriented programming—can easily
deal with populations of interacting agents, so
contributing to the study of Bedau’s weak
emergence. “…Computer-based models offer
a halfway house between theory and experi-
ment [and computer-based non-linear model-
ing] will certainly improve our understanding of
emergence” (Holland, 1999, p. 232).

Bottom-up modeling is based on the interac-
tions of (usually) simple virtual individuals. It
massively uses multi-agent systems (MASs).

Multi-Agent Systems

MASs originate in distributed artificial intel-
ligence (DAI) and in artificial life. The basic
idea of DAI is that intelligence is not only a
matter of phenotype (brain), but also depends
on the interactions with other individuals. Intel-
ligence has a “social dimension” (Drogoul,
2005). The emergence of DAI is directly linked
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to the limits of the traditional symbolic AI
(GOFAI), which tries to embed intelligence in a
unique entity. The cognitive school of DAI
associates a few complex agents to obtain
some kind of group expertise (e.g., Demazeau
& Müller, 1991). The reactive school of DAI is
more original. Strongly rooted in artificial life, it
uses the insect (and animal) societies metaphor
to try to obtain emergent intelligent behaviors
by associating simple (“sub-cognitive”) agents
(Steels, 1990; Deneubourg, Goss, Beckers, &
Sandini, 1991).

We have seen that cemetery building was
modeled with “virtual insects”—that is, some
software processes that imitate insects’ behav-
iors. These virtual insects are agents. Jacques
Ferber, one of the founders of the field, consid-
ers that an agent is a physical or virtual entity
(Ferber, 1999):

• capable of acting;
• capable of communicating with other

agents;
• driven by a set of tendencies—autono-

mous agents act according to their own
goals;

• having its own resources, but these re-
sources depend on the environment—
agents are then open systems since they
find resources in the environment, and
close systems since they manage the use
of these resources;

• having a partial representation of their
environment—an agent thus does not have
to “fully understand” its environment;
above all it does not have to perceive the
global result of its actions;

• possessing skills;
• possibly able to reproduce itself; and
• tending to act according to its objectives.

The agent is thus a kind of ‘living organism’,
whose behavior, which can be summarized
as communicating, acting and perhaps,

reproducing, is aimed at satisfying its needs
and attaining its objectives, on the basis of
all  the other elements (perception,
representation, action, communication and
resource) which are available to it. (Ferber,
1999, p. 10)

Ferber’s definition is restrictive and one can
limit the characterization of agents to the fol-
lowing core properties (Wooldridge & Jennings,
1995):

• Autonomy: Agents operate according to
their own control.

• Social Ability: Agents can interact with
one another through some kind of lan-
guage.

• Reactivity: Agents can perceive their
environment and react according to its
change.

• Pro-Activeness: Agents act according
to their own goals.

Figure 2 summarizes the structure of an
agent.

Bottom-up modeling uses interacting agents
by building multi-agent systems. An MAS con-
tains the following elements (Ferber, 1999): An
environment E; a set of objects O having a

Figure 2. An agent in its environment
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specific position in the environment; a set of
agents A with A⊆O; a set of relations R linking
the objects to each other; a set of operations
Op  allowing the agent to “perceive, produce,
consume, transform, and manipulate” objects;
and operators able to apply the operations and
to process the reaction of the environment.
MASs and agent-based modeling (ABM) are
the base of social simulation (e.g., the Iterated
Prisoners Dilemma—IPD of Axelrod, 1984,
1997) and artificial societies (Conte, Gilbert, &
Sichman, 1998).

Artificial Societies

How to connect virtual agents with human
societies? Humans are quite different from
ants and despite real progress—thanks to the
quick growth of computer power—the intelli-
gence of the most sophisticated agent ever
programmed cannot be compared to human
intelligence. The 2005 Nobel Prize in Econom-
ics was attributed to Thomas C. Schelling (along
with Robert J. Aumann) who proposed in 1971
(Schelling, 1971, 1978) a far-ahead-of-one’s-
time experiment that will help us understand the
link between agents and human societies.

The Seminal Model of
Thomas Schelling

Schelling wanted to understand the pre-emi-
nence of geographical segregation between
black and white in American cities despite the
fact that when they are questioned, citizens
refute any desire of segregation. He designed
very simple agents of two distinct colors (“black
and white”), having the following abilities:

• Each agent can compute the fraction of
neighbors having the same color.

• If this fraction is below the agent prefer-
ence, then the agent moves to an unoccu-
pied place which satisfies its preference.

Schelling used cellular automata to imple-
ment its experiment. Very briefly, cellular au-
tomata are a lattice of sites whose states—
belonging to a finite set—evolve in discrete
time step according to rules depending on the
states of the neighbors’ sites. In a two-dimen-
sion implementation, Schelling used a “Moore”
neighborhood—that is, neighbors are the eight
closest squares. The rules were:

• If an agent has two neighbors, it will not
move if at least one is of the same color.

• If an agent has three to five neighbors, it
will not move if at least two are of the
same color.

• If an agent has six to eight neighbors, it
will not move if at least three are of the
same color.

These rules are compatible with a fully
integrated structure. The initial state of Schelling
(see Figure 3) is thus an attractor since no
agent needs to move. Schelling showed that a
slight perturbation of this initial state is suffi-
cient to give rise to a dynamic quite inevitably
leading to segregation (see Figure 3).

Schelling’s model clearly demonstrates that
local interactions (micro-motives) lead to glo-
bal structures (macro-behavior) (Schelling,
1978). More importantly, he showed that the

Figure 3. Schelling’s model

Initial state Final state 1

Final state 3Final state 2
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macro-behavior can be different from the un-
derlying micro-motives, since segregation oc-
curs even when preference rules are compat-
ible with integrated structure. Nowak and
Latané (1993) used an extended model to study
dynamic social impact—that is, the change of
attitudes or beliefs resulting from the action of
other individuals. They notably showed that the
system achieved stable diversity. The minority
survived, thanks to a clustering process of
attitudes, not because individuals moved, but
due to the attitude change process (Latané,
1996). The observed macro-behaviors are very
robust. Schelling’s and Latané’s models were
tested under a wide range of parameters and
quite always evolve towards the same type of
attractors. Pancs and Vriend (2003) recently
enlarged the study of segregation process, show-
ing that it tends to occur even if people are
anxious that segregation should not occur.

Both these examples show that some com-
plex social dynamics can be modeled from
simple basis: “…there is a spirit in the air which
suggests that we should look for simple expla-
nations of apparent complexity” (Gilbert,
1995b). Wolfram (2002) recently brought a
strong justification to this quest for simplicity.
Its Principle of Computational Equivalence
states:

…almost all processes that are not obviously
simple can be viewed as computations of
equivalent sophistication…So this implies
that from a computational point of view even
systems with quite different underlying
structures…can always exhibit the same level
of computational sophistication.…And what
it suggests is that a fundamental unity exists
across a vast range of processes in nature
and elsewhere: despite all their detailed
differences every process can be viewed as
corresponding to a computation that is

ultimately equivalent in its sophistication.
(Wolfram, 2002, pp. 717-719)

Without going as far as Wolfram, it is now
clear that at least some social phenomena can
be modeled with interacting sub-cognitive
agents.

Social sciences are traditionally based on
two different models (Lansing, 2002):

• The Newtonian model uses systems of
differential equations to study equilib-
rium—the best example being equilibrium
theory in economics, which is also a bril-
liant example of the consequences of over-
simplification motivated by the will to ob-
tain tractable equations, the results having
few to do with reality.

• Considering the difficulty to write the
equations of the system, the statistical
model tries to discover regularities—the
best example being the study of “social
forces” by Durkheim in 1897 (Durkheim,
2004).

Schelling’s or Latané’s models are then
quite a new way of doing social sciences based
on virtual experiments inside artificial societies.

Artificial Societies as a New Way of
Doing Social Sciences

The field of artificial societies is based on the
strong assumption that human societies are
complex systems (Goldspink, 2000). Analysis
is unable to point to the source of macro-
properties since there is no localized source, but
a distributed process which obliges to consider
the system as a whole (Goldspink, 2002). Fur-
thermore, they are complex adaptive systems
(CASs), which are systems where agents can
learn and modify their rules according to their
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previous success (that is of course also the
case of animal or insect societies, but the
specificity of human—cognitive—societies is
that they can also learn from their failures).
Schelling’s segregation process or Nowak and
Latané’s clustering process of people sharing
the same opinion are emergences or “regulari-
ties at the global level” (Gilbert, 1995a). “As the
number of elements and interactions of a sys-
tem is increased, we can observe an emergent
complexity. But somehow, regularities arise
and we can observe emergent simplicity”
(Gershenson, 2002, original italics).

Artificial societies then try to obtain emer-
gent regularities: “…the defining feature of an
artificial society model is precisely that funda-
mental social structures and group behav-
iors emerge from the interaction of indi-
vidual agents operating on artificial envi-
ronments…” (Epstein & Axtell, 1996, p. 6,
original italics). Considering European contri-
butions to social modeling, Gilbert wrote: “One
of the major objectives of the approach being
reviewed here is to generate through simula-
tion, emergent phenomena and thus to under-
stand and explain the observable macro-level
characteristics of societies” (Gilbert, 2000).

This is quite a new way of doing science, so
new that simulation is said to be “a third way of
doing sciences” (Axelrod, 2006) different from
deduction and from induction. In the fields of

artificial intelligence and artificial life, Luc Steels
termed it the synthetic method (see Figure 4)
(Steels & Brook, 1994).

Induction starts from observed facts and
uses inferences to build a theory potentially
able to globally explain the observed facts. The
theory is then validated through the test of
predicted facts. The synthetic method starts
like induction from the observed facts and the
inferred theory (but it can also start like deduc-
tion from a set of assumptions). On this basis,
the synthetic method engineers an artificial
system, the objective being that, while operat-
ing, this system will behave like the real one,
thus confirming the tested theory.

In their seminal work, Epstein and Axtell
(1996) considered that artificial society models
may change the way we think about explana-
tion in the social sciences. “Clearly, agent-
based social science does not seem to be either
deductive or inductive in the usual senses. But
then what is it? We think generative is an
appropriate term. The aim is to provide initial
micro-specifications that are sufficient to gen-
erate the macrostructures of interest” (Epstein
& Axtell, 1996, p. 177). This generative inter-
pretation is directly linked to the disjunction
between determinism and predictability which
is a huge epistemological consequence of com-
plexity sciences. Even if we perfectly under-
stand the concerned forces, we are unable to

 

Figure 4. Inductive vs. synthetic method (Adapted from Steels & Brook, 1994)
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predict the evolution of the system (Croquette,
1997).

A High Potential to Stimulate Novelty

Agent-based modeling is potentially a highly
powerful tool for social scientists. Axelrod and
Tesfatsion (forthcoming) recently synthesized
its goals with four forms:

• Empirical Understanding: Why have
regularities emerged?

• Normative Understanding: How can
models help to define the good norms/
design? How to know if a given decision is
positive for the society?

• Heuristic: How to attain greater insight
about fundamental mechanisms in social
systems?

• Methodological Advancement: How
to give researchers the method and tools
to rigorously study social systems?

Practically, these four forms rely on three
pillars: formalization, experiments, and the abil-
ity to study the macro to micro problem.

Formalization

Apart from the verbal and mathematical sym-
bol systems, computer simulation can be con-
sidered as the “third symbol system” (Ostrom,
1988). Any theory originating in the first two
models can be expressed in the third one.
Simulation can then be considered as formal
models of theories (Sawyer, 2004). That is an
important point since computer symbols are
more adapted to social sciences than math-
ematical ones (Gilbert & Troitzsch, 2005, pp. 5-
6):

• Programming languages are more expres-
sive and less abstract than mathematical
techniques.

• Programs deal more easily with parallel
processing.

• Programs are modular. Major changes
can easily be made; that is not the case of
mathematical systems.

Computer modeling thus helps social scien-
tists to formalize their theories. The difficulty—
not to say the impossibility—to mathematically
formalize many social sciences theories is con-
sidered to be a great weakness by “hard”
scientists. This inability is closely linked to the
inability of mathematics to deal with distributed
emergent processes. Computer modeling can
thus contribute to give social sciences some of
the scientific tools they need to rigorously ex-
press their theoretical models.

Experiments

Simulation can be considered as a new experi-
mental methodology. Gilbert and Conte (1995)
defined it as “exploratory simulation.” Such
explorations can contribute to social sciences
notably in the following ways:

• Modeling allows a culture-dish method-
ology. The modeler designs the agents
and the initial state of its society, and
studies its temporal evolution (Tesfatsion,
2002). Any sort of experiments can be
carried out since the modeler has com-
plete control of the model. It is then pos-
sible to study the consequences of any
given modification. This will notably con-
tribute to the analysis of the minimal set of
parameters and system characteristics
necessary to give rise to a given behavior,
as well as to the analysis of the attractors
of dynamic social systems (Goldspink,
2002).
The ability to carry out experiments is
something very new for social scientists
that usually cannot test their theory in the
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field. Like formalization, this contributes
to bring closer social and “hard” science
methods.

• Modeling is potentially able to contribute
to original discoveries. The same way the
classification of cellular automata permit-
ted the proposal of an original analysis of
complex systems (Wolfram, 1984;
Langton, 1990), simulations can play a
role in the discovery of general, yet unat-
tainable laws. Implicit unknown effects
can be detected (Gilbert & Conte, 1995).
This ability to stimulate discovery does not
only stand on the possibility to carry out
otherwise impossible experiments, but also
on the capacity of emergent modeling to
give rise to original cognitive processes.
In the field of artificial life, Cariani
(1992)—emphasizing non-stochastic mod-
els like the Game of Life—pointed out the
fact that emergence relies on a cognitive
process; a process is emergent only ac-
cording to its observer: “The interesting
emergent events that involve artificial
life simulations reside not in the simula-
tions themselves, but in the way that
they change the way we think and inter-
act with the world. Rather than emergent
devices on their own right, these computer
simulations are catalyst for emergent pro-
cesses in our minds; they help us create
new ways of seeing the world.” (Cariani,
1992, p. 790, original italics)

• Modeling can go beyond some of the limits
of the statistical tools usually used by
social scientists; for example, qualitative
changes can be analyzed through simula-
tion (see Pyka, 2006). Simulation also
helps the study of processes. Usual statis-
tical analyses study the correlations be-
tween variables at a given time. Simula-
tions embed the processes which lead to
these correlations (Gilbert & Troitzsch,
2005). Since social systems are funda-

mentally dynamic, simulation allows for-
malizing processes beyond the scope of
statistical analysis. Furthermore, statistic
is based on linearity assumptions which
oblige to oversimplify the observed facts.
Simulation does not suffer from this limit.

• Modeling is not concerned with the tech-
nical limits of mathematical formalization.
For example, mathematical formalization
obliges to consider agents as equivalent,
whereas simulation is able to manage het-
erogeneous population. In the same vein,
simulation allows the relaxation of as-
sumptions necessary to obtain tractable
equations (e.g., the rationality of eco-
nomic agents). In economics, the highly
promising field of Agent-Based Computa-
tional Economics (ACE) (Tesfatsion,
2002) clearly illustrates the potential of
simulations.

• More generally, the same way artificial
life allows the study of “life as it could be”
(Langton, 1989), artificial societies allow
the study of “societies as they could be”
(Gilbert, 2000), thus giving social sciences
an unprecedented tool to understand fun-
damental invariants (Rennard, 2004).

Study of the Macro to Micro Problem

The macro to micro problem—how to de-
scribe the relationship between macro-phe-
nomena characterizing the dynamic of a system
as a whole and micro-phenomena characteriz-
ing the dynamic of the components of the
system—is a central issue of social sciences,
but also of DAI (Schillo, Fischer, & Klein,
2000).

Simulation is a ground-breaking tool to study
the core problem of the micro/macro relations.
The relations between different levels (indi-
vidual, organization, societal) and the potential
associated lock-in can be studied. Artificial life,
with its widely studied concept of dynamical
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hierarchy, which “refers to a system that
consists of multiple levels of organization hav-
ing dynamics within and between the entities
described at each of the different levels”
(Lenaerts, Chu, & Watson, 2005, p. 403), should
contribute to this study. Simulation can be used
to study both the micro to macro and the macro
to micro problems (Sawyer, 2003). Schelling’s
or Latané’s models thus show how regularities
can arise from micro-interactions. But such
models also show that these regularities then
constraint the system and impact the behaviors
of individual agents. More directly, it is possible
to conceive simulations that specifically study
the impact of macro-phenomena. For example,
Axtell (2000), while studying retirement behav-
iors, showed that modifying the sole network
connections between agents can lead to great
changes of the overall society behavior.

The study of the micro/macro problem
through simulation remains nevertheless very
difficult while studying societies. In fact, hu-
mans are not limited to basic behavior; they
notably have the ability to grasp macro-level
phenomena and they can adjust their behavior
according to this. That is what Gilbert (2000)
terms second-order emergence, characteriz-
ing systems where agents can detect and react
to emergent properties. Models should then
embed both the emergence of macro-proper-
ties and the ability to deal with the effects of
these macro-properties on self-aware individu-
als. This remains a challenge (Gilbert, 1995b).

Limits

Artificial societies is a very recent field in
which huge problems still are to be solved that
challenges this research. A first set of prob-
lems relies on the cognitive dimension of human
societies. Guided by the success of artificial
life, many artificial societies are based on reac-
tive DAI, one of the most famous examples
being the Sugarscape of Epstein and Axtell

(1996). The complexity of human cognition has
a deep impact on the structuring of societies.

• Self-awareness and the related second-
order emergence should be modeled.

• Interpretativism in sociology leads to the
idea that meanings are parts of the ac-
tions: “…meanings and concepts describ-
ing both the physical and the social world
are said to be socially constructed by
members of society” (Gilbert, 2000). Simu-
lations should then embed the correspond-
ing social constructions.

As a consequence, artificial societies must
find a way to associate cognitive and reactive
DAI. This remains both a theoretical (how to
build cognitive agents) and a practical (how to
have sufficient computing power) problem.

A second set of problems is linked to the
tools and methods used for modeling and simu-
lation. First of all, simulation uses tools that may
make implicit assumptions having nothing to do
with the tested theory. For example, the use of
cellular automata assumes that the world is a
regular grid, which may have massive conse-
quences on the global dynamic of the simulation
(Troitzsch, 1997). Then simulation tends to
develop its own finality, hence the importance
to ground it in social theories in order to avoid
the trend to develop simulations for themselves
and to mistake them for reality. The balance is
difficult to find: “If our ‘toy models’ serve only
to reify and naturalize the conventional social
science wisdom, then they are indeed a Medu-
san mirror, freezing the victim by the monster’s
glance” (Lansing, 2002, p. 289).

The gap between social sciences and com-
puter sciences also challenges the field. Some
social sciences theories are mainly descriptive
and discursive, and such approaches may be
very difficult to formalize through simulation.
Moreover, despite common issues, the discus-
sion between computer scientists and social



12

Artificiality in Social Sciences

scientists remains very difficult. For computer
scientists, non-formalized discursive social theo-
ries often seem blurred and they have difficulty
understanding them. Social scientists are often
reluctant facing computer programming, and
they usually consider that computer scientists
do not understand the complexity of human
societies.

Finally, the core problem (which is not lim-
ited to artificial societies) of “how to obtain
from local design and programming, and from
local actions, interests, and views, some desir-
able and relatively predictable/stable emer-
gent results” (Castelfranchi, 2000, original ital-
ics) still remains to be solved.

CONCLUSION

The field of artificial societies, despite old roots,
is now only ten years old. Along with artificial
life, it participates in an emerging way of doing
science. This way still has to reach maturity,
but will undoubtedly contribute to complement
more traditional methods. The debate now is
not to choose between usual methods and meth-
ods originating in artificiality, but to convince
“traditional” scientists that artificiality is not
limited to some kind of possibly funny computer
game and to find ways of building stronger
bridges between these practices of science.
The growing easiness of computer program-
ming and the quick spread of computer culture
among young scientists is potentially a promise
of quick evolution of artificiality in social sci-
ences; no doubt this will contribute to renew the
field.
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KEY TERMS

Bottom-Up Modeling: Applied to non-
linear systems, bottom-up modeling is based on
the gathering of components in order to analyze
the corresponding emerging properties.

Cellular Automata: Lattice of sites whose
states—belonging to a finite set—evolve in
discrete time step according to rules depending
on the states of the neighbors’ sites.

Complex Adaptive Systems: Complex
systems where agents can learn and modify
their rules according to their previous success.

Emergence: Characterizes the properties
of a system which are new compared to the
properties of the components isolated. Bottom-
up modeling mainly deals with Bedau’s weak
emergence which characterizes emerging prop-
erties that can only be derived by simulation.

GOFAI: Good Old-Fashioned Artificial In-
telligence characterizes the traditional symbol-
based artificial intelligence.

Macro to Micro Problem: How to de-
scribe the relationship between macro-phe-
nomena characterizing the dynamic of a system
as a whole and micro-phenomena characteriz-
ing the dynamic of the components of the
system.

Synthetic Method: The synthetic method
starts like induction from the observed facts
and the inferred theory (but it can also start like
deduction from a set of assumptions). On this
basis, the synthetic method engineers an artifi-
cial system, the objective being that, while
operating, this system will behave like the real
one, thus confirming the tested theory.
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ABSTRACT

Social insects—ants, bees, wasps, and termites—and the distributed problem-solving, multi-
agent paradigm that they represent, have been enormously influential in nature-inspired
computing. Insect societies have been a source of inspiration and amazement for centuries,
but only in the last 25 years or so have we made significant inroads to both understanding just
how various collective phenomena arise and are governed, and how we can use the lessons
and insights garnered from sociobiological research for more practical purposes. In this
chapter, we provide a very brief history of the field, detailing some of the key phenomena,
mechanisms, and lessons learned, and a quick tour of some of the different types of
applications to which this knowledge has been put to use, including but certainly not limited
to distributed problem solving, task allocation, search, and collective robotics.

ARTIFICIAL LIFE

Insect societies owe their illustriousness, in
part, to their ubiquity (they are found on every
continent except Antarctica) and that almost all
of us, at one time or another, has had some food
item discovered by a single foraging ant, and
only a few moments later we witness the arrival
of a whole group—then a trail—of nestmates,
ready to carry off the spoils. Move the food,
and the trail quickly adapts to the new location.
More concretely, provide a colony of certain
ant species with a choice of two food sources,
say a weak sugar solution and a strong sugar

solution, and the colony will select a trail to the
better source, moreover, without a single ant
ever visiting both food sources (Camazine et
al., 2001, and references therein). Watch a trail
over time and it can become straighter, and thus
more efficient, again without any individual
having a global view of the situation (Bruckstein,
1993; see Shao & Hristu-Varsakelis, 2005, for
an application). Peer inside a colony and you
will find many different tasks being performed
concurrently (cleaning, feeding larvae, pro-
cessing food, etc.), each task with the appropri-
ate number of individuals to meet that task’s
demands. Remove some of the individuals tack-
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ling one of the tasks, and the allocation of
workers across the colony will shift to redress
the balance (Wilson, 1984). Just how can a
colony of these tiny creatures, with necessarily
small brains, achieve such amazing, adaptive
collective behavior?

People have long pondered this very ques-
tion, perhaps summed up best by Maeterlink
(1927): “What is it that governs here? What is
it that issues orders, foresees the future, elabo-
rates plans and preserves equilibrium, adminis-
ters, and condemns to death?” Many have
assumed that it is the queen herself that directs
the colony’s activities (and in some cases, that
it is the relatively inactive ant soldiers, with their
larger heads, who direct traffic on trails) (Step,
1924; Ewers, 1927). However, this would re-
quire both a sophisticated communication sys-
tem and a remarkable cognitive ability on the
part of the queen to collate all the necessary
information, process it, devise some plan of
action, and pass those orders back to the work-
ers. The reality is that while there exists some
degree of queen control, especially in very
small insect societies, this mostly relates to
reproductive rights, the queen maintaining her
reign. Quotidian tasks such as foraging, clean-
ing, and nest construction are regulated in a
very distributed manner relying on direct indi-
vidual-to-individual interactions or indirect
“stigmergic” interactions (Grassé, 1959) medi-
ated through the environment (e.g., ants that
lay trail pheromone that influences the foraging
behavior of other ants) (e.g., Hölldobler &
Wilson, 1990; Camazine et al., 2001).

While careful methodical experimentation
and detailed mathematical models have helped
elucidate some of the proximate mechanisms at
work, the popularization of insect societies as a
powerful metaphor and new paradigm among
the artificial intelligence community owes much
to the field of artificial life. (Although we should
not forget Hofstadter’s 1980 highly influential

and Pulitzer prize winning book, Gödel, Escher
and Bach, in which, in one chapter, “Ant
Fugue,” he uses an ant colony as a metaphor for
the mind.) A-life, a field of artificial biology
(usually) using computer simulation to model
“life as it is,” to explain extant biological phe-
nomena, or “life as it could be,” to explore life’s
possibilities, began in the 1980s. Of particular
relevance is one of the seminal models in the
field and one of the earliest models of ants.
Langton’s virtual ants or “vants” (Langton,
1986) are absurdly simple: there is a grid of cells
that may be black or white and one or more
ants; an ant that lands on a black cell turns the
cell white, turns right and moves forward one
unit; an ant that lands on a white cell turns the
cell black, turns left and moves forward one
unit. Despite the apparent triviality of this sys-
tem, what arises is surprising: ants may mill
around in a seemingly chaotic fashion, but in
certain situations may interact with each other,
mediated through the color of the cells, to form
“highways” (see Figure 1) and move the ants in
a coordinate fashion across the grid.

It is computer experiments such as these
that fired up the imaginations of many re-
searchers and triggered a slew of ant-based
simulations that formed the basis for this sub-
field of nature-inspired computing. This ap-
proach of abstracting such systems almost to
the point of absurdity, and yet still retain incred-
ibly complex and surprising behavior, seems to
have been key in eradicating the mysticism that
surrounds many complex systems. Here was a
trivial, deterministic system in which all local
rules and behavior are known, and yet the long-
term collective behavior was in most cases
unpredictable from a given set of initial condi-
tions. (In fact, vants is a four-state, two-dimen-
sional Turing machine; Weisstein, 2005.) Now
one possessed a mini-world in which one could
explore initial conditions and other parameters,
and by use of careful experimentations stood a
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chance at understanding and linking the simple
micro-level behavior with the more complex
macro-level collective behavior (Levy, 1992).
If it is true that insect societies are not centrally
governed, then it must be mechanisms, such as
those observed in vants, that link the relatively
simple individual-level behavior of ants to the
more complex collective phenomena of colo-
nies, such as trails, but moreover, the
adaptiveness of such emergent behavior. Over
the years, collaborations between the field bi-
ologists and experimentalists (who provided the
possible proximate mechanisms at work), and
mathematicians, “A-lifers,” and other com-
puter scientists (who could rigorously and ob-
jectively test whether those mechanisms were
indeed necessary and sufficient to generate an
observed collective behavior) made huge in-
roads in understanding some of key mecha-
nisms and feedback at work.

PROPERTIES OF ANT-LIKE
SYSTEMS

As more and more was learned, so the potential
of adopting such distributed problem-solving
paradigm in other areas and for anthropocen-

tric uses became apparent. While we will re-
view some of the specific mechanisms and
applications later, let us first consider why this
new paradigm was so appealing. What are the
pros and cons of such distributed systems,
especially those inspired by sociobiology?

The first advantage of such systems is their
distributed nature per se. A set of individuals,
or more generically “agents,” can operate au-
tonomously and do so in a loose social network,
interacting only with other individuals they hap-
pen to encounter, or employing some other local
influencing mechanism, such as pheromone
deposition. In other words, information need
not always flow to some particular individual
(such as a queen) or specific subgroup of
individuals. This could be hard to coordinate
(how would all two million army ants in a colony
“report” to the single queen?) and expensive,
both to operate and also to evolve. Thus, that a
group of agents can coordinate activities with-
out a fully connected information network—in
other words, that “average system connected-
ness” is low (Anderson & McShea, 2001;
Moritz & Southwick, 1992)—is a huge boon,
and certainly favorable to collective-roboticists
(discussed later).

 

Langton’s (1986) virtual ants 
 
1) If the ant is on a black square, it turns 

right 90° and moves forward one 
unit. 

2) If the ant is on a white square, it turns 
left 90° and moves forward one unit. 

3) When the ant leaves a square, it 
inverts the color. 

Figure 1. Langton’s (1986) virtual ants or “vants.” From an initial configuration, individual
vants follow the simple rules (at left), eventually resulting in an ordered cooperative
configuration (the “highway” at far right).
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Second, such systems are highly robust.
The distributed nature means that there are few
if any key individuals. Thus, remove a group of
foragers and others can switch tasks and take
their place with little detriment to the colony.
Contrast this with the removal of a key indi-
vidual in a centralized paradigm: the system
collapses.

Third, and related, such systems are highly
flexible and adaptive. Insect societies do not
forecast, they react and respond to current
stimuli and conditions. The behavior of indi-
viduals is likely tuned through natural selection
(at the level of the colony; see Sober & Wilson,
1998) so that the system behavior, such as the
foraging network as a whole, is appropriately
responsive given the degree of perturbations
likely to be encountered in that environment.
Consider an ant that finds a new food source
and who recruits nestmates thereby establish-
ing a trail between the nest and the food source.
That food source is ephemeral, and at some
point will no longer supply food; the colony must
seek other food sources. Interestingly, foragers
are not perfect at following a trail, and with a
certain probability per cm of trail, a forager will
“fall off” the trail and become lost, possibly
never to refind the trail or colony. While this
may at first sight sound like maladaptive behav-
ior, in fact, some of these individuals may find
new sources, and by the use of landmarks or
sheer luck find their way back to the colony and
so can establish a new trail to the additional
source. Thus, the colony effectively employs a
dual-timescale optimization procedure with re-
spect to foraging: those ants who do not lose the
trail exploit the current (i.e., immediate
timescale supply) food sources, while other
ants who do lose the trail become scouts seek-
ing new food sources, thus ensuring future (i.e.,
longer timescale) reserves. And, returning to
our earlier point, the “error rate”—the prob-
ability that an ant will lose the trail—is the

behavior or parameter that is tuned though
selection as a function of the environment—
that is, food distribution (Deneubourg, Aron,
Goss, Pasteels, & Duernick, 1986).

So, even a very simple, seemingly subopti-
mal, individual-level behavior such as inability
to follow a pheromone trail can give rise to a
more complex, multi-objective, multi-timescale
collective behavior. In other words, insect soci-
eties are complex adaptive systems (Bonabeau,
1998). Another classic example is nest con-
struction. Large social wasp colonies and ter-
mites can produce incredibly complex nest
architectures, with some termite nests contain-
ing spiral staircases and ventilation systems.
Individuals do not build these nests by following
some comprehensive blueprint. Instead, the
mound is a result of an emergent process: a
termite lays down a pellet that is infused with a
pheromone. This pheromone field influences
the placement of subsequent pellets in the same
place by other nearby termites. This increased
pheromone concentration has a stronger influ-
ence on other termites, and so this very simple
positive feedback mechanism triggers two
things: the construction of a pillar, but also the
collective, non-negotiated, non-predetermined
decision of where to place the pillar (Camazine
et al., 2001).

Such stigmergic indirect interactions among
individuals have other desirable properties: they
act as a sort of “collective memory” and an
averaging process. Consider a Y-shaped junc-
tion on an ant trail. Some ants choose the right
trail and lay down pheromone droplets that
evaporate at some constant rate, while other
individuals choose the left trail and similarly lay
down droplets of evaporating pheromone. A
new individual arrives at the junction and can
sense the relative amounts of pheromone on the
two trails. Those two concentrations are a form
of summation of the multiple individuals that
have chosen and traveled down each trail.
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Further, the pheromone evaporation process,
which over time eliminates the input from the
earlier ants, acts as a sliding window averaging
process that is a direct function of the recent
rate at which ants have traveled a given trail,
thereby providing a newly arrived ant with a
more reliable indicator as to which is the best
trail to follow.

With all these attractive properties, what
are the downsides to such systems? First, in a
completely flat, decentralized system, not one
individual has a global perspective of the sys-
tem. Consequently, the system, while it can be
extremely adaptive, can also be highly myopic
and develop pathological behavior. In ants, the
classic example is that of circular milling
(Schneirla, 1971). Eciton army ants are blind,
entirely reliant on tactile stimuli and trail follow-
ing, and in certain situations a circular trail can
form in which hundreds of ants can follow each
other for hours or days. Second, and related,
these systems are not fully connected and so
information may travel a convoluted path be-
fore it reaches certain individuals and becomes
out of date, distorted, or lost entirely. Third, the
collective properties are emergent, often com-
posed of a complex and sensitive network of
feedback: a slight change in one key parameter
can cause a disproportionately large shift in
collective behavior. While this is a key compo-
nent of the adaptiveness of the system, for
practical purposes it can be very hard to design
a truly distributed, self-organized system with
desired collective behaviors (Anderson, 2006).

In summary, while such decentralized, dis-
tributed problem-solving systems can be hard
to design and may develop myopic pathological
behavior, they do offer incredible flexibility and
adaptiveness, and such systems’ adaptiveness
can arise from very simple individuals with
simple interaction behavior (but complex agents
would work too!)—and to engineers, “simple”
means easy and cheap to design—and offer

great system robustness. In the next section,
we review some of the types of problems and
solutions to which this multi-agent paradigm
has been used.

EXAMPLES

Ant Colony Optimization

Undoubtedly, the most celebrated direct appli-
cation of these social insect-inspired mecha-
nisms is the whole new field called “ant colony
optimization” (ACO; Moyson & Manderick,
1988; Bonabeau, Dorigo, & Theraulaz, 1999).
These ant systems are a strong mimic of the
pheromone-based foraging behavior of ants
and their collective, distributed problem-solving
abilities. This field uses systems of virtual ant-
mimics to solve a variety of complex static
optimization problems including the traveling
salesman problem (TSP), job shop scheduling,
graph partitioning, graph coloring, vehicle rout-
ing, sequential ordering and knapsack prob-
lems, and a variety of dynamic problems includ-
ing dynamic load balancing in telecommunica-
tion systems (reviewed in Bonabeau et al.,
1999).

The core idea in a static problem such as the
TSP is that we can formulate an optimization
problem spatially. Ants explore and travel the
solution space in parallel and collectively build
partial solutions—that is, a good route through
a subset of the available nodes; in short a
subgraph—mediated through the strength of
the virtual pheromone trails. Good partial solu-
tions will be reinforced as more ants choose a
certain node-node path, while poor solutions,
perhaps a path randomly chosen by an ant but
which happens to be a poor choice, will fail to
be reinforced by other ants, and the negative
feedback mechanism of pheromone evapora-
tion will degrade this partial solution over time.
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Eventually, the network of trails will converge
on a good, often (but not guaranteed) optimal,
global solution. Thus, when an ant arrives at a
city node, it chooses the next city to travel to
probabilistically using the relative strength of
the pheromone trails as a guide. Like ants
assessing the quality of a trail by the quality of
the food source at the end of the trail and who
deposit pheromone on their return trip as a
function of that quality, at the end of its tour the
ACO ant will reinforce the pheromone trails
along its tour route in proportion to the quality of
the tour that that ant experienced. In this case,
we only need update a lookup table that defines
the relative pheromone concentration of the
“edges” emanating from a certain node.

ACO has demonstrated its viability as proof-
of-concept on a variety of static NP hard
problems. However, it will never be as efficient
as the best deterministic methods developed for
such problem types (see Table 1). ACO does
not guarantee that it will find the optimal solu-
tion, and proofs about the convergence proper-
ties are difficult. However, ACO systems do
tend to find a near optimal solution quickly and
they do possess the same system robustness
properties as real insect societies. Remove
some of the ants or one of the cities in the above
example, and the remainder of the virtual ants
will continue unaffected and the trail-based
solution will merely adapt to the new problem.
In a way, the pheromone trail network, which
includes both strong and weak trails between
nodes, contains a set of inherent backup solu-
tions that can quickly be utilized in the face of
problem and system perturbations. It is for
these reasons that ACO has a far brighter
future (and will garner greater respect from
more traditionalist system engineers) in tack-
ling dynamic optimization problems.

With a rapidly changing, complex problem,
when the time to compute the globally optimal
solution is longer than the timescale at which

the problem changes, then a system that will
find a near-optimal solution rapidly will outper-
form a system that produces the optimal solu-
tion slowly. Thus, ACO-like systems have
proven very successful in dynamic problems
such as load balancing in telecommunications
network and the Internet (Bonabeau et al.,
1999; see also Nakrani & Tovey, 2003, for a
honeybee-inspired example).

Threshold Responses and
Dominance Hierarchies

Very robust and adaptive task allocation is
found in insect societies: alter the relative
workload (i.e., ratio of workers to work) of one
of the tasks, and the set of individuals will shift
tasks to redress the shift, in short they will load
balance. How is this achieved in a distributed
manner? It is believed that this is achieved
using individual task-specific threshold re-
sponses (reviewed in Bonabeau & Theraulaz,
1999). Suppose that there is only one task
whose workload is positively correlated with
some task-specific stimulus: the more work
there is to be done, the larger is s. Now suppose
that an individual has a threshold q for that task.
Simplistically, when s < θ, the worker is not
sufficiently stimulated to tackle the task and the
larger is s, the more likely the individual is to
begin work. More concretely, the probability to
begin work:

T(θ, s) = s2 / (s2 + θ2), (1)

Table 1. Some key properties of various
optimization techniques

 Speed 

Solution Quality Fast Slow 

Optimal Linear programming Branch and bound 

Near-Optimal Constructive heuristics 
Local search: Genetic algorithms, 

simulated annealing, tabu search, ACO 
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an exponential function such that, depending on
the magnitude of θ, exhibits a sharp transition in
task commencement likelihood (see Figure 2).
Now suppose that each individual i has a task-
specific threshold θi,j for each of the different
tasks (subscript j). With this, we can begin to
understand how distributed task allocation can
work. Remove some workers from task j and
this reduces the worker: work ratio and so
stimulus sj will increase, thereby making it more
likely that an idle worker will commence work—
because T(θi,j,sj) is high—or that an individual
engaged on a different task, say task k, will be
more stimulated to switch to task j than remain
with task k—because T(θi,j,sj) is much less
than T(θi,k,sk). Place too many workers on a
task j, T(θi,j,sj) becomes low and individuals are
likely to switch to other more stimulating tasks.
Thus, in a sense there is indirect interaction
among the workers mediated through the work

demand itself. A worker does not need to
calculate the number of individuals tackling a
task, only the relative, current demand for that
task. To prevent an undesirable all-or-nothing
response where everyone switches to or from
a task simultaneously, a key component is inter-
individual variability: that different individuals
have different thresholds for the same task. In
addition, there are strong theoretical grounds
(and some empirical evidence, e.g.,
Weidenmüller, 2004) for threshold reinforce-
ment and learning. That is, suppose that an
individual responds to task j. If it then lowers its
θi,j, that is:

new threshold value = old threshold value
– some positive amount ξ

then it is more likely to tackle task j in the future
for the same level of sj. This positive reinforce-

Biological 
Feature 

Mechanism Applications 

Pheromone 
trails 

Individuals influence route choice of others 
through the use of transient signals left in the 
environment 

Distributed problem 
solving for route 
planning and other high-
dimensional problems; 
collective robotics 

Threshold 
responses 

Individual i responds to a stimulus with 
intensity s with probability s2/(s2+θi

2) where 
θi = individual i’s threshold for stimulus s 

Manufacturing 
scheduling, especially 
market-based task 
allocation 

Stigmergic 
construction 
& piling 

When collectively constructing a nest, 
i) pheromone-infused construction 

materials (quantitative stigmergy) or 
ii) local configurations (qualitative 

stigmergy) 
shape nest architecture without explicit 
blueprints and enable effective collective 
decision making (see Anderson, 2002, for a 
discussion of qualitative vs. quantitative 
stigmergy) 

Construction tasks in 
collective robotics (and 
potentially 
nanotechnology); data 
mining 

Stigmergic 
coordination 

When collectively transporting an item, 
individuals sense and respond to the object’s 
overall motion rather than direct 
communication among the transporters 

Collective transport in 
robot swarms 

Group 
foraging 

Multiple individuals perform a parallel search 
for resources, and recruits center their search 
on the most promising sites 

Search and numerical 
optimization 

 

Table 2. Summary of some key social insect-inspired mechanisms and applications



  23

Multi-Cellular Techniques

ment mechanism can help individual i special-
ize on task j. Similarly, an individual that is not
working on some task k raises is threshold,
that is:

new threshold value = old threshold value +
some positive amount ϕ

so that it is unlikely to tackle rare (low s) or long
forgotten (high θi,k) tasks, unless there is a
strong need. ξ and ϕ are referred to as the
learning and forgetting rates respectively.

How can we apply such a mechanism?
There are very strong parallels between the
problem that the social insects are solving and
problems that humans must solve. Generically:
given a set of workers or machines, and a
variable inflow of different tasks, how do we
optimally assign the work to the workers? This
is the core task of systems engineering and
operations research, and indeed this is where
social insect-inspired systems have found a
role. In effect, the threshold response task
allocation mechanism above creates an internal
market within the colony. The workers place a
form of “bid” in terms of the willingness to
tackle a certain task, and those individuals with

the highest “bids” (= lowest response thresh-
olds) tend to “win” the task. This is precisely
the logic behind the first application in this area:
assigning trucks to paint booths (Morley, 1996;
Campos, Bonabeau, Theraulaz, & Deneubourg,
2001; Kittithreerapronchai & Anderson, 2003;
Cicirello & Smith, 2004). In brief, trucks roll off
an assembly line and must be painted a certain
customer-desired color. However, there is only
a certain limited number of paint booths, and if
a paint booth must switch paints, then there is
both a time and material cost as the booth
flushes and refills its paint lines. An effective,
distributed solution is for the paint booths to bid
against each other: those already primed with
the required color and who are currently empty
submit the highest bid (lowest response thresh-
old) while those who are currently busy painting
a truck in a different color, or indeed are not
currently operating submit the lowest bids.
Moreover, like the social insects, booths can
modify their threshold responses over time and
become color specialists. It has been shown
that such a system can assign the trucks to the
booths in the face of unpredictable workflow
(i.e., arrival time and color of new trucks wait-
ing to be painted) in a very efficient and robust
manner; interestingly, Morley’s (1996) scheme
was implemented in an actual GM manufactur-
ing plant.

Since those early experiments, Cicirello and
Smith (2001, 2002a, 2002b) have examined
similar mechanisms in a variety of job-shop and
other complex logistical problems (see also
chapters 33, 34, and 47 in this volume). They
also added another social insect-inspired di-
mension to their schemes, that of dominance
hierarchies. Many social wasp species form a
dominance hierarchy in which bouts between
individuals establish a form of “pecking order.”
In cases where two or more individuals respond
positively to some job, the authors implemented
a similar threshold response mechanism to

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

Stimulus s

Pr
ob

ab
ili

ty
 o

f r
es

po
ns

e

Threshold 
θ = 1

Threshold 
θ = 50

 

Figure 2. Probability that an individual
responds (y-axis) vs. stimulus levels (x-axis)
(equation 1) for two values of response
threshold theta
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emulate the way in which disputes between
individuals are resolved. Again, this simple
distributed task allocation feature adds posi-
tively to the overall effectiveness of the sys-
tem.

Search and High-Dimensional
Numerical Optimization

Genetic algorithms (see Chapters IV and V in
this volume) perform a parallel search in (usu-
ally) high-dimensional space. Similarly, a group
of ants foraging for resources are also perform-
ing a parallel search and solving a high-dimen-
sional problem in terms of the collective deci-
sions of which resource(s) should be recruited
to given colony size, spatial distribution of for-
agers and resources, resource quality, distance
of resource to the nest, and so on. The key
mechanism here is recruitment in which good
resources (or more generically, good “solu-
tions”) attract more individuals to an area and
thus a more intensive search of a promising
area often at the expense of forager density at
some other less productive site. (It should be
stressed that although similar to route choice
using pheromone trails, this problem is far less
constrained because of the spatial nature of the
search, and that recruitment is individual-indi-
vidual interaction rather than chemical based.)
In some cases, ants will move their whole
colony to a more productive area and that site
will become the new hub for forager opera-
tions.

Monmarché, Venturini, and Slimane (2000)
emulated such a mechanism in a suite of two to five
variable numerical optimization tasks (e.g., minimize
0.5+((sin2(x1

2+x2
2)0.5)–0.5)/(1+0.0001(x1

2+x2
2)

where xi ∈ [-100,100]). They specifically mod-
eled their search algorithm on a particular ant
Pachycondyla apicalis, a primitive ponerine
ant that recruits on an individual basis through
the use of “tandem running.” In brief, an ant-

agent will choose a random foraging site and
explore around that area, transporting any cap-
tured prey to the nest and returning to that same
site if that site was successful or choosing a
different site after a certain number of unsuc-
cessful foraging trips. Each time after all n ants
have explored their neighborhood, a random
pair of ants is chosen and the ant with the more
productive foraging site will recruit the other
ant to its site. Finally, and importantly, the nest
is periodically moved to the most productive
site. This example, with a very strong biological
grounding, and which performs well
(outcompeting hill climbing and genetic algo-
rithms for many of the test functions) is particu-
larly interesting given its very strong similarities
to genetic algorithms (discussed in detail by the
authors).

Collective Robotics

Collective robotics is another field that has
drawn very heavily on insect societies (and for
which there is insufficient space here to do it
justice) and represents a substantial shift from
the long-held philosophy of building highly “in-
telligent” individual robots to building a robust
swarm of simpler, cheaper, disposable robots
that solve problems collectively. Essentially,
collective robotics goes a step further than
ACO an other similar swarm intelligence meth-
ods in that it represents physical ant-mimetic
instantiations. Thus, there are robot systems
that directly mimic ant recruitment systems
through trail laying or “crumb dropping” (Drogoul
& Ferber, 1993) for collective search and for-
aging (Krieger, Billeter, & Keller, 2000),
stigmergic robot systems that sort and pile
scattered objects in a similar way that termites
construct nests and ants form cemetery piles of
dead bodies (Holland & Melhuish, 1999;
Bonabeau et al., 1999), and even hope that
biomemetic robots can interact with real ani-
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mals in groups themselves and shape collective
behavior (Caprari, Estier, & Siegwart, 2000;
Gautrais, Jost, Jeanson, & Theraulaz, 2004; see
also Cao, Fukunaga, & Khang’s 1997 compre-
hensive review).

DISCUSSION

This has been a very brief review of distributed,
swarm-like systems that have been directly
inspired by the remarkable collective abilities of
the insect societies. These complex adaptive
systems—both the ants themselves and their
virtual or silicon mimics—are composed of
relatively simple individuals that tend to re-
spond to local cues with simple heuristics.
However, together they form systems that are
decentralized, extremely robust, and highly adap-
tive without forecasting and make full use of
emergent properties. This is a relatively young
subfield with a lot of potential; it will be fasci-
nating to follow future directions.
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ABSTRACT

When looking for a solution, deterministic methods have the enormous advantage that they do
find global optima. Unfortunately, they are very CPU intensive, and are useless on untractable
NP-hard problems that would require thousands of years for cutting-edge computers to
explore. In order to get a result, one needs to revert to stochastic algorithms that sample the
search space without exploring it thoroughly. Such algorithms can find very good results,
without any guarantee that the global optimum has been reached; but there is often no other
choice than using them. This chapter is a short introduction to the main methods used in
stochastic optimization.

INTRODUCTION

The never-ending search for productivity has
made optimization a core concern for engi-
neers. Quick process, low-energy consump-
tion, short and economical supply chains are
now key success factors.

Given a space Ω of individual solutions
ω∈Rn and an objective function f, f(ω)→R,
optimizing is the process of finding the solution
ω∗ which minimizes (maximizes) f.

For hard problems, optimization is often
described as a walk in a fitness landscape.

First proposed by biologist S. Wright (1932),
fitness landscapes aimed at representing the
fitness of a living organism according to the
genotype space. While optimizing, fitness mea-
sures the quality of a solution, and fitness
landscapes plot solutions and corresponding
goodness (fitness). If one wishes to optimize
the function 1 0x + = , then depending on the
choice of the error measure, fitness can for
example be defined as | ( 1) |x− − +  or as
1 | ( 1) |x/ − + . The optimization process then tries
to find the peak of the fitness landscape (see
Figure 1(a)).
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This example is trivial and the optimum is
easy to find. Real problems are often multimodal,
meaning that their fitness landscapes contain
several local optima (i.e., points whose neigh-
bors all have a lower fitness; see Figure 1(b)).
This is particularly true when variables interact
with one another (epistasis).

Usual analytical methods, like gradient de-
scent, are often unable to find a global optimum,
since they are unable to deal with such func-
tions. Moreover, companies mostly deal with
combinatorial problems like quadratic assign-
ment, timetabling, or scheduling problems. These
problems using discrete states generate non-
continuous objective functions that are un-
reachable through analytical methods.

Stochastic optimization algorithms were
designed to deal with highly complex optimiza-
tion problems. This chapter will first introduce
the notion of complexity and then present the
main stochastic optimization algorithms.

NP-Complete Problems and
Combinatorial Explosion

In December, Santa Claus must prepare the
millions of presents he has to distribute for
Christmas. Since the capacity of his sleigh is
finite, and he prefers to minimize the number of
runs, he would like to find the best way to
organize the packs. Despite the apparent trivi-

ality of the task, Santa Claus is facing a very
hard problem. Its simplest formulation is the
one-dimensional bin packing problem. Given
a list  1 2( )nL a a … a= , , ,  of i tems  with
sizes 0 ( ) 1is a< ≤ , what is the minimum number
m  of unit-capacity bins Bj such that

( ) 1 1
i j

ia B
s a j m

∈
≤ , ≤ ≤∑ ? This problem is known

to be NP-hard (Coffman, Garey, & Johnson,
1996).

Various forms of the bin packing problem
are very common. The transportation industry
must optimize truck packing given weight limits,
the press has to organize advertisements mini-
mizing the space, and the sheet metal industry
must solve the cutting-stock problem (how to
minimize waste when cutting a metal sheet).

Such problems are very tough because we
do not know how to build algorithms that can
solve them in polynomial-time; they are said to
be intractable problems. The only algorithms
we know for them need an exponential-time.
Table 1 illustrates the evolution of time algo-

Figure 1. (a) Fitness landscapes for x + 1 = 0.
(b) A multimodal fitness landscape.

 

Table 1. Polynomial vs. non-polynomial
functions complexity growth

Considering 109 operations per second, evolution
of the algorithm time according to its complexity.
TSP stands for Traveling Salesman Problem, with
complexity ( 1)

2
N − !  for N towns (see following sections).

O(N)  N=17  N=18  N=19  N=20  

N   17 910−× s  18 910−× s 19 910−× s 20 910−× s 

2N   289 910−× s  324 910−× s  361 910−× s  400 910−× s 

5N   1.4 310−× s 1.8 310−× s 2.4 310−× s 3.2 310−× s 

2N   131 610−× s 262 610−× s  524 610−× s 1 310−× s 

5N   12.7 mn 1 h 5.29 h 26.4h 

TSP  2.9 h 2 days 37 days 2 years ! 

N!   4 days  74 days  4 years 77 years ! 

(a) (b)

-2.5    -2.0     -1.5    -1.0     -0.5    0.0      0.5

1 / | - (x + 1) |

- | - (x + 1) |
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rithms for polynomial-time problems vs. non-
polynomial. Improving the speed of computers
or algorithms is not the solution, since if the
speed is multiplied, the gain of time is only
additive for exponential functions (Papadimitriou
& Steiglitz, 1982).

The consequences of the computational
complexity for a great many real-world prob-
lems are fundamental. Exact methods for sched-
uling problems “become computationally im-
practicable for problems of realistic size, either
because the model grows too large, or because
the solution procedures are too lengthy, or both,
and heuristics provide the only viable schedul-
ing techniques for large projects” (Cooper,
1976).

Heuristics and Meta-Heuristics

Since many real-world combinatorial problems
are NP-hard, it is not possible to guarantee the
discovery of the optimum. Instead of exact
methods, one usually uses heuristics, which
are approximate methods using iterative trial-
and-error processes to approach the best solu-
tion. Many of them are nature inspired, and
their latest development is to use
metaheuristics.

A metaheuristic is an iterative master process
that guides and modifies the operations of
subordinate heuristics to efficiently produce
high-quality solutions. It may manipulate a
complete (or incomplete) single solution or a
collection of solutions at each iteration. The
subordinate heuristics may be high (or low)
level procedures, or a simple local search,
or just a construction method.  (Voss,
Martello, Osman, & Roucairol, 1999)

Metaheuristics are high-level methods guid-
ing classical heuristics. They deal with a dy-
namic balance between diversification (ex-

ploration of the solution space) and intensifi-
cation (exploitation of the accumulated knowl-
edge) (Blum & Roli, 2003).

Stochastic Algorithms

Random Search

Random search is what it says it is. In essence,
it simply consists of picking up random potential
solutions and evaluating them. The best solution
over a number of samples is the result of
random search.

Many people do not realize that a stochastic
algorithm is nothing more than a random search,
with hints by a chosen heuristics (or meta-
heuristics) to guide the next potential solution to
evaluate. People who realize this feel uneasy
about stochastic algorithms, because there is
not a guarantee that such an algorithm (based
on random choices) will always find the global
optimum.

The only answer to this problem is a proba-
bilistic one:

• if, for a particular problem, one already
knows the best solution for different in-
stances of this problem, and

• if, over a significant number of runs, the
proposed stochastic algorithm finds a so-
lution that in average is 99% as good as
the known optimum for the tested in-
stances of the problem, then,

• one can hope that on a new instance of the
problem for which the solution is not
known, the solution found by the stochas-
tic algorithm will be 99% as good as the
unknown optimum over a significant num-
ber of runs.

This claim is not very strong, but there are
not many other options available: if one abso-
lutely wants to get the global optimum for a
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large NP-hard problem, the only way is to let
the computer run for several hundred years (cf.
Table 1). The stochastic way is therefore a
pragmatic one.

Computational Effort

As can be seen above, it is difficult to evaluate
the performance of stochastic algorithms, be-
cause, as Koza (1994) explains for genetic
programming:

Since genetic programming is a probabilistic
algorithm, not all runs are successful at yielding
a solution to the problem by generation G .
When a particular run of genetic programming
is not successful after the prespecified number
of generations G , there is no way to know
whether or when the run would ever be
successful. When a successful outcome cannot
be guaranteed for every run, there is no
knowable value for the number of generations
that will yield a solution….

Koza therefore proposes a metrics to mea-
sure what he calls the computational effort
required to solve a problem that can be ex-
tended to any stochastic algorithm where evalu-
ations consume a significant fraction of the
computer resources:

One first calculates P(n), the cumulative
probability of success by dividing the number of
runs that succeeded on or before the nth evalu-
ation, by the number of conducted runs.

The computational effort I(n,z) can then be
defined as the number of evaluations that must
be computed to produce a satisfactory solution
with probability greater than z (where z is
usually 99%), using the formula:

ln(1 )
ln(1 ( ))

z
P nn −

− ∗   .

No Free Lunch Theorem

Random search is also important because it
serves as a reference on which one can judge
stochastic algorithms. A very important theo-
rem is that of the No Free Lunch (Wolpert &
Macready, 1995). This theorem states that no
search algorithm is better than a random search
on the space of all possible problems—in other
words, if a particular algorithm does better than
a random search on a particular type of prob-
lem, it will not perform as well on another type
of problem, so that all in all, its global perfor-
mance on the space of all possible problems is
equivalent to a random search.

The overall implication is very interesting,
as it means that an off-the-shelf stochastic
optimizer cannot be expected to give good
results on any kind of problem (no free lunch):
a stochastic optimizer is not a black box: to
perform well, such algorithms must be expertly
tailored for each specific problem.

Hill-Climbing

Hill-climbing is the basis of most local search
methods. It is based on:

• A set of feasible solutions { }nRω ωΩ = ; ∈ .
• An objective function f(ω) that can mea-

sure the quality of a candidate solution.
• A neighborhood function ( ) {N ω =

{ ( ) }n ndistω ω ω δ∈Ω | , ≤  able to map any
candidate solution to a set of close candi-
date solutions.

The optimization algorithm has to find a
solution ( ) ( )f fω ω ω ω∗ ∗,∀ ∈Ω, ≤ . The basic hill-
climbing algorithm is trivial:

1. Build a candidate solution ω ∈ Ω.
2. Evaluate ω by computing f(ω) and set ω*

← ω.
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3. Select a neighbor ωn ∈ N(ω) and set ω ←
ωn.

4. If f(ω) ≤ f(ω∗) set ω* ← ω.
5. If some stopping criterion is met, exit else

go to 3.

One example is the famous Traveling Sales-
man Problem (TSP: given a collection of cities,
finding the shortest way of visiting them all and
returning back to the starting point), which is an
NP-hard problem (cf. Table 1 for complexity).
The candidate solution is a list of cities, for
example F-D-B-A-E-C, and the objective func-
tion is the length of this journey. There are
many different ways to build a neighborhood
function. 2-opt (Lin, 1965) is one of the sim-
plest since it just reverses a sequence. Apply-
ing 2-opt could lead to F-E-A-B-D-C. The new
tour will be selected if it is shorter than the
previous one, otherwise one will evaluate an-
other neighbor tour.

More advanced hill-climbing methods look
for the best neighbor:

1. Build a candidate solution ω ∈ Ω.
2. Evaluate ω by computing f(ω).
3. For each neighbor ( )n Nω ω∈ , evalu-

ate ( )nf ω .
4. If all ( )nf ω  are ≥  ( )f ω  (local optimum)

then exit.
5. Else select ( ) ( ) ( )n nN f fω ω ω ω ω∗ ∗,∀ ∈ , <

as the current candidate solution and set ω
← ω*.

6. Go to 3.

The main advantage of hill-climbing is its
simplicity, the core difficulty usually being the
design of the neighborhood function. The price
for this simplicity is a relative inefficiency. It is
trivial to see that hill-climbing is easily trapped
in local minima. If one starts from point A (see
Figure 1b), it will not be able to reach the global
optimum, since once on top of the first peak, it

will not find any better point and will get stuck
there.

Even though many advanced forms of hill-
climbing have been developed, these methods
are limited to smooth and unimodal landscapes.
“A question for debate in medieval theology
was whether God could create two hills without
an intervening valley…unfortunately, when
optimizing functions, the answer seems to be
no” (Anderson & Rosenfeld, 1988, p. 551).
This is why search rules based on local topog-
raphy usually cannot reach the highest point.

Simulated Annealing

Simulated annealing (Kirkpatrick, Gellat, &
Vecchi, 1983) is an advanced form of hill-
climbing. It originates in metallurgy. While an-
nealing a piece of metal, quickly lowering the
temperature leads to a defective crystal struc-
ture, far from the minimum energy level. Start-
ing from a high temperature, cooling must be
progressive when approaching the freezing point
in order to obtain a nearly perfect crystal, which
is a crystal close to the minimum energy level.
Knowing that the probability for a system to be
at the energy level E0 is p(E0)=exp(–E0/kBT)/
Z(T), where kB is the Boltzmann constant, T
the temperature, and Z(T) a normalizing func-
tion, Metropolis, Rosenbluth, Rosenbluth, Teller,
and Teller (1955) proposed a simple algorithm
to simulate the behavior of a collection of atoms
at a given temperature At each iteration, a
small random move is applied to an atom and
the difference of energy E∆  is computed. If

0E∆ ≤  the new state is always accepted. If
0E∆ >  the new state is accepted according to

a probability ( ) exp( )Bp E E k T∆ = −∆ / .
Simulated annealing is based on a series

of Metropolis algorithms with a decreasing
temperature. It can shortly be described this
way:



  33

Stochastic Optimization Algorithms

1. Build a candidate solutionω ∈ Ω.
2. Evaluate ω  by computing f(ω) .
3. Select a neighbor candidate solution ωn ∈

N(ω).
4. If f(ωn) ≤ f(ω) then set nω ω←  and exit if

the evaluation is good enough.
5. Else select ωn (ω ← ωn) according to the

probability: exp( ( ( ) ( )) )n ip f f Tω ω= − − /
where iT  is the current temperature which
decreases over time.

6. Go to 3.

Uphill moves (step 5) allow overcoming
local minima. One can illustrate the difference
between hill-climbing and simulated annealing
with the rolling ball metaphor (see Figure 2).
Imagine a ball on a bumpy surface. The ball will
roll down and stop at the first point of minimum
elevation which usually is a local optimum. By
tolerating uphill moves, simulated annealing
somehow “shakes” the surface pushing the ball
beyond the local minimum. At the beginning of
the process, the surface is brutally shaken—the
temperature is high—allowing a large explora-
tion. The reduction of the temperature progres-
sively decreases the shaking to prevent the ball
from leaving the global optimum.

Simulated annealing is efficient, but slow.
Many improvements have been proposed, like
the rescaled simulated annealing which lim-
its the transitions in a band of energy centered
around a target energy level by us-
ing 2 2( ) ( )ij j t i tE E E E E∆ = − − − , with typi-
cally 2 0tE Tα α= , >  (Hérault, 2000). This
method “flattens” the error surface at the be-
ginning of the process, minimizing the tendency
of the algorithm to jump among local minima.

Tabu Search

“Tabu search may be viewed as ‘meta-heuris-
tic’ superimposed on another heuristic. The
approach undertakes to transcend local
optimality by a strategy of forbidding certain
moves” (Glover, 1986—this is the first appear-
ance of the term ‘meta-heuristic’). Like simu-
lated annealing, it is as an advanced form of hill-
climbing, based on a set of feasible solutions Ω ,
an objective function f(ω), and a neighborhood
function N(ω). Tabu search tries to overcome
local minima by allowing the selection of non-
improving solutions and by using a procedure
which avoids cycling moves. Unlike simulated
annealing, the probability of selection of a non-
improving move is not applied to a given neigh-
bor, but to the set of neighbors. To avoid cycles,
tabu search implements a list T of tabu moves
which in the basic form contains the t last
moves. The simple tabu search works as fol-
lows (Glover, 1989):

1. Select a potential solution ω ∈ Ω and let ω*

← ω. Initialize the iteration counter k = 0
and let T = �.

2. If ( )N Tω − = ∅  go to 4. Otherwise, incre-
ment k and select ( )b N Tω ω∈ −  the “best”
available move.

3. Let ω ← ωb. If f(ω) < f(ω∗), let ω* ← ω.
4. If ω∗  is equal to the desired minimum or if

( )N Tω − = ∅  from 2, stop. Otherwise up-
date T and go to 2.

Figure 2. Simulated annealing
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We did not define the “best” available move
at step 2. The simplest—nevertheless power-
ful—way is to select ω b such that

( ) ( ) ( )n b nN T f fω ω ω ω∀ ∈ − , < . This means that
the algorithm can select a non-improving move
since ( )bf ω  can be greater than ( )f ω∗ .

The definition of the tabu list (step 4) is also
a central one. This list aims at escaping local
minima and avoiding cycles. It should then
consider as tabu any return to a previous solu-
tion state. If s–1 is the reverse move of s, the
tabu list  can be defined such that

1{ }hT s h k t−= : > − , where k is the iteration index
and t defines the size of the time window.
Practically, this method is hard to implement,
especially because of memory requirement.
One usually stores only partial ranges of the
moves attributes, which can be shared by other
moves. The tabu list then contains collections
Ch  of moves sharing common attributes:

hT C h k t= ∪ ; > − , where 1
h hs C− ∈  (Glover, 1989).

Since the tabu list manages moves and not
solutions, unvisited solutions can have tabu
status. In order to add flexibility to the research
process, tabu search uses aspiration levels. In
its simplest form, the aspiration level will allow
tabu moves whose evaluation has been the best
so far.

Two extra features are usually added to
tabu search (Glover, 1990): intensification
and diversification. These terms can be added

to the objective function f f= +� intensifica-
tion+ diversification.

Intensification aims at closely examining
“interesting” areas. The intensification func-
tion will favor solutions close to the current
best. The simplest way is to get back to a close-
to-the-best solution and to reduce the size of the
tabu list for some iterations. More sophisticated
methods use long-term memory memorizing
the good components of good solutions.

Diversification aims at avoiding a too local
search. The diversification function gives more
weight to solutions far from the current one.
The simplest way to implement it is to perform
random restarts. One can also penalize the
most frequent solutions components.

Let us examine a simple example to illus-
trate tabu search.

The cube (see Figure 3) shows the cost and
the neighborhood of an eight-configurations
problem. The random initial configuration is, for
example, 10. We will simply define the tabu
movements as the reverse movements in each
of the three directions, that is if we move along
x +, the movement x – will be tabu.

First iteration:

• Neighborhood of 10 is 15, 8, and 12.
• The best move is z+ which selects 8.
• z– is added to the tabu list.

Second iteration:

• Neighborhood is 11, 13, and 10.
• The best move is z–, but it is tabu. The

second best move is x– which selects 11.
• x+ is added to the tabu list.

Third iteration:

• Neighborhood is 9, 8, and 15.
• The best move is x–, but it is tabu. The

second best move is y+ which selects 9.

Figure 3. An illustration of tabu search
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• y– is added to the tabu list.

Fourth iteration:

• Neighborhood is 11, 13, and 5.
• The best move is z– which is tabu, but its

evaluation is 5 which is lower than the best
evaluation so far (8). The aspiration crite-
rion overrides the tabu restriction and the
5 is selected.

• 5 is the global minimum, the research is over.

Despite its simplicity, tabu search is a highly
efficient algorithm. It is known to be one of the
most effective meta-heuristics for solving the
job-shop scheduling problem (Taillard, 1994;
Watson, Whitley, & Howe, 2003). It is used in
many different fields like resources planning,
financial analysis, logistics, and flexible manu-
facturing.

Neural Networks

A neural network is a set of processing units
linked by “learnable connections.” They are
well known in the field of artificial intelligence
where they notably provide powerful generali-
zation and clustering tools. Some recurrent
neural networks are also useful for optimiza-
tion. The optimization process is usually based
on the minimization of an energy function de-
fined as: E(x) = Ec(x) + ∑kakEk (x) where cE  is
the cost function, Ek (x) are the penalties asso-
ciated to constraint violations, and ak are the

associated weighting parameters. For many
optimization problems, the cost function is ex-
pressed in a quadratic form E(x) =–1/2∑i,j Tijsisj
– ∑i Iisi,, where si is the signal of the neuron i, Tij
= ∂2E/∂si∂sj, and Ii = ∂E/∂si (Dreyfus et al.,
2002).

Hopfield networks (Hopfield, 1982) are the
most famous neural networks used for optimi-
zation. They are asynchronous (one randomly
selected neuron is updated at each step), fully
connected—except self-connection—neural
networks (see Figure 4).

The binary version uses a sign function; the
output signal of a neuron is computed as: 1is =
if ∑jwjisj – θi ≥ 0, si = 0 otherwise; where wji is
the weight of the connection between neurons
j and i, sj is the signal of the neuron j and θi  is
the bias of neuron i (a constant, usually nega-
tive, signal).

Such a network is a dynamic system whose
attractors are defined by the minima of the
energy function defined as:

1 2 ij i j j j
i j j

E w s s sθ
,

= − / −∑ ∑

Originally, Hopfield designed his networks
as associative memories. Data are stored in the
attractors where the network converges, start-
ing from partial or noisy data providing a con-
tent-addressable memory. In 1985, Hopfield
demonstrated the optimizing capabilities of his
network, applying it to the TSP problem
(Hopfield & Tank, 1985).

Figure 4. Hopfield network

 

Table 2. Hopfield matrix for the TSP

 1 2 3 4 5  

A 0 1 0 0 0  

B 0 0 0 1 0  

C 1 0 0 0 0  

D 0 0 0 0 1  

E 0 0 1 0 0  
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While using Hopfield networks for optimiza-
tion, the main difficulty is the representation of
the problem and the definition of the objective
function as the energy of the network. For n
cities, Hopfield and Tank used n2 neurons. A
set of n neurons was assigned to each city, and
the rank of the firing neuron designed the rank
of the city during the travel.

Table 2 represents the tour C-A-E-B-D.
The energy function depends on constraints
and cost. For the TSP, the constraints define
the validity of the tour that is the fact that each
city is visited once. Hopfield and Tank defined
the corresponding function as:

2 2xi xj xi yi
x i j i i x x y

A V V B V V C
≠ ≠

/ + / +∑ ∑ ∑ ∑ ∑ ∑
22( )xi

x i

C V n/ −∑ ∑

where xiV  is the binary signal of the neuron
representing the city x  at the position i ( 0iV =
or 1iV = ) and A, B, C are constant. The first
term is zero when each row contains one “1”
(cities are visited once), the second is zero
when each column contains one “1” (there is
one city per position), and the third term is zero
when the matrix contains exactly n “1.”

The cost function depends on the length of
the tour. It is defined as:

1 12 ( )xy xi y i y i
x y x i

D d V V V, + , −
≠

/ +∑ ∑ ∑

where xyd  is distance between cities x and y and
where x n j x jV V, + ,= . The energy function is the
sum of the four terms. If the constants are large
enough (A = B = 500, C = 200, D = 500 in the
initial tests), low energy states will correspond
to valid tours. The matrix of the connection
weights becomes:

(1 ) (1 )xi yj xy ij ij xyw A B Cδ δ δ δ, = − − − − −

1 1( )xy j i j iC Dd δ δ, + , −− +

where xi yjw ,  is the weight of the connection
between the neurons representing the city x at
position i and the city y at position j and 1ijδ =
if i j= , 0ijδ =  otherwise.

The original model of Hopfield-Tank has
been quite controversial since their results have
proved to be very difficult to reproduce. Thanks
to posterior improvements (e.g., Boltzmann
machine which tries to overcome local minima
by using a stochastic activation function (Ackley,
Hinton, & Sejnowski, 1985)), the Hopfield-
Tank model demonstrated its usefulness. It is
notably used to solve general (e.g., Gong, Gen,
Yamazaki, & Xu, 1995) and quadratic (e.g.,
Smith, Krishnamoorthy, & Palaniswami, 1996)
assignment problems; Cutting stock problems
(e.g., Dai, Cha, Guo, & Wang, 1994), or Job-
Shop scheduling (e.g., Foo & Takefuji, 1988).

Apart from Hopfield networks, T. Kohonen
Self-Organizing Maps (SOM) (Kohonen,1997),
initially designed to solve clustering problems,
are also used for optimization (Smith, 1999),
notably since the presentation of the Elastic
Net Method (Durbin & Willshaw, 1987).They
are especially used to solve quadratic assign-
ment problems (Smith, 1995) and vehicle rout-
ing problems (e.g., Ramanujam & Sadayappan,
1995).

Evolutionary Algorithms and
Genetic Programming

Evolutionary algorithms and genetic program-
ming have chapters devoted to them in this
book, so this section will remain small and
general. Evolutionary algorithms provide a way
to solve the following interesting question.
Given: (1) a very difficult problem for which no
way of finding a good solution is known and
where a solution is represented as a set of
parameters, and (2) a number of previous trials
that have all been evaluated, how can one use
the accumulated knowledge to choose a new
set of parameters to try out (and therefore do
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better than a random search)? One could store
all the trials in a database and perform statistics
on the different parameters characterizing the
trials, to try to deduce some traits that will lead
to better results. However, in real life, param-
eters are often interdependent (epistasis), so
drawing conclusions may not be that easy, even
on a large amount of data.

Evolutionary algorithms (EAs) rely on arti-
ficial Darwinism to do just that: exploit each
and every trial to try out new potential solutions
that will hopefully be better than the previous
ones: given an initial set of evaluated potential
solutions (called a population of individuals),
“parents” are selected to “give birth” to “chil-
dren” thanks to “genetic” operators, such as
“crossover” and “mutation.” “Children” are
then evaluated and form the pool of “parents”
and “children,” a replacement operator selects
those that will make it to the new “generation.”

As can be seen in the previous paragraph,
the biological inspiration for this paradigm led to
borrowing vocabulary specific to this field.

The selection and replacement operators
are the driving forces behind artificial evolu-
tion. They are biased towards good individuals,
meaning that (all in all) the population is getting
better along as the generations evolve. A too
strong selection pressure will lead to a prema-
ture convergence (the population of individuals
will converge towards a local optimum) while a
too weak selection pressure will prevent any
convergence.

Evolutionary algorithms can be used to op-
timize virtually any kind of problem, even some
that cannot be formalized. This makes them
usable for interactive problems where the fit-
ness of an individual is given by a human
operator (see Chapter XXVII in this hand-
book). They are also very efficient on multi-
objective problems, thanks to the fact that they
evolve a whole population of individuals at once
(see Chapter VI in this book). Proper tech-

niques (such as NSGA-II (Deb, Agrawal,
Pratab, & Meyarivan, 2000)) can be used to
create a full Pareto-front in only one run (some-
thing impossible to do with simulated annealing
or tabu search, for instance).

If EAs can be used for virtually anything,
why not try to evolve programs? This is what
genetic programming (detailed in Chapter V) is
about. Individuals are not merely a set of pa-
rameters that need to be optimized, but full
programs that are run for evaluation. The main
difference between genetic programming and
standard EAs is that individuals are executed to
be evaluated (rather than used in an evaluation
function).

Data-Level Parallelism

The powerful data-level parallelism trend ap-
peared in the mid-1980s with many seminal
works (Wolfram, 1984; Rumelhart &
McClelland, 1986; Minsky, 1986; Hillis & Steele,
1986; Thinking Machines Corporation, 1986).
Object-oriented programming allows one to
embed intelligent behavior at the data level.
The idea is then used to put together many small
intelligent entities, possibly on parallel machines
or, even better, a connection machine (cf. CM-
1 by D. Hillis of Thinking Machines, with 64K
processors, 1986).

One of the first applications of the Connexion
Machine was to implement particles simulating
perfect ball bearings that could move at a single
speed in one of six directions, and only con-
nected to their nearest neighbors. The flow of
these particles on a large enough scale was
very similar to the flow of natural fluids. Thanks
to data-level parallelism, the behavior of a
complex turbulent fluid—which would have
used hours of computation to simulate using
Navier-Stokes equations—could be much sim-
ply obtained thanks to the parallel evolution of
the elementary particles.
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The notion of turbulence was not specifi-
cally implemented in the behavior of the el-
ementary particles: it just emerged when they
were put together and set in motion.

Still in 1986, Reynolds implemented a com-
puter model to simulate coordinated animal
motion such as bird flocks and fish schools. He
called the creatures boids (Reynolds, 1987).
What he discovered was that one could obtain
a flocking or schooling emergent behavior by
implementing the very simple three following
rules into individual boids:

1. Separation: Steer to avoid getting too
close from local flockmates.

2. Alignment: Steer towards the average
heading of local flockmates.

3. Cohesion: Steer to move towards the
average position (center of gravity) of
local flockmates.

Note that there is no global knowledge of the
position or shape of the flock of boids. Boids
only know about the position of their neighbors
(local flockmates).

Particle Swarm Optimization

In 1975, Wilson (a sociobiologist) wrote, in
reference to fish schooling: “In theory at least,
individual members of the school can profit
from the discoveries and previous experience
of all other members of the school during the
search for food” (Wilson, 1975). In 1995,
Kennedy and Eberhart, who were aware of the
work of Reynolds, saw in this statement that
swarms (or fish schools) could possibly be used
to find specific places (such as optima) in a
search space.

Their first tests on known problems were
quite positive, so they refined the model. They
quickly saw that rules number 1 and 2 were not
needed, so they used Occam’s razor to remove

them, but visually, this changed the flock be-
havior into a swarm behavior, hence the par-
ticle swarm optimization  (PSO) name
(Kennedy & Eberhart, 1995).

Particles collaborate as a population to find
the best possible solution to a problem. Each
particle (a potential solution to the problem
made of an n -dimensions array of parameters)
knows of the position of the best solution ever
found by the swarm (called gbest) and of the
best solution it ever found (called pbest). How-
ever, going directly to either pbest or gbest is
pointless because these points have already
been visited. The idea behind PSO is to have the
particles go towards both pbest and gbest with
inertia: it is their speed that is modified rather
than directly their position.

In the original algorithm, each particle p has
access to:

• its current position in each of the dimen-
sions i of the problem at hand: p.pos[i];

• the best solution it has personally found,
that is, p.pBestVal (value of the best
found solution) and for each dimension i:
p.pBestPos[i];

• a velocity for each dimension i: p.Veloc[i];
and

• the best solution found by the particle
swarm: gBest.Val and for each dimension
i: gBest.pos[i].

Then, the algorithm runs as follows:

1. Initialize randomly all particles of the popu-
lation, evaluate them, and set their
pBestVal field to 0.

2. Clone the best particle and copy it into
gBest, and for all particles, set their pBest
positions to their current positions if their
current value is greater than their pBestVal
value.
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3. Calculate new velocities for all particles
and for all dimensions:

p.Veloc[i]=p.Veloc[i]
+pIncrement*rand()*(p.pBest[i]-p.Pos[i])
+gIncrement*rand()*(gBest.pos[i]p.Pos[i]

where rand() returns a random value be-
tween 0 and 1.

4. Move all particles using the calculated
velocities, that is, for all dimensions of all
particles: p.pos[i]=p.pos[i]+p.Veloc[i].

5. Evaluate each particle and go back to step
2 until a stopping criterion is met.

In this algorithm, particles are attracted by
two locations: the place where they found their
personal best result pBest and some kind of
public knowledge of where the best spot found
by the swarm lies gBest. Two increments are
associated to adjust the velocity towards these
particular locations. In their original paper,
Kennedy and Eberhart called pIncrement pres-
sure for “simple nostalgia,” while gIncrement
represents pressure towards group knowledge.

Simulations showed that a high value of
pIncrement relative to gIncrement results in
excessive wandering of isolated individuals
through the problem space, while the reverse
(high gIncrement vs. pIncrement) results in
premature convergence towards a local opti-
mum. Approximately equal values seem to give
the best result. A value of 2 was given by
Kennedy and Eberhart to give rand() a mean of
1, meaning that agents would have equal chances
of moving too fast or too slow towards their
aim.

Particle Swarm Optimization uses an el-
egant and simple algorithm to implement a
swarm of individuals evolving in a fitness land-
scape thanks to which an optimal solution
emerges. To quote Kennedy and Eberhart,

“much of the success of particle swarms seems
to lie in the agents’ tendency to hurtle past their
target.” The model was later on generalized in
Shi and Eberhart (1998).

Ant Colony Optimization

Ant colony optimization is another nature-in-
spired algorithm, based on data-level parallel-
ism and the concept of emergence. The idea
comes from a biology paper (Deneubourg,
Pasteels, & Verhaeghe, 1983) which describes
the very simple mechanism that ants use to
establish an optimal path between a food source
and their ant-hill, without central supervision.

This paper came out in 1983, while the data-
level parallelism trend was blooming. In 1988,
Manderick and Moyson saw the emergent pro-
cess lying in this description and wrote a semi-
nal paper (Moyson & Manderick, 1988) in
which they describe the implementation of vir-
tual ants on a computer. The appendix of the
paper contains the equations that govern the
behavior of ants, allowing computation of the
critical mass of ants above which self-organi-
zation emerges at the macroscopic level.

Colorni, Dorigo, and Maniezzo (1991) de-
scribe a Distributed Optimization by Ant
Colonies, and Dorigo’s (1992) PhD thesis uses
virtual ants to solve the Traveling Salesman
Problem (TSP). Many other papers followed,
describing ant colony optimization (Stützle &
Dorigo, 2002; Maniezzo, Gambardella, & Luigi,
2004; Dorigo & Caro, 1999).

Ant colony optimization is based on
stigmergy, evaporation, and errors. Real or
artificial ants communicate by leaving global
information in their environment (stigmergy)
under the form of pheromones (odors) that
evaporate with time:

• Foraging ants leave the ant-hill with the
aim of bringing back food for the commu-
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nity. If there are no pheromones around,
they walk randomly. Otherwise, they tend
to follow pheromone trails proportionally
to the amount of pheromones on the trail.

• If ants find a food source, they detach and
carry a bit of the food, and continue walk-
ing either randomly, or following a phero-
mone trail. In either case, ants carrying
food leave behind them a trail of phero-
mones. If they do not follow a pheromone
trail and walk randomly, they create a new
pheromone trail. If they follow a phero-
mone trail, they will reinforce it.

The described algorithm is really simple.
Robustness and adaptability reside in the vola-
tility of stigmergic information (evaporating
pheromones) and the stochastic following of
existing paths (error in trail following).

If the food source depletes, ants will not be
able to carry food anymore, and will not rein-
force the trail leading to the food source. The
trail leading to a depleted food source will
therefore fade away and disappear automati-
cally, thanks to pheromone evaporation.

If an existing trail is interrupted because of
an external cause, ants coming from the food
source will start walking randomly around the
obstacle, until by chance, the trail leading to the
ant-hill is found again. If two alternative solu-
tions are found, the traffic on the shortest one
will be greater, meaning that the pheromone
scent will be stronger. The shorter trail will
therefore appear more attractive to ants com-
ing to the point where they must choose which
way they want to go. After a while, the longest
path disappears in favor of the shortest.

Solving the TSP with
Ant Colony Optimization

An implementation of a TSP solver using ant
colony optimization is well described in Stützle

and Dorigo (1999): Cities are placed on a graph,
with edges bearing the distance between the
two connected cities. A number of artificial
ants are placed on random cities and move to
other cities until they complete a tour. A fitness
is computed for each edge of the graph, which
is a weighted sum between the amount of
pheromones already borne by the edge and the
inverse of the distance to the town pointed to by
the edge.

At each time step, artificial ants
probabilistically choose to follow an edge de-
pending on its fitness value, and deposit an
amount of pheromone, to indicate that the edge
has been chosen (local updating). This goes on
until all ants have completed a tour. When this
is done, the ant that has found the shortest tour
deposits pheromones on the edges of its tour
proportionally to the inverse of the total dis-
tance (global updating), and all ants are re-
started again from random towns.

This algorithm is very efficient: HAS-SOP
(Hybridized Ant System for the Sequential
Ordering Problem) is one of the fastest known
methods to solve Sequential Ordering Problems
(a kind of asymmetric TSP with multiple prece-
dence constraints) (Gambardella & Dorigo,
2000).

CONCLUSION

Stochastic optimization has known several eras,
where different algorithm techniques have blos-
somed as they were discovered and used.
Simulated annealing and neural networks were
certainly among the first. They are therefore
very well described and widely used in industry
and applied sciences.

However, other algorithms (sometimes as
ancient as the previously quoted ones) have
come of age, thanks to the computation power
of modern computers, and they should not be
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ignored since they bring many advantages over
the old ones. Evolutionary algorithms, for in-
stance, are very good at tackling multi-objec-
tive problems, since they can provide a com-
plete Pareto-front in only one run. Genetic
programming can be used for symbolic regres-
sion problems or to design analog circuits that
are human competitive. More recent algorithms,
based on the concept of data-level parallelism,
allow the crossing of levels of abstraction in
order to find emergent solutions, possibly lead-
ing to “a new kind of science” (Wolfram, 2002).

One important thing to keep in mind though
is the No Free Lunch theorem, which states
that no black-box will ever be able to solve any
kind of problem better than a random search.
The conclusion is that for a specific class of
problem, some algorithms will work better than
others, and that all these heuristics need to be
tailored for a particular application if one really
wants to obtain outstanding results.
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KEY TERMS

Emergent Behavior: A behavior that was
not directly hardcoded into an algorithm.

Fitness Landscape: If one plots the fit-
ness of all possible solutions to a problem, one
obtains a “landscape” that an optimization algo-
rithm will explore, usually to find a global opti-
mum.

Global Search: Global search methods will
implement ways to avoid getting trapped in
local optima.
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Heuristic: Non-exact method used to find
a good solution, usually based on trial and error.

Local Search: Local search methods are
usually deterministic. They can find a local
optimum very quickly, but will get stuck there.

Multimodal: A problem with several local
optima. Local search algorithms will get trapped
in the first local optimum they find. If one is
unlucky, the found local optimum is not the
global optimum. Local search algorithms can-
not be used on multimodal problems.

NP-Hard Problem: A problem for which
no polynomial time solution has yet been found.
This means that in order to find a global opti-
mum, no other solution is known than to test all
possible solutions.

Stigmergy: Basic inter-individual commu-
nication based on information left in the envi-
ronment for others to use.

Unimodal: A problem with a single local
optimum (that is de facto also the global opti-
mum). Local search algorithms will find the
global optimum of a unimodal problem.
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ABSTRACT

Evolutionary computation is an old field of computer science that started in the end of the
1960s nearly simultaneously in different parts of the world. Each paradigm has evolved
separately, apparently without knowledge of what was happening elsewhere, until people
finally got together and shared their experience. This resulted in strong trends that still
survive, even though it is now possible to outline a generic structure for an evolutionary
algorithm that is described in this chapter.

INTRODUCTION AND HISTORY

The development of evolutionary algorithms
almost dates back to the dark ages of comput-
ers. To put back everything in perspective,
Computer Science really started when John
von Neumann designed the EDVAC (elec-
tronic discrete variable automatic computer) in
1945, but the first prototype was actually imple-
mented in 1949 with Wilkes’ EDSAC (elec-
tronic delay storage automatic calculator). Then,
for a while, the only commercially available
machines used valves and were therefore not
that reliable (IBM 650 in 1953). A quantum leap
was made when transistors became available
around the 1960s, and finally, Integrated Cir-
cuits in 1964.

By that time, evolutionary computation had
about ten independent beginnings in Australia,
the United States, and Europe, starting in 1953,
traced by David Fogel’s excellent Fossil Record
(Fogel, 1998): Alex Fraser had evolved binary
strings using crossovers (Fraser, 1957),
Friedberg had already thought of self-program-
ming computers through mutations (Friedberg,
1958; Friedberg, Dunham, & North, 1958), and
Friedman of how evolution could be digitally
simulated (Friedman, 1959). However, the main
evolutionary trends that survived are as fol-
lows:

• Evolutionary Strategies: By Rechenberg
and Schwefel, best described in Rechenberg
(1973) and Schwefel (1995).
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• Genetic Algorithms: By Holland, later
popularized by Goldberg on the U.S. East
Coast (Michigan) (Holland, 1975;
Goldberg, 1989).

• Evolutionary Programming:  By
Lawrence Fogel and later David Fogel on
the U.S. West Coast (Fogel, Owens, &
Walsh, 1966; Fogel, 1992).

• Genetic Programming: By Cramer (1985)
and later developed by Koza (1992) (see
Chapter V).

Evolutionary computation cannot, therefore,
be seen as a recent development of computer
science, or even classified as artificial intelli-
gence, which is a different concept that also
started back in the mid-1950s with John
McCarthy and many others.

However, until the principles of evolution-
ary computation were clearly understood, these
techniques necessitated a larger amount of
computer power than was available until the
beginning of the 1990s.

Thus although evolutionary computation re-
ally started in the late 1960s, it only came of age
when computers had enough power to make
them a technique competitive with other (pos-
terior) stochastic optimization paradigms such
as simulated annealing (Kirkpatrick, Gellat, &
Vecchi, 1983) or tabu search (Glover, 1977,
1989, 1990) (see Chapter III).

SHORT PRESENTATION OF THE
EVOLUTIONARY COMPUTATION
PARADIGM

The general idea comes from the observation
that animals and plants are very well adapted to
their environment. Back in 1859, Charles Dar-
win came with an explanation for this called
natural selection, which is now widely ac-
cepted (Darwin, 1859). The rationale is that
individuals that are not well adapted to their

environment do not survive long enough to
reproduce, or have less chances to reproduce
than other individuals of the same species that
have acquired beneficial traits through varia-
tion during reproduction. Adaptation to the
environment is also called fitness.

Artificial evolution grossly copies these natu-
ral mechanisms in order to optimize solutions to
difficult problems. All optimization techniques
based on Darwinian principles are de facto mem-
bers of the evolutionary computation paradigm.

A UNIFIED EVOLUTIONARY
ALGORITHM

Kenneth DeJong has been giving a GECCO
tutorial on the unification of evolutionary algo-
rithms for several years now and has come up
with a recent book on the subject (DeJong,
2005). Indeed, the previously quoted currents
(evolutionary strategies, genetic algorithms,
evolutionary programming, genetic program-
ming) all share the same principles copied from
natural selection.

Rather than describing each algorithm, this
chapter will describe a generic and complete
version that can emulate virtually any para-
digm, depending on chosen parameters.

Representation of Individuals

Due to the similarities between artificial evolu-
tion and natural evolution that was the source of
its inspiration, a good part of the vocabulary
was borrowed from biologists. In artificial evo-
lution, a potential solution to a problem is called
an individual.

Using a correct representation to implement
individuals is a very essential step that is trivial
for some kinds of problems and much less trivial
for others. The American trend (genetic algo-
rithms) advocates using a representation that is
as generic as possible—for example, a bit string
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(even to code real values). The German trend
(evolutionary strategies) that was designed to
optimize continuous problems advocates using
real variables.

Although using bitstrings makes sense for
combinatorial problems or for theoretical stud-
ies, representing real values with bits, while
feasible, has many drawbacks (Hinterding,
Gielewski, & Peachey, 1995). It seems much
more reasonable to use an appropriate repre-
sentation tailored to the problem at hand.

If one tries to optimize a recipe for pancakes
that uses flour, sugar, baking powder, and eggs,
a reasonable encoding for an individual can be
four “genes”:

(f loat cpFlour, f loat tbspSugar, f loat
tspBakingPowder, int nEggs)

Note that this is the genotype of an indi-
vidual. The phenotype will be the resulting
pancake. This example makes it easy to under-
stand that individuals are not evaluated on their
genotype (ingredients) but on their phenotype
(pancake). In this case, the fitness function will
consist of measuring the width of the smile of
the person who tastes the pancake.

In many problems, the relationship between
genotype and phenotype is not so simple, and
there can be intercorrelation between genes.

(There is not a single gene coding for blue
eyes.) The biology term to describe this corre-
lation epistasis.

Choosing the good representation for the
genotype is important, because it materializes
the search space in which the best solution is
sought. Note that evolutionary algorithms are
not limited to bits, integers, or real numbers.
Genetic programming uses binary trees, or a
linear representation for a tree, or a grammar,
or even stranger concepts (Cartesian GP—
Miller, 2000)

To each his own. The conclusion is that
common sense should prevail: one should use
the representation that is best suited to the
problem at hand.

Evaluation (or Fitness) Function

As for individual representation, the fitness
function is problem dependent. The fitness
function guides the evolution. It usually imple-
ments or simulates the problem to be solved,
and should be able to rate the phenotype of the
individuals proposed by the evolutionary en-
gine. Most fitness functions requiring evolu-
tionary algorithms are multimodal (with several
local optima). The fitness function determines
a landscape made of hills and valleys that may
be more or less erratic (cf. Figure 1).

Figure 1. Mandelbrot-Weierstrass test functions with increasing irregularities
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If an airfoil profile is to be optimized, an
individual will encode an airfoil, and the fitness
function will compute the Navier-Stokes equa-
tions that will yield the lift/drag ratio of the
airfoil under precise conditions. The aim of the
evolutionary engine will be, for instance, to
maximize this ratio.

If the problem is a timetabling problem (con-
straints satisfaction problem), individuals will
encode a timetable, and the fitness function will
usually add penalties whenever a soft or a hard
constraint is violated. The aim of the evolution-
ary engine will therefore be to minimize the
penalties (the selection operators need to be
reversed).

Fitness functions may be very diverse. Some
may take hours to compute (Navier-Stokes
equations), while others may take only millisec-
onds (checking violated constraints in a time-
table). In the first case, 99% of the CPU time
will be spent in the fitness function, so it is of the
utmost importance to use a refined evolutionary
engine so as to minimize the number of evalu-
ations.

In the second case, which may use millions
of millisecond evaluations, the hot-spot may be
the evolutionary engine and not the fitness
function! In such a case, it is usually best to
keep genetic operators as simple (and fast) as
possible, and let artificial evolution do its job.
What is the point of using intelligent operators
to reduce the number of evaluations if it is
faster to find equivalent results by letting artifi-
cial evolution operate with simpler but much
quicker operators (Collet, Louchet, & Lutton,
2002).

Finally, one last point to take into account is
that some selection schemes (roulette wheel,
for instance) require that the fitness function
return always positive values.

Individual Initialization

Initialization is another very important step.
Standard evolutionary algorithms advocate start-
ing with a population of random individuals, in
order to sample the fitness landscape as uni-
formly as possible. One important reason for
this is that “helping” the evolutionary algorithm
by initializing individuals with “good” values
may actually prevent it from finding very good
solutions if these are unconventional: if one
wants to optimize boat propelling systems by
initializing all individuals of the population with
what seems the most reasonable—for example,
paddle wheels—the evolutionary algorithm will
only optimize paddle wheels. If, by pure chance,
an individual is mutated into a very coarse
propeller shape, it will perform so poorly com-
pared to even the worst paddle wheels that it
will not be selected for reproduction, and will be
immediately discarded from the population.

Some individuals may be evidently bad or
even nonfeasible. In this case (and if the fitness
function takes a long time to compute), remov-
ing them will speed up evolution; however, one
should be very cautious and very conservative
with killing of “bad” individuals: history is full of
examples where progress was slowed down
because some really good ideas had been re-
jected by people who thought they would never
work (flying without flapping wings, wave/
particle duality, Darwinism, etc.).

In order to start the algorithm, the initializa-
tion function is called repeatedly to create new
individuals until the required initial population
size is reached.

Each individual must then be evaluated by
the fitness function in order to begin the evolu-
tionary loop (it is necessary to know the fitness
of all individuals in order to choose the parents
that will create the first generation). If, by pure
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chance, a stopping criterion is met by an indi-
vidual (error below 1%, for instance), the evalu-
ation can stop at this point and yield back the
good individual.

A Generic Evolutionary
Loop (cf. Figure 2)

At this point, a certain number of necessary
parameters (discussed below) must have been
chosen, among which the number of children
per generation (which may go from 1 (steady
state replacement) to the population size (gen-
erational replacement) to any number n .

While (Stopping criterion not met):

1. While
(NbChildren<NbChildrenPerGeneration):
a. Select a variation operator (following

Darwin’s vocabulary), usually either
unary or n-ary. The n-ary variation
operator is often called with a 80-
100% probability and is also often a
binary crossover, yielding two chil-
dren. The unary operator (called with
a 20-0% probability is a cloning op-
erator (which also preserves the fit-
ness value without needing to recal-

culate it in static environment sys-
tems).

b. Pick up the correct number of par-
ents, using an appropriate selection
operator. To the opposite of a re-
placement operator  (cf. below),
picked up individuals are put back in
the parents pool and can be selected
more than once.

c. Call the variation operator, thereby
creating one or several children (gen-
erally a number of children equal to
the arity of the variation operator).

d. Call a mutation operator on created
children with a p probability (usually
100%). Please note that calling the
mutation operator with a 100% prob-
ability does not mean that all children
are mutated: mutation operators usu-
ally go through all the genes of the
individual, and mutate each gene with
a q probability. If the genotype of an
individual contains 10 genes, and

0 01q = . , then if this operator is called
on 100% of the children ( 1p = ), in
average, one children out of ten will
undergo a mutation. Authors are gen-
erally not clear on the p and q values
they use, making it difficult to repro-
duce their results.

e. Variation operators can be followed
by a validation operator that makes
sure that newly created children are
valid. Invalid individuals can be either
deleted (in which case another indi-
vidual needs to be created), “re-
paired,” or given a very low fitness
without even being evaluated by the
fitness function. This last method is
very interesting in constraints satis-
faction problems (such as timetables)
because it is very quick: in very con-
strained problems, one can spend a

Figure 2. Generic evolutionary algorithm
flowchart
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lot of time finding 100 individuals that
do not violate a single hard constraint.
It is also very fast because it does not
call the evaluation function to give a
fitness to the child. In problems with
fast fitness functions, it is often more
efficient to give a bad mark and let
artificial evolution deal with the prob-
lem.

2. Call the evaluation function on all children
who do not already have a fitness. Chil-
dren may already have a fitness if they are
unmutated clones or if they were given a
bad mark by the validation operator.

3. The algorithm now has to deal with two
populations: a population of already evalu-
ated parents and a population of evaluated
children. In algorithms with a constant
population size (the overwhelming major-
ity), the number of individuals now needs
to be reduced back to the original popula-
tion size to constitute the next generation.
There remains however a last step before
replacement: Holland’s original Genetic
Algorithm uses a generational replace-
ment, meaning that the population of chil-
dren brutally replaces the population of
parents to create the next generation. In
this process, it is possible to lose a very
good solution if, for instance, none of the
children did better than the best of their
parents. The solution that was found to
overcome this problem was elitism. Gen-
erational GAs with elitism simply take the
best parent and put it in the new genera-
tion. This method is called strong elitism
since it is not intelligent. A more subtle
form of elitism is weak elitism, which
moves into the next generation the best
individual from both the parent and chil-
dren populations. One must be aware that
elitism may lead to premature conver-
gence, as the best found individual will

always make it to the next generation. If
it is much better than the other individuals,
it will be often selected as a parent, and its
genes will spread into the population along
with the generations, preventing other
potentially good solutions to develop (cf.
paddle wheels vs. propellers). Elitism
should therefore be used sparingly, espe-
cially if premature convergence occurs. If
it is not used, it is well advised to keep
track of the best found individual, so as to
be sure that it does not get lost.
Finally, usually, elitism only concerns the
best individual. However, some paradigms
such as the Parisian approach may need
to use elitism on 40 or more percent of the
population (Collet, Lutton, Raynal, &
Schoenauer, 2000; Louchet, 2001).

4. The final step of the evolutionary loop is
the replacement operator. If elitism was
used, one or several individuals are al-
ready part of the new generation. The
replacement operator will pick up other
individuals among parents and children
until the new generation is complete (e.g.,
for constant size population algorithm)
until a number of individuals equal to the
original population size are selected.
The difference between the selection and
the replacement operators is that the lat-
ter cannot choose individuals more than
once. Any selection method can be used,
as for parents selection (cf. the follow-
ing).

What is very nice with evolutionary algo-
rithms is that they parallelize extremely well:
most of the time, evaluation is the big CPU
consumer, so once all children are created
(which usually takes very little time), one can
distribute the evaluation of the population over
a network of machines. If there are 10 ma-
chines and 100 children per generation, each
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machine can be given 10 children to evaluate.
Usually the speed-up ratio is nearly linear with
the number of machines because in most evo-
lutionary algorithms (but genetic programming),
evaluation time is identical for all individuals.

VARIATION OPERATORS

In The Origin of Species, Charles Darwin
suggested that individuals evolved thanks to the
fact that individuals inherited traits from their
parents with variations. Biological and physical
constraints do not apply in evolutionary compu-
tation, meaning that virtually any kind of varia-
tion operators can be imagined, from unary
operators (mutation), binary operators (cross-
over), to n-ary operators. Orgies are also pos-
sible, where all individuals of a population can
share their genes to create a new individual
(Mühlenbein & Paass, 1996).

The most traditional way to create children
is the one described above in the evolutionary
loop, even though a more generic way is to have
a number of variation operators, each associ-
ated with a probability to be applied to the
parent population until the right number of
children is generated (Keijzer, Merelo, Romero,
& Schonauer, 2002).

Crossover: A (Usually) Binary
Variation Operator

The way two (or n ) parents’ genotypes are
mixed in order to create one or two children is
highly dependent on the problem being solved.
Genetic algorithms usually use a bitstring rep-
resentation, while evolutionary strategies use a
vector of real values and genetic programming
uses a tree representation.

The guidelines for a good crossover opera-
tor are therefore quite difficult to establish,
although it is important to bear in mind that

crossover is considered as an exploitation op-
erator (that can use hints from a possibly deter-
ministic method in meta-heuristic “memetic”
algorithms (Hart, Krasnogor, & Smith, 2005)).

If the genotype contains real values, some
problems may benefit from a barycentric cross-
over where genes of the resulting child are the
mean of the parents’ genes.

A more standard way of creating children is
to use a single or multi-point combinatorial
crossover: two parents are selected, as well as
one or several crossover points (loci in biologi-
cal parlance). Two children are created by
swapping the parent’s genotype between each
point (cf. Figure 3).

If individuals are made of n  genes, an 1n −
points crossover is called a uniform crossover
(Syswerda, 1987). However, genes are then
usually swapped randomly (with a probability

0 5p = .  rather than 1).
One should avoid uniform crossover in prob-

lems that show a high degree of epistasis
because interrelated genes (called building
blocks) will be disrupted. On the other hand, it
has been shown that a single point crossover
could be problematic, as it may not allow cre-
ation of some combinations of features en-
coded on chromosomes. In cases where this
problem may occur, a two point crossover is
usually preferred (Spears and De Jong, 1990).

Mutation

Mutation also depends on the problem to be
solved. As an exploration operator, it should

Figure 3. Multi-point crossover between
parents p1 and p2, resulting in children c1
and c2
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ideally be ergodic in a strong sense, meaning
that the probability of reaching any point of the
search space from the current position through
a single mutation should be greater than 0.

If the construction of such a mutation opera-
tor is not feasible, it should be ergodic in a
weaker sense, meaning that it should be pos-
sible to reach any point of the search space in
a finite number of mutations.

On a bitstring genome, mutation is simple: it
merely consists in flipping a chosen bit. On a
real genome, mutations can be done in several
ways, the simplest being to add some Gaussian
noise to a selected real value.

The most evolved (and efficient) way of
mutating a real value is self-adaptive muta-
tion, described in evolutionary strategies
(Schwefel, 1995; Beyer, 1995; Bäck, 1995;
Bäck, Hammel, & Schwefel, 1997). The idea
(inspired from nature) is that to each real value
should be associated a variance value σ that is
subject to mutation and recombination, just as
are the other genes of the genome.

This self-adaptive mutation is comparable
to what happens with repair enzymes and mu-
tator genes that are coded onto the DNA, thus
providing partial control by the DNA of its own
mutation probability.

In the first generation, σ values are initial-
ized with random values between 0 and 0.5. If
a mutation occurs on a gene, one starts by
updating the σ value associated with this gene
along a log-normal distribution—that is, by mul-
tiplying it by 1exp( )

n
G —where n  is the number

of genes in the genome and G  is a Gaussian
normally distributed random value with vari-
ance 1 and mean 0. One then adds to the real
gene a Gaussian value multiplied by the updated
σ value associated to the gene.

Self-adaptive mutation uses a bit of CPU
time and resource, but allows one to achieve
comparable results in fewer evaluations (Collet
et al., 2002).

Selection and
Replacement Operators

It has often been said that the force driving
biological evolution was natural selection. In
evolutionary computation, selection algorithms
are also extremely important, as they can lead
to premature or very slow convergence, de-
pending on selection pressure.

Selection occurs at two stages, when choos-
ing parents for breeding and when choosing
survivors for the next generation. In this chap-
ter, selection chooses parents, and replace-
ment chooses survivors. The main difference
between selection and replacement is that the
first operator allows a same individual to be
chosen several times, while the latter removes
the chosen individual from the pool of candi-
dates.

In his original description of genetic algo-
rithms, Holland chose to use Roulette Wheel as
a selection scheme for a theoretical pupose
(Holland, 1975). Unfortunately, in practical prob-
lems, this is probably the worst choice to be
made. This operator selects individuals propor-
tionately to their fitness, which has several
important drawbacks:

1. Selection pressure totally depends on the
fitness landscape, which is usually un-
known. It is not translation invariant: in a
population of 10 individuals, if the best has
a fitness of 11 and the worst a fitness of 1,
the probability for the best individual to be
chosen is 16.6% and 1.5% for the worst.
If one adds 100 to all fitness values, the
best and worst individuals have nearly
identical probabilities to be chosen (10.4%
and 9.5%)!

2. Things can be partially improved thanks to
linear scaling of fitness values, or a
sigma truncation, but to the cost of in-
creased complexity (additional parameters
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to adjust). Roulette wheel is CPU-con-
suming, as the simulation of the spin of a
weighted roulette requires O(n) opera-
tions that need to be performed n times,
resulting in an O(n2) algorithm.

3. Roulette requires the sum of the fitness
values of all the individuals. This is prob-
lematic if the evolutionary computation is
distributed over several machines. (This is
the case for all other selection algorithms
but Tournament selection.)

4. The fitness function needs to yield posi-
tive values (which is not really problem-
atic, but due to the fact that Roulette is not
translation invariant, shifting the values so
that they are all positive has conse-
quences).

Other selection methods have been devised
in order to mainly circumvent problem number 1:

• Ranking: Selection is based on rank, not
fitness. One therefore needs to sort the
population, leading to an O(nlogn) com-
plexity. Problem 1 is solved, but the others
remain (Baker, 1985).

• Stochastic Universal Sampling: Indi-
viduals are assigned slots of a weighted
roulette wheel, as for the Roulette selec-
tion. n markers are then placed equally
around the wheel and the wheel is spun
once. The complexity of this algorithm is
also O(nlogn) and it requires the sum of
the fitness values of all the individuals
(Baker, 1987).

• Selection in Genitor: Genitor is an evo-
lutionary paradigm that is of the Steady
State kind, in which only one individual is
created per “generation.” The population
is initially ranked, after which each new
child is inserted at its place and the worst
individual of the population is discarded.
This requires O(log) steps that need to be

repeated n times in order to simulate the
creation of a whole population, so the
complexity of the algorithm is O(nlogn).
The Genitor selection and replacement
scheme may lead to premature conver-
gence, which is why large population sizes
are suggested (Whitley, 1989).

• Truncation Selection: This is the selec-
tion method used by breeders. Only the T
best individuals are considered, and all of
them have the same selection probability
(random selection among T individuals).
The population needs to be sorted first, so
complexity is O(nlogn). Bad individuals
(below threshold T) cannot be selected, so
loss of diversity can be important
(Mühlenbein & Schlierkamp-Voosen,
1993).

• Deterministic Selection: Only the n
best individuals are selected. This method
requires sorting the individuals. Loss of
diversity is important (as for Truncation
selection), and this selection method may
lead to premature convergence.

• Random: Quick, but no selection pres-
sure.

Next, there is n-ary tournament selection
(Brindle, 1981; Blickle & Thiele, 1995). Unless
there is a good reason for using any other
method, tournament selection is most certainly
the best of all. Binary tournament consists of
picking two individuals at random and compar-
ing their fitness. The individual with the highest
fitness wins the tournament and is selected.
Selection pressure can be increased by orga-
nizing a tournament between three or more
individuals. In contrast, if premature conver-
gence occurs with a binary tournament, it is
possible to decrease selection pressure by us-
ing a stochastic tournament that uses a vari-
able p. A stochastic tournament is a binary
tournament where the best of the two individu-
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als is chosen with a probability p. If  0.5, then
this is equivalent to a random selection. If p =
1, the stochastic tournament is not stochastic
anymore and becomes equivalent to a binary
tournament.

Therefore, in comparison with Roulette wheel
selection:

1. Selection pressure does not depend on the
fitness landscape and can be very finely
adjusted. This is a very important param-
eter to tune in a genetic algorithm: all other
parameters being equal, if the algorithm
does not converge rapidly enough (the
best fitness curve was still increasing when
a stopping criterion was met), one can
increase the selection pressure ad libitum
by increasing the number of participants in
the tournament (n-ary tournament). Al-
ternately, if premature convergence oc-
curs (plateau on the best fitness many
generations before the stopping criterion
is met), it is possible to decrease pressure
by reducing the number of participants. If
it is already as low as two, one can switch
to stochastic tournament which allows the
decrease of selection pressure further,
possibly down to a purely random selec-
tion.
Loss of diversity represents the propor-
tion of individuals of a population that are
not selected. Here are some computed
values for different tournament sizes: 25%
loss for size 2, 40% loss for size 3, 47% for
size 4, 53% for size 5, 60% size 7, 70%
size 10, and 80% for size 20.

2. Tournament complexity is simply O(n), as
one only needs n tournaments to create a
population of n individuals. This method is
therefore one of the fastest.

3. Tournament is the method of choice for
parallel evolutionary algorithms, as it does
not require any global knowledge of indi-

viduals’ fitness. Tournament selection can
be implemented locally on parallel ma-
chines, with pairwise or s -wise commu-
nication between different processors
being the only requirement (Mühlenbein,
1989; Harvey, 1993).

4. The fitness function needs not yield only
positive values, and no scaling or post-
processing of any kind is needed.

A good study on selection schemes can be
found in Blickle and Thiele (1997) and Goldberg
and Deb (1991).

STOPPING CRITERIA

Most users choose to stop evolution after n
generations and use this number as an evalua-
tion of CPU-consumption. This only makes
sense for generational replacement algorithms,
where the number of individuals created per
generation is equivalent to the population size.

Unfortunately, this is not the case for evolu-
tionary strategies (see the following paragraphs)
that use a (µ + λ) replacement scheme, where
the number of created children is not correlated
to the population size. A much better metric is
therefore the number of evaluations and not
the number of generations.

Runtime can also be a stopping criterion
(stop after one hour). When such fixed criteria
(duration or number of evaluations) are used,
parameters of the algorithm should be tweaked
so that the algorithm converges at the end of the
run, and not before or after. If the algorithm
converges before the stopping criterion is met
(plateau on the best fitness individual), one can
either reduce selection pressure or increase
population size and do the opposite if the algo-
rithm had not converged yet.

This triggers another idea: why not use
fitness convergence as stopping criterion? One
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way of doing this is to stop if a plateau is too
long: if Fk is the fitness of the best individual at
generation k and Fc is the current best fitness,
one can stop if 

1
( )p

c kF F p ε− / ≤∑ , with p the
length of the plateau in number of generations.

Generally, a population that has converged
is stuck in a local optimum and does not evolve
anymore (which is why it is very important not
to let it converge and implement diversity pre-
serving schemes to this effect). If a metrics is
available that can determine the distance be-
tween two individuals’ genotype, one can use
loss of diversity over the population as a stop-
ping criterion.

Finally, the ultimate stopping criterion is
fitness value. If the problem is to find an
individual with a fitness beyond 1,000, the algo-
rithm can stop once this value is met (possibly
on the first generation if one is very lucky!).

PARAMETERS

The full list of parameters for an evolutionary
algorithm is the following:

• Population Size/Number of Genera-
tions: These two parameters go together:
for a same number of evaluations, one can
use a small population and evolve it for a
large number of generations, or use a
large population and evolve it for a smaller
number of generations. Common sense
says that using a larger population will
preserve diversity and help fight against
premature convergence.

• Crossover and Mutation Probabili-
ties: Usage of unary or n-ary variation
operators depends on people and para-
digms (evolution strategies use nearly ex-
clusively mutations, and genetic program-
ming nearly exclusively crossovers, for
instance). In fact, this is very problem

dependent. Without prior experience and
a good reason for putting forward cross-
over or mutation, the most standard choice
is to create offspring thanks to a binary
crossover called with a probability of 80 to
90%, followed by a mutation function called
on each child, with a mutation rate that will
change a gene once in a while (one muta-
tion for every 10 children is a good starting
base). Too many mutations (exploration
operator) will lead to non-converging al-
gorithms. A high low/mutation rate is there-
fore usually associated with a strong/weak
selection pressure, respectively.

• Number of Children per Generation:
If the population size is n, many people
create n children, although there is no real
reason behind this choice, other than the
fact that this is how Holland’s genetic
algorithms were working. Evolutionary
strategies use a (µ + λ) or (µ, λ) replace-
ment scheme. In the first strategy, the
replacement operator picks n individuals
for the new generation from a pool of
individuals made of µ parents and λ chil-
dren, while the second strategy only picks
individuals of the new generation in the λ
children population (with λ ≥ ν). Finally,
steady-state algorithms create only one
child per generation! Choosing the num-
ber of children per generation generally
depends on how fast one wants the algo-
rithm to converge. Allowing parents to
compete with children is a powerful form
of elitism that can be countered by creat-
ing many children per generation.

CONCLUSION

The different evolutionary paradigms have not
been described because it was not possible to
do so within a single chapter. Instead, a generic
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algorithm was presented that can emulate any
of the different historical paradigms, should
anyone wish to do so.

These paradigms correspond to different
trends. It seems however that parameter choice
should be made in order to solve a particular
problem, rather than to follow a particular trend.
Evolutionary computation has now come of
age, with very impressive achievements, so it is
high time that this domain be unified in a prag-
matic way. Books such as DeJong (2005) are
certainly going in the right direction.
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KEY TERMS

Crossover: Function capable of recombin-
ing several potential solutions (parents) into
new solutions (children). Crossover is usually
seen as an exploitation operator, equivalent to a
local search.

Elitism: Elitist algorithms make sure that
the best individuals are not discarded, by trans-
ferring them directly into the next generation.

Epistasis: Amount of correlation between
different genes (or parameters).

Ergodicity: A function is ergodic if the
probability to jump from any point a of the
search space to any other point b is not null. A
mutation operator randomly flipping a single bit
of a bitstring is therefore not strictly ergodic.
However, it is ergodic in a loose sense, in that
it is possible to obtain any other individual in a
finite number of mutations.

Genotype: Set of parameters allowing rep-
resentation of a solution to a problem.

Individual: Potential solution to a problem.

Mutation: Function that can possibly alter
the genotype of an individual. Mutation is usu-
ally seen as an exploration operator, allowing
the escape from local optima. A good mutation
function should be ergodic.

N-ary Operator: Operator needing n oper-
ands.

Phenotype: Expression of the genotype.
The fitness of an individual is evaluated on its
phenotype, not on its genotype. In some prob-
lems there is no simple correlation between
phenotype and genotype. For instance, there is
not a single gene coding for blue eyes. Blue
eyes is a phenotype.

Replacement: Refers to the operator that
will create a new generation out of a pool of
children and/or parents. Only one instance of
an individual can make it to the new generation.

Representation: Structure of the genome
of an individual (array of bits, integers, doubles,
etc.).

Selection: An algorithm that picks up an
individual in a population with a bias (usually
towards good individuals). Selection usually
refers to choosing parents for mating. Selection
is different from replacement, as an individual
can be chosen several times for reproduction.

Unary Operator: Operator needing only
one operand.
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ABSTRACT

The aim of genetic programming is to evolve programs or functions (symbolic regression)
thanks to artificial evolution. This technique is now mature and can routinely yield results on
par with (or even better than) human intelligence. This chapter sums up the basics of genetic
programming and outlines the main subtleties one should be aware of in order to obtain good
results.

INTRODUCTION

Genetic programming (GP) is still rather un-
known, even though it has recently obtained
spectacular results: John Koza showed in his
latest book (Koza et al., 2003) that genetic
programming can routinely produce solutions
that are competitive with human intelligence,
without requiring one to be an expert in the
domain of the problem to be solved.

A Bit of History

The idea of evolving computer programs dates
back to the dawn of computing. Back in 1958,
Friedberg made several attempts to have a
computer program itself (Friedberg, 1958;
Friedberg, Dunham, & North, 1958) using what
would now be called mutations. He started with
a “population” of random programs, and modi-

fied the contents stochastically, trying to im-
prove the results.

Later on, Smith (1980), who was working on
learning classifier systems, introduced small
programs in the rules he was evolving. How-
ever, the modern vision of genetic program-
ming starts with a small but seminal paper by
Cramer (1985), who uses a tree-like variable
size structure to represent a program. Pro-
grams are not written in LISP (as suggested by
Koza later on) but in TB (a tree version of the
JB language). Along with mutation, Cramer
also uses a standard subtree crossover, intro-
duces as well a mono-parental crossover, and
insists on the necessity to create closed genetic
operators. Above all, he evolves his population
of programs with an evolutionary engine.

All the seeds were therefore present for the
domain to grow, but as for Manderick and
Moyson and Ant Colony Optimization (cf. Chap-
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ter III), Cramer somehow failed to promote his
work enough, and nothing major happened in
this domain for several years. In fact, another
major problem was that computers of this era
were not powerful enough to obtain really good
results with GP.

Genetic Programming à la Koza

By the beginning of the 1990s, genetic pro-
gramming made its comeback thanks to Koza
(1989, 1992, 1994; Koza et al., 1999, 2003) who
put in a lot of energy (and computer power) to
develop the ideas introduced by Cramer and his
predecessors.

Genetic programming is nothing else than
standard evolutionary techniques (described in
Chapter IV) applied to individuals that implement
programs. Standard evolutionary algorithms evolve
potential solutions to a problem to be optimized.
Most of the time, EA individuals are made of a list
of parameters that are passed over to a “fitness
function” used to evaluate the individual.

In genetic programming, an individual is a
program, or more often a function. The main
(and only?) difference with EAs is that GP
executes the individuals to evaluate them.
Another difference is that in most of the cases,
GP uses variable length individuals where stan-
dard EAs use fixed size individuals.

This chapter presents standard genetic pro-
gramming à la Koza, including hints, sugges-
tions, and pointers to state-of-the-art papers
that will hopefully allow newcomers to obtain
good results with this delicate technique.

STANDARD GENETIC
PROGRAMMING

Representation of an Individual

As is the case in EAs, using the good represen-
tation for a particular problem is quite essential,

because the chosen representation more or less
determines the search space in which the indi-
viduals will evolve: it will be very difficult to
obtain an iterative program with a representa-
tion that does not allow loops or recursive calls.
On the contrary, if everything is allowed, the
search space may be so large that finding
compiling programs that stop correctly or sim-
ply do not hang will be already very difficult.

The individual representation described be-
low corresponds to the most common one¾that
is, the representation that Koza used for the
development of what is now standard genetic
programming. In order to reduce the search
space and find an individual structure adapted to
the representation of a program, Koza naturally
chose a functional language for several reasons:

• Syntactically speaking, with a purely func-
tional representation, there is no need to
define a grammar recognizing valid pro-
grams, provided the set of functions is
closed.

• Functional languages limit side effects,
which, as a side effect, minimizes bug
occurrence.

• Above all, a functional program can very
easily be implemented as a tree: nodes are
operators that have as many children that
they need operands and that return to their
parent the result of their evaluation.

For instance, a function calculating a factorial:

Function fact(n) {
If n=0 return 1
Else return fact(n-1)

}

can be simply represented by the tree in
Figure 1.

Moreover, of all different possible repre-
sentations, a tree structure can naturally imple-
ment variable size individuals on which cross-
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over operators can be very easily applied: one
only needs to swap two subtrees (cf. section
below on genetic operators).

Of all available functional languages, LISP
is certainly the most usable. It was quite popu-
lar at the end of the 1980s, and some computers
were developed around its specificities. LISP
was therefore Koza’s choice to implement GP
individuals, and he used a Texas Instrument
LISP machine to speed up evaluation of the
evolved programs.

Whether one wants to evolve a true program
or simply a function approximating a curve,
standard genetic programming represents indi-
viduals with a tree structure. Other interesting
representations have emerged since then (linear
GP, Grammatical Evolution, Cartesian GP, Stack-
based GP, etc.), but each would need a complete
chapter for a correct description.

Terminals and Functions

In a tree representation, functions  (or
operators) are nodes and terminals are leaves.

Terminals Set

Terminals are constants or variables. Indepen-
dent variables (x, for instance) are typically
inputs of the program to be optimized. Their
values are passed over as parameters to the
individual for evaluation. In robotics, inputs can
come from sensors.

Constants are called ERCs (for ephemeral
random floating-point constants). The standard

way of using them is to create them when needed,
by choosing randomly a value inside [–1.0, 1.0]. In
standard GP, the values of ERCs are never
modified.

Functions Set

In order to minimize the search space, one must
choose a minimal set of functions or operators,
allowing genetic programming to find a solution
to the problem to be solved (approximating 1 x/
with only {+, –, *} may prove difficult, for
example).

Wang and Soule (2004) showed that some
functions could be equivalent for a given prob-
lem. If, for instance, similar results are obtained
with the set of functions {+, –, *, /, sin} and {+,
–, *, /, cos}, one can conclude that sine and
cosine functions are equivalent. Then, further
experiments suggest that using a functions set
containing several equivalent functions (such
as {+, –, *, /, sin, cos}) yields worse results than
either of the two previous sets, probably be-
cause the added function does not bring an
advantage that compensates the widened search
space.

If functions of different arity are allowed,
genetic operators such as crossover and muta-
tion must take that into account in order to
always provide syntactically correct functions
(closure).

Automatically Defined Functions (ADFs)

Restricting individuals to a simple tree would be
quite limiting, as there would be no way to
implement new functions: if the problem to be
solved necessitated four calls to the same
subfunction, genetic programming would have
to evolve four identical functions!

Koza (1994) has therefore introduced what
he calls ADFs (automatically defined func-
tions) that make it possible to evolve one or
more independent functions that can be called

Figure 1. Representation of a function using
a tree structure
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by the main program. If the problem to be
solved suggests that it could use two different
subroutines, individuals should implement two
additional trees (called ADF0 and ADF1, for
example). Figure 2 shows an individual with a
single ADF.

If the original functions set was {+, –, *, /,
sin}, one will simply add to it ADF0 and ADF1
so that the main program can call these new
functions. The functions set of the ADFs is
either the same or a different one, depending on
what one thinks the ADF might need, but in any
case would not include ADF0 or ADF1, to pre-
vent recursivity that genetic programming would
not handle well.

The set of terminals of an ADF function
must also contain the arguments needed by the
function (P1 and P2 for instance). If ADF0 (P1,
P2) = P2(2 + P1), the individual of Figure 2 will
code:

2

ADF0(1 cos )
ADF0(2 )

x
x

,
, , that is:

2

cos x(2 1)
( (2 2))x

+
+ .

Fitness Function

The difference between evolutionary algorithms
and genetic programming is that genetic pro-
gramming executes individuals to evaluate them.
The fitness of an individual is therefore deter-
mined as the result of its execution. Here are
some examples:

• If GP is used to evolve artificial ants
seeking food (classical Santa-Fe trail
benchmark (Koza, 1994)), the fitness will
be represented by the number of food
spots found by an ant (being maximized).

• If one seeks an Iterated Functions System
approximating a given target (Collet,
Lutton, Raynal, & Schoenauer, 2000), one
can count the number of pixels generated
by the evolved IFS that are within the
target, minus those that are without.

• If one uses GP for symbolic regression
(cf. Figure 4), the usual evaluation func-
tion will typically be either a root mean
square error (MSE) or a relative MSE
(RMSE):

2

1

1MSE ( ( ) )
n

i i
i

f x s
n =

= −∑      (1)

2

1

( )1RMSE ( )
n

i i

i i

f x s
n s=

−= ∑      (2)

where f is the function to be evaluated on
a learning set made of an array of n
couples (xi, si) where si is the known
solution for xi.

Evaluation of Evolved Individuals

It is important to know that a phenomenon
called overfitting often occurs when evolving

Figure 2. A single individual containing
both a main function tree and an
Automatically Defined Function ADF0. P1
and P2 are the parameters (operands) of the
ADF function.
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a program with GP. Overfitting is character-
ized by the fact that beyond a certain point,
individuals only get better by overspecializing
on the learning set.

In order to at the same time correctly evalu-
ate evolved individuals and prevent the occur-
rence of overfitting, one should decompose the
set of available values (called training set) into
three subsets: “... a learning set, a detection set,
and an evaluation set” (Gagné et al., 2006):

1. The learning set is used to guide the
evolution of individuals. Fitness of indi-
viduals is determined with reference to
the learning set only.

2. The detection set is only used to detect
overfitting. Every n generations, the best
individual found thanks to the learning
set is tested on the detection set. In the
first stages of evolution, the fitness of the
same individual on the learning set and
the detection set will follow the same
curve until a certain point (cf. Figure 3a,
Epoch A) where the performance of the
best individual will decrease over the de-
tection set while the same individual will

keep doing better on the learning set (cf.
Figure 3a, Epoch B). Overfitting is a stop-
ping criterion.

3. Finally, the real performance of the best
individual must be evaluated over an evalu-
ation set, different from the two other
subsets of the same training set.

Overfitting is probably caused by the very
high driving force of artificial evolution. At the
beginning of the run, creating individuals that
will perfectly match the different points of the
learning set is very difficult, since the first
individuals are usually created randomly. It is
difficult for very large unfit individuals to im-
prove quickly because they contain a lot of
genetic material. On the contrary, smaller indi-
viduals can evolve faster, meaning that the best
individuals found in the first generations are
usually smaller. Their fitness is not very good,
but they generalize well. As evolution goes on,
some individuals manage to improve, and it
becomes harder and harder for small generic
individuals to obtain a good evaluation. If the
evolutionary process is not stopped, individuals
will grow specific pieces of code in order to

Figure 3. Consequences of overfitting: At Epoch B (left figure), the same best individual will
have a very good fitness on the training set and a bad fitness on the detection set. This
individual, pictured with a continuous line on the right-hand side, matches points of the
training set nearly perfectly, at the expense of generalization. In contrast, on the training set,
the fitness of the best individual of Epoch A is lower than the fitness of the best individual of
Epoch B; however, the best individual of Epoch A reveals a better generalization ability (right
figure).
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exactly match the points of the learning set.
Unfortunately, in order to do so, they will also
become less generic (cf. Figure 3b). The fit-
ness of the same individual over the learning
set and over the detection set will become
different, even though the learning set and
detection set were subsets of the same original
training set.

This overfitting problem appears not only on
symbolic regression problems. The idea is to
stop evolution when the fitness of the best
individual over the detection set starts to de-
crease. One cannot use the fitness found on the
detection set to give a good evaluation of the
best found individual because the detection set
has played a role in finding this best individual:
the detection set is part of the evolution as it has
been used as a stopping criterion.

Since the detection set is not independent of
the evolution of individuals, one must use a third
set (the evaluation set) to evaluate the evolved
individual in a totally independent way.

Initialization Operator

Initialization is probably more important in ge-
netic programming than in other evolutionary
algorithms, due to the potential problem of bloat
(which may be linked to overfitting).

In 1992, Koza introduced the full, grow,
and ramped half and half algorithms to initial-
ize tree functions (cf. Koza, 1992, p. 92).

Many other initialization methods have ap-
peared ever since, such as uniform (Bohm &
Geyer-Schultz, 1996), random-branch
(Chellapilla, 1997), ramped uniform (Langdon,
2000), rand-tree (Iba, 1996), PCT1 and PCT2
(Luke, 2000b) and so on, taking at least one
parameter: the maximum allowed depth. The
aim of all these methods is to create the best
possible random trees able to avoid premature
convergence and apparition of bloat. However,
a comparison between ramped half and half,

PCT1, PCT2, random branch, and uniform
by Luke and Panait (2001) did not show a real
winner.

Even though it has been shown that Koza’s
algorithms were not flawless (Burke, Gustafson,
& Kendall, 2002; Langdon, 2000), they are still
the most widely used:

• Full: Takes as a parameter the maximum
depth T of the tree to be created. Until this
depth is reached, full chooses nodes among
the functions set. When the tree is of
depth T, nodes are chosen among termi-
nals only.

• Grow: Takes as a parameter the maxi-
mum depth T of the tree to be created.
Until this depth is reached, grow chooses
nodes among functions and terminals.
When the tree is of depth T, grow chooses
its nodes among terminals only.

• Ramped Half and Half: Takes as a
parameter the maximum depth T of the
tree to be created. This method is pro-
posed by Koza to create the most diverse
trees. He suggests the creation of an
equal number of trees of depth 2 to T
(ramped) while alternating between full
and grow (half and half).

Functions and terminals are picked up at
random in their respective sets. The initializa-
tion method should respect the arity of opera-
tors in order to guarantee that created individu-
als are feasible (closing condition).

Parents Selection

All selectors used in evolutionary algorithms
can be used in genetic programming (tourna-
ment, stochastic universal sampling, ranking,
etc.). As in other evolutionary algorithms, one
chooses the method best adapted to the fitness
landscape and to the desired selection pres-
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sure. If such information is not available, a
binary tournament will probably be the best
choice (cf. Chapter IV). If premature conver-
gence occurs (flat fitness well before the stop-
ping criterion is met), a good idea is to use a
lower selection pressure with a stochastic tour-
nament (cf. section on selection operators in
Chapter IV). On the contrary, if the derivative
of the fitness curve is still positive when the
stopping criterion is met, this means that selec-
tion could have been harsher. An easy way to
do this is to use a tournament between three or
more individuals.

Finally, it is possible to select a same parent
several times. This is the main difference be-
tween the selection operator and the replace-
ment operator (cf. the following).

Genetic Operators

Here again, genetic operators are the same as
those used in standard evolutionary algorithms—
that is, mainly crossover and mutation. They
are however adapted to the tree structure of
individuals.

In his first book on GP, Koza (1992) sug-
gests the use of mainly crossover rather than
mutation, based on experiments on the Boolean
multiplexer. Mutation is therefore usually set
aside in GP, even though it has been shown that
mutation may not be that inefficient compared
to crossover (Luke & Spector, 1998).

• Binary Genetic Operator (Crossover):
This is the operator of choice in GP, which
attempts to combine already evolved
subtrees (read building blocks) coming
from selected parents. In Koza’s work, if
individuals use ADFs, crossovers do not
occur between main programs and ADFs,
but only between main programs or be-
tween equivalent ADFs.

Many different crossovers are described in
the literature. Here are some of them:

• Standard Crossover: The operator de-
scribed by Koza is the simplest. It consists
of exchanging two subtrees randomly se-
lected in the two parents. However, since
in binary trees there are roughly as many
leaves as there are nodes, a purely ran-
dom choice would select a leaf in 50% of
the cases. Koza therefore suggests the
application of a bias of 90% towards nodes
rather than leaves so that exchanged nodes
are subtrees more often than leaves.

• Height-Fair Crossover: O’Reilly and
Oppacher (1994) remark that crossovers
have a greater probability to occur lower
in the trees than higher. They therefore
propose to first select uniformly a depth,
and then, in the selected depth, choose a
node to exchange with the other parent.

• GP-Std/Same: Based on the previous
idea, Harries and Smith (1997) wonder
whether it would be wise to choose an
identical crossover depth for the two par-
ents, hoping to exchange subtrees with a
similar role. However, their tests show
that GP-Same (same depth for the two
parents) does not work as well as a stan-
dard crossover! However results are bet-
ter than standard crossover if GP-Same is
applied in 50% of the cases (hence the
name GP-Std/Same).

• Homologous Crossover: Another idea
is to find subtrees with similar structure
and position in the two parents. In the first
parent, a subtree is chosen (with 90% bias
towards a node). In the second parent,
one first explores the tree to find subtrees
of similar structure. Among the matching
subtrees, the one whose position corre-
sponds best to the subtree of the first
parent is selected.
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Unfortunately, this homologous crossover
does not seem to produce better results than a
standard crossover, which seems to confirm
that two subtrees with similar structure and
position in two different individuals may not
address the same problem.

However, homologous crossover fights bloat
efficiently (cf. Bloat section that follows), which
is a very good reason to use it, since the results
are no worse than a standard crossover
(Langdon, 2000).

All crossover methods must make sure that
resulting individuals are feasible.

• Unary Genetic Operator (Mutation):
Due to Koza’s guiderules, mutation is
generally set aside in genetic program-
ming. When it is used, it is usually applied
with a probability between 0 and 1%,
however many different types of muta-
tions have been studied. Mutation is ap-
plied either on children that have just been
created through crossover or directly on
selected parents. Standard operators are
the following:
• Standard Mutation: The idea is to

select a node with a 90% probability
(rather than a leaf, see above), delete
its subtree, and grow it again ran-
domly.

• Small Mutation: The standard mu-
tation is quite rough. The small mu-
tation tries to operate a minimal mu-
tation: if an operator is mutated, small
mutation replaces it by another of
the same arity. If a terminal was
selected, it is replaced by another
terminal. If the terminal is a numeri-
cal value, some Gaussian noise is
added to it to change its value. The
amount of perturbation can become
smaller along the generations, thanks
for instance to the auto-adaptive

mutation used in evolution strategies
(Schwefel, 1995).

• Mono-Parental “Crossover”: A
mono-parental crossover is possible
in genetic programming! This type of
crossover (Kinnear, 1994), which is
also called “inversion,” consists of
exchanging two subtrees of the same
individual. This “crossover” is in fact
a mutation because it uses only one
individual.

All mutation methods must make sure that
resulting individuals are feasible.

The last two mutations are considered as
slightly too smooth and would not allow escape
from a local maximum. Harries and Smith
(1997) study the efficiency of these different
mutations in a GP algorithm using mutation
only. The small mutation and the mono-pa-
rental crossover are the worst methods, al-
though they bring a visible improvement if they
are used along with standard mutation.

A total of 58,000 tests of 14 different strate-
gies on four different problems (Luke & Spector,
1998) shows that using mutation only in GP gives
very good results, compared to a standard GP
algorithm using mostly crossover. Therefore,
Koza’s bias towards crossover does not seem to
be justified, and using mutation with a probability
similar to that used in EAs seems fine.

Notion of Intron

In 1977, biologists discovered that 90% of the
genetic code contained in ADN is not ex-
pressed. Genes are in fact made of coding
regions (exons) separated by numerous and
very long non-coding regions (introns) that are
suppressed by enzymes, before messenger-
ARN does its job. The role of introns is not well
known. The sequence of nucleotides that com-
pose introns is not random. The structure of the
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introns suggests that they contain information
of which the origin and function is yet unknown.

When programs are evolved using a genetic
algorithm, one quickly wonders what should be
done with superfluous code if during mutations,
one allows a unary operator to replace a binary
operator.

Eliminating the subtree is not satisfactory,
because if the mutation occurs after many
generations, the code contained in the subtree
is no longer random: the subtree is the result of
an evolution process that represents a signifi-
cant CPU-cost that would be a pity to lose.
Generally, this code is left where it is, and the
unary operator will only use one of the two
subtree operands of the initial binary operator.
Would this mechanism be similar to what cre-
ates introns in biologic ADN (Nordin, Banzhaf,
& Francone, 1997)? A subtree that is an intron
is not totally lost, if a subsequent mutation of the
unary operator turns it into a binary operator
again. Another possibility is that this unex-
pressed code may be used later on by a cross-
over operator.

Interval Arithmetics

Since individuals must be executed to be evalu-
ated, one must be cautious about operators or
functions that may not be defined for tested
values. Division, for instance, cannot have zero
for denominator. For a long time, the adopted
solution was to protect the operator by testing
the denominator before executing the division.
If the denominator was null, either 1 or a very
large value was returned.

The problem with these “intelligent” opera-
tors is that they do not remove the vertical
asymptote (in the case of the division). It is
therefore possible to obtain a function that
approximates very well a learning set that may
contain such an asymptote (cf. Figure 4), with
the consequence that when the evolved func-

tion is used in real conditions (outside of the
learning set), it may return extravagant and
unrealistic values.

The best solution is to make sure, when a
child is generated, that all its operators will be
used on an interval they can naturally handle
(Keijzer, 2003): this is done by calculating the
bounds of a function given the bounds of the
operands, while excluding singular values.

New parameters are added: each node n is
accompanied with its lower and upper bounds
nl and nu. With this information, the bounds of
the operator are evaluated using basic math-
ematical knowledge for all the different opera-
tors of the functions set:

• If node n is an addition between its opera-
tors a and b: the lower bound for node n is
nl = al + bl and the upper bound is nu = au
+ bu.

• If node n  represents al × bl : nl = min(al
× bl , al × bu , au × bl , au × bu) and nu =
min(al × bl , ul × bu , au × bl , au × bu).

• …

Figure 4. Protecting operators by making
them “intelligent” can be very dangerous! A
protected division will make it possible for
GP to evolve the function on the left which
can lead to big trouble if it is used for real.
A much better solution is to only allow division
if the interval of the denominator does not
contain zero, even if the result is not as
accurate (figure on the right).

 

Target function
Evolved function
Learning set

Target function
Evolved function
Learning set

without interval arithmetics with interval arithmetics
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It is possible to update these boundaries
from bottom to top every time a modification is
made, and make sure that all operators are valid
on the calculated intervals of their operands.
With interval arithmetics, one can make sure
that the second operand of/never contains zero,
for instance.

If such a case appears, Keijzer suggests
that the individual be either assigned the worst
possible fitness value or be deleted. Another
option is to mutate the operator of the offending
operand into another one that can accept the
operand’s interval.

Replacement Algorithm

Once children (created thanks to crossover or
mutation) are evaluated, the total population is
now made of parents and children. One must,
therefore, reduce the number of individuals to
come back to the original population size for the
next generation.

In traditional genetic programming, replace-
ment is either:

• generational (meaning that children re-
place parents), implying that for each gen-
eration, one creates as many children as
there are parents in the initial population;
or

• steady-state-like (i.e., only one child is
created per generation that replaces the
worst parent; cf. Chapter IV).

Studies have compared both methods
(Syswerda, 1991), but there is no reason to limit
oneself to these two replacement operators.

The (µ + λ) or (µ, λ) operators of the
evolution strategies and their improvements
(Beyer & Schwefel, 2002) can be used as well.
As usual in all evolutionary algorithms, the
problem to be solved dictates which method is
the best.

The difference between the replacement
operator and the parents selection operator is
that for replacement, individuals cannot be se-
lected more than once.

EXECUTION

Population Size vs.
Number of Generations

The same question always arises in artificial
evolution: for an identical number of evalua-
tions, is it better to have many individuals and
few generations, or few individuals and many
generations?

The intuitive answer to this question is the
same as for evolutionary algorithms. Using
many individuals will postpone convergence.
Since GP is supposed to be easily subject to
premature convergence, a large population is
generally used (Koza uses between 500 and
1,000 individuals) in order to widely explore the
search space, with a number of generations
usually lower than 100 (for a generational re-
placement, of course).

However, many studies show that there is
no real reason behind these choices: in their
paper comparing crossover and mutation, Luke
and Spector (1998) also examine results when
changing the population size between 4 and
2,048, and the number of generations between
512 and 1. No clear conclusion can be drawn:
the winning combination is different depending
on the problem.

Bloat

A mysterious bloat problem has already been
evoked a couple of times in this chapter. As the
number of generations increases, the general
fitness improves, often due to individuals get-
ting more complex.
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Fitness usually follows a logarithmic curve,
and there comes a time where a strong effort is
required in order to obtain a very small im-
provement. A phenomenon can then occur that
is called bloat: the size of all the individuals in
the population increases beyond reason. The
individuals being coded as a tree, the amount of
memory they occupy and the time needed to
execute them suddenly increases drastically,
consuming all the resources of the computer
within a small number of generations, without
any visible improvement of their fitness.

Much work has been done to understand the
source of the problem (Langdon & Poli, 1997;
Luke, 2000a; Smith, 2000; Banzhaf & Langdon,
2002), as well as all the papers by Soule (1998,
2002; Soule & Foster, 1998; Soule, Foster, &
Dickinson, 1996) on code growth analysis, and
also Streeter (2003). Even though the problem
was revealed by genetic programming, it looks
like bloat can appear in any evolutionary algo-
rithm using variable sized individuals (McPhee
& Miller, 1995; Soule, 1998).

A current explanation is that larger individu-
als are protected against the destructive ef-
fects of genetic operators, making them more
robust in the sense that their children have a
larger chance than average to obtain a fitness
similar to that of their parents (Blickle & Thiele,
1994; McPhee & Miller, 1995; Nordin &
Banzhaf, 1995): as the exons/introns ratio de-
creases, code changes due to genetic operators
will have more chances of affecting introns
(without any effects on the phenotype) than
exons. (Is it for this same reason that 90% of
the human genome is made of introns?)

Soule therefore suggests that bloat (and
robustness) is a byproduct of the execution of
genetic operators (Soule, 2003). As a conse-
quence, he suggests application of all genetic
operators (including crossover) with a probabil-

ity depending linearly on the number of nodes
(usually the case with the mutation operator).
In this case, larger individuals (with a low
exons/introns ratio) would not be favored, as
they would undergo more modifications of their
code (Soule & Heckendorn, 2002; Stevens, et
al., 2005). Rather than penalizing larger indi-
viduals directly by giving them an arbitrarily low
fitness value (like in Poli’s Tarpeian GP (Poli,
2003)), performing more genetic modifications
is also some kind of penalization, but much more
constructive as it can lead to the emergence of
better individuals.

Overfitting and Bloat

Overfitting has already been evoked in the
section on fitness function above. Most papers
on bloat suggest that it may be a consequence
of overfitting, as observation reveals that smaller
individuals are usually more generic than larger
ones. The idea would therefore be that at the
beginning of evolution, it is easier for simple and
small individuals to improve (because they do
not contain a lot of code to optimize), but only up
to a certain point.

As evolution goes on, unless one is very
lucky, modifying simple individuals is no longer
sufficient to obtain better results, because they
only contain enough material to grossly ap-
proximate the learning set. If evolution contin-
ues with a high selection pressure, the only way
to survive is to grow larger and larger, so that
destructive genetic operators cannot corrupt
exon code.

It is noticeable that controlling bloat also
often prevents genetic programming from find-
ing good individuals (Mahler, Robilliard, &
Fonlupt, 2005), so there is no simple solution.
The study of the relationship between bloat and
overfitting thus remains a hot topic.
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CONCLUSION

Koza uses an A/I ratio to evaluate the quality of
Artificial Intelligence techniques. This ratio
represents the amount of intelligence brought in
by an Artificial device, with reference to the
amount of human Intelligence that was needed
to program it.

When Deep(er) Blue was able to beat
Kasparov at Chess back in 1997, with a 3.5-2.5
score:

• The machine was capable of analyzing
200 million positions per second thanks to
a 30-node RS/6000-based super-computer
using 480 VLSI hardware chips designed
for this purpose only.

• It used a huge database of 700,000 human
grandmaster games.

• It was programmed with the help of four
human grandmasters.

• The code was modified between each
game by human experts and grandmas-
ters so as to take into account Kasparov’s
current playstyle.

The A/I rate for Deep Blue is therefore
quite low, because the computer only brought in
brute force to a program that used a huge
amount of human intelligence in its design (Hsu,
2002).

Conversely, genetic programming constantly
proves to be a very high A/I technique, with
human-competitive results obtained by com-
puter programmers in domains where they are
far from being experts, as is repeatedly shown
in Koza’s last book (Koza et al., 2003; Al-
Sakran, Koza, & Jones, 2005), where he insists
on how he routinely obtains excellent results on
different problems from the same setup.

Thus, genetic programming is a very prom-
ising field that one should not overlook when
faced with really complex problems to solve.
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KEY TERMS

A/I Ratio: The artificial to intelligence
ratio is defined by John Koza as the ratio of that
which is delivered by the automated operation
of the artificial method to the amount of intelli-
gence that is supplied by the human applying the
method to a particular problem.

Bloat: In some cases, the size of individuals
will suddenly grow beyond reason, consuming
all the resources of the host computer within a
handful of generations. It is believed that bloat
is related to overfitting.

Exon: Coding region of the ADN. Exons
represent less than 10% of the human genome.

Intron: Non-coding region of the ADN.
Introns represent more than 90% of the human
genome.

Overfitting: Genetic programming evolves
individuals over a training set, hopefully repre-
sentative of the function to be approximated.
However, the evolution driving force is usually
so strong that individuals will develop specific
code to match the training set as well as pos-
sible. An “overfit” solution will have a very
good fitness on the training set, but will perform
poorly on real data.
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ABSTRACT

This chapter provides a brief introduction of the use of evolutionary algorithms in the solution
of multi-objective optimization problems (an area now called “evolutionary multi-objective
optimization”). Besides providing some basic concepts and a brief description of the
approaches that are more commonly used nowadays, the chapter also provides some of the
current and future research trends in the area. In the final part of the chapter, we provide a
short description of the sort of applications that multi-objective evolutionary algorithms have
found in finance, identifying some possible paths for future research.

INTRODUCTION

Many real-world problems have two or more
objective functions that we aim to minimize.
Such problems are called multi-objective opti-
mization problems and require an alternative
definition of “optimality.” The most common
notion of optimality normally adopted is the so-
called Pareto optimality, which indicates that
the best possible solutions are those represent-
ing the best trade-offs among the objective
functions. In other words, the desirable solu-
tions are those in which one objective cannot be
improved without worsening another objective.

Evolutionary algorithms (EAs) are tech-
niques based on the emulation of the mecha-
nism of natural selection, which have been
successfully used to solve problems during
several years (Fogel, 1999; Goldberg, 1989).
One of the problem domains in which EAs have
been found to be particularly useful is in multi-
objective optimization (Coello Coello, Van
Veldhuizen, & Lamont, 2002). EAs are particu-
larly suitable for solving multi-objective optimi-
zation problems because they deal simulta-
neously with a set of possible solutions (the so-
called population) which allows us to find sev-
eral members of the Pareto optimal set (i.e., the
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best possible trade-offs found) in a single run of
the algorithm, instead of having to perform a
series of separate runs as in the case of the
traditional mathematical programming tech-
niques. Additionally, EAs do not require the
derivatives of the objective functions and are
less susceptible to any features of the problem
(e.g., discontinuities either in decision variable
space or in objective function space).

The first documented attempt to solve a
multi-objective optimization problem using an
evolutionary algorithm dates back to the mid-
1980s (Schaffer, 1984, 1985). Since then, a
considerable amount of research has been done
in this area, now known as evolutionary multi-
objective optimization (EMO, for short). The
growing importance of this field is reflected by
a significant increment (mainly during the last
ten years) of technical papers in international
conferences and peer-reviewed journals, spe-
cial sessions in international conferences, and
interest groups on the Internet.1

BASIC CONCEPTS

Definition 1 (Global Minimum): Given a
function nf R R: W ˝ fi , W „ ˘ , for x ˛Wr  the
value ( )f f x* * > -¥r  is called a global minimum if
and only if

( ) ( )x f f xx*" ˛W : £ .r r

r      (1)

Then, x*r  is the global minimum solution,
f is the objective function, and the set W is
the feasible region ( SW ˛ ), where S repre-
sents the whole search space.

Definition 2 (General Multi-Objective Op-
timization Problem (MOP)): Find the vector

1 2

T

nx x … xx * * *Ø ø*
Œ œº ß

= , , ,r  which will satisfy the m in-
equality constraints:

( ) 0 1 2ig x i … m£ = , , ,
r      (2)

the p equality constraints

( ) 0 1 2ih x i … p= = , , ,
r      (3)

and will optimize the vector function

[ ]1 2( ) ( ) ( ) ( ) T
kf x f x f x … f x= , , ,

r

r r r r      (4)

where 1 2
T

nx x x … xØ ø
Œ œº ß= , , ,r  is the vector of deci-

sion variables.

Definition 3 (Pareto Optimality): A point
x* ˛Wr  is Pareto optimal if for every x ˛W

r

and I = {1, 2,..., k} either,

( ( ) ( ))i I i if f xx*
˛" £

r

r      (5)

and, there is at least one i I˛  such that

( ) ( )i if f xx* <
r

r      (6)

In words, this definition says that x*r  is
Pareto optimal if there exists no feasible vector
xr  which would decrease some criterion with-
out causing a simultaneous increase in at least
one other criterion. The phrase “Pareto opti-
mal” is considered to mean with respect to the
entire decision variable space unless otherwise
specified.

Definition 4 (Pareto Dominance): A vector

1( )ku u … u= , ,
r  is said to dominate 1( )kv v … v= , ,

r

(denoted by u vr r° ) if and only if u is partially
less than v, that is,

{1 } {1 }i i i ii … k u v i … k u v" ˛ , , , £ Ù $ ˛ , , : < .

Definition 5 (Pareto Optimal Set): For  a
given MOP ( )f x

r

, the Pareto optimal set (P*) is
defined as:
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{ | ( ) ( )}P x x f x f x* ¢ ¢:= ˛W Ø$ ˛ W .
r r

°       (7)

Pareto optimal solutions are also termed
non-inferior , admiss ible, or efficient
solutions (Horn, 1997); their corresponding vec-
tors are termed non-dominated.

Definition 6 (Pareto Front): For a given
MOP ( )f x

r  and Pareto optimal set P*, the
Pareto front (PF*) is defined as:

1{ ( ( ) ( )) | }ku f f x … f x x PPF ** := = = , , ˛ .
r

r     (8)

In the general case, it is impossible to find an
analytical expression of the line or surface that
contains these points. The normal procedure to
generate the Pareto front is to compute the
feasible points W and their corresponding f(W).
When there is a sufficient number of these, it is
then possible to determine the non-dominated
points and to produce the Pareto front.

ORIGINS OF EVOLUTIONARY
MULTI-OBJECTIVE OPTIMIZATION

Traditional evolutionary algorithms cannot prop-
erly deal with multi-objective optimization prob-
lems because of two main reasons:

1. Due to stochastic noise, evolutionary al-
gorithms tend to converge to a single
solution if run for a sufficiently large num-
ber of iterations. Thus, it is necessary to
block the selection mechanism so that
different solutions (which are all non-
dominated) are preserved in the popula-
tion of an evolutionary algorithm.

2. It is desirable that all non-dominated solu-
tions are sampled at the same rate during
the selection stage (i.e., that they all are
considered with the same survival prob-

ability), since all non-dominated solutions
are equally good among themselves.

Thus, it is necessary to introduce certain
modifications into an evolutionary algorithm in
order to make it suitable to solve multi-objective
optimization problems.

Over the years, there have been many dif-
ferent proposals to extend evolutionary algo-
rithms to solve multi-objective optimization prob-
lems. Historically, it is possible to consider
three periods:

1. Origins
2. First generation
3. Second generation

In this section, we will focus in the first
period, and in the two further sections, we will
discuss the others.

The first actual implementation of what it is
now called a multi-objective evolutionary algo-
rithm (or MOEA, for short) was Schaffer’s
vector evaluation genetic algorithm (VEGA),
which was introduced in the mid-1980s, mainly
aimed for solving problems in machine learning
(Schaffer, 1984, 1985; Schaffer & Grefenstette,
1985). So, this work is considered as the origin
of research in this area.

VEGA basically consisted of a simple ge-
netic algorithm (GA) with a modified selection
mechanism. At each generation, a number of
sub-populations are generated by performing
proportional selection according to each objec-
tive function in turn. Thus, for a problem with k
objectives, k sub-populations of size N/k each
are generated (assuming a total population size
of N). These sub-populations are then shuffled
together to obtain a new population of size N, on
which the GA applies the crossover and muta-
tion operators in the usual way. Schaffer real-
ized that the solutions generated by his ap-
proach were non-dominated in a local sense,
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because their non-dominance was limited to the
current population, which was obviously not
appropriate. Also, he noted something that was
called “middling” performance.2 An individual
that had this problem in all the objectives was
perhaps a good compromise solution, but could
not survive under the selection scheme of
VEGA, because it was not the best in any
particular objective. Thus, this problem op-
poses the goal of finding Pareto optimal solu-
tions. Although the middling problem can be
dealt with using heuristics or other additional
mechanisms, it remained as the main drawback
of VEGA.

From the second half of the 1980s up to the
first half of the 1990s, few other researchers
developed MOEAs. Additionally, most of these
approaches were very naive and relied on
aggregating functions (linear in most cases)
(Syswerda & Palmucci, 1991), lexicographic
ordering (Fourman, 1985), and target-vector
approaches (Wienke, Lucasius, & Kateman,
1992). All of these approaches were strongly
influenced by the work done in the operations
research community and in most cases did not
require any major modifications to the evolu-
tionary algorithm adopted (except for the defi-
nition of the fitness function).

Although most of these early MOEAs are
rarely referenced in the current literature, this
historical period is of great importance because
it provided the first insights into the possibility of
using evolutionary algorithms for multi-objec-
tive optimization. Over the years, researchers
would design more sophisticated MOEAs, giv-
ing rise to the two generations that are dis-
cussed in the two further sections.

THE FIRST GENERATION

The major step towards the first actual genera-
tion of MOEAs was given by David E. Goldberg

on pages 199 to 201 of his famous book on
genetic algorithms published in 1989 (Goldberg,
1989). In his book, Goldberg analyzes VEGA
and proposes a selection scheme based on the
concept of Pareto optimality. Goldberg not only
suggested what would become the standard
first-generation MOEA, but also indicated that
stochastic noise would make such algorithm
useless unless some special mechanism was
adopted to block convergence. First-generation
MOEAs typically adopt niching or fitness shar-
ing (Deb & Goldberg, 1989) for that sake.
Three are the most representative algorithms
from the first generation:

1. Non-Dominated Sorting Genetic Al-
gorithm (NSGA): This algorithm was
proposed by Srinivas and Deb (1994). The
NSGA is based on several layers of clas-
sifications of the individuals as suggested
in Goldberg (1989). Before selection is
performed, the population is ranked on the
basis of non-domination: all non-dominated
individuals are classified into one cat-
egory (with a dummy fitness value, which
is proportional to the population size, to
provide an equal reproductive potential
for these individuals). To maintain the
diversity of the population, these classi-
fied individuals are shared with their
dummy fitness values. Then this group of
classified individuals is ignored and an-
other layer of non-dominated individuals
is considered. The process continues until
all individuals in the population are classi-
fied. Stochastic remainder proportionate
selection is adopted for this technique.
Since individuals in the first front have the
maximum fitness value, they always get
more copies than the rest of the popula-
tion. This allows the search for non-domi-
nated regions, and results in convergence
of the population toward such regions.
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Sharing, by its part, helps to distribute the
population over this region (i.e., the Pareto
front of the problem).

2. Niched-Pareto Genetic Algorithm
(NPGA): Proposed in Horn, Nafpliotis,
and Goldberg (1994). The NPGA uses a
tournament selection scheme based on
Pareto dominance. The basic idea of the
algorithm is the following: Two individuals
are randomly chosen and compared against
a subset from the entire population (typi-
cally, around 10% of the population). If
one of them is dominated (by the individu-
als randomly chosen from the population)
and the other is not, then the non-domi-
nated individual wins. When both com-
petitors are either dominated or non-domi-
nated (i.e., there is a tie), the result of the
tournament is decided through fitness shar-
ing (Goldberg & Richardson, 1987). More
recently (Erickson, Mayer, & Horn, 2001),
NPGA 2 was proposed. This algorithm
relies on a traditional Pareto ranking ap-
proach (similar to Fonseca and Fleming’s
(1993) MOGA), but it keeps its tourna-
ment selection scheme. Ties are solved
through fitness sharing as in its predeces-
sor. However, the niche count of NPGA 2
is computed using individuals from the
next partially filled generation using a tech-
nique called “continuously updated fitness
sharing” (Oei, Goldberg, & Chang, 1991).

3. Multi-Objective Genetic Algorithm
(MOGA): Proposed in Fonseca and
Fleming (1993). In MOGA, the rank of a
certain individual corresponds to the num-
ber of chromosomes in the current popu-
lation by which it is dominated. Consider,
for example, an individual xi at generation
t, which is dominated by ( )t

ip  individuals in
the current generation.

The rank of an individual is given by (Fonseca
& Fleming, 1993):

rank(xi, t) = 1 + ( )t
ip      (9)

All non-dominated individuals are assigned
rank 1, while dominated ones are penalized
according to the population density of the cor-
responding region of the trade-off surface.
Fitness assignment is performed in the follow-
ing way (Fonseca & Fleming, 1993):

1. Sort population according to rank.
2. Assign fitness to individuals by interpolat-

ing from the best (rank 1) to the worst
(rank n £ M) in the way proposed by
Goldberg (1989), according to some func-
tion, usually linear, but not necessarily.

3. Average the fitnesses of individuals with
the same rank, so that all of them are
sampled at the same rate. This procedure
keeps the global population fitness con-
stant while maintaining appropriate selec-
tive pressure, as defined by the function
used.

From these three algorithms, a few com-
parative studies undertaken during the mid- and
late 1990s indicated that MOGA was the most
effective and efficient approach, followed by
NPGA and by NSGA (in a distant third place)
(Coello Coello, 1996; Van Veldhuizen, 1999).
This period was characterized by the use of
selection mechanisms based on Pareto ranking
and by the use of fitness sharing to maintain
diversity. The papers of this period normally
rely on visual comparisons of results (little work
was done regarding the use of performance
measures to allow quantitative comparisons of
results before the mid-1990s), and normally
incorporate very simple test functions.
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THE SECOND GENERATION

The second generation of MOEAs was born
with the introduction of the notion of elitism.3 In
the context of multi-objective optimization, elit-
ism usually (although not necessarily) refers to
the use of an external population (also called
secondary population) to retain the non-domi-
nated individuals. The use of this external file
raises several questions:

• How does the external file interact with
the main population (e.g., do we select the
union of the main population and the exter-
nal file)?

• What do we do when the external file is
full (assuming that the capacity of the
external file is bounded)?

• Do we impose additional criteria to enter
the file instead of just using Pareto domi-
nance (e.g., use the distribution of solu-
tions as an additional criterion)?

Besides the use of an external file, elitism
can also be introduced through the use of a (m
+ l)-selection in which parents compete with
their children, and those which are non-domi-
nated (and possibly comply with some addi-
tional criterion such as providing a better distri-
bution of solutions) are selected for the follow-
ing generation. Besides the notion of elitism,
efficiency (both at an algorithmic level and at
the data structures level) has become a con-
cern for researchers in this area (e.g., Jensen,
2003b; Coello Coello & Toscano Pulido, 2001;
Mostaghim, Teich, & Tyagi, 2002). The second
generation is also characterized by the use of
performance measures to provide a quantita-
tive (rather than only a qualitative) comparison
of results (Zitzler, Deb, & Thiele, 2000; Van
Veldhuizen & Lamont, 2000b; Fonseca &
Fleming, 1996). However, the several draw-
backs of many performance measures devel-

oped during the second generation (e.g.,
Knowles & Corne, 2002; Zitzler, Laumanns,
Thiele, Fonseca, & Grunert da Fonseca, 2002)
have (ironically) brought back many research-
ers to adopt visual comparisons as in the origins
of the field.

Some MOEAs that are representative of
the research trends of the second generation
are the following:

1. Strength Pareto Evolutionary Algo-
rithm (SPEA): This algorithm was intro-
duced in Zitzler and Thiele (1999). This
approach was conceived as a way of
integrating different MOEAs. SPEA uses
an archive containing non-dominated so-
lutions previously found (the so-called
external non-dominated set). At each gen-
eration, non-dominated individuals are cop-
ied to the external non-dominated set. For
each individual in this external set, a
strength value is computed. This strength
is similar to the ranking value of MOGA
(Fonseca & Fleming, 1993), since it is
proportional to the number of solutions to
which a certain individual dominates. In
SPEA, the fitness of each member of the
current population is computed according
to the strengths of all external non-domi-
nated solutions that dominate it. The fit-
ness assignment process of SPEA consid-
ers both closeness to the true Pareto front
and even distribution of solutions at the
same time. Thus, instead of using niches
based on distance, Pareto dominance is
used to ensure that the solutions are prop-
erly distributed along the Pareto front.
Although this approach does not require a
niche radius, its effectiveness relies on the
size of the external non-dominated set. In
fact, since the external non-dominated set
participates in the selection process of
SPEA, if its size grows too large, it might
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reduce the selection pressure, thus slow-
ing down the search. Because of this, the
authors decided to adopt a technique that
prunes the contents of the external non-
dominated set so that its size remains
below a certain threshold. The approach
adopted for this sake was a clustering
technique called “average linkage method”
(Morse, 1980).

2. Strength Pareto Evolutionary Algo-
rithm 2 (SPEA2): SPEA2 has three main
differences with respect to its predecessor
(Zitzler, Laumanns, & Thiele, 2001): (1) it
incorporates a fine-grained fitness assign-
ment strategy which takes into account for
each individual the number of individuals
that dominate it and the number of individu-
als by which it is dominated; (2) it uses a
nearest neighbor density estimation tech-
nique which guides the search more effi-
ciently, and (3) it has an enhanced archive
truncation method that guarantees the pres-
ervation of boundary solutions.

3.  Pareto Archived Evolution Strategy
(PAES): This algorithm was introduced
in Knowles and Corne (2000). PAES con-
sists of a (1+1) evolution strategy (i.e., a
single parent that generates a single off-
spring) in combination with a historical
archive that records the non-dominated
solutions previously found. This archive is
used as a reference set against which
each mutated individual is being com-
pared. Such a historical archive is the
elitist mechanism adopted in PAES. How-
ever, an interesting aspect of this algo-
rithm is the procedure used to maintain
diversity which consists of a crowding
procedure that divides objective space in
a recursive manner. Each solution is placed
in a certain grid location based on the
values of its objectives (which are used as
its “coordinates” or “geographical loca-

tion”). A map of such grid is maintained,
indicating the number of solutions that
reside in each grid location. Since the
procedure is adaptive, no extra param-
eters are required (except for the number
of divisions of the objective space).

4. Non-Dominated Sorting Genetic Al-
gorithm II (NSGA-II): This approach
was introduced in Deb, Agrawal, Pratab,
and Meyarivan (2000) and in Deb, Pratap,
Agarwal, and Meyarivan (2002) as an
improved version of the NSGA (Srinivas
& Deb, 1994).4 In the NSGA-II, for each
solution one has to determine how many
solutions dominate it and the set of solu-
tions to which it dominates. The NSGA-II
estimates the density of solutions sur-
rounding a particular solution in the popu-
lation by computing the average distance
of two points on either side of this point
along each of the objectives of the prob-
lem. This value is the so-called crowding
distance. During selection, the NSGA-II
uses a crowded-comparison operator
which takes into consideration both the
non-domination rank of an individual in the
population and its crowding distance (i.e.,
non-dominated solutions are preferred over
dominated solutions, but between two so-
lutions with the same non-domination rank,
the one that resides in the less crowded
region is preferred). The NSGA-II does
not use an external memory as the other
MOEAs previously discussed. Instead,
the elitist mechanism of the NSGA-II
consists of combining the best parents
with the best offspring obtained (i.e., a
( m l+ )-selection). Due to its clever
mechanisms, the NSGA-II is much more
efficient (computationally speaking) than
its predecessor, and its performance is so
good that it has become very popular in the
last few years, becoming a landmark
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against which other multi-objective evolu-
tionary algorithms have to be compared.

Many other algorithms exist (e.g., Coello
Coello & Toscano Pulido, 2001; Corne,
Knowles, & Oates, 2000; Corne, Jerram,
Knowles, & Oates, 2001; Van Veldhuizen &
Lamont, 2000a; Zydallis, Lamont, & Veldhuizen,
2000). The interested reader should consult
additional sources for more details (Coello Coello
et al., 2002; Coello Coello, 1999; Deb, 2001;
Osyczka, 2002; Collette & Siarry, 2003; Tan,
Khor, & Lee, 2005).

CURRENT RESEARCH TRENDS

According to the historical view of evolutionary
multi-objective optimization presented at the
beginning of this chapter, we are currently
living the second generation. So far, research-
ers have not produced a breakthrough that is so
significant as to redirect most of the research
into a new direction. However, there are sev-
eral interesting ideas that have certainly influ-
enced some of the work being done these days.
Some examples are the following:

• The use of relaxed forms of Pareto domi-
nance has become popular as a mecha-
nism to regulate convergence of an MOEA.
From these mechanisms, e-dominance is,
with no doubt, the most popular (Laumanns,
Thiele, Deb, & Zitzler, 2002). e-dominance
allows control of the granularity of the
approximation of the Pareto front obtained.
As a consequence, it is possible to acceler-
ate convergence using this mechanism (if
we are satisfied with a very coarse ap-
proximation of the Pareto front).

• The transformation of single-objective
problems into a multi-objective form
that somehow facilitates their solution—

For example, some researchers have pro-
posed the handling of the constraints of a
problem as objectives (Coello Coello,
2002), and others have proposed the so-
called “multi-objectivization” by which a
single-objective optimization problem is
decomposed into several subcomponents
considering a multi-objective approach
(Jensen, 2003a; Knowles, Watson, &
Corne, 2001). This procedure has been
found to be helpful in removing local op-
tima from a problem.

• The use of alternative bio-inspired heu-
ristics for multi-objective optimization—
The most remarkable examples are par-
ticle swarm optimization (Kennedy &
Eberhart, 2001) and differential evolution
(Price, 1999), whose use has become
increasingly popular in multi-objective
optimization (e.g., Abbass & Sarker, 2002;
Coello Coello, Toscano Pulido, & Salazar
Lechuga, 2004). However, other bio-in-
spired algorithms such as artificial im-
mune systems have also been used to
solve multi-objective optimization prob-
lems (Coello Coello & Cruz Cortes, 2005).

FUTURE RESEARCH TRENDS

There are several topics that involve challenges
that will keep researchers in this area busy for
the next few years. Some of these include:

• How to deal with problems that have
“many” objectives: Some recent studies
have shown that traditional Pareto rank-
ing schemes do not behave well in the
presence of many objectives (where
“many” is normally a number above 3 or
4) (Purshouse, 2003).

• How to compare (in a quantitative way)
the performance of several MOEAs:
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Despite the existence of a considerable
number of performance measures that
intend to compare (in a quantitative way)
the performance of several MOEAs, many
of them are not appropriate because their
definition is not compliant with Pareto
dominance (Zitzler, Thiele, Laumanns,
Fonseca, & Fonseca, 2003).

• There are plenty of fundamental questions
that remain unanswered. For example:
What are the sources of difficulty of a
multi-objective optimization problem for a
MOEA? What are the dimensionality limi-
tations of current MOEAs? Can we use
alternative mechanisms into evolutionary
algorithms to generate non-dominated so-
lutions without relying on Pareto ranking?

SOME APPLICATIONS
IN FINANCE

Evolutionary algorithms in general and MOEAs
in particular can be useful in the solution of
complex problems for which no efficient deter-
ministic algorithm exists (i.e., there is no deter-
ministic algorithm that can solve them in poly-
nomial time).

It is well known that in finance there are
several NP-complete problems for which the
use of a heuristic is clearly justified (Schlottmann
& Seese, 2004). However, the specialized litera-
ture on MOEAs reports few papers that deal
with problems in finance. Some examples are:

• Solution of portfolio optimization problems,
particularly using Markowitz models (e.g.,
Shoaf & Foster, 1996; Vedarajan, Chan, &
Goldberg, 1997; Chang, Meade, & Beasley,
2000; Lin, Wang, & Yan, 2001; Streichert,
Ulmer, & Zell, 2004; Doerner, Gutjahr,
Hartl, Strauss, & Stummer, 2004; Ehrgott,
Klamroth, & Schwehm, 2004). This has

been, by far, the most popular application
of MOEAs in finance.

• Time series prediction (Zwir & Ruspini,
1999; Ruspini & Zwir, 1999).

• Risk-return trade-offs for loans (Mukerjee,
Biswas, Deb, & Mathur , 2002;
Schlottmann & Seese, 2002).

Evidently, it is necessary to identify other
types of problems in finance whose complexity
justifies the use of an MOEA (e.g., Chen,
2002). Even the financial problems that have
been tackled so far normally require special
treatment and a proper tailoring of the current
MOEAs (e.g., regarding the encoding, since
portfolio selection problems can be modeled as
knapsack problems (Streichert et al., 2004)).
Additionally, the decision-making process in-
volved in financial applications is normally very
complex and difficult to automate. This pre-
sents challenges for the (few) models for incor-
poration of preferences in current use with
MOEAs (Cvetkovic & Parmee, 2002; Coello
Coello, 2000a; Coello Coello et al., 2002). Thus,
financial applications present research oppor-
tunities both for experts in finance and for
researchers working exclusively in the devel-
opment of multi-objective evolutionary algo-
rithms and associated techniques.

CONCLUSION

In this chapter, we have presented a brief intro-
duction to evolutionary multi-objective optimiza-
tion. We have provided some basic concepts and
a historical perspective of the research that has
been done in this area. We have also presented
short descriptions of some algorithms that are
representative of each historical period under
consideration including the current one.

In the last part of the chapter, we have
presented some of the current and future re-
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search trends in the area, as well as a brief
description of the sort of financial applications
that have been developed using multi-objective
evolutionary algorithms.

The main aim of this chapter is to provide a
general overview of the area, identifying some
opportunity areas mainly related to financial
applications.
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ENDNOTES

1 The author maintains an EMO repository with
over 2,100 bibliographical entries at http://
delta.cs.cinvestav.mx/~ccoello/EMOO

2 By “middling,” Schaffer meant an indi-
vidual with acceptable performance, per-
haps above average, but not outstanding
for any of the objective functions.

3 Although there were some early studies
that considered the notion of elitism in a
multi-objective evolutionary algorithm (e.g.,
Husbands, 1994; Osyczka & Kundu, 1995),
most authors credit Zitzler with the formal
introduction of this concept in a multi-
objective evolutionary algorithm, mainly
because his SPEA was published in a
specialized journal (IEEE Transactions
on Evolutionary Computation—Zitzler
& Thiele, 1999) which made it a landmark
in the field. Needless to say, after the
publication of this paper, most research-
ers in the field started to incorporate ex-
ternal populations in their multi-objective
evolutionary algorithms.

4 Note however that the differences be-
tween NSGA-II and NSGA are so signifi-

cant that they are considered as two com-
pletely different algorithms by several re-
searchers.
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ABSTRACT

Advancing the state of the art of simulation in the social sciences requires appreciating the
unique value of simulation as a third way of doing science, in contrast to both induction and
deduction. Simulation can be an effective tool for discovering surprising consequences of
simple assumptions. This chapter offers advice for doing simulation research, focusing on the
programming of a simulation model, analyzing the results, sharing the results, and replicating
other people’s simulations. Finally, suggestions are offered for building a community of social
scientists who do simulation.

SIMULATION AS A YOUNG FIELD

Simulation is a young and rapidly growing field in
the social sciences.1 As in most young fields, the
promise is greater than the proven accomplish-
ments. The purpose of this chapter is to suggest
what it will take for the field to become mature
so that the potential contribution of simulation to
the social sciences can be realized.

One indication of the youth of the field is the
extent to which published work in simulation is
very widely dispersed. Consider these obser-
vations from the Social Science Citation In-
dex of 2002.

1. There were 77 articles with “simulation”
in the title.2 Clearly, simulation is an impor-

tant field. But these 77 articles were scat-
tered among 55 different journals. More-
over, only two of the 55 journals had more
than two of these articles. The full set of
journals that published articles with “simu-
lation” in the title come from virtually all
disciplines of the social sciences, includ-
ing anthropology, business, economics,
human evolution, environmental planning,
law, information, organization theory, po-
litical science, and public policy. Search-
ing by a keyword in the title is bound to
locate only a fraction of the articles using
simulation, but the dispersion of these
articles does demonstrate one of the great
strengths as well as one of the great
weaknesses of this young field. The
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strength of simulation is applicability in
virtually all of the social sciences. The
weakness of simulation is that it has little
identity as a field in its own right.

2. To take another example, consider the
articles published by the 26 authors of a
colloquium on ‘agent-based modeling’
sponsored by the National Academy of
Sciences (USA) and held October 4-6,
2001.3 In 2002 they published 17 articles
that were indexed by the Social Science
Citation Index. These 17 articles were in
13 different journals. In fact, of the 26
authors, only two published in the same
journal. While this dispersion shows how
diverse the field really is, it also reinforces
the earlier observation that simulation in
the social sciences has no natural home.

3. As a final way of looking at the issue,
consider citations to one of the classics of
social science simulation, Thomas
Schelling’s Micro Motives and
Macrobehavior (1978). This book was
cited in 21 articles in 2002, but these
articles were maximally dispersed among
21 different journals.

In sum, works using social science simula-
tion, works by social scientists interested in
simulation, and works citing social science simu-
lation are all very widely dispersed throughout
the journals. There is not yet as much concen-
tration of articles in specialist journals as there
is in other interdisciplinary fields such as the
theory of games or the study of China.4

This chapter is organized as follows. The
next section discusses the variety of purposes
that simulation can serve, giving special empha-
sis to the discovery of new principles and
relationships. After this, advice is offered for
how to do research with simulation. Topics
include programming a simulation model, ana-
lyzing the results, sharing the results with oth-

ers, and replicating agent-based models. The
final section suggests how to advance the art of
simulation by fostering a community of social
scientists (and others) who use computer simu-
lation in their research.

THE VALUE OF SIMULATION

Let us begin with a definition of simulation:
“Simulation means driving a model of a system
with suitable inputs and observing the corre-
sponding outputs”(Bratley, Fox, & Schrage
1987, p. ix). While this definition is useful, it
does not suggest the diverse purposes to which
simulation can be put. These purposes include:
prediction, performance, training, entertainment,
education, proof, and discovery.

1. Prediction: Simulation is able to take
complicated inputs, process them by tak-
ing hypothesized mechanisms into account,
and then generate their consequences as
predictions. For example, if the goal is to
predict interest rates in the economy three
months into the future, simulation can be
the best available technique.

2. Performance: Simulation can also be used
to perform certain tasks. This is typically
the domain of artificial intelligence. Tasks
to be performed include medical diagno-
sis, speech recognition, and function opti-
mization. To the extent that the artificial
intelligence techniques mimic the way
humans deal with these same tasks, the
artificial intelligence method can be thought
of as simulation of human perception, de-
cision making, or social interaction. To the
extent that the artificial intelligence tech-
niques exploit the special strengths of
digital computers, simulations of task en-
vironments can also help design new tech-
niques.
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3. Training: Many of the earliest and most
successful simulation systems were de-
signed to train people by providing a rea-
sonably accurate and dynamic interactive
representation of a given environment.
Flight simulators for pilots are an impor-
tant example of the use of simulation for
training.

4. Entertainment: From training, it is only a
small step to entertainment. Flight simula-
tions on personal computers are fun. So
are simulations of completely imaginary
worlds.

5. Education: From training and entertain-
ment, it is only another small step to the
use of simulation for education. A good
example is the computer game SimCity.
SimCity is an interactive simulation allow-
ing the user to experiment with a hypo-
thetical city by changing many variables,
such as tax rates and zoning policy. For
educational purposes, a simulation need
not be rich enough to suggest a complete
real or imaginary world. The main use of
simulation in education is to allow the
users to learn relationships and principles
for themselves.

6. Proof: Simulation can be used to provide
an existence proof. For example,
Conway’s Game of Life (Poundstone,
1985) demonstrates that extremely com-
plex behavior can result from very simple
rules.

7. Discovery: As a scientific methodology,
simulation’s value lies principally in pre-
diction, proof, and discovery. Using simu-
lation for prediction can help validate or
improve the model upon which the simula-
tion is based. Prediction is the use that
most people think of when they consider
simulation as a scientific technique. But
the use of simulation for the discovery of
new relationships and principles is at least
important as proof or prediction. In the

social sciences, in particular, even highly
complicated simulation models can rarely
prove completely accurate. Physicists
have accurate simulations of the motion of
electrons and planets, but social scientists
are not as successful in accurately simu-
lating the movement of workers or armies.
Nevertheless, social scientists have been
quite successful in using simulation to
discover important relationships and prin-
ciples from very simple models. Indeed,
as discussed below, the simpler the model,
the easier it may be to discover and under-
stand the subtle effects of its hypoth-
esized mechanisms.

Schelling’s (1974, 1978) simulation of resi-
dential tipping provides a good example of a
simple model that provides an important insight
into a general process. The model assumes that
a family will move only if more than one-third of
its immediate neighbors are of a different type
(e.g., race or ethnicity). The result is that very
segregated neighborhoods form, even though
everyone is initially placed at random and ev-
eryone is somewhat tolerant.

To appreciate the value of simulation as a
research methodology, it pays to think of it as a
new way of conducting scientific research.
Simulation as a way of doing science can be
contrasted with the two standard methods of
induction and deduction. Induction is the dis-
covery of patterns in empirical data.5 For ex-
ample, in the social sciences, induction is widely
used in the analysis of opinion surveys and the
macro-economic data. Deduction, on the other
hand, involves specifying a set of axioms and
proving consequences that can be derived from
those assumptions. The discovery of equilib-
rium results in game theory using rational choice
axioms is a good example of deduction.

Simulation is a third way of doing science.
Like deduction, it starts with a set of explicit
assumptions. But unlike deduction, it does not
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prove theorems. Instead, a simulation gener-
ates data that can be analyzed inductively.
Unlike typical induction, however, the simu-
lated data comes from a rigorously specified set
of rules rather than direct measurement of the
real world. While induction can be used to find
patterns in data, and deduction can be used to
find consequences of assumptions, simulation
modeling can be used as an aid intuition.

Simulation is a way of doing thought experi-
ments. While the assumptions may be simple,
the consequences may not be at all obvious.
The large-scale effects of locally interacting
agents are called “emergent properties” of the
system. Emergent properties are often surpris-
ing because it can be hard to anticipate the full
consequences of even simple forms of interac-
tion.6

There are some models, however, in which
emergent properties can be formally deduced.
Good examples include the neo-classical eco-
nomic models in which rational agents operat-
ing under powerful assumptions about the avail-
ability of information and the capability to opti-
mize can achieve an efficient reallocation of
resources among themselves through costless
trading. But when the agents use adaptive
rather than optimizing strategies, deducing the
consequences is often impossible; simulation
becomes necessary.

Throughout the social sciences today, the
dominant form of modeling is based upon the
rational choice paradigm. Game theory, in par-
ticular, is typically based upon the assumption
of rational choice. In my view, the reason for
the dominance of the rational choice approach
is not that scholars think it is realistic. Nor is
game theory used solely because it offers good
advice to a decision maker, since its unrealistic
assumptions undermine much of its value as a
basis for advice. The real advantage of the
rational choice assumption is that it often allows
deduction.

The main alternative to the assumption of
rational choice is some form of adaptive behav-
ior. The adaptation may be at the individual
level through learning, or it may be at the
population level through differential survival
and reproduction of the more successful indi-
viduals. Either way, the consequences of adap-
tive processes are often very hard to deduce
when there are many interacting agents follow-
ing rules that have non-linear effects. Thus,
simulation is often the only viable way to study
populations of agents who are adaptive rather
than fully rational. While people may try to be
rational, they can rarely meet the requirement
of information or foresight that rational models
impose (Simon, 1955; March, 1978). One of the
main advantages of simulation is that it allows
the analysis of adaptive as well as rational
agents.

An important type of simulation in the social
sciences is “agent-based modeling.” This type
of simulation is characterized by the existence
of many agents who interact with each other
with little or no central direction. The emergent
properties of an agent-based model are then the
result of “bottom-up” processes, rather than
“top-down” direction.

Although agent-based modeling employs
simulation, it does not necessarily aim to pro-
vide an accurate representation of a particular
empirical application. Instead, the goal of agent-
based modeling is to enrich our understanding
of fundamental processes that may appear in a
variety of applications. This requires adhering
to the KISS principle, which stands for the army
slogan “keep it simple, stupid.” The KISS prin-
ciple is vital because of the character of the
research community. Both the researcher and
the audience have limited cognitive ability. When
a surprising result occurs, it is very helpful to be
confident that one can understand everything
that went into the model. Simplicity is also
helpful in giving other researchers a realistic
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chance of replicating one’s model and extend-
ing the work in new directions. The point is that
while the topic being investigated may be com-
plicated, the assumptions underlying the agent-
based model should be simple. The complexity
of agent-based modeling should be in the simu-
lated results, not in the assumptions of the
model.

As pointed out earlier, there are other uses
of computer simulation in which the faithful
reproduction of a particular setting is important.
A simulation of the economy aimed at predict-
ing interest rates three months into the future
needs to be as accurate as possible. For this
purpose, the assumptions that go into the model
may need to be quite complicated. Likewise, if
a simulation is used to train the crew of a
supertanker or to develop tactics for a new
fighter aircraft, accuracy is important and sim-
plicity of the model is not. But if the goal is to
deepen our understanding of some fundamental
process, then simplicity of the assumptions is
important and realistic representation of all the
details of a particular setting is not.

DOING SIMULATION RESEARCH

In order to advance the art of simulation in the
social sciences, it is necessary to do more than
consider the purpose of simulation. It is also
necessary to be more self-conscious about the
process of doing the research itself. To do so
requires looking at three specific aspects of the
research process which take place once the
conceptual model is developed: the program-
ming of the model, the analysis of the data, and
the sharing of the results.

Programming a Simulation Model7

The first question people usually ask about
programming a simulation model is: “What lan-
guage should I use?” For experienced pro-

grammers, I recommend Java for two reasons.
First, it can be run on almost any computer.
Second, software packages are available in
Java, which are designed to assist simulation.8

For beginning programmers, I recommend Vi-
sual Basic, which is included in the Excel
spreadsheet application of Microsoft’s Office
software package.

The programming of a simulation model
should achieve three goals: validity, usability,
and extendibility. The goal of validity is for the
program to correctly implement the model. This
kind of validity is called “internal validity.”

Whether or not the model itself is an accu-
rate representation of the real world is another
kind of validity that is not considered here.
Achieving internal validity is harder than it
might seem. The program is knowing whether
an unexpected result is a reflection of a mistake
in the programming or a surprising consequence
of the model itself. For example, in one of my
own models, a result was so counterintuitive
that I had to spend several weeks to determine
whether this result was a consequence of the
model or due to a bug in the program (Axelrod,
1997a). As is often the case, confirming that
the model was correctly programmed was sub-
stantially more work than programming the
model in the first place.

The goal of usability is to allow the re-
searcher and those who follow to run the
program, interpret its output, and understand
how it works. Modeling typically generates a
whole series of programs, each version differ-
ing from the others in a variety of ways.
Versions can differ, for example, in which
data is produced, which parameters are ad-
justable, and even the rules governing agent
behavior. Keeping track of all this is not trivial,
especially when one tries to compare new
results with output of an earlier version of the
program to determine exactly what might ac-
count for the differences.
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The goal of extendibility is to allow a future
user to adapt the program for new uses. For
example, after writing a paper using the model,
the researcher might want to respond to a ques-
tion about what would happen if a new feature
were added. In addition, another researcher
might someday want to modify the program to
try out a new variant of the model. A program is
much more likely to be extendible if it is written
and documented with this goal in mind.

Analyzing the Results

Simulation typically generates huge amounts of
data. In fact, one of the advantages of simulation
is that if there is not enough data, one can always
run the simulation again and get some more!
Moreover, there are no messy problems of
missing data or uncontrolled variables as there
are in experimental or observational studies.

Despite the purity and clarity of simulation
data, the analysis poses real challenges. Mul-
tiple runs of the same model can differ from
each other due to differences in initial condi-
tions and stochastic events. A major challenge
is that results are often path-dependent, mean-
ing that history matters. To understand the
results often means understanding the details
of the history of a given run. There are at
least three ways in which history can be
described.

1.  History can be told as “news,” following
a chronological order. For example, a simu-
lation of international politics might de-
scribe the sequence of key events such as
alliances and wars. This is the most
straightforward type of storytelling, but
often offers little in explanatory power.

2. History can be told from the point of view
of a single actor. For example, one could
select just one of the actors, and do the
equivalent of telling the story of the “Rise
and Fall of the Roman Empire.” This is

often the easiest kind of history to under-
stand, and can be very revealing about the
ways in which the model’s mechanisms
have their effects over time.

3. History can also be told from a global point
of view. For example, one would describe
the distribution of wealth over time to
analyze the extent of inequality among the
agents. Although the global point of view
is often the best for seeing large-scale
patterns, the more detailed histories are
often needed to determine the explanation
for these large patterns.

While the description of data as history is
important for discovering and explaining pat-
terns in a particular simulation run, the analysis
of simulations all too often stops there. Since
virtually all social science simulations include
some random elements in their initial conditions
and in the operation of their mechanisms for
change, the analysis of a single run can be
misleading. In order to determine whether the
conclusions from a given run are typical, it is
necessary to do several dozen simulation runs
using identical parameters (using different ran-
dom number seeds) to determine just which
results are typical and which are unusual. While
it may be sufficient to describe detailed history
from a single run, it is also necessary to do
statistical analysis of a whole set of runs to
determine whether the inferences being drawn
from the illustrative history are really well
founded. The ability to do this is yet one more
advantage of simulation: the researcher can
rerun history to see whether particular patterns
observed in a single history are idiosyncratic or
typical.

Using simulation, one can do even more
than compare multiple histories generated from
identical parameters. One can also systemati-
cally study the affects of changing the param-
eters. For example, the agents can be given
either equal or unequal initial endowments of
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wealth to see what difference this makes over
time. Likewise, the differences in mecha-
nisms can be studied by doing systematic
comparisons of different versions of the model.
For example, in one version agents might
interact at random, whereas in another version
the agents might be selective in whom they
interact with. As in the simple change in
parameters, the effects of changes in the
mechanisms can be assessed by running con-
trolled experiments with whole sets of simula-
tion runs. Typically, the statistical method for
studying the effects of these changes will be
regression if the changes are quantitative and
analysis of variance if the changes are quali-
tative. As always in statistical analysis, two
questions need to be distinguished and ad-
dressed separately: Are the differences sta-
tistically significant (meaning not likely to have
been caused by chance), and are the differ-
ences substantively significant (meaning large
enough in magnitude to be important)?

Sharing the Results

After cycling through several iterations of con-
structing the model, programming the simula-
tion, and doing the data analysis, the final step
in the research is sharing the results with oth-
ers. As in most fields of research, the primary
method of sharing research results is through
publication, most often in refereed journals or
chapter-length reports in edited collections. In
the case of social science simulation, there are
several limitations with relying on this mode of
sharing information. The basic problem is that
it is hard to present a social science simulation
briefly. There are at least three reasons:

1. Simulation results are typically quite sen-
sitive to the details of the model. There-
fore, unless the model is described in great
detail, the reader is unable to replicate or
even fully understand what was done.

Articles and chapters are often just not
long enough to present the full details of
the model. (The issue of replication will be
addressed next.)

2. The analysis of the results often includes
some narrative description of histories of
one or more runs, and such narrative often
takes a good deal of space. While statis-
tical analysis can usually be described
quite briefly in numbers, tables, or figures,
the presentation of how inferences were
drawn from the study of particular histo-
ries usually cannot be brief. This is mainly
due to the amount of detail required to
explain how the model’s mechanisms
played out in a particular historical con-
text. In addition, the paucity of well-known
concepts and techniques for the presenta-
tion of historical data in context means
that the writer cannot communicate this
kind of information very efficiently. Com-
pare this lack of shared concepts with the
mature field of hypothesis testing in statis-
tics. The simple phrase “p < .05” stands for
the sentence: “The probability that this
result (or a more extreme result) would
have happened by chance is less than 5%.”
Perhaps over time, the community of social
science modelers will develop a collection
of standard concepts that can become com-
mon knowledge and then be communicated
briefly, but this is not true yet.

3. Simulation results often address an inter-
disciplinary audience. When this is the case,
the unspoken assumptions and shorthand
terminology that provide shortcuts for ev-
ery discipline may need to be explicated at
length to explain the motivation and pre-
mises of the work to a wider audience.

4. Even if the audience is a single discipline,
the computer simulations are still new
enough in the social sciences that it may
be necessary to explain very carefully
both the power and the limitations of the
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methodology each time a simulation re-
port is published.

Since it is difficult to provide a complete
description of a simulation model in an article-
length report, other forms of sharing informa-
tion about a simulation have to be developed.
Complete documentation should include the
source code for running the model, a full de-
scription of the model, how to run the program,
and how to understand the output files. An
example of such documentation is available for
a study of ethnocentrism (see Axelrod,
Hammond, & Grafen, 2004). The documenta-
tion is at umich.edu/~axe/AHG/main.htm

Replication of Simulations

Three important stages of the research process
for doing simulation in the social sciences have
been considered so far—namely the program-
ming, analyzing, and sharing computer simula-
tions. All three of these aspects are done for
virtually all published simulation models. There
is, however, another stage of the research
process that is virtually never done, but which
needs to be considered. This is replication. The
sad fact is that new simulations are produced all
the time, but rarely does anyone stop to repli-
cate the results of anyone else’s simulation
model. Replication is one of the hallmarks of
cumulative science. It is needed to confirm
whether the claimed results of a given simula-
tion are reliable, in the sense that they can be
reproduced by someone starting from scratch.
Without this confirmation, it is possible that
some published results are simply mistaken due
to programming errors, misrepresentation of
what was actually simulated, or errors in ana-
lyzing or reporting the results. Replication can
also be useful for testing the robustness of
inferences from models. Finally, replication is
needed to determine if one model can subsume

another, in the sense that Einstein’s treatment
of gravity subsumes Newton’s.

Rob Axtell, Michael Cohen, Rick Riolo, and
I took up the replication challenge with eight
published agent-based models (Axtell et al.,
1996). With Murphy’s Law operating at full
strength, we identified replication problems with
respect to ambiguity, gaps, and even errors in
the published descriptions, as well as subtle
differences between how different floating point
systems calculated whether or not 9/3 equals
2+1. More important, perhaps, was that we
were able to clarify three decreasing levels of
replication: “numerical identity” in which the
results are reproduced precisely, “distributional
equivalence” in which the results cannot be
distinguished statistically, and “relational equiva-
lence” in which the qualitative relationships
among the variables are reproduced.

CONCLUSION:
BUILDING COMMUNITY

This chapter has discussed how to advance the
state of the art of simulation in the social sci-
ences. It described the unique value of simula-
tion as a third way of doing science, in contrast
to both induction and deduction. It then offered
advice for doing simulation research, focusing on
the programming of a simulation model, analyz-
ing the results, sharing the results with others,
and replicating agent-based simulations.

One final theme needs to be addressed,
namely the building of a community of social
scientists who do simulation. This chapter be-
gan with the observation that simulation studies
are published in very widely dispersed outlets.
This is an indication that social science simula-
tors are only just beginning to build strong
institutional links across traditional disciplinary
boundaries, even though the work itself is often
interdisciplinary in content and methodology.
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The question now is what it would take to
promote further the growth and success of
social science simulation. My answer comes in
four parts: methodology, standardization, edu-
cation, and institution building.

This chapter has already discussed sugges-
tions for progress in methodology. The next
step is to begin to develop the internal structure
and boundaries of the field. In particular, con-
verging on commonly accepted terminology
would be very helpful. A host of terms is now
used to describe our field. Examples are artifi-
cial society, complex system, agent-based model,
multi-agent model, individual-based model, bot-
tom-up model, adaptive system, and the some-
what broader term, computational model. Hav-
ing commonly accepted distinctions between
these terms could certainly help specify and
communicate what simulation is about.

Hand-in-hand with developing the terminol-
ogy, a shared sense of the internal structure and
boundaries of the field is needed. For example,
simulation in the social sciences might continue
to develop primarily within the separate disci-
plines of economics, political science, sociol-
ogy, and so forth. There are powerful forces
supporting disciplinary research, including the
established patterns of professional education,
hiring, publication, and promotion. Neverthe-
less, if simulation is to realize its full potential,
there must be substantial interaction across the
traditional disciplines.

Progress requires the development of an
interdisciplinary community of social scientists
who do simulation. Progress also requires the
development of an even broader community of
researchers from all fields who are interested
in the simulation of any kind of system with
many agents. Certainly, ecology and evolution-
ary biology have a great deal to offer for the
study of decentralized adaptive systems. Like-
wise, computer science has recently started to
pay a great deal of attention to how large
systems of more or less independent artificial

agents can work with each other in vast net-
works. In addition, mathematics has developed
some very powerful tools for the analysis of
dynamic systems (Flake, 1998). Even the play-
ful field of artificial life offers many insights
into the vast potential of complex adaptive
systems. Conversely, social scientists have a
great deal to offer evolutionary biologists, com-
puter scientists, and others because of our
experience in the analysis of social systems
with large numbers of interacting agents.

The educating of modelers is typically done
within the context of specific disciplines. To
help build bridges across disciplines, Leigh
Tesfatsion, and I have developed an on-guide
for newcomers to agent-based modeling across
the social sciences (Axelrod & Tesfatsion,
2006).9

As the field of agent-based modeling ma-
tures, the value of institutional arrangements
increases. Such arrangements include journals
devoted to simulation, professional organiza-
tions, conference series, funding programs,
university courses, review articles, textbooks,
and shared standards of research practice.10

To realize the full potential of computer simula-
tion will require the development of these insti-
tutional arrangements for community building.
Who should be better able to build new institu-
tions than the researchers who use simulation
to study real and potential societies?
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ENDNOTES

1 While simulation in the social sciences
began over four decades ago (e.g., Cyert
& March, 1963), only in the last fifteen
years has the field begun to grow at a fast
pace.

2 This excludes articles on gaming and edu-
cation, the psychological process of men-
tal simulation, and the use of simulation
with human subjects or as a strictly statis-
tical technique.

3 The colloquium was published in the Pro-
ceedings of the National Academy of
Sciences, 99(suppl. 3), 2002. It is avail-
able at http://www.pnas.org/content/
vol99/issue90003/index.shtml

4 A potential exception is the Journal of
Artificial Societies and Social Simula-

tion. This is an online journal available at
http://jasss.soc.surrey.ac.uk/JASSS. html
Unfortunately it is not yet indexed by the
Social Science Citation Index.

5 Induction as a search for patterns in data
should not be confused with mathematical
induction, which is a technique for proving
theorems.

6 Some complexity theorists consider sur-
prise to be part of the definition of emer-
gence, but this raises the question of sur-
prising to whom?

7 This section is adapted from Axelrod
(1997b, pp. 210-211) and is used with
permission of Princeton University Press.

8 A good example of such a package is
Repast (see http://www.econ.iastate.edu/
tesfatsi/repastsg.htm)

9 The online guide is available with live links
at http://www.econ.iastate.edu/tesfatsi/
abmread.htm

1 0 For details on all of these, see http://
www.econ.iastate.edu/tesfatsi/ace.htm
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ABSTRACT

This chapter describes the possible relationship between multi-agent systems research and
social science research, more particularly sociology. It gives examples of the consequences
and possibilities of these relationships, and describes some of the important issues and
concepts in each of these areas. It finally points out some future directions for a bi-directional
relationship between the social sciences and multi-agent systems research which hopefully
will help researchers in both research areas, as well as researchers in management and
organization theory.

INTRODUCTION

In the early 1980s, Newell (1982) defined the
concept of Agent within computer science in
his presidential speech as the first AAAI presi-
dent, and agents and multi-agent systems have
since been an area of interest for computer
science students and researchers alike. The
late seventies and early eighties of the 20th

century are the early years of agent research,
still searching for direction and a fitting name.
From distributed artificial intelligence, coordi-
nated distributed problem solving, and multi-
agent systems (MAS), it is the latter name (and

corresponding view on these systems) that
survived, even if we in most MAS applications
can see the distributed problem-solving para-
digm (which had its focus on developing spe-
cial-purpose systems to solve complex real-
world problems).

Already in the early days of multi-agent
systems research there have been attempts to
and cries for the use of social science theories
and concepts (Bond & Gasser, 1988; Conte &
Gilbert, 1995; Verhagen & Smit, 1996). As for
the social science, there the use of agent-based
simulation models (or individual-based models)
has been heralded as an instrument to conduct
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social experiments using artificial societies not
viable in human societies (Axelrod, 1997;
Verhagen & Smit, 1997; Brent & Thompson,
1999; Lansing, 2002; Macy & Willer, 2002;
Sawyer, 2003, 2004). Multi-agent systems can
be seen as a development at least partly based
on artificial intelligence, thus this is even a claim
within the agent society in the same sense that
AI was claimed to be “the” instrument for
developing and testing theories of cognition
(Simon, 1970). Time will tell if MAS will have
more impact than AI has had and if it is indeed
possible to build “artificial humans.”

In the remainder of this chapter I will focus
upon the relation between MAS research and
the social sciences, present some recent work
on integrating frameworks that might help to
overcome some of the difficulties in combining
these research areas, and finally present some
remaining problems.

MULTI-AGENT SYSTEMS
RESEARCH AND THE
SOCIAL SCIENCES

The relationship between these two research
areas can take three different forms:

1. The social sciences inform or help MAS
research: The social sciences are used in
two different ways in the development of
theories and models of multi-agent sys-
tems. The first way of use is the “borrow-
ing” of concepts developed in the social
sciences, such as coordination, organiza-
tion, convention, norm, trust, and so on in
multi-agent systems research. A second
way is to contrast agent theory with social
theory, based on the distinctions between
artificial systems and humans. For example,
humans cannot be programmed such that
they never violate a norm or always coop-
erate, but artificial systems can.

2. MAS research informs or helps the
social sciences: According to Castelfranchi
(1998, 2000), agent theory should also pro-
duce theories, models, and experimental,
conceptual, and theoretical new instru-
ments, which can be used to revise and
develop the social sciences. He summa-
rizes this point by stating that agent theory—
and the related area of artificial intelli-
gence—is not just an engineering disci-
pline, but it is also a science and thus should
develop theories, concepts, and methods of
its own. I will give an overview of MAS
research for social scientists, with a focus
on MAS-based simulation studies, since I
presume these to be the main product of
interest in this category for social scientists.

3. The social sciences and MAS research
have a bi-directional relationship: Bi-
directional research can be obtained via
multidisciplinary researchers or
multidisciplinary research teams. The tight
cooperation between MAS research ques-
tions and social science is a complicating
factor, but may produce interesting and
better grounded results for both areas.
Few projects have a focus on both rela-
tions. A prime example of such work is the
different projects within the German
Socionics research effort (Malsch, 1998;
Kron, 2002; Köhler, Rölke, Moldt, Valk,
von Lüde, Langer, et al., 2003; Fischer,
Florian, & Malsch, 2005).

The next three sections will describe each
of these relationships in more detail.

SOCIAL SCIENCES THEORIES
AND CONCEPTS AS AN INPUT
TO MAS RESEARCH

Here I will focus mainly upon theories and
frameworks from sociology. I will present a
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meta-theoretical framework developed by
Brante (2001) and the agent model developed
by Carley and Newell (1994) to analyze the
current use of these theories and concepts in
MAS research.

Categorizing Social Theories

In a recent article, Brante (2001) developed a
meta-theoretical framework to describe differ-
ent societal levels and how theories may either
explain events at one level or how theories tie
two levels together. The basic model of Brante
is the causal model (though not in a traditional
sense)—that is, what is it the theory tried to
explain, and what are its dependent and inde-
pendent variables. This is combined with the
unit of analysis—that is, what is the location of
action, and its constraints, what is it the acting
unit cannot change, what is its environment, and
so on.

The base of scientific work (within any
field) is characterized as a quest for causality,
in that science seeks to provide causal explana-
tions of effects. In sociology, these effects and
causes are located at several levels of aggrega-
tion. In most sciences, there are strict descrip-
tions of what counts as causal explanations. In
Brante’s article the following (relaxed) defini-

tion is used: “Sociology seeks to identify social
structures harboring causal mechanisms that
generate empirically observable effects” (p.
178, italics added).

What differs between different sociological
research paradigms is what counts as these
three elements. Brante proposes the following
matrix (slightly adjusted for my purposes in
Table 1 and “translated” to a matrix for psycho-
logical theories in Table 2).

Given the type of interaction, process, or
acting unit one is interested in, these two tables
give the researcher an idea of what the other
two components are. It also states what other
levels one has to consider as the dynamics that
might be invisible for the current level of inter-
est (i.e., the level just below it in the matrix) and
the context (or product) of the interactions (the
level just above the level of interest). Involving
more than these three levels in research will
prove difficult; one needs to have theories or
concepts that run across several levels in these
cases. For example, imagine a researcher in-
terested in issues such as the emergence of war
between national states, and who would like to
use neural networks in a simulation model.
According to the categorization presented, this
research plan will prove impossible.

Table 1. Sociological theories schematized (Adapted from Brante, 2001)

Sociological 
theories  

relation  cultural scheme/causal 
mechanisms  

acting unit 

international level relations between 
nations 

dependency theory, 
globalization theory 

nation 

inter-institutional 
level/national 

relations between 
institutions and 
organizations 

social order, 
historical/evolutionary 
 

institution 

institutional level status, roles, 
networks, 
hierarchies 

contingency theory, 
neo-institutionalism 
 

individuals within a 
social order 
(mediated 
interaction) 

inter-individual 
level 

face-to-face 
interaction 

symbolic interactionism, 
conversation analysis 

individuals in direct 
interaction 

individual level intra-individual 
components  

socio-biology, rational 
choice 
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Models of Agency in
the Social Sciences

Basically, Carley and Newell (1994) sketch
what is necessary for developing an artificial
human agent. Different types of agency (and
corresponding concepts describing its behav-
ior) are distinguished using two dimensions: the
internal architecture of the agent and the amount
of knowledge needed to handle the situation
(see Figure 1).

The most simple and least human-like agent
one can imagine using these dimensions is an
agent who is omnipotent (i.e., without any
limitations at all on its information processing
capabilities) possessing only knowledge about
the task it is working on. At the other extreme,
we find an agent who is both emotional and
cognitive, with knowledge of the task, as well
as other agents, interacting in real time within a
social structure with social goals and cultural
and historical knowledge of that social struc-
ture. It is this agent that Carley and Newell
label model social agent. Between the omnipo-
tent agent and the model social agent all sorts of
agents can be distinguished, which in turn can
be linked to different types of social theories.

There is also a trade-off between informa-
tion processing capabilities and behavior: the
more severe the limitations on the information
processing capabilities are, the more complex
behavior may emerge. For example, the om-
nipotent agent does not have to gather informa-
tion, since the agent already knows everything.
As for the knowledge dimension, the more

Table 2. Psychological theories categorized
(Inspired by Brante, 2001)

Psychological 
theories 

relation causal 
mechanisms 

acting unit 

inter-individual 
level 

other 
individuals 

social psychology, 
social cognition 

individual 
agent 

individual level memory types, 
utility, tools 

information 
processing model, 
rationality, BDI, 
situated cognition 

chunks of 
information 

subconscious 
level 

neurological 
signals, 
conscious vs. 
subconscious, 
emotions 

neurological 
theories 

electrical 
patterns or 
subconscious 
processing 

 

Figure 1. Agent categorization matrix (Adapted from Carley & Newell, 1994)

 nonsocial task multiple 

agents 

real interaction social 

structural 

social goals cultural 

historical 
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- turn taking  

- modeling of 
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- organizational 
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- miscommunication - social mobility 
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- social 
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boundedly 
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agent 

- satisficing  

- planning  

- adaptation 

- group making - social planning  

- coercion  

- altruism 

- information 

networks 

- moral 

obligation 

- role 

emergence 

cognitive 

agent 

- compulsiveness - group think - social interaction - automatic 

responses to 

status cues 

- group conflict develop 

language 

institutions 

emotional 

cognitive 

agent 

- habituation - 

variable 
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- protesting  

- courting 
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- mob action 
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- ritual 
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knowledge an agent has, the more detailed its
mental model of the world can be and the more
realistic it will be, as compared to the richness
of the mental models of humans. With a richer
mental model, the agent has a richer repertoire
of actions to choose from and its set of goals
can be more complex. For instance, if an agent
has no knowledge of social structure, the agent’s
place in the social environment does not have to
(and even cannot) be determined. Since the
architectural dimensions map nicely to Brante’s
matrix in the previous section, I will focus on a
detailed description of the knowledge dimen-
sion.

The authors distinguish six situations with
regard to the knowledge dimension, or more
accurately the type of information on the situ-
ation the agent is in that is used in the decision-
making behavior of the agent. The agent can
make use of cultural-historical knowledge about
the situation it is in. The situation is affected by
and a result of a historical process leading to a
specific culture, embodied in norms shared
among the members of a group. If the agent
does not take the cultural-historical knowledge
into consideration, it can still be aware of social
goals. Apart from the goals related to the task
at hand and the goals related to self-mainte-
nance and enhancement, the agent also has
goals that have to do with social maintenance.
These social goals can be irreconcilable with
the goals of the individual or even of the task,
thus influencing the problem-solving behavior
of the agent. Lifting the constraints of the social
goals leaves us with constraints due to the
social structure the agent is in. The agent has
knowledge of the structure of the group it is in
and the position of the agents it interacts with.
If the agent has no knowledge of the social
structure, it may be engaged in face-to-face
interaction. The agents do interact, but the
interactions are not directly with individual
agents but mediated via the environment.

The interactive situation limits the time an
agent has. Absence of such a time limit results
in an agent in a multiple agent situation. There
are other agents in the environment, with their
own goals and capabilities and displaying goal-
directed behavior.

The last situation is the non-social task
situation. The agent only has knowledge of the
task and the task environment. Other agents
may exist in that environment but are treated
just like inanimate objects.

Models of Agency in Multi-Agent
Systems Research

The basic agent definition as sketched out by
Wooldridge (2002), for example, states that an
agent is a computer system that is situated in
some environment and that is capable of au-
tonomous action in this environment in order to
meet its design objectives where autonomy
means control over behavior and internal state.

Wooldridge (2002) makes a distinction be-
tween weak and strong agency. An intelligent
agent that is capable of flexible autonomous
action displays weak agency. Flexibility builds
upon three characteristics, namely reactivity
(interaction with the environment), pro-active-
ness (take initiative regardless of external
changes or commands), and social ability (able
to interact or cooperate with other agents). A
strong agency puts demands on the internals of
the agent, with mentalistic properties such as
beliefs, desires, intentions (together these three
form the famous BDI), rationality, emotions,
and so forth.

This last definition shows that the strong
agency model combines subconscious proper-
ties with individual decision-making theories
(without explicitly stating this). Including the
social abilities means crossing yet another level.
Therefore, within multi-agent research there is
a call for integrating three levels that were
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distinguished by Brante. If we use the Carley
and Newell model to look at MAS research, we
can note that omnipotent agents hardly exist; in
fact if an agent can be omnipotent, we can do
without the concept of agents. Agents are used
in software development since knowledge is
limited and local autonomy is needed. Also, the
single agent paradigm is not really an imple-
mentation of agents, at least not of a multi-
agent system.

MAS USE IN SOCIAL
SCIENCE RESEARCH

Already in the early days of computer develop-
ment, simulations were used in different re-
search areas. Apart from the use in ballistics
calculations, techniques such as individual-based
modeling were to some extent used for simula-
tion of biological systems (Barricelli, 1957) and
to bridge the gap between the simple and the
complex with respect to intelligence (Ashby,
1952). But in general, if computers were used
for simulations of complex systems, these simu-
lations would be based on differential equations
and focus on results at the aggregate level.
These models of, for instance, predator-prey
populations could result in fairly accurate mod-
els, but were limited in the sense that the models
excluded individual behavior and decision mak-
ing (Brent & Thompson 1999), and were based
on homogeneous agents. The development of
multi-agent systems offers a possible solution
to this problem with its (seemingly) natural
mapping onto interacting individuals with in-
complete information and capabilities, no global
control, decentralized data, asynchronous com-
puting, and allowing heterogeneous agents.
MAS simulation models also offer the possibil-
ity to study the dynamics of the interaction
processes instead of focusing on the (static)
results of these processes (Lansing, 2002; Saw-
yer, 2003). MAS simulations can be seen as

equivalent to experimental methods or as theory
in themselves (Sawyer, 2004). In the former
case, simulations are run to test the predictions
of theories, whereas in the latter case simula-
tions in themselves are formal models of theo-
ries. Formalizing the ambiguous, natural lan-
guage-based theories of the social sciences
helps to find inconsistencies and other prob-
lems, and thus contributes to theory building.

Using MAS for simulation studies as an
experimental tool offers great possibilities. Most
experiments with human societies are either
unethical or even impossible to conduct. Ex-
periments in silicio on the other hand are fully
possible. These can also blow new life into the
ever-present debate in sociology on the micro-
macro link (e.g., Alexander, Giesen, Münch, &
Smelser, 1987). MAS models mostly focus on
the emergence of macro-level properties from
the local interaction of adaptive agents that
influence one another (Macy & Willer, 2002;
Sawyer, 2003), but simulations in computa-
tional organization theory (e.g., Prietula, Carley,
& Gasser, 1998; Carley & Prietula, 1994b), for
example, try to analyze the influence of macro-
level phenomena on individuals (Sawyer,
2003).Using MAS models to simulate the bi-
directional relation between micro- and macro-
level concepts would give one tools to analyze
the theoretical consequences of the work done
by theorists such as Habermas, Giddens, and
Bourdieu to name a few (Sawyer, 2003).

Given the above presentation of Brante, one
has to decide on what the micro and macro level
are of course. In the case of humans, the macro
level could be more than one level up, which
means one needs to use and represent interme-
diary levels such as networks and institutions.
These are well developed within the sociologi-
cal literature. Less well-developed, important
issues are the importance of the body, human
dialogue and communication, and emotions (al-
though see Camic & Joas (2004), Scheff (1990)
and Flam (2000) for some recent work in these
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areas), which are, according to Carley and
Newell (1994), needed for the model of a social
agent (the body category was not included in
their analysis though).

SOCIAL SCIENCE AND MAS
RESEARCH HAVING A
BIDIRECTIONAL RELATIONSHIP

As stated at the beginning of this chapter, this
is a quite recent development. The German
Socionics project (Malsch, 1998; Kron, 2002;
Lüde, et al., 2003; Fischer et al., 2005) is a
prime example of this path. The Socionics
community builds upon the principle that in each
of its projects, social scientists and computer
scientists participate and cooperate and started
in 1998. Unfortunately, most results published
focus on either the first or the second of the
above mentioned relations between MAS and
social science research. Moreover, most publi-
cations with a focus on the social sciences are
in German, which limits their accessibility (the
interested reader might want to check von
Scheve & von Lüde, 2005; Fischer et al., 2005).
In one example of research with bi-directional
relations between MAS and sociology, I will
shortly describe my own work in norm autono-
mous agents.

Bi-Directional Research Example:
Norm Autonomous Agents

In the framework developed in Verhagen (2000),
norm autonomous agents are described. In
short, these agents are based upon cognitive (or
goal autonomous agents as developed by Conte
& Castelfranchi, 1995) and are extended with
norms. The development of an agent typology
up to and including the right for agents to decide
on their own norm system is a contribution to
MAS research. The agents are part of a norma-
tive framework, and at the same time reason

about and are able to influence these norms. In
this sense norm autonomous agents span the
institutional (or even inter-institutional level)
where norms get their meaning, the inter-indi-
vidual level (groups of where norms are pro-
duced), and the individual level (where the
individual decision making is taking place).
These agents choose which goals are legiti-
mate to pursue, based on a given system of
norms. The agent has the autonomy of generat-
ing its own goals and to choose which it is going
to pursue. Besides, the agent is equipped to
judge the legitimacy of its own goals and other
agents’ goals. When a goal conflict arises (not
to be confused with interest conflict), the agent
may change its norm system, thereby changing
priorities of goals, abandoning a goal, changing
a goal, generating another goal, and so forth.
The reasoning capability of these agents at the
level of norms is called normative reasoning.
Norm autonomous agents generate norms they
can use to evaluate states of the world in terms
of whether or not they could be legitimate
interests. Legitimacy is a social notion and is in
the end determined by the norms of the agent
with respect to the agent society it is part of.
Norm autonomous agents were used to conduct
simulation studies to study the effect of differ-
ent base models on the spreading and internal-
ization of norms within a community of agents
(Verhagen, 2001) contributing to the social
sciences.

DISCUSSION

Recent developments in the social sciences
(and even the natural sciences) such as the
renewed interest in network theory (and the
increased possibilities to use ever more power-
ful computer tools) and the increased focus in
MAS research on likewise concepts (such as
norms, roles, and institutions)—marked by work-
shops such as ANIREM2005, Roles2005,
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NorMAS2005, and the ESAW and RASTA
series of workshops—point to a convergence
of MAS research and social science research
on issues at the level Brante (2001) calls the
institutional level. Even developments in formal
logic (e.g., Broersen, Dastani, Hulstijn, & van
der Torre, 2002; Boella & van der Torre, 2003)
on the integration of the BDI framework with
notions such as obligations are a driving force in
the process. Remaining issues include that most
work within the social sciences is of a descrip-
tive nature, which makes direct application of
them in, for example, solving agent coordination
issues hard. On the other hand, the solution to
agent coordination problems with a focus on an
optimal solution points more to an engineering
view on agent systems than to MAS research
for theory development. The same goes the
other way around; most social science re-
search is based upon empirical observations
and corresponding statistical treatment (or quali-
tative concept development) rather than on
theory development. Thus a happy marriage
between MAS research and the social sciences
will be of interest to only a minority of the
researchers in both fields, but interesting none
the less. The biggest issue is of course the work
on theories crossing Brante’s borders. An ex-
ample of this may be work such as Carley and
Prietula (1994a) on a meso-theory that bridges
the borders between characteristics of the physi-
cal, cognitive, and social world in some way
reminiscent of Habermas’ (1984) description
of these three aspects of (human) reality with
the connected theoretical concepts and para-
digms.
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ABSTRACT

The author builds an agent-based model wherein the societal corruption level is derived from
individual corruption levels optimally chosen by heterogeneous agents with different risk
aversion and human capital. The societal corruption level, in turn, affects the risk-return
profile of corruption for the individual agents. Simulating a multi-generational economy with
heterogeneous agents, the author shows that there are locally stable equilibrium corruption
levels with certain socio-economic determinants. However, there are situations when corruption
can rise until it stifles all economic activity.

“You live in a society where everybody steals. Do you choose to steal? The probability that
you will be caught is low ... and, even if you are caught, the chances of your being punished
severely for a crime so common are low. Therefore you too steal. By contrast, if you live in a
society where theft is rare, the chances of your being caught and punished are high, so you
choose not to steal.” (Mauro, 1998, p. 12)

INTRODUCTION

Understanding the dynamics of corruption level
in a country is crucial for policy formulation.
Can corruption keep rising indefinitely? The
Indian political philosopher Kautilya talks about
corruption as far back as in the 4th century B.C.
It is unlikely that corruption has been rising
continuously for over the last two millennia.
Are there economy-wide forces that determine

the “equilibrium” level of corruption in a coun-
try? Is this equilibrium a steady state or does it
have cycles? What parameters determine its
levels? How does the level of development
affect it? Why is corruption more widespread in
the developing countries than in the industrial
nations? The aim of this chapter is to develop a
dynamic equilibrium model of corruption that
will help us answer these questions.
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Tanzi (1998) and Bardhan (1997) provide
fairly comprehensive surveys of the vast litera-
ture in the area of corruption. While most
theoretical studies of corruption tend to focus
on the micro models of the phenomenon study-
ing individual acts of corruption, the empirical
papers typically study corruption at the country
level. There have been a few macro models of
corruption with micro-foundations, like
Acemoglu and Verdier (1998) and Ehrlich and
Lui (1999), but their implications in a dynamic
setting are not obvious.

The central insight of this chapter is that
corruption at the societal level is the outcome of
individual choice of corruption levels faced
with a risk-return trade-off faced by an indi-
vidual, similar to a portfolio selection problem.
The trade-off, in turn, depends on the overall
corruption level. The higher the level of corrup-
tion, the lower is its risk and rewards. We
develop a multi-generation equilibrium model
using this notion. Each generation consists of
agents varying in their risk-aversion and human
capital endowment. Each agent chooses to
have an individual level of dishonesty (or indi-
vidual corruption) based upon his individual
risk-aversion, human capital endowment, and
his generation’s perception of the societal cor-
ruption level. These choices give rise to a
national level of corruption that determines the
perceptions of the next generation. Given the
difficulty in arriving at a closed-form solution of
the model, simulations are used to arrive at the
results.

The next section discusses the issues in the
definition and measurement of corruption. The
third section lays down the formal model. The
fourth section describes the simulations and
presents the simulation results. The fifth sec-
tion concludes with pointers towards future
research.

DEFINING AND MEASURING
CORRUPTION

Corruption is a slippery concept (see Bardhan,
1997; Tanzi, 1998). At a broad level perhaps it
may be defined as Transparency International
defines it: “abuse of entrusted power for pri-
vate profit.” As recent corporate scandals like
Enron and WorldCom suggest, corruption ex-
ists in the private sector, though the public
sector gets the maximum blame and scrutiny.
For our purposes, a corrupt activity must satisfy
three criteria. It must have a positive expected
economic value to its perpetrators, since other-
wise the perpetrators would have no incentive
to be corrupt. It must carry some risk of socio-
legal censure (else, irrespective of its ethicality,
it must be the custom in the society in question
and cannot be called corruption by the rel-
evant social standards). Finally, it must ad-
versely affect the economy. Corruption could
be welfare-enhancing in the presence of sub-
optimal laws (see Lui, 1985). However, the
empirical evidence convincingly establishes the
ill-effects of corruption (see Mauro, 1995; Cam-
pos, Lien, & Pradhan, 1999; Tanzi & Davoodi,
1997).1 In other words, there is a dead-weight
loss to society because of corruption (see
Schleifer & Vishny, 1993). There are thus both
income-reducing and income-redistributing ef-
fects of corruption.

A key distinction between a corrupt activity
and other illegal activities is that the opportuni-
ties for corruption are not equally available to
every member of society, but rather are highly
correlated with the economic power enjoyed by
an individual. This is not the case with other
forms of illegal activity which are either equally
possible for anyone to perpetrate or depend on
factors not so closely related to economic
power. The model we build in the following
section takes into account this feature.
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The risk of corruption itself is a function of
the level of corruption in society (see Mauro,
1998). It is hard to catch and convict a corrupt
person in a corrupt society. Social tolerance of
corruption also grows after it reaches a certain
threshold level.

Finally, there is no objective measure of
corruption. People—scholars and the laity
alike—have to rely on their perception of
corruption, as do international organizations
like Transparency International. Thus the mea-
sures of corruption available are, at best, noisy.
(This is true for almost all forms of illegal
activities (see Sah, 1991).

Given these features, we can measure the
level of corruption in a society by using an index
between 0 and 1, where 0 corresponds to a
complete lack of corruption and 1 implies a
debilitating level of corruption—that is, the
society produces nothing if corruption level is 1.

In a similar vein, an individual’s level of
corruption (which we shall refer to as the level
of dishonesty simply to distinguish from soci-
etal corruption level) can also be measured by
a dishonesty index ranging between 0 and 1,
where 0 indicates that the individual is com-
pletely honest and steals no part of the eco-
nomic rents available to him or her and 1 means
that the entire available rent is appropriated. It
is important to note that this index is only the
measure of the appropriated rents relative to
the available rents, given the agent’s economic
power. Thus a president with a dishonesty
index of 0.1 is likely to be appropriating much
more economic rent in absolute terms than a
clerk with a dishonesty index of 0.9.

A society’s corruption level is an average of
the dishonesty levels of the individuals. How-
ever, an honest pauper cannot undo the sins of
a corrupt president. The national corruption
index, therefore, should be a weighted average
of the dishonesty indices of the individuals, with
the weights being the economic power (or the

size of available economic rents) enjoyed by the
individuals.

The model described in the next section is
built with these features in mind. It attempts to
link individual choice of corruption levels to
societal levels of corruption. All these features
give our model a much more realistic setting
than in most previous work studying corruption.
These gains in generality, however, come with
the cost that the model ceases to be analytically
tractable. We study the results of our model
using the simulation approach in the spirit of the
increasingly popular bottom up technique of
artificial agent-based modeling (see Epstein
& Axtell, 1996, for an early and well-known
example).2

THE MODEL

The Static Model

Assume an economy comprising n agents. Each
individual i, i=1,…,n , has a certain endowment
of human capital, ki, and an aversion towards
risk summarized by the parameter, bi, in his
utility function, 2ˆ  yiii  - byu σ= , where iŷ  is the
expected income level and 2

yσ  is the variance of
iŷ . An agent is active for only one period, and

thus the human capital has to be used in one go.
‘Human capital’ is defined in its broadest sense
here to refer to the entire human contribution to
the production process. In this sense it is similar
to the quality-adjusted labor input of the neo-
classical growth model.

At the aggregate level we think of the total
output being the result of two basic inputs—
social input S and individual input K. We may
think of K as simply the sum total of the
individual human capital put to use and S as the
institutional set-up—a public good that is es-
sential for creation of value. S may be thought
of as the way production and indeed society
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itself is organized and governed—subsuming
within itself the entire legal and socio-political
and economic framework that channels all indi-
vidual efforts into an orchestrated productive
enterprise. In other words, S captures the net-
work externalities of the social structure which
makes the economy greater than the sum of
its parts. So we have the aggregate production
function, Y = SK.

The parameter S itself is likely to depend on
the level of K. As the average level of human
capital, or ‘knowledge and skills’, rise in soci-
ety, not only do individuals become more pro-
ductive at the micro level, but through the
design of more efficient social systems, raise
the level of social input as well. Assuming a
linear dependence, then Y = αK2 where α = S/
K.

Every individual has a dishonesty index, pi,
i=1,…,n, in the closed interval [0,1]. This index
may be thought of as the proportion of available
rent that the individual appropriates through
corrupt activity. Thus 0 denotes a completely
honest person while 1 signifies a person who
has stolen all that was possible from his position
of economic power. The societal corruption
index, q is the obtained as

i
ni

i kp
K

q ∑
≤

= 1 .

In the presence of corruption, the efficacy
of the social input is reduced as efforts of
individuals result in lesser output. In other words,
Y = {(1-q)S}K. This is the output-reducing
effect of corruption. Therefore q may be inter-
preted as the proportional dead-weight loss of
output owing to corruption. Corruption also has
distributive effects on output. Thus a proportion
q of the total output is now distributed as the
spoils of corruption, while the remainder (1-q)
part of the output goes to the agents as compen-
sation.3 Thus the corrupt people gain at the

expense of the honest. The size of the corrup-
tion pie in the society then is qY. Looked at
from a macro perspective, corrupt individuals
are in a contest to grab a part of this corruption
pie. This characterization of corruption un-
doubtedly treats it just like another form of tax
(e.g., Schleifer & Vishny, 1993).

The spoils of corruption are not risk-free.
We define yc

i to be the income from corruption
of an agent i who is completely dishonest (i.e.
pi =1). This yc

i, then, is a random variable
following a normal distribution.4 Given that
there is likely to be a positive relationship
between the human capital of an agent and his
expected share of the corruption pie, the mean
of the distribution of yc

i is proportional to the
human capital endowment of the agent. It also
depends positively on the size of the pie (qY)
and negatively on the human capital weighted
cumulative efforts of other contenders ( ∑

≠ij ikip

or, for a large enough population, approximately
qK). The variance of the distribution, a mea-
sure of the risk of corruption, is positively
related to the level of effective social capi-
tal,(1-q)S and the proportion of national in-
come devoted to anti-corruption vigilance (γ).
Also the risk is assumed to increase with the
human capital of the individual (ki), simply
because of greater visibility and impact. Anti-
corruption programs are more likely to go for
the big fishes in order to maximize the resulting
catch in money terms for a given investment in
such programs (e.g., the recent convictions of
corporate bigwigs like Martha Stewart and
Dennis Kozlowski in the United States). Thus a
fully corrupt agent’s income from corruption
may be modeled as

)-q)Sk(qY 
qK
kN(y i

ii
c 1 , ~ γ   or

)Skq N(Sky ii
i

c γ)1( , ~ − .
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Notice that ceteris paribus, both the risk
and return of corrupt activity increase with the
quality of the institutional set-up, an assumption
that matches our intuition when comparing
developed nations with developing countries.

An individual can choose his level of corrup-
tion or dishonesty level anywhere between 0
and 1. In choosing this dishonesty level pi, the
agent is, in effect, making a classical portfolio
decision. The entitlement to his income flow
from honest activity {(1-q)S}ki is a risk-less
asset, while the income from his corrupt activ-
ity yc is risky. The weight of this risky asset
depends not only on the distribution of yc

i, but
also on his level of risk-aversion bi.

Therefore, the agent chooses his level of
dishonesty index pi so as to maximize his utility
function ui introduced before. Thus we can
write down his problem as:

[ - 1  1  1  iiii
p

bq)S}{(kpq)S}kq){(-(Max
i

−+−

2])1([ iii kpqSb −γ
     (1)

If we assume that individual agents ignore
the impact they have on the societal corruption
level, then this problem has a simple solution:

q)S(kb
p

ii
i −

=
12

1  2γ .     (1’)

Thus, the individual’s dishonesty level is
decreasing in his risk-aversion, the proportional
expenditure on vigilance, γ, his own human
capital level, and the quality of social institu-
tions, and increasing in the societal level of
corruption. Also, with a very simple model of
risk-averse agents, we have been able to pro-
duce the inverse relation between the level of
development as reflected in human capital en-
dowment (since S is an increasing linear func-

tion of K) and corruption—a well-known styl-
ized fact (see Treisman, 2000).

We must note here that the fact that the
spoils from corruption are stochastic to the
individual agent makes the total claim on output
also stochastic, albeit with a much lower vari-
ance. There is no guarantee then that the total
claims will match up with the output produced.
This problem, however, is not central to the
discussion here and may be assumed away with
the assumption of an external insurer who
absorbs the aggregate shock. This assumption
is quite realistic in today’s world of interna-
tional capital mobility.

The agents, therefore, make their choice of
dishonesty levels based on, inter alia, the soci-
etal corruption level. The societal corruption
level, in turn, is the result of these choices.
Clearly this is a fixed-point problem and it may
not be difficult to prove the existence of a
rational expectation equilibrium in this set-up.
However, it may be closer to reality to assume
an adaptive expectation process where agents
make their choices on their perception of pre-
existing societal corruption. Besides, the rela-
tive levels of human capital should be endog-
enous. This brings us to the multi-period version
of the model.

The Multi-Period Model:
The Evolution of Corruption

Let us assume an overlapping generation model
for the economy with two generations alive at
any one point in time, each generation living for
two periods. The population is constant and
every agent has one offspring. During the first
half of his life, an agent accumulates human
capital through a process that we shall soon
describe and learns about the state of the
society by observing the seniors. That is where
he makes an assessment of the societal corrup-
tion level which he assumes will stay the same
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when in the second half of his life. This adaptive
expectation assumption is more appropriate
here for two reasons. Firstly, the exact level of
corruption depends on the joint distribution of k
and b—too complex to solve for q without
assuming a correlation structure. Secondly,
people’s perception of the social level of cor-
ruption is likely to be influenced by early im-
pressions. Besides, the bounded rationality of
adaptive expectations has been shown to attain
near optimal utility levels in several situations
(see Akerlof & Yellen, 1985; Jones & Stock,
1987; Naish, 1993).

Since both honest and corrupt incomes are
increasing in an agent’s level of human capital,
agents would like to maximize their human
capital. We also assume that the agents care
for their children, leading to a positive correla-
tion between a parent’s realized income and
her offspring’s human capital level. However,
public schooling and individual differences
muddy this relationship. Consequently, the hu-
man capital endowment of an agent consists of
a mixture of two exogenously bounded distribu-

tions: (1) where the relative position of an agent
in the distribution of human capital is given by
that of his parent’s realized income (yi’) in the
income distribution of the previous generation,
and (2) in the uniform distribution between the
bounds. The importance τ is a measure of the
effectiveness of public schooling or political
institutions to break the monopoly of power.
Thus the human capital level is given by:
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where Z ~ U(kmin, kmax).
These assumptions complete a fully dy-

namic model of the society. Note that risk
aversion is randomly distributed among agents
of every generation. In the next section we
study the nature, existence, and stability of
equilibria in this model. Table 1 provides a
glossary of the terms and symbols used in the
model.

Table 1. Glossary of terms

b  Mean of the distribution of b, the risk-aversion parameter in 
the utility function in a generation 

brange Range of b  
S Social capital 
� The ratio of social capital to total human capital 
k  Mean human capital endowment in the first generation 
� Proportion of national income spent on anti-corruption 

vigilance 
pi Individual i’s level of dishonesty, pi ∈ [0,1] 
qt Level of corruption in society in generation t, qt ∈ [0,1]  
qstart Initial value of q based on which agents in the first generation 

make their choices 
� A measure of equality in access to human capital 
qeqm The “equilibrium” (average of last 50 generations) value of q 
yeqm The “equilibrium” (average of last 50 generations) value of y 
qconv The coefficient of variation in q in the last 50 generations 
yconv The coefficient of variation in y in the last 50 generations 
probq Probability that the slope of the trend line through the last 50 

observations of q is zero 
proby Probability that the slope of the trend line through the last 50 

observations of y is zero 
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THE SIMULATIONS

The Method and the Parameters

Given the difficulty in obtaining a closed-form
solution and proof of the dynamic paths of
corruption in the above model, we create an
artificial society and simulate the evolution of
corruption in the society over several genera-
tions.5 The key questions are as follows:

• Evolution of Corruption Level: Run-
away corruption leading to total collapse
of the system, vanishing corruption, or a
more or less steady state level? This dy-
namic behavior of corruption and also
income can be captured by the extent of
convergence in levels of corruption and
income respectively over time.

• Importance of History: The role of ini-
tial corruption level is particularly impor-
tant for countries with high current levels
of corruption like Kenya or Bangladesh.
We study the impact of initial values using
the parameter, qstart.

• Effect of Socio-Economic Variables
on Corruption: Essential for combating
corruption. We study this through the com-
parative statics of our model.

Our simulations create an artificial dynamic
multi-generation society where the agents be-

have in accordance with the decision rule laid
down in the model. Each generation has the
risk-aversion parameter (bi) distributed ran-
domly over the agents according to a uniform
distribution with mean b  and range brange. The
first generation has human capital distributed
according to a uniform distribution with mean k
and range 1. The subsequent generations ac-
quire human capital by the process described
above. Each generation has 1,000 agents, and
100 generations are simulated to study the time
path of societal corruption (q) and national
income (y). The “long-run” values—that is, the
average values of the last 50 generations of the
corruption level q and income y, as well as other
measures of their convergence—are noted.
This process is then repeated 30 times and
average values reported.

This gives us a set of observations for one
particular combination of parameter values. It
is then repeated to scan a section of the param-
eter space. The parameter values considered
are provided in Table 2.

There are six parameters: average ( b ) and
range (brange) of risk-aversion, mean human
capital ( k ), all of the first generation, anti-
corruption expense (γ), degree of access to
human capital (τ), and initial corruption level
(qstart). Three values of each parameter are
examined. This leads to 729 (=36) distinct pa-
rameter combinations. The parameter intervals
were decided with both realism and span in

Panel A. Parameters varied Panel B. Parameters held constant

Table 2.

Average level of risk aversion, b   3 3.5 4 
Range of risk-aversion, brange  1 1.5 2 
Proportion of income spent on vigilance, � 0.1 0.12 0.14 
Mean human capital endowment in the first 
generation, k   

0.5 0.6 0.7 

Equality in access to human capital, � 0.1 0.5 0.9 
Initial value of social corruption, qstart 0.1 0.3 0.5 

Population 1,000 
Number of generations simulated 100 
Number of replications 30 
Range of human capital endowment 1 
The ratio of social capital to total human capital, � ½ 



118

A Dynamic Agent-Based Model of Corruption

mind, though some arbitrariness is unavoid-
able. For parameters with real-life measur-
able counterparts, access to human capital, γ
is unlikely to ever exceed 10-15%. The values
of τ are chosen so that they span most of the
unit interval. Ideally, qstart should also have
done the same, but for our choice of the values
of the other parameters, a level of qstart above
0.6 tends to lead to hyper-corruption.6

Our observation consists of six variables:
steady state corruption and income levels (qeqm,
yeqm), degree of convergence (qconv, yconv), and
steady state indicators (probq, proby). It is,
however, worthwhile to note here that this
technique can only detect stable equilibria.
Since total convergence is not achieved in finite
time, we study the trend and variation in the last
few periods to examine convergence.

In our simulations, we look at the long-run
averages—average over the last 50 genera-
tions—of corruption level q (qeqm ) and national
income y (yeqm) to ascertain the equilibrium
levels. To check convergence we study the
coefficient of variation of values in the last 50
generations and the p-value of the hypothesis
of zero slope of the regression line through the
last 50 values (probi where i = q or y). The
results are discussed in the following section.

Hyper-Corruption

We refer to the situation where the societal
corruption level is 1 and no economic value is
created has hyper-corruption. Some coun-
tries (like Zaire or Kenya) have at times come
close to completely dysfunctional economies,
owing to crippling levels of corruption. At or
near this state of hyper-corruption or
kleptocracy, social institutions themselves
change and new power structures emerge
through events like political disintegration of a
nation or a revolution. While our model does not
cover such changes, we allow for the possibility

of hyper-corruption and identify parameter com-
binations that might lead to it.

There are, indeed, certain regions of the
selected parameter space that lead to hyper-
corruption with near certainty. Here we dis-
cuss a few of them. For instance, consider
keeping initial average risk aversion b  at 4, its
range brange at 1, initial average human capital
endowment k  at 0.5, access to human capital τ
at 0.1, and anti-corruption expense γ at 0.1. Any
initial corruption level qstart above 0.66 is now
almost sure to lead to hyper-corruption. Alter-
natively, combinations like a qstart of 0.1, γ
below 0.06 or γ of 0.1, and b  below 2 almost
surely cause hyper-corruption. The behavior of
societal corruption is not smooth near these
critical points. For instance, in the first ex-
ample, a qstart of 0.65 leads to equilibrium
corruption of only 0.12. In the second case, a γ
of 0.07 leads to a long-run value of only 0.25,
and in the third case, a b  value of 2.3 results in
a long-run value of 0.25.

The topography of corruption in a segment
of our parameter space appears to be a rela-
tively smooth valley (as will be revealed by later
results) surrounded by sudden steep peaks.
Most real-life societies reside in these valleys
which we analyze subsequently. However, the
state of hyper-corruption is the social counter-
part of a ‘black hole’, with its deadly circumfer-
ence of attraction extending in all dimensions.
Once countries stray into its threshold, they are
sucked in inescapably.

Simulation Results: The Time Path
of Corruption and Income

We cover 729 distinct parameter combinations
in our simulations. The overall average ‘long-
run’ (last 50 generations’ average) value is
0.078. The value itself is of little importance. It
is the pattern of the time paths and degree of
convergence that are of real interest. The
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range of long-run values is fairly large, from a
low of 0.028 to a high of about 0.237, certifying
the spanning abilities of the chosen section of
the parameter space.

To check convergence, we look for the
absence of a trend in the last 50 values of q (or
y) and the coefficient of variation in these
values. The p-values of the hypotheses of flat
regression lines through the last 50 values of q
and y, probq, and proby, measure the probabil-
ity of absence of a trend. The coefficients of
variation qconv and yconv record the degree of
convergence.

The mean, minimum, and maximum of both
probq and proby are about 0.82, 0.19, and 1
respectively.7 Only 43 of the 729 values of
probq lie below 0.5.8 The coefficient of varia-

tion in the last 50 generations has an average of
about 0.03 for both q and y, and a maximum of
0.14 for q and 0.11 for y. It appears that the
process stabilizes in 100 generations in most
cases. The descriptive statistics of the different
variables are presented in Table 3. Time paths
of corruption and income for a particular pa-
rameter combination are shown in Figure 1 for
illustration.

Comparative Statics: Effects of
Socio-Economic Parameters

Panel A of Table 4 provides average values of
the variables of interest for all parameter val-
ues considered. Panel B presents the results of
regressions of each variable on the different
parameters. These regressions do not assume
linear causality. They simply constitute a pre-
sentation format of the comparative statics
results.

The negative effect of average risk aver-
sion on corruption is intuitive as more risk-
averse people must be honest according to our
model. The negative impact of initial mean
human capital level k  is also expected, since
the individual choice of dishonesty level is

Table 3. Descriptive statistics

Variable Mean Std. Dev. Min Max 
qeqm 0.07869 0.04211 0.02768 0.23683 
yeqm 169251 48904.3 96093.1 238475 
qconv 0.02974 0.02216 0.01119 0.13675 
yconv 0.02917 0.01925 0.01153 0.10894 
probq 0.81187 0.15651 0.18954 0.99941 
proby 0.82106 0.15078 0.19024 0.99972 
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Figure 1. An illustrative example of time paths of corruption level and income (all parameters
held at their mid-values: one replication only)
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inversely affected by k  (through social capital
S) in equation 1. In similarly higher anti-corrup-
tion efforts, γ reduces corruption by making it
more risky.

There are, however, a few non-obvious
results—for instance, the effect of initial dis-
persion of risk-aversion brange or τ on the equi-
librium values of corruption and income. The
simulations reveal that a wider dispersion in risk
aversion raises corruption and cuts income in
the long-run. The degree of equality to human
capital τ, on the other hand, leaves the equilib-
rium corruption level unaffected, but raises
income in the long run and helps immensely in
attaining convergence in both corruption and
income.

Regarding better vigilance, while q
expectedly decreases with anti-corruption ef-
forts γ, the net economic gains from greater
vigilance is not obvious. The average values in
Panel A of Table 4 provide some clues. Raising
γ by 2 percentage points first raises the the
equilibrium income by a full 4%. The second

such raise leads only to a 2.1% increase. Ap-
parently, raising vigilance does pay in terms of
higher equilibrium income, but has diminishing
marginal returns.9

The initial level of corruption does not seem
to affect the long-run levels of corruption or
income. Long-run levels of corruption in societ-
ies are evidently the results of their socio-
economic fundamentals and not the initial val-
ues. In other words, the equilibria are locally
stable over the section of the parameter space
explored.

CONCLUSION AND
FUTURE RESEARCH

Building a multi-generational agent-based model
with heterogeneous, risk-averse agents and
using simulations, this chapter shows that soci-
eties have locally stable equilibrium levels of
corruption that depend on a small number of
socio-economic parameters. However under
certain combinations of these parameter val-
ues, it is possible for corruption to go on an
ever-increasing trajectory until it stifles all eco-
nomic activity. The equilibrium levels of cor-
ruption depend primarily on the degree of risk
aversion, the proportion of national income
spent on anti-corruption vigilance, and the level
of human capital in the society.

Table 4.

Panel A. Average values of variables by
parameter levels

Panel B. t-statistics of coefficients in
regressions of variables on parameters

    qeqm yeqm qconv yconv probq proby 
  3 0.095 165957 0.031 0.030 0.806 0.818 
b  3.5 0.076 169676 0.030 0.029 0.837 0.844 
  4 0.064 172119 0.029 0.028 0.792 0.801 
  1 0.076 171018 0.030 0.029 0.812 0.821 
brange  1.5 0.078 169363 0.030 0.029 0.810 0.819 
  2 0.082 167371 0.029 0.029 0.814 0.823 
  0.5 0.113 112262 0.042 0.041 0.807 0.821 
k  0.6 0.073 164846 0.026 0.025 0.821 0.828 
  0.7 0.050 230644 0.022 0.022 0.808 0.814 
  0.1 0.079 167006 0.055 0.051 0.718 0.726 
� 0.5 0.079 170357 0.020 0.021 0.843 0.855 
  0.9 0.078 170389 0.014 0.015 0.874 0.882 
  0.1 0.115 163640 0.033 0.032 0.801 0.817 
� 0.12 0.072 170238 0.029 0.029 0.831 0.838 
  0.14 0.050 173874 0.027 0.027 0.803 0.809 
  0.1 0.079 169259 0.030 0.029 0.808 0.819 
 qstart 0.3 0.079 169274 0.030 0.029 0.813 0.821 
  0.5 0.079 169219 0.030 0.029 0.814 0.823 

  b  brange  k  � � qstart  
qeqm -21.79 3.70 -43.90 -0.61 -45.10 0.03 
yeqm 13.60 -8.05 261.29 7.47 22.59 -0.09 
qconv -1.71 -0.59 -18.37 -36.53 -4.94 0.05 
yconv -1.67 -0.66 -21.71 -40.77 -5.04 0.04 
probq -1.11 0.11 0.05 12.01 0.18 0.48 
proby -1.35 0.13 -0.55 12.61 -0.67 0.36 
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By providing a structure to the phenomenon
of corruption and other socio-economic vari-
ables, the present study helps us better under-
stand the myriad empirical findings in the re-
cent literature.

Religious traditions and culture may affect
morality and risk-taking behavior of agents in a
society and the dispersion therein. Legal origin
may well affect the industrial organization—α
in our model. A higher level of development
may be reducing corruption through a higher
level of human capital endowment as in our
equation 1. Democratic institutions may be
working through more egalitarian access to
human capital (τ) and structure of the state—
federal vs. unitary—may be affecting the overal
anti-corruption expenditures (γ) or affecting
the industrial organization (α).

Many questions persist. What determines a
society’s risk aversion? How exactly do reli-
gious or cultural factors affect it? What is the
role of institutions and how do they relate with
the model presented here? What factors, other
than human capital, affect S?

Societies in transition appear to have more
corruption than others—whether a transition
from a pastoral/feudal structure to an industrial
structure (as in Africa) or that from a socialist
system to a market-oriented one (the former
republics of the USSR). Is it possible that at a
transition, the society’s old familiar ways of
organizing production give way to a new indus-
trial organization opening up a window of low
social capital S that unleashes a wave of cor-
ruption? Could this lead to hyper-corruption?

Calibrating the model with empirically ob-
served variable value may provide important
policy suggestions, allowing governments to
actually affect the socio-economic factors driv-
ing corruption. Agent-based modeling can help
answer several of these questions and poses a
promising research agenda in an area important
to policymakers, academics, and citizens alike.
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ENDNOTES

1 As the Mission Statement of Transpar-
ency International puts it: “Corruption is
one of the greatest challenges of the con-

temporary world. It undermines good gov-
ernment, fundamentally distorts public
policy, leads to the misallocation of re-
sources, harms the private sector and
private sector development and particu-
larly hurts the poor…” (also see Schleifer
& Vishny, 1993).

2 See Leigh Tesfatsion’s instructive and
useful Web site http://www.econ.iastate.
edu/tesfatsi/ace.htm for an up-to-date
guide to the growing literature in the area.

3 This is done for simplicity. The two pro-
portions do not need to be the same, but
presumably both would be proportional to
the level of corruption.

4 It might appear, at first glance, that a
person can only have two possibilities—
get away with corruption or get caught.
However, we must remember that we are
not talking about a single act by the agent,
but the level of honesty he practices
throughout his career. Normal distribution
then becomes the obvious choice for char-
acterizing his returns from his whole ca-
reer or a part of it.

5 The GAUSS code for running the simula-
tions is available on request.

6 Discussed in detail in the next sub-sec-
tion.

7 The similarities in the distributions of probq
and proby are intuitive, as a trend in q is
likely to cause a trend in y.

8 The corresponding number for proby is
37.

9 This is without considering other social
benefits of reduced corruption.
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ABSTRACT

This chapter pleads for more inspiration from human nature in agent-based modeling. As an
illustration of an effort in that direction, it summarizes and discusses an agent-based model
of the build-up and adaptation of trust between multiple producers and suppliers. The central
question is whether, and under what conditions, trust and loyalty are viable in markets. While
the model incorporates some well-known behavioral phenomena from the trust literature,
more extended modeling of human nature is called for. The chapter explores a line of further
research on the basis of notions of mental framing and frame switching on the basis of
relational signaling, derived from social psychology.

INTRODUCTION

For the object of study, I choose trust for
several reasons. First, if anything is human, it is
(dis)trust. Second, if anything is subject to
adaptation, it is trust in its build-up and break-
down, and as both the basis for a relationship
and its outcome. Third, trust forms an important
issue in economics, and in behavioral science
more widely. Trust is needed to limit transac-
tion costs and costs of contracting and control.
In the literature on transaction costs and inter-
firm relations, there has been a debate whether
trust can exist in markets, under pressures of

competition. Agent-based simulation seems an
appropriate tool for experimentation, to investi-
gate under what conditions trust is viable in
markets.

Many attempts have been made at agent-
based modeling of trust and related issues. The
purpose of trust models varies widely. Gener-
ally, they study emergent properties of complex
interaction that would be hard or impossible to
tackle analytically. Some study the effective-
ness of sanctions and/or reputation mecha-
nisms and agencies to support them, for ex-
ample, in information systems or supply chains
(Zacharia et al., 1999; Meijer & Verwaart,
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2005; Diekmann & Przepiorka, 2005), or in
artificial societies (Younger, 2005). Some study
self-organization, for example, in the internal-
ization of externalities in a common pool re-
source (Pahl-Wostl & Ebenhöh, 2004), the
emergence of leadership in open-source com-
munities (Muller, 2003), or the emergence of
cooperative social action (Brichoux & Johnson,
2002). Others investigate the working of deci-
sion heuristics (Pahl-Wostl & Ebenhöh, 2004;
Marsella, Pynadath, & Read, 2004).

The general set-up is that of multiple agents
who can profit from each other, but who are
uncertain about the quality or competence that
is offered, sometimes allowing for multiple di-
mensions of quality, and dependencies between
them (Maximilien & Singh, 2005). Other stud-
ies focus on the benevolence or intentions of
agents—that is, absence of cheating in free-
ridership, defection, or expropriation of knowl-
edge or other resources—and many look at
both competence and intentions (Castelfranchi
& Falcone, 1999; Pahl-Wostl & Ebenhöh, 2004;
Breban, 2002; Muller, 2003; Gans et al., 2001).
This is in line with the distinction made in the
trust literature between competence trust and
intentional trust (e.g., Nooteboom, 2002).

Mostly, agents are oriented only towards
their self-interest, such as maximum profit, but
some studies also allow for fairness and equity
as objectives or dimensions of value (Pahl-
Wostl & Ebenhöh, 2004). Mostly, trust is mea-
sured as a number between 0 and 1, and,
following Gambetta (1988), is often interpreted
as a subjective probability that goals will be
achieved or no harm will be done. Mostly,
conduct is individual, but sometimes allowance
is made for coalitions (Breban, 2002).

Few studies of defection explicitly model
both sides of the coin: the expectation of defec-
tion by others (trust) and one’s own inclination
to defect (trustworthiness). Also, most studies
treat trust as of purely extrinsic value in the

achievement of profit, and do not include the
possible intrinsic value of trust. Notable excep-
tions are Pahl-Wostl and Ebenhöh (2004) and
Marsella et al. (2004).

Trust is generally updated on the basis of
experience: sometimes only one’s own experi-
ence in interaction, sometimes (also) on the
basis of reputation mechanisms, sometimes
with the services of some “tracing agency”
(Zacharia et al., 1999; Meijer & Verwaart,
2005; Diekman & Przepiorka, 2005). Few stud-
ies are based on an explicit inference of com-
petence or intentions, and even fewer studies
explicitly model the decision heuristics used.
Exceptions here also are Pahl-Wostl and
Ebenhöh (2004) and, with great psychological
sophistication, Marsella et al. (2004). Those
studies will be considered in more detail later. A
key question is whether agents have ‘a theory
of mind’ on the basis of which they attribute
competencies and intentions to others.

While most studies model trust as adaptive,
in the sense that it develops as a function of
private or public experience, there is very little
study, as far as I know, of adaptiveness of the
importance attached to trust relative to profit,
and of the adaptiveness of one’s own trustwor-
thiness or inclination to defect.

In this chapter, by way of illustration, a
model is discussed with some of these features.
It focuses on intentional trust, in terms of
loyalty or defection, based on private experi-
ence (no reputation effects). Trust is adapted
on the basis of observed defection, but only
with simple reinforcement, without theory of
mind and explicit decision heuristics. Next to
trust, it includes trustworthiness—that is, incli-
nation to defect. Trustworthiness and the im-
portance attached to trust are both adaptive as
a function of experience.

The central purpose of the study is theoreti-
cal: to investigate whether the claim of transac-
tion cost economics that trust cannot survive
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under competition (Williamson, 1993) is cor-
rect. Under what conditions, if at all, are trust
and trustworthiness viable in markets where
the performance criterion is purely profit? The
analysis is conducted in the context of transac-
tion relations between multiple buyers and sup-
pliers, which is the classical setting for the
analysis of transaction costs. Thus, the present
chapter is related to other sections of the present
volume on industrial structures and innova-
tion and supply chain management.

This chapter proceeds as follows. First, it
summarizes this example of an agent-based
computational model of trust. Second, it ex-
plores possibilities to proceed further in this
direction, in an attempt to bring more human
nature into the modeling of trust, in the employ-
ment of decision making heuristics offered by
social psychology.

A MODEL OF ADAPTIVE TRUST

Trust

Trustworthiness may be based on self-interest,
but also on benevolence, based on solidarity or
loyalty. This is related to two different defini-
tions of trust. According to one definition, trust
entails vulnerability of the trustor to possibly
harmful actions of the trustee, with the expec-
tation that, for whatever reason, no great harm
will be done. The reasons for this expectation
may include control or deterrence, in which the
trustee refrains from opportunism either be-
cause he has no opportunity for it, due to
contractual or hierarchical constraints, or no
incentives for it, since he is dependent on the
trustor or wishes to protect his reputation. For
this general notion, which includes safeguards
on the basis of control, Nooteboom (2002)
proposed not to use the term trust but the more
general term of reliance. Reasons for trust-

worthiness may also include motives that go
beyond (narrow) self-interest, such as the wish
to behave appropriately, according to social or
moral norms or values, or empathy or identifi-
cation with the trustor, in combination with
feelings of sympathy, friendship, or solidarity
(MacAllister, 1995; Lewicki & Bunker, 1996).
This is what people mostly mean by the term
trust.

Is Trust Viable in Markets?

I will summarize and discuss a model of the
emergence and adaptation of trust published by
Klos and Nooteboom (2001). The purpose of
the model was to develop a tool for assessing
the viability of trust, in the sense of benevo-
lence, between firms in markets. That is a
much-debated issue (for a survey, see
Nooteboom, 2002). Economics, in particular
transaction cost economics (TCE), doubts the
viability of benevolence on the argument that
under competition, in markets, firms are under
pressure to utilize any opportunity for profit
(Williamson, 1993). However, especially under
the uncertainty and volatility of innovation, re-
liance on the basis of control—such as com-
plete contracts, but also reputation mecha-
nisms—is infeasible or unreliable, so that be-
nevolence is especially needed as a basis for
governance, as a substitute or complement for
necessarily incomplete contracts (Nooteboom,
1999, 2004) and reputation mechanisms. Thus,
it is of some theoretical and practical impor-
tance to investigate whether, or when, benevo-
lence may be viable. I propose that benevo-
lence, going beyond calculative self-interest,
can exist in markets but is nevertheless subject
to circumstances, such as pressures of survival,
depending on intensity of competition and the
achievement of profit (Pettit, 1995), and expe-
rience. The purpose of the model is to explore
these circumstances.
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To serve its purpose, the model should in-
corporate essential elements of TCE logic.
TCE proposes that people organize to reduce
transaction costs, depending on conditions of
uncertainty and specific investments, which
yield switching costs and a resulting risk of
hold-up. The model employs TCE logic, but
also deviates from TCE in two fundamental
respects. First, while TCE assumes that opti-
mal forms of organization will arise, yielding
maximum efficiency, that is problematic. The
making and breaking of relations between mul-
tiple agents with adaptive knowledge and pref-
erences may yield complexities and path-de-
pendencies that preclude the achievement of
maximum efficiency. Even if all agents can in
principle access all relevant partners and have
relevant knowledge about them, actual access
depends on competition for access, and on
unpredictable patterns of making and breaking
relations among multiple agents. Second, while
TCE assumes that reliable knowledge about
loyalty or trustworthiness is impossible
(Williamson, 1975), so that opportunism must
be assumed, it is postulated here that to some
extent trust is feasible, by inference from ob-
served behavior.

The methodology of agent-based computa-
tional economics (ACE) is well suited to model
complexities of multiple interactions, and to see
to what extent theoretical benchmarks of maxi-
mum efficiency can in reality be achieved. It
enables us to take a process approach to trust
(Zand, 1972; Zucker, 1986; Smith Ring & van
de Ven, 1994; Gulati, 1995), by modeling the
adaptation of trust and trustworthiness in light
of experience in interaction.

The Model

In the model, buyers and suppliers are matched
on the basis of preferences that are based on
both trust and potential profitability, where trust

can also have intrinsic value. This matching,
depending on the preferences agents make,
continues or breaks transaction relations. Trust
is based on observed loyalty of partners—that
is, absence of switching to a different partner.
In line with industrial economics, profit is a
function of product differentiation (which in-
creases profit margin), economy of scale from
specialization, and learning by cooperation in
ongoing relations. Use is made of the notion
(from TCE) of specific investments in relation-
ships. Those have value only within the rela-
tionship, and thus would have to be made anew
when switching to a different partner. Specific
investments yield more differentiated products
with a higher profit margin. Economy of scale
yields an incentive for buyers to switch to a
supplier who supplies to multiple buyers, which
yields a bias towards opportunism, in breaking
relations with smaller suppliers. However, this
can only be done for activities that are based on
general-purpose assets, not relation-specific
investments for specialty products.

The percentage of specialty products is
assumed to be equal to the percentage of
specific investments as a parameter of the
model that can be set. The specialty part, which
is relation specific, yields higher profit and is
also subject to learning by cooperation, as a
function of an ongoing relation. Thereby, it
yields switching costs and thus yields a bias
towards loyalty.

In sum, the model combines the essential
features of TCE: opportunism by defection, spe-
cific investments, economy of scale for non-
specific investments, and switching costs. How-
ever, the model adds the possibility of trust as a
determinant of preference, next to potential profit.

In the model, agents are adaptive in three
ways. In the preference function, specified in
an appendix, the relative weights of potential
profit and trust are adaptive as a function of
realized profit. In this way, agents can learn to
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attach more or less weight to trust, relative to
potential profit. Agents adapt their trust in a
partner as a function of his loyalty, exhibited by
his continuation of the relationship. As a rela-
tion lasts, trust increases incrementally, but
with decreasing returns, and it drops discon-
tinuously when defection occurs. Agents also
adapt their own trustworthiness, modeled as a
threshold of exit from a relation, on the basis of
realized profit. Agents only defect, in switch-
ing, when incremental preference exceeds the
threshold. This models the idea that while agents
maybe loyal, that has its limits. Thus, agents can
learn to become more or less trustworthy in the
sense of being loyal.

Note that adaptation of both the weight
attached to trust and the threshold of defection
occurs on the basis of realized profit. This
biases the model in favor of Williamson’s (1993)
claim that trust cannot survive in markets. In
the model, trust and trustworthiness can only
emerge when they enhance realized profit. The
model allows us to explore under what condi-
tions, in terms of parameter settings, trust and
loyalty increase or are stable—that is, when
they are conducive to profit and hence viable in
markets.

Starting values of agent-related parameters,
such as initial trust, threshold of defection, and
weight attached to trust, can be set for each
agent separately. This allows us to model ini-
tially high or low trust societies in setting pa-
rameters accordingly for all or most agents, or
to model high trust agents in low trust societies,
and vice versa, to study whether and when trust
is viable or is pushed out by opportunism. Other,
non agent-related parameters, such as the per-
centage of product differentiation and specific
assets, strength of economy of scale, strength
of learning by cooperation, speed with which
trust increases with duration of a relation, num-
ber of buyers, number of suppliers, and number
of time steps in a run, are fixed per experiment.

In sum, the model is set up to experiment
with conditions for trust to grow or decline, as
a function of realized profit, depending on trade-
offs between advantages of defection (for
economy of scale) and advantages of loyalty (in
learning by doing in an ongoing relationship).
Further technical details of the model are speci-
fied in Appendix A.

Simulation Results

Initial expectations were as follows:

• In interactions between multiple, adaptive
agents, maximum efficiency is seldom
achieved, due to unforeseeable complexi-
ties of interaction.

• In conformance with TCE, in the absence
of trust, outsourcing occurs only at low
levels of asset specificity.

• High trust levels yield higher levels of
outsourcing at all levels of asset specific-
ity.

• Under a wide range of parameter settings,
high trust levels are sustainable in mar-
kets.

• The choice between an opportunistic
switching strategy and loyalty depends on
the relative strength of scale effects and
learning by cooperation.

All these expectations are borne out by
recent simulation experiments (Gorobets &
Nooteboom, 2005). Of course, simulation is not
equivalent to empirical testing. The test is vir-
tual rather than real. It has only been shown
that under certain parameter settings, emer-
gent properties of interaction satisfy theoretical
expectations. The significance of this depends
on how reasonable the assumptions in the model
and the parameter settings are considered to be.

The overall outcome is that both trust and
opportunism can be profitable, but they go for
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different strategies. This suggests that there
may be different individual agents or communi-
ties, going for different strategies, of switching
or of loyalty, which settle down in their own
self-sustaining systems. If we compare across
the different settings of high, medium, and low
initial trust, under different conditions concern-
ing the strength of scale effect relative to
learning by cooperation, and concerning initial
weight attached to trust and initial thresholds of
defection, profit declines more often than it
increases, as we go from high to low trust.
Further details are given in Appendix B.

The following paradox emerges from the
analysis. Potential profit from learning by coop-
eration is highest for the highest level of product
differentiation, but precisely then, when trust is
low, buyers prefer to make rather than buy, and
thereby forego the opportunities for learning by
cooperation. When buyers focus on profitabil-
ity rather than trust, profit from economy of
scale is instantaneous while learning by coop-
eration is slow, and the potential for economy of
scale is low at high levels of differentiation.
Thus, under low trust and low weight attached
to it, buyers lock themselves out from the
advantages of collaboration. When they
outsource, it is mostly at low levels of differen-
tiation, when learning by cooperation yields
only modest returns, but then they learn to
appreciate its accumulation in lasting relation-
ships. They wind up in outsourcing at high
differentiation only by mistake, then learn to
appreciate it, and once learning by doing gets
under way, a focus on profit keeps them in the
relationship. In time, as profit turns out to be
consistent with loyalty and trust, they learn to
attach more weight to them.

This illustrates a principle noted before in
the trust literature. As a default—that is, a
stance taken until reasons for an alternative
stance appear (Minsky, 1975)—trust is to be
preferred to distrust. Excess trust can be cor-

rected on the basis of experience with untrust-
worthy partners, while distrust prevents one
from engaging in collaboration to learn that
partners are in fact trustworthy, if that is the
case.

MORE HUMAN NATURE

Discussion of the Model

In the model, human nature is modeled to some
extent. Trust is reinforced, incrementally, by
observed loyalty, and drops discontinuously in
case of observed disloyalty. In evaluating an
actual or potential relationship, agents consider
both potential profitability and trust they have,
and the weight attached to the one relative to
the other is adapted on the basis of experience,
in the form of past profit. Similar adaptation
applies to their own trustworthiness (absence
of defection).

However, modeling of cognition and deci-
sion making is still primitive in that:

• The rationality of agents is bounded in that
they do not take into account opportunities
that they have no own experience with,
but that are observable. In particular, non-
trusting agents who rob themselves of the
opportunity to learn that collaboration and
loyalty may be profitable do not learn from
observing such profit of more trusting
competitors.

• In assessing trustworthiness from observed
behavior, agents are myopic, looking only
at their own experience with the agent. In
other words, the model does not contain a
reputation mechanism and gossip.

• Adaptation is highly automatic, in combi-
nation with random shifts. There is no
modeling of processes of inference and
decision making, and of the emotions in-
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volved. The model does not incorporate a
theory of mind.

The first two shortcomings can be repaired
without a fundamental shift of model design, by
including spillovers of experience in a reputa-
tion mechanism, where profits and experiences
of loyalty of (some or all) other agents contrib-
ute to one’s adaptation. The third shortcoming
is much more fundamental, since it requires the
modeling of social-cognitive processes. Op-
tions for doing this are explored in the remain-
der of this chapter.

More Human Nature
from Other Studies

Two studies I found stand out in their dealing
with human nature in processes of inference
and decision making. Pahl-Wostl and Ebenhöh
(2004) emphasize a human approach in terms
of decision heuristics and mental frames that
agents select from, such as a frame oriented
towards cooperation or towards maximizing, as
well as switching between frames as a function
of experience. They recognize a range of rel-
evant mental categories in cooperative behav-
ior: cooperativeness, fairness (concerning oth-
ers and concerning me), conformity, reciproc-
ity (positive and negative, in retribution), risk
aversion, commitment, and trustworthiness (not
being opportunistic). A large and necessary
step in the modeling of agents is to equip them
with a theory of mind—that is, a basis for
inferring competencies and intentions of other
agents, as a basis for their decision making.
This route of taking decision heuristics known
from social psychology is also taken, with im-
pressive sophistication, by Marsella et al. (2004)
in their development of virtual agents. This
modeling of beliefs, influence, and belief change
is intended as a training device, for example, for
teachers to learn how to deal with bullies in the
classroom.

I am confident that this is the way to go, for
some applications at least. Reich (2004) pleads
for the use of formal logic in the analysis of
reactions to actions, and anticipated reactions
to that, on the basis of decision rules. That is no
doubt valid, but a socio-cognitive theory is
needed to specify those rules. Below, I elabo-
rate some further ideas to proceed along this
line of bringing in more human nature, also
using insights from social psychology.

Deliberative and Automatic
Response

The trust literature recognizes a duality of
rational and automatic response. In social psy-
chology, Esser (2005) also recognized rational
deliberation and automatic response as two
modes of information processing. However,
the non-deliberative or automatic mode seems
to split into two different forms: unemotional
routine and emotion-laden impulse, out of faith,
friendship, suspicion, in a leap of faith or a
plunge of fear.

Emotions, which determine availability to
the mind, as social psychologists call it, may
generate impulsive behavior and may trigger a
break of routinized behavior. A question then is
whether the latter automatically triggers an
automatic response, or whether an emotionally
triggered break with routine can lead on to a
rational deliberation of response. For that, the
emotion would have to be somehow neutral-
ized, controlled, supplemented, or transformed
for the sake of deliberation. In the build-up
and breakdown of trust, this is of particular
importance in view of the indeterminacy of
causation. Expectations may be disappointed
due to mishaps, lack of competence, or op-
portunism, and it is often not clear which is
the case.

If a relationship has been going well for
some time, trust and trustworthiness may be
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taken for granted, in routinized behavior. A jolt
of fear from exceptional events may be needed
to break out of the routine, but in view of the
causal ambiguity of what went wrong, one
may need to give the trustee the benefit of the
doubt, allowing for mishaps or lack of compe-
tence, rather than jumping to the conclusion of
opportunism. When does this happen and when
not?

In the trust literature, it has been proposed
that as a relationship develops, at some point
reliance (whether it is based on control or trust)
is based on cognition—that is, on knowledge
concerning the intentions and capabilities of a
trustee. Subsequently, actors may develop em-
pathy, understanding of how a partner feels
and thinks, and next partners may develop
identification, where they see their fortunes
as connected and they start to feel and think
alike (McAllister, 1995; Lewicki & Bunker,
1996). As noted by Luhmann (1980), when
people start to cooperate, they get the chance
to adopt each other’s perspectives. In empathy
trust may be associated with feelings of solidar-
ity and in identification with feelings of friend-
ship. In going from knowledge-based trust to
empathy and identification-based trust, behav-
ior appears to become less deliberative and
more automatic, due to both emotions and
routinization.

Mental Framing

The question now is how we can further clarify
the trust process, in terms of how people think
and judge, making and adapting interpretations
and choices of action, in a fashion that is
amenable, at least in principle, to inclusion in an
agent-based model.

For this, I employ the notion of mental
“framing”, adopted from sociology and social
psychology (Lindenberg, 2000, 2003; Esser,
2005). According to Esser, a mental frame is a
“situation-defining orientation” that consists of

“two simultaneously occurring selections: the
selection of a mental model of the situation on
the one hand and that of the mode of informa-
tion processing in the further selection of
action”(Esser, 2005, p. 95, present author’s
translation from the German). Thus, a mental
frame is also associated with action scripts of
response appropriate for enacting the frame.
For mental frames, Lindenberg (2003) recog-
nized three: “acting appropriately” (AA), also
called the “solidarity frame” (Wittek, 1999);
“guarding one’s resources” (GR), to ensure
survival; and a “hedonic frame” (H), where one
gives in to temptations for gratifying the senses.

These three frames are adopted here be-
cause they align closely with the distinction, in
the trust literature, between benevolence and
opportunism, with the latter including both
pressures of survival, which seems close to
guarding one’s resources, and vulnerability
to temptation when it presents itself, which
seems close to the hedonic frame. The frames
may support or oppose each other, and while at
any moment one frame is salient, in determin-
ing behavior, conditions may trigger a switch to
an alternative frame.

If frames serve to both define a situation
(Esser, 2005) and to guide actions (Lindenberg,
2000, 2003), how are these two combined? As
noted by Luhmann (1984, p. 157), in interaction
people start building expectations of each oth-
ers’ expectations, on the basis of observed
actions. According to the notion of relational
signaling (Lindenberg, 2000, 2003; Wittek 1999;
Six, 2004), the actions that a trustee undertakes,
triggered by a mental frame, in deliberation or
automatic response, constitute relational sig-
nals that are observed and interpreted by the
trustor.

For frame selection I propose the following.
The trustee selects a frame, which generates
actions that function as signals to the trustor,
who on the basis of these signals attributes a
salient frame to the trustee and selects a frame
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for his own response, in the selection of a script,
which generates actions taken as signals by the
trustee, who attributes a frame to the trustor
and selects his own frame. This yields a cycle
of selection and attribution, in ongoing interac-
tion, as illustrated in Figure 1. Note that while a
trustor (trustee) may select the same frame as
the one attributed to the trustee (trustor), in
what amounts to a tit-for-tat response, this is
not necessarily the case. One may persevere in
acting benevolently in the face of opportunism,
and one may opportunistically exploit the be-
nevolent. Along this cycle, in deliberative re-
sponse people may try to anticipate effects of
actions, their signaling, and the response in
attribution, selection, and action. This models
Luhmann’s notion of the formation of expecta-
tions of expectations.

The following questions remain:

1. How, more precisely, do frame selection
and attribution take place?

2. How does frame selection lead to action?
3. What determines automatic or deliberative

response (in selection and attribution)?

Here, these questions cannot all be an-
swered. For answers, use can be made of
decision heuristics recognized in social psy-
chology (for a survey, see Bazerman, 1998; for
further elaboration, see Kahneman, Slovic, &
Tversky, 1982). Here, I reflect a little further on
how frame selection and attribution might be
modeled.

Selection and Attribution

The salience, and hence stability, of a frame
and the likelihood of switching to a subsidiary
frame depends on whether it is supported by
those other frames. For example, acting appro-
priately in a trustworthy fashion is most stable
when it also builds resources and satisfies
hedonic drives. One will switch to a frame of

Figure 1. Cycle of frame selection and attribution

Trustee selects a frame

Trustee enacts his frame
Trustee attributes a
frame to trustor

Trustee interprets
actions as signals

Trustor enacts his frame

Trustor selects a frame

Trustor attributes a
frame to trustee

Trustor interprets
actions as signals
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self-interest when temptation or pressure ex-
ceeds one’s ability to resist. Conversely, one
will switch from a self-interested to an other-
directed frame when threat or temptation sub-
sides and loyalty assumes more prominence.
Decision heuristics from social psychology may
be used to understand how this happens
(Nooteboom, 2002).

Attribution of a self-interested frame (H,
GR) to the trustee seems likely to trigger the
defensive selection of a similar frame by the
trustor, particularly when the attribution is based
on strong triggers (availability) of fear of loss,
in what amounts to a tit-for-tat strategy. How-
ever, that is not necessarily the case, even
when the attribution is automatic rather than
deliberative. People may control a shock of
fear of loss and stick to an other-directed frame
(AA), in several ways. Firstly, such a response

may be deliberative, in the realization that a
misinterpretation may be at play, with a mis-
attribution of opportunism where in fact a mis-
hap or lack of competence may be the cause of
failure. However, this may be a psychologically
difficult feat to achieve, and one may need the
sobering caution from a third party or go-
between. See Nooteboom (2002) for an analy-
sis of roles that go-betweens can play in the
building and maintenance of trust.

The trustor may respond with a different
frame from the one he attributed to the trustee,
and both attribution and selection may be auto-
matic, in the two ways of routinized or impul-
sive response, or deliberative. Three frames for
attribution and selection (AA, GR, H), in three
modes (routinized, impulsive, deliberative) yield
81 logically possible action-response combina-
tions, as illustrated in Table 1.

Table 1. Attribution and selection

Attribution

automatic

routinized impulsive

AA GR H AA GR H

deliberative

AA GR H

Selection

automatic routinized

impulsive

AA

GR

H

AA

GR

H

AA

GR

H

deliberative

stability

instability

game-theoretic analysis

rational inference
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Deliberative attribution entails rational in-
ference of scripts and corresponding frames,
and deliberative selection typically entails game-
theoretic-type analysis of projected response in
attribution to chosen actions. Here, the connec-
tion between action scripts and mental frames
may be confounded in interest seeking with
guile: one may choose actions that belong to
scripts that enact an AA frame, while in fact
one’s salient frame is GR.

Impulsive attribution combined with impul-
sive frame selection will tend to yield instable
relations, while routinized attribution in combi-
nation with routinized selection, if attributed
and selected frames are the same (lie on the
diagonal of the table), is likely to result more in
stable relations.

The analysis demonstrates the importance
of empathy, for correct attribution, on the basis
of knowledge of the trustee’s idiosyncrasies of
conduct and thought, and his strengths and
weaknesses, in competence, loyalty, and resis-
tance to temptation and pressures of survival.

For example, one may try to interpret an
action as enacting the frame of acting appropri-
ately. For example, the trustee’s openness about
a mistake is seen as fitting into the set of actions
that belong to acting appropriately. In deliber-
ate attribution one carefully tests assumptions
concerning the attribution of a frame, consider-
ing whether other actions confirm that frame,
and whether the action may also fit alternative
frames. In routine attribution one attributes
without much consideration, according to past
anchors, and in impulsive attribution one tries to
fit actions into frames that surge to attention as
available on the basis of fear or other emotion.

From interaction, including the disappoint-
ment of expectations, one may learn and inno-
vate in several ways. One may discover new
variations upon existing repertoires of actions
associated with a frame, a new allocation of
actions across mental frames, novel actions, or
even novel mental frames. This learning may

serve for a better attribution of frames to
trustees, and for an extension of one’s own
repertoires of action and mental frames. Here,
even the breach of trust may be positive, as a
learning experience, and may be experienced
as such.

FURTHER RESEARCH

I have only been able to give a rough sketch of
how human nature, as explained in social psy-
chology, may provide a basis for modeling
social-cognitive processes in agent-based mod-
els in general, and in the build-up and adaptation
of trust in particular. Much work remains to be
done in translating this into model design.

In particular, we need to fill in the details of
how frame attribution and selection take place,
in Figure 1 and Table 1. This may be based, in
more detail, on decision heuristics identified in
social psychology.

However, as recognized also by Marsella et
al. (2004), there is the usual trade-off to be
considered between detail and management of
complexity. While, as Marsella et al. say, com-
plexity may lie in the detail with which agents
are modeled, this is feasible and desirable only
with very few interacting agents, while in other
studies, complexity is emergent from the sys-
tem of interaction between many agents, more
simply modeled.
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APPENDIX A: DETAILS OF THE
MODEL

Preference and Matching

Preference is specified as follows:

ii
ijijij

αα −⋅= 1trustityprofitabilscore      (1)

where: scoreij is the score i assigns to j,
profitabilityij is the profit i can potentially make
‘through’ j, trustij is i’s trust in j, and αi ∈ [0, 1]
is the weight i attaches to profitability relative
to trust—that is, the profit-elasticity of the
scores that i assigns; i may adapt the value of
αi from each timestep to the next.

At each time step, all buyers and suppliers
establish a strict preference ranking over all
their alternatives. Random draws are used to
settle the ranking of alternatives with equal
scores. The matching of partners is modeled as

follows. On the basis of preferences, buyers
are assigned to suppliers or to themselves,
respectively. When a buyer is assigned to him-
self, this means that he makes rather than buys.
In addition to a preference ranking, each agent
has a minimum tolerance level that determines
which partners are acceptable. Each agent also
has a quota for a maximum number of matches
it can be involved in at any one time. A buyer’s
minimum acceptance level of suppliers is the
score that the buyer would attach to himself.
Since it is reasonable that he completely trusts
himself, trust is set at its maximum of 1, and the
role of trust in the score is ignored: α = 1. The
algorithm used for matching is a modification of
Tesfatsion’s (1997) deferred choice and re-
fusal (DCR) algorithm, and it proceeds in a
finite number of steps, as follows:

1. Each buyer sends a maximum of oi re-
quests to its most preferred, acceptable
suppliers.

2. Each supplier ‘provisionally accepts’ a
maximum of aj requests from its most
preferred buyers and rejects the rest (if
any).

3. Each buyer that was rejected in any step
fills its quota oi in the next step by sending
requests to the next most preferred, ac-
ceptable suppliers that it has not yet sent
a request to.

4. Each supplier again provisionally ac-
cepts the requests from up to a maxi-
mum of aj most preferred buyers from
among newly received and previously
provisionally accepted requests, and
rejects the rest. As long as one or more
buyers have been rejected, the algo-
rithm goes back to step 3.

The algorithm stops if no buyer sends a
request that is rejected. All provisionally ac-
cepted requests are then definitely accepted.
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Trust and Trustworthiness

An agent i’s trust in another agent j depends on
what that trust was at the start of their current
relation and on the past duration of their current
relation:
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where j
it = agent i’s trust in agent j,

• j
itt ,ini = agent i’s initial trust in agent j,

• x = the past duration of the current relation
between agents i and j, and

• f = trustFactor.

This function is taken simply because it
yields a curve that increases with decreasing
returns as a function of duration x, with 100%
trust as the limit and the speed of increase
determined by the parameter f .

In addition, there is a base level of trust,
which reflects an institutional feature of a
society. If an agent j, involved in a relation with
an agent i, breaks their relation, then this is
interpreted as opportunistic behavior and i’s
trust in j decreases; in effect, i’s trust drops by
a percentage of the distance between the cur-
rent level and the base level of trust; it stays
there as i’s new initial trust in j, j

itt ,ini until the
next time i and j are matched, after which is
starts to increase again for as long as the
relation lasts without interruption.

The other side of the coin is, of course, one’s
own trustworthiness. This is modeled as a
threshold τ for defection. One defects only if
the advantage over one’s current partner ex-
ceeds that threshold. It reflects that trustwor-
thiness has its limits, and that trust should
recognize this and not become blind (Pettit,
1995; Nooteboom, 2002). The threshold is adap-
tive as a function of realized profit.

Costs and Profits

Buyers may increase gross profits by selling
more differentiated products, and suppliers may
reduce costs by generating production efficien-
cies. There are two sources of production effi-
ciency: economy of scale from a supplier pro-
ducing for multiple buyers, and learning by coop-
eration in ongoing production relations. Economy
of scale can be reaped only in production with
general-purpose assets, and learning by coop-
eration only in production that is specific for a
given buyer, with buyer-specific assets.

We assume a connection between the dif-
ferentiation of a buyer’s product and the speci-
ficity of the assets required to produce it. In
fact, we assume that the percentage of specific
products is equal to the percentage of dedicated
assets. This is expressed in a variable di ∈ [0,
1]. It determines both the profit the buyer will
make when selling his products and the degree
to which assets are specific, which determines
opportunities for economy of scale and learning
by cooperation.

Economy of scale is achieved when a sup-
plier produces for multiple buyers. To the ex-
tent that assets are specific, for differentiated
products, they cannot be used for production
for other buyers. To the extent that products
are general purpose—that is, production is not
differentiated—assets can be switched to pro-
duce for other buyers. In sum, economy of
scale, in production for multiple buyers, can
only be achieved for the non-differentiated,
non-specific part of production, and economy
by learning by cooperation can only be achieved
for the other, specific part.

Both the scale and learning effects are
modeled as follows:
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where:

• for the scale effect, f=scaleFactor, x is
general-purpose assets of supplier j
summed over all his buyers and scale
efficiency jsey ,= ; and

• for the learning effect, f=learnFactor; x is
the number of consecutive matches be-
tween supplier j and buyer i and learning
efficiency i

jley ,= .

Formula (3) expresses decreasing returns
for both scale and experience effects. For the
scale effect, it shows positive values along the
vertical axis only for more than 1 general-
purpose asset. This specifies that a supplier can
be more scale-efficient than a buyer producing
for himself only if the scale at which he pro-
duces is larger than the maximum scale at
which a buyer might produce for himself. For
the learning effect, a supplier’s buyer-specific
efficiency is 0 in their first transaction, and only
starts to increase if the number of transactions
is larger than 1. If a relation breaks, the supplier’s
efficiency due to his experience with the buyer
drops to zero. The resulting specification of
profit is specified as follows in the next section.

Adaptation

Agents adapt the values for α ∈ [0, 1] (weight
attached to profit relative to trust) and τ [0, 0.5]
(threshold of defection) from one time step to
the next, which may lead to changes in the
scores they assign to different agents. Here,
adaptation takes place on the basis of past,
realized profit. While τ could conceivably rise
up to 1, a maximum of 0.5 was set because
initial simulations showed that otherwise rela-
tions would get locked into initial situations with
little switching. Note that this biases the model
in favor of opportunism. At each step, each
agent assigns a strength to each possible value
of α and τ. This expresses the agent’s confi-

dence in the success of using that particular
value. The various strengths always add up to
constants Cα and Cτ respectively. At the start
of each timestep, the selection of values for a
and t is stochastic, with selection probabilities
equal to relative strengths—that is, strengths
divided by Cα and Cτ, respectively. The strengths
of the values that were chosen for α and τ at
the start of a particular timestep are updated at
the end of that timestep, on the basis of the
agent’s performance during that timestep, in
terms of realized profit: the agent adds the
profit obtained during the timestep to the
strengths of the values that were used for a or
t. After this, all strengths are renormalized to
sum to Cα and Cτ again (Arthur, 1993). The idea
is that the strength of values that have led to
high performance (profit) increases, yielding a
higher probability that those values will be
selected again. This is a simple model of ‘rein-
forcement learning’ (Arthur, 1991, 1993; Kirman
& Vriend, 2000; Lane, 1993).

The Algorithm

The algorithm of the simulation is presented by
the flowchart in Figure A1. This figure shows
how the main loop is executed in a sequence of
discrete time steps, called a run. Each simula-
tion may be repeated several times as multiple
runs, to even out the influence of random draws
in the adaptation process. At the beginning of a
simulation, starting values are set for certain
model parameters. The user is prompted to
supply the number of buyers and suppliers, as
well as the number of runs, and the number of
timesteps in each run. At the start of each run,
all agents are initialized, for example with start-
ing values for trust, and selection probabilities
for α and τ. In each timestep, before the
matching, each agent chooses values for α and
τ, calculates scores, and sets preferences. Then
the matching algorithm is applied. In the match-
ing, agents may start a relation, continue a
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relation, and break a relation. A relation is
broken if, during the matching, a buyer does not
send any more requests to the supplier, or he
does, but the supplier rejects them.

After matching, suppliers that are matched
to buyers produce and deliver for their buyers,
while suppliers that are not matched do nothing.
Buyers that are not matched to suppliers pro-
duce for themselves (self-matched, in make
rather than buy). Afterward, all buyers sell
their products on the final-goods market. Profit
is shared equally with their supplier, if they have
one. Finally, all agents use that profit to update
their preference rankings (via α and τ), used as
input for the matching algorithm in the next
timestep. Across timesteps, realized profits are
accumulated for all buyers and suppliers, and
all the relevant parameters are tracked.

Note that, by implication, suppliers may fail
to produce and then have zero profit. Thus,
there is no explicit mechanism of death. How-
ever, the procedure may be interpreted as exit

of all suppliers with zero profit, accompanied by
potential entry on new suppliers, announcing
their readiness to give quotes to buyers, up to
the maximum number of suppliers specified for
the run. Note also that it is conceivable, given
the logic of matching, that a supplier breaks
with a buyer in his aim to go for a more
attractive one, then lose the bidding for that
buyer and be left empty-handed. Then, it would
be more reasonable for the supplier to first
verify his goal attainment before breaking his
existing relationship. However, in a large set of
simulations, across a wide area of parameter
space, this happened only once, at a very high
level of opportunism, and it may not be unreal-
istic that sometimes such error is made, in an
over-eagerness to switch to a more attractive
partner.

APPENDIX B: DETAILS OF
SIMULATION OUTCOMES

High initial trust dictates buy relative to make
for all levels of specific investments. For high
specific investments, buyers’ maximum profit
is almost the same as in the cases of average or
low initial trust. Low initial trust imposes make
relative to buy, but buyers’ maximum profits
for low specific investments are smaller than in
the case of high initial trust. Overall, across all
parameter settings, profit tends to be higher
under high rather than under low trust.

Under medium or low trust, high product
differentiation favors make relative to buy
because the switching cost is larger and there
is less potential for economy of scale. But if
learning by cooperation becomes stronger, rela-
tive to scale effects, buyers employ that advan-
tage in a strategy of ongoing relations with
suppliers, and achieve a higher profit than when
they make themselves. If agents put their em-
phasis on trust (α=0) and loyalty (τ=0.5), buy-

Figure A1. Flowchart of the simulation
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ers get a big advantage in the terms of profit for
high specific investments by following the strat-
egy of learning by cooperation. If agents focus
on profitability rather than on trust (α=1) and
neglect loyalty (opportunistic, τ=0), buyers get
some advantage for low specific investments
by following the scale strategy (50%) and
producing themselves (50%). But if agents are
loyalists (τ=0.5), buyers get an advantage for
both low and average d by following the scale
strategy (60% and 40% respectively) and pro-
ducing themselves (40% and 60% respectively).
Generally, under low trust and low weight
attached to trust, buyers forego opportunities
for collaboration that may yield learning by
cooperation. In sum, high initial trust favors
outsourcing (buy) and it gives an advantage for
all agents in comparison with low initial trust,
where buyers get a smaller profit by insourcing
(make).

In addition to the expected results, the model
yields a few unanticipated results. One is that

buyers organize closer to maximum possible
efficiency for high levels of specific invest-
ments/specialization. The reason is that for low
levels of specific investments, there is more
scope for scale effects, but this is difficult to
attain by having suppliers supply to the maxi-
mum number of buyers. A strong effect of
learning by cooperation, a high weight at-
tached to trust, and high loyalty favor the learn-
ing by cooperation strategy for high levels of
specific investments, while a high weight at-
tached to profit and high loyalty favor the scale
strategy for low and average levels of specific
investments.

Finally, it is not always the case that a high
weight attached to profitability relative to trust
favors opportunism. Once a buyer begins to
profit from learning by cooperation, an empha-
sis on profit may also lead to loyalty in an
ongoing relationship.
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ABSTRACT

This chapter advocates a cognitively realistic approach to social simulation. based on a model
for capturing the growth of academic science. Gilbert’s (1997) model, which was equation
based, is replaced in this work by an agent-based model, with the cognitive architecture
CLARION providing greater cognitive realism. Using this agent model, results comparable to
human data are obtained. It is found that while different cognitive settings may affect
aggregate productivity of scientific articles, generally they do not lead to different distributions
of productivity. It is argued that using more cognitively realistic models in social simulations
may lead to novel insights.

SOCIAL SIMULATION AND
COGNITIVE MODELING

A significant new trend in social sciences has
been that of agent-based social simulation
(ABSS). This approach consists of construct-
ing models of societies of artificial agents.
Agents are autonomous entities with well-de-
fined rules of behavior. Running such a model
entails instantiating a population of agents, al-
lowing the agents to run, and observing the

interactions between them. It thus differs from
traditional (equation-based) approaches to simu-
lation, where relationships among conceptual
entities (e.g., social groups and hierarchies, or
markets and taxation systems) are expressed
through mathematical equations. Agent-based
modeling has a number of advantages over
equation-based modeling (Axtell, 2000; Sun
2006).

Interestingly, the evolution of simulation as
a means for computational study of societies
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has been paralleled by developments in compu-
tational modeling at the individual level. Whereas
earlier models of cognition tended to emphasize
one of the aspects of cognition (for instance,
memory or learning), some recent approaches
have been more integrative, with a focus on
putting the pieces together. The result of this
integrative approach is cognitive architec-
tures, which are essentially models that cap-
ture different aspects of cognition and their
interaction. Such models tend to be generic and
task independent. Cognitive architectures have
greatly grown in expressive power in recent
years, and now capture a variety of cognitive
phenomena, including various types of memory/
representation, modes of learning, and sensory-
motor capabilities (e.g., Anderson & Lebiere
1998; Sun 2002).

So far, however, the two fields of social
simulation and cognitive architectures have
developed in near-isolation from each other
(with some exceptions; e.g., Carley & Newell,
1994; Sun 2006; Naveh & Sun, in press). Thus,
most of the work in social simulation assumes
very rudimentary cognition on the part of the
agents. At the same time, while the mecha-
nisms of individual cognition have been the
subject of intensive investigation in cognitive
science and cognitive architectures (e.g.,
Anderson, 1983; Rumelhart & McClelland 1986;
Sun, 2002), the relationships between sociocul-
tural forces and individual cognition remain
largely unexplored (again with some excep-
tions).

We believe, however, that the two fields of
social simulation and cognitive architectures
can be profitability integrated. As has been
argued before (Sun & Naveh, 2004; Moss,
1999; Castelfranchi, 2001), social processes
ultimately rest on the choices and decisions of
individuals, and thus understanding the mecha-
nisms of individual cognition can lead to better
theories describing the behavior of aggregates
of individuals. So far, most agent models in

social simulation have been extremely simple
(in the form of very simple automata with a
few ad-hoc assumptions) or entirely absent (in
the case of equation-based modeling). How-
ever, we believe that a more realistic cognitive
agent model, incorporating realistic tendencies,
inclinations, and capabilities of individual cogni-
tive agents can serve as a more realistic basis
for understanding the interaction of individuals
(Moss, 1999). Although some cognitive details
may ultimately prove to be irrelevant, this can-
not be determined a priori, and thus simula-
tions are useful in determining which aspects of
cognition can be safely abstracted away.

At the same time, by integrating social
simulation and cognitive modeling, we can
arrive at a better understanding of individual
cognition. By studying cognitive agents in a
social context, we can learn more about the
sociocultural processes that influence indi-
vidual cognition.

In this chapter, we first describe the model
proposed by Gilbert (1997) for capturing the
growth of academic science. Gilbert’s model
lacks agents capable of meaningful autono-
mous action. We then describe a cognitive
architecture, CLARION, that captures the dis-
tinction between explicit and implicit learning.
This architecture has been used to model a
variety of cognitive data (see Sun, Merrill, &
Peterson, 2001; Sun, 2002; Sun, Slusarz, &
Terry, 2005). We demonstrate how Gilbert’s
simulation can be redone in an enhanced way
with CLARION-based agents (Sun & Naveh,
in press). We argue that the latter approach
provides a more cognitively realistic basis for
social simulation.

PREVIOUS MODELS OF
ACADEMIC SCIENCE

Science develops in certain ways. In particular,
it has been observed that the number of authors
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contributing a certain number of articles to a
scientific journal follows a highly skewed distri-
bution, corresponding to an inverse power law.
This distribution, which is known as a Zipf
distribution, is common to a number of other
phenomena in information science. In the case
of scientific publication, the tendency of author-
ship to follow a Zipf distribution was observed by
Lotka (1926) and is known as Lotka’s Law.

Simon (1957) developed a simple stochastic
process for approximating Lotka’s Law. One
of the assumptions underlying this process is
that the probability that a paper will be pub-
lished by an author who has published i articles
is equal to a/ik, where a is a constant of propor-
tionality.

Using Simon’s work as a starting point,
Gilbert (1997) attempts to model the growth of
science, including Lotka’s Law. He obtains his
simulation data based on the assumption that
the system selects a focal paper randomly first,
which can be represented as a point in a two-
dimensional space of ideas, and then it ran-
domly selects a number of other papers, each of
which occupies a different point in the nearby
region and pulls the original point in its direction
slightly. The resulting paper can be located on
that two-dimensional space based on the above
factors. Papers are randomly assigned authors,
based on a stochastic process that takes the

ratio of papers to published authors into ac-
count. To capture the constraint that academic
papers must be original, a newly published
paper must lie at least m coordinate units away
from any other existing paper, where m is a
constant.

Another assumption is that the number of
papers produced in a given time period is deter-
mined by the number of papers in existence
during the previous time period, by specifying a
small probability of each existing paper acting
as the seed for a new paper (and then by
selecting an author for that paper).Thus, it is
papers that spawn more papers, with authors
playing only an ancillary role in the process.

Using this model, Gilbert obtained an idea
space divided into clusters, which he identified
as corresponding to different scientific special-
ties. Each cluster originated in a few seminal
papers and accumulated additional papers at an
increasing rate over time. This model yielded a
set of publication trends that accorded with
human data, including the power curve de-
scribed above (as can be seen in Tables 1 and
2). A highly uneven distribution of number of
publications per author was observed, with the
majority of authors publishing but one paper. A
similarly skewed outcome was obtained for the
number of citations received per author, with
most authors receiving a modest number of

Table 1. Number of authors contributing to
chemical abstracts

Table 2. Number of authors contributing to
Econometrica

# of 
Papers 

Actual Simon’s 
Estimate 

Gilbert’s 
Simulation 

CLARION 
Simulation 

1 3,991  4,050  4,066  3,803  
2 1,059  1,160  1,175  1,228  
3 493  522  526  637  
4 287  288  302  436  
5 184  179  176  245  
6 131  120  122  200  
7 113  86  93  154  
8 85  64  63  163  
9 64  49  50  55  
10 65  38  45  18  
11 419  335  273  145  

# of 
Papers 

Actual Simon’s 
Estimate 

Gilbert’s 
Simulation 

CLARION 
Simulation 

1 436  453  458  418  
2 107  119  120  135  
3 61  51  51  70  
4 40  27  27  48  
5 14  16  17  27  
6 23  11  9  22  
7 6  7  7  17  
8 11  5  6  18  
9 1  4  4  6  
10 0  3  2  2  
11 22  25  18  16  
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citations, and a minority of authors receiving a
large number of citations.

However, to a significant extent, Gilbert’s
model is not cognitively realistic. The model
assumes that authors are non-cognitive and
interchangeable; it therefore neglects a host of
cognitive phenomena that characterize scien-
tific inquiry (e.g., learning, creativity, evolution
of field expertise, etc.). Using a more cognitively
realistic model, we can envision addressing
some of these omissions, as well as exploring
other emergent properties of the model and
their correspondence to real-world phenom-
ena. The challenge, then, is to develop a model
that explains macro-level phenomena in terms
of micro-level cognitive processes.

OUR COGNITIVE
ARCHITECTURE FOR SOCIAL
SIMULATION

The Focus on Explicit
vs. Implicit Learning

In an attempt to understand the processes
underlying human learning, various categories
of knowledge have been proposed. Among
them, one enduring distinction is that between
explicit and implicit—or conscious and uncon-
scious—learning (e.g., Reber, 1989). While
both implicit and explicit learning have been
actively investigated, the complex interaction
between these two modes of learning has largely
been downplayed or discounted (with a few
exceptions; e.g., Mathews et al., 1989; Sun et
al., 2001).

However, despite the lack of study of such
interaction, recent evidence suggests that it is
difficult to find a situation in which only one type
of learning is employed (Reber, 1989; Seger,
1994). Our review of empirical data suggests
that while one can manipulate conditions so that

one type of learning is favored over the other, in
nearly every case, both types are involved, with
varying degrees of contributions from each (e.g.,
Sun et al., 2001; Mathews et al., 1989).

In the next subsection, we describe a cogni-
tive architecture, CLARION, which seeks to
capture the interaction between explicit and
implicit learning (Sun & Peterson, 1998; Sun et
al., 2001).CLARION learns in bottom-up fash-
ion, by extracting explicit rules from implicit
knowledge, in accordance with what has been
observed in humans (e.g., Karmiloff-Smith,
1986).

A Sketch of CLARION

CLARION is a general cognitive architecture
with a dual representational structure (Sun,
1997; Sun, 2002). It consists of two levels: the
top level encodes explicit knowledge, and the
bottom level encodes implicit knowledge. See
Figure 1 for a sketch of the model.

At the bottom level, the inaccessible nature
of implicit knowledge is captured by a
subsymbolic distributed representation provided
by a backpropagation neural network. This is
because representational units in a distributed
environment are capable of performing tasks
but are subsymbolic and generally not individu-
ally meaningful (see Rumelhart et al., 1986;
Sun, 2002). Thus, they are relatively inacces-

Figure 1. The CLARION architecture
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sible. Learning at the bottom level proceeds in
trial-and-error fashion, with the neural net-
works being guided by reinforcement learning
(i.e., Q-learning; see Watkins, 1989).

At the top level, explicit knowledge is cap-
tured by a symbolic or localist representation, in
which each unit is easily interpretable and has
a clearer meaning. This characteristic captures
the property of explicit knowledge being more
accessible and manipulable (Sun, 2002). Learn-
ing at the top level involves, first, constructing
a rule that corresponds to a “good” decision
made by the bottom level. This rule is subse-
quently refined, either by generalizing or spe-
cializing it. Here, the learning process is guided
by an “information gain” measure that com-
pares the success ratio of various modifications
of the current rule.

The overall algorithm of CLARION’s ac-
tion decision making is the following:

1. Observe the current state x.
2. Compute in the bottom level the value of

each of the possible actions (ai’s) associ-
ated with the state x: Q(x, a1), Q(x, a2), …,
Q(x, an).

3. Find out all the possible actions (b1, b2, …,
bm) at the top level, based on the state x
and the rules in place at the top level.

4. Compare the values of ai’s with those of
bj’s (which are sent down from the top
level), and choose an appropriate action a.

5. Perform the action a, and observe the
next state y and (possibly) the reinforce-
ment r.

6. Update the bottom level in accordance
with the Q-Learning-Backpropagation
algorithm, based on the feedback infor-
mation (as will be explained later).

7. Update the top level using the Rule-Ex-
traction-Refinement algorithm (explained
as follows).

8. Go back to Step 1.

At the bottom level, a Q-value measures the
“quality” of an action in a given state; that is,
Q(x, a) indicates how desirable action a is in
state x. Actions are selected based on Q-
values. To acquire the Q-values, Q-learning, a
reinforcement learning algorithm (Watkins,
1989), is used. Q-learning is implemented in
backpropagation networks. See Sun (2002) for
full details. Q-values are then used to decide
probabilistically on an action to be performed
(using a distribution of Q-values).

At the top level, explicit knowledge is cap-
tured by simple prepositional rules. An algo-
rithm for extracting rules using information
culled from the bottom level is the Rule-Ex-
traction-Refinement, or RER, algorithm. The
basic idea is as follows: whenever an action
decided by the bottom level is successful, a rule
(with conditions corresponding to the current
input state and an action corresponding to the
one selected by the bottom level) is created and
added to the top level. Then, in subsequent
interactions with the world, an agent may refine
a rule by considering its outcome: if successful,
an agent may try to generalize a rule by relaxing
its conditions to make it more universal. If a rule
is unsuccessful, an agent may try to specialize
a rule by imposing further constraints on the
rule and making them exclusive of the current
state. This is an online version of hypothesis
testing processes studied in other contexts.

To integrate the two levels, a number of
methods are possible. Here, levels are selected
stochastically, with a base probability of select-
ing each level. Other selection methods are
possible as well (see Sun et al., 2001).

SIMULATION OF ACADEMIC
SCIENCE WITH CLARION

In our simulation of academic science, we
move to an agent-based model (Sun and Naveh,
in press. Different from Gilbert’s assumptions
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in his simulation, we treat authors as cognitive
agents. Thus, authors are not merely passive
placeholders, but cognitively capable individu-
als whose success or failure depends on their
ability to learn in the scientific world. Success-
ful authors (that is, agents who manage to
identify promising research leads early on) will
go on to publish numerous papers in their area,
whereas unsuccessful authors will be removed
from the system and replaced.

Similar to Gilbert’s approach, our model
characterizes the scientific world as consisting
of “papers,” each of which proposes a new
piece of knowledge and of authors who gener-
ate new papers. This coincides with the
constructivist view of scientific inquiry, which
sees scientific knowledge first and foremost as
the product of a constructive process. On this
view, the fruits of scientific inquiry are pro-
duced in a predetermined technological, linguis-
tic, and social context. This is reflected in our
model, in which papers are constructed from
previous papers and themselves serve as a
basis for future constructions.

To publish a paper, an agent adopts a focal
idea (as represented by an existing paper), non-
randomly, in accordance with some cognitive
processes. The cognitive processes may be
implicit or explicit. The agent then uses other
ideas (published papers) that pull the original
idea in different directions, also non-randomly,
based on similar cognitive processes.

In addition, apart from utilizing existing ideas,
an agent also performs local search to “opti-
mize” the resulting idea. This reflects the fact
that authors do not merely cobble together
ideas from existing sources, but also try to
integrate the different ideas and refine the final
product.

Because our simulation involves learning
agents, there is the possibility of failure; this is
important, because humans can produce pa-
pers that prove to be unpublishable. This is in
contrast to Gilbert’s approach, in which ideas

are undifferentiated in their quality. Instead, in
our simulation, each agent has a set of evalua-
tion functions that determine the quality of
ideas in the multi-dimensional idea space. These
functions specify the most important consider-
ations in terms of evaluating a scientific idea
(e.g., clarity, insightfulness, empirical evidence,
theoretical results, and application potential).
Agents are aware of these functions. How-
ever, just as researchers in the real world
cannot predict precisely when the result of their
research will meet with approval and interest,
so the agents’ individual valuations of these
functions may differ from the community-wide
valuation. This is reflected in a set of indi-
vidual evaluation functions for each agent,
consisting of a varied version of the global, or
communal evaluation functions.

The author population consists of CLARION-
based agents. The feedback to agents is based
on paper acceptance or failure. In addition,
agents are awarded partial feedback at each
step of the paper generation process, amount-
ing to a fraction of the unfinished paper’s
evaluation (as determined by the agent’s own
evaluation functions). This reflects the fact that
agents do not stumble blindly through the pub-
lication process, but rather are guided to a
certain extent by their experience and intuition.

An agent uses the bottom level of CLARION
to select a focal idea and a number of pull ideas.
These two tasks are carried out by one net-
work. The network “learns” using the Q-learn-
ing-Backpropagation algorithm, which cor-
responds to a simple form of reinforcement
learning and naturally captures sequences of
actions (i.e., selecting the focal idea, then the
first and second pull ideas).

On the other hand, an agent uses RER rule
learning in CLARION to extract rules that
determine: (1) how to choose focal ideas, and
(2) how to choose pull ideas. These rules are
used in conjunction with other rules already
existing at the top level concerning local search,
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which represent a priori knowledge.
Agents are pre-trained for a certain number

of cycles before entering the system. A cycle
corresponds to a single attempt by an agent to
publish a paper, whether successfully or not.
Reflecting a publish or perish academic envi-
ronment, agents are evaluated every few cycles
based on their publication record (success rate).
If the latter falls below a minimum expected
standard, the agent is removed from the aca-
demic world. It the agent passes all the evalu-
ations, it retires upon reaching the maximum
allowable age. Whenever an agent retires (or is
removed), a new agent takes its place.

The results of our simulation are shown in
Tables 1 and 2, along with results (reported by
Simon) for Chemical Abstracts  and
Econometrica, and estimates obtained from
previous simulations by Simon (1957) and Gil-
bert (1997). The figures in the tables indicate
number of authors contributing to each journal,
by number of papers each has published.

The CLARION simulation data for the two
journals can be fit to the power curve ( ) / kf i a i= ,
resulting in an excellent match. The results of
the curve fit are shown in Table 3, along with
correlation and error measures.

In our simulation, the number of papers per
author reflected the cognitive ability and the
cognitive suitability of an author, as opposed to
being based on auxiliary assumptions such as
those made by Gilbert (1997). This explains, in
part, the greater divergence of our results from
the human data: whereas Gilbert’s simulation
consists of equations selected to match the

human data, our approach relies on much more
detailed and lower-level mechanisms—namely,
a cognitive agent model that is generic rather
than task specific. The result of the CLARION-
based simulation is therefore emergent, and not
a result of specific and direct attempts to match
the human data. We put more distance between
mechanisms and outcomes, which makes it
harder to obtain a match with the human data.
Thus, the fact that we were able to match the
human data shows the power of our cognitive
agent-based approach compared to traditional
methods of simulation.

VARYIATIONS OF COGNITIVE
PARAMETER SETTINGS

Because CLARION captures a wide variety of
cognitive phenomena, we can vary parameters
that correspond to specific cognitive factors,
and observe the effect on performance as a
function of cognition. This confers an impor-
tant advantage over other, more task-specific
models, where differences in performance tend
to be artifacts of the particular model used and
may be of little independent interest. With
CLARION, the parameters being altered are
the fundamental building blocks of cognition,
and thus observed differences in performance
are far more likely to stem from testable differ-
ences in individual cognition.

The effect of learning rate on performance
is shown in Figure 2. An agent’s learning rate
essentially determines its responsiveness to
success or failure. As can be seen, the best
performance is obtained under a moderately
high learning rate (0.1-0.3). If the learning rate
is too high, an agent’s recent experiences tend
to disproportionately impact the learning pro-
cess. This leads the agent to submit articles that
are too similar to recently successful articles,
which leads to more non-unique articles that

Table 3. Results of fitting CLARION data to
power curves; CA stands for Chemical
Abstracts and E stands for Econometrica

Journal  a  k  Pearson 
R  

R-
Square  

RMSE  

CA  3806  1.63  0.999  0.998  37.62  
E  418  1.64  0.999  0.999  4.15  
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are in turn rejected; equally, an agent is too
swift to abandon a previously promising line of
research as the result of a single rejection. If,
on the other hand, the learning rate is too low,
an agent will be slow to capitalize on recent
successes and failures.

The fact that a balance between implicit
learning and explicit rule learning is desirable
can be seen in Figure 3. While increasing the
reliance on implicit learning can lead to modest
gains, over-emphasizing it at the expense of
explicit rule learning slows down the learning
process dramatically. This is especially true

during the initial steps of learning, when neural
networks are still imperfectly trained, and rules,
as crisp guidelines that are based on past suc-
cess, are useful for speeding up learning.

Crucial in this connection is the existence of
a high-quality rule base. This can be ensured,
among other things, by the proper selection of
a density parameter, as shown in Figure 4. If
the parameter is too low, then rules persist even
when they are no longer needed (for instance,
when an agent has already exhausted a particu-
lar line of research encoded as a rule, and has
moved on to other fields, represented by differ-
ent combinations of ideas).On the other hand,
when the parameter is too high, even successful
rules are often deleted before they can be fully
utilized. In both cases, performance suffers.

An agent’s exploration of the idea space is
modulated in considerable part by the built-in
randomness (i.e., temperature) of its search
process. As can be seen in Figure 5, agents
are at their most prolific under a moderately
high temperature setting—that is, when they
show a willingness to experiment (i.e., to
pursue new leads, which would not occur
under a low temperature setting), while still
being guided by their experience in the major-
ity of cases. This observation accords with

Figure 2. The effect of learning rate on
collective number of articles published

Figure 3. The effect of explicit vs. implicit
learning on collective number of articles
published

 

Figure 4. The effect of density on collective
number of articles published
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what we know of the role of serendipity in
scientific discovery. In many areas of sci-
ence—for instance, medicine—most of the
major discoveries have been serendipitous,
the result of seemingly irrelevant investiga-
tions. While such discoveries were formerly
attributed to good fortune, it has since been
argued (e.g., in Oliver, 1991) that serendipity
is, in part, a cognitive faculty that can be
nurtured and developed. Our model captures
this characteristic by adopting a modest de-

gree of randomness in the decision-making
process.

As with other parameters considered so far,
an agent’s generalization threshold must be
carefully selected (see Figure 6). If it is set too
low, even less successful rules will be general-
ized, leading to a lower quality rule base. Too
high, and it will prevent the generalization even
of successful rules. In the latter situation, an
agent will rigidly apply successful ideas only in
the precise context in which they initially ap-
peared (for instance, as the second pull idea in
generating a paper) without recognizing their
more general applicability.

As the preceding discussion shows, the cog-
nitive parameters of individual agents are cru-
cial in determining the rate of scientific progress
in a society. By varying these parameters, we
can arrive at communities that produce lesser
or greater numbers of papers. Apart from this
aggregate measure of scientific productivity,
however, it is also interesting to see if the
patterns of individual contribution observed in
earlier simulations will be preserved. In par-
ticular, we want to see if the power curve
obtained earlier will be obtained under different
cognitive settings. Our results show that it is.
As can be seen in Figures 7 and 8, different

Figure 6. The effect of generalization threshold
on collective number of articles published

Figure 5. The effect of temperature on
collective number of articles published

Figure 7. Authors contributing to final paper
count, by number of articles that each has
published; CLARION simulation results for
different settings of the density parameter
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settings of the density and generalization thresh-
old parameters lead to larger or smaller num-
bers of papers in aggregate, but they do not
fundamentally change the authorship curve,
which follows an inverse power distribution in
all cases. Similar results were obtained for
some other, though not all, ranges of cognitive
parameters.

This result, which may be termed cognitive-
social invariance, is an important one, since it
shows that some regularities that characterize
societies are to some extent invariant with
respect to agent cognition (within a reasonable
parameter range).While some societies may
prove more successful than others in terms of
total scientific productivity, the same large-
scale patterns (distributions) may be observed
regardless of cognitive differences. This re-
duces the likelihood that the patterns observed
are a byproduct of a particular set of cognitive
parameters. In contrast, in Sun and Naveh
(2004), we have shown that some other pat-
terns are indeed directly related to the settings
of cognitive parameters.

GENERAL DISCUSSIONS

One important aim of this study has been to
determine whether the results of a previous
model of academic science (Gilbert, 1997) can
be reproduced without resorting to the broad
simplifications of an equation-based model. The
results of our simulation suggest that the ob-
served growth of academic science can indeed
be captured even if one migrates to an agent-
based model. Such a migration offers several
important benefits. First, it allows us to leave
behind certain artificial assumptions (for in-
stance, that papers automatically spawn more
papers). Second, it affords us the opportunity of
studying the macro-level repercussions of be-
havior at the micro level. Third, it allows us to
study patterns of interaction between individual
agents. Although the latter interactions occur
only indirectly in our model (either through the
collision of too-similar papers generated by
different authors, or through the exploitation of
others’ ideas in generating new papers), they
nonetheless result in a model that is more
socially realistic than Gilbert’s equation-based
model.

What makes our approach unusual, how-
ever, is not that it represents actors as agents,
but that it takes agent cognition seriously. So
far, most agent models in simulations have been
rather simple, with little attention being paid to
the mechanisms of individual cognition. This
study shows that a more cognitively realistic
simulation, with CLARION, can replicate the
results of earlier simulations. It thus provides a
dual corroboration of these models, by showing
them to be independent both of whether or not
an agent-based model is used, and of whether
or not cognitive representations are involved.
Therefore, while some cognitive details clearly
cannot be abstracted away, others can, and
along the way, we discover important cogni-
tive-social invariances.

Figure 8. Authors contributing to final paper
count, by number of articles that each has
published; CLARION results for different
settings of the generalization threshold
parameter
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Apart from validation, however, cognitive
realism in simulations may lead us to better
representations of the target phenomenon.
For instance, we identified earlier a possible
way of representing the role of serendipity in
science: namely, as a researcher’s willing-
ness to explore apparently suboptimal combi-
nations of ideas, rather than adhering to tried-
and-true sequences. The ability to represent
such aspects of observed phenomena in terms
organic to the agent model, rather than
through auxiliary assumptions (for instance,
by adding a randomizing function to the idea
selection process in Gilbert’s simulation) is
an advantage of cognitively realistic simula-
tions.

Another advantage of cognitive realism is
that it allows us to theorize about the relative
roles that individual cognitive factors play in the
emergence of large-scale social phenomena.
Thus, we were able to vary parameters of
CLARION that corresponded to aspects of
cognition and tested their effects on outcomes.
Our investigation showed, for instance, that the
tendency to engage in inductive reasoning (that
is, an agent’s generalization threshold) could
dramatically influence the number of papers
generated by the community. It moreover sug-
gested that this phenomenon could be described
by a u-shaped curve. Such results suggest how
patterns of communal thinking may change as a
consequence of shifts at the individual cogni-
tive level.

CONCLUDING REMARKS

Whereas the use of simulation as a way of
describing social phenomena continues to grow,
the issue of adopting a realistic cognitive pro-
cess description has largely been ignored.
Against this background we propose using more
complex cognitive models, known as cognitive

architectures, to capture human behavior. Our
model of scientific publication assumed that, in
constructing new ideas from previous ones,
authors were guided chiefly by cognitive pro-
cesses. The simulations were done under dif-
ferent cognitive settings and suggest that some
of the patterns obtained (for instance, Lotka’s
Law) are to some extent independent of the
cognitive parameters selected.

By paying more attention to the details of
individual cognition, we can arrive at more
accurate representations of target social phe-
nomena. We can also learn which cognitive
mechanisms are significant in shaping social
interactions, and which are not. Finally, we
can study the emergence of large-scale so-
cial behavior from micro-level cognitive pro-
cesses.

Note that CLARION has been implemented
as a set of Java packages. For more informa-
tion, see the CLARION Web page at http://
www.cogsci.rpi.edu/~rsun/clarion.html
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ABSTRACT

Economic models exhibit a multiplicity of behaviour characteristics that are nonlinear and
time-varying. Emergent behaviour appears when reduced order models of differing
characteristics are combined to give rise to new behaviour dynamics. In this chapter we apply
the algorithms and methodologies developed for nature-inspired intelligent systems to develop
models for economic systems. Hybrid recurrent nets are proposed to deal with knowledge
discovery from given trajectories of behaviour patterns. Each trajectory is subjected to a
knowledge mining process to determine its behaviour parameters. The knowledge mining
architecture consists of an extensible recurrent hybrid net hierarchy of multi-agents where the
composite behaviour of agents at any one level is determined by those of the level immediately
below. Results are obtained using simulation to demonstrate the quality of the algorithms in
dealing with the range of difficulties inherent in the problem.

INTRODUCTION

Recurrent inference networks are introduced
to represent knowledge bases that model dy-
namic intelligent systems. Through a differen-

tial abduction process, the causal parameters of
the system behaviour are determined from
measurements of its output to represent the
knowledge embedded within (Al-Dabass,
Zreiba, Evans, & Sivayoganathan, 2001). The
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use of dynamical knowledge mining processes
ensures that knowledge evolution is tracked
continuously (Al-Dabass et al., 2002a). Meta-
knowledge, defined in terms of the causal pa-
rameters of the evolution pattern of this first-
level knowledge, is further determined by the
deployment of second-level dynamical pro-
cesses (Bailey, Grossman, Gu, & Hanley, 1996).
In data mining applications, for example, there
is a need to determine the causes of particular
behaviour patterns. Other applications include
cyclic tendencies in stock values and sales
figures in business and commerce, changes in
patient recovery characteristics, and predicting
motion instabilities in complex engineering struc-
tures (Al-Dabass et al., 2002c). Full math-
ematical derivation is given together with simu-
lations and examples to illustrate the techniques
involved.

• Knowledge Models: To understand and
control the behaviour of economic sys-
tems, models that represent the knowl-
edge embedded within these systems are
formulated and used to acquire this knowl-
edge from measurements. In data mining
applications, for example, there is a need
to determine the causes of particular
behaviour patterns. Applications include
cyclic tendencies in stock sales figures in
business and commerce, sudden move-
ments in share indices changes, and in no
economic areas, patient recovery charac-
teristics and predicting motion instabilities
in complex engineering structures.

• Hybrid Inference Networks: To repre-
sent the knowledge embedded within in-
telligent systems, a multilevel structure is
put forward. By its very nature this knowl-
edge is continually changing and needs
dynamic paradigms to represent and ac-
quire its parameters from observed data.
In a normal inference network, the cause-
and-effect relationship is static, and the

effect can be easily worked out through a
deduction process by considering all the
causes through a step-by-step procedure
which works through all the levels of the
network to arrive at the final effect. How-
ever, reasoning in the reverse direction,
such as that used in diagnosis, starts with
observing the effect and working back
through the nodes of the network to deter-
mine the causes.

• Knowledge Mining for Stock Market
Models: Work in this chapter extends
these ideas of recurrent or dynamical sys-
tems networks to economic models where
some or all the data within the knowledge
base is time varying. The effect is now a
time-dependent behaviour pattern, which
is used as an input to a differential process
to determine knowledge about the system
in terms of time-varying causal param-
eters. These causal parameters will them-
selves embody knowledge (meta knowl-
edge) which is obtained through a second-
level process to yield second-level causal
parameters. These processes consist of a
differential part to estimate the higher
time derivative knowledge, followed by a
non-linear algebraic part to compute the
causal parameters.

ECONOMIC SYSTEM MODELLING
AND SIMULATION USING
HYBRID RECURRENT
NETWORKS

Numerous economic systems in practice ex-
hibit complex behaviour that cannot be easily
modelled using simple nets (Berndt & Clifford,
1996). In this part we re-cast this problem in
terms of hybrid recurrent nets, which consist of
combinations of static nodes, either logical or
arithmetic, and recurrent nodes. The behaviour
of a typical recurrent node is modelled as a
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second-order dynamical system. The causal
parameters of such a recurrent node may them-
selves exhibit temporal tendencies that can be
modelled in terms of further recurrent nodes.
Layers of recurrent nodes are added until a
complete account of the behaviour of the sys-
tem has been achieved (Al-Dabass, Evans, &
Sivayoganathan, 2002b). Algorithms are given
to estimate the values of the parameters of
these models from behaviour trajectories of
intelligent systems. One novel aspect of the
work lies in having a simple hierarchical sixth-
order linear model to represent a fairly compli-
cated behaviour encountered in numerous real
examples in finance, biology, and engineering.

Hybrid Recurrent Network Models

Many physical, economical, and biological phe-
nomena exhibit temporal behaviour even when
the input causal parameters are constant (see
Figure 1).

To model this oscillatory behaviour, a sec-
ond-order integral hybrid model is proposed,
shown in Figure 2. This model is based on the
well-known second-order dynamical system
which has the following form:

ω-2 x’’ + 2. ζ.w-1.x’ + x = u      (1)

where x is the output of the node and ω, ζ,  and
u are the natural frequency, damping ratio, and
input respectively, which represent the three
causal parameters that form the input. To con-

figure this differential model as a recurrent
network, twin integral elements are used to
form a hybrid integral-recurrent net as shown in
Figure 2.

Structure of the Hybrid
Integral-Recurrent Net

The net shown in Figure 2 is a direct represen-
tation of equation 1 and can be derived as
follows:

1. By multiplying both sides by ω2 we get:

x” +   2. ζ.ω.x’ = ω2.(u – x)  (1-A)

OR

x” = ω2.(u – x) -   2. ζ.ω.x’  (1-B)

2. The output of the net x is fed back to the
first subtraction node on the left, as the
input from the left of this node is u the
output is (u – x).

3. The middle input (to the whole net) from
the left is ω. It is fed as two separate inputs
to the multiplication node x to form  ω2  at
its output, shown with an up arrow feeding
as the lower input of the multiplier node
above it, which is the second node from
the left in the top chain of nodes.

4. The output of this multiplier node is therefore
ω2.(u – x)—that is, the RHS of equation 1-A.

Figure 2. Hybrid integral-recurrent net to
model the temporal behaviour of the node in
Figure 1

Figure 1. A Recurrent Node (R-N) exhibits a
temporal behaviour at the output despite
having constant causal parameters
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5. The bottom input from the left (to the
whole net) is z which is fed as the lower
input to the first of the two multipliers in
the bottom chain of two nodes—as the top
input to this node is  w, the output is z.w.
which is multiplied by 2 in the second node
in the chain to produce 2. ζ.ω.

6. The last node on the right in the top long node
chain is an integrator node that generates x
as stated in (2) above. As it is an integrator
node, the input to it must therefore be the
derivative of x (i.e., x’). This is multiplied by
the output of the right node in the bottom
two-node chain (which is 2. ζ.ω) to produce
2. ζ.ω.x’ , which is the second term in the
LHS of equation 2-1-A or the second term
on the RHS of equation 2-1-B.

7. By subtracting this output from the output
of the middle node in the top row, we get
the full RHS of equation 1-B (i.e., ω2.(u –
x) -   2. ζ.ω.x’).

8. As the output of the second integrator
from the right (in the top chain) is the first
derivative of x, x’, the input to this integra-
tor node must be x’’ (i.e., the LHS of
equation 1-B).

9. Simply connecting the output of the middle
node of the top chain (which is ω2.(u – x) -   2.
ζ.ω.x’)  into the input of the second inte-
grator from the right (x’’) will just com-
plete the equation.

Models of Hierarchical
Recurrent Nodes

The output trajectory of the system may be
more complex than can be represented by a
simple second-order differential model. In this
case each causal parameter may itself be mod-
elled as having a dynamical behaviour, which
may or may not be oscillatory. One such case
is where two of the three causal parameters
have second-order dynamical characteristics,
as shown in Figure 3.

The second-order model of a node in a given
layer in the hierarchy is given by equation 1
above. Starting with the final output node, let
both u and omega have their own second-order
dynamics. The input u is the output of the
following second-order system:

ωu
-2 u’’ + 2. ζu . ωu

-1.u’ + u = uu      (2)

The natural frequency ωωωωω is the output of the
following second-order system:

ωω
-2 ωωωωω’’ + 2. ζω . ωω

-1.ωωωωω’ + ωωωωω = uω      (3)

Thus the behaviour trajectory is generated
by the following sixth-order vector differential
equation (using Runge Kutta in Mathcad for
this example).

Figure 3. Two of the causal parameters of the final node have temporal behaviour modelled
as 2nd order hybrid integral recurrent nets.
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First Order Vector Form: To provide a
simulation output of the node trajectory, the
second-order equation is converted to a sec-
ond-order vector differential equation that can
be easily computed.

x1 = x, and x2 = x’

In Figure 4, x1 and x2 represent x and x’, x3
and x4 represent u and u’, and x5 and x6
represent ω and ω’ respectively. To generate
the trajectory shown in Figure 5, the following
values were used: for the u subsystem, u started
from 0 aiming at uu = 1 at a rate of ωu = 5 rad/
s with ζu = 0.3. For the ω subsystem, ω started
from 4 rad/s aiming at uω = 32 rad/s at a rate of
ωω = 4 rad/s with ζw = 0.1. Figure 5 shows the
resulting compound trajectory of x (oscillatory
trace), together with the trajectories for u (up-
per trace) and ω (lower trace).

DERIVATIVE ESTIMATION USING
RECURRENT NETWORKS

Based on models that describe the behaviour of
complex natural and physical systems, a num-
ber of explicit static algorithms are developed
to estimate the parameters of recurrent sec-
ond-order models that approximate the
behaviour of these complex higher-order sys-

tems (Ren, Al-Dabass, & Su, 1996; Bovet &
Crescenzi, 1994). These algorithms rely on the
availability of the time derivatives of the trajec-
tory. In this section a cascaded recurrent net-
work architecture is proposed to “abduct” these
derivatives in successive stages (Cant, Churchill,
& Al-Dabass, 2001). The technique is tested
successfully on parameter tracking algorithms
ranging from the constant parameter algorithm
that only requires derivatives up to order 4 to an
algorithm that tracks two variable parameters
and requires up to the eighth time derivatives.

Algorithm for Constant Parameters
from Single Point Data

Consider using the first to fourth time deriva-
tives at a single point. Given the second-order
system:

ω–2 x’’ + 2. ζ.ω–1.x’ + x = u      (4)

Figure 4. The derivative vector for
generating the economic system output using
subsystems for u and omega.

Figure 5. Simulated trajectory of a
hierarchical recurrent node (oscillatory
trace), with 2 variable inputs: u (upper trace)
and omega (lower  trace)
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Differentiate with respect to t:

ω–2 x’’’ + 2. ζ.ω–1.x’’ + x’ = 0      (5)

divide by x’’:

ω–2 x’’’/ x’’ + 2. ζ.ω–1. + x’/ x’’ = 0     (6)

and differentiate with respect to t again to give:

ω–2.[(x’’. x’’’’ - x’’’2) / x’’2] + 0 + [(x’’2 –
x’. x’’’) / x’’2] =0      (7)

Expressions for estimated ω, estimated ζ
using (5), and estimated u result as follows:

Eω–2 = [x’’. x’’’’ - x’’’2] / [x’. x’’’ - x’’2]
     (8)

Eζ = -[Eω–2 x’’’ + x’] / [2. ω–1.x’’]     (9)

Eu = Eω–2. x’’ + 2.Eζ. Eω–1 . x’ + x   (10)

High-Order Algorithms

Assume that the first and higher time derivative
of u to be non zero. For simplicity assume that
both a and b (the coefficients of x’’ and x’ to
make symbol manipulation easier) are constant
and hence disappear on first differentiation.
The extra information needed for u’, u’’, u’’’,
and u’’’’ to be non zero is extracted from the
fifth, sixth, seventh, and eighth time derivatives
of the trajectory. Only the case for the u’ is
shown here, the others for u’’ and so on are
simple extensions of the idea and are left as an
exercise for the reader.

a.x’’ + b.x’ + x = u     (11)

Differentiate wrt to t and assume u’ is non
zero to give:

a.x’’’ + b.x’’ + x’ = u’     (12)

Differentiate again and set u’’ = 0 gives:

a.x’’’’ + b.x’’’ + x’’ = 0     (13)

Divide equation 11 by x’’’ to isolate b:

a.x’’’’/x’’’ + b + x’’/x’’’ = 0     (14)

Differentiate again to eliminate b:

a.(x’’’’’.x’’ - x’’’’2 )/x’’’2 + (x’’’2 - x’’ .
x’’’’)/x’’’2 = 0     (15)

Re-arranging for a gives:

E(a) = (x’’ . x’’’’ - x’’’2 )/(x’’’’’ . x’’’ -
x’’’’2 )     (16)

Solve for b by substituting a from equation
16 into equation 14:

E(b) = -x’’/x’’’ - a.x’’’’/x’’’

which after substituting for a and manipulating
gives:

E(b) = (x’’.x’’’’’ - x’’’.x’’’’)/(x’’’’’2 - x’’’
. x’’’’’)     (17)

We can now substitute these values for a
and b into equation 1 to solve for u,

u = a.x’’ + b.x’ + x

A Recurrent Architecture to
Estimate Time Derivatives

The structure of each cell of the recurrent
network is shown in Figure 6. The output of
each cell feeds the input to the next one to
generate the next higher-order time derivative
(see Figure 7). The output of the system and the
cascade of first-order recurrent network filters
are simulated using the fourth-order Runge-
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Kutta method in Mathcad. The derivatives vec-
tor is shown in Figure 8. Figure 9 shows a
typical set of derivatives estimated from a
damped oscillatory trajectory.

RESULTS AND DISCUSSION

First Algorithm Using
Constant Parameters

This algorithm uses a single time point and four
higher-order time derivatives. The filter cas-
cade provide a continuous estimate of the first
to fourth time derivative x’, x’’, x’’’, and x’’’’.
This provides a continuous estimate of all pa-
rameters at each point on the trajectory. The
results of the estimation are given in Figure 10,
which shows fast and accurate convergence.

Discussion

Estimated values for constants parameters are
very close to the desired set values. The de-
rived algorithms estimate ω, ζ, and u for a good
range of values: ω from 1 to10, ζ between +/-
(0.01 to 1), and u between +/- (0.5-40), and give
accurate estimates. Estimation errors decreased
as ω increased, particularly for small ζ (less
than 0.5), where oscillation provided wide varia-
tion in the variables to decrease errors. The
differences between the (simulated) system

Figure 6. A single stage recurrent sub-net
using an integrator in the feedback path to
estimate the derivative x’ = w(x-E(x)); the net
is a low pass filter with a cut off frequency w.

Figure 7. A 2nd order recurrent network to
estimate 1st and 2nd time derivatives.
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Figure 8. A cascade of five recurrent cells
plus the second-order trajectory model

Figure 9. A typical set of time derivatives
estimated from the trajectory of an oscillatory
second-order dynamical system.
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time derivatives (x, x’, and x’’) and their esti-
mates from the filter cascade depended on G
(the cut-off frequency): high G provided more
accurate estimation of derivatives but made the
algorithms prone to noise and vice versa. An-
other disadvantage of high G from the simula-
tion point of view is that simulation time in-
creases considerably due to the integration
routine adapting to ever smaller steps. The
algorithm provides fast convergence.

Results for the Higher-Order Algorithm

Mathcad routines are set up to generate the
input u as a second-order system with its own
parameters of natural frequency, damping ra-
tio, and input. The input subsystem damping
ratio was set to 0.05 to generate an oscillatory
behaviour for long enough to test the parameter
tracking algorithm thoroughly. The frequency
of the input is set to 16 radians per second, one
quarter of the frequency of the data natural
frequency. The derivative generation cascade
is increased by one to produce the fifth time
derivative. The results are shown in Figure 11.

The actual input is the smooth trace, which
gives approximately one-and-one-quarter cycles
over a period of half a second as expected—
that is, 16 radians/s = 2.546 Hertz. The large
jagged trace shows the results from the previ-
ous constant u derivation algorithm, which is
failing completely to track the input parameter.
The third trace shows the result of the new
algorithm, which is managing to track the input

much more closely; however, it starts to di-
verge slightly near the peak of the cycle, but
then returns to track it well right down and
round the lower trough of the input trajectory.

To check the quality of tracking as time
progresses, a second set of results (Figure 12)
is obtained, with integration time extended to
one second to give two-and-a-half cycles. It is
clear that tracking remains stable. It is interest-
ing to note that the old algorithm, while com-
pletely failing to track the upper half of the input
trajectory, seems to track it well during the
lower half, but not as well as the new algorithm.

KNOWLEDGE MINING IN
HYBRID INFERENCE NETS

Deduction and Abduction in
Inference Networks

To engineer a knowledge base to represent eco-
nomic systems, a multilevel structure is needed.
By its very nature, the knowledge embedded
within these systems is continually changing and
needs dynamic paradigms to represent and ac-
quire their parameters from observed data. In a
normal inference network, the cause-and-effect
relationship is static and the effect can be easily
worked out through a deduction process by con-
sidering all the causes through a step-by-step
procedure which works through all the levels of
the network to arrive at the final effect. On the
other hand, reasoning in the reverse direction,
such as that used in diagnosis, starts with observ-
ing the effect and working back through the nodes
of the network to determine the causes; this is
termed knowledge mining.

Dynamical Knowledge
Mining Processes

These ideas are applied here to recurrent or
dynamical systems networks where some or all

Figure 10. Estimated constant omega, zeta,
and u
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of the data within the knowledge base is time
varying. The effect is now a time-dependent
behaviour pattern, which is used as an input to
a differential abduction process to determine
the knowledge about the system in terms of
time varying causal parameters. These causal
parameters will themselves embody knowledge
(meta knowledge), which is obtained through a
second-level mining process to yield second-
level causal parameters. These mining pro-
cesses consist of a differential part to estimate
the higher time derivative knowledge, followed
by a non-linear algebraic part to compute the
causal parameters.

Hierarchical Causal Parameters
with Temporal Behaviour

The output trajectory of the system may be
more complex than can be represented by a
simple second-order differential model. In this
case each causal parameter is itself modelled
as having a dynamical behaviour, which may or

may not be oscillatory. One such case is where
two of the three causal parameters have sec-
ond-order dynamical characteristics, as was
shown in Figure 3.

Knowledge Mining Algorithms

Several explicit algorithms for the three usual
parameters characterising the behaviour of
second-order models have been derived (Al-
Dabass et al., 1999a) based on information
available from the systems time trajectory.
Leaving the second-order model in its second
time derivative form and using three points on
the trajectory, each providing position, velocity,
and acceleration, a set of three simultaneous
algebraic equations were solved to yield esti-
mates of input, natural frequency, and damping
ratio. An online dynamical algorithm was then
configured to combine estimates of the trajec-
tory time derivatives with these explicit static
non-linear functions to provide continuous pa-
rameter estimation in real time.

Figure 11. Results of the high-order
algorithm

Figure 12. Results of the high-order
algorithm for one second integration time
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Multipoint Algorithms

Several algorithms are easily derived to esti-
mate values of causal parameters using as
many points from the trajectory as necessary to
form a set of simultaneous algebraic equations.
The parameters to be estimated form the un-
known variables, and the trajectory values and
their time derivatives form the constant param-
eters of these equations (Al-Dabass et al.,
1999b, 2002a, 2002b).

Algorithm 1: Three-points in x, x’ and
x’’. Consider estimating ω, ζ, and u using three
sets of x, x’, and x’’:

ω–2 x1’’ + 2. ζ.ω–1.x1’ + x1 = u     (18)

ω–2 x2’’ + 2. ζ.ω–1.x2’ + x2 = u     (19)

ω–2 x3’’ + 2. ζ.ω–1.x3’ + x3 = u     (20)

Subtracting (19) from (18) and (20) from
(18) gives:

ω–2.( x1’’ - x2’’ ) + 2. ζ.ω–1.( x1’ - x2’ ) + ( x1-
x2 ) = 0     (21)

ω–2.( x1’’ - x3’’ ) + 2. ζ.ω–1.( x1’ - x3’ ) + ( x1
- x3 ) = 0     (22)

Divide (21) by ( x1’ - x2’ ) and (22) by ( x1’
- x3’ ) gives:

ω–2.( x1’’ - x2’’ ) / ( x1’ - x2’ ) + 2. ζω–1 +
( x1 - x2 ) / ( x1’ - x2’ ) = 0     (23)

ω–2.( x1’’ - x3’’ ) / ( x1’ - x3’ ) + 2. ζω–1 + (
x1 - x3 ) / ( x1’ - x3’ ) = 0     (24)

and subtracting gives:

ω–2.[( x1’’ - x2’’) / ( x1’ - x2’) - (x1’’ - x3’’)
/ ( x1’ - x3’)] + [(x1 - x2) / ( x1’ - x2’) - (x1 - x3) /

( x1’ - x3’)=0 (24-A)

Using the following notations:

∆12 = (x1- x2), ∆’12 = ( x1’ - x2’), ∆’’12 = (
x1’’ - x2’’)

∆13 = (x1 - x3), ∆’13 = ( x1’ - x3’), ∆’’12 = (
x1’’ - x3’’)

we get expressions for estimated ω,ζ using (21),
and estimated u:

Eω2 = [∆’’13.∆’12 – ∆’13] / [∆’12.∆’13 –
∆13.∆’12]

Eζ = [-Εω−2.∆12 – ∆12] / [2. Eω1.∆’12]

Eu = Eω−2.x1’’ + 2. Eζ..Εω–1 .x1’ + x1

Algorithm 2: Two-points and one extra
derivative. Consider using two sets of x, x’,
x’’, and x’’’.

ω−2 x1’’ + 2. ζ.ω–1.x1’ + x1 = u     (25)

ω−2 x2’’ + 2. ζ.ω–1.x2’ + x2 = u     (26)

Subtracting (26) from (25) and dividing by
(x1’ - x2’):

ω−2.( x1’’ - x2’’ ) / ( x1’ - x2’ ) + 2. ζ.ω–1 + (
x1 - x2 ) / ( x1’ - x2’ ) = 0     (27)

Differentiating (27) with respect to t gives:

[ω−2[( x1’ - x2’ ). (
 x1’’’ - x2’’’ )]- ( x1’’ - x2’’

)2] / ( x1’ - x2‘ )
2 + 0 + [ ( x1’ - x2’ )

2 - ( x1 - x2
). ( x1’’ - x2’)] /( x1’ - x2’ ) = 0    (28)

Using the following notations:

∆12 = (x1 - x2), ∆’12 = (x1’ - x2’),
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∆’’12 = ( x1’’ - x2’’) and ∆’’’12( x1’’’ - x2’’’)

We get expressions for estimated ω, esti-
mated ζ using (27), and estimated u:

Eω2 = [∆’12. ( ∆’’’12 ) - ( ∆’’12)2] / [∆’12 )2

- ∆12.∆’’12]

Eζ = [-Εω−2.∆12/∆’12 - ∆12/∆’12] / [2. Eω−1]

Eu = Eω−2.x1’’ + 2. Eζ..Εω–1 .x1’ + x1

Single-Point Algorithms

In this section we relax the constant parameter
condition by assuming a linear time variation—
that is, constant first derivative but zero second
and higher time derivatives of parameters. As
may be expected, more information is needed
for this new case, which is to be extracted from
the system output trajectory by obtaining higher
time derivatives. Explicit functions of the pa-
rameters are still possible, as well as those of
their first-time derivatives. A set of three equa-
tions, one for each parameter, is formulated and
numerically computed in real time together with
the state estimation vector observer to yield
continuous trajectories of the parameters. This
is a different technique to that of augmenting
the state derivative vector with the parameter
derivatives—instead of driving these deriva-
tives with some function of the error between
the system and model output, we provide an
explicit function that should aid successful and
speedy convergence to actual parameter val-
ues and provide continuous tracking. This should
hold even when the parameters are changing
rapidly compared to the system’s natural fre-
quency or time constant.

These are classified according to the order
of the parameter variation used in the deriva-
tion—that is, constant, first-order polynomial
(constant u’ but u’’=0), second-order polyno-
mial (constant u’’ but u’’’=0), and so forth.

Algorithm 3: Constant parameters. Con-
sider using the first to fourth time derivatives at
a single point. Given the second-order system:

ω−2 x’’ + 2. 2. ζ.ω–1.x’ + x = u     (29)

Differentiate with respect to t and divide by
x’’:

ω−2 x’’’/ x’’ + 2. ζ.ω–1 + x’/ x’’ = 0     (30)

and differentiate with respect to t again to give:

ω–2.[(x’’. x’’’’ - x’’’2) / x’’2] + 0 + [(x’’2 –
x’. x’’’) / x’’2] =0 (4-15)

We get expressions for estimated ω, esti-
mated ζ using (3-14), and estimated u:

Eω2 = [x’’. x’’’’ - x’’’2] / [x’. x’’’ - x’’2]

Eζ= -[Eω−2 x’’’ + x’] / [2. Eω–1.x’’]

Eu = Eω−2. x’’ + 2.Eζ–1 . x’ + x

Algorithm 4: First-order parameters.
Let the first-time derivative of u to be non zero.
For simplicity, assume that both a and b (the
coefficients of x’’ and x’ to make symbol
manipulation easier) to be constant and hence
disappear on first differentiation. The extra
information needed for u’ to be non zero is
extracted from the fifth time derivative of the
trajectory.

a.x’’ + b.x’ + x = u     (31)

Differentiate wrt to t and assume u’ is non
zero to give:

a.x’’’ + b.x’’ + x’ = u’     (32)

Differentiate again and set u’’ = 0 gives:
a.x’’’’ + b.x’’’ + x’’ = 0     (33)
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Divide by x’’’ to isolate b:

a.x’’’’/x’’’ + b + x’’/x’’’ = 0     (34)

Differentiate again to eliminate b:

a.(x’’’’’.x’’ - x’’’’2 )/x’’’2 + (x’’’2 - x’’ .
x’’’’)/x’’’2 = 0     (35)

Re-arranging for a gives:

a = (x’’ . x’’’’ - x’’’2 )/(x’’’’’ . x’’’ - x’’’’2 )
    (36)

Solve for b by substituting a from equation
36 into equation 34:

b = -x’’/x’’’ - a.x’’’’/x’’’

Substituting for a and manipulating gives:

b = (x’’.x’’’’’ - x’’’.x’’’’)/(x’’’’’2 - x’’’ .
x’’’’’)     (37)

We can now substitute these values for a
and b into equation 31 to solve for u,

u = a.x’’ + b.x’ + x

Results and Discussion

Algorithm 3 Using Constant Parameters:
This algorithm uses a single time point but two
further time derivatives compared to Algorithm
1. The filter cascade is increased by one again
to provide a continuous estimate of the fourth
time derivative x’’’’. The separation problem
disappears altogether now to provide a continu-
ous estimate of all parameters at each point on
the trajectory. Program 3 [Al-Dabass et al.,
1999a] was run, and the result of the estimation
shows fast and accurate convergence.

Discussion

Estimated values for constants parameters were
close to the desired set values. The derived
algorithms estimated ω, ζ, and u for a good
range of values: ω from 1 to 10, ζ between +/-
(0.01 to 1), and u between +/- (0.5-40), and
gave accurate estimates. Estimation errors
decreased as ω increased, particularly for small
ζ (less than 0.5), where oscillation provided
wide variation in the variables to decrease
errors. The differences between the (simu-
lated) system time derivatives (x, x’, and x’’)
and their estimates from the filter cascade
depended on G (the cut-off frequency): high G
provided more accurate estimation of deriva-
tives but made the algorithms prone to noise and
vice versa. Another disadvantage of high G
from the simulation point of view is that simu-
lation time increased considerably due to the
integration routine adapting to ever smaller
steps. The algorithms provided progressively
faster convergence, with Algorithm 3 being the
fastest to converge.

Results

Further results to those shown earlier are ob-
tained to test the case when one or two of the
input causal parameters were changing. Figure
13 shows the results when u is changing and the
result of tracking it using algorithms 3 a—d 4—
algorithm 3 results showing large oscillations
while those for algorithm 4 show much smoother
tracking. Figure 14 shows the results of both
algorithms tracking the other input ωωωωω. Again
algorithm 4 is producing a far smoother esti-
mate than the large oscillatory output of algo-
rithm  3.

Comments

For a given range of parameters, the algorithms
worked well, being able to estimate the two
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causal parameters u and omega with their
temporal behaviour—that is, track them while
they are changing. The first-order algorithm
worked better than the constant one; Figure 13
shows a comparison of the two algorithms
tracking omega. Algorithms of higher order
than first showed marginal improvement, but in
certain cases showed a deteriorating behaviour;
Figure 14 shows a third-order algorithm deviat-
ing quite markedly from the true trajectory
compared to a first-order algorithm. This is
likely to be due to an accumulation of errors in
higher derivative values used in the former
algorithm.

KNOWLEDGE MINING
FOR ECONOMIC SIGNAL
PROCESSING APPLICATIONS

A special sixth-order dynamical model is pro-
posed to simulate the behaviour of complex
signals. The model consists of a two-layer
hierarchy of second-order dynamics, two of

whose parameters are themselves second or-
der. Given the trajectory of the actual complex
signal, a recurrent hybrid algorithm is derived to
estimate the parameters of the model. Results
show good performance of the algorithm in
tracking the model parameters online. Sugges-
tions for future directions are given.

The algorithms derived earlier combine es-
timates of a given trajectory time derivatives,
using data from several points on the trajectory,
with explicit static non-linear functions to pro-
vide continuous parameter estimation in real
time. For time varying parameters, the time
separation between the points on the trajectory
directly influences the estimation accuracy.
This due to the assumption of constant param-
eters used in the derivation is no longer valid,
and accuracy deteriorates with increasing rate
of parameter variation. This is termed the sepa-
ration effect, which can only be eliminated if all
data is obtained from a single time point. An
algorithm was derived and proved, as expected,
to be the most successful in coping with high
rates of parameter variation. Accurate track-

Figure 13. The u causal parameter (smooth
trace) being tracked using algorithm 3 (top
sinusoid-like trace) and algorithm 4 (gentle
wavy immediately below u trace); the black
trace is the node output trajectory

Figure 14. The ω causal parameter (smooth
trace) being tracked using algorithm 3 (top
jagged trace) and the new algorithm
(entwined with ω trace); the bottom trace is
the node output trajectory
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ing of parameters when two of the parameters
were varying simultaneously still proved diffi-
cult. The constant parameters assumption in
the derivation is seen as the fundamental cause
here.

Sixth-Order Models of
Compound Signals

Hierarchical Second-Order Models: The
signal trajectory is more complicated than can
be represented by a simple second-order dif-
ferential model. In this case each parameter
may itself be modelled as having dynamics,
which may or may not be oscillatory. One such
case is where two of the three parameters have
second-order characteristics, as shown in Fig-
ure 15.

The second-order model of a node in a given
layer in the hierarchy is given by:

ω–2 x’’ + 2. ζ.ω–1.x’ + x = u

To model complicated signals, let both u and
omega have their own second-order dynamics.
The input u is the output of the following
second-order system:

ωu
–2 u’’ + 2. ζu .ωu

–1.u’ + u = uu

The natural frequency ωωωωω is the output of the
following second-order system:

ωω
–2 ωωωωω’’ + 2. ζω .ωω

–1.ωωωωω’ + ωωωωω = uω

Thus the behaviour trajectory is generated
by the following sixth-order vector differential
equation (using Runge Kutta in Mathcad for
this example) (see Figure 17).

Where x1 and x2 represent the x and x’, x3
and x4 represent u and u’, and x5 and x6
represent ω and ω’ respectively. To generate
the trajectory shown in Figure 18, the following
values were used: for the u subsystem, u started
from 0 aiming at uu=1 at a rate of ωu = 5 rad/s
with ζu = 0.3. For the ω subsystem, ω started
from 4 rad/s aiming at uω = 32 rad/s at a rate of
ωω = 4 rad/s with ζω = 0.1. The resulting com-
pound trajectory of x (red), together with the
trajectories for u (top dotted) and ω (bottom
dotted) are shown in the graph in Figure 18.

Results and Discussion

Mathcad routines were set up to generate the
input u as a second-order system with its own
parameters of natural frequency, damping ra-
tio, and input. The input subsystem damping

Figure 15. Hybrid integral-recurrent net
model of a second-order system

Figure 16. Two of the input parameters of
the signal are time varying and modelled
with second-order dynamics.
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ratio was set to 0.05 to generate an oscillatory
behaviour for long enough to test the parameter
tracking algorithm thoroughly. The frequency
of the input was set to 10 radians per second;
the frequency of the main signal, on the other
hand, started from 20 and aimed at 80 with a
peak of about 130 radians. The derivative gen-
eration cascade was increased by one to pro-
duce the fifth time derivative.

Tracking Two Parameters: For a given
range of parameters, the algorithm worked
well, being able to estimate the two input pa-
rameters u and omega with their time varying

behaviour—that is, track them while they are
changing. The first-order algorithm worked
better than the constant one; Figure 19 shows a
comparison of the two algorithms tracking
omega. Algorithms of higher order than first
showed marginal improvement, but in certain
cases showed a deteriorating behaviour; Figure
20 shows a third-order algorithm deviating quite
markedly from the true trajectory compared to
a first-order algorithm. This is likely to be due
to an accumulation of errors in higher deriva-
tive values used in the former algorithm.

CONCLUSION

A model for hybrid logic nets was put forward
to model the complex behaviour of economic
systems. To estimate the values of the causal
parameters, a number of parameter knowledge
mining algorithms were presented. Two of the
algorithms used multiple points from the trajec-
tory, three for the first algorithm and two points
for the second. Two single-point algorithms
were presented: one that assumed constant
parameters and used higher time derivatives of
the trajectory (up to fourth), and a second

Figure 17. Simulation vector of a sixth-
order trajectory (top two rows) with u (rows
3 and 4) and omega (rows 5 and 6) of the
signal having second-order dynamics

Figure 18. Simulated trajectory of a complex signal of a sixth (oscillating trace), with two
variable inputs: u (top) and omega (bottom)

D t x( )

x2

x5 x5 x3 2 z x5 x2 x5 x5 x1

x4

wu wu uu( ) 2 zu wu x4 wu wu x3

x6

ww ww uw( ) 2 zw ww x6 ww ww x5  

x2

x5 • x5 • x3 – 2 • z • x5 • x2 – x5 • x5 • x1

x4

(wu • wu • uu) – 2 • zu • wu • x4 – wu • wu • x3

x6

(ww • ww • uw) – 2 • zw • ww • x6 – ww • ww • x5

D(t, x) : =
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algorithm that used additional information from
a fifth time derivative of the trajectory to allow
one of the parameters, the input parameter u, to
have a non zero first-order time derivative.

The fourth algorithm was tested for its abil-
ity to track the input parameter for a reduced
order model. The test involved the generation
of a lightly damped second-order recurrent net.
The results showed the algorithm maintaining
good tracking over an extended period of time.
This algorithm proved to be far superior to the
third algorithm, which relied on the assumption
of constant input in the derivation.
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ABSTRACT

This chapter deals with the usage of grid technologies for nature-inspired algorithms and
complex simulations. After shortly introducing the grid and its technological state of the art,
some features are pointed out in order to set the boundaries of the applicability of such new
technology to the matters of interest. Then two paragraphs show some possible usages of grid
technologies. The first one introduces the master-worker paradigm as a conceptual and
technological scheme that helps in solving issues related to dynamic optimisation via nature-
inspired algorithms and in exploring the parameters space of complex simulations. The
following paragraph concerns two other points: the possibility to distribute agents of agent-
based simulations using multi-agent systems; and the boundaries, architectures, and advantages
in distributing parts of complex simulations which are heavy from the computational point of
view. The chapter, as a whole, acts as a guide presenting applicative ideas and tools to exploit
grid technological solutions for the considered purposes.

INTRODUCTION

Among the many novelties developed in ICT,
the grid has emerged as one of the most radical
and promising, aiming to modify the established
standards in computing.

The basic idea of the grid is, as well known,
the possibility to develop and implement a wide-
spread network of computing services, easily
accessible from anywhere, taking as a model
the structure of power grids for distributing
electricity. In such kind of information infra-
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structure, it should not be relevant where the
computing power is geographically located and
computing therefore becomes a commodity.

The grid is a new paradigm that makes
possible already known computing paradigms
such as parallel and distributed computing in a
more general framework based on common
standards and on grid services.1 Such services
are not just useful for performing better compu-
tations in terms of time, but also to share any
kind of resources (for instance databases and
scientific tools) among any kind of virtual
organisation.

While the social and organisational impact
of the new concepts implied by the grid (in
particular the transformation of computing in a
commodity) are still to be explored and they
actually belong more to possible future sce-
narios than to real ones, it is worth noting the
state of the art of the technologies developed in
the field.

Since the main ideas of the grid have been
presented to the scientific community, a decade
characterised by many research projects has
passed away and it is nowadays possible to
exploit the first elements of such infrastructure:
many grids have been developed by different
scientific communities, and a considerable
amount of software is available to develop new
grids and services.

Thus, grid computing is not a dream but
something real, though it is worth adding that
the usage of the grid is nowadays not easy. In
fact, referring to the current issues in exploiting
the new technology, the actual phase of devel-
opment and evolution must be carefully consid-
ered: after less than a decade of development,
the technology is not usable by every potential
end user because of the software available,
which is mainly middleware that must be man-
aged by professionals.

But even if the problem of easiness of usage
does not affect every potential user (e.g., insti-

tutions and organizations where computing de-
partments have human resources with the
needed skills), other issues are now preventing
the fast diffusion of the grid, mainly its lack of
standards and the few fields for which it has
been used and thus for which it has shown its
sound advantages. These issues are nowadays
considered critical and in fact new standards,
such as the open grid services architecture—
OGSA (Foster, Kesselman, Nick, & Tuecke,
2002; Foster, Kesselman, & Tuecke, 2004) and
the open grid services infrastructure—OGSI
(Tuecke et al., 2003), and many new projects
are under fast development and diffusion.

This chapter considers both available tech-
nologies and already started projects, but it is
not a generic introduction on the theme2: it deals
with possible usages of the technology on spe-
cific topics.

In fact, while grid technologies can be ap-
plied in every field of research and for any kind
of purpose characterised by the need of an
intensive usage of computing power, here the
focus is on the exploitation of the tool in the
overlapping fields of nature-inspired computing
and complexity, aiming to answer research and
organisational questions.

Considering such kind of aim, it is worth
underlining how the mentioned fields of re-
search are overlapping and closely connected,
and moreover how they call for contributions
from several other research fields, from distrib-
uted artificial intelligence to operational re-
search.

Moreover, another important issue should
be considered: grid technologies, even if thought
and designed to radically modify the computing
paradigm for all possible kinds of purpose, have
been mainly developed and applied in some
fields which are intrinsically different from the
ones we are talking about.

For instance, the largest part of projects,
software, infrastructure, and research funds
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spent and developed in Europe in the last years
in the field of grid computing relate to the
research work of physicists and in particular to
experiments that will be made possible by the
new collider (the Large Hadron Collider—
LHC) that will start to be ready in 2007 at
CERN in Geneva.

The need for computing in this case is largely
modular: from making available different ser-
vices and tools through the network to the distri-
bution of the vast experimental data collected,
each activity is mainly managed by the execution
of several tasks across the grid, and those tasks
are completely independent or slightly depen-
dent in the sense that some tasks need the results
obtained by others to be executed.

In our fields of interest (i.e., nature-inspired
computing and applications coming from the
field of complexity science), that is generally
not the case because computing tasks are strictly
dependent on one another. In other words, in
the largest part of the cases now considered by
the grid, computational tasks interact just at the
beginning and at the end of the execution, while
in the direction of applying such technologies
for our purposes, the need to have computing
tasks interacting along their execution must be
considered.

Summarising the state of the art in grid
computing, it raises two main issues concerning
researchers and professionals wanting to apply
it to the topics here focussed:

1. Grid technological solutions are still in a
stage of development: depending on that,
the knowledge to exploit them is highly
expensive to learn because of the lack of
standardisation and because of the lack of
efforts in preparing end user tools; the
development of such technologies is led
by physicists, the needs of whom are just
partially common to ours, and thus very
few projects already developed can be

considered useful examples on how to
solve our needs, and consequently, an
even more expensive effort is due to apply
the technology.

2. A relevant amount of grid technologies
(i.e., the ones that deal with sharing com-
putational resources) are characterised
by aiming to distribute computing weights
on networked resources, separating them
in different and almost independent tasks,
capable of interacting with each other
shortly and mainly by coordination means,
and that structure is possible because of
the modularity of the kind of computations
that are distributed: when considering ex-
ploiting such technology for highly com-
plex computations, neither modular nor
separable, the implementing paradigm of
the computations must be changed and
adapted to the new programming and com-
puting environment, or new approaches to
grid computing must be developed to fix
the missing characteristics of the main-
stream in grid projects.

For these reasons, the following paragraphs
explain two kinds of approaches: the first one
shows how a computing paradigm already avail-
able in the technological universe of the grid
can be effectively exploited to solve some
particular problems mainly in the field of na-
ture-inspired algorithms, but sometimes also in
complex simulations, while the second one
shows other possible means to exploit the grid
in complex simulations, pointing out the con-
straints now posed by the technology.

THE MASTER-WORKER
PARADIGM

The master-worker paradigm is based on a
simple computing architecture: there is one
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single node of the network that has the role of
master—that is, to coordinate other nodes and
to give tasks to be executed—while the other
nodes are workers, in the sense that they
execute received tasks. Each worker can be a
single computer or a pool of them. The commu-
nication among master and workers happens at
the beginning when tasks are sent from master
to workers, and at the end when each worker,
as soon as it has terminated the task, communi-
cates the results to the master. There is not
communication among workers.

The master-worker architecture is one of
the simplest that can be found in the field of grid
computing, and it is not very different from the
ones which aim to efficiently provide specific
computing services, such as NetSolve
(Casanova & Dongarra, 1997) and NEOS
(More, Czyzyj, & Mesnier, 1998). The men-
tioned examples are a particular case of the
computing paradigm we are talking about: their
aim is to distribute the computing power of net-
worked computers to users who need a specific
kind of service—that is, the solution of optimisation
problems (NEOS) or generic computing problems
(NetSolve)—but all must be rigorously formalised
in a mathematical language.

The basic idea of these two projects was the
building of an effective service for optimisation,
where end users can write the mathematical
problem with their software of choice (e.g.,
Mathematica and MATLAB) and then access
the service as if it were unique: users do not
know and do not care about the underlying
implementation and computing infrastructure,
but they ask a service to a provider that effec-
tively answers managing the distribution of
networked resources and so forth.

Those examples exploit the master-worker
paradigm because there is a master computer
that coordinates and distributes the computing
weights among the networked resources, being

able to perform complicated algorithms of
optimisation in a very short time.

In other words the mentioned examples do
not look immediately as instances of the mas-
ter-worker paradigm but dedicated services,
while their implementation exploits the para-
digm.

Our claim here is that the master-worker
paradigm can be similarly exploited in the fields
of nature-inspired computing and of complex
simulations, and particularly for two purposes.

Considering for instance that NEOS is a
service for mathematical optimisation, a first
application is to build a similar service imple-
menting the kinds of optimisation provided by
nature-inspired optimisation algorithms such as
genetic algorithms, neural networks, and so
forth.

The master-worker model in this context
appears to be a promising enhancement of the
parallel search process of the solution space
typical of many nature-inspired algorithms, al-
lowing advantages from the point of view of
execution speed and perhaps results quality.

The problem, in this case, is the formalisation
of the optimisation problem: while in math-
ematical language it is possible to simply ex-
press problems of optimisation, nature-inspired
optimisation algorithms are particularly useful,
not just when standard mathematical optimisation
algorithms are not effective because of the
definition of the problem space or because of
the computational weight, but even when prob-
lems cannot be expressed in mathematical lan-
guage.

Thus, even if a general service just for
function optimisation exploiting genetic algo-
rithms can be conceived and made (e.g.,
Nakada, Matsuoka, & Sekiguchi, 2004), it is not
possible to build a generic service for Genetic
Algorithms, but it is possible to build several
specific services exploiting genetic algorithms
to solve specific problems.
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This kind of application is the first one in
which the master-worker paradigm appears
deeply effective to solve computational prob-
lems in our fields of interest.

Imagine, as an example, of being interested
in the development of a complex simulation of
the productive organisation of a manufacturing
plant. After having built a model capable of
describing all the manufacturing phases, flows
and time lags of materials, and so on, exploiting
the most appropriate modelling paradigm for
the case (for instance making a process simu-
lation), further suppose that the problem of
interest concerns the organisation and manage-
ment of the production flow in order to optimise
the plant output, considering the complexity and
variety of the flow of orders that are demanding
different versions and different lots of goods.

If the technological complexity of the manu-
facturing phases does not allow the finding of a
simple rule to optimise the organisation, differ-
ent optimal solutions can be dynamically dis-
covered using genetic algorithms combined with
the simulation: several organisational solutions
can be explored and evolved by the algorithm to
find the organisational solution that optimise the
simulated plant with a particular set of orders.

If the flow of orders is frequently updated
and modified, the problem of dynamic
optimisation can be too heavy even for a pow-
erful computer, in particular if the optimisation
system has to organise the production line in
real time and thus the computing speed be-
comes a relevant constrain for the productive
exploitation of the model.

With a small cluster of computers, highly
efficient outcomes will be reached by distribut-
ing the simulations among them, having the
master managing the genetic algorithm and the
workers simulating the possible solutions to
evaluate their fitness values. The grid more-
over allows the possibility of sharing resources
coming from different organisations, and thus

the need for a cluster is not to be intended as the
need of a proprietary and dedicated computing
system, but just to have access to the grid. The
different instances of workers applications can
in fact be spread and distributed efficiently
through the technology of grid services.

The kind of computational improvement that
such solution can bring is easy to be evaluated:
the theoretically bounded maximal improve-
ment conceivable is the sum of the computa-
tional power of the nodes exploited—that is, if
each computer has the same characteristics, to
halve optimisation time when using two com-
puters instead of one.

But in reality the amount of improvement is
slightly less than the theoretical maximum be-
cause of network communication between
master and workers that can slow down the
whole optimisation process.

In recent experiments conducted with the
colleagues (Gianluigi Ferraris, Matteo Morini,
and Michele Sonnessa) of the Networked Mod-
elling Team at the University of Torino on a
complex model of a textile plant, we have found
how some small modifications to the standard
genetic algorithm can help. In fact, creating a
memory to avoid re-exploring already met pro-
ductive configurations and condensing commu-
nication to transmit, each time, multiple possible
solutions to be explored by workers means
reaching better improvement in computational
time (for instance, the doubling of computa-
tional power that would mean a theoretical
bound of 50% improvement, in our tries meant
a 41% improvement in real computational time).

A second case in which the master-worker
paradigm helps is the problem of parameters
sweeping. In the fields of research and design,
it is more common everyday to exploit models
that consider a large amount of parameters;
and while in standard mathematical models the
parameters space is generally characterised by
properties that let the user simplify the problem
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of exploring that space, in complex simulations
that is not possible because of the intrinsic
complexity of the model.

In those cases, it would be necessary to run
the simulation with all possible configurations
of parameters creating a very long and comput-
ing-intensive task.

With a master creating parameters configu-
ration, sending them to workers, and collecting
the results, such process becomes fast and
possible.3

In conclusion, the master-worker paradigm
appears to be effective for two purposes:
optimisation led by nature-inspired algorithms
with distributed fitness evaluation, and param-
eters space sweeping of complex simulations.

The technical solutions for implementing the
master-worker computing architecture are
many: it is possible to exploit middleware that
enables such kinds of computing tasks, and
among them one of the most reliable and dif-
fused solution is the CONDOR project4 (used
with NIMROD for distributed parametric mod-
elling5), or it is possible to easily develop spe-
cific solutions from scratch, for instance ex-
ploiting high-level programming libraries such
as Java-RMI, XML-Rpc, Corba, or recent grid
middleware such as the Globus Toolkit6 and
grid services, and so forth.

The Distribution of Agents
and Databases

Available grid technologies are useful for the
specific but very relevant purposes just shown
in the paragraph above. The exploitation of the
new computing infrastructure for other appli-
cations related to nature-inspired computing
and complex simulations is a main issue for the
development of the grid and even for enlarging
the universe of possibilities of our research
techniques, but such a dream is particularly far
off for scholars and practitioners of complex
simulations.

Whilst for people involved in exploiting na-
ture-inspired computational algorithms the grid
gives the master-worker paradigm and many
tools to realise it, those interested in realising
complex simulations on networked resources
faces several problems, the most important of
which is the difficulty to exploit intra-execution
communication (a feature needed because of
the lack of modularity in computations).

The only technology now available and dif-
fused to achieve that purpose is the so-called
message passing interface—MPI (for an over-
view, see Foster, Kohr, Krishnaiyer, &
Choudhary, 1997; for an application in grid
context, see Bal, Casanova, Dongarra, &
Matsuoka, 2004, pp. 482-483). It is a low-level
way of programming that enables the possibility
of accessing memory areas located in different
computers, achieving the possibility of trans-
mitting information from a task in a computer to
another in a different machine during execu-
tion.

But the implementation of MPI in a simula-
tion is problematic: past years of evolution in the
field of software for simulation have followed
the criterion of making libraries and platforms
that facilitate end users in the realisation of
simulations, by hiding low-level details and
adopting easier solutions like multi-platform
and half-interpreted languages such as Java;
therefore the need to go back to low-level
programming means several disadvantages.

One is the impossibility to exploit any of the
model realised in past years. A second disad-
vantage is the uselessness of the software now
widespread in the community. The third and
last one is the need for deeper programming
skills.

In other words, the MPI solution is too
expensive to be accepted because it generates
more practical problems than the ones it solves,
and to be adopted it implies relevant costs.

Is it thus completely impossible to generally
exploit available grid technologies to improve
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computing performances in the field of com-
plex simulations (except, of course, the already
discussed case of parameters space sweep-
ing)?

The answer should be positive, and this
chapter should end with the hope of future
technological developments. But even if that
positive answer is largely correct, we present
here two possible solutions that base their tech-
nological feasibility on exploiting tools devel-
oped outside the research on the grid, that still
need to be fully explored and diffused in the
community, but that, despite the premises, pro-
vide advantages similar to the ones of grid
technologies.

Firstly, considering just a particular kind of
complex simulations—such as agent-based
models (ABMs) and not process simulation or
system dynamics simulation, it is interesting to
note how one of its overlapping research fields,
that of multi-agent systems (MASs) belonging
to computer science, has developed some tools
that can be really useful.

MASs in fact have been developed in recent
years by computer scientists aiming to exploit
concepts from distributed artificial intelligence
to make new software services capable of
exploiting networked resources. The term agent
in MAS refers to software agents capable of
reaching some goals requested by the user,
interacting with each other, finding and exploit-
ing resources where they are. An agent, for
instance, in a MAS is a piece of software that
manages the personal agenda of an individual
and matches its entries with the ones of the
people the individual wants to meet, even if they
belong to different organisations.

Remembering that in ABM the term agent
has a complete different meaning, and recalling
the fact that the unity of the system modelled is
a single one and not a collection, it is worth
noting how agents in MAS are generally ca-
pable of doing what practitioners of ABM

would like to do in grid environments—that is,
intra-execution communication among network
distributed software.

Exploiting available MAS platforms (for in-
stance the Magenta Multi-Agent Platform7 or
JADE8) for distributed agent-based modelling
is thus a possibility, avoiding the costs of using
low-level solutions (e.g., MPI) or the time
needed to develop new platforms from scratch,
but it implies some risks due to the adoption of
a few important concepts from that field.

One of the most important issues that the
exploitation of MAS platform implies for ABM
is the fact that MASs are conceived as open
systems and that, for guaranteeing the
interoperability between agents developed in
different times and locations, the communica-
tion infrastructure used by MAS agents is
strictly formalised.

Agents in MAS have formal ontologies and
semantics, concepts of which ABM practitio-
ners are generally unaware (in the sense that
they are not used to implementing such con-
cepts in their agents).

In other words, in MAS, even if new agents
are developed with completely new functions
and tasks, they can communicate each other
and with older ones as long as they share the
ontology and the semantics of communication,
and this simple rule makes MAS open to devel-
opment and new functionalities.

From the ABM point of view, this techno-
logical constrain poses the disadvantage of
changing the way systems are usually modelled
(developing formalised communications even
in ABM), but permits the exploitation of MAS
platforms and of distributed computation, be-
sides the possibility to fruitfully interact with the
computer science community.

Moreover, getting back to the proposed
solutions of further exploitation of grid tech-
nologies for complex simulations, a more gen-
eral scheme can be proposed.
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It is in fact possible to exploit the grid to
delocalise the less dynamic parts of simula-
tions, not only agents. A good example could be
the case of an agent-based simulation that
considers geographical data. The integration of
an ABM with a GIS (geographical information
system) tool can in fact be made in several
ways. A widespread approach is the one called
coupling (see Maguire & Batty, 2005, for a
comprehensive introduction about GIS and
modelling). In such kinds of models, the simu-
lation does not contain the geographical data,
but is executed along with a GIS application
that provides the needed information on run
time.

An example can help in making the point
clearer: imagine preparing a simulation of trans-
port companies delivering goods of different
kinds and weights via different means. The
territory considered is wide; transportation
companies are spread in different locations; the
transportation infrastructure is complex, deter-
mining delivery costs, timing, traffic queues,
and so forth.

While the simulation deals with the model-
ling of transportation companies and of their
decision-making process (i.e., which transpor-
tation mean should be used and with which
route, considering the quality and the quantity
of the good and the target location), the geo-
graphical information and constraints are held
by the GIS application, which provides data
when asked by the simulation.

The coupling solution is often adopted be-
cause the task of modelling geographical data
inside a simulation would be too expensive, in
terms of programming work and in terms of
computational weight.

Geographical data and constraints are a
good example of a part of a complex simulation
that can be distributed on the grid through grid
services or just by accessing a simple and
dedicated remote service: a GIS is a special

kind of database that is a service not directly
involved in the simulation, posing just con-
straints or determining the parameters space.
Any service with such characteristics could be
a good candidate for network distribution, im-
proving the simulation performance in terms of
time of execution and exploiting specialised
software for each task (in our example, a
simulation platform for the model and a GIS
server as the database service).

CONCLUSION

In this chapter we have briefly introduced some
important grid concepts and debated them,
focusing on their possible exploitation in the
fields of nature-inspired computing and of com-
plex simulations.

With examples we have suggested the pos-
sible melting pot between concepts and tech-
nologies: the distribution of computational
weights through grid services (and via grid-
based architectures and implementations) can
increase the performance of intrinsically paral-
lel algorithms such as many inspired by nature
and of complex simulations.

An improvement in the field of complex
simulations can be reached even by adopting
other technologies (generally not considered as
belonging to the grid) for distributing pieces of
the model on networked resources. The tech-
nological implementation is easier when the
distributed elements are only slightly interact-
ing with the others. The performance is better
when the distributed elements are the heaviest
from the point of view of computational weights.
In other words, because of the technological
state of the art in grid computing, the “rule” for
exploiting networked resources in our fields of
interest is to distribute the parts with less inter-
action and more computational weight.
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Although a chapter dealing with the grid
inevitably comes with an expiration time due to
the fact that the grid is now under a fast process
of development, the thoughts presented here
along with the technical solutions have a more
enduring nature: nature-inspired computing and
complex simulation research areas are, in a
similar way, still under strong development and
diffusion, and their methodological implications
are not still completely clear and shared. If the
adoption of a new tool in a research program is
never a neutral choice because it introduces a
new language and pragmatics, the opposite is
also true: new ideas can be introduced in the
tool when it meets a scientific community that
has not developed it.

For the grid case, it is the same, but with the
advantage of its state of development. Our
community is surely not the main one involved
in the development of the computing infrastruc-
ture of the future, but it is an important oppor-
tunity to work towards finding the tool to fulfil
our needs with its promising potential.
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KEY TERMS

Grid: A new computing infrastructure that
takes inspiration from power grids and that
aims to make available computing services,
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such as computer power and data storage, as a
commodity accessible from anywhere.

Master-Worker Paradigm: A computing
architecture operating on a network. A single
computer is called the master and sends jobs to
be executed by other computers, called work-
ers. The communication between master and
workers generally happens just at the beginning
and at the end of each job.

Message Passing Interface: A standard
interface that allows access to memory areas
of distant computers. Generally implemented
by low-level programming languages, it also
permits the communication between processes
in execution on different computers.

Open Grid Services Architecture: A set
of principles defined by standards organisations
for developing Grid middleware capable of
allowing grid systems based on Web services.

ENDNOTES

1 A grid service is, technologically speak-
ing, a Web service adapted to be compli-
ant with the standard grid architecture
presented in Foster et al., 2002, 2004.

2 For an introduction to the grid, see Foster,
Kesselman, & Tuecke, 2001; Smarr, 2004;
Foster & Kesselman 2004b.

3 Very similarly to a parameters space
sweeping application, some projects have
been developed not to explore the entire
parametric space, but just some configu-

rations considered as research hypoth-
eses to be verified. FEARLUS-G (see
Pignotti, Edwards, Preece, Gotts, & Polhill,
2004; Edwards, Preece, Pignotti, Polhill,
& Gotts, 2005), the grid extension of the
FEARLUS agent-based model (see Polhill,
Gotts, & Law, 2001; Gotts, Polhill, Law, &
Izquierdo, 2003), is an example of that
approach applied to verify hypotheses-
simulating land-use dynamics.

4 The homepage of the Condor project is
http://www.cs.wisc.edu/condor. For an in-
troduction to the usage of Condor across
several networks belonging to different
virtual organisations, see Frey,
Tannenbaum, Foster, Livny, and Tuecke
(2002). For an example of a master-
worker implementation via Condor, see
Thain and Livny (2004, pp. 304-307).

5 For reference, see Abramson, Sosic, Giddy,
and Hall (1995).

6 An introduction to the Globus Toolkit is
available in Foster (2005), while an appli-
cation of the tool is presented in Levine
and Wirt (2004). For software and the
official documentation, visit http://
www.globus.org

7 For a brief introduction to the tool, see
Himoff (2004). For complete reference,
see http://www.magenta-technology.com.

8 For an introduction to JADE, see
Bellifemine, Caire, Poggi, and Rimassa
(2003). For complete reference, see http:/
/jade.tilab.com
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ABSTRACT

This chapter argues that the economic system is best perceived as a complex adaptive system,
and as such, the traditional analytical methods of economics are not optimal for its study.
Agent-based computational economics (ACE) studies the economic system from the bottom up
and recognizes interaction between autonomous agents as the central mechanism in generating
the self-organizing features of economic systems. Besides a discussion of this new economic
methodology, a short how-to introduction is given, and the problem of constraining economics
as a science within the ACE approach is raised. It is argued that ACE should be perceived as
a new methodological approach to the study of economic systems rather than a new approach
to economics, and that the use of ACE should be anchored in existing economic theory.

INTRODUCTION

Terming a specific approach to economics
agent-based may appear paradoxical. Isn’t
human behavior the foundation of economics—
and shouldn’t all economic theory be based on
agents behavior in some sense? This, at least, is
what conventional economic theory has been
claiming since the 1970s. In this introduction
we shall argue that agent-based computational

economics (ACE) allows agents, and espe-
cially their interaction, a more pivotal role than
does conventional microeconomics or
microfounded theory. There is a difference
between microeconomics and agent-based eco-
nomics: in the latter you are not satisfied with
understanding exactly how a single agent acts
in economic markets; you are primarily inter-
ested in the system view that arises when you
observe the interaction between a number of
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agents. From observing an isolated agent, it is
impossible to foresee what happens when a
multitude of agents interact; it cannot be de-
duced. This adds importance to the computa-
tional part. In agent-based economics the com-
puter is not merely used as a giant calculator
finding analytical or numerical solutions, but it is
used as a central part in a new methodological
approach to economics.

THE ECONOMY AS A COMPLEX
ADAPTIVE SYSTEM

The economy may be described as a complex
adaptive system—that is, a system where com-
plexity arises because of the way a large num-
ber of agents interact. Complexity thus stems
from the fact that the economy is a large
composite system. What we observe as the
economy is the result of millions of agents
interacting. We know the output of this system
as growth rates, inflation rates, unemployment
rates, and so forth, but how do we get from the
description of our agents to these aggregate
magnitudes, and can we say anything about the
aggregate magnitudes in their own right?

As other sciences dealing with large com-
posite systems, economics has developed a
tradition of dealing with two levels: the
microlevel and the macrolevel. Microeconomics
takes as its starting point the behavior of indi-
vidual agents, whereas macroeconomics theo-
rizes about relations between aggregate magni-
tudes. The problem is that unless one is willing
to make very restrictive assumptions, it has
proven to be impossible to unite the two levels.
This has resulted in assumptions of homogene-
ity and constructions as the representative
agent—a construction that among others has
been heavily criticized by Kirman (1992).

The apparent impossibility of uniting micro
and macro is particularly crucial in economics

since we have developed a tradition of demand-
ing microfoundation of macroeconomics. In
reality this means a dismissal of macroeconom-
ics altogether, and an ignorance of the fact that
important characteristics of the system may
arise in the interaction part. If Keynes’ concep-
tion of effective demand (Keynes, 1936) is
something that arises in the interaction, then the
possible lack of aggregate demand is dismissed
from the outset since it cannot be microfounded.

Complexity science now offers a way out of
this situation. Rather than starting with either a
single isolated agent or aggregate magnitudes,
complexity science suggests focusing on the
interaction between agents. Recognizing that
what turns large composite systems into sys-
tems and not just collections is the interaction
between the parts, it seems apparent to start
with the interaction.

Traditional microeconomic models also have
interaction, it could be claimed, but this is really
pseudo-interaction since here an agent either
interacts with the aggregate whole or all are
simultaneously interacting with all others
(Rosser, 1999). That is, we really do not have
interaction taking place in time and space. In
general equilibrium models, the pseudo-inter-
action is obtained by having a controller signal
out a price vector to agents, and collecting
information on demand and supply given this
price vector. Being able to handle heterogene-
ity, time, and space, the sort of interaction
suggested by complexity science comes much
closer to the kinds of interaction that is actually
taking place in economic systems.

As a consequence of allowing economic
agents to actually interact, we must expect our
system to display a less predictable behavior—
that is, we must expect very complex dynam-
ics. In their introduction to the first Santa Fe
workshop on “The Economy as an Evolving
Complex System,” Arthur, Durlauf, and Lane
(1997) characterize complex dynamic systems
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as having dispersed interaction among hetero-
geneous agents acting locally on each other in
some space. This characterization must also be
expected to hold the other way around—that is,
all systems having dispersed interaction among
heterogeneous agents must be expected to
display complex dynamics, and thus economists
must learn to live with complexity.

Besides being a complex dynamic system as
described above, the economy is also adaptive.
Adaptivity exists on two levels: the system may
be capable of adapting to external factors with-
out individuals being aware of this adaptation
taking place, and agents may be capable of
adapting to the system. The economic system
has adaptation on both levels, and the fact that
economic agents are intelligent and form opin-
ions about the system of which they are a part
adds to the complexity of the system. Using
their conception of the system, they form ex-
pectations concerning the future developments
of the system, and these expectations affect
their current behavior. Since the behavior of a
given agent affects the outcome of the system
as a whole, expectation formation must take
into account the behavior of the other agents in
the system—that is, expectation formation turns
into a guessing game. This makes it difficult for
the individual agent to form expectations about
the behavior of the system, and it makes it
difficult for the economic theorist to model
what is going on. Rosser (2001) talks about the
uncertainty arising from group dynamics—an
uncertainty that cannot be reduced to risk.

What the complexity approach suggests is
that in order to understand the economy as a
complex adaptive system, we must accept in-
teraction as an activity taking place in time and
space without a central controller. Even if
agents start out being homogenous, they cannot
all be in the same place at the same time, and
thus they experience different histories and
inevitably evolve into heterogeneous agents.

Schelling (1978) was among the first to
apply a complexity approach to social sciences.
He argued that economic systems are particu-
larly complex because, besides a large number
of locally interacting agents, economic systems
are characterized by a lot of relations that must
hold in the aggregate, but do not necessarily
hold for each individual. This means that falla-
cies of composition are easily committed within
economics. Schelling used the example of mu-
sical chairs: no matter how children playing the
game behave, there will always be a chair
missing—this is a macroproperty of the system
that must hold. Therefore we cannot under-
stand the system by observing a single child and
aggregate from there. Changes in microbehavior
may not have the expected effect—weightlifting
and increased aggression in the behavior of
children does not affect the macroproperty of
the system and thus cannot improve the perfor-
mance of the children as a group.

In economics we often refer to such dis-
crepancy between parts of the system and the
system as a whole as paradoxes; the paradox of
thrift is just one among a number of paradoxes.
For an individual economic agent, expenses
may be larger than income, but this cannot be
true of the whole system, thus an attempt by all
agents to increase saving is bound to fail. This
implies that there is important feedback from
the macro to the microlevel, and that the whole
may be more (or less!) than the sum of its parts.
We cannot all get rich by saving our money.
When an agent makes a purchase, he sets off a
number of activities because his expense will
generate an income somewhere else in the
system, and this income may set off additional
expenses.

We have argued that the economic system
should be perceived as a complex adaptive
system, and that within economics, complexity
arises from at least three different sources: (1)
from the fact that the economy is a large
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composite system, (2) from the fact that eco-
nomic agents adapt their behavior to the sys-
tem, and (3) from the fact that economics is
characterized by a lot of relations that must hold
in the aggregate, but need not hold for the
individual agent. But isn’t all this complexity
bad news, one might ask? A high degree of
complexity, however, does not mean chaos.

An interesting characteristic of complex
adaptive systems is that they have a capacity to
self-organize and adapt to changing environ-
ments. Despite the lack of a global controller,
complex adaptive systems appear to perform
quite well. Considering the chain of events a
single agent may cause at the supermarket, it is
surprising how limited serious market failures
in economic systems are. Many economists are
puzzled why we have market failures like un-
employment at all—but from a complexity per-
spective, the big puzzle becomes why markets
function so well.

Economic theory has tended to put the ratio-
nality of economic systems with the
agents(market economies work because agents
are rational optimizers. This assumption is what
makes behavior predictable. Communicating
through price signals, this is what makes it
possible for a global controller to find the opti-
mal price vector in general equilibrium systems.
However, if just one agent does not use his mind
very carefully at the supermarket, we can no
longer prove analytically that it will work (Arthur,
1995). It is no longer possible for the remaining
agents to calculate each other’s expectations,
and we are back with the uncertainty of Rosser
(2001).

Then what about insects living in colonies,
ants and bees? They also manage to organize
rather complex systems(does that imply that
they are as rational as economic agents are?
The Santa Fe Institute has developed the idea
of Swarm intelligence to describe how complex
adaptive systems self-organize (by means of an

intelligence that is related to the system rather
than to the individual agent (Bonabeau, Dorigo,
& Theraulaz, 1999). They claim that there is no
need to invoke individual complexity to explain
complex collective behavior. Dumb bees may
organize into a very smart beehive. From a
complex adaptive systems perspective, one
would consider a social insect colony or an
economic system a decentralized problem-solv-
ing system, comprising many relatively simple
interacting entities. It is interesting that such
systems solve problems in a very flexible and
robust way. Flexible in the sense that they have
capacity to adapt to new environments, and
robust in the sense that they are not distracted
by poor performance of some agents.

Whether the economy is perceived as an
equilibrium system or a complex adaptive sys-
tem matters a great deal(especially if we pur-
pose to use our knowledge of its functioning for
making policy recommendations. The picture
of throwing a rock or throwing a bird can be
used. If the economy is best perceived as a
static equilibrium system, policy intervention is
like throwing a rock and we can foresee its
trajectory. If the economy is more like a living
system, it is like throwing a bird, and policy
intervention becomes much more difficult(it is
much harder to get an idea of where the bird is
going to end up. Thus the complexity approach
may help us understand the system on the one
hand, but on the other hand it warns us about the
predictability of consequences when we try to
control the system. Believing that we are throw-
ing a rock, when actually we are throwing a
bird, can make the system worse off.

This is not an argument against any kind of
policy intervention, but rather an argument
against the dream of fine-tuning the system.
Sometimes the system may behave so badly
that we can be confident that “throwing a bird”
is going to be helpful. This may be easier to
understand if we stop thinking of economic
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policy as the Gs of our comparative static
models and start thinking of policy in terms of
design. Can we promote or design institutions
that may assist the economic system in self-
organizing?

METHODOLOGY:
A SYNTHETIC APPROACH

If the economy is best understood as a complex
adaptive system, it implies not only a shift in
perspective, but also a shift in methodology.
Since the aggregate behavior of the system
which arises from the interaction between a
multitude of agents can be expected to display
very complex dynamics, it becomes in vain, or
at least very cumbersome, to study the system
using deductive analysis. Rather than deduc-
tive analysis, ACE researchers synthesize—
that is, they try to understand economic pro-
cesses by synthetically creating them.1

The synthetic approach to model building is
a bottom-up approach, where a model is built up
by simple components that are assembled into
a working system and simulated using comput-
ers (synthesis by simulation). For an economic
model the components will typically be a num-
ber of agents, and the model is assembled by
letting agents interact in a market. In econom-
ics we use the term agent-based computational
economics for such a modeling approach. This
is opposite to an analytical top-down approach
where you start with a complete system, which
is decomposed.

Dealing with artificial life, Bonabeau and
Theraulaz (1994) set the difference between
the two approaches at the edge: in a top-down
approach you have to start with manifestation
of life; in a bottom-up approach you synthesize
more and more complex behaviors, hoping to
capture the nature of some aspect of life.
Transferring the analogy to economics, we do

not want to start out defining market equilib-
rium and deducing the conditions under which
equilibrium will exist. Instead we want to study
the likely outcome of the interaction of agents.

In a synthetic bottom-up approach, you need
not make any assumption about what the “up”
is going to look like; the up is what emerges
when units interact. The concept of emergence
is very important to a synthetic methodology—
one may claim that it constitutes the whole
purpose of synthesizing. Aggregate behaviors
or structures emerge out of self-organization
rather than being imposed or assumed. Emer-
gent properties cannot be explained by built-in
microproperties—it is what makes the whole
more than the sum of its parts. In systems with
emergent properties, we cannot use simple
aggregation; we will just end up committing
fallacies of composition. Since emergence is a
result of the agents’ interaction, emergent phe-
nomena cannot be expected to be analytically
tractable. The only thing that we can do is to
observe what happens. “We can learn about
emergent properties only inductively” (Lane,
1993).

Thus the power of a synthetic approach is to
find emergent properties internal to the system
rather than relying on external explanations—
that is, the approach may help economists
explain business cycles from within the system
rather than relying on exogenous chocks to the
system. Its weakness is that the explanatory
power of synthetic models is not very high. The
space of exploration is huge, and constraints
lack, and thus we easily end up with one thing
after the other.2

As a young science, complexity science is in
a process of defining the concept of emer-
gence.3 It is still not clear what demands should
be met for a phenomenon to be characterized
as an emergent phenomenon. We need not
enter this discussion here, but we may clarify
the concept of emergence by listing some ex-



188

Agent-Based Computational Economics

amples of what emergent phenomena we may
hope to find within economics.

• Equilibrium: Has already been used as
an example of an emergent phenomenon;
a tendency for prices, demand, and supply
to meet in such a way that markets clear,
without imposing the result in advance,
may be an emergent feature of economic
systems.

• Self-Organization: One might also be
less ambitious and say that survival of
agents in our economic model is an emer-
gent feature (i.e., the fact that the system
does not break down completely, but man-
ages to self-organize to some extent)d.

• Business Cycles: The idea that eco-
nomic activity has a tendency to move in
cycles is very old, but economics still has
problems coming up with a plausible ex-
planation. The reason for this difficulty
may be that the cycles are really an emer-
gent phenomenon. This would not be a
very surprising discovery since many other
complex adaptive, or living, systems dis-
play cyclical behavior.

• Institution Formation: One way of deal-
ing with uncertainty is to form institutions
(Heiner, 1983), and the appearance of
institutions may be perceived as emergent
phenomena.

• Skewed Distributions: Distributions of
income, wealth, changes in asset prices,
and so forth may show characteristics
that may be emergent phenomena. We
shall return to this example later.

An important question is whether a syn-
thetic approach can stand on its own. It is hard
to find discussions of this within social sci-
ences. To strengthen the approach, Dawson
(2004), working within psychology, puts syn-

thesis into a framework of synthesis, emer-
gence, and analysis (SEA). Once a synthetic
model has been built and is working, it needs to
be run in order to observe emergent properties
of the model. Parameter space needs to be
explored in order to find out exactly under
which circumstances an observed phenomenon
arises.

The third step in Dawson’s suggested ap-
proach is analysis; the difficult—and interest-
ing—work starts when an attempt is made to
generate theories of regularities that emerge
from what we synthesize. In order to do this we
need statistical testing of model output. Rosser
(1999), however, complains that techniques for
analytical testing of output data is missing and
suggests that it will be necessary to rethink the
nature of empirical testing. This must be done
in such a way that we can take advantage of the
fact that the output data comes from a simu-
lated model and not from the real world. If
interpreting simulated data is as difficult as
interpreting real-world data, there really is no
point in doing the simulation.

It should be evident by now that although the
approach is agent-based, it would be wrong to
term it methodological individualism or reduc-
tionism. The starting point is individualistic, but
it is an important point that agents do not make
their decision in isolation from their surround-
ings. Interaction causes institutions to emerge
and these institutions affect human behavior.
As an example one could use the emergence of
a medium of exchange (Clower & Howitt,
2000). Economic theory seems to have given up
the idea of microfounding monetary theory. It is
simply too self-contradictory to argue why ra-
tional optimizing agents should demand money
that is not needed in a general equilibrium
setting. ACE models can demonstrate how a
medium of exchange may emerge from interac-
tion between agents. But an important factor in
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this emergence is that the agents’ preference
for the goods chosen to act as medium of
exchange is affected—that is, their prefer-
ences are not isolated from the preferences of
other agents, and methodological individualism
is violated.

Related to the discussion of methodological
individualism is the discussion already touched
upon—how much attention should ACE model-
ers pay to the behavior of agents. The descrip-
tion of human behavior must be consistent with
the system; if the economic theoretician cannot
deduce how the system works, then neither can
the agent. This is the complete negation of the
rational expectations hypothesis. Thus agents
must use inductive reasoning rather than de-
ductive. But inductive reasoning can also be
quite complex, and we need to ask whether
very complex modeling of human behavior is
necessary for the emergence we search for to
occur. This discussion is raised by Arthur et al.
(1997):

Overrating the cognition is just another
error deriving from methodological
individualism, the very bedrock of standard
economic theory. How individual agents
decide what to do may not matter very much.

Economic systems may be much closer to
anthills and beehives than we like to think, but
that does not mean that we are not more
intelligent than ants and bees. It just means that
the overriding intelligence is not with the agent
but with the system. What matters is not how
we make decisions, but how we interact. If the
point of interest is the system or macroeco-
nomic view, there is a point for ACE research-
ers to find the simplest behavior that can gen-
erate the emerging phenomenon searched for,
rather than behavior closest to actual human
behavior.

BUILDING AN AGENT-BASED
COMPUTATIONAL MODEL

Building an agent-based computational model
gives you a sense of playing God in your own
silicon world. You define a number of agents
with characterizing variables, a set of decision
rules, and an environment in which interaction
takes place. Finally you let the agents act, and
watch what happens. There are a lot of choices
to be made during the modeling phase, and the
purpose of this section is to discuss some of
these choices.

The first choice to be made is what pro-
gramming language to use. You may either
start from scratch in any programming lan-
guage, use a matrix-based mathematical envi-
ronment (e.g., Matlab), or you may choose a
framework prepared for agent-based simula-
tions like Swarm or Repast. Generally, it is a
good idea to choose object-oriented languages,
since the approach of object-oriented software
comes very close to agent-based modeling.
Both approaches turn to decentralization to
deal with complexity. For larger, more complex
models, you easily run into constraints if a
mathematical environment is chosen (remem-
ber that your model may grow as your research
progress), but on the other hand there is a larger
effort involved in choosing to program every-
thing from scratch. Frameworks prepared to
agent-based simulation have been developed in
order to overcome this problem, but even in this
case, the model builder must make a big invest-
ment. An important side effect of using a
framework is access to models already built
within the framework.

It is a good idea to choose programming
language before settling the details of the model,
since there may be help to find during the
modeling process. Searching through existing
models where source code is available is rec-
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ommended, since you may be able to reuse
much of the code. Searching through existing
models also make choices about institutional
features more deliberate: when do you choose
the usual institutional settings (if a convention
exists), and where does your model require a
different setting?4

For modeling, especially systems with non-
emergent macroproperties, a three-step ap-
proach to model building is recommendable.
The three steps are macroanalysis, microanaly-
sis, and simulated interaction. This three-step
approach is very much in line with a synthetic
approach as described by Auyang (2004):

Synthetic analysis encompasses two
perspectives, looking at the system on its
own level and looking at the level of its
constituents.  It  includes two kinds of
explanations. Macroexplanations develop
scientific concepts and theories for
composite systems without mentioning their
constituents…However, for a full
understanding of the system including their
composition, macroexplanations are
necessary but not sufficient. For this we also
need microexplanations that connect the
properties delineated in macroexplanations
to the properties of the constituents.
Microexplanation depends on
macroexplanation, which first set out what
needs microexplanation.

Thus, following the three-step approach,
you first need to consider whether there are
macro-bindings on your system—that is, detect
any tautologies relevant to your system. Are
you dealing with a closed economic system
where, in the aggregate, expenditure must equal
receipts? Does the system have money, and in
what form is money to be implemented, for
example as a numeraire in bookkeeping entries
or as a fixed stock of currency. Detecting

tautologies and non-emergent macrophenomena
does not mean that you have to model them
yet—detection is meant to assist you in the
following steps.

Once you have an idea of the macroproperties
of your system, you may consider how an
individual agent acts. In any specification of
economic behavior, simplification is necessary;
the question here is what should guide simplifi-
cation. We suggest starting out with
macroanalysis rather than microanalysis in or-
der to allow knowledge of macroproperties to
guide simplification choices. Going the other
way from micro to macro involves a higher
degree of complexity and the risk of committing
fallacies of composition. If the macroanalysis
tells us that a given aspect of decision making
is not all that important to the macroproperties
of a system, we can be more careless in design-
ing the given decision rule. But the decision rule
may still be important from a macroperspective,
since it may be necessary for closing the model.

The third and final step is simulation: build-
ing a model that combines micro and macro
perspectives by letting agents interact in a
closed world. To model a closed system, or at
least a system where openness is controlled, is
important in order to enforce the feedback from
macro to micro.

Following the ideas of object-oriented pro-
gramming, it is a good idea to think about agents
(objects) as being characterized by a number of
state variables (e.g., wealth, consumption) and
having a number of decision rules or methods
(e.g., how much and what to consume). As an
example you may have a main program where
you call an agent, who then acts according to
decision rules and as a result of the action, state
variables are changed. The action of an agent
will often imply activating other agents’ deci-
sion rules and changes in other agents’ state
variables. If Agent1 is called by the main
program and asked to perform decision to con-
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sume, in a completely decentralized model the
agent needs to find some other agent to buy the
consumption goods from. Agent1 then calls
Agent2 and evokes decision rules by this agent
in order to negotiate a trade. If a trade is
negotiated, goods need to be transferred from
Agent2 to Agent1 and money needs to be
transferred from Agent1 to Agent2. Normally
it is chosen to let control go back to Agent1 for
more decision rules to be evoked, and finally
back to the main program—that is, Agent2 is
not allowed to react to the decrease in his stock
of goods or the increase in money until later
when the main program picks Agent2 for ac-
tion.

Notice that in the above example, the two
agents have to negotiate the trade locally with-
out help from a centralized market maker.
Within agent-based modeling, many different
representations of what happens on a market
exist. Instead of contacting another agent di-
rectly, one could have allowed Agent1 to put up
whatever he wanted to sell as a list of offered
goods at a certain reservation price. In buying
goods he could search through the list to see if
what he wanted to buy was offered for sale
below his reservation price. Here we have a
centralized institution: the list of goods put up
for sale, but no centralized mechanism finding
equilibrium prices. If, when he gets to act again,
Agent1 realizes that nobody purchased the
goods he put up for sale, he may try to lower the
price demanded. Use of agents for Internet
trading has extended research in auction theory,
a development that ACE researchers may take
advantage of.

As should be clear by now, the idea of
agent-based simulation is very simple. How-
ever, when you start assembling your agents
into an agent-based model, you may be over-
whelmed by the number of seemingly unimpor-
tant institutional settings you have to consider.
How exactly do agents interact, and in what

order do they get to interact? Are the state
variables of the agents updated immediately
after they have acted (sequential or asynchro-
nous updating), or do you wait until all agents
have acted in order to update simultaneously
(synchronous updating)? Huberman and Glance
(1993) have illustrated how important this choice
is within the field of evolutionary games. You
also need to consider whether to model a fixed
number of agents, or whether agents enter and
exit, for example, through a bankruptcy mecha-
nism. The number of agents you model may
also turn out to be a crucial parameter in your
simulation.

Whereas conventional economic theory has
a hard time dealing with time and space, these
important concepts come naturally to agent-
based simulations. You may construct your
model so that not only time matters in specify-
ing the updating rule, but time and space also
become important constraints in the behavior of
agents. A cellular automaton type construction
is often used to introduce space in the model,
but other alternatives are also available. You
need to consider whether all agents communi-
cate with each other at a given point of time, or
whether communication is constrained so that
agents can only communicate locally. If space
is modeled, do agents stay put in space or do
they move around, for example in search of
trading partners.

Within agent-based economics a number of
different techniques for constructing agents
can be found. Generally we have chosen to use
the term decision rules, since most of the differ-
ent techniques can be formulated as decision
rules. ACE models often involve some form of
learning, where decision rules change during
the simulation. Learning processes can be rep-
resented using, for example, genetic algorithms
or neural networks. In adopting such approaches
in economics, it is however important to always
keep in mind that we are dealing with human
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agents. It may be straightforward to translate
the fitness of genetic algorithms into some
utility concept, but is this really the way you
want to describe human behavior?

Once you have a running model, it is impor-
tant to go back and check for the importance of
some of the institutional choices you made. You
may find that your results depend crucially on,
for example, simultaneous updating, and this
gives you an idea of the robustness and gener-
ality of your model. Also the number of agents
may be important. If model results remain the
same whether you operate with a population of
100 or 1,000, you may as well stick with 100
agents—but it is important to check for results
with 1,000 agents.

Finally you check the importance of behav-
ioral parameters. Parameter space is typically
too large to be explored completely, so it is
necessary to use experimental methods (e.g.,
Monte Carlo) for finding the most important
parameters. Now the fun is over, and you need
to go into the analysis part of Dawson’s frame-
work. Here it is important, once again, to look
at other simulation models and compare results
to search for possible generalizations.

CONSTRAINING THE APPROACH

Going from the traditional analytical method-
ologies to the synthetic agent-based approach
presents economists with a lot of freedom we
have never had before—too much freedom
some may add, for what is to define economics
as a science, once we allow ourselves to go
beyond the study of rational optimizing behav-
ior? Does anything go, and if so, how can we
progress as a science?

If one contributor uses ACE to demonstrate
the likely occurrence of market equilibrium in
an unregulated market while another contribu-
tor uses it to get the opposite result(that state
intervention is necessary for markets to behave

reasonably(who is more right, and how is eco-
nomics as a science to deal with these results?

As a new approach to economics, ACE
researchers have to deal with such problems.
We should enjoy the newly won freedom, but
we should also use it deliberately. Agent-based
economics is not a new approach to economics;
it is a new methodological approach to the study
of economic systems. This implies that we do
not need to start from scratch when we apply
the method, but want to apply the method
where it is needed(that is, where economic
theory or economic controversies are stuck. By
anchoring ACE in existing economic theory, we
stand a better chance of progressing as a
science.

For economics as a science, at least three
different justifications for agent-based compu-
tational models can be presented:

1. Models that attempt to reproduce
theoretical results that are analyti-
cally tractable: The purpose here is
mainly to check the realism of the ap-
proach while constraints remain the same.

2. Models that reproduce theory that is
not analytically tractable: Here the pur-
pose is to check the consistency of theo-
ries that have not been formalized, and to
extend such theories to involve both
microeconomic and macroeconomic as-
pects.

3. Models that reproduce empirical find-
ings: Here the purpose is to understand
what generates empirical findings.

Reproducing Results of
Analytically Tractable Theory

Why use ACE models to reproduce theoretical
models that are analytically tractable? When
Adam Smith introduced his invisible hand, it
was not the result of a desire to have some
divine mechanism in his economic theory—his
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purpose was not to prove the existence of God,
but to illustrate the self-organizing capacity of
a market economy. When economic theory
became mathematical, an important goal was to
replace the invisible hand, first with a proof of
existence of equilibrium, and later Herbert E.
Scarf hoped to find a numerical solving mecha-
nism that could actually find the equilibrium.
Scarf’s (1973) work led the way for the wide-
spread use of computable general equilibrium
models we witness today. But have we really
come that far from Adam Smith’s invisible
hand? Haven’t we just replaced one deus ex
machina, the invisible hand, with another, the
solving mechanism?

ACE models allow us to replace the deus ex
machina with something that is a lot closer to
what actually happens at markets. Rather than
assuring self-organization of market econo-
mies by imposing an auctioneer, self-organiza-
tion is a result of interaction. Such a hypotheti-
cal result of emergent equilibria could be used
to dismiss the claim for necessity of simulation
once the realism of the analytical approach has
been stated. Another approach is, as noted by
Tesfatsion (2002), that once we have the result
of emerging equilibria, we can start relaxing
assumptions, thus replicating the research pro-
gram of general equilibrium theory. Once we
move beyond the scope of analytically tractable
models, however, we lack the constraining
factor. One model relaxes assumptions on com-
petitive markets, another introduces transac-
tion cost, a third model introduces bounded
rationality, and so forth—how do we generalize
the information we get from such a multitude of
models?

Reproducing Theories that are not
Analytically Tractable

Using ACE to formalize theories that it has not
been possible to analyze using formalistic math-

ematics has obvious advantages. Much macro-
economic theory was dismissed in the 1970s as
a result of requirement of microfoundation (and
formalization)—but if they were attempts to
theorize about emergent phenomena, we can-
not expect to be able to deduce such theoretical
propositions analytically. Within an ACE ap-
proach we can now check macroeconomic
theories within a constrained environment given
a well-defined microbehavior—that is, we can
check their consistency. Agent-based models
have a great potential in this area; they can
unify micro- and macroeconomics in a way that
has not been possible before. Within this ap-
proach ACE models should be perceived as
tools for theory development.

ACE models also have a potential as tools
for economic policy as discussed by Rosser
(1999). Governments may be perceived as
assistant to the self-organizing process, for
example by providing the institutional structure
within which self-organization takes place, or
as a necessary institution for rectifying possible
self-destructive aspects of complex adaptive
systems (e.g., a tendency to create a very
skewed distribution of wealth).

Reproducing Empirical Findings

Empirical data are often emphasized as the
constraining factor in artificial life and agent-
based approaches (Bonabeau & Theraulaz,
1994). For many aspects of economics, it is
however difficult to obtain the relevant data—
especially considering the fact that human be-
havior is involved. How and why do we make
the decisions we make? In one sense empirical
data can, however, be considered the con-
straining factor of agent-based computational
economics, namely when models are developed
in order to explain the emergence of aggregate
empirical findings—that is, explaining economic
stylized facts.
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ACE models in particular have proved to be
useful for explaining the existence of power
law distributions in cases where normal (bell
curve) distributions were to be expected (Simon,
1955). Pareto observed a tendency towards a
skewed distribution of wealth, where 20% of
the population holds 80% of the wealth. Agent-
based models have produced similar skewed
distributions (Epstein & Axtell, 1996; Bruun &
Luna, 2000). ACE models have also been able
to produce the “fat tails” of the stock market
(Lux & Sornette, 2002), the size distribution of
cities (Krugman, 1996), and the size distribution
of firms (Axtell, 1999). An important task for
ACE is to generalize results on power law
distributions, as well as using the method to
explain other stylized facts.

CONCLUSION

Agent-based computational economics has been
presented as a new methodological approach to
the study of economic systems. Its strength is
its ability to combine micro- and macroeconom-
ics, and thus overcome one of the biggest
hurdles of economics. It allows economists to
pose new questions and repose old questions in
a less restrictive setting.

Conceiving the economy as a complex adap-
tive system implies focusing on the self-orga-
nizing features of economic systems where a
concept as equilibrium becomes an emergent
phenomenon that does not rely on exogenous
mechanisms or deus ex machina. This also
means asking the questions “Why does the
system function so well?” and “Can we possi-
bly assist it in performing even better?”, rather
than asking why the system does not function
perfectly and which obstacles should be re-
moved.

The main theoretical drawback of the ap-
proach is that it becomes very hard to define
and delimitate economics as a science. In de-

centralized agent-based models, assuming ra-
tional optimizing agents no longer suffices as
the defining feature of economic theory. Thus
it is no longer clear what should constraint
economics as a science. This may not be a
problem; other social sciences survive without
such defining constraints, and economics is
after all just another social science!

A more practical drawback of the approach
is that it cannot provide us with the same sort of
policy recommendation that macroeconometric
models have provided. Policy recommendation
based on ACE models have a qualitative rather
than a quantitative nature. Focusing on the self-
organizing features of economic systems does
not necessarily imply a laissez-faire approach
to economic policy—an important question to
ACE policy modelers is what institutional set-
ting is best in supporting self-organizing fea-
tures of the system. Thus the design or policy
aspect of ACE will often be about building up
institutions, whereas recommendations based
on general equilibrium theory will often be
about the removal of institutions.

ACE has been presented, not as a new
approach to economics, but as a new method-
ological approach to the study of economic
systems. Ace is not going to resolve economic
controversies, but is hopefully going to qualify
discussions and help us locate the roots of
controversies. Newcomers to the field should
be aware of this—and keep focus on their
purpose in doing ACE. Only by anchoring the
approach in existing economic theory, and ex-
isting economic controversies, can we confront
the risk of simulation fetishism with one model
entering the scene after the other.
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KEY TERMS

Agent-Based Computational Econom-
ics: Acknowledging the economy as a complex
adaptive system, agent-based computational
economics (ACE) is the computational study of
economies as collections of interacting agents.
By letting autonomous agents interact in silico,
the overall aim is to represent self-organizing
features of real-world economic systems in a
more realistic way than has hitherto been pos-
sible. But ACE may be applied to many differ-
ent aspects of economics and should be per-
ceived as a new methodological approach to
the study of economic systems rather than a
new approach to economics. Focus may be
placed on the individual agent and its interaction
with its surroundings (e.g., learning by the
agent), or on the system resulting from the
interaction of many agents (e.g., learning by the
system).

General Equilibrium Theory: As agent-
based computational economics (ACE), gen-
eral equilibrium theory is a bottom-up approach
to the study of economic systems. But in oppo-
sition to ACE, general equilibrium theory makes
use of methodological individualism and reduc-
tionism. Taking as its starting point endow-
ments, preferences, and technologies of eco-
nomic agents, general equilibrium theory uses
an auctioneer to calculate a vector of prices
that will clear all markets. Methodological indi-
vidualism allows general equilibrium theory to
regard preferences as given, and the existence
of an auctioneer prevents trading at false prices,
since agents are only allowed to interact through
the auctioneer. A number of fundamental prob-
lems arise when the ideal general equilibrium
model meets the real world. Among these is the
problem of making room for money in a setting
where there is no need for a medium of ex-
change and where any good can take the role as
unit of account.

Keynesian Macroeconomics: Keynesian
macroeconomics takes as its starting point ag-
gregate magnitudes and their interrelations. Of
pivotal importance to the ideas of Keynes is his
definition of national (money) income as the
earnings of the factors of production, which
must be equal to the cost of production. From
this follows the equivalence of saving and in-
vestment; both are defined as the excess of
income over consumption. This definition im-
plies that consumers will always hold enough
money to buy the product. However, this does
not imply that supply creates its own demand in
the sense that lack of aggregate demand cannot
cause unemployment (Say’s law). Entrepre-
neurs decide the level of production, and they
will not produce beyond their own investment
demand plus expected consumption demand.
If, at the level of full employment, consumers in
the aggregate are expected to save more than
entrepreneurs wish to invest, entrepreneurs
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will reduce production until expected savings
equals expected investment. By, in this way,
arguing in terms of aggregate magnitudes,
Keynes depicts a different economy than the
one known from neoclassical or general equi-
librium theory—an economy where unemploy-
ment due to a lack of aggregate demand is not
only possible but also likely.

Macrofoundation: If for example method-
ological individualism is violated in a composite
system, simple aggregation is no longer pos-
sible, and studying macroproperties directly
may be the only way to learn about certain
aspects of the system. This may be character-
ized as the macrofoundation of the system.

Methodological Individualism: Method-
ological individualism’s purpose is to explain
and understand macro phenomena as the ag-
gregation of decisions by individuals—the whole
is nothing but the sum of its parts. This may also
be described as reductionism since method-
ological individualism allows the whole to be
reduced to the sum of its parts, and thus the
parts that make up the system may be studied
in isolation. Methodological individualism is an
essential part of general equilibrium theory and
in the demand for microfoundation in econom-
ics.

Microoundation: Making use of method-
ological individualism, the claim for
microfoundation states that any macroeconomic

phenomena must be shown to result from indi-
vidual (rational) actions.

Rational Expectations Hypothesis: Ra-
tional expectations hypothesis is the idea that
economic agents use all available information,
including information on economic relations, in
forming expectations about the future. Rational
expectations may also be denoted “model con-
sistent expectations” since consistency between
the economic model and the model used by
agents in expectation formation is required.
Economic agents are just as well informed as
the economist (or even econometrician) build-
ing the model.

ENDNOTES

1 Tesfatsion (2002) notes that economists
prefer to think of their ACE models as
representations rather than syntheses,
whereas Epstein (2005) talks about a gen-
erative science—But the methodology
remains the same.

2 This phrase originates from Putnam (1988)
discussing artificial intelligence.

3 On the other hand, Holland (1998) wrote
a book entitle Emergence without trying
to define it.

4 How ACE can avoid “the tower of Babel”
effect by stealing code from each other is
discussed in Bruun (2002).
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ABSTRACT

This chapter discusses two different approaches that gather empirical data and link them to
modeling and simulations with agent-based systems: experimental economics which built
reproducible settings and quantitatively defined indicators, and companion modeling which
accompanies observed social groups when they negotiate over renewable resource issues.
Both developed techniques have different epistemological posture which lead them to promote
diverse data comparison and model validation. They both have small limitation. The chapter
wishes to put forward that, although both approaches have different goals, some evolutions
in research protocol could enhance qualities of both. Some of these evolutions have already
started to be used by researchers.

MODELING AND THE
SEARCH FOR REALISM

Social simulation using multi-agent paradigm
(sometimes called agent-based simulation or
simulation with agents) has developed quickly
in the last fifteen years. The tool offers numer-
ous new possibilities to represent rationality
and structures of interaction, to take into ac-
count for heterogeneity in rationality and per-
ception (Kirman, 1997; Bousquet, Cambier,
Mullon, Morand, Quensière, & Pavè, 1993) or

social relations (Moss & Edmonds, 2005;
Rouchier, 2004), and test a variety of learning
models for agents with procedural rationality
(Simon, 1969).

The discipline of social simulation with agents
started from two distinct communities at least.
One was the economics community, with regu-
lar seminars at the Santa Fe Institute called
“Economics as an Evolving Complex System”
(Anderson, Arrow, & Pines, 1988). Another
branch was started in Europe with the book
Artificial Societies (Gilbert & Conte, 1994).
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The first developments were quite close to
artificial life (Langton, 1991). Researchers were
trying to build credible global behavior from
local actions, and were qualitatively inspired by
social facts. For example, some would deal
with emergence of hierarchies based on hy-
pothesis by archaeologists (Doran et al., 1995),
and would study which parameters have an
influence on the existence and stability of the
emerging phenomena. They were producing
global behaviors that resemble the type of
general structures that can be observed in
society, and it was an important first step to be
able to “grow artificial society” (Epstein &
Axtell, 1992). Hence, most simulations of com-
plexity were used as “black boxes” (Simon,
1969): the influence of the changes of param-
eters would be studied in relation with some
global observation parameters, without follow-
ing necessarily step-by-step processes to un-
derstand the internal mechanisms. There was
no strong request for validation at that time, and
all representations put in a model as well as
evaluation processes relied on the expertise of
the researcher. The issue of realistically under-
standing the influence of the numerous param-
eters of these complex systems, however, be-
came more and more central (Gilbert & Abbott,
2005; Edmonds et al., 2003), and implied the
apparition of new methods for building and
validating models.

Nowadays, it has become a norm to assess
results with actually comparable data and to
build the hypotheses themselves by offering
some empirical facts to justify for the model
construction. Diverse sets of data can be used—
from surveys to observations in real settings,
and a large number of applications have searched
for the right use of empirical data in the building
of models (Moss & Edmonds, 2005). In this
chapter, we focus on two trends that explore
the representation of small-scale interaction
settings with multi-agent simulations, caring
about both protocols to gather data and assess

the results of their assumptions on rationality,
and involve human subjects in the process.

Some researchers want to perform quanti-
tative validation for their simulations, and try to
use their models to establish positive scientific
results. The method of statistical comparison
with outside world data is very often used
(Moss & Edmonds, 2005). In the context of
experimental economics, it is possible to ac-
quire a lot of very precise behavioral data on
microbehavior in the context of well-defined
choice. A systematic comparison of artificial
and real agents’ behavior is, for some, a good
way to assess the validity of the cognitive
models they build for agents. A Popperian
approach can be identified in these protocols,
where scientists position themselves as outside
observers of a social system on which they can
draw objective refutable theories.

Others, at the opposite end of the validation
approach, question the need to switch from
qualitative validation to quantitative validation
and look for scientific methods where the vali-
dation would not be abstracted from the social
use they assign to social sciences. The second
approach presented here is called companion
modeling (some recent papers also refer to the
stakeholder approach) and is rather embedded
in an instrumentalist epistemology (Zammito,
2004), referring to the Duhem-Quine thesis.
Followers are conscious of the fact that their
hypotheses about rationality and structure of
systems are social construct (Berger &
Luckman, 1969), and instead of confining the
use of the model to an analytic situation, they
use it as a device for communication among
those very actors who have been mimicked in
the system.

Both approaches have different goals and
invented settings that are suited to their general
understanding of knowledge of society. We
present here those two protocols, which define
a rather high methodological standard for vali-
dation of simulation models. They have two
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aspects in common: (1) they can be applied
mainly to small-scale studies, and (2) they can
be related to empirical research since they
include at the same time the gathering of data
of real behaviors, the building of the model
with observed data, and the test of their as-
sumption through a comeback on the gathered
data. The differences and limits of both ap-
proaches will be presented, and some opening
remarks will be made.

SIMULATIONS AND
ECONOMIC EXPERIMENTS

Abstractly Studying
Decentralization

There is a contemporary general issue in eco-
nomics: to construct a theory of behavior for
economic actions (Kirman, 1997). Research-
ers belonging to the trend called ACE (agent-
based computational economics) have used
multi-agent simulations (or agent-based simu-
lations) either to test models that they had
inferred from the observation of economic ac-
tivities or, using genetic algorithm, to discover
some optimal algorithms. The idea is to de-
scribe the rationality of agents in a really decen-
tralized setting, with imperfect information, and
look at the evolution of the global data so that to
judge the relevance of the model (Tesfatsion,
2006). Up until recently, those focusing on the
behavior of individuals and history of transac-
tions rather than optimality were quite rare, and
their hypotheses were based on long-term ex-
perience in micro-economics (Kirman & Vriend,
2001).

Other economists focus on a more precise
description of rationality: for now more than 40
years, experimentalists have been testing the
possibility of implementing archetypical eco-
nomic settings in laboratories (Smith, 2002).
They make human subjects play in a game,

where choices faced are similar to those de-
scribed by economic theory. Those subjects’
preferences are voluntarily controlled by mon-
etary incentives (and their rational action is
computable by the one who organizes the ex-
periment); the amount of information they get is
limited and carefully defined. The issue is to
judge if subjects do behave in a perfectly ratio-
nal way, or if they show some behavioral fea-
tures that are not predicted by theory.

The experiment has one advantage, which is
to be perfectly controlled and reproducible.
All information circulation and actions are strictly
limited and recorded with the help of comput-
ers. The situation is hence different from real
life, where many situations are different from
ideally expected equilibrium, but it is impossible
to decide if the lack of information or the lack
of rationality is responsible. The experimenter
does not have access to the calculus led by the
subject, but can make subtle changes in distrib-
uted information, to understand better the way
it is used.

The results have been gathered for some
time, and a huge amount of relevant descrip-
tions on how humans treat information in eco-
nomic contexts has been gathered (Camerer,
2003), concerning for example: cognitive limi-
tations, need for reciprocity and altruist behav-
iors, consumer attitude, public good games, and
non-cooperative games. Most of the time, re-
sults are compared to theoretical expectations,
and when real behavior differs from optimal
model, interpretation has to be given.

To explain the deviations from theoretical
behaviors, positive models are proposed as
dynamical learning in context based on equa-
tions (Fudenberg & Levine, 1999). These mod-
els are now tested thanks to simulations. De-
signing these simulations is pretty easy because
the settings for experiments were already ready
to be transposed to produce a distributed model.
All proposed equations and hypotheses must be
turned into algorithms, and when the simulation
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has run, quantitative data can serve as bench-
marks, and using the same indicators, help in
selecting models (Brenner & Vriend, 2005).
The main part of produced research is dealing
with learning in markets (Duffy, 2001; Rouchier
& Robin, 2006; Brewer, Huang, Nelson, &
Plott, 2002), but some were concerned with
other topics, like cooperation (Janssen & Ahn,
2003). For an excellent review on the topic, one
can refer to John Duffy’s chapter in the forth-
coming handbook for computational economics
(Duffy, 2006).

Examples and Critics

An application of the abstract model referred to
as EWA (experience weighted attraction learn-
ing model) by Ho and Camerer can be found in
Chong, Camerer, and Ho (2005). The paper is
a study of the calibration of the model with
some data collected through experiments. The
model is considered as very good and pure,
since it only depends on one variable to adjust.
The authors show that it is rather good for
estimating learning by individuals, and that they
can characterize different type of players (so-
phisticated—who realize that others are learn-
ing—or not) by looking at their results. How-
ever, one can note that in the paper, the authors
only consider rather simple games with two
agents. Plus, the fit of simulated and experi-
mental data is not so good. Some people tried to
use their model in simulations using a higher
number of agents and found it rather impossible
to choose the adequate parameters to fit their
own data. This corresponds pretty well to the
analysis by Thomas Brenner, who tries to make
a complete review of the relevant use of learn-
ing models depending on the type of model that
is built and shows that for the moment, each has
very limited application (Brenner, 2006).

Going further, Janssen and Ahn (2003)
showed that in the context of a public good
provision game, it is not possible to adapt existing

individual learning models to both individual and
global data. Using a large set of experimental
results from diverse researchers with varying
payoffs in the same game, they ran simulations
using two types of models: best-response model
with signaling and EWA. Both models could
match human results much better (statistically)
than a perfect rationality calculus. EWA was
proven to be good to match individual trajecto-
ries, but was very poor in finding global results;
best-response was good for the global results but
could not describe individual trajectories well.

A recent paper (Lelec, 2005) presents
reimplementation of a set of simulations based
on experiments on ultimatum game, with a
reinforcement learning model proposed by Roth
and Erev (1995). The paper shows that rein-
forcement learning is extremely sensitive to
parameters settings. A very annoying result is
that different parameters settings can lead to
simulation results that are difficult to discrimi-
nate. Hence which model is right is difficult to
choose when comparing with human subject
experiments. The indicators that are usual for
experimenters do not always allow discriminat-
ing, even for rather simple systems. This can
also be found in the case of the reproduction of
a market with artificial agents, where the speed
of convergence is similar for a lot of different
simulations and does not allow the decision of
which model is best (Rouchier & Robin, 2006).

Duffy (2001), in a complete research, re-
veals all these issues and looks for experiments
to go further in understanding human rationality
in context. His example was an attempt to lead
human subjects, and then artificial agents, to
speculate. In his first experiments, he recorded
behaviors, asked his subjects about their logic,
and produced hypotheses on learning. From
these assumptions he built an algorithm and led
simulations. He insists on saying that, to com-
pare, he used the same number of agents and
the same time-length as in real experiments
(which is rarely done). Since he could not
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match data for individual agents’ trajectories
and global results, he mixed agents and sub-
jects. Then all results, including human behav-
iors, changed a lot. In no case could he get his
artificial agents to act like humans globally; only
individual behaviors would qualitatively match
human ones.

The Need for New Protocols

The comparison of experiment results and simu-
lation data seems quite easy to realize at first
sight, due to the perfect reproducibility of ex-
periments and the possibility to produce simula-
tion settings where the representation of infor-
mation circulation is very close to the one of
experiments.

The idea of building a general algorithm that
mimics human learning is apparently not a
reasonable short-term aim in the contemporary
context and might never be. When it comes to
understanding better the structures that emerge
through iterative learning, it seems clear that
several issues are at stake. There is a need to
rely on a strict methodology to build indicators
and link results to each initial parameter of the
simulation. To know the context of learning
should enable a decision about which learning
model is better in different cases (Brenner,
2006). One can note that for the moment,
representation of intelligence for humans is
indeed very little inspired by some of the great
theories of mind that have inspired the appari-
tion of Artificial Intelligence as a field. Maybe
the fact that all reasoning is represented through
linear equation-based models is a problem. The
composition of mind as an emergence of differ-
ent interacting sub-computers is a hypothesis
that maybe should not be ignored when repre-
senting learning, even in economics (Minsky,
1985; Bateson, 1972).

When writing about the importance of ex-
periments, Smith (2002) stresses the fact that
no experiment can actually destroy or prove a

theory, just ask new questions and identify
application boundaries for theories. This is a
rather usual assertion nowadays, and corre-
sponds roughly to what is referred to as the
Duhem-Quine thesis: experiments embed so
many hypotheses that one result cannot be
taken into account to refute or assess a specific
aspect. Simulations can be seen as having a
similar status, and are just a way to test the
coherence of hypothesis (or cognitive consis-
tence) and show their limits, from which new
assumptions should be expressed. The question
of “truth” of a complex model seems so impos-
sible to evaluate that many researchers now
consider that it should not be used on its own as
an abstract object that can more or less prove
anything, but only considered in its context of
use (Barreteau, Bousquet, Millier, & Weber,
2004). This is similar to the efficiency paradigm
of the instrumentalist approach, also said to be
emphasized by Quine (Zammito, 2004). A rather
different protocol for research with simulations
and human subjects—usually referred to as
companion modeling—has evolved in that
sense; it enables accumulation of knowledge on
human behavior through the confrontation of
simulated and real behaviors.

COMPANION MODELING

Resource Management
and Complexity

Simulations have been widely developed for the
representation of social-ecological systems for
management application, with social entities
interacting with the resource and with each
other through the resource. Resource manage-
ment issues are usually grounded in reality and
imply superposing several points of view on a
system. One can list for example three differ-
ent issues that are relevant in these studies
(Janssen & Ostrom, 2006): how to solve social
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dilemma and achieve coordination with some-
times competing interests (close to economics),
the analysis of how humans deal with uncer-
tainty (rather psychological issue), and the in-
fluence of social networks on human activity
(sociology). Each of these elements is still a
question under study per se, where knowledge
about how to represent humans’ actions is very
limited. Hence, to be analyzed and represented,
resource management issues need the insight
from different sciences when it is dealt with in
context. And it is rather clear that depending on
the main point of view taken on the system—
sociology, geography, or economics—different
conclusions will be drawn. It is even possible to
prove the influence of points of view with a
multi-agent system containing different models
with agents acting differently according to the
point of view that is chosen (and conclusions on
emergent phenomena hence differ) (Bousquet,
1994).

Another issue when dealing with resource
management is that the problems are not ab-
stractly arising. They are usually situated within
a political context, where the researcher him-
self has to be conscious that, as a knowledge
builder, he is an actor in a global social process
(Berger & Luckman, 1966). In this sense there
is no possibility to really believe in the position
of scientist as an outside expert who would
define the problem on its own and bring optimal
solutions to the population. Legitimacy of any
representation or solution has to be recognized
by the group under study (Barreteau, Le Page,
& D’Aquino, 2003).

It would be all the more difficult to pretend
to be an expert than to actually predict with
accuracy the future of a relation between man
and nature. We saw in the preceding section
that the evaluation of simple behavior models is
almost impossible with econometrics, even
when one compares with experimental data
(Janssen & Ostrom, 2006). With data gathered
in vivo, and considering the permanent techni-

cal and institutional innovation that takes place,
the importance of each factor gets so confused
that it seems almost dangerous to pretend to
evaluate quantitatively the future. Contempo-
rary decision making in resource management
is certainly due to relying on adaptive policy-
making rather than top-down imposed plans
(Holling, 1978), and there is a need for method-
ology sustaining this research. The companion
modeling approach, using simulation as a quali-
tative disputable representation of reality, has
been developed in such a post-normal direction
(Funtowicz, Martinez-Alier, Mundo, & Ravetz,
1999), where the scientist is just one of other
actors in the research for solutions.

Methodology and Applications

Companion modeling is one among other ap-
proaches involving stakeholders in building and
evaluating models, and less heavy approaches
can be applied (Taylor, 2004). Its characteristic
is the great care given to make sure the issue
predefined by researchers can be appropriated
as a hypothesis by users and often discarded in
the definition of new research objects. It has
been for the moment dedicated to policymaking
for organizing sustainable resource manage-
ment. Sustainability implies that individuals that
are going to use the new institution or infra-
structure will be able (and willing) to do so. To
describe environment and society as accu-
rately as possible, diverse points of view have
to be taken into account in the model when
considering the complex and often conflict-
based situations—from scientific experts to
local stakeholders (Barreteau & Bousquet,
2000).

Coming as an expert in the field and getting
individuals to express their points of view is not
an easy task, and the usual methodology used
by those referring to companion modeling is:
build a first analysis to roughly identify the
relevant stakeholders for management or con-
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flict resolution, involve them in discussions, and
present them with a first-draft model. To present
a model, the use of a role-playing game is the
main tool. It represents an easy way to discuss
rules and interactions with a group, but also to
make sure that all participants of the meeting
understand the core of the model, to be able to
use it for a session. After the game it is usual to
gather suggestions about new scenarios and
run subsequent simulations, giving rise to new
discussions about the model and requests for
change. This represents the beginning of the
protocol, and usually researchers have acquired,
at this stage, a lot of crucial information on the
real representation of local actors, and of inter-
actions and decision-making dynamics that ex-
ist on the field (Etienne, Le Page, & Cohen,
2003).

To make sure that stakeholders are not
manipulated by researchers and do not reveal
just what was present as an understatement in
the model and game, time is a good ally. The
revision of the model is presented a few months
later, in new sessions where stakeholders them-
selves propose new people to involve in the
discussion, and focus the discussion more clearly
on the aspects they feel more relevant in the
conflict. The repetition of sessions (usually
three at least) of play, scenario building, and
comments, helps a stuck or unclear situation to
evolve. A better understanding of reasons of
institutional blockage arises, and solutions
emerge through discussion.

It has been shown that the model does
increase the ability of individuals to communi-
cate and find viable solutions. First, when dis-
cussing the model, most social hierarchies can
stay out, and people can discuss the model a bit
more openly (with limits) (Daré & Barreteau,
2003). Second, in any type of negotiation, there
is a need for an intermediate object to position
discussions (especially when the issue is not
clearly delineated as in these initial situations),
and the model is very efficient to serve this role

(Bousquet et al., 2002). Eventually, the fact
that the model has been co-constructed implies
a higher level of legitimacy than if it had been
imposed; during the long intervals, stakeholders
understand the modeling process and are able
to formulate their own hypothesis and under-
standing of the situation, and to use the meet-
ings as a confrontation period. The process in
itself gives roots to the enforcement of the
decided policy since relevant individuals get
involved. This is the main validation point of the
model that is built: it is perfectly legitimate for
users, and useful as a tool for action on the
considered group.

For the moment this process has been shown
successful for numerous applications. In Senegal
it helped to secure irrigation systems in several
villages (Barreteau & Bousquet, 2000) and
solve conflict threatening herders (D’Aquino,
Le Page, Bousquet, & Bah, 2003). In Holland,
organization of traffic could be better managed
(Duijn, Immers, Waaldijk, & Stoelhorst, 2003).
In Vietnam, it sustained decisions taken for
land-use changes (Castella, Trung, & Boissau,
2005). In Thailand, it helped create local deci-
sion-processes for land-use and revealed is-
sues of access to credit for farmers (Barnaud
et al., submitted). Discussions on sylvopastoral
management in France have been also greatly
sustained through the use of the method
(Etienne, 2003).

In this last example, as well as the irrigation
example of Senegal, the games that had been
created through negotiations have been trans-
formed so to match educational purposes and
help explore group behaviors in various con-
texts. Observing diverse audiences while they
are playing can indeed offer much information
about the processes that lead to the apparition
of new institutions (D’Aquino et al., 2003).

While the process got generalized, new is-
sues arose since various relations to RP games
and simulation (each having a distinct role in the
process of elicitation and resolution) could be
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observed. For example, associated sociological
research was led to understand individual learn-
ing processes in Thailand, and enabled anticipa-
tion of the future impact of the decision made in
the context of the game (Patamadit & Bousquet,
2005).

Limits

Companion modeling produces models that are
validated in the sense that they are accepted
and efficient for leading local policy changes; it
is an excellent tool to reveal the precise shape
of interest conflict; it also reveals new ques-
tions and hence helps furthering social theo-
retic research. However there are still some
limitations in the method in its existing form.
The first and most obvious one is the lack of
accumulation of a knowledge that could be
generalized to more than one situation. The
following remarks are examples that might be
irrelevant to the practitioners, but that are strik-
ing when reading this literature.

Companion modeling has been applied to a
lot of cases where it has revealed hidden rea-
sons for conflicts. However, there has been
little accumulation of knowledge on a relation
between the reality of conflict and its main
expressions. One can imagine that there are
various forms of conflicts with the same base,
and maybe certain types of draft models could
be more adapted than others facing given situ-
ations. In every case, this time-consuming ac-
tivity treats one situation, but even if it can be
compared to others in terms of resolution, au-
thors never tell. From the list that has been
drawn, a more general view on how to help the
appropriation of the process by actors could be
valuable. The transmission of this knowledge
has been done through formation of research-
ers, but could it not be shared via usual stan-
dards of transmission?

To attain this aim, one necessity seems to be
the reproduction of conflict situation in the

laboratory, as was the case for two RPGs: a
subsequent model was adapted to match vari-
ous audiences and tested. A study of produced
patterns and the possibility to produce simula-
tion models could be interesting. Reproducibil-
ity of the experience is the strength of experi-
mental economics, who established standards
to describe settings and results. This is also
what made it so easy to turn into simulations.
Maybe it could be a good way to judge the
findings of companion modeling to offer read-
ers an archetypical game they could challenge
in another context. Since research is now being
led to join both protocols, maybe proposals will
arise in that direction.

One last remark concerns the lack of use of
psychological models in simulations (Janssen &
Ostrom, 2006). The assumption is that points of
view have to be captured and revealed, since
they have an impact on the evolution of the
system. If they were written in the simulation
models following psychological representation
of exploring and learning from experience, it
could maybe be possible to delineate psycho-
logical effects from those linked to the conflict
setting itself.

CONCLUSION

To build and evaluate agent-based models, one
has to make hypotheses and assess them by
comparing with data at two levels: the internal
rationality of individual agents, and the emerg-
ing patterns that can be observed (for individual
behavior and global trends in the group). In this
chapter two approaches were presented that
use almost similar settings, controlling at the
same time simulated and human behaviors in
the elaboration of the model: simulations linked
with economic experiments, and companion
modeling.

In the first one, human subjects have to
accept a predefined problem and choose with
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their rationality, facing a situation they have no
way to question. What is observed is a highly
constrained behavior, and the tested models
can hence give presumably very general mod-
els on human rationality. For the moment, al-
though some experimentalists have tried to
actually create a questionnaire understand sub-
jects’ internal processes (Nyarko & Schotter,
2002), simulating researchers are not using
these techniques to elaborate their assump-
tions. There is a danger in staying so far from
an evaluation by the concerned actors: simula-
tion is for the moment very unreliable to dem-
onstrate the quality of an assumption of its
uniqueness and cannot by itself be used in such
a Popperian approach.

The second approach wants to spot rational-
ity by allowing the actors themselves to build
the model and accept it when all assumptions
and global behaviors have been analyzed by the
actors. Validation comes from the fact that the
model is useful for the resolution of social
dilemma in the context of resource manage-
ment, as an acceptable and legitimate repre-
sentation. The understanding of processes is
more at the center of research than in the case
of economics, and the model is not considered
as an external truth. The problem in this very
self-conscious instrumentalist approach is that
it lacks accumulation of knowledge: by giving
account of actors’ interpretation of simulations
only in their context of production, like compan-
ion modeling has mostly done, it was certainly
possible to miss numerous patterns that could
be more generalized.

One can suppose that intermediate ap-
proaches could be chosen: a companion model-
ing where only a (possibly large) selection of
abstract games would be proposed, and where
actors would have to select from among them
which one best fits their conflict situation, and
then behave accordingly and build agents that
would be useful in other contexts; an experimen-
tal approach emphasizing more a Turing-like

situation (Turing, 1950) where human subjects
would have to recognize some agents as behav-
ing like they themselves do. Simulations involv-
ing human participants look like a key feature of
future research. It will certainly have to add
more tools than just gaming and experiments—
such as videogames, questionnaires, comments
on agents and other players—and find ways to
accumulate the information on actions and inter-
pretation of rational humans. The sole use of a
complex system and analysis of the parameters
does not seem to be enough when facing the sets
of simulated data of high complexity.
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KEY TERMS

Emergence: A phenomena is said to be
emerging if it is the result of the parallel action
of individuals of agents who did not have this
phenomena as an objective. For example: indi-
viduals wish to go from A to B. A traffic jam
appears, it was not wanted, nor predictable by
the agent before it happened; it emerges from
the presence of a number of individuals at the
same time, going to the same place. Such an
emergence can be detected by the people who
are in it or not. Global warming is an emerging
phenomenon that we can witness.

Experiment: Experiments in economics
were created imitating psychological experi-
ments. Individuals are gathered in a place where
they are made to interact through computers so
to eliminate any non-controlled information cir-
culation. They are given a task for which
economic theory predicts an optimal behavior.
Actual behaviors are then observed, and the
divergence between theory and actions is ana-
lyzed.

Parameters: Agent-based models are made
of equations that are based on values—num-
bers or symbols. When a simulation is run, one
set of such parameters is used. For example the
number of agents in the system, the size of the
grid on which the agents evolve, the rules that
define how the resource is renewed, the time
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that each agent has for communication in a
time-step, and so forth.  Since a complex sys-
tem cannot be analyzed analytically, what is
studied is its sensitivity to each parameter. If
the system displays similar behavior when one
parameter varies within a certain range, one
can say that this behavior is robust regarding
this parameter. If the system’s behavior is
highly correlated to the change of a parameter,
then the model is considered dependent on this
parameter.

Protocols: A protocol is the organization of
the capture of data in empirical research. In the
case of experiments, it will include the way
individuals are selected, how the instructions
are transmitted, as well as the task that the
participants have to achieve in the experiment.
In the case of experiments, it will include the
type of study that is led before organizing
meetings, the number of meetings and partici-
pants, the choice of the stakeholders, the tools
used for communication, and the number of
modifications of these tools.

Rationality: An individual’s rationality is
the process of decision that organizes its ac-
tions. Rationality has to be separated from
perfect rationality, which is an economics
concept defined by the ability to choose the best
action in a situation. Rationality can be sub-
optimal (especially in the case of bounded-
rationality as defined by Simon). For an artifi-
cial agent, rationality is defined by an algorithm
which associates information gathered by the
agent to a choice of action.

Role-Playing Game: Role-playing games
are games that are organized around a scenario
where each player takes a role that partly
defines its abilities and motivation, and where a
story is commonly built from the original script.
When the aim is just recreational, the master of

the game usually makes up in his mind an
environmental accident to stimulate the imagi-
nation of players. When the role-playing game
is used to sustain discussions in a group, events
are either: logically deduced from the definition
of the environment dynamics, or from sce-
narios that are proposed by players or have
been observed in the represented setting.

Setting: A setting is made up of the whole
system of communication, role, and timing in
which the agents or individuals are immerged.
It is the artificial organization (in a simulation, a
game, or an experiment) that represents the
institution that is studied.

Stakeholder: In a decision-making pro-
cess, a stakeholder is one of those involved in
the situation as it is analyzed by organizers, and
who have an interest which is at that moment in
conflict with others. Along the mediation pro-
cess, the definition of situation can change and
some new actors can be involved. Sometimes
people are identified as stakeholders, but do not
recognize themselves as such and do not wish
to participate in common decision making.

Validation: Facing any kind of simulation,
there is a necessity to define a way to assess
the quality of the model in its representation of
quality. In the case of simulation models, it is
important to first check that the implemented
model corresponds to the model description
(internal validation or verification). Then
one has to see if the model has some structural
equivalence with the observed real world, to
make sure that it is interesting to use the
simulation model to understand, predict, or ex-
emplify this reality. It is common to consider
that depending on the aim of the modeling
process, the model cannot be validated in the
same manner.
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ABSTRACT

This chapter introduces agent-based modeling as a methodology to study qualitative change
in economic systems. The need to focus on qualitative developments is derived from evolutionary
economics, where the quantitative orientation of mainstream economic approaches is strongly
criticized. It is shown that agent-based models can cope with the challenges of an evolutionary
setting and fulfill the requirements of modeling qualitative change. In particular agent-based
models allow a detailed representation of knowledge and the underlying dynamics, which are
considered the major driving force of economic growth and development. The chapter also
gives an illustrative example of an agent-based model of innovation processes organized in
networks of actors.

INTRODUCTION

The tremendous development of and easy ac-
cess to computational power within the last 30
years has led to the widespread use of numeri-
cal approaches in almost all scientific disci-
plines. While the engineering sciences focused
on the applied use of simulation techniques
from the very beginning, in the social sciences
most of the early examples of numerical ap-
proaches were purely theoretical.

There are two reasons for this. First, since
the middle of the 20th century, starting with
economics, equilibrium-oriented analytical tech-

niques flourished and were developed to a
highly sophisticated level. This led to the widely
shared view that within the elegant and formal
framework of linear analysis offered by neo-
classical economics, the social sciences could
reach a level of accuracy not previously thought
to be possible.

Second, within the same period, new phe-
nomena of structural change exerted a strong
influence on the social and economic realms.
Despite the mainstream neoclassical successes
in shifting the social sciences to a more math-
ematical foundation, an increasing dissatisfac-
tion with this approach emerged. For example,
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by the 1970s the benchmark of atomistic com-
petition in neoclassical economics had already
been replaced by the idea of monopolistic and
oligopolistic structures. A similar development
emphasizing positive feedback effects and in-
creasing returns to scale caused by innovation
led to the attribute “new” in macroeconomic
growth theory in the 1980s.

In addition to these stepwise renewals of
mainstream methodology, an increasingly larger
group claimed that the general toolbox of eco-
nomic theory, emphasizing rational behavior
and equilibrium, is no longer suitable for the
analysis of complex social and economic
changes. In a speech at the International Con-
ference on Complex Systems organized by the
New England Complex Systems Institute in
2000, Kenneth Arrow stated that until the 1980s,
the “sea of truth” in economics lay in simplicity,
whereas since then it has become recognized
that “the sea of truth lies in complexity.” Ad-
equate tools have to include the heterogeneous
composition of agents (e.g., Saviotti, 1996), the
possibility of multilevel feedback effects (e.g.,
Cantner & Pyka, 1998), and a realistic repre-
sentation of dynamic processes in historical
time (e.g., Arthur, 1988). These requirements
are congruent with the possibilities offered by
simulation approaches. It is not surprising that
within economics the first numerical exercises
were within evolutionary economics, where
phenomena of qualitative change and develop-
ment are at the front of the research program.

The first generation simulation models were
highly stylized and did not focus on empirical
phenomena. Instead, they were designed to
analyze the logic of dynamic economic and
social processes, exploring the possibilities of
complex systems behavior. However, since the
end of the 1990s, more and more specific
simulation models aiming at empirically ob-
served phenomena have been developed focus-
ing on the interaction of heterogeneous actors
responsible for qualitative change and develop-

ment processes. Modelers have had to wrestle
with an unavoidable trade-off between the
demands of a general theoretical approach and
the descriptive accuracy required to model a
particular phenomenon. A new class of simula-
tion models has shown to be well adapted to this
challenge, basically by shifting outwards this
trade-off (e.g., Gilbert & Troitzsch, 1999): so-
called agent-based models are increasingly used
for the modeling of socioeconomic develop-
ments.

This chapter deals with the changed re-
quirements for modeling caused by the neces-
sity to focus on qualitative developments which
is generally highlighted within evolutionary eco-
nomics and the possibilities given by agent-
based models. The next section is concerned
with the importance of an analysis of qualitative
development, and it is shown that evolutionary
economics is offering an adequate framework
for this. A focus on agent-based-modeling as
the tool that allows incorporating endogenously
caused development processes follows, and the
next section gives an illustrative example. Fi-
nally, the whole story is summarized.

QUALITATIVE CHANGE IN AN
EVOLUTIONARY ECONOMICS
PERSPECTIVE

When concerned with the examination of change
and development within industrialized econo-
mies, economists usually focus on the move-
ment of certain variables they consider a good
description of the basic effects of economic
growth and development. In mainstream eco-
nomics, the phenomenon of economic develop-
ment is, for example, empirically analyzed on
the macro level as the improvement of total
factor productivity in time, which lowers prices
and leads to the growth of incomes. Accord-
ingly, most often the GDP per capita is used as
an indicator describing economic development
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in a quantitative fashion. Although it is impress-
ing to observe the growth of income in econo-
mies over a long time span, this indicator does
not give any idea about the structural and
qualitative dimensions underlying economic
development. This becomes even more obvious
on the sectoral level, where the analysis is most
often restricted to long-run equilibrium struc-
ture describing the number of firms in a particu-
lar industry without putting emphasis on, for
example, the organizational forms to be ob-
served in the interaction patterns encompass-
ing not only competition, but increasingly also
cooperative interactions leading to important
network structures (Ahrweiler, Gilbert, & Pyka,
2001). By restricting their analysis on the quan-
titative dimension, the economic mainstream
implicitly confines itself to the analysis of a
system characterized by a constant set of ac-
tivities basically neglecting innovation processes:
“Economic growth can be described at the
macro-economic level, but it can never be
explained at that level … Economic growth
results from the interaction of a variety of
actors who create and use technology and
demanding costumers” (Eliasson & Carlsson,
2004).

However, in less orthodox economic ap-
proaches it is argued, and it is indeed also one
of Schumpeter’s major contributions, that eco-
nomic development does also include promi-
nently qualitative changes, not only as an out-
come but also as an essential ingredient which
justifies us to speak of transformation pro-
cesses going on. Qualitative change manifests
itself basically via innovation of different cat-
egories of which technological innovation very
likely is among the most important ones. Quali-
tative change is the transformation of an eco-
nomic system, characterized by a set of compo-
nents and interactions into another system, with
different components and different interrela-
tionships (e.g., Saviotti, 1996). An analysis of
qualitative change therefore necessarily has to

include the actors, their activities, and the ob-
jects that are responsible for the ongoing eco-
nomic development. An example for the signifi-
cance of qualitative changes referring to the
network example above can be found in Figure
1, which displays the increasing importance of
collaborative R&D in knowledge-intensive in-
dustries. What strikes immediately is that col-
laborative R&D obviously is not only a tempo-
rary phenomenon, as stated in equilibrium-ori-
ented neoclassical transaction costs theory, but
very likely a persistent phenomenon of increas-
ing importance (Pyka, 2002). Of course there
are many other variables which also reflect the
importance of the qualitative dimensions of
economic development, for example, on a macro
level the changing composition of the employ-
ment structure (Fourastier Hypothesis), on a
meso level the regional specialization patterns,
or on a micro level the obsolescence of old and
the emergence of new knowledge like the
biotechnology revolution in pharmaceuticals, to
name a few. By its very nature, the transforma-
tion of an economic system is a multi-facetted
phenomenon. Accordingly, it is misleading to
focus only on quantitative changes when ana-
lyzing the driving factors of the transformation
of economic systems over time. To better un-
derstand the mechanisms and dynamics behind
the observed developments, one has to explic-
itly include the qualitative dimensions. To achieve
this, economic analysis has to consider—be-
sides the prevailing cost-orientation—an im-
portant knowledge and learning orientation.

The following paragraphs are concerned
with the implications of this knowledge orienta-
tion, which can also be considered as the heart
of the matter of evolutionary economics.

Knowledge-Based Approach of
Evolutionary Economics

It is beyond the scope of this contribution to
discuss in detail the criticism brought forth by
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evolutionary economics with respect to as-
sumptions underlying the mainstream economic
reasoning. A major discussion can be found,
among others, in Dopfer (2001). For our pur-
poses it is sufficient to mention three points that
evolutionary economists claim to be of out-
standing importance in the discussion of eco-
nomic development and which are incompatible
with traditional approaches. These points are
also constitutive for that strand of literature
within evolutionary economics which is con-
cerned with industry evolution and technologi-
cal progress—namely, the Neo-Schumpeterian
approach (Hanusch & Pyka, 2006). First of all,
Neo-Schumpeterian theory wants to explain
how innovations emerge and diffuse over time.
A specific feature of these processes is uncer-
tainty, which cannot be treated adequately by
drawing on stochastically distributions refer-
ring to the concept of risk. Therefore, the
assumption of perfect rationality underlying
traditional models cannot be maintained; in-
stead the concepts of bounded and procedural
rationality are invoked. Consequently, actors in
Neo-Schumpeterian models are characterized
by incomplete knowledge bases and capabili-
ties. Closely connected, the second point con-

cerns the important role heterogeneity and va-
riety plays. Due to the assumption of perfect
rationality, in traditional models homogeneous
actors and technologies are analyzed. Hetero-
geneity as a source of learning and novelty is by
and large neglected, or treated as an only
temporary deviation. Finally, the third point
deals with the time dimension in which learning
and the emergence of novelties take place. By
their very nature, these processes are truly
dynamic, meaning that they occur in historical
time. The possibility of irreversibility, however,
does not exist in the mainstream approaches,
relying on linearity and equilibrium.

Thus, traditional economic theories, sum-
marized under the heading of incentive-based
approaches, with their focus on cost-based and
rational decisions, are excluding crucial as-
pects of actors’ behaviors and interactions,
which are influenced by a couple of factors
lying by their very nature beyond the scope of
these approaches. Although, of course, cost-
benefit calculations play an important role, the
actors’ behavior is influenced additionally by
several other factors such as learning, indi-
vidual and collective motivation, trust, and so
forth. It is the role of these factors the knowl-

Figure 1. Increasing importance of R&D collaboration (Science and Engineering Indicators,
2002)
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edge-based approach of evolutionary econom-
ics explicitly takes into account.

By switching to the knowledge-based per-
spective, the Neo-Schumpeterian approaches
have realized a decisive change in the analysis
of the transformation of economic systems. In
this light the introduction of novelties mutate
from optimal cost-benefit considerations to
collective experimental and problem-solving
processes (Eliasson, 1988). The knowledge
base of the actors is no longer perfect; instead
a gap between the competences and difficulties
(C-D gap) that are to be mastered opens up
(Heiner, 1983). There are two reasons for this
C-D gap when it comes to innovation: on the
one hand, technological uncertainty introduces
errors and surprises. On the other hand, the
very nature of knowledge avoids an unrestricted
access. Knowledge in general, and new tech-
nological know-how in particular, are no longer
considered as freely available, but as local
(technology specific), tacit (firm specific), and
complex (based on a variety of technology and
scientific fields). To understand and use the
respective know-how, specific competences
are necessary which have to be built up in a
cumulative process in the course of time. Fol-
lowing this, knowledge and the underlying learn-
ing processes are important sources for the
observed heterogeneity among agents.

Challenges for Analyzing
Qualitative Change

From the discussion above we can identify two
major challenges for an analysis of qualitative
change. The first challenge is that a theoretical
framework adequately displaying our notion of
qualitative change has to incorporate concepts
that comply with the notion of development of
evolutionary economics. Basically this refers to
path-dependencies, dynamic returns, and their
interaction as constitutive ingredients for evo-
lutionary processes.

The second challenge is that we generally
have to focus on both the micro and meso levels
of the economy, as to our understanding the
term qualitative change refers to a changing
composition and interaction of and in the eco-
nomic system. In doing so, we can identify
stylized facts that are considered of importance
when qualitative change in an economy is con-
sidered. The most obvious ones follow.

First, an increasing importance of knowl-
edge generation and diffusion is observed. This
coins the notion of a transformation of the
economy into a knowledge-based economy.
Second, this is accompanied by a continuously
increasing specialization, and relates to an in-
creasing variety of products and services coex-
isting. Third, specialization and differentiations
go hand in hand with an increasing importance
of (market and non-market) interactions be-
tween the agents. Fourth, behind this increasing
variety we observe innovation processes that at
the same time improve efficiency and the qual-
ity. Fifth, this innovation process is driven by
competition selecting between technological
alternatives. Finally, the environmental con-
straints can be considered as filter and focusing
devices either supporting or hindering the diffu-
sion of innovations.

Once the relevance of these facts for the
transformation of an economy are accepted,
the research has to account for those develop-
ments adequately.

Micro- and Meso-Perspective

Obviously this aim can only be accomplished by
abandoning an aggregate perspective and in-
stead focusing on a micro- or meso-level popu-
lation approach (Metcalfe, 2001). This allows
for examining diverse agents, their interaction,
and the knowledge-induced transformation of
both. Modeling has to take into account the
importance of micro-macro-micro feedback
effects. In their decisions, actors obviously
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consider macro constraints, but they also exert
a significant influence on the altering of these
constraints (Dopfer, 2001). The interrelated
inspection of the meso and the micro level
reflects the idea that analysis on the aggregated
meso level relies on description, whereas the
analysis of the micro level focuses on explana-
tion of the phenomena found on the meso level
(Dopfer, 2001).

Knowledge

Considering this will lead to a revision of stan-
dard economic models, as analysis here follows
reality closely. Traditional ‘production func-
tions’ include labor, capital, materials, and en-
ergy. Knowledge and technology are only ex-
ternal influences on production. However, re-
cent analytical approaches have been devel-
oped allowing the explicit consideration of knowl-
edge as well as learning as a mean for acquiring
new knowledge. Improvements in the knowl-
edge base are likely not only to increase the
productive capacity of other production fac-
tors, leading to the introduction of new products
as a visible outcome of the transformation
process, but also to alter the organizational
processes of knowledge creation, namely the
interrelationships between the actors. Thus,
transformation relates to a result and an ex-
tremely important process dimension.

A MODELING APPROACH
ALLOWING FOR QUALITATIVE
CHANGE: AGENT-BASED
MODELING

An exploration of settings fulfilling the above
requirements needs numerical techniques. Al-
though simulation analysis comes in various
flavors, most of them reflect Boulding’s call
that we need to develop “mathematics which is

suitable to social systems, which the sort of
18th-century mathematics which we use is not”
(Boulding, 1991). An increasingly growing lit-
erature today is concerned with the application
of so-called agent-based models (ABMs). This
approach consists of a decentralized collection
of agents acting autonomously in various con-
texts. The massively parallel and local interac-
tions can give rise to path dependencies, dy-
namic returns, and their interaction. In such an
environment, global phenomena as the develop-
ment and diffusion of technologies, the emer-
gence of networks, herd-behavior, and so forth—
which cause the transformation of the ob-
served system—can be modeled. This model-
ing approach focuses on depicting the agents,
their relationships, and the processes governing
the transformation. Very broadly, the applica-
tion of ABMs offers two major advantages
with respect to the knowledge and learning
orientation.

The first advantage of ABMs is their capa-
bility to show how collective phenomena come
about, and how the interaction of the autono-
mous and heterogeneous agents leads to their
genesis. Furthermore ABMs aim at the isola-
tion of critical behavior in order to identify
agents that more than others drive the collec-
tive result of the system. They also endeavor to
single out points of time where the system
exhibits qualitative rather than sheer quantita-
tive change (Tesfatsion, 2001). In this light it
becomes clear why ABMs conform to the
principles of evolutionary economics (Lane,
1993a, 1993b). It is the modeling approach to be
pursued in evolutionary settings. The second
advantage lies in the possibility to use ABMs as
computational laboratories to explore various
institutional arrangements, various potential
paths of development so as to assist and guide,
for example, firms, policymakers, and so forth,
in their particular decision context.
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ABMs thus use methods and insights from
diverse disciplines such as evolutionary eco-
nomics, cognitive science, and computer sci-
ence in an attempt to model the bottom-up
emergence of phenomena and the top-down
influence of the collective phenomena on indi-
vidual behavior. The recent developments in
new techniques, in particular the advent of
powerful tools of computation, open up the
opportunity for economists to model economic
systems on a more complex basis (Tesfatsion,
2001).

In the following sections a typical example
for an ABM is introduced in order to highlight
the specialties of this methodology. In particu-
lar the model deals with the emergence of
innovation networks where economic agents
jointly develop and share at least some of their
knowledge. As the focus of this chapter lies on
the methodology of ABMs, we cannot go into
detail with respect to the economic implications
of the model, but refer instead to Ahrweiler et
al. (2004), where all the economic concepts
used in the model are described in detail.

AN EXAMPLE: THE SKIN MODEL

SKIN, the acronym for Simulating Knowledge
in Innovation Networks, is a multi-agent model
containing heterogeneous agents which act in a
complex and changing environment. Its agents
are innovative firms who try to sell their innova-
tions to other agents and end users, but who
also have to buy raw materials or more sophis-
ticated inputs from other agents in order to
produce their outputs. This basic model of a
market is extended with a representation of the
knowledge dynamics in and between the firms.
Each firm tries to improve its innovation perfor-
mance and its sales by improving its knowledge
base through adaptation to user needs, incre-
mental or radical learning, and cooperation and

networking with other agents. In the next para-
graphs, the basic elements and processes are
introduced in order to illustrate exemplarily the
architecture of an ABM.

The Agents

A SKIN agent is a firm with an individual
knowledge base. This knowledge base is called
its kene (Gilbert, 1997) and consists of a num-
ber of “units of knowledge.” Each unit is repre-
sented as a triple, consisting of a firm’s capa-
bility C in a scientific, technological, or busi-
ness domain (e.g., biochemistry), represented
by an integer randomly chosen from the range
of 1..1000; its ability A to perform a certain
application in this field (e.g., a synthesis proce-
dure or filtering), represented by an integer
randomly chosen from the range 1..10; and the
expertise level E the firm has achieved with
respect to this ability (represented by an integer
randomly chosen from the range 1..10). The
firm’s kene is its collection of C/A/E-triples.

When it is set up, each firm has a stock of
initial capital. It needs this capital to produce
for the market and to improve its knowledge
base, and it can increase its capital by selling
products. The amount of capital owned by a
firm is a measure of its size.

Most firms are initially given a standard
amount of starting capital, but in order to model
differences in firm size, a few randomly chosen
firms can be given extra capital (set using the
“n-big-firms” slider on the interface—see Fig-
ure 6).
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The Market

Firms apply their knowledge to create innova-
tive products that have a chance to be success-
ful in the market. The special focus of a firm, its
potential innovation, is called an innovation
hypothesis. In the model, the innovation hy-
pothesis (IH) consists of a subset of the firm’s
kene triples.

The underlying idea for an innovation, mod-
eled by the innovation hypothesis, is the source
an agent uses for its attempts to make profits on
the market. Developing the innovation hypoth-
esis into a product is a mapping procedure
where the capabilities and abilities of the inno-
vation hypothesis are used to compute an index
number that represents the product.

A firm’s product, P, is generated from its
innovation hypothesis as

P = (C1* A1) + (C3 * A3) + (C4 * A4) + …
modulus N      (1)

(where N is the total number of products ever
possible within the model).

The product has a certain quality which is
also computed from the innovation hypothesis
in a similar way, but using a product of the
abilities and the expertise levels for each triple
in the innovation hypothesis.

In order to start production, the agent needs
some raw materials or more sophisticated in-
puts from other agents. What exactly it needs is

also determined by the underlying innovation
hypothesis: the kind of material required for an
input is obtained by selecting subsets from the
innovation hypotheses and applying the stan-
dard mapping function (equation 2).

In order for an agent to be able to engage in
production, all the inputs need to be available on
the market (i.e., provided by other agents). If
the inputs are not available, the agent is not able
to produce and has to give up this attempt to
innovate. If there is more than one supplier for
a certain input, the agent will choose the one at
the cheapest price and, if there are several
similar offers, the one with the highest quality.

Input 1: (C1*A1 + C2*A2) modulus N

Input 2: (C3*A3 + C4*A4 + C5*A5) modulus N
     (2)

If the agent can go into production, it has to
find a price for its own product which takes
account of the input prices it is paying and a
possible profit margin. While the simulation
starts with assuming that all agents have a
product that they can sell and with the product
prices set at random, as the simulation pro-
ceeds, a price adjustment mechanism ensures
that the selling price will at least equal the total
cost.

An agent will then buy the requested inputs
from its suppliers using its capital to do so. It
produces its output and puts it on the market.
Agents follow a standard pricing strategy such
that if a product sells, its price will be increased,
while if it does not sell, the price is reduced until
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Figure 4. A firm’s input requirements
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the cost of production is reached. In this way,
agents are able to adapt their prices to demand.

In making a product, an agent applies the
knowledge in its innovation hypothesis, and this
increases its expertise. This is the way learn-
ing by doing/using is modeled. The expertise
level of the triples in the innovation hypothesis
is increased by 1 and the expertise levels of the
other triples are decremented by 1. Unused
triples in the kene eventually drop to an exper-
tise level of 0 and are deleted from the kene; the
corresponding abilities are “forgotten.”

The Environment

Within the model, there are two world settings
for the agents’ environment. With the first, the
model represents a closed market in which the
agents trade only with each other as equals,
sharing the same attributes and rules. Each
agent buys its inputs from other agents and
itself produces an output which must then be
bought by other agents. The alternative world is
a market where external sources and purchas-
ers interact with the firm population. With this
setting, the model includes some supplier firms
and some customer firms. The supplier firms
try to sell raw materials—the basic elements
necessary for the production of goods—but
they do not buy anything. The customer firms
are ‘end users’ who buy products without pro-
ducing anything themselves. The implementa-
tion of the model allows for switching between

these settings in order to experiment with the
two market conditions (see the open-system
slider in Figure 6).

Learning and Cooperation:
Improving Innovation Performance

In trying to be successful, the firms are highly
dependent on their innovation hypothesis—that
is, on their kene. If a product does not meet any
demand, the firm has to adapt its knowledge in
order to produce something else for which
there are customers. In the model, a firm can
choose between different ways of improving its
performance, either alone or in cooperation,
and either in an incremental or in a more radical
fashion. All strategies have in common that
they are costly: the firm has to pay a tax as the
cost of applying an improvement strategy.

Incremental Research

If a firm’s previous innovation has been suc-
cessful, it will continue selling the same prod-
uct. However, if the previous profit was below
a certain threshold, it considers that it is time for
change. If the firm still has enough capital, it
will carry out incremental research (R&D in
the firm’s labs). Performing incremental re-
search means that a firm tries to improve its
product by altering one of its abilities chosen
from the triples in its innovation hypothesis
while generally sticking to its focal capabilities.
This is to exploit the action space available for
a certain capability. The ability in each triple is
considered to be a point in the respective
capability’s action space. To move in the action
space means to go up or down by 1 on the
integer scale, thus allowing for two possible
incremental research directions. Initially, the
research direction of a firm is set at random.
Later it learns to adjust to success or failure: if
a move in the action space has been successful,
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the firm will continue with the same research
direction within the same triple; if it has been a
failure, the firm will randomly select a different
triple from the innovation hypothesis and try
again with a random research direction on the
triple’s ability.

Radical Research

A firm under serious pressure that is in danger
of becoming bankrupt will turn to more radical
means to prevent its exit. In this situation, a firm
can choose to perform radical research to
explore a completely different area of market
opportunities. In the model, an agent under
financial pressure turns to a new innovation
hypothesis after first “inventing” a new capa-
bility for its kene. This is done by randomly
changing one  capability in the kene for a new
one and then forming an innovation hypothesis
from its kene set.

Partnerships

An agent may consider partnerships and net-
works in order to learn from other agents, to
exploit external knowledge sources. Within the
model we can switch between a scenario where
partnerships and networks are prohibited and a
scenario where they are allowed (see Figure 6,
slider collaboration). In the latter scenario,
the decision whether and with whom to cooper-
ate is based on mutual observations. The infor-
mation a firm can gather about others is pro-
vided by a marketing feature: to advertise its
product, a firm publishes the capabilities used in
its innovation hypothesis. The firm’s advertise-
ment is then the basis for decisions by other
firms to form or reject cooperative arrange-
ments.

In experimenting with the model, we can
choose between two different partner search
strategies, both of which compare the firm’s
own capabilities in its innovation hypothesis and

the possible partner’s capabilities as seen in its
advertisement. Applying the conservative strat-
egy, a firm will be attracted by a possible
partner who has similar capabilities; using a
progressive strategy the attraction is based on
the difference between the capability sets (see
Figure 6, slider partnership-strategy).

Previously good experience with former
contacts generally augurs well for renewing a
partnership. This is mirrored in the model: to
find a partner, the firm will look at previous
partners first, then at its suppliers, customers,
and finally at all others. If there is a firm
sufficiently attractive according to the chosen
search strategy (i.e., with attractiveness above
the attractiveness threshold), it will stop its
search and offer a partnership. If the possible
partner wishes to return the partnership offer,
the partnership is set up.

To learn from the partner, a firm will add the
triples of the partner’s innovation hypothesis to
its own. It will take care that it will only take
triples which are different from its own triples
in the innovation hypothesis: the expertise lev-
els of the triples taken from the partner are set
down to 1 in order to mirror the difficulty of
integrating external knowledge. Once the knowl-
edge transfer has been completed, each firm
continues to produce its own product.

Networks

If the firm’s last innovation was successful—
that is, the amount of its profit in the previous
round was above a threshold—and the firm has
some partners at hand, it can initiate the forma-
tion of a network. This can considerably in-
crease its profits because the network will try
to create innovations as an autonomous agent in
addition to those created by its members. It will
distribute any rewards to its members who, in
the meantime, can continue with their own
attempts, thus providing a double chance for
profits. However, the formation of networks is
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costly, which has two consequences: only firms
with enough capital can form or join a network
and no firm can be member of two networks at
the same time.

Networks are normal agents—they get the
same amount of initial capital as other firms and
can engage in all the activities available to other
firms. The kene of a network is the union of the
triples from the innovation hypotheses of all its
participants. If a network is successful, it will
distribute any earnings above the amount of the
initial capital to its members; if it fails and
becomes bankrupt, it will be dissolved.

Start-Ups

If the sector is successful, new firms will be
attracted into it. This is modeled by adding a
new firm to the population when any existing

firm makes a substantial profit. The new firm is
a clone of the successful firm, but with its kene
triples restricted to those in the successful
firm’s advertisement, and an expertise level of
1. This models a new firm copying the charac-
teristics of those seen to be successful in the
market. As with all firms, the kene may also be
restricted because the initial capital of a start-
up is limited and may not be sufficient to support
the copying of the whole of the successful
firm’s knowledge base.

THE IMPLEMENTATION

The model has been programmed using NetLogo
(http://ccl.northwestern.edu/netlogo/) and is
available from the author upon request.

Figure 6. The interface of the model
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With a complex model such as this one,
extensive experiments have to be carried out to
understand its behavior and the sensitivity of
the output to variations in the input parameters.
Obviously such analysis is beyond the scope of
this chapter. The intention is to give a detailed
overview on the model’s architecture in order
to illustrate how the requirements for modeling
knowledge dynamics and qualitative change
are fulfilled in an ABM. For detailed analysis
and various experiments, see Ahrweiler et al.
(2001, 2004). Nevertheless, an impression of
how the model performs using standard param-
eter settings is given in the next paragraphs.

The main graphic window of Figure 6 shows
about 100 firms (represented by the small ‘fac-
tory’ shapes). Factory icons on their side mark
firms that were created after the start of the
simulation (i.e., they are start-ups), and those
that are upside down are network firms—firms
producing on behalf of a network, with a kene
based on the union of the kenes of the network
members. The size of the icons indicates the
amount of capital its firm possesses.

The lines indicate partnerships, supplier re-
lationships, and network linkages between firms.
Those not involved in any relationship have
been moved by the layout algorithm to the
margins of the display. There are five networks
(one with four members, and four with three
members). The networks are shown with lines
interconnecting all their members.

The display is surrounded by graphs moni-
toring various aggregate aspects of the system.
At the top right the growth in the population of
firms as start-ups are added, and the slow
growth in the number of networks is shown.
The graph below shows the percentage of firms
that have products on the market (Firms Sell-
ing) and the percentage that have made a sale
(Sales); the latter is always less than the former
because some firms are unable to find custom-
ers prepared to buy at the price proposed for
the product. The third graph down the right-

hand side indicates the percentage of firms that
are involved in either at least one partnership or
in a network. The bottom right graph shows a
measure of the distribution of funds in the
market, the Herfindahl concentration index Ht,

H t = si
t

n
∑

where st
i is the relative capital of firm i, which

measures the distribution of capital among the firms.
The Networks histogram shows the number

of firms in each network, and the Dynamics plot
indicates, on the upper Successes graph, the
number of firms that have exceeded the thresh-
old of profit that indicates a successful innova-
tion (the ‘success threshold’) and, on the lower
Start-Ups graph, the number of new firms
entering the market at each round. The Capital
plot in the bottom left corner shows the average
capital of the firms. The various experiments
performed so far look at the development of
different network structures using methods from
social network analysis and graph theory.

CONCLUSION

In this chapter we attempted to provide an
introduction to ABMs in economics. We began
with a discussion of the main motivations that,
in the last few years, led many scholars to
supplement “mainstream” treatments with al-
ternative approaches, rooted in “more realist”
assumptions such as heterogeneity, interac-
tions, bounded rationality, endogenous novelty,
and so on. After presenting the building blocks
shared by this class of models, an exemplary
model of emerging innovation networks is intro-
duced.

In our view, the attempt to model the aggre-
gate dynamics of decentralized economies on
the basis of a more detailed microfoundation
such as the one postulated by ABMs is the
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primary requirement to pursue one of the most
prominent challenges in social sciences today,
namely the analysis of qualitative change. Our
discussion suggests that ABMs are offering an
adequate framework for this, overcoming the
severe restrictions which orthodox economic
approaches are confronted with. By emphasiz-
ing the role of true uncertainty and irreversibil-
ity, one is able to model qualitative development
as an endogenous process driven by the agents
and their interactions.

ABMs allow for an explicit consideration of
these characteristic features, and therefore
can be considered as the modeling tool for the
analysis of qualitative development and trans-
formation processes. In a way, ABMs can be
considered a systemic approach, allowing the
consideration and integration of different social
realities which makes them an extremely valu-
able tool for the analysis of social processes
which can be generally considered as multifac-
eted phenomena.

The field of agent-based modeling in social
sciences is far from its maturity. Many issues,
especially methodological ones, are still de-
bated, both on the model development side and
on the model analysis side. Here, as a way of
conclusion, we will try to briefly mention some
of the most crucial ones.

First, on the model building and development
side, one faces a huge heterogeneity in the way
agents and their behavioral and interaction rules
are assumed and implemented. In the relevant
literature, one often deals with many structur-
ally different ABMs addressing very similar
issues. This practice, which is ultimately caused
by the flexibility of programming languages and
their heterogeneity, can certainly turn out to be
a plus, because it might favor a better under-
standing of the deep causes of a given phenom-
enon. However, it can also generate an inher-
ent impossibility to compare different models
and to pursue a coherent procedure of model
improvement.

Second, and relatedly, an agent-based mod-
eler will often end up with an over-parameter-
ized model. In order to limit as much as possible
all critiques regarding the robustness of results
to different parameterizations and initial condi-
tions, an exhaustive exploration of both param-
eters’ and initial conditions’ sets is required.

Third, even when the foregoing critiques
have been carefully considered, an agent-based
modeler should be aware of the fact that all his/
her results could be heavily affected by the
particular sets of behavioral and interaction
rules that he/she has assumed. Those rules are
often kept fixed across time. This can be justi-
fied by the observation that the rules them-
selves typically change slower that the vari-
ables which they act upon. However, in the
evolutionary spirit informing ABMs, a neces-
sary step would be that of modeling the rules
themselves as endogenously changing objects.
An example here concerns learning and deci-
sion rules, which can be endogenously modified
by the agents along the process.

Finally, on the normative side, it must be
noticed that so far ABMs have almost exclu-
sively addressed the issue of replication of
stylized facts. However, ABMs can and should
be employed to address policy issues as well. A
need for increasingly normative-oriented ABMs
delivering policy implications and out-of-sample
predictions is nowadays strongly felt in the
community. Thanks to the flexibility and the
power of agent-based approaches, it is easy to
conceive frameworks where policy experiments
are carried out to evaluate the effectiveness of
different policy measures, for a range of differ-
ent institutional setups and behavioral rules.
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ABSTRACT

This chapter introduces an agent-based modeling framework for reproducing micro behavior
in economic experiments. It gives an overview of the theoretical concept which forms the
foundation of the framework as well as short descriptions of two exemplary models based on
experimental data. The heterogeneous agents are endowed with a number of attributes like
cooperativeness and employ more or less complex heuristics during their decision-making
processes. The attributes help to distinguish between agents, and the heuristics distinguish
between behavioral classes. Through this design, agents can be modeled to behave like real
humans and their decision making is observable and traceable, features that are important
when agent-based models are to be used in collaborative planning or participatory model-
building processes.

INTRODUCTION

Modeling human behavior is challenging. Mod-
elers of agent-based models face a choice and
a trade-off: how simple and traceable or realis-
tic and psychologically plausible should agent
behavior be modeled. Theory does not provide
much guidance in this respect since numerous

and sometimes contradictory theories on hu-
man behavior exist. We chose to model agents
as boundedly rational. We base their behavior
on observation, both from experimental eco-
nomics and field studies.

The agents in our models are characterized
by a set of attributes, which have been derived
from experimental data and theoretical ap-
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proaches. They have expectations about their
environment and the other agents. In this way,
agent diversity is introduced. They exhibit
boundedly rational behavior through aspiration
levels and the use of simple heuristics.

This chapter introduces our modeling ap-
proach and the tool developed for our purposes
which provides an environment for creating
agent-based models with boundedly rational
decision making. The focus lies on developing
models based on economic experiments, but the
tool is expandable to include field studies as
well. Experimental economics provides us with
a rich database of human behavior in simple,
well-defined settings. The experimental results
can be compared and reproduced. This allows
extracting behavioral regularities from the data
and using these to define micro behavior in the
model. This is important because different mi-
cro behavior can lead to similar aggregate
results. This chapter includes two exemplary
models of economic experiments.

The software tool provides the agents with
attributes and a set of heuristics that can be
expanded to include new heuristics that fit
better to problems which have not yet been
modeled. The modeler can set parameters, like
which kind of agents use which kind of heuris-
tics. He or she can include new heuristics and
learning processes, as well as new decision
environments. With this tool it is possible to
compare different micro behavior as well as
reactions on different model framings. We
expect this modeling approach to make it pos-
sible for stakeholders to identify with agent
behavior and thus facilitate group model build-
ing and collaborative planning.

The remainder of this chapter is organized
as follows. The section “Bounded Rationality”
is a brief introduction to this theory of human
behavior and its advantages for our purposes.
In the section “Attributes and Heuristics,” our
modeling approach is described. In the section

“Exemplary Models,” two different models are
described that reproduce data from economic
experiments. These are the voluntary contribu-
tion mechanism with and without punishment,
and appropriation games with and without com-
munication. Some concluding remarks are made
about the relevance of the modeling approach
presented in this chapter. The appendix pro-
vides some technical details for modelers who
want to use the tool.

BOUNDED RATIONALITY

The decision environments considered here are
explicitly those in which the classical economic
model of decision making fails to make correct
predictions of actual human behavior. With
classical model we refer to subjectively ex-
pected utility maximization of perfectly rational
actors. The situations we are interested in
include social dilemmas in which individual
rationality differs from group rationality, and
gift exchange situations in which gift giving
seems to follow norms of reciprocity or fair-
ness. At least in these situations the classical
economic model of perfect rationality has to be
enriched or complemented by theories that
explain instances of cooperation and reciproc-
ity.

Bounded rationality was introduced as an
alternative to perfect rationality as the principle
of human decision making (Selten, 1990). In-
stead of grounding a behavioral theory in opti-
mization processes with a number of rather
unrealistic assumptions on the capabilities and
preferences of humans, bounded rationality is
psychologically plausible (Gigerenzer & Todd,
1999; Gigerenzer & Selten, 2001).

The main idea is that learned heuristics are
the basis of human behavior instead of perma-
nent optimization. Heuristics are simple behav-
ioral patterns that are triggered by the decision
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context or environment. The usefulness of dif-
ferent heuristics in different circumstances is
learned by experience. Heuristics are often
simple and use little information, or better yet,
they exploit the informational structure of the
environment. This does not mean that humans
are incapable of planning and full rational deci-
sion making. But the case of full rationality,
trying to integrate all aspects into the decision-
making process and finding the optimal solution,
is a limiting case (Ostrom, 2004, p. 39). Apart
from its unrealistic assumptions on the cogni-
tive capacity of humans, optimization does not
lead to satisfactory outcomes in many decision
situations where uncertainties are high and/or
fast reactions are required despite limited infor-
mation. Optimization is applied only in situa-
tions where stakes are very high, the environ-
ment is competitive, there is much time for the
decision, and information is abundant. Bounded
rationality is a theory for day-to-day decision
making, like buying toothpaste, as well as im-
portant high-cost situations, like buying a house.
Decision contexts differ greatly, and so do
heuristics needed in these situations.

One aspect of bounded rationality is the
aspiration adaptation theory (Selten, 2001).
According to this theory, humans have an aspi-
ration level for a decision outcome. Above this
level, an outcome is perceived as satisfactory,
and below it is unsatisfactory. If a decision
based on one heuristic leads to an unsatisfac-
tory outcome and the decision can or has to be
repeated, a search process for other heuristics
or other choices is triggered. Another heuristic
promising a better outcome is used, if it is found.
If no heuristic is found that would lead to a
satisfactory outcome, the aspiration level may
be adapted. It can also be adapted upwards
after a number of satisfactory outcomes. How-
ever, if a decision leads to a satisfactory out-
come, it is repeated without any consideration
of optimality. Instead of optimizing, boundedly
rational humans are satisficing.

Whether or not the possible decisions or
heuristics are actually carried out or made in
thought depends on the situation. If you want to
buy a house, you cannot try all possible decision
alternatives. However, you can think about
your aspiration level and whether or not a
specific house is promising to be satisfactory.
If, on the other hand, you buy toothpaste, you
can probably not decide whether or not the
toothpaste meets your aspiration of taste or
health, but you can try another one next time.
These examples refer to the decisions rather
than the heuristics involved for choosing. But
think again of toothpastes. A heuristic could be:
Buy toothpaste with stripes. Another one could
be: Buy toothpaste with green wrapping. If the
third different toothpaste with green wrapping
and stripes does not meet your requirements for
taste or health, you can deliberately change one
of the heuristics mentioned above. Maybe a
friend recommended a particular brand of tooth-
paste and you try it, maybe you try buy the most
expensive. Processes like these are modeled in
the examples presented below.

In comparison, the standard economic model
predicts a person who wants to buy a house to
assign values to all possible aspects of a house
and calculate utilities of the houses in question
by assigning weights to the aspects and making
a linear combination of values and weights. The
house with the highest utility is bought. The
search for a house goes on until the costs of
further search equals the benefits, both of
which have to be calculated in advance. The
same process has to be made for toothpastes.
Since such an economic behavior is rather
obviously inappropriate, economists claim that
humans behave as if they were optimizing. This
is the difference between substantive and pro-
cedural rationality, first pointed out by Simon
(Rubinstein, 1998). Utility maximization may
lead to substantively rational behavior, like op-
timal outcomes, but it is not a good description
of how decisions are made by actual human
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beings. As a process of decision making, utility
maximization is not rational. Bounded rational-
ity seeks to alleviate this problem.

Norms and emotions can function as stop-
ping rules for the search process. A famous
example for an emotion is love as the stopping
rule for the search for a mate. Somewhere out
there may be the optimal mate. You never
know when or if you meet him or her. If you find
a satisfactory mate, love tells you to stop look-
ing (Gigerenzer, 2001). An equally famous
example for a norm is the reciprocity norm. In
a private or business relationship, this norm tells
you to treat the other as he or she treats you.
Instead of calculating the probability for future
dealings with this person and possible positive
outcomes, comparing it with a short-term ben-
efit that could be achieved by cheating now, you
simply reciprocate trust with trustworthy be-
havior, nice acts with nice acts, and retaliate
cheating with mistrust and an end to the rela-
tionship. How nice or hostile to reciprocate can
be subject to a learning process. Ostrom and
colleagues report that retaliation is not usually
done as a grim trigger but rather as measured
reaction. “Defections trigger mild reactions
instead of harsh punishment. If defections con-
tinue over time, the measured response slowly
moves from the point of agreement toward the
Nash equilibrium” (Ostrom, Gardner, & Walker,
1994, pp. 199-200).

ATTRIBUTES AND HEURISTICS

People’s behavior is diverse. In part, these
differences may be explained by the history of
events. We also assume people to have differ-
ent dispositions to behave one way or another.
These dispositions can be altered by experi-
ences. In our models, however, the dispositions,
modeled as attributes, are not changed, be-
cause of the short time horizon of the games.

Expectations on the other hand are changed
quickly.

Our attribute set consists of seven at-
tributes. They are modeled as values between
0 and 1, equally distributed and independent
from each other. However, if distributions or
dependencies are subject of an exploration,
this default can easily be changed. Our seven
attributes are introduced next, and examples
are given of their use in economic games.
Then we introduce our heuristics approach.
This can be seen as general agent behavior,
which is defined and refined in specific deci-
sion environments. Examples for decision en-
vironments modeled with this approach are
given in the next section.

Attributes

• Cooperativeness: Defines the impor-
tance of group utility compared to indi-
vidual utility. A high cooperativeness im-
plies a willingness to invest individual re-
sources to increase the outcome of a
group, even if the individual outcome may
or will be less than without the investment.
This attribute corresponds to cooperation
as “joint gain maximization” in the social
value orientation theory (McClintock,
1972) and to “impure altruism” (Andreoni,
1989). This is the main attribute deciding
on how much an agent is willing to invest
in the voluntary contribution mechanism in
first games (see next section).

• Conformity: Defines norm compliance
and the willingness to follow rules defined
by the group. A high degree of anonymity
lessens the importance of this attribute,
while monitoring increases it even without
sanctioning mechanisms (Burnham, 2003;
Hoffman, McCabe, & Smith, 1996). This
attribute is used to implement compliance
to an agreed upon investment level in
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appropriation games with communication
(see next section).

• Fairness Concerning Others and Fair-
ness Concerning Me: Fairness is mod-
eled as pure inequity aversion. Unequal
outcomes are treated differently whether
they are in favor of the agent or in favor of
other agents. Agents with a high “fairness
concerning others” are willing to sacrifice
part of their resources to increase another
agent’s outcome that has fewer resources,
even without any efficiency increase.
Agents with a high “fairness concerning
me,” on the other hand, are willing to
sacrifice resources in order to decrease
another agent’s outcome that has more.
This differentiation follows Fehr and
Schmidt (1999). “Fairness concerning oth-
ers” defines how much a proposer in a
dictator game1 gives. “Fairness concern-
ing me” defines what allocation is per-
ceived as fair by responders in ultimatum
games.2

• Positive Reciprocity and Negative
Reciprocity: An agent with a high posi-
tive reciprocity is willing to reward actions
by other agents perceived as friendly. An
agent with a high negative reciprocity, on
the other hand, is willing to punish an act
perceived as hostile. With these two at-
tributes, we model decisions based on
perceived intentions as in Cox (2004). The
differentiation into positive and negative
reciprocity follows McCabe and Smith
(2001). Positive and negative reciprocity
are used by second movers in gift ex-
change3 games and ultimatum games.
Negative reciprocity is used for punish-
ment decisions (see next section), positive
reciprocity for rewards.

• Risk Disposition: In general, agents are
risk averse in choices with sure gains and
risk seeking in choices with sure losses

(Kahneman & Tversky, 1979). This at-
tribute is used in lottery games.

Agents also expect other agents to have
attribute values. These are called expected
attributes and are also used in the decision-
making process. If, for instance, an agent has a
high expected positive reciprocity, that implies
it expects others to reciprocate nice acts, it will
give more in a gift exchange game and is more
willing to comply with agreements. In this way,
trust is modeled, which one may have missed in
the above list. High expected conformity is
trust in the other’s compliance to a specific
norm or agreement (see next section), high
expected cooperativeness is trust in the other’s
willingness to cooperate, and high expected
positive reciprocity is trust that a gift will be
returned. This reflects several theoretical con-
cepts of trust (Nooteboom & Six, 2003, p. 4;
Cook & Cooper, 2004, p. 219; Cox, 2004, p.
263). Per default, the initial values of the ex-
pected attributes are the same as the attribute
values of an agent, but the expectations change
within an experiment or a model, while the
attributes themselves do not. Reputation for-
mation is modeled as learning expected at-
tributes for specific other players.

Heuristics

This subsection introduces our heuristics ap-
proach, based on the theory of bounded ratio-
nality presented above. Heuristics are used as
decision mechanisms, and as search and stop-
ping rules in an aspiration adaptation process.
Heuristics usually depend on the decision envi-
ronment. Some also depend on an attribute of
the agent (give maximum times value of coop-
erativeness), some on the range of possible
outcomes (give half). For some search rules,
possible decision heuristics need to be ordered
(try a nicer heuristic, try a more selfish heuris-
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tic), some depend on the range of possible
decisions (give one point more or less). Some
implement a kind of social learning (when oth-
ers give nothing, give nothing, too). Stopping
rules refer to an aspiration level (if you are
satisfied with the outcome, repeat the action).
However, more extensive learning mechanisms,
like case-based reasoning, can also be imple-
mented. The role of attributes and heuristics in
a decision-making process is depicted in Figure
1. In the examples presented below, the deci-
sion environment is a combination of experi-
menter and games. So far, the match between
the decision environment and possible heuris-
tics has to be made by modelers.

In this chapter we use the term strategies
for simple heuristics and decision processes
depending on more extensive calculations. The
distinction is not clear. Give half is a simple
heuristic, although a calculation takes place.
Calculate optimal outcome on the other hand

may involve sophisticated mathematical proce-
dures. Our agents are in principle able to do
both. So, we named the superclass of all deci-
sion processes Strategy rather than Heuristic.

EXEMPLARY MODELS

This section provides examples for models
implemented with our approach. First, a brief
description of the general framework is given.
Then, two games are discussed in more detail,
the voluntary contribution mechanism with pun-
ishment and appropriation games with commu-
nication effects. For further information and
testing, please refer to this tool’s Web site at
http://www.usf.uos.de/~eebenhoe/forschung/
adaptivetoolbox. There you can make model
runs, alter parameters, and view the source
code. The models are programmed in JAVA
using the modeling environment FAMOJA (http:/

Figure 1. The interplay between an agent and a decision environment uses attributes and
heuristics, which are properties of an agent. First, attribute values are used to decide on which
heuristic to take, and then the heuristic is employed. It uses attributes, expected attributes, and
possibly properties of the decision environment to make the decision. What an agent can learn
from an experience also depends on the decision environment.
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/www.famoja.net). The purpose of this section
is to provide an understanding of our modeling
approach and the way in which we model
economic experiments. Also, the tool is de-
scribed along the way. These brief descriptions
will not enable you to reproduce the models. For
complete descriptions including all parameters
and model settings, please refer to the model
Web sites.

The general model consists of an experi-
ment builder which creates the experimenter,
the games, and the player agents. The builder
also sets all parameters. So, in order to change
parameter values, the builder needs to know the
parameter and be able to change it in the
experimenter, games, or player agents. The
advantage of this design is that only one class is

concerned with the creation process, and all
variables are bundled together. One instance of
this builder class is created in order to start a
model run. The experimenter organizes the
experiment during the model run, it shuffles the
player agents, assigns them to the games, and
sets their decision strategy pool, search strate-
gies, and meta-search strategies. The experi-
menter also collects data and has a number of
chart objects to display data during the model
run. Which data to display in which kind of
charts is also defined in the builder class. The
game defines the actual rules. It also sets the
player agents’ assets each round, calculates
the outcome according to their decisions, and
informs them about their outcomes, the other
player agents’ decisions, and the other player

Figure 2. An experiment is structured into several phases. In the initial phase, the builder
organizes the creation and setup process. In the second phase, the experimenter organizes
players and games. Then players make their decisions, followed by games calculating the
outcome. The last phase consists of data collection and evaluation. Players may change their
strategy. Except for the creation and setup process, the phases are repeated to model
successive games.
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agents’ outcomes. The player agents have a
decision strategy, which makes the decision. If
the aspiration level is not met, the player agent
can change the decision strategy according to
its meta search strategy and search strategies.
The scheduling of selected events during a
model run is displayed in Figure 2.

As indicated in Figure 2, player agents have
an aspiration level. Whether or not the aspira-
tion is met influences the search in the decision
realm. In addition to the aspiration level, mod-
elers can define tiredness and boredom of
player agents. If an aspiration has not been met
for a time, a player agent can decrease its
aspiration level. If, on the other hand, the
aspiration has been met for several rounds, not
only is the aspiration level increased, a different
strategy may be tried (see Figure 3).

Voluntary Contribution Mechanism
With and Without Punishment

In the voluntary contribution mechanism, a
number of players are assigned initial assets,

which can be invested into a common project or
kept to oneself. The total investment into the
common project is increased by the experi-
menter and the result spread evenly among all
players, regardless of their contribution. This
increase constitutes a potential profit. How-
ever, investment is risky because a player does
not know the other players’ contributions and
may receive less than he or she invested. Group
optimum is reached if each player contributes
all of his or her assets. There is, however, an
incentive to free-ride—that is, not to contribute
and profit from the others’ contributions. A
number of experiments have been conducted
using the voluntary contribution mechanism.
See Holt (1999) for a survey.

In some experiments the voluntary contribu-
tion mechanism is used as a baseline and is
extended by a punishment possibility. Subjects
still make their decisions anonymously, but can
invest assets to punish other subjects for previ-
ous decisions. The punished subjects then have
to pay more. This mechanism usually leads to
an increase in the investment level and to higher

Figure 3. UML diagram of the aspiration adaptation process
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returns. See Ostrom (2004, p. 36ff) on punish-
ment in public goods experiments. Studies in-
corporating the punishment mechanism in addi-
tion to the voluntary contribution mechanism
include Nikiforakis (2003), and Fehr and Gächter
(2000, 2002). From the latter we used the
individual data to design and test the model
presented here.4 Five sessions of the following
design were conducted by Fehr and Gächter.
Six parallel games were played with four sub-
jects each. Subjects do not meet another sub-
ject twice, in order to prevent reputation forma-
tion. Each subject was endowed with 20 money
units, and total investment is increased by the
experimenters by 60%. After six games with-
out punishment possibilities, a sanctioning
mechanism is introduced and repeated for fur-
ther six games. After each voluntary contribu-
tion mechanism, subjects may pay a fee of up to
10 money units in order to punish other players,
who have to pay a fine that is three times the
fee. An earlier version of our model of this
experiment is discussed in more detail in Pahl-
Wostl and Ebenhöh (2004).

Non-cooperative game theory predicts zero
investment and zero punishment regardless of
the treatment (Isaac, Walker, & Thomas, 1984;
Fehr & Gächter, 2000). However, in experi-
ments of voluntary contribution mechanisms
without punishment, usually overall investment
starts at surprisingly high 50% of maximum and
then decreases. With punishment, investment
is immediately at a higher level and increases
further over the course of several games. Indi-
vidual investment decisions are very divergent.
In the individual data of the experiment by Fehr
and Gächter (2002), there is evidence for some
subjects, who give the maximum of 20 money
units over the course of all 12 games. There are
also some who give 0 in all 6 games without
punishment and only 3-5 money units in games
with punishment. There are some who jump
from high investment to very low investment

and back, and still others who change their
investment only by small amounts. For the
model, we extracted the following behavioral
regularities that became the heuristics in the
model:

1. With a low cooperativeness (<0.21),
contribute nothing:  This is called
MaximizingStrategy and is used by player
agents not willing to cooperate. Actually
this strategy calculates optimal outcome
under the player agent’s expectations. In
the voluntary contribution mechanism with-
out punishment this results to 0, but with
punishment the investment is the lowest
value that is expected not to provoke
punishment.

2. With a medium cooperativeness, con-
tribute maximum times expected co-
operativeness: This heuristic is called
ReciprocalExpectationStrategy and is used
by player agents willing to cooperate if
they expect the others to cooperate as
well.

3. With a high cooperativeness (>0.68),
contribute maximum to common
project if expected cooperativeness
exceeds three-quarters. Contribute
three-quarters if expected coopera-
tiveness is less to indicate willing-
ness to cooperate: This heuristic is
called CooperativeStrategy and is used
by player agents willing to initialize coop-
eration.

High and low are parameters by which to fit
the model to a specific experiment. The values
given in brackets are used in order to model the
experiment of Fehr and Gächter (2002). Ex-
pected cooperativeness is adjusted quickly by
the individual agents to the experiences made in
earlier games. This leads to changes in the
decision made by the heuristics 2 and 3 without
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a change of the heuristic employed. Our three
strategies are not universal, even within experi-
ments with similar designs. They do not, for
instance, incorporate dependency of free-riding
behavior on group size and marginal per capita
return, as reported in Isaac et al. (1984). Leav-
ing the three strategies intact, these effects can
be incorporated in the model as different initial
levels of cooperation, which is actually re-
flected in the first games of the above men-
tioned experiment. If initial cooperation is above
50%, expectations are usually exceeded and
therefore cooperation rises; if it is below 50%,
actual cooperativeness falls short of expecta-
tions and therefore cooperation decreases,
mainly because of the reciprocal heuristic.

If the outcome of a game does not satisfy
the agent’s aspiration level, it searches for
another strategy. In this case, only the three
strategies mentioned above are in the search
realm. Initial aspiration levels are set by the
model experimenter. If they are set to very low
levels, no strategy changes occur. If the level is
set too high, a stable distribution of strategies is
reached only after aspiration levels are reduced
to realistic levels.

Changes in heuristics have been imple-
mented using cues evaluated by a meta search
strategy. Note that these cues are used only
when the aspiration is not satisfied.

Cues for a more cooperative strategy:

• cooperation is higher than expected
• if one (two, three) other(s) give three-

quarters or more

Cues for a more selfish strategy:

• cooperation falls short of expectations
• one (two, three) other(s) give zero
• outcome is less than investment (counts

for two cues)

Different kinds of agents (with different
attributes) may be biased into one direction or
the other. A cooperative player agent needs
more cues indicating non-cooperation than a
less cooperative player agent. For a coopera-
tive player agent (cooperativeness>0.68), three
more cues for defection than for cooperation
have to be encountered in order to switch to a
more selfish strategy (first from cooperative
strategy to reciprocal, then from reciprocal to
maximizing), and one more cue for cooperation
than for defection is enough to move towards
cooperation. All other player agents need one
more of either cue in order to change their
behavior.

In addition, in punishment games, the actual
punishment is of course another cue for switch-
ing towards more cooperative behavior. How-
ever, if punishment is taken into account,
MaximizingStrategy can also lead to high in-
vestment. Except for this reasoning, the strat-
egies do not change in the punishment treat-
ment. In order to reproduce the data, switching
from no-punishment to punishment treatment
(or vice versa) leads to higher (lower) expecta-
tions of others’ investment levels.
ReciprocalExpectationStrategy can lead to high
investment levels because of raised expecta-
tions. This leads us to an interesting result.
Without punishment, the stable investment level
of zero money units can be reached with two
different strategies (1 and 2) if aspiration levels
are not too high. Not all  agents use
MaximizingStrategy. Some stick to
ReciprocalExpectationStrategy and can there-
fore adjust very quickly to changes. With pun-
ishment, all three strategies can survive the
adaptation process.

The results of the experiment by Fehr and
Gächter (2002) are shown in Figure 4. They are
compared to model results of a model run with
100 parallel models of six parallel games each.
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The dots indicate the 5%-quantile and 95%-
quantile. The lines show data from experimen-
tal sessions by Fehr and Gächter (2002) and a
control experiment by Nikiforakis (2004). All
sessions except for session 10 are conducted
with six parallel games in the strangers’ treat-
ment; first six games without punishment op-
portunity and then six games with punishment
opportunity. Session 10 was conducted with
only five parallel games and five successive
games each. The model variance seems to be
close to the variance of the experiments. The
mean of 100 model runs compared to the mean
of the experimental results by Fehr and Gächter
(2002) yields a χ2 of 2.12 which does not allow
rejecting the hypothesis of a common distribu-
tion. However, this was the data used to cali-
brate the model. The data from Nikiforakis
(2004) is reproduced less well with a χ2 of
13.86, due to the games with punishment. How-

ever, this was only one session, and the results
of the games with punishment opportunity are
quite different from the mean of the sessions of
Fehr and Gächter (2002).

Validation of agent-based models should
also comprise a qualitative validation of the
micro behavior (Moss & Edmonds, 2005). Two
possibilities to do so in this case are expert
knowledge and questionnaires: Do experiment-
ers of these models judge the agent behavior to
be a valid representation of subject behavior?
Do questionnaires filled in by subjects indicate
the usage of heuristics similar to those de-
scribed here? In this case, the description of
subject behavior from Fehr and Gächter (2002)
based on post-experimental questionnaires was
used in addition to the individual data sets of
that experiment, but no ex post validation has
been made.

Figure 4. Mean investments of a model run with 100 parallel games compared to the results
of the experiment by Fehr and Gächter (2002) and Nikiforakis (2004). Treatment is first six
games voluntary contribution mechanism, and then six games with punishment opportunity.
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Appropriation With and Without
Communication

The second example is a model of appropriation
experiments by Ostrom et al. (1994, Chapters 5
and 7).5 The setting is an eight-person game
with two markets. Market 1 is an outside oppor-
tunity with a constant and fixed return per
invested token. Market 2 on the other hand is a
common pool resource with a negative qua-
dratic function, where the return per token
depends on the total number of tokens invested.
In the parameterization implemented here, the
function is:

y = 23*Σxi –0.25*(Σxi )
2

where xi is the number of tokens invested by
player i in this round and y is the total return of
market 2, which is divided proportionally among
the players who have invested in market 2. The
actual payment is $0.01 per token return of
market 2, and $0.05 for each token invested in
market 1. The players were endowed every
round with 25 tokens each. There have also
been experiments with 10-token endowment
which are not discussed here.

From a theoretical viewpoint, there are three
important points in this setting. Group optimum
is a total investment in market 2 of 36 tokens,
4.5 tokens per subject. Zero rent is at 72 tokens
total investment in market 2, 9 tokens per
subject. The Nash strategy would be to invest
8 tokens per subject, because the ninth token
would not yield more in market 2 than in market
1 (assuming all others also invest one more
token). For a theoretical discussion, see Ostrom
et al. (1994, pp. 109-115).

These experiments have been conducted
with varying settings including probabilistic de-
terioration of the common pool resource, differ-
ent sanctioning mechanisms, and communica-
tion. Here, only the baseline experiment and

one-shot communication are presented. Usu-
ally, the game was repeated 20 to 30 times.

A major result of the baseline experiment is
a pulsing pattern of the investment level, which
tends to increase until token returns of market
2 fall below token returns of market 1, then
decreases again. There was no symmetry in
this pattern across experiments. However, the
variance usually decreased over the course of
several games, but there was no stability. Fur-
thermore, individual investment never followed
a pure Nash strategy. Overall, mean invest-
ment levels were rather close to the Nash
equilibrium and far from the optimum. For a
discussion on the results, see Ostrom et al.
(1994, pp. 115-120, 151-153).

Looking at individual investment decisions
reveals four different decision patterns. The
most obvious pattern is to invest more (less) in
market 2 next round, when token returns have
been higher (lower) in market 2 than in market
1 this round, and vice versa. In the model this is
called the profit-oriented strategy. However,
assuming other player agents react, profit-ori-
ented leads to anti-cyclic investment behavior:
if return from market 2 was low, we can
assume others invest less in market 2 and invest
more ourselves. This can be considered as
defection. Investing less when profit from mar-
ket 2 was high in expectation that others will
increase investment can be seen as coopera-
tion, or merely as safe play. Some subjects
seem to analyze the investment trend: if invest-
ment is increasing over two rounds, they drop
investment, and if it is decreasing, they increase
it. The fourth pattern is orientation on the mean
of the previous round.

All four patterns have been implemented
and can in principle be used by each player
agent. These patterns are implemented as meta
search strategies. However, depending on the
attributes, some agents have a greater affinity
to profit-oriented, nice anti-cyclic, defecting
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anti-cyclic, trend-oriented, or mean-oriented
behavior. This is modeled by making the prob-
abilities for the different behaviors depend on
the agents’ attributes. The general decision
search process is depicted in Figure 5. For the
exact implementation and the parameter con-
figuration, please refer to the Web site of this
model.

The actual decision heuristics are simply
the possible integer values of investment deci-
sions in market 2. That is, in the 25 token
design, there are 26 decision heuristics, 0 to
25. Search heuristics are modeled as an in-
crease or decrease of the investment decision
by 1, 2, 5, 10, or 15 tokens. Whether or not to
increase or decrease is decided by the meta
search heuristic. As before, strategy search is
only necessary if the aspiration level is not
met. Aspiration levels are set to levels be-
tween $1.20 and $1.70. Also as before, initial
strategies are set by the model experimenter,

according to agents’ cooperativeness, to 5, 10,
15, or 25. The agent’s preferred strategy
(choice) is also set to 5, 10, 15, or 25 following
a different rule:

• Initial strategy:
• 5 with cooperativeness>0.63
• 10 with 0.42<cooperativeness<0.63
• 15 with 0.17<cooperativeness<042
• 25 with cooperativeness<0.17

• Choice strategy:
• 5 with cooperativeness>0.5 or fair-

ness concerning me<0.5
• else equal to initial strategy

Communication effects have also been
implemented. Communication in the model has
two purposes. First, agents broadcast their
choice strategy and indicate their willingness to
follow the strategy mentioned most often. Sec-
ond, expected conformity and cooperativeness

Figure 5. UML activity diagram of the decision search process in appropriation games without
communication
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is altered (see Figure 6). Ostrom (2004, pp. 33-
34) summarizes findings on communication in
public goods experiments and stresses that
information about optimal strategies is indeed
discussed, but not the primary source of the
observed increase in cooperation after commu-
nication. Instead, an increase in trust seems to
be the most important aspect of face-to-face
communication. After face-to-face communi-
cations, subjects could predict others’ coopera-
tion levels significantly better than without the
chance to see each other (Ostrom, 2004, p. 51).
In our model this is reflected by setting the
expected cooperativeness as well as the ex-
pected conformity of player agents to the mean
of the previously expected values and the ac-
tual values of the other player agents. In addi-
tion, the player agents’ strategy is set to the
joint strategy, which is the strategy mentioned
most often, if they are willing to follow it. This
willingness is determined by their choice strat-
egy, their conformity, and their expected con-
formity (see Figure 7).

Fitting the model to a specific experiment is,
of course, possible. However, the experiments

reported by Ostrom et al. (1994) differ in actual
investment levels. The qualitative result is that
experiments without communication usually start
with over appropriation; investment levels then
follow a pulsing pattern with a tendency for the
variance to decrease. This is replicated in our
model (see Figure 8). Communication tends to
increase returns, but not always to the maxi-
mum possible. In one-shot communication ex-
periments, cooperation breaks down more of-
ten than not after some rounds. This too is
replicated in the model. The model results,
however, depend strongly on group composi-
tion.

In order to validate this model, relative
changes in total investment from one round to
the next were compared statistically (see Fig-
ure 9). Five values from the three baseline
experiments fall outside the 5%- and 95%-
quantiles, as should be the case. However, the
model does not reproduce the apparent effect
of decreasing variability in later games com-
pared to earlier games. In order to cross-

 

Figure 6. Scheduling of events during the
communication process

Figure 7. UML diagram of the decision
whether or not to comply with a joint strategy
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validate the model, the micro behavior must
also be validated (Moss & Edmonds, 2005).
Aside from data analysis which was the basis
for the model micro behavior, questionnaires

can be used. In post-experimental question-
naires, the most common heuristic mentioned
was indeed the profit-oriented heuristic used
here: increase investment, if market 2 yields a

Figure 8. Result of a specific model run without communication and with a one-shot
communication after round 10

Figure 9. Relative changes in total investment of the three baseline model runs compared with
model data from 100 parallel games
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higher token return than market 1, and de-
crease investment otherwise (Ostrom et al.,
1994, p. 121). Again, no ex post validation has
been done.

CONCLUSION

In this chapter a modeling approach is pre-
sented, which bases agent behavior on experi-
mental data in order to capture micro behavior
properly. Two models of economic experi-
ments are presented in which the aggregate
results are reproduced, and the agent behavior
follows behavioral regularities extracted di-
rectly from individual data. The models are
presented here not in detail and serve the
purpose of illustrating our general modeling
approach. The models are part of a framework
which allows for extensions and variations of
model framings in order to capture institutional
changes, like punishment and communication.

There are two main reasons for developing
models like the ones presented in this chapter.
The first is a technical reason. Object-oriented
programming combined with agent-based mod-
eling can help us develop models faster and
with a greater variety. Differences in experi-
mental settings can be implemented very quickly.
When modeling something new, we can focus
our attention on the essential aspects. So far,
however, the framework exists only for models
based on economic experiments. It is currently
extended to include case studies with similar
problems, but with a deeper social context. The
modeling framework allows testing the plausi-
bility of the assumptions derived from experi-
mental settings for understanding real-world
situations in field studies. A concrete model of
a specific experiment or field study has to be
carefully validated both on the aggregate level
and the individual level. However, a framework
that facilitates agent-based modeling can help

with group model building and designing role-
playing games.

This leads to the second reason. In order to
understand and adequately model human be-
havior in real social dilemmas, we need to
understand their motives for cooperative, re-
ciprocal, or punishing behavior. Under what
circumstances can mutual cooperation be sus-
tained? When do people trust one another
enough to initiate cooperation? What institu-
tions (communication, sanctioning mechanisms)
can replace the role of or increase mutual trust?
These aspects are addressed by experimental
economics and need to be incorporated in agent-
based models. On the other hand, this can also
lead to further experiments especially designed
to survey data needed to improve the models.

This in turn leads to models that are more
valid with respect to micro behavior. It is essen-
tial for management tools to capture human
behavior in a realistic way, because manage-
ment strategies developed for theoretically
sound, but unrealistic human beings tend to fail.
Our modeling approach is a step towards imple-
menting realistic behavior or procedural ratio-
nality. It is, admittedly, a step at a very basic
modeling level, the agent level. However, the
modular nature of our model toolbox makes
integration into larger models feasible.
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KEY TERMS

Agent-Based Modeling: Modeling refers
to the process of designing a software repre-
sentation of a real-world system or a small part
of it with the purpose of replicating or simulat-
ing specific features of the modeled system. In
an agent-based model, the model behavior re-
sults from behavior of many small software
entities called agents. This technique is used to
model real-world systems comprised of many
decision-making entities with inhomogeneous
preferences, knowledge, and decision-making
processes. An advantage of this method is that
no assumptions need to be made about an
aggregate or mean behavior. Instead, this ag-
gregation is made by the model. See Davidsson
(2002) for a topology of different modeling
techniques including what he calls agent-based
social simulation, and see Tesfatsion (2002) for
a discussion of agent-based computational eco-
nomics. Hare and Deadman (2004) discuss
different uses of agent-based models in envi-
ronmental management.

Aspiration Adaptation Theory: Part of
bounded rationality theory, the idea is that
humans have an aspiration level. If a choice
promises to satisfy this aspiration level, it is
made without an extensive search for an opti-
mal strategy. Selten coined the term satisficing
instead of optimizing. If, however, after some
search, no satisficing alternative is found, the
aspiration level can be adapted downwards.
Then a choice can be made among the alterna-
tives already found that satisfy the new aspira-
tion level (see Selten, 1998, 2001).

Bounded Rationality: A decision theory
that rests on the assumptions that human cog-
nitive capabilities are limited and that these
limitations are adaptive with respect to the
decision environments humans frequently en-
counter. Decision are thought to be made usu-
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ally without elaborate calculations, but instead
by using fast and frugal heuristics. These heu-
ristics certainly have the advantage of speed
and simplicity, but if they are well matched to a
decision environment, they can even outper-
form maximizing calculations with respect to
accuracy. The reason for this is that many
decision environments are characterized by
incomplete information and noise. The infor-
mation we do have is usually structured in a
specific way that clever heuristics can exploit
(see Gigerenzer and Selten, 2001).

Experimental Economics: In Experimen-
tal Economics, behavior of human subjects is
researched in controlled experiments with mon-
etary incentives. The settings include simple
games in which the subjects play with or against
each other. Their decisions directly influence
the payoffs they receive. By using stylized
games in controlled situations, economic ex-
periments produce comparable and reproduc-
ible data. Varying specific aspects in these
experiments can help to understand which as-
pects of a decision situation influence human
behavior in what way (see Kagel & Roth,
1995).

Heuristics: Simple decision-making pro-
cesses that can be characterized as fast and
frugal. In bounded rationality theory these heu-
ristics are assumed to be adapted to certain
decision environments. By exploiting the infor-
mational structure of the environment, heuris-
tics can be both fast and accurate. An paradig-
matic example is the recognition heuristic. It
is applicable in decision environments in which
the information and lack of information are
structured according to a characteristic of the
entities in question. If we are asked, for ex-
ample, which English soccer team will win a
match, and we have heard of one of the teams
and not of the other, we tend to chose the one

we know. And we tend to be correct with this
choice (see Todd & Gigerenzer, 1999).

Public Goods and Common Pool Re-
sources: Goods that have in common that it is
difficult or impossible to exclude potential con-
sumers from them. The difference between
those two categories is the different degree of
subtractability. The utility derived from public
goods is not or only slightly diminished by others
using the same good. Examples include coded
law and fresh air. Common pool resources, on
the other hand, are characterized by
subtractability. Examples include the fish popu-
lation in a lake and groundwater. There are
goods that lie in between, for example infra-
structure like highways: as long as its use is well
below its capacity, one more car does not
hinder the other cars; in rush hour, however,
cars compete for space. While the main prob-
lem with Public Goods is the provision and
corresponding free-rider behavior, the main
issue with common pool resources is appropria-
tion or over-appropriation. These problems are
addressed by different experimental decision
environments: voluntary contribution mecha-
nism refers to the provision of public goods;
appropriation experiments deal with (over-)ap-
propriation of common pool resources (see
Ostrom et al., 1994).

ENDNOTES

1 In dictator games, one player—the
proposer—is assigned the task of dividing
an amount of money between him or her-
self and the other player. The second
player can only accept the first player’s
decision. Since the players are usually
anonymous, theoretically nothing prevents
the first player from keeping the total
amount.
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2 In ultimatum games, one player—the
proposer—is assigned the task of dividing
an amount of money between him or her-
self and the other player—the responder—
who has veto power. That is, the second
player can accept or reject the decision. If
he or she accepts, the money is paid as
allocated by the first player. If the re-
sponder rejects, both players get nothing.

3 There is a great variety of gift exchange
games which have in common that one
player decides to give an amount of money
to the other player, who also has to decide
on an amount of money to give to the first
player. The exchange may be simulta-
neous or the second gift is viewed as a
return for the first gift. Usually the experi-
menter increases the gifts or the first gift

4 We thank Mr. Fehr and Mr. Gächter for
providing us with the data.

5 We thank Mr. Walker for providing us
with the data.

Figure 10. UML diagram of Game class and subclasses described in the examples

APPENDIX A

What Had to be Done to Come from
Example 1 to Example 2?

First of all, the player agents are the same in
both examples. The main changes from one
model to another lies in the different games and
consequently the different heuristics employed.
Thus, the game has to be implemented. In the
first example the game was first the voluntary
contribution mechanism implemented as a com-
mon-pool resource game, and secondly the
same common-pool resource game alternated
with a punishment game. The game in the
second example is an appropriation game. All
three games are subclasses of an abstract
superclass Game implementing different meth-
ods to evaluate the outcome (see Figure 10).
Common pool resource game and appropriation
game give assets to the player agents, punish-
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ment game does not. This can easily be achieved
by setting the assets in punishment games to 0.

The strategies in the second example are
conceptually different from those in the first
example. However, all strategies (including the
not discussed punishment strategy) are sub-
classes of a simple strategy, implementing dif-
ferent methods for the decision making (see
Figure 11). While the strategies from the first
example do actual calculations, the strategies in
the second example return only a predefined
number. Note that the search strategies in both
examples are the same (increase/decrease in
the strategies realm). The meta-search, how-
ever, depends strongly on the experiment.

Also, experimenters are different. While in
the first example a standard experimenter is
used, in the second example the experimenter
also organizes the communication process. The

Figure 11. UML diagram of the strategy classes used in the examples

last great difference is the builder. For many
experiments with only slight variations, only the
builder needs to be changed slightly. Many
variations can even be modeled with different
parameter settings, which can be changed with-
out changing code. For example, strangers’ and
partners’ treatments in the voluntary contribu-
tion mechanism can be modeled by setting the
shuffle parameter to true (strangers) or false
(partners). There may, of course, be other
necessary changes, for example in the heuris-
tics in order to reproduce reputation formation.
In our case, the builders are again subclasses of
a common abstract superclass
ExperimentBuilder. All model parameters are
set in the builders, as well as which and how
many games to create, and which strategies to
give to the player agents.
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ABSTRACT

The goal of this chapter is twofold. First, assuming that all agents belong to a genetic
population, the evolution of inflation learning will be studied using a heterogeneous genetic
learning process. Second, by using real-floating-point coding and different genetic operators,
the quality of the learning tools and their possible impact on the learning process will be
examined.

INTRODUCTION

A quick analysis of the most recent literature in
economics shows a tremendous increase in the
number of articles using genetic algorithms
(GAs). This tendency can be observed in nearly
all areas of economics, from econometrics to
finance (see Vallée & Yildizo u, 2004, for a
panorama of GAs’ applications in economics).
Nevertheless, although GAs are always learn-
ing algorithms, the motivations for using GAs in
economics may be divided into two categories.
First, GAs may be used as a simple numerical
learning tool. That is, GAs will be used in order
to find numerical values for nonlinear models of

growth (Dorsey & Mayer, 1995; Beaumont &
Bradshaw, 1995), optimal parameters values of
some nonlinear regressions (Pan, Chen, Khang,
& Zhang, 1995), best functions of regression
(Szpiro, 1997), and best stock exchange esti-
mators (Pereira, 2000). Second, and related to
this chapter, GAs may be used as a metaphor of
individual/social learning process in order to
study, for example, the equilibrium conver-
gence in some dynamic macroeconomics mod-
els (Arifovic, 1996, 2001; Dawid, 1999), how
cooperation may emerge in prisoner dilemma
game (Axelrod, 1987; Yao & Darwen, 2000),
or the individual R&D strategies of firms
(Yýldýzo lu, 2002).
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This chapter belongs to the second use of
GAs. It will show how one can use a genetic
algorithm in order to simulate and understand a
learning process in a particular economic model.
In this chapter, the economic model we use is a
standard Keneysian monetary game as de-
scribed in many economics textbooks (e.g.,
Mankiw, 2004). We chose this particular model
for two reasons. First, its simplicity. Second, it
generated a huge literature dealing with time
inconsistency (Kydland & Prescott, 1977;
Vallée, Deissenberg, & Ba ar, 1999), credibil-
ity (Cukierman & Meltzer, 1986; Drazen &
Masson, 1993), reputation (Barro & Gordon,
1983; Backus & Driffill, 1985), and central
bank independence (McCallum, 1997; Blinder,
1998; Driffil & Rotondi, (2005).

This extensive literature on credibility sug-
gests that an optimal response to cheating
behavior requires punishment. Here cheating is
understood as a discrepancy between an agent’s
announced and implemented strategies. The
analysis is often applied to understand, for
example, the unemployment-inflation tradeoff
dilemma.

Obviously, if an economic agent wants to
punish another one, there is a need to find an
efficient punishment strategy. This is charac-
terized by minimizing both the likelihood that
future cheating behavior will occur and the
eventual costs to the punisher. In many sce-
narios such an optimal punishment strategy
may initially be unknown. As a consequence,
the punisher will have to invest resources in
order to learn it.

In this chapter, such a learning process will
be modeled using genetic algorithms (GAs). In
the proposed framework, each agent is under-
stood to be a member of the genetic population.
Although the learning process in GAs is an
adaptive one, each member may not learn in the
same way. Indeed, some agents may imple-
ment strategies that are incompatible with the

optimal learning process. Thus, as indicated by
Dawid (1996), GAs appear to be a suitable tool
to model such a heterogeneous learning pro-
cess. Nonetheless, effectively using such a GA
requires a full understanding of its mechanism.

The behavior of GAs is strongly determined
by the balance between exploiting what already
works best and exploring possibilities that might
eventually evolve into something even better
(Herrera, 2000). Riechmann (1999, 2001)
showed that three different learning schemes
are contained in GAs: these correspond to
learning by imitation, by communication, and by
experiment. Whereas the former takes place as
a follow-the-leader process, learning by com-
munication happens when economic agents
meet and exchange information, while the abil-
ity of at least one agent to innovate is crucial for
learning by experiment.

In this chapter it is contended that the fore-
going interpretations of learning are not suffi-
cient. More specifically, genetic learning should
be analyzed as an information treatment pro-
cess built on two components. First, there is a
need to generate and transmit a given quantity
of information. Such a process can be realized
by experiment, imitation, or improving the qual-
ity of communication. Second, this information
must be appropriately used. In other words, the
agents must have the capacity to evaluate such
information in order to properly respond by an
appropriate change of strategy. Of course,
there are key issues concerning the quality of
the foregoing processes, as well as to the
optimal quantity of information to be exchanged.
Thus, a poor assimilation of available informa-
tion can hamper a learning process. Similarly,
unsuitable, insufficient, or excessive informa-
tion may interfere with the quality of a learning
process.

The goal of this chapter is twofold. First,
assuming that all agents belong to a genetic
population, the evolution of inflation learning
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will be studied using a heterogeneous genetic
learning process. Second, by using real-float-
ing-point coding and different genetic opera-
tors, the quality of the learning tools and their
possible impact on the learning process will be
examined.

The outline of the rest of this chapter is as
follows. In the next section, we present a
simple unemployment-inflation game. An over-
view of a real coding genetic algorithm is then
provided, and a specific genetic algorithm is
used to simulate a heterogeneous inflation learn-
ing process. Subsequently, the associated simu-
lations are analyzed, and finally, an indicator for
measuring the amount of information that is
exchanged during the learning process is pro-
posed.

AN INFLATION-UNEMPLOYMENT
GAME WITH HETEROGENEOUS
AGENTS

The Model with
Homogeneous Agents

In a standard inflation-unemployment game,
such as the linear-quadratic framework pro-
posed by Barro and Gordon (1983a, 1983b),
there are two players: the government and the
private agents. They are, respectively, leader
and followers. The government’s instruments
are both the announced and the real level of
inflation, respectively pa and p, while the pri-
vate agents’ instrument are their levels of ex-
pected inflation. In this version of the model, the
latter are understood to have an identical value
of pe. The instruments p and pe critically deter-
mine the level of unemployment u. Assuming a
standard Phillips curve relation:

u = un – c(p – pe)      (1)

Here, un is the natural rate of unemploy-
ment, while c is a positive constant. In such a
framework, it is possible for the government to
drive the economy below the natural rate of
unemployment, provided it can fool the private
sector’s expectations regarding inflation. One
way to do so is to manipulate the announced
inflation target pa, which in turn can impact the
private agents’ expectations. Consequently, the
divergences between p and pa corresponds to
the willingness of the government to cheat. In
a repeated game, if the government cheats in a
given period p  „  pa, the private agents may
subsequently not believe such an announce-
ment so that there is an associated loss of
credibility. Yet, this implies that the anticipa-
tions of the private agents must be defined by a
reactive rule, which takes into consideration
the discrepancies between announced and ac-
tual rate of inflation p. If the private agents
cannot surmise the government’s targets, which
are defined by a loss function, then their expec-
tations may never converge to the true rate of
inflation . Accordingly, the process of learning
about the government’s loss function can itself
modify the evolution of the inflation path.

Let us assume that the government’s loss
function is given by a standard linear quadratic
form:

2 21 ( ) ( )
2

LJ u u p pì ü
í ý
î þ

= - + -      (2)

where u  and p  are, respectively, the targeted
levels of unemployment and inflation, while u is
determined by the Phillips curve relation in (1),
once the government has set the inflation rate.

It will be assumed that the private agents
seek to minimize the errors in their expecta-
tions, as specified by the following loss func-
tion:

( )21
2

F eJ p p= -      (3)
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If the government is credible, then the actual
rate of inflation is supposed to be identical to the
announced one such that p = pa.

In light of equations (1) and (2), the reaction
function of the government is defined by mini-
mizing its loss function with respect to its
instrument, the inflation rate, such that:

2

2

( )( ) arg min ( )
1

e
L e L e nc u u cT J

cp

p pp p p p - + += ” , =
+

     (4)

Analogously, the reaction function corre-
sponding to the private agents is defined by
minimizing the loss function (3) with respect to
their expected inflation rate, so that:

( ) arg min ( )
e

e F a F a e aT J
p

p p p p p= ” , =      (5)

A one-period game can then be simulated
for specific parameters and target values under
alternative formulations for the government’s
conceivable strategies. More specifically, four
different strategies are highlighted by the re-
sults in Table 1 (see Vallée et al., 1999, for a
description of such behavior).

Here the government alternatively makes a
clear commitment such that the announced and
actual rates of inflation are the same (case 1),
whereby the government experiences a loss,
but not the private agents. In cases 2 and 3, the
government cheats p „ pa, so that it eliminates
its own losses, but this has the side effect of
generating high losses for the private sector.
The final case corresponds to a Nash equilib-
rium which is defined by:

( )Nash
nc u up p= + - , with ( ( ))Nash L F NashT Tp p=

     (6)

In this outcome, there is no cheating and
hence no losses for the private sector.

Obviously, if this game is repeated, cheating
behavior will lead the private agents not to trust
the government any longer. Consequently, they
will have to learn what the evolution of the
government’s inflation target is. An optimal
learning process should converge to the Nash
inflation level, since at this point the expected
and actual rates of inflation are convergent.

Heterogeneous Agents

If it is assumed that there exist N heteroge-
neous private agents,1 the anticipated level of
inflation becomes an arithmetic average of the
individuals’ different expectations, which is
understood to be known by the government:

1

1 N
e e

i
iN

p p
=

= å      (7)

It is again assumed that each private agent
seeks to minimize the errors in its expectations,
such that:

21( ) ( )
2

F e e
i i iJ p p p p, = -      (8)

As in the previous one-period example,
assuming that the government wants to cheat
optimally the private agents, then the govern-
ment will announce in the first period a zero
rate of inflation 1 0ap = . Given such an an-
nouncement, each agent will choose a level of

Table 1. Inflation-unemployment game— c =
1, p  = 2, u  = 5, and un = 7

Strategies ap ep p LJ FJ
(1) Commitment 2 2 2 2 0
(2) No commitment
(cheating) 2  2  3 1 0 5.

(3) Optimal cheating 0 0 2 0 2
(4) Nash 4  4  4  4  0
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expected inflation 1
e
ip , , with i = 1.., N. This will

depend on its assessment of the government’s
credibility. The average anticipated value of
inflation 1

1 11

Ne e
iN i

p p ,=
= å  will be influenced by the

heterogeneity of the agents’ expectations, where
1 1

e e
i jp p, ,„  for some agents i and j. In light of this

expected inflation rate pe, the government is
free to choose what will be the actual rate p,
where the reaction function in (4) again applies.

For those private agents that are initially fooled,
the credibility of the government’s subsequent
announcement in period  is damaged. As a conse-
quence, the individual private agents will each
seek to learn what the government’s actual infla-
tion target is. This leads to a dynamic inflation
game, where the private agents’ loss is minimized
by the Nash inflation target value. That is, each
private agent, by choosing its expected rate, will
impact the average level of expectations to which
the government will, in turn, respond by setting an
optimal inflation rate in the same period. The only
way for the private agents to achieve a zero value
for their loss function is for all of them to anticipate
the Nash equilibrium. It is of particular signifi-
cance that such a solution requires a convergence
of expectations across an initially heterogeneous
population.2 In summary, the following decision
sequence holds:

• Agent i chooses e
i tp , , which then results in

an average expected inflation level e
tp .

• The government reacts to the expecta-
tions by choosing the actual inflation rate

( )L e
t tTp p= .

HETEROGENEOUS LEARNING
USING GENETIC ALGORITHMS

An Overview of Genetic Algorithms

Genetic algorithms are heuristic search meth-
ods that are based on biological evolution.3 We

briefly recall that the structures of GAs are
based on the following steps:

1. Initialization: An initial population4 of N
chromosomes is created (e.g., first ac-
tions/strategies are chosen randomly).

2. Evaluation: For each chromosome, its
fitness is evaluated by an appropriate func-
tion.

3. Selection: A new population of N chro-
mosomes is created by using a selection
method.

4. Reproduction: Possible crossovers and
mutations occur for this new population.

5. Evolution: The process starts again at
step 2.

The behavior of GAs is strongly determined
by the balance between exploiting what already
works best and exploring possibilities that might
eventually evolve into something even better
(Herrera, 2000). In other words, there is an
optional balance between learning by imitation
and by communication, as opposed to learning
by experiment (Riechmann, 1999).5

Each chromosome is made up of a se-
quence of genes from a given alphabet. Since
the concern here is with real-valued actions,
floating-point numbers are used directly, rather
than binary digits. Hence, it is assumed that
more natural representations have a greater
efficiency and produce better solutions.6 Fur-
thermore, real-point-coding offers a larger set
of crossover and mutation operators. In this
chapter two kinds of both crossover and mu-
tation operators are used: the arithmetic and
heuristic crossover operators, and the uniform
and boundary mutation ones.7 For each of
these operators, an appropriate frequency is
set, which corresponds to the discrete number
of times the operator is called at every genera-
tion.
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Crossover Operators

Let X and Y be two parents that are members of
the population. The arithmetic crossover cre-
ates two complimentary linear combinations of
these parents. That is, after generating a ran-
dom number (a = U(0,1)), the new parents are
set according to:

(1 )X X Ya a= + -%      (9)

(1 )Y X Ya a= - +%    (10)

Heuristic crossover produces a linear ex-
trapolation of the parents by using the fitness
values of the two parent chromosomes to de-
termine the direction of the search. It is possible
that the solution generated will not be feasible.
If a feasible chromosome is not produced, the
parents are returned as children. So, a new
child X%  is created by the following process:
given that the fitness of X is better than the one
of Y,8 and assuming that the solution is possible
(feasibility equals to one), we have:

( )X X r X Y
Y X

= + - ,

= .

%

%

   with

1 21, if
Feasibility

0, otherwise
b X b< <ì

= í
î

Here, r = U(0,1), while b1 and b2 are the
authorized bounds of X, defining the allowing
search space to which each admissible solution
must belong to, such that X ˛ [b1, b2]. If

1 2[ ]X b bˇ ,% , a new random number r is gener-
ated, and the process is repeated until a feasible
solution is reached or until a given number of
attempts have been attained. However, if X and
Y have the same fitness, X and Y are reproduced
without change. As discussed by Michalewicz

(1992, p. 129), this operator is a unique cross-
over, since it: (1) uses values of the objective
function in determining the direction of the
search, (2) produces only one offspring, and/or
(3) may not produce offspring at all.

The crossover operator is a method for
sharing information between chromosomes.

Mutation Operators

Uniform mutation randomly selects one vari-
able and sets it equal to a random number from
a uniform distribution on the bounds interval .
Boundary mutation sets the value of  to  or , with
probability .

The mutations operator is a suitable method
to create innovations in the population.

Other Operators

Finally, the roulette wheel is used as a selection
operator,9 such that the two parents are se-
lected with a probability directly proportional to
their relative fitness. Hence, letting f(Xi) denote
the fitness value of chromosome Xi , the prob-
ability that this chromosome will be selected for
the reproduction phase is:

1

( ))
( ))

i

N j
j

f X
f X

=

.
å

We also allow for an elitism procedure in
some simulations, whereby a given proportion
of the best members of the previous population
is retained.

These two operators allow imitations be-
tween chromosomes.

The Pseudo Code

Each member of the genetic population is char-
acterized by its anticipated level of inflation.



252

Heterogeneous Learning Using Genetic Algorithms

This level will change according to the genetic
operators. In order to avoid excessive changes,
the values of anticipations must belong within a
given dynamic interval. That is, each agent’s
anticipation will have to belong to the range
[ ]e e

min t max tp p, ,, , with at least 0e
min t tp , ‡ ," . In sum-

mary, the economic genetic algorithm used can
be described by the following steps:

1. Initial announcement of inflation 1
ap .

2. Calculation of the first range of authorized
anticipations: 1 1[ ]e e

min maxp p, ,, .
3. Creation of the initial population of  agents

characterized by their strategies 1
e
ip , .

4. Calculation of the average anticipated

value of inflation 1
1 11

Ne e
iN i

p p ,=
= å .

5. Calculation of the realized value of infla-
tion 1 1( )L eTp p= .

6. Evaluat ion of each agent’s fitness
1 1 1( )e

i if p p, , , .
7. For j = 2 to T, there is the

a. Calcula tion of the new range
[ ]e e

min j max jp p, ,, .
b. Creation of a new population (repro-

duction, crossover, and mutation).
c. Calculation of e

jp .
d. Calculation of jp .
e. Evaluation of each agent’s fitness

( )e
i j i j jf p p, , , .

8. End.

SIMULATIONS

The following initial values were used in all of
the simulations: c = 1, 2p = , 5u = , un = 7, and
k = 0.5. The fitness function to be maximized is
specified by: 2( ) 400 20( )e e

i t t t i tf p p p p, ,, = - - , while
the authorized range of changes in the antici-
pated level of inflation is defined by the follow-
ing rule:

1 1(1 ) (1 ) with 0e e
min t t max t tk k kp p p p, - , -= - , = + , > with

k > 0

If 0e
min tp , < , 1t" „ , its value is changed to 0.

Furthermore, each simulation starts with 1 0ap = .
The anticipation error e

t t te p p= -  is then calcu-
lated at every [1 ]t T˛ , .

Simulation 1: No Mutations and
Arithmetic Crossovers

When the population size is set to 50, and the
crossover frequency to 35%, there are 18 arith-
metic crossovers. The initial anticipation’s range
is [0,1]. Results are illustrated in Figure 1. It is
apparent that, on average, the private agents,
as a whole, do not find the optimal Nash infla-
tion level (pN = 4).

How should such a result be interpreted?
Reproduction and crossover operators allow
the agents to use imitation and communication
for their learning goals. Of course, if nobody is
initially well informed, no one may expect that
a state of perfect information (e.g., strategy)

Figure 1. Evolution of e
tp  and tp , N = 50,

1 1[ ] [0,1]e e
min maxp p, ,, = , 30 runs
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will be reached. Such a non-convergence could
mean that the quality of learning based on
imitation and on simple communication is not
good enough. However, it may also mean that
the initial stock of available information was not
sufficiently efficient. This question can be elu-
cidated by including the Nash value in the initial
anticipation range, which in this case means to
set 1 1[ ] [0,6]e e

min maxp p, ,, = . Furthermore, even when
the population is increased to 150 agents, the
learning process still is not stabilized around the
Nash value, as shown in Figure 2. Thus, even if,
at some future time t, some agents are perfectly
informed 4e

i tp , = , the learning process is not
able to exploit such information later on.

In conclusion, heterogeneous genetic learn-
ing, based on the use of imitation and simple
communication, is not able to achieve a perfect
learning outcome. Such a result can be ex-
plained by the insufficient creation of new
useful information. As pointed out by
Riechmann (1999, p. 237): “If nobody knows
about a certain detail, which could make a good

strategy a perfect one, then nobody can acquire
this detail by communication.” Thus, learning
by communication is able to find better strate-
gies than learning by imitation, because the best
details of alternative strategies can be com-
bined. In addition, still the learning may not be
able to exploit good information, if the quality of
communication is poor. Therefore, to increase
the quality of the heterogeneous genetic learn-
ing, we have either to allow new experiments
(mutations) or to introduce a better quality of
communication between agents (heuristic cross-
overs).

Simulation 2: Arithmetic
Crossovers and Mutations

As in Simulation 1, the population size and the
crossover frequency are set to, respectively,
50% and 35%, while the initial range for the
anticipations is defined over [0,1]. However, a
4% frequency of mutations is assumed, which
means that two agents are authorized to experi-
ment unknown strategies at each period. None-
theless, when experiments provide new infor-
mation to be exploited, they also decrease the
stability of the learning process (see Goldberg,
1989). As illustrated in Figures 3 and 4, adding
a uniform mutation makes possible the conver-
gence to the Nash average level of inflation.
Nevertheless, this learning convergence is slow.
More interesting, Figure 5 shows that the learn-
ing process does not involve systematic errors.
In four simulations, with [400 1000]t ˛ , , the av-

erage error of anticipations 10001
601 400 tt

e e
=

= å  is,
respectively, 0.0149, –0.0703, 0.0236, and
0.0198, while the overall average is . With 16
runs (Figure 6), and with , the overall average
is –0.0030. With 16 runs (Figure 6), and with

[500 2000]t ˛ , , the overall average is 0 0049. .
It should be stressed that all the mutation

operators do not generate the same properties.
Hence, using boundary mutation rather than a

Figure 2. Evolution of e
tp  and tp ,  N = 150,

1 1[ ] [0,6]e e
min maxp p, ,, = , 30 runs
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uniform mutation changes the results as follows
(see Figure 7). First, the learning convergence
is faster. This is due to the fact that boundary
mutation quickly increases the range of autho-
rized anticipations [ ]e e

min j max jp p, ,, . Nevertheless,
this operator creates an increased quantity of
useless information. Hence, by allowing inad-
equate experiments later on, useless informa-
tion (noise) is generated. As shown in Figure 8,
the variances of the et are higher than the ones
using uniform mutation. In the four runs, and
with [500 2000]t ˛ , , the corresponding values of
e  are, respectively, –0.674, 0.0478, 0.0414,
and 0.0449. The overall average is 0.0166.

Simulation 3: No Mutations and
Heuristic Crossovers

The quality of the communication can be en-
hanced by using a more efficient tool as the
heuristic crossover operator. As in the case of
the arithmetic crossover, this operator allows
two private agents to exchange information.
However, with the heuristic crossover, the
agents exchange signals (chat) much more. As
already indicated, the heuristic crossover is the
unique genetic operator that directly uses infor-
mation from the fitness function.10 Therefore,
the communication contains more relevant in-

Figure 3. Evolution of e
tp  and tp , N = 50, 30

runs, uniform mutations
Figure 4. Evolution of e

tp  and tp , 4 runs, N
= 50, T = 1000 and uniform mutations

Figure 5. Evolution of et, uniform mutations Figure 6. Evolution of et, uniform mutations
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formation. The question asked by each agent is
no longer only what was done last period, but
also how beneficial were such strategies.

Figure 9 illustrates 30 runs based on a popu-
lation of 50 agents, and with the heuristic cross-
over frequency set to 5%. It is easily estab-
lished that learning is both optimal and fast.

Second, the learning is perfect (e = 0). None-
theless, even if a higher quality of communica-
tion is provided by the heuristic crossover op-
erator, quality by itself does not suffice without
the quantity. Such a quantity of relevant infor-
mation depends on the population size. As
shown by Figures 10 to 12, when the population
size is too low, some runs do not converge to the
Nash value.

Simulation 4: Elitism Procedure

During the learning process, a potentially good
individual strategy can disappear. This is be-
cause of a bad experiment (mutation) or be-

Figure 8. Evolution of et, boundary mutationsFigure 7. Evolution of tp  and e
tp , 30 runs,

boundary mutations

Figure 9. Evolution of e
tp  and tp , 30 runs, N

= 50, heuristic crossovers
Figure 10. Evolution of e

tp  and tp , 30 runs,
N = 5, heuristic crossovers
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cause of a bad imitation (even if 4e
i tp , =  for

some i, still it is possible that 4e
tp „ ). Thus,

social learning may involve individual imitation
to choose the wrong direction. In order to avoid
it, a well-known solution in GAs is to add an
elitism procedure, whereby some agents will
keep their best previous strategies.

A set of simulations, illustrating such an
elitism procedure, were undertaken by setting
the frequencies of the arithmetic crossover and
uniform mutation to, respectively, 35% and 4%,
and adding five elitist agents out of an overall
population of 50 agents. As illustrated in Fig-
ures 13 and 14, the following expected results
were verified. Not only was the learning fast
and optimal, but also stabilization of the hetero-
geneous learning process was achieved.11

Simulation 5: Perfect Expectations

Let us now assume that some private agents do
have perfect expectations, so tp  is known at
every time t. Introducing just a few such agents
in the population should increase the quality of
the learning process, given the perfect quality

of their information. As a result, imitation and
simple communication may be sufficient to
ensure optimal learning, so long as badly in-
formed agents meet well-informed ones. Two
kinds of simulations were run. Initially, it was
assumed that 10% of the population held per-
fect expectations. Subsequently, this propor-
tion was increased to 50%. All the simulations
were based on a 35% frequency of arithmetic
crossovers. As expected, learning is optimal
and faster when the number of well-informed
agents increases (Figure 15).

A GENETIC ENTROPY MEASURE

A central issue raised in this chapter relates to
Riechmann’s question12 of whether heteroge-
neous genetic algorithms learning leads to an
optimal stable learning, and if so, how? The
simulation analysis suggests four conceivable
answers.

First, as already noticed by Riechmann (1999,
2001), simple communication and imitation, or,
alternatively, arithmetic crossovers and repro-

Figure 11. Evolution of e
tp  and tp , 30 runs,

N = 10 , heuristic crossovers
Figure 12. Evolution of e

tp  and tp , 30 runs,
N = 20 , heuristic crossovers
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ductions, are generally not enough to get a
stable and optimal learning process. As pointed
out, an exception occurs when perfectly in-
formed agents are present in the population.
Second, adding experiments (mutations) may
compensate the lack of communication be-
tween agents. Nonetheless, even if such indi-
vidual learning may initially be helpful, this
selfish behavior may interfere with the stabili-
zation of the learning process. Third, in contrast
to experiments, optimal and stable heteroge-
neous learning may be reached by improving
the quality of the communication, namely of the

exchanged information. Fourth, it has been
demonstrated that increasing the quality of the
communication is a necessary condition, but not
a sufficient one, since the population must be
able to exchange a sufficient quantity of infor-
mation.

In order to develop further this last point, the
following measure, reflecting the number of
agents’ strategies changes, is defined:

1
2 1

( )
T N

e e
i t i t

t i
NC p p, , -

= =

= - .åå

The value of the NC value indicates the
number of changes realized during the learning
process, which can be interpreted as measuring
the amount of exchanged information. If the
learning process never stabilizes, the  value will
never stop increasing. As in standard entropy
theory, such an outcome may be interpreted as

Figure 14. Evolution of et, 10 runs, 5 elitist
agents

Figure 13. Evolution of e
tp  and tp , 5 elitist

agents, N = 50, 30 runs

Figure 15. Evolution of e
tp  and tp , 10 (left) and 50 (right) well-informed agents, N = 100
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a high level of noise in the system. In compari-
son, a low constant value of NC may mean that
the system is stabilized. Nonetheless, it does
not imply that the learning has been optimal.
Indeed, it will now be shown that there exists an
optimal value for this measure.

Study of the  Value

The different values for NC will first be com-
pared for the previous simulations. These re-
sults are summarized in Table 2 on the basis of
simulations using a population of 50 agents,
35% frequencies for the arithmetic crossover
(AC) and heuristic crossover (HC), along with
a 4% frequency for uniform (UM) and bound-
ary (BM) mutations. Finally, elitism (EL) was
set to a value of 10%.

An analysis of the reported measures for
NC in Table 2 leads to the following conclu-
sions. First, as expected, introducing elitist agents
stabilizes the learning process by decreasing
the quantity of exchanged information. Specifi-
cally, the total value of NC decreases from
48032 to 20025. Second, a minimal value of  is
required to achieve optimal learning. In this
regard, the NC value from the AC run (around
100) is too low in comparison with the NC value
from the HC run (around 900). Third, allowing
experiments (corresponding to the AC-UM and

AC-MB runs) improves the convergence of the
learning process, but it also increases the amount
of useless noise. In particular, the total values
for NC are, respectively, 48032 and 83375, as
opposed to 9393.5 for the HC run.

Impact of Changing Population
Size and Frequencies

As is well known, a low population size does not
permit efficient learning, regardless of the qual-
ity of the learning process. The results, pre-
sented in Table 3, corroborate this. With a
population of only 10 agents, HC runs with a
low value of  never approach the Nash value.
As is readily verified, results reported in Table
3 are compatible with those in Table 2. For
example, a value of NC of 180.63, when N =10,
is equivalent to a value of NC of 180.63·5 =
903.15, when N = 50.

The impact of changing the frequency levels
will now be examined by using AC and HC
simulations. Table 4 summarizes three simula-
tions using, respectively, 10%, 35%, and 80%
frequency levels. It is straightforward to verify
that an increase of the frequency does not have
the same consequences when arithmetic cross-
overs are used rather than the heuristic ones.
Hence, with simple communication (AC), de-
creasing frequency increases the quantity of

Table 2. Values of NC for alternative simulations

Run AC HC AC-UM AC-BM AC-UM-EL
1 139.16 863.9 4837.3 7919.5 1948.3
2 136.24 792.1 4850.4 8754.4 1975.6
3 99.03 976.7 4823.9 8554.7 1982.3
4 147.89 811.8 4751.1 7996.0 2030.3
5 127.38 851.5 4791.9 7547.7 2105.2
6 107.99 950.7 4517.0 7077.3 1899.5
7 100.66 811.1 4538.7 9197.4 2044.4
8 102.61 760.6 5180.1 8479.2 1932.1
9 166.75 988.6 4965.8 9540.6 2018.8
10 85.95 986.5 4775.6 8308.0 2075.3
Total 1213.71 9393.5 48032 83375 20025
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exchanged information (78.2 to 246). As a
result, the average anticipated value of inflation
is also slightly improved from 0.53 to 0.63. Such
a result can be readily explained since simple
communication tends to create a homogeneous
population. With a lower frequency, this ho-
mogenization process slows down. Thus, the
amount of exchanged information may increase.
However, this interpretation does not hold with
heuristic crossover. In such a case where this
operator provides a higher quality of communi-
cation, an excessively low frequency means a
lower use of this useful communication tool.
Consequently, the possibility of exchanging some
reliable information decreases. Nevertheless,
an excessive use of this communication tool
creates useless noise. Ana logous to
Greshman’s Law, too much information kills
information. This result confirms that both an
optimal value of and an optimal frequency level
should exist. In conclusion, whatever the qual-
ity of the communication tools, they need to be
used in a suitable manner.

CONCLUSION

While it has been demonstrated that a bad
learning process may be improved, either by
allowing new experiments or by improving the
communication between agents, the latter ap-
proach appears preferable. It has also been
remarked that, whatever the learning tools,
they must be suitably used. Specifically with a

heterogeneous learning process, agents should
not be allowed to communicate too much when
the communication is not good, as with arith-
metic crossovers, or when the communication
provides too much information, as with heuris-
tic crossovers. Nonetheless, to provide a better
interpretation of such results, the “entropy”
measure of the genetic learning process needs
to be more finely specified. This issue remains
for future research.
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ENDNOTES

1 Ginsburgh and Michel (1998) have pro-
posed a somewhat similar model where
there is a mixed population consisting of
both some agents with naive adaptive
expectations, and others with rational ex-
pectations. Nonetheless, unlike the for-
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mulation here, since all the adaptive ex-
pectations agents use the same learning
rule, there is no real heterogeneous learn-
ing in their model.

2 In our example, it is only when 4e
tp =  and

4e
i tp , = , i" , that 4tp =  and 0F

iJ = , i" .
That is, the optimal learning process should
lead the private agents, as a whole, to set
the average anticipated level of inflation
to the Nash value. However, perfect sta-
bility of the learning process will be reached
only if 4e

i tp , = , i" . Otherwise, some
agents will have an incentive to change
their anticipations.

3 Goldberg (1989) offers a good general
introduct ion to the subject , while
Riechmann (2001, 2002) has analyzed the
links between GAs and evolutionary game
theory. Vallée and ld zo lu  (2004) pro-
vide a panorama of GAs’ applications in
economics.

4 As noticed by Riechmann (2001): “It is
important to clarify the following point: a
genetic individual is not interpreted as an
economic agent, but as an economic strat-
egy used by an economic agent. This
interpretation allows for several agents
employing the same strategy.”

5 GAs are known to be powerful in search-
ing all regions of the state space, since

mutation and crossing over allow GAs to
search in some promising areas not in-
cluded inside the initial population.

6 See Michaliwicz (1992) for a comparison
between the binary and the real-point
codings.

7 Again, see Michalewicz (1992) for a more
precise presentation of these operators.

8 Otherwise, one has to change X and Y in
the equations.

9 In fact, Riechmann (1999) demonstrated
that “Lyapunov stability” of the genetic
learning may be expected.

1 0 Indeed, this operator could change the
standard genetic algorithm to a memetic
one. This is also called a genetic local
search algorithm or an hybrid evolutionary
algorithm. Such an algorithm combines
the efficiency of a genetic algorithm and
the use of a local search method. See
Merz and Freisleben (2000) and Lozano,
Herrera, Krasnogor, and Molina (2004)
for related discussions.

1 1 The specific values of e , with [20 200]t ˛ , ,
are, respectively, 0.0029, 0.0023, 0.00003,
0.0025, –0.0054, 0.0009, –0.0003, 0.0006,
–0.0047, and 0.0017. The overall average
is 0.000038369.

1 2 “Does genetic algorithm learning lead to
behavioral stability, and if so, how?”
(Riechmann, 1999, p. 226).
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ABSTRACT

The purpose of this chapter is to make the case that first a standard artificial neural network
can be used as a general model of the information processing activities of the firm; second,
to present a synthesis of Barr and Saraceno (2002, 2004, 2005), who offer various models of
the firm as an artificial neural network. An important motivation of this work is the desire to
bridge the gap between economists, who are mainly interested in market outcomes, and
management scholars, who focus on firm organization. The first model has the firm in a price-
taking situation. We show that increasing environmental complexity is associated with larger
firm size and lower profits. In the second and third models, neural networks compete in a
Cournot game. We demonstrate that they can learn to converge to the Cournot-Nash
equilibrium and that optimal network sizes increase with complexity. In addition, we investigate
the conditions that are necessary for two networks to learn to collude over time.

INTRODUCTION

The purpose of this chapter is two-fold: (1) to
make the case that a standard backward propa-
gation artificial neural network can be used as
a general model of the information processing
activities of the firm, and (2) to present a

synthesis of Barr and Saraceno (BS) (2002,
2004, 2005), who offer various models of the
firm as an artificial neural network.

An important motivation of this work is the
desire to bridge the gap between economists,
who are mainly interested in market outcomes,
and management scholars, who focus on the
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internal components of the firm. The topic of
optimal firm organization in relation to its envi-
ronment has been extensively studied in the
management literature (Lawrence & Lorsch,
1986; Burns & Stalker, 1994; Gailbraith, 1973;
Chandler, 1980), but remains largely unex-
plored in industrial organization and in econom-
ics in general.

In spite of the path-breaking work of Coase
(1937) and Williamson (1985), the internal na-
ture of the firm continues to be seen by most
economists as a black box production function.
The few exceptions are within two streams of
research: the area initiated by Nelson and Win-
ter (1982), which studies the firm’s activities
from an evolutionary point of view, and more
recently, the agent-based literature, devel-
oped to better understand the information pro-
cessing behavior of the firm (see Chang &
Harrington (2006) for a review of agent-based
models of the firm). These papers define an
organization as a group of boundedly rational
individuals that pursues a common objective,
transcending the individuals’ objectives, in or-
der to process information and make decisions.
These models study the costs and benefits of
different organizations.

Our models of the firm fit within this agent-
based literature by modeling the firm as a type
of artificial neural network (ANN). Typical
uses of ANNs in economics include non-linear
econometrics (Kuan & White, 1992) and game
theory applications, where simple neural net-
works (perceptrons) are used, for example, to
distinguish which strategies should be played
given the history of strategies (Cho, 1994). Our
approach is different and unique in that the
neural network is used as a model of the firm
itself. Sgroi (2005) discusses the use of neural
networks for modeling boundedly rational agents
in economics.

ARTIFICIAL NEURAL NETWORKS
AND THE FIRM

In the 1950s, ANNs were developed as simple
models of the brain.1 The brain can be charac-
terized as a massively parallel and decentral-
ized information processing machine, which
controls the operations of the body and sees to
its normal, routine functioning. In a similar
sense, the mangers of a firm serve as “the
brains of the operation,” and without manage-
ment a firm cannot exist. In its most basic
description, a neural network is a type of non-
linear function that takes in a set of inputs, and
applies a set of parameters (weights) and a
transformation (squashing) function to produce
an output. The network can be trained to learn
a particular data set; training is an iterative
process where the weights are adjusted via a
learning algorithm to improve the performance
(reduce the error) of the network over time.
After the network has learned to map inputs to
outputs, it is used to generalize—that is, to
recognize patterns never seen before on the
basis of previous experience.

Management scholars have documented
several activities of the firm that bear close
resemblance to the activities of a brain (see
Simon, 1997; Cyret & March, 1963; Lawrence
& Lorsch, 1986; Gailbraith, 1973):

• Decentralized Parallel Processing: The
firm is a coordinated network of agents
(nodes) which processes information in a
parallel and serial manner in order to make
decisions.

• Embedded Decision Making: Organi-
zations have some form of a hierarchical
structure. Decisions are made within de-
cisions.

• Learning by Experience: Agents be-
come proficient at activities by gaining
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experience, often by a trial-and-error pro-
cess.

• Organizational Adaptation to the En-
vironment: Since firms face different
environments, organizational adaptation
implies that there is no one best way to
organize.

• Pattern Recognition and Generalizability:
As agents process information, they rec-
ognize patterns and hence the firm is able
to process information that resembles pat-
terns learned earlier.

• Firms Contain More Knowledge than
Any One Agent: The firm is not simply a
collection of agents, but rather a coordi-
nated collection of specialized agents. Thus
the knowledge of the firm is greater than
the sum of the knowledge of its agents.

Our focus is on the internal structure of the
network, as we study the relationship between
network structure and performance. For sim-
plicity, however, we focus on only one particu-
lar type of neural network, a backward propa-
gation network with one hidden layer. Holding
constant the type of network allows us to make
changes in the economic features of the model
to see how economic outcomes change as the
size of the network changes.

Network Error and Learning

The ability of the firm-as-network-of-manag-
ers to learn the relationship between the envi-
ronment and some relevant variable is a func-
tion of the number of managers.2 The error the
managers make when learning from the envi-
ronment can be separated in into two types of
(theoretical) errors: approximation error and
estimation error.3 If there are too few manag-
ers estimating the environmental data, then it
may be that regardless of how many data points
(environmental states) the managers process,

the minimum error obtainable is still relatively
large. This type of error is referred to as the
approximation error. Generally speaking, as
we increase the number of managers (and the
number of estimation parameters—the weights),
we increase the computational power of the
firm and hence its ability to learn the underlying
mapping between the environment and some
economic variable; therefore the approxima-
tion error is decreasing as we increase the
number of managers for a given dataset.

The other type of error, the estimation
error, is due to the limited time a network has
to learn a dataset of a given size. A small
network has fewer weights to adjust and there-
fore can more quickly (i.e., in fewer iterations)
find the values that minimize the error. As the
network size grows, it needs more time (itera-
tions) to search the weight space. Therefore,
the estimation error is increasing in network
size. In standard regression analysis, this error
is analogous to the loss of degrees of freedom
that we have as we increase the number of
regressors.

The tension between these two errors gen-
erates a tradeoff: fewer managers will imply a
larger approximation error, but also a smaller
estimation error for a given number of itera-
tions. On the other hand, reducing the approxi-
mation error by increasing the number of man-
agers increases the number of data points
needed to learn the environment, which means
that for the same number of periods, the esti-
mation error will be larger, all else equal.

The tradeoff implies that there is an “opti-
mal” network size, m*, defined as the dimension
that makes the bound to the “managerial loss”
(or error) a minimum. Figure 1 graphically
shows this tradeoff.

For a very small network, the gain in ap-
proximation obtained by increasingm outweighs
the errors in estimation. After a certain point,
instead, the gain in approximation is not enough
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to compensate for the loss in “degrees of
freedom”; as a result total loss will stop de-
creasing.

THE NEURAL NETWORK

The artificial neural network comprises a series
of nodes (agents) that process and transmit
information. We can think of each agent as a
type of information processor: the agent takes
in information (signals), generates a weighted
sum, transforms the data via a squashing func-
tion, and then outputs a signal.4 In our case, the
squashing function is the standard sigmoid func-
tion G(a)=1/(1+e-a), where ( ) ( ) R˛˛ aaG ,1,0 .

The firm-as-network comprises three “lay-
ers”: an input (environmental data) layer, which
is information about the external environment;
a hidden (management) layer, which processes
information from the input layer; and an output
(CEO) layer, which processes information from
the hidden layer to produce a final output.
Specifically, the actions of the firm each period
are given by the function
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where { }N1,0˛x  is the current state of the
environment, discussed in more detail below.
y is the forecasted output for the firm. N´˛h
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a vector of weights for managers j=1,…,m, and
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jw , j=1,…,m are the weights for the CEO.
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and then applies the squashing function to pro-
duce an output, which is transmitted up to the
CEO. The CEO takes a weighted sum of the
managerial outputs
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and applies the squashing function to produce a
final output y . In the models presented
below, y can be, for example, the market price
of a good, the demand intercept, or a rival’s
output decision.

Figure 2 gives a representation of the net-
work. Note that we implicitly make a number of
important assumptions: first the organization
has a specific hierarchical structure in that
managers only report to a single CEO; second,
they do not communicate with each other; and
finally, all managers see all environmental in-
formation.

Loss/Error

Learning

Minimization of
Total Loss

Approximation ErrorEstimation Error

# of Managers
m*

Managerial Loss

Figure 1. The tradeoff between estimation
error vs. approximation error

…

…

x1 x2 x3 x4 xN

CEO Layer

Management Layer

Environmental State

Figure 2. An artificial neural network
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The Learning Algorithm

Each period the firm compares its output fore-
cast to an actual value to obtain the er-
ror ( )2

ttt yy -=e . Below, we give an economic
motivation for the error term. The firm then
uses a type of gradient descent algorithm to
adjust the weights to minimize the error over
time. Here we give a brief description of the
algorithm; for more details see Barr and
Saraceno (2002).

The gradient of e with respect to the output-
layer weights is

( ) ,)1( h
jo

j

zyyyy
w

--=
¶
¶e

where o
jw j=1,…,m are the weights between

the hidden layer and the output, and h
jz is the

output of hidden layer agent j. Notice that we
make use of a property of the sigmoid function:

( ) ( )aaaG -= 1' . By a similar analysis we can
find the gradient of the error surface with
respect to the hidden-layer weights.

The gradients serve as a basis for adjusting
the weights in the opposite (negative) direction
of each of the gradients:
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where h is a smoothing parameter. A similar
procedure is used for the hidden (management)
layer. When the updating of weights is finished,
the firm processes the next input pattern and
repeats the weight-update process. Over suc-
cessive iterations, the firm improves its perfor-
mance, and the errors are reduced.

The Environment

An important consideration that has often been
overlooked in models of the firm is the inclusion
of the external environment facing the firm.
Firms adapt to, and learn about, the events
occurring around them (such as changing input
prices, consumer tastes, and technology); and a
firm’s ability to learn directly affects its perfor-
mance.

We model the environment as a set of
“features” { }NX 1,0=  that may be present (one)
or absent (zero). Each period, the firm is faced
with a vector Xt ˛x , which represents the cur-
rent state of the environment. Below, we as-
sume the environment affects some important
variable (e.g., the demand intercept) according
to the following function:

( ) ( ) ,2
12

1
1å =
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==

N

k
kN

ktNtt xfy x      (1)

where yt is the variable to be learned. The
functional form assumes that these features
are ordered according to the size of their influ-
ence on the particular variable of interest.
Equation 1 converts a vector of binary digits to
its decimal equivalent, normalized to be in the
[0,1] interval.

Environmental Complexity

Our measure of environmental complexity is
given by the value of N, the size of the environ-
mental vector. Each period, a randomly se-
lected vector is chosen with probability (1/2N).
Thus, the parameter N embodies two types of
complexity: both the quantity and the frequency
of information processed by the firm. If N is
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small, over several iterations, the firm will, on
average, view a particular vector more times
than if N is large. In the simulations below, N
ranges from 5 to 40 in 5 unit increments.5

A MODEL OF THE FIRM AS
PRICE TAKER

In the sections below, we present three models
of the firm as an ANN. Here we discuss the
case of the firm in a perfectly competitive
market. In sections 5 and 6 we expand the
model to include Cournot competition.

To begin, assume we have a price-taking
firm with a profit function at time t of

( ) ),(
2

2 mqcqp tttt jp --= x

where pt=p(xt) is the price of the good, which
changes each period as the environment
changes. qt is the quantity choice, c is a variable
cost parameter (normalized to one), and j(m) is
the “wage” cost of carrying the network, where
m is the number of managers in the manage-
ment layer. Time subscripts are dropped for
notational convenience.

Because our focus is on the effect of envi-
ronmental complexity on learning (and below
on strategic interaction), we set j(m)=0 for the
remainder of this chapter. This can be justified
in one of two ways: either we can assume that
j(m) is constant over the range of firm sizes we
consider and therefore can be normalized to
zero, or we can assume a fixed marginal cost
per manager. This would have the effect of
changing the quantitative results but not the
qualitative results of the simulations presented
below. Thus without loss of generality, we do
not consider the cost to the firm of carrying a
network of particular size.

If the firm knew the price of the good, it
would each period choose an output level q* to

maximize its profit. In this case, optimal output
is given by q*=p, and optimal profit is given by6

( )[ ] .
2
1 2* xp=p

We assume, however, that the firm does not
know the price, but rather makes an estimate
based on observed environmental states. Thus
each period, the firm chooses an output pq = ,
where p is the estimated price. The firm then
observes the true price and realizes a profit of

.
2
1 2ppp -=p      (2)

The firm then compares its actual profit to
the optimal profit to determine its loss—that is,
its deviation from optimal profit:
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Notice that actual profit can be written in
terms of deviation from maximum profit:
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eppp -=-= L . Since p  is the estimate
made by the firm, we have per period loss:
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The firm tries to minimize its loss over time
by adjusting its weights according to the learn-
ing algorithm discussed in above. Define
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as the average profit achieved over T periods.
The objective of the firm then is to maximize P
given its network size.

A Simulation Experiment

In this section we present the results of a
simulation experiment that investigates the re-
lationship between the optimal size of the firm
and the complexity of the environment. To
perform the experiment, we do the following.
For each level of environmental complexity
N=5, 10,…,40 and network size m=2,…,20,
each period, the firm estimates a price, given
that it observes the current state of the environ-
ment xt—that is, ( )tt NNp x= .

Then it determines its profit and error by
comparing its profit to the maximum profit. It
uses the error to update its weights in order to
improve future profits. The firm performs these
steps for 200 periods. We then compare the
average profit obtained for each network size.7

Results

Figure 3, which is a result for a typical run,
shows how the firm learns over time. We set

the network size to m=8, and look at the error
(learning) over time. This graph demonstrates
organizational learning curves. As the error
diminishes over time, profits will increase, all
else equal, since the firm is learning to forecast
closer to the correct price.

Notice also that as the environment be-
comes more complex, average learning ability
decreases, since there is more information to be
learned and the problem is more difficult to
solve, holding the network size fixed.

Next in Figure 4, we show the relationship
between average profits and the size of the
network for three typical runs. In general we
see an arc-shaped relationship: profit initially
increases with network size, and then decreases
after some point. This captures the tradeoff
discussed earlier. The optimal balance between
approximation error and estimation error is
generally increasing in complexity. For a simple
environment (N=5), the maximum profit is
reached with a relatively small network. As we
increase the complexity level, the maximum
profit is achieved with a relatively larger net-
work.

Figure 5 shows the relationships between
optimal firm size (the network size that maxi-
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Figure 3. Average error vs. time for different complexity levels (m=8)
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mizes average profits over 200 iterations) and
profits vs. complexity. As we can see, in gen-
eral, optimal firm size is increasing with com-
plexity and profits are decreasing.

THE COURNOT MODEL

Cournot (1838) was the first to analyze strate-
gic interaction between firms in an oligopolistic

setting. For this reason his model had an enor-
mous impact when game theory developed the
tools to analyze this type of interaction.8 In
short, the model consists of two (or more) firms
who set their quantities as “best responses” to
their competitors’ output choice; the equilib-
rium then consists of a set of quantities for
which each oligopolist is maximizing its profit
given the quantity of the others.
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Here, as an expansion of the perfectly com-
petitive model, we investigate whether two
neural networks competing in a Cournot game
can learn to achieve the equilibrium for the
game, and further how environmental complex-
ity and firm size affect the game. We assume
that the firm faces a linear, downward sloping
demand:

( ) ( )tttt qqp 212
+-=

b
a x ,

where a(xt) is the intercept, which is a function
of the state of the environment. Each period the
two firms make an output decision, where qi,
i=1,2, is the firm’s output choice. (Again, time
subscripts are dropped for ease of exposition.)

We assume the slope parameter b and the
variable cost parameter c are constant and
normalized to one. This gives a profit function
of

( ) 2
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1
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Profit maximization for the firm, given an
output choice of its rival, generates a best
response function:
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where –i is the output quantity choice of firm i’s
rival. If we plug (5) into (4), we can derive the
firm’s profit function as a function of its rival’s
output choice

( ) .2br
i

br
i q=p      (6)

If both firms play the Cournot-Nash equilib-
rium (i.e., set each firm’s best response func-
tion equal to the other), then optimal output,
price, and profit, respectively, are given by:

2

25
4,

5
3,

5
2

apaa === CournotCournotCournot pq .

Further, we assume that a is a function of
the external environment:

1
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That is to say, the intercept—the sum of
those things that shift demand, such as tastes
and income—is determined by the presence or
absence of environmental features.

Each period, the firm observes x and pro-
duces an output according to )(xii NNq = , which
generates a profit of

( )( ) .2,1,
2
1 2 =-+-= - iqqqq iiiii ap      (7)

Notice that the firm estimates an output and
not the intercept; this is a convenient simplifica-
tion. The knowledge of the network is con-
tained in the weights; the firm implicitly learns
the relationship between the external environ-
ment and the intercept while trying to forecast
its optimal output.

Also notice that the lack of direct strategic
interaction in terms of firm size does not imply
that the two firms do not influence each other.
In fact, the competitor’s choice enters into the
best response quantity of the firm and conse-
quently affects the weight updating process. In
this framework, as can be seen in equation 7,
firm –i’s actions affects firm i’s payoffs, rather
than firm i’s actions.

After the firm chooses an output quantity, it
observes its rival’s choice and then the market
clearing price. Next it learns the value of a via

( )212
1 qqp ++=a .
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Given all this information, it determines the
best response that should have been played
given its rival’s choice of output:
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i qq
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2
1

a .

The firm then compares its actual profits
(equation 7) to the best response profits from
equation 6 to determine its loss:

( ) ( ) Cournot
ii

br
ii

br
ii qqL epp =-=-”

2 .

Over repeated estimations the firms use
their errors to adjust their weights to improve
their performance over time via the learning
algorithm discussed above.

Network Size Equilibria

In addition to strategic interaction due to de-
mand, the two firms face strategic interaction
in regards to choice of network size. A rival’s
choice of particular network size influences its
performance, which in turn affects the perfor-
mance of its rival. This gives rise to the concept
of a network size equilibrium (NSE), which is a
choice of network size for each firm such that,
given the rival’s size choice, it has no incentive
to switch the number of agents.

Formally we define an NSE as the pair
{ }*

2
*
1 ,mm  such that

( ) ( ) ,2,1,,, *** =P‡P -- immmm iiiii

where

( )å
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t
iiiti mm

T 1
,1

p .

Here we ask the questions: Does at least
one NSE exist for each complexity value? And
what is the relationship between complexity

and the network size equilibrium? We focus on
the equilibria that exist after T periods, and do
not have endogenous dynamics with the num-
ber of managers—that is, we do not examine
firms changing the number of managers during
the learning process. Rather we conduct a kind
of comparative statics exercise, whereby we
look at the NSEs that exist for given environ-
mental conditions.

In this experiment, networks of different
sizes, { },20,,2, 21 K˛mm compete against each
other for T=200 iterations.9 This competition is
run for each .40,...,10,5=N  Then, for each N,
we see if one (or more) NSE exists.

Results

Figure 6 shows an example of how the firm
learns to achieve the equilibrium outcome in the
Cournot game. The top line is the ratio of the
actual market price to the Nash-equilibrium
price. The bottom line is the absolute value of
the difference between the firm’s actual output
choice and the Cournot best response. With
both time series, the firm converges to the
Cournot-Nash equilibrium value.

Figure 7 shows an example of the strategic
interaction effect in terms of network size. The
figure shows an example of the profit obtained
by each firm, holding firm two’s network con-
stant (m2=8) and varying firm one’s network
size (fixing N=10). In general, as firm one
increases its size, it improves its performance
until some point, after which performance de-
creases (for such a low level of complexity, the
best performance is obtained for quite a small
size, m =5). Firm 2’s performance is also
affected by firm 1’s size. As we increase the
latter, firm 2’s performance steadily improves
and surpasses firm 1 (profit will obviously be
equal when the two firms have equal size). This
is due to the fact that an improved performance
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for firm 1 improves performance for firm 2, but
then at some point, firm 1 becomes “too large”
and firm 2 develops a relative advantage.

Figure 8 shows the average network sizes
for the firms at their network size equilibria. For
all values of N, there is always at least one NSE,
and in several cases there are more. In fact, the
average number of NSEs per N is 2.9, with a
standard deviation of 1.1. There does not ap-
pear to be any relationship between complexity
and number of equilibria. As we can see in
Figure 8, similar to Figure 5, average network
size is increasing in complexity and average
profit is decreasing.

COOPERATION

To what extent can two competing networks
learn to collude in their output choices? Here
we fix the type of strategy used by each firm as
a type of tit-for-tat strategy and investigate
under what conditions collusion is possible.
Since the Cournot game fits within a repeated
prisoner’s dilemma (RPD), we use the RPD
framework to investigate collusion between
two neural networks.

To begin, assume the two firms were to
collude and act like a monopolist. Then, demand
is
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where Q is the joint monopoly output level. The
corresponding profit function is
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Solving for the optimal quantity then yields
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Assume the two firms decide to split the
market and each produce
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On the other hand, each firm could “cheat”
by producing more than the shared monopoly
output, on the assumption that its rival will hold
to the agreement. This would yield a higher
profit for the firm.

The choice of whether to collude or not
generates a simple one-shot 2x2 game, a
Prisoner’s Dilemma (see Table 1). We assume
that the cooperative strategy for both firms is
the shared monopoly output, and the defection

Player 1
Cooperate (C) Defect (D)

Cooperate (C) 22 125.0,125.0 aa 22 191.0,141.0 aa
Player 2

Defect (D) 22 141.0,191.0 aa 22 167.0,167.0 aa

Table 1. Cournot-prisoner’s dilemma game

Figure 8. Average “industry” size equilibria and profit vs. complexity
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strategy is to play a best response to the rival’s
output choice. In this case, if the rival holds to
the agreement, the firm will play a Cournot best
response to the rival’s shared monopoly output
choice.

In this game the defect-defect outcome is
the only equilibrium. However, it has been
shown that in a repeated framework, when the
game is not likely to end soon, there are an
infinite number of equilibria (Fudenberg & Tirole,
1991). As Axelrod (1984) discusses, a simple
yet powerful strategy is tit-for-tat (TFT), which
says a player should start cooperating and then
play the same strategy that its rival played last
period.

In this chapter, we have firms employ a
slight variation of the TFT strategy to see if two
networks can learn to cooperate over time.
More specifically the firm chooses an output
each period based on the following rule:
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     (8)

where qi is firm i’s output, i
iq-  is firm i’s

estimate of its rival’s output, and ia  is firm i’s
estimate of a. Equation 8 says that if the firm
estimates its rival to be a cheater—that the rival
is expected to deviate from forecast monopoly
profit—then it plays the optimal forecasted
Cournot output; that is, it defects as well.

Unlike earlier sections, here firms estimate
both the demand intercept and their rival’s
output quantity each period. That is, the neural
network has two outputs; it uses this informa-
tion to decide whether to defect or not.10 Similar
to earlier sections, the external environment
shifts the demand intercept.

The threshold value 0‡ir  represents the
firm’s “willingness to be nice.” For relatively
small values, such as ,0=ir  firm i will play
defect relatively more often; for values rr &&‡i ,
the firm will be so nice that it will never defect.
Notice that in making its decision whether to
defect or not, the firm has two possible sources
of error: the first is the environment, and the
second is the opponent’s quantity; this is why it
will allow a deviation ir  from the monopoly
output before reverting to the non-cooperative
quantity.

The niceness parameter is important for
several reasons. Axelrod (1984), for example,
shows that the “personality” of a player’s strat-
egy is an important determinant of the
sustainability of cooperation. In addition, Henrich
et al. (2001) show that players’ willingness to
cooperate and reciprocate varies widely across
societies and is deeply embedded in the cultures
of the players.

The error terms are given by:
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where iq-  is the rival firm’s output choice. This
gives us a loss of iiiL 21 ee += . The firm uses
this loss to adjust its weights each period ac-
cording to the learning algorithm described
above.

We measure cooperation as follows. Let
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Then over R runs we take the average
cooperation rate for each period as

å
=

=
R

r
itrit c

R
c

1

1
.

Results

Figure 9 gives a demonstration of how niceness
affects cooperation. The figure plots firm 1’s
cooperation rates over time, when both firms
have a niceness level of 0.0 and 0.05. When

both firms have 021 == rr , cooperation rates
steadily decline and then reach a minimum level
of about 0.35. On the other hand, if the two
firms are sufficiently nice, ( )05.021 == rr , then
cooperation rates steadily increase over time.

Next in Figure 10, we show how niceness
affects performance, when firm 2 holds its
niceness parameter constant and firm 1 changes
its parameter. Notice how we see a slight
increase in firm 2’s cooperation rate, however
firm 1’s profits fall slightly while firm 2’s in-
crease.
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Figure 9. Firm 1’s cooperation rates over time (m1=m2=8, N=10)
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To investigate the relationship between co-
operation and complexity and firm size, we
generated for each complexity level
N={5,10,…,40}, 1,250 random draws of nice-
ness values, [ ]15.0,0, 21 ˛rr , and firm sizes,
m1,m2 { }20,...,2˛ . We let the firms compete for
200 iterations and recorded whether firm 1
cooperated or not each period. For each draw
of variables, we then took for firm 1 the aver-
age cooperation rates of 30 runs as our depen-
dant variable.

Table 2 shows the coefficients of a regres-
sion of firm one’s average cooperation rate as
a function of niceness values, firm sizes, and
environmental complexity. The regression
shows that there is, in general, a non-linear
relationship between the exogenous variables
and cooperation rates. In particular, increasing
complexity is associated with lower coopera-
tion rates, all else equal (for all values of r1 and
r2). Roughly speaking, an increase in N by 5 is
associated with about a 0.9 decrease in coop-
eration rates, plus or minus 0.01.11

CONCLUSION

This chapter has presented three models of the
firm as an artificial neural network. The first
model has the firm in a price-taking situation.

The objective of the network is to learn the
mapping between environmental signals and
the price. We demonstrate how the network
learns over time, and that, on average, optimal
firm size is increasing and profits decreasing as
environmental complexity increases. The opti-
mal firm size is one that best balances the
tradeoff between approximation error (error
due to less than infinite network size) and
estimation error (error due to limited time to
learn).

The following model has two firms compet-
ing in a Cournot game. We demonstrate how
two firms can learn to converge to the Cournot-
Nash equilibrium. In addition, we show the
existence of strategic interaction with firm size:
a firm’s choice of network size affects its
rival’s performance. We show that the average
network size equilibria are increasing with en-
vironmental complexity.

Our last model builds on the Cournot model
by exploring cooperation between two net-
works. Firms play a repeated Prisoner’s di-
lemma type game with a variant of a tit-for-tat
strategy. We show that firms can learn to
collude in their output choices, and near-per-
fect cooperation is feasible if firms are suffi-
ciently “nice.” In addition we show via regres-
sion analysis how cooperation rates are deter-
mined by not only the niceness of the players,

Table 2. Regression results. Dep. var.: 100* avg. cooperation of firm 1. Robust standard
errors given. All coefficients are statistically significant at greater than 99% level.

Variable Coefficient Std. Error Variable Coefficient Std. Error
1 972.1 6.8 m1 1 0.685 0.116
2 432.5 6.6 m2 1 -3.99 0.12
1 2 -1012.0 14.7 N* 1 0.807 0.056
1
2 -6219.6 97.8 N* 2 -0.767 0.056

2
2 -2940.6 99.6 Constant 31.1 0.3

1
3 16364.5 428.6 m1 -0.156 0.025

2
3 8292.4 434.9 m2 1.516 0.025

N -0.250 0.013 m1
2 0.004 0.001

N2 0.001 0.000 m2
2 -0.044 0.001

# Obs. 10,000
R2 0.962
Adj. R2 0.962
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but also the firm sizes and the complexity of the
environment.

Though space precludes a more detailed
treatment, we would like to briefly mention the
relationship between our models and competi-
tion policy, which is also an area for further
research. The traditional task of competition
policy has generally been to prevent price rais-
ing/quantity restricting policies, and to promote
technological innovation that might be
suboptimally provided without sufficient gov-
ernment incentives (Pepall et al., 2004).

Our models depict a more complex picture:
they show that firms may learn to restrict their
output simply by indirect signals of their willing-
ness to do so, rather than by any overt collusion.
But, the ability to learn to restrict output is
directly tied to the difficulty of the learning
problem.

Thus, on one hand, ease of learning can
improve efficiency, as prices charged are closer
to profit maximizing prices; but learning can
also reduce global welfare when it leads to
increased collusion and relatively low output.
So the nature of the environment can present a
double-edged sword: simple environments in-
crease efficiency but also the likelihood of
output restrictions and collusion. Government
policy, for example, has not so much to control
mergers, but rather needs to act in a more
comprehensive way to “break” such a tradeoff,
keeping in mind that environmental complexity
plays a crucial role in defining the tradeoff and
offering possible solutions to it.

Our models also demonstrate that when
learning and environmental interaction are con-
sidered, firm size per se may not be indicative
of monopoly power. In fact, even in a perfectly
competitive market, large firms may emerge
simply due to optimal adaptation to the environ-
ment, and vice versa, oligopolistic structures
may be associated with low firm size.

Our framework attempts to blend the tradi-
tional concerns of industrial organization—price

and quantity decisions—with a new approach
to investigate the internal features of the firm
that might affect these decisions. Our focus has
been on two things in particular: (1) the capabil-
ity of a network to improve its performance in
regards to a particular set of economic deci-
sions and environmental characteristics, and
(2) how the size of the networks influences and
is influenced by the economic environment in
general. The models presented here are but one
attempt to build on general economic principles.
Though concrete modeling choices for future
work will have to depend on the features of the
problem studied, it is our belief that these
choices should take into account the complex
relationship between firm structure and the
environment, a view generally overlooked by
economic theory.
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ENDNOTES

1 In general, ANNs have been used for a
wide array of information processing ap-
plications. Two examples include pattern
recognition and forecasting. For a more
detailed treatment of neural networks, see
Croall and Mason (1992), Freeman (1994),
and Skapura (1996).

2 Clearly, the quality of management is at
least as crucial as the quantity; however,
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we do not tackle this issue in this chapter.
3 This section discusses the concepts of

Computational Learning Theory as dis-
cussed in Niyogi (1998) and Vidyasagar
(1997).

4 We can also think of each agent, loosely
speaking, as a type of voter: the agent
weighs the various input signals and then
outputs a “vote,” which is a value between
0 and 1.

5 Notice our measure of environmental com-
plexity, in effect, merges the “training”
and “generalization” process into one step.

6 In the standard perfect competition model,
entry would bid the price down to zero
since there are no fixed costs. Our simu-
lations have the expected value of price
equal to 0.5. We can justify this on the
grounds that either entry is limited over
the time frame under consideration or
long-run average total cost is 0.5, but we
ignore the fixed-cost component since it
does not materially affect our simulation
results.

7 All simulations were done in Mathematica
3.0. Initial weights are generated from a

Uniform [-1,1] distribution. In addition, for
each {N, m} pair, we repeat each simula-
tion run 100 times and take averages to
smooth out random fluctuations. Finally,
we set the adjustment parameter h=10
for all simulations in the chapter.

8 For a description of the literature on learn-
ing in Cournot models, see Barr and
Saraceno (2005).

9 Similar as above, for each triple of {m1,
m2,  N}, we generate 100 runs and take
averages to smooth out fluctuations in
each run.

1 0 Having two outputs entails only a slight
variation in the structure of the network
and the learning rule. For more informa-
tion, see Barr and Saraceno (2004).

1 1 Barr and Saraceno (2004) explore equilib-
ria in network size and niceness values.
As expected, network size is increasing in
complexity, but there appears to be no
relationship between niceness and com-
plexity in equilibria. For the sake of brev-
ity, we do not present the results here.
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ABSTRACT

In the first part of the chapter, an outline of the evolutionary model of industrial dynamics is
presented. The second part deals with a simulation study of the model focused on identification
of necessary conditions for emergence of different industrial strictures. Textbooks of
traditional economics distinguish four typical industry structures and study them under the
names of pure competition, pure monopoly, oligopoly, and monopolistic competition. Variations
in behavior modes of differently concentrated industries ought to be an outcome of the
cooperation of well-understood evolutionary mechanisms, and not the result of juggling
differently placed curves representing supply, demand, marginal revenue, marginal cost,
average costs, and so forth. Textbook analysis of industrial structures usually omits influence
of innovation on market behavior. Evolutionary approach and simulation allow for such
analysis and through that allow enriching the industrial development study. One of the
important conclusions from this chapter is that evolutionary analysis may be considered as a
very useful and complementary tool to teach economics.

INTRODUCTION

Almost all evolutionary economics (on EE foun-
dations, see Dopfer, 2005) models worked out

in past decades are dynamical ones and are
focused on far-from-equilibrium analysis. There
is no place to review and to characterize evo-
lutionary models in economics in detail.1 In  a
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nutshell the other main features of evolutionary
models may be summarized as follows:

• development seen in historical perspec-
tive; macro-characteristics flow from ag-
gregation of micro-behaviors of economic
agents;

• population perspective;
• diversity and heterogeneity of behavior;
• search for novelties (innovation), heredi-

tary information;
• selection which leads to differential

growth; and
• spontaneity of development.

Some of those features seem to be crucial to
call a model an evolutionary one, in our opinion
to those crucial features belong: diversity and
heterogeneity of economic agents (firms) and
their behavior, search for innovation based on a
concept of hereditary information (knowledge),
and selection process which leads to diversified
rate of growth and spontaneity of development.
Heterogeneity and variety can therefore be
considered as an important characteristic of
evolutionary approaches to technological change
(Nelson, 1995; Saviotti, 1996). An interesting
question in relation to economic evolutionary
models is presence of decision-making proce-
dures. In many models that procedure is not
present; in many others it has a more or less
complicated form.

In the remaining part of this chapter, we
outline an evolutionary model2 and present a
selection of current simulation results of that
model. The main aim of this chapter is to show
that evolutionary modeling can be used not only
as an efficient research tool in economic analy-
sis, but also as supporting tool in the economic
education.

THE EVOLUTIONARY MODEL OF
INDUSTRIAL DYNAMICS

The model describes the behavior of a number
of competing firms producing functionally
equivalent products. The decisions of a firm
relating to investment, price, profit, and so forth
are based on the firm’s evaluation of behavior
of other, competing firms, and the expected
response of the market. The firm’s knowledge
of the market and knowledge of the future
behavior of competitors is limited and uncer-
tain. Firms’ decisions can thus only be subopti-
mal. All firms make the decisions simulta-
neously and independently at the beginning of
each period (e.g., once a year or quarter).
After the decisions are made, the firms under-
take production and put the products on the
market. The quantities of different firms’ prod-
ucts sold in the market depend on the relative
prices, the relative value of products’ charac-
teristics, and the level of saturation of the
market. In the long run, a preference for better
products, namely those with a lower price and
better characteristics, prevails.

Each firm tries to improve its position in the
industry and in the market by introducing inno-
vations in order to minimize the unit costs of
production, maximize the productivity of capi-
tal, and maximize the competitiveness of its
products on the market.

Simulation of industry development is done
in discrete time in four steps:

1. search for innovation (i.e., search for new
sets of routines which potentially may
replace the old set currently employed by
a firm);

2. firms’ decision-making process (calcula-
tion and comparison of investment, pro-
duction, net income, profit, and some other
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characteristics of development which may
be attained by employing the old and the
new sets of routines; decisions of each
firm on: (a) continuation of production by
employing old routines or modernizing pro-
duction, and (b) opening (or not) of new
units);

3. entry of new firms; and
4. selling process (market evaluation of the

offered pool of products; calculation of
firms’ characteristics: production sold,
shares in global production and global
sales, total profits, profit rates, research
funds, etc).

The Search for Innovation

The creative process is evolutionary by nature,
and as such its description should be based on
a proper understanding of the hereditary infor-
mation (see Kwasnicki, 1996, Chapter 2). Ac-
cording to the tradition established by Nelson
and Winter (1982), we use the term routine to
name the basic unit of the hereditary informa-
tion of a firm. The set of routines applied by the
firm is one of the basic characteristics describ-
ing it. In order to improve its position in the
industry and in the market, each firm searches
for new routines and new combinations of
routines to reduce the unit costs of production,
increase the productivity of capital, and im-
prove the competitiveness of its products in the
market. Nelson and Winter (1982, p. 14) define
routines as “regular and predictable behavioral
patterns of firms” and include in this term such
characteristics as “technical routines for pro-
ducing things … procedures of hiring and firing,
ordering new inventory, stepping up production
of items in high demand, policies regarding
investment, research and development, adver-
tising, business strategies about product diver-
sification and overseas investment.” A large
part of research activity is also governed by

routines. “Routines govern choices as well as
describe methods, and reflect the facts of man-
agement practice and organizational sociology
as well as those of technology” (Winter, 1984).

Productivity of capital, unit costs of produc-
tion, and characteristics of products manufac-
tured by a firm depend on the routines em-
ployed by the firm (examples of the product
characteristics are reliability, convenience, life-
time, safety of use, cost of use, quality and
aesthetic value).

We assume that at time t, a firm is charac-
terized by a set of routines actually employed
by the firm. There are two types of routines:
active routines are employed by this firm in its
everyday practice, and latent routines are stored
by a firm but are not actually applied. Latent
routines may be included in the active set of
routines at a future time. The set of routines
employed by a firm may evolve. There are four
basic mechanisms for generating new sets of
routines, namely: mutation, recombination,
transition, and transposition.

The probability of discovering a new routine
(mutation) depends on the research funds allo-
cated by the firm for autonomous research, that
is, in-house development. It is assumed that
routines mutate independently of each other.
The scope of mutation also depends on funds
allocated for in-house development. The firm

Figure 1. Routines transition
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may also allocate some funds for gaining knowl-
edge from other competing firms and try to
imitate some routines employed by competitors
(recombination). A single routine may be trans-
mitted (transition; see Figure 1) with some
probability from firm to firm. It is assumed that
after transition, a routine belongs to the subset
of latent routines. At any time a random trans-
position of a latent routine to the subset of
active routines may occur (see Figure 2). It is
assumed that the probabilities of transition of a
routine from one firm to another and the prob-
abilities of transposition of a routine (from a
latent to an active routine) are independent of
R&D funds, and have the same constant value
for all routines.

In general, the probability of transposition of
a routine for any firm is rather small. But
randomly, from time to time, the value of this
probability may abruptly increase, and very
active processes of search for a new combina-
tion of routines are observed. This phenomenon
is called recrudescence. Recrudescence is
viewed as an intrinsic ability of a firm’s re-
search staff to search for original, radical inno-
vations by employing daring, sometimes appar-
ently insane ideas. This ability is connected
mainly with the personalities of the research-
ers, and random factors play an essential role in
the search for innovations by recrudescence,
so the probability of recrudescence is not re-
lated to R&D funds allocated by a firm to
‘normal’ research.

As a rule, mutation, recombination, and trans-
position on a normal level (that is, with low
probabilities in long periods) are responsible for
small improvements and, during the short peri-
ods of recrudescence, for the emergence of
radical innovations.

Firm’s Decisions

It seems that one of the crucial problems of
contemporary economics is to understand the
process of decision making. Herbert Simon
states that “the dynamics of the economic
system depends critically on just how economic
agents go about making their decisions, and no
way has been found for discovering how they
do this that avoids direct inquiry and observa-
tions of the process” (Simon, 1986, p. 38).

The background of the decision-making pro-
cedure adopted in the model is presented in
detail in Kwasnicki (1996). It is assumed that
each firm predicts future development of the
market (in terms of future average price and
future average product competitiveness); and
on the basis of its expectations on future market
development and expected decisions of its com-
petitors, each firm decides on price of its prod-
ucts, investment, and quantity of production
that it expects to sell on the market. Each firm
also considers current investment capability
and the possibility of borrowing.

Price, production, and investment are set by
a firm in such a way that some objective
function is maximized. Contrary to the neoclas-
sical assumption, it is not a maximization in the
strict sense. The estimation of values of the
objective function is not perfect and is made for
the next year only. In other words, it is not a
global, once and for all, optimization, but rather
an iterative process with different adjustments
taking place from year to year.

Active Latent
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Figure 2. Routines transposition
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We assume that firms apply the following
objective function:

,
)(

)1(
)(

)1()1()1(
tQS

tQF
t

tFtO
s
i

i
i

ii
+

+
G

+G
-=+ ,

)
)(

)1(exp( 21 tQS
tQaaF

s
i

i
+

-=      (1)

where Fi is the magnitude coefficient (with
values between 0 and 1), Qi the supply of firm
i, Gi the expected income of firm i at t +1
(defined by equation 2), QS is the global pro-
duction of the industry in year t,and G the global
net income of all firms in year t. G(t) and QS(t)
play the role of constants in equation and en-
sure that the values of both terms in this equa-
tion are of the same order; a1 and a2 are
parameters.

The expected income of firm i (’i) is defined
as:

Gi i
s

i i i
sQ t p t V v Q t= - -( )( ( ) ( ( )) )h ,  (2)

where V is unit production costs, v(Q) is the
factor of unit production cost as a function of
the scale of production (economies of scale), h
is the econstant production cost.

The function Oi expresses short- and long-
term thinking of firms during the decision-
making process (the first and second terms in
equation 1, respectively). Plausible values for
the parameters are a1 = 1 and a2 = 5, implying
that the long run is much more important for
survival and that firms apply a flexible strategy,
namely the relative importance of short- and
long-term components change in the course of
a firm’s development (the long-term one is
much more important for small firms than for
the large ones).

Products Competitiveness
on the Market

The productivity of capital, variable costs of
production, and product characteristics are the
functions of routines employed by a firm (see
Figure 3). Each routine has multiple, pleiotropic
effects—that is, may affect many characteris-
tics of products, as well as productivity, and the
variable costs of production. Similarly, the pro-
ductivity of capital, unit costs of production, and
each characteristic of the product can be a
function of a number of routines (polygeneity).
We assume that the transformation of the set of
routines into the set of product characteristics
is described by m functions Fd,

Figure 3. From routines to competitiveness,
productivity of capital and unit cost of
production—from genotype to phenotype
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where zd is the value of characteristic d, m the
number of product characteristics, and r the set
of routines. It is assumed that the productivity
of capital A(r) and the unit cost of production
V(r) are also functions of the firm’s routines,
where these functions are not firm specific and
have the same form for all firms.

An attractiveness (competitiveness) of the
product on the market depends on the values of
the product characteristics and its price. The
competitiveness of products with characteris-
tics z and price p is equal to:

c p z
q z
p

z z z zm( , )
( )

, ( , ,...., ),= =a 1 2   (4)

where q(z) is the technical competitiveness, z a
vector of product characteristics, and a price
elasticity.

In the presence of innovation, technical com-
petitiveness varies according to the modifica-
tion of routines made by each firm, or because
of introducing essentially new routines. Techni-
cal competitiveness is an explicit function of
product characteristics. As explained above,
each routine does not influence the product’s
performance directly, but only indirectly through
the influence on its characteristics. We assume
the existence of a function q enabling calcula-
tion of technical competitiveness of products
manufactured by different firms. We say that q
describes the adaptive landscape in the space
of product characteristics. In general, this func-
tion depends also on some external factors,
varies in time, and is the result of co-evolution
of many related industries.

All products manufactured by the entrants
and incumbents are put on the market, and all
other decisions are left to buyers; these deci-
sions primarily depend on the relative values of
competitiveness of all products offered, but

quantities of products of each firm offered for
sale are also taken into account.

The dynamics of industry development de-
pend also on so called replicator (selection)
equation, imposing that the share of firm i in
global output increases if the competitiveness
of its products is higher than the average of all
products present on the market, and decreases
if the competitiveness is lower than the aver-
age. The rate of change is proportional to the
difference between the competitiveness of prod-
ucts of firm i and the average competitiveness.

SIMULATION OF INDUSTRY
DEVELOPMENT

Textbooks of traditional economics distinguish
four typical industry structures and study them
under the name of pure (perfect) competition,
monopoly, oligopoly, and monopolistic competi-
tion.3 To explain how prices and profits are
formed in the typical industries, traditional eco-
nomics uses such notions as: demand and sup-
ply functions, marginal cost, average total cost,
average variable cost, average fixed cost, mar-
ginal revenue, total revenue, and so on. Usually,
each typical situation is considered separately
in different chapters. Reading these chapters
and looking at diagrams supporting the reason-
ing, one may get the impression that different
mechanisms are responsible for the develop-
ment of industries with different concentra-
tions. It seems that the study of industry behav-
ior at different concentrations ought to be based
on an understanding of the development mecha-
nisms that are essentially invariable and do not
depend on current industry conditions, particu-
larly on the actual number of competitors.
Variations in behavior modes of differently
concentrated industries ought to be an outcome
of the cooperation of well-understood mecha-
nisms of development, and not the result of
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juggling differently placed curves representing
supply, demand, marginal revenue, marginal
cost, average total cost, average variable cost,
average fixed cost, and many other variables.
We do not claim that the findings of traditional
economics flowing from the analysis of curves
placement are wrong; quite the contrary, they
are in accord with real phenomena, but does
such analysis explain anything?

To prove that the long-run profit is equal to
zero for a perfect competition market, the
traditional economic theories assume an infinite
number of competitors in the market. In reality,
as in our simulation, the number of competitors
may be only finite, but we may expect that for
a reasonably large number of competitors, the
results will be very close to the theoretical
predictions. How many firms may be treated,
from a practical point of view, as the infinite
number of competitors? Some characteristics
of the industry at the equilibrium state obtained in
a series of experiments with a different number
of competitors, under additional assumptions
that the initial size of all firms is the same (that is,
equi-partition of the market is assumed) and that
the size of the market is constant (that is, g = 0),
are presented in Table 1.

The controlling variable in the series of
experiments is the number of competitors. The
results presented in Table 1 are the outcome of
the co-working of the same mechanisms of
development embedded in the model described
in the previous section. The results are grouped
into two parts: for the normal rate of return, r
equal to zero, and for the rate r equal to 5%.
Our normal rate of return corresponds, in some
way, to the normal profit embedded in the
neoclassical supply function. The value of the
normal rate of return may be considered as an
effect of the development of the whole economy,
and for any single industry may be treated as
exogenous. In any real processes the normal
rate of return is greater than zero, but the

results of a simulation for equal to zero are
presented as an example of some extreme,
theoretical case, just to compare the role played
by the normal rate of return for industry devel-
opment. The values of profit under r = 0 may
be considered as a natural normal rate of
return. In both series of experiments, close
similarity of the model’s behavior to real indus-
trial processes is observed, and in this sense the
results correspond to the findings of traditional
economics. As in real processes of industry
development, the greater the concentration of
the industry, the larger the profit of the existing
firms, but with the difference that, in contrast to
the assumption of profit maximization of tradi-
tional economics, the objective of the firms in
our model (the Oi—equation 1) is a combination
of the short term (firm’s income) and long term
(firm’s production, or expected firm’s share).4

The one extreme is monopoly (with profit in
excess of 150% in our simulations); the other is
perfect competition between an infinite number
of firms with profit equal to zero. The profit
drops very quickly with an increasing number
of competitors. In our simulations, industries
with the Herfindahl firms’ number equivalent5

nH greater then 12 competitors may be consid-
ered as very close to the ideal situation of
perfect competition (profit-to-capital ratio for
these industries is smaller than 10-7). The dy-
namics of change strongly depend on industry
concentration. Starting from the same initial
conditions, the more concentrated industries
reach an equilibrium state much quicker. For
fewer than eight competitors, the equilibrium
state is reached within 20-40 years, but for a
greater number of competitors the dynamics is
significantly slower, and for industry very close
to perfect competition (over 15 competitors),
equilibrium is reached within 80-120 years.
Many other simulation experiments suggest
that for plausible values of parameters, the
competition process may be considered as per-
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fect for the industries with the Herfindahl firms’
number equivalent greater than 12. We observe
a trade-off between the profit rate and the
normal rate of return, for example, for highly
concentrated industry if the normal rate of
return increases from 0 to 5%, as in Table 1, the
profit rate decreases also by 5%, and the price
is kept on the same level. But the trade-off acts
up to the moment when a positive profit for the
same price of products is maintained. If the

profit for the same price becomes a loss, then
firms decide to increase the price to keep a zero
profit and are satisfied with the normal rate of
return. In our simulation, for r = 5%, the trade-
off is observed for industry with fewer than
nine competitors; for a greater number of firms,
the natural normal rate of return is lower than
5%, and the firms increase the price to keep
profit equal to zero (compare relevant values in
Table 1). The positive normal rate of return also
causes the profit-to-sales ratio to diminish, but
there is no full trade-off as between the normal
rate of return and the profit/capital ratio. Re-
duction of the profit/sales ratio is always smaller
than the increase in the normal rate of return.

Changes of the values of the capital physical
depreciation have a similar effect on the char-
acteristics of industry development as changes
in the normal rate of return; for example, we
observe a similar trade-off between the capital
physical depreciation and the profit as we ob-
serve in experiments with a positive normal rate
of return; reduction of the capital physical
depreciation (amortization) in highly concen-
trated industry by 5% leads to an increase of
the profit/capital ratio, also by 5%. So it may be
expected that for highly concentrated indus-
tries, the rising of amortization or rising of the
normal rate of return will not significantly af-
fect the products’ price, but for less concen-
trated industries we may expect higher prices
to cover the higher opportunity costs.

Table 1. Industry concentration; global
characteristics at the equilibrium state

n
nH(0)

P/K
[%]

P/S
[%]

p/V

normal rate of return r = 0
1 151.907 71.685 4.2382
2 52.692 46.757 2.2539
4 22.096 26.915 1.6419
6 11.450  16.026 1.4290
8 6.050 9.160 1.3210
10 2.804 4.464 1.2561
12 0.643 1.060 1.2128
13 0.000 0.000 1.2000
16 0.000 0.000 1.2000
32 0.000  0.000 1.2000

normal rate of return r = 0,05
1 146.908 69.326 4.2382
2 47.692 42.321 2.2539
4 17.096 20.824 1.6419
6 6.450  9.028 1.4290
8 1.050 1.590 1.3210
10 0.000 0.000 1.3000
12 0.000 0.000 1.3000
16 0.000 0.000 1.3000
32 0.000  0.000 1.3000

Where: P - profit; K – capital; S – sales; p –
price; V – unit cost of production

Table 2. Concentration of the market; non-uniform firms’ size distribution

n nH(0) nH(100) nH(200) Te P/K(100) P/K(100) p/V(200)
 [year] [%] [%]

2 1.02 2.00 2.00 14 47.692 47.692 2.2539
4 2.61 4.00 4.00 22 17.096 17.096 1.6419
6 4.18 6.00 6.00 47 6.450 6.450 1.4290
8 5.75 7.30 7.68 – 2.932 2.282 1.3456

12 8.93 9.76 9.81 – 0.216 0.033 1.3007
16 12.12 12.15 12.16 – 0.026 0.001 1.3000
32 25.52 25.59 25.59 – 0. 022 0.001 1.3000

Note: Te is a year in which the H index is equal to the number of firms, i.e. nH = n. The years
of measurement of relevant characteristics are given in parentheses.
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The dynamics of change also depend on the
initial structure of industry. To investigate to
what extent the initial firms’ size distribution
influences the dynamics of the process, the
following series of experiments were made.
Starting from highly diversified firms’ size, we
measure the values of basic characteristics of
industry over the course of time and observe
the tendency towards uniform distribution for
different concentrations of the industry. The
initial Herfindahl firms’ number equivalent and
some general characteristics of development
of the model for a different number of competi-
tors for t = 100 and 200 are presented in Table
2. For relatively high concentration of the mar-
ket (that is, for the number of firms smaller than
eight), there are no significant differences in
the dynamics of change between industries
with uniform and non-uniform firms’ size distri-
bution. This is due to a very strong tendency
towards uniform distribution (caused by inten-
sive price competition) for the highly concen-
trated industries. The more concentrated the
industry is, the quicker the uniform firms’ size
distribution is reached—compare values of Te in
Table 2 for highly concentrated industries. For
a small concentration of the industry, the dy-
namics of reaching the equilibrium state are
significantly lower and also there is no such
strong tendency towards the uniform firm’s
size distribution; quite the contrary, some con-
servative tendency to stabilize the size distribu-
tion is observed. For industries very near to
perfect competition, the distribution of the firms’
size is almost the same as at the beginning of
simulation (seen in relevant values of nH for
years 100 and 200, when the number of firms is
greater than 12). As we will see in the next
section, the only way for small firms to pursue
the big firms and to gain higher market shares
is to introduce innovation.

In the following series of experiments, an
investigation of the ability of free entrants to

penetrate the industries of different concentra-
tions has been made (no economies of scale
present). It was assumed that for a given
number of equal-sized firms, at some moment,
a small firm with an assumed small capital
enters the market. From the moment of en-
trance, we observe the evolution of the struc-
ture of industry, and particularly we observe
the market share of the entrant. What interests
us is “Does the entrant’s market share grow to
reach the same size as that of the initial firms?”
Or in other words, “Is the firms’ size distribu-
tion at equilibrium uniform?” As a measure of
convergence, we use time Te which spans from
the moment of entrance to the moment of the
uniform firms’ size distribution (let us call this
time the penetration time). As it turns out, the
invasion is quite easy for a highly concentrated
industry; for example, for the monopoly indus-
try the newcomer is able to increase its initial
market share of 0.5% to the equilibrium 50%
market fraction in nine years: for two, three,
and four firms, the relevant values of the pen-
etration time Te are 16, 22, and 35 years, respec-
tively. The penetration time grows hyperboli-
cally with diminishing concentration of indus-
try; for example, if the industry is dominated by
six competitors, the newcomer needs 98 years
to get the same fraction of the market as the
initial firms, and for seven firms the relevant
time becomes very long, namely 195 years.
There is no possibility of penetrating the market
if the number of firms is greater than seven.
Because of much higher competitive condi-
tions, the average profit within the industry is
very small, and the newcomer is not able to
collect enough capital to invest and to raise its
market share.6 The penetration time for nH
greater than seven is infinite; at the equilibrium
state the newcomer’s market share stabilizes
at a very low level, which is lower than the
smaller the industry concentration is; for ex-
ample, for eight, nine, ten, and fifteen competi-
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tors, the newcomer’s share at equilibrium is
equal to 0.35%, 0.11%, 0.1%, and 0.09%, re-
spectively.

In the basic model only the price competition
is considered, and as we see, it is very difficult
to enter the market under perfect competition.
The prerequisite for successful invasion of the
highly competitive market is concurrent intro-
duction of the product’s innovation, but this
problem will be discussed in the next section,
where the model which incorporates a search
for innovation process will be presented. The
orthodox economics states that in oligopolist
industries, market shares are usually deter-
mined on the basis of non-price competition,
such as advertising and product variations, so
the real firms’ size distribution deviates from
the uniform one, and that oligopolists frequently
have adequate financial resources to finance
non-price competition. Basically it is true and
we observe such type of industry behavior in
the presence of incremental innovations (to

some extent responsible for the product varia-
tions).

From Monopoly to
Perfect Competition

Typical history of any industry starts from a
single founder firm. For some time that firm is
a monopolist on a small market. In a course of
time, the market is growing and new competi-
tors enter the market. Orthodox (textbook)
economics assumes that with no entry barriers
and no innovation, the industry will evolve to-
ward perfect competition with a large number
of equal, small firms. Let us create that situa-
tion in our simulation. We start from a single,
small firm, the industry growth rate is equal to
3%, firms do not innovate, and there is the
possibility of firms’ entering into a market.
Even in such simple economy, the process of
industry development is far from that proposed
in economics textbook. The results are pre-
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sented in Figures 4 to 7. Steady growth of a
number of firms operating on the market are
summarized in Figure 4. Due to relevant incum-
bents’ price policy, we do not observe exits
from the market. After 150 years of develop-

ment, there are 21 firms, but contrary to the
orthodox postulate, firms are not equal sized. In
fact only the early entrants (in our experiment,
the first five entrants) are able to compete
efficiently with the founder firm and relatively
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quickly, all six firms have the same market
shares equal to 16% (see Figure 5). This effi-
cient competition was able due to natural price
policy of the monopolist. The founder firm
increased the price in the first years of industry
development up to 19 units (Figure 7) and next
was forced do reduce the price in a course of
new competitors’ emergence. Entering firms
impose lower price, therefore their products
are more competitive and their market shares
increase. Notice that this process of price
competition leads to diversity of prices on the
market (in Figure 7, this high diversity of price
is seen by comparison of two dotted lines
related to the range ‘average price ± three
standard deviations’). Later entrants are not
able to compete efficiently because the aver-
age price is significantly reduced and the price
margin is very low. The good example of such
late entrant is firm 7 which entered the market
it the twenty-seventh year. Although the price
and its diversity at this time were relatively
high, but during the expansion of that firm the
price was significantly reduced to its equilib-

rium value therefore after over 100 years, in the
end of simulation its market share was equal to
9%—much lower then the share of the first six
firms with their market shares equal to 14%. To
the end of simulation, another 14 firms entered
the market and their equilibrium shares were
lower the later the entering year. We can say
that contrary to the orthodox postulate that
under perfect competition we have a large
number of equal-sized firms, our simulation
results suggest that natural mechanisms of
competition force emergence of different-sized
firms. The equilibrium firms’ size distribution is
far from the orthodox uniform one; in fact it
consists of two segments—the first segment
relates to the relatively few early entrants and
has uniform distribution, and the second one
relates to later entrants and its distribution is
highly skewed. Typical equilibrium distribution
is presented in Figure 6: the first six firms reach
equal shares and all other 15 entrants have
much lower shares (the shares of last nine
entrants is smaller then 0.5%).7
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The path from monopoly to perfect compe-
tition structure is also seen in time changes of
profit-to-capital ratio (Figure 8). In the first
years of industry evolution, the concentration
was very high (Herfindahl firms’ number equiva-
lent was smaller than two firms—see Figure 4,
nH, ‘H number equivalent’) and the profit ratio
skyrocket to almost 130%, but it was quickly
reduced in the next decades to less then 20%.
In the equilibrium the profit ratio is very close to
the growth rate of the market (i.e., to 3%). This
is another flaw of the orthodox economics,
which teaches that under perfect competition,
the profit ratio is equal to zero. It is true only for
the stable market. Just for comparison, changes
of the profit ratio in the case of stable market
(i.e., for growth rate equal to zero) is presented
in Figure 8 (dotted line). It is seen that there are
no significant differences between stable and
growing markets in the early decades of evolu-
tion, but the differences are significant at the
near equilibrium states. The profit is equal to
zero for stable market, but is close to the market
growth ratio for expanding market.

Innovation and Industry Evolution

The most important weakness of the orthodox
economics seems to be lack of innovation in
their models and concentration on equilibrium
analysis. Innovation can be considered as the
heart of modern economic evolution. Here we
present only a small sample of the simulation
results just to show how similarities of the
proposed model’s behavior relate to real indus-
trial innovative processes.

The only difference with the conditions of
simulation presented in the former section is
possibility of searching for innovation—that is,
firms are able to modify their routines just to
find innovations leading to improving technical
competitiveness of their products, diminishing
unit cost of production and to increasing the
productivity of capital. Just to show how diver-
sified behavior of the firms is, the changes of
technical competitiveness, variable cost of pro-
duction, and productivity of capital are pre-
sented in Figures 9, 10, and 11. Besides the
average values of relevant characteristics, the

Figure 8. Profit-to-capital ratio for stable and expanding market
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so-called frontiers of development are pre-
sented (namely maximum values of technical
competitiveness, minimum values of unit cost
of production, and maximum productivity of
capital). The discrepancies between the aver-
age values and the frontiers give a hint about
the existing diversity of firms’ characteristics.
It is important to underline that the mode of
development perceived through the average
values is a rather gradual one, but the mode of
frontiers development is far from being gradual.
It is clearly seen that the frontiers evolution is
a punctuated one (i.e., the stasis periods are
separated by jumps of the frontier values). The
jumps in the frontiers are related to radical
innovations’ emergence. In the stasis phases
innovations are also introduced but they are
incremental ones. The most visible effect of
introducing radical innovation relates to in-
crease of market shares of successful firms;
firm 8 introduced the first radical innovation
(around the year 40) and firm 9 the second
radical innovation around the year 70, and their
shares increased significantly during next two

or three decades after introducing the radical
innovation (see Figure 12). Success terms of
gaining significant market share can also be
reached by introducing a series of relatively
important incremental innovations. This is a
case of firm 6 (Figure 12) which introduced
such series in the third decade of industry
development. Notice that besides the relatively
small number of firms having significant shares
of the market, there always exists a large num-
ber of small and very small firms (Figure 12).

This process of radical innovation emer-
gence strongly influences the mode of changes
of other characteristics of industry develop-
ment. As an example we present changes of
firms’ number, price and, profit ratio (Figures
13, 14, and 15, respectively). We see that the
emergence and dissemination of radical inno-
vation causes an increased number of exits and
a significant reduction in the number of firms,
as well as an increase in market concentration
(Figure 13—number of firms, exits, and H
number equivalent). Emergence of radical
innovation also causes an increase in price

Figure 9. Average technical competitiveness and maximum technical competitiveness
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Figure 10. Average unit cost of production and minimum unit cost of production
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diversity (Figure 14). This occurs because in-
novative firms tend to increase the price (to
gain temporal monopoly rent and to cover the
costs of R&D process), and the unsuccessful
firms, having no possibility to imitate the inno-
vation of successful firms, decrease the price

just to made their technologically obsolete prod-
ucts more competitive.

The last few decades of industry develop-
ment in our simulation run seem to be interest-
ing. The orthodox economics suggests that high
industry concentration is usually related to high
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Figure 12. Evolution of industry structure with entry, exit, and innovation
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prices and large profits. Figures 13, 14, and 15
show that in that period we have a relatively
large number of firms operating in the market
(around 40 firms), but concentration of the
market was rather high (H number of equiva-
lent was equal to 3.2 firms). This high concen-
tration is accompanied by low, although diver-
sified, price (Figure 14) and very small profit
ratio (1.5%). We can identify the development
of the industry in the last decades of simulation
to well-known, orthodox market structure of
monopolistic competition.

CONCLUSION

Results of simulation experiments show that
evolutionary modeling allows support of text-
book conclusions related to industry develop-
ment, but also reveals the weakness of the
orthodox, textbook analysis. Repertoire of be-

havior of evolutionary models is much richer
that those presented in the economics textbook.
We can say that all phenomena related to
textbook industrial analysis can be explained
within the evolutionary paradigm, but the evo-
lutionary analysis allows the explanation of a
much wider spectrum of phenomena. Among
them are questions related to the necessary
number of firms operating in a market to call the
market the perfect competitive one, problems
of trade-off between profit rate and the normal
rate of return, non-uniform firms size distribu-
tion for the perfect competition market, and the
importance of innovation for industry behavior.
It is shown that the closeness of evolutionary
modeling to real processes is far reaching. One
of the important conclusions from that paper
and from the experience of teaching
microeconomics is that evolutionary analysis
may be considered as a very useful and comple-
mentary tool to teach economics.

Figure 14. Average price and its diversity
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KEY TERMS

Competitiveness: Ability of economic
agents (firms) to compete in the market by
offering technologically advanced or cheaper
products.

Evolutionary Economics: In the broadest
sense, a study of economic phenomena using
analogies and metaphors of biological evolu-
tion. It represents an alternative approach to
so-called “mainstream economics,” where
analyses is based on mechanical analogies and
metaphors borrowed form classical physics.

Replicator Equation: A differential or dif-
ference equation that defines the selection dy-
namics of a population of competing agents
(firms), considered within a frame evolutionary
economics (also of evolutionary games).

Routine: Regular and predictable be-
havioral patterns of firms; in evolutionary
economics, the concept of routine plays a simi-
lar role as concept of gene in evolutionary
biology.

ENDNOTES

1 Good reviews of recent literature on evo-
lutionary modeling can be found in
Silverberg (1997), Silverberg and
Verspagen (2003), and Frenken (2005).
See also http://prawo.uni.wroc.pl/
~kwasnicki/todownload/Schumpeterian
modelling.pdf and http://prawo.uni
wroc.pl/~kwasnicki/todownload/NW
conference.pdf

2 Further reading on that model can be
found at http://prawo.uni.wroc.pl/
~kwasnicki/e-model.htm

3 What follows is only a short description of
the essential features of these basic struc-
tures as understood by traditional (text-
book) economics: Pure (or perfect) com-
petition is a feature of industry which
consists of a large number of independent
firms producing a standardized product;
no single firm can influence market price;
the firm’s demand curve is perfectly elas-
tic, therefore price equals marginal rev-
enue. Monopoly is where there is a sole
producer of a commodity, and there are no
straight substitutes for that commodity.
Oligopoly is characterized by the pres-
ence within the industry of a few firms,
each of which has a significant fraction of
the market. Firms are interdependent; the
behavior of any one firm directly affects,
and is affected by, the actions of competi-
tors. In monopolistic competition, there
is a large enough number of firms; each
firm has little control over price, interde-
pendence is very weak or practically ab-
sent, so collusion is basically impossible;
products are characterized by real and
imaginary differences; a firm’s entry is
relatively easy.
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4 More detailed discussion on efficiency of
different firm objectives are presented in
Kwasnicki (1992, 1996).

5 The Herfindahl–Hirschman index of
concentration of the industry is equal to
H = åi (fi)2, where fi is the market share
of fim i. The Herfindahl firms’ number
equivalent is defined as nH = 1/H and is the
number of equal-sized firms that would
have the same H index as the actual size
distribution of firms.

6 The raising of the price above that im-
posed by the old firms to get higher profit
is not possible because of diminishing com-
petitiveness of the newcomer’s products.

7 In the end of simulation, when the industry
was very close to the equilibrium state,
there were 21 firms of different size, but
the Herfindahl firms’ number equivalent
was equal to 8.2 (i.e., the market situation
was similar to the perfect competition of
roughly eight equal-sized firms of 12.5%
market share each)—see Figure 4.
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ABSTRACT

This chapter considers a model of industrial districts where different populations interact
symbiotically. The approach consists of the parallel implementation of the model with jESOF
and plain C++. We consider a district decomposition where two populations, workers and
firms, cooperate while behaving independently. We can find interesting effects both in terms
of worker localization consequences and of the dynamic complexity of the model, with policy
resistance aspects.By using a multiple implementation strategy, we compare the advantages
of the two modeling techniques and highlight the benefits arising when the same model is
implemented on radically different simulation environments; furthermore we discuss and
examine the results of our simulations in terms of policy-making effects.

INTRODUCTION

In this chapter we consider a model of industrial
districts where different populations interact
symbiotically. According to Becattini (2003),
the industrial district’s “first and fundamental
decomposition is to be the one between the
productive apparatus and the human commu-
nity in which it is, so to speak, ‘embedded’.” In
our approach, the two populations we consider
allow for this decomposition: the first one rep-

resents the productive apparatus, while the
second one can be considered the human com-
munity. Several aspects about industrial dis-
tricts have been examined in the literature; for
an introduction, the reader can refer to Garofoli
(1981, 1991, 1992), Becattini et al. (1992), or
Belussi and Gottardi (2000). Carbonara (2005)
analyzes some common key features in the
literature on geographical clusters and in par-
ticular on industrial districts.1 She identifies,
among the others, both “a dense network of
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inter-firm relationships, in which the firms co-
operate and compete at the same time” and “a
dense network of social relationships, based
mainly on face to face contact, which is strictly
inter-connected with the system of economic
relationships” (p. 217). The first aspect looks
extremely interesting and is one of the aspects
we consider in our approach. In fact, starting
from the definition given by Squazzoni and
Boero (2002), where “industrial districts can be
conceived as complex systems characterized
by a network of interactions amongst heteroge-
neous, localized, functionally integrated and
complementary firms,” we introduce and model
the role of workers interacting with firms. The
model of industrial district we obtain consists of
two populations having different peculiarities
and interacting in the same environment. In the
literature, the representation of districts as
communities of populations is not a new idea
(e.g., Lazzeretti & Storai, 1999, 2003); never-
theless, to the best of our knowledge, studies
devoted to the dynamical evolution of these
populations are still limited.

Ecological models of population dynamics
for different species can be found both in
mathematical ecology and in computer science
literature. Ecology of populations examines the
dynamics of a number of organisms. In this field
the use of mathematical models is quite com-
mon in explaining the growth and behavior of
population; for a first introduction the reader
may refer to Hastings (1997). The most famous
model is probably the well-known Lotka-
Volterra prey predator model (Lotka, 1925;
Volterra, 1926); in this model, which is the
simplest prey predator system, two species
coexist with one preying on the other (for a
concise mathematical discussion of the model,
the reader may refer to Hofbauer and Sigmund,
1998). For more recent contributions about
mathematical models of population, the reader
may refer to Royama (1992). When consider-

ing different populations, cooperation has been
another examined thoroughly in the literature,
and specifically the evolution of cooperation
(e.g., Axelrod, 1984). Most of the contributions
stem from the well-known prisoner’s dilemma
game: for example, Flake (1998) discusses an
ecological model where only a limited number
of organisms can be supported and the popula-
tion adopting a given of each strategy is some
fractional part of the entire ecosystem; other
approaches consider both cooperation and the
geometry of the interaction network (see
Gaylord & D’Andria, 1998, for some examples).

In the model of industrial districts we con-
sider, cooperation is in some sense more im-
plicit, since the structure of the model assumes
that workers and firms cooperate. In fact, each
of the two species (namely, the workers and the
firms) is necessary to the other. In this sense
our model exhibits a sort of necessary symbi-
otic evolution of the two species. In Frank
(1997) three different models of symbiosis are
considered: the first one is the interaction be-
tween kin selection and patterns of transmis-
sion; the second is the origin and the subsequent
evolution of the interactions between two spe-
cies; finally, the third considers symbiosis as
asymmetrical interaction between species, in
which one partner can dominate the other. Our
model describes a symbiotic interaction that is
similar to the second case, even if, when some
parameters of the model are chosen appropri-
ately, we may have a slight dominance of one
species. Starting from this approach we con-
sider the dynamics of the populations of firms
and workers and their evolution. In particular,
we are interested in shedding light on the emer-
gence of industrial districts when the men-
tioned decomposition is considered, showing
that this simple interaction is sufficient for firms
to form clusters. While this cannot be an ex-
haustive explanation of districts’ behavior, it is
an interesting insight.
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Since the system is highly complex, a valid
mathematical model of it is itself complex,
precluding any possibility of an analytical solu-
tion. As is common in these cases, the model
must be studied by means of simulation; for
further details on the role of simulation, the
reader may refer to Law and Kelton (2000).
The simulation approach for the analysis of
districts is not new. For example, Zhang (2003)
uses agent-based simulation to study the dy-
namics of high-tech industrial clusters, Squazzoni
and Boero (2002) use computational techniques
to focus on some evolutionary fundamentals of
industrial districts modeling, and Brenner (2002)
uses simulation to study some mechanisms of
the evolution of industrial clusters.

While in the simulation of real systems sev-
eral techniques are used in order to increase the
model validity and credibility, not all of them can
be used when implementing a theoretical model
such as in our case. Software developers are
well aware that computer programming is an
intrinsically error-prone process, for example
Becker (2005) claims: “As applications be-
come more complex, their resource manage-
ment requirements become more complex, and
despite our best efforts, our designs often have
holes in them, or we apply our designs incor-
rectly, or we make coding errors” (p. 37). This
is well known in the simulation literature, for
example in Law and Kelton (2000) several
techniques are suggested for the model verifi-
cation, including: “… determining whether the
conceptual simulation model (model assump-
tions) has been correctly translated into a com-
puter program” (p. 264). Nevertheless only
recently the agent-based modeling literature
seems to be aware of the potential pitfalls (e.g.,
Polhill et al., 2005). For these reasons we
decided to use the same approach of Cerruti et
al. (2005)—to consider and compare two dif-
ferent model implementations. To obtain two
completely identical implementations, however,

it is not straightforward given the complexity of
the considered model. Nevertheless, we found
that the whole process of comparing and dis-
cussing the different implementations is ex-
tremely beneficial. In this sense while results
replication is to be considered preliminary—at
the moment we cannot obtain exactly the same
results with the two implementations—the pro-
cess of discussing and comparing different
implementations details and results seems to be
extremely beneficial and promising in terms of
model verification. Finally, this approach looks
promising in dealing with some important issues
such as those mentioned in Polhill et al. (2005).

The structure of the chapter is the follow-
ing. First, we describe the model of industrial
district we consider. Second, we give a theo-
retical formalization of the model and explain
our simulation approach. In the following sec-
tions we describe the computational approach,
illustrate and compare the two different com-
puter implementations, and discuss the simula-
tion results. Finally, the last section is devoted
to conclusion.

THE MODEL

The model we consider simulates a small indus-
trial district consisting of four different compo-
nents:

• the orders or productive tasks to be com-
pleted—the tasks come from the external
world and, when completed, disappear
from the model scope;

• the skills or abilities that are necessary to
perform the different production phases
of each order;

• the firms receiving the orders either from
the market or from other firms and pro-
cessing them; and

• the workforce that, when hired by firms,
allows them to process the orders.
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Finally, in each time period new workers
and firms are, according to some parameters,
generated and randomly located.

Here we describe each of the four compo-
nents and discuss their mutual relationships.

Each order contains a recipe, namely the
description of the sequence of activities to be
done by the firms in order to complete a specific
product. The different activities or phases to be
done belong to the skill set S but are not
necessarily of the same kind; in this sense skills
can be considered as technical abilities. This
assumption is motivated by different studies of
skill dynamics in manufacturing; for an empiri-
cal study on the Italian manufacturing firms, the
reader may refer to Piva et al. (2003). To
explain how skills are modeled, consider a
district with three skills 0,1,2. A feasible ex-
ample of order is ‘00120’: this is a five-phase
order where the first two phases need skill 0,
the third needs skill 1, the fourth skill 2, and the
last one skill 0. Each firm is specialized in a
single skill and the same holds for workers.
Obviously other approaches in modeling pro-
duction processes using recipes are possible;
for an example the modeling of production
operations as recipes is adopted by Auerswald
et al. (1998), or for a complexity and knowl-
edge-based approach, the reader may refer to
Sorenson et al. (2004).

In the current version of the model, special-
ization for firms and workers is randomly attrib-
uted and does not change. Firms can only
process order phases denoted with their skill
specialization, and workers can only be hired by
firms with the same skill. The orders consisting
of non-homogeneous phases need to be sent to
different firms to be completed. The mecha-
nisms workers are hired with and the orders
firms pass on to each other rely on the social
structure of the district: the environment is a
(social) space with (metaphorical) distances
representing trustiness and cooperation among

production units (the social capital). While firms
have a social visibility that increases according
to their longevity, workers’ visibility is fixed.
Only mutually visible agents can cooperate—
that is, firms may hire only skill-compatible
workers that are in their social network and
orders can be passed between mutually visible
firms. This aspect refers to the other key
feature that is mentioned by Carbonara (2004)—
that of the network of social relationships. In
our model, to keep the analysis simple, we do
model the network in terms of distance. With
these assumptions an important aspect of the
model arises: cooperation is not optional; rather
it is necessary for agents to survive.

While at each turn of the simulation both
firms and workers bear some costs, both hired
workers and producing firms receive some
revenue. In the current version net profits and
wages are modeled simply assuming marginal
costs to be not greater than marginal revenues
for firms and a positive salary for workers. As
a consequence, if for a prolonged time either a
worker is not hired or a firm has no worker,
their balance may become negative. Workers
and firms with negative balance disappear.
Negative balance is the only cause of default
for workers.

By contrast, other reasons for a firm default
are either prolonged inactivity or the impossibil-
ity of sending concluded orders to other firms to
perform the successive steps. While the inter-
pretation of the first two default causes for
firms is straightforward, the third one requires
some explanation. First, we assume that a
totally completed order is absorbed by the
market; the rationale for this is that since the
market generated this order, there is demand
for it. Second, recalling that orders may consist
of different phases, when a partially completed
order cannot be sent to a firm with the needed
skill, this means either that such a firm at the
moment does not exist or that it is out of scope.
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The latter may be interpreted as a lack of
knowledge and trust—that is, gaps in the social
capital. It is worth noting that all these aspects
are consistent to the mentioned definition of
industrial districts given by Squazzoni and Boero
(2002). In all these cases the permanence of
the agent on the market is economically unfea-
sible; for these reasons we summarize these
situations with the broad term default.

All the firms and workers are located and
operate on a two superimposed toroidal grids:
one for the workers and one for the firms.2

The novelty of this model structure is the
introduction of the interaction “within” a model
layer (the one containing the productive struc-
tures), while the classical Lotka-Volterra struc-
ture exploits only the consequences of the
interaction between two different layers. Firms,
to produce, have to interact with other firms,
with the constraint of considering mutually vis-
ible only the units sharing a portion of their
visibility space as a synthetic way for repre-
senting trustiness. The within interaction influ-
ences the dimension of the productive clusters,
while the between interactions have the role of
determining the spatial localization of the clus-
ters. With this abstract but not unrealistic tool,
we can verify the emergence of well-known
phenomena and, in a parallel way, of new ones,
which appear to be not obvious, but plausible
behaviors of the district structures.

THE COMPUTATIONAL
APPROACH

Our model can be formalized as a discrete time
dynamic system. Consider two sets of vari-
ables, the first one describing the worker ii Ww ∈
and the second one describing the firm ii Ff ∈ .
Since workers and firms are located on two

qp ×  superimposed toroidal grids, we can con-
sider a single grid where each cell can: (a)

contain a worker and no firm, (b) contain a firm
and no worker, (c) contain both a firm and a
worker, or (d) be empty. In cases a, b, and c, the
cell state consists of the informative variable of
its content, while in case d all the informative
variables are null. The state of cell at location
i ,  j  can be formalized as a vector

( ) nmij FFWW, ×××××∈= �� 11fwx  with the
convention that either w or f can be the null
vector, when respectively either no worker or
no firm are present. We define the time t state
of the system as the vector of the states of cells
at time t ( )pq

tttt xxxx 111 ,,,: 2 �= . Finally, consider
the following stochastic processes:

• { }N,~ ∈tOt  describing the orders genera-
tion

• { }N,~ ∈tW t  describing new workers entry
• { }N,~ ∈tF t  describing new firms entry

The evolution of the system can be formal-
ized as follows:

( )ttttt FWO ~,~,~,1 xx ϕ=+

The direct consequence of non-linearity and
complexity is that the theoretical analysis of the
formal model is not straightforward. This is
well known in the literature and, according to
many authors (e.g., Carley & Prietula, 1994),
many models are too complex to be analyzed
completely by conventional techniques that lead
to closed-form solutions. In order to obtain
some results, turning to simulation is natural and
necessary.

Having described all the agents’ interaction
in our model of industrial district, to introduce
the structure of the simulation is immediate. For
each turn, first new orders are created and
allocated to firms, then, after updating the
social network induced by the mutual visibility
of firms and workers, the productive process
begins. Successively compatible and visible
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workers are hired by firms, all the firms with
orders perform productive phases, then costs
and revenues are accounted for and balances
are computed. Defaulted workers and firms
are removed. Finally visibility for firms is up-
dated, and new workers and firms are created.
At this point the state of the system is displayed
both in terms of graphical output and in terms of
relevant data.

The activities of one turn are displayed in
Figure 1.

THE COMPUTER
IMPLEMENTATION

Different simulation tools are available to social
scientists interested in agent-based simulations.
Among the most widely used we recall Swarm,

Repast, and NetLogo; yet other approaches are
possible. For example it is also possible to
implement models by custom simulation plat-
forms using high-level languages. While the
choice of the simulation platform should have
no effects on the simulations results, this might
not always be true (e.g., Polhill et al., 2005).
Furthermore, in science, repetition is what al-
lows results to be validated and accepted by the
scientific community.

Furthermore, in science, repetition is what
allows results to be validated and accepted by
the scientific community. Considering com-
puter simulations, repetition can be intended
just as experiment replication by other scien-
tists or,  more dramatically, as model
reimplementation. While experiment replica-
tion can be easily achieved, reimplementation is
a more rigorous process in which the model is
deeply examined again. Given the complexity
of the models considered, and the fact that
computer programming is an extremely error-
prone process, reimplementation of the model
may be extremely valuable in order to identify
potential problems that may invalidate results.

We implement this model using both Swarm
and a C++ custom-developed platform.

Our purpose is twofold. First, we compare
the advantages of the two implementations and
highlight the benefits arising when the same
model is implemented on radically different
platforms; second we discuss and examine the
results of our simulations in terms of
policymaking effects.

The Swarm Implementation

We use the original package jESOF (java En-
terprise Simulation Open Foundation, described
at http://web.econ.unito.it/terna/jes). The pack-
age is built using the Swarm library for agent-
based models (described at http://
www.swarm.org).

Figure 1. Scheme of a simulation turn

 
Inputs from market: 
New orders are created and allocated to firms. 
 

Updating: 
Social network is computed and updated. 

 
Production: 
Firms look for compatible workers and 
whenever they have orders to be processed 
perform production phases.  
 

 
Balance computation and defaulted firms elimination: 
Consumption for firms and workers is computed.  
Defaulted firms and workers are removed. 
Orders are reallocated between mutually visible firms.  
 

  
Expansion: 
Firms visibility is expanded. 
New firms and workers are created. 
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The purpose of the jESOF structure is to
develop a two-side multi-layer world, consider-
ing both the actions to be done, in terms of
orders to be accomplished (the “What to Do”
side, WD), and the structures able to execute
them, in terms of production units (the “which
is Doing What” side, DW). WD and DW can be
consistent or inconsistent and the presence of
social capital—expressed by the necessity of
firms’ inter-visibility as a condition to exchange—
introduces inconsistent situations reproducing
real-world occurrences.

The jESOF dictionary follows:

1. Unit: a productive structure; a unit is able
to perform one of the steps required to
accomplish an order.

2. Order: the object representing a good to
be produced; an order contains technical
information (the recipe describing the pro-
duction steps).

3. Recipe: a sequence of steps to be ex-
ecuted to produce a good.

The central tool in this simulation environ-
ment is a proprietary scripting language used to
describe units acting in the simulated world and
to define actions to be done within the simula-
tion framework by the recipes contained in the
orders. The recipes can call computational
functions written in Java code to make compli-
cated steps such as creating new firms or
workers, to hire workers, to account for income
and consumptions of the different units.

In our case the scripting language uses two
different sets of recipes included in orders.

• In the firm stratum we have recipes re-
lated to production, with sequences of
steps describing the good to be produced.

• In the workers’ stratum, which is also the
interaction place, recipes produce five
kinds of effects: (1) new workers appear
in the simulation context, either near to

similar ones or randomly distributed; (2)
firms hire workers and recipes modify
workers and firms’ private matrixes—this
is done accounting for both the availability
of the labor production factor (firm side)
and household income (workers side); (3)
firms make use of available labor produc-
tion factors; (4) firms either short of or-
ders to be processed, or lacking adequate
workers on the market, or being unable to
deliver produced goods, disappear from
the economic scenario; (5) workers also
disappear if unable to find a firm for a
prolonged time.

Recipes are able to perform complex tasks,
such as those described above, and are devel-
oped via computational steps. These steps can
be interpreted as calls to code functions (meth-
ods of a Java class) invoked by a scripting
language.

As an example, the sequence ‘1001 s 0 c
1220 2 0 0 1 s 0’ is a recipe describing a task of
type (2) above, going from a unit of type 1001
(a firm) to a unit of type 1 (a worker), and
invoking a computational step with id code #
1220.

An example of the Java code is given in
Figure 2; note that the method uses both inter-
nal parameters and matrix references.

The C++ Custom Implementation

The implementation we present here is written
for C++, in particular we use Borland C++
Builder 5.0. Our approach consists of two
phases: first, the model is coded as a set of
classes; second, we decide what sorts of infor-
mation are displayed to the user. The first
phase is independent from C++ compiler used,
while the second may rely more on the used
compiler and will involve technical aspects not
so relevant here. For these reasons we shall
focus our attention on the first phase.
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The implementation we chose is hierarchi-
cal: we modeled a container class called dis-
trict which contains pointers to objects belong-
ing to classes order, worker, and firm. The
container class implements the methods per-
forming each phase of a simulation turn, the
graphical display methods, and the interface
with the main unit. The code for a turn of
simulation is reported in Figure 3.

For sake of brevity technical details are not
discussed here; source codes are available
from the authors upon request.

A Discussion on the Strengths and
Weaknesses of the Different
Implementations

While the first approach relies on well-tested
libraries and most of the implementation details

are hidden from the programmer, the second
approach requires almost everything to be built
from “ground zero.” As a result the second
approach is more time consuming and certainly
more error prone. On the other side the defini-
tive advantage of the second approach is flex-
ibility both in terms of graphical output and of
interactivity. In terms of speed the two versions
are comparable; while this seems rather sur-
prising it must be borne in mind that, in its
current version, the C++ implementation is not
speed optimized. The objective was rather to
build a sufficiently reliable code even at the cost
of some redundancies. Since the final goal of
parallel implementation is the replication of the
results, the whole process is certainly benefi-
cial for the theoretical validation of the model.
In fact the analysis and comparison of the
implementation details resulted in the discus-
sion of the assumptions of the whole model.
Furthermore, while in general with parallel imple-
mentations some economies of scale in design-
ing at least the “housekeeping” algorithms are

Figure 2. Java code implementation for a
computational firm

    Public void c1220(){ 
 
 if(pendingComputationalSpecificationSet. 
    getNumberOfMemoryMatrixesToBeUsed()!=2) 
     { 
  System.out.println(« Code -1220 requires 2 matrixes ; «  +  
       pendingComputationalSpecificationSet. 
       getNumberOfMemoryMatrixesToBeUsed() +  
       “ found in order # “ + 
       pendingComputationalSpecificationSet. 
       getOrderNumber()); 
  MyExit.exit(1); 
     } 
 
 rd=4; 
 
 // displacements for the unit memory matrixes coordinates 
 mm1=(MemoryMatrix) pendingComputationalSpecificationSet. 
     getMemoryMatrixAddress(1); 
 layer=pendingComputationalSpecificationSet. 
     getOrderLayer(); 
 urd0=(int) mm1.getValue(layer, 0+rd, 2); 
 ucd0=(int) mm1.getValue(layer, 0+rd, 3); 
 urd1=(int) mm1.getValue(layer, 0+rd, 4); 
 ucd1=(int) mm1.getValue(layer, 0+rd, 5); 
 
 checkMatrixNumber=false; 
 c1120(); 
 checkMatrixNumber=true; 
 rd=0; 
 urd0=0 ; ucd0=0 ; urd1=0 ; ucd1=0 ; 
 
    } // end c1220 

Figure 3. C++ implementation code for a
simulation turn

   // create order 
   mydistrict->CreateOrder(); 
   // allocate order or destroy it 
   mydistrict->AllocateOrder(); 
   // permutate firms and workers 
   mydistrict->PermutateFirms(); 
   mydistrict->PermutateWorkers(); 
   //  compute intersections  firm/firm and firm/worker 
   mydistrict->FindFirmsIntersection(); 
   mydistrict->FindFirmWorkerIntersection(); 
   // firms work 
   mydistrict->HirePWorkers(); 
   // firms consumption 
   mydistrict->FirmConsumption(); 
   // worker consumption 
   mydistrict->WorkerConsumption(); 
   // check alive firms and reallocate orders 
   mydistrict->ReallocateOrders(); 
   // expand firms 
   mydistrict->ExpandFirmDomain(); 
   // expand population 
   mydistrict->ExpandPopulation(CBProxWG->Checked); 
   // Display 
   mydistrict->FastPaintFlatDistrict(FlagView); 
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to be expected, this did not happen in our case.
The reason is to be found in the fact that the
C++ implementation could not benefit from the
Swarm libraries. On the other side, however,
this may avoid the implementation of ill-de-
signed algorithms.

When comparing the two implementations,
the results we obtain are qualitatively the same
even if they are different in terms of exact
replication. The reasons for these differences
are several. Mainly they come from minor
modeling differences in the two implementa-
tions; secondarily they come from more techni-
cal reasons such as the error accumulating
when floating-point arithmetic operations are
performed, and the different random number
generator routines that are used in the two
different codes.

As for the first point, while in our case the
consequences of floating point arithmetic are
not as serious as those described in Polhill et al.
(2005), the fact that we perform several branch-
ing comparing floating point variables may be
one of the reasons leading to different behav-
iors of our platforms. The other relevant aspect
to be discussed is the one concerning random
number generators. jESOF code uses well-
tested routines internal to the Swarm library
and devoted to integer or double precision
number, quoting Swarm documentation “The
generator has a period close to 219937, about
106001, so there is no danger of running a
simulation long enough for the generator to
repeat itself. At one microsecond per call, it
would take about 3.2 105987 years to exhaust
this generator. For comparison, the age of the
Universe is ‘only’ 2 1010 years! This generator
can be asked either for a real number (a vari-
able of type double) between [0,1) or for an
integer, which will be uniformly distributed on
the range [0,4294967295] = [0,232-1]”. With the
C++ implementation we felt we could not rely
on the internal random number generator. The

reasons for our choice can be found in Press et
al. (2002), and we decided to use a Minimal
Standard generator with a shuffling algorithm
which is reported there as “ran1”.

SIMULATION RESULTS

In order to quantify our observations, we intro-
duced several performance measures, specifi-
cally number of firms, number of workers,
average life for firms, and average life for
workers. These simple measures allows for the
observation of emergence of districts and their
fragility or robustness. As a matter of fact,
while the number of agents gives an idea of the
expansion of the whole system, it gives little
information about the stability of the emerging
structures; conversely, average life gives infor-
mation about stability.

In both platforms we could observe cycles
that can be explained as the accumulation and
exhaustion of resources. The orders coming
from the market and their attribution to differ-
ent firms determine cycles both in the workforce
and the production. While in the relevant litera-
ture the frequency of cycles in the labor market
is considered a challenging puzzle (see Hall,
2005; Shimer, 2005) in our model, it is possible
both to give a temporal dimension to cycles
length and to give a theoretical interpretation of
their occurrence. If three months of inactivity
for real firms are assumed to be sufficient for
default, the inactivity parameter we use in the
model allows us to find the temporal dimension
of our simulations. For instance, when setting
the inactivity default parameter to 15 turns, a
cycle of 1,200 periods corresponds to about 20
years of actual time; in this span, we could
observe about eight turns, and this is not too far
from the empirical evidence (see Bruno &
Otranto, 2004). Furthermore in order to give a
theoretical motivation of cycles, it is possible to
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consider a system dynamics approach; if we
temporarily do not consider the random effects
of the order allocation process, a causal loop
describing the firms evolution could be that of
Figure 4.

As it is usual for causal loops, variables are
related by causal links shown by arrows. Each
arrow is assigned a polarity, either positive or
negative, to indicate how the dependent vari-
able changes when the independent variable
changes.

The oscillations are caused by the negative
feedback loop and the time delays. The latter
determines the adjustment process to continue
even after the state of the system reaches its
equilibrium, forces the system to adjust too
much, and triggers a new correction in the
opposite direction; for further details see Sterman
(2000).

When considering the stochastic processes
{ }N,~,~,~

˛tWFO ttt , they can be accounted for
the random perturbations we can observe. Fi-
nally these random perturbations bring us back
to the similarities to natural population systems
that our model exhibits (e.g., Kaitala et al.,
1996).

The structures we observed were generally
rather fragile. Given the different reasons for

default, firms must be able to receive orders to
remain in the market, to find workforce, and to
deliver (partially) processed orders.

Among the interesting effects we could
observe, two deserve a particular discussion,
namely localization effects and entry effect.
The parameters we considered in our artificial
experiments are summarized in Table 1.

A preliminary discussion to the first experi-
ment is in order. While we consider entering
firms to be randomly located in the social space,
for workers we can consider two possibilities:
clustered workers and uniformly located work-
ers.

The rationale for clustered workers is to be
found in the fact that workers with the same
skills tend to be socially close. This closeness
may be interpreted both as the result of social
entities such as unions or guilds, or even as the
indirect consequence of the process by which
the workers learn their skill. In both cases,
having clustered workers leads to the emer-
gence of stable districts. This is not surprising
since in our model firms and workers are comple-
mentary. Obviously when more than one skill is
considered, since firms must be able to deliver

Figure 4. Causal loop for firms without
random perturbations

Table 1. Simulation parameters for the two
experiments discussed

Experiment
1

Experiment
2

World dimensions 100 x 100 100 x 100
Number of skills 3 1
Initial number of firms 7 7
Initial number of workers 50 10
New firm generation probability 0.2 0.1
New randomly located worker generation
probability

0.8 0.8

New workers generated per turn 27 0
Firm consumption per turn 1 0.1
Firm revenue for delivered order 1 1
Firm initial endowment 5 5
Maximum number of inactivity turns 15 15
Maximum number of undelivered orders 10 10
Maximum firm visibility unlimited 200
Worker consumption per turn 1 0.5
Worker wage per turn 1 1
Worker initial endowment 5 5

orders per firm

firms

solid firms

delay

B

delay
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even partially processed orders, stable agglom-
erates consist of mutually visible firms with all
the considered skills and the relative workforces.
This is illustrated3 in Figure 5.

The situation where both firms and workers
created random location in the social space is
much more interesting: in this case, we may
observe the emergence of districts. As we have
previously discussed, the evolution of the system
is characterized by several short-living firms as
a consequence of firms’ and workers’ fragility.
When for some reasons two or more firms with
all the skills remain in the world long enough and
are mutually visible, they become stable and are
able to employ a larger workforce. In this case
the compatible workers that are in their scope
find adequate support and are able to survive
longer: a district emerges (see Figure 6).

We can also observe the consequences of
workers’ localizations in terms of system de-
velopment (number of firms). When workers
are clustered (by skill type), we observe a slow
takeover of the economic system; by contrast
when workers are randomly located, we can
observe a fast initial development of the eco-
nomic system with an immediate stability of
larger districts. This effect can be easily ob-
served in the Figures 7 and 8 where graphs of

workers (stratum 1) and firms (stratum 4) are
compared under the two situations.

Another interesting effect is the one occur-
ring when varying the firm entry level. For
example consider a simulation with one single
skill and assume the entry probability for firms
is low. When the simulation is run for a suffi-
cient number of turns, the situation stabilizes as
in Figure 9.

We can observe how the number of workers
is rather stable and how they are located within
firms. At this point, when increasing the entry
probability for firms, one would expect both the

Figure 5. Districts emergence in a single (left) and double skill (right) economy with clustered
workers

 

 

Figure 6. District emergence in a double
skill economy with randomly located workers
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number of firms and the number of workers to
increase. The unexpected result is that this
does not happen; on the contrary when increas-
ing the entry probability for firms, while the
number of firms increases, the number of work-
ers drops rather abruptly. According to Sterman
(2000), one of the causes of dynamic complex-
ity lies in the fact that systems are policy
resistant and as a result “many seemingly
obvious solutions to problems fail or actually

worsen the situation” (p. 22). In our case, a
higher probability for firms to entry increases
the number of short-living firms which subtract
orders to well-established ones. The fragility of
these firms does not allow them to support as
many workers as the few stable firms did. This
can be observed in Figure 10 where at time
1,000, when the entry probability is increased,
while the number of firms rises, the number of
workers falls dramatically. Furthermore we

Figure 7. Workers’ concentration by type of
skill, with a relatively slow takeover of the
economic system

Figure 8. Random diffusion of different skill
workers, with a rather fast initial
development of the economic system

  

Figure 9. Evolution for 1,000 turns with low entry probability for firms
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can no longer observe as many workers located
within firms as in Figure 5. This is consistent
with the empirical literature; for an example
relative to Italian textile districts, see Fioretti
(2002).

One final note: the cycles we observed in all
of our simulations are consistent with the theo-
retical prediction we presented at the beginning
of the session.

CONCLUSION

In this chapter we examined and discussed a
model of industrial districts where social agents
cooperate symbiotically. The approach we used
consisted of the parallel implementation of the
model with jESOF and C++. While the model
we consider allowed us to find interesting re-
sults in terms of the evolution of symbiotic
populations, our parallel approach suggests sev-
eral interesting points per se.

A first result comes from the workers’
localization; we found that while clustered
workers are not necessary for local district
emergence, they actually limit the growth rate
of the economic system we considered. On the
contrary, after the district emergence we can
observe workers’ clusterization (see Figures 5

and 6). This raises a not irrelevant question: is
district emergence a consequence of workers’
clusterization or is it the other way around?

The second effect we found demonstrates
the dynamic complexity of our model. In fact
we could observe that when increasing the
entry probability for firms, while the number of
firms increased, the number of workers dropped
rather abruptly. This aspect of policy resis-
tance, together with the time delays highlighted
in the paragraph devoted to simulation results
and the strong interactions between workers
and firms, account for the dynamic complexity
of the system we studied.

Furthermore we could formulate some theo-
retical reasons for cycles, confirm them in our
simulations, and give them a temporal dimen-
sion. Finally we shed some light on the emer-
gence of industrial districts; as a matter of fact,
by the decomposition we considered, we could
show that the interaction between workers and
firms may be sufficient for firms to form dis-
tricts. This decomposition both in terms of
firms/worker and of different skills is coherent
with the industrial district literature. In fact,
first it develops the “first and fundamental”
decomposition Becattini (2003) mentions; sec-
ond, the results we obtained by considering the
different skills and the clusters of workers are

 

Figure 10. Evolution for 2,000 turns when entry probability for firms increases at turn 1,000
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extremely appropriate in terms of how Rullani
(2003) considers the territory as a unique re-
source which stamps specific characteristics,
in our case the prevalence of skills.

The double implementation approach al-
lowed the results comparison and a complete
discussion of the model assumptions. We were
able to evaluate and compare two modeling
approaches on the same model. At least in our
case, while the jESOF implementation is cer-
tainly more straightforward, the C++ imple-
mentation is more flexible.

Another interesting aspect was the
replicability of the results; while the results we
obtained were qualitatively the same, there
were differences in terms of exact replication.
The reasons for these differences can be found
both in the error accumulation process involved
in sequences of floating point operation and in
the different random generators used.

Finally an important prescriptive lesson arises
from our experience. To maximize effective-
ness in agent-based modeling, the scientist should
first consider implementing a prototype model
by a fast development platform such as Netlogo
or jESOF in order to assess its feasibility. After
this phase the serious researcher should con-
sider both someone else rewriting the model
with a more customizable platform (either using
a generalized ABM such as Swarm or using
object-oriented languages) and reengineering
its structure, avoiding the constraints that were
imposed by the shell quoted above. These are
important steps of modeling discussion and are
obviously the first ones in order to encourage
scientific repeatability.

In further research we plan to obtain the full
replication with both implementations, since
this should be the only way to be reasonably
certain that most of the coding errors have been
properly addressed. This technical goal can be
achieved considering either a deterministic ver-
sion of the model or, more reasonably, consid-

ering the same random generator, possibly one
where sequences can be replicated. Further-
more it would be interesting to investigate the
role of workers’ clustering in district emer-
gence.
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KEY TERMS

Agent-Based Simulation (ABS): A simu-
lation technique where some of the simulated
entities are modeled in terms of agents.

Cooperation: The association of persons
or businesses for common, usually economic,
benefit.

Industrial District: A geographic area
containing a number of firms producing similar
products, including firms operating at different
stages of a production process.

Industrial Organization: The way in which
industrial activity is organized into firms and
industries, and how that organization is related
to economic performance.

ENDNOTES

1 Carbonara (2004) points out how Italian
geographical clusters are usually referred
to as Industrial Districts.

2 In the jES Open Foundation version of the
model, we also have instrumental layers
showing separately the presence of work-
ers for each type of skill, but obviously the
two implementations are equivalent in
terms of modeling.

3 For the sake of brevity, we do not report
parameters we used for obtaining Figures
5 and 6. They can be obtained adapting
those for the first experiment we discuss.
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ABSTRACT

This chapter deals with complexity science issues from two sides: from one side, it uses
complexity science concepts to give new contributions to the theoretical understanding of
geographical clusters (GCs); from the other side, it presents an application of complexity
science tools such as emergent (bottom-up) simulation, using agent-based modeling to study
the sources of GC competitive advantage. Referring to the first direction, complexity science
is used as a conceptual framework to identify the key structural conditions of GCs that give
them the adaptive capacity, so assuring their competitive advantage. Regarding the
methodological approach, the agent-based simulation is used to analyze the dynamics of GCs.
To this aim, we model the main characteristics of GCs and carry out a simulation analysis to
observe that the behaviors of GCs are coherent with the propositions built up on the basis of
complexity science literature.

INTRODUCTION

This chapter deals with geographical clusters
(GCs), which can be defined as geographically
defined production systems, characterized by a
large number of small and medium-sized firms
involved at various phases in the production of
a homogeneous product family. These firms
are highly specialized in a few phases of the

production process, and integrated through a
complex network of inter-organizational rela-
tionships (Becattini, 1990; Porter, 1998; Maskell,
2001; Pouder & St. John, 1996).

In particular, the chapter analyzes the
sources of competitive advantage of GCs, which
is a relevant topic in the referred literature
(e.g., Porter, 1998). The latter, in fact, has
focused much attention on the reasons explain-
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ing the GC competitive success such as: the
flexible specialization conceptualized by Piore
and Sabel (1984); the localized external econo-
mies concept anticipated by Marshall (1920),
and further formalized by Becattini (1990) and
Krugman (1991); the industrial atmosphere
notion conceived by Marshall (1919); and the
innovative milieux notion developed by the
GREMI (e.g., Maillat, Lecoq, Nemeti, & Pfister,
1995).

These studies have identified the main criti-
cal factors governing the success of GC firms.
These can be traced back to the following
features that successful GCs possess: the physi-
cal and cultural proximity of many small and
medium-sized firms; the division of labor among
firms; the presence within the area of comple-
mentary competencies and skills; the high de-
gree of specialization of both firms and
workforce; the existence of a dense network of
inter-firm relationships where firms cooperate
and compete at the same time; the presence of
a dense network of social relationships mainly
based on face-to-face contacts; and the easy
and fast circulation of knowledge and informa-
tion in the area.

These features, which assure the competi-
tive advantage of GCs when the competitive
context is characterized by increasing and not
particularly sophisticated demand, seem to be
insufficient to guarantee the GC success in the
current competitive scenario, which is much
more dynamic, unpredictable, and instable. In
such a context many GCs are undergoing a
decline phase.

As a result, the attention of scholars and
policymakers has been shifted and is now much
more oriented to develop theories on GC sur-
vival in the new competitive scenario by looking
for new sources of competitive advantage for
GCs (Baptista, 2000; Sull 2003).

Recent studies have in fact pointed out that
changes in the GC organizational structure and
in their strategies are necessary to guarantee

the GC competitiveness. For example, some
GCs have internationalized their production
system by delocalizing their production process
in foreign countries, so determining profound
changes in the GC structure (Corò & Rullani,
1998; Biggiero, 2002). Some GCs have intro-
duced new innovation strategies much more
focused on developing radical innovations by
creating alliances with universities and research
centers (Belussi & Arcangeli, 1998; Carbonara,
2004; Corò & Grandinetti, 1999). Therefore,
these studies suggest how GCs have to change
to survive. This means that the competitive
advantage of GCs is associated with a new set
of features. Taking things to the extreme, GCs
possessing these features are competitive and
survive, the others not.

This approach, which is consistent with the
traditional studies on GCs, presents some limi-
tations. It adopts a static perspective aimed at
identifying a set of features explaining GC
competitive advantage in a given particular
context. In this way every time the competitive
scenario changes, it is necessary to identify a
new set of features. In addition, the dynamics
that have forced the changes in features cannot
be investigated in depth by using this approach.
These can in fact be analyzed and identified
only after that they are already in practice.
Furthermore, this approach considers the entire
GC as the unit of analysis, so failing to deter-
mine how the global properties of the whole
system result from the behaviors of different
local parts. New theoretical and methodologi-
cal approaches overcoming these limitations
are then needed.

Complexity science offers both: it investigates
properties and behaviors of complex adaptive
systems (CASs) and aims to explain how hetero-
geneous agents “self-organize” to create new
structures in interactive systems, with the goal of
understanding how such structures emerge and
develop (Casti, 1994, 1997; Coveney & Highfield,
1995; Holland, 1995, 1998; Johnson, 2001).
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By adopting a complexity science approach,
the GC competitive advantage is not the result
of a set of pre-defined features characterizing
GCs, but it is the result of dynamic processes of
adaptability and evolution of GCs with the
external environment. In other words, the source
of competitive advantage for GCs is not limited
to the posses of a given set of features. The
competitive advantage resides in the GC capa-
bilities of adaptability and evolution with the
external environment. The result of this evolu-
tionary process in terms of new features exhib-
ited from GCs is not known a priori, but
spontaneously emerges from the interactions
among the system components and between
them and the environment. This view is consis-
tent with the recent studies on strategic man-
agement about new dynamic sources of com-
petitive advantage based on resources, capa-
bilities, and knowledge (Teece, Pisano, & Shuen,
1997).

In this chapter complexity science is specifi-
cally used to develop propositions on the key
conditions of GCs that give them adaptive ca-
pacity, so assuring their competitive advantage.

As regards the methodological approach,
complexity science offers a new simulation
technique to study CASs and their dynamics,
namely agent-based simulation (ABS) (Hol-
land, 1995, 2002). ABS is characterized by a
collection of autonomous, heterogeneous, intel-
ligent, and interacting agents that operate and
exist in an environment (Epstein & Axtell,
1996). In ABS, agents interact with each other
in a non-linear manner with little or no central
direction. The large-scale effects determined
by the locally interacting agents are called
emergent properties of the system. These thus
are the spontaneous result of the interactions
among agents according to a bottom-up ap-
proach, rather than a top-down one. The main
goal of ABS is to enrich the understanding of
fundamental processes regulating and deter-
mining dynamics of CASs (Axelrod, 1997).

Furthermore, it is a valuable tool to theory
building and to theory testing (Axelrod, 1997;
Carley & Gasser, 2000).

In the chapter, agent-based simulation is
used to analyze the dynamics of GCs. To this
aim, we model the main characteristics of GCs,
namely the co-location into a restricted area of
many small and medium-sized firms, the spe-
cialization of firms in a few phases of the
production process, the network of inter-firm
relationships, the existence of competition and
collaboration among firms, and the exchange of
knowledge and information among firms. Then,
we use the developed agent-based model to
observe via simulation that the behaviors of
GCs are coherent with the propositions built up
on the basis of complexity science literature.

The chapter is organized as follows. First,
we briefly present the theoretical background
of this study by reviewing the traditional studies
on the sources of GC competitive advantage
and the knowledge-based view of GC competi-
tive advantage. Then, we discuss the complex-
ity science approach to GC competitive advan-
tage and formulate the theoretical propositions
on the key conditions of GCs that give them
adaptive capacity, so assuring their competitive
advantage. We then present a brief review of
the studies that have used agent-based models
to investigate GCs, and we describe the pro-
posed agent-based model developed to analyze
the dynamics of GCs and to study their com-
petitive advantage. Finally, simulation analysis
is illustrated and results are discussed.

THEORETICAL BACKGROUND

Traditional Sources of Competitive
Advantage for Geographical Clusters

Traditional studies on GCs have analyzed the
main advantages of GCs that explain the rea-
sons of their success.
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In particular, the studies of economic geog-
raphy have pointed out the benefits associated
with the “agglomeration external economies,”
mainly due to the lower input costs, the devel-
opment of common suppliers, specialist labor
pools, spillover of technical know-how, and the
development of a greater comprehension of the
workings of the particular industry by individu-
als and firms (Becattini, 1990; Marshall, 1920).

Studies on industrial economics have high-
lighted the reduction of the transactional costs
due to geographical proximity of firms, and
informal and face-to-face contacts among them,
as one of the most important benefits of GCs
(Mariotti, 1989; Powell, 1987).

Other studies have stressed that one of the
key sources of GC competitive advantage is
their capacity to develop product and process
innovations. In particular, many authors have
pointed out that the GC innovative capacity
mainly results from the presence of highly
specialized technical competencies, the exist-
ence of networks of formal and informal rela-
tionships, and the geographical proximity that
creates an environment wherein information,
codes, languages, routines, strategies, and
knowledge are easy to transfer and share
(Cooke, 1999; Cooke & Morgan, 1998; Henry
& Pinch, 2002; Lundvall & Johnson, 1994;
Storper, 1997).

Synthesizing the results of these studies, the
key source of the GC competitive advantage is
the static efficiency, namely cost advantages
gained by clustered firms due to a set of fea-
tures characterizing them: the specialization of
firms, the presence of a specialized workforce,
the division of labor among firms, the accumu-
lation of specific knowledge in the local area,
the networking processes among both the eco-
nomic and social system, the development of a
widespread innovative capacity, the presence
into the local area of a common system of
social-cultural values.

However, in recent years these factors de-
termining the success of GCs in a competitive
context characterized by both increasing and
not particularly sophisticated demand seem to
be insufficient to guarantee competitive advan-
tage to both the system and its firms. In this new
situation, new sources of competitive advan-
tage based not only on the paradigm of the
static efficiency are needed.

Knowledge-Based Competitive
Advantage of Geographical
Clusters

Recent strategic management literature has
pointed out that in today’s economy the source
of sustainable competitive advantage for firms
cannot be limited to cost and differentiation
advantages, and has recognized the importance
of knowledge as a fundamental factor in creat-
ing economic value and competitive advantage
for firms (Barney, 1991; Grant, 1997; Leonard-
Barton, 1995). What a firm knows, how it uses
what it knows, and how fast it can develop new
knowledge are key aspects for firm success
(Hamel & Prahalad, 1994; Prusak, 1997). There-
fore, knowledge is a key asset for competing
firms, and consequently, learning is a key pro-
cess. This in fact increases the firm cognitive
capital (knowledge stock).

These new strategic management theories
have forced new studies on GCs. In particular,
in the last few years, some scholars have
analyzed the role of knowledge in GCs and
proposed a knowledge-based theory of GCs
(Malmberg & Maskell, 2004; Maskell, 2001).
These works have investigated the nature of
knowledge circulated in GCs, the knowledge
transfer and creation processes embedded in
GCs, and the learning processes activated by
firms in GCs (Albino, Carbonara, &
Giannoccaro, 2005; Tallman, Jenkins, Henry, &
Pinch, 2004). This superior capacity of GCs to
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support processes of learning and knowledge
transfer and creation has been identified as the
key source of their competitive advantage.

Opposite of the traditional studies on GCs
where the source of competitive advantage is
static based on the possess of given features, in
these knowledge-based studies on GCs the
competitive advantage results from dynamic
processes activated by GC firms, namely the
learning and knowledge management processes.

In line with this new perspective, we seek
new dynamic sources of competitive advan-
tage by adopting a different theoretical ap-
proach, namely complexity science.

THE COMPLEXITY SCIENCE
APPROACH TO GC
COMPETITIVE ADVANTAGE

Complexity Science
Studies and Their Dynamics

CASs consist of an evolving network of hetero-
geneous, localized, and functionally integrated
interacting agents. They interact in a non-linear
fashion, can adapt and learn, thereby evolving
and developing a form of self-organization that
enables them to acquire collective properties
that each of them does not have individually.
CASs have adaptive capability and co-evolve
with the external environment, modifying it and
being modified (Axelrod & Cohen, 1999; Choi,
Dooley, & Rungtusanatham, 2001; Gell-Mann,
1994; Lane, 2002).

During the 1990s, there was an explosion of
interest in complexity science as it relates to
organizations and strategy. The complexity sci-
ence offers a number of new insights that can
be used to seek new dynamic sources of com-
petitive advantage. In fact, application of com-
plexity science to organization and strategy
identifies key conditions that determine the
success of firms in changing environments

associated with their capacity to self-organize
and create a new order, learn, and adapt (Levy,
2000; McKelvey & Maguire, 1999; Mitleton-
Kelly, 2003).

In particular, complexity science suggests
what causes emergent order and self-organiza-
tion inside organizations. Kauffman (1993)
claims that organizations poised at the edge of
chaos might give rise to self-organization and
emergent order, which enable them to succeed
in an era of rapid change. Extending the argu-
ments on the requisites of internal variety of a
system developed by Ashby (1956), McKelvey
(2004) observes that organizations have to have
an internal variety that matches their external
variety so as to self-organize and adapt to the
changing environment.

In line with the works above, complexity
science is used in this study to identify what
conditions of GCs enable them to adapt to the
external environment. Therefore, the basic as-
sumption of this study is that GCs are CASs,
given that they exhibit different properties of
CASs such as the existence of different agents
(e.g., firms and institutions), the non-linearity,
different types of interactions among agents
and between agents and the environment, dis-
tributed decision making, decentralized infor-
mation flows, and adaptive capacity (Albino et
al., 2005).

In the following, three theoretical proposi-
tions concerning the GC adaptive capacity are
formulated by using CAS theory. First, we
identify the three main properties of CASs that
affect the adaptive capacity—namely the
interconnectivity, the heterogeneity, and the
level of control—and we define how the value
of these properties influence the adaptive ca-
pacity. Then, we associate these properties
with specific GC characteristics, so obtaining
the key conditions of GCs that give them adap-
tive capacity, so assuring their competitive
advantage.
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So doing, GC competitive advantage is not
the result of a set of pre-defined features
characterizing GCs, but it is the result of adapt-
ability process of GCs with the external envi-
ronment.

Interconnectivity

CAS theory identifies the number of intercon-
nections within the system as a critical condi-
tion for self-organization and emergence.
Kauffman (1995) points out that the number of
interconnections among agents of an ecosys-
tem influences the adaptive capacities of the
ecosystem. He uses the NK model to investi-
gate the rate of adaptation and level of success
of a system in a particular scenario. The adap-
tation of the system is modeled as a walk on a
landscape. During the walk, agents move by
looking for positions that improve their fitness
represented by the height of that position. A
successful adaptation is achieved when the
highest peak of the landscape is reached. The
ruggedness of the landscape influences the rate
of adaptation of the system. When the land-
scape has a very wide global optimum, the
adaptive walk will lead toward the global opti-
mum. In a rugged landscape, given that there
are many peaks less differentiated, the adap-
tive walk will be trapped on the many subopti-
mal local peaks.

By using the concept of tunable landscape
and the NK model, Kauffman (1995) demon-
strates that the number of interconnections
among agents (K) influences the ruggedness of
the landscape. As K increases, the ruggedness
raises and the rate of adaptation decreases.
Therefore, in order to assure the adaptation of
the system to the landscape, the value of K
should not be high.

This result has been largely applied in orga-
nization studies to modeling organizational
change and technological innovation (Kauffman,
Lobo, & Macready, 2000; Levinthal, 1997;

Rivkin & Siggelkow, 2002). In organization
studies the K parameter has an appealing inter-
pretation, namely, the extent to which compo-
nents of the organization affect each other.

Similarly, it can be used to study the adapta-
tion of GCs, by considering that the level of
interconnectivity of GCs is determined by the
social and economic links among the GC firms.
When the number of links among firms is high,
the behavior of a particular firm is strongly
affected by the behavior of the other firms.

On the basis of the discussion above, we
formulate the following proposition:

Proposition 1. A medium number of links
among GC firms assures the highest GC
adaptive capacity.

Heterogeneity

Different studies on complexity highlight that
variety destroys variety. As an example, Ashby
(1956) suggests that successful adaptation re-
quires a system to have an internal variety that at
least matches environmental variety. Systems
having agents with appropriate requisite variety
will evolve faster than those without. The same
topic is studied by Allen (2001), LeBaron (2001),
and Johnson (2000). Their agent-based models
show that novelty, innovation, and learning all
collapse as the nature of agents collapses from
heterogeneity to homogeneity. Dooley (2002)
states that one of the main properties of a
complex system that supports the evolution is
diversity. Such a property is related to the fact
that each agent is potentially unique not only in
the resources that they hold, but also in terms of
the behavioral rules that define how they see the
world and how they react. In a complex system,
diversity is the key towards survival. Without
diversity, a complex system converges to a
single mode of behavior.

Referring to firms, the concept of agent
heterogeneity can be associated to competitive
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strategy of firms. This in fact results from the
resources that a firm possesses, and defines the
behavior rules and the actions of firms in the
competitive environment (Grant, 1998).

Therefore, we assume that:

Proposition 2. The greater the differentiation
of the competitive strategies adopted by GC
firms, the higher the GC adaptive capacity.

Level of Control

The governance of a system is a further impor-
tant characteristic influencing CAS self-orga-
nization and adaptive behaviors.

Le Moigne (1990) observes that CASs are
not controlled by a hierarchical command-and-
control center and manifest a certain form of
autonomy. The latter is necessary to allow
evolution and adaptation of the system. A strong
control orientation tends to produce tall hierar-
chies that are slow to respond (Carzo &
Yanousas, 1969) and invariably reduce hetero-
geneity (Jones, 2000; Morgan, 1997). The pres-
ence of “nearly” autonomous subunits charac-
terized by weak but not negligible interactions is
essential for the long-term adaptation and sur-
vival of organizations (Sanchez, 1993; Simon,
1996). Furthermore, Granovetter’s (1973) re-
search finding is that novelty and innovation
happen more frequently in networks consisting
mostly of “weak ties” as opposed to “strong
ties.” The latter tend to produce group thinking.

The level of control in GCs is determined by
the governance of the GC organizational struc-
ture. The higher the degree of governance, the
higher the level of control exerted by one or
more firms on the other GC firms (Storper &
Harrison, 1992).

Therefore, we assume that:

Proposition 3. A medium degree of
governance of the GC organizational
structure improves the GC adaptive capacity.

THE AGENT-BASED MODEL OF
GEOGRAPHICAL CLUSTERS

The second way we use complexity science in
the chapter concerns the methodological ap-
proach, namely the agent-based simulation that
is a technique developed to study CASs. We use
it to observe via simulation that the behaviors of
GCs are coherent with the propositions above.

Recently, a small number of studies have
applied agent-based computational models to
study GCs. Albino et al. (2006) propose a multi-
agent system model to study cooperation and
competition in the supply chain of a GC. They
carry out a simulation analysis to prove the
benefits of a selected kind of cooperation for
the GCs, and to evaluate the benefits of the
cooperation in different competitive scenarios
and diverse GC organizational structures.

Boero and Squazzoni (2002) suggest an
agent-based computational approach to de-
scribe the adaptation of GCs to the evolution of
market and technology environments. Their
model considers three different evolutionary
technological regimes, with growing production
costs sustained by firms and increasing perfor-
mance shaped by the market. The district firms
need to adapt to this evolution. In particular, the
authors study how the GC organizational struc-
ture affects the economic performance (e.g.,
level of firms surviving in the market over time)
and technological adaptation of firms over time.
Moreover, they compare two different GC
organizational structures: the market-like and
the partnership district.

Brusco, Minerva, Poli, and Solinas (2002)
develop a three-dimensional cellular automaton
model of a GC which represents the dynamic by
which the GC firms share information about
technology, markets, and products. In the model,
different scenarios characterized by different
degrees of information sharing among firms are
compared. In particular, the following perfor-
mances are measured: the dimensional growth
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of both the firm and the system over time,
industry concentration, and wealth sharing.

Zhang (2002) studies the formation of the
high-tech industrial clusters, such as the Silicon
Valley, showing that the high-tech clusters can
spontaneously emerge as a result of specific
dynamics. He emphasizes that high-tech indus-
trial clusters are characterized by concentrated
entrepreneurship. The cluster is then explained
by the social effect through which the appear-
ance of one or a few entrepreneurs may inspire
many followers locally. Once a cluster comes
into existence, it tends to reinforce itself by
attracting more firms. The author proposes a
Nelson-Winter model with an explicitly defined
landscape and uses agent-based computational
modeling to show the cluster dynamics.

Fioretti (2001) develops a spatial agent-
based computational model to study the forma-
tion and the evolution of the Prato industrial
district. He focuses on the structure of the
information flows that underlie the creation of
production chains within the district and on the
role of the middlemen.

Brenner (2001) develops a cellular automata
model of the spatial dynamics of entry, exit, and
growth of firms within a region. He first iden-
tifies the mechanisms that modify a firm’s state
and then carries out a simulation analysis to
investigate the influence of all the mechanisms
on the geographic concentration.

The Agent-Based Model to Study
the Competitive Advantage of
Geographical Clusters

In this section the agent-based model that we
have developed to analyze the dynamics of GCs
and to study their competitive advantage is
described.

We propose a stylized model, built on the GC
literature, by considering some of the main GC
features defined in the models of flexible spe-
cialization by Piore and Sabel (1984), localized

external economies (Becattini, 1987; Marshall,
1920), and industrial atmosphere by Marshall
(1919). In particular, we take into account the
co-location into a restricted area of many small
and medium-sized firms, the specialization of
firms in a few phases of the production process,
the network of inter-firm relationships, the exist-
ence of competition and collaboration among
firms, and the exchange of knowledge and infor-
mation among firms. How we reproduce these
building blocks in the model is described later on.

The agent-based model of the GC consists
of agents and an environment. Agents perform
actions to accomplish their own goals. Two
types of agents are considered, namely the
firm-agent and the market-agent. The environ-
ment represents the geographic local area in
which the agents operate. The agent-based
model is built using the software Agentsheets
(http://agentsheets.com/).

Agents

Firm Agents

Firm-agents stand for the firms inside the GC.
They are characterized by a set of properties
and actions which are defined looking at the
literature on GCs and strategic management.
We assume that the goal of the firm is to
survive. The survival is determined by the
satisfaction of customer needs. To accomplish
this goal, firms adopt a competitive strategy.
This competitive strategy can be modified over
time (Grant, 1998). Competitive strategy is then
based on knowledge and competencies pos-
sessed by the firms (Hamel & Prahalad, 1991).
We assume that the knowledge about custom-
ers are relevant to survive.

Firm-agents are classified on the basis of
the size and the performed phase of the produc-
tion process. In particular, we distinguish small
firm-agents and medium firm-agents. More-
over, we distinguish firm-agents into client-
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agents, those that perform the final phase of
the production process, and supplier-agents,
those that carry out an intermediate phase of
the production process.

The firm-agent is modeled by an object
located into a grid. The firm-agent is character-
ized by a moving direction (up, down, right, and
left) and a color (grey, pink, or red). The
position into the grid changes at each simulation
step according to the moving direction. The
moving direction represents the competitive
strategy. This can be successful if it allows the
firm-agent to satisfy the customer needs. The
red color represents the knowledge of the
market. At the begin of the simulation, all firm-
agents are grey—namely they do not have
knowledge on the market, then they cannot
satisfy the customer needs.

Market Agents

Market-agents stand for customer needs that
GC firms must satisfy. They search for firms
able to satisfy them. Among these they will
randomly select one.

Actions

In the following, the actions performed by firm-
agents are described. These actions have been
built based on the literature on strategic man-
agement and GCs. We define each action as a
stylized fact derived from literature.

Looking for the Customer

At each simulation step the firm-agent moves
from the current position into a new one. In
particular, the client-agent looks for the mar-
ket-agent, and the supplier-agent looks for the
client-agent. The new position is determined by
the moving direction—namely the firm-agent
will occupy the adjacent cell coherently with its
moving direction. The moving direction repre-

sents the firm-agent competitive strategy, there-
fore firm-agent movement into the grid repre-
sents the result of the strategy implementation.
This action is modeled on the basis of the
competitive behavior of firms. This is defined
by the competitive strategy and aims at satisfy-
ing the customer needs.

Forming the Supplier-Client
Relationship

At each simulation step the client-agent scans the
environment looking for an adjacent supplier-
agent that is needed to carry out the final product.
When they meet each other, they form a supplier-
client relationship and can serve the market.

Acquiring Knowledge on the Market

At each simulation step the client-agent scans
the environment looking for an adjacent mar-
ket-agent. When the client-agent meets the
market-agent, it acquires knowledge about the
market. This knowledge allows it to satisfy the
customer needs and then to become success-
ful. When the firm-agent knows the customer
needs, it changes its color. In particular, if the
firm-agent is a small one, we assume that it is
able to acquire just a piece of knowledge on the
market. In the case of medium firm-agent, all
knowledge on the market is acquired. In the
first case the small firm-agent changes its color
to pink, in the second case to red.

This different behavior depends on the differ-
ent absorptive capacity characterizing small and
medium-sized firms. According to Cohen and
Levinthal (1990), the greater the amount of firm
resources, the greater its absorptive capacity.

Changing the Competitive Strategy

We consider that the firm-agent can change the
competitive strategy. In fact, the geographical
proximity of firms and the presence of a dense
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network of inter-firm relationships facilitate the
circulation of information favoring the imitation
process. In particular, GC firms tend to emulate
the strategies of the most successful firms
(Belussi & Arcangeli, 1998; Carbonara, 2002).
Therefore, we assume that when the client-
agent (supplier-agent) meets another client-
agent (supplier-agent), it can imitate its com-
petitive strategy—that is, it can change its
moving direction, assuming the moving direc-
tion of the met firm-agent.

Learning Customer
Needs by Interacting

Firm-agents can learn customer needs not only
when they meet the market-agent, but also by
interacting with a successful client-agent, one that
knows the customer needs. In particular, we
assume that both client-agents and supplier-agents
when they meet a successful client-agent can
acquire knowledge on the market, changing their
color. The same assumption on the different
capacity of firm-agents to acquire knowledge on
the market on the basis of their size holds.

Dying

Due to the strong competition in a narrow area, we
assume that the firm-agent can die. This is reason-
able given that when the number of competitors
increases, competition becomes more intense and
firms more aggressively compete so determining
the death of the less competitive firms.

The Geographical Cluster Building
Blocks in the Model

Co-Location into a Restricted Area of
Small and Medium-Sized Firms

This GC building block is modeled by consider-
ing different agents positioned in a grid. Agents
represent GC firms, and the grid represents the

geographical bounded area. To take into ac-
count the different size of firms, we have
introduced two kinds of agents: small firm-
agents and medium firm-agents.

Specialization of Firms in a Few
Phases of the Production Process

The different specialization of firms, due to the
labor division characterizing the GC production
model, is modeled by distinguishing the firm-
agents into client-agents and supplier-agents.

Network of Inter-Firm Relationships

The network of inter-firm relationships involves
client- and supplier-agents. These two types of
firm-agents need to interact and to form sup-
plier-client relationship to carry out the final
product and serve the market.

Existence of Competition and
Collaboration among Firms

Referring to this CG characteristic, in the model
we have considered the horizontal competition
that takes place between similar firms serving
the same market, and the vertical cooperation
that takes place between different firms oper-
ating along the supply chain. In particular, we
have modeled the horizontal competition by
considering that a firm-agent dies when in its
neighbor there are many successful firm-agents
(more than three). The vertical cooperation is
modeled by allowing client-agents and supplier-
agents to share knowledge and information.

Exchange of Knowledge and
Information among Firms

This building block is modeled by allowing firm-
agents to learn from other firm-agents the
knowledge on the market and their successful
competitive strategies.
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SIMULATION ANALYSIS

The simulation analysis is defined coherently
with the three theoretical propositions, and it is
aimed at verifying whether the behavior of GCs
is consistent with our propositions.

To do this, we first need to define into the
agent-based model of GC the variables of the
propositions, namely the number of links among
GC firms, the differentiation of competitive strat-
egies adopted by GC firms, and the degree of
governance of the GC organizational structure.

Number of Links among GC Firms

In the agent-based model we have represented
this variable through the probability that firm-
agents meet each other. When the probability is
zero, firm-agents that are adjacent do not meet
each other. The higher this probability, the
higher the number of links among GC firms.
Therefore, when the number of links increases,
there is a higher influence among agents, given
that there is higher probability that agents ex-
change the competitive strategy and the knowl-
edge on market.

Differentiation of Competitive
Strategies

In our agent-based model, the competitive strat-
egy is an agent property modeled by its moving
direction that defines how the firm agent moves
into the grid. The level of differentiation of
competitive strategies is modeled by assigning
different moving directions to firm-agents at
the beginning of simulation.

Degree of Governance of the GC
Organizational Structure

We model the degree of governance by defin-
ing a number of agents that are linked by strong
ties. The level of governance increases as the

number of agents linked by strong ties in-
creases. We assume that agents linked by
strong ties exchange competitive strategy and
knowledge on the market with high probability
(100%). On the contrary, if the agents are not
linked by strong ties, the probability is lower
(30%).

Plan of Experiments and
Output of Simulation

The plan of experiments consists of 64 experi-
ments defined by assuming four different val-
ues for each variable, namely the number of
links among GC firms, the level of differentia-
tion of competitive strategies adopted by GCs
firms, and the degree of governance of the GC
organizational structure. In particular, we as-
sume four increasing values of the probability
that the agent meets another agent (i.e., 0%,
33%, 67%, and 100%). When the value is 0%,
the agent never meets another agent. When the
value is 100%, every time two agents are
adjacent, they meet each other.

Regarding the level of differentiation of the
competitive strategy, we assume that agents
can have from one up to four different moving
directions (i.e., up, down, left, and right). In
particular, all agents can have the same moving
directions (up), can have two different moving
directions (50% of agents go up and 50% of
agents go down), can have three different
moving directions (33% of agents go up, 33%
go down, and 34% of agents go left), and finally
can have four different moving directions (25%
of agents go up, 25% go down, 25% of agents
go left, and 25% go right).

Regarding the degree of governance of the
GC organizational structure, we assume four
increasing values for the number of agents
linked by strong ties (i.e., 0%, 33%, 67%, and
100%). When the value is 0%, none of the
agents are linked by strong ties. When the value
is 100%, all the agents are linked by strong ties.
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At the end of simulation (after 2,000 steps),
we measure the percentage of final successful
firm agents on the total (N%), namely the final
red agents, which is a proxy of the GC competi-
tive success in a particular competitive context.

Results

Results are summarized in Figure 1 by showing
the percentage of final successful firms as the
number of links, the differentiation of competi-
tive strategies, and the degree of governance
increase. Simulation results confirms the three
propositions.

Regarding the first one, the number of final
successful firms in the first run raises as the
number of links increases, takes the maximum
in 33%, and then slightly decreases. Thus, a
medium number of links assures the highest
number of survival firms. To a certain extent,
this result may be empirically confirmed by
looking at the evolution of the most competitive
Italian GCs, which moved from a configuration
characterized by a dense network of formal
and informal inter-firm and social relationships
(development stage) to another one character-
ized by structured inter-firm networks (matu-
rity stage) (Carbonara, Giannoccaro, &
Pontrandolfo, 2002).

Referring to the second proposition, simula-
tion results show that the higher the level of
differentiation on competitive strategies among
firms, the higher the number of final successful
firms. The result is empirically verified by
several cases of successful GCs characterized
by a high diversification among firms, such as
the media-cluster in London (Grabher, 2002;
Nachum & Keeble, 2003) and in New York
City (Krätke, 2003), the high-tech cluster in
Cambridge (DTI, 2001; Garnsey & Heffernan,
2005), and the sports shoes cluster of
Montebelluna, Italy, (Durante, 2004; OSEM,
2004).

Finally, with regard to the third proposition,
simulation results confirm that in the first run,
as the degree of governance increases, the
number of final successful firms raises, but
then decreases. Therefore, a medium degree of
governance of GC organizational structure bal-
ancing the complete autonomy of firms has a
positive effect on the competitiveness. For
example, in some GCs such a level of control is
exercised by large firms with a leader position
in GCs through hierarchical inter-firm relation-
ships, or by organizations with a role of “meta-
management” of GC firms (consortia) or by
institutions (local government, trade associa-

Figure 1. Simulation results
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tions, unions, and local banks). However, the
outcome of simulation shows that by increasing
the degree of governance over a certain value,
the GC competitiveness decreases. Therefore, it
is important to preserve the autonomy charac-
terizing GC firms, as this creates variety, compe-
tition, cooperation, and continuous learning.

CONCLUSION

This chapter has dealt with complexity science
issues from two sides: from one side, it has used
complexity science concepts to give new con-
tributions to the theoretical understanding of
geographical clusters (GCs); from the other
side, it presents an application of complexity
science tools such as emergent (bottom-up)
simulation, using agent-based modeling to study
the sources of GC competitive advantage.

Referring to the first direction, the complex-
ity science has been used as a conceptual
framework to investigate the reasons for the
success of GCs. This approach is particularly
valuable given that it allows the limits of tradi-
tional studies on GCs to be overcome. In par-
ticular, the GC competitive advantage is not the
result of a set of pre-defined features charac-
terizing GCs, but it is the result of dynamic
processes of adaptability and evolution of GCs
with the external environment. Therefore, GCs’
success is linked to the system adaptive capac-
ity that is a key property of a complex adaptive
system (CAS).

Using the theory of CAS, the key conditions
of GCs that give them the adaptive capacity
have been identified, namely the number of
links among GC firms, the level of differentia-
tion of competitive strategies adopted by GCs
firms, and the degree of governance of the GC
organizational structure. The theory of CAS
has then been used to identified the value that
these variables should have to increase the

system adaptive capacity. In this way, three
theoretical propositions concerning GC adap-
tive capacity have been formulated.

The second way complexity science has
been used in the chapter has regarded the
methodology. We have adopted agent-based
simulation, which is a technique developed to
study CASs and their behaviors. This is particu-
larly useful when the system to be investigated
is characterized by non linearity, emergence,
and evolution.

In particular, we carried out an agent-based
simulation analysis to observe whether the be-
haviors of GCs were coherent with the theo-
retical propositions. We first developed a styl-
ized agent-based model of GC based on the
literature that reproduces the relevant proper-
ties of GCs—namely the co-location into a
restricted area of many small and medium-
sized firms, the specialization of firms in a few
phases of the production process, the network
of inter-firm relationships, the existence of
competition and collaboration among firms, and
the exchange of knowledge and information
among firms. Then we have conducted a simu-
lation analysis to investigate the influence on
the GC competitive success of the number of
links among GC firms, of the level of differen-
tiation of competitive strategies adopted by GC
firms, and of the degree of governance of the
GC organizational structure.

Simulation results have confirmed the theo-
retical propositions showing that: (1) a medium
number of links among GC firms assures the
highest number of successful firms; (2) the
more differentiated the GC competitive strate-
gies, the higher the number of successful firms,
and (3) a limited degree of governance of the
GC organizational structure determines the high-
est number of successful firms.

Further research should be devoted to in-
vestigating real cases of GCs so as to confirm
with empirical data these results.
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KEY TERMS

Agent: An object with various attributes
that interprets and interacts with its environ-
ment through behavioral rules.

Agent-Based Simulation: A collection of
autonomous, heterogeneous, intelligent, and in-
teracting software agents, which operate and
exist in an environment. These software agents
interact with each other in a non-linear manner

with little or no central direction. The large-
scale effects determined by the locally inter-
acting agents are called emergent properties of
the system. The main goal of agent-based
simulation is to enrich the understanding of
fundamental processes regulating and deter-
mining dynamics of complex adaptive systems.

Complex Adaptive System: A collection
of agents, interconnections, and flows where
aggregate system behavior is determined from
the complex, local interactions of agents.

Computational Model: A simplification
of a real system that can be analytically under-
stood and/or run as a computer simulation.

Emergence: The behavior that surfaces
out of interaction of a group of agents/people
whose behavior cannot be predicted on the
basis of individual and isolated actions and is not
externally imposed.

Geographical Cluster: A geographically
defined production system, characterized by a
large number of small and medium-sized firms
involved at various phases in the production of
a homogeneous product family. These firms
are highly specialized in a few phases of the
production process and integrated through a
complex network of inter-organizational rela-
tionships.

NK Model: A binary particle model devel-
oped by Kauffman and Weinberger to under-
stand how organisms evolve by undertaking
adaptive walks similar to hill climbing to achieve
maximize fitness.
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ABSTRACT

This chapter introduces artificial life as a means of exploring strategic relations dynamics
between firms and local authorities within a local biotechnology cluster. It argues that
artificial life, combined with a conception of bioclusters as complex adaptive systems, offers
a significant approach to understanding the co-evolution of strategies and the potential
vulnerability of such systems. The simulation model involves firms and local government
administrations that negotiate to share a quasi-rent, and which, to this end, use strategies that
are to a greater or lesser extent sophisticated or opportunistic. The results show that the firms
adjust their bargaining strategies according to their assessment of gains which might be
collectively generated. The results also bring to light that the local authorities play a
regulatory role against opportunism and that they are the key players in local coordination.
Stemming from these simulations, the authors develop promising new avenues of theoretical
and empirical research.

INTRODUCTION

Confronted with their tardiness, compared to
the United States, the countries of Europe have
put in place voluntary biotechnology develop-
ment policies over the last ten years. As a
consequence, geographic clusters linked to

healthcare activities, the environment, and seed
production have appeared or increased in Eu-
rope, for example the Medicon Valley on the
border of Denmark and Sweden, and the Evry
Génopole in France. The cluster concept is
defined by Porter (1998) as a group of geo-
graphically close companies and institutions
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whose activities are complementary and char-
acterized by a high degree of specialization and
technology transfer. The cluster is based on
dense networks of inter-firm relations, charac-
terized by cooperative and competitive links.
This strong bond produces collective benefits,
such as “quasi-rents,” owing to the operation of
licenses or the effects of the agglomeration
(Zucker & Darby, 1997; Dyer & Singh, 1998).

While the literature on biotech clusters is
centered particularly on the strong competitive-
ness of such innovative systems, certain studies
relativize these successes by underlining coor-
dination difficulties linked to conflicts about the
sharing and redistribution of the collective ben-
efits (Owen-Smith & Powell, 2003). These
coordination flaws are linked structurally to
features of biotech clusters. They present as
opportunistic behaviors favored by cross-sec-
tor cooperation-competition or by a dual-mar-
ket structure (Roijakkers, Hagedoorn, & Van
Kranenburg, 2005). Equally, these coordination
difficulties arise from differences of interests
which divide public and private players.

However, although there are many studies
of the links between firms and public laborato-
ries (Audretsch & Stephan, 1996; MacMillan et
al., 2000), there are few that raise the issue of
coordination difficulties involving firms and lo-
cal government administrations (Chataway, Tait,
& Wield, 2004; Leroux, 2004; Rausser, Simon,
& Ameden, 2000). These links are fundamen-
tal, however, given the controlled and much-
debated nature of activities connected with
biotechnologies. Indeed, local government au-
thorities play an important role in local industrial
policy, because they have to guarantee the
ethical nature of the research undertaken. This
results in highly complex negotiation strategies,
as firms seek to appropriate the collective
benefits by putting pressure on local authorities,
while at the same time currying favor with
them. Concentrating on this angle, this chapter

will focus on an analysis of negotiation strate-
gies linking companies and local public authori-
ties. Which negotiation strategies occur most
frequently? How do these strategies develop
together over time? Do they contribute to
strengthening or altering the cluster’s perfor-
mance? By addressing these questions, this
chapter aims to offer a dynamic quantitative
analysis, based on an artificial life simulation
and enabling a first evaluation of the occur-
rence of particular coordination mechanisms
within biotech clusters.

The theoretic positioning used here is the
evolutionary perspective, which is based on the
analysis of complex evolving systems. This
permits an understanding of the emergence of
the combined properties of a system of agents
from the interaction of its constituent elements
(Arthur, Durlauf, & Lane, 1997). The system is
characterized by a great number of intercon-
nected heterogeneous agents who choose their
action according to the choices of the other
participants, such that a variety of complex
dynamics can be observed. The system’s dy-
namic is sensitive to environmental disturbance.
Thus it is possible to analyze its instabilities and
potential vulnerability.

With this in mind, we decided on an explor-
atory simulation model with a heuristic aim. The
model involves firms and local government
administrations that negotiate to share a quasi-
rent, and which, to this end, use strategies that
are to a greater or lesser extent sophisticated or
opportunistic. The simulation results confirm
that the negotiation strategies adopted by the
players have an impact on cluster performance.
The firms adjust their bargaining strategies
according to their assessment of gains that
might be collectively generated. The results
also show that the local authorities play a
regulatory role and that they are the key players
in local coordination, even if the situation does
not necessarily favor them at the outset.
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The second part of the chapter is devoted to
a review of the literature and to the propositions
that underpin the model. The third part shows
the model in action aiming to test these propo-
sitions. We then presents the results of the
simulations, followed by a discussion of the
results and of lines of future research.

TOWARDS AN EVOLUTIONARY
APPROACH TO STRATEGIC
BARGAININGS WITHIN
BIOTECH CLUSTERS

The coordination difficulties that might call into
question cluster performance are linked to con-
flicts about the appropriation of resources and
collective rents. In this regard, an initial area
examined by researchers relates to the nega-
tive impacts of the cooperation-competition
duality within biotech clusters. While this duality
may be a source of competitive spirit (Jorde &
Teece, 1989; Gulati, Nohria, & Zaheer, 2000), it
can, on the other hand, lead to opportunistic free-
riding behaviors, which translate into unequal
gaining of resources or of collective rents
(Nooteboom, 1999; Stuart & Sorensen, 2003).
This phenomenon occurs particularly frequently
in biotech clusters because of the cross-sector
(health, environment, food-processing) and frag-
mented nature of their activities, as Argyres and
Liebeskind (2002) demonstrate.

A second issue raised by studies is that of
coordination difficulties linked to the heteroge-
neity of the firms involved (Powell, White,
Koput, & Owen-Smith, 2005; Saviotti, 1998;
Roijakkers et al., 2005). Biotech clusters are
organized as a dual market, based on partner-
ships between big, international firms and small
and medium enterprises (SMEs). Neverthe-
less, these partnerships, based on survival strat-
egies, and strategies to achieve both pecuniary
and information rents, lead to imbalances of

power and to opportunistic behaviors. This
results in instability, which is sometimes chronic
in the links between small and large firms,
which can cast doubt over the performance of
biotech clusters.

A third subject raised and demonstrated by
research works is that of coordination flaws
linked to the highly regulated and controversial
nature of innovative biotechnology activities,
both public and private. First of all, a number of
studies, such as those by Lawson (2004) or
Sherry and Teece (2004), emphasize the issue
of conflicts about property rights in relation to
resources and incomes. Other studies, focused
on network dynamics, discuss the notion of
“partial embeddedness” between the public
and private spheres. Owen-Smith and Powell
(2003) show that research laboratories need to
establish a strategic balance between aca-
demic and industrial priorities in order to avoid
“the danger of capture by industrial interests”
(p. 1695). Finally, some works concentrate on
the role of national and local institutions
(Dasgupta & David, 1994; Teece, 1996;
Etzkowitz & Leydesdorff, 2000; Lehrer &
Asakawa, 2004). Some of these authors are
particularly interested in the controversial na-
ture of the biotechnologies (the fight against
genetically modified organisms¾GMOs), and
in public and private management problems
from the viewpoint of the ethical and regulatory
concerns (Chataway et al., 2004). While the
role of public players in systemic risk reduction
is mentioned (Dohse, 1999; Peters & Hood,
2000), it nevertheless forms the basis of no
research program.

This literature review shows that few works
are devoted to the essential links between
companies and local public authorities. As
Chataway et al. (2004) and Rausser et al.
(2000) say, strategic relations between firms
and the public administrative bodies are crucial.
Leroux (2004) shows that firms develop bar-
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gaining strategies with the aim of capturing
quasi-rents and influencing the decisions of the
local public authorities, who are guarantors of
the general, public interest. The evolution tra-
jectories of the clusters depend on this in a
technological and partnership context which is
constantly changing. In this study, we develop
the first exploratory research to clarify these
strategic links, with the objective of better
understanding their nature and of measuring
their impact on the performance of the cluster.
We will consider more precisely the bargaining
strategies aimed at gaining the collective ben-
efits. What kind of bargaining strategies do the
firms and the local authorities take part in?
How do the players adapt their strategies ac-
cording to environmental change? Do these
bargaining strategies play a part in the medium
and long-term performance of the cluster?

The theoretic position chosen in order to
answer these questions is evolutionary theory,
based on the complex adaptive systems para-
digm (Arthur et al., 1997; Kirman, 1997). Evo-
lutionary theory, linked to cognitive economics
(Simon, 1955; Walliser, 2000), is based on the
following principles that challenge the fiction of
the representative agent and limited rationality:
(1) heterogeneity of agents; (2) variability
that corresponds to the endogenous capacity of
the system to produce new directions depend-
ing on behavioral mutations of the agents in-
volved; (3) path dependency that results from
learning effects and auto-reinforcement mecha-
nisms leading to the irreversibility of the cluster’s
evolutionary dynamics; (4) inductive learn-
ing, according to which agents are individually
involved in a cognitive process of problem-
solving—they learn and adapt themselves with
experience in a complex evolving system; and
(5) situated rationality inspired by Simon’s
(1955) work and taken up by Walliser (2000),
concerning a rationality that is constructed
through interaction and that involves rationally
adaptive agents.

From this evolutionary perspective, the
biotech cluster can be understood as a complex
evolving system (Janszen & Degenaars, 1998).
The significance of this approach is that it takes
into account internal mechanisms of decision
making and adaptation, both in their develop-
ment and in their reversal. This is important
because, built on a wide variety of partnerships
and strategies linking private and public play-
ers, the cluster’s evolution trajectory can prove
to be unstable and even chaotic in certain cases
(Luukkonen, 2005; Mangematin et al., 2003;
Stuart & Sorensen, 2003). Now, following a
series of research questions about evolution
trajectories (Mangematin et al., 2003) and the
strategic importance of coordination (Chataway
et al., 2004; Rausser et al., 2000; Etzkowitz &
Leydersdorff, 2000), this approach allows a
dynamic analysis of the different bargaining
strategies used depending on environmental
uncertainty. As stylized facts show (Leroux,
2004), local authorities tend to make conces-
sions when faced with relocation or closure
threats, by opportunistic firms which are trying
to appropriate the quasi-rents generated by the
cluster. The question then is whether the firms’
strategies depend on the certain or uncertain
nature of the future collective rent. Three propo-
sitions can be put forward in order to look for
answers to this question. The first seeks to test
agents’ behavior when the quasi-rents are
known. If we distinguish firms’ motivations,
which satisfy their private interests, and the
local authorities’ motivations, which satisfy the
general interest, then the aim is to grasp the
nature of the evolution of the sharing mecha-
nisms when there is no uncertainty about gains.

Proposition 1: When the quasi-rents are
known and stable over time, firms tend to
develop opportunistic negotiation strategies
in order to appropriate them. Firms benefit
from concessions granted by local authorities
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in response to the firms’ threats of possible
disengagement.

The second proposition aims to test the
development of agents’ sharing strategies when
there is an uncertainty on the amount of the
quasi-rents, and they have to estimate it. While
stylized facts show bargaining strategies to be
prudently less opportunistic in an uncertain
situation (Leroux, 2004), it is necessary to find
the determining factors in agents’ sensitivity to
environmental disturbance.

Proposition 2: When there is uncertainty
over the value of quasi-rents, firms develop
less opportunistic behaviors, while still
benefiting from the concessions made by the
local authorities.

The aim of the third proposition is to test the
behavior of the local authorities when the amount
of the quasi-rents is uncertain and firms’ oppor-
tunism can call the performance of the cluster
into question. A further aspect is to discover if
authorities have the capacity to reduce sys-
temic risk.

Proposition 3: When the value of the quasi-
rents is uncertain and opportunistic behavior
could contribute to a reduction in cluster
performance, the local authorities overcome
the harmful effects of the firms’ strategies.

In order to test these three propositions, we
develop an artificial life simulation based on a
genetic algorithm involving mutation and cross-
over operators (Holland, 1975; Goldberg, 1989).
The significance of a simulation lies in the
endogenous capacity of agents involved to
search systematically for new behavioral rules
and to include them within their own “world
model” according to an adaptative process
(Marney & Tarber, 2000; Vriend, 2000). The

research methodology associated with this tool
is a “theoretic exploratory” approach (Snow &
Thomas, 1994). The objective is to explore and
develop theoretic teachings by testing research
propositions, in order to open the way to new
research questions. The simulation consists
then in exploring a metaphoric world which
generates artifacts for analysis in a heuristic
perspective.

THE MODEL: INTERACTION
WITHIN BIOTECH CLUSTERS
AND THE STATE OF THE WORLD

In accordance with the three given proposi-
tions, the model consists of three simulations of
processes of bargaining involving firms and
local government administrations. They bar-
gain to share a collective benefit, affiliated to a
quasi-rent, represented in the model by a pie.
This is a strategic game under ultimatum
(Ellingsen, 1997). When the two transactors
involved both want to appropriate an over-large
part of the pie using opportunistic means, the
negotiation fails. So two kinds of transactors
take part in the model as a state of the world.

Firms are modeled as obstinate agents
(Obs) whose demands are independent of those
of the adversaries. As they participate in the
cluster’s performance, they want to appropri-
ate the part of the pie that they fixed themselves
depending on their profitability objectives. Some
of them expect a large part (more than 50 %)
whereas others expect a less significant part
(less than 50 %). The part expected also de-
pends on the more or less powerful and oppor-
tunistic behaviors adopted by these firms.

Local authorities are modeled as “sophisti-
cated agents” (Soph) which adapt their demand
to that hoped for by their adversaries rather
than gain nothing. As they answer for the
“general interest,” they adapt themselves to the



340

A Simulation of Strategic Bargainings within a Biotechnology Cluster

firms’ expectations. The stake here is to fix
firms within the cluster, to avoid relocations, to
stimulate research-innovation links and territo-
rial performance. So they are under firms’
ultimatum because the latter sometimes make
relocation or employment threats to gain ad-
vantages. However, when two local authorities
bargain together, they share the pie in a 50/50
proportion with respect to the “general inter-
est” and to their common stake—local develop-
ment and performance.

DEMAND DETERMINATION

Firms’ Demands

The obstinate firm’s demand di is broken down
into two components, the size of the pie ex-
pected and the portion demanded. Thus:

di = expected size of the pie (teg) * de-
manded portion (i)

with

T: the real size of the pie

teg ∈ [0,TG], minimum value and maximum
value of teg

i ∈ I ⊂ [0,1], I set of portions demanded

of which

di ∈ D ⊂ [0,TG], D finite set of possible
demands.

The strategy di with i = 0.5 is called a fair
strategy. Any strategy for which i > 0.5 is called
a greedy strategy. And the other strategies for
which i < 0.5 are called modest strategies
(Ellingsen, 1997).

Local Government Demands

Local authorities, whose strategies we called r,
are supposed to identify the adversary’s strat-
egy and adapt their demand to that expected by
the adversary. Consequently, when an author-
ity bargains with a firm whose demand is di, it
demands:

r = tegr-di

Nevertheless, local authorities can also risk
a failure situation if they overestimate the size
of the pie. So the set of possible strategies is
S = D U {r}, with di the obstinate demand and
r the sophisticated demand.

PAY-OFF FUNCTION

If firm i asks for di and firm j asks for dj, then
firm i receives the following pay-off:
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If the total of di and dj is greater than the
real size of the pie T, then the bargaining has
failed and neither firm obtains any gain. The
surpluses are not redistributed and are consid-
ered as lost.

A local authority that negotiates with a firm
thus obtains:
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So the pay-off matrix presented in Table 1is
obtained.

SIMULATIONS

Implementation of the
Genetic Algorithm

Each agent is determined by its genotype,
broken down into two components: its strategy
and the expected size of the pie. The obstinate
population (firms) is divided into seven profiles
which correspond to seven discrete intervals
between 0 and 100.1 Each profile has been
arbitrarily fixed and corresponds to the portion
demanded.2

The simulations3 are based on the following
parameters: the initial size of the pie is 1; the pie
can vary according to the interval [0.1 : 2.0]; the
number of agents within the population is 1,000;
the mutation rate is 10%; the crossover rate is
50%; the initial distribution of the different
populations involved at the start of the game is
12.5%. The choice of these parameters is the
result of a compromise between keeping a
selective pressure on the population in order to
ensure algorithm convergence, and maintaining
genetic diversity in the population to avoid a too
rapid convergence (Bäck,1994; Schoenauer &
Sebag, 1996).4 In a cluster, agents do not sys-
tematically bargain with the whole population,
but only with some agents when necessary.
Consequently, this constraint has been intro-

duced into the model. At each bargaining an
agent bargains with a representative sample of
10% of the whole population. Each agent is
next assessed according to the gains he can
generate. Each simulation was carried out 1,000
times.

Relationship Proximity

The model introduces a relationship proxim-
ity linking some agents within this artificial
world. Although firms and local authorities can
bargain with every agent within the cluster
(notation step), they exchange information on
the pie size only with partners that they have
noticed adopting the same strategy as them
during the bargaining phase (crossover step).
Consequently, if certain agents are not able to
recognize at the outset the strategy of their
adversary, they are nevertheless in a position to
know it at the end of the bargaining process. So
an internally generated, close relationship oc-
curs which links agents in a common, mutual,
self-protection strategy. This strategy enables
the selective exchange of information on the pie
size between agents that have the same strate-
gic approach.

Simulation S1: The Size of the Pie Is
Known and Does Not Change

In this first simulation, we test proposition 1.
The size of the pie is T = 1 and does not

Table 1. The pay-off matrix

 Obstinate di Sophisticated r1 

Obstinate dj 
di 

dj 
tegr1-dj 

dj 

Sophisticated r2 di 
tegr2-di 

tegr1/2 
tegr2/2 

Table 2. The seven obstinate profiles

Obs 7 Firms whose demand is 7% 

Obs 21 Firms whose demand is 21% 

Obs 35 Firms whose demand is 35% 

Modest 

Obs 50 Firms whose demand is 50% Fair 

Obs 64 Firms whose demand is 64% 

Obs 78 Firms whose demand is 78% 

Obs 92 Firms whose demand is 92% 

Greedy 
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change during the bargaining. Using a simula-
tion enables step-by-step observation of the
strategies adopted by the agents involved and
of the changes of direction possible over 500
periods.

Simulation S2: The Size of the Pie Is
Unknown

In this second simulation, we test proposition 2.
Uncertainty is introduced into the bargaining
game. The pie size is not known and the agents
have to try to estimate it. The size of the pie is
fixed at T = 1. Here, firms and local authorities
are endowed with an endogenous capacity to
modify their respective demands d. More pre-
cisely, a learning process in respect of teg,
based on the use of evolutionary operators such
as crossover and mutation, enables them to
estimate the size of the pie. Each agent has the
capacity to assess the expected size of the pie
(teg), and each new assessment leads to a
changed demand d. The possibility of failure is
higher because agents can tend to overestimate
or underestimate the size of the pie during the
evaluation process.

Simulation S3: The Size of the Pie
Varies Depending on the Behaviors of
the Agents Involved

In this third simulation, we test proposition 3. The
pie size becomes variable and represents the
performance of the cluster. The more firms and
local authorities choose opportunistic strategies
leading to the failure of negotiations, the greater
the negative impact on the global performance of
the cluster and thus on its viability over time (the
size of the pie decreases). On the other hand, the
more the agents choose strategies supporting the
success of negotiations (as concessions, or fair
vs. modest strategies), the more positive the
impact on the global performance of the cluster

(the size of the pie increases). So we need to
observe how the different strategies develop
under these conditions and to see whether the
local public authorities manage to get around the
firms’ opportunism.

Technically, a parameter of influence k here
affects the real size T of the pie. If at the
preceding step (n-1) the number of successful
bargainings is higher than the number of fail-
ures, then the size of the pie increases by 0.01.
In the opposite case, it decreases by 0.01. The
choice of this parameter k = 0.01 is arbitrary
and fixed at a low level. Its purpose is to
illustrate that bargaining failure influences the
cluster performance but in a non-radical way; it
will not induce a major economic crisis or bring
about the closure of a company which is a major
source of orders. In these last two cases, the
performance of the cluster can be radically
disrupted, which is not our case here.

RESULTS

Simulation S1

The simulations show that bargaining behaviors
evolve in two distinct phases. First, local au-
thorities making concessions are more impor-
tant than the other transactors during the first
20 generations. During these periods, bargain-
ing leads mainly to an equal share of the pie (50/
50). Second, this superior tier of local authori-
ties which make concessions then contributes
to the emergence of the greediest firms, which
demand 92% of the pie, and a smaller propor-
tion of firms which demand 78% of the pie.

So it is important to note that in the medium
and long terms, bargaining is stabilized around a
majority of greedy firms whose existence is
maintained by the presence of local authorities
making concessions. Without uncertainty on the
pie size, the greediest firms take advantage of
the situation. We can further assert that the local
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authorities play a distributive role, albeit neither
directly nor deliberately, since by making con-
cessions they contribute to enabling the greedi-
est firms to gain quasi-rents to the detriment of
the modest and fair firms. Without local authori-
ties making concessions then, the greediest firms
could not take advantage of the situation.

This simulation validates proposition 1. When
quasi-rents are known and stable over time,
firms’ behavior is very opportunistic, and they
make use of concession-giving local authorities.

Simulation S2

After 1,000 tests, the results show a variety of
possible outcomes:

• In 46.20% of cases, the bargaining is
stabilized around the greediest firms,
whose demand is for 92%, and the local
authorities. The existence of these firms
in the game is maintained by the presence
of these public authorities, as in simulation
S1.

• In 29.6% of cases, the bargaining is stabi-
lized around firms demanding either 78%
or 64%, and the local institutions.

• In 22.4% of cases, the bargaining is stabi-
lized around the fair firms, whose demand
is 50% of the pie, and the local institutions.

• In 1% of cases, the bargaining is stabilized
around the modest firms which demand
less than 35% of the pie, and the fair firms.
In these very rare cases, local public
authorities are missing.

• The last 0.8% consists of errors or acci-
dents in the evolutionary process which
sometimes occur.

So when the pie size is unknown, results can
be very different and depend on the capacity of
the agents involved to find and appropriate the
right size of pie quickly. The “winners” are
those who succeed in correctly estimating the
size of the pie as soon as possible, and who
exchange information with the most successful
agents. In 46.20% of cases, the greediest firms
rapidly benefit from the very large presence of

Figure 1. Simulation S15
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local authorities during the first 40 generations.
The authorities have such a significant pres-
ence because of the pie size researching pro-
cess. Concessions facilitate correct evalua-
tions; the low demands of modest and fair firms
contribute as well to this and help to avoid
failure. In other cases, prudent and fair strate-
gies are prioritized, such as the downward
revision of demands. Concessions are plentiful
at the start of the period and then give way to
more prudent, obstinate strategies once the size

of the pie is approximately estimated. So when
the pie size is unknown, the distributive role of
local authorities is very high. In only 1% of
cases can modest firms survive without the
local public administrations because they them-
selves play a distributive part. This simulation
validates proposition 2. Firms develop generally
less opportunistic strategies, but continue to
draw benefit from concession-giving local au-
thorities.

Figure 2. Average results on 1,000 generations
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Figure 3. Simulation S2—average results on 1.000 generations
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Simulation S3

The results show that agents adapt their behav-
ior in order to preserve the pie size. As the
bargaining game has no stability, 1,000 periods
are represented here. They show primarily that
firms tend to exploit the bargaining process
according to their evaluation of the pie size, its
evolution, and the more or less significant pres-
ence of local public administrations and mod-

est/fair firms. Thus, once the pie has reached a
size near the maximum expected threshold, the
move from prudent/fair/modest strategy to the
greediest strategy can be observed. As an
example, the periods [275 : 375] are character-
ized by a strong presence of the prudent firms
whose demand is 64%. During this period,
prudent behaviors contribute significantly to
making the pie grow towards the maximum
threshold. Once the pie has reached this size,
we can observe the move from the prudent
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Figure 4. Simulation S3 and zoom
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64% strategy to the greediest 92% strategy.
This is possible because of the presence of the
local authorities which reduces conflict be-
tween the greediest agents and thus averts any
radical reduction of the collective performance.
So when the cluster is threatened by too much
greedy behavior, which can considerably alter
its global performance, local authorities appear
and play a regulatory role, allowing the pie to
grow. In this way, cluster performance is main-
tained principally because of the role of local
authorities. This simulation then validates propo-
sition 3. When there is uncertainty about the
quasi-rents and opportunism threatens cluster
performance, the local authorities overcome
the harmful effects of opportunistic behaviors.

DISCUSSION AND CONCLUSION

The results of these simulations validate our
propositions and open the way to new research
questions. The evolutionary approach allows a
first reflection on dynamics and phases of
strategic behaviors within a biotech cluster.
The simulations show that agents modulate
their behavior through time according to vari-
ous parameters: the profits withdrawn during
bargaining, the effects of their own behavior on
the global performance of the cluster, and the
uncertainty and their capacity to observe their
partners’ strategies and to make concessions.
Supported by the assumption of situated ratio-
nality, the cluster can be viewed as an “emer-
gent processual regularity” that is highly indi-
vidual and differentiated owing to the different
combinations of strategies. This model can then
contribute to a deeper analysis focused on
clusters’ intrinsic characteristics (Waluszewski,
2004; Carbonara, 2004; Peters & Hood, 2000).

These simulations also call into question the
assumption that rivalry-cooperation system-
atically produces emulation, and raise questions

about the vulnerability of such local systems. As
the idea of cluster vulnerability through collusion
and lock-in effects is developed in the literature
(Floysand & Jakobsen, 2002; Peters & Hood,
2000), so this chapter offers an analysis cen-
tered on strategic opportunistic behaviors. Arti-
ficial life simulations enable us to observe step by
step how the agents instrumentalist their rela-
tionships and modify their strategies in a com-
plex environment so as to appropriate benefits or
to preserve collective performance. At any mo-
ment, an “accident” of system evolution, viewed
as an artifact, can considerably affect the com-
position of the cluster. This suggests that further
analysis of clusters’ survival and perennially
through the strategic approach is a promising
avenue for future research.

As we have argued, only a few studies
develop the part played by local government in
biotech clusters (Dohse, 1999). The evolution-
ary perspective can contribute to correcting
these inconsistencies and show the importance
of the regulating role of local administrations,
which have a power that can be said to be the
power of the weak as developed by Schelling
(1960). Without these local authorities, the
cluster’s performance could not be maintained.
The “power of the weak” follows from the fact
that they are the key players in the groupings,
even if the situation (disengagement threats
and concessions) is not favorable to them at the
beginning. Further, this model raises one of the
main ambiguities of public-private coordina-
tions that can occur within biotech clusters
(Leroux, 2004). On the one hand, they are
supported by local government because of the
uncertainty which can be caused by firms’
behaviors (relocation and closure threats) and
by environmental evolution. On the other hand,
supporting firms can in some cases contribute
to the emergence of the greediest strategies
and to the ousting of the less opportunist firms.
A fruitful direction for further empirical analy-
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sis may be a deeper probing of the question of
clusters’ strategic local governance in relation
to the networks’ strategic analysis (Powell et
al., 2003; Gulati et al., 2000).

From an exploratory point of view, such a
model with a heuristic aim opens new avenues of
theoretic and empirical research. From a theo-
retical point of view, it can lead to a reflection
focused on conflict and power analysis within
clusters, according to an evolutionary approach
centered on the analysis of emerging rules. As
part of the research carried out in the institution-
alist framework (Hodgson, 1998), the analysis of
micro-regularities emerging from interaction
certainly brings to light the arbitral dimension of
bargaining rules. They are both a constraint for
collective action and the outcome of this collec-
tive action. Thus the theoretic question is about
the emergence and the evolution of these rules
under uncertainty, and about the links that can be
established with the cluster’s performance and
survival. From an empirical point of view, an
interesting avenue to develop would be an analy-
sis focused on conflicts within biotech clusters,
such as the nature of conflict, the different
resolution processes adopted by the local actors
involved and dependent on environmental con-
straints (market, legal regulation), and finally
their impact on the evolution system.

However, while these heuristic simulations
lead towards new areas of research, their
limitations, too, point to other directions for
future research. The first limitation of the model
is that it proposes and develops only two kinds
of agents, firms on one hand and local govern-
ment authorities on the other hand. So the scope
needs to be enlarged, taking into account a
greater diversity of agents (research laborato-
ries, development agencies) and a greater di-
versity of exchanges (sellers-suppliers). Sec-
ond, this model is limited to relationships devel-
oped within the cluster, so it is important to take
into account a more complex environment in-

cluding the embeddedness of the actors in-
volved in complex social relations outside the
cluster (relations with client companies, rela-
tions with shareholders, and European policies)
such as is developed within some earlier empiri-
cal studies (Peters & Hood, 2000; Floysand &
Jakobsen, 2002). The questioning here is fo-
cused on the various levels of decision and their
impact on the cluster performance and sur-
vival. The third limitation of the model is that it
introduces proximity as a relational and com-
municative distance, but not as a geographic
one. With this in mind, we now intend to intro-
duce geographical distance such as in the stud-
ies of Brenner (2001) and Zimmermann (2002).
Computing tools such as multi-agent systems
can also contribute to the reinforcement of the
mechanisms of inductive reasoning, while in-
troducing geographic proximity parameters.
Future research may examine lock-in effects
and the intrinsic vulnerability of biotech clusters
by reducing these constraints.
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KEY TERMS

Clusters: According to the Porter (1998)
definition, clusters are geographic concentra-
tions of interconnected companies, specialized
suppliers, service providers, firms in related
industries, and associated institutions (universi-
ties, standards agencies, trade associations) in
a particular field that compete but also cooper-
ate. Clusters can be specialized in biotechnol-
ogy, computing, wine, electronics, and so forth.
One of the best known is the Silicon Valley.

Cooperation-Competition: The duality
between cooperation and competition is very
high within clusters because firms are linked
locally both by complementary relations and
vigorous competition. This process can contrib-
ute to innovation and collective performance.
In this case, cooperation and competition can
coexist because they are on different dimen-
sions.

Inductive Learning: The agents are indi-
vidually involved in a cognitive process of prob-
lem solving. They learn step by step by experi-
ence and they adapt their behaviors according
to the different situations previously observed.

Path Dependency: Path dependency is
the dependence of the outcome of a dynamic
process on historical events. So learning pro-
cess and auto-reinforcement mechanisms lead
to the irreversibility of the cluster dynamics.

Relational Quasi-Rent: The relational
quasi-rent is a surplus generated by a coopera-
tion process involving several actors linked by
complementarities (firms, institutions). This
surplus cannot be appropriated by one actor to
the detriment of the others because of its
collective nature. So the sharing of the quasi-
rent between the participants can be a big
problem because no objective criteria exist for
sharing it. Thus, opportunist behaviors can of-
ten occur such as “hold up” strategies.

Situated Rationality: The situated ratio-
nality of an agent is defined as a limited ratio-
nality fundamentally linked to the context of
interaction. The problem-solving process of
each agent takes into account the links with his
environment, such as for example the proximity
links built with some of the agents involved.

ENDNOTES

1 The discrete intervals allow precise sta-
tistical evaluation of the results.

2 The choice of seven profiles is sufficiently
high to be representative of the principal
large categories of possible demands, while
guaranteeing legible results on a histo-
gram.

3 Each simulation is performed according to
the following steps: (1) initialization: ran-
dom or deliberate choice of strategies; (2)
notation: bargaining process and nota-
tion—that is, assessment of each agent
according to the gains he can generate;
(3) selection: process through which
agents are chosen to be replicated, the
most favored being those with the highest
level of notation; (4) crossover: cross-
over and reproduction of the most suc-
cessful agents; (5) mutation: random de-
terioration of one or several genetic char-
acters of an agent; (6) return to 1.
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4 Simulations have been tested with muta-
tion rates varying from 0% to 15%. When
the mutation rate is less than 5%, the
percentage of algorithm errors is more
than 10% and distorts the analysis of the
results. At 15%, the mutation rate be-
comes destructive and does not match the

propositions’ realism, favoring the greedi-
est profiles.

5 The abscissa represents the successive
generations or periods of bargaining. The
Y-axis represents the proportion of each
population within the total population.
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ABSTRACT

This simulation model is an example of theory-driven modeling that aims at developing new
hypotheses on mechanisms that work in markets. The central aim is to model processes of
knowledge accumulation in markets on the theoretical basis of Hayek’s concept of “competition
as a discovery procedure,” in which firms experiment with innovations that are tested in the
market, and the superior innovations are imitated by other firms through mutual learning.
After an overview on the structure of these simulation models and important results of previous
research, we focus on the analysis of the severe negative effects that limited imitability has for
this Hayekian process of knowledge accumulation. We show that limited imitability can
hamper this process through the emergence of a certain kinds of lock-in situations which
reduces the number of changes in the position of the leading firm.

INTRODUCTION

Economic growth theory as well as evolution-
ary theory of economic change has shown that
technological progress generated by processes
of innovation is the most important determinant
of economic growth (Nelson & Winter, 1982;
Aghion & Howitt, 1998). The search for fac-
tors that foster or impede the generation and
spreading of innovations is a central theme in

modern innovation economics. Since innova-
tions (as new products or production technolo-
gies) emerge primarily in competition processes
between firms in markets, the analysis of the
dynamics and the interaction between compet-
ing firms is crucial for explaining technological
progress.

The simulation models that are presented in
this chapter are based upon evolutionary ap-
proaches to market competition, particularly on
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Hayek’s concept of “competition as a discov-
ery procedure” (Hayek, 1948, 1978, p. 179). In
this approach competition is seen as a process
of parallel experimentation, in which rivalrous
firms on the supply side of a market generate
and test different hypotheses about the best
way to fulfill the consumers’ preferences. From
an Hayekian perspective, which particularly
emphasizes knowledge problems, the ultimate
test of which competitors have superior prod-
ucts or services in regard to preferences of
consumers is the market itself (via its feedback
through profits or losses). And the firms with
the relatively inferior products and services can
learn from the leading firms by imitation. This
evolutionary process of variation and selection
of hypotheses leads to a path of knowledge
accumulation in the market, driven by perma-
nent innovation and mutual learning between
the firms (Kerber, 1997).

In our simulation experiments we analyze
central mechanisms and interactions between
the firms, particularly the extent of mutual
learning, in this Hayekian knowledge-generat-
ing competition process. One of the important
results in our previous research was that the
growth rate of knowledge accumulation in com-
petition depends critically on the extent of the
imitability of the activities of the firms by their
competitors, because imitation is necessary for
mutual learning between the firms. The case of
limited imitability is empirically very relevant,
because imitation of successful firms can be a
time-consuming, complex, and risky activity,
which also can fail (Dosi, 1988). In this chap-
ter we analyze more deeply the causes for
the severe reduction of knowledge accumu-
lation through the non-imitability of par-
ticular activities. Since such non-imitabilities
can lead to some kinds of lock-in situations with
regard to the change of the leading firms, we
test three different hypotheses about the corre-
lations between the number of emerging lock-
in situations, the changes of the leading firms,

and the growth rate of knowledge accumula-
tion. The simulation model is approximated by a
new meta-model, multivariate regression analy-
sis, to verify these hypotheses. We find that the
non-imitability of one activity does not only
reduce the extent of mutual learning, because
this activity cannot be imitated. Rather the
non-imitability of activities generates phenom-
ena that hamper learning additionally: (1) lock-
in situations hamper mutual learning on the side
of the competitors, and (2) the reduction in the
number of changes of the leading firm hampers
mutual learning on the side of the leading firm.
In Hayekian market process theory, these are
the effects that slow down knowledge accumu-
lation in competition under limited imitability
assumptions in a severe way.

THEORETICAL BACKGROUND

Evolutionary Concepts
of Competition

The theoretical background of our simulation
models are evolutionary approaches to market
competition, which are based upon Schumpeter,
Hayek, and evolutionary innovation economics.
Schumpeterian concepts of competition char-
acterize competition as a rivalrous, dynamic
process between firms which consists of inno-
vations by entrepreneurs and their imitation by
the competitors (Schumpeter, 1934). In the
Hayekian concept of “competition as a discov-
ery procedure,” competition is seen as a pro-
cess of parallel experimentation, in which the
firms try out new products and technologies in
the market, implying the generation of new
knowledge through this market test (Hayek,
1978). In modern evolutionary innovation eco-
nomics, the accumulation of knowledge, which
drives economic development, is modeled—in
analogy to biological evolution—as the out-
come of variation-selection-processes in re-
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gard to products and technologies (Nelson &
Winter, 1982). Although these theoretical ap-
proaches differ in many respects, they have in
common that market competition is seen as a
process in which new knowledge (in the form
of new products and technologies) is generated
and spread, leading to a wealth-enhancing pro-
cess of knowledge accumulation. In contrast to
the model of perfect competition in mainstream
economics which ignores innovation processes
and focuses instead on the problem of price
competition (treating products and technolo-
gies as exogenous), these evolutionary ap-
proaches to market competition encompass
innovation processes and see technological
progress as a crucial result of competition.

Our approach to model certain aspects of
these knowledge-generating processes in com-
petition can be best understood from the per-
spective of the Hayekian concept of “competi-
tion as a discovery procedure.” One of the most
important insights from Hayek’s research in
economics is that the assumption in the model
of perfect competition that both the firms on the
supply side and the consumers on the demand
side have perfect knowledge is fundamentally
wrong: “The real problem in all this is not
whether we will get given commodities and
services at given marginal costs but mainly by
what commodities and services the needs of
the people can be satisfied most cheaply. The
solution of the economic problem of society is
in this respect always a voyage of exploration
into the unknown, an attempt to discover new
ways of doing things better than they have been
done before” (Hayek, 1948, p. 100). Due to
epistemological reasons, nobody can know be-
forehand what the best solutions for the prob-
lems of consumers are. Only through market
competition—conceived as a process of paral-
lel experimentation, in which the competing
firms try out different new hypotheses about
how these problems can be solved best—can
the knowledge be generated of what the supe-

rior products and technologies are. Therefore
the market test is crucial for identifying the
superior innovations, which then can be imi-
tated by others implying the spreading of this
new knowledge. That is the reason why Hayek
characterizes competition as a discovery pro-
cedure.1

The evolutionary concept of competition as
a test of hypotheses (Kerber, 1997) is based
upon this Hayekian approach. It is assumed
that on the supply side of the market, there are
a number of firms that only have subjective,
bounded, and fallible knowledge about the pref-
erences of the consumers and how to fulfill
them best. The firms have a set of activities
(design and quality of products, marketing, pro-
duction, organization, etc.), which they can
carry out in order to ensure the best and/or most
worthwhile performance to the consumers, but
due to their ignorance they have only conjec-
tures (hypotheses) about how to do this best.
As firms do not know the preferences of the
consumers, they will develop different conjec-
tures about the best products, leading to a
heterogeneity of problem solutions that are
offered in the market. The consumers on the
demand side of the market decide which of
these different offers of the suppliers are most
capable of fulfilling their preferences (or solv-
ing their problems). Through their choice they
reveal which of the problem solutions of the
suppliers are better and therefore which hy-
potheses of the firms can be seen as superior
knowledge. Primarily, it is the choice by the
demand side which constitutes the market test
and therefore decides on the selection of inno-
vations. In markets the successful firms with
increasing market shares usually also have
larger profits, whereas the firms which lose
market shares have lesser profits or even suf-
fer losses. Therefore large incentives exist: (1)
to advance in competition with superior prod-
ucts, and (2) to imitate or improve one’s perfor-
mance, if the market test shows that the own
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performance is inferior compared to others.
The market test does not only imply an informa-
tional feedback about the quality of the hypoth-
eses of the competing firms, but through the
ensuing profits and losses also a motivational
feedback. Therefore the superior knowledge is
not only identified and rewarded, but there are
also large incentives for its spreading by imita-
tion.

This process of parallel experimentation with
different innovative solutions, which are tested
in the market and spread by imitation, can also
be modeled as an evolutionary process of varia-
tion and selection. The innovative search of
firms for better solutions under the assumption
of their knowledge problems can be interpreted
as a variation of problem solutions. The selec-
tion is carried out by the market test (including
the ensuing imitation processes). The evolu-
tionary growth theory of Nelson and Winter
(1982) is driven by such a variation-selection-
process. It leads to a path of endogenously
produced technological progress, which through
increasing productivity fosters economic growth.
Long-term processes of variation and selection
can therefore lead to a systematic process of
accumulation of knowledge. In the general
literature on evolutionary epistemology, this
knowledge-generating effect of evolutionary
variation-selection-processes has been elabo-
rated very clearly (e.g., Popper, 1972).

What is the main mechanism for the knowl-
edge-generating effect in these evolutionary
variation-selection processes and therefore also
in our Hayekian concept of competition as a
test of hypotheses? Variation processes lead to
a number of different problem solutions that are
tried out with different success. The market
test reveals the relatively best solutions, which
can be imitated by the other competitors. There-
fore the less successful competitors can learn
from the firms with the superior knowledge. Or
to put it in evolutionary terms: due to the incen-
tives in the market, the rate of reproduction of

superior problem solutions is higher than that of
inferior solutions. As a consequence, the aver-
age quality of the performance of the firms in
the market increases systematically. The knowl-
edge-generating effect depends both on the
variation of problem solutions and the possibil-
ity of mutual learning between the competitors.
In the evolutionary approaches of innovation
economics, it has been emphasized that the
continuous generation of new variety is crucial
for ensuring an ongoing process of knowledge
accumulation in market processes (Metcalfe,
1989).

Previous Research

Although the basic idea of Hayek’s competition
as a process of parallel experimentation, in
which new knowledge is generated through a
trial-and-error-process, is well known and
seems to be broadly accepted on a common
sense level by most economists, so far there
have been no real attempts to analyze his notion
of competition as a discovery procedure in a
more rigorous, analytical way. In our research
we attempt to model at least some core mecha-
nisms of the Hayekian notion of competition by
using simulation models. The basic structure of
the simulation model is characterized by the
knowledge problems of the suppliers, who have
only fallible hypotheses (conjectures) about
what products the consumers would appreciate
most. Their ex-ante ignorance is modeled by
the stochastic result of the quality of their
innovation activities, which they have to try out
in the market (innovation phase). As a conse-
quence, a variety of different hypotheses are
tried out in the market. Only the market feed-
back, through the buying decisions of the con-
sumers, reveals which of these hypotheses is
better at fulfilling the consumers’ preferences.
In the second part of one period of the simula-
tion, after the firms know whose knowledge is
superior, all firms attempt to imitate the perfor-
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mance of the best (or the leading) firm (imita-
tion phase). But due to the difficulties of imita-
tion, we assume that the firms can only catch up
to a certain extent—that is, that also at the end
of that period, a considerable heterogeneity
between the firms prevails. After this first
period, new sequences of stochastic innovation
and imitation follow. This rather simple mecha-
nism of variation (through stochastic innova-
tion) and selection (through the revealing of the
superior performance and its partial imitation
by the non-leading firms) generates an increas-
ing path of the average performance of all firms
in the industry, expressed by an abstract fitness
parameter. We define fitness as the knowledge
that the firms have on how to fulfill the consum-
ers’ preferences.2 In a dynamic environment,
fitness may decrease or increase. In that re-
spect, a process of knowledge accumulation
through innovative experimentation and mutual
learning can be analyzed by this simulation
model.

Using the basic structure of this model, a
number of hypotheses about the determinants
of the knowledge accumulation process can be
tested. In our previous research, we have ana-
lyzed particularly four hypotheses (Kerber &
Saam, 2001; Saam, 2005):

• The average growth rate of the knowl-
edge accumulation process increases
with the number of independently inno-
vating firms. One of the most important
questions in industrial economics and com-
petition policy is: To what extent does the
concentration of firms in a market affect
the performance of competition on this
market? The rationale of merger policy is
that increasing the concentration in mar-
kets mergers can lead—either through
unilateral or coordinated effects—to mar-
ket power, higher prices, and allocative
inefficiencies, but also to potential effi-
ciency gains (Motta, 2004, pp. 231-265).

These arguments, however, refer only to
the effects of concentration on price com-
petition. In our research we asked for the
effects of firm concentration on the
Hayekian process of knowledge genera-
tion in market competition. Our simulation
results suggest that the growth rate of
knowledge accumulation increases with
the number of independently innovating
firms. This result does not come as a
surprise, because a larger number of inno-
vating firms leads in our simulation model
to a larger variety of products, which are
tried out. It can be expected then that the
best firm has a higher fitness parameter
(than in the case of a smaller number of
firms) and the other firms can learn more
from the best firm. Although our results
are very clear, no quick conclusions should
be drawn with regard to merger policy,
because this result depends on many spe-
cific assumptions such as that the quality
of innovations is independent of the num-
ber of innovating firms, which implies, for
example, that there are no economies of
scale in research and development. But
our results can support the widespread
conjecture that a reduction of the number
of independent research paths, for ex-
ample by mergers or R&D cooperations,
can also hamper technological develop-
ment (Mowery, 1995; Cohen & Malerba,
2001; Carlton & Perloff, 2000, p. 514).

• The average growth rate of the knowl-
edge accumulation process decreases
with the number of activities of the
firms which are simultaneously tested
in the market. The basic idea of this
hypothesis is that the market test in the
form of profits and losses can only feed
back information about the overall fitness
of all activities of the firms, but not on the
fitness of particular activities. The larger
the number of activities (e.g., the number
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of products the firm sells) and Therefore
the larger the bundle of hypotheses which
are tested simultaneously in the market,
the more unspecific is the information the
firms get from the market about the qual-
ity of their specific activities. They only
know that on average their bundle of
hypotheses is better or worse than those
of their competitors. Also this hypothesis
was confirmed by our simulation results.

• The non-imitability of at least one ac-
tivity will have considerable impact on
the pattern of the knowledge accumu-
lation process and decrease its aver-
age growth rate. It is a well-known fact
in innovation economics that imitation can
be time consuming and difficult, or can
even fail entirely. Verifying this hypoth-
esis we assume that there is at least one
activity of the firms which—due to non-
observability or tacit knowledge—cannot
be imitated at all by the other firms. Our
presumption that the introduction of the
non-imitability of activities can have a
serious impact on the knowledge accumu-
lation process has been verified clearly by
simulation experiments. The results show
that even the non-imitability of only one
activity can lead to a very large decrease in
the growth rate. For example, the average
growth rate drops to nearly a third, if only
one of seven activities is non-imitable—in
comparison to the case of full imitability
(Kerber & Saam, 2001, p. 4.9, Table 2).
This amazing effect will be the starting
point of our research in this chapter. Which
effects slow down learning in competition
if one activity cannot be imitated?

• Fallible knowledge of consumers will
have considerable impact on the knowl-
edge accumulation process. Consumers
may have fallible knowledge. They might
initially make wrong decisions with regard
to new products until they have collected

enough experience. This may imply diffi-
culties and lags concerning the quality of
the information feedback about the per-
formances of firms for solving the prob-
lems of consumers. The presumption that
the introduction of fallible knowledge of
consumers can have a serious impact on
the knowledge accumulation process has
been confirmed clearly by simulation ex-
periments. The simulations reveal that
under certain conditions, fallible knowl-
edge of consumers decreases the growth
rate of knowledge accumulation in the
market, but under certain other conditions,
it even increases the growth rate of knowl-
edge accumulation (Saam, 2005).3 The
decrease of knowledge accumulation due
to limited imitability is sometimes over-
compensated by the second imperfection,
fallible knowledge. Theoretically, it hints
to the possibility of compensating one type
of market failure (limited imitability of
innovations by producers) by another (fal-
lible knowledge of consumers).

CHANGE OF “LEADING FIRMS,”
LOCK-IN PROBLEMS, AND
KNOWLEDGE ACCUMULATION
IN SITUATIONS OF LIMITED
IMITABILITY: HYPOTHESES

Which effects slow down learning in competi-
tion if one activity cannot be imitated? Our first
explanation (Kerber & Saam, 2001) was that
knowledge accumulation is slower because no
mutual learning can take place with regard to
the non-imitable activity. However, we found
that this effect cannot explain the whole reduc-
tion in knowledge accumulation. So, we looked
for additional systematic effects that might
explain the remaining difference.

Second, we presumed that there is an effect
which is caused by a kind of lock-in situation
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which can emerge under certain conditions in
knowledge-generating competition processes:
The leading firm may have the highest total
fitness because the fitness of its non-imitable
activity is the highest among all activities—
whether imitable or not—of all firms. As-
sume, for example, the leading firm is best
because of its superior organization culture,
which might be an activity that cannot be
imitated by other firms. We call such a situation
a “lock-in situation,” because it may hamper
knowledge-generating in the Hayekian compe-
tition processes.4 The problem is that in case of
a lock-in, the competitors have no possibility to
catch up through imitation because the best
firm is the leading one due to the non-imitable
activity. This problem can be aggravated by the
effect that the non-leading firms imitate all the
imitable activities of the leading firm which
even on average may have an inferior fitness
than those of the competitors. If this case turns
up, the whole process of mutual learning is
severely hampered.

Third, we presumed that as the superior
hypothesis of the leading firm cannot be imi-
tated, it is much more difficult to switch the
leading firm. Only when the leading firm changes
frequently does this firm have the chance to
learn from its competitors. Take, for example,
firm A which was previously the leading firm,
but was caught by firm B. Whereas firm B (and
also firms C, D, etc.) learned from firm A, now
firm A will learn from firm B and may even
catch up with firm B in this time period; there-
fore, firm A may again be in the lead during the
next time period. Then, firm B will learn again
from firm A and may catch up again, and so on.
As a consequence, the Hayekian mechanism of
mutual learning in competition works best if the
leading firm changes frequently. The change is
hampered in case of lock-ins: the leading firm’s
removal is much more difficult, although it is not
impossible. In this chapter, we therefore test
the following hypotheses:

• Hypothesis I: There is a negative corre-
lation between the number of lock-in situ-
ations and knowledge accumulation in mar-
kets that are characterized by limited
imitability of firms’ activities.

• Hypothesis II: There is a negative cor-
relation between the number of lock-in
situations and the number of changes of
the leading firm in markets that are char-
acterized by limited imitability of firms’
activities.

• Hypothesis III: There is a positive cor-
relation between the number of changes
of the leading firm and knowledge accu-
mulation in markets that are characterized
by limited imitability of firms’ activities.

THE MODEL

Let us assume that in a market, n firms exist.
Each of them produces one product that con-
sists of a complex bundle of traits and can be
produced and marketed by using a set of m
activities. Each of these activities can be per-
formed in a different way. It depends on the
specific knowledge of the firms—that is, their
hypotheses about the effects of these activities
and how they deem it best to apply these
activities. Each of these m activities contributes
to the total performance of a firm which is
decisive for its competitiveness and success in
the market. From an evolutionary perspective,
the total performance of a firm is interpreted as
its total fitness, and the contribution of a par-
ticular activity to the total performance is the
fitness of this activity. The total fitness of a firm
shall be calculated as the arithmetical mean of
the fitnesses of all activities.

If fijt denotes the fitness of activity aj (j = 1
... m) of firm i at time t and Fit the total fitness
of firm i (i = 1 ... n) at time t, it follows:
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Let Gt denote the average total fitness of all
firms in the market at time t:
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This variable, the average total fitness of all
firms in the market, will be used to measure the
knowledge accumulation in the market. In the
model, the development of the total fitness of
the firms is analyzed over a number of periods
in which the firms attempt to improve the
fitness of their activities by innovation and
imitation. Every period can be seen as consist-
ing of two phases, an innovation phase and an
imitation phase, through which the old values of
the fitness parameters fijt are transformed into
the new ones fijt+1.

Basic Model: Innovation Phase

During the innovation phase, all firms search
for new and better hypotheses for applying
their m activities in order to improve their
fitness. These innovations are modeled as sto-
chastic processes of drawing from sets of
potential routines for each activity. The exist-
ence of m activities implies m independent
stochastic innovation processes.5 This chapter
assumes that the fitness of the newly drawn
routines of the activities are normally dis-
tributed with variance σ2 and expected value
E(f ’ijt). Standard deviation σ (σ > 0) can be
interpreted as innovation (mutation) rate. f ‘ijt
denotes the fitness of an activity and F’it the
total fitness of firm i after innovation but before
imitation in time period t. In order to isolate the
effect of mutual learning in the competition
process, we assume that the expected value of
the stochastic innovation process is identical

with the fitness value of that activity in the last
period:

( ) 1,' −= tijijt ffE      (3)

This assumption implies that the probability
of improving or worsening the fitness of activi-
ties by innovation is the same. Consequently, an
isolated firm that cannot learn from others
cannot expect to improve its fitness in the long
run.

Following Hayek, we assume that knowl-
edge about the superiority of newly drawn
routines can only stem from market feedback.
Only those firms that succeed and make profits
are superior to their competitors. The firm with
the highest total fitness will make profits, and
those with lower ones: losses or smaller profits.
Firms are only informed about the profits and
losses of all firms. From the ranking of profits,
they can deduce the ranking of the total fitness
values F’it of all firms. Both kinds of rankings
are assumed to be identical.6 Firms do not know
the real values of the total fitness F’it, not even
their own. Particularly, they do not get any
feedback about the fitness of their single activi-
ties f ’ijt (or fijt). The only information the
market feeds back to them via profits or losses
is whether their total fitness is larger or smaller
than that of their competitors. This is the logical
consequence of the Hayekian notion that only
market feedback by profits and losses can be
seen as the real test of the superiority or
inferiority of the performance of firms. There-
fore, firms are faced with the difficult problem
that they do not really know why they are
successful or why they fail. They do not know
which of their activities (e.g., the quality or
design of the product, marketing, service, or
price policy) are responsible for the observable
fact that they are better or worse than their
competitors. They can only conclude that their
set of routines (and therefore the quality of their
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knowledge) is on average better or worse than
those of their competitors. This is the starting
point for the second phase, the imitation phase.

Basic Model: Imitation Phase

Since the ranking of the total fitness of firms is
revealed by the market test, all firms are able to
identify the best firm. We assume that all firms
are able to observe the way in which all other
firms use their activities—they know their prod-
ucts, production technologies, marketing strat-
egies, and that they have sufficient competence
to imitate the activities of the other firms. One
strategy for improving one’s fitness is to imitate
the activities of the best firm. Therefore, we
assume that the non-leading firms imitate the
activities of the best firm. We know from
innovation economics that imitation is not an
easy task, because imitation takes time and
may even fail. Therefore we assume that
the non-leading firms are only able to imitate
the activities of the best firm to a certain
extent. Therefore, we introduce an imitation
rate λ (0 < λ < 1) which indicates the
percentage by which the non-leading firms are
able to catch up on the difference between their
own fitness values and those of the best firm.
For example, an imitation parameter value of
0.5 implies that each non-leading firm can catch
up 50% of the difference between its fitness
values and those of the best firm.

Let k denote the best (or leading) firm and
f ’kjt* and F ’kt* the fitness value of activity j and
total fitness of the best firm k after innovation:

itikt FF 'max*' =  with (i = 1, ...k, …, n)  (4)

Then, the imitation process is described by
equation 5:
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Whether a firm imitates another firm’s ac-
tivities is a discrete problem. If the total fitness
of firm i after innovation in period t is smaller
than the total fitness of the best firm F ’kt, firm
i will try to imitate all activities of the best firm
k. As a consequence, all fitness values of its
activities will increase by a certain percentage
of the difference between the fitness values of
its activities and those of the leading firm
(imitation rate λ). However, the best firm will
not change its activities (fkjt = f ’kjt ).

Our information assumptions have an im-
portant implication. We cannot conclude that all
fitness values of activities of the non-leading
firms are always smaller than those of the
leading firm. The leading firm has only a higher
value of the total fitness. This implies that in
regard to specific activities, non-leading firms
might have higher fitness values than the lead-
ing firm. For example, a non-leading firm may
have a better marketing strategy than the best
firm, but may have an inferior total perfor-
mance because of low quality of the product it
sells. This implies that in regard to particular
activities, the non-leading firms might reduce
their total fitness by imitating the best firm. And
the larger the number of activities, the higher is
the probability for this case. But, since firms do
not know which of their activities are better or
worse, they will improve their total fitness only
by imitating all activities of the best firm. Table
1 gives an overview of all variables and param-
eters of the model, as well as their interpreta-
tion and initialization.

Modification of the Basic Model:
Limited Imitability

The imitability of all activities can be a critical
assumption that need not be fulfilled in compe-
tition processes. For analyzing the impact of the
non-imitability of activities of firms on the aver-
age total fitness of the firms, this chapter
modifies the basic simulation model by differ-
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entiating between imitable and non-imitable
activities. For simplicity, we assume that one of
the activities—for example, the organization
culture of a firm—cannot be imitated.7 Let mv
denote the number of imitable and ms the num-
ber of non-imitable activities (mv + ms = m). In
the modified simulation model, we analyze the
impact of one (ms = 1, mv = m – 1) non-imitable
activity on knowledge accumulation.

EXPERIMENTS AND RESULTS

We analyze the simulation results8 of two sce-
narios—full imitability and limited imitability of
activities—applying a new meta-model, multi-
variate regression analysis. We assume a mar-
ket with n = 6 firms and m = 7 activities (ms =
1 and mv = 6 in the limited imitability scenario).
In each simulation run, 100 periods which con-
sist of an innovation and an imitation phase are
simulated. The results of each scenario are
mean values and standard deviations of 80
simulation runs which start from different ran-
dom seeds, all else being equal. Two auxiliary
variables have been coded as dummy variables
that count the incidence of a lock-in or of a

change of the leading firm during each simula-
tion run. A lock-in is operationalized as a situ-
ation in which the non-imitable activity of the
leading firm is the highest among all activities
of all firms. Then, the competitors cannot
catch up through imitation.

As can be seen from Table 2, the average
number of changes in the leading firm de-
creases dramatically from 61.2 in the full
imitability scenario to 30.3 in the limited imitability
scenario. This means that in 61 (respectively
30) out of 100 periods of time, the leading firm
changes from the previous to the present period
of time. In both cases we have a process of
knowledge accumulation, because the average
total fitness of firms (Gt) rises from 1.0 in
period 1 to 2.39 (respectively 1.57) in period
100. But in the limited imitability scenario, this
increase is much smaller than in the full imitability
scenario (1.57 instead of 2.39).

In the full imitability scenario, lock-ins are
not possible. The simulation runs of the limited
imitablility scenario are classified into three
types depending on the number of lock-ins
during each simulation run. Sixty out of 80
simulation runs have no lock-in or few, short-
term lock-ins (0-10). Seven out of 80 simulation

Variable Meaning Initialization at Time t 
= 0 

f ijt fitness of activity j of firm i at time t 1.0 for each activity 
F it total fitness of firm i (i = 1 ... k, ... n) at time t 1.0 for each firm 
F kt* total fitness of best firm k at time t  1.0 
G t average total fitness of the industry at time t 1.0 
Parameters Interpretation  
λ imitation rate of the firms ( 0 < λ < 1) λ = 0.5 
σ innovation rate of the firms (σ > 0) σ = 0.05 
m number of activities of the firms  1 ≥ m ≥ 11*; m = 7** 
n number of firms in the market 2 ≥ n ≥ 10*; n = 6** 
 

Table 1. Variables and parameters of the formal model

* Initialization in Kerber and Saam (2001) and Saam (2005—our previous research) for which the above
reported results hold

** Initialization in the experiments which are analyzed in Basic Model: Imitation Phase section (see
Modification of the Basic Model: Limited Imitability section)
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runs have frequent lock-ins, sometimes long
lasting (11-25). Thirteen out of 80 simulation
runs have long-lasting lock-ins (> 25). The
higher the number of lock-ins, the smaller is the
number of changes in the leading firm and the
average total fitness of firms.

The data of these 160 simulation runs have
been analyzed applying multivariate regression
analysis. In case of heteroscedasticity we re-
peated the regressions and used a robust esti-
mator (White’s procedure). As can be seen
from Table 3, in the full imitability scenario
there is a non-significant, small, negative effect
of the number of changes in the leading firm on
the average total fitness of firms. In case of
limited imitability, there is a significant, small,
and negative effect of the number of lock-ins on
the average total fitness of firms (which con-
firms our Hypothesis I). There is a significant,
positive effect of the number of changes in the
leading firm on the average total fitness of firms
(which confirms our Hypothesis III). There is a
significant, negative effect of the number of
lock-ins on the number of changes in the leading
firm (which confirms our Hypothesis II). In the

multivariate regression that includes the num-
ber of lock-ins and the number of changes in the
leading firm as independent variables, the num-
ber of lock-ins has a significant, negative effect
on the average total fitness of firms, whereas
the number of changes in the leading firm has a
significant, positive effect on the average total
fitness of firms.

The effect of lock-ins on the average total
fitness of firms can be explained as follows. If
an activity cannot be imitated, lock-ins reduce
the average total fitness of firms directly as
well as indirectly by reducing the number of
changes in the leading firm. The direct effect is
that the competing firms cannot imitate the best
activity of the leading firm because it is the non-
imitable one. They can only imitate the other
activities of the leading firm. The indirect effect
comes as a consequence of the direct effect.
The competitors need more time to catch up to
the leading firm. The leading firm will lead for
more periods of time. The changes in the lead-
ing firm are reduced.

In case of limited imitability, changes in the
leading firm increase the average total fitness

 
 
 
Simulation 
runs 

 Full Imitability 
(mv = 7, ms = 0) 
 
80 

Limited Imitability 
(mv = 6; ms = 1) 
 
80 

 
 
 
thereof 
60 
 
0-10  
Lock-ins 

 
 
 
 
7 
 
11-25 Lock-ins 

 
 
 
 
13 
 
Lock-ins  
> 25 

Changes in 
the leading 
firm 

Mean 
(Stddv.) 

61.2 
(4.9) 

30.3 
(11.1) 

33.5 
(9.5) 

22.0 
(8.6) 

19.8 
(10.1) 

Average total 
fitness of 
firms (Gt) 

Mean 
(Stddv.) 

2.39 
(0.11) 

1.57 
(0.23) 

1.64 
(0.18) 

1.44 
(0.16) 

1.33 
(0.24) 

 

Table 2. Lock-ins, changes in the leading firm and average fitness of firms on the market (n
= 6 firms, m = 7 activities)*

* Initialization of parameters:
Full imitability scenario: λ = 0.5, σ = 0.05, n = 6, mv = 7, ms = 0;
Limited imitability scenario: λ = 0.5, σ = 0.05, n = 6, mv = 6; ms = 1;
Initialization of variables: see Table 1 for both scenarios.
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of firms, because lock-ins occur more seldom if
changes in the leading firm happen more fre-
quently. It is less probable that the non-imitable
activity is always the best in the market, if the
leading firm changes often. In the full imitability
scenario, changes in the leading firm do not
interact with lock-ins. This explains why here
changes in the leading firm have no significant
effect on the average total fitness of firms.

In a less technical language, in the limited
imitability scenario, the Hayekian mechanism
of mutual learning in competition is hampered.
As the superior hypothesis of the leading firm
cannot be imitated, it is much more difficult to
switch the leading firm. Only when the leading
firm changes frequently does this firm have the
chance to learn from its competitors. Take, for
example, firm A which was previously the
leading firm, but has been caught by firm B.
Whereas firm B (and also firms C, D, etc.)
learned from firm A, now firm A will learn from
firm B and may even catch up with firm B
within this time period; therefore firm A may be
the leading firm again during the next time
period. Then, firm B will learn again from firm

A and may catch up again, and so on. As a
consequence, the Hayekian mechanism of
mutual learning in competition works best if the
leading firm changes frequently. The change is
hampered in case of lock-ins: the leading firm’s
removal is much more difficult although it is not
impossible. Since stochastic innovation pro-
cesses still take place with all imitable and non-
imitable activities, it is not probable that the best
firm will be leading permanently due to its
superior non-imitable activity. Consequently,
lock-in situations will also terminate. But, dur-
ing all those consecutive periods when firm A is
leading, yet not caught, it will only improve its
fitness by chance. The knowledge accumula-
tion process of the whole industry will slow
down, because firm A gets no more chance to
learn from others.

CONCLUSION

Although the basic idea of Hayek’s competition
as a process of parallel experimentation, in
which new knowledge is generated through a

Table 3. Multivariate regression analysis of a simulated market (n = 6 firms, m = 7 activities)

* Standardized coefficients in brackets
** Robust T-Value according to White’s procedure in brackets
*** The data come from a parsimonious simulation model and not from a far more rich reality. Therefore,

the variability of the data is comparatively small. As a consequence, significances are far more distinct
than they were in empirical social or economic research.

Imitability Full 
(mv = 7, ms = 0) 

Limited  
(mv = 6; ms = 1) 

Dependent 
variable 

Average total 
fitness of firms 

Average total 
fitness of firms 

Average total 
fitness of firms 

Changes in the 
leading firm 

Average total 
fitness of firms 

 b-
Value* 

T-
Value 

b- 
Value 

T-
Value** 

b- 
Value 

T-Value b- 
Value 

T-Value b- 
Value 

T-Value 

Changes in the 
leading firm 

-0.002 
(-0.076) 

-0.67   0.013 
(0.647) 

7.49   0.009 
(0.451) 

4.80 
(4.46) 

Lock-ins   -0.007 
(-0.608) 

-6.76 
(-9.36) 

  -0.294 
(-0.533) 

-5.57 
(-7.36) 

-0.004 
(-0.367) 

-3.91 
(-4.43) 

R-Square 0.006  0.369  0.418  0.285  0.515  
F-Value 0.453  45.683  56.087  31.013  40.849  
Significance*** 0.503  0.000  0.000  0.000  0.000  
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trial-and-error-process, is well known and
seems to be broadly accepted on a common
sense level by most economists, so far there
have been no real attempts to analyze his notion
of competition as a discovery procedure in a
more rigorous, analytical way. In this chapter
we presented a formalized model of Hayek’s
concept which was analyzed by using a simula-
tion approach. Our simulation model is an ex-
ample of theory-driven modeling that aims at
developing new hypotheses on mechanisms
that work in markets.

In previous research (Kerber and Saam,
2001), it was shown that the growth rate of
knowledge accumulation in this Hayekian ap-
proach to competition is positively correlated
with the number of independently innovating
firms and negatively correlated with the num-
ber of hypotheses, which are simultaneously
tested in the market. The starting point for the
analyses in this chapter was the surprising
result in our previous research that the non-
imitability of only one activity leads to a very
severe reduction in the growth rate of knowl-
edge accumulation. Which effects slow down
learning in competition if one activity cannot be
imitated? In this chapter we have shown that
the non-imitability of one activity not only re-
duces the extent of mutual learning, because
this activity cannot be imitated, but the non-
imitability of activities generates phenomena
which hamper learning additionally:

1. A certain kind of lock-in situation can
emerge, if the leading firm is the best
because of this non-imitable activity. Then,
the competitors cannot catch up through
imitation. They may only catch up through
innovation, which takes more time be-
cause it is a mere trial-and-error-process.
Mutual learning is hampered on the side of
the competitors.

2. These lock-in situations reduce the num-
ber of changes of the leading firm. Only
when the leading firm changes frequently
does this firm have the chance to learn
from its competitors. This time, mutual
learning is hampered on the side of the
leading firm. The leading firm will for
long periods of time innovate without get-
ting the chance to learn from others. As a
result, the whole process of mutual learn-
ing is hampered. In Hayekian market pro-
cess theory, these are the effects that
slow down knowledge accumulation in
competition under limited imitability as-
sumptions in a severe way.
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ENDNOTES

1 See Hayek (1978) for concepts that are
based upon or very close to this Hayekian
concept; also see Harper (1996), Kirzner
(1997), Kerber (1997), Mantzavinos
(2001).

2 We treat fitness as an abstract concept,
like the utility concept. In a general model
like the one we are presenting here, it is
difficult to operationalize. However, in
applications of our model, it can be
operationalized. We suggest use of indi-
cators that measure the (indirect) effects
of knowledge, for example in terms of
costs instead of (direct) measures of
knowledge. An effect of increasing knowl-
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edge might be decreasing production
cost—that is, average costs could be used
as an indicator of fitness.

3 Modifying some of the assumptions, this
result can also be obtained by an analyti-
cal model without simulation (see Helbing,
Treiber, & Saam, 2005).

4 Please note that this concept of “lock-in”
situations differs from those of David
(1985) and Arthur (1989), who define a
lock-in as a standardization on an ineffi-
cient technology.

5 This is the most simple assumption one
can start with. Whether the activities are
independent or not, whether their weight
is equal (as we assume) or not, are open
questions that might also depend on the
specific market. Testing the implications
of alternative assumptions is a topic for
future research.

6 The assumption that the ranking of the
total fitness of the firms is identical with
the ranking of their profits implies that the
selection of the market works appropri-
ately—that is, there are no systematic
distortions by technological external ef-
fects, market power, rent seeking rev-
enues, and so on. This is doubtlessly a
critical assumption, which has to be held in
mind for further scrutiny.

7 Please note that the non-imitable activity
is the same for all firms. This is not a
necessary assumption, because it also
might be possible that, due to different
competences of the firms, some firms
might be able to imitate certain activities
and others may not.

8 The simulations have been implemented
on an agent-based framework.
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ABSTRACT

In this chapter an agent-based industry simulation model is employed to analyze the
relationship between technological specialization, cluster formation, and profitability in an
industry where demand is characterized by love-for-variety preferences. The main focus is on
the firms’ decisions concerning the position of their products in the technology landscape.
Different types of strategies are compared with respect to induced technological specialization
of the industry and average industry profits. Furthermore, the role of technological spillovers
in a cluster as a technological coordination device is highlighted, and it is shown that due to
competition effects, such technological coordination negatively affects the profits of cluster
firms.

INTRODUCTION

Regional or local agglomeration of firms can be
identified in almost every economy of the world:
Hollywood, Silicon Valley, and Route 128 in the
United States, the finance sector in London
(GB) or Frankfurt (D), and the pharmaceuti-
cals near Basel (CH) are only a few examples.
Since Marshall (1920), the economic rationales
for agglomeration of firms are discussed in the
economic literature, and more recently there

emerged an amount of literature which focused
on the relationship between agglomeration and
innovation (see Audretsch, 1998; Asheim &
Gertler, 2005).

Main arguments in favor of a geographic
concentration of economic activity are positive
externalities associated with the proximity of
related industries (e.g., Porter, 1998). Beside
transactional efficiencies, knowledge spillovers
are one form of these externalities. The con-
centration of firms and workers allows the
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exchange of tacit knowledge, which is charac-
terized as vague, difficult to codify, and uncer-
tain in its economic use (Dosi, 1988). Because
of these properties tacit knowledge is best
transmitted via face-to-face interaction and
through frequent and repeated contact. Ex-
amples of transfer channels of knowledge
spillovers are planned or unscheduled commu-
nication between people or the flow of workers
from one company to another. Despite the
advances in telecommunication technology,
there is evidence that geographic proximity
leads to a faster diffusion of knowledge (e.g.,
Jaffe, Trajtenberg, & Henderson, 1993) and
that the costs of transmitting tacit knowledge
rise sharply with geographical distance
(Audretsch, 1998). Hence geographical prox-
imity favors the flow of knowledge.

Arguably, the flow of knowledge between
companies is, however, not only influenced by
their geographical but also by their technologi-
cal distance. Accordingly, the degree of tech-
nological specialization in a cluster should be of
relevance for the intensity of technological
spillovers, and several authors have studied the
impact of technological specialization on the
size of local knowledge spillovers.

One view of the topic was described as the
Marshall-Arrow-Romer model by Glaeser,
Kallal, Scheinkman, and Shleifer (1992). It is
argued that technological specialization facili-
tates knowledge spillovers between firms of
the same industry. The similarity of knowledge
and activities promotes the learning effect be-
tween individuals and firms. Empirical support
for these claims was given, for example, by
van der Panne (2004). In a recent study Cantner
and Graf (2004) provide further empirical evi-
dence concerning specialization and coopera-
tion. In their work, cooperation is measured in
the way that the number of participating firms
on assigned patents is counted. The authors
find that technological moderately specialized

regions show the highest number of research
cooperatives, and the higher a region’s special-
ization, the more cooperatives are formed be-
tween partners outside that region. Taking co-
operatives as a proxy for knowledge spillover,
this result indicates that the exchange of knowl-
edge is highest in a moderately specialized
cluster.

By contrast, Jacobs (1969) argues that
knowledge may spill over between complemen-
tary rather than similar industries. Ideas devel-
oped by one industry can be useful for other
industries, and therefore technological diver-
sity favors knowledge spillovers. According to
Jacobs, a variety of industries within a cluster
promotes knowledge externalities. The diver-
sity thesis was also supported in empirical
works (e.g., Feldman & Audretsch, 1999).

Although there is no complete consensus,
there is some evidence that some technological
specialization among firms of the same industry
in a cluster has positive effects on spillovers. In
this chapter we adopt this view, but also take
into account that firms in a cluster are not only
producers and receivers of knowledge flows,
but also competitors in the market. Strong
technological specialization within a cluster
leads to little differentiation between the prod-
ucts of the cluster firms and hence to increased
competition among them. This is particularly
true if we think of clusters which primarily
serve local markets, or industry-dominating clus-
ters like the Silicon Valley. Hence the positive
effect of intensive knowledge exchange in spe-
cialized clusters may be countered by negative
competition effects. Competition considerations
are also an important factor in determining
which firms decide to enter a cluster in the first
place. Knowledge spillovers always flow in
two directions. Thus a firm cannot prevent
knowledge from spilling over to possible com-
petitors in the cluster. A firm inhabiting a
particularly profitable market niche or enjoying
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a technological lead might have strong incen-
tives to choose geographical isolation in the
periphery rather than joining a cluster.

The agenda of this chapter is to gain a better
understanding of the interplay of positive exter-
nalities due to knowledge spillovers in a cluster,
market competition, and the self-selection ef-
fects generated by endogenous locational
choices of producers. In particular, we study
how different firm strategies concerning their
choice of technology and product position influ-
ence the degree of specialization in a cluster,
the relative performance inside and outside the
cluster, and the overall industry performance.
Our research strategy is to employ a dynamic
agent-based industry simulation model where
firms compete by offering various differenti-
ated product-variants which are based on dif-
ferent production technologies. The number
and location of product variants offered are
determined by product innovation activities in
the industry and vary over time. Firms make
decisions concerning their geographic location
(inside or outside a cluster) and concerning the
location of their products in the technology
space. Positioning in a cluster means that a firm
receives technological spillovers from other
cluster firms, but also implies knowledge flows
from the firm to other ones in the cluster. Our
simulation results highlight significant down-
sides of strong specialization. In particular we
observe that positioning strategies leading to
highly specialized clusters perform poorly with
respect to absolute firm profits and with re-
spect to the relative performance of cluster
firms compared to those in the periphery.

It should be mentioned that in our analysis,
only the interplay of positive knowledge exter-
nalities generated by strong specialization and
negative competition effects are analyzed,
whereas other potential positive effects of spe-
cialization within clusters are not taken into
account. Among these potentially positive ef-

fects are the availability of specific input fac-
tors like machinery, business services, and per-
sonnel (e.g., Krugman, 1991; Porter, 1998).

The chapter is organized as follows: the next
section describes the main features of our
agent-based simulation model. Our findings
concerning specialization and firm strategy are
then presented, and we conclude with some
discussion of the results and possible future
research topics.

AN AGENT-BASED SIMULATION
MODEL OF CLUSTER
FORMATION AND INDUSTRY
EVOLUTION

This section introduces an agent-based simula-
tion model to study the technological develop-
ment and the economic performance of firms
with potential knowledge spillover in a differen-
tiated industry. The analysis is based on the
interaction and behavior of firms, which might
share knowledge but at the same time are
competitors in the goods markets. The model is
partly based on previous work by Dawid and
Reimann (2004, 2005). Due to space con-
straints, no full description of the model can be
provided here, but we will restrict ourselves to
highlighting some main features. See Wersching
(2005) for a detailed discussion of the model.

Main Features of the Model

We consider an industry consisting of F firms,1

where each firm in each period offers a range
of differentiated products. To keep things simple
it is assumed that product differentiation is
entirely due to technological differences be-
tween products, and hence product positioning
is equivalent to technological positioning of
firms. At any point in time, the industry consists
of several sub-markets located in the one-
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dimensional (circular) technological space.
Demand is derived from love-for-variety pref-
erences of consumers augmented by an attrac-
tiveness parameter for each product variant.
The attractiveness of a variant is influenced by
the technological distances to the closest tech-
nological neighbors currently employed in the
industry. The greater the product of the dis-
tances, the greater is the market niche and
therefore the larger the attractiveness param-
eter. The overall amount of money allocated by
consumers to purchase goods produced in the
industry increases with the number and total
attractiveness of product variants, however at
a decreasing rate. Concerning geographic lo-
cation of firms, the only distinction is between
firms in the cluster and firms in the periphery.
As described below, the geographic location of
a firm determines whether the firm can ex-
change knowledge with other producers.

An important feature of the model is that we
incorporate the accumulation of a structured
stock of knowledge of each individual firm.
Due to investments for process and product
innovation and to technological spillovers, firms
build up technology-specific stocks of knowl-
edge for each of the product variants they are
currently producing or plan to introduce to the
market in the future. Two types of spillovers
are considered. First, a firm can transfer some
knowledge internally from one technology to
another. Second, there are external spillovers
between all firms in the cluster. Two factors
influence the intensity of the knowledge flow
between firms. First, the flow increases with
decreasing technological distance (measured
on the circular technology space) between the
technologies employed by the firms. Second,
there is a hump-shaped relationship between
the technological gap, which refers to the dif-
ference in the amount of (technology-specific)
knowledge that has been accumulated by the
two firms, and the intensity of knowledge flows.

Accordingly, knowledge spillovers are particu-
larly high if the cluster consists of firms which
employ a similar set of technologies, but where
in each of these technologies one firm has
considerable knowledge advantages.

Knowledge can be used either for process
or product innovations. Process innovations
reduce production cost as the specific knowl-
edge stock for a certain sub-market increases.
While process innovations are certain, invest-
ments in product innovations are risky, but
expenses enhance the probability for product
innovation. Successful product innovations gen-
erate a new sub-market in the industry, which
is located on the circular technological space
between two existing technologies. If the prod-
uct innovation is radical, the circular techno-
logical space expands, so there will be a new
market which initially is far from its neighbors.
The firm with a new product innovation is for a
certain time monopolist on this new market.
Afterwards, other companies can enter and
produce this product variant.

The firms’ behavior is based on decision
rules in the tradition of evolutionary modeling
(Nelson & Winter, 1982). Firms have different
ways of evaluating sub- markets and locations.
Depending on this evaluation they will invest in
product and process innovations, enter or exit
sub-markets, change their location from cluster
to periphery, or vice versa. Each sub-market is
associated with a technology, and hence the
technological location is set either by market
entry in a promising sub-market or by product
innovation. For the evaluation of the sub-mar-
kets, two aspects are taken into account: the
average profits on this market and the techno-
logical distance to the main technological ex-
pertise. The weights assigned to each of these
aspects are important strategy parameters and
their impact will be studied in the next section.
Quantity decisions are made based on local
estimations of demand elasticity and the as-
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sumption that all competitors will adapt quanti-
ties by an identical factor.

Measuring Specialization

One aim of this chapter is to describe the
specialization of the industry. There are two
dimensions of specialization in this context,
namely the distribution of the locations of the
technologies employed in the industry and the
variance in the amount of knowledge firms
have with respect to different technologies.
Hence, the following two properties make an
industry specialized. First, the technologies
associated with the active sub-markets used in
the industry are clustered (in one or several
clusters) rather than being evenly distributed in
the technology space. Second, there is a signifi-
cant variance in the stock of technology-spe-
cific knowledge of firms across active sub-
markets with accentuated peaks at certain
technologies. In order to capture these differ-
ent aspects of specialization, two different ver-
sions of a specialization index are constructed
where both are transformations of the
Hirschmann-Herfindahl-Index, which has been
used in past empirical (Henderson, Kuncoro, &
Turner, 1995) or simulation (Jonard &
Yildizoglu, 1998) work dealing with specializa-
tion. To be able to compare degrees of special-
ization across different settings with different
numbers of existing variants, the Hirschmann-
Herfindahl-Index is normalized in the way that
it always has the range [0,1].

In particular we use the index
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where N is the number of technologies cur-
rently used by the considered group of firms,
and the interpretation of ,j ta  depends on the
type of specialization. In order to capture the
degree of clustering of technologies employed
in the population, we set , , 1,

tech
j t j j ta d += , which

gives the distance between technology j and the
clockwise seen next active technology in the
circular technology space in period t. In order to
capture specialization in knowledge stock, we
set , , ,1,..,

maxj t i j ti F
a RD

=
= , where , ,i j tRD  denotes the

stock of knowledge specific for technology j
that firm i has at time t. An aggregated index,
which represents the total specialization, is the
arithmetic mean of these two indices.

SPECIALIZATION AND
FIRM STRATEGY

Before presenting our results we would like to
give a brief description of our simulation setup
and strategy. The simulation model employed in
this chapter is rather complex and has a large
set of parameters. We distinguish three types
of parameters: (1) the parameters determining
the basic characteristics of the industry (num-
ber of firms, degree of love-for-variety in the
aggregate demand, market size); (2) techno-
logical and knowledge flow parameters (costs,
learning curve effects, parameters influencing
the size of internal and external spillovers,
etc.); and (3) strategy parameters determining
behavior of the firms in the industry (in particu-
lar the weights in the functions evaluating mar-
kets, the propensity to enter new markets,
investment in product, and process innovation).
In order to derive qualitatively robust results
that do not hinge on particular parameter set-
tings, we base our observations on batches of
100 simulation runs carried out for different
parameter constellations. The industry struc-
ture parameters are fixed across these runs, but
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parameters of the second and third type are
chosen stochastically from certain predefined
ranges for each firm in each run. This approach
allows us to test whether the impact that a
restriction of the range of selected strategy
parameters has on various variables of interest
is statistically significant across stochastically
chosen profiles of the other parameters.

As discussed above, the consideration of
market competition might imply negative ef-
fects of specialization on profits which run
counter to the potential positive effects on
knowledge externalities typically stressed in
the literature. In order to evaluate this trade-off
in the framework of our dynamic industry model,
we present in Figure 1 the mean aggregated
profits of all firms and the level of specialization
of the industry after 100 periods in 100 simula-
tion runs where no restrictions on the ranges of
strategy parameters are imposed (balanced
strategies).

As can be seen in Figure 1, there appears to
be a negative relation between the aggregated
profits and specialization of the industry. This is
confirmed by estimating a linear regression
with average profits as dependent and special-

ization as explanatory variable, which gives a
negative and highly significant coefficient of
the specialization index.

Several questions arise here. Is the negative
correlation between profits and specialization a
phenomenon associated with particular firm
strategies concerning sub-market selection?
Are there any normative implications for firm
strategies? Is this effect more pronounced for
firms who stay outside the cluster (as might be
expected since these firms do not profit from
the positive knowledge flow effects from spe-
cialization)?

To study the impact of firms’ market selec-
tion strategies more closely, we compare re-
sults from four different batches of simulations
runs. In the first batch the decision of a firm
about where to position in the technology space
in case of entry into an existing market or
product innovation is random.2 We say that
firms use a random strategy and use this batch
as a reference case. In the other three cases,
potential locations in the technology space are
selected according to the market evaluation
function of the firm. The three batches differ
with respect to the range of potential values of

Figure 1. Average aggregated profits and specialization of the industry
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the two parameters determining a firm’s mar-
ket evaluation function: the weight put on cur-
rent profits in a sub-market and the weight put
on the distance of the market from the firm’s
current main technological expertise (given by
the technology where the firm has accumulated
the largest stock of knowledge). In the case
where both strategy parameters are chosen
from their full ranges, we refer to this case as
the case with a balanced strategy. Further-
more, we will consider two batches of runs
where the value of a certain strategy parameter
is restricted to a sub-interval of the full range.
In one batch the parameter determining the
weight of current profits is restricted to a sub-
interval in the upper region of the full range. In
this case we say that firms have profit-ori-
ented strategies. In another batch the weight of
current technological expertise in the sub-mar-
ket evaluation function is restricted to a sub-
interval of high values. We say that firms use
knowledge-oriented strategies. In what fol-
lows we compare these sets of 100 data points
each with respect to crucial variables like prof-
its and degree of specialization.

Figure 2 compares the industry dynamics
under random strategies and profit-oriented

strategies with respect to both dimensions of
specialization. Like in all figures to come, we
show mean values of a batch of 100 runs. Due
to our initialization, each firm in the first period
has knowledge in only one technology and firms
are uniformly distributed over all technologies.
Hence, initially the industry is perfectly diversi-
fied with a specialization index of zero. The
specialization rises slightly as the firms invest in
research and development activities. In this
environment the initial introductions of new
products lead to rapid increases in the special-
ization indices. One can see that the index for
location increases much more accentuated than
the index for height. This follows from the fact
that knowledge can be increased gradually
while the technological distance changes very
abruptly by the event of product innovations.

Note that under the random strategy, the
event of the first new product introduction
occurs much later than in the scenario where
firms act in a more rational manner. This is due
to the fact that firms spread their efforts in the
random scenario over several technological
regions and therefore reach the needed thresh-
old for a successful product innovation several
periods later. Under the random strategy both

Figure 2. Specialization with random and profit-oriented firm strategy
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specialization indices slowly decrease after the
initial peak. This is quite intuitive, because we
should expect that with random strategies, the
sub-markets emerging over time will be distrib-
uted rather uniformly on the technology space.

If firms use a profit-oriented strategy, a
different picture emerges. The specialization of
knowledge stock keeps increasing during the
entire run, and also the locational specialization
index still goes up after the initial peak triggered
by the first product innovations. After an initial
transient phase, the degree of locational spe-
cialization induced by profit-oriented strategies
is clearly above the level observed in the refer-
ence case with random strategies. On the other
hand, the specialization of knowledge stock is
smaller than under random strategies.3 It can
be clearly seen that orientation of the firms
towards short-run profits leads to almost paral-
lel behavior of firms as far as market selection
goes and therefore to strong clustering of the
active sub-markets in the industry. Supposedly
this has a positive effect on the intensity of
spillovers between firms in the cluster. How-
ever, the downside of the strongly coordinated
behavior induced by profit orientation is that
firms also build up knowledge stocks for differ-

ent technologies at a similar pace, which im-
plies that knowledge stocks are rather uniform
in height and there is relatively little specializa-
tion of knowledge stock. This has a negative
impact on the intensity of spillovers.

The comparison of the effects of random
strategies and knowledge-oriented strategies is
illustrated in Figure 3. As in the case of profit-
oriented strategies, the more strategic behavior
leads to earlier introduction of new products
which raises the specialization indices. But in
this scenario, after an initial phase, both indices
lie under the curves of the random strategy.4

Thus, if firms base their market selection deci-
sion mainly on their existing technological
strengths, the technological specialization of
the industry is smaller compared to the random
reference case. Firms initially have heteroge-
neous technological expertise, and a knowl-
edge-oriented strategy keeps or even rein-
forces this heterogeneity. This implies that the
scope for knowledge spillovers should be small
if firms follow a knowledge-oriented strategy.

This discussion shows that the type of mar-
ket selection strategies firms follow has sub-
stantial impact on the degree of specialization
arising in the industry. The impact of the differ-

Figure 3. Specialization with random and knowledge-oriented firm strategy
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ent strategies on average profits is depicted in
Figure 4.

Quite surprisingly, profits are lowest if firms
follow a profit-oriented strategy, whereas the
largest profits are made in an industry where
firms follow a random strategy. The profits
under the knowledge-oriented strategy and the
balanced strategy lie between these two ex-
tremes, where profits under the knowledge-
oriented strategy are rather close to those
under the random strategy.5 Considering the
effect of competition on the market is crucial to
understand this ranking. The assumed love-for-
variety structure of demand implies that prod-
ucts far removed in the technology space from
the other active sub-markets have high de-
mands and therefore tend to yield high profits.
Accordingly, any strategy leading firms to po-
sition their products close to the competitors
has detrimental effects on revenues. For firms
in the cluster, such a strategy on the other hand
facilitates cost-reducing technological spillovers,
however our results indicate that the negative
revenue effect outweighs the positive cost ef-
fect. These considerations imply that for all
strategies which are not random, the fact that
all firms use similar evaluation strategies by
itself has negative effects on the average in-
dustry performance.6 We have verified this

observation by running simulations where a
single firm using the profit-oriented/knowledge-
oriented/balanced strategy is inserted into an
industry where all other firms employ the ran-
dom strategy. For all three types of strategies,
we found that the non-random strategy per-
formed statistically significantly better than the
random strategy.

If we accept the view that the competition
effect is dominant in the considered industry
scenario and accordingly strong locational spe-
cialization has a negative impact on average
industry profits, the relative performance of
firms in an profit-oriented industry compared to
a knowledge-oriented industry can be seen as a
direct implication of the different degrees of
specialization shown in Figures 2 and 3. How-
ever, considering Figure 3, this simple logic fails
to explain why the average profits in a knowl-
edge-oriented industry are below those in in-
dustries where the random strategy is used.
Distinguishing average profits in the cluster and
in the periphery under these two strategies
sheds some light on this puzzle.

Figure 5 shows that after an initial phase,
periphery firms make higher profits than firms
in the cluster. Furthermore, firms in the periph-
ery make higher profits in an industry where
knowledge-oriented strategies are used com-

Figure 4. Aggregated profits for different firm strategies
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pared to the random case. Quite to the contrary,
cluster firms are more profitable if all firms
employ random strategies. So, the reason why
average industry profits are comparatively low
under the knowledge-oriented strategy is the
poor performance of cluster firms after the
initial phase. Essentially, this poor performance
is again due to excessive coordination of cluster
firms with respect to their technological focus.
The reason for the occurrence of such exces-
sive coordination under the knowledge-oriented
strategy is the spillover effects. If some cluster
firm accumulates a particularly high knowledge
stock for a certain technology, spillover effects
imply that also all other cluster firms attain a
high knowledge stock in that technology region.
Hence, the technological focus of many other
cluster firms might move into the same techno-
logical region, and accordingly these firms will
concentrate future production and product in-
novation in that region. Put differently, the
existence of technological spillovers makes it
hard for firms to keep their distinctive techno-
logical profile if they are in the cluster. So even
under strategies like the knowledge-oriented

strategy, which per-se does not promote tech-
nological uniformity, there is a strong tendency
for specialization in the cluster. Indeed, if we
restrict attention to cluster firms, the locational
specialization index under the knowledge-ori-
ented strategy is larger than under the random
strategy for all periods t ≥ 60. The relatively low
industry-wide specialization index under the
knowledge-oriented strategy shown in Figure 3
is due to the fact that sub-markets served by the
firms in the periphery are far removed from
each other and from the technological focus of
the cluster firms.

Finally, it should be noted that in spite of the
large differences in profits between periphery
and cluster firms, there is no strong flow of
firms from the cluster to the periphery. Cluster
firms could not profit from moving out of the
cluster because such a move would not alter the
profile of their knowledge stock and accord-
ingly they would still have to produce for sub-
markets which are close to the technological
focus of the cluster. Even worse, they would
lose the technological spillover effects and
might eventually be less cost-efficient than the

Figure 5. Aggregated profits in the cluster and in the periphery under knowledge-oriented
and random strategies
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cluster firms. Hence, there is a technological
lock-in effect which ties the firms to the cluster
even though periphery firms are more profit-
able.

CONCLUSION

In this chapter we have used an agent-based
simulation model to shed some light on the
relationship between technological specializa-
tion, cluster formation, and profitability in an
industry where demand is characterized by
love-for-variety preferences. Our focus was
on the effects technological spillovers might
have besides the well-documented positive ex-
ternalities with respect to cost-reducing inno-
vation activities. Our results show that spillovers
lead to technological specialization in a cluster
even if firms follow strategies which per se do
not foster technological uniformity. In the pres-
ence of strong competition effects, this has
negative implications for the profits of firms,
implying that firms in the cluster in the long run
perform considerably worse than firms in the
periphery. Due to technological lock-in effects,
this profit gap persists over time although firms
have the option to move between the cluster
and the periphery.

So far the literature on technological
spillovers and specialization has focused on the
question how the intensity of spillovers is influ-
enced by the degree of specialization. Our
findings suggest that there might be an opposite
effect such that spillovers yield technological
specialization, and that under consideration of
market competition, such an effect provides
negative incentives for joining a cluster. We
hope that future research will generalize our
analysis to more general industry and demand
settings.
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ENDNOTES

1 We abstract from exit and entry of firms
on the industry level, and rather focus on
exit and entry at the level of sub-markets
given by certain technology ranges.

2 To be more precise the firm randomly
picks a ‘candidate’ location in the technol-
ogy space. However, before actually en-
tering this market, the firm checks whether
the market evaluation exceeds a certain
minimal threshold.

3 A Wilcoxon test comparing the values of
each specialization index after 100 peri-
ods under random and profit-oriented strat-
egies confirms these claims with p-values
less than 0.01 for locational specialization
and knowledge specialization.

4 The p-value of the corresponding Wilcoxon
test after 100 periods for knowledge spe-
cialization is less than 0.01. The statistics
for locational specialization do not support
the thesis for period 100, because as shown
in the figure, the two graphs overlap in the
last periods of the simulation. But locational
specialization is significantly lower for 40
≤ t ≤ 90.

5 Wilcoxon tests support the result of this
ranking with p-values less than 0.01 for
data in period 100.

6 Dawid and Reimann (2004) provide an
extensive analysis of this effect in a simi-
lar industry setting.
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ABSTRACT

This chapter describes a novel simulation model (InventSim) of the process of product invention.
Invention is conceptualized as a process of directed search on a landscape of product design
possibilities, by a population of profit-seeking inventors. The simulator embeds a number of real-
world search heuristics of inventors, including anchoring, election, thought experiments, fitness
sharing, imitation, and trial and error. A series of simulation experiments are undertaken to examine
the sensitivity of the populational rate of advance in product sophistication to changes in the choice
of search heuristics employed by inventors. The key finding of the experiments is that if search
heuristics are confined to those that are rooted in past experience, or to heuristics that merely
generate variety, limited product advance occurs. Notable advance occurs only when inventors’
expectations of the relative payoffs for potential product inventions are incorporated into the model
of invention. The results demonstrate the importance of human direction and expectations in
invention. They also support the importance of formal product/project evaluation procedures in
organizations, and the importance of market information when inventing new products.
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INTRODUCTION

The importance of invention and innovation as
an engine for economic growth, and in shaping
market structure, has long been recognized
(Schumpeter, 1934, 1943; Nelson & Winter,
1982; Abernathy & Clark, 1985; Maskus &
McDaniel, 1999). The invention of new prod-
ucts can enhance the efficiency with which
inputs can be converted into outputs (for ex-
ample, the invention of more efficient produc-
tion equipment) or can lead to the qualitative
transformation of the structure of the economy
by creating completely new products (Freeman
& Soete, 1997).

Given the economic and social importance
of the development of new products, questions
of interest naturally arise concerning the dy-
namics of the process of invention; these form
the research domain of this chapter. This do-
main is distinguished from the study of the
commercial implications of inventions once they
are created. Fleming and Sorenson (2001) note
that while the processes of commercial diffu-
sion of new goods have attracted substantial
study, “we lack a systematic and empirically
validated theory of invention” (p. 1019).

The lack of a theory of invention leaves
open the question: How do inventors actually
invent? Given that no inventor can try all pos-
sible combinations of even the set of already
discovered raw components when attempting
to invent a novel product, two further questions
arise: What methods do inventors employ to
simplify their task? and What are the implica-
tions of these methods for the rate of inventive
progress?

These apparently simple questions are highly
significant. Without a robust theory of inven-
tion, managers’ ability to create organizations
that encourage inventive practices is con-
strained, and policymakers risk making sub-
optimal decisions regarding how best to en-

courage invention in society in order to promote
long-term economic growth. This chapter fo-
cuses attention on the role of search heuristics
in the decision-making processes of inventors.

The Inventor’s Problem

In many real-world decision scenarios, includ-
ing product invention, inventors are faced with
three key problems, a large decision space
(many variables), interconnectedness of solu-
tion elements (a complex mapping between
individual elements of a solution and the payoff
to the whole solution), and difficulties in assess-
ing the likely payoffs to inventive ideas ex-ante
their physical implementation (see Figure 1).

In the case of product invention, a vast
number of possible product designs exist, and
inventors must decide which of these possibili-
ties to pursue. Their decision as to where to
concentrate their inventive efforts is driven by
the search heuristics they use, and their ex-
pectations as to the profitability of potential
products. These expectations are subject to
error for two reasons, technical uncertainty as
to how a large system of components (a prod-
uct) will behave, and commercial uncertainty
as to what return a product will earn if it is
successfully created.

A search heuristic is defined as: a method
for searching for an acceptable solution to
a problem without considering all possible
solution alternatives. This definition encom-
passes a broad range of structures, for example
an organizational structure can be considered
as a search heuristic (Cohen, 1981). Search
heuristics are widely used in everyday decision
making, either because of the impossibility of
determining and evaluating all possible solu-
tions to a problem, or because the benefits from
obtaining the best, rather than a good solution to
a problem are outweighed by the extra costs of
obtaining the optimal solution. Search heuris-
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tics guide inventors both in their choice of
which product ideas to pursue and how to
generate product novelty. These heuristics re-
strict the size of the space of alternatives
considered, and place a strategy on the method
of search (Matthews, 2002). Examples of the
former include restricting attention to a subset
of available components and the use of problem
decomposition. Examples of the latter include
the strategy of only pursuing a proto-product
design which appears to offer better profit
potential than your current product design. This
study does not consider all possible search
heuristics that inventors could adopt, but con-
centrates on a subset of heuristics that have
attracted attention in prior literature.

Relevant Literature

The literature on invention and learning is frag-
mented and spread across several disciplines,

each with its own focus of interest, level of
aggregation. and perspective. Relevant litera-
tures include those listed in Table 1.

Nooteboom (2000) comments that it is im-
possible for any scholar to embrace all of these
strands of literature. Inevitably, work on inno-
vation or invention must draw most strongly
from one or a small subset of the above litera-
tures. This chapter draws its primary inspira-
tion from the literature of complex adaptive
systems. It is also noted that a substantial
literature on evolutionary learning exists in com-
puter science (Holland, 1992; Fogel, 2000; Koza,
1992). This chapter also draws from this litera-
ture.

Organization of the Chapter

The rest of this chapter is organized as follows.
The next section provides an overview of the
conceptual model underlying the simulator, fol-

Figure 1. The inventor’s problem

Table 1. Literatures that cover aspects of innovation and learning

Studies of organizational learning Literature on innovation systems 
Populational ecology in sociology Literature on institutional economics 
Evolutionary and neo-Schumpeterian 
economics 

Marketing 

Literature on complex adaptive systems Literature on cognitive science 
Literature on networks  
 

 

Inventor’s Problem

Vast number of possible
product designs

Design elements interact to
determine product’s utility

Difficult to assess the worth of a
potential product design
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lowed by a section which introduces the simu-
lator. We then describe the results of a series of
simulation experiments. The final section con-
cludes the study and makes a number of sug-
gestions for future work.

CONCEPTUAL MODEL
OF INVENTION

The conceptual model of invention underlying
the simulation experiments is outlined in Figure
2. The model is embedded in a general evolu-
tionary process, but this is adapted for the
salient characteristics of the process of product
invention.

The conceptual model embeds the search
heuristics of anchoring, copying from existing
designs, trial-and-error experimentation, thought
experiments, election, and fitness sharing. In
the model, inventors are conceptualized as start-
ing from their existing product design in each
inventive trial (an anchoring heuristic). Their
generation of novel proto-product ideas (these
are defined as mental product design ideas in
the heads of inventors) arises from a combina-
tion of copying (imitation) elements of existing
product designs, and incremental trial-and-error
invention in an effort to improve their existing
product design. In each inventive trial, an inven-
tor generates multiple proto-product ideas (a
thought experiment heuristic). The expected

Figure 2. Conceptual model of product invention

 

Fitness-Sharing Election Thought
Experiments

Create Physical
Product Invention Expectations

Experience Variety Generation
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payoff to the best of these thought experiments
is compared with the expected payoff to the
inventor’s current product, and if higher, the
proto-product is physically made and replaces
the inventor’s current idea (an election heuris-
tic). All the expected payoffs are discounted by
considering the expected degree of competition
that the design will face (a fitness-sharing heu-
ristic). Each of these heuristics are discussed in
more detail in the following subsections.

Anchoring

Product invention is strongly influenced by, and
anchored within, the population of currently
existing product designs. Heavy reliance is
placed on historical experience by inventors,
and the results of past searches become natural
starting points for new ones (Nelson & Winter,
1982; Stuart & Podolny, 1996). From a techni-
cal standpoint, as populations of engineers and
designers build up experience and absorption
capacity (Cohen, 1981) with current product
architectures and design elements, they will
tend to draw on this experience when faced
with future design decisions, rather than re-
examining all possible alternatives ab initio in
each inventive trial. Existing products also
embed past learning concerning knowledge of
customer needs. Hence, it is plausible to as-
sume that inventors employ an anchoring search
heuristic, and start their inventive activity from
current product designs.

Election Heuristic

Profit-seeking inventors will not discard their
current product design until they uncover one
that they expect will produce even higher re-
turns. This represents a search heuristic: do
not give up a good idea until a better one
comes along. The economic interpretation of
this heuristic is that the inventor carries out a

mental simulation (Birchenhall, 1995; Kennedy,
Eberhart, & Shi, 2001). If the expected return
from the new product design appears unattrac-
tive, the bad idea is discarded, and the inventor
stays with his current design. In the election
step, inventors compare the expected return
from the proposed proto-product design with
that of a current product design, and if it is less,
the proto-product idea is discarded and is not
physically created. Examples of election mecha-
nisms abound in business, ranging from formal
project appraisal systems to procedures for
monitoring the performance of ongoing product
development projects.

Thought Experiments

Inventors do not typically consider a single
product-design idea in each inventive trial be-
fore they attempt to physically create a new
product (Otto & Wood, 2001). Thought experi-
ments represent the heuristic: ‘generate sev-
eral mental product ideas, and pick the best of
these’. These mental simulations can include
the construction of computer simulations and
mock-ups (Nooteboom, 2000). Thought experi-
ments can be considered as corresponding to
the openness of an inventor to new ideas. The
greater the number of mental thought experi-
ments or product design ideas that inventors
consider when creating new products, the more
open they are considered to be to new ideas.
Inventors, or in a corporate setting R&D de-
partments, which generate small numbers of
product design alternatives are less likely to
prosper.

Fitness Sharing

A key factor impacting the return to a new
product is the degree of competition it faces
from similar existing products. If there are
several very similar products in the market-
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place, they compete for the same customer
segment, and the returns to each product are
likely to be lower than they would be in the
absence of competition. In the model of inven-
tion, it is assumed that inventors employ a
heuristic of ‘take account of expected compe-
tition’ (fitness sharing) when forming their ex-
pectations as to the likely payoff to a product
idea. The fitness-sharing mechanism was based
on that of Mahfoud (1995) and is defined as
follows:
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where f(i) represents the original raw fitness of
product design i (the fitness of the design is
calculated using the NK landscape—see next
section) which exists in the marketplace. If this
design suffers competition from other very
similar products that are active in the market, its
raw fitness is reduced from the fitness it would
have if it had no competition. The shared (re-
duced) fitness of design i is denoted as f’(i) and
corresponds to its original raw fitness (f(i)),
derated or reduced by an amount determined by
a sharing function s.

The (sharing) function s provides a measure
of the density of active product designs within
a given neighborhood of design i on the land-
scape. For any pair of designs (i,j), the sharing
function returns a value of ‘0’ if the two designs
(i,j) are more than a specified distance (t)
apart, and therefore are not considered to be
competing for the same market niche, a value
of ‘1’ if the designs are identical, and a scaled
value between 0 and 1 otherwise. The form of
the sharing function adopted in this study was
taken from Mahfoud (1995), where

s(d) = 1
d
t

α
 −   

if d<t,

otherwise s(d)=0, where t is the neighborhood
within which designs are considered to com-
pete, d is the actual distance between two
designs, and α is a scaling constant. Fitness
sharing impacts on the expectations of inven-
tors as to the likely fitness of proto-designs and
acts to discourage inventors from closely imi-
tating products already subject to significant
competition. In the simulation experiments, all
payoffs are assessed by inventors using a shared
fitness heuristic. Therefore, election decisions
and selection decisions are based on shared
rather than raw fitness values.

SIMULATION MODEL

The conceptual model is operationalized in the
InventSim simulator (Brabazon, 2005; Brabazon
et al., 2005) using a novel synthesis of two
general frameworks from the literature of com-
plex adaptive systems, Kauffman’s NK Frame-
work (Kauffman & Levin, 1987; Kauffman
1993, 1995) and the Genetic Algorithm (GA)
(Holland, 1992). A particular challenge in seek-
ing to gain insight into the process of invention
is that we have limited empirical data concern-
ing invention processes. Unsuccessful inven-
tions leave few footprints on the sands of time,
and patent databases form an incomplete record
of inventive effort. Hence, it is difficult to
examine the role of search heuristics in the
process of invention by focusing solely on em-
pirical data. In this chapter, a simulation-based
approach is adopted. This allows the creation of
a ‘closed world’ and therefore permits the
examination of the role of specific search heu-
ristics in the process of invention.

The components of the simulation model are
illustrated in Figure 3.

In order to investigate the utility of differing
search heuristics in the process of product
invention using a simulation methodology, a
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representation or product design space must be
defined within which inventors are assumed to
search. In this study, the NK framework is used
to define a product design space. The NK
framework, drawn from the literature of com-
plex adaptive systems, represents a general
model of systems that comprise interconnected
elements. These systems are widespread and
include networks of genes, networks of activities
within an organization, and networks of compo-
nents in a physical product. It is noted ab initio
that application of the NK framework in a
simulation model is not atypical, and it has al-
ready been applied in this manner in a variety of
studies in organizational science (Levinthal, 1997;
Levinthal & Warglien, 1999; Rivkin, 2000; Gavetti
& Levinthal, 2000) and technological invention
(Frenken, 2001; Fleming & Sorenson, 2001).

The GA, drawing inspiration from the pro-
cess of biological evolution, utilizes a pseudo
neo-Darwinian metaphor to simulate the evolu-
tion of a population of entities over time. GAs
have been applied in two primary areas of
research (Mitchell, 1996), combinatorial opti-
mization in which GAs represent a population-
based optimization algorithm, and the study of

adaptation in complex systems. Prima facie,
the framework of the GA has the potential to
incorporate several salient aspects of the in-
vention process. These are:

• a population of entities (products) which
adapt over time,

• competition for resources among inven-
tors (profit-driven motivation),

• a selection process,
• reuse of previously invented components,

and
• trial-and-error experimentation.

Simon (1996) notes that the GA can be used
to build a simulation model of an adaptive
system and that these simulations “can be used
to study the relative rates at which fitness will
grow under different assumptions about the
model, including assumptions about rates of
mutation [trial-and-error] and crossover [re-
combination]” (p. 180). In the simulator, the
canonical GA is adapted to embed the heuris-
tics of inventors, as already discussed in the
conceptual framework.

Figure 3. Components of simulation model
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search space

Ability to measure quality
of proposed solution

Representation Space
(NK Framework)

Search Heuristics
(Adapted GA +

Fitness-Sharing)

Fitness Function
(NK Framework)



386

Simulating Product Invention Using InventSim

Product Design Landscape

In this study the product design landscape is
defined using Kauffman’s NK model
(Kauffman, 1993, 1995). The NK model consid-
ers the behavior of systems that comprise a
configuration (string) of N individual elements.
Each of these elements are in turn intercon-
nected to K other of the N elements (K<N). In a
general description of such systems, each of the
N elements can assume a finite number of states.
In Kauffman’s operationalization of this general
framework, the number of states for each ele-
ment is restricted to two (0 or 1). Therefore the
configuration of N elements can be represented
as a binary string. The parameter K determines
the degree of fitness interconnectedness of each
of the N elements and can vary in value from 0
to N-1. In one limiting case where K=0, the
contribution of each of the N elements to the
overall fitness value (or worth) of the configura-
tion is independent of each other. As K in-
creases, this mapping becomes more complex,
until at the upper limit when K=N-1, the fitness
contribution of any of the N elements depends
both on its own state and the simultaneous states
of all the other N-1 elements, describing a fully
connected graph.

If we let si represent the state of an indi-
vidual element i, the contribution of this element
to the overall fitness (F) of the entire configura-
tion is given by fi(si) when K=0. When K>0, the
contribution of an individual element to overall
fitness depends both on its state and the states of
the K other elements to which it is linked (fi(si):
si1, ..., sik). A random fitness function (U(0,1)) is
adopted, and the overall fitness of each configu-
ration is calculated as the average of the fitness
values of each of its individual elements. There-
fore, if the fitness values of the individual ele-
ments are f1, ..., fN, the overall fitness of the
entire configuration (F) is:

1
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i

i
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N
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 =
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Therefore, for the case where K=0, and
where N=3 (for example), the fitness of a
specific configuration (0,0,1) is simply the aver-
age of the fitness values for each individual
locus on the string. In turn, the fitness value of
a 0 or a 1 in each locus is modeled as a random
draw from U(0,1). In the more complex case
where K=2, the fitness value of (say) a 0 in the
first locus of the configuration (0,0,1) depends
not just on its own state, but also on the simul-
taneous states of the following two loci to
which it is fitness connected. Therefore, the
fitness of the zero in the first locus of (0,0,1) is
not the same as that of (0,0,0). The fitness value
of 0 in each case is determined by the simulta-
neous states of 22 (2K) following loci, and the
value of each of these states is determined by
a random draw from U(0,1).

Altering the value of K affects the rugged-
ness of the described landscape (graph), and
consequently impacts on the difficulty of search
on this landscape (Kauffman & Levin, 1987;
Kauffman 1993). As K increases, the land-
scape becomes more rugged, and the best
peaks on the landscape become higher, but
harder to find.

Mapping Product Designs
into the NK Framework

NK landscapes are concerned with systems
that consist of multiple, interacting elements. In
a similar fashion, products consist of systems of
multiple, interacting design elements, and the
utility or worth of products depends on both the
nature of the included elements and their inter-
connection structure. The importance accorded
to element interconnection in determining the
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fitness of a configuration in the NK model finds
plausible parallels with real-world product de-
sign. The presence of a specific design element
places constraints on other design elements.
For example, the use of a particular lightweight
material to cover an airplane wing may require
that an additional internal brace be added to
increase wing rigidity. The importance of de-
sign element interdependence in product design
is noted by several authors, including Baldwin
and Clark (2000), who comment that design
elements depend on each other, “often in very
complex and convoluted ways” (p. 36), and
Ulrich and Eppinger (2000) who point out that
components and subassemblies can interact
with one another in both “planned and unin-
tended ways” (p. 195).

An extreme example could arise where a
small change in a single design attribute de-
stroys the value of the entire system. Consider
the effect of increasing the voltage output from
a transformer in a computer. The increased

voltage could destroy several other compo-
nents, reducing the value of the entire system to
zero. The design of pharmaceutical products is
another example of a high-K design, as a small
change in the formulation of the product can
impact dramatically on its utility.

Physical product designs are characterized
in this study as consisting of N attributes. Each
of these attributes represents a choice of de-
sign attribute that an inventor faces. Hence, a
specific design configuration s is represented
as a vector s1, …, sN, where each attribute can
assume a value of 0 or 1. The vector of at-
tributes represents an entire product design,
hence it embeds a choice of physical compo-
nents, ancillary choices concerning these com-
ponents (color, finish), the choice of configura-
tion of the components (their tolerances, direc-
tional orientation, physical linkage structure),
and the choice of production technologies re-
quired to manufacture the product design
(Kauffman, Lobo, & MacReady, 1998). Good,

Repeat ‘A’ times Create Product Landscape 

Repeat for each string (active product design) in the population 

Take string ‘i’ 

Calculate fitness values for each string in the population 

For x=1:a (‘a’ thought experiments) 

Select another design ‘j’ in the population 

Recombine design ‘i’ and ‘j’ to produce new design ‘k’ (simulates 

imitation process) 

Apply mutation operator to new design ‘k’ (simulates trial-and-error 

process) 

If design ‘k’ is best design of thought experiments so far, store 

design ‘k’ in design ‘best’ 

End (for loop) 

If design ‘best’ is better than the original design ‘i’, replace design ‘i’ with 

design ‘best’ (election operator) 

End (Repeat for each string loop) (end of generation) 

Output results for simulation run End (Repeat ‘A’ loop) 

Example 1.
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consistent sets of product design correspond to
peaks on the product design landscape.

In the simulator, the product design land-
scape, whereon a population of inventors are
searching for ever better designs, is defined
using a binary representation. The adaptive
efforts of inventors are governed by variety-
generating heuristics, including imitation, and
trial and error. Experience-based heuristics
influence the search process by means of an-
choring and selection mechanisms, and expec-
tations-based heuristics influence the search
process through thought experiments and elec-
tion mechanisms.

Pseudo-Code for Simulator

The pseudo-code for the simulator is given in
Example 1.

Worked Example of
Simulation Model

Figure 4 provides a worked example of a single
inventive trial in a simulation experiment. In the
diagram, xi is the binary string ‘10010’. It is
assumed that the inventor undertakes two
thought experiments. In the first thought ex-
periment when xj1 is selected from the popula-
tion of active designs, binary string ‘01100’ is
chosen, and in the second thought experiment,
binary string ‘10011’ is chosen. Assume that in
each thought experiment, the copying operator
copies the last two bits of xj into xi. Also assume
that in each thought experiment, the incremen-
tal trial-and-error operator flips the second bit
of each proto-design after the copying step has
taken place. Comparison between the fitness

Figure 4. Example of model, with two thought
experiments and election; the first thought
experiment is shown on the left side of the
diagram, the second on the right

Figure 5. Control screen for selecting the
number of individual designs in the
simulation, and the length of the binary
strings which represent each product design
(the choice of N for the NK landscape)

 

 

Figure 6. Control screen for selection of
parameters governing copying, imitation,
and thought experiment heuristics
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(assumed on grounds of simplicity in this ex-
ample to be the number of ‘1’s in a binary
string) of the two proto-designs, after both the
copying and the incremental trial-and-error
steps, shows that the second thought experi-
ment has produced the better design, with a
fitness of 4. The final step is the election
process, where the fitness of the original design
(xi) is compared with the fitness of the design
that resulted from the second thought process.
The original design had a fitness of 2, hence it
is replaced by design ‘11011’. This new design
then becomes xi for time period t+1.

Simulator Screen Shots

Although the underlying code for the InventSim
simulator is written in C++, the user interacts
with the simulator through a series of easy-to-
use screens (Figures 5 and 6 provide an illustra-
tion of two of these screens). These screens
allow the user to select and alter a wide variety
of parameters that determine the nature of the
simulation run. In essence, the simulator allows
the user to select choices for four items, namely:

• the form of NK landscape generated,
• the nature of the search heuristics to be

employed by inventors,

• the number of simulations to be run, and
• the form of output generated during the

simulation run.

During the simulation run, a graphic of the
status of the population during the simulation
run (see Figure 7) and a run report (see Figure
8) can be displayed. The report display records
the full list of simulation parameters chosen by
the modeler, as well as providing a running

Figure 7. Example of population display option

Figure 8. Sample report produced by simulator
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record of the best design in the population at the
end of each iteration. The simulator also facili-
tates the recording of comprehensive run-data
to disk during the simulation.

RESULTS

All results are averaged across 30 separate
simulation runs. In each simulation run, the NK
landscape is specified anew, and the positions
of the initial product designs are randomly

selected at the start of each run. A value of
N=96, and K values of 4 and 6 are selected in
defining the landscapes in the simulation ex-
periments. An imitation heuristic (wherein an
inventor can imitate a portion of another design
string) is applied with a probability of 0.60 in
each inventive trial, and the trial-and-error rate
is selected to produce an expected mutation
rate of one bit in each product design string in
each inventive trial (therefore simulating an
incremental trial-and-error invention heuristic).

These simulations compare the rate of in-

Figure 9. Imitation, trial and error without
election vs. imitation, trial and error, and
election for three levels of thought experiment
(1,3, 5) for K= 4

Figure 10. Imitation and trial and error
without election vs. imitation, trial and error,
and election for three levels of thought
experiment (1,3, 5) for K= 6

Table 2. Average populational fitness,
imitation, trial and error (no election) vs.
imitation, trial and error + election for K=4
landscape, and number of thought
experiments=1,3,5

Table 3. Average populational fitness,
imitation, trial and error (no election) vs.
imitation, trial and error + election for K=6
landscape, and number of thought
experiments=1,3,5
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Iterations Imitation and trial and 
error (no election) 

Imitation and trial and 
error (with election) 

 TE=1 TE=3 TE=5 TE=1 TE=3 TE=5 
1 0.4971 0.4996 0.5014 0.5003 0.4971 0.4983 
10 0.4990 0.5803 0.6121 0.5535 0.5873 0.6115 
50 0.5270 0.6781 0.7139 0.6272 0.6815 0.7114 
100 0.5339 0.7031 0.7280 0.6738 0.7158 0.7319 
150 0.5343 0.7082 0.7311 0.6985 0.7277 0.7386 
200 0.5317 0.7095 0.7334 0.7120 0.7339 0.7423 
 

Iterations Imitation and trial and 
error (no election) 

Imitation and trial and 
error (with election) 

 TE=1 TE=3 TE=5 TE=1 TE=3 TE=5 
1 0.4990 0.5009 0.5017 0.4990 0.5003 0.4993 
10 0.4980 0.5680 0.5964 0.5497 0.5808 0.6000 
50 0.5112 0.6503 0.6918 0.6088 0.6662 0.6853 
100 0.5120 0.6801 0.7117 0.6416 0.6995 0.7158 
150 0.5140 0.6876 0.7173 0.6626 0.7139 0.7279 
200 0.5146 0.6913 0.7205 0.6770 0.7233 0.7342 
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ventive advance of a population of inventors
using a trial-and-error plus imitation heuristic,
when an election heuristic is (vs. is not) em-
ployed. The results of these simulations are
presented in Figures 9 and 10, where the results
are reported after the first iteration and there-
after after each tenth iteration up to 200 itera-
tions, and in Tables 2 and 3.

Looking at the results from the simulations
where inventors limit themselves to a single
thought experiment, and engage in both trial-
and-error experimentation and imitation from
existing designs, it is noted that the inclusion of
election notably increases the rate of inventive
advance. The populational average fitnesses is
higher when an election heuristic is used by the
200 iteration end-point of the simulations (the
difference is significant at the 5% level).

It can also be observed that when the num-
ber of thought experiments is raised from 1 to
3 or 5, the rate of inventive advance increases.
Again, the difference in populational average
fitnesses is significant (at the 5% level) by the
200 iteration end-point of the simulations when
multiple thought experiments are undertaken.

In assessing the results from the differing
levels of thought experiments, it is important to
remember that the thought experiments mecha-
nism does not require that inventors can make
perfect assessments of the payoffs to several
potential product designs ex-ante their testing
in the marketplace. Rather it only requires that
inventors can assess the relative payoffs of the
designs. A similar comment can be made in
respect of the election heuristic in that inven-
tors only need to be able to identify whether the
new product design is better than their existing
design. It is not necessary that inventors are able
to precisely assess the worth of the new design.
Once inventors can make reasonably accurate
assessments of the relative payoffs of proto-
product designs, product fitness advance is as-
sured when inventors use an election mecha-

nism, or when they engage in multiple thought
experiments. Election and thought experiments,
in other words inventors’ expectations, matter.
Therefore, the simulation results support the
assertion that inventors (managers) should un-
dertake a formal assessment of the worth of a
proto-product design before undertaking the in-
ventive step of actually creating the product.

Each thought experiment requires that an
inventor consider what elements could be imi-
tated from other products, and what elements
of the resulting proto-product design should be
incrementally altered by trial and error. Implic-
itly, the selection process when deciding what
to imitate requires that inventors consider what
other products already exist, and also the worth
of these products. Therefore, the undertaking
of multiple thought experiments requires a qual-
ity conduit of market information. The better
the flow of market information to the inventor,
the easier it is to generate multiple proto-
product designs and the more accurate the
inventor’s estimate of their likely fitness. In-
ventors or organizations with good communica-
tion channels between the market and inven-
tors (and in organizations, between members of
the design team) will find it easier to undertake
multiple thought experiments. Therefore the
simulation results are consistent with a propo-
sition that invention produces better results
when it is well informed by market information.

CONCLUSION

This chapter developed a novel conceptual
model of the process of product invention by
considering product invention as an adaptive
process that is governed by the search heuris-
tics of inventors. The model was operationalized
in a simulation study, in order to examine the
utility of a variety of search heuristics, by
coherently integrating the NK and GA frame-
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works drawn from the literature of complex
adaptive systems. The developed simulation
model was used to address two broad ques-
tions:

• What effect do inventor’s search heuris-
tics have on the rate of product invention?

• Does the degree of product-design
interconnectedness alter the effectiveness
of inventor’s search heuristics?

The results suggest that despite the posited
importance of the basic variety-generating heu-
ristics of trial and error and imitation, they are
not sufficient in themselves to produce substan-
tial progress in product invention. The inventor’s
expectations and consequent direction of the
inventive process play a critical role in ensuring
inventive advance.

It is not possible in a single set of simulation
experiments to exhaustively examine every
possible combination of settings for each pa-
rameter in the simulation model. However, the
initial results cast an interesting light on the
process of product invention, and the develop-
ment of the InventSim simulator extends the
methodologies available to researchers to con-
ceptualize and examine product invention. Fu-
ture work will extend this study by considering
additional parameter settings and additional
forms of imitation operator, and by incorporat-
ing noisy expectations as to proto-product de-
sign payoffs.

While this chapter concentrated on the study
of product invention, it is noted that the issues
that make product invention difficult are also
present in important decisions that managers
face. For example, in both strategic manage-
ment and marketing management, managers
must select a strategy from a vast array of
possible strategies, where elements of these
strategies are fitness interconnected, and where
the worth of potential strategies must be esti-

mated ex-ante their implementation. These prob-
lems are difficult for exactly the same reasons
that product invention is. Just as inventors must
turn to search heuristics, so too must managers.
Therefore, it is believed that the conceptual
framework developed in this chapter has po-
tential for more general application outside the
domain of product invention.

REFERENCES

Abernathy, W., & Clark, K. (1985). Innovation:
Mapping the winds of creative destruction.
Research Policy, 14(1), 3-22.

Birchenhall, C. (1995). Modular technical
change and genetic algorithms. Computational
Economics, 8(3), 233-253.

Brabazon, A. (2005). Product invention as a
complex adaptive system: An investigation
of the impact of inventors’ search heuristics
on the rate of invention. Doctoral Thesis,
Kingston University, UK.

Brabazon, A., Silva, A., Ferra de Sousa, T.,
O’Neill, M., Matthews, R., & Costa, R. (2005,
September 2-5). A memetic model of product
invention. Proceedings of the Congress on
Evolutionary Computation (CEC 2005),
Edinburgh. NJ: IEEE Press.

Cohen, W. (1981). The power of parallel think-
ing. Journal of Economic Behavior and Or-
ganization, 2(4), 285-306.

Fleming, L., & Sorenson, O. (2001). Technol-
ogy as a complex adaptive system: Evidence
from patent data. Research Policy, 30(7),
1019-1039.

Fogel, D. (2000). Evolutionary computation:
Towards a new philosophy of machine intel-
ligence. New York: IEEE Press.



  393

Simulating Product Invention Using InventSim

Freeman, C., & Soete, L. (1997). The econom-
ics of industrial innovation (3rd ed.). Cam-
bridge, MA: MIT Press.

Frenken, K. (2001). Understanding product
innovation using complex systems theory.
Unpublished PhD thesis, University of
Amsterdam, The Netherlands, and Universite
Pierre Mendes, France.

Gavetti, G., & Levinthal, D. (2000). Looking
forward and looking backward: Cognitive and
experiential search. Administrative Science
Quarterly, 45(1), 113-137.

Holland, J. (1992). Adaptation in natural and
artificial systems, (originally published in 1975).
Ann Arbor: University of Michigan Press.

Kauffman, S., & Levin, S. (1987). Towards a
general theory of adaptive walks on rugged
landscapes. Journal of Theoretical Biology,
128, 11-45.

Kauffman, S. (1993). The origins of order.
Oxford, UK: Oxford University Press.

Kauffman, S. (1995). At home in the universe.
Oxford, UK: Oxford University Press.

Kauffman, S., Lobo, J., & MacReady, W.
(1998). Optimal search on a technology land-
scape. Santa Fe Institute Working Paper 98-
10-091, USA.

Kennedy, J., Eberhart, R., & Shi, Y. (2001).
Swarm intelligence. San Mateo, CA: Morgan
Kauffman.

Koza, J. (1992). Genetic programming: On
the programming of computers by means of
natural selection. Cambridge, MA: MIT Press.

Levinthal, D. (1997). Adaptation on rugged
landscapes. Management Science, 43(7). 934-
950.

Levinthal, D., & Warglien, M. (1999). Land-
scape design: Designing for local action in
complex worlds. Organization Science, 10(3),
342-357.

Mahfoud, S. (1995). Population size and ge-
netic drift in fitness sharing. In L. Whitley & M.
Vose (Eds.), Foundations of genetic algo-
rithms 3 (pp. 185-223). San Francisco: Morgan
Kauffmann.

Maskus, K., & McDaniel, C. (1999). Impacts
of the Japanese patent system on productivity
growth. Japan and the World Economy, 11(4),
557-574.

Matthews, R. (2002, September 9-11). Strat-
egy, complex adaptive systems and games: An
evolutionary approach. Proceedings of Brit-
ish Academy of Management Annual Con-
ference 2002, London.

Mitchell, M. (1996). An introduction to ge-
netic algorithms. Cambridge, MA: MIT Press.

Nelson, R., & Winter, S. (1982). An evolution-
ary theory of economic change. Cambridge,
MA: Harvard University Press.

Nooteboom, B. (2000). Learning and innova-
tion in organizations and economies. Ox-
ford: Oxford University Press.

Otto, K., & Wood, K. (2001). Product design:
Techniques in reverse engineering and new
product development. Upper Saddle River,
NJ: Prentice-Hall.

Rivkin, J. (2000). Imitation of complex strate-
gies. Management Science, 46(6), 824-844.

Schumpeter, J. (1934). The theory of eco-
nomic development (8th printing, 1968). Bos-
ton: Harvard University Press (Harvard Eco-
nomic Studies XLVI).



394

Simulating Product Invention Using InventSim

Schumpeter, J. (1943). Capitalism, socialism
and democracy (reprinted 1992). London:
Routledge.

Simon, H. (1996). Sciences of the artificial
(3rd ed.). Cambridge, MA: MIT Press.

Stuart, T., & Podolny, J. (1996). Local search
and the evolution of technological capabilities.
Strategic Management Journal, 17(Summer
Special Issue), 21-38.



xxxvii

���������

�����������������������
��������������



xxxviii



xxxix

$���������

��������������&��������"�$"�����
���)����������)��������������



xl



  395

������������

��������������&��������"
$"���������)���������

)��������������

I. C. Parmee
University of the West of England, UK

J. R. Abraham
University of the West of England, UK

A. Machwe
University of the West of England, UK

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

ABSTRACT

The chapter introduces the concept of user-centric evolutionary design and decision-support
systems, and positions them in terms of interactive evolutionary computing. Current research
results provide two examples that illustrate differing degrees of user interaction in terms of
subjective criteria evaluation; the extraction, processing, and presentation of high-quality
information; and the associated improvement of machine-based problem representation. The
first example relates to the inclusion of subjective aesthetic criteria to complement quantitative
evaluation in the conceptual design of bridge structures. The second relates to the succinct
graphical presentation of complex relationships between variable and objective space, and
the manner in which this can support a better understanding of a problem domain. This
improved understanding can contribute to the iterative improvement of initial machine-based
representations. Both examples complement and add to earlier research relating to interactive
evolutionary design systems.

INTRODUCTION

Uncertainty and poor problem definition are
inherent features during the early stages of

design and decision-making processes. Imme-
diate requirements for relevant information to
improve understanding can be confounded by
complex design representations comprising
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many interacting variable parameters. Design
constraints and multiple objectives that defy
complete quantitative representation and there-
fore require a degree of subjective user evalu-
ation further inhibit meaningful progression.
Machine-based problem representation may,
initially, be based upon qualitative mental mod-
els arising from experiential knowledge, group
discussion, and sparse available data. How-
ever, such representations, coupled with user
intuition, play a significant role in defining initial
direction for further investigation. Concepts
based upon current understanding require both
quantitative and qualitative exploration to gen-
erate relevant information that supports and
enables meaningful progress.

The chapter presents research and develop-
ment relating to powerful machine-based search
and exploration systems that, through appropri-
ate user interaction, allow both quantitative and
qualitative evaluation of solutions and the ex-
traction of information from complex, poorly
understood design and decision-making do-
mains. The integration and capture of user
experiential knowledge within such systems in
order to stimulate, support, and increase under-
standing is of particular interest. The objective
is the realisation of user-centric intelligent sys-
tems that overcome initial lack of understand-
ing and associated uncertainty, support an im-
proving knowledge-base, allow the integration
of subjective judgement, and stimulate innova-
tion and creativity.

INTERACTIVE EVOLUTIONARY
COMPUTATION (IEC)

Interactive evolutionary computing (Takagi,
1996) mainly relates to partial or complete
human evaluation of the fitness of solutions
generated from evolutionary search. This has
been introduced where quantitative evaluation
is difficult if not impossible to achieve. Ex-

amples of application include graphic arts and
animation (Sims, 1991), food engineering (Herdy,
1997), and hazard icon design (Carnahan, 2004).
Such applications rely upon a human-centred,
subjective evaluation of the fitness of a particu-
lar design, image, taste, and so forth, as op-
posed to an evaluation developed from some
analytic model.

Partial human interaction that complements
quantitative machine-based solution evaluation
is also evident—for instance, the user addition
of new constraints in order to generate solu-
tions that are fully satisfactory within an evolu-
tionary nurse scheduling system (Inoue,
Furuhashi, & Fujii, 1999). Another example is
the introduction of new compounds as elite
solutions into selected evolving generations of a
biomolecular design process (Levine, Facello,
& Hallstrom, 1997).

These examples utilise a major advantage of
stochastic population-based search tech-
niques—that is, their capabilities as powerful
search and exploration algorithms that provide
diverse, interesting, and potentially competitive
solutions to a wide range of problems. Such
solutions can provide information to the user
which supports a better understanding of the
problem domain whilst helping to identify best
direction for future investigation (Parmee &
Bonham, 1999), especially when operating
within poorly defined decision-making environ-
ments. Extracted information supports devel-
opment of the problem representation in an
iterative, interactive evolutionary environment.
Interactive evolutionary design systems
(IEDSs) represent a human-centric approach
(Parmee, 2002; Parmee, Watson, Cvetkovic, &
Bonham, 2000) that generate and succinctly
present information appertaining to complex
relationships between the variables, objectives,
and constraints that define a developing deci-
sion space.

In an attempt to categorise these various
forms of IEC, it is possible to view complete
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human evaluation as explicit, whereas partial
evaluation and interaction are less explicit, more
subtle forms of human involvement. Completely
implicit interaction occurs where users are
unaware of their role in the evolution of a
system (e.g., the Web-based tutorials of Semet,
Lutton, Biojout, Jamont, & Collet, 2003). A
simple implicit/explicit spectrum of interactive
evolutionary approaches can thus be developed
(Parmee & Abraham, 2005).

The following sections concentrate on the
manner in which evolutionary search and ex-
ploration can generate high-quality information
from complex design and decision-making en-
vironments. Such information can be utilised
interactively to:

• support the identification of high-perfor-
mance solutions where qualitative as well
as quantitative objectives play a major
role; and

• modify and refine design problem repre-
sentation.

The first example relates to aesthetic judge-
ment of EC-generated designs and is closer to
the more traditional explicit interaction where
user subjective evaluation is evident. However,
this subjective evaluation complements detailed,

machine-based quantitative evaluation. The
second is current IEDS research relating to
problem definition and the iterative interactive
improvement of machine-based design repre-
sentations that sits further toward the implicit
end of the spectrum.

INTEGRATING AESTHETICS VIA
INTERACTIVE EVOLUTIONARY
DESIGN PROCESSES

This example brings together agent-based ma-
chine learning, evolutionary computing, and
subjective evaluation in search for aesthetically
pleasing, structurally feasible designs during
the conceptual design process. Although sig-
nificant theoretical work is evident with respect
to the inclusion of aesthetics in computer-based
design, application-based research has received
less attention (Moore, Miles, & Evans, 1996a,
1996b; Saunders, 2001).

Figure 1 illustrates the main components of
the system and the manner in which they inter-
act. The user defines initial design require-
ments and aesthetically evaluates the designs
generated by the Evolutionary Search, Explo-
ration, and Optimisation System (ESEO) during
the initial generations. The agents have multiple

Figure 1. The user-centric system
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tasks, which include the creation of the initial
population based on design requirements, the
monitoring of designs for feasibility during the
ESEO processes, and evaluation of machine-
based aesthetic criteria. The ESEO identifies
design solutions that can be considered high
performance in terms of Structural Feasibility
and Stability, Materials Cost, and Rule-Based
Aesthetics.

The project is initially considering three test
domains: bridges; liquid containers such as wine
glasses, chemical tanks, and so forth; and street
furniture in the form of bench type structures.
The following example concentrates on bridge
design. Research involves the ACDDM Lab at
Bristol UWE and the Institute of Machines and
Structures at Cardiff University. The early stages
have concentrated on development of highly
flexible and robust representations of simple
bridge structures and the identification of opti-
mal solutions via basic evolutionary algorithms.

Representation

Problem representation affects search effi-
ciency and evolutionary performance
(Rosenman, 1997; Goldberg, 1989). Genetic
algorithms (GAs), evolutionary strategies (ESs),
and evolutionary programming (EP) represen-
tations are generally based on binary or real
number parameter strings, but many alterna-
tives are also available. Component-based and
hierarchical representations support flexibility
and robustness in terms of accommodating
complex design entities with many related sub-
systems/components (e.g., Bentley, 2000;
Cramer, 1985; Rosenman, 1996).

It is also necessary to consider which sto-
chastic search process would best suit a chosen
representation in terms of efficient negotiation
of the design space. As a high degree of
solution search and exploration is required, a
population-based approach would seem most
appropriate. GAs, EPs, and ESs offer high

utility with differing operators. GAs use cross-
over as the main operator (Goldberg, 1989).
ESs are similar to real parameter GAs without
crossover, although crossover-like operators
have been introduced (Deb, 2001). EPs (Fogel,
1988) is a purely mutation-based evolutionary
algorithm and therefore perhaps represents the
simplest of the three, as the selected represen-
tation does not need to support crossover be-
tween differing variable strings. Gas, however,
require a representation that is robust enough to
handle repeated crossovers whilst ensuring off-
spring feasibility. ESs could be considered to lie
somewhere between these two. EPs have been
selected in this work primarily to overcome
feasibility maintenance problems relating to the
component-based representation and crossover.

The initial goal was a flexible enough repre-
sentation to model all possible designs which is
robust enough to be manipulated by design
search and exploration processes (Machwe,
Parmee, & Miles, 2005). A collection-based
object-oriented representation has been devel-
oped. A single population member (chromo-
some) is a collection of primitive elements that
represent a design. Different elements with
different design properties can be included in
the set of possible design primitives. The evalu-
ation of fitness of the structure and checking
the structural integrity utilises secondary prop-
erties of the particular primitive element type.
Figure 2 further clarifies the idea of using an
object-based representation. A simple bridge
design is basically divided into two separate
collections. These are the span element collec-
tion containing elements which form the span of
the bridge and the support element collection
containing elements which form the support of
the bridge. In the case of a simple, end-sup-
ported span, the support element collection will
be empty.

The rectangular elements can either be part
of a supporting element collection or a span
element collection. Simple beam or angled beam
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span bridges with and without support require
only two basic types of elements—the angled
section element (to be used as a span element
only) and a simple rectangle element, which
can be used as both a spanning and supporting
element. All elements have an assumed con-
stant. The object-based representation can take
advantage of the principles of object-oriented
programming such as inheritance—that is, if
we want to add a new kind of element, say
curved span section, we could easily do so by
extending the basic properties of element and
adding the extra properties required for a curved
section.

During initial design activity, it may not be
desirable or possible to strictly parameterise a
design. Designs make the transition from ab-
stract concepts to well-defined specifications.
The above object-based representation can
represent designs at all levels, including at the
abstract level by using high-level objects/ele-
ments and at the well-defined level as a set of
specifications. Functionality can be modified

based upon changing requirements. Thus ob-
jects offer a straightforward way to cover
design activity at all levels. To produce the
same in a simple string-based chromosome
would require additional checks to ensure con-
sistency of the chromosome is not violated once
a bit or real number is added or removed, or its
functionality modified. The overall system would
be overly complex and difficult to manipulate.

Mutation

Let us assume the chromosome to be mutated
represents the design in Figure 3.

This is a basic beam bridge simply supported
at either end with a single intermediate support
(B3) and two span elements (B1, B2). L is the
span and H is the maximum height of the bridge
(see Figure 4).

The mutation is rule based, and a rule is
selected randomly. There are separate rules
for the two arrays of elements. The supports
can only move left or right. Their height is based

Figure 2. Details of the object-based representation

Figure 3. Design before mutation
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upon the thickness of the spanning element they
support. Hence there are only four rules for
supports: two rules for left and right movement,
and two for increasing and decreasing width.
The depth of each span element can vary, but
they must have a level upper surface and must
be continuous with no overlap or space be-
tween them. Thus for a simple element in a
span, there are just two rules, namely to in-
crease or decrease the span depth. Now, for
example, if the selected rule for support (B3) is
to move it left by a constant distance (say two
units) and for span to decrease thickness of B2
support by constant units (say two units again),
then the B3 object in the support array will have
its X value attribute decreased by two units and
the B2 object in the span array will have its
height value attribute decreased by two units.
The height attribute of the support will be
automatically adjusted to make it continuous
and remove any overlap at its new position. The
mutated design is shown in Figure 5.

Introduction of Agency

Initial testing of the representation involved
freeform assembly and evolution of simple
bridge structures using GA, EP, and agent-
based approaches. Evolving feasible structures
proved a difficult and lengthy process, whereas
rule-based agent assembly was straightfor-
ward and rapid. Thus a combined approach has
been developed where agents create the initial
population of structures and provide a continu-
ous ‘repair’ capability, and an evolutionary
system performs search, exploration, and
optimisation across the space of possible struc-
tures.

The construction and repair agents (CARAs)
have the task of assembling structures with
varying size and shape regarding span and
supports. Agents are given specifications relat-
ing to restrictions on placement of supports and
types of span section. Thus CARAs are in-
formed of the design environment and will
create initial population designs within it. The
evolutionary process then takes care of the
SEO process, with the CARAs keeping a check
on potentially disruptive processes and repair-
ing the structure, where necessary, to ensure
feasibility.

Simple Structural Criteria

The CARAs can currently create three kinds of
bridges:

• simple beam bridges without supports
(Type 1a);

Figure 4. Structure of a design chromosome

Figure 5. Design after mutation
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• simple beam bridges with supports (Type
1b); and

• simple beam bridges with sloping span
sections and supports (Type 2).

An initial population can consist of a mixture
of these designs which are then evaluated
against structural and aesthetic criteria. In terms
of structure, solutions are assessed via simple
length/depth ratios and minimising material.
Column design is subjected to buckling criteria.

Fitness Evaluation for Type 1A

Type 1a is treated as a simple beam deflection
problem under uniform distributed loading. A
simple heuristic relating to an ideal length-to-
height ratio for a span element of 20:1 is
utilised—that is, the closer a span section is to
the ideal ratio (R), the better its fitness.

Li and Hi are the length and height of the ith
span element.

( )= − i
i

i

lF R
h (1)

1
(1 )

=
+ Σ i

Stability
F (2)

To ensure the overall integrity of the struc-
ture, the above equations are used. It is evident
that the closer the dimensions of the span
elements are to the ideal ratio (R), the lower the

value of Fi will be. At the minimum, all Fis are
equal to zero and thus stability is equal to one.

Fitness Evaluation for
Type 1b and Type 2

In Type 1b the buckling in the columns due to
the weight of the loaded beam is also consid-
ered using:

2

2

'
H

EIP π=      (3)

where: P’ = maximum possible load, E = modu-
lus of elasticity, I = moment of inertia, and H =
column height. The load on column is deter-
mined from the length of the beam between the
end supports, calculating the loading and dis-
tributing this loading across intermediate sup-
ports. A column satisfying the buckling criteria
can either increase or decrease in thickness.
Otherwise it can only increase in thickness.

Example

A basic EP approach is used with a population
size of 100 solutions. Tournament selection is
utilised with a tournament size of 10, and the
system is run for 100 generations. A few mem-
bers from the initial population are shown in
Figure 6.

The initial population consists of three dif-
ferent kinds of designs: a simply supported

Figure 6. Sample of mixed initial population of bridge shapes
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span, a span with columns, and an angled span
bridge. After 100 generations the optimal de-
signs shown in Figure 7 are achieved. The
angled span bridges turn out to be most efficient
in terms of structural criteria (i.e., stability and
material usage). The other two design types
have been evolved out of the population.

Aesthetics and User Evaluation

It is very difficult to integrate subjective aes-
thetic criteria with machine-based design un-
less user interaction plays a significant role.
Moore et al. (1996a, 1996b) have published
significant work in this area which has contrib-
uted to a New South Wales RTA set of guide-
lines on bridge aesthetics (Road and Traffic
Authority, 2004). However, aesthetics evalua-
tion can only be partially quantified by generic
guidelines and rules. While aesthetically pleas-
ing shapes can be explicitly specified to some
extent, complete aesthetic evaluation must also
involve the designer—that is, valuation must
involve both rule-based and subjective factors.
In the present system the following aesthetics
have been hard coded:

• symmetry of support placement (A1),
• slenderness ratio (A2),
• uniformity in thickness of supports (A3),

and
• uniformity in thickness of span sections

(A4).

Many other such rules are currently being
evaluated and included in the work as the

design representation is developed to support
detailed aesthetic evaluation. Each aesthetic rule
is evaluated by a separate aesthetic agent. The
rule-based aesthetic fitness is calculated as:

∑
=

=
4

1

_
i

ii AwFitnessAesthetic (4)

where wi are weights for each of the aesthetic
rules (Ai = A1 to A4) which can also be
modified online.

In addition, user-assigned aesthetic fit-
ness (Ufit) is the fitness given to a design
directly by the user on a scale of 0 to 10 (10
being the best). The user can also mark solu-
tions for preservation into the next generation.
Overall user evaluation operates thus:

1. User stipulates the frequency of user inter-
action (e.g., once every 10 generations).

2. User aesthetically evaluates a preset num-
ber of population members from the initial
population (usually the top 10 members,
i.e., those with highest fitness regarding
stability, material usage, and explicitly
defined aesthetic criteria).

3. The EP system runs.
4. Population members are aesthetically evalu-

ated by the user every n generations.
5. Repeat steps 3 and 4 until user terminates

the evolutionary process.

The overall fitness function now includes
aesthetic fitness and user-assigned aesthetic
fitness. Furthermore, weights have been added
(w1 to w4) to each of the objectives which the
user can modify online to influence evolution-
ary direction:

)
_
2()*1(

UsageMaterial
wStabilitywFitness +=

)*4()_*3() UfitwFitnessAestheticw
e

++      (5)

Figure 7. Optimised bridges
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Figure 8 shows aesthetically pleasing cross-
sections after 30 generations with user evalua-
tion every 10 generations. The aesthetic objec-
tives (A1 to A4) are clearly reflected in them.
The span elements are of the same size. The
supports are of nearly uniform thickness, and
their placement is also symmetric.

Furthermore, due to user interaction, the
optimised shapes are not limited to angled sec-
tions but take on a variety of different aestheti-
cally pleasing shapes that not only satisfy the
explicitly defined aesthetic guidelines (A1 to A4)
but also the implicit aesthetics of the user (Ufit).

Incorporating Learning

Current work involves the introduction of su-
pervised learning taking user evaluation into
account. Since there is a natural classification
in the designs (i.e., angled spans, supported
beams, and unsupported beams), learning is
attempted at two levels. The first level deter-
mines user preference for one of the three
types of bridge design. This is achieved by
evaluating the relative difference between user-
assigned fitness (or rank) for each type of
design. The second level assesses what kind of
features the user finds pleasing in the different
designs. Figures 7 and 8 indicate that for the
angled spans, there are two features that catch
the eye immediately. These are the peak of the
bridge (that is the location of the rise point) and
the thickness of the span sections. Such fea-
tures are converted into fuzzy variables to
create an aesthetic model of the particular

bridge type. For the angled section the follow-
ing fuzzy variables are used to specify the
aesthetic model:

1. Peak: Left, Central, Right
2. Difference in Span Thickness: Left

Thicker, Equal Thickness, Right Thicker
3. Average Thickness: Low, Medium, High
4. Column Thickness: Low, Medium, High
5. User-Assigned Fitness (Ufit): Low,

Medium, High

Similar models can be created for supported
beam spans and unsupported beam spans. Based
on this model a fuzzy rule generator has been
implemented. Initial results have been encourag-
ing. The intention is that as search progresses
there will be a gradual lessening of the degree of
user interaction allied with an increasing degree
of autonomous machine-based solution evalua-
tion involving both aesthetic and structural crite-
ria. This addresses the problem of user fatigue.

EVOLVING THE PROBLEM
SPACE THROUGH INTERACTIVE
EVOLUTIONARY PROCESSES

The second illustration of the utilisation of user-
centric evolutionary computing relates to a
more implicit form of interaction. This is aimed
primarily at the extraction of high-quality infor-
mation and the succinct presentation of such
information to the designer/decision maker in
such a manner that supports a better under-
standing of complex relationships between vari-
ables, multiple objectives, and constraints dur-
ing conceptual design. This complements the
initial IED concept by further attempting to
meld experiential knowledge and intuition with
powerful machine-based search, exploration,
and information processing.

Machine-based problem representations sup-
port exploration through the evaluation of solu-

Figure 8. Aesthetically pleasing cross-
sections
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tions against seemingly relevant criteria. Al-
though initial representations may be relatively
basic, and confidence in model output will be
low, such representations can provide essential
problem insight despite apparent shortfalls. Iden-
tified high-performance solutions based upon
quantitative criteria followed by qualitative hu-
man evaluation may provide an indication of
concept viability and model fidelity. An iterative
user/machine-based process can commence
where gradual improvements in understanding
contribute to the development of better repre-
sentations, a growing knowledge base, and the
establishment of computational models that sup-
port rigorous analysis—that is, a process emerges
that supports the development of representation
through knowledge discovery.

An initial variable parameter set may be
selected with later addition or removal of vari-
ables as the sensitivity of the problem to various
aspects becomes apparent. Constraints may be
treated in the same way with the added option of
softening them to allow exploration of non-
feasible regions. Included objectives may change
as significant payback becomes apparent through
a reordering of objective preferences. Some
non-conflicting objectives may merge, whilst
difficulties relating to others may require serious
re-thinking with regard to problem formulation.
The initial design space is therefore a moving
feast rich in information (Parmee, 2002).

The visualisation of variable and objective
space from cluster-oriented genetic algorithm
(COGA) output provides a variety of perspec-
tives illustrating complex relationships (Parmee
& Abraham, 2004). This information is further
defined by data mining, processing, and
visualisation techniques. The intention is to
support implicit learning and reduce complexity
by supporting the designer development of a
quantitative and intuitional understanding of the
problem. This leads to the iterative model de-
velopment described above.

COGAs and the MiniCAPs Model

Cluster-oriented genetic algorithms provide a
means to identify high-performance (HP) re-
gions of complex conceptual design spaces and
enable the extraction of information from such
regions (Parmee, 1996). COGAs identify HP
regions through the online adaptive filtering of
solutions generated by a genetic algorithm.
COGA can be utilised to generate design infor-
mation relating to single and multi-objective
domains (Parmee & Bonham, 1999). The tech-
nique has been well documented (see http://
www.ad-comtech.co.uk/Parmee-Publications.
htm for relevant papers).

The research utilises the BAE Systems’
MiniCAPs model, a simplified version of a suite
of preliminary design models for the early stages
of military aircraft airframe design and initially
developed for research relating to the develop-
ment of the IED concept. The model comprises
nine continuous input variables and 12 continu-
ous output parameters relating to criteria such
as performance, wing geometry, propulsion,
fuel capacity, structural integrity, and so forth.
Input variables are:

1. Climb Mach Number (CLMN)
2. Cruise Height (CH)
3. Cruise Mach Number (CRMN)
4. Gross Wing Plan Area (GWP)
5. Wing Aspect Ratio (WAR)
6. Wing Taper Ratio (WTR)
7. Wing Lead Edge Sweep (WLES)
8. Wing T/C Ratio (WTCR)
9. By Pass Ratio (BPR)

Identifying High-Performance
Regions Relating to Differing
Objectives

Figures 9(a), (b), and (c) show HP regions
comprising COGA-generated solutions relating



  405

Human-Centric Evolutionary Systems in Design and Decision-Making

1.5 2.625 3.75 4.875 6
Wing aspect ratio

20

35

50

65

80

G
ro

ss
 w

in
g 

pl
an

 ar
ea

 

 

 

(a) (b)

(c)

Figure 9. COGA-generated high-performance regions relating to three differing objectives: (a)
FR—Ferry Range; (b) ATR1—Attained Turn Rate; (c) SEP1—Specific Excess Power. All
projected onto the GWPA (Gross Wing Plan Area)/WAR (Wing Aspect Ratio) variable hyperplane

N.B. Colour versions of figures can be found at: http://www.ad-comtech.co.uk/cogaplots.htm

to three of the 12 MiniCAPS objectives (Ferry
Range—FR, Attained Turn Rate—ATR1, and
Specific Excess Power—SEP1) projected onto
a variable hyperplane relating to two of the nine
variables utilised in the search process. This
projection allows the designer to visualise the

HP regions, identify their bounds, and sub-
sequently reduce the variable ranges as de-
scribed in previously referenced papers. These

papers also introduce the projection of these
differing objective HP regions onto the same
variable hyperplane as shown in Figure 10 from
which the degree of objective conflict immedi-
ately becomes apparent to the designer. The
emergence of a mutually inclusive region of HP
solutions relating to the ATR1 and FR objec-
tives indicates a low degree of conflict, whereas
the HP region relating to SEP1 is remote (in
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variable space) to both the ATR1 and FR
regions, indicating a higher degree of conflict.

There is much information contained in the
HP regions relating to appropriate variable
ranges for single objectives, degree of conflict
between multiple objectives, and the emer-
gence and definition of mutually inclusive (com-
mon) HP regions. This graphical representa-
tion provides an excellent spatial indication of
the degree of objective conflict. However,
searching through all possible two-dimensional
variable hyperplanes to visualise such informa-
tion is not a feasible approach. Recent research
has resulted in single graphical representations
that can present all variable and objective data
whilst providing links to other visual perspec-
tives. The parallel coordinate box plot
(PCBP) representation shown in Figure 11 is
one such graphic that provides a central reposi-
tory containing much single and multiple-objec-
tive solution information.

Parallel Coordinate Box Plots

Parallel coordinate plots (Inselberg, 1985) ap-
peared to offer potential in terms of providing a
single graphic illustrating complex relationships

between variable and objective space. Parallel
coordinate representation displays each vari-
able dimension vertically parallel to each other.
Points corresponding to a solution’s value of
that variable can then be plotted on each verti-
cal variable axis. It is thus possible to show the
distribution of solutions in all variable dimen-
sions and the correlation between different
dimensions. The disadvantage of the technique
when attempting to include multiple objectives
is that the density of the information presented
hinders perception (Parmee & Abraham, 2004,
2005). To overcome the ‘data density’ prob-
lem, three modifications to the standard parallel
coordinate representation have been included:

1. additional vertical axes for each variable
so that each objective can be represented,

2. an indication of the degree of HP region
solution cover across each variable range,
and

3. the introduction of box plots to indicate
skewness of solutions across each vari-
able range.

This PCBP provides a much clearer graphic
(see Figure 11). The vertical axis of each
variable is scaled between the minimum and

 

Figure 10. All HP regions projected onto the
GWPA/WAR variable hyperplane

Figure 11. Parallel box plot of solution
distribution of each objective across each
variable dimension
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maximum value of the variable in the HP region
solutions of each objective. The length of the
axis represents the normalised ranges of vari-
able values present in an HP region. Where an
HP solution set does not fully extend across the
variable range, the axis is terminated by a
whisker at the maximum or minimum value of
the variable. The colour-coded box plots relate
to each objective (i.e., SEP1, ATR1, and FR).
The median is marked within the box, and the
box extends between the lower and upper
quartile values within the variable set. The
PCBP clearly visualises the skewness of solu-
tion distribution relating to each objective in
each variable dimension which provides an
indication of the degree of conflict between
objectives.

For instance, it is apparent that all three
objective boxes overlap in the case of variables
1, 2, 3, 6, and 9. However, significant differ-
ences in the distribution of the boxes are evi-
dent in terms of at least one objective where
variables 4, 5, 7, and 8 are concerned. Vari-
ables 4 and 5 are Gross Wing Plan Area and

Wing Aspect Ratio. The conflict between SEP1
and FR/ATR1 evident in Figure 10 is strongly
reflected in the HP solution distribution indi-
cated by the whisker truncation of variable 4 in
Figure 11 and in the box plots of that variable.
In terms of variable 5, the whisker terminations
relating to ATR1 and FR in Figure 11 reflect the
extent of the solution distribution across their
HP regions in Figure 10. The box plots also
reflect the relative distribution of HP solutions
of all objectives along that variable plane as
illustrated in Figure 10. Figure 12 shows a
projection of the ATR1 HP region onto the
Cruise Height (variable 1) and Climb Mach No
(variable 2) hyperplane. The relatively uniform
distribution of HP solutions across the hyper-
plane is reflected in the appropriate variable
plots of Figure 11.

The PCBP represents a single graphic from
which the designer can perceive which vari-
ables are causing high degrees of objective
conflict. To get an alternative, very clear per-
spective of these conflicts, any two of these
variables can be selected to also view the
relevant graphics similar to Figure 10. Further
reinforcement can be obtained from the per-
spectives explored in the following section re-
lating to projections upon objective space. Im-
proved understanding can lead to developments
of the computational representation and to ap-
propriate setting of objective preferences.

Projection of COGA Output on to
Objective Space

The HP region solutions for ATR1 and FR can
be projected onto objective space as shown in
Figure 13. A relationship between the HP re-
gion solutions and a Pareto-frontier emerges
along the outer edge of the plot (Parmee &
Abraham, 2004) despite the fact that the work-
ing principle of COGA is very different to that
of evolutionary multi-objective algorithms (Deb,

Figure 12. Projection of results onto
variable 1/variable 2 hyperplane for Attained
Turn Rate (ATR1) objective
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2001), which tend to use a non-dominance
approach.

For comparative purposes, Figure 14 illus-
trates the distribution of COGA output and
SPEA-II (Zitzler et al., 2002) Pareto-front out-
put in objective space. Using a standard multi-
objective GA (MOGA), it is possible to obtain
solutions lying along the Pareto-front, but diffi-
cult to explore the relationship between vari-
able and the objective space. However, it is
likely that the designer is also interested in
solutions that lie around particular sections of
the Pareto-front.

The COGA approach therefore provides a
good visual indication of the degree of conflict
between objectives, an opportunity to explore
varying objective preferences and view their
effect upon HP region bounds, and the ability to
generate an approximate Pareto-front relating
to the objectives under investigation plus solu-
tions around the Pareto-front. This is in addition
to the utility of COGA in single-objective space
as described in previous referenced papers. All
of this utility directly complements the original
IEDS concept regarding information extrac-
tion, processing, and presentation.

SUMMARY AND CONCLUSION

The aesthetics work reveals a significant po-
tential in terms of the development of systems
that include criteria ranging from purely quan-
titative through to purely subjective. Ultimately
the system will be required to give a compara-
tive indication in terms of aesthetically pleasing
design and likely cost whilst indicating struc-
tural feasibility.

The introduction of such an interactive pro-
cess also poses many questions such as:

• How many designs from each population
should be presented to the user?

• How should these be selected?
• How many evaluations can a user be

expected to perform before becoming fa-
tigued?

These questions have been repeatedly posed,
but seldom successfully addressed within the
interactive evolutionary computing (IEC) com-
munity. Our continuing research is addressing
these issues and, in particular, the user-fatigue
aspect.

Figure 14. Distribution of ATR1 and FR
solutions against SPEA-II Pareto front

Figure 13. Distribution of FR and ATR1
solutions in objective space
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The integration of user preference and user-
varied objective weights supports the transfer
of subjective evaluation from the user to a
design/decision-making system. In order to
address the third question above, a machine
learning system is required which learns the
preferences of the user during the interactive
process. User fatigue is perhaps the major
stumbling block in the development of success-
ful systems. Much work is required to develop
an appropriate, fully functioning, machine-learn-
ing sub-system. The fuzzy rule-based learning
system is not ideal, and current work is inves-
tigating a case-based approach.

The developing system should be seen as a
generic framework for the integration of user-
evaluation with any preliminary design/deci-
sion-making domain. The CARA-EP represen-
tation concept should be portable across many
problem domains. Any system must signifi-
cantly decrease the load on the user as early as
possible in the evolutionary process. A multi-
agent-based learning environment is therefore
under investigation that gradually replaces the
subjective criteria evaluation.

It is apparent from previous research and
the research presented here that COGA-gen-
erated data can provide visual representations
in variable space of the degree of conflict
between objectives and excellent spatial indi-
cations of the distribution of high-performance
solution regions relating to a number of objec-
tives. It is also apparent that the COGA HP
solution sets, when projected onto objective
space, provide the designer with an opportunity
to explore a wealth of HP solutions that offer
varying degrees of objective compromise and a
variety of design characteristics. The non-domi-
nance sorting of these solutions also provides
an approximate Pareto-frontier illustrating suc-
cinct available trade-offs. The direct mapping
of solutions between objective and variable
space facilitates an understanding of the rela-
tive utility of solutions in terms of preferred

variable ranges and particular design charac-
teristics.

The PCBP of Figure 11 offers a first point
of call for the designer to get an overview of the
varied information available from COGA out-
put. The intention is that the COGA graphical
perspectives will be available through simple
menu/clicking operations from the central PCBP
image. These differing perspectives are seen
as essential aids to understanding overall com-
plexities relating to the two dependant design
spaces (variable vs. objective space).

There is a wealth of information available
from COGA output relating to single objective
solutions that is also inherent within the multi-
objective output. Hence the utility of the ap-
proach should be assessed across both areas.
The information available from single-objective
HP regions has been fully discussed in previous
referenced papers.

User-centric techniques described in the
chapter and variations of them are also cur-
rently being applied in the conceptual design of
submersible vehicles (Parmee & Abraham,
2005), pharmaceutical drug design and discov-
ery (Sharma & Parmee, 2005), and conceptual
software design (Simons & Parmee, 2004).
Details of this associated work can be found on
the ACDDM Web site at www.ad-
comtech.co.uk/ACDDM_Group.htm.
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ABSTRACT

Modularity is widely used in system analysis and design such as complex engineering products
and their organization, and modularity is also the key to solving optimization problems
efficiently via problem decomposition. We first discover modularity in a system and then
leverage this knowledge to improve the performance of the system. In this chapter, we tackle
both problems with the alliance of organizational theory and evolutionary computation. First,
we cluster the dependency structure matrix (DSM) of a system using a simple genetic algorithm
(GA) and an information theoretic-based metric. Then we design a better GA through the
decomposition of the optimization problem using the proposed DSM clustering method.

INTRODUCTION

Modularity is ubiquitous (Schilling, 2002). The
concept can be found in and applied to many
disciplines: biology (Hartwell, Hopfield, Leibler,

& Murray, 1999; Andrews, 1998), psychology
(Fodor, 1996), social networks (Newman &
Girvan, 2004; Guimerà, Danon, Diaz-Guilera,
Giralt, & Arenas, 2003), engineering design
(Ishii & Yang, 2003; Fixson, 2003), engineering
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optimization (Altus, Kroo, & Gage, 1996), and
software development (Sullivan, Griswold, Cai,
& Hallen, 2001), to name a few. Such modular
structure in many of these natural and man-
made complex systems is believed to improve
the functionality, performance, and robustness
of these systems (Alon, 2003; Baldwin & Clark,
2000). It allows increased product or organiza-
tional variety (Ulrich & Eppinger, 2000), in-
creased rates of technological or social innova-
tion (Baldwin & Clark, 2000), increased oppor-
tunities for market dominance through inter-
face capture (Moore, 1999), and increased
specialization at firm level which in turn may
allow more flexible response to environmental
change (Sanchez & Mahoney, 1996).

Therefore, revealing the modular structure
of complex systems is crucial for developing
performance enhancement techniques. In other
words, we first have to discover modularity in
a system, and then leverage this knowledge to
improve the performance of the system. In this
chapter, we first propose a genetic algorithm-
based method to discover the modular structure
of a decomposed system (e.g., a product or
organization), then we propose a new, im-
proved genetic algorithm (GA) based on the
modular arrangement of the system.

The proposed clustering method is devel-
oped based on a matrix representation of a
graph, called the dependency structure matrix
or DSM (Yassine & Braha, 2003); the mini-
mum description length (MDL) principle
(Rissanen, 1978, 1999; Barron, Rissenen, &
Yu, 1998; Lutz, 2002); and a simple genetic
algorithm (Goldberg, 1989). The method is ca-
pable of partitioning the product (or organiza-
tional) architecture into an optimal set of mod-
ules (or teams) and can be fine-tuned to mimic
clustering arrangements proposed by human
experts. Our proposed clustering algorithm is
an improvement over other existing algorithms
for two reasons: (1) existing algorithms are

manual, very dependent on human expertise,
and consequently hard to automate or replicate
(McCord & Eppinger, 1993; Pimmler &
Eppinger, 1994; Stone, Wood, & Crawford,
2000; Gonzalez-Zugasti, Otto, & Baker, 2000);
and (2) existing algorithms use simple math-
ematical constructs to discriminate between
modules, and consequently these algorithms
collapse when confronted with complex prod-
uct architectures (Fernandez, 1998; Thebeau,
2001; Whitfield, Smith, & Duffy, 2002).

It is interesting that the clustering tech-
niques can help us better design a GA that
decomposes the optimization problem by rec-
ognizing the modularity between decision vari-
ables. Holland (1975) has suggested that op-
erators learning linkage information to recom-
bine alleles might be necessary for GA suc-
cess. Many such methods have now been de-
veloped to solve this including perturbation
(Goldberg, Korb, & Deb, 1989; Goldberg, Deb,
Kargupta, & Harik, 1993; Kargupta, 1996;
Munetomo & Goldberg, 1999), linkage learning
schemes (Harik & Goldberg, 1996; Smith, 2002),
and model-building schemes (Bosman &
Thierens, 1999; Harik, 1999; Pelikan, Goldberg,
& Cantú-Paz, 1999). The genetic algorithm
developed in this chapter adds to the literature
of competent GAs with a method inspired by
organizational theory. In particular, the pro-
posed dependency structure matrix genetic
algorithm (DSMGA) is able to identify building
blocks (BBs) with the help of a DSM and
accomplish BB-wise crossover. As the experi-
mental results suggest, compared to a simple
genetic algorithm, the DSMGA is able to main-
tain a reliable solution quality under tight, loose,
and random linkage with the same amount of
function evaluations.

The rest of the chapter proceeds as follows.
The next section provides a quick overview of
the DSM method. We then propose a metric to
evaluate different architectural arrangements
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based on the MDL principle, describe the MDL-
DSM clustering methods in detail, and show
several illustrative examples. Next, we demon-
strate this new clustering method using a DSM
for a 10 MWe gas turbine, and we utilize this
DSM clustering method to design a better ge-
netic algorithm—DSMGA. Finally, we con-
clude the chapter.

THE DEPENDENCY STRUCTURE
MATRIX (DSM) METHOD

A DSM is a matrix representation of a graph
(Steward, 1981). The nodes of the graph (which
represent components of a product or system)
correspond to the column and row headings in
the matrix (Eppinger, Whitney, Smith, & Gebala,
1994; Yassine & Braha, 2003). The arrows
(which represent relationships between com-
ponents) correspond to the X marks inside the
matrix. For example, if there is an arrow from
node C to node A, then an X mark is placed in
row A and column C. Diagonal elements have
no significance and are normally blacked out or
used to store some element-specific attribute(s).
Alternatively, number “one” can be placed
instead of an X and “zero” instead of a blank.
This makes the DSM a binary matrix with
entries 0=ijd  or 1.

Once the DSM for a product is constructed,
it can be analyzed for the identification of

modules—a process referred to as clustering.
The goal of DSM clustering is to find subsets of
DSM elements (i.e., clusters or modules) that
are mutually exclusive or minimally interacting.
In other words, clusters contain most, if not all,
of the interactions (i.e., DSM marks) internally,
and the interactions or links between separate
clusters are eliminated or minimized (Fernandez,
1998). As an example, consider the DSM in
Figure 1. As can be seen in Figure 1(b), the
original DSM was rearranged (by simply swap-
ping the position of rows and columns) to
contain most of the interactions within two
separate blocks or modules: AF and EDBCG.
However, three interactions are still outside
any block. An alterative arrangement is sug-
gested in Figure 1(c). This arrangement sug-
gests the forming of two overlapping modules
(i.e., AFE and EDBCG).

The DSM representation of a system/prod-
uct architecture has proved useful because of
its visual appeal and simplicity, and numerous
researchers have used it to propose architec-
tural improvements by simple manipulation of
the order of rows and columns in the matrix
(McCord & Eppinger, 1993; Pimmler &
Eppinger, 1994). In an attempt to automate this
manual process of DSM inspection and ma-
nipulation, Fernandez (1998) used a DSM model
with simulated annealing search techniques in
order to find “good” DSM clustering arrange-
ments. In his approach, each element is placed

Figure 1. DSM clustering examples

(a) Original DSM (b) Clustered DSM (c) Alternative clustering
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in an individual set and bids evaluated from all
the other sets (clusters). If any cluster is able to
make a bid that is better than the current base
case, then the element is moved inside the
cluster. The objective function is therefore a
trade-off between the costs of being inside a
cluster and the overall system benefit. Sharman
and Yassine (2004) attempted using the clus-
tering algorithm described in Fernandez (1998)
on an industrial gas turbine. However, he showed
that this algorithm is incapable of predicting the
formation of “good” clustering arrangements
for complex product architectures due to the
oversimplification of the objective function uti-
lized and the frequent susceptibility of the search
algorithm that used to be trapped in local opti-
mal solutions. In a similar venue, Whitfield et al.
(2002) used genetic algorithms to form product
modules. Their algorithm is also built upon the
same concepts introduced by Fernandez and as
such suffers from similar problems.

The problem with applying automated clus-
tering algorithms to complex DSMs is that they
find it hard to extract the relevant information
from the data and then to convey it to the user.
This is most noticeable in the poor handling of
overlapping clusters, bus modules, and three-
dimensional structures (Sharman & Yassine,
2004).

MINIMUM DESCRIPTION
LENGTH-BASED METRIC

The lack of an efficient clustering method
particularly suited for analyzing product and
organizational architectures motivated us to
seek a better clustering metric based on infor-
mation theoretic measures. Sharman and
Yassine (2004) outlined the requirements nec-
essary for the development of a new clustering
metric and its corresponding algorithm:

1. The algorithm should be able to suggest
the optimal number of clusters.

2. The algorithm should be able to detect the
existence of bus modules.

3. The algorithm should be able to detect
overlapping clusters and three-dimensional
structures.

While the above two requirements can be
addressed by the appropriate choice of a clus-
tering metric, as will be discussed later in this
chapter, the third requirement is directly related
to the proposed search strategy and the encod-
ing.

Model Description

Suppose that we have a model which describes
a given product structure or a data set. Usually,
the model does not completely describe the
given data; otherwise, the model would become
too complicated. Therefore, the description
length needed to describe the whole given data
consists of two parts: the model description
and the mismatched data description. This
scheme may be easier to understand in light of
the following sender-receiver example.

Assume that a sender has a given data set
which is needed by the receiver. Given a model
that approximately (i.e., not exactly) describes
the given data set, the sender first sends the
model (i.e., model description) to the receiver.
To ensure that the receiver gets exactly the
same data set, the sender is also required to
send the data which are mis-described (i.e.,
mismatched data description) by the model sent
earlier. If the model is too simple, the model
description is short; but many data mismatches
exist, and the mismatched data description be-
comes longer. On the other hand, a complicated
model reduces mismatched data, but the model
description is longer.
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The minimum description length (MDL) prin-
ciple (Rissanen, 1978, 1999; Barron et al.,
1998; Lutz, 2002) satisfies our needs for dealing
with the above tradeoff. The MDL can be
interpreted as follows: among all possible
models, choose the model that uses the mini-
mal length for describing a given data set
(that is, model description length plus mis-
matched data description length). There are
two key points that should be noted when MDL
is used: (1) the encoding should be uniquely
decodable, and (2) the length of encoding should
reflect the complexity. For example, the encod-
ing of a complicated model should be longer
than that of a simple model. Next, we define the
MDL clustering metric in detail.

Model Encoding

The way we encode the model is straightfor-
ward. The description of each cluster starts
with a number that is sequentially assigned to
each cluster, and then this is followed by a
sequence of nodes in the cluster. Figure 2
shows a DSM clustering arrangement and the
corresponding model description. It is easily
seen that the length of this model description is
as follows:

( )∑
=

⋅+
cn

i
nin ncln

1
loglog ,      (1)

where cn  is the number of clusters in the DSM,
nn  is the number of nodes, icl  is the number of

nodes in the ith cluster, and the logarithm base
is 2. In the example of Figure 2, 2=cn clusters,

nn =8 nodes, 31 =cl , and 42 =cl . The table in
the figure reads as follows: “cluster 1 has 3
nodes: B, D, and G; cluster 2 has 4 nodes: A,
C, E, and H.”

In Figure 2, If nn  and cn  are known, it is not
difficult to see that the above model description
is uniquely decodable. When nn  is given, and
assuming nc nn ≤ , then nnlog  bits are needed to
describe cn . The nnlog  bits are fixed for all
models, and therefore they are omitted without
loss of accuracy.

Mismatched Data Description

Based on the model, we first construct another
matrix (call it DSM’), where each entry ijd '  is
“1” if and only if: (1) some cluster contains
both node i and node j simultaneously, or (2) the
bus contains either node i or node j. Then, we
compare d'ij with the given dij. For every
mismatched entry, where ijij dd ≠' , we need a
description to indicate where the mismatch
occurred (i and j) and one additional bit to
indicate whether the mismatch is zero-to-one
or one-to-zero. Define the following two mis-
match sets: }1',0|),{(1 === ijij ddjiS  and

|),{(2 jiS =  }0',1 == ijij dd . We call the mismatch
that contributes to 1S  the type 1 mismatch and
the mismatch that contributes to 2S  the type 2
mismatch. The mismatched data description
length is given by:
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Figure 2. A clustering arrangement of a
DSM
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The first nnlog  in the bracket indicates i, the
second one indicates j, and the additional one bit
indicates the type of mismatch.

MDL Clustering Metric

The MDL clustering metric is given by the
weighted summation of the model description
length and mismatched data description given
above. With some arithmetic manipulations, the
metric can be written as follows:

loglog)1()(
1
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where α and β are weights between 0 and 1.
Here we use weighting in order to match the
preference of human experts. This becomes
more evident in the case study. The α and β
setting is not a simple task. A naïve setting is α
= β = 1/3. Later in the chapter, we adjust α and
β to mimic the behavior of a manual clustering
arrangement.

Finally, the objective is to find a model M
that minimizes fDSM. In other words, fDSM is the
length (in bits, when the logarithm is taken in
base 2) that model M needs to describe the
given data.

From Binary DSM to Weighted DSM

Most real-world DSMs are real valued or con-
tain information of different levels of interac-
tion strength. Therefore, it is necessary to
extend our algorithm to be capable of clustering
weighted DSMs. If we normalize a weighted
DSM so that every entry in the DSM is between
0 and 1, the value of each entry can be consid-
ered as the probability of communication. This
is consistent with binary DSMs. In a binary
DSM, dij = 1 can be thought of as that node i

communicates with node j with probability 1.
The same interpretation is also valid for dij = 0.
Based on the interpretation, we can modify the
MDL scoring metric as follows. First, the en-
tries ijd  in the DSM is normalized to pij = (dij –
dmin)/(dmax – dmin), where dmax = maxi,j dij and
dmin = mini,j. The formula of the description
length of model complexity remains the same.
The mismatch sets for type 1 and type 2 are
modified as ( )∑

=
−=

1'
1 1

ijd
ijpS  and ∑

=
=

0'
2

ijd
ijpS , re-

spectively. The modification is so because en-
try (i, j) has a probability )1( ijp−  to be a type 1
mismatch if it is inside a cluster, and a probabil-
ity ijp  to be a type 2 mismatch if it is outside
clusters.

THE PROPOSED
CLUSTERING ALGORITHM

To use a GA with the MDL clustering metric,
an encoding method that encodes a clustering
arrangement into a chromosome is needed. As
indicated above, the encoding should deal with
overlapping clusters and three-dimensional
structures. As long as the encoding allows that
a node belongs to several different clusters, the
GA is able to detect overlapping clusters and
three-dimensional structures.

The chromosome is a binary string of ( nc nn ⋅ )
bits, where cn  is predefined maximal number of
clusters and nn  is the number of nodes. The

)( ynx n ⋅+ -th bit represents that node (x+1)
belongs to cluster (y+1). The last cluster is
treated as a bus. For example, in Figure 2,

nn =8, and given cn  is 3, then the model can be
described by the following chromosome shown
in Figure 3. When manipulated, the chromo-
some is transformed into a binary string which
is a concatenation of all rows.

With the above encoding scheme, now it is
sufficient to apply the proposed MDL cluster-
ing metric to a GA to create a DSM clustering
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algorithm. At the beginning, a population of
encodings of DSM clustering arrangements is
randomly initialized. The MDL clustering met-
ric is then applied to each DSM clustering
arrangement, and the description length of each
DSM clustering arrangement is obtained. With
the evaluations, a GA with (λ+ µ) selection,
uniform crossover, and simple mutation searches
the DSM clustering arrangement with a mini-
mal description length.

The parameters α and β in equation 3 can be
tuned by the use of Widrow-Hoff iteration (or
Delta rule) (Widrow & Hoff, 1960), so that the
GA results would have similar ratios for the
description length as human experts. For more
details, refer to Yu, Yassine, and Goldberg
(2004).

CASE STUDIES

In this section, the proposed DSM clustering
algorithm is tested on a real-world DSM for a
10 MWe gas turbine (Sharman & Yassine,

2004). The DSM for a generic 10 MWe gas
turbine-driven electrical generator set was con-
structed by decomposing it into 31 sub-sys-
tems. The sub-systems initially were listed ran-
domly in the DSM and then tick marks denoting
material relationship from one sub-system to
another were inserted. Figure 4 shows an at-
tempt at manually clustering the DSM (Sharman
& Yassine, 2004). This took a few manual
changes to the order of elements in the initial
DSM, which revealed the clusters marked in
the figure. After inspection of the clusters, they
were given names to identify them. Readers
are referred to Yu et al. (2004) for more real-
world DSM case studies.

Figure 3. A chromosome that represents the
model shown in the lower part of Figure 7;
the binary string manipulated is
010100101010100100000000

Figure 5. Results of the Widrow-Hoff iterations—the first row is the objective ratios of
description lengths; the second row shows the resulted ratios and the weights that produce
such ratios.

Figure 4. Manual clustering of the gas
turbine with named clusters (the numbers 1,
2, and 3 in the figure represent varying
dependency strengths)

 1w  2w  3w  Description length ratios 

Objective    0.0784 0.8116 0.1102 

Results 0.4533 0.1228 0.4239 0.0729 0.8154 0.1117 
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Automated Clustering Using
the Proposed MDL-GA

By inspecting several expert-clustered DSMs
in Yu et al. (2004), the average ratios of the
description lengths of the model, type 1 mis-
match, and type 2 mismatch are set as the
average of 0.0784: 0.8116:0.1102. The maxi-
mal number of clusters is set to half of the
number of nodes. Hence the length of the
chromosomes for the DSM for the 10 MWe gas
turbine is 15×31=465. Crossover probability is
set to one, and mutation probability is set to one
over the chromosome length. The GA is termi-
nated if there is no improvement in 50 genera-
tions. A set of experiments showed that
(4250+4250) selection produces satisfactory
results. Since the number of Widrow-Hoff it-
erations is limited to 10, after 10 iterations the
best run is chosen according to the minimal sum
of squared errors. The objective ratios and the

experimental ratios obtained from the 10
Widrow-Hoff iterations are shown in Figure 5.
Finally, applying the proposed MDL-GA clus-
tering algorithm resulted in Figure 6.

Discussion of Results

Figures 7 and 8 show the clustering arrange-
ments, mismatches, and description length per-
formed by human experts manually and the
proposed MDL-GA algorithm. According to

Figure 6. Clustering arrangement by the proposed GA for the gas turbine DSM

Figure 7. Comparison of the clustering
arrangements given by human experts and
the proposed GA

 cn  icl  1S  2S  

Manual 8 2, 3, 3, 3, 6, 7, 8, 13 342.33 17.67 

GA 6 3, 3, 5, 9, 9, 11 233.67 32.00 
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Figure 8, the proposed MDL-GA clustered the
gas turbine DSM with a less complex model and
fewer mismatches, and the MDL-GA gave a
shorter total description length. If the MDL-
GA clusters the DSMs using the specific weights
tuned for the individual case, then it will find a
better arrangement (i.e., less complex models
and fewer mismatches), as depicted by the
results of Figure 9. In this case, the MDL-GA
gave shorter description lengths in all three
categories: model, type 1 mismatch, and type 2
mismatch.

Furthermore, according to Figure 8 we can
see that the magnitude of type 1 mismatch is
always larger than type 2 mismatch. In other
words, human experts tend to endure type 1
mismatch (i.e., inside clusters) more than type

2 mismatch (i.e., between clusters). This ob-
servation is intuitive if we consider that system
engineers tend to pay more attention to mini-
mizing interactions between clusters (i.e., prod-
uct modules or design teams) than interaction
patterns inside a cluster. Therefore, an auto-
mated algorithm that would mimic human clus-
tering would be biased in the same direction.

These results can be interpreted by two
points of view. If the MDL is a more appropri-
ate criterion for the clustering problem, then the
GA provides better solutions than humans. On
the other hand, if human clustering is more
appropriate due to considering several subtle
constraints that were not observed by the GA,
then the problem is how to “tune” the MDL-
metric to mimic human experts’ preference. As
an initial attempt, we have accomplished that by
tuning the weights (w1, w2, w3) according to the
method described in this chapter. However, our
point of view is that the MDL-GA need not
provide better results than human expert clus-
tering, but must have the ability to devise an
automated algorithm capable of producing com-
petitive clustering arrangements aligned with
human expertise. The proposed method pro-
vides a consistent, systematic, and automatic
way to cluster DSMs, and the clustering results
can be either used directly, or used as an initial
clustering arrangement for human experts to
tune.

Figure 8. Description length and mismatches of the DSM clustering arrangement done by
human experts vs. GAs

Description Length Model Type 1 
Mismatch 

Type 2 
Mismatch 

Total Weighted 
Description 

Length 

Manual 262.57 3897.93 192.71 3205.38 

GA 227.89 2548.93 349.07 2125.05 

Figure 9. Comparison of the clustering
arrangements given by human experts and
the proposed GA using the weights according
to the respective human clustering
arrangement; it is worth noting that the
results given by the GA dominate in all three
categories.

Description Length Model Type 1 
Mismatch 

Type 2 
Mismatch 

Manual 262.57 3897.93 192.71 

GA 208.72 3421.60 174.53 
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DEPENDENCY STRCTURE
MATRIX GENETIC ALGORITHM

The modularity among people in an organiza-
tion suggests an optimal teaming and hence
minimizes the coordinate cost in the organiza-
tion. The modularity among product compo-
nents of a product line suggests an optimal
parallelism and hence maximizes the benefit for
the product line. Similarly, the modularity among
decision variables of an optimization problem
suggests an optimal problem decomposition and
hence ensures the optimization problem can be
solved quickly, reliably, and accurately
(Goldberg, 2002).

In this section, we develop a technique for
extracting building block information by the
DSM clustering technique presented in previ-
ous sections called a dependency structure
matrix genetic algorithm (Yu, Goldberg, Yassine,
& Chen, 2003). DSMGA is able to properly
decompose the optimization problem with the
help of DSM clustering and then solves the
problem by BB-wise crossover.

Description of DSMGA

This section constructs DSMGA. The DSMGA
consists of three main tasks: constructing a
DSM representing interactions between pairs
of genes, clustering the DSM to obtain BB
information, and perform BB-wise crossover
by exploiting the BB information. This section
describes the framework of the DSMGA and
how to accomplish the three tasks mentioned
above.

The Framework of the DSMGA

There are two levels of evolutionary algorithms
in the DSMGA: one is to solve the given prob-
lem, called the primary GA, and other one is to
solve the building block identification problem,

called the auxiliary GA. The basic idea of the
DSMGA is to use the auxiliary GA to identify
BBs, then the primary GA solves the optimiza-
tion problem by utilizing the BB information.

Basically, the auxiliary GA receives a DSM
which represents the dependencies between
genes from the primary GA. After solving the
DSM cluster problem, the auxiliary GA returns
the BB information back to the primary GA,
and the primary GA utilizes the BB information
to accomplish BB-wise crossover. More de-
tails about the DSM construction and the aux-
iliary GA can be found in following subsections.
Additionally, unlike a meta-GA (Mercer &
Sampson, 1978), the auxiliary GA in the DSMGA
does not consume function evaluations of the
given problem. Instead, the auxiliary GA uses
only the MDL clustering metric, fDSM (equation
3), which is much less computationally expen-
sive than many real-world objective functions.

DSM Construction

The way that the DSMGA detects the depen-
dency of gene i and gene j is similar to LINC and
LIMD (Munetomo & Goldberg, 1999). Define

),( yaxaf ji == as the fitness value of the
schema where the i-th gene is x, the j-th gene is
y, and the rest are * (wild card). For example, for
i=2 and j=5 in a 5-bit problem, f(ai = 0, aj = 1) =
f(*0**1). If the i-th gene and the j-th gene are
independent (linear), f(ai = 0, aj = 1) – f(ai = 0,
aj = 0) and f(ai = 1, aj = 1) – f(ai = 0, aj = 0) should
be the same. Therefore, the interaction
(nonlinearity) between the i-th gene and the j-th
gene is defined as:

()0,0()1,0(| −==−===∆ ijijiij afaafaaf

|)0,1()1,1 ==+== jiji aafaa      (4)

However, the fitness value of schemata
cannot be computed unless every possible com-
bination is visited. Now the task is to approxi-
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mate ∆ij with sij, which is computed based on
the individuals seen so far. First, define the
sampled fitness of a schema in the population of
t-th generation as

∑
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t
ji

jit

af
n

yaxaf
,,

)(1),( ,

where t is the generation, Pt is the population of
the t-th generation, f is the fitness function, a is
an individual where its i-th gene is x and j-th
gene is y, and na is the number of such a in the
population. We call f(ai = x, aj = y)t undefined
if na is zero. The information of interactions
gathered from the population is
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To utilize all individuals of all populations
seen so far, t

ijs  is then averaged over genera-
tions. Defining a set }defined. is |{ t
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ijs  is expressed as
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where T is the current generation. With a
threshold θ, t

ijs  is then transferred into 0-1
domain, and a DSM is constructed:
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The threshold is calculated by the k-mean
algorithm (Hartigen & Wong, 1979) by setting
k=2. The threshold can also be set according to
some prior knowledge if available.

BB-Wise Crossover

After the BB information is obtained from the
auxiliary GA, BB-wise crossover can be
achieved in the primary GA level. The BB-wise
crossover is like an ordinary allele-wise cross-
over, but instead of mixing genes, the BB-wise
crossover mixes BBs and will not disrupt BBs.
The order of BBs is not significant because
BBs have no (or little) interaction with each
other by definition. For more details about BB-
wise crossover, refer to Thierens and Goldberg
(1994).

Empirical Results

The experiments were done by using a simple
GA (SGA) as a test platform. The DSMGA
tested here is a simple GA with the DSM
construction and an auxiliary GA with the MDL
clustering metric. The test function is a 30-bit
MaxTrap problem composed of 10 three-bit
trap functions. The three-bit trap is given by:

3 if
2 if
1 if
0 if

,0.1
,0

,45.0
,9.0

3

=
=
=
=










=

u
u
u
u

f trap ,      (6)

where u is the number of 1s among the three bits.
Three linkage cases were tested: tight link-

age, loose linkage, and random linkage. Define
U(x) as a counting function that counts the
number of 1s in x. In the tight linkage test, genes
are arranged as

+= ,(()),,(( 4321 33 xUfxxxUffitness traptrap

�++ )),,(()),, 98765 3 xxxUfxx trap

On the other hand, in the loose linkage test
case, genes are arranged as
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+= ,(()),,(( 221111 33 xxUfxxxUffitness traptrap

�++ )),,(()),, 231332212 3 xxxUfxx trap

In the random linkage test case, genes are
simply arranged randomly. For more details
about this test scheme, see Goldberg et al.
(1989).

Given the failure rate to be 1/10, the popu-
lation size is set as 182 by the gambler’s ruin
model (Harik, Cantú-Paz, Goldberg, & Miller,
1997; Miller, 1997). In the primary GA, binary
tournament selection was adopted, and no mu-
tation was used. In the auxiliary GA, the maxi-
mal number of cluster nc is 10 (equal to m), and

the mutation probability pm was set to be 1/30.
A (λ +µ) selection was adopted, where λ=5 and
λ=500.

Figure 10(a) shows the performance of the
SGA using two-point crossover. The SGA
worked only for the tight linkage case. For
loose and random linkage cases, SGA did not
work because of BB disruption. Correspond-
ingly, Figure 10(b) illustrates the performance
of the DSMGA using BB-wise two-point cross-
over. The DSMGA converged for all three
tests. Even in the tight linkage test, the DSMGA
(converged at the 22nd generation) outperformed
the SGA (converged at the 40th generation)
because DSMGA disrupted fewer BBs. This

Figure 11. The DSMs created by the DSMGA in the tight linkage test: from the left to the right,
the DSMs are created at generation 0, 5, and 10, respectively; the perfect result should be 10
three-bit clusters on the diagonal

Figure 10. (a) The performance of the SGA with two-point crossover; (b) The performance of
the DSMGA with BB-wise two-point crossover
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argument can be verified by Figure 11, which
shows the DSM created by the DSMGA for the
tight linkage case. The prefect result is 10
three-bit clusters located on the diagonal. As
the figure indicates, at the fifth generation, the
DSMGA was able to identify eight BBs; the
DSMGA has successfully identified all BBs at
the tenth generation.

CONCLUSION

The chapter started with a delicious circle. We
sought to discover modularity with the aid of a
genetic algorithm, and at the same time we
sought to improve genetic algorithms through
the discovery of modularity. Although circular
reasoning sometimes leads to logical inconsis-
tency, here a stepwise process led to success
on both counts. In this chapter, we first pre-
sented the concept of DSMs. Then we intro-
duced the MDL concept and used it as a metric
for the proposed clustering objective function.
The MDL-based metric was then used with a
simple GA to cluster weighted graphs or their
corresponding DSMs. We applied the MDL-
GA to a real-world problem—a DSM of a 10
MWe gas turbine. The results were compared
to manual clustering to show the promise of
automated clustering using GAs, and the pa-
rameters can be tuned to mimic expert cluster-
ing arrangements. Finally, the DSM clustering
technique was utilized to develop a competent
GA—DSMGA. A series of experiments showed
that DSMGA is capable of properly decompos-
ing the optimization problem and is much more
powerful than a simple GA.

The DSM is a powerful tool for representing
and visualizing product architectures. This rep-
resentation allows for the analysis and develop-
ment of modular products by clustering the
DSM. Clustering algorithms are scarce and
inefficient, especially when confronted with

complex product architectures as in the re-
ported case studies. The MDL-GA clustering
algorithm presented in this chapter was capable
of identifying complex clustering arrangements
and overcoming many of the difficulties ob-
served in previous clustering tools. The pro-
posed DSM clustering method has the follow-
ing unique features: (1) it accounts for bus
modules, (2) it allows overlapping modules, (3)
it is specifically designed to overcome DSM
manual/human clustering problems, (4) it has a
unique information theoretic clustering mea-
sure, (5) it has the tuning capability to mimic
human experts’ clustering, and (6) it allows
tuning of GA parameters for specific types of
products by human experts (i.e., different pa-
rameters/weights for different products), then
the tuned algorithm (i.e., particular weights)
can be used repeatedly by others (e.g., non-
experts) for similar products or future genera-
tions of the same product. As future work,
several possible steps can be taken to further
refine the proposed method. These efforts in-
clude an extension to multi-objective clustering,
where the values of entries in the DSM repre-
sent different types of dependencies between
two nodes (Schloegel, Karypis, & Kumar, 1999).
Along similar lines, a more explicit representa-
tion of domain-specific expert knowledge may
allow for better tuning of the weights of the
model description, and more experiments (i.e.,
case studies) might be needed to find the real
preference of human experts (Nascimento &
Eades, 2001). Furthermore, the proposed method
is capable of identifying buses and overlapped
clusters, but other predominant architectural
features may also need to be identified and
incorporated into the MDL clustering metric.
One such example is the concept of a mini-bus
or a floating bus discussed in Sharman and
Yassine (2004).

Interestingly, the MDL-DSM combination
also led us to investigate the dual problem of
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using DSM clustering to design a more effec-
tive genetic algorithm—DSMGA (Yu et al.,
2003). DSMGA utilizes the DSM clustering
technique to identify BBs. An MDL clustering
metric used by the auxiliary GA was con-
structed for the DSM clustering problem. Em-
pirical results have shown that using the BB
information obtained by the DSM clustering
technique can help the convergence of GAs on
tight, loose, and random linkage problems. Just
as the DSM clustering results can be reused in
organization, the BB information obtained from
DSM clustering can also be used in similar
optimization problems. In other words, DSMGA
creates a specific crossover operator for the
given problem. For more information of such
reusability, refer to Yu and Goldberg (2004).
Furthermore, DSMGA can be readily extended
to solve hierarchical problems (Pelikan &
Goldberg, 2001), and can also be combined with
principled efficiency-enhancement techniques
such as fitness inheritance (Sastry, Pelikan, &
Goldberg, 2004) and time continuation (Lima,
Sastry, Goldberg, & Lobo, 2005).

There are many examples in this volume of
nature-inspired computing coming to the aid of
management and commerce, and this chapter is
certainly to be counted among their number.
The use of a genetic algorithm and an MDL
metric to improve our understanding of organi-
zational and product design is no mean feat;
however, this chapter took the additional step
of using ideas from genetic algorithms and
organizational theory to improve the toolkit of
nature-inspired computation itself.

We believe that this two-way street can be
profitably exploited more often than it currently
is because natural computation and organiza-
tions both are so intricately tied to successful
adaptation and innovation. We invite other re-
searchers to join this quest for both metaphori-
cal and mechanical inspiration going forward.
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ABSTRACT

This chapter presents the notion of autonomous engineered systems working without central
control through self-organization and emergent behavior. It argues that future large-scale
applications from domains as diverse as networking systems, manufacturing control, or e-
government services will benefit from being based on such systems. The goal of this chapter
is to highlight engineering issues related to such systems, and to discuss some potential
applications.

INTRODUCTION

Devices from personal computers, to handhelds,
to printers, to embedded devices are very widely
available. Further, today’s wireless network
infrastructures make it possible for devices to
spontaneously interact. In addition, large-scale
communication, information, and computation
infrastructures such as networks or grids are
increasingly being built using numerous hetero-
geneous and distributed elements, which prac-
tically cannot be placed under direct central-
ized control. These elements exhibit certain
degrees of autonomy and of self-organization,

such as taking individual decisions and initia-
tives, interacting which each other locally, and
giving rise to an emergent global behavior.

This chapter introduces first the notion of
autonomous systems; second it reviews the
notions of decentralized control, self-organiza-
tion, and emergent behavior, and discusses how
they relate to each other. Third, this chapter
discusses different issues pertaining to the de-
sign and development of autonomous systems
with emergent behavior. Fourth, it reviews
techniques currently being established for build-
ing those systems. Finally, it provides several
examples of applications.



430

Autonomous Systems with Emergent Behavior

AUTONOMOUS SYSTEMS

We distinguish different classes of autonomous
systems. First, autonomous systems as distrib-
uted embedded devices consist of physical
devices having some onboard intelligence, and
standalone and communication capabilities.
Such devices comprise intelligent mobile ro-
bots, but also intelligent wearable computing,
surveillance, or production devices. Second,
from a software point of view, autonomous
agents and multi-agent systems are a notion
first established by the distributed artificial
intelligence community. Such systems do not
have to cope with the same problems faced
with devices situated in a physical environment
(e.g., low battery). However, agents provide a
metaphor for software design which incorpo-
rates most of the elements present in embedded
devices such as autonomous decision-taking
processes, communication with other agents,
and social interactions for collaboration, nego-
tiation, transactions or competition purposes
(Wooldridge, 2003). Third, more recently an
initial focus has been given from the research
community on autonomous software entities
interacting with each other in a decentralized
self-organized way in order to realize a dedi-
cated high-level functionality (interactions for
collaboration purposes), or giving rise to an
emergent global behavior as a side effect of
their local interactions (interactions for compe-
tition purposes). This category of applications
or entities is referred to as self-organizing
systems or systems with emergent behavior
(Di Marzo Serugendo et al., 2004). In some
sense, this last category combines the first two
views where autonomous software populates
autonomous devices. Fundamental points of
these different views of autonomous systems
are: the social interactions arising among the
different elements, and the need for adaptation
to unforeseen (at design time) situations en-
countered in dynamic environments.

There is currently a growing interest in
autonomous applications able to self-manage,
not only from academic research but also from
the industry. Ambient intelligence envisions
seamless delivery of services and applications,
based on ubiquitous computing and communi-
cation. Invisible intelligent technology will be
made available in clothes, walls, or cars; and
people can freely use it for virtual shopping,
social learning, micro-payment using e-purses,
electronic visas, or traffic guidance system
(Ducatel et al., 2001). Ambient intelligence
requires low-cost and low-power designs for
computation running in embedded devices or
chips, as well as self-testing and self-organizing
software components for robustness and de-
pendability. Based on the human nervous sys-
tem metaphor, IBM’s Autonomic Computing
initiative considers systems that manage them-
selves transparently with respect to the appli-
cations. Such systems will be able to self-
configure, self-optimize, self-repair, and pro-
tect themselves against malicious attacks
(Kephart & Chess, 2003). Recent interest by
Microsoft, as part of the Dynamic Systems
Initiative, indicates as well the importance of
self-organization for managing distributed re-
sources.

Autonomous Computation Entities
vs. Autonomous Systems

As follows from the discussion above, autono-
mous systems are composed of one or, more
generally, of several autonomous computation
entities interacting together. These autono-
mous computation entities are either embed-
ded into physical, possibly mobile, devices
(e.g., in ambient intelligence applications) or
part of a given environment that supports their
execution and interactions (e.g., multi-agent
systems).
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DECENTRALIZED CONTROL,
SELF-ORGANIZATION, AND
EMERGENT BEHAVIOR

Decentralized control is intimately linked with
the notion of emergent phenomena, since some
result is expected from a system even if it
works with decentralized control. Self-organi-
zation may occur with or without central con-
trol; it is related to whether or not the system
takes itself the measures to cope with the
environmental changes. Even though artificial
systems will certainly have at the same time
these three characteristics—decentralized con-
trol, self-organization, and emergent phenom-
ena—it is important to distinguish each of them.
The purpose of this section is to briefly clarify
these concepts, and to establish the links and
differences among these three notions.

Decentralized Control

It is important to distinguish between two kinds
of artificial systems working with decentralized
control: (a) systems built as a large set of
autonomous components, pertaining to the same
system and providing as a whole expected
properties or functions—otherwise stated, we
want to build an application with a well-speci-
fied functionality, but for complexity reasons,
this application is decentralized and made of a
large number of autonomous components; and
(b) systems composed of a large set of autono-
mous components, spontaneously interacting
with each other for possibly independent or
competing reasons. In both cases, autonomous
components may be heterogeneous and dy-
namically joining and leaving the system.

Even though in both cases most of the issues
and discussions are similar, the fundamental
difference lies in the engineering process that is
behind the building of the system. In the first
case, the whole system is designed with emer-

gent functionality in mind. Simply stated, a
given collaborative team develops the applica-
tion ensuring that the expected functionality
will emerge. In the second case, the different
components are produced by different teams,
with different purposes in mind, each being
concerned with the fact that their component
can interoperate with the others. There is no
expected global function or properties emerg-
ing, even though emergent phenomena will
arise in any case from the different local inter-
actions and have a causal effect on the whole
system—that is, on the particular behavior of
the individual components.

In the first case, the core idea behind build-
ing large-scale systems is to have them com-
posed of autonomous individual components
working without central control, but still pro-
ducing as a whole the desired function. Indeed,
decentralized control allows: (1) computation
and decisions to be distributed among the dif-
ferent components, thus preventing the need
for a central powerful computer; (2) the system
is more robust since it does not rely on a single
node that may fail and crash the whole system;
(3) network and CPU resources are better used
in the sense that communication does not occur
among a dedicated central node and a large
number of components, but locally among the
whole set of components; and (4) in dynamic
systems, where components join and leave the
system permanently, decentralized control al-
lows a flexible schema for communication, for
example with a neighbor instead of with the
central entity.

Self-Organization

There are different definitions of self-organiza-
tion as observed in the natural world. We will
focus here on three of them, essentially to
enhance the fact that there are different kinds
of self-organizations, and that designers of
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such systems must be aware of which kind of
self-organization they are considering when
building their system (Di Marzo Serugendo,
Gleizes, & Karageorgos, 2006).

Stigmergy

The theory of stigmergy, defined by Grassé
(1959) in the field of swarms or social insects’
behavior, states that coordination and regula-
tion are realized without central control by
indirect communication of the insects through
their environment. Self-organization results from
the behavior (of the insects) arising from inside
the system. Otherwise stated, swarms’ autono-
mous components are themselves at the origin
of the re-organization of the whole system.

Decrease of Entropy

In the field of thermodynamics, Glansdorff and
Prigogine (1971) established that open systems
decrease their entropy (disorder) when an ex-
ternal pressure is applied. Self-organization in
this case is the result of a pressure applied from
the outside. It is interesting to compare self-
organization in this case with the swarms’
behavior, where the “initiative” of self-organi-
zation occurs from within the system.

Autopoiesis

Through biological studies, Varela (1979) es-
tablished the notion of autopoiesis as the self-
maintenance of a system through self-genera-
tion of the system’s components, as for in-
stance cell reproduction. Self-organization here
is still different from the two other examples
above. Indeed, autopoiesis applies to closed
systems made of autonomous components
whose interactions self-maintain the system
through generation of system components.

Even though differently stated in the few
definitions above, and with a different impact
on the way and the reasons why self-organiza-
tion is produced, we can consider that self-
organization is essentially:

The capacity to spontaneously produce a
new organization in case of environmental
changes without external control, provided it is
not external.

Indeed, in the case of social insects, environ-
mental changes will cause ants or termites to
find new paths of food—that is, change their
behavior in order to still be able to feed the
colony. In the case of thermodynamics, external
pressure changes will cause gas particles to be
more or less excited, change their temperature,
and so forth, thus reaching a new stable state.
Finally, cells or living organisms regenerate the
whole system in order to overcome cells’ death
and to survive in their given environment.

It is interesting to note that new organization
of a system may occur with or without central
control provided; it is not external.

Emergent Behavior

Literature on emergence is abundant and var-
ied ranging from philosophical discussions to
operational descriptions. One of the most popu-
lar definitions of emergence which captures the
essence of the emergent phenomena comes
from Holland (1998), who states: “The whole is
more than the sum of its parts.”

In systems composed of individual autono-
mous computation entities, we will consider
that an emergent phenomenon is essentially (Di
Marzo Serugendo et al., 2006):

A structure (pattern, property, or function),
not explicitly represented at the level of the
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individual components (lower level), and
which appears at the level of the system
(higher level).

An additional important point here is that
emergent phenomena have a meaning for an
observer external to the system, but not for the
system itself. We distinguish two kinds of emer-
gent phenomena:

• Observed patterns or functions that have
no causal effect on the system itself. If
we consider stones ordered by sea, with
time, a kind of classification of the stones
occurs. Small, lighter stones are close to
the border, while heavy stones are far
from it. In this case, this ordering of the
stones has no effect at all on the whole
system made of the stones and the sea
(Castelfranchi, 2001).

• Observed functions that have a causal
effect on the system. Such functions can
be desired or not, but in both cases they
have an effect on the system behavior and
will cause the individual parts to modify
their own behavior.

Artificial systems are composed of a large
number of individual components, of autono-
mous computation entities. During the course
of time, a large number of interactions occur
among these components, whose ordering, con-
tent, and purpose are not necessarily imposed.
It becomes then difficult to predict the exact
behavior of the system taken as a whole be-
cause of the large number of possible non-
deterministic ways the system can behave.
However, since we have built the system, the
individual behavior’s components and the local
rules governing the system are known; it be-
comes then in principle possible to determine
the (emergent) system’s behavior. In practice,
current techniques or calculations (essentially
simulations) are not sufficient and make it

almost impossible to determine the result. That
is why the result, functions, or properties, are
said to be emergent.

When Self-Organization
Meets Emergence

Due to the fact that in most systems, self-
organization, and emergent phenomena are
observed simultaneously, there is a natural ten-
dency to consider that self-organization leads
to emergent phenomena or that they are inti-
mately linked. As also pointed out by De Wolf
and Holvoet (2005), even though not totally
wrong, this assumption needs to be clarified.

Self-Organization without
Emergent Phenomenon

Self-organization happens without observed
emergent phenomenon, essentially when the
system works under central control. Indeed,
self-organization is the capacity of the system
to find a new organization in order to respond to
environmental changes. The new organization
can be identified under internal central control,
and thus the possibly observed new organiza-
tion is fully deducible from the central entity.

Emergent Phenomenon
without Self-Organization

Emergent patterns, such as zebra stripes, have
no causal effect on the whole system. There is
no reorganization of the stripes or of the cells
producing the stripes. Stones ordered by sea do
not undertake a self-organization when they
are ordered by the sea.

Self-Organization together
with Emergent Phenomenon

We consider that in order to have self-organi-
zation and emergent phenomenon at the same
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time, the considered system should have the
following characteristics:

• Dynamic self-organizing system: Indi-
vidual components are “active”; they may
have their own objective and carry out
their respective tasks.

• The system works with decentralized
control.

• Local interactions occur among the indi-
vidual components.

Natural or artificial interesting systems usu-
ally considered by scientists are those of the
last category, where we usually have decen-
tralized control realized under self-organiza-
tion, leading to emergent behavior.

ISSUES

This section distinguishes five issues related to
systems made of autonomous software entities
and exhibiting an emergent behavior.

Interactions among Unknown
Autonomous Computation Entities

Autonomous software entities interact with their
environment and with other generally unknown
software entities. Interaction covers both seman-
tic understanding of the functional and non-func-
tional aspects of a peer entity, and interoperability,
which encompasses transactions, service deliv-
ery, and exchange of information.

Management of Uncertainty

For autonomous entities situated in a dynamic
and insecure environment, uncertainty relates
to reliability and trustworthiness of both the
environment and interacting peer entities. For
instance, an autonomous software entity can-

not expect to fully rely on the permanent avail-
ability of network accesses, capacity, and loads.
In addition, a malicious entity can exhibit desir-
able characteristics, while it has no willingness
to realize them; or, even in good faith, an entity
can fail to deliver a service because the condi-
tions required for its correct functioning are no
longer provided by the environment (software
errors or physical failures).

Adaptability to Changing
Environment and Changing
User Requirements

Autonomous software considered in this chapter
are situated in a physical environment mostly
composed of wireless devices, for which avail-
ability of network access is not fully granted,
availability of interacting entities is not perma-
nently granted—devices can freely join or leave
an interacting zone or partners, and reduced
consumption power conditions may prevent au-
tonomous software residing in wireless devices
to perform their computation at their maximum
capacity. In addition to changing environment,
autonomous software has to adapt its behavior to
changing user requirement or under the evolu-
tion of business practices. For instance, a per-
sonal assistant may change the user’s agenda if
the user signals some priority activity.

Design and Development

On the one hand, emergent behavior, as ob-
served in nature or among societies, has funda-
mental properties such as robustness, behavior
adaptability, learning through experiences, and
complex global behavior arising from simple
individual behavior, which software engineers
would like to benefit from when building com-
plex and large-scale systems. On the other
hand, because of these properties, such sys-
tems are difficult to design correctly, and their
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behavior, once deployed in a physical environ-
ment, is difficult or impossible to predict. This is
mostly due to the non-linear nature of the
interactions occurring among the different au-
tonomous computation entities forming the au-
tonomous systems—that is, the behavior of the
system as a whole is not a linear function of the
behavior of the individual autonomous compu-
tation entities. At the research level, we are
currently witnessing the birth of a brand new
software engineering field specifically dedi-
cated to emergent behavior. One of the most
delicate points is to ensure that “good” (i.e.,
expected) properties will actually emerge, while
bad (i.e., not expected or not desired) proper-
ties will not.

Control of Emergent Behavior

At run-time, control of emergent behavior is an
important issue related to artificial self-organizing
systems with emergent behavior. Indeed, those
systems usually demonstrate adaptability capa-
bilities to changing environmental conditions (due
to the ability of the system to reorganize), coupled
with emergent phenomena, which by definition is
difficult to predict. From an engineering point of
view, it becomes crucial to have means, at run-
time once the system is deployed and executing in
its environment, allowing the control of such
systems, such as changing the system’s global
goal, stopping the system if necessary, and so
forth. Solutions for this issue most likely have to be
considered at design time already, by for instance
incorporating specific features that will be useful
for control.

ENGINEERING EMERGENT
BEHAVIOUR

This section describes existing design and de-
velopment techniques (bio-inspired or not), and

tools for building autonomous systems with
emergent behavior. Bio-inspired techniques
usually rely on stigmergy (Bernon, Chevrier,
Hilaire, & Marrow, 2006), but we observe
other approaches based on capacity fields or on
trust-based human behavior (Hassas, Di Marzo
Serugendo, Karageorgos, & Castelfranchi,
2006). This section reviews interaction mecha-
nisms among individual autonomous computa-
tion entities, middleware computing infrastruc-
ture supporting their computations, methodolo-
gies and CASE tools for design and develop-
ment, and formal methods related to self-orga-
nization and emergent behavior.

Interaction Mechanisms

When building a self-organizing system or a
system with decentralized control, at the lowest
level we need to define first the local interac-
tions among the different individual compo-
nents of the system.

Swarm Intelligence

Swarms, or the stigmergy paradigm, provide a
great source of inspiration, especially for fixed
and mobile networks systems management such
as routing, load balancing, or network security.
Ants’ behavior has been extensively repro-
duced in artificial systems through artificial
pheromones coordinating the work of mobile
robots, or mobile agents. More recently, other
swarms’ behavior is being considered as well,
as for instance spiders (Bourjot, Chevrier, &
Thomas, 2003) and bees (Fabrega, Lòpez, &
Masana, 2005).

Biology: Cells

Besides swarm behavior, another category of
natural mechanisms reproduced in artificial
systems concerns mammalian immune sys-
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tems, which have mostly been used for network
intrusion detection (Hofmeyr & Forrest, 2000).

Human Behavior/Trust

Trust-based systems or reputation systems take
their inspiration from human behavior. Indeed,
uncertainty and partial knowledge are a key
characteristic of the natural world. Despite this
uncertainty, human beings make choices and
decisions, learn by experience, and adapt their
behavior. As mentioned above, uncertainty is
an issue when building decentralized open sys-
tems.

Most artificial trust-based management sys-
tems combine higher-order logic with a proof
brought by a requester that is checked at run-
time. Those systems are essentially based on
delegation, and serve to authenticate and give
access control to a requester (Weeks, 2001).
Usually the requester brings the proof that a
trusted third entity asserts that it is trustable or
it can be granted access. Those techniques
have been designed for static systems, where
an untrusted client performs some access con-
trol request to some trusted server. Similar
systems for open distributed and decentralized
environments have also been realized. The
PolicyMaker system is a decentralized trust
management system (Blaze, Feigenbaum, &
Lacy, 1996) based on proof checking of cre-
dentials, allowing entities to locally decide
whether or not to accept credentials (without
relying on a centralized certifying authority).
Eigentrust (Kamvar, Schlosser, & Garcia-
Molina, 2003) is a trust calculation algorithm
that allows calculating a global-emergent repu-
tation from locally maintained trust values.
Recently, more dynamic and adaptive schemas
have been defined which allow trust to evolve
with time as a result of observation, and allow
adaptation of the behavior of entities conse-
quently (Cahill et al., 2003).

Artificial Mechanisms

In addition to the digital pheromone, which is
the artificial counterpart of the natural phero-
mone used by the ants, new electronic mecha-
nisms directly adapted to software applications
are being developed. The notion of tags, a
mechanism from simulation models, is one of
them. Tags are markings attached to each
entity composing the self-organizing applica-
tion (Hales & Edmonds, 2003). These markings
comprise certain information on the entity, for
example functionality and behavior, and are
observed by the other entities. In this case the
interaction occurs on the basis of the observed
tag. This is useful if applied to interacting
electronic mobile devices that do not know
each other in advance. Whenever they enter
the same space, for example a space where
they can detect each other and observe the
tags, they can decide on whether they can or
cannot interact.

Smart tagging systems are already being
deployed for carrying or disseminating data in
the fields of healthcare, environment, and a
user’s entertainment.

For instance, in the framework of data dis-
semination among fixed nodes, Beaufour,
Leopold, and Bonnet (2002) propose a delivery
mechanism based on the local exchange of data
through smart tags carried by mobile users.
Mobile users or mobile devices do not directly
exchange smart tags; they only disseminate
data to fixed nodes when they are physically
close to each other. Data information vehicled
by smart tags is expressed as triples, indicating
the node being the source of the information,
the information value, and a time indication
corresponding to the information generation.
Smart tags maintain, store, and update this
information for all visited nodes. A Bluetooth
implementation of these smart tags has been
realized in the framework of a vending machine
(Beaufour et al., 2002).
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In smart tagging systems, data remain struc-
turally simple and understandable by human
beings, and do not actually serve as a basis for
autonomous local decisions.

Middleware Computing
Infrastructures

Besides local interaction mechanisms favoring
communication and cooperation among the in-
dividual components, for an artificial system we
may need computing infrastructures, also called
middleware, supporting the chosen mechanisms
and acting as the artificial environment for the
system’s component. For instance, such
middleware supports the evaporation of the
artificial pheromone, or allows mobile agents to
perform their execution or to move from one
host to another.

These infrastructures are usually coordi-
nation spaces providing uncoupled interaction
mechanisms among autonomous entities, which
asynchronously input data into a shared tuple
space and may retrieve data provided by other
entities.

The TOTA (Tuples On The Air) environ-
ment propagates tuples according to a propaga-
tion rule, expressing the scope of propagation
and possible content change (Mamei &
Zambonelli, 2003). Such a model allows, among
other things, the electronic capture of the notion
of digital pheromone, deposited in the tuple
space and retrieved by other agents. The propa-
gation rule removes the pheromone from the
data space once the evaporation time has
elapsed.

Alternatively, the Co-Fields (coordination
fields) model drives agents’ behavior as would
abstract force fields (Mamei, Zambonelli, &
Leonardi, 2002). The environment is repre-
sented by fields that vehicle coordination infor-
mation. Agents and their environment create
and spread such fields in the environment. A

field is a data structure composed of a value
(magnitude of field) and a propagation rule. An
agent then moves by following the coordination
field, which is the combination of all fields
perceived by the agent. The environment up-
dates the field according to the moves of the
agents. These moves modify the fields, which
in turn modify the agent’s behavior. This model
allows representing not only complex move-
ments of ants and birds, but also tasks division
and succession.

Anthill is a framework for P2P systems
development based on agents, evolutionary pro-
gramming, and derived from the ant colony
metaphor. An Anthill distributed system is com-
posed of several interconnected nests (a peer
entity). Communication among nests is assured
by ants—that is, mobile agents travel among
nests to satisfy requests. Ants observe their
environment and are able to perform simple
computations (Babaoglu, Meling, & Montresor,
2002).

Methodologies and CASE Tools

Finally, at the highest level, from the designer
point of view, it is crucial to rely on a develop-
ment methodology and tools supporting the
different phases of development of systems
with emergent behavior. Research in this field
is at its infancy, and very few results are
available.

The Adelfe (Bernon, Gleizes, Peyruqueou,
& Picard, 2002) methodology supports design-
ers in making decisions when developing a
multi-agent system exhibiting emergent phe-
nomena, and in helping developers in the design
of the multi-agent system. It is based on the
AMAS (adaptive multi-agent system) theory
where self-organization is achieved through
cooperation among the agents—that is, agents
avoid non-cooperative situations.
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Ongoing research in this field seems to
favor solutions combining formal or traditional
models with simulations in order to be able, on
the one hand, to formally define the system, its
expected properties, and the behavior of the
individual components, and on the other hand
(through simulation of these models), to be able
to validate or invalidate the design and to pre-
dict some emergent phenomena.

Models and Formal Specifications

Mathematical equations, cellular automaton,
and neural networks have long been used to
understand complex systems, emergent pat-
terns, and the human neuronal activity. More
recently, since autonomous software agents
naturally play the role of individual autonomous
computation entities, multi-agent systems are
also being used to model complex systems, and
to derive, through simulation, results about
emergent phenomena, adaptability characteris-
tics, starting conditions, parameters, and so on.
The purposes of multi-agent-based models are
of two different natures. On the one hand, the
related simulations serve as experiments to
better understand a complex system or to
(in)validate a given theory—a purpose similar
to that pursued with cellular automaton and
neural networks models. On the other hand, for
artificial systems essentially, agent-based simu-
lations help predict the run-time behavior of a
given system, tune the different parameters,
and so on. Multi-agent systems are particularly
interesting when considering artificial systems
with emergent behavior, since those systems
involve mobility, social interactions (negotia-
tion, competition, and collaboration), and a high
number of entities interacting in a networked
environment. The combination of all these fea-
tures can be hardly modeled through math-
ematical models, cellular automaton, or neural
networks. For the same reasons, a third pur-

pose of the use of multi-agent systems is cur-
rently being investigated; it consists of actually
building artificial self-organizing applications
with autonomous software agents.

In addition to models and simulations, formal
reasoning about adaptability characteristics and
emergent properties is a research area under
consideration in the field of engineering of
systems with emergent behavior. As is the case
for software engineering related to traditional
software, formal specifications allow deriving
formal models on which reasoning of different
kinds can be performed in order to provide
design-time results about the system seen as a
whole. We can distinguish different works de-
pending on the use and purpose of the formal
specifications. From a very abstract perspec-
tive, category theory has proved useful for rea-
soning about emergent properties arising among
interacting components, those properties being
expressed through an underlying logic (Fiadeiro,
1996). From a more concrete point of view,
recent work has shown interest in emergent
properties related to multi-agent systems (Zhu,
2005). In addition to the use of formal specifica-
tions and reasoning at design time, we can
mention as well the use of formal specifications
at run-time and its expected benefits for both
designing and controlling (at run-time) emergent
behavior (Di Marzo Serugendo, 2005).

APPLICATIONS

This section presents several application do-
mains, current and undergoing realizations, as
well as some visionary applications: network-
ing, manufacturing, or cultural applications based
on stigmergy and swarm-like systems, and self-
managing global computers. Additional descrip-
tions of self-organizing applications can be
found in Mano, Bourjot, Lopardo, and Glize
(2006).
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Networking Systems

Seminal work by Bonabeau, Dorigo, and
Théraulaz (1999) describes different types of
swarm behavior and explains how to apply it to
different applications: ant foraging is useful for
routing in communication networks, and conse-
quently for optimization of network-based prob-
lems; ant division of labor is useful for task
allocation; ants’ management of dead bodies is
useful for clustering.

T-Man is a generic protocol based on a
gossip communication model and serves to
solve the topology management problem
(Jelasity & Babaoglu, 2005). Each node of the
network maintains its local (logical) view of
neighbors. A ranking function (e.g., a distance
function between nodes) serves to reorganize
the set of neighbors (e.g., increasing distance).
Through local gossip messages, neighbor nodes
exchange or combine their respective views.
Gradually, in a bottom-up way, through gossip-
ing and ranking, nodes adapt their list of neigh-
bors, and consequently change and reorganize
the network topology. The T-Man protocol is
particularly suited for building robust overlay
networks supporting P2P systems, especially in
the presence of a high proportion of nodes
joining and leaving the network.

The SLAC (Selfish Link and behavior Ad-
aptation to produce Cooperation) algorithm
(Hales, 2005) favors self-organization of P2P
network’s nodes into tribes (i.e., into special-
ized groups of nodes). The SLAC algorithm is
a selfish re-wiring protocol, where by updating
its links with other nodes in order to increase its
utility function, a specific node leaves its cur-
rent tribe and joins a new one. In addition to
P2P systems, the SLAC algorithm has many
potential applications, for instance to organize
collaborative spam/virus filtering in which tribes
of trusted peers share meta-information such
as virus and spam signatures.

In the field of mobile ad-hoc networks, a
self-organized public key management has been
defined. The idea is that each node simply
carries a subset of the certificates issued by
other users. This alleviates the need of central-
ized certification authorities (Capkun, Buttyan,
& Hubaux, 2003).

For intrusion detection and response in com-
puter networks (Foukia, 2005), the immune
system serves as a metaphor for detecting
intruders, and the stigmergy paradigm is used
for responding to the attack. Mobile agents
permanently roam the network in order to lo-
cate abnormal patterns of recognition. Once an
attack is detected, a digital pheromone is re-
leased so that the source of attack can be
located and a response to the attack can be
given. Mobile agents specialized for tracking
the source of the attacks are created by the
system and act as ants by following the phero-
mone trail up to the source of the attack.

Manufacturing Control

The stigmergy paradigm serves also for manu-
facturing control (Karuna et al., 2003). Agents
coordinate their behavior through a digital phero-
mone. In order to fulfill manufacturing orders,
they use mobile agents that roam the environ-
ment and lay down pheromonal information.

Cultural Heritage

In the field of cultural heritage, a system in-
spired by bees’ behavior has been designed by
Fabrega et al. (2005). This system allows inde-
pendent, non-specialized people to enter infor-
mation on a given subject. The underlying sys-
tem then creates new concepts as they are
entered into the system by users and correlates
together existing concepts. The bees’ queen
maintains the number and type of bees; it
creates new bees whenever a new concept
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appears. Different types of bees look for infor-
mation (nectar), bring that information into cells
(honeycomb), validate the information, or look
for similarities in honeycombs.

Self-Managing Systems

In order to help human administrators managing
large systems, such as distributed operating
systems or networks, self-managing systems
are being investigated and research efforts are
dedicated to these systems.

Expected properties of self-managing sys-
tems are to self-configure, self-optimize their
parameters, self-repair in case of errors, and to
ensure themselves their protection. These char-
acteristics place these systems under the cat-
egory considered in this chapter. Indeed, such
systems work more efficiently without central
control; they need to adapt to changes, to re-
organize; these systems are dynamic since, for
instance, components in error have to leave the
system and, being replaced by new ones, up-
dated components have to seamlessly integrate
the system (Kephart & Chess, 2003).

However, for self-managing systems con-
sidered as autonomous systems with emergent
behavior, the situation may be even more com-
plex. Indeed, such systems have three aspects.
First, they need to manage themselves; this can
be considered a “regular” case of self-organi-
zation. Second, in addition to themselves they
need to manage any additional resource per-
taining to the system. Third, they need to inter-
act with a human administrator; this implies that
such a system needs a way to receive global
orders from the administrators, and these or-
ders have to be split down into low-level goals
or tasks, and conversely, the results or informa-
tion the self-managing system wants to provide
to the human administrator must be coherently
packed into a single, meaningful bit of informa-
tion. Individual components cannot send their

respective individual results directly to the ad-
ministrator.

CONCLUSION

We already observe that technologically ad-
vanced societies heavily rely on autonomous
devices full of autonomous software (PDAs,
mobile phones, portable computers) interacting
with each other in a more or less autonomous
way. Our vision is that future applications will
in fact be composed of autonomous systems
organized in a society of devices and software
seamlessly interacting together for supporting
end users in their everyday life.

We currently observe that artificial systems
reproduce natural self-organization principles.
They are borrowed from biology, from the
social behavior of insects or humans. Different
artificial techniques are used for realizing these
systems: from indirect interactions, to rein-
forcement, to adaptive agents, to cooperation,
to establishment of dedicated middleware. The
interest of self-organization and emergence lies
in the natural robustness and adaptation of
these systems, and in the relative simplicity of
the different components participating to the
system. However, it is interesting to notice that,
despite any benefit emergence and self-organi-
zation can bring to a system, they are not
necessarily a good thing. Indeed, in addition to
the expected emergent behavior, unexpected
emergent behavior will necessarily arise from
the different interactions of the system. This
behavior will have a causal effect on the sys-
tem, and especially in the case of self-inter-
ested agents, the optimum order (the stable
state reached by the reorganization) can actu-
ally be bad for individuals or even for every-
body. Additionally, current engineering tech-
niques have their limits in terms of control of the
emergent behavior, design of the system, and
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prediction of the emergent expected or not
behavior. Research in this field is still begin-
ning, and much work is needed before any
commercial application is widely available for
the public.
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ABSTRACT

Manufacturers must always develop products  faster and better to satisfy their client’s
requirements. To help them, we have developed and experimented with a methodology to
improve the management process by connecting it with the design process. An issue for the
project manager is to select an organization from among the possible ones to schedule the
project tasks in order to reach the targets in terms of costs, duration, quality, and so forth.
This constitutes a tricky operation, because many options defined during the design can be
associated to each task of the project. Choosing and optimizing the schedules is a combinatorial
problem which can be solved by heuristic. This document explores the use of evolutionary
algorithms to help the decision maker. It introduces the industrial context and presents our
methodology to connect the design and project management processes, expressing the
problem as a multi-objective optimization one. We detail the scenarios selection process and
demonstrate which performances are obtained.

INTRODUCTION: THE
INDUSTRIAL CONTEXT AND
OUR RESEARCH OBJECTIVES

The globalization of markets and an intensive
competition deeply modified the companies’

organization. Manufacturers must have a great
ability to react in order to satisfy the customers’
requirements with shorter times to market and
higher product quality. The durations of the
innovation cycle were thus notably reduced in
all industrial sectors: transportation, telecom-
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munication, and so forth. To obtain such results,
manufacturers had to considerably modify their
working methods. Generally speaking, they need
to keep the costs reduced to best evaluate the
risks, to capitalize the knowledge and know-
how, and to avoid reproducing previous errors.
Therefore, today, designing innovative systems
is essentially based on the mastery and the fast
integration of several technologies, methods,
tools, and know-how, both on the technical and
on the organizational plans. A strong level of
complexity, on the technical plan, characterizes
the process design due to the variety and the
interdependence of the design choices, but also
on the organizational plan, because of the dis-
tributed feature of project management.1 Fur-
thermore, worried about best satisfying their
customers’ requirements, manufacturers have
to specifically customize their products.

For a very long time, development was
organized into two phases. A phase of design
came first during which the system functional
and organic architectures were determined in
order to respect the functional requirements.
Then, a project management phase intervened
to schedule a list of activities deducted from the
design and verifying the satisfaction of the non-
functional requirements (mainly risks, quality,
delays, and costs). However, this organization
presents two major drawbacks:

• A minor design decision can have ma-
jor repercussions on the organization
of activities leading to obtain the prod-
uct. For example, moving a structural
element on an aircraft will induce techni-
cal changes with repercussions on various
project activities.

• Reciprocally, management decisions
can also have consequences on the way
of designing the system (giving up a too
expensive or too much risked technology,
subcontracting parts of the system, etc.).

This mode of organization is not satisfac-
tory: a close collaboration between teams turns
out to be necessary. It is thus essential to build
and to formalize the design at the same time as
the project management. The time to market,
as well as the risks of incoherence due to the
lack of interactions between design and organi-
zation, would indeed be considerably reduced if
the technical, administrative, and financial de-
cisions leaned on a unique data model that
would be shared by all the partners and based
on the previous experiences (failures and suc-
cesses). This model should be able to contain all
project information to reuse them, but it should
also be able to favor the traceability of design
and management choices.

Such a model is not currently available, and
tools integrating design and management as-
pects, notably by pointing out the consequences
of a design decision on the organization (and
reciprocally), are today still lacking. Now, it
becomes essential for a decision maker to have
methods and tools to organize his project ac-
cording to the design choices. Indeed, design
engenders numerous scenarios due to the exist-
ence of options in the choice of technologies,
architectures, material, or software allocations
of the functions. The representation and the
management of such scenarios are complex,
strongly combinatorial, and are not generally
available in project management tools, which
are classically based on static models. How-
ever, when trouble occurs during the project, or
when a major deviation occurs from the initially
envisaged organization of activities, it seems
important to us that the choice of a new working
plan be guided by its coherence from a techni-
cal point of view with regard to the design
options already taken, but also from a project
point of view with regard to the management
choices made before. In this context, project
manager has to first identify a set of possible
scenarios to lead the project. Then, among
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these, he has to select one or several that will
allow him to reach the project technical and
non-technical targets as closely as possible. He
finally must organize his project and arbitrate
among solutions, about which he often does not
have enough information because they are gen-
erally dependent on design decisions.

In this context, our first objective is thus to
help the project manager to define, follow, and
adapt a coherent organization of project activi-
ties. This essentially relies on two actions:
favoring the project manager coordination with
the technical design team, and assisting his
decisions from among the several options to
organize the project. Our second objective is to
make the management process robust and adap-
tive in light of external technical, social, or
economical hazards, in order to reach the fixed
project targets as closely as possible. However,
selecting a limited set of “best” scenarios among
thousands of scenarios is a large-scale combi-
natorial problem.

After a brief presentation of the methodol-
ogy that we propose in order to couple design
and project management and the context of our
research, this chapter focuses on the problem
of choosing a scenario from among the several
possible ones to lead a project. This problem
can be considered as a multi-criteria problem of
distances minimization between the perfor-
mances reached by the scenario (in terms of
costs, delays, quality, risk associated to the
project) and the fixed targets. Such a problem
is highly combinatorial, and it is not possible to
examine all possible values of variable combi-
nations to find a solution. Consequently, no
partial enumeration-based exact algorithm can
consistently solve them. However, by exploit-
ing the problem-specific characteristics, heu-
ristic methods aim at a relatively limited explo-
ration of the search space, thereby producing
acceptable quality solutions, in short computing
times. We thus suggest use of evolutionary

algorithms to make the selection of scenarios.
This chapter explains how to apply these to our
problem and demonstrates their efficiency.

OUR METHODOLOGY TO
CONNECT SYSTEM DESIGN AND
PROJECT MANAGEMENT
PROCESSES: A SOLUTION TO
INDUSTRIAL REQUIREMENTS

Today’s Industrial Requirements

The accelerated development of technologies
offers a wide range of materials, components,
production modes, and so forth to the engineer
to design products, whose lifetimes are becom-
ing shorter and shorter. Manufacturers, in this
very competitive international context, need to
speed up transactions, reduce operating costs,
and improve performance and customer ser-
vice. A main problem comes from the fact that
generally, once the product characteristics are
established, manufacturers must master the
product design methodology and manage the
project simultaneously. These two processes
are led in parallel, but are usually separate,
without connected tools.

This current practice presents risks of inco-
herence that usually lead to increased costs and
delays: innovation process is not enough corre-
lated with economic parameters, and project
management is led with an insufficient knowl-
edge of the technical difficulties. Obviously,
these risks could be reduced if all technical,
administrative, and financial decisions were
based on a shared data model.

Our Solution

The originality of our proposition is to consider
that both design and management processes
can be associated from the very first steps of



  447

An Evolutionary Algorithm for Decisional Assistance to Project Management

high-level design and the definition of the project
tasks, then throughout the product development
cycle (see Figure 1). Indeed, on the design side,
the partitioning of a system into reusable sub-
systems is coupled with the partitioning of corre-
sponding reusable project tasks to organize the
product development on the other side. So, the
identification of technical options for the product
(performance, reliability, etc.) participates to the
definition of the project tasks, which add their
own constraints (costs, delays, suppliers, etc.).

It is then possible to define a “shared” data
model for the project, integrating constraints
from both design and management sides. Thus,
each actor can keep his own point of view on
data: on the design side, the high-level simula-
tion of interconnected subsystems leads to vir-
tual prototyping and verification, and on the
management side, the definition of different
tasks leads to several possible project organiza-
tions. From this shared data model will be
generated and selected some valid project sce-
narios. The main interest is that these optimal
scenarios, relying on shared functional and non-
functional data, participate to the definition of a
coherent project organization (task schedule).
The manager, if he needs to reduce the global
project cost, will be able to envisage at which

technical level the problem can have repercus-
sions, and the designer will choose different
architectures for the product among the possi-
bilities offered by the design.

The Partners, the Coupled
Methods, the Interconnected Tools

These studies on the interests to couple design
and management processes are conducted within
the framework of a collaborative project be-
tween several research groups (the LAAS
from the French National Center for Scientific
Research, the LESIA Laboratory, and many
others) and industrial partners (Airbus, Mentor
Graphics, etc.). We presently are in a phase
where, following a prototyping approach, we
are connecting several individually developed
methods and tools to build a shared platform.
With these tools, we plan to connect the design
and project management processes through the
use of the following methodology, whose steps
appear in Figure 2:

1. Initially, the textual specifications are for-
malized by separating technical require-
ments from project constraints. The for-
malized data will thus be used during the

Figure 1. Connection between design and management processes

idea

Shared model

Tasks definit ion

Project
manage ment

Project contraints:
• Supplier
• Manpower
• Resources...

sc heduli ng

target

Scenarios
Select ion/

optimizati on

specificat ions

Pre-des ign

des ign

product

Vi r tua l
proto typing

Product
des ign

Design contraints:
• Specifications
• Technica l
  constraints...



448

An Evolutionary Algorithm for Decisional Assistance to Project Management

project for semi-automatic validations of
the choices. These requirements can rep-
resent objectives (product performances,
low assembly cost) or constraints (limited
resources, delays).

2. Then, a specification tool allows repre-
senting the various products’ functional
architectures with respect to the technical
constraints. After this step, the functional
architectures are manipulated in order to
build physical architecture of
products (Baron, Rochet, & Gutierrrez,
2005; Rochet, Hamon, Gutierrez, Baron,
& Esteve, 2005). At this stage, a second
verification of the model coherence with
initial technical constraints is made. One
thus obtains several possible product struc-
tures able to respect the technical con-
straints.

3. Considering these different architectures,
the project team proceeds to various calls
for tenders that will be used as a basis to

elaborate a panel of possible organizations
for the project.

4. On this basis, we are able to construct
several possibilities to conduct the project
called scenarios, each one respecting the
project’s constraints, between which a
tricky choice has to be made. This step
will be detailed in the remaining part.

Our objectives thus are to provide the deci-
sion maker with a reduced set of project’s
scenarios from which he will make a choice.

Note that in this description, the process we
recommend to connect design and manage-
ment processes can appear as a linear process.
However, once the first technical choices are
made, the project team can find several options
to organize the project. It is thus these two
processes that are led in parallel with a strong
connection between design and control. This
leads to the construction of a project’s repre-
sentation where all the possibilities of realiza-

Figure 2. Methodology proposed: Several scenarios are generated starting with information
provided from design and management, each of them respecting the initials specifications. An
optimal scenario is selected and applied to the two previous processes.
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tion are included and on which both engineers
and managers can rely to define the final prod-
uct and a way to lead the project in a more
coherent manner.

After this brief introduction to the project,
let us now see how a project is represented in
our shared model.

Representation of a Project

Definition of a Scenario

We define a scenario as a way to lead the
project in order to reach the objectives fixed by
the client. The generation of the different sce-
narios is made on the basis of technical consid-
erations, but it also takes into account non-
technical parameters relative to project man-
agement: costs, delays and supply constraints,
quality, certification, risks, and so forth. At this
stage, we determine which tasks are to be
achieved without presupposing how to achieve
them. To each task are associated some op-
tions of achievement that we call “alterna-

tives.” For example the task “obtain the compo-
nent C” can be indifferently achieved by the
alternatives “buy C to the supplier A,” “design
C on our own,” “adapt and customize the
component Y,” and so on. The level of details
at which the alternatives are described depends
on the requirements and on the type of project.

In large-scale projects, a task can corre-
spond to a complex phase implicating several
teams for a long time; in simple ones, the
production process can be more precisely mod-
eled and followed. The model’s precision is at
the discretion of the person in charge, which
can adapt it to its needs.

Whatever the project size, the combinations
of task alternatives then lead to numerous solu-
tions for the project organization that are coher-
ent with the general product specifications (as
illustrated in Figure 3). A scenario can thus be
defined as a combination of task alternatives
which corresponds to an option for the whole
project organization satisfying the technical speci-
fications and the strategic requirements of the
project at the same time (Gutierrez, 2004).

Figure 3. Generation of scenarios from the alternatives of the project tasks; alternatives are
associated at each task, which can be realized indifferently by one of them.
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Expression of the Constraints between
Tasks in a Project Graph

A project progress is never sequential. To build
valid scenarios, constraints between tasks (pre-
cedence, resources, etc.) must be taken into
account. We have chosen to represent these
constraints on a graph; this representation is
very close to the formalism proposed by Beck
(1999). Let us now introduce the elements of
this graph one by one.

The first types of handled constraints are
the temporal relations between tasks and more
exactly the precedence relations, which consti-
tute the main type of relation in a project. They
are represented using an oriented graph in
which tasks are represented by numbered
squares and precedence relations by directed
arcs. Figure 4 gives the example of a possible
Gantt diagram for a graph in which task 1 must
be achieved before tasks 3 and 2, and task 2
before task 3; task 4 can be achieved indepen-
dently from the others.

The precedence relation, as defined above,
allows the handling of classical scheduling prob-
lems, assuming the tasks and their relations are
completely known. However, in our problem,
our goal is not to represent a single scheduling
of the project, but to synthesize in a single and
unique global model all possibilities to schedule
it. From this representation, the different ways
to conduct the project can be identified and

extracted, between which the choice of an
optimal solution must be made. We can also
imagine that some decisions can be made that
will determine if a set of tasks must be achieved,
for example when several technologies can be
chosen to implement a component. The use of
alternatives at the task level only is not thus
sufficient because the choice of the technology
will have impact on the project progress: it is
necessary to have an element of the graph
representing a choice between the tasks them-
selves in the project. We thus introduce the
“decision nodes,” represented with a pair of
numbered circles to express this choice. The
first circle, with a double outline, represents an
initial node; it opens the choice. The second,
with a simple outline, represents a final node
(Figure 5); it closes the choice.

Nodes represent an exclusive “OR” in project
development; a single sequence of tasks is then
allowed between an initial and a final node. For

Figure 4. Project graph example with corresponding Gantt diagram

Figure 5. Structure of project with decision
nodes; tasks are represented by squares,
choices by two associated nodes, and
precedencies by the arrows.
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example, there are two possibilities to achieve
the project of Figure 5: either achieve the tasks
1, 2, 3, 6, 7, 8, and 9, or the tasks 4, 5, 6, 7, 8, and
9. We call “path” a set of elements (tasks or
nodes) belonging to a same sequence between
the two nodes of a choice. In the previous
example, there are two paths: [4, 5] and [1, 2, 3].

To complete this representation, a final ques-
tion must be considered: how do we represent
two tasks that must both be achieved just after
a decision node? It is necessary to introduce the
“AND” operator, symbolized by two vertical
lines in Figure 6.

Now, the basics structures of the graph
model have been introduced, but a set of rules
must be satisfied to avoid inconsistent graphs:

1. the graph must be acyclic,
2. each node belongs to a pair constituted by

an initial and a final node,
3. the element preceding an “AND” can

only be an initial node, and
4. no direct relations can exist between ele-

ments of different paths.

In a more formal way, we can write:

• Let t be a task and T the set of tasks ti.
Each task ti of the set T owns mi alterna-
tives.

• Let ns be an initial node of the graph, Ns the
set of initial nodes, nf a final node of the
graph, Nf the set of the final nodes, nc a

couple of nodes (an initial node nf and its
associated final node nf), and N the set of
couples of nodes nc.

Each node nc
i of the set N owns ni possible

choices to reach its final node nf
i from its initial

node ns
i.

Of course, each alternative and task has its
own attributes and constraints such as duration,
need resources, and so forth, which make it
possible to build a schedule starting this repre-
sentation.

On the basis of this formalism, useful to
represent all the possibilities to follow/lead a
project progress, complex project structures
can be described. The graph structure in Figure
6 allows the automatic generation of different
project scenarios according to the active path in
the project graphs (Figure 7), reduced graphs,
each one representing a scenario. These re-
duced graphs then individually lead to a specific

Figure 6. Examples of project graphs

Figure 7. Scenarios generation and
scheduling; starting on the project graph,
reduced graphs can be deduced, each one
corresponding to a specific scheduling.
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scheduling. After this operation, the main project
characteristics are known: non-functional ones
like cost and duration, other important evalua-
tion criteria such as quality risk, and functional
ones like product performance for example.
The functional and non-functional characteris-
tics will be the base of the evaluation of the
scenarios, and of course of their associated
scheduling.

So we dispose of a synthetic representation
on which all the possibilities to lead the project
are present. We will see after how the choice
can be made, but first, the next section presents
how a scenario is evaluated.

What is a Good Scenario?

The previous section presented a synthetic
project representation, from which are deduced
different scenarios, each one leading to a spe-
cific scheduling. The problem now is to select
the “best” scenarios.

In a simplified way, a scenario that reaches
the set of objectives is a good scenario (this idea
will be detailed further on). Let us consider a
performance vector v of a scenario (Equation
1: Performance vector) in which are taken into
account n criteria. tvi represents the value of the
objective i and evi the estimated value of the ith

criterion. The ideal scenario would be a sce-
nario that is optimum on all considered criteria.
That is to say, v is optimal if ii xvxi £" :, .
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Unfortunately, such solutions do not always
exist. Then we have to find a compromise
between these various, and often contradic-
tory, criteria (between project duration and risk

for example). This is why the concept of domi-
nance in Pareto meaning (Pareto, 1906) is used
to compare two scenarios.

Let u and v be two scenarios; if all the
components of v are strictly lower or equal to
those of u, with at least a strictly lower compo-
nent, then we can say that the vector v corre-
sponds to a better solution than u. In this case,
v dominates u in Pareto meaning. This can be
formally expressed this way: uv

p

p

 (Equation 2:
Pareto optimality).
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where n represents the number of problem’s
objectives.

If a scenario is not dominated by another
one, then it belongs to the set Pop of the Pareto-
optimal scenarios, called Pareto front. This
concept can be illustrated by Figure 8 where we
can find the optimal solutions for a minimization
problem on the borderline of the possible solu-
tions space.

Our objective is then to find, in the set of
valid scenarios, those that offer the most inter-

Figure 8. Graphical representation of the
Pareto front for a two objectives minimization
problem; each solution at the right of the
Pareto front is suboptimal.
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esting compromises: the Pareto-optimal sce-
narios. Among these, the decision maker can
carry out his final choice.

OBTAINING THE PARETO-
OPTIMAL SCENARIOS WITH AN
EVOLUTIONARY ALGORITHM

Having presented the problem of the selection
of project scenarios, this chapter will now focus
on the process to obtain the Pareto-optimal
solutions. Theses solutions thus constitute the
first subset of “good” scenarios to offer to the
decision maker to organize his project. We will
see in the next part how to improve this process
by classifying the scenarios.

We have seen that a way to lead the project
can be represented by a path in a graph. How-
ever, finding an optimal scenario in this type of
graph is a difficult problem to solve. The com-
binatorial aspect generally prevents us from
exploring all the possible solutions on such
large-scale problems. In addition, we have no
mathematic formulation of our problem on which
mathematic tools like derivation, for example,
could be used. That is why we need to use a
non-exact method to solve this problem. We
have chosen to use an heuristic based on evo-
lutionary algorithm because an algorithm work-
ing on a population is more likely to find the
Pareto front solutions than an algorithm work-
ing with a single solution (simulated annealing
or taboo search for example) that needs to be

executed several times. As describes in Coello’s
chapter of this book, a strong development of
the “Evolutionary Multi-Objectives Optimiza-
tion” tends to prove the efficiency of such
method.

Before describing the algorithm used, we
first present how the individuals are coded.

The Chosen Coding of Individuals

To build a scenario, it is necessary to choose
one alternative for each task and the decision
made at each choice of the project—that is, the
path followed after every initial node Nd

i. Two
levels of choices can be identified: the first is to
select a path in the project graph, and the
second is to select one alternative by task.

We chose to code the chromosomes in the
following way: in the first part, the chromo-
somes are coded according to the alternatives
associated to each task; in the second part, they
are coded according to the active path of each
node, indicating the tasks to be achieved (see
Figure 9).

Let TabT be a table of length t =  card  (T)
(number of tasks) and TabN be a table of length
n = card (N) (number of pair of nodes). Each
element i of the TabT represents the number of
the selected alternative for the task Ti, and each
element j of TabN represents the number of the
choices made between an initial node Nd

j and
the corresponding final node Na

j.
A chromosome Ch is the concatenation of

the two tables TabT and TabN.

Figure 9. Chromosome’s code: An integer string with the first genes coding the alternatives
of tasks, and the last genes coding the method of selection in the project graph for each choice
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Roughly speaking, we can consider that the
second part of the chromosome acts as a filter
because it helps to determine what tasks must
be achieved. The choice of an alternative for
the tasks that must not be achieved is thus
indifferent, and two different chromosomes
can represent the same scenario once decoded.
However, in spite of the drawback to have a
space of genotypes larger than the one of
phenotypes, this representation allows having
valid individuals after a crossover or a muta-
tion. We thus avoid an additional verification
step of individuals’ viability and their eventual
reconstruction.

The Evolutionary Procedure

The chosen evolutionary procedure relies on
the classical sequence of an evolutionary algo-
rithm. After an initialization of the population,
we repeat the steps of evaluation, selection,
crossover, and evaluation until obtaining the
stop criterion.

The steps of our algorithm are now detailed.

Initial Population Initialization

Without any a priori information, the initial
population is randomly generated in order to
cover the search space as well as possible.

Selection

We have chosen the “roulette wheel” strategy
where the probability for each individual to be
present in the following generation is directly
proportional with its fitness fi.

Crossover

As said previously, the representation chosen
to code the individuals introduces a predomi-
nance of the genes coding the choices on the

genes coding the task alternatives. It is thus not
advised to use a single point crossover or N-
points with N too weak, for which we risk a
premature convergence. To avoid that, we use
a uniform crossover. Each gene of the child
thus has the same probability of being inherited
from one parent or the other. We thus suppose
that a distributational bias2 is less penalizing
than a positional bias.3 Figure 10 gives an
example of crossover and the impact of this one
on the generated scenarios. We can observe in
this example that the child comprises many
identical elements to each of its parents (task 1
relative to parent 1, and tasks 6, 7, and 8 relative
to parent 2), but also a more complex combina-
tion as task 3, which is to be realized as that of
parent 1 but with the alternative 2, which was
coded from parent 2. Thereafter, we will note
the crossover probability pc.

Mutation

We use a uniform mutation by replacing the
value of a gene by another value belonging to
the field of the possible values for this gene with
the probability pm. Figure 11 gives an example
of mutation on the basis of the Figure 10
project. The second gene mutates from 5 to 2
and thus involves a change of the alternative
selected for the second task. It is not the fifth
any more, but the second alternative that is
selected. In the same way, a gene coding the
choices can change, thus involving a new set of
tasks to realize.

Evaluation

After each generation, we evaluate the indi-
viduals of the new population. Evaluation is
decomposed into three steps:

1. Find the value of the various criteria of the
scenario—that is, decode the chromo-
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some in order to build the reduced project
graph from which a schedule can be car-
ried out which will provide us with these
values (see Figure 7).

2. Form the reduced project graph, and de-
termine the scenario performances and
more precisely the difference between
the scenario performances and the objec-
tives vector.

3. Give a fitness to the individual according
its performance.

Project Graph Reduction

Before each evaluation of a chromosome, it is
necessary to transform the complete project
representation into a simplified representation
in which the choices are eliminated. To carry
out this reduction, we associate to each indi-
vidual a project graph where the selected alter-
natives of each task are given according to the
first part of its chromosome. Then we succes-
sively reduce this graph by carrying out, for
each pair of nodes, the following phases (see
Figure 12): decoding of the chromosome to
determine the selected way, suppressing the
objects (tasks and nodes and “AND”) between
the initial node and the final node not belonging
to the selected path, creating precedence links
between the tasks before final nodes after
initial nodes, and, finally removing the current
pair of nodes.

Figure 10. Crossover example: illustration of a possible child of parents 1 and 2, and its
associated reduced graph

Figure 11. Mutation example
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Performance Evaluation of the Scenario

This reduced project graph corresponds to a
more conventional scheduling problem (no
choices between tasks, no more than one alter-
native to realize a task). Then we can use
traditional scheduling methods to determine the
value of the various scenario criteria. Cur-
rently, to illustrate our approach and to test its
efficiency, we work with two essential criteria:
cost and delay. Other criteria, like quality,
product performance, or risk, can be consid-
ered in the same way since the method allows
evaluating it.

From the values of the various parameters,
we can easily determine the differences be-
tween the desired and reached values for each
individual of the population. Once the perfor-
mances of the whole population are evaluated,
we then allocate to each individual a note that
represents its adaptation to the environment fi.
This will be reused during the selection stage.

Fitness Function Attribution

Evaluation makes it possible to find the sce-
narios whose variations compared to the objec-

tives are minimal (thus in the Pareto front)
while developing the population diversity. For
fitness function calculation, we have chosen to
use a method inspired4 from the strength Pareto
evolutionary algorithm (SPEA) (Zitzler &
Thiele, 1999).

We worked with two sets of individuals: P
being the population and Ifp being the whole set
of individuals in the Pareto front.

If a new individual of the population P
appears to be Pareto-optimal, then a copy of it
is created in Ifp before suppressing, if neces-
sary, the individuals that would not be Pareto-
optimal anymore. The fitness calculation of
individuals is broken up into two steps:

• Step 1: To each individual of Ifp is asso-
ciated si, a value representing its strength,
which is equal to a, the number of solu-
tions that it dominates in P, divided by ¼
the population size plus one Eequation 3:
Strength of Pareto front’s individuals).

• Step 2: Each individual Ip having a fitness
fi is equal to the contrary of the sum of the
strength of the individuals that dominate
them increased by one (Equation 4: Fit-
ness function).

Figure 12. Project graph reduction: the reduction is a succession for each pair of nodes of
the removal of objects not belonging to the path selected, the bypass of the nodes, and their
removal.
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Thus, an individual is less powerful when it
is dominated by Ifp individuals (see Figure 13).

This way favors the individuals in the Pareto
front. That allows supporting convergence to-
wards the good scenarios. The separation of
the individuals belonging to the Pareto front
from the rest of the population allows filtering
of solutions and introduces a memory. Lastly, a
niching is implicitly effectuated during fitness
calculation. The objective space covered by the

Pareto-optimal set can be divided in subspaces
(or niches) according to the individual’s distri-
bution. If a niche contains a high number of
solutions, its contribution to the strength is high.
In return, this high strength implies a weak
fitness for individuals belonging to this niche
(Figure 13, niche 1, and conversely, Figure 13,
niche 2). One thus obtains a subpopulation size
stabilization into niches.

However, in some kind of optimization prob-
lems, the Pareto-optimal set can be extremely
large or even contain an infinite number of
solutions. Even if, in practice, it is limited by the
population size, a restriction of the size of Ifp is
unavoidable (Zitzler & Thiele, 1998). If the
number of individuals in the Pareto front ex-
ceeds a fixed threshold, a method of clustering
is used to reduce it. The average linkage method
(Morse, 1980) is used. In this, a group of close
individuals is replaced by the one that is the
most representative of the group, and as many
times as necessary to obtain the good number
of individuals in Ifp (see Figure 14).

With the generation of the initial population,
each individual of the Pareto front represents a
basic cluster. Then, at each step, two clusters
are selected to be incorporated in a larger one
until the given number of clusters is reached.
Both clusters are selected according to the
nearest-neighbor criterion. When the division
process is finished, Ifp is made up by preserving

Figure 13. Example of fitness allocation

Figure 14. Example of Pareto front reduction using the average linkage method; grouping
close individuals creates clusters, and a single individual is conserved in each cluster.

One memb er of
each clu ster  is
preserved

Clusters
determination
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only one individual by cluster, the individual in
the center of the cluster.

Stop Criterion

Currently, we use a strict limitation of the
number of generations. However, we consider
the use of more sophisticated stop criteria,
taking into account the problem complexity and
the obtained solutions quality.

PARETO-OPTIMAL
SCENARIO CLASSIFICATION

The above process helps the decision maker
build a schedule for his project and aim to
reduce the problem complexity (select a valid
and optimized schedule from a set of tasks) by
selecting a finite set of “good” scenarios. For
selection, we use the Taguchi loss function.
This section first introduces the Taguchi loss
function, presents the use of Taguchi to deter-
mine the cost of the selected scenarios, and
lastly explains how to classify the best sce-
narios.

Tagushi Loss Function

Designing a system consists of obtaining an
exact conformance with the functional require-
ments (execution, quality, reliability, testability)
while respecting technical constraints. How-
ever, the project manager must handle a man-
agement process that must lead to reaching the
target, while respecting the constraints of delays
and means (budget, manpower, machines, sup-
pliers, etc.). In order to measure how precisely
the target is reached and, within the global
objective, to analyze how well the previously
mentioned different constraints used to define it
are respected, we decided to use Taguchi’s
approach, as proposed by Yacoub (2004).

Taguchi methods, developed by Dr. Genichi
Taguchi (Taguchi, 1986), fundamentally refer
to techniques of quality engineering that em-
body new quality-related management tech-
niques. The entire concept can be described in
a basic idea: quality should be measured by the
deviation from a specified target value, rather
than by conformance to predefined tolerance
limits. Traditionally, quality is modeled as a step
function: a product is either good or bad. This
view assumes a product is uniformly good.
Taguchi believes that the customer becomes
increasingly dissatisfied when performance
moves out of the target. He suggests a qua-
dratic curve to represent customer dissatisfac-
tion with a product’s performance. The curve is
centered on the target value, which provides
the best performance according to the cus-
tomer. This is a customer-driven design speci-
fication rather than an engineer-driven design.
As seen in Figure 15, there is some financial
loss incurred at the upper consumer tolerance.
This loss is due to the fact that products of
inferior quality are less well sold, and that the
superior quality products induce additional costs
of design or manufacturing. So, we dispose of
an image of the long-term impact of every
quality criterion on the product by associating to
every criterion i a cost ( )2

iiiii tekoc -+=  (see
Figure 16) with oi being the optimal cost, ti the
target value, and ei the estimated value. K is a
user-defined constant.

Figure 15. Loss function of Taguchi
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Use of Tagushi Loss Function
to Determine the Cost of the
Selected Scenarios

Once sub-optimal individuals are eliminated,
the number of possible solutions considerably
decreases. We then use the Taguchi loss func-
tion to determine the total cost of each selected
scenario. For this, we can aggregate the whole
costs of each parameter. Let C be the scenario
costs vector (Equation 5: Scenario cost vector)
in which O is the optimal cost vector and D the
overcost vector. The total cost of the scenario
is then given by Equation 6: Total cost.
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Classification of Scenarios

Once the cost of the scenarios known, it is easy
to classify the scenarios before presenting them
to the project manager. From a practical point
of view, our goal is to provide him with a sample

of the “best” scenarios (according to the rela-
tive importance given by the project manager to
each parameters) on which he can visualize the
impacts of different design or project manage-
ment alternatives on the set of projects and/or
visualize the effects of a variation on the impor-
tance of one of the parameters (variation of dki
around ki) and thus carry out the obtained
results validation. One then seeks to determine
the scenarios with the minimum cost

å
=

=
n

i
icG

1
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OBTAINED RESULTS
AND PERSPECTIVES

To implement the above method, we have
developed a tool presently used to validate our
approach and to find the optimal evolutionary
parameters.

This section describes two types of experi-
ments we already conducted: some to fix the
algorithm parameters, others to evaluate the
quality of the obtained solutions.

To study the influence of the parameters on
the algorithm, we tried to obtain the Pareto-
optimal scenarios of randomly generated test
problems of high complexity. These were con-
stituted with 100 tasks, each one of 20 alterna-
tives, which represents 20100 = 1.27.10130 pos-
sible scenarios. We generated these problems
to test in a statistical way the performances
obtained on relatively complex problems, which
would have been impossible to define manually.
We considered, to fix the project targets, that
the objectives to reach were defined from one
of the scenarios of the problem arbitrarily cho-
sen. We thus tried, during the search, to find this
last one. To compare the results provided from
two different problems, we introduced an indi-
cator measuring the deviation relative to the

Figure 16. Representation of additional cost
for a given parameter
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objectives (Equation 7: Deviation) that allow us
to compare the results independently of the
values of the optimal parameters of each prob-
lem. As we realized tests on randomly gener-
ated problems with different objective’s values,
the same variation for two different projects
can be more or less significant if objectives
have a high value or not. That is why we prefer
to work on the ratio between the deviation from
the objective and the objective itself. To deter-
mine the influence of the various parameters on
the quality of the solutions found as well as on
the computing time, we have generated a set of
possible regulations for different sizes of popu-
lation (see Figure 17).
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In Figure 17, we can observe that the com-
puting time is a linear function of the size of the
population while the average deviation seems
stable with regard to the population. On the
other hand, the standard deviation, for its part,
decreases when the population increases. From
these observations, we considered that the
acceptable size of the population was situated
around 150 individuals. Further, the gain ob-
tained at the level of the quality of the solutions
found is not important with regard to the neces-
sary computing time. Thus we had to adjust the
values of pc and pm by successive tries. The
parameters that seem to give the best results on
our set of test problems correspond to the
values pm = 17% and pc = 74%.

Let us now consider the quality of the ob-
tained solutions. By using the parameters above,
we obtained during a search the results of

Figure 17. Results obtained according to the size of the population
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Figures 18 and 19. In Figure 18, we can observe
the distribution of the population, as well as the
individuals of the Pareto front according to the
parameter values and the financial loss. In

Figure 19, we can see the evolution of the
performances obtained during a search. We
can notice that, during this search, the achiev-
ing of the desired duration was very fast be-

Figure 18. Performance obtained

Figure 19. Population repartition for generation 200

(a) according to financial losses (b) according to decision criteria
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cause it took place during the very first genera-
tions. It is the progressive increase of the
scenario cost that allowed us to find, after-
wards, a global compromise decreasing the
value of the additional cost.

Finally, Figure 20 reveals the evolution of
the number of individuals in the Pareto front
during the search. This number is included
between 4 and 13 during the search, and the
experiment finally ends with six solutions. The
number of solutions presented to the decision
maker is then completely acceptable. In a
general way, let us note here that the number of
solutions that will be presented to the project
manager evaluation will depend on the problem
and will not result from an a priori choice.

The obtained results are thus encouraging,
notably regarding the quality level of the pro-
posed solutions and the computation time. Even
if “the” optimum solution can scarcely be ob-
tained, the obtained solutions usually are very
close to the fixed targets. To strengthen the
validation of our approach, we envisage two
perspectives at the moment: the first one is to

test our tool on real cases supplied by our
industrial partners, and the second is to con-
tinue to develop this method by studying the
performances of other heuristics, such as ant
colonies for example.

CONCLUSION

This chapter proposed a new methodology to
manage design projects in a more coherent
way. To reach his targets, the project manager
must define a project by organizing the project
tasks and envisaging an initial schedule at the
beginning of the project. Then, during the project,
whenever anything occurs that modifies the
project progress, he must adapt the project
organization. When a rescheduling is needed,
he must select new tasks or new alternatives to
realize some tasks. These alternatives come
from the design; the decision maker must choose
a new scenario from among the valid ones
obtained by the combination of several alterna-
tives to realize the project tasks. Choosing and

Figure 20. Number of individuals in Pareto front during the search
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optimizing a scenario for the project progress in
order to reach the project target as closely as
possible thus results in a combinatorial problem
that only an heuristic method can solve. This
chapter explored the use of evolutionary algo-
rithms to help the decision maker. It first intro-
duced the industrial context of the study, then
expressed the problem as a multi-objective
optimization one, and explained how we pro-
ceed to connect both system design and project
management processes. Finally, it detailed the
evolutionary algorithm and illustrated it through
a selection of the results we obtained. We
began experimenting with this approach with
manufacturers on the basis of a shared data-
base associating functional and non-functional
information; we obtained good results: the se-
lected scenarios, which the tool offers for a
final choice to the decision maker, are of good
quality (they lead to reaching the targets very
closely) and are obtained in a very short time.
We are now considering another interesting
approach, based on a different but very innova-
tive meta-heuristic method—ant colonies—that
seems to be well adapted to the problem of
finding the bests paths in a graph.
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ENDNOTES

1 Production in large-scale projects is in-
deed more and more distributed between
the actors of a project (production sites,
subcontractors) and can cover large geo-
graphic zones.

2 Each parent is highly likely to transmit
50% of its genes.

3 Parents transmit contiguous gene se-
quences.

4 In the algorithm proposed by Zitzler and
Thiele (1999),
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We use a different formula in order to
increase the selection by enlarging dis-
tance between “bad” and “good” indi-
viduals.
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ABSTRACT

An informal analysis is provided for the basic concepts associated with multi-objective
optimization and the notion of Pareto-optimality, particularly in the context of genetic
algorithms. A number of evolutionary algorithms developed for this purpose are also briefly
introduced, and finally, a number of paradigm examples are presented from the materials and
manufacturing sectors, where multi-objective genetic algorithms have been successfully
utilized in the recent past.

INTRODUCTION

Why Pareto-Optimality
and What it is

Making decisions based upon a single criterion
is increasingly becoming a difficult task in the
complex scenario of design and manufacturing,
as we encounter it today. More than one con-
dition routinely affects the complex industrial
processes, both at the design and the manufac-
turing stage. Several criteria that need to be
satisfied simultaneously often become conflict-
ing, rendering the search for an absolute and
unique optimum in many cases as nearly impos-

sible. I will further elaborate this point using the
schematic diagram shown in Figure 1, where a
total of six functions (I to VI) are shown
schematically and vertical lines drawn through
the points A to D would determine some unique
combinations, either in the function pairs I and
II or V and VI. Now suppose that using these
functions we want to accomplish any of the
following sets of tasks:

a. Minimize I and at the same time Maximize II
b. Minimize (or Maximize) III and at the

same time Minimize (or Maximize) IV
c. Minimize V and at the same time Minimize

VI
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The point ‘A’ marked in Figure 1 is perhaps
an appropriate choice for the task ‘a’,1 and the
task ‘b’ cannot be performed meaningfully, as
the functions III and IV exist in the different
regimes of the variable space. A close inspec-
tion of the functions V and VI will however
reveal that an obvious and unique choice is not
possible in case of task ‘c’. The three points in
B, C, and D marked onto functions V and VI
lead to the scenario shown in Table 1.

If we use the information provided in Table
1 for a simple comparison between the points B,
C, and D, we immediately realize the fact that
if any one of them is better than another in
terms of one objective, either V or VI, then it is
invariably worse in terms of the other. Such
solutions therefore represent a compromise

between various objectives and are termed as
non-dominated solutions. The other possibility
would be one solution dominating the other.
For that to happen the dominating solution
should at least be as good as the other in terms
of all the objective functions, and must fare
better in terms of at least one. This we specifi-
cally call a weak dominance, since one can,
and some people do, implement a strong domi-
nance condition which necessitates that the
dominating solutions be better in terms of all
the objective functions.2

To put it simply, Pareto-optimality, the el-
egant concept proposed by Italian mathemati-
cian Vilfredo Pareto (1848-1923), amounts to a
quest for the best possible non-dominated solu-
tions. The Pareto-front3 is a representation of
the Pareto-optimal points in the functional space
and represents the best possible compromises
or trade-offs between the objectives. Beyond
the original concepts of Pareto (1906), an enor-
mous amount of mathematical analyses have
already gone into this subject, of which a com-
prehensive treatise is provided by Miettinen
(1999); readers are referred to it.

In the arena of design and manufacturing,
the introduction of Pareto-optimality represents

Figure 1. Elaborating the concept of Pareto-optimality

Table 1. The non-dominated points

f (x)

I

IIA

V

B

C

D

VI

IVIII

x

How good in terms of V? How good in terms of VI?

B Better than C, Better than D Worse than C, Worse than D

C Worse than B, Better than D Better than B, Worse than D

D Worse than B, Worse than C Better than B, Better than C



  467

How Genetic Algorithms Handle Pareto-Optimality in Design and Manufacturing

a paradigm shift as compared to the single-
objective optimization that is still quite ubiqui-
tous there. Firstly, based upon just one objec-
tive function, not that many reliable decisions
can be taken in toady’s complex engineering
world, and in a real-life design or manufactur-
ing problem, the objectives are very often con-
flicting to each other. What one needs to work
out in a situation like this is the best possible
trade-off between these conflicting objectives;
mathematically it consists of a multi-objective
analysis leading to a Pareto-optimality. One
also needs to realize that optimization of a
weighted sum of several objectives, which can
be performed through a single-objective ap-
proach, is at best a point in the Pareto-front and
never tells the complete story which would be
absolutely essential for an efficient design or a
successful manufacturing.

Secondly, the presence of a Pareto-front
provides the designers and manufacturers an
option to choose from. A decision, based upon
their own preference and requirement, can now
be made from several alternates of equal merit,
where the unique choice provided by a single-
objective optimization offers no such flexibility,
and could be even quite difficult to implement in
a real-life situation.

I will now provide a quick overview of some
of the techniques that enable us to compute
Pareto-optimality in a genetic way. The read-
ers interested in the classical techniques are
once again referred to Miettinen (1999).

THE MULTI-OBJECTIVE
ALGORITHMS

The Choice between the Classical
and Genetic Methods

The word classical is perhaps a cliché that is
commonly attributed to a class of algorithms

capable of carrying out a multi-criteria optimi-
zation task. In general, most of these algorithms
are calculus based, many use the gradient
information, a lot of them try to render the multi-
objective problems into a pseudo-single objec-
tive problem, usually by assigning weights, and
try to capture one point on the Pareto-front at
a time. There are however known exceptions to
most of these features in some algorithms
belonging to this so-called classical category.
Public domain software products belonging to
these methods are not that many. An excellent
service to the scientific community is however
provided by the developers of the highly effi-
cient and user-friendly software NIMBUS
(Miettinen & Mäkelä, 1995), by making it freely
usable through the Web.4 In this chapter I will
focus however on the evolutionary class of
multi-objective algorithms employing the basic
concepts of genetic algorithms of diverse kind.
Such algorithms are necessarily non-calculus
type, they use a population-based approach
instead of a single guess value and its continu-
ous update, and also necessarily, they adopt
some recombination and reproduction pro-
cedures in one form or the other. One point
needs to be emphasized at this stage that the
industrial problems often lack a mathematically
differentiable objective function. The solution
space is almost inevitably non-smooth, not to
mention discontinuous in many cases. Genetic
algorithms are geared to negotiate such rough
terrains in a very efficient way. Their robust-
ness arises out of the fact that they need not use
any gradient information, and their popula-
tion-based computing strategy preempts any
requirements for initializing the computation at
a close proximity of the actual solutions, which
many gradient-based techniques will actually
require, granting the evolutionary techniques a
distinct edge over their many traditional coun-
terparts.
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A Glance at a Few Recent
Evolutionary Multi-Objective
Algorithms

When it comes to the choice of evolutionary multi-
objective algorithms, the users indeed find plenty
(Deb, 2001). To create the necessary ambience
for describing their usage in the area of design and
manufacturing, the pertinent algorithms need to
be properly initiated to the readers at large.
However, considering the fact that two recent
books (Deb, 2001; Coello Coello, Van Veldhuizen,

& Lamont, 2002) are extensively dedicated to
genetic algorithm-based multi-objective algorithms,
and excellent discussions are even available in
some of the recent doctoral dissertations (e.g.,
Okabe, 2004); this discussion at this stage can be
essentially stripped to a bare minimum. There-
fore, the salient features of only the algorithms
that will be mentioned in this chapter from time to
time are provided in Table 2.5 There is no dearth
of alternate algorithms capable of doing very
similar work, and many of them, as indicated
before, are detailed in Deb (2001).

Table 2. Brief introduction to a few multi-objective genetic algorithms

ALGORITHM What IT DOES?
Strength Pareto
Evolutionary Algorithm
(SPEA) developed by Zitzler
and Thiele (1999)

Distance based Pareto
Genetic Algorithm
(DPGA) developed by
Osyczka and Kundu (1995)

Works on an elitist strategy and maintains two populations.  The genetic operations are carried out on the main.
The elite population is controlled within a maximum size by using a tailor-made clustering algorithm, which also

adds to its computing burden. In SPEA if an elite member i  dominates in  individuals in the main population of

size N , then a strength value iG is attributed to it, such that
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SPEA works in a minimization sense, and thus, the individuals with lower strength are considered to be better.

Fitness of an individual in the main population kc  , in turn, depends on the strengths of all the elite members

that dominate it. For a total of I such dominating members, the fitness here is defined as:
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The same individual may be present in both the populations, and will receive strength in one instance and fitness
in the other. The two populations are temporarily mixed and the main population is recreated through repeated
binary tournament selections amongst the combined population members. The new generation of the main
population is now once again ranked and the solutions of rank one are copied onto the elite population. Any
member in the elite that is dominated by a rank one member of the main population now deleted. Also, the
clustering procedure is invoked if necessary.
A newer version of this algorithm, known as SPEA II (Zitzler, Laumanns & Thiele, 2002) has done away with the
clustering concepts.

Works with two populations, an elite population of variable size, and a fixed size main population. In

general, ijd , the normalized Euclidean distance between the ith member of the elite and the j th member of the

main population  is used for fitness scaling and is calculated  as:
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ON MULTI-OBJECTIVE DESIGN

What a Good Design Requires

When an engineer designs something, be it a
simple needle or a space rocket, the first thing
that she/he has in mind is its utility. Whatever
the object is, it should serve the purpose for
which it is being built. Although this may be the
vital criterion, it alone may not be adequate for
a good design. Several other criteria, including
a few abstract ones, aesthetic requirements for
example, may have to be optimized. For ex-
ample, one may not like to live in a house that is

built for comfort, but otherwise looks like a
garbage dump! Even to achieve the prime
objective in this case, comfortable living, a
number of other objectives need to be satisfied.
The planning of the house should include opti-
mal utilization of space; it should have adequate
ventilation, proper heating and cooling systems
as applicable, and so on. In essence, a good
design in this case, like most others, is actually
a multi-objective problem. As expected, the
objective function space here is often non-
differentiable. Since no mathematical function
can be possibly constructed that demarcates a
good-looking house from an ugly looking one,

Table 2. Brief introduction to a few multi-objective genetic algorithms (cont.)

The Non-Dominated Sorting
Genetic Algorithms: NSGA
and NSGA II  (Deb, 2001)

Pareto Converging Genetic
Algorithm (PCGA)
developed by Kumar and
Rockett (2002)

where N is the total number of objective functions.
i
k`  is the k th objective function of the ith member of the

elite, and
j
k´  is the same for the j th member of the main population.  The fitness of the j th member in the

main population is initiated to an arbitrary value of f  and is altered on the basis of
*
jd , the Euclidean distance

between this member and its closest elite neighbor in the functional hyperspace. If this particular member
dominates any of the elite members, or remains non-dominated to all, a copy of it is incorporated in the elite

population after removing all the dominated elites, and its fitness in both the copies is assigned as +f *
jd .

Alternately, a main population member dominated by any member of the elite gets to stay in the main population

with a fitness of -f *
jd . The main population is subjected to genetic reorganization through the usual route of

reproduction, crossover and mutation.

NSGA and NSGA II are actually widely different in terms of their underlying principles. They have been
assigned similar acronyms just because they are developed by the same research groups. (Deb, 2001). Among
them, NSGA II is currently is one of the most widely used algorithms in its category. NSGA sorts the population
based upon dominance, initially assigns a minimum fitness to all the population members and changes them
based upon the Sharing and Niching concepts well documented in earlier review literature (Chakraborti, 2004). In
NSGA II, a new set of solution is however, selected through a crowded tournament selection operator, which
requires calculation of a crowding distance which essentially measures the unoccupied region surrounding a
particular solution in the objective function space. A larger crowding distance is favored as it helps to maintain
the population diversity, and allows calculation of the maximum spread of the Pareto-front. On the basis of their
rank and the crowding distance, the following hierarchy is maintained among the candidate solutions during a
tournament selection:

1.  A solution of better rank wins the tournament.
2.   Between two solutions of same rank, the one with larger crowding distance is favored.

PCGA uses a number of tribes containing small populations tend to evolve in isolation. Immigration is allowed
on a periodic basis. It’s a greedy scheme where after the crossover and mutation, the offspings are pitted against
the original population, and accepted if only they are better. Rank-based pseudo fitness is assigned to the
population members and selection is conducted using a Roulette wheel approach. It has a specific convergence
criterion which is fixed through a Rank Histogram.
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the evolutionary approach often becomes not
just the best, but the only viable alternate.
Multi-objective evolutionary design problems
can be constructed virtually from every disci-
pline. Designing a chocolate bar is actually a
multi-objective problem as much as is designing
a superalloy for the advanced aerospace appli-
cations. The first was elegantly discussed by
Bagchi (2003), and the second recently became
the topic of some very extensive research work
by Egorov-Yegorov and Dulikravich (2005). In
order to provide the readers a glimpse of the
advanced engineering design world where the
multi-objective evolutionary approaches are very
steadily gaining ground, I will now briefly focus
on a few materials design problems. The evo-
lutionary methodology adopted in those studies
is generic enough to be applicable to any disci-
pline, wherever the reader’s interests are.

Designing Advanced Materials:
Few Select Examples

The lifeline for any manufacturing unit would
be a proper design of the material that it uses.
One can optimally design a material based upon
the property requirements. It is possible to take
up such a job experimentally. However, quite
often the job becomes very cumbersome and
tends to get out of hand. Take for example the
case of the so-called superalloy design. Such
materials contain several elemental compo-
nents; only for some specific compositions they
exhibit their required physical and mechanical
properties. In a recent study dealing with super-
alloys meant for the hot sections of a jet engine
(Egorov-Yegorov & Dulikravich, 2005), it has
been correctly pointed out that coming up with
the alloy composition experimentally for this
system would require costly experimentation
for about 10 years, whereas the aircraft manu-
facturers are coming up with a new aircraft
every four to five years! The way a multi-
objective evolutionary approach can sort out

this problem in a much shorter period of time is
elaborated as follows.

Designing a Superalloy

The composition of a total of 17 elements—C,
S, P, Cr, Ni, Mn, Si, Cu, Mo, Pb, Co, Cb, W, Sn,
Al, Zn, and Ti—need to be adjusted in the
superalloy that Egorov-Yegorov and Dulikravich
(2005) studied. Based upon the property re-
quirements, they decided to use the following as
the objective functions:

1. maximize the stress that it can sustain,
2. maximize the temperature up to which it

can be used, and
3. maximize the time that it takes before

actually rupturing.

A number of constraints were used along
with these objective functions. The evolution-
ary method that these researchers have used is
novel and quite complicated. They call it indi-
rect optimization based upon the self-orga-
nization (IOSO) algorithm. Along with some
basic evolutionary concepts, it makes use of
Artificial Neural Nets and Sobol’s Algorithm
(Sobol, 1976), and it is robust enough to be used
for multi-objective problems of diverse kind. A
typical 2-D section of the Pareto-frontier com-
puted by these authors is presented in Figure 2.

It is worth mentioning at this stage that a
similar alloy design problem for the alloy steels
was recently solved by another research group
(Mahfouf, Jamei, & Linkens, 2005), which used
both single and multi-objective formulations,
and found excellent results using SPEA II for
the multi-objective problem.

Designing a
Magneto-Rheological Fluid

This is an interesting material design problem
where both distance-based Pareto genetic al-



  471

How Genetic Algorithms Handle Pareto-Optimality in Design and Manufacturing

gorithm (DPGA) and strenth Pareto evolution-
ary algorithm (SPEA) were successfully used
(Chakraborti, Mishra, Banerjee, & Dewri, 2003).
The basic concept behind magneto-rheologi-
cal fluids is to impregnate a fluid of known
viscosity with small particles of magnetic mate-
rials. When a magnetic field is applied to such
fluids, the magnetic particles align themselves
as shown in Figure 3, and the system instanta-
neously demonstrates a solid-like behavior with
measurable values of yield stress and other
properties, which again can be varied signifi-
cantly by adjusting the intensity of the magnetic
field and the other parameters, and also can be

effectively reversed by turning off the mag-
netic field. Thus, using these fluids, one can, in
principle, instantly create a material of required
strength as and when needed. A widespread
engineering application of these fluids is cur-
rently on the anvil, covering a wide range of
devices, be it an aircraft that requires an effi-
cient breaking system or a modern cable bridge
that would need protection against high winds
and storms.

Two objective functions were used to de-
sign this fluid. Among them, the objective func-
tion f1 represented the yield stress of the fluid,
and the second objective function f2 repre-
sented the force needed to separate two adja-
cent magnetic particles inside it. Four possible
design scenarios were next examined through
the multi-objective formulations:

• Maximize both f1 and f2: Stable fluid
with high yield stress

• Maximize f1 and Minimize f2: Un-
stable fluid of high yield stress

• Minimize f1 and Maximize f2: Stable
fluid of low yield stress

• Minimize both f1 and f2: Unstable fluid
of low yield stress

The Pareto-front corresponding to each of
these possibilities can provide useful guidelines
when it comes to a real-life application. A user
or a producer of such fluids may try to operate
in the first regime, while trying to avoid the last
by all means. For some other applications, one

Figure 2. Isothermal Pareto sections between
hours to rupture and stress (Egorov-Yegorov
& Dulikravich, 2005; reproduced by
permission of Taylor & Francis, Inc., http:/
/www.taylorandfrancis.com)

Figure 3. Magneto-rheological fluid (a) without magnetic field and (b) magnetic field applied
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of the two remaining alternates may very well
suffice. Even in a particular regime, the corre-
sponding Pareto-front may provide the user
with a number of options, which could be very
useful in a practical scenario. The computed
Pareto-fronts are shown in Figure 4. The re-
sults show an interesting trend. In the last two
cases the Pareto-fronts have virtually collapsed
to a point with little or no spread at all. So the
low-yield stress fluid, or in other words the one
with low strength, would form only under a very
specific condition. The designer is really not left
with many options in such a situation, if the
target remains designing one such material.

We will now concentrate on some manufac-
turing applications.

GENETIC PARETO-OPTIMALITY
APPLIED TO MANUFACTURING
PROCESSES

Regarding the State of the Art

As evident from some recent review articles
(Chakraborti, 2002, 2004; Oduguwa, Tiwari, &
Roy, 2004), genetic algorithms are now firmly
placed in analyzing the manufacturing pro-
cesses of diverse kinds, pertinent to various
industries. A substantial amount of such studies
are multi-objective in nature. The scope of this
chapter is not to present an extensive survey of
what has been done in this area. I would rather
demonstrate some paradigm applications to
industries of different type. In this connection I

Figure 4. The Pareto fronts for Magneto-rheological fluid (Chakraborti et al., 2003)

(a) max f1 and max f2 (2) max f1 and min f2

(c) min f1 and max f2 (d) min f1 and min f2
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will pick up one study of a chemical plant, two
from the metal industry, and a fourth one ap-
plied to a paper mill. We begin with the chemi-
cal plant problem.

Multi-Objective Analysis
of a Chemical Plant

The William and Otto Chemical Plant shown
schematically in Figure 5 is a typical test prob-
lem in the literature as it bears a striking resem-
blance to real-life chemical processing plants,
offering enough complexities to act as a test
bed for various non-linear programming (NLP)
algorithms and their relative performance.

Here the chemical reaction is carried out in
a continuous stirred tank reactor (CSTR). The
product stream releases heat through a heat
exchanger, and the by-product G is separated in
a decanter that follows it. This by-product is
subjected to a waste treatment process, adding
to the operational cost. The overflow is treated
in a distillation column, where the product P is
produced. A part of the distillation column
underflow is recycled into the CSTR unit, and
the rest is used as a plant fuel.

Very recently the William and Otto Chemi-
cal Plant was subjected to a multi-objective
analysis using PCGA (Chakraborti, Mishra,
Aggarwal, Banerjee, & Mukherjee, 2005). The
objective of this study was to maximize the
annual return on the fixed investment of the
plant, and to simultaneously minimize a large
number of system constraints required for the
plant’s proper functioning. The annual return of
this plant depends on a number of factors.
Those include (1) sales volume, (2) raw mate-
rial cost, (3) waste treatment cost, (4) utilities
cost, (5) sales, administration, and research
expenses, (6) plant fixed charge, and (7) plant
investment. The objective functions treated all
of these as variables. The computed Pareto-
front is shown in Figure 6.

In earlier studies (Ray & Szekely, 1973) this
problem was tackled as a constrained single-
objective problem, and some gradient-based
techniques were used to obtain the solution.
This often worked unsatisfactorily for an NLP
system of such complexity, and the extent of
constraint violation was often unacceptable.
The evolutionary multi-objective analysis pro-
vided a much more amicable solution, elaborat-

Figure 5. A schematic representation of the Williams and Otto Chemical Plant

FP (Product)

FR

Recycle

FD

Heat
Exchanger

CSTR
Reactor
 T,V

Decanter

Distillation
Column

Cooling
Water

Cooling
Water

FG(Waste)

FB

FA FR

FRA
FRB
FRC
FRE
FRP
FG



474

How Genetic Algorithms Handle Pareto-Optimality in Design and Manufacturing

ing the precise nature of the trade-off between
the percentage return and the corresponding
violation of constraints.

An Example from the Steel Industry

Thick slabs are rolled into sheets of small
thickness in most integrated steel plants and the
present example pertains to it. A roughing mill
does the initial reduction in thickness and the
final dimensions are achieved in a finishing mill,
shown schematically in Figure 7.

The strips that come out of the rolling mill
are not exactly flat. The difference between
the thicknesses at the center and the edge leads
to the so-called crown in the rolled sheets as
elaborated in Figure 8.
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The crown in the rolled sheets is imparted
from various sources. The rolls themselves
have some curvature, which changes further
during the rolling operation because of thermal
expansion and the wear of the rolls. The se-
quence in which the slabs of different thickness
and other properties are fed to the rolls also
plays a very important role in controlling the
crown, as it affects the roll wear. In order to
save the rolled sheet from rejection, its crown
needs to be controlled within an acceptable
limit. In a recent study done in collaboration
with a reputed steel company (Nandan et al.,

Figure 6. The Pareto-front for Williams and Otto Chemical Plant (Chakraborti et al., 2005)

Figure 7. The finishing mill in a hot rolling facility
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2005), this problem was handled in a multi-
objective fashion using both DPGA and SPGA.
There attempts were made to minimize the
crown from all sources, simultaneously adjust-
ing the sequence of rolling in such a fashion that
the wear and the related damages in the rolls
are also kept to a minimum. A typical Pareto-
front is shown in Figure 9. In general, for this
problem DPGA converged faster than SPEA
and both gave acceptable results. However,
SPEA is able to demonstrate a better spread in
the Pareto-front (e.g., the point C in Figure 9)
and also some better non-dominated points
(e.g., the points A and B marked in the same
figure).

On Three-Dimensional
Guillotine Cutting

Guillotine cutting involves cutting a piece of
metal from edge to edge and is a technique of
immense practical importance in many manu-
facturing processes. A three-dimensional ex-
tension of the guillotine cutting would deal with
the optimal arrangement of cuboidal orders on
a master cuboid shown in Figure 10; an optimal
cutting procedure is demonstrated in Figure 11.

Owing to considerable computing complexi-
ties, a multi-objective treatment of such prob-
lems, until recently, has remained virtually in-
tractable. Only now this problem could be
meaningfully addressed to using both DPGA
and SPEA (Vidyakiran, Chakraborti, &
Mahanty, 2005). What was introduced in this

study is a method of evolving the optimal layout
for any particular order consisting of the task
of producing a number of cuboids of various
size and shape from a master cuboid. Two
objective functions were introduced. The idea
was to seek a configuration that would produce
a minimum amount of scrap for a minimum
number of turns, defined as the number of
times the master block needs to be reoriented,
in order to cut it from edge to edge. The first
criterion ensured good economics, and the sec-

Figure 8. Crown ( )Ì  and its measurement

X1 Y X2

Figure 9. Pareto-fronts computed for the
rolling problem using SPEA and DPGA for
500 generations. The objective functions f1
results in minimizing roll damage while f2
tends to minimize crown (Nandan et al.,
2005).

Figure 10. An optimal master cuboid with
five orders (Vidyakiran et al., 2005)
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ond one was essential to speed up production.
These two objectives are, however, conflicting
in nature. The task of producing the minimum
amount of scrap may not be possible with very
few turns of the master block and vice versa.

In this study SPEA performed better than
DPGA. Some typical Pareto-fronts are shown
in Figure 12.

An Example from the Paper Industry

In a recent work (Toivanen, Hämäläinen,
Miettinen, & Tarvainen, 2003) NSGA has been
applied for a multi-objective designing the
headbox of a paper making machine. The
headbox, as shown in Figure 13, is located in a
strategic position in the paper mill. It receives
the pulp slurry from the storage tank and feeds
an endless wire screen through some controlled
openings. The slurry gets drained in the wire
screen forming the fiber mat, and most of the
remaining water gets removed while it subse-
quently passes through the rubber roll press.

The paper ultimately gets dried and assumes its
final form while it is fed to the so-called yankee,
which is essentially a very large heated cylinder
with a highly polished surface. After this stage
the paper is wound into a large parent roll
feeding the rewinders where it is cut and
rewound into smaller rolls.

Figure 11. An optimal cutting procedure (Vidyakiran et al., 2005)
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In this entire process a crucial role is played
by the headbox. It controls the mass distribution
of the fibers and also their orientation. This in
turn affects the quality of the finished product
in a very significant way. The multi-objective
study of the paper mill headbox (Toivanen et al.,
2003) has essentially focused on two important
properties of the paper, namely the orientation
and weight profile. Both of these parameters
depend on the nature of the fluid flow in the
head box. A solution of Navier-Stokes equation
was therefore coupled with an NSGA-based
bi-criteria optimization. Not too many design
changes are possible in the headbox. However,
the geometry of the slice box, the end portion of
the headbox through which the slurry exits,
could be varied while computing the flow.
Some target values were assigned to both the
orientation of the fibers and also to the wet-
based weight profile. The deviations from both
of them were minimized. The first objective
function ensured that the basis weight of the
paper produced should be even, and the second
one ensured that the wood fibers in the paper

should be properly oriented; these two objec-
tives are conflicting. A clear-cut Pareto-front
resulted in this analysis, as shown in Figure 14,
providing an ample choice to work out an
acceptable trade-off between the two objec-
tives.

How Genetic Algorithms
Handle These Problems

No universal methodology exists in this case.
All the practical examples cited in this chapter
are problems of significant complexity, and in
most cases evaluation of the objective func-
tions remains to be a formidable task and, to
accommodate that, the evolutionary algorithms
often required some significant adaptations.
The strategy that worked in one problem often
was not good for another: the nature of encod-
ing the population thus varied from the problem
to problem and so did the nature of crossover
and mutation.6 A binary encoding worked well
for a number of studies, for example the chemi-
cal plant problem as well as for designing the
magneto-rheological fluid. In some other work—

Figure 13. Location of the headbox in the
paper mill

Figure 14. Pareto-front in the paper machine
headbox study (Toivanen et al., 2003;
reproduced by permission of Taylor & Francis,
Inc., http://www.taylorandfrancis.com
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the paper mill problem, for example—the in-
vestigators preferred a floating point encoding.
Both the traditional binary and real encoding
however were deemed inappropriate for the
metal cutting problem described earlier, and
this requires further elaboration. There a typi-
cal chromosome took the form:

6 10 8 4 2 Y(1) X(-4) 5 Y(3) 9 Z(4) 3 7 X(1)1
Y(1) X(1) X(-6) X(-6)

This example denotes a random chromo-
some representation of 10 cuboids or orders.
To decode this, one needs to realize that the
number in the parentheses after each axis
operator is the orientation number and the
remaining numbers represent the cuboids.7 Such
a chromosome can be better understood in the
form of a tree. The operators take the nodal
positions, and the cuboid numbers are the leaves
of the tree. The orientation numbers are speci-
fied at each operator.

Thus, for a typical chromosome 1 3 2 Y(3)
4 Y(6) Z(4) 5 X(1), the corresponding tree can
be constructed as shown in Figure 15. The

readers are referred to the original references
for further information.

CONCLUSION

Besides providing an informal but effective
treatment of the concept of Pareto-optimality,
the idea behind this chapter has been to present,
through some select examples, the importance
of multi-objective evolutionary treatments for
the problems in the domain of design and manu-
facturing. The examples selected in this chap-
ter from the industries of diverse nature simply
demonstrate that the multi-objective problems
actually are ubiquitous in the domain of design
and manufacturing, and the advantage that an
evolutionary approach would offer in solving
them is very significant. As for the case studies
discussed in this chapter, the problems like
metal cutting or the paper machine headbox
design would be very cumbersome to address
using any gradient-based method. For the Wil-
liams and Otto Chemical Plant problem, the
genetic algorithms have provided a far better

Figure 15. A typical chromosome and the corresponding tree (Vidyakiran et al., 2005)
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insight than what the other techniques could.
Similar advantages could be highlighted for
most of the examples that I have included here.

It is also reassuring that now one can choose
from an ample number of available evolution-
ary algorithms. A Pareto-front developed
through the judicious use of a decision maker is
perhaps one of the best things that a manufac-
turing industry can aspire for, and as we find in
the examples cited here, there, in terms of its
relevance and efficacy, an evolutionary ap-
proach can indeed make a very significant
difference.
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KEY TERMS

Classical Techniques: Multi-objective
optimization routines that are not evolutionary
in nature. Most are based upon rigid math-
ematical principles and are commonly gradient
based.

Continuous Stirred Tank Reactor
(CSTR): A specially designed agitated vessel
used for carrying out chemical reactions.

Crown: A quantifier for the surface flat-
ness of the rolled metal sheets.

Guillotine Cutting: Edge-to-edge cutting
of materials, most commonly metals.

Magneto-Rheological Fluid: A smart
material for engineering applications. Its physi-
cal and mechanical properties can be tailor-
made by adjusting a magnetic field.

Non-Calculus-Type Algorithms: The
optimization algorithms that do not require any
derivatives or gradient information. Commonly
used to describe genetic and evolutionary algo-
rithms.

Pareto-Optimality: The concept of the
family of optimized solutions for a multi-objec-
tive problem proposed by Vilfredo Pareto (1848-
1923).

Superalloy: A specially designed category
of multi-component alloys used in advanced
engineering applications.

William and Otto Chemical Plant: A
hypothetical chemical plant used as a common
test problem in chemical engineering literature.

Yankee: A device used in the paper mills
which essentially is a very large heated cylinder
with a highly polished surface.
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ENDNOTES

1 A good example can be created from
thermodynamics: this optimum could rep-
resent a composition where the entropy
gets maximized for a minimum of free
energy.

2 My intention here is to demonstrate how
the fundamental concepts associated with
Pareto-optimality can be conceptualized
and demonstrated in an informal fashion.
However, formal and mathematically rig-
orous definitions of all the concepts pre-
sented here can be readily provided. For
example, we can proceed to define weak
dominance as follows:

• Consider Minimizing Objective Func-
tions: fi(X) i = 1, 2,….., I

• Subject to Constraints: gj(X) j= 1, 2,
……., J

• where X = (xk : k = 1,2,…..,K) is a K-
tuple vector of variables,

• defining an I-tuple vector of objec-
tives: Wi= (fi: i= 1,2,….,I)

• the condition for weak dominance
between any two objective vectors is
taken as:(Wl p Wm) Û (" i)(fi l £ fim) Ù
($i)(fi l <  fim)

Further details are available in Chapter VI
of this book.

3 Some people prefer to call it a Pareto-
frontier, particularly in a situation of more
than two objectives, as the best non-domi-
nating front is essentially a boundary be-
tween some portions of the feasible and
the infeasible regions.

4 It is available at: http://nimbus.mit.jyu.fi/
5 This list by no means is all inclusive and

does not constitute an endorsement for
these algorithms from the author’s side. In
fact, these algorithms are selected just
becomes of their usage in the applications
cited in this chapter.

6 For example, the usual single- and two-
point crossovers sufficed in the case of the
chemical plant problem, a position-based
crossover generated the sequence of slabs
in the metal rolling problem, while the au-
thors of the paper mill problem preferred a
heuristic crossover. Similarly, the nature of
mutation also varied widely from one prob-
lem to the other.

7 Here the cuboid or order numbers are
represented as integers. The axis operator
provides information about the Cartesian
axes along which two cuboids align them-
selves, and the orientation number provides
information about the nature of orientation
between the two cuboids. Six different
orientations were defined for any given
axis, as detailed in Vidyakiran et al. (2005).
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ABSTRACT

This chapter provides a short guide on the use of evolutionary computation methods in the field
of production research. The application of evolutionary computation methods is explained
using a number of typical examples taken from the areas of production scheduling, assembly
lines, and cellular manufacturing. A detailed case study on the solution of the cell-formation
problem illustrates the benefits of the proposed approach. The chapter also provides a critical
review on the up-to-date use of evolutionary computation methods in the field of production
research and indicates potential enhancements as well as promising application areas. The
aim of the chapter is to present researchers, practitioners, and managers with a basic
understanding of the current use of evolutionary computation techniques and allow them to
either initiate further research or employ the existing algorithms in order to optimize their
production lines.

INTRODUCTION

Modern manufacturing companies strive to stay
competitive by producing high-quality custom-
ized items at the lowest possible cost. In addi-
tion, modern companies need to react quickly
(be ‘agile’) to sudden changes in the economic
environment. These characteristics can only be

achieved through the continuous optimization
of all stages of the production process.

The use of exact optimization methodolo-
gies in production research is significantly con-
strained by the computational complexity of a
considerable number of problems in this area
(Garey & Johnson, 1979). For this reason, the
solution of many optimization problems is handled
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through the use of non-analytical techniques
(heuristics) that are able to find at least sub-
optimal solutions in acceptable computational
times. An obvious drawback of these method-
ologies is their inability to escape local optima
that are frequently encountered in multimodal
solutions’ spaces. Meta-heuristic techniques
provide mechanisms that enable an algorithm to
escape local optima under certain conditions.
Simulated annealing (Kirkpatrick, Gelatt, &
Vecchi, 1985) and tabu search (Glover, 1985)
are some notable meta-heuristic techniques
that have been used widely in the past; how-
ever, the most renowned technique is evolu-
tionary algorithms (EAs) (Eiben & Smith,
2004).

The aim of this chapter is to provide an
introduction on the use of evolutionary compu-
tation methods in the area of production re-
search. Initially, a number of EA-based solu-
tions that can be utilized in a number of critical
manufacturing optimization areas are presented.
A case study application of an evolutionary
algorithm for the solution of the well-known
cell-formation problem is described in the fol-
lowing section. The chapter continues with a
review of the potential benefits, the practical
considerations, and the potential hazards of
using evolutionary algorithms for the solution of
production research problems. The final sec-
tion of the chapter summarizes the conclusions
and highlights areas of future research.

APPLYING EVOLUTIONARY
ALGORITHMS IN THE AREA OF
PRODUCTION RESEARCH

The scientific field of production research is
concerned with the solution of problems en-
countered in a manufacturing environment. In
practice, many of these problems are handled
sub-optimally through purpose-based heuris-

tics or rules-of-thumb (e.g., dispatching rules
for scheduling problems). Initial applications of
evolutionary computation in the area of produc-
tion research appeared in the beginning of the
1990s. The motivation behind their use was
their ease to express a solution in the form of a
permutation or a string of parameter values.
This is especially useful for the solution of
problems in certain optimization areas such as
scheduling and design. From that point on-
wards, the number of EA applications has been
rising constantly. More importantly, these ap-
plications expanded in all areas of production
research and provided the framework for the
development of efficient hybrid optimization
techniques, as well as multi-objective optimiza-
tion techniques.

The following paragraphs provide simple
examples on how EA-based solutions can be
constructed in some critical areas of production
research, based on typical applications that
have been published in the literature. The list of
solution encodings presented in this chapter is
used for illustrative purposes only and is by no
means exhaustive. In addition, there is no sug-
gestion that these solution encodings perform
better than alternative ones that have been
proposed in the literature. A discussion on the
relative competence of EAs in this area of
research is provided in a following section of
this chapter. The interested reader can find
comprehensive reviews of evolutionary com-
putation applications in the area of production
research in the works of Dimopoulos and Zalzala
(2000) and Aytug, Khouja, and Vergara (2003).

Production Scheduling

Description

Scheduling is an optimization area with applica-
tions in various scientific fields. In the context
of production research, scheduling is the part of
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the production planning stage concerned with
the assignment of job operations on worksta-
tions and the allocation of time slots over a
specified planning period. The various permu-
tations of parameters such as job types and
constraints, number of machines, and optimiza-
tion objectives give rise to specific instances of
scheduling problems. Most scheduling prob-
lems are notoriously difficult to solve analyti-
cally for non-trivial problem instances due to
their computational intractability (Garey,
Johnson, & Sethi, 1976).

Designing Evolutionary Algorithms
for Scheduling Problems

Scheduling was perhaps the first production
research area that attracted the attention of
evolutionary computation researchers. The
majority of reported applications concern the
solution of static job-shop and flowshop sched-
uling problems, although many other important
areas such as dynamic scheduling have been
considered.

In a flowshop (sequencing) scheduling prob-
lem, all jobs are to be processed by a single
machine or through a production line of ma-
chines with each job having the same sequence
of operations on each machine. It is relatively
easy to design an EA for the solution of this type
of problem, since a schedule can be encoded as
an integer permutation of all jobs to be pro-
cessed (Murata, Ishibuchi, & Tanaka, 1996):

{2, 3, 6, 5, 1, 4,…}

This EA-encoded candidate solution indi-
cates that job 2 will be processed first, followed
by job 3, job 6, and so forth. The typical one-
point crossover operator cannot be applied to
this encoding scheme since its application might
produce infeasible solutions. Fortunately, due
to the similarity of this problem to the well-

known traveling salesman problem, a signifi-
cant number of EA recombination operators
that have originally been designed for this prob-
lem exist. These operators guarantee the effi-
cient searching of the solutions’ space as well
as the feasibility of resulting offspring.

Designing an EA-candidate solution for job-
shop scheduling problems is a more awkward
task, since several jobs with precedence con-
straints on their operations have to be pro-
cessed on a number of machines. A scheduling
solution should provide both the order of the
jobs to be processed on individual machines and
the time slice allocated to these jobs. Initial EA
applications (Burns, 1993) proposed solution
encodings in the form of complete schedules.
While this approach required no further pro-
cessing of the solution for the evaluation of its
performance, it required special-built operators
to ensure the feasibility of offspring solutions.
For this reason the majority of reported EA
applications employ some form of an indirect
solution representation where only the process-
ing sequence of job operations is defined and a
schedule builder is responsible for the transfor-
mation of the encoded solution into a valid
schedule. A typical example of this approach is
an indirect mapping of job operations on a string
of integer numbers, as suggested by Bierwirth,
Mattfeld, and Kopfer (1996):

{J3, J2, J2, J3, J1, J1,…}

This encoding constitutes an indirect repre-
sentation of a schedule, indicating that the first
operation of the third job should be scheduled
first, followed by the first operation of the
second job, the second operation of the second
job, and so forth. As stated earlier, this repre-
sentation does not automatically create a job
schedule since there is no encoding information
about the time slice allocated to job operations.
The schedule builder is responsible for the
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transformation of the encoded solution into a
valid schedule based on the number, type, and
capacity of available machines and the pro-
cessing requirements of job operations. While
specific recombination operators should be used
with this type of solution representation as well,
these operators are usually variants of the
operators that are used by EAs for the solution
of flowshop scheduling problems. An alterna-
tive form of indirect solution representation that
has been used in the past eliminates the problem
of feasibility considerations by employing the
concept of dispatching rules, which are widely
used in manufacturing practice. The following
solution encoding has been proposed by
Herrmann, Lee, and Hinchman (1995):

{EDD, FIFO, SPT, …}

where:

EDD: Earliest Due Date dispatching rule
FIFO: First In First Out dispatching rule
SPT: Shortest Processing Time dispatching

rule

In this type of representation, each position
in the string represents an available machine
for the problem considered, and the corre-
sponding value indicates the dispatching rule
that should be used for the scheduling of this
machine. The previous solution states that ma-
chine 1 should be scheduled using the EDD
rule, machine 2 should be scheduled using the
FIFO rule, and so forth. A schedule builder is
again necessary for the construction of a valid
schedule.

While academic research in scheduling has
focused mainly on the solution of static sched-
uling problems, practical manufacturing con-
siderations are oriented towards the solution of
dynamic scheduling problems. The use of EAs
for the solution of dynamic scheduling problems

can be facilitated by decomposing the planning
period into a number of job windows, each one
containing a predefined number of jobs (Fang
& Xi, 1997; Bierwirth, Kopfer, Mattfeld, &
Rixen, 1995). Scheduling can be performed at
the end of a ‘job window’, or after the occur-
rence of an unexpected event (machine break-
down, change in due dates, etc.) using a typical
EA algorithm similar to the ones described in
the previous paragraphs.

The bibliography of EA applications in the field
of scheduling is enormous. The review of Cheng,
Gen, and Tsujimura (1996) provides a compre-
hensive survey on the encoding schemes, sched-
ule builders, and operators available for the design
of an evolutionary scheduling algorithm.

Using Evolutionary Algorithms in
Assembly Line Optimization

Description

Once an assembly sequence of a product has
been selected, the production planner must
decide on the allocation of assembly operations
at individual workstations. This famous prob-
lem, widely known as the assembly line balanc-
ing problem, is modeled in two main forms,
based on the optimization objectives: Type-I
problems aim to minimize the assembly cycle
time given a fixed number of assembly work-
stations, while Type-II problems aim to mini-
mize the total number of assembly workstations
given a fixed cycle time. Assembly line balanc-
ing problems are usually illustrated with the
help of precedence graphs. These graphs illus-
trate the assembly tasks that need to be per-
formed, as well as the precedence constraints
between these tasks. Due to the computational
intractability of the problem, numerous exact
and heuristic algorithms have been proposed
for its solution over the last decade (Scholl &
Becker, 2003).



  487

Evolutionary Optimization in Production Research

Designing Evolutionary Algorithms
for Assembly Line Optimization

A considerable number of EA methodologies
have been proposed for the solution of the
assembly line balancing problem. A standard
EA solution representation does not exist since
all the encodings that have been proposed in the
literature require special repair mechanisms or
operators in order to provide valid solutions
after the application of recombination opera-
tors.

A typical example is the solution represen-
tation proposed by Kim, Kim and Kim (2000).
In this representation an EA-candidate solution
consists of a string of integers with length equal
to the total number of tasks in the problem
considered:

{1, 2, 1, 2, 3, 3, 4, ….}

The value of each integer indicates the
workstation allocation of the task identified by
the integer’s index position in the string. The
previous candidate solution indicates that as-
sembly task 1 is assigned to workstation 1,
assembly task 2 is assigned to workstation 2,
assembly task 3 to workstation 1, and so forth.
The existence of assembly sequence constraints
means that this encoding will result in infeasible
task assignments when used with typical re-
combination operators such as one-point cross-
over. Penalty functions, especially constructed
heuristics and decoding procedures, can be
used to alleviate this problem.

Another solution representation that can be
employed is as an integer permutation of all
assembly tasks to be performed (Leu, Matheson,
& Rees, 1994):

{2, 1, 3, 4, 5, 7, 6}

The previous string indicates a feasible as-
sembly sequence of seven parts for an assem-
bly line balancing problem. The sequence itself
does not contain any information about the
assignment of tasks to individual workstations.
However, construction schemes that have origi-
nally been designed for exact solution method-
ologies (dynamic programming, branch, and
bound) can be employed for this purpose. These
schemes progressively assign a given sequence
of tasks to workstations on either a task-by-
task or a station-by-station basis (task-oriented
or station-oriented construction schemes re-
spectively). The application of typical recombi-
nation operators does not guarantee the feasi-
bility of offspring solutions when the above
encoding scheme is used. Leu et al. (1994)
overcome this problem using a modified version
of the two-point crossover operator that explic-
itly considers the precedence feasibility of ex-
changed tasks between the strings.

Several alternative encoding schemes for
the solution of the assembly line balancing
problem have been suggested in the literature.
Scholl and Becker (2003) provide a review of
all assembly line balancing solution methodolo-
gies, including a detailed description of all meth-
odologies that are based on the principles of
evolutionary computation.

Cellular Manufacturing Systems

Description

Cellular manufacturing is the application of the
group technology concept in the area of pro-
duction research and more specifically in the
area of job shop production (Burbidge, 1971).
The manufacturing plant is organized into groups
of machines (machine cells) that process asso-
ciated groups of parts (part families). The
intuition behind this design is that parts within
cells are processed in a single line, realizing in
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that way the benefits of mass production within
a job-shop environment. The central problem
during the design of a cellular manufacturing
system is the grouping of machines into cells
and parts into associated families, widely known
as the cell-formation problem.

Designing Evolutionary Algorithms
for Cellular Manufacturing Problems

The cell-formation problem has been a subject
of EA studies from the early days of the field.
Since the cell-formation problem is essentially
a grouping problem and not a sequencing prob-
lem, the representations that were discussed in
the previous sections are not applicable in this
case. The traditional EA solution representa-
tion was originally introduced by Venugopal
and Narendran (1992). A solution is depicted as
a string of integers with length equal to the total
number of machines in the plant:

{1, 3, 2, 2, 2, 3,….)

Each string value indicates the cell in which
the corresponding machine defined by the
integer’s index position is currently grouped. A
decoding of the previous example will result in
machine 1 grouped in cell 1, machine 2 grouped
in cell 3, machine 3 grouped in cell 2, and so
forth. The application of standardized recombi-
nation operators such as one- and two-point
crossover could yield solutions containing empty
cells. This problem can be overcome with the
use of repair mutation operators (Gupta, Gupta,
Kumar, & Sundaram, 1996), which progres-
sively scan the solution string and reassign
machines to cells until all cells are assigned with
at least one machine. The main drawback of
the above encoding scheme is that it requires
the pre-specification of the total number of
cells in the plant as a parameter of the optimi-
zation run, a feature that as indicated in the

cellular manufacturing literature can hide natu-
ral machine groupings. Despite this drawback,
the representation has been used in the majority
of published EA applications.

Although the previous encoding provides an
efficient way for the representation of solutions
in simple versions of the cell-formation prob-
lem, it is unable to provide solutions for ad-
vanced versions of the cell-formation problem
that explicitly consider the existence of alterna-
tive process plans for each part in the plant.
Gravel, Nsakanda, and Price (1998) have sug-
gested an enhanced version of this encoding
scheme in which the main solution string is
supported by a second solution string that de-
fines the allocation of specific process plans to
individual parts:

{2, 3, 1, 3, 2,......}

Each part has a predefined number of pro-
cess plans. The length of the supporting string
is equal to the total number of parts for the
problem considered. The above string, under a
given machine-cell configuration provided by
the main solution string, denotes that process
plan 2 will be used for the production of part 1,
process plan 3 will be used for the production of
part 2, and so forth. The application of recom-
bination operators is performed separately on
each of the solution strings.

Very few EA solution encodings for the
cell-formation problem differentiate from the
basic scheme described in the previous para-
graphs. A significantly different genetic pro-
gramming-based encoding scheme has been
proposed by Dimopoulos and Mort (2001) for
the solution of simple and advanced formula-
tions of the cell-formation problem. A detailed
description of this application is presented as a
case study in the following section.
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CASE STUDY: A GENETIC
PROGRAMMING METHODOLOGY
FOR THE SOLUTION OF THE
CELL-FORMATION PROBLEM

GP-SLCA (Dimopoulos & Mort, 2001) is an
EA based on the principles of genetic program-
ming that has been custom designed for the
solution of simple and advanced formulations of
the cell-formation problem. GP-SLCA effi-
ciently combines a genetic programming algo-
rithm with a traditional clustering technique
called single linkage cluster analysis. Al-
though GP-SLCA does not use a typical encod-
ing for the problem considered, it clearly illus-
trates potential benefits that can be gained from
the use of evolutionary computation algorithms.

GP-SLCA

A Short Description of
the GP-SLCA Framework

GP-SLCA is a hybrid EA that incorporates a
typical clustering technique—single linkage clus-
ter analysis, or SLCA (McAuley, 1972)—within
a genetic programming framework for the solu-
tion of simple and advanced formulations of the
cell-formation problem. SLCA employs the tra-
ditional Jaccard’s similarity coefficient in order
to calculate a value of similarity between each
pair of machines in a simple cell-formation
problem. Jaccard’s similarity coefficient is de-
fined as follows:

ijijij

ij
ij cba

a
S

++
=

where:

:ijS similarity between machines i and j
:ija number of parts processed by both ma-

chines i and j
:ijb number of parts processed by machine i

but not by machine j
:ijc number of parts processed by machine j

but not by machine i

The calculated values form a similarity ma-
trix that becomes the basis for the process of
creating machine groupings. Initially, all ma-
chines are considered ungrouped. The similar-
ity matrix is scanned for the highest similarity
value between a pair of machines. The corre-
sponding machines are grouped at this similar-
ity level. The same operation is repeated for the
next higher similarity value. The algorithm con-
tinues in a similar fashion until all machines are
grouped into a single cell. A number of different
solutions (machine groupings) are created dur-
ing this process based on the desired level of
similarity between machines (similarity thresh-
old).

GP-SLCA exploits the characteristics of
the SLCA technique, but instead of using a
pre-defined similarity coefficient, a genetic
programming algorithm is responsible for the
generation and evolution of a population of
similarity coefficients. Each of these coeffi-
cients is passed through the SLCA process
and a corresponding set of solutions is pro-

Figure 1. The GP-SLCA framework
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duced. All potential solutions are evaluated,
and the solution with the best value in relation
to the optimization objective considered is
assigned as a fitness value to the genetically
evolved similarity coefficient. A diagrammatic
explanation of the GP-SLCA framework is
illustrated in Figure 1.

The algorithmic explanation of the GP-
SLCA framework in pseudo-code form is as
seen in Example 1.

Application of GP-SLCA to a
Typical Cell-Formation Problem

An illustrated example will be used to provide
further understanding of the GP-SLCA opera-
tion. Figure 2 depicts a typical medium-sized
cell-formation problem originally proposed by
Burbidge (1971). Each positive entry in the
table indicates that a component of the corre-
sponding column requires a processing opera-
tion on the machine of the corresponding row.
This test problem has been widely employed in
cell-formation literature, and consequently many
comparative experimental results are available
for comparison purposes.

The set of functions for the genetic pro-
gramming part of GP-SLCA comprises typical
mathematical operations: addition, subtraction,
multiplication, and protected division (a func-
tion that accommodates the division of zero
exception). For the set of terminals, typical
inputs like the ones used by Jaccard’s similarity
coefficients are employed:

:ija number of parts processed by both ma-
chines i and j

:ijb number of parts processed by machine i
but not by machine j

:ijc number of parts processed by machine j
but not by machine i

Figure 2. Burbidge’s cell-formation test problem

Example 1.

Procedure Main

initialise population of randomly created similarity coefficients
run procedure SLCA for each coefficient
loop
 loop
  select individuals for crossover or mutation
  apply genetic operators and form new coefficients
 until a new generation has been formed
 run procedure SLCA for each coefficient
until termination criterion is true

Procedure SLCA

compute similarity matrix
loop

create machine cells for the highest level of similarity coefficient
assign parts to machine cells
calculate the fitness value of the cell configuration
if solution is the best recorded so far, best=current solution

until a single cell has been formed
assign the best solution found as fitness of the individual

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

1 1 1

2 1 1 1 1 1 1 1 1

3 1 1 1 1 1

4 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1

11 1 1 1 1 1 1

12 1 1 1 1 1

13 1 1

14 1 1 1 1

15 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1
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:ijd number of parts processed by neither
machine i nor machine j

The aim of the GP-SLCA process is to
evolve combinations of the function and termi-
nal sets (in the form of similarity coefficients)
that will subsequently produce optimal or near-
optimal cell configurations according to the
optimization objective. Note that the choice of
these sets is based on the understanding of the
problem considered, the optimization objective
used, and the intuition of the designer. For
example, Dimopoulos and Mort (2001) have
successfully used a different terminal set for
the solution of a cell-formation problem that
explicitly considers the sequence of operations
between machines.

In the experimental results presented in this
section, the objective of the GP-SLCA algo-
rithm is the maximization of the grouping effi-
cacy value, a measure that is calculated as
follows:

G =
-
+

e e
e e

0

n

where:

G: grouping efficacy
e: total number of processing operations
e0: total number of processing operations

performed outside designated cells
ev: total number of processing operations

performed inside designated cells

The design parameters of the GP-SLCA
algorithm can be summarized with the help of
the so-called Koza (1992) tableau illustrated in
Table 1. Note that the protected division func-
tion returns the value of 1, when the denomina-
tor evaluates to zero.

Since GP-SLCA is a stochastic algorithm,
20 experimental runs were conducted on the
problem considered. The cumulative perfor-
mance of the algorithm is described in Table 2.
The best result found by GP-SLCA and the
corresponding best results of alternative solu-
tion methodologies are illustrated in Table 3.

It can be seen that GP-SLCA provided an
improved performance on the problem consid-

Table 1. Koza tableau for the example GP-
SLCA application

Table 2. Cumulative performance of GP-
SLCA on the test problem considered

Table 3. Comparison of GP-SLCA with alternative solution methodologies on the problem
considered

Parameters Values
Objective maximisation of grouping efficacy
Terminal set ij, bij, cij, dij (defined earlier)
Function set +, -, ·, % (protected division function)
Population size 500
Crossover probability .9
Mutation probability .1
Number of generations 50

Best value of efficacy recorded 0.567901
Number of times this value was found 5
Mean best value of  efficacy per run 0.566063

Solution Methodology Grouping efficacy
GP-SLCA 0.5679

GRAFICS (Srinivasan & Narendran, 1991) 0.5439
ZODIAC (Chandrasekharan & Rajagopalan, 1987) 0.5376

GA-TSP (Cheng et al., 1998) 0.5389
GA - Integer Programming (Joines et al., 1996) 0.4926
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ered, in relation to alternative optimization meth-
odologies, both in terms of the average and
maximum values of grouping efficacy attained.
These results are only indicative of the
framework’s performance. A detailed analysis
of the above algorithm, as well as substantial
experimental results on the entire range of test
problems for which comparative results exist,
can be found in Dimopoulos and Mort (2001).

A closer examination of the solution that
created the best value of grouping efficacy
reveals that it was generated through the SLCA
procedure from the genetically evolved similar-
ity coefficient illustrated in Figure 3.

The structure of this coefficient is much
more complicated in comparison to typical man-
made similarity coefficients; however, it has
been evolved with the sole purpose of finding an
optimal grouping for the specific cell-formation
problem (it does not generalize to other problem
instances). A run of the SLCA algorithm using
the above coefficient results in a set of potential
machine groupings. One of these solutions pro-
duces the best value of grouping efficacy for the
problem considered (“=0.5679). A graphical il-
lustration of this solution is depicted in Figure 4.
Note that each rectangle on the matrix desig-
nates a cell of machines and associated parts.

Figure 3. Genetically evolved similarity coefficient that produced the machine grouping with
the best performance
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Figure 4. Cell configuration that produces the best objective function value for Burbidge’s
test problem (G=0.5679)
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A DISCUSSION ON USING
EVOLUTIONARY ALGORITHMS
FOR THE SOLUTION OF
PRODUCTION RESEARCH
PROBLEMS

In the previous sections an introduction on the
use of evolutionary computation methods in the
area of production research was provided. This
description can serve as a basis for discussing
the relative competency, the benefits, and the
practical considerations of using evolutionary
computation methods in this area of research.

Competency of Evolutionary
Algorithms in the Area of
Production Research

A wide range of tools exist that can help
engineers with the task of optimizing the pro-
duction process. The choice of a particular tool
is based on various parameters such as relative
efficiency, computational complexity, ease of
implementation, availability as a commercial
product, computational requirements, connec-
tivity with other software products, business
policy, and human factors. While researchers
measure the competency of their algorithms in
relation to alternative optimization methodolo-
gies using a single optimization objective, this
characteristic alone does not guarantee their
adoption in practical manufacturing environments.

The relative competency of EAs as a ge-
neric optimization methodology is very difficult
to assess, especially since particular instances
of the algorithms differ significantly in the
representation scheme, recombination opera-
tors, and the parameters used during the evolu-
tionary process. Empirical results (Dimopoulos
& Zalzala, 2000; Aytug et al., 2003) indicate
that various instances of EAs have been fre-
quently (but not always) producing results that
are competitive to alternative optimization meth-

odologies in the area of production research.
This fact indicates that EAs can be used with a
certain degree of safety in terms of their opti-
mization capabilities.

Another dimension that should be consid-
ered is the consistency of EA results. Since
EAs are stochastic optimization algorithms, it
cannot be guaranteed that an optimization run
will yield an optimal or a near-optimal solution.
While published results do not indicate alarming
differences in the performance between vari-
ous optimization runs, it would be difficult for an
engineer to employ EAs in cases where perfor-
mance guarantees are absolutely critical. How-
ever, it should be noted that during the last
decade, EA researchers have made significant
advances in producing performance guaran-
tees for specific instances of EAs in specific
problem cases (Eiben & Rudolph, 1999).

A valid criticism of EA research in the past
is the failure to consistently compare the com-
putational cost of EAs in relation to alternative
optimization methodologies. The reality is that
most instances of EAs are very fast. There are
specific instances of EAs (like some genetic
programming implementations) that might re-
quire significant computational resources. How-
ever, the issue of computational cost has to be
evaluated in relation to the problem considered.
While the speed of an algorithm is very impor-
tant in the case of a dynamic scheduling prob-
lem, it becomes less important in the case of a
facility layout problem. The algorithm described
in the previous section attempts to provide an
efficient design for a cellular manufacturing
system that, once evolved, may be used for a
period of years. In this case the focus is cer-
tainly on the quality of the solution rather than
the computational complexity of the algorithm.

Potential Benefits

The most important benefits of using EAs in the
area of production research stem from their
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unique problem-solving approach. The main
attraction of EAs is their flexibility in solution
representation and their simple fitness assign-
ment scheme. EAs provide engineers with a
non-mathematical way to design solutions that
correspond to realistic considerations of spe-
cific manufacturing plants. In addition, EAs
provide a number of standardized techniques
for handling all types of constraints that can exist
in practical manufacturing optimization prob-
lems. While these characteristics alone do not
guarantee the optimality of solutions, they pro-
vide the basis for the design of robust algorithms,
especially in cases where a mathematical de-
scription of the problem considered is either not
possible or computationally intractable.

More importantly, the flexibility in the basic
evolutionary process means that they can be
combined very efficiently with alternative opti-
mization methodologies. These EA-based hy-
brid algorithms provide optimization frameworks
that exploit the positive characteristics of each
methodology combined. Experimental results
indicate that this approach constitutes a very
promising direction for the solution of difficult
optimization problems in this area of research.

The main area where EAs seem to have a
competitive advantage in relation to alternative
optimization methodologies is the area of multi-
objective optimization. The existence of pro-
duction research problems that aim to simulta-
neously optimize multiple objectives of contra-
dicting nature has been largely ignored in the
production research literature (apart from the
bi-objective case), despite the fact that they
represent a realistic modeling of manufacturing
practice. EAs provide the environment and a
set of tools that allow the simultaneous evolu-
tion of a set of solutions from which the decision
maker can make an informed choice (Coello
Coello, 1999).

The benefits that EAs can provide to pro-
duction engineers are clearly illustrated in the
case study presented in this chapter: GP-SLCA

efficiently hybridizes a traditional clustering
technique with a genetic programming algo-
rithm into a robust optimization algorithm for
the solution of cell-formation problems. At the
same time, it can be easily modified to explicitly
consider cell-size or other type constraints
(Dimopoulos & Mort, 2000). Advanced ver-
sions of the cell-formation problem can also be
considered by modifying the objective function
of the algorithm or by using different types of
similarity inputs (Dimopoulos & Mort, 2000).
Finally, GP-SLCA has been successfully com-
bined with the NSGA-II (Deb, Pratap, Agarwal,
& Meyarivan, 2002) evolutionary multi-objec-
tive optimization technique, providing a frame-
work for the solution of large-sized multi-objec-
tive cell-formation problems (Dimopoulos, 2005).

Practical Considerations

Despite the considerable number of EA-related
publications in the area of production research,
their adoption rate in manufacturing environ-
ments has been very slow. This is due to a
number of considerations that make industrial
engineers and managers reluctant to use them.
One of these considerations is the biology-
related background of EAs. While a detailed
knowledge of the theory of evolution is not
needed for the design of an EA, since EAs
employ a loose interpretation of this theory, the
use of the biology-inspired terminology predis-
poses engineers for the opposite.

Another major consideration is the fact that
the implementation of an EA from ‘scratch’
requires programming skills that a significant
number of managers or industrial engineers do
not possess. Unfortunately, only a small num-
ber of commercial implementations of EAs
exist either as independent applications or as
parts of a larger software platform in the area
of production research that can help engineers
to readily exploit and appreciate the benefits of
their use.
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Finally, a practical consideration that is regu-
larly noted in EA literature is the unavailability
of guidelines for setting the parameters of EA
optimization runs (population size, number of
generations, probability of applying genetic op-
erators, selection mechanism, etc.). Parameter
setting in EAs is itself a difficult optimization
problem. Since in the majority of cases there is
no mathematical background for a scientific
calculation of these parameters, experience
and trial optimization runs normally provide the
basis for parameter setting. Unfortunately, the
sensitivity of an algorithm’s performance to the
change of parameters is very much problem
dependent.

CONCLUSION AND
FUTURE RESEARCH

In the previous sections a basic introduction on
the principles of evolutionary computation meth-
ods and their use in the area of production
research was provided. EAs constitute a useful
tool in the hands of managers, production de-
signers, and engineers. This chapter does not
aim to overemphasize their competency in rela-
tion to alternative optimization methodologies.
On the contrary, as it has been discussed
earlier, significant benefits are gained when
EAs are combined with alternative optimization
methodologies and when problem-specific in-
formation is incorporated in their design. In
addition, EAs provide a natural framework for
the solution of multi-objective production re-
search problems that are very difficult to ap-
proach with traditional optimization methods.

A considerable amount of EA applications
covering the entire production research field
have been reported over the last decade. The
next challenge for researchers in this area is to
transform their basic algorithms that provide
promising experimental results on literature
test problems into software packages that can

be readily used in realistic production environ-
ments. This step requires the cooperation of
academic experts and production engineers, as
well as the necessary managerial support. It is
hoped that reviews like the one provided in this
chapter can help production engineers and
managers to understand the operation of evolu-
tionary computation methods as well as the
potential benefits of their use in this area of
research.
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ABSTRACT

The ant colony optimization algorithms and their applications on the multiple knapsack
problem (MKP) are introduced. The MKP is a hard combinatorial optimization problem with
wide application. Problems from different industrial fields can be interpreted as a knapsack
problem including financial and other management. The MKP is represented by a graph, and
solutions are represented by paths through the graph. Two pheromone models are compared:
pheromone on nodes and pheromone on arcs of the graph. The MKP is a constraint problem
which provides possibilities to use varied heuristic information. The purpose of the chapter
is to compare a variety of heuristic and pheromone models and different variants of ACO
algorithms on MKP.

INTRODUCTION

Combinatorial optimization is a process of find-
ing the best or optimal solution for problems
with a discrete set of feasible solutions. Appli-
cations occur in numerous settings involving
operations management and logistics. The eco-
nomic impact of combinatorial optimization is
profound, affecting diverse sections. While
much progress has been made in finding exact
solutions to some combinatorial optimization

problems (COPs), many hard combinatorial
problems (NP-problems) are still not exactly
solved in a reasonable time and require good
meta-heuristic methods. The aim of meta-heu-
ristic methods for COPs is to produce quickly
good-quality solutions. In many practical prob-
lems they have proved to be effective and
efficient approaches, being flexible to accom-
modate variations in problem structure and in
the objectives considered for the evaluation of
solutions (Lonnstedt, 1973). For all these rea-
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sons, meta-heuristics has probably been one of
the most stimulated research topics in optimiza-
tion for the last two decades. Examples are
decision making problems.

The ant colony optimization (ACO) is a new
meta-heuristic method. ACO algorithms are
applied in real life and industrial problems for
which a good solution for a short time is re-
quired. ACO achieves good results for prob-
lems with restrictive constraints like multiple
knapsack problem. It represents a multi-agent
system where low-level interaction between
single agents results in a complex behavior of
the whole ant colony. It imitates the behavior
shown by real ants when searching for food.
Ants are social insects that live in colonies and
whose behavior is aimed more to the survival of
the colony as a whole than to that of a single
individual component of the colony. An impor-
tant and interesting aspect of ant colonies is
how ants can find the shortest path between the
food sources and their nest. Ants communicate
information about food sources via a chemical
substance called pheromone, which the ants
secrete as they move along.

Analogously, ACO is based on the indirect
communication of a colony of simple agents,
called “artificial” ants, mediated by “artificial”
pheromone trails. The pheromone trails in ACO
algorithms serve as distributed numerical infor-
mation, which ants use to probabilistically con-
struct solutions to the problem to be solved and
which ants adapt during the algorithm’s execu-
tion to reflect their search experience. Artifi-
cial ants not only imitate the behavior de-
scribed, but also apply additional problem-spe-
cific heuristic information. The idea is devel-
oped by Moyson and Manderick (1988). The
first example of ant algorithm is Ant System
(Dorigo, Maniezzo, & Colorni, 1996), and it has
been applied to and provided solutions for vari-
ous hard combinatorial optimization problems.
Recently, different versions of the ACO algo-

rithms such as the ant colony system (Dorigo,
1999a), the ant algorithm with elitist ants
(Dorigo, 1999b), the max-min ant system (Stützle
& Hoos, 2000), the ant algorithm with additional
reinforcement (Fidanova, 2002), and the best-
worst ant system (Cordón, Fernàndez de Viana,
& Herrera, 2002) have been applied to many
optimization problems. Examples are the trav-
eling salesman problem (Dorigo, 1999a), the
quadratic assignment (Gambardella, Taillard,
& Agazzi, 1999), the vehicle routing
(Gambardella, Taillard, & Agazzi, 1999), and
the multiple knapsack problem (Fidanova, 2003).

The multiple knapsack problem (MKP) is a
hard combinatorial optimization problem with
wide applications which enlists many practical
problems from different domains like financial
and other management. It is an interesting
problem of both practical and theoretical point
of view: practical because of its wide applica-
tion; theoretical because it is a constraint prob-
lem and gives various possibilities for heuristic
constructions.

The aim of this chapter is to introduce ACO
and its application on MKP.

ANT COLONY OPTIMIZATION
ALGORTHM

All ACO algorithms can be applied to any COP.
They follow specific algorithmic scheme. After
the initialization of the pheromone trails and
control parameters, a main loop is repeated
until the stopping criteria are met. The stopping
criteria can be a certain number of iterations, a
given CPU time limit, or a time limit without
improving the result or if some lower (upper)
bound of the result is known and the achieved
result is close enough to this bound. In the main
loop, the ants construct feasible solutions, and
then the pheromone trails are updated. More
precisely, partial problem solutions are seen as



500

Ant Colony Optimization and Multiple Knapsack Problem

states: each ant starts from random state and
moves from a state i  to another state j of the
partial solution. At each step, ant k computes a
set of feasible expansions to its current state
and moves to one of these expansions, accord-
ing to a probability distribution specified as
follows. For ant k, the probability k

ijp  to move
from a state i to a state j depends on the
combination of two values:
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where:

• ijh  is the attractiveness of the move as
computed by some heuristic information,
indicating a priori desirability of that move;

• ijt  is the pheromone trail level of the
move, indicating how profitable it has been
in the past to make that particular move (it
represents therefore a posterior indication
of the desirability of that move); and

• kallowed  is the set of remaining feasible
states.

Thus, the higher the value of the pheromone
and the heuristic information are, the more
profitable it is to include state j in the partial
solution. In the beginning, the initial pheromone
level is set to 0t , which is a small positive
constant. In nature there is not any pheromone
on the ground at the beginning, or the initial
pheromone is 00 =t . If in ACO algorithm the
initial pheromone is 00 =t , then the probability
to chose next state will be 0=k

ijp  and the

search process will stop from the beginning.
Thus it is important that the initial pheromone
value is positive.

The pheromone level of the elements of the
solutions is changed by applying the following
updating rule:

ijijij ttrt D+‹ .      (2)

where the rule 10 << r  models evaporation
and ijtD  is an added pheromone. The ACO
algorithms differ in pheromone updating. There
exist various versions of ACO algorithms such
as the ant system (Dorigo et al., 1996), the ant
colony system (Dorigo, 1999a), ACO with elit-
ist ants (Dorigo, 1999b), the max-min ant sys-
tem (Stützle & Hoos, 2000), the ant algorithm
with additional reinforcement (Fidanova, 2002,
pp. 292-293), the best-worst ant system (Cordón
et al., 2002), and so on. The main difference
between them is pheromone updating.

Ant System

The first ant algorithm is ant system. In this
algorithm all pheromone is decreased, and after
that every ant adds a pheromone corresponding
to the quality of the solution. More precisely:
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where:

• k
ijtD  is the pheromone added by the ant k;

• Sk is the solution achieved by ant k;
• f(Sk) is the value of the objective function.

In any ant system, better solutions and ele-
ments used by more ants receive more phero-
mone.
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Ant Colony System (ACS)

The main features of the ACS algorithm are as
follows: to use the best found solution, after
each iteration the ants—which construct the
best solution from the beginning of the trials—
add pheromone; to avoid stagnation of the
search, the pheromone on other solutions is
decreased. Local pheromone updating and glo-
bal pheromone updating in ACS are applied. In
the local pheromone updating the value of the
pheromone on used elements decreases and
comes between initial pheromone 0t  and the
old value of the pheromone. It is a kind of
diversification of the search in the search space.

0).1(. trtrt -+‹ ijij

In the global pheromone updating, the ant
that constructs the best solution adds another
pheromone depending on the quality of the
solution.

ijijij tatat D-+‹ ).1(.

( ) if it is maximization problem

1/ ( ) if it is minimization problem

k

k
ij

k

f S

f S
t

ì
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The main idea of ACS is to enforce the
pheromone of the best found solution and at the
same time to diversify the search.

Ant Algorithm with Elitist Ants

In this ant algorithm only one or a fixed number
(n) of ants add pheromone. The pheromone
corresponding to other elements is only evapo-
rated. Thus the pheromone of the best n solu-
tions is forced. It is a kind of intensification of
the search around the best found solutions.

Max-Min Ant System (MMAS)

The main features of MMAS algorithm are as
follows:

• To exploit the best found solution—after
each iteration only one ant adds a phero-
mone.

• To avoid stagnation of the search, the
range of possible pheromone value is lim-
ited to a fixed interval [ ]maxmin ,tt .

In MMAS algorithm the pheromone value is
initialized so that after the first iteration all
pheromone values are equal to maxt . In the next
iterations only the elements belonging to the
best solution receive a pheromone; other phero-
mone values are only evaporated. The main
idea of MMAS is to use fixed lower and upper
bounds of the pheromone values. If some phero-
mone value is less/greater than lower/upper
bound, it becomes equal to this fixed lower/
upper bound and thus early stagnation of the
algorithm is avoided.

Best-Worst Ant System (BWAS)

The main idea of BWAS is to use a pheromone
mutation. The pheromone value of the best
solution is increased, while the pheromone value
of the worst solution is decreased. Thus the
probability to choose elements of worst solution
in the next iteration becomes lower.

Ant Algorithm with Additional
Reinforcement (ACO-AR)

The main idea of ACO-AR is after pheromone
updating to add additional pheromone to unused
elements. Thus some elements receive addi-
tional probability to be chosen and become
more desirable. Using ACO-AR algorithm the
unused elements have the following features:
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• They have a greater amount of phero-
mone than the elements belonging to poor
solutions.

• They have a less amount of pheromone
than the elements belonging to the best
solution.

Thus the ants are forced to exploit a search
space which has not been exploited yet without
repeating the bad experience.

ANT ALGORITHM AND
CONVERGENCE

The ACO is a meta-heuristic algorithm for
approximate solution of combinatorial optimi-
zation problems. The construction of a good
solution is a result of the agents’ cooperative
interaction. Failure in local optimum may occur
when we perform the ACO algorithm. This can
happen when the pheromone trail is signifi-
cantly higher for one choice than for all others.
This means that one of the choices has a much
higher amount of pheromone than the others,
and an ant will prefer this solution component
over all alternatives. In this situation, ants con-
struct the same solution over and over again,
and the exploration of the search space stops.
It should be avoided by influencing the prob-
abilities for choosing the next solution compo-
nent which depends directly on the pheromone
trails. Various techniques exist to avoid failing
into local optimum as re-initialization, smooth-
ing of the pheromone, additional reinforcement,
diversification, and intensification of the search.

Re-Initialization

When the ants repeat the same solution over
and over again, the pheromone is re-initialized
(Stützle & Hoos, 2000) and the algorithm starts
from the beginning. The aim is to start to create

solutions from other starting states and prob-
ably to construct differently from previous so-
lutions. This technique can prevent some failing
into local optimums, but the algorithm is not
guaranteed to converge to an optimal solution.
This technique can be applied to any ant algo-
rithm.

Smoothing of the Pheromone Trails

 The main idea of the smoothing (Stützle &
Hoos, 2000) is to increase the pheromone trails
according to their differences to the maximal
pheromone trail as follows:

).( max ijijij ttdtt -+‹ ,

where 10 << d is a smoothing parameter. The
above proposed mechanism has the advantage
that the information gathered during the run of
the algorithm is not completely lost, but merely
weakened. For d  =  1 this mechanism corre-
sponds to a re-initialization of the pheromone
trails, while for d = 0 pheromone trail smoothing
is switched off. After the smoothing, the cur-
rent lower bound of the pheromone increases.

Fixed Bounds of the Pheromone

Other method to prevent early stagnation is to
fix the lower and the upper bound of the phero-
mone (Stützle & Hoos, 2000). Thus if the
pheromone becomes less/greater than the
lower/upper bound, it becomes equal to this
lower/upper bound. Thus there are not choices
of very high or very low amounts of phero-
mone.

Additional Reinforcement

The aim of additional reinforcement is to add
additional pheromone on choices of pheromone
low amount and thus they become more desir-
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able (Fidanova, 2002, pp.292-293). It is a way
to force the ants to look for new solutions.

Search Diversification
and Intensification

In some ant algorithms, diversification and in-
tensification techniques—like increasing the
amount of the pheromone for some choices and
decreasing it for others—are used. The aim is
to intensify the solution search on one side and
to diversify it on the other.

It is important to know whether the algo-
rithm converges to the global optimum. Stützle
and Dorigo (2002) proved that if the amount of
the pheromone has a finite upper bound and a
positive lower bound, then the ACO algorithm
converges to the optimal solution. This means
that if the probability to choose any element
does not converge to zero, then the ACO
algorithm converges to the global optimum.
Stützle and Dorigo (2002) proved that the Ant
Colony System and Max-Min Ant System
satisfy the conditions for convergence and
thus they converge to the global optimum
when the time (number of iterations) converge
to infinity.

Additional reinforcement can be applied to
any ACO algorithm. Fidanova (2004) has proved
that after additional reinforcement of unused
elements of any ACO algorithm, it converges to
optimal solution when the algorithm is run for a
sufficiently large number of iterations indepen-
dently whether the original ACO algorithm
converges.

MULTIPLE KNAPSACK
PROBLEM

The MKP has numerous applications in theory
as well as in practice. It also arises as a sub-
problem in several algorithms for more com-

plex COPs, and these algorithms will benefit
from any improvement in the field of MKP.

The MKP can be thought of as a resource
allocation problem, where there are m resources
(the knapsacks) and n objects, and object j has
a profit jp . Each resource has its own budget

ic (knapsack capacity) and consumption ijr  of
resource i by object j. We are interested in
maximizing the sum of the profits, while work-
ing with a limited budget. The MKP can be
formulated as follows:

1

1

max .
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jx  is  1 if the object j is chosen and 0
otherwise.

There are m constraints in this problem, so
MKP is also called the m-dimensional knap-
sack problem. Let },,1{ mI K=  and },,1{ nJ K= ,
with 0‡ic  for all Ii ˛ . A well-stated MKP
assumes that 0>jp  and å =

££ n

j ijiij rcr
1  for all

and. Note that the  matrix and the  vector are
both non-negative.

We can mention the following major appli-
cations: problems in cargo loading, cutting stocks,
bin-packing, budget control, and financial man-
agement may be formulated as MKP. Sinha
and Zoltner (1979) propose the use of the MKP
in fault tolerance problem, and Diffe and
Hellman (1976) designed a public cryptography
scheme whose security realizes the difficulty of
solving the MKP. Matrello and Toth (1984)
mention that two-processor scheduling prob-
lem may be solved as a MKP. Other applica-
tions are industrial management, team manage-
ment, naval, aerospace, and computational com-
plexity theory.
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The shortest path problem in a transporta-
tion network deals with determining the subset
of the connected roads that collectively com-
prise the shortest driving distance or the small-
est driving time or the cheapest fair between
two cities. The problem is: what subset of lines
gives the faster response time for communica-
tion between them? Complexity theory is a part
of the theory of computation dealing with the
resources required during the computation time
to solve a given problem. More theoretical
application appears either in case a general
problem is transformed to a MKP or MKP
appears as a sub-problem in solving the gener-
alized assignment problem. It again is used in
solving a vehicle routing problem. In addition,
MKP can be seen as a general model for any
kind of binary problems with positive coeffi-
cients (Kochenberger, McCarl, & Wymann,
1974).

In solving MKP one is not interested in
solutions giving a particular order. Therefore a
partial solution is represented by , and the most
recent elements incorporated to S, need not be
involved in the process for selecting the next
element. Also, solutions for ordering problems
have a fixed length, as a permutation of a
known number of elements is searched. Solu-
tions of MKP, however, do not have a fixed
length. In this chapter the solution will be
represented by sequence  where is 1 if the
object j is chosen and 0 otherwise.

ACO ALGORITHM FOR MKP

The MKP is an interesting problem from a
practical and theoretical point of view: practi-
cal, because it involves a lot of real-life and
industrial problems; theoretical, because it gives
several possibilities for pheromone and heuris-
tic models. One of the basic elements of the
ACO algorithm is the mapping of the problem

onto a graph. We decide which elements of the
problem should correspond to the nodes and the
ones to the arcs. The solutions of the problem
are represented by paths through the graph.

We define the graph of the MKP as fol-
lows: the nodes correspond to the objects and
the arcs fully connect nodes. Fully connected
graph means that after the object I, the object
j might be chosen if there are enough re-
sources and if the object j is not chosen yet. At
each iteration, every ant constructs a solution.
It first randomly chooses the initial object
(node in the graph) and then iteratively adds
new objects (nodes in the graph) that can be
selected without violating resource constraints.
Once each ant has constructed its solution,
pheromone trails are updated. The pheromone
model and heuristic information connected
with MKP will be described in detail in the
following subsections. Ants start to construct
their solution from a random node. Therefore
a small number of ants can be used. By
experiment, it is found that between 10 and 20
ants are enough to achieve good result, with-
out increasing the number of iterations. Thus
the used computer resources such as time and
memory are decreased.

Pheromone Model

To solve MKP with ACO algorithm, the key
point is to decide which components of the
constructed solutions should be rewarded and
how to exploit these rewards when construct-
ing new solutions. One can consider two differ-
ent ways of laying pheromone trails:

• A first possibility is to lay pheromone trails
on each selected node of the graph (ob-
ject). The idea is to increase the desirabil-
ity of some nodes so that these nodes will
be more likely to be selected in construct-
ing a new solution.
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• A second possibility is to lay pheromone
trails on the arcs (i,j) of the graph. Here
the idea is to increase the desirability to
choose node j when the last selected node
is i.

The first possibility is closely related to the
nature of the problem, as MKP is an unordered
problem. To solve MKP with ACO algorithm,
Leguizamon and Michalevizc (1999) use the
first possibility, while Fidanova (2003) uses the
second possibility.

The two pheromone possibilities have been
tested on 20 benchmarks of MKP, from OR
Library, with 100 objects and 10 constraints
(see http://mscmga.ms.ic.ac.uk/jeb/orlib). The
number of iterations K=500 is fixed for all the
runs. For the tests we use ACS algorithm and
20 runs of each of the benchmarks. The initial
pheromone parameter is fixed to t0=0.5. The
evaporation parameters are a=r=0.1. The num-
ber of ants is set to be 10. As shown in Figure
1, there is very early stagnation of the algorithm
by pheromone on nodes. This effect can be
explained with large pheromone accumulation

on some nodes, and thus the ants repeat the
same solution over and over again. In the
second case the pheromone is dispersed on the
arcs. We will illustrate these phenomena with a
small example with five objects and one con-
straint.

Example: max(x1+3x2+2x3+x4+2x5)
2x1+x2+3x3+x4+3x5£6

For heuristic information, let the profit of
the objects be used. Thus the objects with
greater profit are more desirable. The ACS is
applied with one ant. Other parameters are
t0=0.5, a=r=0.5. In a first iteration, let the
ant start from node 1. Using probabilistic rule
the achieved solution in both cases is (x1,x2,x3),
and the value of objective function is 6. After
updating, the new amount of the pheromone
is:

a. pheromone on nodes:
(3.25, 3.25, 3.25, 0.5, 0.5)

b. pheromone on arcs:

Non
Non

Non
Non

Non

5.05.05.05.0
5.05.05.05.0
5.05.05.05.0
5.05.025.35.0
5.05.05.025.3

In the second iteration, let the ant start from
the node 2. Thus constructed by the ant, the
solution in a both cases is (x2, x3, x1). It is the
same as in the first iteration, but achieved in
different order. The new pheromone is:

a. pheromone on nodes:
(3.937, 3.937, 3.937, 0.5, 0.5)

b. pheromone on arcs:

Figure 1. Average solution quality: the thick
line represents the pheromone on arcs and
the dashed line represents the pheromone
on nodes
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Non
Non

Non
Non

Non

5.05.05.05.0
5.05.05.05.0
5.05.05.025.3
5.05.0937.35.0
5.05.05.025.3

In the third iteration, let the ant start from
the node 3. The achieved solution by both cases
is (x3, x2, x1). The new pheromone is:

a. pheromone on nodes:
(4.109, 4.109, 4.109, 0.5, 0.5)

b. pheromone on arcs:

Non
Non

Non
Non

Non

5.05.05.05.0
5.05.05.05.0
5.05.025.325.3
5.05.0937.325.3
5.05.05.025.3

Heuristic Information

The second component in the transition prob-
ability is the heuristic information. The MKP is
a constraint problem, and the constraints can be
used for constructing heuristic information in
various manners. There are two main types of
heuristics: static and dynamic. Static heuristics
remain unchanged during the run of the algo-
rithm, while the dynamic heuristics correspond
to the current state of the problem. The profit of
the objects will be included in the heuristics
because it is the most important information for
objective function. A better result is expected
when we include in the heuristics more infor-
mation for the problem.

Static Heuristics

Two types of static heuristics are proposed,
called “heuristics A” and “heuristics B” re-
spectively.

• Heuristics A: Let å =
=

m

i ijj rs
1

. For heu-

ristic information we use: 21 / d
j

d
jij sp=h , 0 <

d1 and  0  < d1 are parameters. The ex-
penses of the objects are included in heu-
ristic information. Therefore, the objects
with greater profit and less average ex-
penses are more desirable. Thus we try to
have some balance between expenses
and the profit for a given object.

• Heuristics B: Let i
m

i ijj crs /
1å =

= . For heu-

ristic information we use: 21 / d
j

d
jij sp=h , 0 <

d1 and  0  < d1 are parameters. Thus the
heuristic information depends on the profit,
the expenses, and the budgets. The objects
with greater profit, which use a lesser part
of the budget, are more desirable.

Dynamic Heuristics

The third and the forth types of heuristic infor-
mation are dynamic, and they correspond to the
current state of the algorithm. We call them
“heuristics C” and “heuristics D” respectively.

• Heurist ics C (Leguizamon &
Michalevizc, 1999):  Let

j
n

j ijii xrcb å =
-=

1  be the remainder of the
budget before choosing the next object
and å =

=
m

i iijj brs
1

/  if 0„ib and å =
= m

i ijj rs
1

if bi = 0. For heuristic information we use:
21 / d

j
d
jij sp=h , where 21 dd = . The aim is

for the heuristic information to have maxi-
mal correspondence to the current state
of the algorithm and thus to achieve good
result. Leguizamon and Michalevizc
(1999) do not verify if 0„ib , but because
it can happen and there is division by bi,
we add this verification in the algorithm.
Thus the objects with greater profit, which
use less part of the available budget, will
be more desirable.
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• Heuristics D: This is similar to heuristics
C, but the parameters d1 and d2 can be
different. By this heuristics, we can ob-
serve the influence of the parameters d1
and d2.

The ACO algorithms with four kind of heu-
ristic information have been tested on 20 bench-
marks of MKP, from OR Library, with 100
objects and 10 constraints. For the tests we use
ACS algorithm with pheromone on arcs. The
initial pheromone parameter is fixed to t0=0.5.
The evaporation parameters are set to a=r=0.1.
When d1„ d2, d1=3 and d2=2, otherwise d1=d2=1.
The number of ants is set to 10. First we
observe that the heuristics B shows advantage
over the other tree heuristics. This means that
it is more important that the expenses be a small

part of the relevant budget. We expected to
achieve better results by dynamic heuristics
because they correspond to the current state of
the problem. In spite of our expectations, we
achieved weaker results by dynamic heuristics.
Using dynamic heuristics, the chosen object
order became important; the desirability of an
object was not the same if it was chosen in the
beginning of the iteration or later. The MKP is
an unordered problem, and for it the order in
which the objects are chosen is not important.
Thus we can explain better results by static
heuristics. Comparing heuristics C and D, we
observe the importance of the parameters d1
and d2. In the case d1„ d2, the achieved results
are better. The parameters d1 and d2 show the
importance of the profit and the constraints in
heuristic information. If d1 is greater than d2,
then the profit is more important, and in the
opposite case the constraints are more impor-
tant. If both values d1 and d2 are great, then the
heuristic information is more important than the
pheromone in the transition probability.

Comparison between
ACO Algorithms

The ACO algorithms are differing in phero-
mone updating. We compare some ACO algo-
rithms applied on MKP. The ant colony system,
the max-min ant system, and the ant algorithm
with additional reinforcement have been cho-
sen, because for them it is proven to converge
to the global optimum. These ACO algorithms
have been tested on 20 benchmarks of MKP
with 100 objects and 10 constraints from OR
Library. The reported results are average on 20
runs of each benchmark. The pheromone is laid
on the arcs and the heuristics B is used. ACO-
AR is applied on ant algorithm with elitist ant.
The added additional pheromone is equal to the
maximal added pheromone. The initial phero-
mone parameter is fixed to t0=0.5. The evapora-

Figure 2. The graphics show the average
solution quality (value of the total cost of the
objects in the knapsack) over 20 runs; the
dash-dot line represents heuristics A, the
dash line represents heuristics B, the dotted
line represents heuristics C, and the thick
line represents heuristics D
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tion parameters are a=r=0.1. The minimal
pheromone is set to tmin=1000, and the value of
the maximal pheromone is equal to the approxi-
mate upper bound of the pheromone (Stützle &
Hoos, 2000). The number of ants is set to 10. As
shown in Figure 3, ACO-AR outperforms ACS
and MMAS. By ACS and MMAS we achieve
very similar results. In some of the runs, ACO-
AR reaches the best found results in a literature
by meta-heuristics methods.

CONCLUSION

In this chapter the ACO algorithms and their
implementations on MKP are described. The
MKP is represented by graph and the solutions
are represented by paths through the graph.
We compare two pheromone models, phero-
mone on the arcs of the graph of the problem
and pheromone on the nodes of the graph. We
observe that laying the pheromone on the arcs,
the algorithm achieves better results. When the
pheromone is laid on the nodes on some of
them, the pheromone concentration becomes
very high and ants choose them with higher

Figure 3. Average solution quality: the thick
line represents ACO-AR, the dotted line
represents MMAS, and the dashed line
represents ACS

probability. We compare four representations
of heuristic information. Best results are
achieved when the heuristic information de-
pends on the profit, the expenses, and the
budgets. The objects with greater profit, which
use fewer parts of the budgets, are more desir-
able. We achieve better results by static heuris-
tics than by dynamics. Using dynamic heuris-
tics the probability to choose the same object at
the beginning of the iteration is different than
choosing it later, and for MKP the chosen
objects order is not important. At the end we
compare the results achieved by three of the
ACO algorithms, proved to converge to the
global optimum, ACS, ACO-AR, and MMAS.
We achieve best results by ACO-AR, and in
some of the runs the achieved results are equal
to the best found in the literature. In the future
we will investigate hybridization of the ACO
algorithms, combining them with other meta-
heuristic techniques and appropriate local search
procedures.
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ABSTRACT

The authors propose an algorithm for the reorganization of a production department in cells,
starting from a situation of job shop, chasing the main goal of group technology (GT)—that
is, to gather pieces with similar technological cycles and to associate every group of items
(family) to a group of machines (cell) able to realize all the necessary activities. To get this
result, a behavioral pattern has been developed, having its origin in the ants’ way of sorting
food, larva, and pupa in an anthill. As first results have shown, such an approach turns out
to be interesting, provided that the algorithm parameters are adequately set.

GROUP TECHNOLOGY:
AN OVERVIEW

Efficiency under every point of view is neces-
sary for a company wanting to survive and
thrive in today’s competitive scenario. Among
the various approaches that have been pro-
posed to improve the efficiency in manufactur-
ing, there is group technology (GT) (Callagher
& Knight, 1973).

GT, which was born originally in Russia, can
be defined as a manufacturing philosophy help-
ing to manage diversity by identifying similari-

ties in products and activities. It began exploit-
ing these similarities on a single machine, allow-
ing productivity to rise by 30-40%.

This concept was then widened to encom-
pass more machines at the same time, and the
new goal was to gather pieces with similar
technological cycles and to associate every
group of items (family) to a group of machines
(cell) able to realize all the necessary activities
(Optiz, 1970; Waghodekar & Sahu, 1984;
Fazakerlay, 1974; Ham & Yoshida, 1985;
Gallagher & Knight, 1986).
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The cellular manufacturing system is a valid
alternative to an organization based on process
specialization, where in every department there
are similar machines, able to realize only a part
of the technological cycle. Long and uncertain
throughput times are usually the major prob-
lems in the latter system. Other problems in-
clude an increase in inventory holding cost,
untimely product delivery, and loss of sales
(Cheng, Goh, & Lee, 2001).

It is widely agreed that GT is a management
strategy which affects all areas of a company,
like part design, production control, process
planning, maintenance, and purchasing, and has
a relevant impact on its productivity. The ben-
efits of GT reorganization of manufacturing
system, discussed by many authors (Burbidge,
1996; Sarker, 1996; Singh & Rajamani 1996),
are the following:

• reduce material handling costs,
• reduce setup time,
• reduce throughput time
• improve delivery performances,
• reduce work-in-progress, and
• improve the quality level.

Nevertheless, Burbidge (1996) claims such
advantages are not automatic. They are avail-
able, but action must be taken to achieve them.

When the variety and the need of its reduc-
tion does not concern only the products, but also
the technological cycles, the cell formation
problem, needing to be dealt with in order to
achieve the above said objectives and concern-
ing the identification of the family of parts and
the group of machines on which these parts are
to be processed, is very complex. These prob-
lems have been highlighted by Kusiak (1987),
Nagi, Harhalakis, and Proth (1990), and Kusiak
and Cho (1992).

If every end-item to produce had the same
technological cycle, the management of the

productive system would be rather simple: there
would not be out-of-cell flows and the load
could be well balanced, thus achieving superior
performances. Unfortunately the real world is
not so simple, and the problem of reorganizing
in cells a productive department of average
dimensions is notably complex (Selim, Askin, &
Vakharia, 1998). For example there are more
than 1015 ways to reorganize 15 machines and
45 end items in three cells of 5 machines and 15
end-items each, and the number is bound to
explode if the number of machines and items in
each cell is free to change.

A high number of GT approaches have been
developed to decompose a large manufacturing
system into smaller, manageable systems based
on similarities in design attributes and manufac-
turing features.

Classifications of methods of cell formation
have been proposed by several researchers. A
possible classification is based on the type of
solution methodology (Singh & Rajamani, 1996;
Selim et al., 1998):

• classification approach using coding sys-
tems (hierarchical clustering algorithm, P-
median model, multi-objective clustering);

• part-machine group analysis methods
(rank order clustering—ROC, ROC2,
modified ROC, direct clustering algorithm,
cluster identification algorithm);

• algorithms based on similarity coefficients
(single linkage clustering, complete link-
age clustering, and linear cell clustering);

• mathematical models (quadratic program-
ming, graph theoretic, nonlinear program-
ming models); and

• techniques dealing with combinatorial op-
timization problems (genetic algorithms,
artificial neural networks, adaptive fuzzy
systems).

Other classifications can be based on the
following dimensions (Singh & Rajamani, 1996):
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• heuristic vs. optimizing approaches;
• sequential vs. simultaneous approaches to

cell formation;
• single-objective vs. multi-objective ap-

proaches; and
• iterative vs. random search algorithms.

Advice on the comparison and determina-
tion of the appropriateness of these techniques
are given by Shafer and Meredith (1990) and
Selim et al. (1998).

According to Selim et al. (1998), major
shortcomings of prior research are as follows.
First, several cell formation procedures con-
sider only a single objective in identifying cells.
Second, heuristic approaches use a subjective
evaluation and are affected by the nature of
input data. Third, mathematical models are
often hard to implement due to computational
limitations for large real problems. Fourth, very
little attention has been paid to the incorporation
of manufacturing flexibility in cellular manu-
facturing systems.

This chapter is aimed at proposing a nature-
inspired algorithm that could improve the un-
derlined criticalities, with particular emphasis
on the first one. In the next section the problem
to be solved and the industrial case are pre-
sented and the proposed ant algorithm is de-
scribed. The third section focuses on the auto-
set procedures for the parameters used in the
algorithm, while in the fourth section the main
results of the experimental analysis are high-
lighted. Finally, conclusions are drawn and some
future research directions are proposed.

THE PROPOSED ANT
ALGORITHM

GT techniques can be applied to both problems
of production systems design, including pur-
chase decisions for the machines, and configu-
ration problems, that is choices of placement

for a certain set of machines and production
flow management.

The aim of this chapter is to propose a
heuristic approach to the latter typology of
problems, with reference to a specific industrial
case. Criticalities highlighted during the case
study could be solved by reorganizing a portion
of a production system into cells.

The proposed approach is based on the
properties of the ant system paradigm, which
was been extensively studied by researchers
from the mid-1990s and whose effectiveness
has already been recognized in literature by
Van Dyke Parunak (1996a, 1996b).

Ant algorithms have successfully been ap-
plied to solve many complex combinatorial prob-
lems, such as the traveling salesman problem
and the problem of network-traffic optimization
(Shtovba, 2004). Relevant applications have
been proposed to solve:

• scheduling problems, such as the problem
of job scheduling for the final line of
assembly mixed model (Dorigo, Maniezzo,
& Colorni, 1996), the problem of flowshop
scheduling (T’kindt, Monmarché, Tercinet,
& Laugt, 2002), the problem of group shop
scheduling (including the open shop sched-
uling problem and the job shop scheduling
problem) (Blum & Sampels, 2004), and
the production-inventory scheduling prob-
lem in a steel continuous-casting plant
(Ferretti, Zanoni, & Zavanella, 2004); and

• problems of assembly sequence planning
for mechanical products (Wang, Liu, &
Zhong, 2005).

The heuristic ant algorithm proposed in this
chapter deals with the cell formation problem in
a sequential way: first, it determines which
machines must be grouped together to form
cells by a certain number of iterations; on the
basis of the system configuration thus obtained,
it is then possible to determine which parts
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should be grouped in cells by another series of
iterations. Two constraints are considered: the
set of available machines is fixed, and the
number of cells to form by the algorithm is
predefined.

After generating a certain number of alter-
native configurations for the system, it is pos-
sible to compare them with the initial case by an
objective function (consisting of the sum of
differential costs) to select the best solution.

The Industrial Scenario

The proposed algorithm has been tested in a
real case and employed for a washing-ma-
chines producer whose production department
was formerly organized as a job shop.

The productive cycle can be summarized as
follows: in a “cutting department” with nine
machines, 700 different items (metal sheets of
different sizes) were realized; after that, in a
“machining department” with 40 machines,
1,500 different parts were produced and then
assembled in a “assembly department.” The
final output was 6,400 different products, which
could be divided in three product families (small,
medium, and large). The first two departments
were organized as a job shop, while the last one
encompassed three assembly lines. Because of
the wide range of products and the internal
layout, lead time was long and quite uncertain,
and associated costs were very high. So, the
aim was to reorganize the first two departments
in cells using group technology. The proposed
algorithm has been applied separately to the
two departments, and the number of final cells
has been set equal to three (that was the
number of products families) for each one.

A Quick Overview of
the Proposed Algorithm

For the proposed approach, a behavioral pat-
tern has been developed that has its origin in the

ants’ way of sorting food, larva, and pupa in an
anthill. The parallel between a department and
an anthill is summarized in Table 1.

In order to solve the two sub-problems
constituting the cell formation problem, two
different groups of ants are introduced in the
algorithm: the “technologist” ants (tech-ants)
have the goal to gather machines in the cells,
the “productive” ones (prod-ants) to gather
pieces into families. In the algorithm the con-
cept of family is assumed to correspond to that
of the associated cell.

Each typology of ant has a different objec-
tive to reach:

• The aim of tech-ants is to optimize the
match between the capability of a cell and
the technological requirement determined
by the product family associated to the
cell.

• The aim of prod-ants is to optimize the
match between the capacity of a cell and
the load generated by the family associ-
ated to it.

Both specified types of agents move within
the department and influence each other. Pre-
cisely, it is necessary for tech-ants to alternate
with the prod-ants with frequency previously
fixed by the user, according to the following
general rules:

Table 1. Comparison between real life and
artificial life

Real Life Artificial Life 

Ant hill Productive department 

Rooms of ant hill Cells and product families 

Object moved by ant (larva, food) Machine, item 
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• An ant wanders within a department as if
it was in an anthill: the cells (for the tech-
ant) and the families of items (for the
prod-ant) are like different rooms of the
anthill.

• Every ant can lift, transport, and drop
objects as it walks through the anthill.

• When an ant enters the system, it does not
transport any object.

• An ant memorizes the last objects en-
countered on its way. When the ant is not
loaded, it may lift up an object and begin to
carry it with a probability depending on the
similarity degree between such object and
the array of last visited objects. On the
contrary, when the ant is charged, it can
release an object on the basis of the same
similarity degree.

The initial system configuration is obtained
by applying the ROC algorithm (Singh &
Rajamani, 1996), and by considering the con-
straints of the fixed number of final cells within
the system and the presence of at least one
machine in every cell.

Starting from this configuration, it is possible
to gather the available machines in cells, by a
certain number (N) of iterations of tech-ants,
which will be described in the following para-
graphs. For the configuration thus obtained, the
allocation of the different items in cells is
determined by M iterations of prod-ants. Dur-
ing this phase some elements distinguishing the
proposed approach are considered, such as the
annual demand and number of lots for the
different products, the load balance among
cells, and the target level of saturation for the
machines.

Considering the current state of the re-
search, it is possible to apply the proposed
approach to reorganize already existing pro-
ductive departments, but not to design new
departments.

Inputs of the algorithm are as follows:

• number and typology of available ma-
chines;

• technological capability and target satura-
tion level for the machines;

• number and type of different products;
and

• annual demand for the different products.

Starting from these data, the algorithm is
able to generate a certain number of robust
solutions, but in general it does not necessarily
find the best configuration. Since the set of
machines within the system is fixed, the objec-
tive function adopted to compare the obtained
solutions does not include costs for purchasing
machines. Costs for standard processing are
not considered either, because they are not
differential among the different solutions. The
relevant elements compared to the initial case
are as follows:

• costs for moving machines among cells;
• costs for inter-cell moving of jobs on

annual basis;
• costs for facilities and tools on annual

basis; and
• costs of overtime processing due to high

level of machine saturation.

A synthetic view of the algorithm is pre-
sented in Figure 1.

The Tech-Ants

After entering the system, a tech-ant selects a
cell from where to start its random walk. As
shown by the flow chart in Figure 2, it then
analyzes in a random order the machines be-
longing to the cell. When analyzing a machine,
the ant can decide whether to lift up or not the
selected machine. The higher the probability to
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lift the selected machine, the lower the degree
of similarity of this to the last N machines
analyzed in the current cell, where N is an
integer number indicating the size of an ant’s
memory (see “Memory of the Ants” para-
graph).

If the ant decides not to lift the machine, it
will then select another machine among the
remaining ones. If instead it decides to lift the
machine (or if it has analyzed all the machines
without lifting any), the ant leaves the cell and
moves toward the next one. When an ant enters
a new cell carrying a machine, it begins to
compare the machine with the present ones and
it appraises the opportunity of dropping it, con-
sidering just as before the degree of similarity
between the machines. If the ant does not
succeed in dropping the carried machine in any
of the cells, the release of the machine is forced
in the departure cell. In Figure 2 the distinction
between two loops, the loop for lifting up an
object and the loop for dropping it, is outlined.

Besides, in order to move a machine, a mini-
mum number of ants is necessary.

The input parameters of the algorithm about
the tech-ants will be explained in the following
paragraphs:

1. similarity coefficient between two ma-
chines;

2. probability function of moving a machine;
3. memory of the ants;
4. number of ants in the production system;
5. “weight” of the machines.

Similarity Coefficient
between Two Machines

For every given couple of machines, the simi-
larity coefficient measures the number of com-
mon items. The higher the number of items that
need working on both the machines, the higher
the similarity degree between the machines in a
range from 0 to 1 (Sarker, 1996). In the past,

Figure 1. Overall system structure Figure 2. Tech-ants flow chart
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several measures of similarity among the ma-
chines and parts have been proposed as single
linkage clustering (SLC), complete linkage clus-
tering (CLC), average linkage clustering (ALC),
and linear cell clustering (LCC) (Singh &
Rajamani, 1996).

Traditional coefficients compare one ma-
chine with another one, while an ant compares
one object with a group of objects saved in its
memory. To preserve this behavior and opti-
mize, at the same time, the matching between
capability and technological requirement, a
“modified single linkage clustering” has been
defined. It compares the selected machine with
a “virtual machine.” In general, a machine can
be defined as an array of 1 and 0, where:

• a 1 in a position means that at least a phase
belonging to the routing of a specific prod-
uct (or product line) is carried out by the
considered machine; and

• a 0 in a position means that a specific
product (or product line) is not worked by
the considered machine.

The virtual machine is determined as the
average of the machines in the memory of the
ant; it can be defined as a vector of numbers
between 0 and 1 (not of binary numbers like for
the SLC method). This fuzzy logic expresses
the contribution of each machine to the defini-
tion of “similarity.”

The proposed similarity coefficient is as
follows:

• the numerator is calculated as the scalar
product of the vector associated to the
virtual machine and the vector associated
to the selected machine; and

• the denominator is calculated as the sum
of the terms of the vector whose elements
equal the maximum between the homolo-
gous elements of the vector associated to

the virtual machine and the vector associ-
ated to the selected machine.

A simple numerical example can be useful
to clarify the proposed procedure (see Table 2).
The similarity coefficient between the average
machine and the selected one is as follows:

55,0
15,05,0115,01

5,015,01 =
++++++

+++=CS

Probability Function of
Moving a Machine (Pmach)

The probability function defines the inclination
of an ant to lift a machine; it is one of the most
important features of the model. In fact, this
function influences the dynamic of the whole
system.

Probability to lift a machine h and to move it
to a cell j is based on the coefficient of similarity
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Table 2. Exemplification of the concept of
virtual machine by means of a simple
numerical case
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(CShj) in that the higher the CS, the higher the
probability. The adopted probability function is
as follows (notation explained in Appendix A):

( )
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= hj
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By modifying b, it is possible to adapt the
model to different contexts. The trend of the
function depending on β value is shown in
Figure 3.

A procedure of auto-set of β parameter has
been adopted which will be explained in the
following section.

Memory of the Ants (Mem)

The size of an ant’s memory is a typical vari-
able of natural models. In particular, to provide
food or to build and organize an ant hill, ants
have few tools and follow few rules. Their brain
works out information received from a space of
a few centimeters around their body. Besides,
they store only a few seconds of their past in

their memory. This peculiarity gives them the
capability of sorting their ant hill. If memory
was too long, differences would be slight and
the system would be static; otherwise, if memory
was too short, differences would be unaccept-
able and the system would be completely cha-
otic.

In the proposed model the user can set the
memory size to a value ranging from 1 to Nmach
(Nmach being the number of machines present in
the production department).

Number of Ants in the Production
System (Nprod, Ntech)

One of the rules of artificial life is that an
interesting behavior can emerge by combining
a multitude of simple elements. That is the
reason why a certain number of ants will be
introduced in the system (Ntech for tech-ants
and Nprod for prod-ants).

Besides, the behavior of just one ant could
not have been simulated because of the intro-
duced weight of the machines. Obviously, the
larger the number of ants in a productive de-
partment, the higher the fluidity of the system
and the higher number of movements makes
more likely the achievement of a better solu-
tion.

“Weight” of the Machines (SW)

Cost consideration can be introduced into the
behavior of tech-ants by considering the weight
of the machines: in the algorithm, weights are
proportional to costs of inter-cell shifting of
machines. In this way, it is possible to balance
two different types of costs that are usually
conflicting for a fixed set of machines. They
are as follows:

• una tantum costs occasionally met to move
machines, tools, and facilities; and

Figure 3. Probability function depending on
b value

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

CS

P

P(b=1) P(b=5)

P(b=20) P(b=0,2)



518

A New Way to Reorganize a Productive Department in Cells

• yearly handling costs (due to inter-cell
movements of jobs and material handling).

It is possible to associate a “standard weight”
to every machine, depending on the number of
ants in the department ( γ  is a percentage
value).

γ*
N

techN
SW

mach

=

For each machine, standard weight is in-
creased proportionally to the cost for its inter-
cell moving.

The Prod-Ants

The behavior of prod-ants is the following: the
single ant enters the system unloaded and, in a
random way, it selects a job belonging to a
family of the considered department. At this
point it considers the content of the work of the
job in the associated cell: if the balancing of the
loads is better with the product worked in the
cell in comparison to the case in which it is
transferred to another cell, the ant leaves the
job where it was and selects another job; on the
contrary, the ant moves the job to another cell.
This way, prod-ants look for a set of products
that guarantees an optimal saturation of the
machinery. On the condition that a “job” re-
places a “machine,” the flow chart shown in
Figure 2 can be considered valid also for prod-
ants.

The ants appraise the work content of the
machines by the “load vector,” which will be
described in the following paragraphs. A num-
ber of load vectors equal to the number of cells
in the department is calculated for each job.

Variables used to determine prod-ants’ be-
havior are the cost of out-of-cell operations,
which allows eventual operations realized out-

side the cell associated to the job to be taken
into account, and the target level of machine
saturation specified by the user. These vari-
ables determine the probability of moving a job
which expresses the inclination of an ant to
leave the selected job in one cell.

Cost of Out-of-Cell Operations (C)

When the family of machines of a cell is not
able to execute all the operations required by a
certain item, some activities have to be realized
elsewhere, thus implying a handling cost (the
duplication of resources is forbidden because
the set of machines is fixed).

It is possible to express the cost of out-of-
cell operations by the degree of glut of the
resources. The cost is depending upon the
number of lots (not the number of pieces)
worked out-of-cell. In fact, working out-of-cell
a job of pieces has more or less the same impact
in terms of handling cost and set-up times.

The cost associated to out-of-cell process-
ing of job “i” can be, therefore, defined analyti-
cally like the product of two terms:

• a fixed constant C representing the cost of
single out-of-cell operation; and

• a variable, declared in percentage form,
function of the total number of lots.

The coefficient has, therefore, the following
form:

C
n

n

Wj
j

i *=� i ∑
∈

Target Level of
Machine Saturation (TL)

Once the cost to be associated to the out-of-
cells operations has been defined, the “load
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vectors” can be determined with reference to
one cell of the department both in the presence
and in the absence of the product under exami-
nation. Each vector is calculated on the condi-
tion that the selected job is worked in one of the
cells and its dimension is (n,1), where n is the
number of machines in the department. Ele-
ments within the vector are the resulting loads
for the N machines of the department.

Then the program calculates the deviation
(i.e., the distance) of these loads from the
target utilization rate specified by the user for
every machine. Such target level should ensure
a good trade-off between an adequate fluidity
of parts within the system and a good load of the
machines, subject to the physical and operative
constraints.

The inclination of the ants to release the
selected product is a function of the weighted
sum of these deviations. Precisely, in defining
the function it has been guaranteed that:

• the function gives always positive values
so that positive and negative values can-
not compensate and therefore produce a
null result; and

• the trend of the function is different for
overload and low saturation conditions, to
take into account the more relevant im-
pact of values higher than the target level
(impossibility to satisfy the demand level,
higher dependence on failures and break-
downs, reworking costs and problems in
the production planning) compared to lower
rates.

The adopted function, with reference to
machine h, is as follows:
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The trend of the curve is parabolic for the
range of those load values that are lower than
the target level, while it is exponential for the
range of higher values. Since the increase rate
of the exponential curve is higher than that of
the parabolic one, the overload conditions are
more penalized than the low saturation ones.
As shown in Figure 4, even small variations in
the target level can imply relevant changes in
the results.

Probability Function of
Moving a Job (Pjob)

The inclination of the ants to release the se-
lected product in one cell rather than in another
depends on the impact of such decision on the
machine loads. Such inclination is consequently
expressed by a probability function, which de-
pends on the ratio between the weighted sum of
the load vector deviations in two alternative
cells. The load vector deviations are weighted
differently depending on the machine under
examination. The weight to associate to one
machine is determined by calculating the refer-

Figure 4. Deviations of loads from the target
level
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ence job. It has been defined as the weighted
average of the annual processing times of the
different products processed on each machine.
Once the reference job and the availability of
each resource have been known, it is possible to
calculate the maximum number of standard mix
the machinery can produce. The higher the
number of units that can be produced is, the
lower the weight associated to the resource is.

With reference to two cells i and j, the ratio
between the load vector deviations is as follows:

∑
∑

∆

∆
=

h
h hj

h
hih

ij *

*
x

α

α

The proposed expression for the probability
function of moving a job from cell i to cell j is as
follows (where xij is the independent variable
and K a multiplicative constant):
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Probability values are included between 0
and 1, and the function associates a probability
equal to 0,5 for x equal to 1. Figure 5 shows the
trend of the probability curve for each single
variation of K. The parameter K can be auto-
set using the same procedure adopted for β
parameter, which will be presented in the next
section.

AUTO-SET OF THE
PARAMETERS

For maximum algorithm effectiveness, param-
eters are to be carefully set according to the
“morphology” of the specific production con-
text considered. For this aim a procedure of

auto-setting of parameters has been introduced.
The procedure is rather simple, and the idea

is the same for the two probability functions
defined for tech-ants and prod-ants: a partition
of the space of solutions is done during every
run of simulation, and in the following run only
the most “attractive” part is explored.

To better understand the logic, it is possible
to analyze the procedure for auto-setting β
parameter of the probability function of tech-
ants.

The user can choose the range in which the
parameters can move and the number of itera-
tions to set the parameters’ value. The center
value of the available range will be used as the
initial value of the parameter β. At the end of
the considered run, if the number of tech-ants
that had a value of the function of probability
greater or equal to 0.5 has been greater than the
number of tech-ants with a value of the function
of probability less than 0.5, that means that b is
too high and the system too dynamic; thus, in
the following run the available range will be the
left one. In other words, in each run a partition

Figure 5. Probability function depending on
k value
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of the space of possible values is set-up and
only the best part will be explored on the
following run. This process is repeated for a
certain number of times (the number of itera-
tions is set by the user).

EXPERIMENTAL ANALYSIS

Factorial Design

Some of the input parameters of the model
described in the previous paragraphs (the “tech-
ants” and the “prod-ants”) have been set be-
fore the analysis, whereas the parameters in-
cluded in Table 3 have been allowed to vary.

Every factor has been studied on three
different levels, but for reasons of time and
resources, a reduced factorial design encom-
passing 27 configurations has been tested, with
five repetitions for each configuration.

The trend of “mean square pure error,”
which has been calculated in order to determine
the duration of runs of simulation, is shown in
Figure 6.

An F test has been carried out to calculate
the length of runs. Choosing an amplitude of
having an error of I type α = 0.05 and an

amplitude of the classes p = 21, a number N of
74 iterations has been calculated.

Analysis of Results

An analysis of variance (ANOVA) has been
carried out in order to understand the relevance
of the tested variables. The ANOVA analysis
has pointed out that only three factors are
statistically significant:

• memory of tech-ant,
• target level of machine saturation, and
• ratio of tech-ants to prod-ants.

As Figure 7 shows, the system response
curve depending on the ratio tech-ants : prod-
ants has a greater slope compared to the other
factors; this result derives from the dispropor-
tion between the number of machines and the
number of jobs worked in the production sys-
tem. That disproportion (some tens of ma-
chines vs. some thousands of products) has to
be surpassed by a higher level of the ratio.

Another relevant variable has been showed
the memory of tech-ants but, unexpectedly,

Table 3. Variable input parameters

Variable input 
parameters 

Memory size of tech-
ants 

Target level of machine 
saturation 

Cost of out-of-cell 
operations 

Ratio tech-ants/prod-
ants 

Figure 6. The mean square pure error trend
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best reductions of costs have been found with
both high and low levels of the parameter. As a
matter of fact, tech-ants move machines with
the goal of finding organizational improvements,
but organizational improvements do not neces-
sarily correspond to an economic improvement.
The used costs structure has penalized the
work of tech-ants, so the result can be justified.

The third significant factor has been the
target level of machine saturation: configura-
tions of minimum cost have been found with a
high level of this variable. Increasing the target
level of machine saturation, the necessity of
overtime work decreases and, because of the
costs structure, that determines a costs reduc-
tion.

Not all the two-factor interactions are sig-
nificant. In particular, the following interactions
do not seem to be relevant:

• interaction between memory and target
level of machine saturation, and

• interaction between cost and ratio of tech-
ants to prod-ants.

On the contrary, the variance analysis has
shown the following interactions to be signifi-
cant:

• interaction between the cost of out-of-cell
operations and the level of machine satu-
ration, and

• interaction between the ratio tech-ants:
prod-ants and the level of machine satura-
tion.

The cause determining interaction between
the cost of out-of-cell operations and the level
of machine saturation is quite easy to detect:
increasing the level of both parameters, the
inclination of agents to minimize the out-of-cell
load is maximized.

CONCLUSION AND
FUTURE DEVELOPMENTS

In this chapter a heuristic algorithm is pre-
sented for solving a multidimensional GT cell
formation problem based on cooperation among
intelligent agents able to solve problems of
realistic size. Applying multi-entity techniques
derived from the properties of the ant system
paradigm seems to allow some improvements
compared to the traditional techniques for group-
ing machines into cells and parts into families—
from both the effectiveness and the efficiency
point of view. The main benefits are related to
the possibility of considering the trade-off be-
tween different features of the production sys-
tem, such as the target saturation level and the
actual load conditions for the machines. The
application of this method to a real case allowed
us to test the improvements obtained through
the algorithm in respect to the initial solution in
terms of the sum of associated costs. In addi-
tion the proposed solution is able to reduce the
variability of the delivery lead times and to
guarantee more flexibility in case of increased
demand.

However some future research should be
desirable to exactly evaluate the obtainable

Figure 7. Main effects plot—data means for
cost
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advantages compared to other existing tech-
niques. (Obviously, a comparison with ROC
method, which is used to obtain the initial sys-
tem configuration for the proposed approach, is
incorrect.)

A possible extension of the model is the
removal of the constraint of a fixed predeter-
mined set of machines within the production
system. Other possible future developments
for the research are related to the following
areas:

• testing alternative probability functions,
and

• completely automatizing the parameters
of self-regulation procedure.

In order to achieve the first objective, it is
possible to modify similarity coefficients used
by tech-ants by improving their memory and
their comparison capacities. A further exten-
sion of the model could be the introduction of a
mechanism allowing the exit from local mini-
mum positions.

As far as the second area is concerned,
future research on the applicability of the ant
system paradigm should include some mecha-
nisms of natural selection; for instance, re-
warding the ants that produce better behavior
can help to reinforce the system and set the
most adequate number of agents.
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ant system paradigm, aimed at solving different
types of problems within a reasonable amount
of time.

Cell Formation: Activity consisting of the
definition of families of parts to be manufac-
tured and groups of machines of the system by
which these parts must be processed.

Cellular Manufacturing System: Produc-
tive system composed of cells, including re-
sources able to process specific groups of
items.

Group Technology: Manufacturing phi-
losophy helping to manage diversity by identify-
ing similarities in products and activities (carry-
ing out similar activities, standardizing similar
assignments, filing and tracking down in an
efficient way information regarding recurrent
problems).

Heuristic Approach: Methodology pro-
posed to the resolution of a problem aimed at
finding an acceptable solution, but in general
not able to identify the optimal one.

Productive Ants: Agents with the aim to
optimize the match between cell capacity and
the load generated by the associated product
families.

Similarity Coefficient: Coefficient mea-
suring the number of common items for a
couple of machines, adopted in several meth-
ods of cell formation.

Technologist Ants: Agents with the aim
to optimize the match between cell capability
and the technological requirements determined
by the associated product families.

APPENDIX A: NOTATION

N = number of iterations of tech-ants
M = number of iterations of prod-ants

techN = number of tech-ants within the sys-
tem

prodN = number of prod-ants within the sys-
tem

hjCS = similarity coefficient between ma-
chine h and the group of machines j

hjmachP , = probability value to move machine h
to cell j

β = parameter set by the user
machN = number of machines in a production

department
Mem = size of ants’ memory
SW = standard weight for machine h, cor-

responding to the minimum inter-cell
moving cost

γ = coefficient set by the user, included
between 0 and 1

C = fixed constant linked to cost of single
out-of-cell operation

in = annual number of lots for product i
W = total number of realized products

hTL = target level of saturation specified by
the user for machine h

hAL = actual level due to the job selected by
the ant on machine h

hα = weight of machine h linked to its
capacity availability

hi∆ = deviation of the workload on machine
h from the target level (the job is
supposed to be associated to the cell
i, i.e., the original cell)

hj∆ = deviation of the workload on machine
h from the target level (the job is
supposed to be associated to cell j,
i.e., the original cell)

ijjobP , = probability value to move a job from
cell i to cell j
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Factor Type Levels Values 

Memory size Fixed 3 1 2 3 

Objective level Fixed 3 1 2 3 

Penalty Fixed 3 1 2 3 
Ratio tech-ants/prod-
ants Fixed 3 1 2 3 

Source DF Seq SS Adj SS Adj MS F P 
Memory size 2 1.4551E+18 1.4956E+18 7.4780E+17 15.45 0.000 
Objective level 2 1.6755E+18 1.6780E+18 1.3900E+17 17.34 0.000 
Penalty 2 3.6004E+17 1.9786E+17 1.9893E+17 4.11 0.019 
Ratio tech-ants/prod-ants 2 7.3381E+19 1.3392E+19 1.6696E+19 758.27 0.000 
Memory size * 
Objective level 4 6.1884E+16 1.2471E+16 1.5618E+16 0.32 0.862 

Objective level * Penalty 4 1.4550E+18 1.4551E+18 1.6378E+17 7.52 0.000 
Objective level * 
Ratio tech-ants/prod-ants 4 1.4975E+18 1.4975E+18 1.7438E+17 7.74 0.000 

Error 113 5.4686E+18 1.4686E+18 1.8394E+16   
Total 133 8.5355E+19     
 

Factor Level % Reduction 
Memory size 1 

2 
3 

46.6 
39.2 
49.2 

Objective level 1 
2 
3 

39.5 
44.9 
50.6 

Penalty 1 
2 
3 

46.6 
46.3 
42.1 

Ratio tech-ants/prod-ants 1 
2 
3 

3.1 
60.7 
71.5 

Variance Alalysis Output

Average % Reduction of Total Cost Compared to the Initial Configuration

APPENDIX B:
SIMULATION RESULTS



  527

��������			!

�����������������������
���� ������������

������(������������������

Kuldar Taveter
University of Melbourne, Australia

Gerd Wagner
Bradenberg University of Technology at Cottbus, Germany

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

ABSTRACT

This chapter proposes an agent-oriented method for modeling and simulation of distributed
production environments. The proposed method views a manufacturing enterprise as consisting
of active entities—agents. The method makes use of the Radical Agent-Oriented Process (RAP)
methodology introduced by Taveter and Wagner (2005) which is based on Agent-Object-
Relationship (AOR) modeling. The chapter first presents the AOR Modeling Language and the
RAP/AOR viewpoint modeling framework of the methodology. Thereafter its lays out principles
of turning the modeling constructs of the RAP/AOR methodology into the implementation
constructs of a simulation environment and briefly describes the simulation environment. The
method is aimed at the creation of environments for modeling and simulation of distributed
manufacturing.

INTRODUCTION

With the advent of virtual enterprises, new
business models emerge. In them, a manufac-
turing enterprise should be capable of compos-
ing its manufacturing processes in a modular
fashion so that if the factory receives an order
at short notice, the satisfaction of which re-
quires only a part of a full-length manufacturing

process of the enterprise, the order will be
scheduled and satisfied in a dynamic, flexible,
and fast manner. One way to achieve this is to
view a manufacturing enterprise as a collection
of active entities—agents—so that each re-
source would be represented by an agent re-
sponsible for scheduling and performing its
manufacturing operations. An agent is autono-
mous and does not know the decision logic of
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the other agents as a rule. The decision logic is
thus specified for each agent individually and
not for the system of agents as a whole. Differ-
ently from conventional modeling approaches,
including UML (OMG, 2003a, 2003b), this is
closer to how real socio-technical systems—
consisting of both human and technical compo-
nents—operate. This is why our approach can
be characterized as inspired by nature.

THE RAP/AOR METHODOLOGY

The Radical Agent-Oriented Process/Agent-
Object-Relationship (RAP/AOR) methodology
of simulation and software engineering, which
was introduced by Taveter and Wagner (2005),
is based on the Agent-Object-Relationship
Modeling Language (AORML) proposed by
Wagner (2003a) and the Business Agents’
approach presented in Taveter (2004). The
ontological foundation of the RAP/AOR con-
cepts is provided by the Unified Foundational
Ontology (UFO) proposed by Guizzardi and
Wagner (2005). The UFO defines an ontologi-
cal distinction between active and passive en-
tities—that is, between agents and (non-
agentive) objects of the real world. The agent
metaphor subsumes artificial (software and
robotic), natural (human and animal), as well
as social/institutional agents (groups and or-
ganizations). We will subsequently describe
AORML, which is used as the main graphical
description for work products of RAP/AOR.
Thereafter, we will introduce the RAP/AOR
viewpoint modeling framework forming the core
of the methodology.

The AOR Modeling Language

In AORML, an entity is an agent, an event, an
action, a claim, a commitment, or an ordinary
object. Only agents can communicate, per-
ceive, act, make commitments, and satisfy

claims. Objects are passive entities with no
such capabilities. Besides human and artificial
agents, AORML also includes the concept of
institutional agents, which are composed of a
number of other agents that act on their behalf.
Organizations and organizational units are im-
portant examples of institutional agents.

There are two basic types of AOR models:
external and internal models. An external
AOR model adopts the perspective of an exter-
nal observer who is looking at the (prototypical)
agents and their interactions in the problem
domain under consideration. In an internal AOR
model, the internal (first-person) view of a
particular agent to be modeled is adopted.
While a (manufacturing) domain model corre-
sponds to an external model, a design model
(for a specific agent-oriented information sys-
tem) corresponds to an internal model which
can be derived from the external one. Since the
use of external AOR models suffices for the
purposes of simulation, in this chapter internal
AOR models are treated only marginally.

An external AOR diagram specified by
Figure 1 shows how the types and instances (if
applicable) of institutional, human, and artificial
(for example, software) agents of a problem
domain can be represented, together with their
internal agent types and instances and their
beliefs about instances of “private” and exter-
nal (“shared”) object types. There may be
attributes and/or predicates defined for an ob-
ject type and relationships (associations) among
agent and/or object types. A predicate, which is
visualized as depicted in Figure 1, may take
parameters. As in UML (OMG, 2003a, 2003b),
an instance of a type is graphically rendered by
a respective rectangle with the underlined name
of the particular instance as its title.

As formulated in Wagner (2003a) and re-
flected by Figure 1, if an object type belongs
exclusively to one agent or agent type, the
corresponding rectangle is drawn inside of this
agent or agent type rectangle. Otherwise, if the
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object type rectangle is drawn outside of the
respective agent or agent type rectangles, the
focus agents have by default beliefs of the
corresponding structure about its instances.
However, Wagner (2003a) has emphasized
that an external object type does not imply that
all the agents connected by an association to it
have the same beliefs about it, or in other
words, that there is a common extension of it
shared by all agents.

Sometimes a belief of an agent needs a
different representation, using different at-
tributes and predicates, because it does not
directly correspond to the structure of an “ex-
ternal” object type, but rather to the agent’s
“personal” view of it. For such a case, we have
extended AORML by the UML dependency
arrow with the stereotype <<represents>> be-
tween the internal representation and the cor-
responding external object type. For example,
there is an internal representation of the object
type ProductionOrder  within the agent
CeramicsFactory.

Figure 1 shows that the graphical notation of
AORML distinguishes between an action event
type (an event that is created through the action

of an agent, such as starting a machine) and a
non-action event type (for example, types of
temporal events or events created by natural
forces). The graphical notation of AORML
further distinguishes between a communica-
tive action event (or message) type and a non-
communicative (physical) action event type
like providing another agent with a commodity.

Two kinds of commitments may occur be-
tween agents: commitments to perform actions
of certain types, such as a commitment of the
SalesDepartment of the CeramicsFactory to-
wards a Customer to provide it with a product
set, and commitments to see to it that some
condition holds, such as a commitment of the
Product ionDepartment  towards the
SalesDepartment to have a ProductionOrder
completed. The former are called to-do com-
mitments and the latter see-to-it-that (stit)
commitments. A stit-commitment is used for
modeling situations where one agent directly
requests another agent to make true some
proposition that is expressed in terms of predi-
cates defined for object types. An achieve-
modeling construct type denotes achieving—
that is, making true—a proposition.

Figure 1. The core mental state structure and behavior modeling elements of external AOR
diagrams
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In an external AOR model, a commitment of
agent a1 towards agent a2 to perform an action
of a certain type (such as a commitment to pay
for a product set) can also be viewed as a claim
of a2 against a1 that an action of that kind will
be performed. Figure 1 reflects that a commit-
ment/claim type is coupled with the action
event type whose instance fulfills the corre-
sponding commitment (or satisfies the claim).
Analogously, an achieve-construct type is
coupled with the corresponding stit-commit-
ment/claim type. An achieve-construct type
and the stit-commitment/claim type coupled
with it are visualized like an action event type
and the commitment/claim type coupled with it
shown in Figure 1 but drawn with a thick line.

In an external AOR model, there are four
types of designated relationships between agents
and action events: sends and receives are
relationship types that relate an agent with
communicative action events, while does and
perceives are relationship types that relate an
agent with non-communicative action events.
A relationship of the perceives type also relates
an agent to non-action events perceived by it.
In addition, there are two types of designated
relationships between agents and commitments/
claims: hasCommitment and hasClaim. These
designated relationship types are visualized
with particular connector types as depicted in
Figure 1.

As Wagner (2003b) has shown, mental state
structure modeling in AORML can be defined
as a UML Profile, that is, it is a conservative
extension of UML class modeling.

The most important behavior modeling ele-
ments of AORML are reaction rules. As is
shown in Figure 1, a reaction rule is visualized
as a circle with incoming and outgoing arrows
drawn within the rectangle of the agent type or
instance whose reaction pattern it represents.
Each reaction rule has exactly one incoming
arrow with a solid arrowhead that specifies the

triggering event type. In addition, there may
be ordinary incoming arrows representing men-
tal state conditions (referring to corresponding
instances of other object types or to the predi-
cates defined for them). There are two kinds of
outgoing arrows: one for specifying mental ef-
fects (changing beliefs and/or commitments)
and the other one for specifying the performance
of (physical and/or communicative) actions. An
outgoing arrow with a double arrowhead de-
notes a mental effect. An outgoing connector to
an action event type denotes the performance of
an action of that type. As Taveter and Wagner
(2001) have shown, reaction rules are the most
important type of business rules.

Reaction rules start activities. An activity is
defined using workflow terminology as an
uninterruptible amount of work that is per-
formed in a non-zero span of time by an actor1

(Eshuis, Jansen, & Wieringa, 2002). Each ac-
tivity belongs to some activity type, which is
visualized in the way depicted in Figure 1. An
activity type (or task in Yu, 1995), like “Pro-
cess production order,” is defined as a proto-
typical job function in an organization that speci-
fies a particular way of doing something by
performing one or more elementary epistemic,
physical, and communicative actions in a non-
zero span of time by an agent.

It seems natural to allow specifying the start
of an activity in the action part of a reaction rule
as shown in Figure 1. In other words, an in-
stance of an activity type is created by means
of a reaction rule in response to perceiving an
event. Dataflow through an activity in the course
of its execution is represented as input param-
eters of the activity. In an external AOR dia-
gram, the input parameters that are passed to
the activity are defined in parentheses follow-
ing the name of the activity type. Additionally,
one can define for each activity type in terms of
its input parameters the goal that its instances
try to achieve.
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There are activity border events of two
types (start-of-activity and end-of-activity)
implicitly associated with the beginning and end
of each activity. An activity border event starts
either a sub-activity or a subsequent activity, or
triggers a reaction rule. As Figure 1 reflects,
the start-of-activity event type is graphically
represented by an empty circle with the outgo-
ing arrow to the symbol of the sub-activity type
or internal reaction rule. The end-of-activity
event type is visualized by drawing a triggering
arrow from the activity type symbol to either
the symbol of the next activity type or to the
symbol of the reaction rule triggered by an
activity of the corresponding type.

Taveter (2004) has shown that AORML
extended by activity modeling allows the repre-
sentation of 16 out of 19 behavioral workflow
patterns as defined in the workflow benchmark
proposal of van der Aalst, ter Hofstede,
Kiepuszewski, and Barros (2003). Examples of
such behavioral patterns are the sequence and
parallel split of activities and execution of ac-
tivities in loops of various types.

An external AOR diagram of the kind shown
in Figure 1 can be considered as a specification
of a high-level state transition system where
the state of an agent consists of two parts: its
mental state (beliefs, memory of events, ac-
tions, and commitments/claims) and its activity
state. Taveter (2004) has formalized the ex-
ecution cycle of such an agent based on the
semantic framework of Knowledge-Percep-
tion-Memory-Commitment (KPMC) agents
proposed by Wagner and Schroeder (2000).

An external AOR diagram represented by
Figure 1 can be decomposed into one or more
diagrams of the following types:

• AOR Agent Diagrams: Depicting the
agent types (and instances, if applicable)
of the domain, certain relevant object types,
and the relationships among them;

• AOR Interaction Frame Diagrams:
Depicting the action event types and com-
mitment/claim types that determine the
possible interactions between instances
of two agent types;

• AOR Interaction Sequence Diagrams:
Depicting prototypical instances of inter-
action processes;

• AOR Interaction Pattern Diagrams:
Focusing on general interaction patterns
expressed by means of a set of reaction
rules which define an interaction process
type; and

• AOR Activity Diagrams: As specifica-
tions of parameterized behaviors at differ-
ent levels of granularity that are expressed
as flows of execution via sequencing of
subordinate activities whose primitive el-
ements are individual epistemic, physical,
and communicative actions.

Examples of diagrams of most of the kinds
defined above are presented in the case study
of Taveter (2006).

An internal AOR model may comprise one
or more diagrams of the following types, in
addition to AOR agent diagrams:

• AOR Reaction Frame Diagrams: De-
picting other agents (or agent types) and
the action and event types in the internal
perspective of an agent, as well as the
commitment and claim types that deter-
mine the possible interactions with them;

• AOR Reaction Sequence Diagrams:
Depicting prototypical instances of inter-
action processes in the internal perspec-
tive of an agent;

• AOR Reaction Pattern Diagrams: Fo-
cusing on the reaction patterns of the
agent under consideration expressed by
means of reaction rules; and
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• AOR Activity Diagrams: As specifica-
tions of parameterized behaviors in the
internal perspective of an agent.

The RAP/AOR Viewpoint
Modeling Framework

While in the previous section we provided an
overview of the graphical notation used in the
RAP/AOR methodology, in this section we
describe the methodology itself. The core of the
methodology is formed by the RAP/AOR view-
point modeling framework described in Table
1. It is based on the six perspectives of agent-
oriented business modeling proposed by Taveter
(2004) which is, in turn, rooted in the ideas of
the Zachman framework (Sowa & Zachman,
1992). The RAP/AOR viewpoint modeling
framework is also well aligned with the Model-
Driven Architecture (MDA, http://
www.omg.org/mda/) framework of the Object
Management Group (OMG). It consists of a
matrix with three rows representing different

abstraction levels and three columns represent-
ing the viewpoint aspects interaction, infor-
mation, and behavior. Each cell in this matrix
represents a specific viewpoint, such as con-
ceptual interaction modeling, computational
information design, or behavior implemen-
tation.

Normally one or more views are created for
each viewpoint using the respective modeling
language(s). A view is a diagram or a model of
another kind, such as a tabular use case or a
textual description. In the following, different
viewpoints of the framework will be briefly
described.

The domain interaction viewpoint (col-
umn 1 in Table 1) concerns the analysis and
modeling of active entities, that is, of agent
types and instances and relationships, as well
as the interactions and communication be-
tween them. The domain interaction viewpoint
comprises organization modeling. The purposes
of organization modeling are to identify:

Viewpoint 
Models 

Viewpoint Aspect 

Abstraction 
Level 

Interaction Information Behavior 

Conceptual 
Domain 
Modeling 
 

AOR Agent Diagrams, UML 
Use Case Diagrams, AOR 
Interaction Frame Diagrams, 
AOR Interaction Sequence 
Diagrams 

AOR 
Agent 
Diagrams 

Goal-Based 
Use Case Models 
(Cockburn, 1997a, 
1997b, 2001), Goal 
Models (Kuan, 
Karunasakera, & 
Sterling, 2005), AOR 
Interaction Pattern 
Diagrams, AOR 
Activity Diagrams 

Platform-
Independent 
Computational 
Design 

UML Use Case Diagrams, 
AOR Reaction Frame 
Diagrams, AOR Reaction 
Sequence Diagrams, User 
Interface Design Models, 
Security Models, UML Class 
Diagrams, UML Interaction 
Diagrams 

AOR 
Agent 
Diagrams 

AOR Reaction Pattern 
Diagrams, AOR 
Activity Diagrams, 
UML State Machine 
Diagrams 

Platform-
Specific 
Implementation 

UML Deployment Diagrams 
UML Class 
Diagrams 

UML Class Diagrams 

 

Table 1. The RAP/AOR viewpoint modeling framework
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a. the organization(s) of the problem domain,
b. the relevant organizational units of which

each organization to be modeled consists,
c. the roles2 included by the organizational

units, and
d. the types of relationships occurring be-

tween these agent types.

According to Zambonelli, Jennings, and
Wooldridge (2001), among the five types of
relationships that can be identified between
institutional agent types and/or role types, con-
trol, benevolence, and dependency relation-
ships are the most relevant ones to modeling
interactions between agents. Control relation-
ships identify the authority structures within an
organization. Benevolence relationships iden-
tify agents with shared interests. Dependency
relationships exist between agents because of
resource restrictions where the depender de-
pends on the dependee for the availability of a
physical or an informational resource.

We represent types of organizational units
and roles by AOR agent diagrams where dif-
ferent agent types may relate to each other
through the relationships of generalization
and aggregation in addition to relationships of
the types described above. An important pur-
pose of an agent diagram is to describe all
stakeholders that are involved in the manufac-
turing processes to be modeled and simulated,
and to give an overview of the manufacturing
system viewed as a multi-agent system.

Additionally, we model the possible interac-
tions between two (types of) agents by means
of AOR interaction frame diagrams. Table 1
also lists diagrams of other types that can be
used for modeling from the domain interaction
viewpoint.

Representing the domain information
viewpoint (column 2 in Table 1) for the focus
organization(s) can be regarded as creating a
domain ontology which provides a common

framework of knowledge for the agents of the
organization(s) and external agents connected
to the organization(s). Each agent of the prob-
lem domain can see only a part of the ontology;
that is, each agent views the ontology from a
specific perspective.

The domain information viewpoint is de-
scribed with the help of one view—AOR agent
diagrams. In addition to describing agent types
from the domain interaction viewpoint, an AOR
agent diagram thus describes object types of
the problem domain, as well as their relation-
ships to agent types and with each other. The
beliefs of an agent thus include its internal
agents and all external agents related to it, in
addition to the agent’s “private” objects and
shared objects that are related to it.

The domain behavior viewpoint (column 3
in Table 1) addresses the modeling of an agent’s
functionality (what functions the agent has to
perform), as well as of the agent’s behavior
(when, how, and under what conditions work
has to be done).

Actor types (or agent role types) are al-
ways characterized by goals because, as noted
by Kueng and Kawalek (1997, p. 19): “Human
activity is inherently purposeful.” In a business
or manufacturing domain, a human or an insti-
tutional agent acting in the role of a “customer”
has a goal of having something accomplished.
To achieve its goal, the agent uses some service
provided by another agent. An agent’s au-
tonomy implied by a benevolence relationship
between the service provider and a service
requester means that the service provider per-
forms the service requested if it is able to do so,
but the service provider also has an option to
refuse the service request. Even though the
agent requesting the service may not explicitly
communicate its goals to the service provider
agent, the latter always “internalizes” the whole
or a part of the customer’s goal in an attempt to
provide the service. For example, assuming
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that a customer—wholesaler—has a goal of
reselling a set of ceramics products, the goal of
the ceramics factory is to provide the whole-
saler with a product set, which is of course a
sub-goal of the factory’s higher-level goal—to
earn money through producing ceramic items.
The ceramic factory tries to achieve this higher-
level goal by “internalizing” as many customer
goals as possible.

We model the “internalizations” of the goals
of customers by service providers by using
AOR activity diagrams. In addition to them,
diagrams and models of the types listed in Table
1 can be used for the same purpose.

As explained earlier, an interacting system
(or agent), as a subject in its domain, does not
have an objective but a subjective view of the
domain. This is reflected in RAP/AOR by a
computational design model, in which the inter-
nal (subjective) perspective of the system to be
built is adopted in contrast to the external
(objective) perspective adopted in a conceptual
domain model. For instance, in the transforma-
tion of a domain interaction model into an
interaction design model for a specific agent,
the objective term action event is mapped onto
the two indexical subjective terms action (if

performed by the agent under consideration)
and event (if performed by other agents). Like-
wise, the objective term message is mapped
onto the two subjective terms incoming mes-
sage and outgoing message.

External models of the conceptual domain
modeling level are thus transformed into inter-
nal models of the level of platform-independent
computational design. In particular, AOR agent
diagrams are refined into more detailed agent
diagrams. Analogously, AOR interaction frame
diagrams are turned into reaction frame dia-
grams, AOR interaction pattern diagrams into
reaction pattern diagrams, and AOR activity
diagrams into AOR activity diagrams repre-
sented from the perspective of a specific agent.
However, as has been mentioned before, in this
chapter we are interested in simulation of do-
main models rather than transforming them into
design and implementation models.

The stages of conceptual domain modeling
in the RAP/AOR methodology and the result-
ing models are represented in Figure 2. Stages
I and III make up parts of conceptual interac-
tion modeling. They result in the organization
model described as an agent diagram and the
interaction model represented as one or more

Figure 2. The modeling process according to the RAP/AOR methodology
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interaction frame diagrams. Stage II corre-
sponds to conceptual information modeling and
stage IV to conceptual behavior modeling. These
stages respectively result in the information
model, which is represented as an agent dia-
gram and the agent behavior model in the form
of AOR activity diagrams.

IMPLEMENTATION OF THE
SIMULATION ENVIRONMENT

Taveter (2004) demonstrated that AORML
extended by activities is the first agent-oriented
modeling language where fully as well as par-
tially specified domain models can be executed.
On the other hand, Wagner and Tulba (2003)
have shown that, with some minor extensions,
AOR models can be used for a certain form of
agent-based discrete event simulation, called
Agent-Object-Relationship Simulation (AORS).
An AORS system includes an environment
simulator that is responsible to simulate exter-
nal events, such as orders issued by customers,
and in some cases, the causality laws of the
physical environment. Using executable pro-
cess models jointly with an AORS system
described by Wagner and Tulba (2003) thus
permits the creation of powerful simulation
environments.

Taveter (2004) has also made clear that
external AOR diagrams can be straightfor-
wardly transformed into the programming con-
structs of the JADE agent platform. The Java
Agent Development Environment (JADE, http:/
/jade.cselt.it/) agent platform is a software
framework to build software agent systems in
the Java programming language for the man-
agement of networked information resources in
compliance with the Foundation for Intelligent
Physical Agents (FIPA, http://www.fipa.org/)
specifications for interoperable intelligent multi-
agent systems. In addition to providing an agent

development model, JADE deals with all the
aspects that are not peculiar to agent internals
and that are independent of the applications,
such as message transport, encoding, and pars-
ing or agent lifecycle management. According
to Bellifemine, Poggi, and Rimassa (2001),
JADE offers the following features to the agent
programmer:

• FIPA-compliant distributed agent platform
which can be split onto several hosts;

• Java Application Programmer’s Interface
to send/receive messages to/from agents;

• library of FIPA interaction protocols, such
as Contract Net, ready to be used; and

• graphical user interface to manage sev-
eral agents from the same Remote Man-
agement Agent.

A JADE agent must be able to carry out
several concurrent tasks in response to differ-
ent external events. These tasks, which are
termed behaviors in JADE, correspond to
activities in RAP/AOR. All the behaviors of a
JADE agent are implemented as instances of the
Java object class jade.core.behaviors.Behavior.
The base class Behavior has the predefined sub-
classes SimpleBehavior and CompositeBehavior.
The first of them has been further divided into
the subclasses OneShotBehavior  and
CyclicBehavior, while the second one has
the subclasses SequentialBehavior  and
ParallelBehavior. As is reflected by Table 2, the
classes OneShotBehavior, SequentialBehavior,
and ParallelBehavior correspond to the respec-
tive activity types of RAP/AOR, while the class
CyclicBehavior is used for implementing the
execution cycle of a KPMC agent. When an
activity type is mapped to behavior of JADE, an
extension for the appropriate subclass of Be-
havior is defined and instantiated, and the result-
ing behavior object is then added to the agent
behavior list. Before that, the jade.core.Agent
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class is extended for each agent type of the
problem domain that has been modeled using
RAP/AOR. The jade.core.Agent class exposes
two methods, addBehavior(Behavior) and
removeBehavior (Behavior), which allow man-
agement of the behaviors’ queue of a specific
JADE agent. As Table 2 reflects, by using
these two methods within an instance of the
jade.core.Agent class (or its extension), behav-
iors can be added to the agent whenever needed.
Analogously, by invoking the method
addSubBehavior(Behavior) within an instance of
SequentialBehavior or ParallelBehavior, a sub-
behavior can be added.

The functionality of a behavior is included in
its action() method. The Behavior class also
provides two placeholder methods, named
onStart() and onEnd(). The functionality of a

SequentialBehavior and ParallelBehavior is in-
cluded in the method onStart() in place of ac-
tion(). As is shown in Table 2, the action() and
onStart() methods form counterparts of the
start-of-activity event type, while the onEnd()
method corresponds to the end-of-activity event
type.

The mappings presented in Table 2 formed
the basis for creating a simulation environment
of the ceramics factory. The snapshot of the
simulation environment is represented in Figure
3. The snapshot shows the user interfaces for
the agent representing the Customer and the
agents of the ProductionDepartment, and sev-
eral ResourceUnits of the factory. Actual simu-
lation by means of the simulation environment is
discussed in Taveter (2006).

Notion of RAP/AOR Object Class in JADE Object Method of 
JADE 
(if applicable) 

Object type java.lang.Object - 
Agent type jade.core.Agent - 
Elementary activity category jade.core.behaviors. 

OneShotBehavior 
- 

Sequential activity category jade.core.behaviors. 
SequentialBehavior 

- 

Parallel activity category jade.core.behaviors. 
ParallelBehavior 

- 

Execution cycle of 
a KPMC agent 

jade.core.behaviors. 
CyclicBehavior 

- 

Waiting for a message 
to be received 

jade.core.behaviors. 
ReceiverBehavior 

- 

Starting the first-level activity jade.core.Agent public void addBehavior 
(Behavior b) 

Starting a sub-activity jade.core.behaviors. 
SequentialBehavior 

public void 
addSubBehavior 
(Behavior b) 

Starting a parallel sub-activity jade.core.behaviors. 
ParallelBehavior 

public void 
addSubBehavior 
(Behavior b) 

Start-of-activity 
activity border event type 

jade.core.behaviors. 
OneShotBehavior 

public abstract void 
action() 

Start-of-activity 
activity border event type 

jade.core.behaviors. 
SequentialBehavior, 
jade.core.behaviors. 
ParallelBehavior 

public abstract void 
onStart() 

End-of-activity 
activity border event type 

jade.core.behaviors.Behavior public int onEnd() 

Agent message java.lang.acl.ACLMessage - 
 

Table 2. Mapping of notions of AORML to the object classes and methods of JADE
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RELATED WORK

Other similar agent-oriented modeling and simu-
lation approaches have been used, for instance
in the following research areas:

• Biology: For example, for investigating
eco-systems or in population ethnology
(especially with respect to ants and other
insects) (Klügl, 2001);

• Engineering: For analyzing and design-
ing complex socio-technical systems, such
as Automatically Guided Vehicle Trans-
port Systems (Raffel, Taveter, & Wagner,
2001);

• Economics: For example, in the simula-
tion of auctions and markets (e.g., Trading
Agent Competition—TAC, http://
www.sics.se/tac/) and in the simulation of
supply chains (Labarthe, Tranvouez,
Ferrarini, Espinasse, & Montreuil, 2003);
and

• Social Sciences: For example, the phe-
nomena of social monitoring and norm-
based social influence are studied in Conte

and Dignum (2001), and the cooperation
in teams is studied in Hales (2002).

Bandini, Manzoni, and Simone (2002) pro-
pose the multi-layered multi-agent situated sys-
tem model (MMASS), a model for multi-agent
systems situated in a physical environment.
One of its applications is a crowding dynamics
simulation model reported by Bandini, Manzoni,
and Vizzari (2004).

Some well-known platforms for agent-based
simulation are Swarm (http://www.swarm.org),
SDML (Moss, Gaylard, Wallis, & Edmonds,
1998), Sesam (Klügl, 2001), and CORMAS
(Bousquet, Bakam, Proton, & Le Page, 1998).
A particularly interesting class of simulation
systems is formed from international technol-
ogy competitions, such as RoboCup (Noda,
Matsubara, Hiraki, & Frank, 1998) and TAC
(http://www.sics.se/tac/). Both RoboCup and
TAC can be classified as interactive agent-
based real-time simulation systems.

CONCLUSION

In this chapter, a method for agent-oriented
modeling and simulation of distributed manu-
facturing has been put forward. We first pro-
vided an overview of the graphical AOR Mod-
eling Language and the RAP/AOR methodol-
ogy that the method is based on. After that, we
described how the models obtained can be
transformed into the constructs of the JADE
agent platform for simulation.

Two particular strengths of the proposed
agent-oriented modeling approach are its ability
to model distributed systems in a straightfor-
ward and natural way, and the executability of
partially as well as completely specified exter-
nal AOR diagrams. The latter facilitates simu-
lation. Another strength of our approach is the
possibility to represent the models of the inter-

Figure 3. A snapshot of the simulation
environment for the ceramics factory
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action, information, and behavior viewpoint
aspects in just one integrated diagram at the
desired level of granularity. This enables one to
overcome the model multiplicity problem
(Peleg & Dori, 2000), which states that to
understand the system being studied and the
way it operates and changes over time, the
reader must concurrently refer to various mod-
els. Agent-oriented modeling and simulation
may also serve as the first stages of agent-
based or another kind of automation.
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ABSTRACT

This chapter describes the application of the RAP/AOR methodology proposed by Taveter and
Wagner (2005, 2006) to the modeling and simulation of a real ceramics factory. The chapter
addresses the modeling of the ceramics factory from the interaction, information, and
behavior aspects of the methodology. The chapter also discusses the simulation of the
manufacturing processes of the ceramics factory by executing the process models developed
using the RAP/AOR methodology. The method is aimed at the creation of simulation environments
and automation systems of distributed manufacturing.

INTRODUCTION

According to Tamm, Puusepp, and Tavast
(1987), the so-called “modeling by simulation”
is one of the most practical means of concep-
tual analysis of a problem domain, because it
enables learning of and experimenting on the
target system with complex internal dependen-
cies, and trying out the influences of decisions
of informational, technological, and organiza-
tional nature.

On the other hand, new business models
emerge. The importance of subcontracting is

emphasized by, for example, Zeng and Sycara
(1999): “In manufacturing, managers face
‘make or buy’ decisions, i.e., the choice of
making components/products in house or sub-
contracting them to outside sources ... These
decisions are critical in today’s highly competi-
tive and dynamic business environment.” On
the European scale, subcontracting is often the
only way how the countries newly admitted to
the European Union, as well as the other can-
didate countries from Central and Eastern Eu-
rope, are able to participate in the European
division of labor. Primarily for this reason the
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case study of the current chapter deals with the
Tallinn Ceramics Factory Ltd. (http://
www.keraamikatehas.ee) located in Tallinn,
Estonia. Introducing new business models is
already acute at the Tallinn Ceramics Factory
because a remarkable portion of the orders
received by it are sub-contractual orders for
mug handles and stove tiles for fireplaces from
Sweden and other countries.

In this chapter, the Radical Agent-Ori-
ented Process (RAP) methodology of agent-
oriented modeling is employed. The RAP meth-
odology was proposed by Taveter and Wagner
(2005, 2006), and it is based on the agent-
object-relationship (AOR) Modeling Language
(AORML, http://aor.rezearch.info).  In
AORML, the agents in a problem domain are
distinguished from the (non-agentive) objects.
The agents’ actions, event perceptions, com-
mitments, and claims are explicitly included in
the models.

It was demonstrated earlier by Wagner and
Tulba (2003) that agent-oriented modeling by
AORML lends itself easily to simulation. In this
chapter, we first show how business and manu-
facturing processes of the ceramics factory
can be modeled by making use of the RAP/
AOR methodology. Thereafter we address the
actual simulation of the manufacturing pro-
cesses by means of the simulation environment
described by Taveter and Wagner (2006).

MODELING OF THE
CERAMICS FACTORY

In this section, the modeling methodology pro-
posed by Taveter and Wagner (2005, 2006) is
applied to the case study of the Tallinn Ceram-
ics Factory. We decided to model the factory
in an agent-oriented manner for two reasons.
Firstly, since there are communicating and
interacting agents (actors1) everywhere, it is
the most natural way and in a sense truly

nature-inspired. Secondly, an agent-oriented
modeling approach lends itself easily to simu-
lation. As has been shown by Taveter and
Wagner (2006), the models of the problem
domain worked out by following the RAP/
AOR methodology can thus be quite straight-
forwardly turned into the implementation con-
structs of the simulation environment. It is
important to emphasize here that agent-ori-
ented modeling and simulation of a problem
domain does not imply an automation solution
based on software agents.

Principles of Reactive Scheduling

The core of manufacturing processes of any
factory lies in the scheduling of production
operations. In real life, scheduling is reactive as
much as predictive. A general scheduling solu-
tion utilized in the modeling and simulation
effort described in this chapter is based on the
works by Ow, Smith, and Howie (1988), Smith,
Ow, Muscettola, Potvin, and Matthys (1990),
and Smith (1995) because the method proposed
in them can be easily transformed into an agent-
oriented one. Note that applying the scheduling
method described in the works referenced ef-
fectively means re-engineering, that is, improv-
ing the existing manufacturing processes of the
factory.

According to Smith et al. (1990), the  factory
scheduling problem can be defined as one of
coordinating sequences of manufacturing op-
erations for multiple orders so as to:

• obey the temporal restrictions of produc-
tion processes and the capacity limitations
of a set of shared resources (i.e., ma-
chines); and

• achieve a satisfactory compromise with
respect to a myriad of conflicting prefer-
ential constraints (i.e., meeting due dates,
minimizing work-in-progress, etc.).
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Smith et al. (1990) distinguish between two
kinds of scheduling:

• Predictive Scheduling: Concerns an
ability to effectively predict factory be-
havior through the generation of produc-
tion plans that reflect both the full com-
plexity of the factory environment and the
stated objectives of the organization; and

• Reactive Scheduling: Concerns an abil-
ity to intelligently react to changing cir-
cumstances, as the factory is a dynamic
environment where unexpected events (for
example, machine breakdowns, quality
control inspection failures) continually
force changes to planned activities.

Scheduling in the ceramics factory is mod-
eled by using a mixture of the OPIS system
(Smith et al., 1990) and the agent-based coop-
erative scheduling system (Ow et al., 1988).
According to Smith (1995), the simplest reac-
tive methods invoked in response to conflict and
opportunity events in OPIS are the Right Shifter
and Left Shifter, respectively. The Right Shifter
implements a reactive method that resolves
conflicts by simply “pushing” the scheduled
execution times of designated operations for-
ward in time. The Left Shifter provides a
similar method that “pulls” operations back-
wards in time (that is, closer to execution) to the
extent that current resource availability and
temporal process constraints will permit.

We will next describe modeling of the ce-
ramics factory from the interaction, informa-
tion, and behavior aspects of the RAP/AOR
viewpoint modeling framework defined by
Taveter and Wagner (2005), considering the
principles of reactive scheduling presented
above.

The Interaction Aspect

The interaction aspect of the RAP/AOR view-
point modeling framework concerns the analy-
sis and modeling of active entities—of agent
types and instances and relationships, as well
as of interactions and communication be-
tween them.

Modeling from the interaction aspect com-
prises organization modeling and interaction
modeling, which will be explained and illus-
trated in the following two sub-sections.

Organization Modeling

According to Ow et al. (1988), production
scheduling decisions for large and/or complex
manufacturing facilities are often not made by
any single individual. Rather, a group of people
may be identified in the organization that coop-
erate and share information to develop and
manage a production schedule. Because of the
routine nature of the scheduling task, this group
has usually adopted some organization struc-
ture to make the decision-making process effi-
cient. As a drastic change to this organization
structure is not desired, the AOR agent dia-
gram of the ceramics factory’s organization
structure, shown in Figure 1, reflects the exist-
ing factory. However, in line with the principles
of reactive scheduling, the organization struc-
ture has been complemented with some gener-
alized agent types.

The agent diagram of Figure 1 represents
the institutional agent instance CeramicsFactory
which belongs to the agent type Organization.
The agent CeramicsFactory consists of instances
of the following subtypes of the institutional
agent type OrganizationUnit, representing de-
partments and other internal units of the factory:
FactoryManagement, TechnologicalDepartment,
AccountingDepartment, SalesDepartment,
ProductionDepartment, ProductDesignDepartment,
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SupplyDepartment, and ResourceUnit. The
ResourceUnit has subtypes MouldmakingUnit,
Moulding/CastingUnit, ElaborationUnit, and
CombustionUnit, as well as RawMaterialStore
and CompletedProductionStore. The number
of instances of an agent type is shown in the top
right corner of the box denoting the correspond-
ing agent type. Since the factory depends on its
customers, there is a benevolence
(isBenevolentTo) relationship between the in-
ternal agent type SalesDepartment of the
CeramicsFactory and the external agent type
Customer.

The institutional agent type FactoryManagement
includes the internal institutional agent type
ManagingBoard. In the same way, the institu-

tional agent type SalesDepartment includes the
internal institutional agent types FactoryShop
and CompletedProductionStore, and the institu-
tional agent type SupplyDepartment includes the
institutional agent type RawMaterialStore. Sev-
eral  institutional agent types modeled in Figure
1 include human role types, for example,
ChiefTechnologist, Accountant, and Designer.

Within the ceramics factory, like within any
other organization, there is a hierarchy of roles
where one role is subordinate to another role.
For example, in Figure 1 there is a control
(isSubordinateTo) relationship between the hu-
man role types BoardMember and StaffManager
on one hand and the human role type
ManagingDirector on the other. The human role

Figure 1. The organization model of the ceramics factory
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type BoardMember forms a supertype of the
human role types SalesManager  and
ProductionManager. The human role types
ManagingDirector and BoardMember are in-
cluded by the internal institutional agent type
ManagingBoard which reflects the fact that the
ManagingDirector, as well as the SalesManager
and ProductionManager, belong to the manag-
ing board of the factory by virtue of their
offices.

There is also an isSubordinateTo relation-
ship between several other human role types in
Figure 1, such as, for example, between the
internal agent types StoreKeeper  and
SalesManager of the SalesDepartment. A typi-
cal pattern of internal human agent types within
an institutional agent type representing a de-
partment of the factory consists of the human
role type of the department head, such as
ChiefTechnologist ,  ChiefAccountant ,
SalesManager, ChiefDesigner, and SupplyManager,
who has one or more human role types subordi-
nated to it. All the human role types represented
in Figure 1 are subtypes of the human role type
EmployeeOfCeramicsFactory, which, in turn, forms
a subclass of the agent type Person. For the sake
of clarity of Figure 1, these agent types are not
represented in it.

The institutional agent types
ProductionDepartment and ResourceUnit respec-
tively include the human role types
ProductionManager and Worker where instances
of Worker are subordinated to the instance of
ProductionManager. The institutional agent type
ResourceUnit has been introduced to enable the
modeling and simulation according to the prin-
ciples of reactive scheduling. In the ceramics
factory to be modeled, there is no real agent
type corresponding to ResourceUnit, even though
workers effectively form teams according to
their specialties.

Interaction Modeling

Interactions between a service requester and
provider are modeled in the interaction frame
diagram in Figure 2. Most of the communica-
tive action event types represented in Figure 2
are prefixed by one of two functions of mes-
sage types2: request, by which a sender re-
quests the receiver to perform a communica-
tive or physical action or both of them, and
inform, which identifies a communicative action
performed in reply to a request message or
independently. In addition, there are message
types prefixed by the functions propose, ac-
cept-proposal, and reject-proposal with obvious
meanings.

The first communicative action event type
in the interaction frame in Figure 2 between the
agent type Customer and the internal agent type
SalesDepartment of the CeramicsFactory rep-
resents a request by the Customer to provide it
with the product set that is identified by the
product code (?String) and quantity required
(?Integer). The following three communicative
action event types of the interaction frame
being studied in Figure 2 comply with the
isBenevolentTo relationship between the agent
types SalesDepartment and Customer in the
organization model of Figure 1. They model a
proposal by the SalesDepartment to provide the
Customer with the product set according to the
production order created by the
SalesDepartment and its acceptance or rejec-
tion by the Customer. The instance of the
production order, which includes a specific due
time, is described by the data element
?ProductionOrder of the corresponding com-
municative action events. If the proposal is
accepted, the SalesDepartment commits on
behalf of the CeramicsFactory towards the
Customer to provide it by the due time with
the product set defined by the production



546

Application of RAP/AOR to the Modeling and Simulation of a Ceramics Factory

order. A commitment/claim of this type is
satisfied by an action event of the type
provideProductSet(?ProductionOrder), which
is coupled with the corresponding commit-
ment/claim type. After the product set has
been produced, the SalesDepartment first in-
forms the Customer about the completion and
the Customer  then issues to the
CompletedProductionStore (an internal insti-
tutional agent of the SalesDepartment) a re-
quest to release the product set identified by the
corresponding Product ionOrder .  The
CompletedProductionStore provides the Cus-
tomer with the product set in question and also
sends to the Customer the invoice (?Invoice).
This is accompanied by creating for the
SalesDepartment a claim against the Customer

that it would pay for the product set according
to the invoice by a certain date. The claim is
satisfied by actual paying for the product set by
the Customer.

The starting point for creating the interac-
tion frame in Figure 2 between the internal
agent types SalesDepartment  and
ProductionDepartment is the dependency rela-
tionship (providesResourceTo) between them,
as shown in Figure 1. The ProductionDepartment
thus provides the SalesDepartment with the
resources needed for selling the products of the
factory. The first communicative action event
type of the interaction frame models a request
by the SalesDepartment  to the
ProductionDepartment to schedule the produc-
tion order described by the data element

Figure 2. The interaction model of the CeramicsFactory
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?ProductionOrder of the action event. Since
neither scheduling a production order nor pro-
ducing a product set according to it can be
immediately perceived by the SalesDepartment,
they are modeled as making true the respective
status predicates isScheduled and isCompleted
of the corresponding instance of ProductionOrder.
After the ProductionDepartment has returned
the scheduled production order to the
SalesDepartment ,  i t  receives from the
SalesDepartment a request to either have the
production order completed or to delete it. In
the first case, a stit-commitment/claim of the
type (achieve(isCompleted(?ProductionOrder)
?Date)  is formed between the
ProductionDepartment and SalesDepartment.
The satisfaction of this commitment/claim is
expressed by the corresponding achieve-con-
struct type.

The interaction frame between the agent
types ProductionDepartment and ResourceUnit
in Figure 2 is largely determined by the
isSubordinateTo relationship between their in-
ternal agent types Worker  and
ProductionManager which is reflected by their
comprising organization units. This means that
a ResourceUnit schedules and performs a pro-
duction activity as requested by the
ProductionDepartment and reports to the latter.
The first communicative action event type be-
tween the agent types ProductionDepartment
and ResourceUnit models a request by the
ProductionDepartment to schedule the produc-
tion activity that is described by the data ele-
ment ?ProductionActivity of the action event. In
addition to initial scheduling of a production
activity, a request of this type is also sent if a
time conflict in the schedule is detected within
the ProductionDepartment.3 The second mes-
sage type between the same agent types mod-
els the confirmation of the scheduling by the
ResourceUnit. The third message type, which
represents a request to delete the scheduled

production activity described by
?ProductionActivity, is used only if the produc-
tion order including the production activity to be
deleted has been rejected by the Customer.
Since the completion of a production activity
cannot be directly perceived, it is modeled
through the achieve-construct type
achieve(isCompleted(?ProductionActivity)) be-
tween the agent types ResourceUnit and
ProductionDepartment. The achieve-construct
type is coupled with the corresponding stit-
commitment/claim type because the comple-
tion of a production activity is preceded by the
formation of the corresponding commitment/
claim. Communicative action event types
inform(isScheduled(?ProductionActivity)),
inform(isInProcess (?ProductionActivity)), and
inform(isCompleted (?ProductionActivity)) serve
to inform the ProductionDepartment about the
status changes of the production activity de-
scribed by ?ProductionActivity. A message of
the type inform(isCompleted (?ProductionActivity))
may trigger rescheduling of a production order
by “pushing” all the production activities in-
cluded by it forward or backward in time when
the production activity is completed later or
earlier than scheduled, respectively.

The Information Aspect

Representing the information aspect of the
RAP/AOR viewpoint modeling framework for
the focus organization(s) can be regarded as
creating ontology. The latter provides a com-
mon framework of knowledge for the agents of
the organization(s) and external agents con-
nected to the organization(s). The ontology—
information model—of the ceramics factory
has been developed according to the principles
of the OZONE scheduling ontology laid out by
Smith and Becker (1997). The information model
of the ceramics factory is represented as an
agent diagram in Figure 3. In addition to de-
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scribing agent types, it describes object types of
the ceramics factory, as well as their relation-
ships to agent types and with each other.

In the information model of the ceramics
factory depicted in Figure 3, the concept DE-
MAND of the scheduling ontology by Smith
and Becker (1997) is represented by the object
type ProductionOrder. It is shared between the
agent CeramicsFactory and the agent type Cus-
tomer. A ProductionOrder is characterized by a
number of attributes, the most important ones
being releaseTime, dueTime, productCode, and
quanti ty ,  and by the status predicate
isCompleted. The attributes  releaseTime and

dueTime are respectively the earliest and latest
time when the production activities for produc-
ing the product set specified by the
ProductionOrder can start and end, respec-
tively. The attributes productCode and quantity
respectively specify the type and number of the
products in the product set requested. The
internal representation of the object type
Product ionOrder  within the agent
CeramicsFactory satisfies one of the following
status predicates: isPreliminary, isScheduled,
isProposed,  isAccepted ,  isRejected ,  or
isDelivered.

Figure 3. The information model of the ceramics factory
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There is a shared object type Invoice con-
nected to ProductionOrder, Customer, and
CeramicsFactory. It includes a number of at-
tributes like orderID, productCode, quantity, price,
subtotal, VAT, and total. In addition, its internal
representation within the SalesDepartment has
the status predicates isPreliminary, isSent, and
isPaid.

In Figure 3, the type of the products re-
quested is modeled by the association between
the shared object types ProductionOrder and
ProductType. An instance of ProductType is
identified by its attributes productName (for
example, “coffee cup Kirke”) and productCode
(for example, “22882”). The internal represen-
tation of the object type ProductType within the
agent type ProductionDepartment differs from
its base object type by a number of relationships
to other object types. Among them, an ordered
sequence of instances of ProductionActivityType
associated with an instance of ProductType
defines the product type in question. Specific
sets of products to be produced to satisfy
production orders are represented as instances
of the object type ProductSet. The latter corre-
sponds to the concept PRODUCT of the sched-
uling ontology by Smith and Becker (1997).
Each ProductSet references an ordered se-
quence of instances of ProductionActivity which
define the set of processing steps required to
produce the product set. There are associations
of the type PrecedenceInterval between in-
stances of ProductionActivityType. Each asso-
ciation specifies the lower bound and upper
bound of the temporal separation between pro-
duction activities of two consecutive types. In
conformance with Smith (1989), the associa-
tions of the type PrecedenceInterval are in-
tended to provide a basis for describing generic
manufacturing processes, defining sets of pos-
sible production activity sequences.

Analogously to the OZONE scheduling on-
tology proposed by Smith and Becker (1997),

the information model of the ceramics factory
adopts an activity-centered modeling perspec-
tive. In the center of the ontology represented
in Figure 3 is thus the object type
ProductionActivity, corresponding to the con-
cept ACTIVITY of the scheduling ontology by
Smith and Becker (1997). An object of the type
Product ionActivi ty  can have the status
isUnscheduled, isScheduled, isInProcess, or
isCompleted. An instance of ProductionActivity
is characterized by the following attributes:
activityID, typeName, earliestStartTime, quan-
tity, startTime, and endTime. The identifier at-
tribute activityID contains the identifier of the
production activity which is automatically as-
signed to it upon creation of the corresponding
object. The attribute typeName repeats the
value of the attribute activityName of the
ProductionActivityType associated with the ac-
tivity. The action of scheduling the correspond-
ing production activity results in determining
values for the attributes startTime and endTime.
The attribute earliestStartTime indicates the
earliest time at which the given production
activity can be started, considering the endTime
of the previous activity scheduled or the
releaseTime of the ProductionOrder in case of
its first production activity. Each instance of
Product ionActivi ty  belongs to some
ProductionActivityType. This is represented by
the corresponding many-to-one relationship in
Figure 3. An instance of ProductionActivityType
is characterized by the name of the activity type
(activityName) and the average speed of per-
forming an activity of the corresponding type
(numberOfProductsPerHour). The latter includes
the time required for setting up the resources
before a production activity of the given type can
actually start. The object type ProductionActivity
has a specific internal representation within the
agent type ProductionDepartment. It refines the
status predicate isScheduled by the internal inten-
tional predicate hasTimeConflict(ProductionOrder),
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because a time conflict between scheduled
act iv i t ies  i s  de tec ted  wi th in  the
ProductionDepartment. Taveter (2004) has
def ined the  in tent ional  predica te
hasTimeConflict(ProductionOrder) as an Ob-
ject Constraint Language (OCL) (OMG, 2003a,
2003b) operation attached to the object type
ProductionActivity.

Another important notion in a scheduling
ontology is that of a resource. In the informa-
tion model depicted in Figure 3, it is represented
as the object type Resource which corresponds
to the concept RESOURCE of the scheduling
ontology by Smith and Becker (1997). Each
institutional agent of the type ResourceUnit has
knowledge about objects of at least one of the
proprietary subtypes ReusableResource and
DiscreteStateResource. A resource described
by an instance of ReusableResource, like a set
of ceramic moulds, is a resource whose ca-
pacity becomes available for reuse after the
production activity to which it has been allo-
cated finishes. As Figure 3 reflects, an in-
stance of ReusableResource is characterized
by two attributes: the cumulativeUsageTimes
and the numberOfResources .  The
cumulativeUsageTimes specifies the total
amount of resource uses permitted (i.e., the
number of times that the use of a mould set is
permitted for moulding or casting. A re-
source  descr ibed by an  ins tance  of
DiscreteStateResource, like a worker or a
machine or their combination, is a resource
whose availability is a function of some discrete
set of possible state values (i.e., idle and busy).
Each instance of DiscreteStateResource con-
sists of the internal nameless object instance
:Capacity and instances of the internal object
type CapacityInterval. The :Capacity object
specifies the numberOfResources  and
batchSize. The latter is the number of products
that the resource can process simultaneously.
The capacity of a resource is represented as an
ordered sequence of instances of

CapacityInterval, describing, for example, work
shifts. Each interval indicates the production
activities that are anticipated to be consuming
capacity within its temporal scope and the
capacity that remains available (Smith, 1989).
For each CapacityInterval, the startTime and
endTime of the interval are specified. The
specializations of CapacityInterval, not shown in
Figure 3, are WorkMonth, WorkWeek, and
WorkShift. Their implementations form parts of
the simulation environment of the ceramics
factory that has been described by Taveter and
Wagner (2006). Successful scheduling results
in attaching a CapacityInterval to one or more
instances of ProductionActivity. In order to
determine whether a CapacityInterval can be
allocated to the given ProductionActivity, the
object type CapacityInterval possesses the inten-
tional predicate isSchedulable(ProductionActivity).
The object type CapacityInterval has the sub-
types UnitCapacityInterval  and
BatchCapacityInterval which are included by
the respective two subtypes of
DiscreteStateResource – UnitCapacityResource
and BatchCapacityResource. A resource de-
scribed by an instance of UnitCapacityResource,
like a worker, can process only one product at
a time—that is, its batchSize is 1, whereas a
resource described by an instance of
BatchCapacityResource, like a kiln, can pro-
cess simultaneously up to batchSize prod-
ucts. While the available capacity of a
capacity interval described by an instance
of UnitCapacityInterval is characterized by
the attribute availableProcessingTime (i.e.,
per work shift), the available capacity of a
capacity interval described by an instance
of BatchCapacityInterval is characterized by
the number of products (availableCapacity)
that the resource is capable of processing at
a  t ime .  The  in ten t iona l  p red ica te
isSchedulable(ProductionActivity) for the ob-
jec t  types  Uni tCapac i ty In terva l  and
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BatchCapacityInterval is defined by Taveter
(2004) using OCL.

The Behavior Aspect

The behavior aspect of the RAP/AOR view-
point modeling framework addresses the mod-
eling of an agent’s functionality (what func-
tions the agent has to perform), as well as of the
agent’s behavior (when, how, and under what
conditions work has to be done).

The behavior aspect comprises motivation
modeling. Goals and sub-goals can be captured
by AOR activity diagrams. In the AOR activity
diagram of Figure 4, an activity of the type
“Process production order” is started by reac-
tion rule R19 in response to receiving a message
containing a request for scheduling. As shown

in Figure 4, an activity of the type “Process
production order” consists of sequential sub-
activities of the types “Create product set,”
“Instantiate production plan,” “Have produc-
tion order scheduled,” and “Manage scheduled
production order.”

For each activity type represented in Figure
4 can be defined the goal that its instances try
to achieve. The figure shows the goal that has
been defined for the outermost activity type
“Process production order” by means of OCL
in terms of its input parameter order. Input
parameters defined for activity types represent
the dataflow through the activities.

Subsequently, initial AOR activity diagrams
are elaborated on by introducing into them
behavioral constructs by means of reaction
rules. Taveter (2004) has shown that AORML

Figure 4. An incomplete behavior model of the manufacturing process type “Process
production order”

CeramicsFactory
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extended by activity modeling allows the repre-
sentation of 16 out of 19 behavioral workflow
patterns as defined in the workflow benchmark
proposal of van der Aalst, ter Hofstede,
Kiepuszewski, and Barros (2003). In the be-
havior model represented in the external AOR
diagram in Figure 5, the activity type “Have
production order scheduled” modeled in Figure
4 has been complemented by the behavioral
constructs of the types “For-each loop” and
“Sequence.” In addition, the agent type
ResourceUnit and the elementary epistemic,
physical, and communicative actions that are
included by activities of the types “Request
scheduling” and “Register scheduling” have
been specified. For scalability reasons, only
one of the activity types represented in Figure
4 is refined in Figure 5.

The behavioral construct of the type “For-
each loop” represented in Figure 5 specifies
that upon the start of an activity of the type
“Have production order scheduled,” its sub-
activity of the type “Have production activity
scheduled” is performed for each instance of
the object type ProductionActivity for which the
pre-condition productSet.productionOrder = or-
der and isNextActivity(order) represented in OCL
evaluates to true. The pre-condition limits the
set of production activities for which the sub-
activity is performed to the ones associated
with the instance of ProductionOrder that is
identified by the value of the input parameter
order .  In addition, the expression
isNextActivity(order) ensures the scheduling of
production activities in the correct order. When
all sub-activities of the type “Have production
activity scheduled” have ended, the enclosing
activity of the type “Have production order
scheduled” also ends.

The sub-activity “Request scheduling”
shown in Figure 5 sends to the corresponding
agent ResourceUnit a request to schedule the
ProductionActivity, while the sub-activity “Reg-

ister scheduling” waits for and registers the
scheduling of the production activity by the
ResourceUnit. When a time conflict is detected
within the ProductionDepartment, a production
order is rescheduled in a similar way which
results in “pushing” all the production activities
included by it forward in time.

SIMULATION

Taveter (2004) demonstrated that AORML
extended by activities is the first Agent-Ori-
ented Modeling Language where fully as well
as partially specified behavior models by exter-
nal AOR diagrams can be executed. For ex-
ample, in our case study, conceptual AOR
behavior models represented in Figures 4 and 5
can be executed, even though neither of them is
completely specified. This facilitates iterative
“modeling by simulation” where models can be
executed at any stage of behavior modeling.
Taveter and Wagner (2006) describe a simula-
tion environment created for the ceramics fac-
tory by transforming external AOR diagrams
into the programming constructs of the JADE
(Java Agent Development Environment, http://
jade.cselt.it/) agent platform.

For performing simulation experiments, an
on-site survey was first performed at the Tallinn
Ceramics Factory. In the survey, the average
speeds of performing production activities of
different types, as well as the minimal prece-
dence intervals required between the activities,
were found out and recorded. The results of the
survey, along with the batch size for each
resource type and the number of resources, are
presented in Table 1. The values in Table 1
were assigned to the corresponding object fields
of the simulation environment. In particular, the
average speed of performing a production ac-
tivity of a given type is assigned to the
numberOfProductsPerHour attribute of the cor-
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responding ProductionActivityType object, and
the minimal precedence interval required be-
tween two production activities is assigned to
the lowerBound attribute of the correspond-
ing PrecedenceInterval object. Please notice
that the numberOfProductsPerHour attribute
is  not  needed for  ins tances  of
BatchCapacityResource that describe kilns and
their secondary resources4—burners—because
kilns operate at regular intervals.

The simulation environment lends itself to
both predictive and reactive scheduling. Table
2 represents a production schedule for produc-
ing a product set of the type “Moulded ceramic

product 22882.” The production schedule re-
flects that kilns have a specific work cycle
because of the requirements for cleanliness
and safety—they are in operation on Mondays,
Wednesdays, and Fridays. Table 2 shows the
start and end times of production activities
before and after detecting two time conflicts
within the ProductionDepartment. As the table
reflects, the scheduled execution times of the
“Initial elaboration” and “Painting” production
activities have been “pushed” forward in time
because their preceding production activities
have taken more time than had been initially
scheduled. In a similar manner, reactions to the

Figure 5. An external AOR diagram representing the manufacturing process type “Process
production order”
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Table 1. The parameter values for production activities to be performed for producing a
product set of the type “Moulded ceramic product 22882”

Production 
Activity 

Types of 
Resource(s) 
Required 

Batch 
Size 

Number 
of 
Resources 

Average 
Speed 
(number of 
products 
per hour), if 
applicable  

Minimal 
Precedence 
Interval 
(hours) 
between this 
and the next 
activity, if 
applicable 

Moulding Moulder 1 1 44 24 
Initial 
elaboration 

Elaborator 1 16 23 72 

Engobe 
painting 

Engobe 
painter 

1 1 37.5 - 

Initial 
combustion 

Kiln for initial 
combustion 

1000 
 

1 
 

- 24 

 Burner 1 2 - - 
Elaboration Elaborator 1 16 23 - 
Painting Painter 1 8 7.5 - 
Glazing Glazier 1 1 37.5 - 
Post-glazing 
combustion 

Kiln for post-
glazing 
combustion 

1000 4 - 24 

 Burner 1 2 - - 
Decoration Painter 1 8 12.5 - 
Post-
decoration 
combustion 

Kiln for post-
glazing 
combustion 

1000 4 - 24 

 Burner 1 2 - - 
Packaging Packer 1 2 125 - 

 

Table 2. A schedule for the production process of the “Moulded ceramic product 22882”
product set before and after the right shift

Production 
Activity 

Start Time End Time New Start 
Time 

New End 
Time 

Moulding Mon Aug 29 
08:00  

Mon Aug 29 
12:32 

Mon Aug 29 
08:00  

Mon Aug 29 
12:53 

Initial 
elaboration 

Tue Aug 30 
12:33 

Tue Aug 30 
13:05 

Tue Aug 30 
12:54 

Tue Aug 30 
13:26 

Engobe 
painting 

Mon Sep 05 
08:00 

Mon Sep 05 
13:20 

Mon Sep 05 
08:00 

Mon Sep 05 
13:42 

Initial 
combustion 

Wed Sep 07 
08:00 

Wed Sep 07 
16:00 

Wed Sep 07 
08:00 

Wed Sep 07 
16:00 

Elaboration Fri Sep 09 
08:00 

Fri Sep 09 
08:32 

Fri Sep 09 
08:00 

Fri Sep 09 
08:37 

Painting Fri Sep 09 
08:33 

Fri Sep 09 
11:53 

Fri Sep 09 
08:38 

Fri Sep 09 
11:58 

Glazing Mon Sep 12 
08:00 

Mon Sep 12 
13:20 

Mon Sep 12 
08:00 

Mon Sep 12 
13:20 

Post-glazing 
combustion 

Wed Sep 14 
08:00 

Wed Sep 14 
16:00 

Wed Sep 14 
08:00 

Wed Sep 14 
16:00 

Decoration Fri Sep 16 
08:00 

Fri Sep 16 
10:00 

Fri Sep 16 
08:00 

Fri Sep 16 
10:00 

Post-
decoration 
combustion 

Mon Sep 19 
08:00 

Mon Sep 19 
09:30 

Mon Sep 19 
08:00 

Mon Sep 19 
09:30 

Packaging Tue Sep 20 
09:31 

Tue Sep 20 
10:19 

Tue Sep 20 
09:31 

Tue Sep 20 
10:19 
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changes in the number of available resources
could be simulated. Note that because of the
requirement to warrant a homogeneous quality
of ceramic products in a product set, a produc-
tion activity once started on a product set
should be finished on the same day.

CONCLUSION

In this chapter, the application of the RAP/
AOR methodology proposed by Taveter and
Wagner (2005, 2006) has been described by
using a full-length and real-life case study of a
ceramics factory. The models that were cre-
ated demonstrated the ability to overcome the
model multiplicity problem (Peleg & Dori,
2000) which states that to understand the sys-
tem being studied and the way it operates and
changes over time, the reader must concur-
rently refer to various models. Even more
importantly, the chapter also explained how the
models obtained were used for simulation of the
ceramics factory and its manufacturing pro-
cesses. The RAP/AOR methodology can be
applied more generally for modeling and simu-
lation of manufacturing processes of enter-
prises of different industries. Simulations of this
kind enable the creation and analysis of produc-
tion schedules, and try out the influences of
changes in the capacities of resources. More-
over, agent-oriented modeling and simulation
by means of the RAP/AOR methodology also
serves as the first stage of creating a distributed
automation system that is able to adapt to
disturbances concerning orders and resources.
Such systems also facilitate the integration of
manufacturing processes of different enter-
prises.
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ENDNOTES

1 Henceforth, the terms “actor” and “agent”
are used as synonyms.

2 These functions are actually speech acts
(Austin, 1962).

3 This situation is represented by the same
interaction frame because interaction
frame diagrams do not model the order in
which action events of specified types
occur.

4 The allocation of a secondary resource
accompanies the allocation of a resource
of another type.
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ABSTRACT

This chapter examines the use of emergent computing to optimize solutions to logistics
problems. The chapter initially explores the use of agents and evolutionary algorithms to
optimise postal distribution networks. The structure of the agent community and the means of
interaction between agents is based on social interactions previously used to solve these
problems. The techniques developed are then adapted for use in a dynamic environment
planning the despatch of goods from a supermarket. These problems are based on real-world
data in terms of geography and constraints. The author hopes that this chapter will inform
researchers as to the suitability of emergent computing in real-world scenarios and the
abilities of agent-based systems to mimic social systems.

INTRODUCTION

The design and optimisation of urban distribu-
tion networks used to facilitate the delivery of
goods to households is a non-trivial problem.
Such problems exist within an urban environ-
ment where routes must take into account a
complex real-world road network. These prob-
lems are not solved by building single routes in
isolation, but require networks consisting of
routes each of which must satisfy local con-
straints pertaining to that route. The network

should also satisfy global constraints that may
conflict with local constraints. The principle
tools to be used are: agents coordinated by
economic and social metaphors, and evolution-
ary algorithms. Unlike much previous work in
this area, which has utilised datasets based on
Euclidean distances between arbitrary points,
the problems in this chapter are based on real-
world street topologies.

This chapter initially reviews existing work
in the areas of scheduling and routing, with
particular emphasis on the use of emergent
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computing (EC). It subsequently describes the
use of EC methods, notably evolutionary algo-
rithms and agents to solve a real-world urban
routing problem, specifically the distribution of
post within urban areas in the City of Edinburgh.

The techniques utilised for the postal prob-
lem are then developed for use in planning the
despatch of goods from supermarkets to indi-
vidual houses, this being a dynamic problem
with fluctuating demand. Finally, conclusions
are drawn as to the effectiveness of EC-based
techniques on the problems discussed.

REVIEW OF EXISTING WORK

Multi-vehicle routing is a combinatorial prob-
lem that normally involves the division of work
(deliveries) between vehicles, as well as the
optimisation of each vehicle’s route. Tradition-
ally such problems have used one of two repre-
sentations: they either utilise a permutation-
based approach or represent the problem as a
network of arcs. The former representation is
traditionally used to solve the travelling sales-
man problem (TSP); in this case the size of the
search space is n!/2n. Alternatively the graph-
based approach may be utilised, the graph being
based on real-world street topology, with deliv-
eries being achieved through the traversal of a
set of arcs.

Techniques used to solve routing problems
may be subdivided into three main categories:
exhaustive algorithms, heuristics, and meta-
heuristics. Exhaustive algorithms seek to evalu-
ate the entire search space; they have the
property of always producing an optimal solu-
tion, but given the size of the search spaces, the
time taken can be prohibitive. Such methods
may be hybridised with techniques such as
linear programming (Ladányi, Ralphs, & Trot-
ter, 2001). The approach taken used branch
and cut techniques combined with linear pro-

gramming. The time cost was overcome by
distributing the problem over multiple CPUs.

A number of researchers have opted to
solve vehicle routing problems with the use of
heuristics. Many of the simpler heuristics such
as 2-opt (Croes, 1958) are applied iteratively to
solve the problem in small stages. Heuristics
such as the Lin-Kernighan heuristic (Lin &
Kernighan, 1973) have been used with success
to solve the TSP (Cook, Cunningham,
Pulleyblank, & Schrijver, 1998).

Meta-heuristic techniques have been used
to solve the vehicle routing problem (VRP);
these include ant-colony optimisation
(Gambardella & Dorigo, 2000), simulated an-
nealing (Czech & Czarnas, 2002), and evolu-
tionary algorithms. Considerable research into
solving the travelling salesman problem using
EAs has been undertaken (Freisleben & Merz,
1996); Tamaki, Kita, Shimizu, Maekawa, &
Nishikawa, 1994; Homaifar, Guan, & Liepins,
1993; Whitley, Starkweather, & Shaner, 1991;
Mathias & Whitley, 1992). Investigation into
the use of EAs to solve the vehicle routing
problem has also been undertaken, notably in
Thangiah (1999), Blanton and Wainright (1993),
Thangiah, Vinayaamoorthy, and Gubbi (1993),
and Homaifar et al. (1993). The integration of
the Lin-Kernighan heuristic and an evolution-
ary algorithm has been explored in Freisleben
and Merz (1996), and Baraglia, Hidalgo, and
Perego (2002). The problem of routing garbage
collection using EAs is explored in Bousonvile
(2001); the authors use an arc-routing EA to
construct routes for a real-world garbage col-
lection problem. Garbage collection is essen-
tially an arc-routing-based problem, each street
requiring collection being represented by an arc
on the graph. Work on the construction of
postal delivery routes has been discussed in
Urquhart, Ross, Paechter, and Chisholm (2002a,
2002b) and Urquhart, Paechter, and Chisholm
(2001). The earlier work concentrated on the
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use of a representation known as street-based
routing (SBR) designed for use within an evo-
lutionary algorithm. Because SBR groups de-
liveries geographically, it also forms a conve-
nient unit of exchange between routes when
optimising a delivery network. Agent-based
approaches to multi-vehicle routing problems
have also been examined by Hoen and La
Poutré (2003), who explore an approach
whereby agents representing different compa-
nies compete through auctions to win deliver-
ies. Agents are not committed to deliveries
once they have been won; they may de-commit
if more profitable work is available. The au-
thors of Bachem, Hochstättler, and Malich
(1996) attempt to solve the VRP using a simu-
lated trading heuristic. Using their heuristic it
costs an agent credit to remove a customer, but
an agent gains credit for accepting a customer.

THE CONSTRUCTION OF
POSTAL DISTRIBUTION
NETWORKS

Problem Description

Christmas cards are delivered directly to house-
holds within the City of Edinburgh by charities
that organise the collections and deliveries to
raise funds. The city is sub-divided into areas,
each of which requires a network of delivery
rounds; each round should attempt to satisfy the
following constraints:

1. The maximum distance for each round
must be less than a set limit, typically 3km.

2. The maximum number of delivery points
(households) per route should not exceed
a predefined limit, typically 250.

3. The number of delivery rounds should be
minimised.

Note that constraints 1 and 2 may be deemed
hard constraints and the rest soft constraints.

The test areas used within this study are the
Moredun and Fairmilehead housing areas lo-
cated in the south of the city. The Moredun area
contains 1,770 households arranged within 165
street sections. This area combines a mixture
of tower blocks (with over 100 dwellings per
building) and semi-detached villas. The
Fairmilehead area encompasses 1,592 delivery
points over 153 street sections. The topology
and distance values were derived from data
supplied by the British Ordnance Survey under
the Edina/JISC agreement. The Windmill dataset
(see below) was an artificially created data set
consisting of 202 delivery sections spread over
28 street sections. The topology of the street
sections may be seen in Figure 1.

An informal study of the problem revealed
that a social system had evolved when con-
structing manual solutions; a coordinator ini-
tially divides up work and allocates it to a
number of operatives for delivery, each opera-
tive having one delivery round. The operatives
then informally exchange work so as to optimise
their individual workloads. The solution pro-
posed seeks to model this existing social system
by using a coordinator agent that allocates work
to a community of routing agents who optimise
individual routes. The routing agents are al-
lowed to carry out transactions that redistribute
work between them.

Each agent represents the interests of one
human delivery operative (adhering to maxi-
mum length and maximum capacity constraints),
whilst contributing towards the community’s
goal of minimising the overall cost of the net-
work in terms of distance and number of opera-
tives used. Each agent has an objective to
undertake deliveries up to the maximum al-
lowed, whilst minimising the distance covered
(and cost incurred).
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Building Networks Using a
Community of Agents

Agents must be able to redistribute work (deliv-
eries); this will be facilitated by means of a
first-price sealed bid auction administered by
the coordinator agent. In order to participate
within the community, each agent requires a
number of abilities:

• to compare and evaluate items of work
(deliveries),

• to communicate with other agents, and
• to optimise their route.

These requirements are met as follows:

• Item 1: Each agent will use a valuation
function to allocate a value to any item of
work, owned or not. This value represents
the degree to which that item of work
would contribute to the agent’s objec-
tives. By generating such values an agent
can take part in an auction or decide which
items of work are of least value to it and
should be given to other agents.

• Item 2: Agents can communicate via the
coordinator who is responsible for admin-
istering auctions.

• Item 3: In this case the algorithm used by
the agents is SBR-EA, an EA-based rout-
ing algorithm (see the following).

The chosen representation is a constant
length permutation of street section identifiers.
Both sides of each two-sided section have a
gene within the chromosome; for instance, if
there were just two street sections and both
sides of each section required a delivery, there
would be four genes.

Street-Based Routing Using an
Evolutionary Algorithm

SBR exploits the geographical groupings of
houses (delivery points) that exist within streets.
Each route is represented by a permutation of
street sections. Each street being a section of
roadway between two junctions, each section
can contain 0 or more delivery points. To
construct a route the street sections are sup-
plied to a route builder that adds them in se-
quence to the route.

Because each street section may contain a
number of delivery points, it is necessary to
determine the order in which these points should
be visited when building a route. The order of
deliveries is determined by applying one of three
delivery patterns. The choice of delivery pattern
for each section is determined during the evalu-
ation process and is not included in the chromo-
some structure. The available patterns are:

• deliver each side separately,
• deliver to both sides in one operation

whether by crossing backwards and for-
wards repeatedly over the road, and

• deliver to one side in its entirety and then
the other side.

Figure 1. Street topology of the datasets
used in this chapter (left to right): the
Moredun dataset, the Fairmilehead dataset,
and the Windmill dataset
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The delivery pattern used depends on where
the section is to be placed within the route. By
altering the delivery patterns, the route may be
optimised for a delivery person travelling on
foot or a delivery vehicle. This routing algo-
rithm is known as SBR-EA; a full description
may be found in Urquhart et al. (2001). See
Figure 2 for an example of how the SBR route
builder decodes chromosomes.

The recombination operator used within
SBR-EA creates new genotypes based on two
parents, these being selected using a tourna-
ment of size 2. A string of genes from parent 1
which exist between two random points are
copied to the child, allowing the preservation of

a contiguous section of route. Subsequently
those genes in parent 2 which have not already
been copied are each copied to the first avail-
able space in the child chromosome. This scheme
is based on the OX recombination operator
(Davis, 1985). A mutation is defined as the
selection of a single gene and its movement to
another random point within the chromosome.
This will produce a change within the pheno-
type route. All of the child genotypes created at
a particular generation are subject to the possi-
bility of mutation as determined by the mutation
rate. Parameters used with SBR-EA are given
in Table 1.

Constructing Static Distribution
Networks Using Agents

The coordinator undertakes an initial allocation
of work (street sections) to agents using a
grouping EA that produces groups of adjacent
streets that meet the maximum deliveries con-
straint. Each group is allocated to an agent. The
initial number of agents is determined by divid-
ing the total number of deliveries by the maxi-
mum allowed per agent. The agents then com-
mence optimising their routes using their copy
of SBR-EA.

When the agents have all executed their
copy of SBR-EA, the coordinator requests that
the agent with the greatest violation of the hard

Figure 2. A simple SBR example based on the
chromosome DCCBBEAAD (please note that
as street E is a single-sided section, it only
appears once)

 

 

 

Delivery Pattern 1- deliver to each side separately (e.g. 1-3 
then 4-6) by traversing the street section twice within the 
route. Delivery Pattern 2- deliver to both sides crossing the 
street as required (e.g. 1-4-2-5-3-6 in the above example). 
Delivery pattern 3- Deliver to one side and then the other 
(e.g. 1-2-3-6-5-4 in the above example). 
 

 

The first gene in 
our example is D 
followed by CC. 
Street D is visited 
(pattern 1 is 
applied) then street 
C (pattern 2 is 
applied). 

The route builder 
interprets the rest of 
the chromosome. 
Patterns are applied 
as follows: 
Street D pattern 1 
Street C pattern 2 
Street B pattern 3 
Street E pattern 1 
Street A pattern 2 
Street D pattern 1 

 

Parameter Value 
  

Population Size 175 
No of children/generation popSize*0.5 

Tournament size 2 
Mutation rate 1/chromo_len 

Recombination rate 0.5 
No of evaluations per run 500000 

Table 1. The EA parameters used for the
SBR-EA
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constraints returns a street section for realloca-
tion. The section is then auctioned; the agent
submitting the lowest bid has the section allo-
cated to it.

The bidding logic used by agents is shown in
Figure 3; each bid is based on the average
distance from the street section under consid-
eration to streets currently allocated to that
agent. The closer the street section under con-
sideration to the other work owned by the
agent, the lower the bid value submitted. Pen-
alties are added to the bid if the addition of the
new street section causes the agent to break
any hard constraints. The logic declines to bid
if the agent estimates that the addition of the
street section will violate the constraints or if
the agent was the previous owner of the street
section. In the event of all agents declining to
bid for street section, this is taken as a consen-
sus decision by the community to introduce a
new agent. The new agent is created by and
receives half of the workload of the agent with

the largest workload in the community. The
auction for the unallocated section is then held
again with the enlarged community.

The system was tested with maximum round
lengths of 2, 2.5, and 3km; the results obtained
using the agents are shown in Table 2. Note that
in the cases of the 2.5 km and 2km problems,
the maximum distance in any of the routes is
greater than 99% of the maximum length ca-
pacity. Efficient solutions should be those that
produce rounds that use as much of the avail-
able delivery capacity as possible (see Table 2
for the percentages of delivery capacities used).
This suggests that the system is capable of
producing efficient solutions. As expected the
number of delivery routes in the solution in-
creases as the maximum length decreases.

Results obtained on the Moredun dataset
are shown in Table 2, and results for the
Fairmilehead dataset are shown in Figures 5a
and 5b. In Figure 5a we see that the system
finds it difficult to meet the maximum length
constraint for every round when the maximum
length is less than 3km. When the maximum
length is increased beyond 4km, the system
produces solutions in which the maximum round
length constraint is no longer violated. Figure 5b
shows the use of each agent’s delivery and
route length capacities over the same set of
runs. These results are based on the average of
20 runs at each maximum length setting.

The bidding mechanism does not address
the requirement to minimise extra sorts in its
initial form. Figure 4 demonstrates how work is
exchanged within the system. Note that in this
case, two additional agents are added during
the run (agents K and L). A vertical line
represents each transaction; alphanumeric iden-
tifiers for the street section being exchanged
are shown. Numbers at the start and end of the
transaction represent the length of the agent’s
route after agent has used its EA to update its
route. It may be noted that transactions fre-

Figure 3. The bidding logic used by agents

function bid(Street work){ 

  bid = avgDist from work to existing work 

  if adding street means total delivery > MAXDELS) 

then 

    bid = bid + (totalDeliveries *2) 

  if (previous owner of work = thisAgent) then 

    decline to bid 

  if (agent already > MAXLEN) then 

    decline to bid 

  if (current dist + dist to new work > MAXLEN)  then 

    decline to bid 

  } 
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quently happen in sequences that allow the
transfer of all the street sections that make up
a complete street from one agent to another.
What is interesting about this phenomenon is
that this behaviour was not programmed explic-
itly into the system.

Controlling the Number of Agents
within the Community

The initial bidding mechanism described previ-
ously may be described as selfish as it does not
submit a bid for any item of work that the agent

Figure 4. The run chart for the 2km problem: the vertical lines represent the agents, the
horizontal lines represent transactions. Each transaction represents the result of one auction.

 

Final 
Distances 1939.3 1961.0 592.2 1669.2 1738.5 1824.9 1137.0 1141.6 1605.3 1961.1 1916.6 1685.8  
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2017.6 CraigG5 877.2 

2004.9 1916.6 MparkG1 488.1 

1961.1 CraigG4 1179.4 

1961.0 1308.8 MparkW8 

1405.5 1685.8 MparkR2 

592.2 MparkC1 2770.5 

600.2 MparkC2 2670.8 

900.6 MparkR1 2479.4 

945.1 MparkR2 2379.1 

CraigG4 1546.4 

1137.0 CraigG4 1605.3 

1824.88 

1559.7 

1939.3 2245.9 3345.1 1497.8 1738.5 2411.1 279.3 48.9  2901.7  1927.5 

Agent    A    B     C    D     E    F    G     H     I    J     K    L 
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estimates will conflict with its own objectives.
If all the agents decline to bid for a street
section, the system creates a new routing agent
even if the existing agents could cope with the
workload simply by exchanging street sections.
This can be demonstrated by creating a simple
dataset, known as the Windmill dataset, which
is illustrated in Figure 1. It was noted that the
agent community described in the previous
section consistently produced solutions that
contained too many rounds. The reason for this
was the constrained nature of this particular
dataset.

If the bidding logic is altered to always
submit a bid, regardless of whether or not a

hard constraint is broken, then the street sec-
tions are divided amongst the initial set of
agents, although some agents may be violating
hard constraints. Using this relaxed strategy
the system stabilises with adjacent street sec-
tions being allocated to the same agent. Having
used this relaxed bidding strategy to allocate
surplus work to the most appropriate agents,
the agents may then adopt the selfish strategy
to prompt repair transactions to repair those
routes that violate constraints. If another agent
was required, then it would be added when
each member of the community declines to bid
for a street section. This will not happen until an
interim solution has been found using the re-
laxed bidding strategy. The concept of switch-
ing between relaxed and selfish bidding strate-
gies is referred to as dynamic bidding.

If the system is allowed to exchange work
using the relaxed bidding strategy, eventually a
state is reached whereby the same piece of
work is continually cycled between two agents.
When such a cycle is detected, the bidding
strategy of agents may then be reset to the
original selfish strategy. Allowing each agent to
keep a trading list of those street sections

Table 2. A summary of the initial results
obtained after undertaking 20 runs on the
Moredun dataset

Max 
length 
constraint 

Avg 
round 
length  

% of max 
length 
constraint 

Max 
round 
length  

% of max 
length 
constraint 

 Avg 
No of 
round 

3km  2166.9  72%  2996  99%  9.1 
2.5km  1993.8  80%  2491.5  99%  10  
2km  1589.5  80%  1995.7  99%  12.4  

�

Table 3. Results obtained with the single-stage bidding and dynamic bidding on the Moredun
dataset

   Selfish Bidding 2 Stage Bidding 
Max. Length 
Constraint  

2K 2.5K 3K 2K 2.5K 3K 

Avg. round 
Length  

1583.2 1980.4 2175.0 1553.6 1955.9 2149.7 

Std. Deviation 
(as a % of the 
average) 

7.4% 7.7% 8.0% 6.1% 6.3% 7.4% 

Over-length 
routes  

0 0 0 0 0 0 

Avg. extra sorts  7.1 7.0 4.4 8.4 6.8 4.0 
Avg. 
supervised 
routes  

4.6 4.5 4.4 4.7 4.8 4.3 

% of supervised 
routes  

37.4 45.7 48.4 37.8 47.8 47.3 

Avg. No of 
routes  

12.2 9.9 9.1 12.5 10.2 9.1 
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surrendered by the agent facilitates this change
in strategy. The trading list is similar in concept
to the tabu list used in Glover (1989, 1990) in
that they both keep a form of record of recent
actions. In a tabu list this information is used to
prevent the algorithm re-examining solutions
too frequently. In this context the trading list is
used to indicate when the system has found an
interim relaxed solution. A comparison of the
two-stage strategy and the original selfish strat-
egy may be seen in Figures 6(a) and 6(b).
Although Figures 6(a) and 6(b) show a dra-
matic improvement on the Windmill dataset,
dynamic bidding does not affect performance
on the larger Moredun dataset as shown in
Tables 3 and 4. Note that the number of routes
required for routing around the Windmill dataset
drops as a result of the modified bidding strat-

egy. A side effect is the rising in average round
lengths, although this is to be expected given the
relationship between quantity of routes and
round length (round lengths increase as the
number of routes decreases).

DYNAMIC DISTRIBUTION
NETWORKS

This section sets out to examine the applicabil-
ity of the techniques developed previously, to
the optimisation of home delivery services of-
fered by many supermarkets in the United
Kingdom and elsewhere. Solutions to such prob-
lems may be optimised in terms of providing the
fastest possible delivery service or providing
the delivery service at a low cost. These two
objectives are not always compatible; it may be
difficult to provide a fast delivery service for a
low cost.

Problem Description

The problem discussed is a generic problem
based on the services offered by a number of
UK supermarkets. The problem is spread over

Table 4. Significance tests for Table 3
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a period of time (0 <t< T); at each time interval
t a number of deliveries will be added to the
system. Deliveries are made from the super-
market by a number of vehicles; each vehicle
collects a load, consisting of a number of items
for delivery from the supermarket, and delivers
those items before returning to the supermarket
to collect another set of deliveries. In this case
each vehicle has the capacity to undertake up to
50 deliveries on a route, subject to a maximum
length constraint, before returning to the super-
market. The system must allocate deliveries to
vehicles, and assign a departure time and route
to each vehicle to allow it to make its deliveries
and return for the next load.

The number of deliveries q added to the
system each tick t is determined as follows:

2*
20

t
sinq =

If q <=0 then a random value in the range
0..3 is used. This gives rise to a pattern of
deliveries that represents periods of high and
low demand. The control mechanism used to
allocate work to the agents must manage the
dynamic nature of the problem.

The Agent Architecture

The starting point for our solution was the agent
architecture previously described. Each agent
incorporates a version of SBR-EA that has
been modified to remove those patterns that are
specific to walking couriers. Each agent repre-
sents one vehicle; an important difference in
the dynamic problem is that each agent must
construct several routes during the course of
the problem-solving process, a new route being
required each time the vehicle returns to base
and departs with another load of deliveries.

When a delivery is requested, the delivery is
added to the appropriate SBR street section. If
this street section is already allocated to an
agent, then the delivery will be automatically
incorporated within that agent’s route. If the
street section has no other deliveries, it is
placed in a list of unallocated street sections
awaiting allocation to an agent. Items in the
unallocated list are distributed to agents by
means of the auction system described previ-
ously. The lifecycle of an agent may be de-
scribed as follows (see also Figure 7). The
agent initialises its SBR-EA; it then accepts
deliveries in the form of street sections or as
extra deliveries to street sections currently

Figures 6a and 6b. Results obtained on the Windmill dataset
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incorporated in the route constructed by that
agent. Each item in the unallocated list is of-
fered for auction at each tick. The agents use
the selfish bidding strategy, resulting in some
items remaining in the unallocated list. Re-
turned items are placed in the unallocated list.
Although an agent will have work allocated to
it and removed from it whilst it is constructing
its route, the population is not re-initialised, but
has the appropriate genes removed or added to
it. The population is only re-initialised after a set
of deliveries has been dispatched.

If allocating deliveries directly to a street
section already incorporated within a route
results in a constraint violation, the agent re-
turns one or more street sections to the coordi-
nator as described previously. If a delivery is
required to a street section that has not already
been incorporated into a route, then that deliv-
ery section is added to a list of unallocated
street sections. Having processed all of the
new street sections added at that particular
time, agents are then allowed an opportunity to
submit bids for those items contained within the
surplus list.

The agent will continue accepting and reject-
ing street sections, and evolving a route for period
of time, until it is decided to dispatch the deliveries
allocated to it. Once an agent has dispatched a
vehicle, it cannot re-dispatch for a given period of
time to allow for the vehicle to make the deliveries
and return to the supermarket.

The crucial decision that determines whether
our solution will be optimised in terms of
minimising delivery time or minimising cost is at
what stage the agent should dispatch the deliv-
eries. If the agent waits until the vehicle is full,
this may result in deliveries having an unac-
ceptably long delivery time. Departing too fre-
quently will incur a greater travelling distance.
To assist with determining the rate at which
vehicles should depart, we have used an artifi-
cial currency s, which allows deliveries to “buy”
the services of a delivery vehicle. In many
organisations the prime motivation in decision
making is the economic effects of the decision,
more specifically the potential cost implica-
tions. The use of an economics metaphor should
also make the system more understandable to
users, allowing them to interact with the system
and make more effective use of it.

When a critical mass of deliveries has
grouped together, they will have enough spend-
ing power to buy the services of a vehicle to
undertake their dispatch.

Each delivery within the system is allocated
a subsidy s, for a given delivery h is initially
calculated as:

s = dist(superMarket,h)* 0.1

where

dist(i,j) returns the distance from location i
to location j

With each tick t, the delivery is in the system
awaiting dispatch so the amount of subsidy
allocated to it increases as follows:

s = s * subsidy_rate

where

subsidy_rate is a value in the range 1..2

Initialise EA Accept new 
deliveries

Run EA to 
build revised

route 

Return undesired
deliveries 

Dispatch
vehicle Dispatch?

N

Y

Initialise EA Accept new 
deliveries

Run EA to 
build revised

route 

Return undesired
deliveries 

Dispatch
vehicle Dispatch?

N

Y

Figure 7. The lifecycle of an agent
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As the SBR representation clusters deliver-
ies together into street sections, those sections
with multiple deliveries will have a higher com-
bined subsidy and are more likely to be deliv-
ered sooner. The longer a delivery is in the
system awaiting dispatch, the more likely it is to
be included within a delivery run, as the amount
of subsidy allocated to it will increase. When an
agent has to remove some work (due to an over
length route or too many deliveries), the street
section selected is that which attracts least
subsidy.

The cost of dispatching a set of deliveries is
calculated as the cost per km of running each
vehicle. In this case the cost of delivering is
1,000 units of currency per km. For differing
problems other costing factors may be taken
into consideration, such as a fixed daily cost per
vehicle.

Results for Dynamic
Distribution Networks

Runs were carried out with subsidy rate in the
range 1.0 to 2.0. Each problem runs for t = 250

using the demand pattern outlined earlier. In
this instance, four agents were used to simulate
four delivery vehicles. In each case the actual
CPU time taken for each unit of time t was
three seconds. For larger problems the agents
may be distributed across multiple CPUs to
allow concurrent evolution. The Fairmilehead
and Moredun datasets described previously
were used for testing.

Because of the non-deterministic nature of
the EA, the results presented are the average of
20 individual runs with each setting of the
subsidy rate. Reference to Figures 7 and 8
shows that the average time between a delivery
being added to the system and being delivered
decreases as the subsidy rate is increased. The
best improvement happens in the range 1.2 to
1.4, with less improvement happening above
1.4. In Figures 8 and 9, the average delivery
time initially increases with a subsidy rate of 1.2
and decreases in the range 1.2 to 2, suggesting
that the best results may be obtained by varying
the subsidy in the range 1.2 to 2.

The total distance covered by deliveries for
the same set of runs is shown in Figures 8 and

Figure 8. Results obtained with the Moredun
dataset

Figure 9. Results obtained with the
Fairmilehead dataset
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9. As expected the total distance covered rises
in proportion to the subsidy rate. The greatest
improvement is again found in the range 1.2 to
1.4. When the subsidy rate is increased beyond
1.6, the total distance travelled increases, but
with little corresponding reduction in average
delivery time. Examination of these results
suggests that a low value of the subsidy pro-
duces a solution that will be cheaper in terms of
distance, but resulting in longer delivery times,
whilst a higher subsidy rate will result in shorter
delivery times but a higher cost.

CONCLUSION

This chapter has illustrated the means by which
tools such as evolutionary algorithms, agents,
and economic metaphors may be used to
optimise distribution networks. The postal dis-
tribution problem was tackled using a commu-
nity of agents incorporating SBR-EA to build a
route around each copy of the algorithm. There
exists a problem with combining the entire
network into a single chromosome, in that a
single mutation or crossover is likely to affect
several or even all of the routes. The agent-
based system overcomes these difficulties, each
route being optimised by a separate agent.
Those agents who are satisfying all of the hard
constraints may simply evolve their route and
never interact with other agents whilst the
remainder of the problem is being solved. Im-
plicit within the agent community is the dynamic
valuation of work objects; the bidding value for
any street section (the work object in this
instance) varies as the bidding agent changes
its route. This means that at any time it is
possible to select an item of work and then rank
the agents in the order that the agents desire the
item of work.

The addition of dynamic bidding further
improves the efficiency of the system, allowing

it to cope with problems that are tightly con-
strained such as the Windmill dataset. Within
the agent-based system, there does not exist a
method for removing a delivery round. In solv-
ing optimisation problems it is often necessary
to relax the problem by lessening (or removing)
some of the constraints on it, allowing relaxed
solutions to be constructed. Such solutions may
then be used as a starting point to search for a
solution once the original constraints have been
re-imposed. By implementing dynamic bidding,
with a relaxed stage that allows agents to
disregard the maximum length and maximum
deliveries constraints, the problem is relaxed in
a manner that does not result in the wholesale
destruction of a route, but simply in the re-
allocation of work amongst agents.

The agent-based architecture is then ap-
plied to the problem of optimising the despatch
times of vehicles in a supermarket delivery
system. Unlike the postal problem this is a
continuous dynamic problem. The arrival of
goods into the problem and their subsequent
departure upon delivery gives rise to an element
of supply and demand. The artificial currency
metaphor is introduced with the ability for goods
to “pay” for delivery. It is demonstrated that the
type of solution produced (optimised for speed
or optimised for cost) may be determined by
altering the subsidy rate. Given that such sys-
tems are likely to be used by individuals with no
background in computing or AI, the ability to
control the output in this manner makes their
likely acceptance in the real world much higher.
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ABSTRACT

The use of evolutionary computation is significant for the development and optimisation of
strategies for dynamic and uncertain situations. This chapter introduces three cases in which
evolutionary computation has already been used successfully for strategy generation in the
form of work on the Iterated Prisoner’s Dilemma, Rubinstein’s alternating offers bargaining
model, and the simple supply chain model. The first two of these show how evolutionary
computation has been applied to extensively studied, well-known problems. The last of these
demonstrates how recent statistical approaches to evolutionary computation have been
applied to more complex supply chain situations that traditional game-theoretical analysis has
been unable to tackle. The authors hope that the chapter will promote this approach, motivate
further work in this area, and provide a guide to some of the subtleties involved in applying
evolutionary computation to different problems.

INTRODUCTION

The use of evolutionary computation is impor-
tant in the development of strategies for dy-

namic, uncertain situations or for any situation
where a simple strategy has many parameters
to tune. While game theory and theories of
equilibrium are highly effective tools for the

http://www.pdfcomplete.com/1002/2001/upgrade.htm
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analysis of various problems, they suffer from
being unable to deal with the increased com-
plexity and uncertainty inherent in many real-
life situations. Strategies requiring a large num-
ber of parameters to be tuned cannot effec-
tively be optimised by hand both because those
numbers may be so large, but primarily because
interactions between the parameters are often
difficult to understand.

One such problem is that of supply chains
and what strategies should be used by partici-
pants to operate effectively within them. Tack-
ling this problem is important because trading
electronically will become increasingly impor-
tant in the future, and a need will exist, if it does
not already, for many of the transactions to be
handled fully automatically (He, Jennings, &
Leung, 2003; Sandholm, 1999; Walsh, 2001).
Even relatively simple supply chain scenarios
prove difficult to analyse, and it is usually
necessary to resort to domain knowledge in
order to develop strategies. While this ap-
proach to strategy creation is capable of pro-
ducing good solutions, it is difficult to foresee
how they will respond in unexpected situations,
guarantee robustness, and ensure maximum
effectiveness in the face of change. Further-
more even an effective hand-crafted solution is
likely to require a large number of parameters
to be tuned, and doing this manually could well
prove impossible either because the number of
parameters is so large or because they interact
in a way that is difficult to understand.

Evolutionary computation (EC) gives us the
potential to address these issues. By defining
the supply chain environment, or indeed any
other environment, in terms of a reasonable
strategy representation scheme and practical
strategy evaluation mechanism, EC is able to
evolve strategies and/or good parameter sets to
tackle the problem.

In this chapter we will be looking at three
different strategy generation problems and how

EC can be used to tackle them. The first of
these, Iterated Prisoner’s Dilemma (IPD), in-
troduces strategy generation using EC and
shows how different algorithms have been used
to tackle the same problem. The second prob-
lem, Rubinstein’s alternating offers bargaining
model (RAOBM), is used to demonstrate that
EC can find a known optimal strategy. The final
problem is defined by the simple supply chain
model (SSCM). For the SSCM we show how
EC can be used to tackle a far more complex
strategy evolution problem by using a support-
ing strategy framework. In each case we ex-
amine why a particular EC algorithm is most
appropriate, while discussing past efforts and
presenting recent work.

GAME THEORY

Game theory has been highly successful in its
application to situations such as the Prisoner’s
Dilemma (PD) and Rubinstein’s bargaining
game, along with many others. By starting from
a notion of rationality and often complete infor-
mation, it has proven invaluable and provided a
good indication of how to behave in different
situations. Since its initial formulation various
theories of equilibrium have been posited to
help explain how and why certain outcomes do
(or should) occur within a game. Some of these,
along with other terms, will be referred to
during the course of this chapter; we briefly
recap these now.

• Dominant Strategy: A strategy that
yields superior results regardless of the
opponent’s move.

• Dominant Strategy Equilibrium: The
outcome of a game reached when all
players have a dominant strategy and
play it.



574

Games, Supply Chains, and Automatic Strategy Discovery Using Evolutionary Computation

• Nash Equilibrium: The set of possible
results reached by players playing the best
possible strategy in response to their op-
ponents move.

• Sub Perfect Game Equilibrium (SPE):
The result of a game if each player moves
such that a Nash Equilibrium strategy is
played at each sub game, avoiding the
worst possible outcomes at each stage of
a game.

• Evolutionary Stable Strategy (ESS): A
strategy that dominates the population and
cannot suffer from invasion by other (mu-
tant) strategies.

Game theory, as stated in the introduction,
while highly successful in analyzing different
situations, has difficulty dealing with problems
containing a considerable degree of uncertainty
or of a highly dynamic nature (essentially the
same thing). If a problem cannot effectively be
captured, its subsequent analysis by game theory
is not possible. While ESS can help explain why
and under what conditions a particular strategy
may become dominant within a population, it
cannot tell us what that strategy may be without
the associated prior game analysis. Evolution-
ary computation, by comparison, offers a way
to develop strategies from scratch and discover
which (if any) of these are dominant; provided
that a good strategy representation scheme and
evaluation method are used.

EVOLUTIONARY
COMPUTATION AND PBIL

As is described in earlier chapters, evolutionary
computation covers a wide range of powerful
problem solving tools, or evolutionary algo-
rithms (EAs), that have been inspired by nature
and make use of the concept of natural selec-
tion to improve a population of solutions. Three
of these algorithms are considered in this chap-

ter, genetic algorithms (Mitchell, 1998), genetic
programming (Banzhaf, Nordin, Keller, &
Kaufmann, 1998), and population-based incre-
mental learning (Baluja, 1994;  Sebag &
Ducoulombier, 1998).

The last of these, PBIL, is a relatively new
statistical approach to EC that combines the
concept of a GA with that of reinforcement
learning techniques (such as neural networks).

A PBIL algorithm may make use of the
same solution representation as a GA; how-
ever, instead of a population of solutions, PBIL
makes use of a probability distribution. The
probability distribution represents the likelihood
of a solution string’s elements (or alleles) of
taking on a particular value. Test solutions are
generated from this distribution, evaluated, and
used to reinforce the distribution; good solu-
tions increase the likelihood of their elements’
values recurring in the future and the reverse
for bad solutions. Like GA, PBIL may make
use of mutation to help increase solution diver-
sity and forms of elitism to focus the search
(Gosling 2005). While quite new, PBIL has
already proven useful for various types of
problem solving (Sukthankar, Baluja, &
Hancock, 1998;  Inza et al., 1999). The basic
operation of a PBIL algorithm is shown in
Figure 1.

Initialise probability distribution (all 
values have equal likelihood) 

G
enerate a population of test 

solutions from
 distribution 

D
eterm

ine the fitness of all m
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bers 
in the test population 

Positively reinforce distribution by 
good m
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em
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R
epeat for som

e num
ber of 

generation or until a sufficiently 
good solution is found 

Figure 1. Basic operations of PBIL



  575

Games, Supply Chains, and Automatic Strategy Discovery Using Evolutionary Computation

While discussing EAs throughout this chap-
ter, two key features will recur. First, the
solution representation used by the algorithm is
critical to the success of the algorithm in tack-
ling the problem; a good representation should
reduce the search space as far as possible and
limit or remove the possibility of invalid solu-
tions being generated to avoid a combinatorial
explosion. Secondly, the evaluation mechanism
must successfully distinguish the quality of
different solutions, but at the same time be
computational efficient.

ITERATED
PRISONER’S DILEMMA

Introduction

Iterated Prisoner’s Dilemma is an extension of
the well-known Prisoner’s Dilemma (PD) game.
In PD two players, A and B, play two possible
moves, cooperate or defect, simultaneously.
The combined choices determine each player’s
score. IPD is PD played over some number of
rounds, the scores accumulating. The payoff
table for PD is shown in Figure 2.

The sole Nash Equilibrium for PD is the play
(defect, defect). If the number of rounds is
known, this is also the best play for IPD. If,
however, the number of rounds is unknown, an
incentive exists for each player to cooperate in

order to avoid uncertain future punishments
from the other for defecting. How to play under
these circumstances is open to debate; cooper-
ate is desirable, as the long-term payoff for the
players would be better but the strategy should
not be open to exploitation.

EC has previously been used to study IPD
strategies. In 1987 Axelrod first did so, running
a competition in which strategies were learned
using a GA-based system. Axelrod (1987) con-
cluded that tit-for-tat (TFT) was the dominant
strategy for IPD. This result sparked some
debate with various other experiments and analy-
sis by other researchers, some of whom consid-
ered this conclusion incorrect (Binmore, 1994,
1998; Linster, 1992; Kraines & Kraines, 1993).
Further EC-based work is discussed below in
relation to IPD strategy representation.

We now introduce recent experiments con-
ducted into IPD using a similar setup to Axelrod.
This work aimed to discover how effective
population-based incremental learning (PBIL)
was for strategy generation using the more
established genetic algorithms for comparison
(Gosling, Jin, & Tsang, 2004, 2005).

Representing IPD Strategies

When developing a strategy, it is important to
determine what the players know about the
situation, history of play, each others’ behaviour,
and how, generally, they should respond to that
information (probabilistically or deterministi-
cally). The answer to these questions has a
profound effect on the nature of the strategies
that can be produced, how they can be repre-
sented, and subsequently on the type of EAs
that may be used to evolve them.

In answering these questions for IPD, a
considerable degree of variation is possible.
For instance Nowak and Sigmund (1992, 1993)
dealt with players that responded probabilistically
to a memory of only the last round of play. The

Figure 2. Prisoner’s Dilemma payoff table
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strategy representation scheme consisted of
four variables, the chance of defection given
each possible payoff. Evolving strategies using
this representation led to a dominant Pavlov
strategy (Kraines & Kraines, 1993) occurring
within the population.

Crowley (1996) dealt with varying player
memories and IPD strategies based on sets of
hierarchical rules. The rules essentially pattern
matched different situations within the player
memory with more explicit rules having greater
precedence. For small rule sets and low memory,
Crowley found that rules similar to TFT would
evolve, but in the case of longer memory and
large possible rule sets, he noted that far more
complex strategies emerged. Crowley argued
that these more complex strategy hierarchies
might provide some indication of how coopera-
tion evolves within nature.

Further examples of the diversity of repre-
sentations possible when using EAs are Fogel
(1993), who evolved finite state machines in an
attempt to probe the necessary conditions for
cooperation to emerge, and Jang, Whigham,
and Dick (2004), who determined the effect on
behaviour of players with no memory that used
fixed sequences of moves with varying lengths.

In all of the above cases, a variation on GA
was used to evolve strategies. This was pos-
sible since the types of strategies selected and
their representations could be thought of as
fixed-length strings—an ordered set of vari-
ables that required optimisation. Since GAs are
designed for the optimisation of such strings,
they could be applied successfully to these
situations. GP, by comparison, makes use of
variable size tree representations of a solution
and so is unsuitable in this instance.

PBIL, however, can make use of the same
representation schemes as a GA which should
make it equally applicable.

In recent work we examined the relative
effectiveness of PBIL and GA in the context of

IPD. For our experiments we selected the
classic Axelrod representation. This represen-
tation is based upon players responding deter-
ministically to a memory of only the last three
rounds of play. Since both players make one
move per round and there are only two possible
moves (cooperate or defect), a complete player
memory comprises six elements each of two
possible values. This memory can be translated
into six binary bits, with 1 representing defect
and 0 cooperate. Six bits can be arranged in
only 64 possible ways, so with consistent play,
a player has only 64 possible responses to its
memory. We therefore use a 64-bit string to
represent the player’s strategy, one bit for each
possible memory configuration. Since at the
beginning of the game a player would have no
past memory, an additional six bits is provided
to represent a player’s starting memory or
predisposition. Thus the total strategy repre-
sentation is 70 bits in length. This is shown in
Figure 3.

GA vs. PBIL Comparison

In order to compare GAs and PBIL, two sys-
tems were set up and run independently. Both
algorithms were used to produce a set of strat-
egies that were then compared in a tournament.

Comparing the GA and PBIL approaches in
this way was not straightforward. While the
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two approaches used the same representation
and both used tournaments to evaluate their
strategies, each operate in very different ways.
The PBIL test population cannot be directly
compared to the GA’s population for instance.
For the GA, the entire population is evaluated,
and essentially all (or at least much) of that
information used for the ongoing evolutionary
process. With a PBIL implementation, only one
or two members of the test population are used
to update the probability distribution, so for a
large population, much of the evaluation infor-
mation would be lost. Comparing GA and PBIL
algorithms based on similar population sizes and
number of generation would therefore be un-
fair.

To achieve a fairer comparison the PBIL
system here made use of a relatively large pool
of generated test strategies. Each of these test
strategies was played against members of a
smaller evaluation population. The best scoring
member from the evaluation population was
then used to reinforce the probability distribu-
tion. In this way members of the evaluation
population receive high-quality evaluations, and
fewer evaluations are performed per genera-
tion. Comparing the GA and PBIL can now be
done on the basis of the number of evaluations
(IPD games played) used by each. The formula
below shows how the populations and genera-
tions of each system may be balanced to allow
the comparison:

evalsevals

evals

evals

PBILGA
PBILgenspPBILtestpoPBILpopPBIL

GAgensGApopGApopGA 1

runs systemPBIL  thegeneration ofnumber  The - PBILgens
systemPBIL  theof size pool  testingThe - pPBILtestpo

system PBIL  theof size population The - PBILpop
for runsGA   thesgeneration ofnumber  The - GAgens

size populationGA  The - GApop
sevaluationsolution  ofnumber  Total - PBILevals & GAevals

In the graphs that follow, the GA and PBIL
strategies were compared at time steps equiva-
lent in terms of number of evaluations. The
interval between time steps (in PBIL genera-
tions) can be found by the following:

GAgensPBILgensrvalOutputInteComparison /=

Results and Conclusion

While an extensive set of comparisons was
made, the best PBIL and GA parameter sets
used are listed in Table 1.

In order to provide a comparison of relative
effectiveness over time, the experiments were
repeated 100 times for each set of parameters
and the resulting strategies played against one
another.

PBIL consistently performed slightly worse
against the best GA configuration, although in
the early stages it does a little better than the
GA.

Under low population conditions however, a
PBIL with an identical number of evaluations
does better than GA. Reproducing similar GA
conditions to those used by Axelrod, for ex-
ample, shows PBIL to have superior perfor-
mance to GA.

Table 1. Best GA and PBIL configurations

Type GA PBIL 

Population Size 100 5 

Learning Pool NA 99 

Mutation Rate 0.007 Not Used 

Learning Rate NA 0.025 

Generations 300 6000 

Data Points 300 300 
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The reason for this appears to be that the
theoretically infinite population of PBIL is able
to overcome the shortcomings of a lack of
solution diversity within a small GA population.

The conclusion of this work was that GA in
general is slightly superior to standard PBIL for
strategy generation in this context. PBIL, how-
ever, is more effective when only a small
population size or a small number of evaluations
are possible.

Efforts to improve PBIL further (Gosling et
al., 2005), using a novel mutation operator, have
allowed it to compete favourably with GA in
this context under all conditions.

The use of EAs in this and other work
supports the idea that EC is effective at the
generation of game strategies.

RUBINSTEIN’S BARGAINING
GAME

Introduction

Rubinstein’s alternating offer bargaining model
(RAOBM; Rubinstein, 1982) is a simple eco-
nomic complete information game that involves

Figure 4. Mean GA strategy fitness/mean PBIL strategy fitness over time; PBIL starts off well
but ultimately does slightly worse than GA; value greater than one indicates superior GA
performance

Figure 5. PBIL vs. GA under Axelrod-like
conditions; PBIL rapidly performs better
than GA; values greater than one indicate
superior PBIL performance
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the division of some quantity, a unit pie for
instance, between two players. The aim of the
game is for the two players (A and B) to come
to a mutual agreement about how to divide the
pie. The game proceeds in rounds: in each
round one player is able to make an offer for
how much he or she should receive, and his or
her opponent is able to accept or reject that
offer. If the offer is rejected, another round
occurs with the rejecting player making the
next offer. This continues until agreement is
reached. To add incentive for the players to
agree, each is subject to a discount factor, thus
how much each receives is reduced by the
effects of waiting to obtain it. Since this is a
complete information game, the players each
know their and their opponent’s discount fac-
tors. Game theoretic analysis of this game
provides a Sub Game Perfect Equilibrium as
follows (see Rubinstein, 1982; Muthoo, 1999
for proof):

GetsAGetsB
DisBDisA

DisBGetsA

DisB
DisA

−=
×−

−=

=
=

1
1

1
first) (respondsfactor discount   BPlayer

offer)first  (makesfactor discount  APlayer 

If PlayerA, the first player to make a move,
uses the above formula to calculate his or her
offer (GetsA), there is no rational reason (from
a game theory point of view) for the opponent,
PlayerB, to reject it (and obtain GetsB).

A considerable body of work exists studying
the RAOBM, both in its traditional form and
under various alternative conditions. When the
model is altered such that the players have
incomplete information (Rubinstein, 1985;
Ausubel, Crampton, & Deneckere, 2002; Fatima,
Wooldridge, & Jennings, 2001, 2005) or are
boundedly rational or irrational (Kreps, 1990;
Myserson, 1991), the scope for individual strat-
egies increases dramatically. EC has also been

applied to the RAOBM, comparisons being
made to the Sub Game Perfect Equilibrium
under various conditions (Binmore, Piccione, &
Samuelson, 1998; Fatima et al., 2003; Jin &
Tsang, 2005).

While games such as RAOBM have been
extensively studied and solutions are known for
various conditions, other games can prove too
complex for traditional analysis. EC is of use in
studying such games, both to obtain an idea of
equilibriums that may exist for the game and to
provide a reasonable playing strategy. To have
confidence in this idea, we now introduce re-
cent work that compared the game theory
results for RAOBM with game playing strate-
gies evolved using genetic programming (Jin &
Tsang, 2005). The aim of this work was to
establish if GP could be used to effectively
approximate the game’s SPE and so provide a
case for its use in tackling problems that are too
difficult to analyse with traditional game theo-
retic approaches.

Representing RAOBM Strategies

The first step in tackling RAOBM with EC was
the same as with the IPD problem above, that
is, one of representation. While RAOBM is a
complete information game, the aim of approxi-
mating the SPE (and so finishing in the first
round) leaves players with little knowledge.
Assuming a unit pie, the players only know one
another’s discount factors and who starts first.
With this in mind the objective becomes one of
finding a representation that can make use of
this information to come up with a good first
offer from the starting player (PlayerA) that
would be accepted (hopefully) by the second
player (PlayerB). Essentially what we are look-
ing for is a mechanism that allows the evolution
of formulae that can tie the discount factors
together to generate an offer (and accept/
reject threshold).
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GA and PBIL are not easily able to do this
as they deal with fixed-length string represen-
tations of problems. Representing solutions is
possible, for instance by allowing evolution of
the offer/threshold directly, but these may lack
generality (as in this case).

Genetic programming (GP) by contrast is
able to evolve variable size tree structures that
may represent formulae directly. Instead of
defining the meaning of a string, the use of GP
requires the selection of an appropriate symbol
set to use within the tree structures. In general
keeping the set of symbols as simple as possible

is the best strategy, allowing evolution to do the
rest. In the case of the RAOBM, we used the
set of non-terminal symbols [+,-,/,*] and termi-
nal symbols [ADis, BDis, 1, -1] (ADis and BDis
being the PlayerA and PlayerB discount fac-
tors respectively). This symbol set is simple but
provides sufficient flexibility for evolution of
formulae, like that of the game’s SPE, to occur
(see the following).

Because the roles of PlayerA and PlayerB
within the RAOBM game are slightly different,
two separate populations are maintained for
PlayerA and PlayerB strategies. To determine
the fitness of a tree structure within a given
population, it is evaluated and used to play
games against all of the structures in the oppos-
ing population. The resulting accumulated pay-
off is used as the structure’s fitness.

The use of two distinct populations is known
as a co-evolutionary approach and is appropri-
ate when competing strategies have to operate
under different conditions from one another. In
this case PlayerA and PlayerB strategies would
evolve such that PlayerA represents the SPE
shown above, while PlayerB would evolve a
correspondingly different structure that would
accept the value generated by PlayerA.

Figure 6. Example of a GP structure showing
how the game’s SPE would be represented

Table 2. GP configuration parameters
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Parameter Value 

Nodes Non-Terminal (+,-,*,/) Non-Terminal (1,-1,DisA,DisB) 

Population Size 100 * 2 (200) 

Generations 300 

Initial Tree Depth 5 

Maximum Nodes 50 

Mutation Rate 0.01-0.5 

Crossover rate 0-0.1 
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Experiments and Results

Using the system of representation and co-
evolution described above, experiments were
run using the following parameters’ GP:

The experiments were run 100 times each
on 10 sets of discount factors; the average
score of the best performing individuals from
the final generation were used to determine
how closely the population had converged to-
wards the SPE (see Table 3). As can be seen
the SPE was approximated reasonably well in
most cases. It may be observed that this ap-
proximation began to break down where the
discount factors tended towards the extreme.

Conclusion

GPs’ more complex representation scheme can
be used effectively to approximate game theo-
retically derived equilibriums.

The GP-derived approximation tends to break
down when conditions are extreme.

While GP does not provide an exact match
for the theoretically derived SPE for this game,
it does provide a reasonable approximation in
most cases. This tends to suggest that GP
would be useful in studying other problems that
require a more complex representation.

THE SIMPLE SUPPLY
CHAIN MODEL

Introduction

At present, various electronic marketplaces,
auctions, and negotiation systems exist. In the
near future, full electronic supply chains will be
possible and indeed desirable to improve effi-
ciency (He et al., 2003; Sandholm, 1999; Walsh,
2001).

Table 3. ROABM results, GP approximates the game SPE well

Sets of discount 

factors (ADis,BDis) 

SPE 

(GotA) 

GP --- Experimental 

Average of Player A 

Standard Deviation 

of Player Average 

(0.1, 0.4) 0.625 0.9101 0.0117 

(0.4,0.1) 0.9375 0.9991 0.0054 

(0.4,0.4) 0.7143 0.8973 0.0247 

(0.4,0.6) 0.5263 0.509 0.0096 

(0.4,0.9) 0.1563 0.1469 0.1467 

(0.5,0.5) 0.6667 0.6745 0.0271 

(0.9,0.4) 0.9375 0.9107 0.0106 

(0.9,0.6) 0.8696 0.8 0.1419 

(0.9,0.9) 0.5263 0.5065 0.1097 

(0.9,0.99) 0.0917 0.1474 0.1023 
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This situation, however, presents a problem.
While humans are good at negotiations and
situation analysis, they are less able to handle
large volumes of information and numbers of
transactions. What is needed is a computer-
based system or strategy for handling these
situations. The strategy does not need to be the
perfect negotiator, although it must be compe-
tent, but it must be able to deal with negotiations
more rapidly than a human operator could. As
has been stated, while traditional economic
approaches are effective in analysing simple
games, they fail to tackle the more dynamic
problems faced in supply chain situations and as
such cannot be made full use of. The applica-
tion of knowledge and experience to develop
strategies is possible, but suffers from uncer-
tainty about how robust these strategies would
be, especially in unusual circumstances, and
how to optimise them for maximum effect.

Making use of evolutionary computation
within this domain is reasonable, given its appli-
cation to other economics problems. As we
have shown, provided we can define a reason-
able strategy representation, it should be pos-
sible for an EA to evolve an effective and
robust solution.

To begin tackling the supply chain problem,
it is first necessary to model the supply chains
we are interested in more precisely. A system
such as the Simple Supply Chain Model (SSCM)
provides one such way, and we will introduce
this shortly.

Having accomplished this, the next task, as
discussed earlier, is to develop a system of
representation for possible solutions and a
framework within which that representation
may be used and evaluated. We also need to
consider what sort of evolutionary algorithm
would be appropriate for the learning process
and how it should be applied.

It should be noted that considerable effort
has gone into using EC and other techniques for

negotiation and bargaining with computers. The
Trading Agent Competition (Wellman,
Greenwald, Stone, & Wurman, 2000) for ex-
ample partially inspired the SSCM. Some ex-
amples of work in negotiation are Sandholm
and Vulkan (2002), Fatima et al. (2000), and
Bartolini, Preist, and Jennings (2005), while
Fatima et al. (2005b) provide a comparison of
evolutionary and game-theoretic approaches to
bargaining.

The SSCM

The simple supply chain model (Gosling, 2003a;
Gosling & Tsang, 2003b) has been developed to
allow the specification of a simple supply chain
starting state. To this end it models three differ-
ent types of participants in the supply chain—
customers, suppliers, and middlemen.

Customers have requirements that they wish
to be fulfilled. These requirements are for a set
of goods at some maximum price within a
certain timeframe. Customers require the use
of a middleman to obtain these sets of goods,
and so have knowledge of some set of middle-
men and a maximum outbound communication
capability.

Suppliers are able to supply goods at some
minimum price and some maximum quantity
over the course of the scenario being modelled.
They sell via the middlemen and so have a
known set of middlemen along with a maximum
outbound communications allocation.

Middlemen are responsible for matching up
sets of requirements to available products in an
attempt to make a profit. They are defined
purely in terms of their known suppliers, cus-
tomers, and a maximum outbound communica-
tions capacity. These are the focus of study
here.

The SSCM defines supply chains in terms of
these different participants, the set of products,
the amount of time available for deals to be
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struck, and the communication scheme used by
the participants to interact. The SSCM does not
impose restrictions on the way in which partici-
pants may attempt to resolve the chain, only the
way in which the chain is initially set up and the
means by which communication can occur.

Representation and Evaluation

Determining a representation scheme and evalu-
ation mechanism for SSCM strategies is chal-
lenging simply because the number of possibili-
ties are large. To reduce the scope somewhat,
first we define different SSCM scenarios that
restrict further the conditions the participants
may face under a given SSCM instantiation,
and secondly concern ourselves primarily with
the middleman strategy and assume simple
strategies on the part of the customers and
suppliers. These restrictions may be relaxed
later.

In the simplest scenario we assert that there
is one supplier per product, that suppliers are
passive and have no knowledge of the middle-
men to begin with, and that they will not initiate
contact with a middleman once known. Middle-
men have no prior knowledge of customers but
know of each of the suppliers they may need to
fulfil a customer’s requirements. Customers
know only of one middleman each and initiate
contact sometime prior to their earliest cut-off
point for obtaining goods. These restrictions
simplify the middleman strategy both by remov-
ing the need to mitigate the effects of custom-
ers attempting to find deals elsewhere and
reducing the choice of suppliers. In more com-
plex scenarios, these restrictions have been
relaxed.

With this first scenario as a starting point, it
is possible to begin defining a strategy repre-
sentation.

Initially we consider how the evaluation of
any resultant strategy should be undertaken.

The problem maps well into a multi-agent envi-
ronment, and so it makes sense to build a
market simulation system within which the
participants can be configured in line with the
SSCM and use their strategies to attempt to
resolve the chain. When the chains’ run time is
up, the effectiveness of each strategy can be
assessed. Since this process is likely to be
computationally expensive and/or time con-
suming, it is reasonable to assume the total
number of participants within the system will be
limited. For this reason it would not be possible
to evaluate many strategies simultaneously.
From the discussion of IPD, strategy genera-
tion above this would suggest that PBIL would
be superior to GA under these conditions since
it is effective at leveraging small test popula-
tions for learning.

A second consideration is the complexity of
the strategies to be used. The initial reaction is
that GP would provide the flexibility required to
define a complex SSCM strategy, and this
would certainly be the case. The problem with
this approach however comes in two parts:
firstly defining a symbol set of sufficient subtlety
and complexity to capture the various aspects
of a participant’s role is difficult; secondly
having defined such a set, ensuring that viable
strategies’ results are problematic. While evo-
lution is powerful, the representation must pro-
vide some guidance for it to stand a good
chance of success. In each case it seems
reasonable to provide a basic strategy frame-
work within which the algorithm can evolve the
control aspects of the strategy. This removes
the problem of wholly invalid strategies being
developed and helps reduce the complexity of
the symbol set. The downside of this is that
multiple elements within the framework would
need to be evolved simultaneously, and the
complexity of how to combine these multiple
elements would additionally complicate the use
of a GP algorithm. To simplify the strategy
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problem further, the framework can be ex-
tended with reasonable control elements the
parameter of which may then be evolved by an
algorithm. If this approach is taken far enough,
it is possible to remove the need for GP alto-
gether and evolved the parameters directly.
This is what we have done here, building on
Matos, Sierra, and Jennings’s (1998) bargain-
ing work in particular for the agent negotiation
elements. With the strategy representation re-
duced to a fixed-length string of parameters, it
is possible to use PBIL or a GA. As stated, a
GA would have difficulties under the limited
population size available (as indeed would have
GP), so we elect to use PBIL in this instance.

Having selected the algorithm and approach
to be taken, it is necessary to outline the SSCM
Strategy Framework, its evolvable parameters,
and the market simulation system with which it
will be used.

SSCM Strategy Framework

The SSCM strategy framework (SSF; Gosling,
2003c) is based around the idea of grouping
together customer requirements and handling
them as a conglomerate. Incoming customer
requirements are first evaluated and then as-
signed to a group depending on some set of
characteristics. The possible groupings include
one for handling requirements the system has
deemed impossible to fulfil or unprofitable.
Requirement groups start in an inactive state
(in which requirements are continually re-evalu-
ated), progress to becoming active (during which
supplier negotiations are undertaken), and fi-
nally move to a completion state for reporting
back to the customers. The basic outline of this
process is shown in Figure 7.

Primary parameters within the SSF are those
relating to the evaluation of customer require-
ments, the dispersal of requirements to groups,
and the negotiation mechanism used with the

supplier. For example, the negotiation process,
based on work by Matos et al. (1998), requires
a set of 14 parameters for each product type
under consideration. These parameters control
estimates for likely values of products, tactics
used for negotiation, and importance weighting
for those tactics. Other parameters include
control for how quickly groups should become
active and what requirements should be ac-
cepted.

Market Simulation System

The SSCM market simulation system (SMSS)
provides an environment within which the SSF
may be used and under which the parameters
are evolved. The SMSS consists of two core
components, an agent-based supply chain simu-
lator and a market controller. The market con-
troller maintains a PBIL vector that provides
strategy configuration parameters to the supply
chain agents. Further, the controller sets up the
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supply chain and evaluates the performance of
agents once completed. This information can
be used to reinforce the PBIL vector for future
generations of supply chain players. This pro-
cess is briefly outlined in Figure 8.

The controller is able to configure the supply
chain in such a way as to provide a different
environment in which to evolve strategies. Ex-
amples of different environments are ones
where the available goods are scarce or cus-
tomer budgets are very limited.

The result of the SMSS is the controller’s
final PBIL vector state—this should contain an
effective strategy for the environment pre-
sented.

Results and Conclusion

The main focus of experimentation with the
SMSS was to determine if strategies could be
evolved within the environment presented and
what the limits of adaptability were.

It was found that effective strategies
emerged within the SMSS and, as expected,
that substitution of those strategies into new
environments leads them to adapt to the new
conditions, suggesting no universal strategy is
optimal across all conditions.

Having determined that strategies could
evolve within the SMSS, we then probed the
limits of the system by adjusting the environ-
ment in such a way that it became difficult for
middlemen to make a profit. This was accom-
plished by increasing the stubbornness of sup-
pliers negotiating over prices. These efforts led
to the determination of an adaptation boundary
for this parameter beyond which the system
was unable to evolve effective strategies. Fur-
ther work suggested that using pre-evolved
strategies close to that boundary condition would
allow for adaptation under the harsher condi-
tions.

While these results have proven interesting,
the question of how to analyse them further has
proven to be one of considerable importance,
visualisation has certainly helped, but obtaining
definitive evidence of why the strategies have
adapted to the environment in a certain way has
proven more difficult. To this end, analysis of
the results ideally requires the development of
further analytical tools, and this is currently the
focus of much effort.

Overall EC has proven effective for evolv-
ing strategies in the complex, dynamic environ-
ment offered by the SSCM, and the SSF and
SMSS have proven an effective way of har-
nessing the power of PBIL to this end.

CONCLUSION

This chapter has introduced evolutionary com-
putation in the context of two well-known games
(IPD and RAOBM) and the more complex
SSCM. For these games we have shown that
EC is able to evolve effective strategies that
equate to the known equilibriums. For the SSCM
we have shown that with careful consideration
it is possible to evolve successful strategies
within a strategy framework and supply chain
simulation system. Since game theory cannot

Figure 8. Market simulation system operation
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effectively deal with the uncertainties inherent
in situations like the SSCM, we assert that EC,
used appropriately, provides a good alternative
for this problem and other complex real-life
problems.

On a cautionary note, while EC is effective
for strategy generation, care must be taken
with the design of a good representation, the
selection of an appropriate algorithm, and the
choice of a reasonable evaluation scheme. A
further consideration is that of analysis. As the
disagreement over stable IPD strategies dem-
onstrates, results may still be open to interpre-
tation. In the context of the SSCM, reaching a
full understanding of the results is an issue.

Finally, evolutionary computation has many
advantages for the generation or optimisation
of strategies in challenging environments; this
approach has had a successful beginning, but its
future depends on carefully considered appli-
cation.
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ABSTRACT

This chapter focuses on significant applications of self-organizing maps (SOMs), that is,
unsupervised learning neural networks in two supply chain applications: cellular
manufacturing and real-time management of a delayed delivery vehicle. Both problems
require drastic complexity reduction, which is addressed effectively by clustering using
SOMs. In the first problem, we cluster machines into cells and we use Latent Semantic Indexing
for effective training of the network. In the second problem, we group the distribution sites
into clusters based on their geographical location. The available vehicle time is distributed to
each cluster by solving an appropriate non-linear optimization problem. Within each cluster
an established orienteering heuristic is used to determine the clients to be served and the
vehicle route. Extensive experimental results indicate that in terms of solution quality, our
approach in general outperforms previously proposed methods. Furthermore, the proposed
techniques are more efficient, especially in cases involving large numbers of data points.
Neural networks have and will continue to play a significant role in solving effectively
complex problems in supply chain applications, some of which are also highlighted in this
chapter.

INTRODUCTION

The supply chain of both manufacturing and
commercial enterprises comprises a highly dis-
tributed environment, in which complex pro-
cesses evolve in a network of companies. Such

processes include materials procurement and
storage, production of intermediate and final
products, warehousing, sales, and distribution
(see Figure 1). The role of the supply chain in
a company’s competitiveness is critical, since
the supply chain directly affects customer ser-
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vice, inventory and distribution costs, and re-
sponsiveness to the ever-changing markets.
Furthermore, this role becomes more critical in
today’s distributed manufacturing environment,
in which companies focus on core competen-
cies and outsource supportive tasks, thus creat-
ing large supply networks. Within this environ-
ment there are strong interactions of multiple
entities, processes, and data. For each process
in isolation, it is usually feasible to identify those
decisions that are locally optimal, especially in
a deterministic setting. However, decision mak-
ing in supply chain systems should consider
intrinsic uncertainties, while coordinating the
interests and goals of the multitude of pro-
cesses involved.

Nature-inspired computing offers effective
tools for both modeling and managing opera-
tions in the uncertain environment of the supply
chain, especially since the associated computa-
tional techniques are capable of handling com-
plex interdependencies. As a result, these com-
putational techniques may form the basis for
the development of optimization methods and
systems that integrate effectively the various
objectives of the supply chain.

This chapter presents significant applica-
tions of artificial neural networks, a major
technique of nature-inspired computing, in sup-
ply chain management. Specifically, we use
self-organizing maps (SOMs) to reduce the

complexity of problems in two supply chain
applications: manufacturing shop design and
real-time distribution management. Both share
the requirement for drastic complexity reduc-
tion, which is addressed effectively by cluster-
ing using SOMs. Clustering is the problem of
partitioning a set of N patterns in their feature
space into K clusters, so that patterns that
belong to a given cluster are more similar to
each other than to the rest of the patterns. The
majority of clustering algorithms are based on
the minimization of the distance between each
pattern and the centroid of each cluster. Neural
networks have been used for clustering appli-
cations (Kamgar-Parsi, Gualtieri, & Devaney,
1990) and were shown to outperform conven-
tional iterative techniques, such as the K-means
algorithm (Jain & Dubes, 1988), in terms of
both solution quality and speed when the clus-
ters are well defined. In particular, SOMs have
been shown to be very efficient clustering
techniques in a variety of applications (Chen,
Mangiameli, & West, 1995).

The remainder of this chapter is structured
as follows. The second section overviews self-
organizing maps. The third section presents an
important clustering application, that is, the
decomposition of a manufacturing shop in manu-
facturing cells. The fourth section presents
another clustering application in distribution, a
downstream process of the supply chain. The

Figure 1. The flow of decisions and information in the supply chain
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fifth section discusses the extensions of the
proposed concepts—clustering and neural net-
works—to other supply chain operations and
processes.

SELF-ORGANIZING MAPS

SOMs are unsupervised learning neural net-
works, originally introduced by Kohonen (1989).
This type of neural network is usually a two-
dimensional lattice of neurons all of which have
a reference model weight vector (see Figure
2). As a result of the SOM training algorithm,
the reference vectors (otherwise known as
codebook vectors) are fitted to a set of input
vectors by approximating the model of the data
distribution in the high-dimensional feature
space. Therefore, the model vectors of neigh-
boring units gradually learn to represent similar
input data vectors.

SOMs are very well suited to organize and
visualize complex data in a two-dimensional
display, and by the same effect, to create
abstractions or clusters of that data. The flex-
ibility and visualization capabilities of a SOM
make it an excellent tool for clustering applica-
tions. The projection of high-dimensional data

points onto a 2-D neural map allows for the
exploration and identification of non-trivial as-
sociations between these points, in a high-
dimensional space. In addition, SOM is a
computationally efficient clustering method.

The training of the SOM is achieved through
a competitive learning process, which consists
of two steps applied iteratively. In the first step
each input vector is compared to all the neu-
rons’ codebook vectors. The neuron s that has
its codebook vector at the shortest geometric
distance to an input vector becomes the winner
for that input vector. In the second step, each
winning neuron and its surrounding neurons—
that is, neurons within a neighborhood Ns—
gradually change the value of their codebook
vectors in an attempt to match the input vector
which has won. This cycle of competition and
learning processes is repeated. At each cycle
the size of the neighborhood of the winning
neuron is decreased. The whole process termi-
nates when each codebook vector has reached
a satisfactory approximation of its correspond-
ing input vector.

The steps of the SOM algorithm can be
summarized as follows:

• Step 1: Initialize
• weights to small random values
• neighborhood size Ns(0) to be large

(but less than the number of neurons
in one dimension of the array)

• parameter functions a(t) and σ2(t) to
be between 0 and 1

• Step 2: Present an input pattern x through
the input layer and calculate the Euclidian
distance between the input vector and
each weight vector:
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Figure 2. A two-dimensional self-organizing
map
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• Step 3: Select the neuron with minimum
distance to be the winner s

• Step 4: Update the weights connecting
the input layer to the winning neuron and
its neighboring neurons (neurons k) ac-
cording to the learning rule

wk (t + 1) = wk (t) + c[x(t) – wk (t)]
     (2)

where c = a(t) exp (–|| ri – rs ||/σ2 (t)) for
all neurons j in Ns (t), and ri – rs is the
physical distance (number of neurons) be-
tween neuron i and the winning neuron s

• Step 5: Continue from Step 2 for T ep-
ochs; then decrease neighborhood size,
a(t) and σ2(t): Repeat until weights have
stabilized.

Kohonen (1989) proved that the SOM algo-
rithm always converges to a solution—that is,
each of the winner weight vectors of the map
converges to the mean of the data vectors for
which it has been a winner, in a finite number of
steps.

MANUFACTURING CELL
FORMATION

Background

The first application of supply chain manage-
ment to be considered is related to production
(or manufacturing) system design—that is, to
the second link of the chain of Figure 1 (see also
Ampazis & Minis, 2004). Manufacturing sys-
tems are notoriously complex to design and
operate due to high dimensionality (e.g., thou-
sands of make items and hundreds of work
centers), multiple and dependent operations per
make item, uncertain demand, as well as uncer-
tainty in important system inputs and states
(e.g., demand and work center failures, respec-

tively). In an effort to reduce complexity, ex-
tensive research and implementation efforts
have focused on cellular manufacturing, in which
the production resources of a manufacturing
system are arranged into manufacturing cells,
and each cell been dedicated to the production
of one or more part-families with similar pro-
duction requirements. Immediate benefits of
cellular manufacturing include: (a) significant
reduction in material handling, achieved by
confining much of the material handling effort
within the cells; (b) reduction of set-up times
and related costs, resulting from the production
similarities of the parts within the same part
family; (c) simplified shop floor planning, sched-
uling, and control, stemming from the decompo-
sition of the shop to subsystems of reduced
order (see Kusiak, 1987; Wemmerlov & Higher,
1989).

Extensive research has focused on the prob-
lem of disaggregating a manufacturing shop
into cells over the last three decades. A com-
prehensive review and classification of the
literature in this area can be found in King,
Joines, and Culbreth, (1996). A significant class
of methods transforms the part-machine inci-
dence matrix of a shop. In this matrix each row
represents a part and each column a machine;
each entry is one or zero depending on whether
the corresponding part uses the corresponding
machine or not. The goal is to rearrange the
rows and columns of this matrix in order to
obtain a block diagonal form. The machines and
parts corresponding to each block of the diago-
nal define the corresponding manufacturing
cell and part-family. Notable transformation
techniques include the bond energy algorithm
(Schweitzer, McCormick, & White, 1972), rank
order clustering (King, 1990), and the direct
clustering algorithm (Milner & Chan, 1982).
Other techniques aggregate the rows and col-
umns of the part-machine incidence matrix
based on similarity measured by various metrics
(e.g., Seifoddini & Gupta, 1990). Clustering of
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machines to cells and parts to part-families has
also been performed by using artificial neural
networks (Malave, Ramachandran, & Lee, 1992;
Chen, Chang, Vohra, & Chen, 1990; Cheng &
Chen, 1995; Kusiak & Chung, 1991), and simu-
lated annealing (Narendran & Venugopal, 1992).
Both linear and non-linear integer programming
approaches have also been developed
(Gunasingh & Kashkari, 1990; Boctor, 1991).

It is noted that beyond cell formation, neural
networks have been used in various planning
and control activities in manufacturing. Garetti
and Taisch (1999), Smith (1999), and Smith and
Gupta (2000) present extensive reviews that
cover a broad spectrum of applications ranging
from demand forecasting to shop floor schedul-
ing and control.

Approach

Consider the shop’s incidence matrix, each row
of which corresponds to a make item (or part)
and each column to a machine. The element pij
= 1 if machine j is used to manufacture part i,
and 0 otherwise. Thus, the dimension of the
matrix is pxm, where p is the number of parts
and m is the number of machines in the system.
In realistic applications, p is in the order of 103

or 104, and m  is in the order of 102. This high
dimensionality results in increased computa-
tional complexity, irrespective of the clustering
algorithm employed.

A way to reduce the dimensionality and thus
to improve significantly the efficiency of the
clustering algorithm is to project the data onto a
lower-dimensional orthogonal subspace where
most of the data variance is concentrated in the
new subspace’s axes. To do this we use latent
semantic indexing (Deerwester, Dumais,
Furnas, Landauer, & Harshman, 1990), which
is based on the singular value decomposition
(SVD) of the part-machine incidence matrix.
latent semantic indexing (LSI) is well suited for
sparse matrices, such as the part-machine inci-

dence matrix, and preferable to other similar
methods such as principal component analysis
(PCA).

Latent Semantic Indexing

LSI constructs a linear mapping from the space
spanned by the original machine vectors to a
reduced dimensional subspace. This mapping is
based on the SVD of the original pxm  part-
machine matrix A of m, p-dimensional, machine
vectors:

A = U ∑ VT (3)

where the orthogonal matrices U and V contain
the left and right singular vectors of A and the
diagonal matrix ∑ contains its singular values.
LSI achieves reduction in the dimensionality of
the data by retaining only the k-largest [(k < r
= rank(A)] singular triplets of the decomposi-
tion of A, which means that all data vectors ai

(columns of A) are projected onto a k-dimen-
sional subspace spanned by the left singular
vectors corresponding to the k-largest singular
values via the transformation

��� −
∧

Σ= ��
��� ���      (4)

where Uk is of size pxk and contains these k
singular vectors, and ∑k is of size kxk and
contains the k largest singular values in its
diagonal. In this sense the rows of V are consid-
ered as the LSI representations of the machine
vectors, and by an analogous argument, the
rows of matrix Uk are considered as the LSI
representations of the part vectors (Figure 3).

The Proposed Algorithm

The results of the LSI processing of the part-
machine incidence matrix are used as the input
to the SOM algorithm of Section 2 to cluster
machines into cells.
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The steps of the proposed algorithm can be
summarized as follows:

• Step 1: Utilize the Lanczos method
(Berry, 1992) to obtain the SVD of the
original sparse pxm part-machine inci-
dence matrix A, keeping the k largest
singular components

• Step 2: Store the mxk matrix Vk whose
rows are the LSI representations of the
original machine vectors

• Step 3: Use the rows of matrix Vk as input
data vectors to a SOM of fixed topology in
order to directly cluster the machines

• Step 4: Train the SOM until convergence
and identify the corresponding machine
cells by locating the best mathing unit
(BMU) for each machine vector on the
map

• Step 5: Evaluate the result of clustering
by measuring the quality of clustering
(QoC) criterion defined as:
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where C denotes the number of machine
cells (clusters) and xij denotes the number

of operations that machine j performs
within machine cell i. The above equation
is similar to the well-known Grouping Ef-
ficacy criterion (Kumar &
Chandrasekharan, 1990), and calculates
the percentage of operations performed
outside any machine cell. It is clear that 0
<=QoC<= 1. In the ideal grouping QoC=1,
decreasing values of QoC signify decreas-
ing solution quality.

Experimental Investigation

We have evaluated the proposed method for
three artificial problems of various sizes—small
(100×22 part-machine incidence matrix), me-
dium (576×54 matrix), and large (1152×108
matrix). All experiments were performed in the
MATLAB programming language using the
SOM MATLAB Toolbox.

We present here only the results of the
large-scale problem which are representative
of all three cases investigated. The shop con-
sidered in this problem consists of 18 mutually
exclusive clusters. The aim of the experiment
was to determine whether the proposed method
finds the unique solution that exists. Figure 4
shows the QoC obtained with the proposed
technique utilizing a one-dimensional SOM with
18 nodes and, as well as the QoC obtained by

Figure 3. Singular Value Decomposition of the part-machine incidence matrix A

Ak

Part
Vectors

U

p x m

k

p x r r x r

k

k k

r x m

Σ VT

Machine
Vectors



  595

Applications of Neural Networks in Supply Chain Management

Figure 4. Quality of clustering vs. LSI dimensions for the 1152×108 part-machine incidence
matrix problem

Figure 5. Training time (in seconds) vs. LSI dimensions for the 1152×108 part-machine
incidence matrix problem
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the k-means algorithm with k = 18, trained with
the same data vectors. Each point in this figure
has been obtained by performing 100 training
trials and reporting the average QoC for both
clustering methods at each LSI dimension
shown. The results show that the SOM algo-
rithm performs better than k-means. The re-
duction in the dimensionality of the LSI-salient
features results in an increase to the attained
QoC which, on average, tends to the optimal
solution where QoC is maximum.

A further interesting point is related to com-
putational complexity. It is well known that the
computational cost of k-means for clustering n,
d-dimensional data points is of order O(Tknd)
where T is the number of iterations (Duda &
Hart, 1973). The computational cost of SOM is
of order O(TM2), where M is the number of
nodes of the map (Kohonen, 1989). Therefore,
it is expected that for this large-scale problem,
SOM is computationally more efficient.

Figure 5 shows the average training time (in
seconds) required for the clustering of each
data point of Figure 4 illustrating the computa-
tional efficiency of SOM. In addition, as the
number of LSI dimensions reduces, the aver-
age training time reduces (as expected). This
fact, combined with the results shown in Figure
4, illustrates the overall reduction in complexity
of the proposed method.

Figure 6 shows the results obtained when
the original 1152×108 part-machine incidence
matrix was corrupted with 5% random 1s (i.e.,
5% of part operations performed outside a
part’s own cell). From this figure we can see
that the QoC obtained by SOM is significantly
better that the one achieved by k-means (all
values reported are the average QoC for 100
training trials for each LSI dimension). Again
we notice that the QoC of SOM tends to
improve with decreasing LSI dimensions,
which shows that the proposed methodology

Figure 6. Quality of clustering vs. LSI dimensions for the 1152×108 part-machine incidence
matrix problem, polluted with 5% random 1s
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retains its robustness with increasing problem
size.

REAL-TIME DISTRIBUTION
MANAGEMENT TO CLUSTERED
CLIENTS

Background

The second application of supply chain man-
agement to be considered is related to products
distribution, the fourth link of the chain of
Figure 1. Distribution is a major downstream
activity of supply chain execution operations
and contributes significantly to total logistics
costs (Ballou, 1999). Over the last four de-
cades, considerable research has focused on
route planning of vehicle fleets that deliver
goods under a wide variety of practical condi-
tions and constraints (see Toth & Vigo, 2002,
for an extensive review of the vehicle routing
problem). The solution of vehicle routing prob-
lems has been successfully addressed through
the utilization of neural network architectures
in Ghaziri (1996), Matsuyama (1991), Potvin
and Robillard (1995), Vakhutinsky and Golden
(1994), and Nygard, Jueli, and Kadaba (1990).
However, during execution (of even a near-
optimal distribution plan), delivery performance
may deteriorate significantly due to traffic con-
gestion, service delays, or vehicle breakdowns;
thus, real-time response to these unforeseen
disturbances is necessary. Recent advances in
navigation and mobile telecommunications tech-
nologies offer the required infrastructure for
the development of real-time vehicle manage-
ment systems that enhance the performance of
delivery fleets by adapting vehicle routes to
respond effectively to such unforeseen events.
As an example, consider the architecture pro-
posed by Giaglis, Minis, Tatarakis, and
Zeimpekis (2004) which enables re-planning of

an original routing plan based on the state of the
distribution system.

This section addresses a simple, yet impor-
tant, case of real-time vehicle management to
be handled by an intelligent system, such as the
one described above. Consider a vehicle that
executes a pre-defined distribution plan, which
specifies an ordered set of clients to be served,
a route, and a time horizon within which all
deliveries should be completed. If during plan
execution the vehicle experiences significant
delays that do not allow completion of the plan
within the acceptable time horizon, then a deci-
sion needs to be made concerning which clients
to serve and which clients to notify for delivery
postponement in order to optimize a selected
metric (e.g., customer service, sales income,
etc.). This single-vehicle re-planning problem
has strong similarities with the so-called
orienteering problem (OP), a generalization of
the extensively studied traveling salesman prob-
lem (TSP). The first formulation of OP was
proposed by Tsiligirides (1984), who also pro-
posed two effective heuristic methods to solve
it. For other OP solution methods, see Golden,
Levy, and Vohra (1987), and Chao, Golden, and
Wasil (1996). Exact solution approaches have
been proposed by Laporte and Martello (1990),
Ramesh, Yoon, and Karwan (1992), and
Fischetti, Gonzales, and Toth (1998).

Certain differences exist, however, between
OP and the single vehicle re-planning problem.
The latter includes a significant service time
requirement for each client which is not present
in the OP. Furthermore, there are significant
efficiency requirements that should be satisfied
in a real-time implementation. The problem
should be formulated and solved within a short
time period, in order to respond effectively to
undesirable changes of the system state. A key
point to achieve is to effectively deal with
problem complexity.
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In many urban and suburban distribution
networks, clients are naturally grouped into
neighborhoods (and/or suburbs), called client
clusters. Intra-cluster distances are short (e.g.,
1-2 km) while inter-cluster distances are longer
(5-10 km). Such an environment provides an
opportunity to decrease the complexity of the
problem by decomposing it into multiple smaller
sub-problems, each corresponding to a single
client cluster. Each sub-problem has a similar
structure to the monolithic problem and can be
addressed following an OP-like solution proce-
dure. Since, however, the size of each sub-
problem is considerably smaller than the size of
the original problem, complexity and computa-
tional times are improved.

The Single Vehicle
Re-Planning Model

Consider a network N comprising a set of
vertices },...,1,0{ nV = and a set of arcs A that
interconnect these vertices. We associate a
cost (travel time) cij  to all arcs Axij ∈ . We also
associate a service cost ti and an income pi to
each vertex. The vertices in V represent the
vehicle depot (0) and n clients to be served by
the single vehicle, and the cost represents the
time required to travel from vertex i to vertex

.,, Vjij ∈∀  The service cost is the time required
to serve each client }0{\Vi ∈ , while the in-
come pi represents a business metric associ-
ated with client i, such as the estimated sales
volume to this client or the client importance. A
route is a sequence of arcs which the vehicle
will follow, originating from the depot, to serve
all n clients and return to the depot.

Consider a situation that the vehicle has
already served some of the clients on its route
(say the clients in VmVc ⊂= },...,2,1{ ) and is on
its way to the next client (say m + 1), when it is
apparent that, due to delays, it is not possible for
the vehicle to complete its route as planned
within the available time T (a hard constraint),

and thus, re-planning is necessary. In order to
formulate the re-planning problem, consider a
new network with }{\ sVVV cu ∪=  (where the
vertex s represents the current position of the
vehicle), an appropriate set of arcs Au, and the
related cost matrix and service time vector.

Let }1,0{∈iy be a binary variable, such that
yi = 1 if client uVi ∈ is served and yi = 0
otherwise. Also let }1,0{∈ijx be another binary
variable, such that xij = 1 if arc uij Ax ∈ belongs
to the new route andxij = 0 otherwise. Finally,
let the objective be to optimize the total income
resulting from serving the clients selected in the
new plan. The mathematical program that mod-
els the single vehicle re-planning problem is
given in Minis, Ampazis, and Mamassis (2005).

Solution Approach

A heuristic based on clustering using SOMs has
been developed to solve this problem and con-
sists of the following steps:

1. Spatial Decomposition: Group clients
into clusters with respect to their geo-
graphical location.

2. Time Decomposition: Determine the
appropriate time to serve each cluster.

3. Solution of Sub-Problems: For each
cluster, solve an OP problem to determine
the order of visiting the clients within the
cluster; the objective is to maximize intra-
cluster sales volume within the time allo-
cated to the cluster by step 2.

4. Improvement: Allocate any remaining
time to some of the remaining clients.

Each of these steps is described as follows.

Spatial Decomposition: Client
Clustering

The SOM method described in the second
section of this chapter has been used to cluster
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clients into groups or neighborhoods based on
the client’s geographical position (i.e., its coor-
dinates). It is noted that classical clustering
algorithms, such as the k-means mentioned
above, are also capable of handling similar
problems. However, using these classical tech-
niques, classes of similar objects are basically
found by doing pair-wise comparisons among
all the data elements. These clustering algo-
rithms are serial in nature, in that pair-wise
comparisons are made one at a time and the
classification structure is created in a serial
order.

The SOM neural network approach, on the
other hand, addresses clustering and classifica-
tion problems by means of a connectionist
approach. Algorithms based upon neural net-
works are parallel in that multiple connections
among the nodes allow for independent, parallel
comparisons. As mentioned before, the SOM is
an unsupervised technique for summarizing
high-dimensional data so that similar inputs are,
in general, mapped close to each other; advan-
tages include improved quality of clustering, as
well as improved efficiency, features that are
both important in the present real-time applica-
tion.

Time Decomposition

In this step, the available time horizon is divided
into time intervals allocated to each cluster.
This is performed in two stages. The first stage
estimates the time required to travel from clus-
ter to cluster, starting from the current position
of the vehicle and finishing at the depot (inter-
cluster travel time). This is a typical TSP prob-
lem formulated by considering the cluster cen-
troids, as well as the starting and ending (depot)
locations, and has been solved by the nearest
neighbor heuristic followed by the 2-opt im-
provement procedure (see Lawler, Lenstra,
Rinnooy, Kan, and Shmoys, 1985). The output

of this step comprises all travel times τkl of the
inter-cluster route.

The second stage allocates the available
time horizon to the clusters formed by the
decomposition procedure. To this end, an in-
come function Jk (t) is developed for each
cluster k = 1,2,..., c. Then an optimization
problem is formed to maximize the total income
with respect to the time τk that the vehicle
spends within each cluster. Finally the entire
time horizon available is distributed among the
clusters.

Construction of the Income Function

Let the increasing function Jk (t) represent a
measure of the income obtained by the vehicle
while serving the clients of cluster k, as a
function of time t. To obtain a “good” initial
sequence of serving the clients within each
cluster, a greedy ordering of clients in cluster k
is performed, inspired by the OP method of
Tsiligirides (1984). Starting from a random
client within cluster k, construct a path by
inserting clients iteratively based on a desirabil-
ity measure. For every client i not yet included
in the path, this measure is given by:

4

,
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A      (6)

where pi is the income obtained from this client,
ilastc ,  is the travel time from the last client of the

path to client i, and ti is the service time of client
i . This is repeated until all clients of cluster k
have been included in the path. For client i of
the path: (a) the income ordinate of Jk (t) is
determined by adding the income of all clients
from the start up to client i, and (b) the time
ordinate is determined by adding the travel and
service times corresponding to these clients.
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Determination of
Intra-Cluster Time Intervals

A polynomial Ik (t) of appropriate degree (≤ 3)
is fitted to Jk (t) in order to provide a smooth
approximation of the income function per clus-
ter. The coefficients of the fitting polynomial
are evaluated using regression. The intra-clus-
ter time τκ for each cluster is then obtained by
solving the following non-linear constrained
optimization problem.

max ∑
=

c

k
kI

1
)( κτ      (7)

s.t. ∑
=

=
C

k
ik

1
ττ      (8)

0≥kτ  k∀      (9)

where τ is the difference between the entire
time horizon available and the total intra-cluster
time estimated in the first stage above. This
problem is solved iteratively by the Sequential
Quadratic Programming method (SQP) (Gill,
Murray, & Wright, 1999).

Distribution of Entire Time Horizon
Among the Clusters

In order to form the OP sub-problems for each
cluster, the time θκ available per cluster k is
determined by:

κκκκ τθ ,1−+= t    (10)

where τκ is the value determined from solving
the optimization problem, and kkt ,1−  is the travel
time between cluster k – 1 and cluster k
computed in the first stage above. Note that: (a)
for the first cluster, point 0 is considered to be
the initial location of the vehicle; and (b) for the
last cluster in the route, the value of equation 10

is enhanced by adding the travel time between
the centroid of this cluster to the depot (in order
to complete the route).

Solution of Sub-Problems

For each of the client clusters, an OP-like
problem is formulated and solved. For cluster k
this problem is formulated by considering (see
Figure 7): (a) as origin of the route of the last
client served in cluster k – 1 (for the first
cluster, the origin is the initial location of the
vehicle); (b) all clients of cluster k, the matrix
of travel times, and the client income and
service times; (c) the remaining time θκ; (d) to
form the cost matrix for this problem, each
travel time cij is augmented by the service time
of client j , that is, each element of the matrix
becomes cij + τj; and (e) for the last cluster only,
the destination is defined as the depot. The
simple S-algorithm of Tsiligirides (1984) is used
to solve the problem. The main concept of the
S-algorithm is to construct a path starting from
the origin and inserting clients iteratively until
the available time is exhausted. For every client
i not yet included in the path, the desirability of
equation 6 is used. Considering the clients with

Figure 7. Structure of the OP sub-problem
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the four highest values of iA , the associated
probability measures are computed from:

,4

1
∑

=

=

l
l

i
i

A

A
P

 4,...,1=i (11)

and the next point to be inserted in the path is
selected randomly among the above four points
with selection probability Pi. A large number of
candidate paths are generated this way, and the
solution with the highest income is selected as
the preferred solution. The latter is improved by
a 2-opt procedure, reducing the time spent to
travel the route, and additional clients are in-
serted into the route taking advantage of the
time savings.

Improvement

The time interval θκ allocated to each cluster k
may not be exhausted, due to the fact that the
time required to serve any client beyond the last
one served in cluster k may be larger than the
remaining time in this cluster. The improvement
step examines whether the sum of the unused
times per cluster can be exploited to serve one
or more additional clients in any cluster(s). The
iterative improvement procedure attempts to
insert a client in the route of a cluster based on
the desirability measure Ai of equation 6. For
each candidate client, this measure is computed
using the distance travel time from the last
served client of the corresponding cluster. The
client with the largest value of Ai is inserted in
the route of its cluster, until the sum of unused
times is exhausted.

Experimental Investigation

The algorithm presented in the section above
has been implemented in MATLAB. It has

been verified using Tsiligirides’ standard prob-
lem instances and a single client cluster. To test
the effectiveness of the proposed method, we
have applied it to both numerical and practical
problems.

Numerical Test Cases

Four problem instances (cases) have been gen-
erated using a procedure that allocates 99
clients within an area of 20x20 km2. The cus-
tomer allocation is such that clusters of varying
compactness are formed, ranging from distinct
to significantly overlapping client clusters—
that is, in case 1, each cluster covers a 1x1 Km2

area, in case 2 it covers a 2.5x2.5 Km2 area, in
case 3 a 5x5 Km2 area, and in case 4 a 10x10
Km2 area. To quantify the quality of clustering,
the Davies-Bouldin index, Q, has been used.
The income and service times per client have
been generated, again at random based on
uniform distributions. For comparison purposes,
all cases have also been solved using the origi-
nal Tsiligirides approach (without clustering).

Each problem instance has been solved us-
ing decreasing values of the time available,
from 100% of the time required to serve all
clients to 40% of this value. Both the Tsiligirides
algorithm and the OP part of the proposed
algorithm ran for 100 iterations. In order to
compare the two methods, the entire time hori-
zon has been considered available to serve
clients without requiring the vehicle to return to
the depot, respecting the original formulation of
the OP.

Figures 8 and 9 present the results obtained.
From these figures the following can be con-
cluded regarding the objective function value
(income): for “tight” client clusters (Q = 0.08 –
0.67), the proposed algorithm outperforms the
Tsiligirides’ algorithm in the entire range of
fractions of time available. This trend holds for
all time fractions above 50% for moderate to
inferior cluster quality. Only for case 4, in
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Figure 8. Comparison of the proposed method vs. the Tsiligirides method (which does not use
clustering) for cases 1 (Q = 0.08) and 2 (Q =0.40)

Figure 9. Comparison of the proposed method vs. the Tsiligirides method (which does not use
clustering) for cases 3 (Q = 0.67) and 4 (Q = 0.98)

which there are no apparent clusters (Q ≈ 1 and
α x α = 10 x 10 km2 in an total area of 20 x 20
km2), the income results of the proposed method
are inferior to those of the Tsiligirides method.

As far as computational time is concerned,
for all cases the proposed method is signifi-
cantly more efficient than the Tsiligirides method,
due to the lower complexity involved. Specifi-
cally, in all test cases the proposed method was
found to be two to three times faster. In fact,
these time savings will grow when an increased
number of iterations is used in the OP problem
solution, as recommended by Tsiligirides. Over-
all, the method is suitable for real-time applica-
tions; the average computational time for the

four cases in a 2.6 GHz PC is in the order of 30
seconds.

Practical Distribution Cases

Two practical cases from a Greek food manu-
facturer have been used as additional tests of
the method’s effectiveness. The first case is a
route of 18 clients grouped into two clusters
distributed in the greater Athens area. The
second case is a route of 46 clients grouped into
two clusters within the same area. The results
are presented in Table 1.

In terms of solution quality, conclusions
similar to those obtained from the test cases
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can be deduced. It is emphasized, that the
computational time in these cases is in the order
of one to two seconds in a PC with a x86 family
processor at 2.6 GHz, verifying the suitability of
the method for real-time applications.

The results obtained by applying the pro-
posed method to other large test cases, as well
as to problem instances of actual distribution
networks, indicate that in terms of solution
quality, the method in general: (a) outperforms
the methods used to solve the monolithic prob-
lem, even in environments with inferior client
clustering; and (b) is more efficient, especially
in cases involving a large number of clients.

NEURAL NETWORKS AND
CLUSTERING IN OTHER SUPPLY
CHAIN APPLICATIONS

In addition to the applications presented above,
neural networks have been used in a variety of
supply chain problems, especially in operations
management (e.g., Garetti et al., 1999). Char-
acteristic examples include: (a) the notoriously
complex scheduling problem, as in Padman
(1993), or in Gupta and Tunc (1997) and Gupta,
Sexton, and Tunc (1999), in which neural net-
works have been used for selecting the most
appropriate scheduling heuristic; (b) manufac-
turing system design (Mollaghasemi, LeCroy,

& Georgiopoulos, 1998), in which neural net-
works have been used in conjunction with simu-
lation modeling; and (c) quality control, where
neural networks have been integrated with
traditional statistical techniques to enhance their
performance (Glover, 1988).

A final (and quite different) example that
illustrates the significant potential of self-orga-
nizing maps in supply chain applications is
sketched below. It concerns the development
of standard part descriptions in the item master
records of ERP systems. This data manage-
ment problem is of great practical importance,
especially in manufacturing companies with
long history and legacy IT systems. Upgrading
from such legacy systems to a modern ERP
requires, in addition to migrating thousands of
existing item master records, the development
of new part classification information, in order
to be able to intelligently manage the part data
for a variety of applications, including procure-
ment, B2B, use of alternative items in product
bills of materials (BOMs), and so forth. Instead
of using special codes for group identification
and classification, natural language descrip-
tions are far more appropriate. The difficulty,
though, is to automatically generate standard
descriptions (i.e., descriptions that use a pre-
defined set of standard, natural language words
in a certain structured way) based on existing
(legacy) part descriptions provided in unstruc-

Table 1. Experimental results for practical cases (Case 1: n = 18 clients, Q =  0.77; Case 2:
n = 46 clients, Q = 1.84)

 CASE 1 CASE 2 
% Time 
Available 

% of Max. Income 
(Proposed 
Method) 

% of Max. Income 
(Tsiligirides 
Method) 

% of Max. Income 
(Proposed 
Method) 

% of Max. Income 
(Tsiligirides 
Method) 

100 100 100 100 100 
80 96.55 96.55 87.18 84.62 
60 58.62 55.17 73.08 60.26 
50 58.62 39.66 67.95 7.69 
40 58.62 6.90   
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tured text and other data stored in the item
master record.

SOMs have the ability to arrange text de-
scriptions with similar content in neighboring
regions, which, by analogy, is comparable to the
situation encountered in conventional libraries
where books are organized in thematic topics.
Such an arrangement, combined with tradi-
tional information retrieval search tools and
facilities, can help system users search for a
part with a certain description and other char-
acteristics, and retrieve item master records of
parts that fit these specifications. Having iden-
tified such part clusters, appropriate standard
descriptions are related to each part in the
cluster (obviously, one part may belong to more
than one cluster). The LSISOM method intro-
duced recently in Ampazis and Perantonis
(2004) is a technique that effectively repre-
sents text-by-word category (concepts) histo-
grams. These histograms are formed by the
SOM clustering of the Latent Semantic Index-
ing representation of distinct terms in a passage
of text. Thus, item master records that contain
text with similar concepts can be effectively
grouped in neighboring regions of a second
SOM trained with these new text descriptions.
When this method is applied to a collection of
text descriptions of parts, in effect, parts that
share similar descriptions are automatically
clustered. This technique, combined with a
traditional numerical data clustering algorithm,
operating on the alphanumerical attributes of
parts, may create an integrated, fully automatic
clustering system of parts based on both text
description and other part information con-
tained in the item master record. Research in
this area is already underway.

CONCLUSION

We have presented applications of artificial
neural networks in important supply chain ap-

plications. More specifically, we examined the
cases of manufacturing shop design and real-
time distribution management. Both applica-
tions share the requirement for drastic com-
plexity reduction, which is addressed effec-
tively by clustering using SOMs. In the first
problem we have used SOMs to perform direct
clustering of machines into cells, without first
resorting to grouping parts into families. We
also employed LSI to reduce the complexity of
the problem resulting in more effective training
of the network.

In the second problem, we deal with real-
time management of a delayed delivery ve-
hicle. In this case, the problem is decomposed
into smaller sub-problems, taking advantage of
the geographical distribution of clients into clus-
ters (neighborhoods and/or suburbs). The avail-
able vehicle time is distributed to each cluster
(identified by a SOM) by solving an appropriate
non-linear optimization problem. Within each
cluster an established OP heuristic is used to
determine the clients to be served and the
vehicle route.

The efficiency of all proposed algorithms
was verified by experimental results. The re-
sults obtained by applying the proposed meth-
ods to large test cases, as well as to problem
instances of actual distribution networks (for
the real-time distribution management prob-
lem), indicate that in terms of solution quality,
the proposed methods in general outperform
previously proposed methods. Furthermore, the
methods are more efficient, especially in cases
involving a large number of data points. Finally,
computational times are short, indicating the
suitability of the methods that utilize SOMs.

Neural networks have and will continue to
play a significant role in effectively solving
complex problems in supply chain applications,
some of which have been highlighted in this
chapter.
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ABSTRACT

JGA, the acronym for Java Genetic Algorithm, is a computational object-oriented framework
for rapid development of evolutionary algorithms for solving complex optimization problems.
This chapter describes the JGA framework and illustrates its use on the dynamic inventory lot-
sizing problem. Using this problem as benchmark, JGA is compared against three other tools,
namely, GAlib, an open C++ implementation; GADS, a commercial Matlab toolbox; and
PROC GA, a commercial (yet experimental) SAS procedure. JGA has proved to be a flexible
and extensible object-oriented framework for the fast development of single (and multi-
objective) genetic algorithms by providing a collection of ready-to-use modules (Java classes)
that comprise the nucleus of any genetic algorithm. Furthermore, JGA has also been designed
to be embedded in larger applications that solve complex business problems.

INTRODUCTION

Since the conception of genetic algorithms
(GAs), researchers and practitioners alike faced
the problem of building tools which could make
the implementation of  their own applications
easier. At the beginning, the most widely used
guide was the “Simple GA code” (SGA) imple-
mentation from Goldberg (1989) built in the

Pascal programming language. Today, there is
a broad array of offerings of genetic algorithm
libraries available in different languages and
computing platforms. For a thorough survey on
the subject, the reader is referred to Pain and
Reeves (2002).

Some of the earliest tools were coded in the
C language. C evolved into C++, adopting the
object-oriented programming (OOP) paradigm.
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The advantage of using the C or C++ language
is mainly its computer efficiency and outstand-
ing performance in terms of speed. In this class,
we found tools such as ECGA (Lobo & Harik,
1999), GALOPPS (Goodman, 2002), and GALib
(Wall, 2005).

ECGA (Extended Compact GA) is a tool
implemented in C++, based on the GA code
from Goldberg, in which the user can replace or
modify the core classes. This tool does not
include templates or heritage concepts, but the
class structure provides independency to every
basic component of a genetic algorithm.

GALOPPS is a flexible generic GA imple-
mentation in C. To make it easier for users to
learn and extend, it was also based upon
Goldberg’s SGA architecture. GALOPPS in-
cludes most of the chromosomal structures and
operators described by Goldberg (1989). The
latest version includes a parallel architecture
mode in which each process can handle one or
several interacting subpopulations.

GAlib contains a set of C++ classes for
building genetic algorithms. GAlib provides a
set of built-in representations and operators
that could be extended and customized. The
built-in chromosomes include binary, integer,
and real arrays of variable length. It also in-
cludes more complex data structures such as
lists and trees. Chromosome initialization, mu-
tation, crossover, and comparison methods can
be customized by deriving classes for the spe-
cific problem on hand. For simple applications,
the user only needs to override the fitness
function class. Some details need to be taken
into account depending on the development
platform.

Other genetic algorithm tools have been
developed for commercial vendors such as
Matlab and SAS. Special-purpose libraries in
Matlab are known as toolboxes. These toolboxes
define in Matlab’s m-files the genetic compo-
nents such as fitness functions, selection op-
erators, and crossover and mutation operators.

In the m-files, functions are defined taking
advantage of Matlab’s powerful language and
basic types such as vectors and matrices. The
main advantage of Matlab-based tools is the
integration with the development environment,
and the numerical and graphical power pro-
vided by the Matlab core engine and enhancing
toolboxes. The commercial tools have a more
complete set of built-in options, including mul-
tiple populations, migration and reinsertion op-
erators, and multi-objective ranking of objec-
tive values. Some of the commercial Matlab
toolboxes available are GEATbx (Pohlheim,
2005) and GADS (Mathworks, 2005). On the
other hand, there are also publicly available
toolboxes such as GPLAB (Silva, 2005), GAOT
(Houck, Joines, & Kay, 1995), and GATbx
(Chipperfield & Fleming, 1995). Another com-
mercial vendor, the SAS Institute, released
PROC GA, an experimental procedure inte-
grated to the SAS system (SAS Institute, 2003).

Genetic algorithm tools are also available
for Microsoft Excel. Some examples are the
commercial tools GeneHunter (Ward Systems
Group, 2003) and Evolver (Palisade Corp.,
2005). The model and the objective function are
specified by referencing specific cells in the
worksheet. Both tools have options to redefine
some components by means of Visual Basic
programming or dynamic linked libraries
(DLLs). These tools can also be accessed from
other programs through their companion DLLs.

The Java Programming Language has had a
fast penetration in the software and hardware
market over the last decade. Some Java-based
tools for genetic algorithms have been imple-
mented. These packages follow many of the
principles of the previously mentioned tools for
C++. Two of these implementations are GGAT
(Derderian, 2002) and JGAP (Rotstan &
Meffert, 2005).

GGAT is a tool developed in Java with the
philosophy of providing an open specification
that allows users to create new components
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such as chromosomes and operators. The cur-
rent version solely provides structures based on
binary digits, with built-in functions for decod-
ing them into integer and real numbers. GGAT
also includes several options for establishing
the stopping criterion of the genetic algorithm.
A distinctive feature of GGAT is its emphasis
on the graphical interface for visualizing the
evolutionary process.

JGAP is a Java package that provides basic
genetic mechanisms that can be easily used to
apply evolutionary principles to specific prob-
lems. The package structure is highly modular
so that power users can easily plug in custom
genetic operators and other components. JGAP
provides a small core of built-in genetic opera-
tors, but it offers a great flexibility to construct
new operators.

The purpose of this chapter is to describe a
flexible and extensible computational object-
oriented tool for rapid prototyping and imple-
mentation of evolutionary algorithms. We call
this tool JGA, an acronym for Java Genetic
Algorithm framework. According to our own
experience, JGA has proved to be a flexible and
extensible object-oriented framework for the
fast development of single (and multi-objec-
tive) genetic algorithms. JGA has also been
designed to be embedded in larger applications
that solve complex business problems.

JGA ARCHITECTURE

JGA is a flexible and extensible computational
object-oriented framework for rapid prototyping
and implementation of evolutionary algorithms
for solving complex optimization problems. We
say that JGA shortens the development phase
because the user of JGA does not have to
implement the underlying logic of a genetic
algorithm, but just has to focus on the unique
aspects of the genetic algorithm dependent on
its specific problem and field of application.

JGA provides the user with a collection of
ready-to-use modules (classes) that comprises
the nucleus of any genetic algorithm. JGA also
provides a set of utility classes that allows for
the rapid development of an evolutionary-based
solution. Because JGA has been built using the
Java language, it conforms to the object-ori-
ented paradigm and offers, among other key
advantages, flexibility, extensibility, and port-
ability across different computing platforms.
From an architectural point of view, JGA al-
lows the user to extend existing elements of a
genetic algorithm, such as genotypes, pheno-
types, fitness functions, selection mechanisms,
mutation, and crossover operators, among oth-
ers. To foster flexibility and efficiency, the
library or user-defined objects are loaded dy-
namically as needed by the Java Virtual Ma-
chine (JVM).

Figure 1 shows a diagram that illustrates the
architecture of JGA. In the bottom layer, we
show in boxes with bold lines the elementary
components of every genetic algorithm (i.e.,
genotype, phenotype, fitness function, selection
operator, mutation, and crossover operators).
Inside the gray box, we show a set of classes
and handlers that constitute the core. The JGA
core is responsible for the fundamental (yet
extensible) logic of the genetic algorithm. The
built-in components are utility classes that imple-
ment some standard genetic algorithm opera-
tors and representation schemes found in the
literature. The top layer, called the application
layer, is the one that needs to be programmed
by the user of a given application. If needed, the
user could extend any of the existing elements
and implement an application-specific compo-
nent, such as the PMX crossover operator for
routing problems (Michalewicz, 1996).

How JGA Works

The key component of JGA is the
GeneticAlgorithmHandler. This class is respon-
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sible for loading the main configuration file
and loading the different components of the
genetic algorithm specified therein. An object
of this class must be created in the main pro-
gram, and the user must invoke its run method
to trigger the execution of the genetic algorithm
as illustrated in Figure 2.

The Genetic Algorithm Logic

The GeneticAlgorithmHandler loads the class
with the logic of the genetic algorithm specified
in the main configuration file (property field
GENETICALGORITHM). Among the genetic al-
gorithm community, there is no general agree-

ment of a unique implementation of the logic of
the algorithm. Some authors prefer to do muta-
tion first, followed by the crossover operator;
others allow only the children of a current
population to mutate, and so forth. Therefore,
JGA allows the user to code different logics by
extending the abstract class GeneticAlgorithm.
A particular implementation of a genetic algo-
rithm is BasicGeneticAlgorithm, whose logic is
presented in Figure 3, where t is the generation
counter; T is the maximum number of genera-
tions; P(t) is the population at generation t;
Cm(t) and Cc(t) are the children populations
obtained by the mutation and crossover opera-
tors, respectively; C(t) is the children popula-

Figure 1. JGA architecture

Figure 2. Example of the main program in Java of a sample JGA application

m y A p p l i c a t i o n

myFitnessFunction
myMutationOperator
myCrossoverOperator
mySelectionOperator

myConfig.ini myGenotype
myPhenotype

FitnessFunction

<<abstract>>

MutationOperator

<<abstract>>

CrossoverOperator

<<abstract>>

SelectionOperator

<<abstract>>

Genotype

<<abstract>>

Phenotype

<<abstract>>

Built-in components
Genotypes: Binary, Integer, Permutation
Crossover: SinglePoint, Uniform, OX, PMX
Mutation: Flip, Exchange, rndAssignment

JGASettings

Individual

StatCollector

GeneticAlgorithm
Handler

GeneticAlgorithm
<<abstract>>

BasicGenetic
Algorithm

JGA core

Application layer

1: import edu.uniandes.copa.jga.*;
2: public class myApplication {
3: public static voic main (String args []){
4: String configFileName = args [0];
5: ArrayList genotypeParams = new ArrayList ();
6: // genotypeParams construction...
7: GeneticAlgorithmHandler ga = new Genetic AlgorithmHandler (configFileName, genotypeParams);
8: ga.run();
9:  {
10:{
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tion; and E(t) is the expanded population formed
by the current population and their children.

JGA has also been designed to support
multi-objective evolutionary algorithms. Such
an extension of GeneticAlgorithm is presented
in Chapter 42 of this book and shows how a
multi-objective evolutionary algorithm, known
as NSGA II (Deb, Pratap, Agarwal, &
Meyarivan, 2002) is implemented in JGA to
solve the strategic facility location problem
arising in the context of logistics.

The Configuration Files

Every JGA implementation uses two configu-
ration files: the main and the problem-specific
configuration files. The main configuration
file contains several property fields that are

responsible for parameterizing the genetic al-
gorithm and setting up the computational ex-
periment. Even though these properties can be
set in a single file, we can organize them into
two categories: structural and parametric prop-
erties. The structural properties are those that
point to the stored logic of a genetic algorithm
component. These components are: the main
logic of the algorithm, the individual’s genotype
and phenotype, the mutation and crossover
operators, the fitness function, the selection
mechanism, and the problem-specific configu-
ration file. Table 1 shows the structural prop-
erty fields along with their description and
sample values. On the other hand, the paramet-
ric property fields are those parameters com-
mon to most genetic algorithms (i.e., population
size, number of generations, mutation and cross-
over probabilities) and some others controlling
output verbosity. Table 2 shows the parametric
property fields along with their description and
sample values. As the name suggests, the prob-
lem-specific configuration file is tied to a given
application and provides necessary information
that defines the problem instance. For example,
in an inventory problem, the demand values
along the planning horizon are an input that
must be provided via the problem-specific con-
figuration file.

Figure 3. The logic behind BasicGeneticAlgorithm

 

Table 1. Structural property fields in the main configuration file

Property Field Description Sample Value 
GENETICALGORITHM  Sets the class name with the main logic of the 

genetic algorithm. 
edu.uniandes.copa.jga.BasicGeneticAlgorithm 

GENOTYPE  Sets the class name that defines how a solution is 
coded into a genotype.  

edu.uniandes.copa.jga.BinaryGenotype 

PHENOTYPE  Sets the class name that defines and stores the 
individual’s phenotype.  

edu.uniandes.copa.jga.SingleFitnessPhenotype 

FITNESSFCTN  Sets the class name with the implementation of the 
fitness function evaluation. Usually this is a 
problem-specific function that knows how to 
evaluate a specific genotype. 

CVRPEvalFunction 

MUTATION  Sets the class name with the implementation of the 
mutation operator. 

edu.uniandes.copa.jga.FlipBinaryMutation 

CROSSOVER  Sets the class name with the implementation of the 
crossover operator. 

edu.uniandes.copa.jga.SinglePointRealCrossover 

SELECTION  Sets the class name with the implementation of the 
selection mechanism. 

edu.uniandes.copa.jga.RouletteWheelSelection 

PROBLEMDATASETTINGS Sets the file name with the problem-specific 
configuration file.  

CVRPSettings.ini 
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Encoding and Decoding Solutions

In genetic algorithms, a solution must be en-
coded into an individual or chromosome. Corre-
spondingly, in JGA lingo, an Individual is com-
posed of its data structure, the Genotype, and its
value, the Phenotype. In a given JGA applica-
tion, the FitnessFunction is the component in
charge of decoding the Genotype and comput-
ing the Phenotype, that is, the visible properties
of the individual.

Any class extending Genotype must know
how to create a new instance, how to initialize
it randomly, and how to create a copy. To meet
these requirements, the JGA user is forced to
implement three methods called instance,
initRandom, and clone, respectively. Through
the method print (or toString), it is possible for
the JGA user to implement a formatted output
to visualize the genotype. For example,

BinaryGenotype extends Genotype, its instance
method allocates the necessary amount of
memory to create an array of a given length,
and the method initRandom generates the ran-
dom sequence of 0s and 1s.

Similarly, any class extending Phenotype
must know how to set and get the fitness
value(s) (methods setFitnessValue  and
getFitnessValue), and how to compare to other
Phenotype (method compare). Lastly, but most
importantly, any FitnessFunction must be able
to evaluate a specific Genotype, compute, and
return its fitness value (method evaluate). In the
inventory application, presented later with
greater detail, the ULSFitness  (extends
FitnessFunction) computes the total cost (sum
of holding and ordering costs). Due to the fact
that the evaluation of the inventory policy is a
single value, this total cost is stored in a
SingleFitnessPhenotype (extends Phenotype).

Table 2. Parametric property fields and sample values in the main configuration file

Property Field Description Sample Value 
POPSIZE  Sets the population size. Its value is an integer greater than or equal to 1. 100 
MAXGEN  Sets the maximum number of generations. Its value is an integer greater than 

or equal to 1. 
1000 

MUTRATE  Sets the probability of mutation. Its use depends on the implementation of the 
mutation operator or the logic of the algorithm (extension of 
GeneticAlgorithm). It could be the probability that a given gene mutates or 
the probability that a whole individual of the population mutates. Its value is a 
real number between 0 and 1. 

0.1 

CROSSRATE  Sets the probability of crossover. Its use depends on the logic of the algorithm 
(extension of GeneticAlgorithm). For instance, in BasicGeneticAlgorithm, it 
is the probability that a given individual of the population is chosen as a 
parent, forming the so-called crossover pool. Its value is a real number 
between 0 and 1. 

0.5 

SEED  Sets the seed for the random number generator. It characterizes the execution 
of an independent run of the genetic algorithm. Its value is a non-negative 
integer. 

1 

CRITERIA  Sets the optimization criteria for the objective. Its value may be either MIN or 
MAX, for minimization or maximization, respectively. 

MIN 

STATISTICSCOLLECTOR Sets the type of statistics to be collected during the genetic algorithm 
execution. The acceptable values for this property field will be explained 
later.  

0 

OUTPUTLEVEL  Sets the verbosity level for output messages. Depending on the type of 
messages to be displayed, its value is the result of the sum of the following 
values: 
20=1, for warning messages; 
21=2, for trace messages; 
22=4, for debug messages; and 
0, for silent output. 
For example, a property value of 5 (=1+4) turns on warning and debug 
messages. 

0 
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Genetic Operators

Most genetic algorithms implement two genetic
operators: mutation and crossover. The JGA
user must declare which operators to use in the
main configuration file. It is important to note
that these operators are closely related to the
genotypes because they operate with their un-
derlying data structures. Therefore, the selec-
tion or design of a genetic operator cannot be
done in isolation, that is, the user must know
how the given Genotype works.

Every class extending MutationOperator must
implement the method mutate, responsible for
receiving a genotype, mutating it, and returning
the status of the operation (true if the genotype
is in fact mutated, or false otherwise). The
rationale behind the logic of the mutation opera-
tor is to promote exploration, that is, to avoid
getting trapped in local optima. An example of
an existing mutation operator is
FlipBinaryMutation, which flips each gene from
0 to 1 (or 1 to 0) with probability MUTRATE
(property field in the main configuration file).

On the other hand, the CrossoverOperator is
usually designed to promote exploitation, that
is, to search thoroughly near a promising region
of the solution space. Every concrete class
extending CrossoverOperator must implement
the method crossover. This method takes two
parents (Genotypes) and produces one or more
children. The way the parents are selected
from the population depends on the specific
logic of the GeneticAlgorithm. For instance, in
the BasicGeneticAlgorithm a crossover pool of
parents is formed by adding each individual
from the population with a probability of
CROSSRATE (property field in the main con-
figuration file). An example of a classical cross-
over operator is SinglePointCrossover. This
crossover operator is explained later in the
context of an inventory application.

Selective Pressure

The SelectionOperator is the driving force of
genetic algorithms. Its careful design provides
balance between exploration and exploitation.
If the selective pressure is too high, early
convergence might result in local optima. On
the other hand, a low selective pressure might
result in slower convergence, but a wider search
of the solution space. In a nutshell, the operator
takes a population of individuals and selects a
subset based on a given logic. This logic is
implemented in the method select from classes
extending SelectionOperator. The so-called sam-
pling space is provided in the logic of the
GeneticAlgori thm .  For instance, the
BasicGeneticAlgorithm selects POPSIZE indi-
viduals from an enlarged sample space formed
by the union of parents and children (see Figure
3).

Some of the most widely used SelectionOperators are
the RouletteWheelSelection, BestIndividualSelection, and
TournamentSelection. In RouletteWheelSelection,
the probability of selecting a given individual in
the population is proportional to its fitness value.
BestIndividualSelection is an elitist mechanism that
chooses the best individuals in the population in a
deterministic fashion. Last, in TournamentSelection,
subsets of individuals are randomly selected
from the population and the best of each subset
is selected.

Collecting Statistics

The StatCollector is the JGA component in
charge of collecting statistics during the evolu-
tionary process. The type of statistics that are
collected can be defined in the main configura-
tion file using the STATISTICSCOLLECTOR prop-
erty field. The value for this field must be the
result of the addition of the values shown in
Table 3. For example, to collect both basic and
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best-individual statistics,  we set
STATISTICSCOLLECTOR=3 (=1+2). Setting
STATISTICSCOLLECTOR=0 results in no sta-
tistics collection.

The StatCollector class provides methods
for retrieving the statistics after the genetic
algorithm execution. To get a handle on the
StatCol lector ,  the user must use the
getStatCol lector  method from the
GeneticAlgorithmHandler object created in the
main program (see Figure 4).

THE BENCHMARK PROBLEM:
INVENTORY LOT SIZING

To illustrate the use of JGA and to compare it
with other tools, we use as a test case the
dynamic inventory lot-sizing problem arising in
the context of operations management. First
we define the problem, then we outline how this
problem is solved by means of a genetic algo-
rithm. The implementation of the genetic algo-

rithm in various tools, including JGA, is delayed
until the next section.

The Dynamic Inventory
Lot-Sizing Problem

In the classical dynamic lot-sizing problem, the
decision maker is interested in defining order
quantities over a discrete-time planning hori-
zon, while meeting a set of dynamic demand
requirements (driven by customers) at a mini-
mum total cost. The total cost includes variable
inventory holding costs and fixed ordering costs.
It is worth emphasizing that the customer’s
demand is both deterministic and dynamic. By
deterministic we mean that future demand for
an inventory item is known with certainty, while
by dynamic we mean that demand changes
over the planning horizon.

A formal definition of the dynamic inventory
lot-sizing problem follows. For a single product
with demand D1,…, Dt,…,DT over a discrete
horizon T, the problem is to find the number of

Table 3. Collected statistics by JGA

Figure 4. Example of using the StatCollector in JGA

Add to 
STATISTICSCOLLECTOR 

Option Description 

20=1 Collects basic statistics such as the number of function 
evaluations, mutation, and crossover operations. 

21=2 Tracks the best individual during the execution of the genetic 
algorithm. Also collects the generation number and the 
number of fitness function evaluations when the best 
individual was found. 

22=4 Records the best and worst individuals for each generation. 

1: import edu.uniandes.copa.jga.*;
2: public class myApplication {
3: public static void main (String args[]) {
4: String configFileName = args[0] ;
5: ArrayList genotypeParams = new ArrayList () ;
6: // genotypeParams construction ...
7: GeneticAlgorithmHandler ga = new GeneticAlgorithmHandler (configFileName , genotypeParams) ;
8: ga.run() ;
9: StatCollector statCollector = ga.getStatCollector () ;
10: Individual bestInd = statCollector.getBestIndividual () ;
11: long evaluations = statCollector.getEvaluationsForBestIndividiual () '
12: long iterations = statCollector.getIterationsForBestIndividual () ;
13: long executionTime = statCollector.getExecutionTime () ;
14: }
15:  }
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units Xt to be ordered at period t, so that the
demand is satisfied at a minimal total cost. The
total cost is given by the expression:

( )∑
=

+=
T

t
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1

where It is the inventory level at the end of
period t defined by tttt DXII −+= −1  ( 0I  is
the initial inventory level); Yt is a binary variable
that takes the value of 1 if an order is placed at
period t (it takes the value of 0, otherwise); ht
is the cost of carrying one unit in inventory at
the end of period t; and At is the fixed cost of
placing an order at period t.

The most widely used heuristic approaches
for the lot-sizing problem with dynamic demand
are Silver-Meal (Silver & Meal, 1973), Least
Unit Cost (Silver, Pyke, & Peterson, 1998), and
Part Period Balancing (Silver et al., 1998). For
sufficiently small problems the most widely
used exact methods are Wagner-Whitin
(Wagner & Whitin, 1958) and mixed integer
programming (Silver et al., 1998).

The Wagner-Whitin (WW) algorithm is an
optimization procedure based on dynamic pro-
gramming. WW uses the following recursive
equation to calculate the total cost for period t,
namely G(t):
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The WW algorithm uses a property shown
in Wagner and Whitin (1958) which states that
the demand Dt for any period t in the optimal
solution is produced completely (and not par-
tially) in some period k such that 1≤ k ≤ t. This
property is the key result used in the represen-

tation scheme for the genetic algorithm that we
outline in this chapter. The WW algorithm
evaluates all possible ways of ordering so that
demands ahead of the specific order period are
covered. WW determines the optimal number
of periods to be included in the order and skips
to the next order period. The process is re-
peated until the planning horizon is covered
completely. In a single-item problem with T
periods, the total number of possible order
policies is 2T-1. Fortunately, the WW method
uses a clever evaluation scheme that reduces
the number of policies to be examined to the
O(T2), in the worst case. The WW method is
not widely used in industry because it is difficult
to understand. Its major advantage is that it is
useful to measure the effectiveness of other
lot-sizing algorithms.

A Solution Approach Based
on a Genetic Algorithm

For this problem, we use the binary representa-
tion proposed by Hernández and Gürsel (1999).
Each chromosome consists of T genes, corre-
sponding to the T periods. The gene t of a
chromosome indicates if an order has been
placed in period t or not (values of 1 or 0,
respectively). The order quantity includes the
demands of period t up to the next ordering
period. Figure 5 shows an example of the order
policy defined by a given chromosome for a
problem with six periods. In this example, or-
ders are placed at periods 1, 3, and 4.

Order quantities: X1 = D1+D2, X2=0, X3=D3,
X4=D4+D5+D6 , X5=0, and X6=0

THE JGA IMPLEMENTATION

The genetic algorithm for this problem was
implemented using many of the built-in compo-
nents provided by JGA. As explained in the
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previous section, the key decision was to en-
code the solutions into a binary genotype. Even
though a binary genotype already exists in JGA
(class BinaryGenotype), we extended it to re-
write the toString method so that we can show
the solution in a tabular user-friendly format.
The new encoding is implemented in class
ULSBinaryGenotype. Furthermore, the fitness
function class ULSFitness is in charge of de-
coding the chromosome and evaluating its in-
ventory and setup costs. The result of this
evaluation is stored in the individual’s pheno-
type (class SingleFitnessPhenotype).

For the binary genotype behind this lot-
sizing problem, we chose a widely used set of
genetic operators: single-point crossover (class
SinglePointBinaryCrossover) and flip mutation
(class FlipBinaryMutation). In single-point cross-
over, two parent chromosomes produce two
offspring. First, a cut point for the parent chro-
mosomes is selected randomly. Then, the first
(second) offspring is generated by merging the
genes to the left (right) of the cut point for the
first parent with the genes to the right (left) of
the cut point for the second parent. The muta-
tion operator flips the value of a gene (0 to 1, or
1 to 0) with a given probability of mutation
MUTRATE.

We used an elitist selection mechanism (class
BestIndividualSelection) that selects the best
individuals from an enlarged population. The
enlarged population is formed by children pro-
duced from crossover and mutation, as well as
with individuals from the current population.
Table 4 summarizes the built-in components

used from the JGA package to solve the dy-
namic inventory lot-sizing problem. Figure 6
shows the class diagram for the genetic algo-
rithm implemented using JGA to solve the dy-
namic inventory lot-sizing problem.

COMPARISON OF JGA WITH
OTHER COMPUTATIONAL TOOLS

The dynamic inventory lot-sizing problem was
used to compare JGA with three other tools:
GAlib (Wall, 2005), PROC GA from SAS (SAS
Institute, 2005), and the GADS toolbox from
Matlab (Mathworks, 2005).

The GAlib Implementation

A GAlib user must write a main function in
order to create instances of the required ob-
jects, including the genome and a GAsimpleGA
object. For the lot-sizing application, it was
necessary to code the fitness function and to
set the genetic algorithm parameters via the
main function. The genome selected for solving
the problem was the GA1DBinaryStringGenome.
The genetic operators and selection mecha-
nism were set by means of a header file named
gaconfig.h (see Figure 7). Figure 8 shows part

Figure 5. Example of a chromosome for the
dynamic lot-sizing problem

Table 4. Summary of JGA classes used for
the dynamic inventory lot-sizing problem

Chromosome: 1 0 1 1 0 0 
       
Period 1 2 3 4 5 6 
Demand D1 D2 D3 D4 D5 D6 

Component Class Extended from Class1 
Genotype ULSBinaryGenotype  BinaryGenotype  
Phenotype SingleFitnessPhenotype  Phenotype  
Fitness Function ULSFitness  FitnessFunction  
Mutation Operator FlipBinaryMutation  MutationOperator  
Crossover Operator SinglePointBinaryCrossover  CrossoverOperator  
Selection Operator BestIndividualSelection  SelectionOperator  

1 Italics used to indicate abstract classes
� JGA built-in class
• User-defined class

�

�

�

�

�

�

�

�

�

•
•

�
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of the code used for solving the dynamic lot-
sizing problem with GAlib.

The SAS (PROC GA)
Implementation

SAS provides an experimental procedure called
PROC GA, useful for solving optimization prob-
lems with binary, integer, and real variables.
SAS also provides a combinatorial variable,
useful for problems in which solutions are based
on permutations. The variables can be encoded
in fixed-length vectors allowing lower and up-

per bounds. The encoding may include several
segments, each one of them with different data
types. The parameters and operators are de-
fined by means of calls to functions in the body
of the procedure. The user must write the
fitness function using the SAS programming
language. PROC GA provides an elitist mecha-
nism that lets the user preserve the best indi-
viduals for the next generation. Figure 9 shows
the PROC GA code to solve the dynamic
inventory lot-sizing problem.

In PROC GA, the user can define a sub-
routine for execution at the end of every itera-

Figure 6. Class diagram for the JGA implementation of the dynamic lot-sizing problem

Figure 7. GAlib configuration header file

 

ULSSettings.ini

Problem data configuration
file

<loads>

ULSSettings

FlipBinaryMutation

+mutate(gt : Genotype) : booean

SinglePointBinaryCrossover

crossover(gt1 : Genotype, gt2 : Geotype) ...

BestIndividualSelection

+select(pop : ArrayList, size : int) : ArrayList

ULSFitness

+evaluate(gt : Genotype) : ArrayList

ULSmain

+main(args : String [])

ULSBinaryGenotype

+print() : void

BinaryGenotype
+instance(params : ArrayList : void
+clone() : Object
+initRandom() : void
+getLength() : int
+setGene(index : int, val : byte) : void
+setRandomGene(index : int) : void
+getGene(index : int) : byte
+getGenes () : byte []
+pring() : void

SingleFitnessPhenotype
+clone() : Object
+setFitnessValue(f : ArrayList) : void
+getFitnessValue() : ArrayList
+compare(pt : Phenotype) : int
+print() void

<<abstract>>
Phenotype

+setFitnessValue(f : ArrayList) : void
+getFitnessValue() : ArrayList
+cone() : Object
+compare(pt : Phenotype) : int
+print() : void

<<abstract>>
Genotype

+instance(params : ArrayList) : void
+initRandom() : void
+clone() : Object
+print() : void

GeneticAlgorithmHandler

+GeneticAlgorithmHandler (ConfigFName,...
+run() : ArrayList
+getStatCollector() : StatCollector

<<abstract>>
GeneticAlgorithm

+run() : ArrayList

BasicGeneticAlgorithm

+run() : ArrayList

<<abstract>>
FitnessFunction

+evaluate(gt : Genotype) : ArrayList

<<abstract>>
MutationOperator

+mutate(gt : Genotype) : boolean

<<abstract>>
CrossoverOperator

+crossover(gt1 : Genotype, gt2 : Genotype...

<<abstract>>
SelectionOperator

+select(pop : ArrayList, size : int) : ArrayList

JGAConfigULS.ini

JGA Configuration file

GASettings

Individual

StatCollector

<<use>>

<<use>>

<<use>> <<loads>

// Configuration & preproprocesor directives

..................................................................

..................................................................

// These are the compiled-in defaults for various genomes and GA objects
#define DEFAULT_SCALING GALinearScal ing
#define DEFAULT_SELECTOR GARouletteWheelSelector
#define DEFAULT_TERMINATOR TerminateUponGeneration

#define DEFAULT_1DBINSTR_INITIALIZER UniformInit ial izer
#define DEFAULT_1DBINSTR_MUTATOR FlipMutator
#define DEFAULT_1DBINSTR_CROSSOVER OnePointCrossover
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tion or the evolutionary process. This feature is
useful for reporting intermediate results, ad-
justing parameters dynamically, or performing
local re-optimizations.

PROC GA also provides useful functions to
deal with multi-objective and constrained prob-
lems. The first function returns the Pareto
frontier from a population, while the second
function evaluates a set of linear constraints for
a given solution. The current version offers
only a small set of built-in genetic operators and
selection mechanisms.

The Matlab (GADS Toolbox)
Implementation

The GADS toolbox from Matlab includes a set
of elements and parameters very similar to
SAS’s PROC GA. The main difference is that
all settings are passed via the parameters of
Matlab’s ga function. Figure 10 shows the
code in the m-File used to run the ga function.

Matlab provides a graphical user interface
(see Figure 11) by calling the gatool command.
This interface generates a file with the line

command code shown in Figure 10. GADS also
includes a large set of options for fitness scal-
ing, termination criteria, migration, and report-
ing (statistical graphs). By writing m-files on a
given format, the user can implement new data
types for individuals and genetic operators.

Computational Experiment:
A Quantitative and Qualitative
Comparison

An experiment was conducted to test the re-
sults of each implementation using a sample
problem from Silver et al. (1998). Table 5
shows the problem data and the optimal solution
(total cost of 501.2) for Silver’s instance.

The implementation for each tool uses the
same representation scheme and genetic op-
erators outlined in the JGA implementation.
The mutation and crossover probabilities were
set to 0.01 and 0.80, respectively, while the
population size was set to 40 individuals. To
analyze the performance of these tools, we
constructed several instances based on three

Figure 8. Code for implementing the dynamic
lot-sizing problem in GAlib

Figure 9. Code for implementing the GA
application using the GA procedure from SAS

#include <GASimpleGA.h> // use the simple GA
#include <GA1DBinStrGenome.h> // use the 1D binary string genome
// main function
main (int argc, char **argv) {

// genome construction.
GA1DBinaryStringGenome genome (len, Objective) ;

// Set the GA parameters
GASunokeGA ga(genome) ;
ga.minimize () ;
ga.populationSize(popsize) ;
ga.nGenerations(ngen) ;
ga.pMutation (pmut) ;
ga.pCrossover (pcross) ;

// run the GA
ga.evolve() ;

// print out the best genome that the GA found.
cout <<"The GA found: \n" <<ga.statistics().bestIndividual() << "\n";
}
// Objective function definition.
float Objective(GAGenome & g) {

GA1DBinaryStringGenome & genome = (GA1DBinaryStringGenome &) g ;
float cost=0.0 ;
// Objective function evaluation......................................................
return cost ;

}

proc ga seed = 1 maxiter = 20;
/* Set the problem encoding */
call SetEncoding('I12') ;
/* Set upper and lower bounds on the solution components */
array LowerBound [12] /nosym (0 0 0 0 0 0 0 0 0 0 0 0) ;
array UpperBound [12] /nosym (1 1 1 1 1 1 1 1 1 1 1 1) ;
call SetBounds (LowerBound, UpperBound) ;
/* Set the objective function to be optimized */
call SetObjFunc ('ulsCost', 0) ;
/* Set the crossover paramters */
call SetCrossProb (crossoverProbability) ;
call SetCrossRoutine ('singlePointCrossover')
/* Set the mutation routine to flip */
call SetMutProb(1.0) ;
call SetMutRoutine('flipMutation') ;
/* Set the selection criteria
/* call SetElite(n) ;
/* = number of best individuals from last population to be retained */
call setElite(elitistSize) ;
/* Initialize the first generation, with 120 random solutions */
call Initialize ('DEFAULT', popSize) ;
run ;
/* Objective function to be optimized */
function ulsCost (selected [*]) ;

/* Local array for reading chromosome information */
array x[12] /nosym ;
call ReadMember (selected,1,x) ;
/* Calculating the total cost */
return(totalCost) ;

endsub ;
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different levels for the number of generations
(20, 100, and 1,000) and two problem sizes
based on the number of periods T (12 and 48).
For each instance, 30 runs were conducted on
an Intel Pentium IV processor running at 2.8GHz
with 256 MB of RAM. Table 6 and Table 7
show the results of these experiments for the
average cost (fitness function) and CPU time,
respectively.

GAlib shows the best performance in terms
of execution time, always requiring less than a
third of the time needed by JGA (see Table 7).
GAlib is also a flexible tool that includes the
major elements of traditional GAs. However,
the main disadvantage is that it is targeted to
advanced users with C++ programming skills.
It took us a significant amount of time to
compile and set up GAlib. Also, a number of
compiler options must be set and verified de-
pending on the selected platform.

SAS’s PROC GA main advantage is its
user-friendly programming language and the

Figure 10. Code for implementing the GA application using the GADS toolbox from MATLAB

Figure 11. Graphical user interface of GADS
from MATLAB

 

integration with the SAS system, which in-
cludes its powerful data processing capabili-
ties. Very useful features from PROC GA are
its built-in multi-objective and constrained opti-
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mization capabilities. However, the main draw-
backs are its slow execution time and its limited
and non-extensible data structures for solution
encoding.

Matlab’s GADS shares similar advantages
to that of SAS, namely, its powerful, matrix-

oriented, user-friendly language and its integra-
tion to Matlab’s suite of toolboxes. The main
disadvantage of GADS is its slow execution
time. For instance, the time required to run
GADS was about three to six times compared
to that of JGA.

Table 6. Average cost results for the dynamic inventory lot-sizing problem

 1 T=Number or periods, P= Population size, NG=Number of generations

Table 7. Average CPU time results for the dynamic inventory lot-sizing problem

 1 T=Number or periods, P= Population size, NG=Number of generations
 2 Uses JGA’s CPU time as the ratio denominator

Table 5. Data and optimal solution for Silver’s instance of the dynamic inventory lot-sizing
problem

Period 1 2 3 4 5 6 7 8 9 10 11 12 
Demand 10 62 12 130 154 129 88 52 124 160 238 41 
Setup Cost 54 54 54 54 54 54 54 54 54 54 54 54 
Inventory Cost  0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 
Order Quantity 84 0 0 130 283 0 140 0 124 160 279 0 
Final Inventory 74 12 0 0 129 0 52 0 0 0 41 0 
 

JGA GAlib PROC GA (SAS) GADS (Matlab) Problem 
Instance 
(T-P-NG1) 

Average 
Cost 

Average 
Gap 

Average 
Cost 

Average 
Gap 

Average 
Cost 

Average 
Gap 

Average 
Cost 

Average 
Gap 

12-40-0020 501.20 0.00% 508.13 1.38% 501.20 0.00% 502.90 0.34% 
12-40-0100 501.20 0.00% 501.20 0.00% 501.20 0.00% 501.20 0.00% 
12-40-1000 501.20 0.00% 501.20 0.00% 501.20 0.00% 501.20 0.00% 
48-40-0020 1967.00 1.39% 2202.00 13.51% 1995.00 2.84% 2126.00 9.59% 
48-40-0100 1940.00 0.00% 2015.00 3.87% 1953.00 0.67% 1985.00 2.32% 
48-40-1000 1940.00 0.00% 1942.00 0.10% 1940.00 0.00% 1942.00 0.10% 

 

JGA GAlib PROC GA (SAS) GADS (Matlab) Problem 
Instance 
(T-P-NG1) 

Time 
(ms) 

Time 
(ms) Ratio2 

Time 
(ms) Ratio2 

Time 
(ms) Ratio2 

12-40-0020 12 3 0.25 135 11.25 73 6.08 
12-40-0100 48 11 0.23 174 3.63 318 6.63 
12-40-1000 474 103 0.22 848 1.79 3068 6.47 
48-40-0020 22 6 0.27 166 7.55 82 3.73 
48-40-0100 96 30 0.31 353 3.68 355 3.70 
48-40-1000 890 262 0.29 2518 2.83 3123 3.51 
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For every instance of the dynamic lot-sizing
problem, JGA was consistently the best in
terms of solution quality (it consistently achieved
the optimum). In terms of computing perfor-
mance, JGA was second to GAlib and clearly
outperformed SAS and Matlab.

CONCLUSION

We have presented the Java Genetic Algorithm
(JGA) framework, a flexible object-oriented
computational tool for rapid prototyping and
implementation of evolutionary algorithms.
From a practical side, we have shown how it is
possible to use genetic algorithms and JGA for
modeling and solving complex business prob-
lems. GA-based solutions are often quite com-
petitive, yet easier to implement than the state-
of-the-art method of choice.

In this chapter, we compared JGA against
other implementations of GAs. We compared
the tools using as benchmark a dynamic inven-
tory lot-sizing problem. Compared to the C++
implementation GAlib, JGA is slower. How-
ever, in terms of solution quality, JGA is a better
performer. It is worth mentioning that GAlib
produces native code, while JGA is platform
independent and runs on top of the Java Virtual
Machine. Some speed up can be achieved by a
native compilation of JGA, but this affects its
cross-platform independency. With respect to
the commercial offerings from Matlab and SAS
(GADS and PROC GA, respectively), JGA
outperforms both in terms of time and quality.
However, a nice feature of GADS and PROC
GA, is that they are leveraged by a user-
friendly and powerful language, being part of a
wider system (i.e., suite of Matlab toolboxes
and the SAS system, respectively).

Just as genetic algorithms provide a flexible
framework to solve a broad range of problems,
JGA and its constantly expanding set of class

libraries, provides a flexible set of building
blocks that makes it possible to implement a
broad range of genetic algorithm-based solu-
tions. We hope the readers can benefit directly
by using JGA class libraries available at http://
copa.uniandes.edu.co/soft-evol-jga.html to bet-
ter manage scarce resources and optimize op-
erations using nature-inspired computing.
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KEY TERMS

Abstract Class: In object-oriented tech-
nology, a type of class that defines a master
structure from which concrete classes are de-
rived. An abstract class provides a contract
that users must subscribe to when implement-
ing their own classes extending from it.

Chromosome: Data structure (genetic
code) that encodes a solution (individual) to the
problem that the genetic algorithm is trying to
solve.

Class: Blueprint of an object, but not the
object itself. It defines attributes and methods
common to all objects of a certain kind.
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Crossover: Genetic operator that com-
bines (mates) chromosomes (parents) to pro-
duce new ones (offspring). It is analogous to
the biological reproduction.

Fitness Function: Objective function that
quantifies the adaptability of an individual. So-
lutions with better fitness values are more likely
to survive and join the next generation in a
genetic algorithm. It is analogous to the fitness
concept in the natural selection process.

Gene: Basic information unit in a chromo-
some.

Genetic Algorithm (GA): Stochastic
(population-based) search technique, inspired
in the natural selection process, used to find
approximate solutions to complex optimization
problems.

Genotype: Genetic makeup of an individual.

Method: Fundamental element in object-
oriented programming that defines the object’s
behavior.

Mutation: Genetic operator that alters one
or more genes in a chromosome. Mutation is

used to maintain genetic diversity in the popu-
lation of individuals. It is analogous to biological
mutation.

Object: Building block of object-oriented
programming. Every object has a state, behav-
ior, and identity. The object’s state is defined by
the instance variables, while its behavior is
defined by the object’s methods. An object is
capable of receiving messages, processing data,
and sending messages to other objects.

Object-Oriented Programming (OOP):
Computer programming paradigm in which a
computer program is written by defining ob-
jects, its behavior, and interrelations. The fun-
damental terms in OOP are objects, classes,
and methods.

Phenotype: Features or quantifiable mea-
surements of an individual. In a genetic algo-
rithm, the phenotype is the value associated
with the fitness function evaluation.

Selection: Operation in charge of choosing
which individuals from the current population
will survive and become part of the next gen-
eration.
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ABSTRACT

Two of the most complex activities in production and operations management (POM) are
inventory planning and operations scheduling. This chapter presents two problems related to
these activities, namely, the capacitated lot-sizing and scheduling problem and the capacitated
vehicle routing problem. For each of these problems, the authors discuss several solution
methods, present a competitive genetic algorithm, and describe its implementation in the Java
Genetic Algorithm (JGA) framework. The purpose of this chapter is to illustrate how to use JGA
to model and solve complex business problems arising in POM. The authors show that JGA-
based solutions are quite competitive and easier to implement than widely used methods found
in the literature.

INTRODUCTION

JGA, the acronym for Java Genetic Algorithm,
is a flexible and extensible computational ob-
ject-oriented framework for rapid development
of evolutionary algorithms for solving complex
optimization problems. JGA shortens the imple-
mentation phase because the user of JGA does

not have to implement the underlying logic of a
genetic algorithm, but just has to focus on the
unique aspects of its specific problem. The
previous chapter presents the technical aspects
of JGA in detail; the purpose of this chapter is
to illustrate the use of JGA with problems
arising in the areas of operations management
and vehicle routing.
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Production and operations management
(POM) decisions deal with the efficient use of
the resources in the production of goods and
services. Two important aspects in POM are
inventory planning and operations scheduling.
The former defines inventory policies and de-
termines order quantities. The latter deter-
mines the detailed sequence of the production
orders or jobs through the machines. These
problems, also known in the literature as lot-
sizing and scheduling problems, must support
several (often conflicting) objectives, such as
minimizing the total inventory and setup costs,
while maximizing service level.

Our first application of POM was presented
in the previous chapter. We illustrated JGA and
other genetic algorithm tools in the classical
dynamic lot-sizing problem, in which the deci-
sion maker is interested in defining order quan-
tities over a discrete-time planning horizon,
while meeting a set of dynamic demand re-
quirements at a minimum total cost.

Traditional solution approaches of POM
deal with lot-sizing and sequencing problems
separately and do not consider the interrela-
tionship between them. A common solution
procedure is to solve these problems sequen-
tially—that is, first find a solution for the lot-
sizing problem (as in the previous chapter), and
then solve the sequencing problem taking as
input the lot-sizing solution without considering
capacity constraints. This approach generates
infeasible solutions which often exceed pro-
duction capacity and must be adjusted in order
to satisfy the capacity constraints. This adjust-
ment often generates high-cost solutions. In
this chapter we show how by integrating both
problems by means of a genetic algorithm; it is
possible to obtain a significant operational cost
reduction.

The second application presented in this
chapter deals with the distribution of products
and services, namely, with the vehicle routing

problem (VRP). The VRP is to find the best
way of assigning a group of customers to a fleet
of vehicles and determining the sequence of
customer visits. The managerial objective is to
provide a high service level to the customers,
while simultaneously minimizing operational and
investment costs.

The next two sections of this chapter dis-
cuss the capacitated lot-sizing and scheduling
problem and the capacitated vehicle routing
problem. For each of these problems, we dis-
cuss its solution methods, and present a genetic
algorithm approach and its implementation in
JGA along with a computational experiment.

THE CAPACITATED LOT-SIZING
AND SCHEDULING PROBLEM

This problem deals with the integration of lot-
sizing and scheduling decisions over a parallel
machine environment. This problem, known as
capacitated lot-sizing and scheduling (CLSS),
formally can be stated as follows. There are N
different products to be manufactured in a
system with M parallel and identical machines
over a finite horizon of time. The time horizon
comprises T evenly spaced periods. Product i
has a deterministic demand of Dit units for
period t. There is an inventory holding cost hi
for each unit of product i held in inventory per
time period. Each product is processed by one
machine and requires pi units of time per unit of
product i. Associated with the production pro-
cess, there is a cost Cp per unit of processing
time. When a machine changes from process-
ing product i to product j, it requires sij units of
time for setup. Associated with this setup, there
is a cost Cs per unit of time. Production is
constrained to a maximum capacity of C units
of time per period per machine. In conclusion,
the CLSS problem is to find the number of units
Xit of product i to be produced at period t, and
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the sequence in which the production orders
associated to Xit are to be produced in each
period. The objective is to reduce the total
relevant costs, that is, the sum of the inventory
carrying costs plus the setup costs.

Scheduling methods are classified in the
literature according to the type of process
configuration and machine arrangement. These
methods cover a single machine, parallel ma-
chines, flow shops, job shops, and open shops
(Nahmias, 1998). Typical objectives include
minimizing average flow time, tardiness, maxi-
mum completion time (also known as makespan
or Cmax), and the number of tardy jobs (Sipper
& Bulfin, 1997).

In parallel machine scheduling, the simplest
case assumes that any product can be pro-
cessed on any machine, the product’s process-
ing time is the same on any machine (i.e.,
machines are identical), and products require a
single operation. For this problem, a family of
approximation algorithms is based on the list
scheduling (LS) approach (Cheng & Sin, 1990).
An LS is an ordered sequence of the products
generated using some criterion, like a dispatch-
ing rule. The schedule is generated by assigning
the next product on the list to the machine with
the least amount of work assigned (i.e., first
available machine). This approach has been
extensively used for solving problems with flow-
time and due-date performance measures.

Lee and Pinedo (1997) present a three-
phase heuristic to schedule jobs on parallel
machines with sequence-dependent setup times.
They minimize the sum of weighted tardiness.
The sequence is constructed using a modified
version of the apparent tardiness cost with
setup (ATCS) rule. A statistical analysis is
proposed to determine the parameters for the
dispatching rule. A post-processing procedure
based on neighborhood search is performed to
improve the solution.

Some work has been done that integrates
the lot-sizing and scheduling problems. Sikora,
Chhajed, and Shaw (1996) describe an inte-
grated approach (IA) for a general problem of
scheduling a flow line with sequence-depen-
dent setups and capacity constraints. IA is an
iterative approach that does the sequencing for
each period before an additional lot is sched-
uled. To decide the next lot to be scheduled, the
lot-sizing module calls the sequencing heuristic.
The sequencing module finds the sequence that
minimizes the makespan and returns it to the
lot-sizing module. Then the lot-sizing module
decides when the next lot is scheduled based on
the utility function concept developed by Dixon
and Silver (1979). This approach is able to give
feasible solutions in terms of capacity with
reasonable cost values.

A Solution Approach Based
on a Genetic Algorithm

The main challenge in the design of the genetic
algorithm is the integration of the lot-sizing and
scheduling problems. Therefore, chromosome
representation and genetic operators must in-
clude and handle both problems. The inventory
problem deals with the order plan for each
product; the scheduling problem deals with
finding the sequence of orders in the machines.
The total cost evaluation takes information
from both problems: the inventory holding costs
are evaluated from the order plan, while the
setup costs are obtained from the schedule.

Representation Scheme

The chromosome used to represent a solution
for the problem is composed of two parts. The
first part represents the order plan for all the
products; the second part represents the se-
quence of orders in the schedule for all the



628

Applications of JGA to Operations Management and Vehicle Routing

periods. Figure 1 shows the structure of the
chromosome.

In Figure 1, for orders, each product has a
block in which each binary gene Yit indicates if an
order for product i has been placed or not in
period t (values of 1 or 0, respectively). This is an
extension of the representation used for the
dynamic lot-sizing problem (see previous chap-
ter) to the multi-product case. For the schedule,
each period has a block with a permutation that
defines the sequence in which orders must be
scheduled on the machines. Each integer gene
Bti specifies the i-th product in the sequence for
period t. Under this representation, machines are
not considered explicitly in the chromosome, but
this allocation is performed later by means of the
list scheduling algorithm. The representation
based on permutations (also called order repre-
sentation) is the most natural representation for
sequences (Gen & Cheng, 2000).

The fitness function uses the list scheduling
algorithm (LS) to assign and sequence orders

into the parallel machine system. The list sched-
uling algorithm assigns each order to the ma-
chine with the least completion time. Figure 2
shows an example of LS algorithm for 10
orders and three machines using the permuta-
tion {9,1,3,8,2,4,5,7,6,10}. The black boxes be-
tween orders correspond to setup times.

Two other list-schedule-based algorithms
were included in the design: smallest setup time
(LS-SST) (Sipper & Bulfin, 1997) and Smallest
Cost (LS-SC) (Gutiérrez, 2002). The first algo-
rithm assigns the order to the machine with the
smallest setup time; the second uses the total
costs as the comparison criterion.

The inventory holding costs and setup costs
are added into the fitness function used to
evaluate the individuals in the evolutionary pro-
cess. The capacity constraint is handled by
penalizing the individual’s fitness if the comple-
tion time for period t, Cmax(t), exceeds the
maximum available capacity C. The general
form of the fitness function follows:

Figure 1. Chromosome structure for the CLSS problem

Orders: 

Y11 Y12  … Y1T Y21 Y22  … Y2T   ...    YN1 YN2  … YNT 
Schedule: 

B11 B12  … B1N B21 B22  … B2N   ...    BT1 BT2  … BTN 
 

Figure 2. Gantt chart representing the schedule using LS algorithm
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Fitness Inventory holding costs setup costs= + +

{ }max
1

(1 ) max 0, ( )
T

p
t

C t C Cα
=

+ −∑      (1)

where α is a penalty factor (1≤ α ≤ 2).

Genetic Operators

For each individual, orders and schedule are
mutated with a given mutation’s probability.
The mutation operator combines flip mutation
and exchange mutation. Orders mutate by se-
lecting randomly a position (product and period)
and flipping its associated gene from 0 to 1 (or
from 1 to 0). The schedule mutates by randomly
selecting a period and randomly exchanging
two positions in the sequence for the given
period. Figure 3 shows an example with an
individual for a problem consisting of six prod-
ucts and four periods. In the example, the
second gene for product 3 was flipped from 1 to
0. Also, the second and the sixth genes for
period 2 were exchanged.

The crossover operator is also different for
each part of the chromosome. The first part,
corresponding to the binary genes, is crossed as
a whole using a single-point crossover as ex-

plained for the dynamic lot-sizing case. The
second part, corresponding to the sequencing
problem, is crossed for each period using the
order crossover (OX) (Davis, 1991). The OX
crossover operator works as follows. First, two
cut points for the parent chromosomes are
selected randomly. Then the contained sub-
strings between the two cut points of both
parents are exchanged. Finally, it completes the
remaining positions for each chromosome start-
ing from the right cut point for both parents by
omitting the duplicated genes. When the last
position of the sequence is reached, it continues
from the first position until the chromosome is
completed. Figure 4 shows the process of cross-
ing two individuals. For the orders part, gray
zones are the left and right sides of the cut
point. For the scheduling part, gray zones cor-
respond to the sub-strings between the two cut
points for each period.

The JGA Implementation
for the CLSS

For the CLSS, several new Java classes were
implemented according to the genetic algorithm
described in the previous section. The chromo-
some was implemented in class CLSSGenotype
to mix the binary and permutation encoding.
The toString method in this class formats the
output to show the order quantities for each
product and the schedule for each period. The
previously described genetic operators were
implemented in classes CLSSMutation and
CLSSCrossover. These genetic operators work

Figure 3. Example of the mutation operator
for the CLSS chromosome

 

Figure 4. Example of the crossover operator for the CLSS chromosome
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on the CLSSGenotype. The fitness function
class provides the service of decoding the
chromosome and evaluating the total cost. A
specific fitness function class was implemented
for each of the three available algorithms to
generate the schedule on the parallel ma-
chines (classes CLSSFitnessLS ,
CLSSFitnessLS-SST, and CLSSFitnessLS-
SC). The result of the fitness function evalu-
ation is stored in a single-value phenotype
(class SingleFitnessPhenotype).

Table 1 summarizes the implemented classes
and built-in components used from JGA to
solve the capacitated lot-sizing and scheduling
problem.

Computational Experiments

An experiment was conducted to test the re-
sults of the implemented genetic algorithm for

the CLSS problem using two problems from
Gutierrez (2002). Problem 1, labeled P1(10-12-
4), consists of 10 products, 12 periods, and 4
machines. Problem 2, labeled P2(20-12-7), has
20 products, 12 periods, and 7 machines. Both
problems were also solved using the Integrated
Approach (Sikora et al., 1996). Mutation
(MUTRATE) and crossover (CROSSRATE)
probabilities were set to 0.4 and 0.9 respec-
tively. The population size (POPSIZE) was set
to 200 individuals, and the number of genera-
tions (MAXGEN) to 600.

Table 2 shows the results for the GA using
the three scheduling algorithms described pre-
viously. Each method is applied to both prob-
lems, and 20 replications (runs) were executed.
JGA’s CLSS was run on a Pentium IV running
at 2.8 GHz with 256MB of RAM. Results show
better performance for the smallest cost algo-
rithm compared to the small setup time and the

Table 1. Summary of classes for the capacitated lot-sizing and scheduling (CLSS) problem

Table 2. Results for JGA for the capacitated lot-sizing and scheduling problems

1 Italics used to indicate abstract classes
� GA built-in class
• User-defined class

  LS Algorithm LS-SST Algorithm LS-SC Algorithm 
Problem 
(N,T,M) 
 

Average 
Cost 
 

Variation 
Coef.♦ 

 

Average 
Time 
(ms)  

Average 
Cost 
 

Variation 
Coef.♦ 

 

Average 
Time 
(ms)  

Average 
Cost 
 

Variation 
Coef.♦ 

 

Average 
Time 
(ms)  

P1(10-12-4) 1,090,319 0.038 7,518 1,023,846 0.023 7,809 1,011,228 0.022 7,940 
P2(20-12-7) 2,588,237 0.088 15,628 2,271,085 0.122 17,671 1,953,944 0.081 18,136 

 

� Variation Coefficient = Standard Deviation/Average

Component Class Extended from Class1 
Genotype CLSSGenotype• Genotype♦ 
Phenotype SingleFitnessPhenotype♦ Phenotype♦ 
Fitness Function CLSSFitnessLS• 

CLSSFitnessLS-SST• 

CLSSFitnessLS-SC• 

FitnessFunction♦ 

Mutation Operator CLSSMutation• MutationOperator♦ 
Crossover Operator CLSSCrossover• CrossoverOperator♦ 
Selection Operator BestIndividualSelection♦ SelectionOperator♦ 

�

�

�

�

�

�

�

�

•

•
•

•
•

•
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list scheduling algorithms. Statistical tests were
made to verify that the differences in the results
for the three algorithms were indeed statisti-
cally significant.

Table 3 shows the results for the best solu-
tion found using each algorithm. It also shows
the improvement with respect to the integrated
approach algorithm. For both problems, the
best solution generated by the genetic algorithm
has an average improvement of about 33.5%
over the integrated approach algorithm.

Table 4 shows the lot-sizing solution for
product 1 and product 2 in the best solution
found for problem 2. Figure 5 shows the sched-
ule for period 1 using a Gantt chart.

THE VEHICLE
ROUTING PROBLEM

The vehicle routing problem is the problem of
determining a set of routes such that customer
demand is satisfied. Each route is performed by

a vehicle and consists of a sequence of visits to
a set of customers, starting and finishing at a
single depot. The objective of the problem is to
minimize total cost, while simultaneously meet-
ing operational constraints on the routes, the
vehicles, and the customers. There are several
variants of the VRP, namely, the distance
constrained VRP (DCVRP), the VRP with
time windows (VRPTW), the VRP with
backhauls (VRPB), the VRP with pickup and
delivery (VRPPD), and the most widely known,
the capacitated VRP (CVRP). This chapter
deals exclusively with the CVRP. There are
several good survey papers and books on the
topic (Bodin, 1990; Laporte, Gendreau, Potvin,
& Semet, 2000; Toth & Vigo, 2002).

Formally, the CVRP is defined on a com-
plete graph ( , )G N E= , where { }0,1, ,N n= �  is
the set of nodes. In the symmetric case, the
edge set E is defined by { }( , ) , ;E i j i j N i j= ∈ < .
Also, the cost of traveling from node i to node
j, namely cij, is the same cost of traveling from
node j to node i. Node 0 is called the depot,

Table 3. Results for best solutions found by the genetic algorithm

Table 4. Lot-sizing for best solution found for problem 2

Problem 
(N,T,M) 

Integrated 
Approach LS-Algorithm 

Improvement 
 

LS-SST 
Algorithm 

Improvement 
 

LS-SC 
Algorithm 

Improvement 
 

P1(10-12-4) 1,416,631 1,027,744 27% 977,369 31% 971,744 31% 
P2(20-12-7) 2,687,048 2,76,809 19% 1,835,480 32% 1,726,960 36% 
 

Product 1 
Genotype 1 0 1 0 1 0 1 0 1 1 0 1 
Orders 
Period 1 2 3 4 5 6 7 8 9 10 11 12 
Demand 56 55 57 57 59 58 56 57 56 58 58 58 
Order Quantity 111 0 114 0 117 0 113 0 56 116 0 58 
Inventory Level 55 0 57 0 58 0 57 0 0 58 0 0 
             

Product 2 
Genotype 1 0 1 0 0 0 0 1 0 0 1 1 
Orders 
Period 1 2 3 4 5 6 7 8 9 10 11 12 
Demand 16 15 14 8 12 10 18 22 18 12 19 30 
Order Quantity 31 0 62 0 0 0 0 52 0 0 19 30 
Inventory Level 15 0 48 40 28 18 0 30 12 0 0 0 
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while nodes 1 through n represent customer
locations. Each customer has associated a non-
negative demand di ( { }0i N∈ − ), while the de-
pot (e.g., distribution center) has a demand of
zero units ( 0 0d = ). The depot has available a
set of up to K identical vehicles with capacity C.
Without loss of generality, we assume that

id C≤  ( i N∈ ). The CVRP consists of finding a
set of at most K vehicle routes of total minimum
cost, such that every route starts and ends at
the depot, each customer is visited exactly
once, and the sum of the demands in each
vehicle route does not exceed the vehicle’s
capacity. Note that in our problem definition,
we have chosen to treat the number of vehicles
as a decision variable.

The CVRP has attracted the attention of
many researchers, basically for two reasons:
(1) being an NP-hard problem, it is a challeng-
ing problem to solve; and (2) it has real-world
applications in the context of distribution and
logistics. Despite its complexity, some research-
ers have worked on solving instances of the
CVRP to optimality (Agarwal, Mathur, & Salkin,
1989; Araque, Kudva, Morin, & Pekny, 1994;
Baldacci, Hadjiconstantinou, & Mingozzi, 2004;
Fisher, 1994; Miller, 1995). These researchers
have used mathematical programming tech-
niques to solve CVRP instances found in the
literature. Among these techniques, the most
successful is branch-and-cut (Naddef &

Rinaldi, 2002). However, the larger reported
instance solved to date has only 135 nodes
(Augerat et al., 1995), and it has also been
reported that these methods can only consis-
tently solve instances of up to 50 nodes.

Due to the CVRP’s complexity and the size
of instances arising in a real-world distribution
setting, heuristics have been widely used for
tackling large-sized problems. These heuristics
can be broadly organized into two groups: clas-
sical heuristics and meta-heuristics. In general,
classical heuristics are simple, fast, and pro-
duce good-quality solutions. On the other hand,
meta-heuristics have several parameters to
tune, are time consuming, but produce better
solutions. For a review on classical heuristics
for the CVRP, the reader is referred to Laporte
et al. (2000).

In recent years, researchers have used meta-
heuristics extensively to improve the best-known
results for the CVRP. In general, meta-heuris-
tics search a larger solution space than classical
heuristics. This improved search mechanism
often produces better solutions, but it comes at a
price: larger computing times. For an introduc-
tion to meta-heuristics for combinatorial optimi-
zation, the reader is referred to Glover and
Kochenberger (2003), Aarts and Lenstra (1997),
and Reeves (1993). For a survey on meta-
heuristics for the CVRP, the reader is referred
to Gendreau, Laporte, and Potvin (2002).

Figure 5. Gantt chart for period 1 for the best solution found for problem 2
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Tabu search has produced the best results
for the CVRP. This meta-heuristic produces a
sequence of solutions based on a neighborhood
definition and the concept of a tabu list. Through
this list, solutions that have been recently vis-
ited are forbidden, to avoid search inefficien-
cies. The method can be enhanced by the use of
multi-level memory management, aspiration
levels, and diversification and intensification
strategies. Among tabu search algorithms for
the CVRP, it is worth mentioning those by
Osman (1993); Taillard (1993); Taburoute by
Gendreau, Hertz, and Laporte, (1994); the adap-
tive memory procedure by Rochat and Taillard
(1995); the unified tabu search algorithm
(UTSA) by Cordeau, Laporte, and Mercier
(2001); and the granular tabu search (GTS) by
Toth and Vigo (2003).

Other meta-heuristics such as simulated
annealing and ant colony optimization have
been proposed for the CVRP, but they have
been outperformed by tabu search (Gendreau
et al., 2002). Genetic algorithms have per-
formed well on harder versions of the CVRP,
such as the CVRPTW, in which clients expect
vehicle visits to meet their time windows
(Thangiah, 1995; Potvin & Bengio, 1996). Until
very recently, analogous results have not been
reported on instances of the plain CVRP. This
lack of good results has been surprising, but
also has motivated several researchers who
have recently proposed efficient genetic algo-
rithms for the CVRP (Baker & Ayechew,
2003; Prins, 2004).

A Solution Approach Based on a
Genetic Algorithm

Vehicle routing heuristics are often measured
by only two attributes: accuracy (distance
from the best-known solution) and speed. How-
ever, Cordeau, Gendreau, Laporte, Potvin, and
Semet (2002) call for a new generation of

heuristics in which simplicity and flexibility
must also be achieved.

The genetic vehicle representation (GVR)
proposed by Pereira, Tavares, Machado, &
Costa (2002) is a representation scheme for the
CVRP. The GVR has proven to be simple and
flexible, even though it may not have been
thoroughly tested by its authors, nor has it been
enhanced by sophisticated local search mecha-
nisms to improve the search of the solution
space. In terms of accuracy, the authors re-
ported gaps with respect to best-known solu-
tions of up to 3.5% for the tested instances,
which are acceptable, taking into account GVR’s
simplicity.

The best way to describe the GVR repre-
sentation is by means of an example. Let us
consider instance S013-04e with distance ma-
trix shown in Figure 6. We use the naming
convention of Toth and Vigo (2002) for VRP
instances, where S means that the instance has
a symmetric non-Euclidean distance matrix (E,
for Euclidean distance matrix); 013 means that

Figure 6. Distance between nodes for
instance S013-04e

J 
cij 

0 1 2 3 4 5 6 7 8 9 10 11 12 

0  9 14 23 32 50 21 49 30 27 35 28 18 

1   21 22 36 52 24 51 36 37 41 30 20 

2    25 38 5 31 7 36 43 29 7 6 

3     42 12 35 17 44 31 31 11 6 

4      22 37 16 46 37 29 13 14 

5       41 23 10 39 9 17 16 

6        26 21 19 10 25 12 

7         30 28 16 27 12 

8          25 22 10 20 

9           20 16 8 

10            10 10 

i 

11             10 

J
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there are 13 nodes, including the depot; 04
means that there are four vehicles available;
and e means that the instance comes from the
set of problems by Christofides and Eilon (1969).
Furthermore, the capacity for each vehicle is
6,000, and the client demands are shown in
Table 5.

The optimal solution for instance S013-04e
is shown graphically in Figure 7. Figure 8 shows
the GVR representation of this solution (with
total cost of 247). The solution is formed by a
list of vehicle routes (diamonds). Note that
each vehicle route in the GVR solution (Figure
7) is represented by a list of nodes in the GVR
representation (Figure 8). Because every node
starts and ends at the depot, it is not necessary
to explicitly add node 0 to the routes. For
instance, the second vehicle route departs from
the depot (node 0) and visits clients 3, 5, and 8,
before returning to the depot. Note that the
sequence in which clients are visited form a
node sequence or permutation.

The crossover operator in GVR operates as
follows. One child is produced by the combina-
tion of the genetic material of two parents. The
child inherits all the traits from the first parent.
Then the second parent, called the donor, pro-
vides a small fraction of genetic material (sub-
route) which is inserted in the best possible

location. Neither of the two parents are modi-
fied in this process. After the insertion, the
resulting child may represent an infeasible so-
lution for the CVRP. In a reconstruction phase,
feasibility is looked after by eliminating dupli-
cate visits to any client. This crossover opera-
tion is illustrated in Figure 9. In the JGA imple-
mentation, we show how we enforce the ve-
hicles’ capacity.

Four different mutation operations are pro-
posed in the original paper (Pereira et al, 2002):
swap, inversion, insertion, and displacement.
For sake of clarity, we will only describe the
one that we have implemented, the inversion
operator. This operator works as follows: (1) it
randomly selects a vehicle route; (2) it ran-
domly picks a sub-route within the vehicle’s

Table 5. Client demands for instance S013-
04e

Client (i) Demand ( id )

1 1200
2 1700
3 1500
4 1400
5 1700
6 1400
7 1200
8 1900
9 1800
10 1600
11 1700
12 1100

Figure 7. Graph representation of the optimal
solution for instance S013-04e

Figure 8. GVR representation of the optimal
solution for instance S013-04e
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route; and (3) it inverts the order of the nodes
in the sub-route. Figure 10 illustrates how in-
version works in an individual. Note that in this
case, only the sequence of visits to clients 12, 3,
and 8 in the third vehicle changes to a new
sequence, namely, 8, 3, and 12.

The JGA Implementation
for the CVRP

The GVR representation shown in Figure 8 was
implemented in GVRGenotype. This encoding
inherits from another class that might be part of
the JGA library in the near future, namely,
MultiPermutationGenotype. The latter contains
a dynamic list that holds the vehicle routes.
Each route is encoded by a dynamic list of
integers representing a sequence of visits to
customers. Note that this data structure might
be well suited for other combinatorial problems
different from the CVRP. The class
GVRGenotype  inherits from
MultiPermutationGenotype and includes a dy-
namic list with the vehicles’ capacities.
GVRGenotype also has a set of utility methods
that is useful for handling permutations. For
instance, some of these methods are
pickSubRoute, insertSubRoute, split, and
binPack, among others.

Each genotype is evaluated by means of the
fitness function class CVRPEvalFunction. This
class is in charge of decoding the routes in
GVRGenotype by retrieving the sequence of
visits to the customers and evaluating the total
cost by querying the distance matrix. The result
of this evaluation is stored in the individual’s
phenotype (class SingleFitnessPhenotype).

The crossover for GVRGenotype is imple-
mented in class GVRCrossover. Figure 9 de-
scribes how crossover is performed. Pereira et
al. (2002) do not clearly describe how an infea-
sible solution obtained after the crossover op-
eration is repaired. In Figure 11 we show how
our JGA implementation handles infeasible chil-
dren from the crossover operator. In the result-
ing child of Figure 9, the third vehicle exceeds
its capacity (i.e., 9200 > 6000). Using method
split, JGA iterates over the vehicles checking
for violated capacities. The remaining sub-
route, which exceeds the capacity, forms a new
vehicle route (see the fifth route, after split-
ting). Due to the fact that by splitting, JGA may
end up with an inefficient number of routes,
JGA performs a first-fit packing heuristic
(Parker, 1995) using the method binPack.

It is worth mentioning that the cost of insert-
ing a sub-route with end nodes k and l into an
arc of a route connecting nodes i and j is

( , )ij ik jl ijs k l c c c= + − . The best insertion could be
achieved by exploring all the arcs (i,j) in the
route. This cheapest insertion mechanism is
described in Figure 12.

Figure 9. Example of crossover in GVR
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Figure 10. Example of inversion mutation in
GVR
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The mutation operator for GVRGenotype is
implemented in class InversionMutation. Figure
10 shows how inversion mutation has been
implemented. The route selection is performed
randomly as well as the selection of the sub-
route (cut points). Each genotype in the popu-
lation has a probability of MUTRATE of being
chosen for mutation.

We used an elitist selection mechanism
(class BestIndividualSelection) that selects the
best individuals from an enlarged population.
The enlarged population is formed by children
produced from crossover and mutation, as
well as by individuals from the current popula-
tion. Table 6 summarizes the JGA components
used to solve the CVRP using the GVR repre-
sentation.

Computational Experiments

We conducted an experiment to compare JGA’s
GVR against the parallel version of Clarke and
Wright (1964) on the set of instances from
Christofides and Eilon (1969). Both algorithms
were coded in Java and executed using the
Java HotSpotTM Client Virtual Machine (ver-
sion 1.4.2). Clarke and Wright was run on a
Dell Optiplex with an Intel Pentium III proces-
sor running at 1GHz with 256MB of RAM,
whereas JGA’s GVR was run on a Dell Optiplex
GX280 with an Intel Pentium IV processor
running at 3GHz with 1GB of RAM.

Figure 11. Genotype reparation in JGA’s GVR implementation
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Figure 12. Insertion cost of a sub-route into
a route
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Table 7 shows the results with the parallel
version of Clarke and Wright (1964). We com-
pare against this algorithm because it is a
common benchmark and is widely used in com-
mercial applications. As reported in the litera-
ture, the algorithm proves to be very fast,
always taking less than one second to solve.
However, when compared against the best
solution found in the literature, its average gap
is about 12.0% (setting negative gaps to zero).
It is also quite variable, having a standard
deviation of 18.7%. For instance, in problem

S031-07e, it performs very badly, achieving a
solution that is 72.8% off from the best-known
solution. On the other hand, it performs very
well in a slightly larger instance such as E033-
04e, being only 0.8% off from the best-known
solution. Note that the fifth column, labeled
with K*, shows the number of vehicles used by
the algorithm. In instance E030-03e, the algo-
rithm used one more vehicle than the best-
known solution, but it achieved a lower total
cost (i.e., traveled distance). That explains the
negative gap with respect to the best-known
solution in that instance.

Table 8 shows the results with the JGA
implementation of GVR. For each instance, we
conducted 10 independent runs. We set the
algorithm parameters as follows: POPSIZE to
100, MAXGEN to 1000, MUTRATE to 0.2, and
CROSSRATE to 0.7.We report the average
gap, cost, time, number of fitness function
evaluations, and number of vehicles used (K*).
We also report the best solution in the set of 10
runs (under the columns labeled Minimum Cost
and Minimum Gap). The average gap with
respect to the best-known solution is about
4.5% (setting negative gaps to zero), with a
standard deviation of 4.3%. When we calculate
the average gap with respect to the best solu-
tion found in the set of 10 runs, it lowers to just
2.1% (with a standard deviation of 2.1%). Even
though JGA’s GVR is slower than Clarke and

Table 6. Summary of JGA classes for the GVR implementation for the CVRP

1 Italics used to indicate abstract classes
� JGA built-in class
• User-defined class

Table 7. Results with parallel Clarke and
Wright

� Negative gaps occur because more vehicles
were used to reduce the total cost, which is the
main objective of the algorithm.

Component Class Extended from Class1 
Genotype GVRGenotype.java  MultiPermutationGenotype  
Phenotype SingleFitnessPhenotype  Phenotype  
Fitness Function CVRPEvalFunction  FitnessFunction  
Mutation Operator InversionMutation  MutationOperator  
Crossover 
Operator 

GVRCrossover  CrossoverOperator  

Selection Operator BestIndividualSelection  SelectionOperator  
 

�

�

�

�

�

�

�

•
•

•
•

•

Instance Best Solution Cost Gap♦ K* Time (ms) 

S013-04e 247 275 11.3% 4 20 

E022-04e 375 388 3.5% 4 50 

E023-03e 569 631 10.9% 3 40 

E030-03e 534 530 -0.7% 4 70 

S031-07e 379 655 72.8% 8 70 

E033-04e 835 842 0.8% 4 90 

E051-05e 521 580 11.3% 6 180 

E076-07e 682 750 10.0% 7 380 

E076-08e 735 785 6.8% 8 380 

E076-10e 830 894 7.7% 11 341 

E076-14e 1021 1071 4.9% 15 340 

E101-08e 817 896 9.7% 8 691 

E101-14e 1071 1138 6.3% 15 611 
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Wright’s, in the instance that takes the longest
to run it averages a reasonable 22.4s.

In conclusion, JGA’s GVR implementation
shows a genetic algorithm that is flexible, easy
to implement, robust, accurate enough (2.1%
off from the best known), but slower than the
savings algorithm of Clarke and Wright.

CONCLUSION

We have presented two applications of Java
Genetic Algorithm (JGA). From a practical
side, we have shown how it is possible to use
genetic algorithms and JGA for modeling and
solving complex business problems arising in
operations management and vehicle routing. It
is worth mentioning that the JGA-based solu-
tions are often quite competitive, yet easier to
implement than the state-of-the-art method of
choice. Last, but not least, JGA class libraries,
examples, and documentation are available at
http://copa.uniandes.edu.co/soft-evol-jga.html
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KEY TERMS

Chromosome: Data structure (genetic
code) which encodes a solution (individual) to
the problem that the genetic algorithm is trying
to solve.

Crossover: Genetic operator that com-
bines (mates) chromosomes (parents) to pro-
duce new ones (offspring). It is analogous to
the biological reproduction.

CVRP: Acronym for capacitated vehicle
routing problem. The CVRP consists of finding
a set of at most K vehicle routes of total
minimum cost, such that every route starts and
ends at the depot, each customer is visited
exactly once, and the sum of the demands in
each vehicle route does not exceed the vehicle’s
capacity.

CLSSP: Acronym for the capacitated lot-
sizing and scheduling problem. The CLSS prob-
lem is to find the number of units of a given
product to be produced at a given period (pro-
duction orders), and the sequence in which the
production orders are to be produced in each
period.

Fitness Function: Objective function that
quantifies the adaptability of an individual. So-
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lutions with better fitness values are more likely
to survive and join the next generation in a
genetic algorithm. It is analogous to the fitness
concept in the natural selection process.

Genetic Algorithm (GA): Stochastic
(population-based) search technique, inspired
in the natural selection process and used to find
approximate solutions to complex optimization
problems.

Genotype: Genetic makeup of an individual.

JGA: Acronym for Java Genetic Algo-
rithm, a flexible and extensible computational
object-oriented framework for rapid develop-
ment of evolutionary algorithms for solving
complex optimization problems.

Mutation: Genetic operator that alters one
or more genes in a chromosome. Mutation is
used to maintain genetic diversity in the popu-
lation of individuals. It is analogous to biological
mutation.

Phenotype: Features or quantifiable mea-
surements of an individual. In a genetic algo-
rithm, the phenotype is the value associated
with the fitness function evaluation.

Selection: Operation in charge of choosing
which individuals from the current population
will survive and become part of the next gen-
eration.
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ABSTRACT

The low price of coffee in the international markets has forced the Federación Nacional de
Cafeteros de Colombia (FNCC) to look for cost-cutting opportunities. An alternative that has
been considered is the reduction of the operating infrastructure by closing some of the FNCC-
owned depots. This new proposal of the coffee supplier network is supported by (uncapacitated
and capacitated) facility location models that minimize operating costs while maximizing
service level (coverage). These bi-objective optimization models are solved by means of NSGA
II, a multi-objective evolutionary algorithm (MOEA). From a computational perspective, this
chapter presents the multi-objective Java Genetic Algorithm (MO-JGA) framework, a new tool
for the rapid development of MOEAs built on top of the Java Genetic Algorithm (JGA). We
illustrate MO-JGA by implementing NSGA II-based solutions for the bi-objective location
models.
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THE CASE OF THE COLOMBIAN
COFFEE SUPPLIER NETWORK

Colombia is the second largest coffee producer
in the world. The Colombian National Coffee
Growers Federation (in Spanish, Federación
Nacional de Cafeteros de Colombia—FNCC),
is a nonprofit private organization whose main
activities include: supporting worldwide mar-
keting activities for the Café de Colombia and
Juan Valdez® brands; conducting research on
coffee-related topics; providing technical and
financial assistance to the coffee growers;
guaranteeing the quality of the Colombian cof-
fee exports; and buying, storing, processing,
and exporting Colombian top-quality coffee.
During the last six years, the FNCC exported
about 30% of the Colombian coffee production
(FNCC, 2005).

The coffee supplier network operates as
follows. First, the coffee growers sell their
crops to purchasing centers located in towns
nearby their farms. Once these centers—which
are cooperatives owned by coffee growers—
have collected enough coffee, they send them
to a larger FNCC-owned depot. Coffee is
stored in these depots until the time comes for
processing followed by exportation. This sup-
plier network is composed of over 400 purchas-
ing centers and over 30 FNCC owned depots.
Figure 1 shows the structure of the coffee
supplier network.

Due to the low prices of coffee in interna-
tional markets, the FNCC has been looking for
opportunities to reduce operating costs on its
supplier network. One of the possible alterna-
tives that has been considered is to reduce the
operating infrastructure by shutting down some
of the FNCC-owned depots (CAIC, 2002).
However, by doing so, it may not always be
possible to ship coffee from a purchasing cen-
ter to a nearby FNCC-owned depot. This guar-
antee of being covered by a nearby depot is

deeply appreciated among cooperatives (pur-
chasing centers), and ultimately, among coffee
growers who own the FNCC.

Following the same approach of Bramel and
Simchi-Levi (1997), the 450 purchasing centers
were aggregated into 47 clustered purchasing
centers by considering both distance and pur-
chasing volume. Each purchasing center is
represented by its main purchasing agencies
(from one to three agencies per coop), and the
total amount of coffee purchased from the
coffee growers was consolidated into those
agencies. The supply for each purchasing cen-
ter comes from the operation of year 2001
(FNCC, 2001). The location of the purchasing
agencies and their distance to the FNCC-owned
depots are known, and the covering distance
was set to 150 kilometers. After consolidating
the storage capacity of the depots located in the
same town, the supplier network ends up with
a total of 25 candidate depots. Figure 2 shows
the geographical distribution of the purchasing
centers and depots after consolidation.

Clearly, reducing costs and operating de-
pots located near the purchasing centers are
two conflicting objectives. Making the supplier

Figure 1. Coffee supplier network
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network more efficient may imply a reduction
in the number of depots, thus causing purchas-
ing centers to be attended by further depots. On
the other hand, guaranteeing coverage by nearby
depots implies having more depots and larger
operating costs. This situation calls for the
development of a bi-objective facility location
model.

This chapter is organized as follows. The
next section presents an overview of facility
location models and presents the bi-objective
(uncapacitated and capacitated) facility loca-
tion problem arising in the context of the coffee
supplier network. We then present a powerful
bio-inspired methodology for solving multi-ob-
jective optimization problems, namely, multi-
objective evolutionary algorithms (MOEAs).
The next section presents MO-JGA, the acro-
nym for the Multi-Objective Java Genetic Al-
gorithm, a tool that extends the JGA framework

presented in the previous two chapters of this
book. We illustrate MO-JGA through the imple-
mentation of NSGA-II, a powerful MOEA. We
apply NSGA-II on the bi-objective (capaci-
tated and uncapacitated) location problem aris-
ing in the context of the Colombian coffee
supplier network.

BI-OBJECTIVE (UNCAPACITATED
AND CAPACITATED) FACILITY
LOCATION PROBLEMS

Location problems are concerned with finding
a set of facilities in a given space that is able to
satisfy customers’ demand for a given good or
service. This type of location decision arises
both in public and private organizations. In the
public setting, some examples are the location
of health care facilities (Verter & Lapierre,
2002), schools (Pizzolato, Barros, Barcelos, &
Canen, 2004), and solid waste landfills (Antunes,
1999). In the private setting, some examples
are the design of distribution systems (Aikens,
1995) and computer networks (Filho & Galvão,
1998). For an in-depth presentation of location
models and solving techniques, the reader is
referred to ReVelle, Marks, and Liebman
(1970); Aikens (1985); Brandeau and Chiu
(1989); Owen and Daskin (1998); Hale and
Moberg (2003); Klose and Drexl (2005);
ReVelle and Eiselt (2005); Daskin (1995); and
Drezner and Hamacher (2001).

According to Daskin (1995), facility loca-
tion problems can be classified based on the
characteristics of their underlying components.
For instance, we could form a taxonomy based
on the space of location decisions (i.e., continu-
ous, discrete, or network); the objective func-
tion (e.g., coverage, cost, or equity); number of
objectives (i.e., single or multi-objective); num-
ber of products (i.e., single or multi-commod-
ity); type of customer demand (i.e., static or

Figure 2. Aggregated purchasing centers
and depots in the Colombian coffee supplier
network
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dynamic); and facility capacity (i .e. ,
uncapacitated or capacitated), among other
characteristics. Even though in this chapter we
are interested in solving a bi-objective location
problem, we use several single-objective dis-
crete static location problems as building blocks,
namely, the uncapacitated facility location prob-
lem (UFLP), the single source capacitated
facility location problem (SSCFLP), and the
maximal covering location problem (MCLP). It
is worth mentioning that the UFLP is also
known as the simple plant location problem
(SPLP) or the uncapacitated warehouse loca-
tion problem (UWLP).

The facility location problems in this chapter
share a set of common elements. Let I = {1,
...,m} be the candidate sites for the facilities
and fi be the fixed cost of operating facility i.
Let J = {1, ..., n} be the set of customers and
dj be the demand for customer j. Let cij be the
cost of attending the whole demand for cus-
tomer j from facility i. Let yi be the decision
variable that indicates if facility i is chosen
(yi=1) or not (yi=0); and let xij be the decision
variable that indicates if the (whole) demand
for customer j is attended by facility i (xij=1) or
not (xij=0). Using this notation, the UFLP can
be formulated as follows:

min ∑ ∑∑
∈ ∈ ∈

+ 
Ii Ii Jj

ijijii xcyf      (1)

subject to,

J  jx
Ii

ij ∈= ∑
∈

,1      (2)

JjIiyx iij ∈∈≤ ,;      (3)

Ii}{yi ∈∈ ,1,0      (4)

JjIi}{xij ∈∈∈ ,,1,0      (5)

The objective function 1 represents the total
operation cost, where the first term is the fixed
cost of operating the facilities, and the second
term represents the cost of attending custom-
ers from opened facilities. Constraint 2 guaran-
tees that every customer is attended by one
facility, constraint 3 assigns customers to opened
facilities, and constraints 4 and 5 establish the
binary nature of the decisions.

The SSCFLP formulation is obtained by
substituting constraint 3 with the following con-
straint:

Iisyxd ii
Jj

ijj ∈≤ ∑
∈

,      (6)

Constraint 6 enforces the assigned demand
to facility i not to exceed its capacity si. Con-
straints 2 and 5 force each customer to be
satisfied by just one facility (i.e., single source).

In contrast to UFLP and SSCFLP, where
the underlying objective is cost minimization,
the MCLP finds a set of facilities with cardinal-
ity Ip ≤ , such that the largest number of
customers (weighted by their demand dj) are
satisfied from facilities within a distance hmax.
Let Qj be the set of facilities able to attend
customer j within the covering distance hmax;
namely, { }max: hhIiQ ijj ≤∈= , where hij is the
distance between facility i and customer j. Let
wj be a variable that indicates if customer j is
covered (wj =1) or not (wj =0). The MCLP
formulation follows:

max ∑
∈Jj

jj wd      (7)

subject to,

Jj wy j
Qi

i
j

∈≥ ∑
∈

,   (8)

py
Ii

i = ∑
∈

     (9)
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Ii}{yi ∈∈ ,1,0    (10)

Jj}{wj ∈∈ ,1,0    (11)

The objective function 7 maximizes covered
demand; constraints 8 and 11 determine if a
given customer is covered (or not) by a facility
within the covering distance hmax; constraint 9
guarantees that exactly p facilities are opened;
and constraint 10 establishes the binary nature
of opening/closing decisions.

The strategic nature of location decisions
and their long-term impact imply that in many
situations it might be desirable to consider
multiple (possibly conflicting) criteria. For ex-
ample, in a distribution system design problem,
it is of interest to consider both cost and timely
response as objectives (Hapke, Jaszkiewicz, &
Zak, 2002). Even though many of the real-
world location decisions are inherently multi-
objective (ReVelle & Eiselt, 2005), there is still
a lot of room for improvement (Klose & Drexl,
2005). Current, Min, and Schilling (1990) have
made a thorough survey of model formulations
and objectives considered in multi-objective
location problems. Multi-objective location prob-
lems have been treated in Brimberg and ReVelle
(1998); Jayaraman (1999); Nozick (2001);
Nozick and Turnquist (2001); Hapke et al.
(2002); and Villegas, Palacios, and Medaglia
(2006).

For the case study presented in this chapter,
we use a bi-objective model similar to the one
used by ReVelle and Laporte (1996). By com-
bining elements from the UFLP and MCLP, the
bi-objective location model in this chapter mini-
mizes the total operating cost and maximizes
the total demand attended within covering dis-
tance. The bi-objective uncapacitated facility
location problem (BOUFLP) follows:

min ∑ ∑∑
∈ ∈ ∈

+ =
Ii Ii Jj

ijijii xcyfz1     (12)

max ∑ ∑
∈ ∈

= 
Jj Qi

ijj
j

xdz2     (13)

subject to Jj x
Ii

ij ∈= ∑
∈

,1     (14)

JjIiyx iij ∈∈≤ ,;     (15)

Ii }{yi ∈∈ ,1,0     (16)

JjIi }{xij ∈∈∈ ,;1,0     (17)

From the BOUFLP, it is worth mentioning
that objective function (13) measures coverage
by adding up demand attended by facilities
within the covering distance. That is, a given
customer j is considered covered if and only if
it is attended by a facility from the set Qj.

A capacitated version of the bi-objective
capacitated facility location problem (BOCFLP)
is obtained by replacing constraint 15 by capac-
ity constraint 6. The model formulation for the
BOCFLP follows:

min ∑ ∑∑
∈ ∈ ∈

+= 
Ii Ii Jj

ijijii xcyfz1     (18)

max  ∑ ∑
∈ ∈

= 
Jj Qi

ijj
j

xdz2     (19)

subject to,

Jjx
Ii

ij ∈= ∑
∈

,1     (20)

Iisyxd ii
Jj

ijj ∈≤ ∑
∈

,     (21)

Ii}{yi ∈∈ ,1,0     (22)

JjIi}{xij ∈∈∈ ,;1,0    (23)
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Meta-heuristics have been used for several
single-objective facility location problems, for
example: simulated annealing (Golden & Skiscim,
1986), heuristic concentration (Rosing &
ReVelle, 1997), GRASP (Resende, 1998), evo-
lutionary algorithms (Jaramillo, Badhury, &
Batta, 2002), and tabu search (Michel & Van
Hentenryck, 2004), among others.

Evolutionary algorithms have shown to be
effective dealing with location problems. Ex-
amples of applications of evolutionary algo-
rithms to location problems are: UFLP (Kratica,
Tosic, Filipovic, & Ljubic, 2001), p-median
(Alp, Erkut, & Drezner, 2003), MCLP (Jaramillo
et al., 2002), and SSCFLP (Cortinhal & Captivo,
2001).

Even though evolutionary algorithms have
shown to be competitive in single-objective
location applications, they have even better
potential in the multi-objective setting shown in
this chapter. Multi-objective evolutionary algo-
rithms are simple, yet flexible and robust. We
will show in this chapter how easy it is to
decouple location decisions (variables yi) from
assignment decisions (variables xij) in an evolu-
tionary algorithmic framework. Finally, we will
show how easy is to deal with both uncapacitated
and capacitated versions of a difficult combina-
torial problem within the same algorithmic
framework, something that is quite challenging
in a more traditional mathematical program-
ming approach.

INTRODUCTION TO MULTI-
OBJECTIVE EVOLUTIONARY
ALGORITHMS

Traditionally, many decision-making problems
have been modeled using single-objective opti-
mization, that is, the main concern is to optimize
a single objective such as cost, revenue, trav-
eled distance, or investment return, among oth-

ers. However, in many of these problems it is
desirable to consider multiple optimization cri-
teria, thus forcing the decision maker to con-
sider multi-objective optimization models. When
considering multiple objectives, it is often the
case that there is no single optimal solution that
achieves all the objectives simultaneously, there-
fore it is necessary to search for a set of
efficient solutions which present the best
tradeoff among the multiple criteria. These
efficient solutions are also known as non-domi-
nated or Pareto solutions. By definition, a Pareto
solution is one in which it is not possible to
improve upon an objective function without
deteriorating another. For an up-to-date treat-
ment on multi-objective optimization, the reader
is referred to Ehrgott and Gandibleux (2002),
and Collette and Siarry (2003).

According to Ehrgott and Gandibleux (2004),
the practical significance of multi-objective
optimization problems and their computational
complexity have generated an increasing inter-
est in the development of approximate solution
methods. Several variations of the most popular
meta-heuristics have been proposed to tackle
multi-objective optimization problems, namely,
tabu search (Gandibleux, Mezdaoui, & Fréville,
1997), simulated annealing (Ulungu, Teghem,
Fortemps, & Tuyttens, 1999), ant colony opti-
mization (Doerner, Gutjahr, Hartl, Strauss, &
Stummer, 2004), and evolutionary algorithms
(Coello, 2001). For updated surveys on meta-
heuristics for multi-objective optimization, the
reader is referred to Jones, Mirrazavi, and
Tamiz (2002); Ehrgott and Gandibleux (2004);
and Gandibleux, Sevaux, Sörensen, and T’kindt
(2004).

According to Jones et al. (2002), the most
broadly used multi-objective meta-heuristics
are multi-objective evolutionary algorithms. The
pioneering work on MOEA was the vector
evaluated genetic algorithm (VEGA) devel-
oped by Schaffer (1985). Even though some
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authors have developed MOEAs based on a
priori articulation of preferences (Murata,
Ishibuchi, & Tanaka, 1996), the most widely
used MOEAs are based on a-posteriori articu-
lation of preferences. One of the reasons for
this trend is that being MOEA population-
search algorithms, they are particularly power-
ful discovering (in parallel) and maintaining the
efficient frontier in their population in a single
run (Coello, 2001; Jones et al., 2002; Zitzler &
Thiele, 1999).

Generally speaking, it is desirable to have
MOEAs that incorporate efficiency or domi-
nance criteria in their evaluation and selection
mechanisms, so that the population evolves
toward the efficient frontier. It is equally impor-
tant to favor mechanisms that maintain popula-
tion diversity and ultimately produce an evenly
spread frontier. Finally, there is a general agree-
ment in the MOEA community about the con-
venience of using elitism and information from
an archive of non-dominated solutions for im-
proving the performance of MOEAs.

The different ways of handling evaluation,
selection, population diversification, elitism,
archived non-dominated solutions, and hybrid-
ization with other algorithms have driven the
MOEA community to propose several algo-
rithms. The most popular MOEAs are:

• the multiple objective genetic algorithm
(MOGA) by Fonseca and Fleming (1993);

• the niched Pareto genetic algorithm
(NPGA) by Horn, Nafpliotis, and Goldberg
(1994);

• the nondominated sorting genetic algo-
rithm (NSGA) by Srinivas and Deb (1994),
and the NSGA II (Deb, Pratap, Agarwal,
& Meyarivan, 2002), which includes elit-
ism and improves upon the computational
complexity of the non-dominated sorting
mechanism;

• the strength Pareto evolutionary algorithm
(SPEA) by Zitzler and Thiele (1999), and

the improved SPEA2 (Zitzler, Laumanns,
& Thiele, 2002);

• the Pareto archived evolutionary strategy
(PAES) by Knowles and Corne (2000),
and the memetic algorithm variant known
as M-PAES (Knowles & Corne, 2000);

• the Pareto-envelope-based selection al-
gorithm (PESA) by Corne, Knowles, and
Oates (2000);

• the multiple objective genetic local search
(MOGLS) by Jaszkiewicz (2002); and

• the micro genetic algorithm for multi-
objective optimization (micro-GA) by
Coello and Toscano (2001).

For more detail on these algorithms, the
reader is referred to the evolutionary multi-
objective optimization (EMOO) Web page
maintained by Coello (2005) and the books by
Coello, Van Veldhuizen, and Lamont (2002),
and Deb (2001).

MO-JGA: EXTENDING JGA
TO HANDLE MOEAS

MO-JGA (multi-objective Java Genetic Algo-
rithm) is a computational object-oriented frame-
work for solving complex multi-objective opti-
mization problems using evolutionary algorithms.
The tool extends the JGA framework pre-
sented in the two previous chapters of this
book, and similarly to the single-objective case,
it provides the user with a set of built-in compo-
nents for multi-objective evolutionary algorithms.
In this chapter, MO-JGA is illustrated with the
implementation of an efficient MOEA known
as NSGA-II (Deb et al., 2002).

Similar to JGA, MO-JGA allows the user to
extend the fundamental components of a ge-
netic algorithm, such as the genotype, pheno-
type, fitness function, and the genetic (mutation
and crossover) operators. As will be illustrated
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with NSGA-II in this chapter, this framework
can be used to implement other MOEAs or to
develop applications based on the current
MOEA implementations. Figure 3 shows a
diagram that illustrates the MO-JGA architec-
ture and the implementation of NSGA-II.

The bottom layer in Figure 3 corresponds to
the JGA components that are in charge of the
application’s control and provide the basic built-
in classes. JGA also contains the application
program interfaces (APIs) for the extensible
components (e.g., Genotype) by means of ab-
stract classes.

The middle layer in Figure 3 corre-
sponds to the NSGA-II implementation,
including the main logic for the NSGA-II
(class NSGAIIGeneticAlgorithm) and the
NSGA- I I  se lec t ion  mechan i sm (c l a s s
NSGAIISelectionOperator) based on Pareto’s
dominance. These classes are extended from
the JGA abstract classes GeneticAlgorithm and
SelectionOperator, respectively.

The NSGA-II implementation defines a spe-
cific data structure for the individual, namely
NSGAIIIndividual. This class extends from JGA’s
Individual, which includes additional information

pertaining to NSGA-II (e.g., non-domi-
nated sorting counters).  The NSGA-II
implementation employs a multi-objective
valued phenotype defined in JGA called
MOFitnessPhenotype . This phenotype ap-
plies the Pareto’s dominance concept to
compare pairs of phenotypes.

Finally, the top layer in Figure 3 corresponds
to the specific application implemented by the
user. Examples of such an application are the
implementations for the bi-objective facility
location problems included in this chapter. In
the application layer, the user could make use
of the built-in components provided by JGA or
could extend new components for solving a
given problem.

According to the JGA framework, the user
creates in the main program an object of type
GeneticAlgorithmHandler and invokes its run
method to start the execution of the genetic
algorithm as illustrated in Figure 4. To use a
particular implementation of an MOEA, some
structural properties must be set in the main
configuration file. Table 1 shows the property
fields and their values defined in the NSGA-II
implementation. All the other properties can be

Figure 3. MO-JGA architecture for NSGA-II
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set by the user according to the specification
defined in the JGA framework (see the previ-
ous two chapters in this book).

A MO-JGA IMPLEMENTATION OF
NSGA-II FOR BI-OBJECTIVE
FACILITY LOCATION PROBLEMS

The most important issues in the implementa-
tion of an evolutionary algorithm are the solu-
tion encoding and the genetic operators. This
section provides the key design aspects shared
by the evolutionary algorithms for the bi-objec-
tive (uncapacitated and capacitated) facility
location problems.

Solution Representation

In the literature, there are mainly two types of
encoding schemes used for facility location
problems, namely, integer and binary represen-
tations. The integer representation is the most
natural encoding, consisting of a string with n
integer digits mapping to each one of the n
customers (i.e., the j-th position indicates the

depot assigned to client j). This representation
scheme was used by Chu and Beasley (1997)
for the Generalized Assignment Problem (GAP),
and Cortinhal and Captivo (2001) and Zhou,
Min, and Gen (2003) for location problems.

In the binary representation (Kratica et al.,
2001; Jaramillo et al., 2002; Villegas et al.,
2006), the chromosome consists of m binary
digits, corresponding to the m depots. Gene i of
a chromosome indicates if depot i is open (value
of 1) or closed (value of 0). This representation
defines a set of opened depots and requires a
procedure to make the detailed assignment of
clients to depots. The advantage of the binary
representation over the integer representation
is the reduction of the search space.

Our implementation uses the binary repre-
sentation along with a greedy heuristic for
making the assignment of purchasing centers to
depots. The assignment heuristic tries to mini-
mize the total cost without deteriorating cover-
age. For the capacitated case, while making the
assignments the heuristic also verifies the avail-
able capacity to satisfy the capacity constraints.
Figure 5 illustrates the binary encoding for an
example with 6 depots and 14 purchasing cen-

Figure 4. Example of the main program (in Java) for a NSGA-II-based application

Table 1. Structural property fields in the main configuration file for NSGA-II

Property Field Value 
GENETICALGORITHM    edu.uniandes.copa.mojga.nsga2.NSGAIIGeneticAlgorithm 
PHENOTYPE            edu.uniandes.copa.jga.MOFitnessPhenotype 
SELECTION            edu.uniandes.copa.mojga.nsga2.NSGAIISelection 

1: import edu.uniandes.copa.jga * ;
2: import edu.uniandes.copa.mojga.nsga2. * ;
3: public class myApplication {
4: public static void main (String args[]) {
5: String configFileName = args [0]
6: ArrayList genotypeParams = new ArrayList() ;
7: // genotypeParams construction . . .
8: GeneticAlgorithmHandler ga = new GeneticAlgorithmHandler (configFileName,genotypeParams)
9: ga.run()
10: }
11: }
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ters. The example includes the assignment
performed by the heuristic.

Fitness Evaluation and Dominance

The bi-objective facility location problem pre-
sented in this chapter deals with the optimiza-
tion of two conflicting objectives: minimizing
total costs and maximizing coverage. Both ob-
jective functions z1 and z2 are evaluated after
decoding the chromosomes according to equa-
tions 12 and 13 for the BOUFLP (and 18 and 19
for the BOCFLP). In the NSGA-II implemen-
tation, the concept of Pareto´s dominance is
applied on the z1 and z2 values.

For the capacitated case, the capacity con-
straint is handled by penalizing the total cost
according to equations 24 and 25, where P(x)is
the penalty function, and α is a penalty factor (≤
α ≤ 2). Penalization occurs when assigned
customer demand exceeds the depot capacity.
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Genetic Operators

The evolutionary process uses mutation to di-
versify the search and to avoid getting trapped
on local optima. Our implementation employs
flip binary mutation, in which every gene of the
chromosome is flipped from 1 to 0 (or from 0 to
1) with a given mutation probability MUTRATE.

The NSGA-II’s crossover implementation
provided by MO-JGA builds a pool in which
each individual has a chance of being recom-
bined equal to the crossover probability
CROSSRATE. We select the uniform cross-
over operator described by Michalewicz (1996).
In the uniform crossover, every child’s gene is
provided randomly by either one of the two
parents.

MO-JGA Implementation of NSGA-II

The bi-objective evolutionary algorithm was
developed using the NSGA-II implementation
provided by MO-JGA. Classes for genotype,
phenotype, and genetic operators were se-
lected directly from the built-in components
provided by JGA. Table 2 summarizes the
implemented classes and the built-in compo-
nents used from MO-JGA and JGA to solve the
bi-objective facility location problems described
in this chapter.

Fitness function classes were implemented
for both the uncapacitated and capacitated
version of the problem (classes BOUFLPFitness
and BOCFLPFitness, respectively). Both prob-
lems use the binary encoding implemented in
class BinaryGenotype from JGA. The result of
the fitness function evaluation is stored in a
multi-objective phenotype (class
MOFitnessPhenotype). The genetic algorithm
logic and the selection operator were defined in
classes NSGAIIGeneticAlgorithm and
NSGAIISelection, respectively. For further
detail on the evolutionary algorithm and a math-

Figure 5. Binary encoding for location
problems
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ematical-programming approach for the
BOUFLP, the reader is referred to Villegas et
al. (2006).

COMPUTATIONAL EXPERIMENTS

The MO-JGA implementation of NSGA-II for
the BOUFLP and BOCFLP, described in the
previous section, was used to generate alterna-
tives for the redesign of the Colombian coffee
supplier network. For both the uncapacitated
and capacitated scenarios, the algorithm pa-
rameters were set as follows: population size
(POPSIZE) equal to 100, maximum number of
generations (MAXGEN) equal to 100, probabil-
ity of crossover (CROSSRATE) equal to 0.8,
and probability of mutation (MUTRATE) equal
to 0.01.

Due to the inherent stochastic nature of
evolutionary algorithms, we conducted 20 inde-
pendent runs for each scenario, namely,
BOUFLP and BOCFLP. At the end of each
run, the approximate Pareto frontier was stored.
For each scenario, we report the (aggregated)
approximate Pareto frontier after selecting the

non-dominated solutions based on the stored
frontiers coming from the 20 independent runs.
The average and maximum CPU time for the
BOUFLP was 2,608 ms and 2,843 ms, respec-
tively; while the average and maximum CPU
time for the BOCFLP was 2,854 ms and 3,032
ms for the BOCFLP, respectively. These runs
were conducted on an Intel® Pentium® pro-
cessor running at 3GHz with 1GB of RAM on
Windows XP Professional.

For the BOUFLP, we found an approximate
Pareto frontier with 39 different configurations
of the supplier network (see Figure 6). As
reference, the current configuration is repre-
sented by a square in the frontier. Table 3
shows the efficient solutions in the objective
space (i.e., cost and coverage). The first and
fifth columns show the solution ID; the second
and sixth columns correspond to coverage, as a
percent of the total demand of the purchasing
centers attended by depots located within the
covering distance; the third and seventh col-
umns show the cost as a percentage above the
minimal cost configuration, found by solving
integer programming models of the UFLP and
SSCFLP using Xpress-MP; and finally, the

1 Italics are used to indicate abstract classes
� JGA built-in class
� MO-JGA built-in class
• User-defined class

Table 2. Summary of classes used for the bi-objective (uncapacitated and capacitated) facility
location problems

Component Class Extended from Class1 
Genotype BinaryGenotype  Genotype  
Phenotype MOFitnessPhenotype  Phenotype  
Fitness Function BOUFLPFitness  

BOCFLPFitness  

FitnessFunction  

Mutation Operator FlipBinaryMutation  MutationOperator  
Crossover Operator UniformBinaryCrossover  CrossoverOperator  
Genetic Algorithm NSGAIIGeneticAlgorithm •  GeneticAlgorithm  
Selection Operator NSGAIISelection •  SelectionOperator  

�

�

�

�

�

�

�

�

�

�

�

�

�

•

•
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fourth and eighth columns show the percentage
in which the capacity is exceeded (if these
constraints were imposed).

If we could increase depot capacities, it is
worth mentioning that coverage could in-
crease up to 9.1%. Note that in Table 3, at
least 17 configurations in the approximate
Pareto frontier offer better coverage than

the current configuration (i.e., 86.49 %). By
increasing depot capacities, the maximal cov-
erage configuration could operate with just
12 depots, opposed to the current configura-
tion that operates with 25. Furthermore, this
could be achieved with fewer depots without
sacrificing service level to the purchasing
centers (i.e., coverage). This slimmer non-

Figure 6. Approximate Pareto frontier for the BOUFLP (uncapacitated)

Table 3. Efficient solutions (in objective space) for the BOUFLP
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Solution 

ID Coverage Cost Exceeded 
capacity 

1 45.73% 100.00% 39.45% 21 84.53% 101.76% 22.38% 
2 52.23% 100.12% 38.17% 22 85.41% 102.00% 21.46% 
3 53.11% 100.19% 36.56% 23 88.47% 102.06% 22.25% 
4 59.23% 100.26% 37.25% 24 89.34% 102.24% 20.63% 
5 60.10% 100.44% 35.64% 25 89.97% 102.53% 22.49% 
6 62.17% 100.47% 36.66% 26 90.85% 102.80% 20.87% 
7 65.00% 100.60% 34.31% 27 91.27% 103.10% 20.08% 
8 65.87% 100.78% 32.70% 28 91.36% 103.20% 22.22% 
9 68.77% 100.80% 36.39% 29 91.90% 103.40% 21.94% 
10 69.21% 100.85% 23.64% 30 92.77% 103.67% 20.32% 
11 69.65% 100.91% 34.77% 31 92.81% 104.16% 20.65% 
12 71.72% 101.01% 35.80% 32 92.94% 104.35% 19.63% 
13 74.55% 101.13% 33.45% 33 93.68% 104.35% 19.04% 
14 74.99% 101.22% 23.24% 34 93.92% 104.65% 19.78% 
15 75.42% 101.25% 31.83% 35 93.96% 105.19% 20.12% 
16 77.49% 101.34% 32.86% 36 94.51% 105.28% 18.89% 
17 78.76% 101.39% 22.77% 37 94.83% 105.33% 18.50% 
18 78.92% 101.52% 23.11% 38 94.92% 106.26% 18.87% 
19 79.64% 101.63% 21.86% 39 95.66% 106.26% 18.36% 
20 82.70% 101.69% 22.64%     
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redundant maximal covering solution is de-
picted in Figure 7.

The second part of this analysis is con-
cerned with the BOCFLP, where capacity
constraints are enforced to satisfy current de-
pot capacities. From the 20 independent runs,
we found an approximate Pareto frontier with
28 different configurations of the constrained
supplier network (see Figure 8). Again, as
reference, the current configuration is repre-
sented by a square in the frontier. Table 4
shows the efficient solutions in the objective
space (i.e., cost and coverage) following the

same convention used in Table 3. Due to the
fact that capacity constraints on the depots are
enforced in the BOCFLP, there is no column
showing exceeded capacity.

From Figure 8, it is clear that the left side of
the frontier is quite flat (up to solution 8),
meaning that coverage can be improved signifi-
cantly with just a little investment above the
minimal cost configuration.Table 4 shows that
by investing only 1.26% above the minimum
cost configuration, it is possible to increase
coverage by 16.79% (see solution 8). Further-
more, with an investment of 3.99% above the

Figure 7. Maximal covering solution for the
BOUFLP (uncapacitated)

Figure 8. Approximate Pareto frontier for the BOCFLP (capacitated)

Table 4. Efficient solutions (in objective
space) for the BOCFLP
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1 56.73% 100.00% 15 77.68% 103.55% 
2 57.88% 100.43% 16 78.42% 103.87% 
3 62.50% 100.64% 17 82.05% 103.99% 
4 62.75% 100.73% 18 82.88% 104.79% 
5 63.24% 100.80% 19 83.55% 104.81% 
6 63.62% 100.98% 20 84.29% 105.12% 
7 68.91% 101.04% 21 84.70% 105.47% 
8 73.52% 101.24% 22 85.12% 105.97% 
9 74.35% 102.05% 23 85.53% 106.28% 
10 75.03% 102.06% 24 86.20% 106.30% 
11 75.77% 102.38% 25 86.95% 106.61% 
12 76.18% 102.73% 26 87.03% 107.10% 
13 76.60% 103.22% 27 87.77% 107.46% 
14 77.26% 103.25% 28 87.94% 108.40% 
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minimum cost, it is possible to increase cover-
age by 25.32%. On the other hand, in the right
side of the frontier, it is quite costly to improve
coverage. For instance, to increase coverage
just 0.16%, the FNCC must incur a 0.94% cost
increment (see solutions 27 and 28). The rea-
son why it is so expensive to increase coverage
in the right side of the frontier is that new depots
must be open to cover small and distant pur-
chasing centers.

To illustrate how capacity constraints im-
pact the supplier network design, Figure 9

shows an overlay of the efficient frontiers for
the BOUFLP and BOCFLP. The vertical axis
is measured against the minimum cost configu-
ration for the BOUFLP. As expected, the
BOCFLP’s frontier is dominated by the
BOUFLP’s—that is, enforcing capacity con-
straints implies higher costs and lower cover-
age.

To evaluate the relative importance of the
depots in the Colombian coffee supplier net-
work, we count how many times each depot
appears in the approximate Pareto frontier of

Figure 10. Relative importance based on frequency counts in the approximate efficient
frontier for the BOCFLP

Figure 9. Efficient frontier aproximations for BOUFLP and BOCFLP
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the BOCFLP. Figure 10 shows the result of this
count. Several depots consistently appear in the
efficient solutions, while some do not. Based on
this analysis, depots 3, 5, 12, 13, and 22 are
strong candidates for closing.

Finally, it is worth mentioning that the cur-
rent supplier configuration is not part of the
efficient frontier (see Figures 6 and 8). More-
over, as shown in Figure 11, solution 25 offers
a cheaper solution with slightly better cover-
age.

CONCLUSION

We have presented the MO-JGA framework, a
flexible object-oriented computational tool for
rapid prototyping and implementation of evolu-
tionary algorithms. We illustrated how multi-
objective evolutionary algorithms, such as the
NSGA-II, can be extended and implemented
from MO-JGA.

From a practical side, we have shown how
the use of an evolutionary algorithm is able to
provide valuable insight into a complex bi-
objective location problem arising in the context

of the Colombian coffee supplier network. We
also illustrate how both the uncapacitated and
capacitated versions of the location problem
can be implemented from a common evolution-
ary core with minor modifications. This latter
point is important because it highlights the
robustness of the evolutionary solution strat-
egy.

Being JGA the building block of MO-JGA, it
is worth mentioning that as the JGA framework
grows, MO-JGA will be able to solve more
complex problems arising in the business set-
ting. Last, but not least, MO-JGA class librar-
ies, examples, and documentation are available
at http://copa.uniandes.edu.co/software.
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KEY TERMS

Efficient Frontier: Let XE be the set of
efficient solutions. The Efficient Frontier (or
Pareto Optimal Front) is the set of images (in
the criteria space) of the solutions in XE. Let
PFE be the efficient frontier defined by

( ){ }E
p

pkE XxRxfxfxfPF ∈∈= )(,),(,),(: 1 �� .

Evolutionary (Genetic) Algorithm: An
evolutionary algorithm (EA) is an stochastic
search procedure inspired by the evolution pro-
cess in nature. In this process, a population of
individuals evolve, and the fitter ones have a

better chance of reproduction and survival. The
reproduction mechanisms favor the character-
istics of the stronger parents and hopefully
produce better children, guaranteeing the pres-
ence of those characteristics in future genera-
tions.

Efficient Solution (Non-Dominated So-
lution): A feasible solution Xx ∈ is called effi-
cient if there does not exist Xx ∈'  such that

)()'( xfxf kk ≤  for all  pk ,,1�=  and
)()'( xfxf kk <  for some k.

Facility Location Problem (or Facility
Siting Problem): Facility location problems
(FLPs) deal with choosing from among some
candidate facilities a subset from which an
organization will serve its customers. The FLP
is also concerned with determining how these
customers will be served by the open facilities.

JGA: Acronym for Java Genetic Algo-
rithm; a flexible and extensible computational
object-oriented framework for rapid develop-
ment of evolutionary algorithms for solving
complex optimization problems.

Multi-Objective Evolutionary Algo-
rithm (MOEA): The extension of evolution-
ary algorithms to solve the multi-objective opti-
mization problem.

Multi-Objective Optimization Problem
(MOP): The MOP is defined as

( ))(,),(,),(min 1 xfxfxf pkXx
��

∈

where nRX ⊂  is the feasible set and pn RRf →:
is a vector valued objective function.
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ABSTRACT

Discrete event simulation is generally recognized as a valuable aid to the strategic and tactical
decision making that is required in the evaluation stage of the manufacturing systems design
and redesign processes. It is common practice to represent workers within these simulation
models as simple resources, often using deterministic performance values derived from time
studies. This form of representing the factory worker ignores the potentially large effect that
human performance variation can have on system performance, and it particularly affects the
predictive capability of simulation models with a high proportion of manual tasks. The
intentions of the chapter are twofold: firstly, to raise awareness of the importance of
considering human performance variation in such simulation models; and secondly, to present
some conceptual ideas for developing a worker agent for representing worker performance
in manufacturing systems simulation models.

INTRODUCTION

Manufacturing systems are most often highly
complex constructs and their behavior is of a
dynamic and stochastic nature. They consist of
extensive interactions between people, infor-
mation, materials, and machines. Systems like
assembly lines may look quite simple because
their tasks are mainly done in a sequential
order. In reality, these systems are quite com-
plex constructs due to breakdowns of various

types and natural variation in processing times,
which makes them non-deterministic. The
breakdowns can be machine failures, but in
systems like manual assembly lines where hu-
mans play a key role, they can also be unusually
long task completion times or the unavailability
of workers.

When it comes to the design or redesign of
manufacturing systems, it is common to use a
methodological approach. Discrete event simu-
lation (DES) is generally recognized as a valu-
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able aid to the strategic and tactical decision
making that is required in the evaluation stage
of the design process. Figure 1 depicts the way
in which DES integrates into the manufacturing
system design process. A major advantage of
simulation models, compared to the analytical
ones that are also in use, is their ability to model
random events based on standard and non-
standard distributions and to predict the com-
plex interactions between these events. This
allows the system designer to obtain a system-
wide view of the effect of local changes to the
performance of the overall system and enables
him or her to predict system performance, to
compare alternative system designs, and to
determine the effect of alternative policies on
system performance.

Among other things, DES models are used
to determine the amount of machines, buffers,
and operators that are needed to produce a
certain target output. Companies that have
groups which specialize in studying multi-mil-
lion-dollar systems using DES include Honda,
Ford, General Motors, Harley-Davidson, and
Renault (Baudin, 2002). The simulation experts
within these groups have a high degree of
responsibility to ensure the accuracy of the
results. Inaccuracy can prove very costly, as it
may lead to poor system performance and
failure to meet the production demand.

Due to the complexity of the real world, a
system model can only be a restricted copy of
a real system. Therefore, abstraction and sim-
plification have to be used in order to cope with

this complexity. Abstraction comprises or con-
centrates in itself the essential qualities or
behaviors of a thing, but not necessarily in the
same form or detail as in the original, while
simplification entails stripping away unimpor-
tant details and assuming simpler relationships
(Shannon, 1975).

It is commonly observed that a gap exists
between the performance predictions of a manu-
facturing system simulation model and the per-
formance of the real system. As a consequence
of abstraction and simplification, system mod-
els tend to model the real world too optimisti-
cally compared to real systems. Another com-
mon observation is that performance predic-
tions of systems involving a high proportion of
manual tasks are notably less accurate than
those of highly automated systems. This is
attributed to the way in which the human ele-
ment is represented within the system simula-
tion model. It is common practice within DES
models to represent workers as simple re-
sources, often using deterministic performance
values derived from time and motion studies.
This is an extreme simplification as the work
measurement literature indicates clearly that
workers’ task performance varies. This varia-
tion occurs between different workers carrying
out the same task, and moreover for the same
worker when repeating a task (e.g., Dudley,
1968). It has also been shown that workers’
task performance varies as a consequence of
its dependence on past events and the current
state of the system. The current approach of
representing workers within DES models ig-
nores the potentially large effect that human
performance variation (HPV) can have on the
system performance of the labor-intensive
manufacturing system.

This chapter has been written with two
objectives in mind: firstly, to raise awareness of
the importance of considering HPV in human-
oriented DES models; and secondly, to offer
some conceptual ideas for developing a more

Figure 1. Steps in manufacturing systems
design
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sophisticated representation of direct workers
(people dedicated to predominately manual rou-
tines) in DES models. The chapter is therefore
split into two main parts. The first part reports
on research that has been conducted to address
the first objective. It describes a field experi-
ment carried out to quantify direct worker
performance variations in automotive manual
assembly lines and test the sensitivity of simu-
lation models towards these variations. It then
discusses the results and the limitations of the
approach that has been chosen to represent
these variations.

The second part consists of a collection of
ideas which is intended to contribute towards
achieving the second objective in the near
future. A literature review is provided to iden-
tify design opportunities that allow a more
advanced representation of worker variability
and behavior in manufacturing systems simula-
tion models. These opportunities are derived
from the systems engineering and the social
science literature, where human performance
and behavior modeling is already used for many
different purposes in many different ways. An
agent-based approach is identified as the most
suitable way forward, and concepts for a worker
agent and its integration into manufacturing
system simulation models are developed. The
chapter concludes by discussing the problems
of implementing the proposed concepts and
identifying possibilities for future work.

THE NEED FOR NON-
DETERMINISTIC MODELS
OF WORKER PERFORMANCE

A common means of representing the perfor-
mance of direct workers within manufacturing
system simulation models is to use so-called
standard times. These are the times required by
an average skilled worker, working at a normal
pace, to perform a specific task using a pre-

scribed method, allowing time for personal
needs, fatigue, and delay. They are mean val-
ues derived either from direct work measure-
ments through means of time studies or from
indirect work measurements through means of
synthetic timing. Using mean values and ignor-
ing the natural variation in these task comple-
tion times represents a significant simplification
that can have a high impact on the simulation
model runtime behavior and consequently on
the accuracy of the performance predictions of
the simulation model. On the other hand it might
be that due to the long runtime of the simulation
models (usually several months are simulated),
the variation equilibrates and therefore the
simplification is legitimate. This section de-
scribes some research that has been carried out
to investigate this issue by means of a sensitiv-
ity analysis.

Sensitivity Analysis Using
Empirical Frequency Distributions

Firstly, a long-term data collection exercise
was conducted to quantify the performance
variation of direct workers in a typical automo-
tive manual engine assembly flow line (Siebers,
2004). The line that has been observed is
divided into 10 different work zones. In each
work zone the work is performed by a team of
six to twelve workers. The workers rotate by
the hour in their subsequent zone, which means
that each individual works on all the tasks in his
or her section. Data about the activity times
(basically the time that an individual is working
on a particular engine) were collected at 10
different workstations over a period of three
months using an automated data collection
method. The collected data were also used to
analyze the break-taking behavior of the work-
ers. Figure 2 shows a time series plot of the
collected data points for one particular work
station over an eight-hour shift. Due to the
rotation mentioned earlier, each hour slice rep-
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resents the activity times of a different worker.
The diagram shows clearly that there are dif-
ferences in activity times when a worker re-
peats a task and also between different work-
ers. Furthermore it can be seen that the actual
breaks are significantly longer than the planned
breaks.

The collected data were then transformed
into empirical frequency distributions repre-
senting activity time variations and break-tak-
ing behavior. This format supports the integra-
tion of the collected data into DES models. By
looking at the resulting frequency distributions,
it was found that the scattering of activity times
is dependent on the nature of the task and that

there is no generic pattern for manual tasks.
For the frequency distributions representing
break-taking behavior, it was shown that the
scattering of the break start and break duration
does not depend on the break length. The
average disruption due to leaving the worksta-
tion early and coming back late was the same
for all breaks.

In order to enable a sensitivity analysis, the
designed empirical frequency distributions were
inserted into simulation models of existing en-
gine assembly lines (each with approximately
100 workstations) to represent the performance
variation of the direct workers at the individual
workstations. Through designed experiments,
the effect that this form of HPV modeling has
on the behavior of the simulation models was
investigated.

The results from these experiments showed
that the representation of HPV can have a
significant impact on the behavior of the system
simulation models. The impact depends basi-
cally on the type of variation to be represented
as well as on the system to be modeled. While
the impact of activity time variation is system
dependent (which is the same in the real world)
and depends among other things on the buffer
sizes (bigger impact on systems with smaller
buffer sizes), the impact of break-taking behav-
ior is always present.

As a result of these investigations, system
designers employing simulation as a decision
support tool should now be aware of the conse-
quences that ignoring variation in worker per-
formance may have on the validity of their
system analysis.

Limitations of the Empirical
Frequency Distribution Approach

Despite the fact that using empirical frequency
distributions is a step forward compared to
current standards in the simulation community,

Figure 2. Activity time variations for a manual
workstation during an eight-hour shift
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it has two major drawbacks. The first one is
that the distributions are context specific, that is
to say, form and magnitude of HPV is among
others a function of task, workforce composi-
tion, environment, and location. No generic
distribution shape could be identified to de-
scribe HPV. Therefore, using the distributions
in locations other than their origin will reduce
their validity. The second drawback, which is
even more severe, is that the distributions on
their own are not capable of expressing interde-
pendencies between events and do not consider
the state of the system as values are chosen at
random.

Conversely, research has shown that the
activity time of workers is dependent on past
events and the current state of the system.
Schultz, Juran, Boudreau, McClain, and Tho-
mas (1998), for example, have presented evi-
dence that worker behavior differs, depending
on the size and status of the buffers surrounding
them and with whom the worker is teamed.
Doerr, Mitchell, Klastorin, and Brown (1996)
found that workers speed up when they are the
cause of idle time, even in the absence of
management pressure. De Souza and Zhao
(1997) argue that a complete and effective
representation of dynamic behavior would re-
quire a composite representation of knowledge
in various forms.

It has been proposed that the use of a
combination of rules and distributions for repre-
senting the dynamic behavior of workers would
be a step forward. The rules would allow a
guided choice of stochastic values based on the
system status, profile and state of the individual
worker, and the work group he or she is work-
ing in. This would preserve the stochastic na-
ture of the individual component while consid-
ering interdependencies with other components
of the system.

Ideally, workers would be modeled as au-
tonomous and proactive entities, constantly
monitoring their environment, reasoning, and

reacting to internal and external stimuli. This
would account for the fact that in human-
oriented systems, compared to non-human ones,
an additional level of feedback is occurring.
People notice what is going on around them and
adjust their behavior accordingly, a phenom-
enon also known as second-order emergence
(Gilbert & Troitzsch, 1999).

A LITERATURE REVIEW
ON MODELS OF HUMAN
PERFORMANCE

Over the past few decades, tools and tech-
niques for modeling and predicting human per-
formance in complex systems have evolved
and matured. Pew and Mavor (1998) state that
models and techniques are emerging within the
systems engineering and social science do-
mains which clearly indicate that some valid
modeling of operator performance is possible.
Table 1 provides a classification of human
performance modeling approaches. Details
about the elements can be found in Elkind,
Card, Hochberg, and Huey (1990) for the sys-
tems engineering approaches, and in Gilbert
and Troitzsch (1999) for the social science
approaches.

Table 1. Human performance modeling in
systems engineering and social science
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Simulation is a new way of examining social
and economic processes by studying the emer-
gence of complex behavior from relative simple
activities (Gilbert & Troitzsch, 1999). The study
of complex systems is a new field of science
related to complexity theory. It examines how
parts of a system lead to the collective behav-
iors of the system, and how the system interacts
with its environment. It cuts across all tradi-
tional disciplines of science, as well as engi-
neering, management, and medicine, and is
about understanding indirect effects that are
not obviously related to their causes (Bar-Yam,
1997). Complex adaptive systems (CASs) are
a specific category of complex systems that
change their behavior in response to their envi-
ronment (Bar-Yam, 1997). They are denoted
by the following three characteristics: evolu-
tion, aggregate behavior, and anticipation (Hol-
land, 1992; Trisoglio, 1995). Here, evolution
refers to the adaptation of systems to changing
environments, aggregate behavior refers to the
emergence of overall system behavior from the
behavior of its components, and anticipation
refers to the expectations the intelligent agents
involved have regarding future outcomes. Since
CASs adapt to their environment, the effect of
environmental change cannot be understood by
considering its direct impact alone. Therefore,
the indirect effects also have to be considered
due to the adaptive response.

Organizations, which are basically groups
of people that are working together in order to
attain common goals, can be characterized as
CASs composed of intelligent, task-oriented,
boundedly rational, socially situated agents.
These agents are faced with an environment
that has the potential for change (Carley &
Prietula, 1994). Computational organization
theory (COT) is concerned with building new
concepts, theories, and knowledge about orga-
nizing and organization in the abstract, to de-
velop tools and procedures for the validation

and analysis of computational organizational
models, and to reflect these computational ab-
stractions back to actual organizational prac-
tice through both tools and knowledge (Carley
& Gasser, 1999). One of the most commonly
used techniques to model CASs is multi-agent-
based modeling (Skvoretz, 2003) where the
organization is composed of a number of intel-
ligent agents. Unlike traditional multi-agent
models, COT models draw on and have imple-
mented into them empirical knowledge from
organization science about how the human or-
ganizations operate and about basic principles
for organizing (Carley & Gasser, 1999).

Another way of describing a human-ori-
ented manufacturing system is to see it as an
organization in which groups of people work
together to attain common goals. These groups
include for example machine operators or as-
sembly line workers. It seems that COT can
also provide a promising paradigm for modeling
the behavior of factory workers. The use of
multi-agent-based models is also supported by
Gazeendam (1993), who states that multi-agent-
based models show promise as models of orga-
nizations, since they are based on the idea that
most of the work in human organizations is done
based on intelligence, communication, coop-
eration, and massive parallel processing.

PROPOSAL FOR AN AGENT-
BASED APPROACH TO WORKER
PERFORMANCE MODELLING

As already discussed above, workers within
manufacturing system simulation models would
ideally be modeled as autonomous and proac-
tive entities, constantly monitoring their envi-
ronment, reasoning, and reacting to internal and
external stimuli. Multi-agent-based modeling
has been identified as a promising way for-
ward. In the following section we develop some
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ideas of what such a system could look like. The
motivation is not to present a working multi-
agent system (MAS), but to present some
considerations and thoughts to support the de-
velopment of such a system.

A top-down approach has been taken. It
begins by describing some conceptual ideas for
a multi-agent-based worker performance mod-
eling (WPM) tool and its integration into the
DES modeling environment of the manufactur-
ing system. This is followed by a brief review of
existing agent architectures. Different models
and frameworks from occupational psychology
and organizational behavior research are then
examined that could help to decide about the
factors and state descriptors to be considered
inside the agent architecture. Finally, a worker
agent framework is presented that in the author’s
view could be used to develop some worker
agents.

Ideas for a Multi-Agent-Based
Worker Performance Modeling Tool

The task of developing a multi-agent-based
modeling tool that is capable of representing
workers within DES models is very challeng-
ing. Therefore a three-step development pro-
cess is proposed that gradually increases in
complexity and still produces useful tools at the
end of each development step.

Figure 3 represents the deliverable at the
end of the first step which is a generic theory-

building tool. No manufacturing system pro-
cess data is required. The tool can be seen as
an artificial white room—that is, a simulation of
a laboratory as it is used for data gathering
under controlled conditions. The output of the
tool would support the development of lookup
tables, functions, and distributions that describe
system-independent variations in state and per-
formance of a workforce at the individual and
group level. These outputs can be used to
represent worker and workgroup performance
in new or existing manufacturing simulation
models.

Figure 4 represents the deliverable at the
end of the second step which consists of a task-
based approach. In comparison to the first tool,
the output would be system related. The tool
would require basic process and layout setup
data, as well as task definitions for the indi-
vidual agents. Therefore the output of the tool
would support the development of lookup tables,
functions, and distributions tailored for a spe-
cific manufacturing system.

Figure 5 represents the deliverable at the
end of the third and final step which consists of
a situation-based or integrated approach. Here
the MAS takes over the representation of the
workers within the manufacturing system simu-
lation model. The state of the agents is updated
whenever the state of the system changes and

Figure 3. Tool development after step 1;
generic theory-building approach

Figure 4. Tool development after step 2;
task-based approach
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Figure 5. Tool development after step 3; situation-based approach

feedback of agent state changes is given to the
manufacturing system simulation model. Once
the simulation is finished, the data from the
multi-agent-based tool can be stored in a knowl-
edge base to allow comparison of the behavior
of agents in different scenarios later on. This
might support the development of new behav-
ioral rules to implement in the tool.

As this is the final tool, the elements and its
manner of operation are described in more
detail. The WPM tool consists of worker agents,
local environment agents, and a global environ-
ment agent. Each worker agent represents a
worker entity from the DES model and is linked
to a local environment agent that represents the
specific environmental conditions at a particu-
lar workplace. The WPM tool has its own

simulation core which makes it independent
from the DES model. The global environment
consists of a collection of micro models repre-
senting physical and operational environmental
factors. As an input, the WPM tool would
require static information about the profile of
the workforce and historical data about absen-
teeism, accident rate, and staff turnover. Addi-
tional dynamic information from the DES model
about the task to conduct and the state of the
system is also needed. As an output the WPM
tool delivers the values for a set of direct
worker performance indicators consisting of
activity time, error rate, and dependability for
each individual worker. Furthermore, at the end
of each simulation run, probability values for
indirect worker performance indicators that
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reflect worker well-being consisting of absen-
teeism, accident rate, and staff turnover are
estimated and stored in a knowledge base to-
gether with the setup data of the workforce.

The DES model would typically be one
developed in a visual interactive modeling sys-
tem that allows some form of programming.
Connected to this DES model would be a task
database which includes all the predefined stan-
dard times for the tasks to be conducted by the
workers. At each event that significantly
changes the state of the system, and that might
therefore have an impact on worker perfor-
mance, a set of system state data is sent to the
WPM tool. This data is sent in combination with
a request for a set of worker performance data
that reflect worker reactions to the new situa-
tion. At the end of each simulation run, the
system performance data (e.g., productivity) is
stored in a knowledge base together with the
setup data of the DES model. Once the knowl-
edge base has been populated with a reason-
able quantity of cases, it could be used to try and
identify emergent patterns. It might be possible
to derive rules that describe how a certain
system setup impacts on different workforces
or how a certain workforce reacts to different
system setups.

Choosing a Worker
Agent Architecture

Before considering which factors and state de-
scriptors are needed for a worker agent, a deci-
sion must be made as to what underlying agent
architecture to use. This is because different
architectures require different categories of fac-
tors and state descriptors. There are many ways
to design the inner structure of an agent, and many
different agent architectures have been devel-
oped over the years. Wooldridge (1999) classifies
architectures for intelligent agents into four groups,
as represented in Table 2. Furthermore, the table
contains some examples of concrete agent archi-

tectures for each class with reference to some of
their key contributors.

For the purpose of modeling human behav-
ior, Schmidt (2000) proposes PECS (physique,
emotion, cognition, social status) as a new
reference model, which aims to replace the
BDI (belief, desire, intention) architecture. He
argues that the BDI structure is not appropriate
for modeling real social systems as it conceives
human beings as rational decision makers, while
in reality their decisions are controlled by reac-
tive and deliberate behavior. As these are
attributes that we want to represent, for the
moment the PECS reference model will be
considered to be the most suitable one for our
purposes.

Worker Agent State Descriptors

In order to design a worker agent, it is neces-
sary to investigate what factors influence di-
rect worker performance. These factors could
be used as state descriptors in the form of state
constants, state variables, and state transition
functions if they are definable, tangible, quanti-
fiable, and can be evaluated. Some models and
frameworks that might be of help in giving
indications for such factors have been devel-
oped in occupational psychology and organiza-
tional behavior research, and are applied in job
design and human resources. A selection of
these are now described and discussed with
regards to their usefulness in terms of offering
ideas for worker agent state descriptors.

A classical model of person-environment
interaction is provided by Lewin (1935), who
states that behavior (B) is a function of interac-
tions between the person (P) and the environ-
ment (E) at any given time or situation: B=f(P,E).
Lewin’s theory stresses the importance of un-
derstanding behavior within the total situation,
and his model accounts for the natural variabil-
ity of behaviors between different situations. It
is now commonly accepted that person and
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system factors influence work behaviors (Wil-
liams & Fletcher, 2002). Unfortunately, the
model is of a very general nature, and the
challenge is to find the relevant factors for B, P,
and E, and their mediation rules.

Support for defining the relevant factors for
B, P, and E may be found in modern job design
models. Das (1999) has attempted to integrate
an extensive list of modern industrial job design
factors into a single comprehensive model.
Unfortunately, there are some substantial weak-
nesses in this model: it does not elaborate on
how factors interact within the workspace to
influence the specific outcomes, and it does not
weigh any of the factors pointed out with a
degree of importance to define their impact.
Das (1999) himself indicated that it will be
extremely difficult to collect all the empirical
evidence to determine the effects and interac-
tions of the various work design factors.

A model proposed by Parker, Wall, and
Cordery (2001) provides categories rather than
a universal list of variables in order that specific
factors can be identified according to a context.
One of the advances of the model is that it
considers basic pre-design conditions that may
influence the effect of job design on perfor-
mance outcome. The model that also accounts
for the stages in which factors come into play
includes a range of mediating mechanisms,
antecedent factors, and contingencies that might
affect the impact of work characteristics.

Silverman, Might, Dubois, Shin, and Johns
(2001) state that performance moderator func-
tions could be used to increase the realism of

human behavior models, and express at the
same time that the modeling and simulator
communities are finding it difficult to extract
performance moderator functions from the be-
havioral literature. He offers a list of modera-
tors that reflect significant dimensions of indi-
vidual and group differences, as well as exter-
nal stressors on individuals and/or groups.

A model presented by Furnham (1992) dis-
plays some of the main factors of individual
differences that influence occupational behav-
ior and how they relate to one another. He
explains that the basic assumption of this model
is that any act or behavior pattern of a specific
individual can be accurately predicted from the
linear addition of scores on various factors like
personality, abilities, and temporary states, to-
gether with some measures of situational or
environmental conditions. These factors are all
weighted in accordance with their importance
for the specific criterion behavior that is being
predicted. This makes a number of assump-
tions: all relevant variables are specified, cor-
rect weightings can be obtained, no situational
modifiers exist, and linearity is a given.

The problem with all the models presented so
far is that they are either of a very general nature
and therefore do not support the decision about
relevant factors and variables, or their variables
are indefinable and intangible constructs that
would be difficult to quantify and evaluate in
practice. Moreover, all of the models neglect to
fully consider aspects of the physical environ-
ment which can be an important consideration
within a factory environment.

A theoretical framework has been devel-
oped by Hadfield, Fletcher, Mason, Baines, and
Ladbrook (2002), who seem to offer a solution
to the problem. Figure 6 shows the framework
that is based on the Lewin model mentioned
earlier and has been specifically tailored to
represent factory workers and their impact on
system performance. The framework provides
a unified approach, and identifies the main

Table 2. Classification of agent architectures
(after Wooldridge, 1999)
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factors and performance measures for worker
behavior through an extensive review and syn-
thesis of the relevant literature using a crite-
rion-based evaluation concerning: general rel-
evance, contextual relevance, robustness of
evidence, and measurability. However, the prob-
lem regarding the usability of the theoretical
framework for the development of the worker
agents is that it lacks a definition of state
transition functions. These are key components
of an agent framework. Therefore, with re-
spect to its inability to consider time-related
changes of the state of the worker throughout
the day, it will be a useful help but cannot be
used directly in order to define the inner struc-
ture of a worker agent.

Conceptual Design of a
Worker Agent Framework

Finally, a worker agent framework is presented
in Figure 7. It is based on the PECS reference
model structure (Schmidt, 2000) and on the
theoretical framework for WPM (Hadfield et
al., 2002) introduced earlier in the chapter.

The theoretical framework has been enhanced
for this purpose by state transition functions that

have been derived from discussions with other
researchers. In addition to the state variables and
state transition functions of the original PECS
reference model, the proposed worker agent
framework includes state constants which de-
scribe factors such as biographic data and person-
ality. Here, changes over time are assumed to be
irrelevant, as simulations are usually only run for
periods in which these factors do not change
drastically. This is a significant development over
the original reference model where such con-
stants are not considered.

Problems with Implementing
the Agent-Based Approach

Currently, the agent paradigm is not used in
manufacturing system simulation for the pur-
pose of modeling human behavior. In addition,
multi-agent-based simulation is not yet accepted
as a mainstream simulation technique in the
manufacturing industry. Many problems and
much resistance arise if one wants to adopt the
paradigm into the context of manufacturing
system simulation.

The main issue that has been identified is the
complexity of the task, as worker agents would

Figure 6. Theoretical framework for worker performance modeling (Hadfield et al., 2002)
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not just be used for testing a specific limited
hypothesis, which is often the motivation when
agents are used in social sciences. Rather they
would be used to analyze a variety of manufac-
turing systems, and therefore they must be
designed to be valid in a much broader sense
which inflates their complexity.

Another major problem still remains con-
cerning the collection of sufficient data to popu-
late the framework. Data that links an indi-
vidual worker to his or her performance is
required, but the old-fashioned industrial engi-
neering approach of using time studies to set
pay rates or extract more effort from workers
has “poisoned the well for this activity” (Baudin,
2002). Therefore, it will be very difficult to
collect the required empirical data in order to
populate the worker agents. Another source of
information would be social and behavioral
science literature. Here, the difficulty is that
mainly specific problems including only a very
limited amount of factors are investigated, and
the required mediation rules that would link all
the factors within the framework are not known.

Finally, there are some technical issues. The
agent concept is very appropriate for time-
driven simulation, but less appropriate for event-
driven simulation, which is commonly used in
manufacturing systems design. DES models do
not support the agent concept of proactiveness,
since they are designed as reactive models.
However, this is an important aspect when
modeling human performance, as humans are
able to take initiatives and act without external
stimuli.

CONCLUSION

The focus of nature-inspired computing is most
often related to problem solving and involves
the study of natural phenomena, processes for
the development of computational systems, and
algorithms capable of solving complex prob-
lems. A second, less recognized objective, which
has been the focus of this chapter, involves the
modeling of natural phenomena and their simu-
lation in computers. The goal in this direction is

Figure 7. Concept of a worker agent
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to devise theoretical models that can be imple-
mented in computers and are faithful enough to
the natural mechanisms investigated so as to
reproduce qualitatively and/or quantitatively
some of their functionality.

The first part of the chapter has demon-
strated the importance of incorporating HPV
models into human-oriented manufacturing sys-
tem simulation models, thereby enhancing the
capabilities for simulation experts to represent
the behavior and predict the performance of
these systems more accurately. The second
part of the chapter has focused on the require-
ments for a multi-agent-based approach to
WPM. After carefully considering the possible
development stages of a WPM tool, the choice
of a suitable architecture for the worker agents,
and the choice of state descriptors for direct
workers, a new worker agent framework has
been proposed. Finally, problems expected to
occur upon implementation of the proposed
MAS have been discussed. Two major road-
blocks have been identified in the development
of the proposed solution: first, the complexity of
the task; and second, data collection problems.

In order to tackle the complexity issue, we
suggest taking a step back and keeping the
KISS (Keep It Simple, Stupid) principle in mind
when implementing the proposed worker agent.
The required approach is to design a very
simplistic agent at first that only considers a
few of the relevant state descriptors, and once
these are under control, gradually enhance the
complexity of the agent. Advances in the devel-
opment of visual interactive multi-agent simula-
tion platforms now make it a lot easier to design
the agents step by step and at the same time
allow experimentation with them. Software
packages such as AnyLogic (XJ Technologies,
2005) allow the implementation of agents in a
very comfortable way, as long as the required
state descriptors and mediation rules are known.
Notably, this particular package is a multi-
paradigm simulation solution which allows the

execution of hybrid models consisting of con-
tinuous and discrete elements, and so supports
the integration of agents into DES models.

With regards to the data collection prob-
lems, here is a thought to stimulate discussion.
How about an alternative approach to Figure 7
using an artificial neural network (ANN) inter-
nally to relate the dependent (performance
measures) and independent (person and envi-
ronment factors) variables? The assumption is
that such an approach could somehow help to
overcome the problem of defining all the media-
tion rules required to mediate between different
factors. This assumption is based on an expla-
nation of deployment areas of ANN by Francis
(2001), who states that “such a data mining tool
can fit data where the relationship between
independent and dependent variables is nonlin-
ear and the specific form of the nonlinear
relationship is unknown.” This would be the
case for most of the factors listed in the theo-
retical framework presented in Figure 6. An
ANN is also effective in dealing with two
additional data challenges: correlated data and
interactions (Francis, 2001). Externally this
agent-like framework would have the same
input and output variables as the worker agent.
An example of such an approach applied in the
field of industry dynamics is presented by
Yildizoglu (2001), who uses ANNs within his
firm agents to model the expectations condi-
tioning the R&D decisions of firms.

Finally, it must be recognized that the limita-
tions in representing HPV do not only affect
manufacturing systems simulation, but in fact
any system simulation where people play a key
role. Simulation models in management science
and operations research often represent com-
plex systems that involve people, as for ex-
ample in call centers and hospitals. An advance
in modeling these people in terms of their
behavior is expected to improve the value of
simulation as a decision support tool for these
application areas as well.
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KEY TERMS

Agent-Based Modeling: In the context
of this chapter, this is a bottom-up approach
that allows the behavior of human beings to be
captured in a more realistic fashion. The artifi-
cial agents acting as representatives for real
factory workers have to be designed to mimic
the attributes and behaviors of their real-world
counterparts as similarly as possible. The
system’s macro-observable properties emerge
as a consequence of these attributes and be-
haviors, and the interactions between them.

Artificial White Room: Simulation of a
laboratory as it is used by social scientists for
data gathering under controlled conditions.

Direct Performance Indicators: Indica-
tors that measure how the individual worker
affects the system. Typical indicators are ac-
tivity time (the actual time it takes a worker to
complete a task that is usually a repetitive
cycle), error rate (an indication of how well a
worker conducts a task), and dependability
(given that all conditions for a task to com-
mence are met, when does the operator start
the activity in response to a request?).

Direct Workers: Factory workers dedi-
cated to predominately manual routines.

Discrete Event Simulation (DES): Mod-
eling of a real system as it evolves over time by

representing the changes as separate events,
for the purpose of better understanding and/or
improving that system.

Human Performance Variation (HPV):
The variation in the time taken to complete a
task by a direct worker under normal working
conditions.

Indirect Performance Indicators: Indi-
cators that measure how the system affects the
workers, which in return might have an effect
on the performance of the individual worker.
Typical indicators are absenteeism (absence
from the workplace for any reason other than
official leave or those covered by collective
agreements), accident rate (an indication of
how safely the worker conducts his or her
work), and staff turnover (the number of em-
ployees starting or finishing employment at a
particular place of work over a given period).

KISS (Keep It Simple, Stupid) Prin-
ciple: A popular maxim often invoked when
discussing a design process as a reminder to
avoid the unnecessary complexity that can
arise during the design process.

Time and Motion Study: An analysis ap-
plied to a job or number of jobs to check the
efficiency of the work method, the equipment
used, and the worker. Each operation is studied
minutely and analyzed in order to eliminate
unnecessary motions and thus reduce produc-
tion time and raise output, which increases
productivity.

Worker Performance Modeling (WPM):
Modeling of the processes and effects of hu-
man behavior within a working environment.
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ABSTRACT

This chapter presents a meta-model of information systems as a foundation for the methodology
of caste-centric agent-oriented software development, which is suitable for applications on
the Internet/Web platform and the utilization of mobile computing devices. In the model, the
basic elements are agents classified into a number of castes. Agents are defined as active
computational entities that encapsulate: (a) a set of state variables, (b) a set of actions that
the agents are capable of performing, (c) a set of behaviour rules that determine when the
agents will change their states and when to take actions, and (d) a definition of their
environments in which they operate. Caste is the classifier of agents and the modular unit of
the systems. It serves as the template that defines the structure and behaviour properties of
agents, as class does for objects. Agents can be declared statically or created dynamically at
runtime as instances of castes. This chapter also illustrates the advantages of agent-oriented
information systems by an example.

INTRODUCTION

In recent years we have seen a rapid change in
the hardware infrastructure and software plat-
forms on which information systems operate.
Notably, the Internet/Web as well as mobile
devices, such as notebook computers, PDAs,
and 3G mobile phones and wireless networks,
are becoming ubiquitous. Proposals for effec-
tive utilisation of such flexible devices and the
Internet infrastructure have been advanced,
such as Web services, semantic Web, grid

computing, and so on. These techniques pro-
vide a bright vision for the future computer
applications, especially for management infor-
mation systems. However, a big problem re-
mains open: how software should be devel-
oped.

In the past two decades, object-orientation
(OO) has been a successful mainstream para-
digm for the analysis, design, and implementa-
tion of software, especially information sys-
tems. However, software engineers are cur-
rently confronted with a number of challenges
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in the development of Web-based information
systems, especially in the construction of ser-
vice-oriented systems, due to the new features
of the Internet and World Wide Web. One of
the main challenges comes from the autono-
mous feature of the hardware and software
resources on the Internet/Web. It is unnatural
to model autonomous resources within the OO
meta-model, which considers everything as
objects.

In the past two decades, agent technology
has been developed mostly as an artificial intel-
ligence endeavour (cf. Huhns & Singh, 1997).
It is partly inspired in the observations and
modelling of autonomous and emergent
behaviours in the societies of human beings or
insects and animals. It has long been regarded
as a viable solution to the development of
complicated applications in dynamic environ-
ments such as the Internet (Jennings &
Wooldridge, 1998). However, existing agent-
based systems have been developed in ad hoc
methods without proper methodology, language,
and tool supports. It is widely recognised that
the lack of rigour has hampered the wide adop-
tion of agent technology in IT industry.

In this chapter, we adapt and extend the
principles of OO and propose a new meta-
model of information systems based on the
concept of agents. We will first present a meta-
model of such agent-oriented information sys-
tems (AOISs), and then demonstrate the fea-
tures of AOISs with an example and compare
agent-orientation (AO) with traditional ap-
proaches. The readers are referred to Shan,
Shen, Wang, and Zhu (2006) for the aspects on
the methodology, languages, and tools that sup-
port the development of such AOISs.

The remainder of the chapter is organised
as follows. We will first give an informal intro-
duction to AOIS, which is followed by a formal
definition of the meta-model. We will then
illustrate the features of an AOIS with an
example and compares it with traditional ap-

proaches to the development of information
systems. Finally, we conclude the chapter with
a discussion of related works and further work.

BASIC CONCEPTS

In our conceptual model, the basic unit that
forms an information system is agent. Because
there is no widely accepted definition of the
concept of agent and multi-agent systems
(MASs), it is worthy clarifying what we mean
by agent and MAS, and how such systems
work. Our conceptual model can be character-
ized by a set of pseudo-equations. Each pseudo-
equation defines a key feature of a MAS.

The Structures and Operations of
Agents and Multi-Agent Systems

Pseudo-equation 1 states that agents are de-
fined as real-time active computational entities
that encapsulate data , opera tions, and
behaviours, and situate in their designated envi-
ronments.

, ,
Environment

Agent Data Operations Behaviour=       (1)

Here, data represent an agent’s state. Op-
erations are the actions that the agent can take.
Behaviour is described by a set of rules that
determine how the agent behaves in the context
of its designated environment. By encapsula-
tion, we mean that an agent’s state can only be
changed by the agent itself. Figure 1 illustrates
the control structure of agent’s behaviour.

There is a fundamental difference between
objects and agents. In the structure of objects,
there is no explicitly programmed behaviour
rule. Instead, there is a fix behaviour rule for all
objects: to execute a method if and only if it
receives a message that invokes the method. In
contrast, agents’ behaviours are not simply
driven by messages, although they can be so.
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For example, an agent can have a behaviour
rule that enables it to take an action when it has
not received any message for a certain period
of time. Moreover, when an agent receives a
message that requests the agent to take a
specific action, the agent can decide whether to
do so, for instance, according to its internal
state or the origin of the request. In other
words, the agent can decide ‘when to go’ and
‘whether to say no’ according to an explicitly
specified set of behaviour rules. In this sense,
an agent can be not only reactive as driven by
the external events, but also be proactive, that
is, being able to initiate interactions with the
outside.

Despite this fundamental difference, ob-
jects can be considered as agents in a degener-
ate form as argued in Zhu (2001a). In particu-
lar, object is a special case of agent in the sense
that it has a fixed rule of behaviour: “execute
the corresponding method when receives a
message.” Consequently, in our conceptual
model, a MAS consists of agents and nothing
but agents as stated in pseudo-equation 2.

{ } ,nMAS Agent n Integer= ˛      (2)

Organisations of
Multi-Agent Systems

In our conceptual model, the classifier of agents
is called caste. Caste is the set of basic building
blocks in the design and implementation of a
MAS. As a modular language facility, a caste

serves as a template that describes the struc-
ture and behaviour properties of agents. Pseudo-
equation 3 states that a caste at time t defines
a set of agents that have the same structural
and behavioural characteristics.

{ }| &tCaste Agent Structure Behaviour properties=

     (3)

While a collection of castes represent vari-
ous types of participants in the problem domain,
the structure of the problem domain is captured
with certain relationships between castes.

Caste Membership and
Migration Relations

Agents are classified into various castes in a
way similar to how data are classified into types
and objects are classified into classes. In other
words, agents are instances of castes just like
objects are instances of classes. In the devel-
opment of an AOIS, caste is the modular pro-
gramming unit that serves as the template of
agents so that agents can be created as an
instance of a caste at runtime or declared
statically. When an agent is created as an
instance of a caste, it will have all the structural
and behavioural features defined by the caste.

However, different from the notion of class
in OO, caste allows dynamic classification.
That is, an agent can change its caste member-
ship (called casteship in the sequel) at run-
time. The weakness of the static object-class
relationship in current mainstream OO pro-
gramming has been widely recognized. Propos-
als have been advanced, for example, to allow
objects’ dynamic reclassification (Drossopoulou,
Damiani, Dezani-Ciancaglini, & Giannini, 2002).
In our model, dynamic classification is an inte-
gral part of agents’ behaviour capability, which
can be naturally represented through agents’
behaviour rules to change its casteship. An
agent can take an action to join a caste or

Figure 1. The control structure of agent’s
behaviour

Begin
 Initialise state;
 Loop
  Perceive the visible actions and states of the agents in its

environment;
  Take actions and change state according to the situation in

the environment and its internal state;
 end of loop;

end
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retreat from a caste at run-time. When an agent
retreats from a caste, it will lose the structural
and behavioural features of the caste. When it
joins a caste, it will obtain the structural and
behavioural features. Dynamic casteship al-
lows users to model the real world with MAS
naturally, and to maximize the flexibility and
power of agent technology. For example, Zhu
and Lightfoot (2003) demonstrated that agents’
ability to dynamically change their roles can be
naturally represented by dynamic casteship.

A migration relation that represents agents’
dynamic casteship can, therefore, be defined
on castes. There are two types of migration
relations: migrate and participate. A partici-
pate relation from caste A to caste B means that
agents of caste A can join caste B without
quitting from caste A. A migrate relation from
caste A to caste B means that agents of caste A
can join caste B and then quit from caste A. For
example, in a university information system, we
would have castes MSc_Student, PhD_Student
and Staff to represent the components that
collect the information about and deliver the
services to various types of users. A participate
relation from PhD_Student to Staff can be
defined to represent the possibility that a PhD
student may be employed as a staff member,
such as a teaching assistant, while registered as
a student. When an agent of PhD_Student joins
the Staff caste, it will obtain all the structural
and behavioural features of the caste Staff
without losing its original structural and
behavioural features defined in the caste
PhD_Student. For example, suppose that the
Staff caste defines a state variable Salary while
PhD_Student does not. When an agent of
PhD_Student joins Staff, it will have an addi-
tional state variable Salary as defined in the
Staff caste. A migrate relation can be defined
from caste MSc_Student to PhD_Student since
an MSc student may become a PhD student
after graduation, but it cannot be an MSc
student and a PhD student at the same time.

The agent will lose all the structural and
behavioural features defined in the caste
MSc_Student, but obtain all the structural and
behavioural features that are defined by the
PhD_Student caste. Suppose that the
PhD_Student caste has a state variable
Office_Address, while the MSc_Student caste
has a state variable Laboratory. When an agent
of MSc_Student moves to PhD_Student, it will
lose the variable Laboratory and obtain a new
variable Office_Address.

Inheritance Relation

Inheritance relations can be specified between
castes. Caste A inherits caste B means that any
agents of caste A have all structural, behavioural,
and environmental features of caste B. Our
model also allows multiple classifications—that
is, an agent can belong to more than one caste
at the same time. Consequently, a caste can
inherit more than one caste.

Whole-Part Relations

In our model, an agent may contain a number of
components that are also agents. The former is
called compound agent of the latter. In such a
case, there exists a whole-part relationship
between the compound and the component
agents. We identify three types of whole-part
relationships between agents according to the
ways a component agent is bound to the com-
pound agent.

The strongest binding between a compound
agent and its components is composite. A
composition relation from caste A to caste B
means that an agent b in caste B contains an
agent a in caste A. The compound agent b is
responsible for creation and destruction of its
component a. If the compound agent b no
longer exists or quits from caste B, the compo-
nent agent a will be destroyed and hence not
exist.
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The weakest binding is aggregate. An ag-
gregate relation from caste A to caste B means
that, although an agent b in caste B contains a
component agent a of caste A, the component
agent a is independent of the compound agent
b in the sense that b does not affect a’s
existence or casteship. If agent b is destroyed
or quits from caste B, agent a can still survive
and be a member of caste A.

The third whole-part relation is called con-
gregate. It means that if the compound agent is
destroyed, the component agent will still exist,
but it will lose the casteship of the component
caste. For example, a university consists of a
number of individuals as its members. If the
university is destroyed, the individuals should
still exist. However, they will lose the member-
ship of the university. Therefore, in the univer-
sity information system, the whole-part rela-
tionship between the caste University and the
caste University Member is a congregation
relation. This relationship is different from the
relationship between a university and its de-
partments. Departments are components of a
university. If a university is destroyed, its de-
partments will no long exist. The whole-part
relationship between the castes University and
Department is therefore a composition relation.
The composition and aggregation relation in our
conceptual model is similar to the composition
and aggregation in UML, respectively. How-
ever, congregation is a novel concept, which
has not been recognized in the research on OO
modelling of whole-part relations (cf. Barbier,
Henderson-Sellers, Le Parc, & Bruel, 2003).

Communications and Environment

In our conceptual model, an agent’s state vari-
ables and actions are divided into two kinds:
visible ones and invisible (or internal) ones.
When an agent takes a visible action, it gener-
ates an event that can be observed by other
agents in the system. An agent taking an inter-

nal action generates an event that can only be
perceived by its components, which are also
agents. Similarly, the value of a visible state
variable can be observed by other agents, while
the value of an internal state can only be
observed by its components. Notice that our
use of the term ‘visibility’ is different from the
traditional concept of scope used in OO lan-
guages.

The concept of visibility of an agent’s ac-
tions and state variables forms the basic com-
munication mechanism in our conceptual model.
Agents communicate with each other by taking
visible actions and changing visible state vari-
ables, and by observing other agents’ visible
actions and visible states, as shown in pseudo-
equation 4.

. & .A B A Action B Observationfi =      (4)

An agent’s visible actions are not necessar-
ily observed by all agents in the system. They
are only observed by those agents who are
interested in the agent’s behaviour and regard
the agent as a part of their environments. The
environment of an agent in a MAS at time
moment t is a subset of the agents in the system.
As illustrated in pseudo-equation 5, from a
given agent’s point of view, only those in its
environment are visible. In particular, from
agent A’s point of view, agent B is visible means
that agent A can perceive the visible actions
taken by agent B and obtain the value of agent
B’s visible state variables at run-time.

( , ) { }tEnvironment Agent MAS MAS Agent˝ -      (5)

In our model, the environment of an agent is
required to be explicitly defined so that the
agents in a MAS are designed and implemented
with a designated environment. In other words,
the environment of an agent is specified but
allowed to vary within a certain range when an
agent is designed. We can describe the envi-
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ronment of a caste, for example, as the set of
agents in a number of particular castes. An
environment such as that described is neither
closed, nor fixed, nor totally open. Once an
agent joins a caste, its environment is combined
with the specified environment of the caste.
Hence, the agents in the caste’s environment
become visible. The environment also changes
when other agents join the caste in the agent’s
environment.

FORMAL DEFINITION OF
THE META-MODEL

We now formally define the conceptual model
using mathematical notions and notations. Read-
ers can skip over this section if not interested in
the formal treatment of the subject.

Multi-Agent Systems

Agents behave in real time concurrently and
autonomously. A time moment is an element in
a time index set T, which is defined as a subset
of real numbers 0[ , )t ¥ , i.e. { }0| &T t t R t t= ˛ > ,
where t0 can be any real number. The structure
of agents consists of four elements—that is,
each agent A is 4-tuple , , , ,, , ,A t A t A t A tS R Eå ,
where:

a. ,A tS  is the state space. We also write ,
V
A tS

and ,
I
A tS  to denote the visible and internal

parts of the state space ,A tS , respectively.
Thus, , , ,

V I
A t A t A tS S S= · .

b. ,A tS is the set of actions that the agent is
capable of performing. We write ,

V
A tS  and

,
I
A tS  to denote the sets of visible and inter-

nal actions, respectively. Thus,
, , ,

V I
A t A t A tS = S ¨ S , where , ,

V I
A t A tS ˙ S = ˘ .

c. RA,t is the set of behaviour rules that
determine how the agent changes its state
and which action to take at what circum-
stances.

d. EA,t is the designated environment of
the agent.

In general, the set of agents in a MAS may
change during execution as agents may be quit
from the system or join the system at runtime.
Let { }1 2, , , n t

A A AL  be the set of agents in the
system at time moment t. These agents are
members of castes 1 2, , , mC C CL . The casteship
of agent A at time moment t to caste C is
denoted by tA C˛ . We write ( )tCaste A to denote
the set of castes that agent A belongs to at time
moment t (i.e., { }( ) |t tCaste A C A C= ˛ ). An
agent can join a caste C by taking the action of
JOIN(C) and quit from a caste C by taking the
action QUIT(C).

An inheritance relation between castes is
defined as partial ordering relation denoted by
p

.  We have that a t a ll times
t, ' 't tA C C C A C˛ Ù Þ ˛p . We assume that the
set of castes and the inheritance relations be-
tween them do not change at runtime. Each
caste describes its agents’ structure, behaviour,
and environment in the form shown in Figure 2.

In Figure 2, the clause 1 2' , , , 'kC C C CÜ L speci-
fies that caste C inherits castes 1 2, , , kC C CL . There-
fore, , 1, ,iC C i k=p L . The VAR clause de-
clares a set of state variables of the caste in
addition to what it inherits, where the visible
variables SV(C) and invisible variables SI(C) of
the caste C are:

{ }1 1
1

( ) : , , : ( )
k

V V
m m i

i

S C v T v T S C
=

= ¨L

U      (6)

Figure 2. Structure of caste description

Caste C <= C1, …, Ck; (* inheritance relationship*)

 ENVIRONMENT E1, …, Ew; (*description of the environment*)

 VAR *v1:T1, …, *vm:Tm; (* visible state variables *)

u1:S1, …, ul:Sl; (* invisible state variables *)

 ACTION *A1(p1,1, …, p1,n1), …, *As(ps,1,…, ps,ns); (* visible actions *)

B1(q1,1,…, q1,m1), …, Bt(qt,1,…, qt,mt); (* invisible actions*)

 RULES R1, R2, …, Rh (* Behaviour rules *)

End C.
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{ }1 1
1

( ) : , , : ( )
k

I I
j j i

i

S C u S u S S C
=

= ¨L

U .      (7)

The ACTION clause defines a set of ac-
tions of the caste. The visible actions SV(C) and
invisible actions SI(C) of caste C are:

{ }11 1,1 1, ,1 ,
1

( ) ( , , ), , ( , , ) ( )
s

k
V V

n s s s n i
i

C A p p A p p Cå å
=

= ¨L L L

U

     (8)

{ }11 1,1 1, ,1 ,
1

( ) ( , , ), , ( , , ) ( )
t

k
I I

m t t t m i
i

C B q q B q q Cå å
=

= ¨L L L

U

     (9)

It is assumed that variables and action iden-
tifiers are unique in each caste declaration.
Duplicated declarations of identifiers in a caste
are not allowed.

The environment of the agents of a caste is
explicitly specified in the ENVIROMENT clause
in the following forms:

a. ‘agent name’ indicates a specific agent in
the system;

b. ‘All: caste-name’ means all the agents of
the caste;

c. ‘agent-variable: caste-name’ is a variable
that ranges over the caste. It can be
assigned to any agent in the caste.

Let ENVt(C) denote the environment for
caste C at time moment t:

§ ¤

1 1

( ) ( )
w k

t i t it
i i

ENV C E ENV C
= =

= ¨
U U ,     (10)

where , 1, ,iE i w= L are the environment de-
scription clauses in caste C’s definition, and
§ ¤t

E denotes the semantics of an environment
description clause E at time moment t.

§ ¤t
E  is

defined as follows.

§ ¤

{ }, if  is in the system at time ;
, if  is not in the system at time .t

agent agent t
agent

agent t
ì

= í ˘î

    (11)

§ ¤
: { | }ttAll Caste X X Caste= ˛ ;     (12)

§ ¤

{ }, if  and  is in the system at time ;
:

, otherwise.t

A x A A t
x C

=ì
= í ˘î

    (13)

The set of rules RULE(C) that agents of
caste C must obey is:

{ }1 2
1

( ) , , , ( )
k

h i
i

RULE C R R R RULE C
=

= ¨L

U .    (14)

Let A  be any given agent and
{ }1 2( ) , , ,t nCaste A C C C= L ; the following equations

define the structural and behavioural properties
of the agent at each time moment t.

,
1

( )
n

V V
A t i

i

S S C
=

=
U , and ,

1

( )
n

I I
A t i

i

S S C
=

=
U .    (15)

,
1

( )
n

V V
A t i

i

C
=

å = å
U , and ,

1

( )
n

I I
A t i

i

C
=

å = å
U .    (16)

,
1

( )
n

A t t i
i

E ENV C
=

=
U .     (17)

,
1

( )
n

A t i
i

R RULE C
=

=
U .     (18)

Dynamic Semantics

A run r of a MAS is a mapping from time T to

the set , ,
1

i i

n

A t A t
i

S
=

· SÕ . The behaviour of a MAS is
defined by the set R of possible runs. For any
given run r of the system, a mapping h from T
to , ,A t A tS · S  is a run of agent A in the context of
r, if . ( ) ( )At T h t r t" ˛ = , where rA(t) is the restric-
tion of r(t) on , ,A t A tS · S . In the sequel, we use
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{ }|A AR r r R= ˛  to denote the behaviour of agent
A in the system. We assume that a MAS has the
following properties:

• Actions are instantaneous, that is, for all

1 2 1 2 1, , if , ( )At t T t t r t˛ „  is regarded as dif-
ferent from rA(t2).

• An agent may take no action at a time
moment t, that is, the agent is silent at time
t. We use t to denote silence.

• The actions taken by an agent are separable,
that is, for all runs r, all agents A, there exists
a real number e>0 such that for all t,

( ) ( .( ( ) )),C C
A Ar t x T t x t r xt e t„ Þ " ˛ < £ + Þ =

where ( )C
Ar t denotes the action taken by

agent A at time moment t in the run r.

With the above assumptions, we can prove
that an agent can take at most a finite number
of non-silent actions in any finite period of time
and a countable number of non-silent actions in
its lifetime.

Notice that the global state Sg of the system
at time t is the value of , ,

1
i i

n

A t A t
i

S
=

· SÕ . However,
each agent A can only view the visible states
and actions of the agents in its environment—

that is, the part of Sg in the space
,

, ,
A t

V V
X t X t

X E

S
˛

· åÕ .
A behaviour rule R for agent A defines a

predicate PR on the set of all possible execution
histories of the agent in the context of the
system’s runs. Here, the context is the agent’s
view of the history of the environment. There-
fore, such a possible history is a mapping from

the time t˛T to the set ( )
,

, , , ,
A t

V V
A t A t X t X t

X E
S S

˛

· å · ·åÕ .
For a possible history yA, t of agent A up to time
moment t, ,( )R A tP truey =  means that agent A’s
behaviour at time moment t satisfies the
behaviour rule R. An execution rA of agent A in
the context of a run r is valid, if for all time
moment t and all behaviour rules R˛RA,t, agent
A’s behaviour at time t satisfies rule R. A run r

of a MAS M is valid, if all agents A’s behaviours
are valid in r.

The meta-model does not define how a
behaviour rule should be defined. In fact, lan-
guages at different levels of abstraction can
have their own ways of defining behaviour
rules. For example, in the formal specification
language SLABS, behaviour rules are defined
in the following form:

<Pattern> | [<Probability>] fi <Action>,
[if <Scenario>];
[where <Pre-condition>]

where <Pattern> defines a pattern of the agent’s
behaviour so far, <Scenario> specifies the sce-
nario in the environment, <Pre-condition> speci-
fies the pre-condition that the rule applies,
<Action> specifies the action to be take by the
agent, and <Probability> defines the probability
that the agent will take the action as specified.
The formal semantics of such behaviour rules
and a formal system for reasoning about the
behaviour of MAS can be found in Zhu (2005).
In modelling language CAMLE, behaviour rules
are defined in the form of behaviour diagrams
(Shan & Zhu, 2004, 2005). In programming
language SLABSp, the behaviour rules take the
form of a conditional statement that uses a
scenario as the guard condition (Wang, Shen, &
Zhu, 2005).

ILLUSTRATIVE EXAMPLE

Generally speaking, information systems are
systems that collect, store, process, and use
information to fulfil certain tasks and provide
certain services. Different paradigms of soft-
ware and information system development meth-
ods differ in the way the information processing
functions and storage facilities are structured,
organised, and used, and how such systems are
constructed and evolved accordingly.
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From the structure point of view, traditional
structured methods separate the storage of
information from their processing methods.
Functions are hierarchically decomposed into
sub-functions and then sub-sub-functions, and
so on. In object-oriented methods, a set of
related data and their processing methods are
encapsulated into one computational entity
called object. The relationships between ob-
jects resemble their counterparts in the real
world. The classification of objects into classes
represents the structural similarity between
objects. Inheritance relation represents
specialisation and dissimilarities. Method invo-
cation association represents functional depen-
dences. Whole-part relations represent hierar-
chical structural decomposition. These rela-
tions help the maintenance and evolution of
information systems as their real-world envi-
ronment evolves, as discussed in the introduc-
tion of the chapter. However, objects in the
mainstream OO paradigm are passive entities.
Models of information systems that consist of a
large number of active and autonomous infor-
mation processing components cannot be rep-
resented naturally and close to the real-world
counterparts in the structure. In the meta-
model of caste-centric AO method proposed in
this chapter, a set of data, their processing
methods, and the rules on how the processing
methods are to be used are encapsulated into
one computational entity called agent to repre-
sent an active information processing element.
The relationships between such elements and

their environments are represented in the classi-
fication of agents for the similarity in their
structural and behaviour features, in inherit-
ance relations for the dissimilarity and
specialisation, in whole-part relations for struc-
tural decomposition, in visibility in the environ-
ment for communications and collaborations
with each other, and so on. This model inherits
many features of OO, but further captures the
features of active information processing ele-
ments in modern information systems enabled
by the availability of mobile computing devices
and the Internet/Web-based software platform.

In this section, we will present an illustrative
example to highlight the differences between
traditional approaches (such as structured and
OO approaches) and the AO approach.

Suppose that a summer school is organised
to teach a number of classes. Some classes are
scheduled to be held at the same time, but at
different classrooms. Students can choose the
classes to attend. Students may be unfamiliar
with the site where classes are. An information
system is required to help students go to the
right classrooms.

Solution of Structured Methods

In a structured methodology such as stepwise
refinement, one would decompose the func-
tionality of the system and find the steps to
calculate the results from the input. For ex-
ample, suppose the system is to be used by an
instructor for helping a student in his/her class

Figure 3. Pseudo-code in structured programming

Begin
1. Get the times and locations of the classes
2. Get the class lists of the students
3. Input the current class
4. Get a list of students in the class
5. For each person on the list Do:

5.1. Find the next class that student is attending
5.2. Find the location of the class
5.3. Find the route from the classroom to the person’s next class
5.4. Tell the student how to get to their next class

End
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to find the next classroom. One might come up
with a solution similar to the following.

Using a structured analysis and design
method, one might obtain the data flow diagram
shown in Figure 4.

Object-Oriented Solution

As Shalloway and Trott (2002) pointed out,
although the above may be a good solution for
computer systems, it is unnatural for a person to
do. In other words, the model given in Figure 4
does not represent the real world. A better
solution would be that the instructor post direc-
tions to go from this classroom to the other
classrooms, and then inform everybody that the
directions are posted at the back of the class-
room and tell everybody to follow the direction
and go to the next classroom. The alternative
solution can be represented in an OO model
shown in Figure 5.

Shalloway and Trott (2002) analysed the
differences between the above two solutions
and their impacts on software development. In
addition to their analysis, we can also identify
the following weakness of the OO solution.
First, modelling students as objects means that
they are passively driven by messages to per-
form actions of finding out the route and then
going to the next classroom. They are con-
trolled by other objects. However, in the real

world, st udents may have autonomous
behaviours. They are not directly controlled by
anybody. Therefore, the model still does not
exactly represent the real world. Second, it is
the developer’s responsibility to implement all
the components of the system although the
implementation can be done by programming
the code, reusing existing code, using COTS
components, and so forth. Once implementa-
tion is done, it is not to be changed during
execution of the system.

Agent-Oriented Solution

A caste-centric AO solution would contain
three castes to represent students, instructors,
and the organizers of the summer school as

Figure 4. Data flow diagram

Figure 5. Object-oriented model in UML
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shown in Figure 6. The organizers will be
responsible to set the class schedule and pro-
vide the local knowledge. They are also respon-
sible to inform the instructors and the students
of the availability of the schedule and local
knowledge. The instructors will teach the stu-
dents. Teachers may also access the class
schedules and local knowledge to determine
when and where to go to the classrooms and
teach which subjects. The students will access
the class schedule and local knowledge in order
to determine where to go and how to get there.
It is worthy noting that the schedule and local
knowledge can be objects that are a degener-
ated form of agents as discussed in the previous
section.

In comparison with the OO solution, the AO
model is much closer to how the real world
works. The main difference is in the release of
instructors from the responsibility of controlling
the students on when to find out the information
about their next classes. The students can
access the schedule and local knowledge when-
ever they like to do so. The impact of this
difference is significant because this not only
gives the freedom to decide when to access the
local knowledge and class schedule, but also
the possibility to have freedom in how to access
them because other parts of the system need to
know many less details of the caste. As far as
the local knowledge, such as a map of the

campus, and class schedule are represented in
a standard format, agents that represent stu-
dents can be any program that understand
them. Therefore, they can be programs running
on students’ notebook computers, hand-held
computers, mobile phones, and so forth. The
software running on these computing devices
can be different products, each suitable to the
device that is owned by the student. This will
significantly reduce the complexity of develop-
ing the system to make it suitable to run on
many different hardware and software plat-
forms. It will also enable the users to interact
with the system in an interface that they are
familiar with. It is unnecessary to integrate the
programs that represent the student agents into
the system before it is put into operation, be-
cause they can join the system at any time
during the execution of the system. The soft-
ware can be run on other servers on the Internet
that provides, for example, services to display a
map on the screen, to find routes in an elec-
tronic map, and to provide scheduling and event
reminder services. Therefore, the complexity
and cost to develop the system can be signifi-
cantly reduced. It is also easier for the system
to evolve.

CONCLUSION

In this chapter, we presented a meta-model of
AOIS, in which the basic elements are agents.
The meta-model enables us to model software
systems very close to information system in the
physical world so that the software systems are
easier to understand, more reusable, and easier
to modify. As illustrated in the example in this
chapter, AO approach is suitable to the plat-
form of Internet/Web and the utilisation of
mobile devices.

In the literature of AO software engineer-
ing, there are a number of proposals to AO
methodologies aiming at developing MASs

Instructor
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Class
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Figure 6. Collaboration diagram of AO solution
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(Zambonelli, Jennings, & Wooldridge, 2003;
Bresciani, Perini, Giorgini, Giunchiglia, &
Mylopoulos 2004; Burrafato & Cossentino,
2002; Zambonelli & Omicini, 2004). A few
formal models of agents and MASs have also
been developed and investigated (cf. Myer &
Schobbens, 1999). Among the most well-known
formal models is the mentalistic model of BDI
agents, in which each agent has mental states
of belief, desire, and intention (Rao & Georgreff,
1991). The logic properties of mental states
were formally studied in the framework of
modal logics (e.g., Wooldridge, 2000). Such
models are suitable for developing artificial
intelligence applications. Application of them to
information systems may need a revolutionary
change in the software development paradigm.
d’Inverno and Luck (2003) formally defined
various concepts related to agents and MASs in
the formal specification language Z. They re-
gard agents as special cases of objects. This is
the opposite to our approach. Semi-formal defi-
nitions of meta-models have also been pro-
posed by Bernon, Cossentino, Gleizes, Turci,
and Zambonelli (2005) and Odell, Nodine, and
Levy (2005). They provide syntactical descrip-
tions of the structures of agents and related
notions, but no definition of their semantics.
These models tend to include a large number of
concepts including, for example, roles, agent
groups, agent societies, capabilities, responsi-
bilities, goals, plans, organisations, and so forth.
Further research on these concepts and their
properties and interrelationships is necessary
before they can be language facilities. Our
approach is caste-centric, that is, caste plays
the central role in our methodology. In compari-
son with other meta-models, our meta-model is
much simpler and clearer. For example, most
other methodologies have the notion of roles
which is not formally defined and is not a
language facility. In our approach, agents that
play the same role can be defined by a caste
(Zhu, 2001b), which is a well-define language

facility that can be implemented in a program-
ming language (Wang et al., 2005). It can also
be used to implement other agent concepts
naturally, such as agent societies, protocols,
and normative behaviours. The most important
feature of our approach is that it is a natural
evolution of the current mainstream paradigm
of OO software development.

We are currently further investigating the
design and implementation of AO programming
languages based on the meta-model to support
the development of service-oriented computing
such as Web services (Zhu & Shan, 2005). We
are also further developing automated soft-
ware tools to support the whole development
process to bridge the gaps between models,
specifications, and their implementations on
existing software platforms.
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ABSTRACT

Based on the meta-model of information systems presented in Zhu (2006), this chapter presents
a caste-centric agent-oriented methodology for evolutionary and collaborative development
of information systems. It consists of a process model called growth model, and a set of agent-
oriented languages and software tools that support various development activities in the
process. At the requirements analysis phase, a modelling language and environment called
CAMLE supports the analysis and design of information systems. The semi-formal models in
CAMLE can be automatically transformed into formal specifications in SLABS, which is a
formal specification language designed for formal engineering of multi-agent systems. At
implementation, agent-oriented information systems are implemented directly in an agent-
oriented programming language called SLABSp. The features of agent-oriented information
systems in general and our methodology in particular are illustrated by an example throughout
the chapter.
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INTRODUCTION

In Zhu (2006), we presented a vision of future
information systems through an agent-oriented
meta-model. The promising features of the
meta-model were illustrated in the context of
software development on the Internet/Web plat-
forms and the utilisation of mobile computing
devices. In this chapter, we address the prob-
lem of how to develop such agent-oriented
information systems (AOISs). Based on the
meta-model introduced in Zhu (2006), we pro-
pose a methodology for developing an AOIS
which consists of a process model that guides
the development activities, along with a set of
languages and software tools that support vari-
ous development activities in the process.

The chapter is organised as follows. We
begin by describing an information system used
as the running example in the chapter. We then
propose an evolutionary development process
model for AOIS and outline the caste-centric
agent-oriented modelling language and envi-
ronment, CAMLE. The next section reviews
the formal specification language SLABS, which
stands for a Specification Language for agent-
based systems. The focus then turns to imple-
mentation issues, and the SLABSp experimen-
tal programming language is briefly described.
We conclude the chapter with a discussion of
related work and further work.

DESCRIPTION OF THE
RUNNING EXAMPLE

We will use a simple, but non-trivial, informa-
tion system to illustrate our methodology as a
running example throughout the chapter. The
example was proposed and used as a case
study by FIPA’s AUML Technique Committee
(2004) to study agent-oriented modelling meth-
ods and notations. It was inspired by the proce-
dure of the United Nations Security Council to

pass a resolution. The description of the system
follows.

The United Nation Security Council (UNSC)
consists of a number of members, some perma-
nent and others elected from UN members.
Members become the chair of the Security
Council in turn monthly. To pass a UNSC
resolution, the following procedure is followed:

1. At least one member of UNSC submits a
proposal to the current chair.

2. The chair distributes the proposal to all
members of UNSC and sets a date for a
vote on the proposal.

3. At a given date that the chair sets, a vote
from the members is made.

4. Each member of the Security Council can
vote either FOR or AGAINST or ABS-
TAIN.

5. The proposal becomes a UNSC resolu-
tion, if the majority of the members voted
FOR and no permanent member voted
AGAINST.

6. The members vote one at a time.
7. The chair calls members in a given order

to vote, and the chair is always the last one
to vote.

8. The vote is open (in other words, when one
votes, all the other members know the vote).

9. The proposing member(s) can withdraw
the proposal before the vote starts, and in
that case no vote on the proposal will take
place.

10. All members vote on the same day, one
after another, so that the chair does not
change within the vote call; but it is pos-
sible for the chair to change from one
member to another between the time a
proposal is submitted until it goes into
vote. In this case the earlier chair must
forward the proposal to the new one.

11. A vote is always finished in one day and no
chair change happens on that day. The
date of the vote is set by the chair.



694

Caste-Centric Development of Agent-Oriented Information Systems

In the remainder of the chapter, we will use
the above as the initial requirements specifica-
tion to demonstrate how agent-oriented infor-
mation systems are analysed, modelled, de-
signed, and implemented in our methodology.

DEVELOPMENT PROCESS

As discussed in Zhu (2006), one of the most
attractive potential features of agent-oriented
information systems is its strong support of the
evolution of information systems and their col-
laborative developments. To realise this, we
proposed a lifecycle model of software sys-
tems as shown in Figure 1 (Zhu, Greenwood,
Huo, & Zhang, 2000; Zhu, 2002, 2004).

The lifecycle model is called growth model
because it views information systems’ lifecycle
as a process of growth. From this point of view,
a software system’s lifecycle can be divided
into three periods: the seed period, the growth
period, and the decline period. When an infor-

mation system is initially constructed and put
into operation, it is relatively weak and small in
terms of the services it provides, the volume of
information it contains, and other non-func-
tional attributes such as performance, security,
and so forth. During the operation, the system
grows in many directions and dimensions. New
components may be integrated into the system
to provide new services, while current compo-
nents may be modified to improve the systems’
functional or non-functional properties as us-
ers’ new requirements are identified and imple-
mented. The system gradually goes to the de-
cline period, and dies when it cannot sustain
more modification to meet new requirements.
It is worth noting that different types of soft-
ware systems may be suitable to different
lifecycle strategies. For example, software sys-
tems of Lenman’s S-type (1990, 2001) are
more suitable to having a strong seed system
and little modifications during the rest of its
lifecycle, because such systems’ requirements
are well understood and well specified. The
modifications are mostly corrections of errors
in the software systems. However, Zhu (2004)
argued that most information systems are
Lenman’s E-type systems whose requirements
are changing, and hence they are evolutionary
by nature. They are best developed following a
growth strategy with the emphasis on the growth
period. In comparison with other strategies that
guide information system development, the
growth strategy has a number of advantages.
The first is the lower risk, because only the best
understood requirements are implemented and
integrated into the system. The investment in
each step of the growth is smaller than imple-
menting a huge system in one big bang. Second,
it is more likely to have a shorter time delay
from the recognition of a well-understood re-
quirement to the delivery of the functionality.
Complicated interactions between requirements
can also be reduced and abated. Third, the
developers can learn from previous develop-

Figure 1. Growth model of software
development

Inception

Development a seed system

Identify new requirements

Develop new components to
satisfy new requirements

Integrate new components &
remove old components

Operation of system

Yes

Important
but not
feasible

Current system declines /
new system’s concept forms

Suspend
requirements

Not worth
realizing

Seed
per i od

Gr owt h
per i od

Decl i ne
per i od

Are the
requirements
important &

feasible?



  695

Caste-Centric Development of Agent-Oriented Information Systems

ment experiences and improve their perfor-
mance in the follow-up development of new
components. They can gain confidence during
the development process and see their results
earlier than other development strategies. Fi-
nally, and most importantly, users’ feedback
can be obtained much earlier than other strat-
egies, as each step of the growth process takes
a much shorter period of time. This enables the
users to clarify their requirements easily and
guide the direction that the system develops. In
fact, this strategy differs from the so-called
staged development process model in its em-
phasis on taking users’ feedback to guide the
direction of software evolution.

To support the growth strategy, we de-
signed and implemented a set of languages and
tools for modelling, specification, and program-
ming agent-oriented information systems. These
languages and tools support various activities in
the development process.

The modelling language and environment
CAMLE supports:

• requirements elicitation and analysis by
representing the current information sys-
tem and the required system in agent-
oriented models; and

• feasibility study of the requirements by
analysing the required modifications to the
existing system.

The formal specification language SLABS
and its formal reasoning logic Scenario Calcu-
lus support:

• formal description of the requirements of
the system under development so that
new functionalities and services can be
implemented as new components in the
form of castes/agents; and

• formal reasoning of the design of the
system/new components to ensure that
the system will meet the requirements and

that the new components can be inte-
grated into the systems as expected.

The agent-oriented programming language
SLABSp and its runtime support environment
are used for:

• the implementation of the system/compo-
nents according to the semi-formal speci-
fication in the CAMLE model and/or the
formal specification in SLABS; and

• the testing of new components and the
integration into the existing system.

In the following sections, we will describe
each of these languages and tools, and illustrate
their uses with the running example described
earlier in the chapter.

MODELLING AND ANALYSIS

Modelling plays a crucial role in the develop-
ment of the seed system and its evolution as the
main tool of requirements analysis and system/
component design. This section presents the
modelling process, and the diagrammatic mod-
elling language and environment of CAMLE
(Shan & Zhu, 2003, 2004a, 2004b, 2005; Zhu &
Shan, 2005).

Process of Modelling

In our methodology, modelling aims at represent-
ing the users’ requirements with a set of agents
at various granularities and organizing the agents
into an information system. The key activities in
the modelling and analysis phase include:

• Identify the agents and castes of agents in
the system as well as the relationships
between them, such as the is-a relation
(inheritance), membership-shift relation
(migration or participation), and whole-
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part relation (aggregation, congregation,
or composition). The artefact produced in
this activity is a caste model for the sys-
tem from the perspective of system archi-
tecture.

• Identify the agents’ interaction patterns in
various scenarios, and produce a set of
collaboration models for the system from
the perspective of dynamic behaviour. In
order to specify the system in sufficient
detail, an agent may be decomposed into a
number of components, which are also
agents. Then the interaction modelling
proceeds to capture the interactions be-
tween the components. Eventually, the
collaboration model is refined into a hier-
archy, where collaboration models at vari-
ous granularities specify the interactions
between component agents at various
abstraction levels. Along with agent de-
composition, the caste model is enriched
with further details to present the caste of
agents at various granularities and the
structural dependencies between them.

• For each caste, elaborate and specify how
its agents perform actions and/or change
states in typical scenarios so that a set of
behaviour rules can be assigned to the
caste. The artefact produced in this activ-
ity is a set of behaviour models, each
associated to a caste in the system.

The result of the modelling is a system
model comprising a set of diagrams that repre-

sent the system from various views and at
different levels of abstraction. For example, in
the UNSC system, a caste diagram is con-
structed to capture the organization structure,
which comprises one chair and a number of
UNSC members—either permanent member
or elected member. Collaboration diagrams
describe the typical scenarios of the interaction
between UNSC members and the chair.
Behaviour diagrams respectively for UNSC
member and chair define their specific behaviour
rules. More details are given in the next subsec-
tion.

During the growth phase of an existing
agent-oriented information system, new com-
ponents for providing new functions, services,
and features are developed in the context of the
existing system, which will be the operating
environment of the new components. There-
fore, the model of the existing system is the
basis for the representation of the new require-
ments and the analysis of their feasibility. For
example, if the organization of the United Na-
tions Security Council is to be reformed to add
a new type of member whose power on resolu-
tion is between elected member and permanent
member, the UNSC information system can be
modified accordingly by adding a new caste
representing the new type of members.

The Modelling Language

CAMLE employs the multiple views principle
to model complicated systems. There are three

Figure 2. Caste diagram: Notation and the UNSC example
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types of models in CAMLE: caste models,
collaboration models, and behaviour models.
Each model may consist of one or more dia-
grams.

A caste model usually consists of one caste
diagram. Figure 2 shows the notation of caste
diagrams and an example caste diagram of
UNSC system. A caste diagram comprises a
set of caste nodes representing various types of
agents in the system, and a set of links repre-
senting various relationships between agents of
the castes.

In the UNSC caste diagram, caste UNSC
represents the organization, which is composed
of a number of members represented by caste

UNSC-member. The aggregate link between
the UNSC-member and the UNSC denotes the
part-whole relationship between the members
and the organization. The rule that members
take the role of Chair in rota is described by
participate and migrate relation between caste
UNSC-member and caste Chair. Two types of
members are represented by two sub-castes of
UNSC-member, Permanent-member and
Elected-member, respectively.

The collaboration models capture agents’
interaction patterns that represent dynamic
behaviours of the system. The notation of col-
laboration diagrams is shown in Figure 3. A
collaboration model may consist of a set of
scenario-specific collaboration diagrams that
represent the interactions between agents in
specific scenarios, and a general collaboration
diagram that summarises the communications
between agents.

For example, Figure 4 depicts the collabora-
tion model of UNSC. Figures 4a and 4b de-
scribe the interactions between agents in the

Figure 3. Notation of collaboration diagra

Figure 4. Collaboration model of UNSC information system
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scenarios of voting on a proposal and with-
drawal of a proposal, respectively. The general
collaboration diagram, such as Figure 4c, de-
scribes all possible communications between
all agents that may occur during the system’s
execution.

a. Scenario-specific diagram: Voting
b. Scenario-specific diagram: Withdraw
c. General collaboration diagram

Note that when an agent is decomposed into
components, the interactions between the com-
ponent agents also need to be specified. This
results in a hierarchy of collaboration models
defining the dynamic behaviours of agents at
various granularities. Readers are referred to
Shan and Zhu (2004b) for details about the
process of collaboration modelling, the hierar-
chical structure of collaboration models, as well
as examples.

While caste and collaboration models de-
scribe multi-agent systems at the macro-level
from the perspective of an external observer,
behaviour modelling adopts the internal or first-
person view of each agent. It describes an
agent’s behaviour in terms of how it acts in
certain scenarios of the environment at the
micro-level. The notation of behaviour dia-
grams is shown in Figure 5. Readers are re-

ferred to Shan and Zhu (2003) for detailed
explanation of the notation.

Each caste is associated with a behaviour
diagram that describes the behaviour rules of
its agents. In the UNSC example, there are two
behaviour diagrams: one for caste Chair and
the other for caste UNSC-member. Figure 6
depicts the behaviour diagram for caste Chair.
The behaviour of a Chair agent is defined by
four behaviour rules describing its actions un-
der various circumstances, namely to distribute
a proposal when some member submits the
proposal, to withdraw the proposal when re-
quested by the proposing member(s), to call all
the members to vote on a proposal, and to quit
from Chair when its turn finishes.

The castes Permanent-member and Elected-
member inherit the behaviour rules of UNSC-
member. They have no additional behaviour
rules, thus require no different behaviour dia-
gram than that of the UNSC-member.

The Modelling Environment

A software environment to support the process
of analysis and modelling in CAMLE has been
designed and implemented. It integrates the
following set of tools:

• Model Construction and Management
Tools: A set of interactive diagram edi-

Figure 5. Notation of behaviour diagram
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tors with graphic user interface are pro-
vided to enable the creation, editing, and
modification of various diagrams in
CAMLE models. These diagrams are or-
ganized and managed into development
projects. Reuse of models from other
projects is enabled. Figure 7 shows a
screen snapshot of the CAMLE
environment’s interface.

• Consistency Checkers: A set of con-

sistency constraints is defined on the
CAMLE language to ensure that a set of
diagrams form a meaningful model of an
information system. The consistency of a
model is checked by a set of tools to
identify any violence of the constraints.
Details of the consistency constraints and
the implementation of the checkers can be
found in Shan and Zhu (2004a).

• Specification Generator: It transforms
a well-defined model into a formal speci-
fication in SLABS. Details of the trans-
formation algorithms can be found in Zhu
and Shan (2005).

Figure 8 shows the architecture of the mod-
elling environment. Readers are referred to
Zhu and Shan (2005) for detailed description of
the architecture and functionality of the CAMLE
environment.

SPECIFICATION

One of the most appealing features of agent
technology is its natural way to modularise

Figure 7. CAMLE’s graphical user interface
for model construction

Figure 6. Behaviour diagram of the chair in UNSC information system
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complex systems in terms of multiple interact-
ing autonomous components. This feature is
supported by the language facility caste in
SLABS for modular and composable specifica-
tion of multi-agent systems. It bridges the gap
between graphic modelling and implementation
in the AOIS development process. The output
of the modelling phase—a system model in
CAMLE—is further analysed at the specifica-
tion phase, which involves the following two
main activities:

• Generation of Formal Specifications:
As for all software developments, it is
necessary to analyse the design of an
agent-based system before the develop-
ers are committed to costly implementa-
tion. It is particularly true during the evo-
lution of a system when new components
are to be integrated into the existing sys-
tem. Formal analysis of the new compo-
nents in the context of the system is there-
fore highly desirable. However, the manual
production of formal specifications of multi-

agent systems is labour intensive, costly,
time consuming, and error prone. With the
help of the CAMLE modelling environ-
ment, formal specifications in SLABS can
be automatically generated from graphic
models in CAMLE.

• Formal Analysis of the System: Formal
analysis can be applied on formal specifi-
cations in SLABS to prove the properties
of the specified system. We have been
devising a formal system Scenario Calcu-
lus to reason about the behaviours of
multi-agent systems, especially their most
complicated behaviours such as emergent
behaviours (Zhu, 2005). If the formal rea-
soning about the system/new components
based on the formal specification reveals
that the system model is unsatisfactory on
certain properties, the flow of the process
goes back to the modelling phase to rectify
the design. Thus, the process iterates the
modelling and specification stages until a
sa tisfactory model/specifica tion is
achieved.

Figure 8. The architecture of CAMLE environment
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The formal definition of the SLABS lan-
guage and its meta-model can be found in Zhu
(2001, 2003). A formal logic for reasoning
about MASs’ behaviours based on SLABS can
be found in Zhu (2005).

Figure 9 shows an example of caste speci-
fication. It is the UNSC-member caste gener-
ated by the CAMLE environment’s specifica-
tion generator from the CAMLE model of the
UNSC system.

IMPLEMENTATION

A distinctive feature of our agent-oriented de-
velopment methodology of information systems
is that we aim at the direct implementation of
information systems with a novel agent-ori-
ented programming language that is based on
the meta-model of the agent-oriented informa-
tion system described in Zhu (2006). Such a
programming language can significantly nar-
row the gap between specification and imple-
mentation. This section presents our research
on the design and implementation of the agent-
oriented programming language SLABSp and
illustrates the style of programming through the
running example.

SLABSp is designed to support the caste-
centric approach to agent-oriented software
development methodology by extending the
object-oriented programming language Java

(Shen, Wang, & Zhu, 2004; Wang, Shen, &
Zhu, 2005a, 2005b, 2005c). As shown in Figure
10, it extends Java with three key concepts and
language facilities: caste, scenario, and envi-
ronment descriptions.

These language facilities become the domi-
nant language facilities in the implementations
of an AOIS and significantly change the styles
of programming. In particular, caste becomes
the basic program unit from which a compli-
cated software system is built. Although class
in object-orientation can still be used in the
programming, it is now mainly used to define
encapsulated data types that agents manipulate
and use to represent agent states. Other Java
constructs, such as Import statements, Expres-
sions, Statements, and so on, are still legal
language facilities, but they are extended to
include identifiers to refer to agent states and
actions, which are represented by preceding
‘#’ and ‘~’, respectively. There are also the
additional join and quit statements to enable
agents to dynamically join into and quit from
castes.

Another significant change of programming
style is the result of the introduction of the
scenario description language facility. The syn-
tax of scenario description is given in Figure 10,
where an expression in the form of (a) de-
scribes the situation that a specific agent be-
haves in a certain pattern, where the agent is
referred to by its name or keyword self. Ex-

Figure 9. Specification of UNSC-member caste in SLABS
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actions and environment descriptions enable
communication and collaboration among agents
to be described at a high level of abstraction and
in the same style of conditional expressions in
structured programming.

For example, the UNSC system can be
implemented in SLABSp as shown in Figure 13.
Based on the specification of the UNSC sys-
tem, caste Member has three behaviour rules.
Rule Withdraw will enable the agent to request
the proposal to be withdrawn when the agent
regards the proposal as inappropriate. Rule
Vote will guide the agent to vote on the proposal
with a specific attitude when the chair calls the
agent to vote. Rule AlternateJoin will trigger
the agent to join caste Chair when it is its turn.
Caste Chair extends caste Member with four
additional rules. Rule Distribute will guide the
Chair agent to distribute the proposal and sched-
ule a voting date for each submitted proposal.
Rule CallVote will direct the Chair agent to call
the members to vote on the proposal on the
voting date. Rule AlternateQuit will ask the
current chair to quit from caste Chair when its
turn finishes. Rule Resolution will define how a
decision should be made based on the mem-
bers’ votes.

A runtime environment for the execution of
multi-agent systems has been implemented as
an extension of Java runtime environment. In
particular, an automaton called the pattern pro-
cess machine is designed and implemented to
process patterns and scenarios. A compiler has
been developed to translate SLABSp programs
into Java and to execute in the runtime environ-
ment. More details can be found Shen et al.
(2004) and Wang et al. (2005a, 2005b, 2005c).

The design and implementation of SLABSp
demonstrate that caste and scenario are fea-
sible as programming language facilities. Our
experiences and experiments with the language
clearly show that they provide power abstrac-
tions for AO programming. In particular, the

Figure 10. Syntax of SLABSp in EBNF

Caste ::= { Java-Import }
caste Name [ { Name / }+ 

{ Environment }
{ State | Action | Rule }

Agent ::= { Java-Import }
agent Name [ { Name / }+ ] 

{ Environment }
{ State | Action | Rule }

Environment ::= Name Id 

State ::= [ internal ] Type Id Formal-Parameters
{ Java-Definition }
get Statement
[ set Statement ]

Action ::= [ internal ] Id Formal-Parameters
{ Statement }

Rule ::= rule Id Formal-Parameters
[ when Scenario ]
[ where Conditional-Expression ]
do { Statement } 

Scenario ::= ( Name | self ) Pattern (a)
|   [Number] [Number] Name Pattern (b)
| Count-Conditional-Expression (c)
| Scenario Scenario (d)
| Scenario Scenario (e)
|   Scenario (f)
|   Scenario (g)

Pattern ::=
{ ( Action-Pattern | State-Assertion )  / } 

Action-Pattern ::=
| | Id Parameters ) [ Number]

State-Assertion ::= Conditional-Expression

pressions in the form of (b) describe the situa-
tion that the number of agents of a caste that
behave in a certain pattern is within a specified
interval, where the interval’s boundaries are
optional. The default value of the left boundary
(i.e., the lower number) is ‘zero’. When the
right boundary is absent, it means ‘all’—that is,
the size of all the caste. The count-condi-
tional-expression in the form of (c) is an
extension of Java conditional-expression with
count-expression. The result of evaluating a
count-expression is the number of agents in a
caste that behave in the pattern. Expressions in
the form of (d), (e), and (f) are the logic ‘and’,
‘or’, and ‘not’ combination of scenarios in the
above forms, respectively. Expressions in the
form of (g) are used to change the preference
of the logic combinations. The uses of scenario
descriptions in conjunction with agents’ visible
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caste facility enables the modularity in the
concept of agents to be realized directly and in
full strength. An obvious advantage of using
scenarios to define agents’ behaviours is that it
can significantly reduce the unnecessary, ex-
plicit, message-based communications among
agents. This also enables AO programming at a
very high level of abstraction.

CONCLUSION

We now conclude the chapter with a summary
of our main ideas and research results, and a
comparison of our work with related works.

Summary

Our caste-centric methodology of agent-ori-
ented information systems is based on a well-
defined meta-model presented in Zhu (2006). It
consists of a process model called the growth
model, a set of languages including a model-
ling language CAMLE for the requirements
analysis and design, a formal specification
language SLABS and  a programming lan-
guage SLABSp, and a set of support tools
including CAMLE’s modelling environment, a
formal reasoning system Scenario Calculus,
and a runtime support environment of agent-
oriented programs. A number of case studies

Figure 11. Fragments of UNSC system in SLABSp

import java.util.Date;
import java.util.Calendar;

caste Chair : Member {
~Distribute(Proposal proposal, Date date){ // ...
}

~Withdraw(Proposal proposal){ // ...
}

~Callvote(Member member, Proposal proposal){ // ...
}

~Resolution(Proposal proposal){ // ...
}

rule Distribute(Proposal proposal)
when ( self\~\, <1:1>Member\~Submit(?proposal)\ )
do { // schedual voting a week later

Date date = Calendar.getInstance()
.add(Calendar.DAY_OF_MONTH, 7).getTime();

~Distribute(proposal, date);
}

rule CallVote(Proposal proposal, Date date)
when ( self\~Distribute(?proposal, ?date)\ )
where ( Calendar.getInstance().getTime().equals(date) )
do { // call all members (except the Chair) to vote, the call the Chair

Collection members = Member#agents();
members.remove(self);
for(Member member: members)

~CallVote(member, proposal);
~CallVote(self, proposal);

}

rule AlternateQuit()
when ( self\~\ )
where (// the last day of a month

Calendar.getInstance().get(Calendar.DAY_OF_MONTH) ==
Calendar.getInstance().getActualMaximum(Calendar.DAY_OF_MONTH) )

do { quit Chair; }

rule Resolution(Proposal proposal)
when (  <:>Member\~Vote(?proposal, *)\, // all members have voted

*Member\~Vote(proposal, FOR)\ > Member#population() / 2,
!<1:>PermenantMember\~Vote(proposal, AGAINST)\ )

do { ~Resolution(proposal); }
}

import java.util.Calendar;

caste Member {

~Submit(Proposal proposal){
// ...

}

~ReqWithdraw(Proposal proposal){
// ...

}

~Vote(Proposal proposal, Attitude attitude){
// ...

}

rule Withdraw(Proposal proposal)
when ( self\~Submit(?proposal)\ )
where ( proposal.isInappropriate() )
do {

~ReqWithdraw(proposal);
}

rule Vote(Proposal proposal)
when ( Chair\~CallVote(self, ?proposal)\ )
do {

// think about the proposal
Attitude attitude = Attitude.FOR ; // or AGAINST, or ABSTAIN
~Vote(proposal, attitude);

}

rule AlternateJoin()
when ( self\~\ )
where (// the first day of a month

ChairOfMonth(self, Calendar.getInstance().get(Calendar.MONTH))
&& (Calendar.getInstance().get(Calendar.DAY_OF_MONTH) ==
Calendar.getInstance().getActualMinimum(Calendar.DAY_OF_MONTH)) )

do {
join Chair;

}
}

// the caste for permanent members
caste PermanentMember : Member {

// 
}
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on modelling, formal specification and verifica-
tion, and programming have been conducted to
develop the heuristics of using the languages
and tools. Our methodology has the following
features.

The methodology aims at modern informa-
tion systems, especially those running on the
Internet and the Web platforms. As argued in
Zhu (2004), such systems belong to Lenman’s
E-type and are by nature evolutionary. The
agent-oriented approach is very suitable for the
development of such systems as we have shown
in Zhu (2006). Moreover, the growth process
model explicitly reflects the evolutionary char-
acteristics of such systems and encourages the
growth strategy, that is, the sustainable long-
term evolution strategy of their lifecycle. This
strategy is also strongly supported by the lan-
guages and tools.

The set of languages designed for use at
different phases in the development and evolu-
tion of AOISs are based on a well-defined
meta-model. The gaps between requirements
specification, system and component design,
and implementation are much smaller than their
counterparts in other existing paradigms and
approaches. In particular, the key concepts of
agents and castes can be directly implemented
in the agent-oriented programming language.

Our methodology is an extension of the
current mainstream paradigm (the object-ori-
entation) of information system development.
In our model, object is a special degenerate
form of agent. Agent-orientation provides a
better metaphor for modelling the information
systems in the real world than object-orienta-
tion. It can directly represent active and au-
tonomous elements in information systems such
as humans, independent information processing
components such as Web services, and so on.
It enables the design and implementation of
computerised information systems in a struc-
ture that is closer to the structure of the system
in the real world than object-orientation.

Finally, our approach to agent-orientation is
caste-centric. In other words, caste plays the
central role in our methodology. It is not just an
abstract concept, but also a language facility that
can be directly implemented in a programming
language. It is the basic form of program unit
from which complicated systems are constructed.
It realises the kind of modularity inherent in the
concept of agents. Our case studies show that
caste can be used in a nice and straightforward
way to model and implement various useful
notions developed in agent technology, such as
roles, agent society, collaboration protocols, nor-
mative behaviours, and so forth.

Related Work

Since Jennings (1999) advocated the notion of
agent-oriented software engineering as a para-
digm for building complex systems, a number of
methodologies for agent-oriented software de-
velopment have been proposed, such as MaSE
(Wood & DeLoach, 2000), Gaia (Wooldridge,
Jennings, & Kinny, 2000; Zambonelli, Jennings,
& Wooldridge, 2003), Tropos (Bresciani, Perini,
Giorgini, Giunchiglia, & Mylopoulos, 2004), and
PASSI (Burrafato & Cossentino, 2002). A
survey and analysis of the current state of the
art in the research on agent-oriented software
engineering can be found in Zambonilli and
Omicini (2004).

As in early work on MAS engineering meth-
odology, MaSE provides a development pro-
cess covering the phases from capturing goals
down to assembling agent classes and system
design. Notations for representing system speci-
fications in various stages and an environment
supporting MAS development are developed
(Wood & DeLoach, 2000). Gaia provides guides
for analysis and design of agent-based systems
with the view that a multi-agent system is a
computational organization consisting of vari-
ous interacting roles (Wooldridge et al., 2000).
Role is adopted as the key concept, which is
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associated with responsibilities, permissions,
activities, and protocols. The new version Gaia
methodology advocates computational organi-
zation abstractions as the key abstraction of
agent-based computing (Zambonelli et al., 2003).
Tropos methodology emphasizes the use of the
notion of agent and all the related mentalistic
notions in all phases of software development,
and purports to cover the very early phases of
requirements analysis (Bresciani et al., 2004).

Despite the subtle differences in the re-
search aims and focuses, the above works hold
the same beliefs that the concept of agent is on
a higher level of abstraction than object, thus
agent-orientation will bring more efficiency to
software engineering than object-orientation.
Most of the existing methodologies attempt to
exploit agents’ advantages, such as autonomy
and sociality using the mentalistic notions in-
cluding goal, plan, role, and so on. Our work
distinguishes from them in that the notions of
caste and scenario, instead of the mentalistic
notions, are the basic concepts for embodying
agents’ power.

Further Work

There is still a long way to go before agent-
orientation become a mature development para-
digm of information systems. There are many
issues remaining for future work. On the top of
our research agenda is further investigation of
the languages and tools in industrial context.
We will connect the languages and tools with
the ongoing development of Web technologies
such as Web services, grid computing, and
peer-to-peer computing. Another aspect of
development methods that has not been dis-
cussed in depth in this chapter is testing, verifi-
cation, and validation. We will further develop
the formal reasoning system scenario calculus
for analysing SLABS specifications and rea-
soning about the properties of emergent

behaviours. We are also investigating software
tools to support the formal reasoning. Auto-
matic transformation from SLABS specifica-
tions to executable system is also in our agenda.
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ABSTRACT

This chapter describes the application of self-organising principles to the field of e-learning.
It argues that traditional managed approaches to e-learning suffer from deficiencies both in
cost and adaptativity that are addressed through the application of nature-inspired processes
such as stigmergy and evolution. Such systems, primarily those employing social navigation,
are built to generate structure through the dialogue-like interactions of individual learners
within them. The result is emergent control of the learning process, adapting dynamically to
learner needs, with limited teacher involvement. The chapter describes some example
applications and explores some of the remaining challenges in the field, most notably in
encouraging pedagogically useful structures to evolve.

INTRODUCTION:
THE PROMISE OF E-LEARNING

The capacity to learn is a central and defining
characteristic of most organisations, both large
and small (Seely Brown & Duguid, 2000; Vaill,
1996; Wenger, 1998). Many formal and informal
approaches have been developed to assist the
process of learning within an organisation. Until
recently, the predominant formal approach has
been face-to-face training, be it through class-
room or apprenticeships. However, this is chang-
ing. Driven largely by cost considerations, the
benefits of anytime, any place delivery and a
just-in-time approach, computer-based training
(CBT), computer-aided learning (CAL), and

more recently, Internet-based or e-learning, have
become vital tools to help provide skills and
disseminate knowledge within organisations. The
financial arithmetic is compelling: for example,
Kelly and Nanjiani (2005) report that in 2003, for
every dollar spent at Cisco on e-learning, there
was a $16 return on investment. Such success
stories rely on a range of factors, most notably
organisational commitment, but it is central to
virtually all forms of e-learning that there is some
involvement of a teacher or mentor, be it in the
production of learning materials or the ongoing
support and evaluation of learners. Carefully
designed CBT or CAL learning materials suffer
from two main disadvantages, inasmuch as their
production is:
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1. labour intensive, and
2. time consuming.

Apart from the cost, the net result of this is
that, in a dynamic and fast-changing environ-
ment, such learning resources may not be per-
fectly adapted to the current state of the busi-
ness ecosystem nor to the needs of the learn-
ers. For these and other reasons, it is therefore
common to supplement or replace these care-
fully designed resources with some form of
learning community, whether face-to-face,
asynchronous (typically using discussion fo-
rums), or synchronous (e.g., through video/
audio/text conferencing or through Web meet-
ing software). Again, this can be relatively
costly to manage and requires highly skilled and
dedicated personnel to operate successfully.

This chapter explores an alternative ap-
proach. It describes a range of nature-inspired
technologies and processes that enable groups
of individuals in learning communities to help
each other and help themselves. In particular, it
describes how evolutionary and stigmergic
mechanisms can generate an emergent struc-
ture that is adapted to the needs of specific
groups of learners and is, potentially, relatively
inexpensive. Teachers, mentors, and subject
experts are not excluded from the process. On
the contrary, such systems are predicated on
the assumption that information networks and
the Internet in particular are rich and deep pools
of resources for learning. However, such re-
sources are often freely available or very cheap
due to economies of scale.

FINDING STUFF

Perhaps the most obvious characteristic of the
Internet is that it is huge. In December 2004,
Google™ had indexed over 8 billion Web pages
( h t t p : / / w w w . G o o g l e . c o . u k / c o r p o r a t e /

timeline.html), a number that continues to grow.
This vast number only hints at the far greater
quantity of information available on the Invis-
ible Web (Lackie, 2003), stored in databases,
hidden behind intranets, in protected content
management systems, or simply not yet in-
dexed. Beyond the Web, e-mail, file-sharing,
Usenet newsgroups, and other forms of elec-
tronic communication and information perhaps
exceed the amount of data available on the
Web. Within this wealth of stored and commu-
nicated knowledge, it is hard to imagine that for
any conceivable learning need, there is not
something that might be of value. For example,
I teach networking, one tiny aspect of which is
Ethernet. A search on Google (June 2005) for
“Ethernet tutorial” reveals around 701,000 po-
tentially valuable pages, illustrating that the
Internet is not so much an information super-
highway but a ‘stuff swamp’ (Crawford, 1999).
The problem is to identify what might be of
greatest value and, equally, of identifying the
useless or positively harmful. Google is a form
of implicit collaborative filter or recommender
system. Its PageRank™ algorithm (Brin &
Page, 2000) and others of its ilk go part of the
way, making use of latent human annotation
(Kleinberg, 1998) to provide some hint that
others have found these pages valuable. How-
ever, as a teacher I am able to recognise
potentially valuable tutorials right down to the
final page of Google’s results (about 790 pages
into the search, as it happens), but equally I can
find tutorials that might be far from relevant,
timely, or effective for my teaching needs on
the first page.

Identifying the quality of information re-
turned by a search is essential. Google uses
implicit recommendations provided by hyperlinks
in Web pages, making decisions based on this
single dimension of value. When seeking high-
quality information, there are many other rel-
evant criteria we might use. For example,
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Valovic (1994) suggests that we should con-
sider time value, scope, authenticity, and dis-
semination value, while Hofman and Worsfield
(1996) identify five main categories and 23 sub-
categories of criteria. Various educational sys-
tems have been proposed or developed that
explicitly use collaborative filtering techniques
(Anderson et al., 2003; Chislenko, 1997; Recker,
Walker, & Wiley, 2000; Terveen, Hill, Amento,
McDonald, & Creter, 1997), but most assume
that resources can be explicitly or implicitly
rated on a single scale, like Google. This is not
enough. In e-learning, even Hofman and
Worsfield’s extensive criteria only scratch the
surface of learner needs. This is not just a
question of content in the correct subject area
and of suitable quality. Different learners have
different abilities, different needs, different
starting points, different learning styles, differ-
ent preferences. To make matters worse, learn-
ers do not stand still. By its nature, learning is a
process of transformation: as we learn, we
change and, if our learning was successful,
what was useful before is unlikely to be useful
now. A teacher typically assembles resources
for learners taking a wide range of issues into
account, including learning objectives, narra-
tive, perceived learning needs, projected out-
comes, and many other tangible and intangible
factors. In an attempt to capture this, a number
of standards for metadata relating to learning
objects, learners, and teachers have been de-
veloped, including those of the IMS, AICC,
SCORM, Ariadne, and IEEE LOM, as well as
other less well-defined standards such as Edu-
RSS and EML. Although the standards are
slowly converging, the wide range of overlap-
ping and often competing standards attests to
the wicked nature of the problem. While in
principle it might be possible to cater for most
conceivable needs, the greater the range of
metadata available, the more unwieldy they
become, and before long, a similar difficulty to

that of finding relevant information in the first
place arises¾there is simply too much of it, and
incentives to provide it are seldom compelling.
Worse still, even where there is agreement on
relevant metadata, there are differences of
interpretation as to how they should be applied.
For example, the word “beginner” may have
many different shades of meaning depending
on the context in which it is used and the group
or groups of learners to which it applies. A
beginner in Web development with no experi-
ence of computers is quite different from one
with a background in programming. The knowl-
edge of a teacher, much of it tacit, is not easily
embodied in a machine. If machine intelligence
is not the answer, then one approach to solving
the problem is to make use of the intelligence of
learners themselves, to which we turn in the
next section.

SOCIAL SOFTWARE

In recent years developments such as blogs and
wikis, as well as popular sites such as furl (http:/
/www.furl.net/index.jsp), del.icio.us (http://
del.icio.us/), Shadows™ (http://www.shadows.
com/), and flickr™ (http://www.flickr.com)
have attracted attention as instances of social
software, perhaps defined most succinctly by
Shirky (2003) as software that embodies and
alters social patterns. Shirky observes that a
common characteristic of such software is that
the group is a first-class object within the
system. In other words, the results of the
collective behaviour of the group is different in
kind from the individual actions of its members.
Control and structure are emergent properties.
For example, furl, Shadows, and del.icio.us are,
from an individual’s perspective, useful per-
sonal repositories for bookmarks. However, as
part of the process of bookmarking, sites are
‘tagged’ with arbitrary metadata, classifica-
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tions that suit the individuals’ needs when
organising their collections of bookmarks. These
collections of bookmarks may be private, but
more often they are sharable with others. Simi-
lar tags are used again and again, with overlap-
ping content. By aggregating the links classi-
fied with these tags, users are able to discover
other relevant sites that have been similarly
classified. An emergent structure or
“folksonomy” forms, based not on the top-
down decisions of professional taxonomists but
on the direct perceived needs of the users
themselves. Because the taxonomies of others
influence and inspire the taxonomies of indi-
viduals as much as vice versa, they collectively
generate a kind of information ecosystem, with
feedback loops interacting to generate a com-
plex dynamic system. Del.icio.us, for instance,
shows the most popular links, with the option to
add those links to your own bookmarks, a self-
reinforcing process that rewards success and
leads to clusters of shared bookmarks. It is
possible to view the bookmarks of others who
have bookmarked the same links, encouraging
the discovery of related links and people with
shared interests, a process further amplified by
features such as e-mail and discussion forums,
made more useful by the option to bundle
bookmarks together. Some systems (described
below) have been developed to take advantage
of this sort of feature within an educational
setting.

Social Navigation

Social software that makes use of the past or
present behaviour of others to influence or
determine the paths that current users take
employs a process known as social navigation.
When such systems embody the past actions of
others, they are sometimes described as his-
tory-rich, while systems that provide some
indication of the real-time presence of others

are sometimes known as aware-ware. His-
tory-rich systems may be compared with tradi-
tional books, which tend to fall open on well-
read pages, or be annotated, or have page
corners turned down. The simplest examples
are hit counters that indicate the number of
unique visitors to a page. Aware-ware systems
provide an experience more akin to the experi-
ence of being in a crowded street or building,
where the movements of others may influence
us positively or negatively to follow or avoid the
areas where they congregate. The simplest
examples are Web sites that provide an indica-
tion of the number of current visitors.

Social navigation is inherently stigmergic,
whether direct (sematectonic) or indirect (sign-
based). The behaviour of others necessarily
leaves signs in the environment which influence
others. This makes them particularly interest-
ing from an educational perspective. Stigmergy
is an exception to the general rule of the natural
world that the large and slow-moving parts of a
complex system (e.g., an ecosystem) play a
larger role in influencing the behaviour of the
small and fast moving (Brand, 1997). As
Churchill put it, “We shape our dwellings and
afterwards our dwellings shape our lives.” A
similar dynamic underlies Senge’s (1993) ob-
servation that structure influences behaviour.
Stigmergy causes structure to arise from
behaviour, as much as vice versa. In a sense,
structure arises from communication which
might be described, loosely, as a form of dia-
logue. This is a significant observation if
stigmergic principles are applied to educational
systems, especially those where learning oc-
curs in situations where the learner and teacher
are physically separated.

The distance learning theorist Michael Moore
(Moore, 1983; Moore & Kearsley, 1996) has
shown that there is an inverse relationship
between structure (the control of a teacher)
and dialogue (control negotiated between
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learner and teacher). The more there is of one,
the less there will be of the other. In an educa-
tional transaction where the learning activities
are entirely determined by the teacher, options
for dialogue will be limited, whereas it is inevi-
table that dialogue will lead to behaviour that
cannot be exactly determined in advance. As
well as being intuitively compelling, this has
been experimentally confirmed by Saba and
Shearer (1994). An emergent system that de-
rives its form from a circular relationship be-
tween structure and dialogue of the sort found
in stigmergy might therefore be a promising
means of constructing a self-organising learn-
ing environment. It appears to provide both
structure and dialogue, if not at the same time
then certainly in the same environment. While
the mediated dialogue of stigmergy is impover-
ished when compared with the richness of even
an SMS message, it does contain the essential
elements of dialogue. Bakhtin says that words
are a “territory shared by both addresser and
addressee, by the speaker and his interlocutor”
(Morris, 1994). In a meaningful sense, stigmergic
signs provide a means of (quite literally) estab-
lishing that territory.

EXAMPLES

The following examples are selected to help
illustrate a few of the ways in which social
navigation is used to create e-learning environ-
ments and to provide a context for the discus-
sion that follows. Each of these systems gener-
ates a kind of structure through the use of
stigmergic processes, bringing together exist-
ing resources in ways that may be valuable for
learners. In each case this is a participatory
process of construction, which may be of edu-
cational value in itself. These are merely ex-
amples of the genre that serve to illustrate the
principles involved. There are many others

(e.g., Anderson et al., 2003; Donath, Karahalios,
& Vigas, 1999; Edmons, 2000; Miettinen,
Kurhila, Nokelainen, & Tirri, 2005; Semet,
Lutton, & Collet, 2003; Small, 2001; Susi &
Ziemke, 2001; Yang, Han, Shen, Kraemer, &
Fan, 2003).

CoFIND

CoFIND is a collaborative bookmark database
predating furl and del.icio.us, but embodying
many of the same concepts. Like its succes-
sors, it allows users to add bookmarks and to
tag them with shared, arbitrarily named tags.
However, CoFIND is solely designed for groups,
not individuals. Although it preferentially dis-
plays a user’s own bookmarks, all bookmarks
are shared and their authors are anonymous to
others in the system. CoFIND makes extensive
use of many social navigation cues to help
learners explore the system. It uses both im-
plicit and explicit ratings to structure the envi-
ronment, which is constantly evolving, in a
literal and Darwinian sense.

As well as simple categorisations (topics
and groups of topics), CoFIND uniquely em-
ploys metadata known as qualities to guide
learners to resources. Like everything in the
system, these are entered by the users, so their
precise nature varies from one instance to the
next. Typically they include words such as
“useful,” “good for beginners,” “clear,” or “de-
tailed.” They are used to provide explicit rat-
ings for resources. They are words or phrases
that indicate not only that a resource is valu-
able, but also how it is valuable. As there are no
limits on the kinds of qualities that may be
entered, it is possible for users to enter negative
qualities, but such usage is relatively rare as
qualities are usually employed to recommend
resources.

New qualities can inherit ratings from old
ones, so that ratings for existing resources are
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copied to the new quality. Once the ratings
have been copied, each new quality leads an
independent existence from its parent. This is a
direct analogue of reproduction with variation,
albeit in a Lamarckian more than a Darwinian
sense.

Users may select the qualities that are valu-
able to them at the time they are needed, rather
than the more traditional route of embedding
such preferences within a user model
(Brusilovsky, 2001). Qualities thus provide a
kind of disembodied user model, discardable
attributes that capture what is valuable at a
given moment in an educational trajectory, leav-
ing a kind of pedagogic trail for those who come
after.

In a direct analogue of Darwinian natural
selection, resources and metadata (topics,
groups of topics, and qualities) compete for
prominence within the system. Success for
both resources and metadata is measured pri-
marily using list position and font size, deter-
mined by implicit usage statistics and explicit
ratings. The evolutionary winners are those
that are most prominent. The losers dwindle at
the periphery of the system and are seldom
used. In earlier versions they were actually
‘killed,’ but this was found to be pedagogically
harmful, reducing the incentive of users to
contribute when their metadata or resources
vanished altogether. In the current system, an
extra weighting is given to a user’s own data
and metadata, meaning they will always see
their own resources. Numerous other social
navigation cues such as novelty icons, flags of
recent visits, displays of recent changes, and
numeric counters combine to influence
behaviour and thus structure the environment
dynamically. Each combination of topic and
quality represents a small, connected ecosys-
tem in which resources struggle for survival,
boosted or thwarted by stigmergic and other
navigation cues. In some ecosystems they flour-
ish; in others they fail.

Knowledge Sea

The Knowledge Sea combines AI techniques
with social navigation, representing clusters of
resources in varying shades of blue that indi-
cate their relative popularity, based on implicit
usage statistics (Brusilovsky, Chavan, & Farzan,
2004). Similar resources are clustered, allow-
ing users to identify those that are most relevant
by subject, then to identify those that are most
relevant by popularity. The stigmergic effects
of this are to create deep pools of deeper blue
around current topics of interest, drawing users
into them. There is a danger with such a system
that there might be insufficient negative feed-
back to draw users away from the area of
current interest, but this is compensated for in
the way that the system is used to support a
traditional institutionally taught course, which
provides a further layer of structure forcing
users to periodically change topic. As with for
all such self-organising environments, context
is a crucial element and it is not meaningful to
separate the computer system from the other
systems with which it interacts.

EDUCO

EDUCO uses both history-rich and real-time
aware-ware social navigation features (Kurhila,
Miettinen, Nokelainen, & Tirri, 2002). Histori-
cally popular documents receive greater em-
phasis, primarily through shading. Users are
shown as dots clustered around documents,
making others more inclined to join them in real
time. To increase their attractiveness, EDUCO
provides a chat system, allowing each chat to
be associated with specific documents. This
combination of both implicit and explicit dia-
logue, sign-based and sematectonic stigmergy,
creates structure through dialogue in a con-
stantly changing information environment,
adapting rapidly according to the changing in-
teractions of its users. The combination of
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different social navigation cues that act at
different temporal scales, the immediate and
the historic, allow for the possibility of a richer
kind of structure. This provides (largely latent)
potential for the development of an ecosystem
that more closely resembles that of natural
systems, where the large and slow-moving
provide the context for the smaller and faster
elements.

Jasper

Jasper (Crossley, Davies, McGrath, & Rejman-
Greene, 1999) uses a direct metaphor of a
cultivated garden rather than a natural ecosys-
tem, presented using a full three-dimensional
interface. Flowers in the garden are clustered
together according to similarity of subject mat-
ter and move when “touched” (i.e., a user has
looked at the chunk of knowledge associated
with that flower). Flowers that are most used
grow strongest and tallest, while those that are
least used wither and die, or may be pruned.
Inhabitants of the garden may take cuttings of
flowers for their own gardens, and there is an
iconic representation of their levels of activity
within the system which helps to identify those
who are most worth following. Using both
sematectonic and sign-based stigmergic cues,
Jasper is a rich system that combines both user-
created and emergent structure at a number of
scales, both temporal and physical. Sadly it
appears to no longer be under active develop-
ment.

THE WISDOM OF CROWDS,
THE STUPIDITY OF MOBS

The benefits of systems such as those de-
scribed above include a cost-effective means
of utilising the collective knowledge of the
many to the benefit of all, a low-threshold

approach to collaboration, an increased sense
of community, and a release from some of the
isolation of e-learning. Social navigation offers
many potential benefits, but with it come poten-
tial hazards. In this section we will explore
some of these hazards and identify nature-
inspired approaches to overcoming them.

A potentially damning criticism of a self-
organised approach to learning that uses social
navigation is that it may lead to the blind leading
the blind. There are at least two distinct poten-
tial, though partial, answers to this objection.

1. While any individual learner may have
insufficient knowledge to adopt a self-
organised learning strategy, the fact that a
learning community is made up of adults
with a rich variety of perspectives means
that the sum of knowledge available is
greater than that of an individual. Each
learner may contribute the answer to part
of the puzzle (e.g., by contributing or
rating resources, or simply by leaving a
trail of footprints), but it is the emergent
collective that generates the structure of
the whole.

2. The systems are part of much wider sys-
tems and are predicated on the assump-
tion that there are already suitable learn-
ing resources available and an existing or
actively developing learning community.
The systems’ contribution is in finding and
effectively using those resources that are
most relevant.

Although these answers go part of the way
to dealing with the problem, a number of thorny
issues remain. Examples such as bank runs
show clearly how the wisdom of crowds can,
through stigmergy, run out of control and be-
come the stupidity of mobs. Without sufficient
checks, there is a fine line between a self-
organising stigmergic system and one that op-
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erates according to the Matthew Principle (most
eloquently expressed by Billie Holliday as “them
that’s got shall get, them that’s not shall lose”).
Surowiecki (2004) writes of rioting mobs: “As
more people riot, more people decide that they
are willing to riot, too.” For Surowiecki, the
answer to the problem lies in maintaining a
balance between information that is shared and
information that is private. Shared information
can strongly influence the behaviour of those
who have access to it. As more people share
that information, its influence is reinforced.
One approach, typified by the Knowledge Sea,
is thus to ensure that those with sufficient
knowledge and authority provide the most influ-
ence on the system, but this reintroduces the
objections to traditional e-learning voiced ear-
lier, albeit in a less resource-intensive and more
adaptive manner. Another alternative is to ag-
gregate privately held information, withholding
the results until sufficient information has been
accrued. Google’s latent human annotation
works this way, due to the innate delays be-
tween updates to its indexes. However, there
are other approaches that may be borrowed
from nature that may help.

Natural Selection

Evolutionary processes of natural selection can
provide sufficient negative feedback to halt
out-of-control processes. CoFIND, for instance,
allows negative as well as positive ratings to
provide a limit on harmful growth. Because
users are intelligent and goal directed, struc-
tures that get in the way of their goals can be
removed. For example, when a student deliber-
ately manipulated the system to encourage
others to visit his own (tangentially useful at
best) site, the negative ratings of others even-
tually pushed it off the map (Dron, Mitchell, &
Boyne, 2003).

Purpose and Clustering

The example of the manipulative student re-
ferred to in the previous paragraph highlights a
significant aspect of self-organising learning
environments. If learners use them with the
intention of learning, then they become learning
environments. If not, they become something
else. For this reason, they work best with
relatively small groups of similarly minded learn-
ers, with clear and shared learning goals. As a
corollary, where a system has evolved to suit
the needs of a particular group, it may not suit
a newcomer to it quite as well and, for better or
worse, the newcomer may provide a disruptive
influence by interacting with the system differ-
ently.

If used in a larger organisation, it is impor-
tant to design systems that have a small-world
structure, where small, weakly connected clus-
ters can evolve relatively independently of each
other. For instance, this can be provided by the
parcellation caused by tagging in environments
such as CoFIND or the clusters of the Knowl-
edge Sea. These mechanisms can also help to
limit damaging effects to a small area, much as
parcellation affords opportunities for isolated
pockets of evolution in natural systems (Calvin,
1997). Equally, the weak connections between
these isolated pockets can act like isthmuses or
shifting land masses in the natural evolutionary
environment, spreading useful structures into
other nearby ecosystems. The principle of tag-
ging as opposed to more traditional hierarchical
structures allows resources to be shared be-
tween tags, and tags to be shared between
clusters of resources. Another way this can be
achieved is through the use of multiple scales,
as seen in Jasper and EDUCO.

Creativity and Adaptation

Termites will never build mock-Tudor cottages,
and stigmergy does not naturally lead to original
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solutions. This is independent of the intelligence
of the agents involved. The stigmergic struc-
ture of money markets exhibits no more intelli-
gence and arguably less than the formation of
termite mounds. Having said that, the kinds of
stigmergy that drive the systems described
here are subtly different from those underpin-
ning natural and simple human systems. For
termites building termite mounds, the signs pro-
vided by pheromones are unambiguous. Even in
human systems such as money markets, where
there may be more choices in how to respond
(to invest or not to invest), the increases and
decreases in the value of currencies are largely
unequivocal signals. Social navigation cues,
especially when used in combination, are usu-
ally far less straightforward. For example, with-
out prior knowledge it is not clear whether the
different shades of blue used in the Knowledge
Sea imply positive or negative ratings. The
presence of others in Educo does not always
act as an incentive to visit a page. Users who do
not always click on the top element of a list nor
the largest item on the screen, may consider
different parts of the screen as more significant
than others and are affected by the historical,
visual, and conceptual context of what they are
viewing (Dron, 2005). Above all, by far the
most important signal that is used in such sys-
tems is the labelling and accompanying text (if
any) of the resources themselves. While dilut-
ing the overall effectiveness of the social navi-
gation system as a whole, such ambiguities and
differences in interpretation can provide the
variation that is necessary for the system as a
whole to evolve. Google itself is a stigmergic
system (Gregorio, 2003) with a strong tendency
towards the Matthew Principle, but this does
not stop new items from rising to the top of its
rankings, partly because of the greater impor-
tance of semantic information, partly because it
is far from the only source of information
available, partly due to the delays between

implicit recommendations and their aggrega-
tion, and partly because there is always a
relatively small but significant number of people
choosing to select items that are not in the first
page of results.

Sometimes the ambiguities caused by the
interactions of different social navigation cues
may take on the character of what Gould and
Lewontin (1979) describe as ‘exaptions’. These
features, which are side effects of other adap-
tations, can lead to unexpected behaviour. For
example, in an experiment undertaken by the
author comparing the effects of different navi-
gation cues on behaviour, both font size and list
position were consistently shown to positively
or negatively influence behaviour. However,
when combined, the results were less intuitively
obvious. For instance, a small item at the bot-
tom of a list of large items attracted a dispropor-
tionately large number of clicks, despite com-
bining the two least attractive features of both
font size and list position. It was then
hypothesised that users were attracted by the
fact that it was different from the rest. How-
ever, an otherwise identical example in which
the item with the smaller font appeared in the
middle of the list did not show this behaviour at
all (Dron, 2005).

Complex Dynamics,
Signposts, and Fenceposts

To provide a learning environment where evo-
lution can occur, it is necessary to develop
systems that are capable of co-evolving at the
edge of chaos (Kauffman, 1995). If the struc-
ture is too prescriptive, they will fall into an
unchanging Stalinist regime, while if it is too
dynamic, they will fall into a Red Queen regime,
always running to stay in the same place, their
components never reaching high levels of fit-
ness. In design terms, this means that the
structure that is presented to the learners should
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not be too constraining, nor should it provide so
many choices that the learner is bewildered and
unable to choose. Similarly it should not change
so rapidly that the learner becomes lost. Learn-
ing is by definition a move into the unknown and
may thus be frightening (Rogers, 1969), so a
learning environment should not make it more
so. The central rule should be to build signposts,
not fenceposts. Learners should receive guid-
ance, but be free to stray from the path. If
appropriate feedback loops can capture and
amplify that behaviour, then the system will be
capable of change and adaptation.

The Rules of Change

In an ideal system the rules themselves would
be subject to evolutionary mechanisms of
change. Unfortunately, in a learning environ-
ment, this is hard to achieve. Poor adaptations
not only fail within the system, but as part of a
broader ecology in which other competing al-
ternatives are available, the system itself will
not be selected as a suitable environment for
learning. This extreme variation of the cold start
problem would never get off the ground in the
first place. In systems like CoFIND the nearest
equivalent to adapting the rules of behaviour lies
in the rapid application development method that
is used, whereby the system designer chooses
ever more effective algorithms based on feed-
back and use of the system.

CONCLUSION

E-learning software that explicitly employs so-
cial navigation is still a research backwater.
However, general purpose social software that
employs a subset of its principles (blogs, link-
sharing software, wikis, and so on) is becoming
commonplace. Increasingly the bottom-up de-
sign and emergent structures that such soft-

ware supports develop according to principles
more closely akin to evolution than to design.
Even the venerable hierarchical asynchronous
discussion forum contains social navigation cues
such as depth of nesting, implicit indicators of
levels of activity, and posting dates that indicate
currency. Although these cues are only barely
structural and are not designed with educa-
tional purposes in mind, they can nonetheless be
influential and stigmergic, encouraging or dis-
couraging use. As such systems are ubiquitous
tools in e-learning environments, it is important
that research continues in this area.

There are still unexplored avenues where
principles such as stigmergy and evolution may
fruitfully be applied. A particularly wicked prob-
lem is that of adaptive sequencing of an open
corpus (Masthoff, 2004). The current genera-
tion of tools provides a structure that recom-
mends particular resources clustered by simi-
larity and/or popularity. Any sequence that
arises is an emergent phenomenon that may be
visible in retrospect (though the systems pre-
sented here do not explicitly provide this infor-
mation), but cannot be predicted. However,
within traditional planned learning, part of the
reassurance and much of the effectiveness is
often the result of a planned narrative. While it
is simple enough to capture and reinforce learn-
ers’ paths through a body of resources, ensur-
ing that those paths are useful and worth re-
peating is a harder task.

As systems such as CoFIND, the Knowl-
edge Sea, and Educo reach maturity, it be-
comes increasingly important to consider ways
of allowing them to interoperate, share knowl-
edge and users, and perhaps even to compete.
Tentative steps are being made in this area
(Brusilovsky, 2004) which offer a range of new
and fascinating challenges, with the promise of
opportunities for a rich and variegated world-
wide ecosystem of self-organising communi-
ties for learning.
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ABSTRACT

In this chapter we describe a mechanism to search for resources in unstructured peer-to- peer
(P2P) networks using ant algorithms implemented through software agents. Traditional
resource search algorithms in P2P networks use an uninformed or blind search among the
various nodes of the network. In contrast, the resource search algorithm described in this
chapter performs an informed search using the ant-based heuristic. In our algorithm, ants,
implemented as software agents, are created in response to a user’s resource search query.
An ant reinforces the route that yields a successful search for directing ants in the future
towards nodes with higher probability of locating resources. We describe and compare
different reinforcement strategies used by ants to perform efficient resource search in P2P
networks.

INTRODUCTION

The advent of the Internet over the past decade
has enabled humans to interact and exchange
information with each other in various formats
including text-based communication, audio, and
video. Recently, file-sharing networks such as
Napster, Kazaa, and BitTorrent have become
an attractive paradigm for online users to ex-
change resources such as data, information,

and services with one another. Most of these
file-sharing networks are based on a peer-to-
peer (P2P) network architecture. Besides file
sharing, P2P systems are currently being used
in applications including data sharing and infor-
mation management for digital libraries
(Walkerdine & Rayson, 2004), future combat
systems, and large-scale computing for search-
ing for extra-terrestrial life (Anderson, Cobb,
Korpela, Lebofsky, & Werthimer, 2002). With
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the recent research and commercial interest in
P2P networks, it is clear that P2P networks are
becoming an important technology for manag-
ing large-scale information systems. There-
fore, it makes sense to develop mechanisms
that make management of P2P networks more
efficient. In this chapter, we focus on tech-
niques to improve an essential feature of P2P
networks—searching for resources within P2P
networks. We envisage that understanding and
addressing the issues related to P2P search
algorithms will enable us to improve informa-
tion management in P2P networks.

A P2P network consists of users located on
nodes that are interconnected with each other.
In the client-server paradigm used commonly
over the Internet, a client computer requests
access to information or services that are avail-
able with a server computer, giving rise to a
master/slave-like hierarchy between the server
and the client. In contrast, in a P2P network, all
nodes behave as peers with similar or compa-
rable capabilities. Every peer node can provide
as well as access information and services
from other peer nodes. The peer-based model
makes P2P networks decentralized and distrib-
uted. Consequently, in contrast to a centralized
server-based architecture, P2P networks can
grow in size without worrying about problems
such as congestion at the central server node
and scalability of the network. However, the
decentralized nature of P2P networks also
introduces several challenges such as rapid
searching of resources in the network, issues
related to security and trust of nodes in net-
work, and enforcing fair sharing of resources
among nodes in the P2P network. Several
mechanisms including structured overlays
(Ratnaswamy et al., 2001), reputation and re-
ferral-based mechanisms (Yu, 2003), and game-
theoretic approaches (Marti & Garcia-Molina,
2004) have been proposed to address these
challenges. In contrast to these approaches, in

this chapter we discuss nature-inspired com-
puting techniques to address the problem of
rapidly searching for resources in a P2P net-
work.

P2P NETWORK
CLASSIFICATIONS

In a P2P network, a user at a node makes
different resources such as text, audio, and
video files, and even computational resources
such as CPU time and networked storage,
available to other users. A user on another node
can access and acquire these resources, and in
return is expected to share resources that it
possesses. Consequently, one of the major
operations performed by users in a P2P net-
work is to search for resources on other nodes
of the network. Searching for resources rapidly
and efficiently is a challenging problem in P2P
networks because of the absence of a central
server node that would maintain information
about the contents shared by all nodes in the
network. The decentralized nature of P2P net-
works also introduces challenges such as load
balancing, authenticating the identity of nodes,
and monitoring the actions performed by differ-
ent nodes.

Various types of P2P networks that modify
some of the features of the peer-based model
have been proposed to address some of these
challenges. One class of P2P networks is the
structured P2P networks where nodes are ar-
ranged on a pre-determined topology such as a
hypercube or a ring. Distributed hash table
(DHT)-based techniques are used to facilitate
rapid searching of resources in the network.
Several structured P2P networks such as Chord
(Stoica, Morr is, Karger , Kaashoek, &
Balakrishnan, 2001), Pastry (Rowstron &
Druschel, 2001), Tapestry (Zhao, Kubiatowicz,
& Joseph, 2001), Content Addressable Net-
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work (CAN) (Ratnaswamy et al., 2001), and
Symphony (Manku, Naor, & Manber, 2004)
have been developed that employ clever net-
work topologies and hashing algorithms. How-
ever, in a structured P2P network, node and
resource placement algorithms determine the
location of a node and the resources stored on
that node. A user at a node in a structured P2P
network does not have the discretion to select
resources for storing and sharing from the node
at which the user is located. In contrast, un-
structured P2P networks do not use determin-
istic node and resource placement algorithms,
and a user in an unstructured P2P network can
decide which resources he/she is willing to host
and share. Unstructured P2P networks are also
relatively easy to setup, and their protocols are
simple to implement. Consequently, unstruc-
tured P2P networks have become an attractive
paradigm for implementing commercial P2P
systems such as Kazaa (http://
www.kazaa .com), Limewire (http:/ /
www.limewire.com), and Morpheus (http://
www.morpheus.com). In unstructured P2P
networks, network setup and resource search
rely on a packet flooding mechanism. This
gives rise to considerable traffic, ensuing con-
gestion within the network that degrades the

network performance. The network protocols
for unstructured P2P networks are described in
the following section.

UNSTRUCTURED P2P NETWORK
PROTOCOLS

Unstructured P2P networks are by far the most
attractive P2P network architecture for com-
mercially deployed P2P systems owing to their
simplicity. In this section we provide an over-
view of the unstructured P2P network proto-
cols used for network setup and resource search.

In an unstructured P2P network, a newly
joining node uses the node discovery protocol to
discover other nodes in the network. As shown
in Figure 1, a new node wishing to join the
network sends a ping message that gets flooded
across the network. Nodes receiving the ping
message respond with a pong message that
contains information about the responding node
including its IP address, available bandwidth,
and networking resources. The pong message
is routed back to the joining node that originated
the ping message. The joining node then selects
its neighboring nodes based on the information
contained in the different pong messages.

Figure 1. (a) Node discovery and (b) resource discovery protocols in a P2P network

Ping
PongRecently

joined Node

Querying
Node

Query
Hit

Query

(a) (b)
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After a node has joined the P2P network, it
uses the resource discovery protocol to search
for resources within the network. The resource
discovery protocol comprises a query message
that gets forwarded to nodes along the network
paths established during node discovery, until
the resource is discovered or the lifetime of the
query message expires. If the resource is found
on a node along the search path of the query
message; a queryHit message is sent back to
the node originating the query. The node origi-
nating the query then selects one of the nodes
that responded with a queryHit message and
downloads the resource from that node. In this
chapter, we concentrate on the P2P resource
discovery protocol and assume that appropriate
mechanisms for node discovery are used to set
up the P2P network. Lin, Marzullo, and Masini
(1999) and Portmann and Sevairatne (2002)
provide techniques to improve the basic node
discovery protocol for unstructured P2P net-
works.

INFORMED SEARCH IN A P2P
NETWORK

The resource discovery protocol in an un-
structured P2P network performs an uninformed
or blind search to locate the resource being
searched for. Instead of using a blind search
over all the nodes in the network, the efficiency
of the search can be improved by using a
heuristic that directs the search towards nodes
that are more likely to contain the resource
being searched for. Here, we describe a heuris-
tic inspired by the foraging activity of social
insects such as ants (Bonabeau, Dorigo, &
Theraulaz, 1999; Heck & Ghosh, 2002) to
locate food.

In several ant species, ants searching for
food leave behind a pheromone trail along the
path from their nest to the food. Ants searching

for the food later on use the trail as a positive
reinforcement to lead themselves to the food.
Ants also show a high affinity to an established
trail and are reluctant to deviate to trail-less but
more efficient paths towards the food even if
one exists.

In our resource discovery algorithm, soft-
ware agents (Weiss, 1998) implement the ac-
tions of ants. In the rest of the chapter, the
terms agent and ant are used interchangeably.
To enable our resource discovery algorithm, an
ant is created in response to a search query.
Every node within the network is associated
with a pheromone value that represents the
probability of locating the resource being
searched for on that node. An ant searches for
a resource on different nodes of the network.
Ants get attracted to nodes with higher phero-
mone values. If an ant locates the resource it is
searching for on a node, the pheromone value
of that node is reinforced. The ant then retraces
the route back to its origin while reinforcing
pheromone on each node along its return route.
On the other hand, if the resource is not found
by an ant, it does not reinforce pheromone along
the nodes of its return route. Later on, when
another resource needs to be searched, an ant
uses an already established pheromone trail to
direct the search towards nodes where re-
sources had been located previously.

ANT ALGORITHM FOR
P2P SEARCH

We consider an unstructured P2P network.
Each node in the network contains certain
resources inside a resource table, and a re-
source can be identified on a node with a unique
resource name. Nodes join and leave the net-
work at random using the P2P node discovery
protocol. Each node maintains a forwarding
table containing the addresses of its neighbor
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nodes returned by the node discovery protocol.
Each address in the forwarding table is associ-
ated with a normalized value that corresponds
to the pheromone associated with that node.
The pheromone associated with a node in the
forwarding table gets updated when an ant
selects to move to it.

A user at a node initiates a search by
providing a set of keywords corresponding to
the identifier of the resource(s) he or she
wishes to locate. The node originating the query
creates an ant to search for the resource. At
each node, the ant selects a neighboring node to
move to for the next hop, with a probability
given by the pheromone corresponding to the
node within the forwarding table of the current
node. Before migrating to the selected node,
the ant updates the pheromone corresponding
to that node in the forwarding table. The pseudo-
code for the ant algorithm for resource discov-
ery is given in Figure 2.

Pheromone Update

The updatePheromone method in Figure 2 is
used by an ant to update the pheromone of the
node it selects to visit next, from the forwarding
table of the node it is currently visiting. Every
ant is provided with a pheromone value po when
it starts its search for a resource from its origin
node o. While visiting node i, an ant selects the
node j that has the highest pheromone value
within node i’s forwarding table and updates
the pheromone pj,i according to equation 1 given
below:

pi ‹ po / [hd, i]a,

pj,i
t ‹ pj,i

t-1 + pi (1- pj,i
t-1), (1)

where, pi denotes the pheromone deposited by
the ant within node i’s forwarding table, hd,i
denotes the number of hops made by the ant to

reach from node d to node i, a is a control
parameter, and, pj,i

t is the pheromone associ-
ated with node j in node i’s forwarding table
during time t. The node d corresponds to the
ant’s origin o during its forward journey and to
the node on which the search terminated during
the ant’s return journey. In the above phero-
mone update equation, the amount of phero-
mone deposited in node i’s forwarding table is
proportional to the distance of node i from the
ant’s origin (or from the node on which the
search terminated during the ant’s return jour-
ney). This ensures that nodes further away
from the search origin are given less phero-
mone when the search is unsuccessful so that
later ants do not get considerable reinforce-
ment from pheromone on distant nodes. Also, in
Equation 1, the amount by which pj,i

t gets
reinforced is inversely proportional to the amount
of pheromone pj,i

t-1 already existing for node j
in node i’s forwarding table since time (t-1).
This ensures that nodes that already have suf-
ficient amounts of pheromone do not receive
excessive reinforcement and overshadow the
reinforcement from other nodes in its neighbor-
hood.

After each pheromone update in the for-
warding table of node i, the pheromone on all
nodes in node i’s forwarding table are re-
normalized according to equation 2 given be-
low:

pj,i
t ‹ pj,i

t / åj pj,i
t      (2)

Improvements on the
Basic Ant Algorithm

The basic ant algorithm described in Figure 2 is
suitable to search for resources in a static
environment. However, resource search in P2P
networks is dynamic in nature because differ-
ent resources are located on different nodes,
and nodes join and leave the network in an ad-
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hoc manner. To address these issues, the basic
ant algorithm needs to be modified to make it
suitable for P2P resource discovery. Resource
discovery in P2P networks is different from the
foraging behavior in an ant society in the fol-
lowing ways:

• Selective Exploration: In the traditional
ant algorithm (Bonabeau et al., 1999),
pheromone reinforces the attraction of
ants to the route leading to the food. Such
a mechanism is successful for locating
food, whose physical location does not
change with time. In contrast, in a P2P

network, different resources are present
on different nodes, and users search for
different resources at different times. If
ants blindly follow the pheromone trail
within the P2P network established by an
earlier ant, all ants are likely to end up at
the node on which the earlier ant ended its
search. Such a technique would not be
successful when different resources be-
ing searched for are located on different
nodes.

• Node Exit: In traditional ant algorithms,
the ants cease to move when the phero-
mone trail decays to a sufficiently small

Figure 2. Basic algorithm used by an ant for P2P resource discovery

void antMove(String resourceName, Node origin)
{
Ni: set of neighbors of node i specified in the forwarding table of node i;
pj,i : pheromone associated with neighbor j in forwarding table of node i, j  Ni

Stack s; // stack containing nodes visited by ant
Node i;
int hopCount;
boolean success;

s {empty};
i origin;
hopCount  0;
success false;

while ((search(resourceName,i) == false) && (hopCount <= maxHops))
{

// select the neighbor of node i that has the highest pheromone
j arg maxj pj,i
updatePheromone(pj,i);

// remember the node just visited
s.push(i);

// visit selected node next
hopCount  hopCount + 1;
i  j;

}

// set the success flag if resource was found before maxHops.
if (hopCount <= maxHops) success true;

// Ant retraces route.
while (s.isEmpty() == false)
{
j  s.pop();
if (success == true) updatePheromone(pj,i);
i  j;
}

}
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quantity and ants do not receive any posi-
tive reinforcement to direct their search.
In a P2P network, nodes leave the net-
work in an ad-hoc manner. This might
result in breaking of a pheromone trail that
passed through an exited node. Tradi-
tional ants encountering a broken trail do
not receive any pheromone reinforcement
to continue their search, and would cease
their movement and revert to their origin,
if a route to the origin exists. However,
with such a response to broken trails, ants
would not be able to find resources that
are located on other nodes in the network
and would adversely affect the search
efficiency.

• Node Entry: New nodes joining the P2P
network do not have a pheromone trail
leading to them. Traditional ants that only
follow the pheromone trail established by
earlier ants would not be able to include
newly joined nodes in their search path.
Therefore, ants using the basic ant algo-
rithm would fail to discover resources
located on newly joined nodes.

To address these challenges for P2P re-
source discovery, we extend the traditional ant
algorithm, as described below.

Anti-Pheromone Ant Algorithms

In the traditional ant algorithm, ants exhibit a
high affinity to established pheromone trails.
This affinity can be mitigated by enabling ants
to explore newly joined nodes or nodes that are
not along a successful search path. A suitable
mechanism to enable exploration of nodes that
are not reinforced with pheromone without
degrading the search performance is provided
by using anti-pheromone. Unlike positive rein-
forcement provided by pheromone, anti-phero-
mone provides negative reinforcement, and

ants are repelled from a node marked with anti-
pheromone. Anti-pheromone can be used to
mark nodes along a trail that was established
long ago, but has not yielded successful results
recently. The negative reinforcement provided
by the anti-pheromone repels ants from con-
tinuing to follow the established trail and directs
the ants to explore unvisited nodes.

We employ four different types of anti-
pheromone in our P2P resource discovery algo-
rithm:

1. subtractive pheromone (SP) ants,
2. preferential anti-pheromone (PAP) ants,
3. anti-pheromone APE (APE) ants, and
4. preferential anti-pheromone APE (PAPE)

ants.

Subtractive Pheromone (SP) Ants

The subtractive pheromone (SP) algorithm
(Montgomery & Randall, 2002;
Schoonderwoerd, Holland, Bruten, &
Rothkrantz, 1996) was developed in order to
remove poor solutions created in the past by
normal ants. If an ant has a successful search,
then the ant behaves as a normal ant during its
return journey. On the other hand, if the search
was unsuccessful and the ant reaches its search
boundary, the ant removes pheromone from the
nodes along its return journey. SP ants use the
pheromone update equation given in equation 1
during their forward journey. During their re-
turn journey, the pheromone update equation
for SP ants is given by:

pi ‹ po / [hd, i]a,

pj,i
t ‹ pj,i

t-1 + pi (1- pj,i
t-1), if search was

successful,

pj,i
t ‹ (1- pi )pj,i

t-1, if search was unsuc-
cessful,

     (3)



728

Efficient Searching in Peer-to-Peer Networks Using Agent-Enabled Ant Algorithms

where d is the node on which the search
terminates and all other parameters have the
same meaning as in equation 1. Each phero-
mone update is followed by a re-normalization
according to equation 2.

Preferential Anti-Pheromone
(PAP) Ants

The preferential anti-pheromone (PAP) ants
algorithm (Montgomery&Randall, 2002; Iredi,
Merkle, & Middendorf, 2001) is used to solve
bi-criterion optimization problems. It uses dif-
ferent pheromones for different criteria to al-
low multiple criteria to be improved in each
iteration process. A PAP ant uses two types of
pheromone: it deposits pheromone on nodes
along a successful search path, while it deposits
anti-pheromone along an unsuccessful search
path. A PAP ant is associated with a parameter
l   [0,1] that denotes its probability to get
attracted to pheromone. PAP ants use a variant
of the ant algorithm described in Figure 2.
While selecting the next node j  Ni to visit from
node i, a PAP ant selects a node j using the
criteria:

 j ‹ arg maxj pj,i
t, with probabilityl, and,

j ‹ arg maxj p’j,i
t, with probability (1 -l)

where pj,i
t and p’j,i

t are the amount of phero-
mone and anti-pheromone associated with node
j in node i’s forwarding table respectively at
time t. The parameter l  is determined experi-
mentally to be 0.8 following results reported in
Dasgupta (2004) to minimize the search la-
tency.

The pheromone update equation used by
PAP ants for a successful search path is iden-
tical to equation 1. For unsuccessful search
paths, a PAP ant deposits anti-pheromone on
nodes along the return route to its origin using
the following equation:

pi ‹ po / [hd, i]a,

pj,i
t ‹ pj,i

t-1 + pi (1- pj,i
t-1), if search was

successful,

p’j,i
t ‹ p’j,i

t-1 + pi (1- p’j,i
t-1), if search was

unsuccessful,

where d is the node on which the search
terminates, p’j,i

t is the amount of anti-phero-
mone associated with node j in node i’s for-
warding table, and all other parameters have
the same meaning as in equation 1. Each phero-
mone update is followed by a re-normalization
according to equation 2.

Anti-Pheromone Explorer (APE) Ants

The anti-pheromone explorer (APE) ants al-
gorithm (Montgomery & Randall, 2002) takes a
different approach from the first two anti-
pheromone algorithms by not reducing the phero-
mone value associated with poor solutions.
Instead, a small number of ants—called anti-
pheromone explorer ants—have their phero-
mone preference reversed and get attracted to
nodes with low pheromone. APE ants are
identical to the SP ants, and they use the
pheromone update equations given in equation
3. However, APE ants’ attraction to phero-
mone is reversed. Consequently, their selection
criterion for a node j to visit from node i is given
by:

j ‹ arg minj pj,i
t,

where pj,i is the pheromone associated with
node j in node i’s forwarding table at time t.

PAP-APE Ants

The PAP-Explorer (PAPE) ants algorithm com-
bines the behavior of PAP and APE ants.
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PAPE ants behave like APE ants and get
attracted to nodes with lower pheromone val-
ues. However, like PAP ants, PAPE ants also
use pheromone to mark successful search paths
and anti-pheromone to mark unsuccessful search
paths.

EXPERIMENTAL RESULTS

We have used the JavaSwarm platform
(SwarmWiki, 2005) as the simulation environ-
ment for experiments of our ant-based re-
source discovery algorithm. In each simulation,
we have used normal ants and ants with four
different anti-pheromone algorithms (SP, PAP,
APE, and PAPE) to evaluate their relative
performances. The performance is measured
as “% of successful ants,” which is given by the
number of ants that succeeded in locating the
resource they were searching for divided by the
number of total ants used in each experiment.
The P2P network used for our simulation con-
tains between 280-310 nodes, the exact number
of nodes being determined randomly. There are
30 ants initialized on different nodes for differ-
ent resource queries. For all our experiments
we have used the following constants: po=5.0,
maxHops and a = 2.0. We use a metric called
resource availability to simulate the distribution
of resources over the nodes of the P2P net-
work. Resource availability is defined as the
percentage of nodes that contain at least one
resource. The simulations are run for different
resource availabilities representing the number
of files available on each node. The different
values of resource availability used are 5, 15,
40, and 65. All results were averaged over five
simulation runs. Our objective across all these
experiments is to determine the different types
of ants and their proportions with respect to
each other that yield a good search perfor-
mance.

Sequences of Operations in
Swarm Simulation Model

The sequences of operations for the swarm
simulation of the P2P network are given below:

1. Create N nodes, where N @ 300.
2. Create a forwarding table for each node,

and randomly select a number of neigh-
bors (n), where n = U [5,…,10].

3. In the forwarding table for each node,
initialize pheromone of each neighbor node
to 1/n.

4. Create a resource table on each node.
The size of the resource table is drawn
from U [0,…,Rn], where Rn = 5 (very low
resource availability), 15 (low resource
availability), 40 (medium resource avail-
ability), and 65 (high resource availabil-
ity).

5. Select a node at random and create an ant
on it. An ant is specified by its startNode-
ID, maxHops, resource query (containing
file name to search for), and ant’s type.

6. Repeat step 5 for 30 times, each time
selecting a new node randomly.

7. Each ant uses its own ant algorithm (nor-
mal, SP, PAP, APE, and PAP APE).

Simulation-I

Figure 3 shows the performance of the re-
source discovery algorithm when normal ants
are used with SP, PAP, and APE ants respec-
tively. At resource availabilities of 5 and 15, SP
ants outperform PAP and APE when the per-
centage of normal ants is below 50%. This is
because a strong proportion of anti-pheromone
assists the search to remove poor solutions. At
resource availabilities of 40 and 65, we could
not find any distinction between the perfor-
mances of different types of ants. This is
because at high resource availability of 40-
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65%, most searches (with maxHops=10) are
successful, and even a random walk among the
nodes is likely to lead to a successful search.
Therefore, different pheromone update strate-
gies produce similar solutions.

In the results for PAP ants, there are no
significant differences across all the experi-
ments. This is because PAP ants behaves like
normal ants except for their preference to-
wards pheromone, l. For the experiments
shown, we have chosen l = 0.8 as the prefer-
ence towards normal pheromone, while only (1-
l) = 0.2 is used as the preference towards anti-
pheromone. A low affinity towards anti-phero-
mone makes PAP ants behave like normal ants.

APE ants perform well when normal ants
are between 70-90%, at resource availabilities
of 5, 15, and 40. This is because APE ants assist
in exploring those solutions that normal ants

cannot reach. At resource availability 65, there
is no significant difference. This is once again
because of high resource availability.

By comparing the performance of SP, PAP,
and APE ants at resource availability less than
40, we observe that SP ants have the best
performance when normal ants are between 0-
50%. This is because SP ants deposit anti-
pheromone during their return journey from an
unsuccessful search and prevent later ants
from visiting the same nodes that returned a
poor solution. Therefore, a higher number of SP
ants than normal ants enable better search
performance. On the other hand, APE ants
seem to produce the best results when normal
ants are between 50-100%. This is because
APE ants are attracted to poorer search areas.
Therefore, a high percentage of normal ants
produce successful trails and the small percent-

Figure 3. Search performance when SP, PAP, and APE ants are used with normal ants for
resource availabilities of 5, 15, 40, and 65
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Figure 4. Search performance when different ratios of SP and PAP ants are used with normal
ants for resource availability=5

age of APE ants assist in exploring nodes that
are not visited by the normal ants. Thus, a small
proportion of APE ants are successful in yield-
ing a good search performance. Finally, PAP
ants produce the worst results among the oth-
ers. This is because when resource availability
is low, few nodes contain the resource being
searched for, resulting in a low success rate for
resource searches. In such a scenario, most
nodes are marked with anti-pheromone by PAP
ants. It is quite likely that nodes that do not
contain a particular resource might contain a
different resource. However, a PAP ant marks
nodes from a previous unsuccessful search
with anti-pheromone and consequently does
not visit those nodes for later searches. There-
fore, PAP ants perform the worst when re-
source availability is low. SP and APE ants do
not have this problem because APE ants ex-
plore nodes marked with anti-pheromone, while
SP ants use only one type of pheromone. There-

fore, we observe that for this set of experi-
ments, SP and APE ants perform better than
PAP ants.

Simulation-II

This simulation compares the performance be-
tween SP and PAP ants. The experiment was
simulated under different ratios of 1:1, 2:1, 3:1,
4:1, 1:2, 1:3, and 1:4 between SP and PAP ants.

Figure 4 shows the results at resource avail-
ability 5. This simulation produces equal perfor-
mance for the combination of SP and PAP with
normal ants, and is due to a low resource
availability to distinguish the performance of
the different types of ants.

Figure 5 shows the experiments with differ-
ent ratios of SP and PAP ants for a resource
availability of 15. The combination of SP and
PAP ants in the proportion of 2:1 produces
slightly better results than with a proportion of
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Figure 5. Search performance when different ratios of SP and PAP ants are used with normal
ants for resource availability=15

Figure 6. Search performance when different ratios of SP and PAP ants are used with normal
ants for resource availability=40
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1:2 between SP and PAP ants when normal
ants are between 0-80%. Likewise, SP and
PAP ants at a ratio 3:1 give a better result than
with a ratio of 1:3 between SP and PAP when
normal ants are between 0-50%. Finally, the
combination of SP and PAP in the ratio of 4:1
performs slightly better than with a SP:PAP
ratio of 1:4 when normal ants are between 0-
80%. Therefore, this simulation suggests that a
combination of more SP than PAP ants when
normal ants are 0-50% will yield a good search
performance at resource availability 15.

Similar results are obtained for the search
performance when the resource availability is
varied for different proportions of SP and PAP
ants with normal ants, as illustrated in Figures 6
and 7.

In general, the results from simulation-II
indicate that SP ants produce slightly better
results than PAP ants. This can be attributed to
the fact that PAP ants used a pheromone
preference of l=0.8 for normal pheromone and

(1-l)=0.2 for anti-pheromone. This value of l
makes PAP ants behaves like normal ants.
Therefore, SP with a strong preference of anti-
pheromone assists the search to remove poor
solutions and produce better performances than
PAP.

Simulation-III

This experiment shows the performance com-
parison between PAP with PAPE ants and
APE with PAPE ants. As shown in Figure 8, at
resource availabilities 5 and 15, they have simi-
lar performance because there are too few
resources among the nodes of the network. At
resource availabilities of 40 and 65, PAP with
PAPE ants produces better results. This is
because APE with PAPE ants have a strong
preference for anti-pheromone which distracts
the search too much and prevents these ants
from searching for the solution.

Figure 7. Search performance when different ratios of SP and PAP ants are used with normal
ants for resource availability=65
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In the above set of experiments, we have
simulated resource discovery in P2P networks
using different proportions of ants implement-
ing different ant algorithms. The results ob-
tained illustrate the appropriate proportion of
ants required to perform an efficient search
varies with the availability of resources in the
network, the percentage of normal ants, and the
different proportions of various anti-pheromone-
enabled ants used in the ant population.

RELATED WORK

Ant algorithms have already been applied to
several applications (Bonabeau et al., 1999;
Dasgupta, 2004) including dynamic program-
ming, the traveling salesman problem, and rout-
ing in telecommunication networks
(Schoonderwoerd et al., 1996). However, re-
source discovery in P2P networks is different
from each of these applications because the

node on which the resource will be discovered
is not known a priori and the topology of the
P2P network can change dynamically as nodes
join and leave. Extensions to ant algorithms
using anti-pheromone for the traveling sales-
man problem have been studied in Montgomery
and Randall (2002). The Anthill framework
(Babaoglu, Meling, & Montresor, 2002) em-
ploys ant-based algorithms for load balancing in
a P2P network, and ants backtrack along the
path they traveled to update routing tables at
each node. In contrast, our algorithm uses
different types of pheromone and ants with
different behavior to make P2P resource dis-
covery more efficient.

CONCLUSION AND
FUTURE WORK

In this chapter, we have described an informed
search algorithm using an ant-based heuristic

Figure 8. Results of Simulation-III for PAP, APE ants, and PAP APE ants at resource
availabilities 5, 15, 40, and 65
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for P2P resource discovery. We are currently
investigating extensions to the algorithm de-
scribed in this chapter using multiple ants to
enable parallel search queries. We are also
exploring evolutionary algorithms to enable ants
to rapidly discover routes to resourceful nodes.
We also propose to develop a cooperative
multi-agent framework that allows ants from
different nodes to exchange trail information
with each other to locate resources rapidly. We
envisage that ant algorithms implemented
through software agents provide a useful direc-
tion for further exploring challenges and issues
of management of P2P networks for future
research.
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KEY TERMS

Ant Algorithm: Essentially, a reinforce-
ment learning algorithm. In an ant algorithm,
points that are good candidates for a solution to
a problem get reinforced over time. When the
algorithm terminates, the points that have been
reinforced the most are selected as the
solution(s) to the problem.

Anti-Pheromone: Unlike pheromone, anti-
pheromone is used to provide negative rein-
forcement in an ant algorithm. Points in the
solution space that are marked with anti-phero-
mone are usually bad solutions to the problem.
The negative reinforcement provided by the
anti-pheromone ensures that these points are
not included in successive iterations of the ant
algorithm.

Node Discovery: The mechanism used by
a newly joining node in a P2P network to
determine the IP addresses of existing nodes in
the network and selectively choose them as
neighbors.

Peer: A node in a P2P network. A peer can
provide services to other peers and also receive
services from other peers. Because it can
behave both as a server and a client, a peer is
also known as a servant.

Peer-to-Peer Network: A network con-
sisting of an overlay or logical network between
nodes that are interconnected by an underlying
physical network. Users are located on nodes
of the P2P network. A user at a node can store
resources such as data files on its node and can
share these resources with other nodes, as well
as acquire new resources from other nodes in
the network.
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Pheromone: The metric used in an ant
algorithm to reinforce points in the solution
space of a problem. Pheromone decays over
time.

Resource Discovery: The mechanism used
by a node to search for resources among other
nodes of the network. A user at a node provides
a search query containing a set of keywords
corresponding to the resource being searched
for. A resource discovery protocol is then used
to forward the search query to other nodes and
search for the resource on those nodes. When
a resource is located at a node, a success
message is sent to the node that originated the
search query.

Structured P2P Network: In such a net-
work, the network growth follows a specific
topology as a ring or a hypercube. Resources
are placed on nodes using a distributed hash
table (DHT)-based algorithm. In structured
P2P networks, operations such as determining
the location of a newly joining node within the
network and searching for resources are per-
formed using deterministic algorithms.

Unstructured P2P Network: Networks
that do not use a pre-determined topology and
grow in an ad-hoc manner. A node in an
unstructured P2P network makes the decision
to accept another node as a neighbor based on
the number of resources shared by the latter
node.
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ABSTRACT

Work to date on negotiation protocols has focused almost exclusively on defining contracts
consisting of one or a few independent issues and a relatively small number of possible
contracts. Many real-world contracts, by contrast, are much more complex, consisting of
multiple interdependent issues and intractably large contract spaces. This chapter describes
a simulated annealing-based approach appropriate for negotiating such complex contracts
that achieves near-optimal social welfare for negotiations with binary issue dependencies.

INTRODUCTION

Work to date on negotiation protocols has fo-
cused almost exclusively on negotiating what
we can call simple contracts—that is, con-
tracts consisting of one or a few independent
issues (Faratin, Sierra, & Jennings, 2000;
Ehtamo, Ketteunen, & Hamalainen, 2001;
Fisher, Ury, & Patton, 1991; Raiffa, 1982).
These protocols work, in general, via the itera-

tive exchange of proposals and counterpropos-
als. An agent starts with a contract that is
optimal for that agent and makes concessions,
in each subsequent proposal, until either an
agreement is reached or the negotiation is
abandoned because the utility of the latest
proposal has fallen below the agents’ reserva-
tion value (see Figure 1).

This is a perfectly reasonable approach for
simple contracts. Since issues are independent,
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a monotonic drop-off in utility as the contract
diverges from that ideal. Simple contract nego-
tiations thus typically progress as in Figure 2.

As we can see, the proposals from each
agent start at their own ideal, and then track the
Pareto frontier until they meet in the middle
with an optimal agreement. This happens be-
cause, with linear utility functions, it is easy for
an agent to identify the proposal that represents
the minimal concession: the contract that is
minimally worse than the current one is “next”
to the current one in the contract space and can
be found by moving in the direction with the
smallest aggregate utility slope. The simplicity
of the utility functions, moreover, makes it
feasible for agents to infer enough about their
opponents that they can identify concessions
that are attractive to each other, resulting in
relatively quick negotiations.

Real-world contracts, by contrast, are gen-
erally much more complex, consisting of a large
number of inter-dependent issues. A typical
contract may have tens or even hundreds of

Figure 1. The proposal exchange model of
negotiation, applied to a simple contract.
Each point on the X axis represents a possible
contract. The Y axis represents the utility of
a contract to each agent.
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binary issues. Each agent was required to reduce the Hamming distance (number of issues with
different values) between successive proposals until an agreement was reached. The Pareto
frontier was estimated by applying an annealing optimizer to differently weighted sums of the
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distinct issues. Even with only 40 issues and
two alternatives per issue, we encounter a
search space of roughly 1 trillion possible con-
tracts, too large to be explored exhaustively.
The value of one issue selection to an agent,
moreover, will often depend on the selection
made for another issue. The value to me of a
given couch, for example, depends on whether
it is a good match with the chair I plan to

purchase with it. Such issue interdependencies
lead to nonlinear utility functions with multiple
local optima (Bar-Yam, 1997).

In such contexts, an agent finding its own
ideal contract becomes a nonlinear optimization
problem, difficult in its own right. Simply con-
ceding toward the other agents’ proposals can
result in the agent’s missing contracts that
would be superior from both their perspectives
(e.g., the contract labeled “A” in Figure 3).
Standard negotiation techniques thus typically
produce the behavior in Figure 4 when applied
to complex contract negotiation.

The agents start with an approximation to
their ideal contract and diverge increasingly
from the Pareto frontier as they converge upon
an agreement. The degree of sub-optimality
depends on the details of the utility function. In
our experiments, for example, the final con-
tracts averaged 94% of optimal. This is a
substantial decrement when you consider that
agents can average 50% of optimal simply by
choosing random contracts. The utility func-
tions we used for each agent were, moreover,
individually quite easy to optimize: a simple
steepest ascent search averaged final utility

Figure 3. An example of proposal exchange
applied to a complex contract

Figure 4. A typical negotiation for a complex contract. This example differs from Figure 2 only
in that a nonlinear utility function was used by each agent (details follow in text).
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values of roughly 97% of those reached by a
nonlinear optimization algorithm. It is striking
that such relatively forgiving multi-optima util-
ity functions lead to substantially sub-optimal
negotiation outcomes.

These sub-optimal outcomes represent a
fundamental weakness with current negotia-
tion techniques. The only way to ensure that
subsequent proposals track the Pareto frontier,
and thus conclude with a Pareto optimal result,
is to be able to identify the proposal that repre-
sents the minimal concession from the current
one. But in a utility function with multiple
optima, that proposal may be quite distant from
the current one, and the only way to find it is to
exhaustively enumerate all possible contracts.
This is computationally infeasible, however,
due to the sheer size of the contract space.
Since the utility functions are quite complex, it
is in addition no longer practical for one agent to
infer the other’s utility function. Complex con-
tracts therefore require different negotiation
techniques which allow agents to find ‘win-
win’ contracts in intractable multi-optima search
spaces in a reasonable amount of time. In the
following sections we describe a family of
negotiation protocols that make substantial
progress towards achieving these goals.

MEDIATED SINGLE-TEXT
NEGOTIATION

A standard approach to dealing with complex
negotiations in human settings is the mediated
single-text negotiation (Raiffa, 1982). In this
process, a mediator proposes a contract that is
then critiqued by the parties in the negotiation.
A new, hopefully better proposal is then gener-
ated by the mediator based on these responses.
This process continues, generating successively
better contracts, until some agreed-upon stop-
ping point (e.g., the reservation utility value is

met or exceeded for both parties). We can
visualize this process as shown in Figure 5.

Here, the vertical line represents the con-
tract currently proposed by the mediator. Each
new contract moves the line to a different point
on the X axis. The goal is to find a contract that
is sufficiently good for both parties.

We defined a simple experiment to help us
explore computationally how well this approach
actually works. In this experiment, there were
two agents negotiating to find a mutually ac-
ceptable contract consisting of a vector S of 40
Boolean-valued issues, each issue assigned the
value 0 or 1. This formulation is fully general,
because we can model Nary issues (issues that
have more than two possible values) simply by
treating several bits as corresponding to a single
issue. This defined a space of 2^40, or roughly
10^12, possible contracts. Each agent had a
utility function calculated using its own 40x40
influences matrix H, wherein each cell represents
the utility increment or decrement caused by the
presence of a given pair of issues, and the total
utility of a contract is the sum of the cell values for
every issue pair present in the contract:

 40 40

U = å å Hij Sj Sj

 i=1 j=1

Figure 5. Single-text negotiation
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The influence matrix therefore captures the
dependencies between issues, in addition to the
value of any individual contract clause. For our
experiments, the utility matrix was initialized to
have random values between –1 and +1 in each
cell. A different influences matrix was used for
each simulation run, in order to ensure our
results were not idiosyncratic to a particular
configuration of issue inter-dependencies.

The mediator proposes a contract that is
initially generated randomly. Each agent then
votes to accept or reject the contract. If both
vote to accept, the mediator mutates the con-
tract (by randomly flipping one of the issue
values) and the process is repeated. If one or
both agents vote to reject, a mutation of the
most recent mutually acceptable contract is
proposed instead. The process is continued for
a fixed number of proposals. Note that this
approach can straightforwardly be extended to
a N-party (i.e., multi-lateral) negotiation, since
we can have any number of parties voting on
the contracts.

We defined two kinds of agents: hill-climb-
ers and annealers. The hill-climbers use a very
simple decision function: they accept a mutated
contract only if its utility to them is greater than
that of the last contract both agents accepted.
Annealers are more complicated, implementing
a Monte Carlo machine (Kalos & Whitlock,
1986). Each annealer has a virtual ‘tempera-
ture’ T, such that it will accept contracts worse
than the last accepted one with the probability:

P(accept) = max(1, eDU/T)

where DU is the utility change between the
contracts. In other words, the higher the virtual
temperature and the smaller the utility decre-
ment, the greater the probability that the infe-
rior contract will be accepted. The virtual tem-
perature of an annealer gradually declines over
time so eventually it becomes indistinguishable

from a hill-climber. Annealing has proven ef-
fective in single-agent optimization, because it
can travel through utility valleys on the way to
higher optima (Bar-Yam, 1997). This suggests
that annealers can be more successful than hill-
climbers in finding good negotiation outcomes.

THE PRISONER’S DILEMMA

Negotiations with annealing agents did indeed
result in substantially superior final contract
utilities, but as the payoff table (Table 1) shows,
there is a catch.

In this table, the cell values are laid out as
follows:

[<social welfare optimality>]
<agent 1 optimality >/<agent 2 optimality >

The social welfare of a contract is given by
the sum of the agent’s utilities for that contract;
social welfare optimality thus represents how
close the social welfare of a contract comes to
the highest achievable social welfare (i.e., the
Pareto contract with the highest social wel-
fare).

As expected, paired hill-climbers do rela-
tively poorly while paired annealers do very
well. If both agents are hill-climbers, they both
get a poor payoff, since it is difficult to find
many contracts that represent an improvement
for both parties. A typical negotiation with two
hill-climbers is shown in Figure 6.

As we can see, in this case the mediator was
able to find only two contracts that increased

Table 1. Annealing vs. hill-climbing agents

Agent 2 hill-climbs Agent 2 anneals
Agent 1 hill-climbs [.86]

.73/.74
[.86]
.99/.51

Agent 1 anneals [.86]
.51/.99

[.98]
.84/.84



744

An Annealing Protocol for Negotiating Complex Contracts

the utility for both hill-climbers, and ended up
with a poor final social welfare.

Near-opt imal socia l welfa re can be
achieved, by contrast, when both agents are
annealers, willing to initially accept individually
worse contracts so they can find win-win con-
tracts later on (see Figure 7).

The agents entertain a much wider range of
contracts, eventually ending very near the Pareto
frontier.

If one agent is a hill-climber and the other is
an annealer, however, the hill-climber does
extremely well but the annealer fares corre-
spondingly poorly (see Figure 8). This pattern
can be understood as follows. When an annealer
is at a high virtual temperature, it becomes a

Figure 6. A typical negotiation with two hill-climbers

Figure 7. A typical negotiation with two
annealers

Figure 8. A typical negotiation with an
annealer and hill-climber
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chronic conceder, accepting almost anything
beneficial or not, and thereby pays a “conceder’s
penalty.” The hill-climber drags the annealer
towards its own local optimum, which is not
very likely to also be optimal for the annealer:

This reveals a dilemma. In negotiation con-
texts we typically cannot assume that agents
will be altruistic, and we must as a result design
protocols such that the individually most benefi-
cial negotiation strategies also produce the
greatest social welfare (Rosenschein & Zlotkin,
1994). In our case, however, even though an-
nealing is a socially dominant strategy (i.e.,
annealing increases social welfare), annealing
is not an individually dominant strategy. Hill-
climbing is dominant, because no matter what
strategy the other agent uses, it is better to be
a hill-climber (see Table 1). If all agents do this,
however, then they forego the higher individual
utilities they would get if they both annealed.
Individual rationality thus drives the agents
towards the strategy pairing with the lowest
social welfare. This is thus an instance of the
prisoner’s dilemma. It has been shown that this
dilemma can be avoided if we assume repeated
interactions between agents (Axelrod, 1984),
but we would prefer to have a negotiation
protocol that incents socially beneficial behav-
ior without that difficult-to-enforce constraint.
Several straightforward approaches to this prob-
lem, however, prove unsuccessful. One possi-
bility is to simply reduce the annealer’s willing-
ness to make concessions. This can indeed
eliminate the conceder’s penalty, but at the cost
of achieving social welfare values only slightly
better than that achieved by two hill climbers.
Another option is to have agents switch from
being an annealer to a hill-climber if they deter-
mine, by observing the proposal acceptance
rates of their opponents, that the other agent is
being a hill-climber. We found, however, that it
takes too long to determine the type of the other
agent: by the time it has become clear, much of

the contract utility has been committed, and it is
too late to recover from the consequences of
having started out as an annealer. See Klein,
Faratin, and Bar-Yam (2002) for details.

THE ANNEALING MEDIATOR

We were able to develop a negotiation protocol
that avoids the prisoner’s dilemma entirely in
mediated single-text negotiation of complex
contracts. The trick is simple: rather than re-
quiring that the negotiating agents anneal and
thereby expose themselves to the risk of being
dragged into bad contracts, we moved the
annealing into the mediator itself. In our original
protocol, the mediator would simply propose
modifications of the last contract both negotiat-
ing agents accepted. In our refined protocol,
the mediator is endowed with a time-decreas-
ing willingness to follow up on contracts that
one or both agents rejected (following the same
inverse exponential regime as the annealing
agents). Agents are free to remain hill-climbers
and thus avoid the potential of making harmful
concessions. The mediator, by virtue of being
willing to provisionally pursue utility-decreas-
ing contracts, can traverse valleys in the agents’
utility functions and thereby lead the agents to
win-win solutions. We describe the details of
our protocol, and our evaluations thereof, be-
low.

In our initial implementations each agent
gave a simple accept/reject vote for each pro-
posal from the mediator, but we found that this
resulted in final social welfare values signifi-
cantly lower than what we earlier achieved
using annealing agents. In our next round of
experiments, we accordingly modified the
agents so that they provide additional informa-
tion to the mediator in the form of vote strengths:
each agent annotates an accept or reject vote
as being strong or weak. The agents were
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designed so that there are roughly an equal
number of weak and strong votes of each type.
This maximizes the informational content of the
vote strength annotations. When the mediator
receives these votes, it maps them into numeric
values (strong accept = 1, weak accept = 0,
weak reject = -1, strong reject = -2) and adds
them together to produce an aggregate score.
A proposal is accepted by the mediator if the
score is non-negative—that is, if both agents
voted to accept it or if a weak reject by one
agent is overridden by a strong accept from the
other. The mediator can also accept rejected
contracts (i.e., those with a negative aggregate
score) using the annealing scheme described
above. This approach works surprisingly well,
achieving final social welfare values that aver-
age roughly 99% of optimal despite the fact that
the agents each supply the mediator with only
two bits of information. This additional bit of
information is critical, however, because it al-
lows the system to pursue social welfare-in-
creasing contracts that cause a utility decre-
ment for one agent.

In more recent work, we have applied the
same protocol to negotiations with three agents,
again achieving final social welfare values that
average roughly 99% of optimal.

INCENTIVES FOR
TRUTHFUL VOTING

Any voting scheme introduces the potential for
strategic non-truthful voting by the agents, and
our scheme is no exception. Imagine that one of
the agents always votes truthfully, while the
other exaggerates so that its votes are always
‘strong’. One might expect that this would bias
negotiation outcomes to favor the exaggerator
and this is in fact the case (see Table 2).

As we can see, even though exaggerating
has substantial negative impact on social wel-

fare, agents are individually incented to exag-
gerate, thus re-creating the prisoner’s dilemma
we encountered earlier. The underlying prob-
lem is simple: exaggerating agents are able to
induce the mediator to accept all the proposals
that are advantageous to them (if they are
weakly rejected by the other agent), while
preventing the other agent from doing the same.
What we need, therefore, is an enhancement to
the negotiation protocol that incents truthful
voting, preserving equity and maximizing social
welfare.

How can this be done? We found that simply
placing a limit on the number of strong votes
each agent can use does not work. If the limit
is too low, we effectively lose the benefit of
vote weight information and get the lower
social welfare values that result. If the strong
vote limit is high enough to avoid this, then all an
exaggerator has to do is save all of its strong
votes until the end of the negotiation, at which
point it can drag the mediator towards making
a series of proposals that are inequitably favor-
able to it.

Another possibility is to enforce overall par-
ity in the number of “overrides” each agent
gets. A override occurs when a contract sup-
ported by one agent (the “winner”) is accepted
by the mediator over the objections of the other
agent. Overrides are what drags a negotiation
towards contracts favorable to the winner, so it
makes sense to make the total number of
overrides equal for each agent. But this is not
enough, because exaggerators always win dis-
proportionately more than the truth-teller.

Agent 2 exaggerates Agent 2 tells truth
Agent 1 exaggerates [.92]

.81/.81
[.93]
.93/.66

Agent 1 tells truth [.93]
.66/.93

[.99]
.84/.84

Table 2. Truth-telling vs. exaggerating
agents with a simple annealing mediator
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The solution, we found, came from enforc-
ing parity between the number of overrides
given to each agent throughout the negotia-
tion, so neither agent can get more than a given
advantage. This way, at least rough equity is
maintained no matter when (or whether) either
agent chooses to exaggerate. The results of this
approach are shown in Table 3; the override
disparity was limited to 3.

When we have truthful agents, we find that
this approach achieves social welfare just
slightly below that achieved by a simple anneal-
ing mediator, while offering a significantly (p <
0.01) higher payoff for truth-tellers than exag-
gerators. We found, moreover, that the same
pattern of results holds for a range of exaggera-
tion strategies, including exaggerating all the
time, exaggerating at random, or exaggerating
just near the end of the negotiation. Truth-
telling is thus both the individually dominant and
socially most beneficial strategy.

Why does this work? Why, in particular,
does a truth-teller fare better than an exaggera-
tor with this kind of mediator? One can think of
this procedure as giving agents ‘tokens’ that
they can use to ‘purchase’ advantageous over-
rides, with the constraint that both agents spend
tokens at a roughly equal rate. Recall that in this
case a truthful agent, offering a mix of strong
and weak votes, is paired with an exaggerator
for whom at least some weak accepts and
rejects are presented as strong ones. The truth-
ful agent can therefore only get an override via
annealing (see Table 3), and this is much more

likely when its vote was a strong accept rather
than a weak one. In other words, the truthful
agent spends its tokens almost exclusively on
contracts that truly offer it a strong utility
increase. The exaggerator, on the other hand,
will spend tokens to elicit a override even when
the utility increment it derives is relatively
small. At the end of the day, the truthful agent
has spent its tokens more wisely and to better
effect.

CONTRIBUTIONS

We have shown that negotiation involving com-
plex contracts (i.e., those with many multiple
inter-dependent issues) has properties that are
substantially different from the simple (inde-
pendent issue) case that has been studied to
date in the negotiation literature, and requires
as a result different protocols. This chapter
presents, as far as we are aware, the first
negotiation protocol designed specifically for
complex contracts. While some previous work
has studied multi-issue negotiation (e.g., Faratin
et al., 2000; Oliveira, Fonseca, & Garção, 1999;
Kowalczyk & Bui, 2001; Ströbel, 2000;
Barbuceanu & Lo, 2000; Jonker & Treur, 2001;
Fatima, Wooldridge, & Jennings, 2002), the
issue utilities in these efforts are treated as
independent, so the utility functions for each
agent are linear, with single optima. As we have
seen, however, the introduction of multiple op-
tima changes the game drastically. Multi-at-
tribute auctions (Bichler, Kaukal, & Segev,
1999) represent another scheme for dealing
with multiple issues, wherein one party (the
buyer) publishes its utility function, and the
other parties (the sellers) make bids that at-
tempt to maximize the utility received by the
buyer. If none of the bids are satisfactory, the
buyer modifies its published utility function and
tries again. This introduces a search process,

Table 3. Truth-telling vs. exaggerating
agents with parity-enforcing mediator

Agent 2 exaggerates Agent 2 tells truth
Agent 1 exaggerates [.91]

.79/.79
[.92]
.78/.81

Agent 1 tells truth [.92]
.81/.78

[.98]
.84/.84
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and the problem with this approach is that it
does not provide any guidance for how the
parties involved should control their search
through the vast space of possibilities.

The essence of our approach can be sum-
marized simply: conceding early and often (as
opposed to little and late, as is typical for
independent issue negotiations) is a key to
negotiating good complex contracts. Conced-
ing is not individually rational in the face of
agents that may choose not to concede, but this
problem can be resolved by introducing a me-
diator that stochastically ignores agent prefer-
ences. In both cases, the exchange of tokens
when one agent overrides another can be used
to incent the truthful voting that enables win-
win outcomes.

NEXT STEPS

There are many other promising avenues for
future work in this area. The high social wel-
fare achieved by our approach partially reflects
the fact that the utility functions for each agent,
based as they are solely on binary dependen-
cies, are relatively easy to optimize. Higher-
order dependencies, common in many real-
world contexts, are known to generate more
challenging utility landscapes (Kauffman, 1993).
We hypothesize that it may be necessary to
adapt non-linear optimization techniques such
as genetic algorithms into the negotiation con-
text in order to address this challenge. Another
possibility involves agents providing limited in-
formation about their utility functions to the
mediator or to each other in order to facilitate
more intelligent search through very large con-
tract spaces. Agents can, for example, tell the
mediator which issues are heavily dependent
upon each other, allowing the mediator to focus
its attention within tightly coupled issue ‘clumps’,
leaving other less influential issues until later.
We hypothesize that agents may be incented to

tell the truth about their dependency structures
in order to ensure that negotiations can com-
plete in an acceptable amount of time. Finally,
we would like to derive formal incentive com-
patibility proofs (i.e., concerning when agents
are incented to vote truthfully) for our proto-
cols. New proof techniques will probably be
necessary because previous results in this area
have made strong assumptions concerning the
shape of the agent utility functions, assump-
tions that do not hold with complex contracts.

While the negotiation protocol described
herein was developed in the context of negotia-
tion among software agents, we argue that it is
potentially well-suited for negotiation among
humans as well. The fundamental issues raised
by the negotiation of complex contracts—multi-
optima utility functions and intractably large
contract spaces—remain the same irregardless
of the nature of the negotiators. The annealing
approach to non-linear optimization has been
used successfully for a very wide range of
problem domains, as it requires only that the
utility functions optimized over are ultra-met-
ric—that is, they have the property that the
highest optima also tend to be the widest ones.
This has shown to be a robust property of
networks of interdependent parameters such
as those involved in complex contracts
(Kauffman, 1993). The annealing protocol re-
quires only that negotiators be able to compare
the utility of two contracts. The good results
achieved in our simulations therefore suggest
that the same protocol may prove helpful for
human negotiators. Testing this claim will be an
important avenue for future work.
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ABSTRACT

This chapter describes a generic multi-issue negotiating agent that is designed for a dynamic
information-rich environment. The agent strives to make informed decisions by observing
signals in the marketplace and by observing general information sources including news
feeds. The agent assumes that the integrity of some of its information decays with time, and that
a negotiation may break down under certain conditions. The agent makes no assumptions
about the internals of its opponent—it focuses only on the signals that it receives. Two agents
are described. The first agent conducts multi-issue bilateral bargaining. It constructs two
probability distributions over the set of all deals: the probability that its opponent will accept
a deal, and the probability that a deal should be accepted by the agent. The second agent bids
in multi-issue auctions—as for the bargaining agent, this agent constructs probability
distributions using entropy-based inference.

INTRODUCTION

This work is based on the assumption that when
an intelligent agent buys a hat, a car, a house, or
a company, she does so because she feels
comfortable with the general terms of the deal.
This “feeling of comfort” is achieved as a result
of information acquisition and validation. Nego-
tiation is as much of an information acquisition
and exchange process as it is an offer exchange
process—one feeds off the other.

The generic multi-issue negotiation agent P
draws on ideas from information theory. Game
theory (GT) tells us what to do, and what
outcome to expect, in many well-known nego-
tiation situations, but these strategies and ex-
pectations are derived from assumptions about
the internals of the opponent. Game theoretic
analyses of bargaining are founded on the
notion of agents as utility optimizers in the
presence of complete and incomplete informa-
tion about their opponents (Muthoo, 1999).
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Two probability distributions form the foun-
dation of both the offer evaluation and the offer
making processes. They are both over the set
of all deals and are based on all information
available to the agent. The first distribution is
the probability that a deal is acceptable to W.
The second distribution is the probability that a
deal will prove to be acceptable to P—this
distribution generalizes the notion of utility.

P may not have a von Neumann-Morgerstern
utility function. P makes no assumptions about
the internals of W in particular whether it has a
utility function. P does make assumptions about:
the way in which the integrity of information
will decay, preferences that its opponent may
have for some deals over others, and conditions
that may lead to breakdown. It also assumes
that unknown probabilities can be inferred us-
ing maximum entropy probabilistic logic
(McKay, 2003) that is based on random worlds
(Halpern, 2003). The maximum entropy prob-
ability distribution is “the least biased estimate
possible on the given information; i.e., it is
maximally noncommittal with regard to missing
information” (Jaynes, 1957). In the absence of
knowledge about W’s decision-making appara-
tus, P assumes that the “maximally noncom-
mittal” model is the correct model on which to
base its reasoning.

A preference relation is an assumption
that P makes about W’s preferences for some
deals over others—for example, that she pre-
fers to pay a lower price to a higher price. A
single-issue preference relation assumes that
she prefers deals on the basis of one issue
alone, independent of the values of the other
issues. A preference relation may be assumed
prior to the negotiation, or during it based on the
offers made. For example, the opponent may
display a preference for items of a certain
color; Faratin, Sierra, and Jennings (2003) de-
scribe a basis for ordering colors. The prefer-
ence relations illustrated here are single-issue
orderings, but the agent’s reasoning operates

equally well with any preference relation as
long as it may be expressed in Horn clause
logic.

THE MULTI-ISSUE
NEGOTIATION AGENT P

The integrity of information decays in time.
Little appears to be known about how the
integrity of information, such as news-feeds,
decays. One source of information is the sig-
nals received by observing the behavior of the
opponent agents both prior to a negotiation and
during it. For example, if an opponent bid $8 in
an auction for an identical good two days ago,
then my belief that she will bid $8 now could be
0.8. When the probability of a decaying belief
approaches 0.5, the belief is discarded.

Agent Architecture

Incoming messages from all sources are time-
stamped and placed in an “In Box”
X as they arrive. P has a knowledge base K and
a belief set B. Each of these two sets contains
statements in L. K contains statements that are
generally true, such as " x(Accept(x) «
ØReject(x))—that is, an agent does one thing
or the other. The belief set B = {bi} contains
statements that are each qualified with a given
sentence probability B{bi}, which represents
an agent’s belief in the truth of the statement.
These sentence probabilities may decay in time.

A deal is a pair of commitments dP:W(p, w)
between an agent P and an opponent agent W,
where p is P’s commitment and w is W’s
commitment. 1{ }D

i iD d ==  is the deal set—the set
of all possible deals. If the discussion is from
the point of view of a particular agent, then the
subscript “P:” may be omitted, and if that agent
has just one opponent, the “W” may be omitted
as well. These commitments may involve mul-
tiple issues and not simply a single issue such as
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trading price. The set of terms T is the set of all
possible commitments that could occur in deals
in the deal set. An agent may have a real-valued
utility function U : T fi R that induces a total
ordering on T. For any deal d = (p,  w), the
expression U(w) – U(p) is called the surplus of
d  and is denoted by L(d) where L : T · Tfi R.
For example, the values of the function U may
be expressed in units of money. It may not be
possible to specify the utility function either
precisely or with certainty.1

P has a knowledge base K and a belief set
B. Each of these two sets contains statements
in a first-order language L. K contains state-
ments that are generally true. The belief set B
=  {bi} contains statements bi that are each
qualified with a given sentence probability
B{bi} that represents the agent’s belief in the
truth of the statement. The integrity of the
statements in B may decay in time. The distinc-
tion between the knowledge base K and the
belief set B is simply that K contains unqualified
statements and B contains statements that are
qualified with sentence probabilities.

P’s actions are determined by its “strat-
egy.” A strategy is a function S : K · Bfi A
where A is the set of actions. The idea is that at
certain distinct times the function S is applied to
K and B and the agent does something. In
between the discrete times at which S is acti-
vated, information may arrive. Incoming infor-
mation from all sources is time-stamped and
placed in an “In Box” X as it arrives. Then,
momentarily before the S function is activated,
a “revision function” R is activated: R : (X · K
· B) fi (K · B). R clears the “In Box,” and
updates K and B to ensure consistency. It is not
described here.

Maximum Entropy Inference

P uses maximum entropy inference ME. Let G
be the set of all positive ground literals that can
be constructed using the predicate and function

symbols in L.2 A possible world is a valuation
function { }G: fi ,^v � . That is, a possible world
assigns either true ( )�  or false ( )^  to each
ground literal in G. V denotes the set of all
possible worlds, and VK denotes the set of
possible worlds that are consistent with the
agent’s knowledge base K (Halpern, 2003).

A random world for K is a probability
distribution WK = {pi} over VK = {vi}, where
WK expresses an agent’s degree of belief that
each of the possible worlds is the actual world.
The derived sentence probability of any sen-
tence s in L, with respect to a random world
WK, is:

( ) { is in }
K n n

n

P ps s:åW v� (1)

That is, we only admit those possible worlds
in which s is true. A random world WK is
consistent with the agent’s beliefs B if:
( )( ( ) ( ))

K
B B Pb b b" ˛ = W . That is, for each be-

lief its derived sentence probability, as calcu-
lated using equation 1, is equal to its given
sentence probability.

The entropy of a discrete random variable
X with probability mass function {pi} is defined
in the usual way (McKay, 2003): H(X) = –ån pn
log pn where: pn ‡ 0 and ån pn = 1. Let WK, B} be
the “maximum entropy probability distribution
over VK that is consistent with B .” Given an
agent with K and B, its derived sentence
probability for any sentence s in L is:

{ }
( ) ( )

K B
P Ps s

,
= W      (2)

Using equation 2, the derived sentence prob-
ability for any belief bi is equal to its given
sentence probability. So the term sentence
probability is used from here on without ambi-
guity. P uses maximum entropy inference,
which attaches the derived sentence probabil-
ity to any given sentence s.
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Maximizing Entropy with
Linear Constraints

If X is a discrete random variable taking a finite
number of possible values {xi} with probabili-
ties {pi}, then the entropy is the average
uncertainty removed by discovering the true
value of X, and is given by H = –ån pn log pn. The
direct optimization of H subject to a number q
of linear constraints of the form

( )n k n kn
p g x g=å  for given constants kg , where

k = 1,×××, q, is a difficult problem. Fortunately
this problem has the same unique solution as the
maximum likelihood problem for the Gibbs
distribution (Pietra, Pietra, & Lafferty, 1997).
The solution to both problems is given by:

1

1

( ( ))
1 2

( ( ))
k k nk

n
k k mm k

exp g x
p n

exp g x

q

q

l

l
=

=

-
= , = , ,

-
å

å å
L(3)

where the constants { i} may be calculated
using equation 3 together with the three sets of
constra ints : pn ‡  0, ån p n = 1 and

( )n k n kn
p g x g=å .

REPRESENTATION
DEPENDENCE

ME is criticized (Halpern, 2003) because the
way in which the knowledge is formulated in K
and B determines the values derived. This prop-
erty is promoted here as a strength of the method
because the correct formulation of the knowl-
edge base, using the rich expressive power of
first-order probabilistic logic, encapsulates fea-
tures of the application at a fine level of detail.

Price is a common issue in bargaining, auc-
tion, and market applications. Two ways of
representing price in logic are: to establish a
logical constant for each possible price, and to
work instead with price intervals. Admitting the

possibility of an interval containing just one
value, the second generalizes the first. To rep-
resent price using price intervals, we have to
specify the “width” of each interval. Suppose in
an application an item will be sold in excess of
$100. Suppose the predicate TopBid(W, d)
means “d is the highest price that agent W is
prepared to bid.” This predicate will satisfy:

(( ( ) ( )) ( ))xy TopBid x TopBid y x y" W, Ù W, fi = .  A
crude representation of the set of possible bids
is as two logical constants in L: [100, 200) and
[200, ¥). There are two positive ground literals
in G : TopBid(W, [100, 200)) and TopBid(W,
[200, ¥)), and there are three possible worlds:
{( ) ( ) ( )}^,^ , ,^ , ^,� � . In the absence of any
further information, the maximum entropy dis-
tribution is uniform, and for example, the prob-
ability that W’s highest bid ‡ $200 is 1

3 . Now if
the set of possible bids had been represented as
three logical constants, [100, 150], [150, 200),
and [200, ¥], then the same probability is 1

4 .
Which is correct: 1

3  or 1
4 ? That depends on P’s

beliefs about W. In both of these examples, by
using ME and by specifying no further knowl-
edge about TopBid(.), we have implicitly as-
serted that the probability of each possible
world being the true world is the same. In the
first example all three are 1

3 , and in the second
all four are 1

4 . This is what happens when the
“maximally noncommittal” distribution is cho-
sen. Conversely, if believe that

( ( ( )) ( ( )))x y P TopBid x P TopBid y" , W, = W, , then it
is not necessary to include this in K—it is
implicitly present and we should appreciate that
it is so.

Following from the previous paragraph with just
two logical constants, suppose the predicate
MayBid(W, d) means “W is prepared to make a bid of
d.” Assuming the W will prefer to pay less than more,
this predicate will satisfy: k1 : "x, y((MayBid(W, x)
Ù (x ‡ y)) fi MayBid(W, x)), where x and y are
intervals and the meaning of “‡” is obvious. With just
k1 in K, there are three possible worlds:
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{( ) ( ) ( )}^,^ , ,^ , ,� � � . The maximum entropy dis-
tribution is uniform, and 2

3( ( [100 200)))P MayBid W, , =
and 1

3( ( [200 ]))P MayBid W, ,¥ = . With no addi-
tional information, P(TopBid(W, x)) will be uni-
form and P(MayBid(W, x)) will be linear de-
creasing in x.

The conclusion to be drawn from the previ-
ous two paragraphs is that when an issue is
represented using intervals, there is no “right”
or “wrong” choice of intervals. However,
choosing the intervals so that the expected
probability distribution of at least one key predi-
cate is uniform over those intervals may sim-
plify K and B.

In GT each agent models its opponents by
speculating on their type. Beliefs concerning an
opponent’s type may be represented as a prob-
ability distribution over its expected utility. In
ME the relative truth of possible worlds are
determined by statements in first-order proba-
bilistic logic that represent beliefs concerning
the opponents’ behavior. So ME models its
opponents in a fundamentally different way to
GT and uses a richer language to do so.

AGENTS FOR BARGAINING

The generic multi-issue negotiation agent P
engages in bilateral bargaining with an oppo-
nent W. It strives to make informed decisions in
an information-rich environment that includes
information drawn from the Internet by bots. Its
design was provoked by the observation that
agents are not always utility optimizers. P
attempts to fuse the negotiation with the infor-
mation generated both by and because of it. It
reacts to information derived from its opponent
and from the environment, and proactively seeks
missing information that may be of value.

One source of P’s information is the signals
received from W. These include offers to P,
and the acceptance or rejection of P’s offers.

If W rejected P’s offer of $8 two days ago, then
what is P’s belief now in the proposition that W
will accept another offer of $8 now? Perhaps it
is around 0.1. A linear model is used to model
the integrity decay of these beliefs, and when
the probability of a decaying belief approaches
0.5,3 the belief is discarded. This choice of a
linear model is independent of the bargaining
method. The model of decay could be exponen-
tial, quadratic, or whatever.

Under some circumstances bilateral bar-
gaining has questionable value as a trading
mechanism. Bilateral bargaining is known to be
inherently inefficient (Myerson & Satterthwaire,
1983). Bulow and Klemperer (1996) show that
a seller is better off with an auction that attracts
n + 1 buyers than bargaining with n individuals,
no matter what the bargaining protocol is.
Neeman and Vulkan (2000) show that the
weaker bargaining types will fare better in
exchanges leading to a gradual migration. These
results hold for agents who aim to optimize their
utility and do limit the work described here.

Interaction Protocol

The agents communicate using sentences in a
first-order language L. This includes the ex-
change, acceptance, and rejection of offers. L
contains the following predicates: Offer(d),
Accept(d), Reject(d), and Quit(.), where
Offer(d) means “the sender is offering you a
deal d,” Accept(d) means “the sender accepts
your deal d,” Reject(d) means “the sender
rejects your deal d,” and Quit(.) means “the
sender quits—the negotiation ends.”

Two negotiation protocols are described:
first, negotiation without decay in which all
offers stand for the entire negotiation; and
second, negotiation with decay in which offers
stand only if accepted by return—P represents
W’s offers as beliefs with sentence probabili-
ties that decay in time.
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P and W each exchange offers alternately
at successive discrete times (Kraus, 2001).
They enter into a commitment if one of them
accepts a standing offer. The protocol has
three stages:

1. simultaneous, initial, binding offers from
both agents;

2. a sequence of alternating offers; and
3. an agent quits and walks away from the

negotiation.

The negotiation ceases either in the second
round if one of the agents accepts a standing
offer or in the final round if one agent quits and
the negotiation breaks down.

In the first stage the agents simultaneously
send Offer(.) messages to each other. These
initial offers are taken as limits on the range of
values that are considered possible. This is
crucial to the maximum entropy method when
there are domains that would otherwise be
unbounded. The exchange of initial offers
“stakes out the turf” on which the subsequent
negotiation will take place. In the second stage
an Offer(.) message is interpreted as an im-
plicit rejection Reject(.) of the opponent’s offer
on the table.

P uses three things to make offers: an
estimate of the likelihood that W will accept any
offer; an estimate of the likelihood that P will,
in hindsight, feel comfortable accepting any
particular offer; and an estimate of when W
may quit and leave the negotiation.

ESTIMATING ( ( ))P AccW .

P does two different things: first, it reacts to
offers received from W; second, it sends offers
to W. This section describes the estimation of
P(WAcc(d)) where the predicate WAcc(d)
means “the deal d is acceptable to W.”

When a negotiation commences P may
have no information about W or about prior
deals. If so then the initial offers may only be
based on past experience or circumstantial
information.4 So the opening offers are simply
taken as given.

In the four sub-sections following, P is
attempting sell something to W. In the previous
work, P’s terms t are to supply a particular
good, and W’s terms w are money—in those
examples the amount of money w is the subject
of the negotiation. In the following work, P’s
terms are to supply a particular good together
with some negotiated warranty period, and W’s
terms are money—in those examples the amount
of money p and the period of the warranty
period w are the subject of the negotiation.

One Issue: Without Decay

The unary predicate WAcc(x) means “the
amount of money $x  is acceptable to W.” P is
interested in whether the unary predicate
WAcc(x) is true for various values of $x. P
assumes the following preference relation on
the WAcc(×) predicate:

1 (( ) ( ( ) ( )))x y x y Acc x Acc yk : " , > fi W fi W

Suppose that P’s opening offer is w , and
W’s opening offer is w  where w w< . Then K
now conta ins two fur ther sentences:

2 ( )Acck w: ØW  and 3 ( )Acck w: W . There are now
w w-  possible worlds, and the maximum en-
tropy distribution is uniform.

Suppose that P knows its true valuation for
the good uP, and that P has decided to make an
“expected-utility-optimizing” offer: 2

ux w P+= .
This offer is calculated on the basis of the
preference ordering k1 and the two signals that
P has received from W. The response is in
terms of only P’s valuation uP and the signal
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( )Reject w —it is independent of the signal
( )Offer w , which implies that w  is acceptable.

In the standard game theoretic analysis of
bargaining (Muthoo, 1999), P assumes that W
has a utility uW, that it lies in some interval [ ]u u, ,
and that the expected value of uW  is uniformly
distributed on that interval. On the basis of
these assumptions, P then derives the ex-
pected-utility-optimizing offer: 2

u uP+ . These two
offers differ by u  in the game-theoretic result
and w  in the maximum entropy result. The
game theoretic approach relies on estimates for
u  and u :

( [ ] | ( ) ( ) )E u u Reject Acceptw w, Ù

If W has a utility, and it may not, then if W is
rational: u uw£ £ . The inherent inefficiency of
bilateral bargaining (Myerson & Satterthwaire,
1983) shows for an economically rational W
that uW , and so consequently u , may be greater
than w . There is no reason to suspect that u
and w  will be equal.

One Issue: With Decay

As in the previous example, suppose that the
opening offers at time t0 are taken as given and
are w  and w . Then K contains k1, k2, and k3.
Suppose L contains n consecutive integer con-
stants in the interval [ ]w w, , where 1n w w= - + ,
that represent various amounts of money. k1
induces a total ordering on the sentence prob-
abilities for WAcc(x) on the interval [ ]w w, ,
where the probabilities are » 0 at w  and » 1 at
a .

Suppose that at time t1, P makes an offer
wna which is rejected by W, who has replied at
t ime t 2 with an offer of wop where

op naw w w w£ £ £ . At time t3, B contains b1 :
WAcc(wna) and b2 : WAcc(wop). Suppose that
there is some level of integrity decay on these
two beliefs: 1 20 ( ) 0 5 ( ) 1B Bb b< < . < < . Then VK
contains n + 1 possible worlds ranging from “all

false” to “all true,” each containing n literals.
So a random world for K will consist of n + 1
probabilities {pi}, where, say, p1 is the probabil-
ity of “all true,” and pn+1 is the probability of “all
false”. P{K, B} will be the distribution that maxi-
mizes –ån pn log pn subject to the constraints:

1

1
1

0 1 ( )
na

n n n
n n

p p p B
w w

b
- +

=

‡ , = , =å å
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1
21

( )op

nn
p Bw w

b
- +

=
=å .

The optimization of entropy H, subject to
linear constraints, is described above. P{K, B} is:
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Using equation 2, for wop £ x £ wna:

1 2 1( ( )) ( ) ( ( ) ( ))na

na op

xP Acc x B B Bw
b b b

w w
-

W = + -
-

     (4)

These probability estimates are used by the
negotiation strategy S to calculate P’s next
offer.

The values for P(WAcc(x)) in the region wop
£ x £  wnaare derived from only two pieces of
information that are the two signals Reject(wna)
and Offer(wop), each qualified with the time at
which they arrived and the decay rate on their
integrity. The assumptions in the analysis given
above are: the choice of values for w  and w —
which do not appear in equation 4 in any case—
and the choice of the “maximally noncommit-
tal” distribution.

If the agents continue to exchange offers,
then new beliefs will be acquired and the integ-
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rity of old beliefs will decay. If the next pair of
offers lies within the interval [wop,wna] and if
the integrity of b1 and b2 decays, then the
sentence probabilities of b1 and b2 will be
inconsistent with those of the two new beliefs
due to the total ordering of sentence probabili-
ties on [ ]w w,  induced by k1. This inconsistency
is resolved by the revision function R that here
discards inconsistent older beliefs b1 and b2 in
favor of more recent beliefs. If the agents
continue in this way, then the sentence prob-
abilities for the WAcc(×) predicate are given
simply by equation 4 using the most recent
values for wna and wop.

The analysis given above requires that val-
ues be specified for the opening offers w  and
w . The only part of the probability distribution
that depends on the values chosen for w  and w
are the two “tails” of the distribution. So the
choice of values for these two opening offers is
unlikely to affect the estimates. The two tails
are necessary to “soak up” the otherwise
unallocated probability.

Two Issues: Without Decay

The above approach to single-issue bargaining
generalizes without modification to multi-issue
bargaining; it is illustrated with two issues only
for ease of presentation. The problem consid-
ered is the sale of an item with 0,...,4 years of
warranty. The terms being negotiated specify
an amount of money p and the number of years
warranty w. The predicate WAcc(w,  p) now
means “W will accept the offer to purchase the
good with w years warranty for $p.”

P assumes the following two preference
orderings, and K contains:

11

12

(( ) ( ( ) ( )))
(( ) ( ( ) ( )))

x y z x y Acc y z Acc x z
x y z x y Acc z x Acc z y

k
k

:" , , > fi W , fi W ,
:" , , > fi W , fi W ,

As previously, these sentences conveniently
reduce the number of possible worlds. The

number of possible worlds will be finite as long
as K  contains two statements of the form:

(4 )Acc aØW ,  and (0 )Acc bW ,  for some a and b .
Suppose that P’s initial offer was “4 years
warranty for $21” and W’s initial offer was “no
warranty for $10.” K now contains:

13 14(4 21) (0 10)Acc Acck k: ØW , : W ,

These two statements, together with the
restriction to integers only, limit the possible
values of w and p in ( )Acc w pW ,  to  a  5·10
matrix.

Suppose that P knows its utility function for
the good with 0,…,4 years warranty and that its
values are: $11.00, $11.50, $12.00, $13.00, and
$14.50 respectively. Suppose that P uses the
strategy S(n) which is described below—the
details of that strategy are not important now.
If P uses that strategy with n = 2, then P offers

(2 16)Offer $,  which suppose W rejects and
counters with (1 11)Offer $, . Then with n =  2
again, P offers (2 14)Offer $,  which suppose W
rejects and counters with Offer (3 13)$, .

( ( ))P Acc w pW ,  now is:

0 1 2 3 4
20 0 0000 0 0000 0 0000 0 0455 0 0909
19 0 0000 0 0000 0 0000 0 0909 0 1818
18 0 0000 0 0000 0 0000 0 1364 0 2727
17 0 0000 0 0000 0 0000 0 1818 0 3636
16 0 0000 0 0000 0 0000 0 2273 0 4545
15 0 0000 0 000

w w w w w
p
p
p
p
p
p

= = = = =
= . . . . .
= . . . . .
= . . . . .
= . . . . .
= . . . . .
= . . 0 0 0000 0 2727 0 5454

14 0 0000 0 0000 0 0000 0 3182 0 6364
13 0 0455 0 0909 0 1364 1 0000 1 0000
12 0 0909 0 1818 0 2727 1 0000 1 0000
11 0 1364 1 0000 1 0000 1 0000 1 0000

p
p
p
p

. . .
= . . . . .
= . . . . .
= . . . . .
= . . . . .

and the expected-utility-optimizing offer is:
Offer (4 18)$, . If P makes that offer, then the
expected surplus is $0.95. The matrix above
contains the “maximally non-committal” values
for ( ( ))P Acc w pW , ; those values are recalcu-
lated each time a signal arrives. The example
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demonstrates how the P is able to conduct
multi-issue bargaining in a focused way without
making assumptions about W ’s internals, in
particular whether W  is aware of a utility
function (Osborne & Rubinstein, 1990).

Two Issues: With Decay

Following from the previous section, suppose
that K contains k11, k12, k13, and k14. The two
preference orderings k11 and k12 induce a par-
tial ordering on the sentence probabilities in the
P(WAcc(w,  p)) array from the top-left where
the probabilities are » 0, to the bottom-right
where the probabilities are » 1. There are 51
possible worlds that are consistent with K.

Suppose that b contains: b11 : WAcc(2,16), b11
: WAcc(2,16),b12 : WAcc(2,14),b13 : WAcc(1,11),
and b14 : WAcc(3,13) and with a 10% decay in
integrity for each time step: P(b11) = 0.4, P(b12) =
0.2, P(b13) = 0.7, and P(b14) = 0.9. Belief b11 is
inconsistent with K ¨ =  {b12}, as together they
violate the sentence probability ordering induced by
k11 andk12. Resolving this issue is a job for the belief
revision function R which discards the older, and
weaker, belief b11.

Equation 3 is used to calculate the distribu-
tion W{K, B} which has just five different prob-
abilities in it. The resulting values for the three
l’s are:l12=2.8063, l13=2.0573, andl14=2.5763.
P(WAcc(w, p)) now is:

0 1 2 3 4
20 0 0134 0 0269 0 0286 0 0570 0 0591
19 0 0269 0 0537 0 0571 0 1139 0 1183
18 0 0403 0 0806 0 0857 0 1709 0 1774
17 0 0537 0 1074 0 1143 0 2279 0 2365
16 0 0671 0 1343 0 1429 0 2849 0 2957
15 0 0806 0 161

w w w w w
p
p
p
p
p
p

= = = = =
= . . . . .
= . . . . .
= . . . . .
= . . . . .
= . . . . .
= . . 1 0 1714 0 3418 0 3548

14 0 0940 0 1880 0 2000 0 3988 0 4139
13 0 3162 0 6324 0 6728 0 9000 0 9173
12 0 3331 0 6662 0 7088 0 9381 0 9576
11 0 3500 0 7000 0 7447 0 9762 0 9978

p
p
p
p

. . .
= . . . . .
= . . . . .
= . . . . .
= . . . . .

In this array, the derived sentence probabili-
ties for the three sentences in B are shown in
bold type; they are exactly their given values.

ESTIMATING ( ( ))P AccP .

The proposition PAcc(d) means: “d is accept-
able to P.” This section describes how P
attaches a conditional probability to the propo-
sition P(PAcc(d)‰It) in light of information tI .
The meaning of “acceptable to P” is described
below. This is intended to put P in the position
“looking back on it, I made the right decision at
the time”—this is a vague notion but makes
sense to the author. The idea is for P to accept
a deal d when P(PAcc(d)‰It)‡a for some
threshold value a that is one of P’s mental
states.

P(PAcc(d)‰It) is derived from conditional
probabilities attached to four other proposi-
tions:

( ( ) | )tP Suited Iw ,

( ( ) | )tP Good OP I ,

( ( ) | { ( ) ( )})tP Fair I Suited Good OPd w¨ , ,

and

( ( ) | { ( ) ( )})tP Me I Suited Good OPd w¨ , ,

meaning respectively: “terms w are perfectly
suited to my needs,” “W will be a good agent for
me to be doing business with,” “d is generally
considered to be a good deal for P,” and “on
strictly subjective grounds, d is acceptable to
P.” The last two of these four probabilities
factor out both the suitability of w and the
appropriateness of the opponent W. The differ-
ence between the third and fourth is that the
third captures the concept of “a good market
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deal” and the fourth a strictly subjective “what
w is worth to NA.” The “Me(.)” proposition is
related to the concept of a private valuation in
game theory.

To determine P(Suited(w)‰It) : if there are
sufficiently strong preference relations to es-
tablish extrema for this distribution, then they
may be assigned extreme values »0.0 or 1.0. P
is repeatedly asked to provide probability esti-
mates for the offer w that yields the greatest
reduction in entropy for the resulting distribu-
tion (McKay, 2003). This continues until P
considers the distribution to be “satisfactory.”
This is tedious, but the “preference acquisition
bottleneck” appears to be an inherently costly
business (Castro-Schez, Jennings, Luo, &
Shadbolt, 2004).

To determine P(Good(OP)‰It) involves an
assessment of the reliability of W. For some
retailers (sellers), information—of varying reli-
ability—may be extracted from sites that rate
them. For individuals, this may be done either
through assessing their reputation established
during prior trades (Ramchurn, Jennings, Si-
erra, & Godo, 2003) or by the inclusion of some
third-party escrow service that is then rated for
“reliability” instead.

P(Fair(d)‰It¨{Suited(w),Good (OP)}) is de-
termined by market data. As for dealing with
Suited, if the preference relations establish
extrema for this distribution, then extreme val-
ues may be assigned. Independently of this, real
market data, qualified with given sentence prob-
abilities, is fed into the distribution. The revision
function R identifies and removes inconsisten-
cies, and missing values are estimated using the
maximum entropy distribution.

Determining P(Me(d)‰It¨{Suited(w),Good
(OP)}) is a subjective matter. It is specified
using the same device as used for Fair, except
that the data is fed in by hand “until the distri-
bution appears satisfactory.” To start this pro-
cess, first identify those d that “P would never

accept”—they are given a probability of »0.0;
and second those d that “P would be delighted
to accept”—they are given a probability of
»1.0. The Me proposition links the information-
theory approach with “private valuations” in
game-theory.

There is no causal relationship between the
four probability distributions as they have been
defined, with the possible exception of the third
and fourth. To link the probabilities associated
with the five propositions, the probabilities are
treated as epistemic probabilities and the nodes
form a simple Bayesian net. The weights on the
four arcs of the Bayesian net are a subjective
representation of what “acceptable” means to
P. The resulting net divides the problem of
estimating P(PAcc(•)) into four simpler sub-
problems.

The conditionals on the Bayesian network
are subjective—they are easy to specify be-
cause 12 of them are zero—that is, for the
cases in which P believes that either Me or
Suited is “false.” For example, if the condition-
als (set by P) are:

( | ) 1 0P Acc Me Suited Good FairP , , , = .

( | ) 0 1P Acc Me Suited Good FairP , ,Ø , = .

( | ) 0 4P Acc Me Suited Good FairP , , ,Ø = .

( | ) 0 05P Acc Me Suited Good FairP , ,Ø ,Ø = .

then, with probabilities of 0.9 on each of the
four evidence nodes, the probability P(PAcc) =
0.75. It then remains to manage the acquisition
of information It from the available sources to,
if necessary, increase P(PAcc(d)‰It) so that d
is acceptable. The conditional probabilities on
the net represent an agent’s priorities for a deal,
and so they are specified for each class of deal.

The PAcc(•) predicate generalizes the no-
tion of utility. Suppose that P knows its utility
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function U. If the conditionals on the Bayesian
net are as in the previous paragraph and if
either P(Me(.)) or P(Suited(.)) are zero, then
P(PAcc(•)) will be zero. If the conditional prob-
abilities on the Bayesian net are 1.0 when Me
is true and are 0.0 otherwise, then
P(PAcc)=P(Me). Then define:

1 ( ) ( )( ( )) (1 )
2 ( ) ( )

P Me w t
t w

w t
-

, = · +
-

U U
U U

for ( ) ( )w t>U U  and zero otherwise, where
max ( )ww w= U .5 A bargaining threshold a > 0.5

will then accept offers for which the surplus is
positive. In this way PAcc(•) represents utility-
based bargaining with a private valuation.

PAcc(•) also is intended to be able to repre-
sent apparently irrational bargaining situations
(e.g., “I’ve just got to have that hat”), as well
as tricky multi-issue problems such as those
typical in e-procurement. It enables an agent to
balance the degree of suitability of the terms
offered with the reliability of the opponent and
with the fairness of the deal.

NEGOTIATION STRATEGIES

We have estimated the probability distribution
( ( ))P AccW ×  that W will accept an offer, and the

probability distribution ( ( ))P AccP ×  that P should
be prepared to accept an offer. These two
probability distributions represent the opposing
interests of the two agents P and W. ( ( ))P AccW ×
will change every time an offer is made, re-
jected, or accepted. ( ( ))P AccP ×  will change as
the background information changes. This sec-
tion discusses P’s strategy S.

Bargaining can be a game of bluff and
counter-bluff in which an agent may even not
intend to close the deal if one should be reached.
A basic conundrum in any offer-exchange bar-
gaining is: it is impossible to force your oppo-

nent to reveal information about their position
without revealing information about your own
position. Further, by revealing information about
your own position, you may change your
opponent’s position—and so on.6 This infinite
regress, of speculation and counter-specula-
tion, is avoided here by ignoring the internals of
the opponent and by focusing on what is known
for certain—that is, what information is con-
tained in the signals received and when those
signals arrived.

A fundamental principle of competitive bar-
gaining is “never reveal your best price,” and
another is “never reveal your deadline—if you
have one” (Sandholm & Vulkan, 1999). It is not
possible to be prescriptive about what an agent
should reveal. All that can be achieved is to
provide strategies that an agent may choose to
employ. The following are examples of such
strategies.

Without Breakdown

An agent’s strategy S is a function of the
information It that it has at time t. That informa-
tion will be represented in the agent’s K and B,
and will have been used to calculate ( ( ))P AccW ×
and ( ( ))P AccP × . Simple strategies choose an
offer only on the basis of ( ( ))P AccW × , ( ( ))P AccP × ,
and a. The greedy strategy +S  chooses:

arg max{ ( ( )) | ( ( )) 0}P Acc P Acc
d

d dP W ,? ;

it is appropriate for an agent that believes W  is
desperate to trade. The expected-acceptabil-
ity-to-NA-optimizing strategy S* chooses:

arg max{ ( ( )) ( ( )) | ( ( )) }P Acc P Acc P Acc
d

d d d aW · P P ‡ ,;

it is appropriate for a confident agent that is not
desperate to trade. The strategy -S  chooses:

arg max{ ( ( )) | ( ( )) }P Acc P Acc
d

d d aW P ‡ ,;
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it optimizes the likelihood of trade—it is a good
strategy for an agent that is keen to trade without
compromising its own standards of acceptability.

An approach to issue-tradeoffs is described
in Faratin, Sierra, and Jennings (2003). The
bargaining strategy described there attempts to
make an acceptable offer by “walking round”
the iso-curve of P’s previous offer (that has,
say, an acceptability of naa a‡ ) towards W’s
subsequent counter-offer. In terms of the ma-
chinery described here, an analogue is to use
the strategy -S :

arg max{ ( ( )) | ( ( ) | ) }t naP Acc P Acc I
d

d d aW P

for naa a= . This is reasonable for an agent that
is attempting to be accommodating without
compromising its own interests. Presumably
such an agent will have a policy for reducing the
value ana if her deals fail to be accepted. The
complexity of the strategy in Faratin, Sierra,
and Jennings (2003) is linear with the number of
issues. The strategy described here does not
have that property, but it benefits from using
P(WAcc), which contains footprints of the prior
offer sequence in that distribution; more recent
offers have stronger weights.

With Breakdown

A negotiation may break down because one
agent is not prepared to continue for some
reason. pB is the probability that the opponent
will quit the negotiation in the next round. There
are three ways in which P models the risk of
breakdown. First, pB is a constant determined
exogenously to the negotiation, in which case at
any stage in a continuing negotiation, the ex-
pected number of rounds until breakdown oc-
curs is 1

BP . Second, pB is a monotonic increasing
function of time—this attempts to model an
impatient opponent. Third, pB is a monotonic
increasing function of (1 ( ))Acc d- W —this at-

tempts to model an opponent who will react to
unattractive offers.

At any stage in a negotiation, P may  be
prepared to gamble on the expectation that W
will remain in the game for the next n  rounds.
This would occur if there is a constant probabil-
ity of breakdown 1

B nP = . Let tI  denote the
information stored in P’s K and B at time t. S is
P’s strategy. If P offered to trade with W at
S(I1), then W may accept this offer, but may
have also been prepared to settle for terms
more favorable than this to P. If P offered to
trade at 1 1( { ( ( ))})I Accept I¨S S , then W will ei-
ther accept this offer or reject it. In the former
case trade occurs at more favorable terms than
S(I1), and in the latter case a useful piece of
informat ion has been acquired: Reject
Reject(S(I1)) which is added to I1 before calcu-
lating the next offer. This process can be
applied twice to generate the offer

1 1 1( { ( ( { ( ( ))}))})I Accept I Accept I¨ Ø ¨ ØS S S , or
any number of times, optimistically working back-
wards on the assumption that W will remain in
the game for n  rounds. The strategy is S(n),
where (1) *=S S —the expected-acceptability-to-
P-optimizing strategy. S(n) is the strategy of
working back from (1)S  (n–1)) times. At each
stage S(n) will benefit also from the information
in the intervening counter-offers presented by
W. The strategy S(n) is reasonable for a risk-
taking, expected-acceptability-optimizing agent.

Define the value of making an offer Offer(d)
to be: ( ( )) ( ( ))Offer P Accd d¡ = P  if d is accepted,
and zero otherwise. The expected value of
making an offer is then:

( ( ( ( ))))
( ( ( ))) ( ( ( )))

t

t t

E Offer I
P Acc I P Acc I

¡ =

W · P +

S
S S

1(1 ( ( ( )))) (1 ) ( ( ( ( ))))t B tP Acc I P E Offer I +- W · - · ¡S S

where 1 { ( ( ))}t t tI I Accept I+ = ¨ Ø S . This is of little
help in finding the “best”S, but two approximations
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are interesting. Either replace theS in the final term
by a simple strategy such as -S . Or assume that

1( ( ( ( )))) ( ( ( ( ))))t tE Offer I E Offer Iq+¡ = · ¡S S —for
some q < 1—then:

( ( ( ))) ( ( ( )))( ( ( ( ))))
1 (1 ( ( ( )))) (1 )

t t
t

t B

P Acc I P Acc IE Offer I
P Acc I P q

W · P
¡ =

- - W · - ·
S SS

S

In either case the expression can be opti-
mized numerically, even if PB is a function of

( ( ( )))tP Acc IW S .
The preceding considers the possibility of W

quitting. P may choose to quit and cause the
negotiation to break down if the negotiation
appears to be leading nowhere. One measure
of convergence is to monitor the sequence:
max ( ( ( )) | ( ( )) )P Acc P Accd d d aW P ‡ —that is, the
greatest likelihood of acceptable trade. If this
sequence is not increasing in time to a “reason-
able” value, then P may choose to quit.

AGENTS FOR AUCTIONS
AND BIDDING

The form of negotiation considered is between
bidding agents and an auctioneer ¡ in an infor-
mation-rich environment. The agent described
here is called the Bidding Agent, or P; it
engages in auctions with a set of S opponents
{W1,×××,WS}. General information is extracted
from the World Wide Web using special pur-
pose ‘bots’ that import and continually confirm
information that is then represented in pre-
specified predicates. P receives information by
observing its opponents {Wi} and from these
bots.

Game theory, dating back to the work of
John von Neumann and Oscar Morgenstern,
provides the basis for the analysis of auctions
and bidding. There is a wealth of material in this
analysis (Klemperer, 2000) originating with the
work of William Vickrey. Fundamental to this

analysis is the central role of the utility function,
and the notion of rational behavior by which an
agent aims to optimize its utility, when it is able
to do so, and to optimize its expected utility
otherwise. Analyses that are so founded on
game theory are collectively referred to as
game theoretic, or GT.

The application of GT to the design of
auction mechanisms has been both fruitful and
impressive—rational behavior provides a theo-
retical framework in which mechanism perfor-
mance may be analyzed. A notable example
being the supremely elegant Generalized
Vickrey mechanism (Varian, 1995). GT also
leads to prescriptive results concerning agent
behavior, such as the behavior of agents in the
presence of hard deadlines (Sandholm & Vulkan,
1999). The general value of GT as a foundation
for a prescriptive theory of agent behavior is
limited both by the extent to which an agent
knows its own utility function, and by its cer-
tainty in the probability distributions of the utility
functions (or, types) of its opponents.

In some negotiations—such as when an
agent buys a hat, a car, a house, or a com-
pany—she may not know her utility with cer-
tainty. Nor may she be aiming to optimize
anything—she may simply want to buy it. Fur-
ther, she may be even less certain of her
opponents’ types or whether her opponents are
even aware of the concept of utility. In such
negotiations, an agent may be more driven
towards establishing a feeling of personal “com-
fort” through a process of information acquisi-
tion, than by a desire to optimize an uncertain
personal utility function.7

A negotiation agent P attempts to fuse the
negotiation with the information that is gener-
ated both by and because of it. P decides what
to do—such as whether to bid in an auction—
on the basis of information that may be qualified
by expressions of degrees of belief. P uses this
information to calculate and continually re-
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calculate probability distributions for that which
it does not know. One such distribution, over
the set of all possible deals, expresses P’s
belief in the acceptability of a deal. Other
distributions attempt to predict the behavior of
its opponents—such as what they might bid in
an auction. These distributions are calculated
from P’s knowledge and beliefs using maxi-
mum entropy inference. P makes no assump-
tions about the internals of its opponents, in-
cluding whether they have or are even aware of
the concept of utility functions. P is purely
concerned with its opponents’ behavior—what
they do—and not with assumptions about their
motivations. The agents communicate using the
following predicate: ( )Bid . , where ( )Bid d
means “the sender bids a deal d.” The set of
actions A is limited to sending ( )Bid .  messages
to the auctioneer ¡.

An Application

An exemplar application used follows. It con-
cerns the purchase of a particular second-hand
motor vehicle, with some period of warranty,
for cash. So the two issues in this negotiation
are: the period of the warranty, and the cash
consideration. The meaning of the predicate
MayBid(W, d) is unchanged, but d now consists
of a pair of issues and the deal set has no natural
ordering. Suppose that P wishes to apply ME to
estimate values for: ( ( ))P MayBid dW,  for vari-
ous d. Suppose that the warranty period is
simply 0,×××,4 years, and that the cash amount for
this car will certainly be at least $5,000 with no
warranty, and is unlikely to be more than $7,000
with a four-year warranty. In what follows all
price units are in thousands of dollars. Suppose
then that the deal set in this application consists
of 55 individual deals in the form of pairs of
warranty periods and price intervals: { (w, [5.0,
5.2)), (w, [5.2, 5.4)), ( w , [5.4, 5.6)), (w, [5.6,
5.8), (w, [5.8, 6.0)), ( w , [6.0, 6.2)), (w, [6.2,

6.4)), (w, [6.4, 6.6)), ( w , [6.6, 6.8)), (w, [6.8,
7.0)), (w, [7.0, ¥)) }, where w = 0,×××,4. Suppose
that P has received intelligence that agent W is
prepared to bid 6.0 with no warranty, and to bid
6.9 with a one-year warranty, and P believes
this with probability 0.8. Then this leads to two
beliefs: 1 1(0 [6 0 6 2)) ( ) 0 8TopBid Bb b: , . , . ; = . ,

2 2(1 [6 8 7 0)) ( ) 0 8TopBid Bb b: , . , . ; = . .  Fol-
lowing the discussion above, before “switching
on” ME, P should consider whether it believes
that ( ( ))P MayBid dW,  is uniform over d . If it
does, then it includes both b1 and b2 in B, and
calculates W{K,B} that yields estimates for

( ( ))P MayBid dW,  for all d . If it does not, then
it should include further knowledge in K and B.
For example, P may believe that W is more
likely to bid for a greater warranty period the
higher her bid price. If so, then this is a multi-
issue constraint that is represented in B and is
qualified with some sentence probability.

FROM UTILITY TO
ACCEPTABILITY

One aim of this discussion is to lay the founda-
tions for a normative theory of auctions and
bidding that does not rely on knowledge of an
agent’s utility, and does not require an agent to
make assumptions about her opponents’ utili-
ties or types, including whether they are aware
of their utility. Such a theory must provide some
mechanism that determines the acceptability
of a deal—that is, the probability that the deal is
acceptable to an agent. Agent P is attempting
to buy or bid for a second-hand motor vehicle
with a specific period of warranty. Here, P is
bidding in a multi-issue auction for a vehicle,
where the two issues are price and warranty
period.

The proposition ( ( ) | )tAccept Id  means:  “P
will be comfortable accepting the deal d given
that P knows information It at time t.” In an
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auction for terms w, P’s strategy S may bid one
or more p for which ( (( )) | )tP Accept Ip w a, ‡
for some threshold constant a. This section
describes how P estimates ( ( ) | )tP Accept Id .
The meaning of Accept(d) is described below;
it is intended to put P in the position: “Looking
back on it, I made the right decision at the time.”
This is a vague notion but makes good sense to
the author.

With the motor vehicle application in mind,
( ( ) | )tP Accept Id  is derived from conditional

probabilities attached to four other proposi-
tions: Suited(w), Good(W), Fair(d), and Me(d),
meaning respectively: “terms w are perfectly
suited to P’s needs,” “W will be a good agent
for P to be doing business with,” “d  is generally
considered to be a fair deal at least,” and “on
strictly subjective grounds, the deal d is accept-
able to P.” These four probabilities are:

( ( ) | )tP Suited Iw , ( ( ) | )tP Good IW , P(Fair(d)| It
¨ {Suited(w), Good(W)}), and P(Me(d)| It ¨
{Suited(w), Good(W)}). The last two of these
four probabilities factor out both the suitability
of w and the appropriateness of the opponent W.
The third captures the concept of “a fair market
deal” and the fourth a strictly subjective “what
w is worth to P.” The “Me(.)” proposition is
closely related to the concept of a private
valuation in game theory. This derivation of

( ( ) | )tP Accept Id  from these four probabilities
may not be suitable for assessing other types of
deals.

To determine ( ( ) | )tP Suited Iw , if there are
sufficiently strong preference relations to es-
tablish extrema for this distribution, then they
may be assigned extreme values » 0.0 or 1.0. P
is then repeatedly asked to provide probability
estimates for the offer w that yields the greatest
reduction in entropy for the resulting distribu-
tion (McKay, 2003). This continues until P
considers the distribution to be “satisfactory.”
This is tedious, but the “preference acquisition
bottleneck” appears to be an inherently costly
business (Castro-Schez et al., 2004).

To determine ( ( ) | )tP Good IW  involves an
assessment of the reliability of the opponent W.
For some retailers (sellers), information—of
varying reliability—may be extracted from sites
that rate them. For individuals, this may be done
either through assessing their reputation estab-
lished during prior trades (Ramchurn et al.,
2003) or through the use of some intermediate
escrow service that is rated for “reliability”
instead.

( ( ) | { ( ) ( )})tP Fair I Suited Goodd w¨ , W

is determined by reference to market data.
Suppose that recently a similar vehicle with a
three-year warranty sold for $6,500, and an-
other less similar was sold for $5,500 with a
one-year warranty. These are fed into It and
are represented as two beliefs in B: b3 :
Fair(2,[6.4,6.6)); B(b 3)  = 0 .9, b 4 :
Fair(2,[5.4,5.6)); B(b4) = 0.8. In an open-cry
auction, one source of market data is the bids
made by other agents. The sentence probabili-
ties that are attached to this data may be
derived from knowing the identity and the repu-
tation of the bidding agent. In this way the
acceptability value is continually adjusted as
information becomes available. In addition to b3
and b4, there are three chunks of knowledge in
K. First, k2 : Fair(4,4999) that determines a
base value for which P (Fair) = 1, and two
other chunks that represent P’s preferences
concerning price and warranty:

3

4

(( ) ( ( ) ( )))
(( ) ( ( ) ( )))

x y z x y Fair z x Fair z y
x y z x y Fair y z Fair x z

k
k

: " , , > fi , fi ,
: " , , > fi , fi ,

The deal set is a 5 · 11 matrix with highest
interval [7.0, ¥). The three statements in K
mean that there are 56 possible worlds. The
two beliefs are consistent with each other and
with K. A complete matrix for ( ( ) | )tP Fair Id  is
derived by solving two simultaneous equations
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of degree two using equation 3. As new evi-
dence becomes available, it is represented in B,
and the inference process is re-activated. If
new evidence renders B inconsistent, then this
inconsistency will be detected by the failure of
the process to yield values for the probabilities
in [0,1]. If B becomes inconsistent, then the
revision function R identifies and removes in-
consistencies from B prior to re-calculating the
probability distribution. The values were calcu-
lated using a program written in Java:

0 1 2 3 4
[7 0 ) 0 0924 0 1849 0 2049 0 2250 0 2263

[6 8 7 0) 0 1849 0 3697 0 4099 0 4500 0 4526
[6 6 6 8) 0 2773 0 5546 0 6148 0 6750 0 6789
[6 4 6 6) 0 3697 0 7394 0 8197 0 9000 0 9053
[6 2 6 4) 0 3758 0 7516

w w w w w
p
p
p
p
p

= = = = =
= . ,¥ . . . . .
= . , . . . . . .
= . , . . . . . .
= . , . . . . . .
= . , . . . 0 8331 0 9147 0 9213

[6 0 6 2) 0 3818 0 7637 0 8466 0 9295 0 9374
[5 8 6 0) 0 3879 0 7758 0 8600 0 9442 0 9534
[5 6 5 8) 0 3939 0 7879 0 8734 0 9590 0 9695
[5 4 5 6) 0 4000 0 8000 0 8869 0 9737 0 9855
[5 2 5 4) 0 4013 0

p
p
p
p
p

. . .
= . , . . . . . .
= . , . . . . . .
= . , . . . . . .
= . , . . . . . .
= . , . . 8026 0 8908 0 9790 0 9921

[5 0 5 2) 0 4026 0 8053 0 8947 0 9842 0 9987p
. . . .

= . , . . . . . .

The two evidence values are shown above
in bold face.

Determining P(Me)(d) | It ¨ {Suited(w),
Good(W)}) is a subjective matter. It is speci-
fied using the same device as used for Fair,
except that the data is fed in by hand “until the
distribution appears satisfactory.” To start this
process, first identify those d that “P would be
never accept”—they are given a probability of
»0.0; and second those d that  “P would be
delighted to accept”—they are given a prob-
ability of »1.0. The Me proposition links the ME
approach with “private valuations” in GT.

AUCTIONS

The ME analysis of auctions focuses on what
agents actually do rather than their reasons for
doing what they do. The four common auction

mechanisms are considered for an auctioneer
¡, a single item and multi-issue bids each con-
sisting of a set of deals. In the Dutch auction the
auctioneer calls out successive sets of deals
until one bidding agent shouts “mine.” In the
first- and second-price, sealed-bid mechanisms,
bidding agents submit any number of multi-
issue bids. The “Australian” mechanism is a
variant of the common English mechanism in
which agents alternately bid successive sets of
deals until no further bids are received—as
each set of deals is received, the auctioneer
identifies the current winning bid. So, unlike in
the multi-issue English mechanism, in the Aus-
tralian mechanism the auctioneer is not re-
quired to publicize fully her winner determina-
tion criterion in advance, and the bidders are not
required to submit successive bids that are
increasing with respect to that criterion. In the
two sealed-bid mechanisms and the Australian
mechanism, the auctioneer determines the win-
ner—and the runner up in the second-price
mechanism—using a preference ordering on
the set of all possible deals that may be made
known to the bidding agents. The bids in these
auctions may contain a large number of deals
which is rather impractical.

Consider what happens from the auctioneer’s
point of view. ¡’s expectation of what might
happen will rely on both an understanding of the
motivations and strategies of the agents taking
part, and the rules of the auction mechanism.
These two matters will effect ¡’s choice of
deal set, but otherwise the analysis is the same
for the four common auction mechanisms. Sup-
pose that there are S agents 1{ }S

i i=W  bidding in
the auction, and the value set 1{ }D

i iD d ==  con-
tains D elements. Suppose that ¡ has a total
preference ordering ¡ on the deal set D, and that
D is labeled such that if i > j then di¡dj. Let the
predicate ( )TopBid dW,  now mean “deal d is the
highest bid that W will make with respect to the
order ¡.” There are S · D ground literals in
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terms of this predicate. This predicate will
satisfy:

7 (( ( ) ( )) ( ))i iixy TopBid x TopBid y x yk : " W , Ù W , fi = .

Suppose that the deal set D has been chosen
so that ¡ expects each of the (D + 1)S possible
worlds that are consistent with k7 to be equally
probable for TopBid(.) for each Wi for i =
1,...,S. This is the symmetric case when the
expected performance of each of the S bidding
agents is indistinguishable. The maximum en-
tropy dis tr ibut ion is uniform and

1
1( ( ))i j DijP TopBid d +" W , = .  Let the predi-

cate ( )WinningBid d  mean “deal d is the highest
bid that the 1{ }S

i i=W  will make with respect to the
order ¡ .” Then:

8 ( ( ) ( ( ) ( )) ( ( ))i j k n ii WinningBid jkTopBid k i nTopBidk d d d: " « Ø$ W , Ù > Ù $ W , .

( ( ) ( ( ) ( )) ( ( ))i j k n ii WinningBid jkTopBid k i nTopBidk d d d: ∀ « Ø$ W , Ù > Ù $ W , .

There are now (S · D) + D ground literals in
terms of these two predicates, but still only (D
+ 1)S possible worlds. So:

( ( )) (1 ) (1 ( ) )
1 1

S S
i

D i iP WinningBid
D i

d
-

= - · -
+ +

     (5)

For example, if S = 2 and D = 3, then the
probability of the highest of the three possible
deals being bid by at least one of the two agents
is 7

16 . If the total ordering ¡ is established by a
utility function, then this result enables the
estimation of the expected utility.8 The analysis
completed so far may be applied to any sealed-
bid auction or to any open-cry auction prior to
any bids being placed. Once the bidding starts
in an open-cry auction, information about what
agents are or are not prepared to bid is avail-
able. This information may alter a bidding
agent’s assessment of the acceptability of a

deal by feeding into the ( )Fair .  predicate. It
also alters the assessments of the probabilities
of what the various opponents will bid, and of
any deal being the winning bid. Bids made in an
Australian auction provide lower limits, and
bids not made in a Dutch auction provide upper
limits to what the opponents will bid.9 As these
limits change, the assessment of these prob-
abilities are revised using equation 3. A for-
mula for ( ( ))iP WinningBid d  in terms of these
limits is rather messy.10 The value derived for

( ( ))iP WinningBid d  relies on k7 and k8 in K,
together with expressions of the observed limits
and the assumed expectation that each possible
world is equally probable for extitTopBid(.).

Now consider the four auctions from a
bidding agent’s point of view. Two strategies S
for bidding agents are described for illustration
only: first, a keen agent who prefers to trade on
any acceptable deal to missing out—they are
not primarily trying to optimize anything—al-
though in the Australian auction they may choose
to bid strategically and may attempt to reach
the most acceptable deal possible; and second,
a discerning agent who attempts to optimize
expected acceptability and is prepared to miss
out on a deal as a result.

First, consider keen agents. In a first-price,
sealed-bid auction, these agents will bid the
entire set { | ( ( ) | ) }tP Accept Id d a‡ . In an Aus-
tralian, open-cry auction, these agents may
attempt to submit bids that are just “superior” to
the bids already submitted by other agents. The
meaning of “superior” is determined by ¡  and
may be private information. If a bidding agent
does not know ¡, then it will have to guess and
assume it. Suppose that D is the set of bids
submitted so far by the opponents in an Austra-
lian auction. First define the set of bids that are
just superior to:

1 1 2 2 1 2 2 1: { | (( ) (( ) ( )))}D r r rd d d d d d d d d d d δ δ+D D = ˛ ˇD, $ ˛ D, ," fi = ∨ =f f f

1 1 2 2 1 2 2 1: { | (( ) (( ) ( )))}D r r rd d d d d d d d d d d d dD D = ˛ ˇ D,$ ˛ D, ," fi = Ú =f f f .
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Now bid {argmaxd{P(Accept(d) | It) ‡ a)Ù
(d ˛ D+)}}. To avoid bidding against itself in a
Vickrey auction, an agent will bid a set of deals
that forms a shell å with respect to ¡ [i.e.,

( ( ))i j i jd d d d¡" ˛S Ø ]. An agent will only bid
in a Vickrey auction if ¡ is known, because that
ordering will determine the “highest” non-win-
ning bid. This uncertainty makes the Vickrey
auction less attractive to keen agents than the
other three forms. If keen agents do not feed
bidding information into their acceptability
mechanism in the open-cry cases, then the
expected revenue will be greatest in the first-
price, sealed-bid, followed by the Dutch and
then by the Australian—it is not clear how the
Vickrey auction fares due to the uncertainty in
it. Feeding bidding information into the accept-
ability mechanisms of keen agents may have an
inflationary effect on expected revenue in an
Australian auction, and bidding non-informa-
tion may have a deflationary effect in the Dutch
auction. The extent to which these effects may
change the expected-revenue ordering will be
strategy specific.

Second, consider discerning agents. A simi-
lar analysis to the result in equation 5 may be
used by a discerning agent to optimize expected
acceptability in the symmetric case. This analy-
sis follows the general pattern of the standard
GT analysis for utility optimizing agents (e.g.,
Wolfstetter, 1999); it is not developed here. For
a discerning agent, the Vickrey mechanism has
a dominant strategy to bid at, and the Australian
mechanism right up to, the acceptability mar-
gin. For the Dutch and first-price mechanisms,
the acceptability of the deals bid will be shaded-
down from the margin. In both the Dutch and
the Australian mechanisms, the margin of ac-
ceptability may move as bidding information
becomes available.

TAKE IT OR LEAVE IT

The take-it-or-leave-it mechanism is a degen-
erate auction in that an agent makes a single bid
that stands until it is withdrawn. An opponent
agent may then choose to accept a standing bid.
Further, some popular auctions, such as eBay,
offer vendors the facility of a “Buy Now”
option. To use this option the vendor must
determine a take-it-or-leave-it price. The case
of one buyer and one seller is considered here.
Introduce the predicate WillTrade(W, d)meaning
“that agent W will accept a proposed deal d.”
Then an “acceptability optimizing” P, with
informa tion I t, will offer W the deal:
argmax ( ( ( )) ( ( ) | ))tP WillTrade P Accept Id d dW, · .
For multi-issue d,  the dist r ibut ion for

( ( ))P WillTrade dW,  is evaluated using equa-
tion 2 and the distribution for ( ( ) | )tP Accept Id .

The single-issue case is analyzed to illus-
trate the “ME method” and because it gives a
different value to GT. Suppose that a seller has
a good that she values at r, and she wishes to
determine a take-it-or-leave-it price. First as-
sume that the single buyer W will prefer to pay
less than more:

9 (( ) ( ( ) ( )))x y x yxy WillTrade WillTradek d d d d: " > fi W, fi W, .

(( ) ( ( ) ( )))x y x yxy WillTrade WillTradek d d d d: " > fi W, fi W, .

Second, choose the intervals 1{ }D
i iD d ==  such

that
9{{ } }Bk ,W  is uniform, where D  is ordered

naturally. Then VK contains D + 1 possible worlds
for the predicate WillTrade(W, d) for d ̨ D, and

1( ( )) i
i DP WillTrade d +W, = . Suppose that the seller

knows the additional information that W will paydy
and will not pay dn. Then K now contains two
further sentences: 10 ( )nWillTradek d: Ø W,  and

11 ( )yWillTradek d: W, . There are now n y-  pos-
sible worlds, the maximum entropy distribution
is uniform, and using equation 2:
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( ( )) n i
i n yP WillTrade y i nd -

-W, = , £ £ . In general
the seller’s expected surplus in offering the deal
d to agent W is: ( ( )) ( ( ) )P WillTrade rd dW, · -U ,
where U(d) is the utility. In the continuous case,
the “expected utility-optimizing price” is ( )

2
n rd +U .

This price is in terms of only the seller’s valu-
ation r and the knowledge ( )nWillTrade dØ W, ; it
is independent of the knowledge

( )yWillTrade dW, . Both ME and GT assume
9k . In the GT analysis (Wolfstetter, 1999), the

expected utility optimizing price is 2
u r+ , where u

is the upper bound of an assumed uniform
distribution for W’s utility. The GT analysis
relies on that assumption. The ME analysis
relies on the observation ( )yWillTrade dW,  and
shows that the price is ( )

2
n rd +U . It is no surprise

that these expressions have a similar structure.
However they do not have the same value. W
may be aware of her utility uW  for the good.
The inherent inefficiency of bilateral bargaining
(Myerson & Satterthwaire, 1983) shows for an
economically rational W that uW , and so conse-
quently u  may be greater than U(dn). Further,
dn may be a “high” offer and u  may be less than
U(dn) . It is unlikely that they will be equal.

CONCLUSION

The negotiating agent achieves its goal of reach-
ing informed decisions while making no as-
sumptions about the internals of its opponent.

As a bargaining agent, P has five ways of
leading a negotiation towards a positive out-
come:

1. by making more attractive offers to W;
2. by reducing its threshold a;
3. by acquiring information to hopefully in-

crease the acceptability of offers received;
4. by encouraging W to submit more attrac-

tive offers; and
5. by encouraging W to accept P’s offers.

The first two of these have been described.
The third has been implemented but is not
described here. The remaining two are the
realm of argumentation-based negotiation which
is the next step in this project. The integrated
way in which P manages both the negotiation
and the information acquisition should provide a
sound basis for an argumentation-based nego-
tiator.

As an auction agent, P bids because she
feels comfortable as a result of knowledge
acquisition, rather that being motivated by ex-
pected utility optimization. Information is de-
rived generally from the World Wide Web,
from market data, and from observing the be-
havior of other agents in the market. The agents
described do not make assumptions about the
internals of their opponents. In competitive
negotiation, an agent’s motivations should be
kept secret from its opponents. So speculation
about an opponent’s motivations necessarily
leads to an endless counter-speculation spiral
of questionable value. These agents require a
method of uncertain reasoning that can operate
on the basis of a knowledge base that contains
first-order statements qualified with sentence
probabilities. Maximum entropy inference is
eminently suited to this requirement, and has
the additional bonus of operating with logical
constants and variables that represent indi-
vidual deals. So the deals may be multi-issue.
Four simple multi-issue auction mechanisms
have been analyzed for two classes of agent:
keen agents that are primarily motivated to
trade, and discerning agents that are primarily
motivated by the optimization of their expected
acceptability. The acceptability mechanism
generalizes game-theoretic utility in that ac-
ceptability is expressed in terms of probabilities
that are dynamically revised during a negotia-
tion in response to both changes in the back-
ground information and the opponents’ actions.
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Much has not been described here including:
the data and text mining software, the use of the
Bayesian net to prompt a search for informa-
tion that may lead to P raising—or perhaps
lowering—its acceptability threshold, and the
way in which the incoming information is struc-
tured to enable its order ly acquisition
(Debenham, 2004). The following issues are
presently being investigated. The random world
computations are performed each time the
knowledge K or beliefs B alter—there is scope
for using approximate updating techniques in-
terspersed with the exact calculations. The
offer-accepting machinery operates indepen-
dently from the offer-making machinery—but
not vice versa; this may mean that better deals
could have been struck under some circum-
stances. Sierra and Debenham (2005) describe
a foundation for trust based on information
theory and maximum entropy.
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ENDNOTES

1 The often-quoted oxymoron “I paid too
much for it, but it’s worth it” attributed to
Samuel Goldwyn, movie producer, illus-
trates that intelligent agents may negoti-
ate with uncertain utility.

2 Constants are 0-ary functions.
3 A sentence probability of 0.5 represents

“maybe, maybe not.”
4 In rather dire circumstances, King Rich-

ard III of England is reported to have
initiated a negotiation with remarkably
high stakes: “A horse! a horse! my king-
dom for a horse!” [William Shakespeare].
Fortunately for Richard, a person named
Catesby was nearby and advised Richard
to retract this rash offer “Withdraw, my
lord,” and so Richard’s intention to honor
his commitments was not put to the test.

5 The introduction of w  may be avoided by
defining P(Me(t, w)) 1

1 exp( ( ( ) ( ))b w t+ - · -U U  for

( ) ( )w t‡U U  and zero otherwise, where b
is some constant. This is the sigmoid trans-
fer function used in some neural net-
works. This function is near-linear for

( ) ( )w t»U U , and is concave or “risk
averse” outside that region. The transition
between these two behaviors is deter-
mined by the choice of b.

6 This is reminiscent of Werner
Heisenberg’s indeterminacy relation, or
unbestimmtheitsrelationen: “You can’t
measure one feature of an object without
changing another”—with apologies.

7 After becoming CEO of Citicorp in 1967,
Walter Wriston said: “Banking is not about
money; it is about information.” It is tempt-
ing to echo this as: “Negotiation is not
about utility….”

8 In the continuous GT analysis, if iX  is a
random variable representing the amount
bid by Wi, and if the distributions for the Xi
are uniform on [0.1], then the expected
value of the winning bid is given by the
expected value of the Sth order statistic

( ) 1( ) S
S SE X += .

9 This is the asymmetric case.
1 0 In the continuous GT analysis, given a

sample of S non-identical, independent
random variables 1{ }S

i iX =  where Xi is uni-
form on [ 1]iC , .  For each sample,

1
1( )

i

X
i i Cp P X X -

-= ‡ =  if 1iC X£ £  and zero
otherwise. So the probability that none of
the iX  exceed max{ }iY C‡  is

11 1
( ) (1 ) j

j

S S Y C
i Cj j

P Y p -

-= =
= - =Õ Õ , which is the probabil-

ity distribution function for the largest Y .
Then

1

max{ }
( ) ( )

i

Y

Y C
E Y Y f Y dY

=

=
= · ·ò  where

1
1 11

( ) ( ) ( )j

j i

S SY C
C Y Cij

f Y -
- -==

= · åÕ . For example, for S =
2, C1 = c, C2 = d, 0 1c d£ £ £  then

3 24 (3 ) (3 ( 1))
6 (1 ) (1 )( ) d d c d

c dE Y - · - + · · -
· - · -= , and ifc= d = 0 then

2
3( )E Y =  as we expect.
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ABSTRACT

The increasing use of auctions as a selling mechanism has led to a growing interest in the
subject. Thus both auction theory and experimental examinations of these theories are being
developed. A recent method used for carrying out research on auctions has been the design
of computational simulations. The aim of this chapter is to give a background about auction
theory and to present how evolutionary computation techniques can be applied to auctions.
Besides, a complete review to the related literature is also made. Finally, an explained example
shows how a genetic algorithm can help automatically find bidders’ optimal strategies for a
specific dynamic multi-unit auction—the Ausubel auction—with private values, drop-out
information, and with several rationing rules implemented. The method provides the bidding
strategy (defined as the action to be taken under different auction conditions) that maximizes
the bidder’s payoff. The algorithm is tested under several experimental environments that
differ in the elasticity of their demand curves, number of bidders, and quantity of lots
auctioned. The results suggest that the approach leads to strategies that outperform sincere
bidding when rationing is needed.
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INTRODUCTION

According to the historical archives, the first
time auctions were implemented was 500 B.C.
Herodotus reports that in Babylon, men had to
buy their future wives by bidding in auctions.
Nowadays auctions are widely used as selling
mechanisms in different markets around the
world. The items auctioned range from the
wide variety being offered on Internet market-
places like eBay, the auctions of art, antiques,
financial assets, agricultural goods, fish, and so
forth. Perhaps at the present time the most
important agents using auctions are govern-
ments. The authorities usually carry out auc-
tions both for selling and buying. Governments
sell by means of auction commodities like emis-
sion permits, electromagnetic bands for com-
munication, or the rights for use of natural
resources or public companies. On the other
hand, when governments are the buyer that is in
procurement auctions, bidders compete for the
right to sell their products or services and the
lowest bid wins the contract. As a result of
these activities, auction theory and experimen-
tal examinations of these theories are of grow-
ing interest.

Experiments done on auctions suggest that
frequently bidders make systematic bidding
errors, so the final outcome does not fit the
theoretical results (Kagel, 1995). In order to
understand these divergences, a recent method
used for analyzing strategies on auctions is the
use of systems of artificial adaptive agents
(AAAs). Moreover, these learning models with
adaptive agents can be helpful not only where
theory and experimental results disagree, but
for those situations where the environment is so
complicated that a theoretical result has not
been modeled yet. In this context, genetic algo-
rithms (GAs) are a good learning method for
optimization in complex problem domains. In
this way, the use of machine learning systems

can help find equilibrium strategies or in the
evaluation, from different points of view, of an
auction itself with respect to other possible
auctions. The analysis of these systems gives
us new approaches to understanding the eco-
nomic and social behavior of auctions.

The remainder of the chapter is organized
as follows. The next section gives the reader a
minimum background about auction theory. The
third section presents how evolutionary compu-
tation techniques can be applied to auctions and
gives a review of  related literature. Then, in the
section Analysis of the Ausubel Auctions by
Means of Evolutionary Computation, a detailed
example of one research project that uses
genetic algorithms to develop bidder strategies
in Ausubel auctions is given; at this point the
experimental framework is shown, along with a
description of the bidding strategy encoding
with the results obtained. Finally, conclusions
are drawn.

THE STANDARD
AUCTION TYPES

Although auctions have been used from time
immemorial, they did not enter into the eco-
nomic literature until relatively recently. Most
likely the starting point of the auction theory is
the work done by Vickrey (1961) on the equiva-
lence in the expected revenue of different
auction forms, where he described, for the first
time, the sealed-bid second-price auction. Since
this research a lot of work has been done on this
topic, especially at the end of the 1970s. It is
very difficult to list the numerous papers on
auctions; however, some references are:
Klemperer (2000a, 2000b), who collects to-
gether in two volumes most of the critical
papers in the economic literature of auctions up
to the year 2000; Krishna (2002), who gives an
account of developments in the field in the 40
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years since Vickrey’s pioneering paper;
Klemperer (2003), who surveys the basic theory
of how auctions work and describes the world-
record-setting 3G mobile-phone license auc-
tions; and Milgrom (2004), who gives an up-to-
date treatment of both traditional theories of
optimal auctions and newer theories of multi-
unit auctions and package auctions.

There are four basic types of auctions when
a unique item is to be bought or sold: the open
ascending price or English auction, the open
descending price or Dutch auction, the sealed-
bid first-price auction, and the sealed-bid sec-
ond-price or Vickrey auction. In the English
auction the price is successively raised until one
bidder remains and that bidder wins the item at
the final price. In the Dutch auction the auction-
eer starts at a very high price and then lowers
it continuously. The first bidder who calls out
that he accepts the current price wins the
object. In the first and second price auction,
each bidder independently submits a single bid,
and the item is sold to the bidder with the highest
bid. In the first price, the winning bidder pays
his bid, but in the second price, the winning
bidder pays the second highest bidder’s bid.

Optimal Auctions and
Efficiency Auctions

The performance of auctions can be evaluated
on two different grounds depending on the
context. From the seller’s point of view, he or
she will be interested in revenues, the expected
selling price. In this sense, an auction is defined
as optimal when it reports the highest expected
revenue to the seller among all the different
kinds of auctions. On the other hand, if we
consider society as a whole, efficiency may be
more important. An auction is said to be effi-
cient when it allocates the object to the bidder
who values it the most ex post.

As we have mentioned, much of the auction
literature, theory and experimental, analyzes

different auction formats in order to compare
the revenues for both buyers and sellers or the
final allocation of the items. As we will see in
the section, Evolutionary Computation Tech-
niques and Auctions, most of the research done
with computational experiments focuses on the
bidders’ strategy or the market design in order
to evaluate these components.

Multi-Unit Auctions

When we have multiple objects to be sold, the
seller has many options to consider. First, he
must decide whether to sell the objects sepa-
rately in multiple auctions (sequential or simul-
taneous auctions) or jointly in a single auction.
Moreover, he must determine whether the ob-
jects to be sold are identical or heterogeneous.
When the items are not homogeneous, the
seller must face the question about how to
package the goods offered for sale. An alterna-
tive is to design an auction that let the bidders
choose the packages for themselves (package
auctions or combinatorial auctions).

In multiple-object environments where indi-
vidual bidders may demand more than one
homogeneous item in a single auction, the seller
must choose among a wide variety of auction
formats.

The most common multi-unit auctions with
sealed-bid formats are the discriminatory auc-
tion, the uniform-price auction, and the Vickrey
auction. In these auctions, bidders are asked to
submit a bid vector indicating how much they
are willing to pay for each additional unit. Then
an aggregate demand function is obtained by
horizontally adding the individual demand func-
tions. As the supply function is just a vertical
line, the winning bids would be those on the left
side of the intersection of both functions. The
allocation rule establishes that the awarded
units are equal to the units of winning bids
submitted (see Figure 1). The differentiating
features in these auctions are the pricing rules.
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In the discriminatory auction each bidder pays
an amount equal to the sum of his winning bids.
In a uniform price auction, all the items are sold
at the market-clearing price so that demand
equals supply. Finally, in the Vickrey auction, a
bidder who wins a unit pays for the highest
losing bids of the other bidders, not including his
own.

Likewise, in the open format we can empha-
size the Dutch (or open descending price)
auction, the English (or open ascending-price)
auction, and the Ausubel auction. In the multi-
unit Dutch auctions, the auctioneer calls out a
price that is gradually lowered until a bidder

indicates that he is willing to buy an item at the
standing price. This bidder is awarded an item
and the auction proceeds until all the units are
sold. In a multi-unit English auction, the auc-
tioneer starts calling out a low price and bidders
ask for the units they are willing to pay. As the
price goes up, bidders reduce their demands
until the demand equals the supply at a price
where all the units are sold and the auction is
over. The Ausubel auction is an alternative
ascending-price auction, and items are allo-
cated according to the following procedure. As
the price goes up, the demanded quantities go
down, until the number of units demanded by
the other bidders is less than the supply. At that
price, a bidder “clinched” or earned an item.
The bidders will have to pay for the awarded
units at the standing prices when they clinched
the items. A deeper explanation of this format
is offered further on.

Just as in the single-unit environment, there
is some equivalence between these auction
formats. Under private value models, the fol-
lowing weak equivalences hold: the discrimina-
tory auction and the multi-unit Dutch auction,
the uniform-price auction and the multi-unit
English auction, and finally, the Vickrey auction
and the Ausubel auction. Figure 2 includes the
equivalences of the basic auction formats for
both single units and multi-unit.

Figure 1. Allocation rule for sealed bid
multi-unit auction

Figure 2. Equivalence of auction formats
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Double Auction

All the auctions that we have commented on so
far have a common pattern: they are one-sided
auctions. This means that there is one single
seller and many buyers, or vice versa one buyer
and many sellers (procurement auctions). Nev-
ertheless, it is also possible to have many buy-
ers and many sellers in what is referred to as a
two-sided auction.

A double auction is a two-sided auction
where buyers and sellers are treated symmetri-
cally with buyers submitting bids and sellers
submitting offers. In the simple double auction
model with a single good to trade in the market,
the buyer and seller each submit a sealed bid:
the buyer submits the price he is willing to pay
(pb) and the seller submits the minimum pay-
ment for which he will deliver the good (ps).
During each period every seller is randomly
matched with buyers, and if pb ≥ ps, one unit of
the good is traded.

A particular specification of this model is
the continuous double auction. In this auction
sellers announce decreasing offer prices, while
simultaneously and asynchronously the buyers
present increasing bid prices, with the sellers
being free to accept any buyer’s bid at any item
and the buyers being free to accept any seller’s
offer at any time, in the absence of an auction-
eer.

EVOLUTIONARY COMPUTATION
TECHNIQUES AND AUCTIONS

Research in negotiation models has been pur-
sued in different fields: game theory, social
sciences, and artificial intelligence. In recent
years there has been an increasing interest in
the theory of auctions and in experimental
works in order to prove these theories. Both
experimenters and theorists have to deal with

different results and conclusions, and it is gen-
erally perceived that the “misbehavior” of sub-
jects in their bidding strategies is the main
reason for those differences encountered (Cox,
Roberson, & Smith, 1982; Cox, Smith, & Walker,
1983, 1985; Kagel & Levin, 1985, 1986; Kagel,
Harstad, & Levin, 1987; Kagel & Dyer, 1988;
Andreoni & Miller, 1995). Thus, to have a
better understanding of the different behaviors
of bidders and auction outcomes, it is necessary
to add computational experimental frameworks
that complement auction theory. The experi-
mental frameworks are developed to simulate
auction environments with real bidder behav-
iors. Such computational experiments allow us
to study the complex, dynamic, and stochastic
processes inherent in auction learning models
(Andreoni & Miller, 1995). This hard task
usually requires the application of different
types of artificial intelligence techniques. The
most popular approaches study the interaction
of AAAs, developing their behavior with adap-
tive learning algorithms like GAs, genetic pro-
gramming (GP), evolutionary strategies (ESs),
or evolutionary programming (EP).

The main problem in designing the experi-
mental frameworks is how to encode the pos-
sible behaviors and bidders’ strategies. This
problem is solved in different manners accord-
ing to the aim of the research. There is a great
deal of work done using evolutionary computa-
tion (EC) techniques to simulate the learning
behavior of rational agents. Some authors use
agents that are already implemented, like agents
with Zero Intelligent Plus (ZIP) learning heu-
ristics (Cliff, 1998; Priest & Tol, 1998; Priest,
1999). Alternatively, other authors prefer to
develop agents with their own particular proto-
col for negotiation decisions, one-to-one nego-
tiations (Faratin, Sierra, & Jennings, 1998),
bilateral negotiations (Matos, Sierra, & Jennings,
1998), or multiple auctions (Anthony & Jennings,
2003).
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Evolving Bidding Strategies

The most popular approaches to bidding optimi-
zation are conducted with GAs. These algo-
rithms are usually applied to search for the
optimal strategy driving the behavior of the
AAA. Figure 3 illustrates this procedure. In this
way, a population of agents or bidders interacts
with an auction simulator implemented with an
EC algorithm like a GA. The GA makes bid-
ders’ strategy evolve, searching for the best bid
in the virtual environment.

In this field the agents can be implemented
in different ways. Usually each agent is repre-
sented by one individual of the GA population.
Elsewhere, the agents are autonomous soft-
ware that interacts and have their own behavior
implemented.

Encoding the Strategies

The first problem found when applying GAs to
evolve bidders’ behavior is the fact that the
bidding strategies must be defined and en-
coded. This difficult task can be achieved in
different ways, but the most widespread ap-
proach is to represent the agents’ behavior with
a binary string. The length of the string can be
used to determine the number of possible strat-
egies for one agent. Moreover, there are other
features that heavily affect the behavior of the
bidders such as: auction format, affiliation, risk-
aversion, budget constraints, asymmetries, re-
maining time of the auction, bargain tactic, and
so on. As the complexity and number of strat-
egies grow, the binary encoding is more diffi-
cult to apply, the real or integer encoding being
the most recommendable. For example, a pos-
sible encoding to represent strategies described
above is using one population of individuals
where each individual is represented with a
vector of floating point values. Each individual
represents one bidding agent, and its genes are

the parameters of the different tactics. The
genes’ value is the relative weight for each
tactic, as Anthony and Jennings (2003) had.
Another simple and efficient encoding is using
strings to represent parameters which define a
determined bidding function (Andreoni & Miller,
1995).

An important constraint of auction theory is
that, generally, it assumes a benchmark model
where the hypothesis of the revenue equiva-
lence principle holds: private values, risk-neu-
tral, budget constraints, and symmetric valua-
tion, or at least most of them. Nevertheless, the
EC techniques are powerful tools to simulate
auction environments where these assumptions
can be relaxed.

Related Work

There is work done in this field with techniques
of EC as mentioned before. A summary of
some of them and their results are presented
below:

• Cliff (2003) makes a proposal for auto-
mated online auctions. The author sug-
gests that so far, the most popular auction
market mechanisms were designed by
humans for humans. Nevertheless, it is
possible that in the future, trader agents
might replace human traders in online
marketplaces (Das, Hanson, Kephart, &
Tesauro, 2001). However, the number of
possible auction mechanisms is so large
that the search for the most appropriate
one is not an easy task. The approach
suggested by Cliff starts with a represen-
tation that allows a wide range of possible
market mechanisms, including the con-
tinuous double auction market (CDA), the
one-sided auctions (similar to the English)
and the Dutch auctions, as well as an
infinite range of hybrids for private value
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auctions. Cliff models the market by means
of a set of Zero-Intelligence-Plus traders.
These agents (whose basic behavior was
described in Cliff, 2002) generate quotes
according to a set of parameters using the
Widrow-Hoff rule. These markets were
allowed to evolve using a GA, in order to
minimize the deviation of transaction prices
from the theoretical equilibrium prices.
The results suggest that CDA mecha-
nism, the most common in financial mar-
kets, might not be the best one in every
situation. Evolved hybrid market mecha-
nisms could be more efficient when shocks
in supply and demand occur, while CDA
can be more appropriate when the nature
of supply-and-demand curves cannot be
predicted.

• Andreoni and Miller (1995) created a GA
model to capture the bidding patterns evi-
dent among human subjects in experimen-
tal auctions. These authors compared the
different results for first- and second-
price auction formats with affiliated pri-
vate values, independent private values,
and common value auctions. Experiments
were done for first- and second-price
auctions with four and eight bidder groups.
For each auction they ran 20 trials until
1,000 generations. The algorithm searches
over 2-parameter linear functions in each
auction. In the results it is remarkable how
the subjects in second-price auctions do
better than those in first-price auctions,
although bidders tend to over-bid in all
auctions. Moreover, buyers’ profits are
lower in first-price independent value auc-
tions than in second-price auctions. This
result contradicts the revenue equivalence
theorem and shows how bidders make
systematic bidding errors. With these find-
ings they concluded that adaptive learning
can provide useful insights into a bidder’s

behavior, and can reconcile existing theo-
retical and experimental results.

• Dawid (1999) modeled a two-population
GA to study the learning behavior of buy-
ers and sellers in a sealed-bid double
auction with private information. To apply
the genetic operators, he encodes each
individual of the population with a string,
and a fitness value is calculated measur-
ing the success of the individual by the
average payoff earned in the last period (a
group of “m” iterations). The algorithm is
launched during 2,500 iterations, and the
fitness is updated every 20 generations
(one period). After doing a theoretical
study describing the behavior of GAs in
economic systems, they confirmed their
findings with simulations, and illustrated
how agents can coordinate on efficient
bidding strategies in a sealed-bid double
auction market without previous knowl-
edge of the structure of the model.

• Anthony and Jennings (2002, 2003) sug-
gested an agent-based approach to bid-
ding strategy evolution for specific envi-
ronments using GAs. Under their frame-
work, there are different auctions—En-
glish, Dutch, and Vickrey—and the agent
should show a behavior that ensures that
the desired item is delivered according to
the user’s preferences. The agents are
expected to obtain one instance of the
desired item by a deadline paying a price
lower or equal to the consumer’s private
valuation. The behavior of the agents is
subject to a set of polynomial functions
(Anthony, Hall, & Dang, 2001) that repre-
sent bidding constraints. These include
the remaining time left, the remaining auc-
tions left, the user’s desire for a bargain,
and the user’s level of desperateness. The
authors denote these functions as tactics.
The combination of these tactics is re-
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ferred to as a strategy. The strategy re-
quires the allocation by the agent of the
appropriate weight to each tactic. These
weights plus the set of parameters re-
quired to define the above-mentioned con-
straint functions conform the array of
floating point values that define the indi-
viduals in the population to be evolved.
The fitness of the individuals is assessed
according to three criteria. The first one is
to be used if the delivery of the item is
extremely important. The other two are
appropriate when the agent is looking for
a bargain and when the previous objec-
tives are equally important. The authors
compare the evolved strategy to a basic
strategy that recommends bidding in the
auction that has the closest end time where
the current bid is lower than its private
valuation. The main result is that is it
feasible for evolving agents to perform
successfully under both specific and di-
verse auction frameworks.

• Byde (2003) also explores the possibility
of using GAs in the auction mechanism
design field. As the revenue equivalence
theorem depends on a number of assump-
tions that may not hold, the author sug-
gests a robust method that might be less
dependent on the simplifications required

by mathematical analyses. The work ex-
amines a space of sealed-bid auction
mechanisms where the payments are de-
termined by linear combinations of first-
and second-price auctions. In this context,
the behavior of bidders depends on a
number of parameters such as risk atti-
tudes or correlation between preferences.
The strategy followed by an agent is de-
fined by a piecewise linear function from
input signal to bid. All the agents follow
optimal strategies that are determined by
a GA. The author finds types of environ-
ment in which both pure first- and second-
price auctions are inferior to hybrid ap-
proaches.

ANALYSIS OF THE AUSUBEL
AUCTIONS BY MEANS OF
EVOLUTIONARY COMPUTATION

For this chapter an example of recent research
that uses EC techniques to find bidders’ optimal
strategies for the Ausubel dynamic multi-unit
auction is presented. In this research a GA
provides the bidding strategy (defined as the
action to be taken under different auction con-
ditions) that maximizes the bidders’ payoff.
The bidders’ payoff is defined as the difference
of the values of the units clinched by the bidders
minus the standing price at which they clinched
them. The algorithm is tested under several
experimental environments, number of bidders,
and quantity of lots auctioned.

Ausubel (2004) demonstrated that in this
auction format with pure private values, sincere
bidding (SB) by every bidder is an ex post
perfect equilibrium yielding to an efficient out-
come. Notwithstanding, SB is not the unique
equilibrium. In the experiment carried out by
Kagel, Kinross, and Levin (2004) with indepen-
dent private values, behavior in the Ausubel

 Figure 3. General scheme for EC and
auctions
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auction with dropout information comes signifi-
cantly closer to SB. As the price goes up and
demanded quantities go down, it is possible that,
for a certain increase of price, the supply is not
covered at the final price. In these circum-
stances the following rationing rule is intro-
duced. We turn to the previous price and allo-
cate all the demanded units to the bidders. Then
the excess demand is calculated, and units are
removed from the bidders with the highest
demanded quantity not clinched until the total
demand equals supply. It is not possible to
remove units from bidders that were already
clinched in previous rounds.

For a better understanding of the auction
format, Appendix A includes an example of the
Ausubel auction format with the SB strategy
and the GA strategy.

Designing the GA for the
Bidding Strategy

The aim of the GA is to find a set of bidding
rules that maximize the payoff of a bidder. To
this end there are several experimental envi-
ronments defined for which each bidder has a
different set of values and a specific bidding
strategy.

Defining the Experimental
Environments

The experiment employs an independent-pri-
vate-value framework in which bidders having
weakly diminishing marginal values, are risk
neutral, and have no budget constraints. All
bidders except one have a fixed strategy, which
is SB. Bidders will reduce their demanded
quantities at the exact moment when the actual
price is equal to their real values. On the other
hand, the bids of the bidder who follows the GA
strategy will depend on several actions that we
will define as deviations from the SB strategy.

This behavior is explored for several environ-
ments that differ in the following variables: the
number of lots auctioned m = 10, 15, 20, 25; the
number of bidders n = 4, 6, 8; and the elasticity
of the bidders’ demand curves. The elasticity of
bidders’ demand curve depends on their valua-
tions of the items which are generated as we
describe below.

Every bidder has a set of values organized
from higher to lower that specify the marginal
value from the consumption of each additional
unit. In our model we force each bidder to
define his values for at least as many items as
the total supply. Bidders’ values are drawn
independently and identically distributed from a
uniform distribution with support [0,200], with
new random draws for each additional unit.
These values are generated with two different
algorithms, in the same way as Mochón,
Quintana, Sáez, and Isasi (2005).

Bidding Strategy

In each auction all bidders are programmed to
bid sincerely. There is only one bidder that has
to beat his computer rivals by following the GA
bidding strategy. The definition of the GA strat-
egy that we suggest requires the identification
of actions linked to specific auction conditions.
Each action is defined in terms of deviations
(over and underbidding) from the SB strategy.
The demanded quantity according to the SB
strategy of bidder i in the round l is represented
by l

SBiq . To this end we consider the following
four possible actions to be taken: bid half of the
SB quantity, bid the SB quantity, bid 50% more
of the SB quantity, or bid twice as much as the
SB quantity (see Table 1). The bidder that
evolves with the GA strategy will bid one of
these four actions according to the auction
condition of each round. All these strategies
have an upper bound that is the lowest of either
the number of units being auctioned or, alterna-
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tively, the units demanded in the previous round
(as demand is required to be non-increasing).
The lower bound is the number of units that the
participant has already clinched.

Bidders face 61 possible auction conditions.
The first one represents the initial market where
no relevant information is available. To define
the other 60 possible auction conditions, we
make up a combination of the potential values
of three different indicators. In each auction
the value of these indicators changes from one
round to another. As our auction format has
drop-out information, the bidder that follows
the GA strategy constantly calculates these
indicators and selects the appropriate action or
bid.

The first indicator is the trend of price-
demand elasticity from the competitors (ep,d),
classified into five categories: ≥ 1.5; <1.5; =1;
<1; and <0.5. The second one is the percentage
of active bidders with respect to the number of
bidders at the beginning of the auction (AB%),

classified into three categories: <100%; < 50%;
and < 25%. And the third indicator is the
operating margin of the strategic bidder (OM),
defined as the number of objects that have not
been clinched with respect to the number of
objects demanded by the bidder. It has been
classified it into four categories: ≥ 2; <2; <1.25;
and <1. For a better understanding of these
indicators, see Mochón et al. (2005). These
indicators are represented in Table 2.

Genetic Algorithm

The encoding of the bidding strategies to the
individuals is a direct process. As we men-
tioned before, all strategies consist of a set of
61 integers valued from 0 to 3, depending on the
action to be taken which depends on the auction
conditions. Since the actions can be encoded in
2 bits, each strategy could be represented as an

Table 1. Each bidder considers four possible
actions for each auction condition.

Table 2. Bidders face 61 possible auction
conditions made up from the combination of
three indicators plus the initial condition.

Table 3. Payoff average difference for SB
and GA bidding strategies

Table 4. Effect of the GA strategy respect to
the SB one for all participants with the SRR

Bidding Strategy Quantity Demanded Binary Code 
bid half of the SB l

SBiq /2 00 
bid the SB l

SBiq  01 
bid 50% more of the SB l

SBiq * 1.5 10 
bid twice as much as the l

SBiq *2 11 

 m=10 m=15 m=20 m=25 
Elastic     
n=4 0.16 1.40 18.98 7.36 
n=6 1.60 0.32 0.08 0.00 
n=8 0.24 1.32 0.68 0.64 
Inelastic     
n=4 0.60 0.84 0.64 1.08 
n=6 0.40 0.40 0.44 0.80 
n=8 1.36 0.12 0.08 1.60 

 Payoff GA-
Payoff SB 
bidder 1 

Payoff GA-
Payoff SB i 1 

Seller`s 
revenue GA- 
Seller`s 
revenue SB 

Elastic demand curves 
Example 1  73 -27 -59 
Example 2 20 12 -40 
Example 3  6 -10 -1 
Inelastic demand curves 
Example 4  8 -6 -15 
Example 5 11 14 -32 
Example 6 9 14 -25 

≠

εp,d AB(%) OM 
?  1.5 < 100% ?  2 
< 1.5 < 50% < 2 
= 1 

+ 

< 25% 

+ 

< 1.25 

+Initial= 61 

< 1    < 1  
>0.5      
 

≥ ≥
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array of 122 bits. This includes the SB strategy.
Since we define the action of following the SB
strategy as 1 (01), the strategy of a SB bidder
would be represented as a string of 122 bits
(where the value of every odd bit is 0 and 1
otherwise).

The assessment of a bidding strategy is
made by running an auction twice. In the first
run, all bidders fulfill SB. In the second one, we
let one bidder (bidder 1) evolve according to the
GA and the others follow SB. Once we have
the allocations and payments for each bidder,
the payoff for the strategic bidder is calculated
for both runs. The GA strategies will be suc-
cessful as higher payoff for bidder 1 are in the
second run rather than in the first one, no matter
what the others bidders’ payoff or the sellers’
revenue.

The search for the best strategy for each
environment was performed using populations
of 30 individuals that evolved for 1,000 genera-
tions. The GA used elitism, a roulette wheel
selection mechanism, single-point crossover,
and a gene mutation operator with likelihood
1%.

Evaluating the Bidding Strategy

For each environment explained before, we ran
the algorithm 25 times, which means 30 indi-
viduals that evolve for 1,000 generations. To
evaluate the GA strategy, a comparison of the
GA bidder’s payoff with what he would have
obtained with the SB strategy is made. Table 3
includes the payoff average difference for bid-
der 1 with the GA strategy and the SB.

The results show that the GA outperforms
the SB strategy in all the experiments except
one, as the bidders’ payoff is always higher
with the GA strategy than with the SB one. This
reveals that, at least in some cases, bidders’
payoff can be improved by using our GA strat-
egy rather than the SB one.

The key point is to find out what is the
bidding strategy of the GA that outperforms the
SB. To this end we have analyzed in detail the
process of several auctions (with elastic and
inelastic demand curves) for n=4 and m=15 in
which the GA beats the SB strategy. An ex-
ample is included in Appendix A.

When we compare the GA strategy of bid-
der 1 for the experiments analyzed, it can be
observed that the participant is overbidding at
the beginning of the auction. He continues
overbidding until he determines the best mo-
ment to underbid and push the auction to ration-
ing. When the demand of the other competitors
plus what he has already clinched is equal to M,
the excess demand of the auction is equal to
bidder i’s bid minus what he has already
clinched. Therefore, by underbidding in the
next round, he has a high probability of pushing
the auction to a rationing situation.

The strategic bidder will also calculate the
number of items that he will get if the rationing
rule is put into effect in that round. When what
he has clinched plus what he will probably get
with the rationing rule is connected with his true
valuation, then it would be the moment to
underbid. At that point the best strategy for
bidder 1, according to the GA, is to make his
possible minimum bid in the next round.

With the specific rationing rule assumed, we
have analyzed the effect of the GA strategy
over all the participants involved (see Table 4).
In the six examples that concern us, bidder 1 is
always better off by following the GA bidding
strategy rather than the SB. He always wins at
least the same number of objects and at a lower
average price. On the other hand, the seller is
always worse off as he sells all the items, but at
a lower price. Hence his revenues are lower.
The final outcome for the other participants
depends on each specific auction. Sometimes
they also have higher payoff as the average
selling price of the items is lower. Neverthe-
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less, their payoffs can also be reduced from the
fact that sometimes bidder 1 takes advantage
of the rationing rule.

CONCLUSION

In this chapter a review of the auction literature
has been made. The starting point is the most
representative work in the field. Moreover, an
introduction of how the EC and the implemen-
tation of AAAs can be a helpful tool to study
auctions has been made. Using learning mecha-
nisms based on Artificial Intelligence, such as
the GA, can be a key point for improving the
understanding of bidders’ strategies and the
final outcome of an auction, both in allocations
and payments. Although there is work done up
to now, there are many possibilities for imple-
menting EC techniques with different auction
formats in order to test the results with the
theory models.

As an example of the application of EC to
auctions, a dynamic ascending multi-unit auc-
tion with implementation of Vickrey pricing has
been chosen, which is referred to as the Ausubel
auction. The authors have developed a GA that
can be successfully employed to evolve bidding
strategies for this auction format. By relating
the GA strategy to a specific bidder, the authors
compare the payoff to what would have been
obtained with SB with two different demand
curves: elastic and inelastic. The experiments
were conducted separately for different num-
bers of bidders (n=4, 6, 8) and objects auctioned
(m=10, 15, 20, 25).

The evaluation of the GA strategy revealed
that the algorithm outperforms the SB strategy,
as the bidder payoff is always equal to or higher
than with the SB strategy. The optimal bidding
strategy that the GA proposes for bidder 1 is to
overbid just until the GA finds the optimal round
to push the auction to rationing (according to

the probability to force rationing and its final
allocation of items with respect to its real
valuations). At that point the bidder underbids
by making its lowest possible bid. With this
performance the bidder maximizes his payoff.
In all the auctions analyzed, bidder 1 is always
better off, the seller is always worse off, and
the outcome of the other participants will de-
pend on each specific auction.

These results reveal that the implementa-
tion of GAs and the selection of a rationing rule
can be a key point in the final outcome of an
Ausubel auction, both in allocations and pay-
ments. Some authors have already studied the
importance of the rationing rule in establishing
the existence of equilibrium in many games,
including auctions (see Jackson, Simon,
Swinkels, & Zame, 2002).

After reviewing the literature that combines
EC and auctions, and the example explained, it
is possible to conclude that the EC techniques
are a powerful tool in simulating auction envi-
ronments without restrictions, which means a
significant constraint to theoretical models. With
this advantage it can be possible to understand
the divergences found in the experimental and
theoretical analysis of auctions.
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APPENDIX A: AN EXAMPLE OF AN AUCTION PROCESS
WHERE THE GA BEATS THE SB STRATEGY

pl: price at round l.
Ql: total demand at round l.
ql

i: bidder i demand at round l.
Cl

i: items clinched by bidder i at round l.

Bidders’ values for m=[1..15]
Bidder 1. v1,k: 182 91 81 41 35 20 10 5 3 2 2 2 1 1 1;
Bidder 2. v2,k: 100 50 25 22 15 12 6 3 2 1 1 1 1 1 1 ;
Bidder 3. v3,k: 100 50 33 17 16 8 4 4 2 1 1 1 1 1 1;
Bidder 4. v4,k: 106 76 44 27 14 7 4 2 1 1 1 1 1 1 1;

Table A.1. Auction process and outcome with SB for all bidders 

Table A.1a. Auction process with SB for all 
bidders 

pl 

 
Ql ql

1 Cl
1 ql

2 Cl
2 ql

3 Cl
3 ql

4 Cl
4 

10 22 6 0 6 0 5 0 5 0 
12 21 6 0 5 0 5 0 5 0 
14 20 6 1 5 0 5 0 4 0 
15 19 6 2 4 0 5 1 4 0 
16 18 6 3 4 1 4 1 4 1 
17 17 6 4 4 2 3 1 4 2 
20 16 5 4 4 3 3 2 4 3 
22 15 5 5 3 3 3 3 4 4 
 
Seller’s revenue= 269  

  
Price paid for the units clinched 

   
1st  
unit 

 
2nd  
unit 

 
3rd  
unit 

 
4th  
unit 

 
5th  
unit 

 
Final 
allocation 

 
Final 
payment 

 
Payoff 

 
Bidder 1 14 15 16 17 

 
22 5 84 346 

 
Bidder 2 16 17 20   

  
3 53 122 

 
Bidder 3 15 20 22   

  
3 57 126 

 
Bidder 4 16 17 20 22 

  
4 75 178  

Table A.2. Auction process and outcome with SB for i  1 and bidder 1 GA 

Table A.2.a.  Auction process with SB for i  
1 and bidder 1 GA 
pl Ql ql

1 Cl
1 ql

2 Cl
2 ql

3 Cl
3 ql

4 Cl
4 

10 28 12 0 6 0 5 0 5 0 
12 27 12 0 5 0 5 0 5 0 
14 26 12 1 5 0 5 0 4 0 
15 25 12 2 4 0 5 0 4 0 
16 24 12 3 4 0 4 0 4 0 
17 14 3 6 4 3 3 3 4 3 
 
Seller’s revenue= 249   

  
Price paid for the units clinched 

   
1st  
unit 

 
2nd  
unit 

 
3rd  
unit 

 
4th  
unit 

 
5th  
unit 

 
6th  
unit 

 
Final 
allocation 

 
Final 
payment 

 
Payoff 

 
Bidder 1 14 15 16 17 

 
17 

 
17 6 96 354 

 
Bidder 2 17 17 17   

    
3 51 124 

 
Bidder 3 17 17 17   

    
3 51 132 

 
Bidder 4 17 17 17   

    
3 51 175 

≠

≠
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ABSTRACT

The multi-agent system (MAS) paradigm has become a prominent approach in distributed
artificial intelligence. Many real-world applications of MAS require ensuring cooperative
outcomes in scenarios populated with self-interested agents. Following this concern, a strong
research emphasis has been given recently to normative MAS. A major application area of
MAS technology is e-business automation, including the establishment and operation of
business relationships and the formation of virtual organizations (VOs). One of the key factors
influencing the adoption of agent-based approaches in real-world business scenarios is trust.
The concept of an electronic institution (EI) has been proposed as a means to provide a
regulated and trustable environment, by enforcing norms of behavior and by providing
specific services for smooth inter-operability. This chapter exposes our work towards the
development of an agent-based EI providing a virtual normative environment that assists and
regulates the creation and operation of VOs through contract-related services. It includes a
presentation of the EI framework, knowledge representation structures for norms in contracts,
and a description of two main institutional services, namely negotiation mediation and
contract monitoring.
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INTRODUCTION

The multi-agent system (MAS) paradigm has
become a prominent approach in distributed
artificial intelligence. These systems start with
the individual—the agent—and evolve to popu-
lated environments where the most important
feature is the interaction between agents.

The concept of intelligent agents is today
dominant in artificial intelligence (Russell &
Norvig, 2003). Agents are described as entities
having a set of intrinsic capabilities, such as
autonomy (control of own decision making),
reactivity (response to changes in the environ-
ment), and pro-activeness (goal-directed be-
havior) (Wooldridge & Jennings, 1995). More-
over, the so-called strong notion of agency
considers agents as entities having mental states,
including beliefs, desires, and intentions (the
BDI architecture; Rao & Georgeff, 1995).
Another important capability—social ability—
emphasizes the fact that agents do not act in an
isolated environment, and will inevitably have
to interact with other agents.

Thus, while agent theory has its inspirations
in psychology and cognitive science, MAS re-
search is influenced by organizational and so-
cial sciences, distributed computing, and eco-
nomics. Furthermore, many MAS researchers
look for inspiration in nature, both from collec-
tive cooperative behavior in groups of animals
(e.g., ant colonies) and from our social interac-
tions as (not necessarily cooperative) human
beings.

Typical MAS applications include inher-
ently distributed or complex domains. While
some problems require system architectures
including cooperative agents developed so as to
accomplish an overall goal, in other cases agents
may represent independent self-interested en-
tities, with no presupposed cooperation besides
mere interaction efforts. The former types of
problems may be addressed through a central-

ized design, producing a top-down specification
of a MAS environment with an overall purpose.
The latter types are usually conceived as open
environments, where heterogeneous agents
arising from different sources interact either
cooperatively or competitively. In this setting,
agents may form organizations that dynami-
cally emerge in a bottom-up fashion from the
individuals, which together agree, usually
through a negotiation process, to cooperatively
perform some task not doable individually.

As one might expect, although decentralized
and dynamic systems are much more appeal-
ing, they must be handled with hybrid ap-
proaches, since a minimum set of requirements
is necessary to allow for heterogeneous and
independently developed agents to success-
fully interact. One way of achieving such a
common milieu is by defining communication
standards, such as those proposed by FIPA
(2002). However, an important issue arises
when attempting to apply agents in real-world
settings: how to ensure cooperative outcomes
in scenarios populated with self-interested
agents. A possible answer to this problem is to
regulate the environment, enforcing appropri-
ate types of agent behavior. This should provide
a level of trust necessary for the development
of real-world applications of open MAS.

Following these concerns, a strong research
emphasis has been given recently to normative
MAS (Boella, van der Torre, & Verhagen,
2005). A normative system is a set of interact-
ing agents whose behavior can usefully be
regarded as governed by norms (Jones & Sergot,
1993). Agents are subject to these norms,
which influence their decision making. There-
fore, besides their goals, agents must take into
account the norms that apply to them. How-
ever, considering autonomy as a central prop-
erty of agents, norms are often used as a means
to regulate the environment by providing incen-
tives for cooperative behavior through norma-
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tive constraints, while allowing agents to choose
whether to obey or to violate them
(Castelfranchi, Dignum, Jonker, & Treur, 2000).

A major application area of MAS technol-
ogy is e-business automation, comprising not
only the use of information gathering and filter-
ing agents, but also the establishment and op-
eration of business relationships. The business-
to-business case is particularly important, and
includes not only sell and purchase operations,
but also the formation of enterprise consor-
tiums, which have been addressed through the
notion of virtual enterprises or virtual organiza-
tions. This application domain clearly matches
the aforementioned MAS research concepts
(Fischer, Muller, Heimig, & Scheer, 1996):
agents can represent the individual interests of
each business entity, and negotiate in order to
establish cooperative business agreements.
Agent organizations can thus emerge establish-
ing a set of commitments among them.

One of the key factors towards the adoption
of agent-based approaches in real-world busi-
ness scenarios is trust. When attempting to
automate the creation and operation of busi-
ness relationships, the behavior of agents must
be made predictable, by creating a regulated
environment that enforces agents’ commit-
ments. The concept of an electronic institu-
tion (EI) (Dignum & Dignum, 2001; Lopes
Cardoso, Malucelli, Rocha, & Oliveira, 2005)
has been proposed as a means to provide such
a regulated and trustable environment, by en-
forcing norms and providing specific services.

In this chapter we expose our work towards
the development of an agent-based EI provid-
ing a virtual normative environment that assists
and regulates the creation and operation of
virtual organizations (VOs). These are com-
posed of agents representing different real-
world entities, which adhere to a set of norms
regulating the established cooperation commit-
ments. We will start by introducing the frame-

work of our EI and by exposing its normative
environment. We will then address the issue of
organizational emergence among agents within
the institutional environment, and the formal
means to explicitly state agents’ commitments.
A presentation of the main institutional services
will follow—namely negotiation mediation and
contract monitoring, focusing on the enforce-
ment of norms. The chapter will conclude dis-
cussing the real-world application of the de-
scribed approach and its relation to relevant
contract law concepts.

ELECTRONIC INSTITUTION
FRAMEWORK

The application of open MAS to real-world
problems raises trust concerns. It is essential to
provide guarantees that (software) agents will
comply with coordination efforts. Moreover,
when considering scenarios where agents agree
on cooperative joint activities, it is necessary to
provide mechanisms that force them to comply.
The intrinsic nature of agents within MAS
research does not provide cooperative assump-
tions, as agents are defined as autonomous and
self-interested entities. This case is exacer-
bated when dealing with heterogeneous, inde-
pendently developed, and privately owned
agents.

The concept of social structure is a central
issue in the social sciences: it is assumed to
exist in order to impose a sense of order and
predictability within a group of individuals. So-
cial structure typically involves a framework of
norms attached to roles played by members of
a society. A role represents the way someone
is expected to behave in particular situations, by
having an associated set of normative expecta-
tions.

From a social perspective, different types of
norms can be identified, with different abstrac-
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tion levels. On one hand we have values, con-
ventions, and abstract norms that are implicitly
adhered to and may not have an explicitly
defined social response in case of deviation. On
the other side of the spectrum, we may have
formal (legal) norms and prescriptions that
include explicitly defined punishments to deal
with rule violations.

Norms can also play an important role in
open artificial agent systems, where they im-
prove coordination and cooperation (Conte,
Falcone, & Sartor, 1999) and allow for the
development of trust and reputation mecha-
nisms. As in real-world societies, norms pro-
vide us a way to achieve social order
(Castelfranchi, 2000) by controlling the envi-
ronment and making it more stable and predict-
able.

Having norms is not sufficient by itself,
since agents will not voluntarily submit them-
selves to associated penalties in case of devia-
tion. Therefore, appropriate mechanisms are
needed to enforce norm compliance. This is
where an electronic institution comes about: it
provides the necessary level of trust by ensur-
ing an enforceable normative environment. Other
approaches towards the concept of EI (Esteva,
2003) have considered restrictive settings in
which agents are not allowed to violate norms.
In our perspective, to enforce norms is not the
same as preventing their violation. This ap-
proach allows us to maintain the autonomous
nature of agents, while influencing their deci-
sion making by ensuring that certain conse-
quences will hold in case of non-compliance.

Institutional Reality

In order to provide a trustable social (agent)
environment, the EI must have means to regis-
ter what is going on. In general, two main types
of events compose this “institutional reality”
(Lopes Cardoso, & Oliveira, 2005, inspired by

Searle, 1995), which is based on the creation of
“institutional facts.”

Most events will depend on agents’ activity.
In the case of software agents, we must take
into account their observable actions: illocutions
(messages exchanged between agents which
must be monitored by appropriate institutional
services). On the other hand, there are events
that do not depend on the performance of any
action. The most obvious example is the pas-
sage of time, which is important to verify the
fulfillment or violation of norms (more on this
later on). Therefore, institutional facts may
come about from these two sources. Taking
into account the moment when an institutional
fact comes about, we represent it using the
following structure:

ifact(InstitutionalFact, Timestamp)

When applying the EI framework to real-
world scenarios like e-contracting, it is essen-
tial that external events (those that take place in
the real world) are reflected inside the EI’s
virtual environment. This issue is addressed
with institutional roles, as explained below.

Norm Specification

Formal models of norms typically rely on deontic
logic (von Wright, 1951), a branch of modal
logic. Also known as the logic of normative
concepts, it embraces the notions of obligation,
permission, and prohibition. Although tradition-
ally used to analyze normative reasoning in law,
applications of deontic logic in computer sci-
ence exist (Wieringa & Meyer, 1993), not
limited to the domain of legal knowledge repre-
sentation and legal expert systems; other appli-
cations include, for example, authorization
mechanisms and electronic contracting.

Extensions to the original work on deontic
logic have been made so as to allow its practical
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use. These include approaches to handling norm
violations and associated sanctions, which may
consist of contrary-to-duty obligations (Jones
& Carmo, 2001): obligations that come into
force in sub-ideal situations (i.e., when other
obligations are violated). Other important varia-
tions consider the use of conditional and tempo-
ral aspects: obligations are often made condi-
tional on the occurrence of another event and
have an associated deadline (Dignum, Meyer,
Dignum, & Weigand, 2002; Dignum, Broersen,
Dignum, & Meyer, 2005).

Taking a simplified approach, we can con-
sider norms as describing the expected behav-
ior of agents when certain circumstances arise.
In order to achieve a computational representa-
tion of norms, we can thus distinguish two main
parts—the situation in which the norm applies,
and its prescription:

Situation → Prescription

The Situation describes when the norm is in
place. The Prescription specifies what should
be accomplished in order for the norm to be
fulfilled. With this representation, norms lend
themselves to a rule-based implementation.
Rule-based systems (Giarratano & Riley, 1998)
allow us to encode simple reasoning proce-
dures through rules. Each rule has two main
components: the antecedent part (where the
rule’s conditions are specified, also known as
the left-hand side of the rule) and the conse-
quent part (where the rule’s conclusions are
stated, also known as the right-hand side of
the rule). The conditional element of norms is
satisfied according to institutional facts. More-
over, the prescriptive part indicates what else
should be accomplished.

The most obvious way of prescribing certain
behavior through a norm is by indicating obliga-
tions. Thus, an agent may be obliged to bring
about a certain state of affairs. For practical

purposes, obligations typically include a dead-
line by which they are to be satisfied:

obligation(Bearer, InstitutionalFact,
Deadline).

The InstitutionalFact that the Bearer must
bring about by a certain Deadline will be part
of institutional reality when the obligation is
fulfilled. Notice that, instead of dictating the
exact action an agent must perform, we pre-
scribe the institutional fact that he must bring
about. This enables an agent to delegate or
outsource tasks conducting to the accomplish-
ment of such state of affairs, while still being
responsible before the institution for the
(un)fulfillment of the obligation.

Other approaches towards norm implemen-
tation (e.g., Vázquez-Salceda, Aldewereld, &
Dignum, 2004; García-Camino & Rodríguez-
Aguilar, 2005) have also considered conditional
permissions and prohibitions, subject to tempo-
ral references for both their activation and
ceasing. With such an approach, it is straight-
forward to represent permissions and prohibi-
tions with the same structure as the obligation
above. Yet, we may adopt the deontic logic
formalizations of permission and prohibition
with respect to that of obligation: an agent is
permitted do to something if it is not obliged to
not do it; an agent is forbidden to do something
if it is obliged not to do it.

Norms and Roles

The prescription of institutional norms com-
prises the top-down specification of the MAS
environment (see Figure 1). Agents become
subject to a set of norms when they assume a
social dimension to which those norms refer.
Within the EI framework, norms may apply to
all citizens, to citizens enacting specific roles, or
to specific groups of agents. The next section
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addresses the case where a group of agents
may adopt a set of norms to regulate their joint
activity.

Institutional norms represent the commit-
ments of agents towards the EI. By assuming
roles, agents become committed to their asso-
ciated norms. A model of normative specifica-
tions based on roles can be found in Pacheco
and Carmo (2003). The idea of ascribing norms
to roles allows us to specify and anticipate the
expected performance of the parts of a com-
plex system (e.g., an agent-based organization)
before specific agents start taking part in the
system. When agents take on roles, they inherit
their associated norms.

Within an EI, we can define a set of general
roles (e.g., supplier or customer) that agents
may adhere to, and prescribe the expected
behavior of agents enacting those roles. When
an agent enters the institutional environment
(by registering in the EI) and announces itself
as performing some institutionally defined
role(s), it implicitly becomes committed to the
institutional norms attached to the role(s) it
plays.

Another important part that roles play in our
EI setting concerns the creation of institutional
reality. As mentioned before, agents’ actions
concern the exchange of illocutions. Two is-

sues are worth mentioning here. First, since
agents are autonomous: they are free to utter
any illocutions they like. Second, part of the
institutional reality concerns what happens in
the “real world.” This poses a problem of action
certification. If, for instance, an institutional
fact reports a payment of a certain amount to
have taken place, we cannot rely on the bearer
of such a payment stating that it is fulfilled.
Instead, we would trust an independent finan-
cial third party, providing a certified institutional
service.

Therefore, we must define a set of institu-
tional roles with which we assign powers con-
cerning the creation of institutional reality. Fol-
lowing Searle (1995), inside the EI we distin-
guish between brute facts, which concern
agents’ illocutions, and institutional facts (see
Figure 2). Rules implementing authoritative
relations between roles and institutional reality
are defined, making a connection between what
is said and what is taken for granted. According
to Searle (1995), these are “constitutive rules.”
An agent performing a given institutional role is
said to be empowered to achieve the effects
expressed in its role-related constitutive rules.

Until now, we have described an institu-
tional environment within which agents interact
by taking roles. We have also presented a
means to specify norms that regulate agent
behavior and how institutional reality comes
about by connecting agents’ illocutions to the
roles they play. In the next section we describe
how to specify, with contracts, commitments
resulting from agents’ interactions.

VIRTUAL ORGANIZATION
EMERGENCE

Forming temporary coalitions of agents’ efforts
is an important strategy for live entities to deal
with hard, complex tasks. The creation of vir-

Figure 1. Institutional norms as a top-down
specification of the MAS environment
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tual organizations is, likewise, a major trend in
cooperative business, where different compa-
nies try to align their businesses to perform
integrated and more complex activities. B2B
players are becoming more focused on their
core businesses, and rely on outsourcing and
dynamic consortiums. The autonomous and
self-interested nature of agents fits this sce-
nario. Agents may represent different business
units or enterprises, which come together to
address new market opportunities by combin-
ing skills, resources, risks, and finances no
single partner can alone fulfill (Dignum &
Dignum, 2002).

Agents may thus form organizations that
dynamically emerge from the individuals, in a
bottom-up fashion, establishing a set of com-
mitments among partners. Agents agree to
align their activities in a cooperative setting,
which is regulated by specific norms, usually
agreed upon as a result of a negotiation pro-
cess. Differently from institutional norms, these
are voluntarily written and adhered to by agents,
instead of being pre-established in the institu-
tional environment. Moreover, these norms
apply only to the subgroup of agents participat-
ing in the agreement. Agents commit to coop-
erative agreements because it is in their interest
to do so. Figure 3 illustrates bottom-up norm
emergence.

Any cooperation activity requires trust be-
tween the involved partners. In open MAS,
agents’ performance records may not be as-

sessable. If such information is available, repu-
tation ranks can be used by agents when choos-
ing appropriate partners. Nevertheless, a VO
may potentially include agents that have never
worked together in the past. In this case, trust
must be based on third parties, which verify
whether agents comply with their promises.
This makes it necessary to formulate agents’
commitments explicitly through e-contracts,
which are then monitored and enforced by the
EI.

In the following specifications we use the
Prolog (Clocksin & Mellish, 1981) notation
conventions for variables and relations, although
our rule-based approach is founded on general
first-order logic (and thus does not assume the
Prolog clause syntax).

Figure 2. Creation of institutional reality
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Figure 3. Bottom-up norm emergence from
the individual agents
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Contract Specification

In Dignum et al. (2002), a logical formalism for
describing interaction in an agent society, in-
cluding social norms and contracts, is pre-
sented. Focusing on contract representation, it
gives emphasis to conditional obligations with
deadlines. Other approaches to contract repre-
sentation through norms include Sallé (2002),
considering normative statements that can com-
prise obligations, permissions, and prohibitions.
Sanctions are seen as obligations or prohibi-
tions activated by the violation of another obli-
gation. Also, Kollingbaum and Norman (2002)
propose the inclusion of obligations, permis-
sions, and sanctions in a contract specification
language. Each of these constructs has a simi-
lar structure, including activation and expiration
conditions (which together define a “window of
opportunity” within which an agent must or can
act).

The use of sanctions as contrary-to-duty
obligations is what makes normative multi-
agent systems effective. Sanctions and the
desire to avoid them are the motive for agents
to comply with norms. Agents reason about the
effects of their actions both in terms of positive
and negative consequences: they consider both
the norm and the sanction to decide whether to
fulfill the norm or not (Sallé, 2002).

An approach to contract representation
based on event calculus can be found in
Knottenbelt and Clark (2005). This representa-
tion incorporates how a contract is to be ful-
filled (that is, which events initiate or terminate
obligations), making it a heavier structure.

Following the use of norms as explained
before, we concentrate on specifying contracts
using norms that prescribe obligations, where
these concern the achievement of institutional
facts by certain deadlines. However, since
these norms are not institutional, but relative to
a certain context—that of the agreement es-

tablished between agents—we extend the norm
representation to include its scope:

[Context] Situation → Prescription

This allows us to have, within the same
normative environment, norms applicable to
different contexts.

We also introduce a distinction between
one-shot contracts and longer-termed coopera-
tion agreements. The aim here is to embrace
not only contracts formalizing sell and purchase
operations, but also more complex settings,
such as a VO that involves specific interactions
during a certain timeframe (Lopes Cardoso &
Oliveira, 2004). The VO is regulated by a set of
norms that regulate its continuous nature. In-
side this ongoing relationship, contracts imple-
menting the agreed-upon cooperation can be
established, comprising a set of instantiated
norms.

Simple Purchase Contracts

General contracts for purchase operations be-
tween a customer and a vendor can be speci-
fied by an institutional fact stating that such a
contract (identified by IdPC) is in place:

ifact(purchase_contract(IdPC, Customer,
Vendor, Item, Quantity, Price), PCTime)

Additionally, a set of behavior norms repre-
senting contract clauses prescribe the expected
behavior of contracting partners. The following
templates represent this information:

[purchase_contract:IdPC] obligation(Vendor,
delivery(Vendor, Item, Quantity, Customer),
PCTime+10)
[purchase_contract:IdPC] fulfilled(Vendor,
delivery(Vendor, Item, Quantity, Cus-
tomer), TD)
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→ obligation(Customer, payment(Customer,
Price, Vendor), TD+30)

According to the clauses above, a vendor’s
obligation exists to deliver the contract’s item to
the customer within 10 time units; when this is
done, the customer is obliged to pay to the
vendor the agreed amount. Within a norm,
literals either in the situation or in the prescrip-
tion part are dependent on the context of the
norm. This means that prescribed obligations
and their fulfillment occur within a certain
context. The same applies to institutional facts,
which are often related to a given context (as
for instance a payment in the context of a
certain purchase).

The contract is typically complemented with
sanctioning norms applicable to sub-ideal (con-
trary-to-duty) situations. These are activated
when other norms are violated. Their structure
looks like the following:

[Context] violated(Bearer, IFact, Dead-
line) → obligation(Bearer, NewIFact,
NewDeadline)

where NewIFact consists of a new state of
affairs supposedly harder than the previously
prescribed and violated one. Exemplifying, two
additional clauses could be added to the con-
tract above:

[purchase_contract:IdPC] violated(Vendor,
delivery(Item, Quantity, Customer), Deadline)
→  obligation(Vendor, delivery(Item,
Quantity, Customer), Deadline+5) ∧
obligation(Vendor, payment(10%*Price,
Customer), Deadline+5)
[purchase_contract:IdPC] violated(Customer,
payment(Price, Vendor), Deadline)
→ obligation(Customer, payment(Price*110%,
Vendor), Deadline+15)

The first of these clauses indicates that if the
vendor violates its obligation to deliver the item,
it becomes obliged to pay the customer 10% of
the price, while keeping the original obligation
with a new deadline. The second clause states
that, should the customer fail to pay the price to
the vendor, it becomes obliged to pay a 10%
increased price by a new deadline.

Eventually, problems may arise when an
agent chooses to violate a sanction. A discus-
sion of possible approaches to such situations is
offered later.

Virtual Organization
Cooperation Agreements

The creation of contracts regulating VO agree-
ments is becoming common in the B2B world,
where parties create consortiums that exist
during a period of time. A distinguishing feature
between these and the former purchase con-
tracts is that they do not terminate after a
predetermined normative path (that is, a se-
quence of fixed obligations). Instead, VO coop-
eration agreements have an ongoing nature:
they may include repetitive yet unscheduled
interactions.

Let us illustrate the normative specification
of a VO cooperation agreement, considering a
case where the intended cooperation consists
of the exchange of resources between part-
ners. The agreement will aggregate the
organization’s constitutional information, includ-
ing the cooperation effort parties commit to and
their general business process flow. Institu-
tional facts register the standing cooperation
agreement, which resulted from a successful
negotiation process. We consider the following
templates:

[] ifact(cooperation_agreement(IdCA, Par-
ticipants, Resources), CATime)
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[cooperation_agreement:IdCA]
coop_effort(Participant, Resource,
MinQuantity, MaxQuantity, Frequency,
UnitPrice)
[ c o o p e r a t i o n _ a g r e e m e n t : I d C A ]
business_process(From, Resource, To)

Besides the initial fact stating who the par-
ticipants are and what resources are consid-
ered within this cooperation agreement, coop-
eration efforts indicate quantity ranges for the
supply of resources within a given frequency,
together with agreed prices. Business process
entries indicate the resources that are supposed
to flow between participants. Their effective
transfer, however, is dependent on appropriate
requests, as we shall see. A minimum of one
coop_effort fact per participant and resource
should be present. Likewise, there should be at
least one business_process fact for each
coop_effort, and it must conform to the latter.
Both these kinds of facts refer to a certain
cooperation agreement (IdCA) and are thus
contextualized by it.

Although the commitments of each party
are implicitly defined by such institutional facts,
the possibility for their verification requires that
they are made explicit. The following norm
addresses this need:

[cooperation_agreement:IdCA]
ifact(request(Requester, Resource, Quan-
tity, Answerer), TR) ∧
business_process(Answerer, Resource,
Requester) ∧ coop_effort(Answerer, Re-
source, MinQt, MaxQt, Freq, _) ∧
calculate_performed_effort(Answerer,
Resource, Freq, TR, PE) ∧
PE+Quantity<=MaxQt
→ obligation(Answerer, acknowledge(Answerer,
Resource, Quantity, Requester), TR+10)

This norm states that if a predicted request
(considering the stated business process and

cooperation effort) is made in the context of a
cooperation agreement, then the envisaged
agent is obliged to accept it. An institutional
procedure (calculate_performed_effort) is
invoked for calculating the effort already per-
formed by the agent within the timeframe indi-
cated in the cooperation effort frequency, tak-
ing into account the request time. If the agent
does not exceed its promised efforts, the obli-
gation comes into effect.

Then, we state that an operational contract
(containing operations that implement the co-
operation agreement) comes into existence
when an agent fulfils its obligation to accept a
request:

[cooperation_agreement:IdCA]
fulfilled(Answerer, acknowledge(Answerer,
Resource, Quantity, Requester), TA)
→ ifact(operational_contract(IdOC, Re-

quester, Answerer, Resource, Quantity), TA)

Finally, we define how operational con-
tracts are to be handled within a cooperation
agreement. For instance, if delivery and pay-
ment are to take place:

[ c o o p e r a t i o n _ a g r e e m e n t : I d C A ,
operational_contract:IdOC]
obligation(Answerer, delivery(_,Resource,
Quantity, Requester), OCTime+10)
[ c o o p e r a t i o n _ a g r e e m e n t : I d C A ,
operational_contract:IdOC]
fulfilled(Answerer, delivery(_, Resource,
Quantity, Requester), TD) ∧
coop_effort(Answerer, Resource, _, _, _,
UnitPrice)
→  obligation(Requester, payment(_,
UnitPrice*Quantity, Answerer), TD+30)

in which IdOC remains unbound, as these
norms apply to all operational contracts which
will be created in the future within agreement
IdCA.
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Facilitating Contract Formation

The creation of contracts may become cum-
bersome if we assume that they must predict all
possibilities concerning their performance.
Moreover, when considering the possibility to
automatically negotiate, using software agents,
a contractual relationship, it is necessary to
provide a structure on which negotiation can be
based. This is the role of a contract template: it
contains domain-independent interaction sche-
mata and variable elements (such as price,
quantity, deadlines, and so on) to be filled in
with domain-specific data resulting from a ne-
gotiation (Kollingbaum & Norman, 2002).

In general, three possibilities exist concern-
ing the creation of a contract (Field & Hoffner,
2005):

• using monolithic contract templates, which
are rigid and require no assembling from
smaller granularity clauses, only filling in
the relevant information from a business
agreement;

• building compositional contracts, starting
from contract clause templates (the build-
ing blocks) that have to be assembled,
resulting in a complete contract conform-
ing to certain composition rules; and

• taking a hybrid approach, combining mono-
lithic templates with a number of contract
clause templates that can be assembled in
different ways.

In any case, complete contracts that spell
out in complete detail the exact duties of each
party under every possible situation are imagi-
nary; in practice, no real contract ever achieves
this level of completeness. As such, incomplete
contracts must rely on a legislative system that
resolves any issues not explicitly addressed by
the parties. In fact, an important concept in
contract law theory is the use of “default rules”

(Craswell, 2000): rules that define the parties’
obligations in the absence of any explicit agree-
ment to the contrary. These exist with the intent
of facilitating the formation of contracts, allow-
ing them to be underspecified by defining de-
fault clauses or default values.

It is therefore imaginable that institutional
norms could embrace default rules. These are
particularly useful for handling abnormal con-
tract performance (that is, dealing with viola-
tions through default sanctions), since these
situations may be (at least in principle) not likely
to occur in practice.

INSTITUTIONAL SERVICES

According to our EI rationale, the main goals of
an EI include (Lopes Cardoso et al., 2005):

• to support agent interaction as a coordina-
tion framework, making the establishment
of business agreements more efficient;
and

• to provide a level of trust by offering an
enforceable normative environment.

The way to achieve these goals is by provid-
ing a set of institutional services, covering the
phases of the lifecycle of contractual relation-
ships: information discovery, contract negotia-
tion, and execution. These phases have also
been identified as pre-contractual, contrac-
tual, and post-contractual, respectively. This
nomenclature emphasizes the core of any busi-
ness relationship: the contract. The EI’s nor-
mative environment is devoted to monitoring
and enforcing contracts that are expressed
through sets of norms regulating a cooperative
business activity. We consider not only simple
contractual relationships between two parties,
but also the formation of VOs composed of
multiple partners.
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Most currently available support to e-busi-
ness is devoted to the first phase: we can
identify typical e-market functions such as yel-
low-page support, customer aggregation mecha-
nisms, and recommender systems. We concen-
trate on the subsequent two stages, where we
think of services assisting the negotiation of
contracts (negotiation mediation, ontology-map-
ping, contract-building tools through templates)
and their execution (contract monitoring and
enforcement).

In this section we will focus on negotiation
mediation, and on contract monitoring and en-
forcement services. These are aligned as shown
in Figure 4 (adapted from Lopes Cardoso et al.,
2005).

Negotiation Mediation

Different negotiation protocols may be devised
that enable the establishment of B2B contracts.
Most work in this area has focused on bilateral
interactions, developing on multi-attribute util-
ity theory for handling multiple issue negotia-
tions. Extensive work has also been done with
auctions, addressing in most cases single-issue
interactions (based on the price of goods).
There is a comparatively smaller amount of
research concerning the formation of a VO,
where the outcome of a negotiation is the
establishment of an agreement between a set
of partners. Here we present our approach to a
negotiation process devoted to the formation of
a VO (Rocha, Lopes Cardoso, & Oliveira,
2005).

Our proposed negotiation protocol has in
mind to make electronic commerce activity
closer to what happens in traditional markets.
Intelligent trading agents, representing the indi-
vidual organizations (Organization Agents)
and the VO organizer (VO Organizer Agent)
engage themselves in a negotiation process by
exchanging proposals and counter-proposals,
trying to convince opponents to modify their

bidding values. Two important features of agent-
mediated electronic commerce are dealt with in
this negotiation process that leads to VO for-
mation: multi-issue and adaptation.

The Multi-Issue
Negotiation Protocol

In commerce transactions, goods under nego-
tiation should be described along several is-
sues. Each one of these issues has a relative
importance to its owner, which should be taken
into account during negotiation.

The VO Organizer Agent starts the pro-
cess with an announcement and evaluates re-
ceived bids. Bid evaluation is done through a
multi-issue function that encodes the prefer-
ences for both the issues and issues’ values,
which are private to the agent that plays the role
of VO Organizer. This multi-issue evaluation
function is defined by the following formula:

Deviation
Ev 1=

∑
=

=
n

i

i
ii V,PrefVdif

n
Deviation

1
)(*1

where n is number of issues that defines a
specific good. In the Deviation formula, par-
cels are presented in increasing order of pref-

Figure 4. Negotiation and contract execution
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erence. The issue identified by number 1 (i=1)
is the one that the VO Organizer Agent clas-
sifies as the least important, and issue n (i=n)
is the most important. It seems intuitive that the
VO Organizer Agent chooses a proposal that
contains the values nearest to the preferable
ones, for those issues the agent evaluates the
most. The function dif(PrefVi,Vi) computes,
for an issue i, the degree of acceptability of the
current value (Vi) proposed by a specific Orga-
nization Agent when compared to the VO
Organizer Agent’s preferred value (PrefVi).

The bid that presents the highest evaluation
value is selected as the winner bid in the current
round, since it is the solution that contains issue
values closer to the preferred values. The
winning bid in this current round is compared
with the winning bid in all past rounds, and the
best one is selected.

All other bids are compared with the win-
ning bid in order to inform the respective agents
about the reason why their bids were not se-
lected. A comparison is made for the values
proposed for the most important issues. These
values are then classified in a qualitative way:
low/high, very-low/very-high, or extremely-low/
extremely-high. This classification is used as
feedback to the agents that made the proposals.

Improving Offers by Learning

Another important characteristic that should be
available in automated EC negotiation is the
capability of learning, since it is naturally present
in any commerce activity. Similar to what hap-
pens with human behavior, agents use past
experience to influence future negotiations.
Past proposals in a negotiation process can, and
should, constrain the value of the next
participant’s proposal. The learning methodol-
ogy we have chosen is a non-supervised learn-
ing called reinforcement learning. Reinforce-
ment learning (RL) systems learn how to be-
have through trial-and-error interactions with

its environment. RL is based on the idea of
rewarding actions that produce good results
and punishing those that produce bad results.
Agents will use their experience to improve
performance over time. “The idea that we learn
by interacting with our environment is probably
the first to occur to us when we think about the
nature of learning” (Sutton & Barto, 1998).

We use the Q-learning algorithm (Watkins
& Dayan, 1992). This is a reinforcement learn-
ing algorithm that maps state-action pairs to
values, called Q-values. The Organization
Agent receives a scalar evaluation from the
environment for each action selected in a spe-
cific situation. When an agent in current state s
performs action a, receives reward r, and
arrives at next state s’, the correspondent Q-
value is updated as follows (Sutton & Barto,
1998):

( )),(),'(max),(),( asQbsQrasQasQ
b

−++= γα

where 0 ≤ α ≤ 1 (learning rate) and 0 ≤ γ ≤ 1
(discount factor). The discount factor is used to
decrease the weight of reinforcements received
in the future. It causes immediate reinforce-
ments to have more importance than future
reinforcements.

An agent is faced with a dilemma in order to
choose what action to perform in each specific
situation. Should it choose the most promising
one? Or should it try to explore new states? If
no exploration is made, the agent, although
using a greedy strategy, may miss the dynamics
of the market. If too much exploration is made,
the agent can make a lot of poor choices. It is
necessary to ensure that sufficient exploration
is made while choosing actions with high known
Q-values; the so-called Boltzmann explora-
tion (Sutton & Barto, 1998) equation allows us
to deal with this issue.

We have adapted the Boltzmann explora-
tion to our application domain, by not exploring
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all the possible actions, but reducing the explo-
ration to the set of actions that are constrained
by means of the feedback to past bids.

In our application domain, a state is defined
by the n-uple:

s = (V1, V2, … Vn)

Vi is the value for issue i. The state will also
represent the bid sent to the VO Organizer
Agent.

We define an action by the n-uple:

a = (A1, A2, …, An), Ai  ∈ {increase, decrease, maintain}

When an Organization Agent receives a
feedback message from the VO Organizer
Agent to its previous bid (this bid represents the
state s that results from performing action ap in
state sp), it tries to formulate a new bid by
executing the following steps:

• Calculate a reward value for the previous
bid (that also defines the current state s),
using the qualitative evaluation included in
the received feedback message.

• Update the state/action pair Q-value
(Q(sp,ap)) using the Q-learning formula
presented above.

• Derive all new promising actions a’ taking
into account the specific feedback mes-
sage.

• Move to the state s* with greatest reward
value, that is, choose the action a* with
greatest probability value, according to
the Boltzmann exploration formula (note
that actions never tried before are stored
in state s* with Q-value=default).

• Perform action a* by sending the new bid
(state) out to the Organizer Agent.

This introduced negotiation protocol and adap-
tive negotiation strategy is detailed in Rocha et
al. (2005). It has been tested with simulation

experiments in simple scenarios of the textile
industry domain.

Contract Monitoring and
Norm Enforcement

Having a contract specified through a set of
norms, we need appropriate mechanisms to
monitor and enforce norm execution. Within
the framework of an EI, monitoring and en-
forcement services can be rendered by the
institution itself. Only a trusted third party can
enable the necessary level of confidence be-
tween the parties involved in a business rela-
tion.

According to Vázquez-Salceda et al. (2004),
an operational semantics for norms comes down
to either: (1) defining constraints on unwanted
behavior, or (2) detecting violations and react-
ing accordingly. In MAS, the absence of con-
trol over autonomous agent behavior leads us to
the latter practice.

Monitoring the compliance of parties to norms
touches some problems of deontic logic, namely
the need to consider violations and their han-
dling, as well as the inclusion of deadlines.
These issues must be resolved in order to
enable the implementation of norms in practical
applications. As explained before, our approach
consists of prescribing conditional norms with
deadlines and defining sanctioning norms, also
known as contrary-to-duty obligations (Jones
& Carmo, 2001).

Since we essentially rely on obligations,
verifying norm compliance consists of detect-
ing the fulfillment and violation of obligations.
For this, we define rules that are triggered by
corresponding events: the achievement of obli-
gations’ institutional facts (for fulfillment) and
the reach of deadlines (for violation).

Contextualized institutional facts are used
to verify the fulfillment of obligations. For this,
we define an obligation fulfillment rule appli-
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cable to all contexts (that is, to any contractual
relationship monitored by the EI):

[Context] ifact(IFact,  T) ∧
obligation(Bearer, IFact, Deadline) ∧
T<Deadline
→ fulfilled(Bearer, IFact, T)

This rule indicates that if an institutional fact
prescribed by an obligation is achieved before
its deadline, then that obligation is fulfilled. As
with behavior norms, literals within the rule are
dependent on its context. That is, if an obliga-
tion within a certain contract is accomplished,
the fulfillment of such obligation occurs, obvi-
ously, inside that same contract.

This rule is fundamental for enabling the
chaining of obligations within a contractual
relationship. It establishes a connection be-
tween the institutional facts that are added and
the pending obligations.

The connection between behavior norms and
sanctioning norms is achieved through violation
detection mechanisms. These are based on vio-
lation detection rules, which fire when dead-
lines have elapsed. For this we consider time
events, which are generated as institutional facts
by a clock triggering mechanism, corresponding
to the time when obligations are due.

[Context] ifact(time, Deadline) ∧
obligation(Bearer, IFact, Deadline) ∧
not(fulfilled(Bearer, IFact, _))
→ violated(Bearer, IFact, Deadline)

This violation detection rule states that in
any context, if a deadline referring to an obliga-
tion was reached, and such obligation was not
fulfilled, then a violation occurred (in the same
context).

These two rules comprise the core of our
normative environment, enabling the chaining
of norms. The implementation of such a frame-

work is achievable using a rule-based engine,
like Jess (Friedman-Hill, 2003), which enables
a forward-chaining approach based on the oc-
currence of events.

DISCUSSION

The concept of virtual enterprise or virtual
organization has been applied to many forms of
cooperative business, such as outsourcing, sup-
ply chains, or temporary consortiums. We are
mostly concerned with the latter case, consid-
ering flexible and dynamic relationships. Their
temporary nature requires quick set-up phases,
allowing the VO to start operating as soon as
possible.

Taking this into account, tools are being
developed that allow for automating part of the
process of setting up VOs. These include nego-
tiation mediation and contract formation ser-
vices, as we have described in this chapter. We
have also developed a model that addresses the
operation phase of a VO, allowing the monitor-
ing of parties’ compliance to contractual com-
mitments. Other developments would include
regulating the structure of VOs by defining
norms that specify when and how partners can
leave or enter a given consortium, and when
and how the consortium should terminate.

The approach presented in this chapter is
inspired by our social interactions as humans.
In order to regulate the real-world environment,
we have created institutions that deal with
specific aspects of our daily lives, giving us
some sense of order. The Electronic Institution
concept is proposed to regulate the interactions
of computational agents, providing trust by
enforcing appropriate types of behavior. Fur-
thermore, we address the issue of commitment
creation between individual agents, which form
a VO that is regulated by norms enforced by the
EI.



  801

Virtual Organization Support

In the real world, when contractual obliga-
tions are assumed by parties, they are not
automatically enforced. For this reason, in non-
electronic contracts, contrary-to-duty struc-
tures are not common. The violation of an
obligation entitles the offended party to invoke
legal power on a court of law, which may
prescribe a secondary obligation to be imposed
on the prevaricator (Daskalopulu & Maibaum,
2001). Besides, parties are not willing to stipu-
late handling procedures for all possible cir-
cumstances, deferring them to when and if
situations arise. In our framework, the use of
default rules (Craswell, 2000) as institutional
norms addresses this problem, while enabling
the automation of contract monitoring and en-
forcement.

Another significant intricacy concerns how
to approach situations in which sanctions are
violated. In such cases, more restrictive mea-
sures are needed. Instead of prescribing fur-
ther sanctions, we can constrain the behavior of
agents, for example by preventing their access
to institutional services. Other approaches con-
sist of indirect punishment measures through
reputation mechanisms.

Relational contract theory (Hviid, 2000) stud-
ies continuing relations that are naturally self-
enforceable. Instead of a detailed enforceable
contract based on a third party, a relational
contract is based on repeated interactions and
social norms, representing an informal agree-
ment sustained by the value of future relation-
ships. Formal contracts are preferred when
establishing relationships between unknown
parties. On the other hand, regular partners
generally rely on implicit relationships, sup-
ported by trust and by the threat of withholding
business from anyone who has broken a prom-
ise in the past. The information on agents’
reputation may also be used, if not as a ruling
out factor, at least when deciding the level of
detail a contract should have.

The adoption of MAS in domains such as the
B2B world is challenged by matters of user
trust. It is arguable what kinds of tasks human
decision makers will be likely to delegate to
software agents. The delegation of business-
critical tasks is not likely to be a reality in the
near future. Therefore, we envision the use of
agent-based infrastructures—such as our Elec-
tronic Institution environment—as supporting
tools that assist contractual relationships. Be-
sides facilitating contract formation, our frame-
work also enables monitoring contract fulfill-
ment, and may be used to alert real-world
entities concerning their upcoming obligations,
the consequences of their actions, and their
partners’ compliance.
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KEY TERMS

Agent: A goal-directed entity capable of
interacting with the surrounding environment in
an autonomous fashion; a software program
representing an individual business entity.

Contract: An explicit formulation of agents’
commitments.

Cooperation Agreement: A contract with
an ongoing nature, regulating a virtual organiza-
tion relationship that exists for a period of time.

Electronic Institution: A software plat-
form providing a set of contract-related ser-
vices for agent interaction and a normative
environment for enforcing contracts.

Multi-Agent System: A system where
multiple agents interact.

Norm: A prescription of behavior.

Normative Multi-Agent System: A set
of interacting agents whose behavior can be
regarded as governed by norms.

Role: A set of normative expectations and
empowerments.

Virtual Organization: A consortium of
organizations (enterprises) that align their busi-
nesses to perform integrated and more complex
activities.



  805

Virtual Organization Support

���������




��� �����



806

��������	



������������!�������������������
��������������"�����#���

Robert Marks
Australian Graduate School of Management, Australia

David Midgley
INSEAD, France

Lee Cooper
UCLA, USA

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

ABSTRACT

Using empirical market data from brand rivalry in a retail ground-coffee market, we model
each idiosyncratic brand’s pricing behavior using the restriction that marketing strategies
depend only on profit-relevant state variables, and use the genetic algorithm to search for co-
evolved equilibria, where each profit-maximizing brand manager is a stimulus-response
automaton, responding to past prices in the asymmetric oligopolistic market. This chapter is
part of a growing study of repeated interactions and oligopolistic behavior using the GA.

INTRODUCTION

We use simulated evolution to explore
oligopolistic behavior in a (retail) market with
up to four strategic sellers, comparing our simu-
lation results with historical data derived from a
retail market for ground, vacuum-sealed coffee
beans. We find that our boundedly rational
sellers perform well (as measured by their
average weekly profits) compared to their his-

torical counterparts, despite their limited memory
and constrained marketing actions.

Significant features of our work are: first,
our agents are heterogeneous: they respond
idiosyncratically to others’ actions, they have
distinct costs, face distinct demand curves, and
so earn distinct profits. For this reason, we
cannot ignore the identities of the separate
players, which would be convenient, were the
players identical. Second, we use the genetic
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algorithm (GA) to model the players’ learning.
To avoid “social learning” (Vriend 2000), when
players drawn from a single population pass
information to their “offspring” through the
genotype (an extra-market mechanism), we
use distinct populations for the four strategic
sellers, which precludes extra-market commu-
nication and learning. Third, we use stochastic
sampling (commonly know as Monte Carlo
sampling; see Judd, 1998) to generate a distri-
bution of marketing behaviors across the sell-
ers: given the stochastic nature of the GA, and
the complexity of the genotypes and pheno-
types, we use distinct random seeds to generate
50 distinct outcomes.

Computer scientists have developed ma-
chine learning, such as the GA (Holland, 1976,
1992; Mitchell, 1996; Goldberg, 1989) and clas-
sifier systems (Holland, 1976, 1992) as means
of optimizing—of finding the argmax of func-
tions not amenable to calculus-based methods
of solution. Social scientists have used and
developed these tools (Marks, 1989, 2002;
Arifovic, 1993), but less as optimizers and more
as generators of “adaptive plans” or “struc-
tures that perform well” in complex systems
(Holland, 1975, 1992), by modeling adaptive
economic agents (Holland & Miller, 1992) that
interact. This chapter demonstrates use of the
GA in this spirit.

OLIGOPOLY THEORY

Rivalry among retail brand managers in a mar-
ket for vacuum-sealed ground coffee beans
can be seen to possess characteristics that
clearly reflect the oligopolistic nature of the
repeated interaction: the brands are seen as
imperfect substitutes by the buyers; the sales of
any one brand, if stimulated by heightened
marketing actions, will negatively impact on the
sales of other brands, and there is no single
going market price for coffee. We model
Bertrand asymmetric competition among firms,
competing with price (and other marketing
actions) rather than quantity.

We have access to 78 weeks of supermar-
ket-scanner market data for a city in the U.S.
Midwest by supermarket chain. The marketing
actions (price, coupons, aisle display, advertis-
ing) remain unchanged for seven days, from
midnight Saturday for all brands—a property
that lends itself to simulation modeling on a
digital computer.

One of us (Cooper) has developed a market
model, Casper, which calculates, given all of
the nine brands’ marketing actions, the volume
of sales of each brand, the brands’ revenues,
and profits (Cooper & Nakanishi, 1988).1 The
brands differ not only in the demand response
of the market (each of their price elasticities of
demand is distinct), but also in their costs. The
brands are truly hereogeneous, as seen in Tables
1 and 2.

Table 1. The nine brands: Average price
and market share

Table 2. Asymmetries of the four strategic
brands

Brand Price Market 
Share  

Folgers $2.33 21%  
Maxwell House $2.22 20%  
Chock Full O’ Nuts $2.02 11%  
Maxwell House Master Blend $2.72 10%  
Chase & Sanbourne $2.34 4%  
Hills Bros. $2.13 4%  
Yuban $3.11 1%  
All Other Branded $1.96 3%  
All Other Private Labels $1.95 27%  

 Own-Price 
Elasticity of 
Market Share 

AVC ($/lb.) 

Folgers –4.4 $1.39  
Maxwell House –3.9 $1.32  
Chock Full O’ Nuts –4.7 $1.19  
Hills Bros. –0.5 $1.18  
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Casper provides the equivalent of the one-
shot payoffs for each of the brands, modeled as
playing a repeated game.2

Although each brand manager must choose
the set of next week’s market actions without
knowing the other brands’ actions next week,
this and preceding weeks’ actions are observ-
able by all brands. So the brands can choose to
remember the actions of their rivals for one,
two, or more weeks. Their depth of memory is
a measure of their bounded rationality: an
unboundedly rational player would choose to
forget nothing, and to use all remembered infor-
mation including its weekly profits in deciding
what marketing actions to undertake next week.

But the brand managers do not have unfet-
tered freedom to choose their marketing ac-
tions, since the policies of the supermarket
chain constrain them in two ways. Some ac-
tions (including a price well below the “shelf
price”) result in much higher sales and higher
profits (the lower margins are more than offset
by higher volumes of sales). The chain con-
strains use of these so-called “promotional”
actions. First, no brand may use a promotional
action set two weeks successively. Second,
only one brand may use a promotional action set
in any week. The chain acts as the moderator
among the brand managers, who each propose
their next week’s action set and acquiesce in
the supermarket’s choice of which brand to
promote next week.

Competing against each other, the brand
managers are trying to maximize their average
weekly profits. The supermarket chain is com-
peting against other chains for sales, although
we do not model this rivalry explicitly here.
Instead, we model the supermarket as trying to
maximize “total category volume” of coffee
sales. The reason is that coffee is one of many
supermarket categories, but one that might
attract more customers to the chain and so help
to sell higher volumes across many categories.

We model supermarket moderation in several
ways, as discussed in detail below.

The competition among brand managers is
asymmetric, because each of the brands is
distinct, with distinct price elasticities of de-
mand, distinct unit costs of provision, and dis-
tinct responses to the market. Moreover, solu-
tion of the Nash equilibrium of the one-week
game, let alone solution of the Nash equilibria in
the repeated game, is not amenable to calculus-
based, closed-form techniques.3 There are nine
brand rivals in the chain we focus on, although
only four are engaged in what we might call a
“rivalrous dance” by altering their marketing
actions every week. Figure 1 shows the behav-
ior of the three major strategic brands, and six
minor ones.

There are two main purposes of our re-
search. First, we wish to calibrate and validate
our model’s behavior to the historical data. To
this end, we use the asymmetries implicit in
Casper to model the brands’ sales, revenues,
costs, and profits in any week, given all brands’
market actions that week. We allow the model
to run for 50 weeks, with up to four “strategic
brands” altering their marketing actions from
week to week, in response to the state of the
market (defined as the set of all players’ mar-

Figure 1. Weekly prices and sales (solid
lines: Folgers, Maxwell House, Chock Full
O’ Nuts)



  809

Co-Evolving Better Strategies in Oligopolistic Price Wars

keting actions) the previous week. We look for
several measures of the simulated competition:
weekly profits, weekly Total Category Volume
of coffee sales, and the marketing actions
employed by the four strategic players.

The marketing actions include price, cou-
pons, aisle display, and flier advertising. His-
torically, brands’ prices varied from $1.50/lb. to
$3/lb., with promotional prices below $2.25/lb.
Coupons reduce the price paid at check-out,
and are measured by percentage of stores in
the chain that distribute coupons for that brand
that week. We net the impact of coupons out of
the retail price to simplify the action space.
Similarly, aisle display and flier advertising are
reported as percentage of stores in the chain
that include them for any brand in any week. In
practice, as discussed above, the store permits
only one brand to promote itself any week, and
we see a consistent pattern in coupons, aisle
display, and flier advertising: only one promoted
brand per week.

We could allow the adaptive brand manag-
ers of the model to choose their price from any
between 150 and 300 cents per pound, and any
percentage of aisle displays and flier advertis-
ing, but in practice we believe, first, that this
degree of freedom is not necessary to replicate
historical performance, and second, that the
practical difficulties of simulating this (such as
a huge number of degrees of freedom in the
definition of “market state,” and the need to
execute Casper each simulated week instead
of using a much faster compiled look-up table)
militate against it.

Instead, we use the historical data to iden-
tify, first, four sets, and second, eight sets of
brand-specific actions which are representa-
tive of those chosen over the first 50 weeks of
data. Later, we use eight action sets that are
identical across the four strategic brands and
find similar results.

The second purpose of our research is to
see whether our boundedly rational artificial

brand managers can surpass the performance
of their historical counterparts, as measured by
their weekly profits, handicapped as they are
by, first, simple one-week memory, and two,
constrained choice of marketing actions. Nec-
essarily, since we do not have access to actual
historical brand managers in order to pit them
against our artificial brand managers in a labo-
ratory setting, we must be content with open-
loop experiments, where our artificial brand
managers respond to the unfolding history of
past rivalries, but where the historical actions
cannot respond to our artificial agents’ actions.
We argue below that both aims are attained.

The structure of the chapter is as follows.
After a discussion of the GA, we describe our
historical market data, and then describe the
results of a set of computer experiments, as we
increase the number of strategic brands from
three to four, and the number of possible mar-
keting actions per brand from four to eight. We
present the open-loop results of playing our
best co-evolved artificial brands against his-
tory, and introduce the Holyfield-Tyson effect
of pitting more evolved agents against less
evolved agents. We discuss the implications of
our results for insights into managerial learning.

BORROWING FROM NATURE:
THE GENETIC ALGORITHM

Axelrod (1987) modeled players in his discrete
repeated prisoner’s dilemma (RPD) game as
stimulus-response automata, where the stimu-
lus was the state of the game, defined as both
players’ actions over the previous several
moves, and the response was the next period’s
action (or actions). That is, he modeled the
game as a state-space game (Fudenberg &
Tirole, 1992; Slade, 1995), in which past play
influences current and future actions, not be-
cause it has a direct effect on the game envi-
ronment (the payoff function), but because all
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(or both) players believe that past play matters.
Axelrod’s model focused attention on a smaller
class of “Markov” or “state-space” strategies,
in which past actions influence current play
only through their effect on a state variable that
summarizes the direct effect of the past on the
current environment (the payoffs). With state-
space games, the state summarizes all history
that is payoff relevant, and players’ strategies
are restricted to depend only on the state and
(perhaps) the time.

We have been using versions of the GA
since 1988 to explore oligopolistic behavior.4

As we describe above, we model the artificial
brand managers as stimulus-response automata,
in effect, where the stimulus is this week’s
market state (defined by the marketing actions
of all players, and particularly the four strategic
brands) and the response is the brand’s pro-
posed market actions next week. The eventual
market actions per brand are the outcome of a
moderating process performed by the super-
market chain, responding to the proposals of the
four brand managers.

We use the GA to search simultaneously for
better automata for each of the four strategic
brands, using their weekly profits as a measure
of performance or fitness. Each brand manager
is modeled as a binary string. If there are eight
possible marketing actions to choose from (cor-
relating aisle display and flier advertising with
promotional prices), then we can use three bits
on the string to code for next week’s marketing
action. How many triples are sufficient for the
model? With four strategic players, each with
eight possible marketing actions, there are amp

possible states (Midgley, Marks, & Cooper,
1997), where a = the number of actions (8), m
= the number of weeks remembered (1), and p
= the number of strategic players (4), a total of
4,096 possible states, each state mapping to a
triple of bits on the artificial player’s bit-string
“chromosome,” which requires each string to

be 12,288 bits long. Adding an additional 12 bits
for the “phantom memory” at the first of the 50
weeks (to endogamies the initial conditions of
the brand’s belief in the previous week’s mar-
ket state) gives us 12,300 bits per string. This
work is a generalization of Axelrod (1987) and
Marks (1989), and uses the ability of the GA to
search the highly disjoint space of strategies, as
Fudenberg and Levine (1998) have suggested.

As is well known (see Goldberg, 1989;
Mitchell, 1996; or the second edition of Holland,
1992), the GA borrows from our understanding
of evolution to search for solutions to problems
not easily solved otherwise. An initial popula-
tion of solutions is generated, the fitness score
of each individual is determined, a subset of
individuals is selected to be the “parents” of the
next generation, the “crossover” of pairs of
parents is simulated, and each bit is flipped from
zero to one or vice versa (“mutated”) with a
small probability (here 1%). The fitness of each
member of the new population is determined.
And the process repeats until convergence.

The GA has been used by engineers as an
optimization tool. Social scientists have used it
in a slightly different way: as a means of
simulating co-evolution. In our model, each
brand manager learns from its rivals’ behavior
and from its rivals’ responses to its own ac-
tions. This mutual leaning means that the com-
petitive environment changes, even as each
artificial brand manager learns to compete more
effectively. As a result, there is no necessary
increase in weekly profits, even as the GA
winnows the succeeding generations of their
worst performing strings.

Co-evolution requires a separate population
for each of the strategic players.5 A single
population would allow extra-market communi-
cation and learning to occur via the genetic
operations of selection and crossover. Not only
would this be illegal under antitrust laws, but
such social learning (Vriend, 2000) is not what
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we want to model. Necessarily, four separate
populations require a much more complex GA
program, but only a co-evolving GA is appropri-
ate. We extensively rewrote the GA software
(GAucsd, based on John Grefenstette’s GEN-
ESIS package; Schraudolph & Grefenstette,
1992) to allow the simultaneous simulation of up
to four populations of agents (modeled as bit
strings).

We use a population size of 25, each string
being 12,300 bits long, with four populations.6

This is a non-trivial simulation, but we manage
to obtain 2,500 generations, each of 5.5 million
weekly interactions, every 50 minutes on a Mac
G5 dual-2Ghz Unix workstation.

THE HISTORICAL DATA:
THE RETAIL GROUND-COFFEE
MARKET

The data refer to a local U.S. retail market for
ground-caffeinated coffee. There are nine
brands or players. Table 1 gives the average
prices ($/lb.) and market shares for each of the
nine. Table 2 presents further data on the
heterogeneity of the strategic players: their
own-price elasticities of market share and their
average variable costs (AVC). Figure 1 shows
the historical prices (top half) and quantity of
sales (bottom half) by brand over 75 weeks.
The solid lines map the prices and sales of the
three strategic brands: Folgers, Maxwell House,
and Chock Full O’ Nuts; the dotted lines map
the other brands. The data are aggregated on a
supermarket chain. As mentioned above, each
marketing action comprises four “marketing
instruments”:

1. prices (the price that week of the brand);
2. flier features (the percentage of stores in

the chain featuring the brand’s item in
their distributed advertising);

3. in-store aisle displays (the percentage of
stores in the chain featuring the brand’s
item as an aisle display); and

4. coupons, which are distributed to house-
holds in the district, for redemption of the
brand’s product at the supermarket chain.
We adjusted the price in any week by the
percentage of coupons distributed.

COMPUTER EXPERIMENTS

We model the brand managers as artificial
agents. The computational experimenter can
control the agents’:

• information (what they know when);
• learning (how information about their own

and others’ behavior alters their future
responses);

• degree of bounded rationality (in particu-
lar, their memory of past weeks’ actions
and outcomes, perhaps aggregated into
coarser partitions);

• sets of possible actions (their determinis-
tic responses to the perceived state of the
market); and

• payoffs (which, like their information,
learning, memory, partitioning, and ac-
tions, are asymmetric).

Simulation, although it cannot in general
establish necessity, does enable exploration of
the sufficient conditions for the emergence of
particular aggregate market phenomena, given
players’ micro-behavior.

First Results

This chapter builds on work reported in Midgley
et al. (1997). There we considered the three
most interactive players in the market: Folgers,
Maxwell House, and Chock Full O’ Nuts
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(CFON). We allowed each agent four action
sets, as derived from an analysis of their histori-
cal prices and other marketing actions. Table 3
shows the four possible action sets for each of
the three agents.

Our intention was to pit the three strategic
brands against each other, while the other
brands were unchanging or non-strategic play-
ers, in order to examine the co-evolution of the
three agents’ behavior. We would need to
distinguish convergence of behavior (pheno-
type) from structure (genotype).

We used the Casper market model to derive
the three asymmetric 4 4 4× ×  payoff matrices
for the three strategic players. The payoff
matrix indicates any brand’s weekly profit for
each of the 64 combinations of price given in
Table 3, given the non-strategic prices of the
other six brands ($/lb.) (see Table 4).

With one-week memory, the agents were
modeled as bit strings of length 32 4 6× +  = 134
bits. (The 6 bits of phantom memory endogenize
initial conditions: each agent has four possible
actions coding to 2 bits, and there are three
strategic players.)

Each agent played a 50-round game with
each possible combination of the other two
players. The GA used 25 mappings (or strings)
per population for each agent. Therefore, test-
ing each generation required 8,125 50-round
games, or 325 games per string per generation.
Each agent had complete information of all
previous actions in each 50-round game, but not
others’ weekly profits (payoffs).

Figure 2 shows three patterns and average
weekly profits with three distinct populations.
For most of the runs, the agents’ behavior is
very similar (Folgers and CFON pricing at an
Every Day Low Pricer (EDLP); Maxwell House
exhibiting Wide Pulsing (WP). In Pattern 3,
CFON is exhibiting Promote to the Max (PttM).

Consult Midgley et al. (1997) for a discus-
sion of the patterns of behavior of the uncon-
strained and constrained brands, and the issue
of demand saturation over time that the single-
week estimates of Casper evoke. After con-
straining the brands (as discussed above) and
accounting for demand saturation, our three-
brand, four-action model generates patterns of
behavior similar to Figure 1: brands alternate
(roughly) in pricing at p1, while the other two
price at p2, p3, or p4.

Having co-evolved populations of each of
the three strategic agents over 100 generations,
we decided that one way to demonstrate the
extent to which the agents had learned to act
effectively was to use the most profitable agent

Table 3. The four sets of actions of the three strategic brands

Note: Asterisked actions are subject to store moderation. A is Action, P is Price, F is advertising Feature,
D is aisle Display.

Table 4. The fixed prices of the other six
brands (%/lb)

Folgers Maxwell House CFON 
P F D P F D P F D A 
($/lb.) (%) (%) ($/lb.) (%) (%) ($/lb.) (%) (%) 

p1 1.87* 95* 69* 1.96* 95* 69* 1.89* 100* 77* 
p2 2.07 83 0 2.33 83 0 2.02 100 65 
p3 2.38 0 0 2.46 0 0 2.29 0 0 
p4 2.59 0 0 2.56 0 0 2.45 0 0 

Master 
Blend 

Hills 
Bros. 

Yuban C&S AOB APL  

2.90 2.49 3.39 2.39 3.68 2.19  
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by brand from the hundredth generation and
play it against the history of play of the other
strategic brands. In order to do this, we had to
partition the historical actions into four intervals
for each of the three strategic brands. We
measured performance by the average profits
over the 75-week history.

For Folgers and CFON, the agents improved
on their historical performance, but Maxwell
House sometimes did worse, even on average.
But this was an “open-loop” simulation: the
historical managers had responded to the his-
torical actions of all others, but here could not
respond to the agents’ actions. Nonetheless,
our very simple agents generated reasonable
performance in a noisy environment.

Four Strategic Players

Previously, we modeled the oligopoly with three
strategic players, each with four possible ac-
tions, remembering one week back. As dis-
cussed above, the agents were modeled as bit
strings of length 134 bits. To improve the real-

ism of the simulation, we increase the number
of strategic brands to four, by including Hills
Bros. This increases the bit-string length from
134 bits to 520 bits.7 We chose Hills Bros.,
despite its small market share, as the fourth
strategic agent, because the fourth largest brand
(Master Blend) is not independent of Maxwell
House, and so its strategic actions could be
orchestrated by the owner.

The results of introducing the fourth strate-
gic brand are striking. Even though Hills Bros.
has a small market share (4%), its introduction
is quite significant. The market changes in
significant, complex, and asymmetric ways.
There are changes in the other brands’ behav-
ior as well as in other brands’ average weekly
profits. Figure 3 shows three patterns and
weekly profits that comprise 38 of 50 Monte

Figure 2. Three agents, four actions

Figure 3. Four agents, four historical
actions—hundredth generation
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Carlo runs. The new strategic agent apparently
takes up some of the fixed number of opportu-
nities for major promotions and has differing
competitive impacts on the other brands. Sur-
prisingly, the total weekly profits of the first
three brands rise when a fourth player is intro-
duced, at least for the 40-odd patterns of Fig-
ures 2 and 3. What these simulations demon-
strate is that a small player (as measured by
market share) is not necessarily insignificant
strategically. In Pattern 1, Maxwell House is
exhibiting High Pricer (HP), and in Pattern 3,
Shelf Price (ShP).

Eight Actions per Player

Heretofore the strategic agents (whether three
or four) have been constrained by the four
possible actions, chosen from the historically
observed actions of the actual brand managers.
In effect, the agents were given a choice of
pricing high or low, with minor variation around
the two positions, and they were constrained by
the corporate memory and prior learning of the
actual brand managers, who had, we assume,
learned not to price too high (and sell very little)
or too low (and earn little and perhaps spark a
price war).

We wanted to increase the choices of the
agents. The simplest way was to double the

number of possible actions per agent from four
to eight. The effect of this on the bit-string
length will depend on the number of strategic
agents: for three agents, with one-week
memory, allowing eight possible actions instead
of four increases the length from 134 bits to
1,545; for four agents, the length increases
from 520 bits to 12,300 bits.8

By increasing the number of actions to eight,
we hoped to give our agents the opportunity to
demonstrate that the four actions used earlier
were robust, and that our assumption of a
mature oligopoly was correct, at least in terms
of the combinations of prices and other market-
ing actions encountered.

Moving to eight possible actions, especially
including some beyond the observed range of
actions of the historical brand managers, intro-
duces the possibility of the agents learning
anew what was embodied in the historical
range: not to price too high or too low.

Figure 4 shows the weekly profits and pat-
terns of behavior, as reflected by the frequency
of actions across the three strategic agents.
The data refer to 50-run Monte Carlo simula-
tions. (The black diamonds ♦  in the figures
correspond to the asterisks in Table 5: actions
subject to store moderation.)

After four generations, starting from a uni-
form distribution of actions (because the bit

Table 5. Four brands: Sets of eight possible marketing actions

Folgers Maxwell House CFON Hills Bros. 
P F D P F D P F D P F D A 
($/lb.) (%) (%) ($/lb.) (%) (%) ($/lb.) (%) (%) ($/lb.) (%) (%) 

1p  1.62* 67* 67* 1.60* 97* 97* 1.64 0 0 1.86* 100* 74* 

2p  1.83* 97* 96* 1.87* 94* 91* 1.89* 97* 97* 1.91 0 73 

3p  1.96 0 0 2.06* 88* 76* 1.89* 98* 29* 1.95* 100* 87* 

4p  2.03* 79* 77* 2.33 79 0 2.01 0 0 2.09* 100* 0* 

5p  2.04* 85* 0* 2.38 54 0 2.02* 97* 62* 2.19 0 0 

6p  2.22 96 33 2.52 0 0 2.31 0 49 2.42 0 0 

7p  2.57 0 0 2.53 0 53 2.33 0 0 2.49 0 100 

8p  2.78 0 0 2.59 0 13 2.49 0 0 2.56 0 14 
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strings are chosen randomly to begin with, apart
from filtering against the actions of promoting
two weeks in succession), we see that the
frequencies of actions are still almost uniform.
After 100 generations, however, the agents
have focused on only two or three main pat-
terns of interaction, with many fewer than eight
possible actions used frequently: agents have
co-learned the two or three actions that are
most profitable, given others’ behavior. The
actions are brand specific.

Specifically, with three strategic agents:
CFON is pulsing between Shelf Price (high)
and Promotional Price (low). Folgers exhibits
three pulsing patterns: P2—pulsing three ac-
tions; P1—more diverse pulsing, with four ac-
tions; and P3—pulsing with two actions. Max-
well House exhibits a less dynamic choice of
Every Day Low Price, and avoids the store
constraints. CFON is pulsing with two actions:
wide or narrow.

From a 50-run Monte Carlo simulation of
four agents and eight possible actions, we ob-
serve in Figure 5 for 44 runs that the four agents
exhibit different behavior: Folgers and CFON
show Wide Pulsing, from high to low, promo-
tional prices (indicated by the black diamonds),
but Folgers, with 42% of its actions promotion
(of a possible maximum of 50%) is almost
Promoting to the Maximum, whereas CFON is
promoting only 22% of the time; Maxwell House
shows High Pulsing, seldom (15%) promoting
at low prices; and Hills Bros. shows Shelf Price
(p6) or higher, promoting only 8% of the time.

Overall, we can say that, with the eight
possible actions of Table 5, a greater degree of
homogeneity emerges, with 44 of 50 Monte
Carlo runs being identical. Moreover, adding a
fourth strategic agent increases the degree of
competition in the market, which is here re-
flected in lower average profits for the first
three brands, as well as different behavior.

Moderation in the runs of Figure 5 is
achieved randomly (by a “zero-intelligence”
chain moderator), but we explored changing

Figure 4. Three agents, eight historical actions

Figure 5. Four agents, eight historical actions—2500th generation
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this in two ways: first, by altering the possible
actions of Table 5 by eliminating the lowest
prices, and second, by estimating from the
historical data just how moderation was achieved
and the chain’s preferences across brands
revealed. We do not report these experiments
in detail here, but brands’ profits fell, as did the
volume of coffee sold.

When we repeated the open-loop plays be-
tween the best of the co-evolved three agents
with eight possible actions and the historical
brand managers, we found that the best agents
clearly outperformed their historical counter-
parts: for Folgers by 156%, for MH by 32%,
and for CFON by 42%.

• The Frankenstein Effect: Agents that
showed only a few behaviors in the co-
evolutionary “lab” were able to evince a
wider repertoire when faced with a more
variable environment (the history of ac-
tual managers’ behavior). We dub this the
Frankenstein effect because the artifi-
cially bred agents were more interesting in
the wild than in the lab.

• The Holyfield-Tyson Effect: The artifi-
cial agents “learn” through application of
the evolutionary techniques of the GA.
This is clear when the agents are solutions
to a static problem, as has been the most
usual application of GA techniques in, say,
engineering. It is also the case that the
first application of GAs in economics
(Axelrod, 1987) was static, even if sto-
chastic: Axelrod used GAs against a non-
evolving but mixed-strategy niche of algo-
rithms derived from the early computer
RPD tournaments (Axelrod, 1984). But
Marks (1989) and others following have
bred artificial agents against each other, a
process that Marks called “bootstrapping”
and biologists term “co-evolution.”

Against a static environment, progress of
the artificial agents is readily revealed by their
improving fitness scores, but against a dynamic
environment composed of like artificial agents,
scores may not rise from generation to genera-
tion. Two questions: Do highly co-evolved play-
ers become effete? Will a “naïve” outperform
a “sophisticate”?

Apart from the growth in average weekly
profits, there are at least two further ways to
demonstrate that the artificial natural selection
has improved the agents’ performances. In our
earlier work we attempted to show the greater
competence of our artificial agents by pitting
them against the historical histories of play of
their opponents, but some criticism has been
made that this overstates the skills of the arti-
ficial agents and understates the skills of the
historical agents, who have no opportunity to
respond to the actions of the artificial agent:
their plays are given, or open-loop.

Here we attempt to show how the artificial
agents have learned by taking agents after
2,500 trials (100 generations) and playing them
against not the frozen moves of their historical
opponents, but the agents after only 200 trials (8
generations)—a process we have termed pit-
ting a sophisticated agent against naïve agents.
How do we show that the co-evolved agents
are learning to respond better (are truly fitter)?
Previously we considered the mean weekly
profits; now, in turn, we replace the best naïve
(at 8 generations) Folgers (respectively, Max-
well House and CFON) string with the best
sophisticate (after 100 generations) Folgers
(respectively, Maxwell House and CFON)
string.

The procedure followed was:

1. After 8 generations, identify the best string
from each of the 3 or 4 populations.

2. Play these 3 or 4 against each other for a
50-week repeated game; note average
weekly profits.
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3. Allow the 3 or 4 populations to continue
co-evolving via the GA.

4. After 100 generations, identify the best
strings from the 3 or 4 populations, play
them against each other as before; note
average weekly profits. Table 6 shows
these results.

5. Replace the best Folgers string after 8
generations with the best Folgers string
after 100 generations (i.e., replace the
best primitive string by the best sophisti-
cate).

6. Play all combinations of 3 or 4 strategic
brands, and consider string-by-string the
change in average weekly profits with the
sophisticated player and without the so-
phisticated player in one brand.

7. Repeat steps 5 and 6 for the remaining 2
or 3 strategic brands. Repeat steps 1-7 50
times. Table 7 shows the performances.

Table 8 shows the three combinations of
results.

We would have expected positive diagonals
(i.e., that sophisticates do better) and negative
off-diagonals (i.e., that others’ profits fall).
Instead, we see that the CFON sophisticate is
the only one to improve on the replaced naïve’s
performance. In the cases of Folgers and Max-

well House, the sophisticates did worse than
the naïve.

The results of Table 8 are unexpected. One
possibility is genetic drift, a phenomenon where
lack of selective pressure on many alleles (sites)
on the bit strings (because of convergence of
behavior, generation after generation, which
means that only a small subset of possible
states occur, and hence only a small subset of
alleles (sites) are triggered) means that those
bits may, through chance and recombination,
flip, which is only obvious when, in the hurly-
burly of rivalry against the naïve, these states
are encountered again, after many generations,
and the perhaps effete sophisticates do not

Table 6. Performance of hundredth-
generation agents competing with each other

Note: Average weekly profits computed from 50
Monte Carlo simulations and all combinations of
agents. Historical-action sets.

Experiment Folgers Maxwell 
House 

CFON Hills 
Bros. 

Total  

3 pop., 4 actions 1,053 793 534 n/a 2,380  
3 pop., 8 actions 889 985 694 n/a 2,568  
4 pop., 4 actions 915 729 835 164 2,479  
4 pop., 8 actions 992 606 570 115 2,284  

Table 7. Performance of best agents
competing with the managers’ histories

a—average weekly profits computed from historical
actions; b—average weekly profits computed from
playing the best agents from 50 Monte Carlo
simulations against historical actions; c—single
best performance observed. Note: The profits
derived from historical actions will not be the same
as single-period Casper results because of the
demand-saturation constraint.

Experiment Folgers Maxwell 
House 

CFON Hills Bros. 

Historical actions 188 a  198 a  69 a  ?  
3 pop., 4 actions 410b , 

468 c  
271, 329 107, 113  

3 pop., 8 actions 523, 806 295, 514 104, 124  
4 pop., 4 actions 430, 469 191, 286 103, 111 ?  
4 pop., 8 actions 481, 944 262, 559 98, 110 12, 13  
(60th gen.)   

Table 8. Mean changes in average profits
with the best sophisticates

 ∆ F ∆ MH ∆ CFON 
Folgers –15.0 41.4 42.0  
MH 2.0 –20.0 37.8  
CFON 13.9 –29.0 82.3  
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always cut the mustard. We have dubbed this
the Holyfield-Tyson effect after the notorious
championship bout between the two heavy-
weights, in which Tyson bit off part of Holyfield’s
ear.9

Genetic drift is inversely proportional to the
number of individuals in the population. We
increased the population size per brand from 25
strings to 250. This led to very slow conver-
gence, even with the short strings in the three-
agent, four-action simulations: not only was
there a thousand-fold increase in the number of
three-way interactions per generation, but there
was apparently lengthy spiraling towards con-
vergence of the GA—only a single run was
performed, not a Monte Carlo. The GA was still
converging at 80 generations, and the results
after 160 generations were no better: the GA
had still not converged. We cannot confirm
genetic drift as an explanation. Another possi-
bility is the Red Queen effect (Robson, 2005).

MANAGERIAL LEARNING

The eight-action sets per player of above were
derived from historical actions and so embodied
prior learning What if we give the artificial
agents a different repertoire of actions—one
developed without reference to the historical
actions of managers? We used a random ex-
perimental design, where the price per pound is
stepped in 10-cent increments between $1.60
and $2.80, and feature and display can take on
the values of either 0 or 100%.

Figure 6 shows three patterns that accounted
for 39 of 50 Monte Carlo runs. Note that
average weekly profits are much higher than
with historical, learned action sets. Note too
that in general the agents shun low-price pro-
motions and maintain high prices throughout
most interactions. The levels of competition are
much lower than with historical-action sets—

with these randomly chosen action sets, the
agents are engaging in the sort of collusion that
we expected to see in the first simulations
above. But we speculate that these results
show that inter-chain competition is what our
model (and Casper) lacks—the demand curve
for coffee from our supermarket chain must be
kinked when potential customers go elsewhere
to avoid paying the high prices our artificial
agents would like to charge in implicit collusion.

Results of three-player, eight-possible-ac-
tion simulations reveal two major patterns: much
higher average weekly profits, and almost no
low, feature pricing, with profits earned at very
high pricing. This result is seen in Figure 7,
which shows the patterns for the four strategic
players under the three regimes: historical fre-
quencies of the brand managers, co-evolved

Figure 6. Three agents, eight-random-action
sets—hundredth generation
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agents competing against each other, and the
best co-evolved agents competing against his-
tory. Notice that for Maxwell House and Hills
Bros., the co-evolved agents’ frequencies of
actions are very similar to the historical brand
managers’ frequencies of actions; and for
Folgers and CFON, the two patterns are simi-
lar, with a slightly higher shelf price for the
historical managers.

CONCLUSION

We can summarize our experiments on rivalry
in a mature differentiated Bertrand oligopoly in
two ways: the average weekly profits of the
agents, and the patterns of actions. Table 6
summarizes the average weekly profits of the
four strategic brands under the different com-
binations of strategic brands and four- or eight-

action sets (all derived from the historically
observed actions of the brand managers). Fig-
ure 7 summarizes the frequencies of chosen
actions (eight-action sets, derived from the
historically observed actions) under the three
conditions of: (1) historical actions (from Figure
1), (2) co-evolved agents competing (from Fig-
ure 5), and (3) agents competing against history
(playing the 50 best agents per brand against
the historical actions of their three competi-
tors). The competitive behavior of one of our
artificial brand managers (Hills Bros.) is similar
to the historical frequencies, but the other three
artificial brands reveal more strategic behavior
than the historical brands engaged in. For at
least one brand, a simple set of possible actions
and one-week memory are sufficient to simu-
late historical behavior, suggesting a lack of
sophistication on the part of historical brand
managers. Later work will explore this issue of
“zero-intelligence” behavior (or simple heuris-
tics) further.

Our experiments have revealed some re-
strictions on the historical brand managers which
were not immediately apparent, but more sig-
nificantly, we have shown that the patterns of
interaction among the brand managers were
not as profitable as they might have been, even
if all strategic players in the oligopoly had been
using strategies as finely tuned as our agents
had learned to use, in the simulations learned
using the GA. We hypothesize that the tech-
niques used here could shed light on the behav-
iors in similar asymmetric oligopolies, and on
how the actors in those markets might have
been able to improve their profits in the past and
perhaps in the future.

When John Holland (1975) invented the GA,
his original term for it was an “adaptive plan”
which looked for “improvement” in complex
systems or “structures which perform well.”
Despite that, most research effort, particularly
outside economics, has been on its use as a

Figure 7. Comparison of patterns

Folgers

Historical frequencies

Agents competing

Agents against history

Maxwell House

Historical frequencies

Agents competing

Agents against history

Chock Full O Nuts

Historical frequencies

Agents competing

Agents against history

Hills Bros.

Historical frequencies

Agents competing

Agents against history

p1 p2 p3 p4 p5 p6 p7 p8
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function optimizer. But, starting with Axelrod
(1987), the GA has increasingly been used as
an adaptive search procedure, and latterly as a
model of human learning in repeated situations
(Duffy, 2006). In the 1992 second edition of his
1975 monograph, Holland expressed the wish
that the GA be seen more as a means of
improvement and less for its use as an optimizer.
The work we report on here is an example of
the usefulness of the GA in a continuing re-
search program about the behavior of sellers
competing in an oligopoly, where the sellers are
modeled as automata responding to the past
actions of all sellers.
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ENDNOTES

1 We can make available the C sources for
our programs and the 75 weeks of histori-
cal market data on request.

2 With up to four hereogeneous players,
each facing a set of up to eight possible
actions, the asymmetric (8×8×8×8) payoff
matrix is much too large to reproduce
here.

3 The Folk Theorem of repeated games
(Fudenberg & Maskin, 1986) tells us that
there is a multiplicity of N.E. of the re-
peated game; in essence, any individually
rational outcome can be an N. E. with a
sufficiently low discount rate.

4 Differentiated Bertrand oligopolistic com-
petition closely resembles an asymmetric
n-person prisoner’s dilemma (Fudenberg
& Tirole, 1992).

5 Were our players identical, we would
have a symmetric game, and could follow
the modeling simplification of Yao and
Darwen (1994), as many computer scien-
tists have done. But our players are not
identical: their identity matters, as seen in
Tables 1-4.

6 The GA parameters include: Crossover
Rate = 13.0, Mutation Rate = 0.01; see
Schraudolph and Grefenstette (1992).

7 Four actions require 2 bits per action; 4
actions, 4 players, and 1-week memory
implies 44 = 256 possible states; phantom
memory is 4×2 = 8 bits. So 2×256 + 8 = 520
bits per string.

8 Eight actions require 3 bits per action; 8
actions, 3 players, and 1-week memory
implies 83 = 512 possible states; phantom
memory is 3×3 = 9 bits. So 3×512+9 = 1,545
bits per string. Eight actions per player and
4 players (while retaining 1-week memory)
require 3×84+4×3= 12,300 bits per string.

9 We should like to thank Bernhard Borges
for this name.
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ABSTRACT

Many new products fail, despite preliminary market surveys having determined considerable
potential market share. This effect is too systematic to be attributed to bad luck. We suggest
an explanation by presenting a new percolation theory model for product propagation, where
agents interact over a social network. In our model, agents who do not adopt the product
spread negative word of mouth to their neighbors, and so their neighborhood becomes less
susceptible to the product. The result is a dramatic increase in the percolation threshold. When
the effect of negative word of mouth is strong enough, it is shown to block any product from
spreading to a significant fraction of the network. So, rather then being rejected by a large
fraction of the agents, the product gets blocked by the rejection of a negligible fraction of the
potential market. The rest of the potential buyers do not adopt the product because they are
never exposed to it: the negative word of mouth spread by initial rejectors suffocates the
diffusion by negatively affecting the immediate neighborhood of the propagation front.

INTRODUCTION

Many new products fail to meet their expected
market share. While preliminary market sur-
veys may report a large portion of potential

buyers, the actual sales might reach only a
negligible fraction of the market (Bobrow &
Shafer, 1987; McMath & Forbes, 1998). Mas-
sive scientific research, as well as large finan-
cial, human, media, and technological resources,
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have been invested to improve market sam-
pling. However, there seems to be a “glass
ceiling” to the success rate of sales prediction.
In this chapter, we explain this phenomenon in
terms of a “market percolation phase transi-
tion.” We show that the eventual market share
of a product depends crucially on the nature of
interactions between potential buyers, more so
than simply on their number (Bass, 1969) or
even their network of connections (Solomon,
Weisbuch, Arcangelis, Jan, & Stauûer, 2000;
Solomon & Weisbuch, 1999; Weisbuch &
Solomon, 2002).

Percolation Theory

In general, percolation theory describes the
emergence of connected clusters. Historically,
percolation problems were first studied in chem-
istry, when Flory and Stockmayer studied Ge-
lation as a percolation process on a Bethe
lattice (Stockmayer, 1943). Since then, perco-
lation theory has been developed extensively by
both mathematicians and physicists (Stauûer,
1985), and was applied to a variety of other
subjects, from epidemiology to oil fields and
forest fires (Bunde & Havlin, 1999).

The main phenomenon studied in percola-
tion models is the emergence of a phase transi-
tion: a dramatic change in the qualitative behav-
ior of the system, triggered by an infinitesimal
change in the parameters. For example, a small
difference in virulence can make the difference
between a seasonal flu and a global epidemic.
Percolation theory offers a broad body of knowl-
edge for the study of such phenomena, and by
casting a problem in percolation terms one can
gain access to a wide set of intuitions and
rigorous results.

In short, percolation models involve agents
that interact across a network. The interaction
consists usually of influencing the state of a
neighbor agent (i.e., a “sick” agent can poten-

tially change the state of its “healthy” neighbors
by infecting them). Obviously, the affected
neighbor can now further affect one of its
neighbors, and so allow the effect to diffuse
across the network. Percolation theory studies
the conditions in which the set of affected
agents reaches a macroscopic size (a non-
vanishing fraction of the entire set of suscep-
tible agents). Interestingly enough, percolation
theory predicts that often such a “global” diffu-
sion will not take place, as the propagation may
die out before any significant fraction of the
system is reached by the diffusion dynamics.
The transition to the percolating regime, where
almost all susceptible agents are infected, is
usually very sharp. The values of the param-
eters at which this happens are called “critical
values.” As one varies the parameters through
their critical values, the system abruptly passes
from the “seasonal flu” phase to the “epidemic”
one. This is the famous percolation phase tran-
sition.

Mort (1991) suggested the application of
percolation theory to marketing: a product
spreads among adopters and can be said to
percolate (or not) through the social network.
Solomon and Weisbuch (1999) proposed look-
ing at “Social Percolation”; they regard society
as a network through which a social phenom-
enon (information/belief/product/behavior) may
or may not percolate. In the right conditions a
macroscopic cluster of adopters emerges, and
most of the susceptible people will eventually
be influenced. However, if the adoption rate
(“social virulence”) or the typical number of
neighbors per agent are below their critical
values (“percolation threshold”), the spread
would stop before any significant fraction of
the susceptible adopters is reached. As seen in
Figure 1, if the proportion of susceptible agents
is below the percolation threshold, they form
disjoint little islands (Figure 1(a)). In this case a
propagation that starts on one of the islands can
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“conquer” this entire island, but cannot “spill”
beyond its borders. However, as the proportion
of susceptible agents increases, eventually
bridges will form between a significant fraction
of the islands. This is the percolation transition:
the clusters expand to where they touch each
other and form one giant percolating cluster
(Figure 1(b)).

It is not simple to introduce percolation
models to marketing science, mostly because
percolation theory deals with “micro” data, on
a fine-grained scale, and so one needs spatial
micro-data in order to tune the model’s param-
eters. For social networks, such information on
the micro-structure is usually unknown; spatial
micro-distribution of sales data is usually not
publicly available. However, the approach has
gained support in some recent studies—for
example, Rosen (2000) reports that when
Hotmail e-mail service was launched, it was
quickly spread through word of mouth, and

although e-mail is not a “local” service, it was
still spreading in local areas. In addition, scien-
tists working in percolation theory are usually
not familiar with marketing science, its basic
questions, or its methods. State-of-the-art simu-
lations in percolation theory may look like video
games to a marketing scientist, while for a
physicist who is not familiar with the particu-
larities of marketing literature, the quantitative
message might look unrecoverably buried in
particular details specific to the case under
study.

In this chapter we extend the standard per-
colation model by introducing effects of nega-
tive word of mouth (NWOM). The resulting
model was never considered before by perco-
lation theory, probably because in the domains
usually studied by it, there are no negative
effects between neighboring agents. We do not
claim that the simplified model we present can
be directly applied to a marketing scenario—

Figure 1. (a) A 25x25 regular grid in which a half of the cells were randomly marked with #.
The resulting cluster structure is one of several disconnected islands. If a propagation starts
from the upper left corner, it will not diffuse beyond the cluster marked in black. The
propagation cannot reach other clusters, some of them marked in grey. (b) If an additional
10% is marked with X, the cluster structure changes dramatically, and a cluster proportional
to the entire grid size emerges. Now a propagation from the upper right corner can span the
entire network. (Neighborhood links are drawn along the main axes, so every agent has four
neighbors at most: N, S, E, and W.)
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this would require calibrating the model against
data on the spatial and temporal distribution of
sales (which the companies are very reluctant
to release). However, since the main dynami-
cal implications of the model are quite dramatic
(large jumps in the sales for small parameter
changes), they are likely to be replicated in a
wide range of real systems. The present model
should be considered as setting the scene for a
tighter interdisciplinary effort by providing a
formal model for a crucial market force: the
negative word of mouth.

Negative Word of
Mouth in Marketing

From marketing research, we learn that NWOM
has a profound effect on adoption patterns. For
example, Leonard-Barton (1985) found that an
innovation reached only 70% of its market
potential due to resisting consumers. In addi-
tion, Herr, Kardes, and Kim (1991) found that
NWOM may decrease product evaluations.
Two main characteristics of NWOM have been
stated in marketing literature: it is more infor-
mative than positive word of mouth and thus
may have a stronger effect (Hauser, Urban, &
Weinberg, 1993; Herr et al., 1991), and it may
be contagious and spread independently of
exposure to the product (Marquis & Filiatrault,
2002). Both these attributes are addressed by
our model.

Some models incorporating NWOM were
suggested in marketing theory (e.g., Kalish &
Lilien, 1986; Mahajan, Muller, & Kerin, 1984;
Midgley, 1976; Moldovan & Goldenberg, 2004),
but none of these models address the context of
the underlying social network. The standard
way to describe market share progression in
marketing theory is by using differential equa-
tions, and most models used today are exten-
sions of the classical Bass (1969) model. Pre-
dictions on adoption dynamics are made by

fitting the parameters of these differential equa-
tions according to empirical sales data. The
main criticism on the ODE approach is that it is
inefficient at the early stages of product spread,
as it is too sensitive to early fluctuations in the
adoption process (Malcolm Wright & Lewis,
1997). This renders the forecast method less
efficient, because by the time enough data
points were collected, most of the “damage”
(e.g., over- or under-production) is already
done. We believe that this failure is inherently
linked to the fact that the Bass framework pre-
assumes “mean-field” conditions (i.e., all agents
may interact with all others) and ignores the
underlying social network.

Marketing theory distinguishes between two
types of forces affecting the consumer—the
“internal” (local) force, a name for all the
influences cast on individual consumers by peer
consumers (e.g., word of mouth), and the “ex-
ternal” (global) force, the kind of influences
that are cast upon all consumers equally (e.g.,
marketing efforts). It is accepted in marketing
that in the long run, internal forces are of
greater significance for the adoption pattern of
a product (although the external force is impor-
tant for product awareness or for “activation”
of the internal force). An estimation of the
effect of the two forces, internal and external,
shows that after takeoff, the word-of-mouth
effect is 10 times greater than marketing ef-
forts (Goldenberg, Libai, & Muller, 2001) and
may be responsible for as much as 80% of the
sales (Mahajan, Muller, & Srivastava, 1990).

Despite the fact that the internal force is
more powerful than the external force, the
standard effector employed for marketing is
advertising, often by addressing an entire mar-
ket. This introduces a bias into marketing re-
search as well, which tends to focus on the
external forces. The Social Percolation (SP)
framework models internal forces as local in-
teractions between neighboring agents on a



826

Social Anti-Percolation and Negative Word of Mouth

social network, and observes the properties of
the resulting adoption patterns. Investigating
the effects of internal forces in this manner can
provide useful insights to market behavior, even
if we ignore overall effects of external forces
(the framework of social percolation can easily
be extended to incorporate external forces as
well (Proykova & Stauûer, 2002)). In this chap-
ter we divide the internal force into positive and
negative effects, and explore the effect of
negative word of mouth in the SP framework.
This provides a focus on the internal force in a
structured context.

THE MODEL

Classical Social Percolation

We start by repeating the ideas of the SP
framework (Solomon et al., 2000; Solomon &
Weisbuch, 1999; Weisbuch & Solomon, 2002).
The basic element of the model is an agent,
representing a consumer. Each agent i is char-
acterized by a “preference” value pi, and agents
are placed in a social network with a fixed
structure. The model is made complete by
introducing a product, represented by a global
“product quality” value, denoted Q. The prod-
uct spreads in the network between neigh-
bors—whenever an agent adopts the product, it
exposes its neighbors to the Q, and they decide
individually whether to adopt it or not. Simulat-
ing this dynamics is done by exposing a “seed”
group of agents to the product, and allowing it
to spread from them until its diffusion naturally
ends, either because it reaches the network’s
boundary or because it is blocked by non-
adopters. Transmission of the product between
neighbors happens according to the following
adoption rule:

ADOPTION—Agent i will adopt the prod-
uct if a neighboring agent adopted the product

AND the product’s quality is higher than the
agent’s preference: Q>pi.

Thus, the potential market for a product
consists of all the agents whose p is smaller
than Q, but as long as this potential market
forms only disconnected clusters, the product
cannot reach all “islands,” and its diffusion is
limited.

Although the parameterization of the model
with a fixed Q suggests a false interpretation
that a unique well-defined value of quality may
be assigned to a product, we do not claim this to
be the case. Even as different consumers may
have different perceptions of a product’s qual-
ity, we choose to incorporate all such interper-
sonal diversity in the variability of the random
values pi. Since adoption is determined by
comparing the “global” Q to the “private” pi,
introducing variance to Q over the agents is
equivalent to introducing variance to the agents’
pi.

Incorporating Resistance into
Social Percolation

Now we introduce our variant of the model,
including NWOM. In what we described so far,
the case Q<p had no consequences: failing to
meet a consumer’s standards only meant that
the product was ignored and the information
about the product was not passed on to the
consumer’s neighbors. In the present model,
we see this case as the equivalent of “disap-
pointment,” one of the roots of NWOM.

In order to introduce NWOM to the model,
we propose to look at another property of the
product, uncorrelated with its “value” (that is
represented by Q). We wish to refer to the
product’s “susceptibility to NWOM,” and pa-
rameterize it as a number between 0 and 1,
following the (trivial) assumption that certain
products are more sensitive to NWOM than
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others. The value chosen may be related to the
marketing strategy, the degree of novelty, and
to many other aspects of the product domain.
This parameter pertains to the response cre-
ated in a potential customer after an encounter
with the product that results in non-adoption: if
agent i  was exposed to the product, but has not
adopted it (Q<pi), we may say that the agent
“resisted” the product. In that case, the agent
may spread resistance to the product over her
neighbors, generating NWOM. The effect of
such negative spread is that the affected neigh-
bors become less receptive towards the prod-
uct—that is, their chances of adopting it de-
crease. We model this effect in the following
way: in the case of Q<pi, we denote pi –
Q ip Q−  as Di (note that Di > 0 always). We
introduce a parameter a, denoting the extent
one agent’s resistance influences its neighbors.
The spread of resistance (i.e., NWOM) is
modeled by increasing pj by iaD  for all agents
j that are neighbors of i.

This increase of jp  will have no effect if j
has already adopted the product. Yet, if pj < Q
and pj + aDi > Q, then this agent is said to have
been blocked by NWOM. The increase of pj is
additive—if several agents “project” resistance
on one agent, all their individual NWOM ef-
fects add together on top of the original pj. So,
even if an agent was blocked, subsequent
NWOM events will still make things worse for
the product, because the NWOM this agent is
prone to spread will be bigger (because pj, and
consequently Dj, will be bigger); Also, if pj +
aDi < Q, this change has no immediate effect
(as j may still adopt if one of her neighbors will
expose her to the product), but this agent is now
more prone to blocking by subsequent NWOM.

Since Q is limited to the range [0,1], an agent
i  with pi > 1 will reject all products, the same as
if pj were 1. Yet, since pj is allowed to grow
freely beyond one, the resistance (Di) that this
agent may cast on its surrounding is essentially
unbound. This allows the spread of NWOM to

“block” completely the affected agents. In
addition, we chose to model NWOM spread as
occurring on a faster time scale than exposure
to the product. This means that in case of
resistance spread, the increase of all pj happens
instantly, before any further exposures of new
agents to the product are considered. The
rationale is simple: the typical time scale for
casting NWOM is one conversation with one
friend. Exposure to the product, on the other
hand, is a slower process—the potential cus-
tomer has to act (e.g., visit the point of sale) in
order to potentially acquire the product (in a
sense, one can say that “bad news travels
faster”).

In accordance with Marquis and Filiatrault
(2002), we characterize another parameter b ,
which pertains to the product’s susceptibility to
“bad rumors”—NWOM that is not based on
actual exposure to the product. Hence, the
effect of resistance may travel to second-
neighbors as well, and their p is increased by
bDi. At first glance, this modeling scheme
seems primitive—why not extend this further
and parameterize the effect to the n-th neigh-
bor? Yet we wanted to avoid “giving wings” to
such rumors—if NWOM is allowed to propa-
gate freely on the social network, unrealistic
dynamics occur as the NWOM behaves like
another product. Therefore we restrict our
attention to spread of NWOM up to second-
order neighbors only. Although it may be ar-
gued that a and b are dynamic properties and
bear inter-personal variance, in our simplified
abstract model they are taken as a static scalar
parameter, depending only on the product.

In summary, we introduce the following rule
of interaction to the SP framework, in addition
to ADOPTION:

RESISTANCE—If i was exposed to the
product and pi > Q, then for every agent j
neighboring i, pj is updated to pj + aDi
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AND

for every agent k that is a second neighbor of
i, pk is updated to pk bDi.

Thus, every case of adoption generates
potential for further adoption, and every case of
disappointment casts a “cloud” of NWOM
around it. Figure 2 summarizes all rules of
interaction.

SIMULATIONS

Method

The indexed set 1{ }N
i ip =  that specifies the “per-

sonal” values of p  for every agent was ran-
domly generated at the beginning of every
simulation, with every such pi chosen uniformly
from the range [0,1]. At every iteration, values
are fixed for Q,a and b, and the simulated
dynamics start from a “seed” of one adopting
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Figure 2. (a) Q, marked as a hexagon, is 0.5. The agent marked in square is the seed, with
0 2p = . , and so it adopts the product, and all its neighbors are added to the front (marked in

diamonds). Next, the agent marked in a bold diamond is evaluated. Since its p = 0.7 is bigger
than Q, this agent does not adopt, but rather spreads resistance (D = 0.2), marked in a triangle.
(b) The agent is now marked in black, indicating that it will not adopt anymore. The resistance
is immediately spread from the agent in a triangle to all its neighbors: for a = 1 and b = 0.5,
the first neighbors’ p  increases by 0.2 (marked in dark grey), and the second neighbors’ p
increases by 0.1. Red arrows to the left of the agents mark the increase of p . Note how the
agent to its left, whose p  was 0.4, now has p = 0.6. This agent is no longer a potential buyer,
but a potential spread of resistance; it was blocked by the NWOM. (c) Next, another agent is
selected from the front. This agent is now marked in a bold diamond, and since its p < Q, it
adopts the product and all its neighbors are added to the front. (d) Another agent is selected
from the front. This time its p > Q, and this will cause spread of resistance. This agent was
originally part of the potential market, but was blocked by NWOM and now will generate more
NWOM. This illustrates the auto-catalytic nature of NWOM.
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agent selected at random who spreads the
product to her neighbors. These agents are
added to the “adoption front,” a list of agents
who are waiting for evaluation of the product.
At every time step, an agent i from the adoption
front is randomly selected, and her current
value of pi (possibly increased by previous
spreads of resistance) is compared to Q. If Q >
pi, the agent is marked as ‘adopter’, and all her
neighbors are put on the adoption front, in line
for exposure to the product. If Q < pi, iaD  is
spread to i’s first neighbors and immediately
added to their pj, and bDi is spread to i’s second
neighbors, immediately added to their pk, the
front expands away from the starting point
(seed) in a random fashion, and the iteration
ends when the front exhausts itself. This hap-
pens either when it traverses the entire lattice
and reaches the boundaries, or when all the
agents on the front rejected the product (so
their neighbors were not added to the front).
The first case corresponds to the product meet-
ing its market potential, passing the percolation
threshold, and traversing the network, and the
second corresponds to the product being blocked
by the population of agents.

Percolation Threshold
Measurement

The product’s “strength” may be measured in
two ways: a percolation measure—whether the
product percolated successfully through the
lattice ‘from side to side’; and market penetra-
tion—what is the size of the adoption cluster?
Notice that these two measurements may not
coincide, as a product may percolate and still
achieve a small adoption rate. In regular lat-
tices of three dimensions and up, this happens
near the percolation threshold, where the per-
colating cluster has a fractal structure and a
minimal density.

In the present work we focused on measur-
ing the percolation threshold in order to deter-

mine whether a product ‘percolated’; we
checked how far it spread across the network,
in terms of the distance from the initial seed.
We looked at the “shell” structure of the net-
work around the initial node, marking all the
nodes found at distance d from the initial seed
as belonging to shell d. Then we identified the
largest shell, and percolation was marked suc-
cessful if at least one agent from the largest
shell adopted the product. This definition is
equivalent with classical measures of percola-
tion on regular lattices, and it generalizes it to
cases of irregular networks as well.

In the current chapter we focus our atten-
tion on a regular lattice with non-periodic bound-
ary conditions; we consider it an idealized “zero-
order” approximation for a social network.
Through this simplifying assumption we render
our model less realistic, but more accessible to
theoretical analysis. However, the model’s defi-
nition is not dependent on the topology of the
network, and the same model can be run on
networks with arbitrary topologies.

We employed a binary search method of
dichotomy for the estimation of the percolation
threshold. For every instance of random values
{pi}, the threshold Qc is a number such that for
Q > Qc the product percolates, and for Q < Qc
the product does not percolate. We estimated it
by repeatedly exposing the lattice to different
Qs, and changing Q in an adaptive way, accord-
ing to the success or failure of the last iteration.
If at iteration i the product of quality Qi perco-
lated, in the next iteration Q, it will be increased:

1
1

1 2ii iQ Q ++ = + ; accordingly, if at iteration i  the
product was blocked, Qi+1 will be decreased by
the same amount.

Due to resistance spread, the values of {pi}
change in the course of an iteration, and so we
reset them to their original values between itera-
tions. For every instance of random values {pi}
and fixed a and b, we did 10 iterations of adaptive
Q, and so effectively estimated the threshold
within an uncertainty margin of size 10

1
2 .
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RESULTS

In the present work we measured how negative
word of mouth affects the percolation thresh-
old. This was simulated by applying different
values to a and b, and measuring the percolation
threshold under these conditions. Figure 3 shows
the threshold’s dependence on a and b for
lattices of various dimensions.

At the corner of a = b = 0, the measured
threshold corresponds to the classical percola-
tion threshold for these topologies (Stauffer,
1985). As a and b increase, the threshold
increases, until it saturates near 1 for high
enough values. The increase of both a and b
causes an increase of the threshold; however,
it is clear that the dominant effect is that of b,

with an effective threshold of >0.9 for b as low
as 0.55 in the 4D case (Figure 3).

Of course, the number of second neighbors
increases with lattice dimension (8 in 2D, 18 in
3D, and 32 in 4D), but on a careful observation,
a stronger, autocatalytic effect can be noticed,
which is a result of the synergy between the
neighbors. Since the front spreads from one
point out, two nearby agents have big probabil-
ity to be on the front at the same time. Since
resistance spreads from agents who are on the
front, their neighbors, hit by the local effect of
NWOM, are probably on the front as well.
These are exactly the agents that will be evalu-
ated next, and therefore an increase to their p
is the most significant, because they will cer-
tainly be exposed to the product and may spread

Figure 3. These plots show the percolation threshold (Z axis) as dependent on the parameters
a  and b  (the X-Y plane). In the corner of 0a b= = , the percolation threshold corresponds
to the standard results, and it increases with both a  and b . However, it is evident that b has
a greater influence, and above a certain level, the network becomes totally impenetrable to
the product. Figure 2a is for two dimensions:10002 = 1,000,000 agents; Figure 2b is for three
dimensions: 803=512,000 agents; Figure 2c is for four dimensions:404=2,560,000 agents.
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NWOM (see Figures 2(c) and 2(d)). In a sense,
the NWOM hits the product at the most sensi-
tive group of consumers—if the resistance
would be spread to far-away agents, the front
might only get there in a long time, or never get
to that part of the network, which will render
the blocking impact of the resistance less ef-
fective. Without any long-range effects, the
local spread of resistance ensures maximum
negative impact to the NWOM, while affecting
only a finite number of agents (and so their
proportion approaches 0% in the limit of large
networks).

In the standard percolation model, the thresh-
old decreases as the dimensionality of the lat-
tice increases. This is due to the increase in the
average number of neighbors, which brings
about an abundance of paths between every
two nodes. This number increases with the
dimension, and therefore the product is less
likely to be blocked, because there is greater

probability of finding at least one path through
which the product can percolate. At the ex-
treme case of a highly connected irregular
network, for example with a power-law distri-
bution of the degrees, the percolation threshold
was shown to be exactly 0 (Schwartz, Cohen,
Ben-avraham, Barabasi, & Havlin, 2002). How-
ever, when NWOM is introduced, the increased
connectivity of the network has the opposite
effect—since resistance can spread to more
neighbors, it is prone to have a greater impact
on the front, and hence on the progress of the
product. Since resistance is spread only from
agents who are evaluated (i.e., on the front),
the impact of NWOM on the front is greater
when more agents on the front are close to each
other. This number increases with the dimen-
sion: in 2D, every one of the 8 second neighbors
has 4 of the others as her own second neighbor;
in 4D, each one of the 32 second neighbors has
12 of the others as second neighbors.

Figure 4. Here, the importance of the clustering coefficient is demonstrated by comparing the
effect of a  on two different two-dimensional topologies: 4 neighbors (dashed line) and 8
neighbors (full line). In the 4-neighbor topology, the front is not a disconnected set, since
newly added agents would have links to other agents on the front already; but the front is more
interconnected in networks of greater clustering coefficient. Thus, the network is more
susceptible to effects of a, because more agents on the front would be affected by every event
of resistance.
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It is worth noting that all the above regular
lattices are without triangles. Since only first
neighbors are added to the front in case of
adoption, every group of agents being added to
the front has no links between its members. A
more interconnected front is more susceptible
to effects of a, because every event of resis-
tance would spread NWOM to more agents on
the front. In a network with a greater clustering
coefficient, a is prone to have a larger effect.
To demonstrate this, we compare a regular 2D
lattice with a 4-neighbor topology (von-
Neumann) and 8-neighbor topology (Moore).
The results are presented in Figure 4, where it
can be seen that the increase of the percolation
threshold due to the increase of a in the 8-
neighbor lattice is greater.

Another result is the emergence of local
resistance leaders. In the classic percolation
model, cluster size increases monotonically with
Q. This is not the case when NWOM is incor-
porated into the model: for a given randomiza-
tion, the cluster size may decrease with in-
creasing Q (Figure 5).

This surprising result of the NWOM dynam-
ics is due to particular micro-level setting: if in
a particular section of the network, the first
agents exposed to the product are of high p,
they are bound to spread significant resistance
and perhaps block the entire section. We call
such agents “Resistance Leaders,” as it is
certain that they would be resistant to most
products.

The blocking effect of such resistance lead-
ers depends very much on the particular cir-
cumstances of the product spread—the ques-
tion whether a resistance leader, or rather her
neighbor, would be exposed first to the product
might have a crucial effect on the progress of
the product’s spread in that section, and this
depends totally on the micro-conditions there.
If most of the agents in her neighborhood
already adopted the product, the NWOM spread

by a resistance leader may have little effect.
This novel feature of the model happens both
above and below the percolation threshold.

DISCUSSION

As for the value of the current model per-se to
marketing science, we can propose the follow-
ing perspective: if a product is advertised, dif-

Figure 5. The dependence of the percolation
on Q  is non-monotonic, and a better product
may have smaller sales; this is due to the
effect of local resistance leaders, agents
with high p  that block their entire
neighborhood if the product reaches them
first.
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ferent parts of the lattice may be exposed to it,
and the chances of a product being completely
blocked are lower (although they exist; e.g.,
Goldenberg, Libai, Moldovan, & Muller, in prepa-
ration). The present model might be more di-
rectly applicable for products and services that
are hardly advertised, but instead spread through
word of mouth (e.g., restaurants, shops, high-
risk and radical innovations).

The model we presented here introduces
two novel parameters to the percolation model:
the negative impact of non-adoption on the first
neighbors (a) and on the second neighbors (b).
These parameters are not a vague idealization;
their real-world counterparts are easy to de-
fine: the parameter a is related to the nature of
the disappointment caused by an event of non-
adoption. Consumers can be disappointed and
reject an innovation due to several reasons,
such as a publicity campaign that creates high
expectations that are not confirmed (Bearden
& Oliver, 1984), fear of the new and unfamiliar,
or resistance to change (Mukherjee & Hoyer,
2001; De-Jager, 2001), low expectations from
a new technology, no benefits, or high pricing
(Abrahamson, 1991; Bearden & Oliver, 1984).
The main point is that disappointed consumers
tend to spread more NWOM and have a higher
effect on other consumers (Herr et al., 1991;
Richins, 1983).

Moreover, consumers may spread NWOM
to their friends just on the basis of their expo-
sure to negative information, and without any
trial or contact with the product. The parameter
b represents the extent to which consumers
tend to tell each other stories about products
they never tried. The above reasons for reject-
ing the innovation can serve as reasons to
spread NWOM further on, a phenomena that
was found in previous studies (Marquis &
Filiatrault, 2002). Leonard-Barton (1985) found
that 20% of dentists were familiar with, yet
rejected, a successful  dental innovation; many
of them were not even willing to try it as a result

of NWOM. Consistent with the theme of “bad
news travels faster,” consider the following
anecdotal report of a major taxi company in
New Zealand which lost almost 60% of its
business as a result of an angry customer
spreading her story to thousands of women
throughout New Zealand (Cecil, 2001).

These cases can be documented, but can
hardly be understood or predicted in the classi-
cal (Bass-like) framework. Standard techniques
of estimation of the potential market give little
or no attention to the emergent effects of
consumer interaction. Focus groups and ran-
dom sampling may give an accurate estimate of
the potential in a naïve market, but as soon as
the product is actually introduced, the naïve
market changes shape by effects of word of
mouth whose source are the early adopters. A
product may seem to be good enough at the
preliminary probing of the market, and yet fail
due to the devastating effect of NWOM.

Therefore, it would be very helpful if mar-
keting research could estimate the parameters
of the endogenous social interaction of the
market. A more complexity-aware probing of
the market should also estimate the “interaction
value” of a disappointed customer, paying at-
tention to the probability of people discussing
the product without ever being exposed to it.
Our model shows that these aspects of the
product and the market context have great
impact on the eventual success or failure of the
product.

Since this novel approach challenges the
traditional methods for sales forecast, we do
not expect it to pass without resistance. None-
theless, the scientific method revolves around
falsifiability: since there is a radical difference
between the theoretical underpinning of social
percolation and aggregate, Bass-like models,
one should seek experimental settings where
distinct predictions can be offered by the rival
approaches. Such tests are the only reliable
way to discern between the two theoretical
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approaches and transcend the bias inherited by
disciplinary tradition. The main prediction of
the present anti-percolation framework is that
in the case of a failed product, many of the
potential adopters will never feel the wave of
propagation and are not at all acquainted with
the product. This is at variance with the predic-
tions of aggregate models, where the entire
population is either adopting or explicitly reject-
ing the product. Thus, it could be quite straight-
forward to discriminate empirically between
the various model predictions.

In summary, we believe that percolation
theory (with the present anti-percolation amend-
ments) has much to contribute to marketing
research. We hope that the marketing world
will recognize the potential in this mature and
rich theory, embrace the language of agent-
based models and simulations, and focus its
attention on designing and testing the predic-
tions of increasingly realistic models.
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ABSTRACT

Understanding complex socio-economic systems is a key problem for commercial organizations.
In this chapter we discuss the use of agent-based modelling to produce decision support tools
to enhance this understanding. We consider the important aspects of the model creation
process which include the facilitation of dialogue necessary to extract knowledge, the
building of understanding, and the identification of model limitations. It is these aspects that
are crucial in the establishment of trust in a model. We use the example of modelling opinion
diffusion within a customer population and its effect on product adoption to illustrate how the
agent-based modelling technique can be an ideal tool to create models of complex socioeconomic
systems. We consider the advantages compared to alternative, more conventional approaches
available to analysts and management decision makers.

WHAT IS THE PURPOSE
OF A MODEL?

“The best material model of a cat is another, or
preferably the same, cat” (Norbert Wiener,
Philosophy of Science, 1945).

Models in business are tools used to gain
insight and understanding of a real system
relevant to the business, and aid appropriate
decision making.

Most often, businesses must understand
complex socio-economic systems such as the
economic environment in which they operate,
the social and organisational systems that make
up their operations, and the customers they
serve. It is unusual for any model to be totally
predictive, and obviously the definition of com-
plete prediction is itself subjective. Socio-eco-
nomic systems present additional problems.
There are often problems in defining a model;
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also measuring quantities in the real system,
which correspond to input and output param-
eters in the model, can be very difficult. Addi-
tionally these systems are often non-linear,
dynamic, and subject to stochastic influences.

An element of prediction is clearly impor-
tant, however what is paramount is that the
model should give useful understanding.

WHAT IT MEANS
TO BE USEFUL?

All modelling techniques necessarily involve
some degree of abstraction. There are simplifi-
cations of the processes described by the model,
as well as simplifications due to the necessary
drawing of boundaries in the modelling space.
There may be limitations in the language used to
describe the processes in the model, or restric-
tions on thinking due to the blinkered adherence
to specific intellectual norms. There may be
limits on the knowledge of the problem due to
finite human cognitive ability or lack of accu-
rate data on the system under study.

These sorts of limitations are common to all
forms of representation of ideas or concepts,
whether the ideas are in art, literature, or
science. To be useful, these representations
must effectively persuade and communicate
the ideas to others. In modelling there can be an
additional dimension to the representation pro-
cess. The process of the creation of the repre-
sentation can and should involve the user of the
model. An effective model is a tool that facili-
tates dialogue and the generation of under-
standing in the minds of the users of the model.
The construction of the model should lay down
the knowledge of the system held by the user,
and act as a tool to explore the extent and
precision of that understanding. It is a process
of converting tacit internal mental models to
overt models that can be challenged and dis-

cussed. The modelling process should also re-
veal the assumptions that are made and any of
the limitations outlined above.

THE USE OF COMPLEXITY
APPROACHES IN MODELLING

Socio-economic systems are inherently com-
plex. They are characterised by interactions.
The form and outcome of these interactions
can vary in quantity and sophistication. There
are a number of different analytical techniques
that could be applied to understand these sorts
of systems. Where there are small numbers of
participants, game theory can provide useful
insights. This technique can represent decision
processes that range in sophistication from the
simple to the arbitrarily complex. At the other
extreme, statistical physics approaches can
provide understanding where there are large
numbers of interactions, but with low levels of
sophistication in the description of the decision
process. These two extremes are limited in
their application; they can be considered non-
complex in the sense that they represent equi-
librium solutions and there is little modification
of behaviours by the participants. Most socio-
economic systems display more complex

Figure 1. Illustration of the types of problems
that can be addressed by different analytical
techniques
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behaviour with large numbers of interactions.
Agent-based modelling (ABM) sits between
the two extremes of statistical physics and
game theory, and is ideal for representing the
natural complexity of such systems. Bonabeau
(2002) and Tesfatsion (1997) give interesting
examples of the approach in business and eco-
nomic applications.

Socio-economic systems such as firms
within economies, consumers within a popula-
tion, or employees within an organisation can all
be thought of as a collection of discrete entities
with separate rules of behaviour, and which
interact with each other and the environment
that contains them. The behaviours of the indi-
viduals can be modified as a result of the
interactions. These complex adaptive systems
are difficult to model and understand. They are
often non-linear and dynamic, can involve or
are subject to stochastic influences, and can
display self-organisation or emergent behaviour.
ABM is a technique that can produce a 1:1
mapping of the complex adaptive systems in the
system under study and its representation as a
model. The ABM technique creates a popula-
tion of entities whose rules of behaviour and
rules of interaction mimic those of the system
being modelled. The models that result retain
the dynamics of the real system. The ABM
technique allows the creation of a model that
goes beyond simple cause-and-effect relation-
ships that human intuition is usually limited to,
and can include complex, higher-order, path-
dependant effects. The ABM technique per-
mits spatial and network effects to be naturally
captured. Information flows within social net-
works can be represented as a critical factor in
socio-economic systems. Network effects such
as network externalities can be explicitly de-
scribed. With the expression of individual
behaviours, models that go beyond the rational
economic agent become possible.

The ABM technique retains the details of
the interactions that occur, which not only gives

a more accurate rendering of the system under
study, but produces a framework for under-
standing the processes involved in a very direct
and intuitive way. The accessibility of the con-
cepts the model is built upon allows the limita-
tions and boundaries to be understood. The
rules of behaviour and structure of the interac-
tions can be constructed using the knowledge
and experience of the model user. These are all
critical factors in making a model useful, effec-
tive, and trusted by the user.

THE USE OF AGENT-BASED
MODELLING IN
UNDERSTANDING
CUSTOMER BEHAVIOUR

An ideal example of the use of complexity
approaches in modelling a socio-economic sys-
tem relevant to business is modelling the diffu-
sion process within a customer population which
can be applied to product adoption. We com-
pare the standard, alternative approach, high-
lighting the advantages of the complexity-based
approach and how it can be used to create a
more effective model.

THE CONVENTIONAL
NON-COMPLEX WAY

According to Mahajan and Peterson (1985),

the diffusion of an innovation (knowledge
or actual take up of a new product or
service) is the process by which that
innovation is communicated through
channels over time among the members of a
social system.

Therefore, in order to understand the diffusion
process, and how to influence it, it is key to
understand the methods and nature of commu-
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nications between individuals within a popula-
tion. This can be combined with the processes
those individuals use to assess a product to
determine if it satisfies their needs sufficiently
for adoption to occur.

There have been a number of different
attempts to produce models for innovation dif-
fusion. One of the earliest is that of Fourt and
Woodlock (1960). Other well-known diffusion
models, such as the Bass (1969) model, de-
scribe the diffusion process by an equation such
as equation 1.

)]()[,()( tNNNtg
dt

tdN
T −= (1)

where N(t), g(t, N), NT, are the number of
adopters, the coefficient of diffusion at time t,
and total number of potential adopters in the
social system. This shows that the rate of
change in adopters with respect to time is
proportional to the number of people who have
not yet adopted. It is simply the retrospective
application of a suitable mathematical form to
empirical data.

The coefficient g describes the characteris-
tics of the diffusion process and is determined
by the nature of the innovation, the communica-
tions channels used, and the social network.
Variation of this parameter allows tailoring of
the model. g can be a constant, a function of N,
or a combination of the two parameters. With
the coefficient as a constant, it describes the
external influences (i.e., outside of the social
system) such as the effect of mass media. With
the coefficient g, a function of the number of
adopters, the diffusion is influenced by factors
internal to the social system—that is, imitation
by consumers is represented. This basic form is
observed in quantitative studies in real life. It
can be considered as an observed macroscopic
property of the diffusion system. These diffu-
sion models also use a number of assumptions
limiting the realism of the resulting models. An

attempt has been made to address the problem
of the fundamental lack of flexibility of the
diffusion models. However these alterations
are little more than mathematical tinkering to
give functions with the assumed “correct” prop-
erties. They remain phenomenological models,
and the mathematics is not based on the funda-
mental behaviour of the system being described.
It is exactly this lack of transparency in the
assumptions that reduces trust and limits under-
standing of how meaningful modifications of
the model can be made.

In order to produce a more useful and real-
istic model of the diffusion process, the ABM
approach can be adopted. This technique in-
volves creating a population of discrete entities,
or “agents,” each representing an individual
member of the real population of consumers in
question. Each of the agents contains a set of
goals, beliefs, and actions, and can interact with
other agents or the environment in which the
population exists. Agent-based modelling en-
ables the problem to be addressed using a
bottom-up approach. The goals, beliefs, ac-
tions, and interactions are microscopic attributes
of the system. The overall macroscopic
behaviour appears as a result of the combined
effect of all the microscopic attributes and the
complex interactions between them. There are
no assumptions as to the macroscopic proper-
ties; instead any higher-order effects come
from the description of the behaviour of the
individual agents and their interactions.

The model allows the explicit incorporation
of easily articulated ideas from sociology and
psychology applied to product adoption. These
concepts can be discussed and the details can
be refined with the model users. Not only does
the accessibility of the concepts enhance trust
in the model, but the parameters or levers that
the user can control in the real system under-
study are revealed, adding to the acceptability
and utility of the model.
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We now consider the key elements of an
ABM describing a customer adoption model.

THE KEY COMPONENTS
OF THE MODEL

The key elements of the model are the process
by which a consumer decides to adopt a prod-
uct, the cognitive process, and the network of
connections that exist within the population
through which information about the product or
service is passed—that is, the social network.

THE COGNITIVE PROCESS

There are a number of theories from the social
sciences that shed light on the cognitive pro-
cess involved in product adoption. These in-
clude theories on human need, social compari-
son theories, conditioning theories, decision and
choice theories, amongst others (Jager, Van
Asselt, Rotmans, & Vlek, 1997). In most cases,
the decision theory described by Rogers (1995)
gives clarity of understanding and ease of appli-

cation. This is the framework we adopt for the
learning process. We also discuss fads and
other network externalities as separate cogni-
tive processes. The separation of these pro-
cesses is useful for facilitating the understand-
ing of the processes that exist within the system
under study and their relative importance.

Learning

Roger’s theory was developed independently
of the needs of a computer-based simulation,
however its structure lends itself well to imple-
mentation in an ABM. The model describes a
multi-stage process which can be represented
by the flow chart in Figure 2. In the simulation,
each individual follows its own instance of this
process. It has its own, in general, unique
values for the parameters within the flow chart

The stages have been interpreted as fol-
lows:

• Acquisition: During the first stage of the
decision process, an individual receives
information that alters his or her percep-

Figure 2. Flow chart of implementation of multi-stage adoption process: The stages are
represented in capitals and the variables are italicised.
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tion of the product or service on offer.
This change of perception is due to a
combination of inter-agent communica-
tion and external factors such as market-
ing and competition.

• Decision: The individual makes the choice
of adopting or not depending on whether
they have a sufficiently high perception.

• Implementation: This stage represents
the explicit act of adoption or rejection.

• Confirmation: In this step the individual’s
parameters are adjusted according to the
experience the individual has using the
product.

THE NETWORK CONNECTIONS

Fads and Other
Network Externalities

In its purest form, this is a process where
information on the products’ functionality has
no influence on an adoption decision. It is who
within the population that has adopted that
generates the pressure to adopt. The pressure
can be positive or negative, following or avoid-
ing trends, and the influencing individuals can
be highly specific or general. Examples of these
processes include threats to lost legitimacy,
such as needing to demonstrate conformity or
non-conformity and competitive pressures,
where individuals must adopt or potentially get
left behind. In some ways this can be consid-
ered as a form of increasing returns (Arthur,
1994), since the desirability of a product in-
creases as the number of adopters increases;
however, the functionality or utility of the inno-
vation could well be independent of the base of
adopters.

The fad process can be driven by purely
economic pressures and not social. An example
of this is the charging regimes for some tele-
phone companies. These companies offer a

preferential tariff for calls made within the
phone company’s own network. There is in-
creased pressure to adopt a particular phone
company’s service, as the number of members
of your regular calling circle that have also
adopted that company’s service increases.

In an ABM, network externalities—both
social and economic—can be implemented as
follows. At each arbitrary time step, the indi-
vidual goes through its social network (mem-
bers of the population an individual has contact
with) and looks to see how many of these
people have adopted. If the proportion of the
acquaintances that have adopted exceed a
threshold value that is a characteristic of that
individual, then that individual itself adopts.
This is the process used by Watts (2001).

The Social Networks

The form of the social network is crucial in
driving the adoption process. An accurate de-
scription is therefore very important. Survey
data would be ideal to provide the structure of
the network, however it may be necessary to
use theoretical constructs since the survey
data, if not incomplete, could be imprecise to a
certain degree. Recent theoretical work on
networks (Newman, 1999) has produced many
interesting results relating to the nature of the
structures that exist in social systems and their
theoretical properties. These results can be
used to construct appropriate theoretical net-
works, and the knowledge of their properties
act as a guide to the important characteristics,
such as when cascading adoptions occur and
the extent of the cascades. Also work on the
robustness of communications networks can be
used to gauge the reliability of a social network
with regard to its ability to maintain the flow of
information. These results allow identification
of individuals who have a disproportionate in-
fluence and whose behaviour is crucial for the
successful dispersion of information.
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The Arrangement of Networks

The social network refers to the linkages that
exist between individuals, along which informa-
tion passes. Networks have been modelled,
abstractly, using graphs—a collection of nodes
with links connecting them. These have, in the
past, been either completely ordered or com-
pletely random. The ordered graph has nodes
with a uniform number of links between
neighbours, and the random arrangement has
links between nodes distributed within the en-
tire population at random. Most networks that
exist in the real world appear to be somewhere
between these two extremes. In social net-
works, this is intuitively correct. If two individu-
als have a mutual friend or acquaintance, then
those two individuals are likely to know each
other as well. The linkages are not random, and
you expect to observe distinct groupings or
clusters. Social networks are not entirely clus-
tered though, and linkages spanning the popula-
tion can also exist. We are all familiar with the
surprise people express when they meet a
complete stranger, only to discover they have
an acquaintance in common—it’s a small world.
From empirical work by Milgram (1967), the
mean acquaintance distance between any two
people in the United States was determined to
be around six. Hence it appears that the way

social networks are linked means we should not
be that surprised by common acquaintances
and that significant spanning linkages within the
population must therefore exist. Recent work
by Watts and Strogatz (1998) has taken or-
dered networks and introduced randomness by
rewiring a number of links. These new struc-
tures are known as “small world” networks
with reference to the phenomenon described
above (see Figure 3). Two important param-
eters associated with these networks are the
length of the shortest path connecting two
individuals, the characteristic path length, and
the average probability that two nodes with a
mutual acquaintance will be connected, the clus-
tering coefficient. Starting with an ordered lat-
tice and introducing random short cuts, the path
length falls whilst the clustering coefficient re-
mains high. This results in clustering and short
global separation between nodes—that is, a
small-world character with local groupings.

It appears that the small-world model is an
appropriate abstract network to use in model-
ling a social network. It allows us to characterise
real data from surveys, where the length scale
and cluster coefficient is known, or permits us
to construct linkages in a realistic way when
exact data for a population is absent.

For a simulated set of links, we still have to
have a realistic idea as to what kind of distribu-

Figure 3. (a) Regular ring lattice with N=8, z=4 (each vertex is connected to its z nearest
neighbours); (b) Random lattice with ½ Nz edges; (c) Watts—Strogatz small world (the dotted
lines show the links that have been rewired); (d) Newman-Watts small world with three extra
links (dotted lines)

(a) (b) (c) (d)
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tion of connectivities we expect for a network
of consumers. Amaral, Scala, Barthelemy, and
Stanley (2000) have analysed a number of real
networked systems, ranging from technological
systems such as a power grid system to social
network systems. The social network systems
give the most appropriate surrogate for the
distribution of links along which information
about a product is passed in a population of
consumers. An interesting observation in the
paper is that the distributions for the different
systems can be characterised as scale free,
broad scaled, or single scaled. These respec-
tively have connectivity distributions
characterised by a tail that decays with a power
law, by a power law followed by an exponential
tail, and by a fast decaying distribution such as
an exponential or a Gaussian. The mechanism
for the creation of links determines the form of
the distribution. Essentially, scale-free distribu-
tions occur when there are preferential con-
nections occurring with popular nodes. The
broad scale effects occur when there are con-
strains such as rising cost of connecting to
popular nodes or aging of the node where the
node can no longer add connections.

Amaral et al. (2000) considered empirical
data for a network of movie actors, the network
relationship being derived from their collabora-
tions in particular films. They found that the
distribution is power law for a collaboration
number between 30 and 300, and truncated for
higher values, indicating broad-scaled overall.
They also considered the distribution for ac-
quaintances for 43 Utah Mormons and 417 high
school students indicating best friends, both
first-two friends and first-three friends. In
friends and acquaintances, the distribution is
found to be Gaussian. The interpretation that
the movie actor distribution is broad scaled is
that there are a number of popular stars who
work with a large number of other actors, but
there are constraints on the preferential addi-
tion of links as actors retire and no longer can

add links. It is worth bearing in mind whether
any of these sorts of processes may occur in the
population that is being simulated. It would
appear that most friendship and acquaintance
distributions in normal populations are distrib-
uted in a Gaussian fashion.

There has been considerable interest re-
cently in the theoretical analysis of the simu-
lated social networks, (Newman et al., 2000a,
2000b), considering random networks (Newman
& Watts, 1999; Moore & Newman, 2000) and
considering small-world networks. The gen-
eration function formalism used in most of
these analyses is a powerful technique and can
give useful statistical properties of the system.
Using a fad type of adoption mechanism, the
percolation transition can be determined—that
is, the critical point when an innovation is
adopted by the majority of the population. The
speed and extent of the cascade can be deter-
mined as a function of the distribution of links,
and the magnitude and distribution of thresh-
olds. These parameters are of considerable
interest in the development of marketing strat-
egy. They enable a population of consumers to
be analysed and the nature of the innovation
adoption due to fads to be anticipated. This type
of analysis could also give pointers as to how
marketing strategy should be used to modify the
distributions of links and the thresholds. These
theoretical results augment the result that can
be obtained from computer-based simulations
of consumers (i.e., agent-based consumer mod-
els).

There has also been work considering the
robustness of networks, principally technologi-
cal networks, such as telecommunications and
power grids. These studies such as Callaway et
al. (2000) have considered the form of the
network structure and the kinds of node distri-
bution that lead to structures that are robust to
deletion of individuals, either through random or
targeted processes. These results could be
extended to social networks. In a consumer
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model, the adoption process is driven by the
information passed through the linkages. A
detailed knowledge of the kinds of structures
vulnerable to information flow being disrupted
would be of considerable interest to marketing
strategists. There is also the potential to use
marketing tools to modify the structure of the
network to ensure that the structure is more
efficient and robust, and hence achieves a
result closer to expectation.

THE ICRM TOOL: A SPECIFIC
APPLICATION OF THE IDEAS
FROM THE ABM OF DIFFUSION
AND ADOPTION

We now consider a specific example that dem-
onstrates the use of the ABM technique. It
shows the development of the model’s assump-
tions with the user, and how the calibration
process is used to further facilitate acceptance
of the model and help the user understand his or
her business problem and its solution. The
agents use the cognitive process and word of
mouth as a form of network externality. They
are linked together using a small-world-type
network.

THE PROBLEM

Analysts predict that companies will spend
billions of dollars in the next few years on
software and services to help them manage
their customer interactions more effectively.
Unfortunately, most organisations do not fully
understand how these investments will affect
their customer base, and currently only 21% of
Customer Relationship Management (CRM)
projects meet all expectations (Hewson
Consultancy Group, 2000).

Word of mouth can be a powerful way for
businesses to recruit new customers. People

are often suspicious of advertisements and
seek opinions from trusted friends and acquain-
tances before purchasing a product or service.
Referrals are effective, as they usually come
from someone who is familiar with the product
or service but has no financial motive for rec-
ommendation. Companies generally find that
referred customers require less sales time to
build trust and credibility, and tend to be more
loyal than those whose purchases are driven by
advertisement (Griffin, 1995). Some businesses
have successfully manipulated word of mouth
by running referral schemes offering benefits
to existing customers who recommend friends.
However, just as positive word of mouth can be
a highly effective marketing tool, negative word
of mouth can be destructive. Typically, a dis-
satisfied customer will tell eight to ten people
about their experience; one in five will share
their dissatisfaction with twice as many (Grif-
fin, 1995). This statistic is of particular interest
in the CRM arena where technology-driven
solutions are often sold on their ability to cut
operating costs regardless of their impact on
customer satisfaction.

Within BT, clients understood these issues;
however, tools to understand the implications of
improved or degraded customer opinion as a
result of changes to CRM strategy, and hence
the return on investment for a particular CRM
investment strategy, were not available.

The intelligent customer relationship man-
agement (iCRM) tool was therefore created.
This is an agent-based customer model built
which uses the cognitive process discussed and
a Newman-Watts small-world social network
discussed in the “The Key Components of the
Model” section. It is a decision support tool
enabling clients to visualise the impact of their
CRM strategies and explore the effects of
word of mouth on customer recruitment and
retention. The problem lends itself well to analy-
sis using the ABM technique, focussing in on
the influence of individuals and the interactions
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between them. It can be used to recognize the
future consequences of CRM implementations
and estimate the nature of return on invest-
ment.

The iCRM tool captures the key drivers
behind customer behaviour and choice, and can
be used in a consultancy environment to facili-
tate dialogue. Trials have shown that using the
tool can stimulate discussion and improve un-
derstanding of CRM issues. The agent-based
approach offers a more realistic representation
of a customer population, but it still requires
assumptions and simplifications. In reality, many
of the parameters needed to define a theoreti-
cal model are difficult to measure, and specific
external events can cause unexpected
behaviour. Results should be treated as illustra-
tive, but can still be used to compare the impact of
different CRM strategies both in terms of market
share and financial performance. It is exactly this
sort of problem that requires a modelling tech-
nique that permits the examination of the levers on
the system but also reveals the assumptions. The
ABM technique is superior to the other tech-
niques available in these respects.

MODEL STRUCTURE

The iCRM model consists of a population of
500 customers and a single product. For sim-
plicity, the product is restricted to two param-
eters: price and quality. The agents within the
model are heterogeneous, and each has its own
interpretation of the product’s attributes, form-
ing a distribution of perceptions within the
population. When an individual has a combined
perception that exceeds his or her internal
threshold, he or she will adopt (or readopt) the
product on offer. The underlying adoption model
makes this tool particularly suitable for sub-
scription products or services where people
review their decision to purchase at regular
intervals. Each agent in the model is part of a

social network through which perceptions are
compared and influence exerted on members
of the population.

Research East (2000) has shown that long-
term customers are less likely to recommend a
product or service than recent adopters. New
customers are more conscious of their pur-
chase—they want to talk about it. Over time,
habit and familiarity take over and recommen-
dation rates fall, an effect captured by the
iCRM model by linking the probability of social
interactions to length of adoption. In addition to
word of mouth, potential customers are influ-
enced directly by external factors such as
marketing, competition, and CRM interactions.
At each arbitrary time step, a proportion of
agents are affected by marketing and sales
material; for simplicity this is always assumed
to have a positive impact on perception—the
number of people targeted and the magnitude
of the influence can be adjusted as appropriate.
Although the model only deals with a single
product, the effects of competition are an im-
portant aspect of the adoption process. This
pull towards alternative products or services is
captured in the model as a gradual erosion of
perception at each time step and can be tuned
to represent markets with differing competition
levels. The most important influence in the tool
is the effect of CRM experiences on consumer
perception. This represents personal interac-
tions between the company and customer such
as complaints, repairs, billing, and so on. These
contacts could be made through a range of
channels and can be defined in terms of their
frequency and impact.

USING THE ICRM
TOOL WITH CLIENTS

In order to illustrate the impact of a particular
CRM investment, the model must first be cali-
brated to represent the current strategy in
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question (referred to as the base case sce-
nario). This is usually an iterative process that
involves working with a client to populate the
model’s parameters with a combination of fac-
tual data and estimates based on qualitative
discussions. Once the client is satisfied that the
model is giving a reasonable prediction of fu-
ture market share (Figure 4), he or she can
consider CRM investments that change some
or all of the input parameter values.

The exact form of the base case is not
critical to successful use of the model; it is
improvements on this scenario due to CRM
investments that are of key interest. The sto-
chastic elements of the model are controlled
using a sequence of random numbers. This list
of numbers is identical for each run of the
simulation, so the pattern of interactions in the
base case matches that in the scenario repre-
senting CRM implementation. Any changes in
market share can therefore be attributed to the
CRM solution rather than statistical variations.
It is possible to run the model many times using
a different sequence of random numbers in
order to calculate the average expected impact
of a particular CRM intervention.

In the model, CRM interactions are
characterised by their frequency, cost, and the
impact they have on customer perception. If

the benefits of a CRM solution can be ex-
pressed in these terms, then the appropriate
parameters can be adjusted and the behaviour
of the customer population examined. If the
client can supply basic financial information,
the tool can also compute an estimate of return
on investment (ROI) at each time step. In a
simple version of the model, customer contacts
can be classified as positive or negative and
given fixed impacts as appropriate. Figure 5
shows the result of increasing the probability of
a positive experience by 1%, starting from the
base case shown in Figure 4.

It can be seen that there is very little impact
on market share for the first year after invest-
ment—ROI increases very slowly. However,
during the second year the decline in market
share is greatly reduced; returns increase rap-
idly, reaching breakeven after approximately
three years. This illustrates that it can often
take time for improvements in customer ser-
vice to have a significant effect. Customers
must interact with a company over a period of
time before they become aware of changes,
and it takes a further period for this improved
perception to diffuse through the population.
Although this example is based on fictional
data, it illustrates the type of analysis enabled
by the tool.

Figure 4. Graph showing a fictitious base case for a business with an initial market share of
approximately 25%
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CONCLUSION

The understanding of socio-economic systems
is clearly a key problem faced by businesses.
Modelling of these systems is one of the most
effective ways of gaining this understanding.
There are two main issues that are of consider-
ation in the modelling process.

First the modelling technique should provide
a useful representation of the system under

study. This representation does not necessarily
create a predictive model. The merit of a model
is in its ability to provide insight into the problem
under discussion. Outcomes sought include
enhanced understanding of the problem space.
This includes identification of the structures
and processes that exist, the limitations of the
knowledge held about the system, and the impli-
cations of the boundaries that are set on the
problem space. These elements rely on the
involvement of both the modeller and the end

Figure 5. Market share over time for the original, base case (thin line), and after change in
CRM strategy (thick line)

Figure 6. Return on investment as a percentage of the initial investment
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user of the model, in the model construction.
Collaboration not only extends the understand-
ing of the problem by the user, but leads to a
more accurate representation, improving the
acceptance and value of the end product. Equally
important is the understanding that is gained
through the experimentation and exploration
that a good model allows through the manipula-
tion of the model parameters. These should
ideally correspond to quantities that are ma-
nipulable or observable in the real system under
consideration.

Secondly, the modelling technique should be
able to capture the details, nuances, and
behaviours of the real system under study. The
majority of socio-economic systems are
characterised by large numbers of interactions,
the responses to which are adapting and evolv-
ing—in short they are complex systems. A
modelling tool for these applications should be
able to represent this level and type of sophis-
tication.

Agent-based modelling is a technique that
satisfies these two key issues. In our experi-
ence with clients, it provides an ideal way of
representing a complex system, but also has the
advantage of providing an excellent framework
for the construction of a model. It can create
the dialogue and understanding between the
users of the model which ultimately is vital for
the model’s success.
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KEY TERMS

Agent-Based Models: Simulations con-
sisting of a number of discrete entities, each
with their own rules of behaviour. These rules
determine the interactions between the ele-
ments, and between the elements (agents) and
the environment in which they are contained.

Complexity: Refers to tools, techniques,
and approaches from the field of Complexity
Science. Complexity Science is a highly inter-
disciplinary field dedicated to understanding
complex systems. In this context a complex
system is defined as a set of elements that often
exhibit adaptation and interact in a non-linear
fashion. The overall behaviour of a complex
system can be counter-intuitive and difficult to
predict by studying the individual components in
isolation.

Emergent Behaviour: The macroscopic
behaviour of a complex system emerges from
the individual interactions of its constituent
elements.

Network Externalities: The circumstance
where a product’s utility changes as the num-
ber of agents consuming it changes. A classic
example of a product that exhibits network
externalities is the fax machine: as more people
purchase fax machines, users can communi-
cate with a greater number of people, and the
utility of the device increases.

Small-World Networks: The concept of a
small-world network is now widely accepted
and is defined as a social network where the
chains of intermediate acquaintances required
to connect any two individuals are small com-
pared to the total number of people.

Social Networks: The links between indi-
viduals in a population.

Socio-Economic System: A type of com-
plex system (see Complexity) that consists of
social and economic elements. Descriptions of
these systems tend to have significant qualita-
tive elements and are difficult to analyse using
traditional macroscopic techniques.
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ABSTRACT

This chapter compares forecasts of the median neighborhood prices of residential single-
family homes in Cambridge, Massachusetts, using parametric and nonparametric techniques.
Prices are measured over time (annually) and over space (by neighborhood). Modeling
variables characterized by space and time dynamics is challenging. Multi-dimensional
complexities—due to specification, aggregation, and measurement errors—thwart use of
parametric modeling, and nonparametric computational techniques (specifically genetic
programming and neural networks) may have the advantage. To demonstrate their efficacy,
forecasts of the median prices are first obtained using a standard statistical method: weighted
least squares. Genetic programming and neural networks are then used to produce two other
forecasts. Variables used in modeling neighborhood median home prices include economic
variables such as neighborhood median income and mortgage rate, as well as spatial
variables that quantify location. Two years’ out-of-sample forecasts comparisons of median
prices suggest that genetic programming may have the edge.

INTRODUCTION

Techniques to analyze, model, and forecast
spatiotemporal series are far from being estab-
lished. Although statistical methods that ana-
lyze, model, and forecast time series are estab-
lished, applying them to geographic or spatial
data may be problematic. Analysis of spatial
data using traditional econometric techniques

(such as regression or maximum likelihood)
may face spatial correlation, model
misspecification, and spatial heterogeneity prob-
lems that jeopardize the accuracy of results.
Further, advancements in spatial statistics do
not offer modeling solutions. They offer mea-
sures of global spatial correlation like the Moran
I and Geary’s c,  and of local spatial
autocorrelation like G and G* (Haining, 2003).
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If complex statistical modeling problems
hinder analyzing spatiotemporal data, it seems
logical and hopefully helpful to use techniques
that circumvent statistical estimation of model
parameters. This chapter examines whether
use of genetic programming (GP) or artificial
neural networks (ANNs) can produce appli-
cable and capable forecasting models. The
spatiotemporal variable to model and forecast
is annual residential single-family home median
neighborhood prices. Values of this variable
are discrete time series (collected over a num-
ber of years) representing 12 neighborhoods.
Model-dependent and independent variables’
values associated with space (neighborhoods)
are identified by i, where i = 1, …, n locations.
Values collected at equally spaced time inter-
vals are identified by t, where t = 1, …, T
periods. The objective is to model and forecast
the spatial univariate time series price variable
Pit, where Pit is a K x 1 vector with K = n*T. A
general specification to adopt is:

it i t itP f (S , X , Z )=      (1)

where Si is a set of spatial variables that vary
across regions (i) but not over time (t), Xt is a set
of time series variables that vary over time but
remain constant across regions, and Zit are
spatiotemporal variables that vary over both.

It is well known that forecasting residential
housing prices is important. Decisions made by
lending institutions, tax assessors, and
homeowners or buyers are affected by the real
estate market dynamics and price predictions.
Yet, accurate price-predictions remain a chal-
lenge, perhaps because models that explain
variations in prices over time as well as be-
tween neighborhoods and among houses can be
rather complex. Most studies that forecast
prices of residential homes rely on property-
address-level detailed data. Details at property
level furnish housing attributes upon which
hedonic pricing models have been based for

decades. Applications of hedonic methods to
the housing markets are plenty; see Goodman
and Thibodeau (2003) for a recent application.
Advances based on hedonic methods include
work on geographically weighted regression
models (Fotheringham, Brunsdon, & Charlton,
2002) and work on local regression (or semi-
parametric) models (Clapp, Kim, & Gelfand,
2002). Bin (2004) compares parametric vs.
semi-parametric hedonic regression models.
Hedonic models can be viewed as representa-
tions of localized nano-detailed pricing algo-
rithms since they focus on small-scale varia-
tions. They are designed to capture the effects
of differences in housing attributes on prices.
Housing attributes include quantitative and quali-
tative characteristics of individual properties
such as age, square footage, with garage or not,
with air conditioning or not, and so forth, as well
as location factors that impact the price of a
house (Bin, 2004; Mason & Quigley, 1996).
These, however, do not explain temporal or
dynamical price changes.

Dynamical changes in housing prices are
determined by supply and demand forces. De-
terminants of demand such as income and
mortgage rate change over time. Such temporal
changes in determinants cause prices of all
residential houses to change over time, ceteris
paribus attributes. It is dynamical changes and
not attributes that cause appraisers to adjust the
price of the same exact house over time. They
adjust prices to reflect a known “current” neigh-
borhood median price while allowing for differ-
ences among properties. If this is the case, it is
reasonable to model local patterns of depen-
dency that capture the impact of large-scale
variations of inter-neighborhood temporal
changes in economic conditions on neighbor-
hood median prices first. What follows are
hedonic models that capture the impact of intra-
neighborhood variations to account for differ-
ences in age, square footage, and so on. A
neighborhood median price becomes one of the
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input variables in a hedonic model. Including
cross-sectional economic variables along with
attributes for a single time period in the same
price equation is possible and has been done
(e.g., Clapp, 2004). However, including tempo-
ral economic variables that remain constant
among neighborhoods, as well as spatiotempo-
ral variables that vary among neighborhoods
and over time in the same equation, has not
been attempted.

Special attention is given in this research to
delivering timely forecasts of residential hous-
ing prices. A model that forecasts “known
information” is of little value to decision mak-
ers. For example, models capable of forecast-
ing only one-step-ahead (a month, quarter, or
year) tend to deliver known information. By the
time data on explanatory variables needed to
produce a forecast become available, that one-
step-ahead forecast value has materialized.
Producing an extended forecast (i.e., one that
goes beyond one period) becomes a clear and
logical alternative. To produce an extended
forecast, typically “predicted values” of ex-
planatory variables are used. This may deliver
inaccurate forecasts because predicted values
of input variables are most probably imprecise.
It is more logical then to construct models that
can produce forecasts for a few steps ahead
using “actual” rather than “fitted or forecasted”
values of explanatory variables. In this chapter,
it is shown that using distant lagged actual
values of explanatory variables delivers rea-
sonable forecasts of neighborhood residential
housing prices. Attention to this problem is not
new, but the solution suggested here is. Gençay
and Yang (1996), Clapp et al. (2002), and Bin
(2004) emphasize evaluating out-of-sample pre-
dictions when comparing performances of dif-
ferent forecasting models.

Over the past decade, statistical analysis of
spatiotemporal series earned reasonable atten-
tion. Getis and Ord (1992), Anselin, Bera, Florax,
and Yoon (1996), and Longley and Batty (1996,

pp. 227-230) discuss spatial autocorrelation
and other statistical complications encountered
when analyzing or modeling spatial data. Anselin
(1998, 1999) reviews potential solutions to some
of these problems. However, few address com-
plications that occur when spatial data is taken
over time. Little to no attention was given to
modeling nonlinear spatiotemporal systems. If
such models account for the presence of low-
dimensional nonlinear or chaotic dynamics, a
rapid increase in forecast errors over time
occurs due to sensitivity to initial conditions.
This issue was addressed by Rubin (1992) and
Maros-Nikolaus and Martin-González (2002).
Nonparametric modeling techniques adopted
here to capture what may be nonlinear spa-
tiotemporal dynamics of the housing market
may therefore be appropriate.

The two computational techniques applied
to predict median neighborhood prices are quite
different. GP is a computer algorithm that can
be configured to produce regression-type mod-
els (Koza, 1992). The traditional statistical cal-
culations to estimate model coefficients and the
restrictions imposed by statistical models are
totally absent. GP is a univariate modeling
technique that typically delivers nonlinear equa-
tions. They are difficult to interpret, but fore-
cast rather well.  López, Álvarez, and
Hernández-García (2000) proposed using a
proper empirical orthogonal function decompo-
sition to describe the dynamics of a system,
then used GP to extract dynamical rules from
the data. They apply GP to obtain one-step-
ahead forecast of confined spatiotemporal
chaos. Examples of applications of GP to eco-
nomic forecasting include work by Chen and
Yeh (2000), Kaboudan (2000), Neely and Weller
(2001), Kaboudan and Liu (2004), and Tsang,
Yung, and Li (2004). A thorough review of
applications of GP in financial forecasting can
also be found in Chen (2002). ANN is a com-
puterized classification technique that delivers
forecasts, but (unlike GP) without delivering a
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model. ANN architecture is based on the hu-
man neural system. It is programmed to go into
a training iterative process designed to learn the
dynamics of a system. Compared with GP,
ANN is more established with superior power
in fitting complex dynamics, and has gained
attention and acceptance of many forecasters.
Gopal and Fischer (1996) used ANN in spatial
forecasting. Rossini (2000) used it in forecast-
ing residential housing prices employing he-
donic-type specifications. Examples of appli-
cations of ANN to economic forecasting in-
clude work by Swanson and White (1997a,
1997b), Bennell and Sutcliffe (2004), Clements,
Franses, and Swanson (2004), and Huang, Lai,
Nakamori, and Wang (2004). Further, Dahl and
Hylleberg (2004) gave a recent great review of
economic forecasting using artificial neural
networks. They compared performance of ANN
and three other approaches in forecasting U.S.
industrial production and unemployment rate.
Attraction to GP and ANN may be attributed to
their robustness with respect to many statistical
problems that standard econometric or statisti-
cal modeling methods face. More specifically,
they are robust against problems of
multicollinearity, autocorrelation, and non-
stationarity.

This investigation implements a specifica-
tion strategy designed to account for the ef-
fects of temporal variations on future neighbor-
hood median single-family residential home
prices in the City of Cambridge, Massachu-
setts. What is presented here is of exploratory
nature. The main assumption is that changes in
real mortgage rate and in real per capita income
have different effects on prices in the different
neighborhoods. Although only data available
freely via the Web was employed, results re-
ported below seem promising.

The next section contains a description of
the data, followed by an explanation of the
univariate model specification employed
throughout. An introduction to GP and how it

can be used in forecasting, as well as a brief
review of ANN, are then offered. Forecast
results using standard statistical method—
weighted least squares (WLS), GP, and
ANN—are compared, and the final section
contains concluding remarks. The results re-
ported below are mixed. Forecasts using GP
were significantly more reasonable and more
likely to occur than those obtained by ANN or
WLS.

INPUT DATA

The data utilized in this study is on housing sales
for the City of Cambridge, Massachusetts. It
was the only set of data found with complete
information to use in developing a housing
median price model. The data can be down-
loaded from a site published by that city’s
Community Development Department, Com-
munity Planning Division (2003). It contains
annual median prices of single-family homes
for the period 1993-2002 of 12 (out of 13)
neighborhoods in Cambridge. The city stopped
reporting this type of data after 2002. Figure 1

Figure 1. City of Cambridge: Neighborhood
boundaries with major city streets (http://
www.ci.cambridge.ma.us/~CDD/commplan/
neighplan/ pdfmaps/neighcitymap.html)
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shows the 13 neighborhoods. (Data was avail-
able only for 12 of them. There were no data for
the strictly commercial area 2.]

To minimize the impact of outliers, a neigh-
borhood annual median price was included in
the final data set only if the number of sales in
that neighborhood was at least three. Only six
years of data (1995-2000 inclusive) were used
to find forecasting models. Data of the first two
years were lost degrees of freedom due to lags.
There were 67 observations to use in the six-
year training set. Data available for the last two
years (2001 and 2002, consisting of 21 observa-
tions) were reserved to evaluate and compare
out-of-sample forecasts produced by the three
models.

The explanatory variables considered to
capture variations in Pit follow. The consumer
price index for Boston was used to deflate all
nominal data. Thus, prices, income, and mort-
gage rate are in real terms.

• MRt-2 = Two years lagged real mortgage
rate. This temporal variable is constant
across neighborhoods.

• PCIit-2 = Neighborhood real per capita
income lagged two years. This spatiotem-
poral variable varies over time as well as
among neighborhoods. Per capita income
was not available by neighborhood but by
census tract. Figure 2 shows these tracts.
To obtain representation values of each
neighborhood’s per capita income, an ap-
proximate congruency between maps of
neighborhood and tracts in Figures 1 and 2
was used. Neighborhood 1 contains ap-
proximately three tracts (3521, 3522, and
3523), for example. Their distribution was
visually approximated. Tracts 3521, 3522,
and 3523 were subjectively assigned
weights of 0.60, 0.30, and 0.10, respec-
tively, to reflect their proportional neigh-
borhood shares. A weighted average per
capita income was then computed for that
neighborhood. Others were similarly ap-
proximated. Using this method may be a
source of measurement error. Since there
is no alternative, this solution was as-
sumed reasonable given the contiguity of
neighborhoods. The results obtained and

Figure 2. City of Cambridge: Census tracts (http://www.ci.cambridge.ma.us/~CDD/data/
maps/1990_census_tract_map.html)
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presented later seem to confirm that such
PCI representation seems adequate.

• DVPCI(i)t-2= Twelve spatiotemporal
dummy variables designed to capture the
impact of changes in real per capita in-
come in neighborhood i at time period t-2
on that neighborhood median price in pe-
riod t. DVPCI(i)t-2 = PCIt-2 * Wij, where
Wij = 1 if i = j and zero otherwise for i = 1,
.., n neighborhoods and j = 1, …, k neigh-
borhoods where n = k. Use of this type of
dummy variable is atypical. Goodman
and Thibodeau (2003) use dummy vari-
ables to account for time of sale. Gençay
and Yang (1996) use more standard Bool-
ean dummy variables for (all but one)
neighborhoods. Boolean dummy variables
capture intercept shifts. DVPCI(i)t-2 cap-
tures slope changes instead.

• Yt-2 = Real median household income for
the City of Cambridge, Massachusetts.
This temporal variable is constant across
neighborhoods.

• RNPRi = Relative neighborhood price rank-
ing. This ranking was computed by aver-
aging each neighborhood’s median price
over the period 1993-2000 first, sorting
these averages second, and then assign-
ing the numbers 1 through 12 with “1”
assigned to the lowest and “12” to the
highest average. This integer spatial vari-
able varies by neighborhood only and
serves as polygon ID.

• LATi = Latitude of the centroid of neigh-
borhood i.

• LONi = Longitude of the centroid of neigh-
borhood i.

• APt-2 = Average real median price of
homes in the City of Cambridge, Massa-
chusetts, lagged two years. This temporal
variable remains constant across neigh-
borhoods.

• P it-2 = Real median price lagged two
periods.

Given that Pit and a few of the explanatory
variables vary spatially, detecting presence or
absence of spatial correlation should be tested
one way or another. Measuring spatial
autocorrelation using the Moran coefficient or
the Geary ratio is not practical here since data
is taken over time as well. Instead, spatial
autocorrelation was estimated using the follow-
ing OLS regression model:

it i 1tP P−
= α + ρ      (2)

where ρ measures the degree of autocorrelation.
This equation provides a simple but reasonable
approximation of autocorrelation between pairs
of contiguous neighbors over time.
Autocorrelation is present if the estimated ρ is
significantly different from zero. The estimated
equation was as follows:

it i 1tP 138.9 0.452 P−= +      (3)

The equation was estimated using 1995-
2002 data. The intercept and the estimate of
ρ’s   p-value = 0.00). Thus, equation 3 con-
firmed the existence of spatial autocorrelation
between pairs of contiguous neighborhoods
averaged over time.

BASIC MODEL SPECIFICATION

The basic model is a univariate specification
designed to capture variations in Pit using mainly
economic data while incorporating spatial as-
pects. Formally:

it i t itP f(S ,X ,Z )=      (4)

The set of spatial variables iS that vary only
among neighborhoods includes RNPRi, LATi,
and LONi. The set of time series variables tX
that vary only over time (t) includes MRt-2, Yt-2,
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and APt-2. itZ , or the set of variables that vary
over both includes DVPCIi,t-2, PCIi,t-2, and Pi,t-2.

To evaluate the efficacy of forecasts from
the two nonparametric computational techniques
GP and ANN, a forecast using standard statis-
tical methods is obtained. Because cross-sec-
tional and time series data are pooled, and
because spatial correlation was detected, the
variance of the error Ordinary least squares
(OLS) delivers will not be constant over obser-
vations. When this problem occurs, the model
has heteroscedastic error disturbance. OLS
parameter estimators are unbiased and consis-
tent, but they are not efficient (Pindyck &
Rubinfeld, 1998, p. 147). The weighted least
squares (WLS) method (which is a special
case of generalized least squares; Pindyck &
Rubinfeld, 1998, p. 148) is used to correct for
heteroscedasticity if it is detected.

To test for heteroscedasticity, the Goldfeld-
Quandt test applies (Goldfeld & Quandt, 1965).
The null hypothesis of homoscedasticity is tested
against the alternative of heteroscedasticity.
To conduct the test, a few steps are followed.
First, a single explanatory variable thought to be
responsible for the error variance is identified.
Second, the dependent and the explanatory
variables’ data are sorted in an ascending order
according to the dependent variable’s values.
Third, available observations are divided into
three (approximately equal size) groups. A
simple regression model is then fit to the first
and last groups. The price data were assumed
most affected by RNPR (Relative neighbor-
hood price ranking). Two regressions Pit.=
f(RNPRi) were then estimated using the top
and the bottom 25 observations. (The 17 middle
observations were ignored.) The two estimated
equations yielded two residual sum of squares
values: RSS1 = 23272.29 and RSS2 = 90508.77.
The ratio of the residual sum of squares (RSS)
from the two equations follows an F distribu-
tion, and the F-statistic = RSS2/RSS1 = 3.89.
Under the null of homoscedasticity with 23

degrees of freedom in the numerator and the
denominator and at the 5% level of signifi-
cance, the F critical value is 2. Since the F-
statistic = 3.89 > critical F = 2, the null is
rejected in favor of heteroscedasticity, and
equation 4 is estimated using WLS instead of
OLS.

Table 1 contains the estimated WLS model
obtained to forecast Pit. All estimated coeffi-
cients are significantly different from zero at
the 1% level of significance except for the
estimated MRt-2 coefficient. It is statistically
different from zero at the 10% level of signifi-
cance. Coefficients of all other explanatory
variables considered to include this regression
were deleted either because they were statisti-
cally equal to zero at more than the 20% level
of significance or because their sign was illogi-
cal. The equation below succeeded in explain-
ing 76% of median price variations (R2 = 0.76).
Further, given that the Durgin-Watson (DW)
statistic is very close to 2, there seems to be no
autocorrelation problem. The mean squared
error or MSE = [Σ(Actualt – Fittedt)

2/T] is
reported at the bottom of the table for later
comparisons. Actual vs. fitted values from this
model are presented in Figure 3.

The main strength in using WLS lies in the
interpretation of the estimated coefficients.
Although it is difficult to tell if they are totally
meaningful, their signs seem to be at least
consistent with expectations. Estimated coeffi-
cients in the table suggest the following:

a. If average city price two years earlier
(APt-2) increased by $1,000, current me-
dian neighborhood prices (Pit) would in-
crease by $959.

b. If mortgage rates (MR) decreased two
years earlier by 1%, Pit would increase by
$27,484 on average.

c. If per capita income in neighborhood 1
(PCI1) increased two years earlier by
$1,000, current prices in that neighbor-
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hood (P1t) would increase by $23,420. If
PCI2 in neighborhood 2 increased by $1,000
two years ago, P2t would increase by
$31,801, and so on.

The last variable in the table Latlon was
inspired by equation 15 in Clapp (2004): Latloni
= (LONi*LATi)2. It was selected after a lengthy
search for the proper location variable(s) to
include among the variables in equation 4. It
was the only variable that was not highly col-
linear with any other variable in the equation.
The variable is interesting because the value
the estimated coefficient takes is not as impor-
tant as its sign. If the estimated coefficient is
positive, it suggests that prices tend to be higher
in the east, north, and north-east of the city. A
negative sign suggests that prices tend to be
higher in the west, south, and south-west. As
the equation suggests neighborhoods of South-
ern and Western Cambridge are more expen-
sive, which is consistent with actual data.

GENETIC PROGRAMMING AND
NEURAL NETWORKS

Genetic Programming

Foundations of GP are in Koza (1992). GP is an
optimization technique in the form of a com-
puter program designed to emulate Darwin’s
notion of survival of the fittest. The program is
capable of solving diverse optimization prob-
lems from many disciplines, but used here to
obtain a regression model. Figure 4(a) depicts
a basic GP architecture used to search for an
optimal equation to use in forecasting.

As Figure 4 shows, GP evolves thousands of
model specifications, solves each for fitted
values, tests their fitness, and delivers a final
best-fit model to use. To obtain a best-fit equa-
tion, the computer program starts by randomly
assembling an initial population of equations
(say 100, 1,000, or even 5,000 of them). The
user determines the size of such population.
The user also provides variables’ data input
files. To assemble equation members of a popu-
lation, the program randomly combines a few
variables with randomly selected mathematical
operators such as +, -, *, protected /, protected

, sine, cosine, among others. Protected divi-
sion and square root are necessary to prevent

Figure 3. Actual historical values of median
prices and their weighted least squares
regression model fitted values

Table 1. Weighted least squares regression
estimated coefficients

Variable Coeff. 
Std. 
Error t-Stat p-value 

APt-2  0.959 0.406 2.362 0.022 
MRt-2  -27.484 13.987 -1.965 0.055 
DVPCI(1)t-2 23.420 9.407 2.490 0.016 
DVPCI(3)t-2 31.801 12.181 2.611 0.012 
DVPCI(4)t-2 21.647 7.971 2.716 0.009 
DVPCI(5)t-2 11.882 4.079 2.913 0.005 
DVPCI(6)t-2 10.521 2.869 3.667 0.001 
DVPCI(7)t-2 27.662 9.568 2.891 0.006 
DVPCI(8)t-2 19.833 4.748 4.177 0.000 
DVPCI(9)t-2 9.279 2.371 3.913 0.000 
DVPCI(10)t-2 6.587 1.608 4.097 0.000 
DVPCI(11)t-2 6.764 3.114 2.172 0.034 
DVPCI(12)t-2 13.212 4.775 2.767 0.008 
DVPCI(13)t-2 15.332 4.821 3.180 0.002 
Latlon -2.650 1.261 -2.102 0.040 
R2 = 0.76     
DW = 1.76    
MSE = 1061.23    
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division by zero and taking the square root of
negative numbers. These protections follow
standards most GP researchers agree upon to

avoid computational problems. More specifi-
cally, these protections are programmed such
that if in (x÷y), y = 0, then (x÷y) = 1. And if in
y1/2, y < 0, then y1/2 = -| y|1/2. Once members of
a population of equations are assembled, their
respective fitness is computed using one of
several choices of fitness measures available.
The mean square error (MSE) is most typically
used. The equation with the lowest MSE in a
population is declared fittest. If at any time an
equation accurately replicates values of the
dependent variable, the program terminates.
Accuracy is determined according to a user-
controlled threshold minimum MSE. If GP does
not find an equation with MSE = the predeter-
mined Min (MSE), which usually happens, the
program breeds a new population. Populations
succeeding the initial one are the outcome of a
programmed breeding by cloning or self-repro-

Figure 4(a). Process depicting evolution of
equations to select a best-fit one using GP

Figure 4(b). Example of crossover or breeding between two Individuals (1 & 2); they breed
individuals 3 and 4
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duction, crossover, and mutation. In self-repro-
duction, the top percentage (say 10 or 20%)
best equations in an existing population are
simply copied into the new one. In crossover,
randomly selected sections from two (usually
fitter) equations in an existing population are
exchanged to breed two offspring. Figure 4(b)
shows an example of crossover between two
hypothetical equations. Each equation is repre-
sented by a tree structure (known as a parse
tree) for easy programming.

In mutation, a randomly selected section
from a randomly selected equation in an exist-
ing population is replaced by newly assembled
part(s) to breed one new member. Figure 4(c)
shows an example of mutating the first equation
shown in Figure 4(b).

GP continues to breed new generations until
an equation with Min (MSE) is found or a preset
maximum number of generations is reached.

The equation with Min (MSE) in the last popu-
lation bred is then reported as fittest.

TSGP (time series genetic programming;
Kaboudan, 2003) software is used to obtain GP
price models here. TSGP is a computer code
written for the Windows environment in C++
that is designed specifically to obtain (or evolve
in a Darwinian sense) forecasting models. There
are other GP software (both commercial and
freely available to download) available and can
be used to produce similar results. However,
whether the same exact software or a different
one is used, replicating the exact outcomes is
impossible because, by definition, GP is a ran-
dom search technique. TSGP is presented here
only because it is available to download freely
and it is rather easy to use. Its user has to
prepare two types of input: data input files and
a configuration file. Data values of the depen-
dent and each of the independent variables

Figure 4(c). Example of mutation breeding using only one Individual (1); the newly bred
individual 5 is the outcome
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must be supplied in separate ASCII text files.
The user does not have to modify much or
compile any program. A configuration file con-
taining execution information including name of
the dependent variable, number of observations
to fit, number of observations to forecast, num-
ber of equation specifications to evolve, and
other GP-specific parameters TSGP prompts
the user with questions upon execution. Before
executing TSGP, run parameters must be se-
lected however. TSGP default parameter val-
ues are set at population size = 1000, number of
generations = 100, self-reproduction rate =
20%, crossover rate = 20%, mutation rate =
60%, and number of best-fit equations to evolve
in a single run = 100. The GP literature on
selection of these parameters has conflicting
opinions and therefore extensive search is used
to determine what is best to use under different
circumstances. For example, while Chen and
Smith (1999) favor higher crossover rate,
Chellapilla (1997) favors higher mutation rate,
and while Fuchs (1999) and Gathercole and
Ross (1997) favor small population sizes over
many generations, O’Reilly (1999) argues dif-
ferently. Discussions on parameter selection
options are in Banzhaf, Nordin, Keller, and
Francone (1998). With such disagreements,
trial and error helps in choosing the appropriate

parameters. This situation is aggravated by the
fact that assembling equations in GP is random
and the fittest equation is one that has global
minimum MSE. Unfortunately, GP software
typically gets easily trapped at a local minimum
while searching for that global MSE. It is
therefore necessary to compare a large number
of best-fit equations (minimum of 100) to iden-
tify or obtain that “best” one. Table 2 contains
most of the information used to complete the
GP runs in this study. The table is known in the
literature as a ‘Koza Tableau’.

TSGP produces two types of output files for
each run. One has a final model specification.
The other contains actual and fitted values as
well as performance statistics such as R2,
MSE, and the mean absolute percent error (or
MAPE = [T-1∑ – Fittedt| / Actualt]). TSGP also
delivers an Excel-formatted file with summary
statistics of runs to facilitate identification of
the best one.

GP delivers equations that may not repro-
duce history very well, but they may forecast
well. A best-fit model fails to forecast well
when the algorithm used delivers outcomes that
are too fit. This phenomenon is known as
overfitting. (See Lo & MacKinlay, 1999, for
more on overfitting.) Generally, if an equation
produces accurate out-of-sample ex post fore-

Table 2. Koza Tableau containing run parameters

Parameter Value 
Population size 1000 
Maximum number of generations 100 
Mutation rate 0.6 
Crossover rate 0.2 
Cross-self rate 0.2 
Operators +, -, *, /, sqrt, sin, & cos 
Selection method Roulette wheel 
Maximum tree depth 100 
Fitness measure MSE 
Terminal set Pit-2, Yt-2, PCIit-2, MRt-2, APt-2, 

DVPCI(i)t-2, RNPRi, LATi, LONi, 
Latlon 

Number of searches completed per 
run 

100 
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casts, confidence in and reliability of its ex ante
forecast increases. An ex post forecast is one
produced when dependent variable outcomes
are already known but were not used in esti-
mating the model. An ex ante forecast is one
produced when the dependent variable out-
comes are unknown. While evaluating accu-
racy of the ex post forecast, historical fitness of
the evolved model cannot be ignored however.
If the model failed to reproduce history, most
probably it will not deliver a reliable forecast
either. The best forecasting model is therefore
identified in two steps. First, the final 100 fittest
equations evolved are sorted according to low-
est fitting MSE. Those equations with the low-
est 10 MSE (or 20, arbitrarily set) are then
sorted according to ex post forecasting ability.
Forecasting ability can be measured according
to prediction MSE (MSPE) or the mean abso-
lute percent error (MAPE). That equation
among the selected 10 with the best forecasting
ability is selected as best to use for ex ante
forecasting. This heuristic approach seems to
work well. The idea is that if a model repro-
duces history reasonably well and if it simulta-
neously forecasts a few periods ahead fairly
accurately, then it has a higher probability of
successfully forecasting additional periods into
the future.

When TSGP was executed, the fittest among
the resulting 100 best-fit equations identified
was:

Pit = PTIt-2 * cos ((APt-2 / MR t-2) / PTYt-2)
+ RNPRi +PTIt-2* cos (AP t-2 / PTYt-2) + 2 *
PTIt-2* cos (RNPRi) + 2 * PTIt-2 * cos(PTYt-2)
+ PTIt-2* sin(PTYt-2) + cos(Pit-2) + Pit-2 + PTIt-2*
sin(Pit-2 + (APt-2 / PTYt-2)) + APt-2 / MRt-2

     (5)

where PTYt-2 = Pit-2/Yt-2 and PTIt-2 = Pit-2/
PCIit-2. Its R2 = 0.83, but the MSE = 1995.98
which is much worse than that WLS delivered.

According to the above nonlinear equation,
lagged median prices, relative neighborhood
price ranking, mortgage rate, ratio of price to
city income, and ratio of price to neighborhood per
capita income as well as the spatial variable
RNPR seem to have succeeded in fitting and
forecasting Pit best. Actual and GP-fitted median
home prices by neighborhoods are in Figure 5.

Neural Networks

Neural networks architecture is a more estab-
lished computational technique than GP. The
literature on ANN is huge. Principe, Euliano,
and Lefebvre (2000), among many others, pro-
vide a complete description on how ANN can
be used in forecasting. Two structures are
commonly used in constructing networks: mul-
tilayer perceptrons (MLP) and generalized feed-
forward networks (GFF). MLP is a layered
feed-forward network that learns nonlinear
function mappings. It employs nonlinear activa-
tion functions. Networks are typically trained
with static back-propagation and require differ-
entiable, continuous nonlinear activation func-
tions such as hyperbolic tangent or sigmoid.
A network utilizes input data of all variables to
learn how to produce their closest fitted values.
Although MLP trains slowly and requires a
large number of observations to train, it is easy
to use and approximates well. GFF is a gener-
alization of MLP with connections that jump
over layers. GFF also trains with static back-
propagation. The forecast of neural networks
reported below was produced using
NeuroSolutions software (2002).

To obtain the best forecast of median neigh-
borhood prices, both MLP and GFF were at-
tempted employing the same set of spatiotem-
poral data GP and WLS used. First, base MLP
and GFF configurations were selected as a
starting point to identify the suitable network
structure to use. Both are with one hidden
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layer, use hyperbolic tangent transfer func-
tion, employ 0.70 learning momentum, and train
only 100 epochs. These parameters were then
changed one at a time until the best ex post
forecasting network was identified. Hidden
layers tested were set to one, two, and three.
Transfer functions tested under each scenario
were hyperbolic tangent and sigmoid. The
better networks were then trained using learn-
ing rules with momentum set first at 0.7 once,
then set at 0.9. Testing of each configuration
that started with 100 training epochs was in-
creased by increments of 100 until the best
network is identified. The parameter used to
terminate training was MSE. (MSE was se-
lected to be consistent with GP.) Unfortu-
nately, neural networks can overfit when train-
ing goes on for too long. The final outcome
selected is therefore one that minimizes both
training MSE as well as the impact of overfitting.

In the final (best-obtained) ANN configura-
tion to use in forecasting, only 10 variables
were used after experimenting with all of the
available ones. Through trail and error, vari-
ables were deleted until the best forecasting
configuration was found. For example, the 12
DVPCIit-2 produced very poor forecasts and
had to be removed from among input variables
used. Table 3 contains most of the information
used to complete the ANN runs in this study.

The final network structure selected for the
purpose of this study was MLP with one hidden
layer. It is depicted in Figure 6.

Actual and ANN-fitted values of median
prices by neighborhoods over the years are in
Figure 7. The best network configuration was a
network with a hyperbolic tangent transfer
function and with learning momentum = 0.90.
Only1,700 training epochs were used. The best
ANN configuration produced R2 = 0.96 and
MSE = 463.51.

Comparison of Modeling Results

ANN produced better fit of Pit training values
than the final GP model. It is important to
reconfirm here that a technique that succeeds
in reproducing history (data used to obtain
models or in training) may not necessarily be
the one that delivers the best forecast. Table 4
contains comparative statistics on estimation
and training results using WLS, GP, and ANN.
Based on these statistics, ANN ranked best
and GP ranked worst. Figures 5-7 confirm
ANN’s outstanding ability in reproducing his-
tory when compared with WLS and GP. The
figure depicts the 67 observations representing
the six years (1995-2000), where observations
1-12 belong to 1995, 13-24 belong to 1996, and
so on. Determining which of the three produces
the best out-of-sample (2001 and 2002) fore-
casts and not the best fit of the historical data

Figure 5. Actual historical values of median
prices and their GP model fitted values
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Table 3. Run parameters used to complete
ANN runs

Parameter Value 
Hidden layers 1, 2, & 3 
Transfer functions hyperbolic tangent and sigmoid 
Learning rules momentum 0.7 & 0.9 
Training epochs 100 incremented by 100 until best 

forecast is obtained 
Fitness parameter MSE 
Terminal set Pit-2,, Yt-2, PTYt-2, PCIit-2, MRt-2, 

APt-2, RNPRi, LATi, LONi, 
Latlon. 
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is the main objective however. This is pre-
sented next.

FORECASTING

Although ANN delivered best fit in reproducing
historical data used in training (1995-2000),
forecasts of the WLS model were better than
those of ANN, and forecasts of GP were better
than those of WLS. Table 5 contains a compari-
son of the forecast statistics. The Theil’s U-
statistic reported in the table is a measure of

forecast performance. It is known as Theil’s
inequality coefficient and is defined as:

�
k k 21 1

ikj 1 j 1

2
ik

MSEU
k P k P− −

= =
∑ ∑

=
+      (6)

where j = 1, 2, …, k (with k = 21 forecasted
observations representing 2001 and 2002), and
�

ikP are forecast values of � ikP . This statistic will
always fall between zero and one, where zero
indicates a perfect fit (Pindyck & Rubinfeld,
1998, p. 387). NMSPE (=MSPE / variance
( � ikP )) is normalized prediction MSE.

Figure 6. MLP network used to generate the final forecast

Figure 7. Actual historical values of median
prices and their ANN-fitted values
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Table 4. Comparative estimation and training
statistics

Statistic WLS GP ANN 
R2 0.76 0.83 0.96 
MSE 1061.23 1995.98 463.51 
MAPE 0.130 0.212 0.091 
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Forecasts obtained using the three tech-
niques are in Figures 8-10. Each shows actual
values reserved for out-of-sample forecasts,
their ex post forecast, and the ex ante forecast.

Two observations are easily deduced from
the comparison in Table 5 and Figures 8-10.
First, over the ex post forecast period, GP
clearly delivers the best forecast. Second, and
more importantly, the ex ante forecast GP
delivers seems more logical than that of WLS
or ANN. ANN has underestimated prices in
areas where homes are relatively more expen-
sive.

CONCLUSION

This chapter explored computational forecast-
ing of neighborhood median residential housing

prices utilizing spatiotemporal data. Efficacies
of GP and ANN were compared with that of a
statistical method: weighted least squares.
Explanatory variables employed included those
that account for the impact of temporal varia-
tions in income and mortgage rate, as well as
location differences on neighborhood residen-
tial housing prices. Such combination of vari-
ables prevents use of OLS because some of the
temporal variables are highly collinear and lo-
cation variables are spatially autocorrelated.
The homoscedasticity null was rejected when
the data was tested. Under these conditions,

Table 5. Comparative forecast statistics Figure 8. Actual values of median prices,
and their WLS ex post and ex ante forecast
values  WLS GP ANN 

Theil’s U 0.081 0.044 0.097 
MAPE 0.153 0.079 0.156 
MSPE 3331.6 981.9 4425.26 
NMSPE 0.170 0.079 0.225 

Figure 9. Actual values of median prices,
and their GP ex post and ex ante forecast
values

Figure 10. Actual values of median prices,
and their ANN ex post and ex ante forecast
values
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the two nonparametric computational techniques
GP and ANN seem appropriate to employ in
modeling and forecasting prices. These algo-
rithms are robust against many statistical prob-
lems. For comparison, WLS specification, ap-
plicable under conditions of heteroscedasticity,
was also used (instead of OLS) to forecast
prices. Over the historical or training period,
ANN outperformed the other two techniques.
For out-of-sample ex post forecast, GP outper-
formed the other two. GP’s superior ex post
forecast suggests that, among the three, its ex
ante forecast is possibly the most reliable.

Three ways to account for location vari-
ables in models were implemented. The first
utilized longitude and latitude (standard in many
prior studies) as explanatory variables. The
second utilized dummy variables weighted by
per capita income—a variable that varied across
neighborhoods. The weighted dummy variables
helped account for the impact of income change
by neighborhood on its median housing prices
relative to other neighborhoods. The third uti-
lized relative ranking of neighborhood prices.

When constructing the three models, em-
phasis was on obtaining predictions useful in
decision making. Two-year-ahead forecasts
were produced without relying on any fore-
casted values of explanatory variables. This
was possible by setting a lag-length equal to the
desired number of periods to predict.

Use of GP, weighted dummy variables, and
extended lag-length are all new in modeling and
forecasting residential home prices. Further
research and experimentation of them is clearly
warranted. Linking the type of spatiotemporal
model presented here with standard hedonic
models also warrants further investigation. While
ideas introduced here seem successful, they
may not be helpful for areas where clear loca-
tion definitions of boundaries (similar to Cam-
bridge) are not established or if the data does
not exist.
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ABSTRACT

This chapter introduces the capability of the numerical multi-dimensional approach to solve
complex problems in finance. It is well known how, with the growth of computational resource,
scientists have developed numerical algorithms for the resolution of complex systems, in order
to find the relations between the different components. One important field in this research is
focused on the mimic of nature behavior to solve problems. In this chapter two technologies
based on these techniques, self-organizing maps and multi-objectives genetic algorithm, have
been used to solve two important fields in finance: the country risk assessment and the time
series forecasting. The authors, through the examples in the chapter, would like to demonstrate
how a multi-dimensional approach based on the mimic of nature could be useful to solve
modern complex problems in finance.
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INTRODUCTION

The increasing complexity of financial prob-
lems over the past few decades has driven
analysts to develop and adopt more sophisti-
cated quantitative analysis techniques: further-
more, in the past few years, opinion is growing
that the criterion to guide financial decisions
has to be multi-dimensional (Zopounidis &
Doumpos, 2002a).

This is the reason why mathematical models
have replaced the verbal models (Spronk,
Steuer,& Zopounidis, 2005). Financial institu-
tions as well as firms acknowledge the multi-
dimensional nature of financial decision prob-
lems, and an implication “is that there may be an
attempt to redefine the analytical tools used to
solve problems; for example, goal programming
and multi-criteria decision making,” as Bhaskar
said as early as 1983 (p. 616). Institutions and
firms often use optimization and statistical soft-
ware packages, even though many of these are
not specifically designed for financial decision-
making problems. Examples of such programs
are the CGX system, the BANKS system, the
BANKADVISER system, the INVEX system,
the FINEVA system, the FINCLAS system,
and the INVESTOR system (Spronk et al.,
2005).

The use of mathematics and an operational
research approach in finance got its start in the
1950s with the introduction of Markowitz’s
portfolio theory. Since then many researchers
and practitioners gave their contribution. With
our work we would illustrate how a multi-
dimensional approach could be useful to solve
different financial problems.

In this chapter the attention has been fo-
cused on two particular aspects of financial
decision making: the country risk assessment
and an optimized statistical approach to model-
ing time series.

The country risk field includes a wide range
of different problems and aspects: this is the
reason for which many different definitions
have been formulated (Bouchet, Clark, &
Groslambert, 2003). We will consider it as a
additional risk that is involved when business
transactions occur across international bor-
ders. The assessment of country risk will be
realized as a classification problem employing a
multi-criteria decision-making (MCDM) ap-
proach; further, a self-organizing map (SOM)
approach will be used to discover clusters of
countries with similar risk patterns and under-
stand the produced rating.

In the second part of the chapter we review
the best-known statistical methodology for the
time series modeling and forecasting: the ordi-
nary least squares (OLS) model. This model,
even though obsolete, is still used by many
traders and asset management practitioners.
Through an operational research approach and
using a multi-objective genetic algorithm
(MOGA), we will discuss the regression method,
fixing attention on statistical hypothesis testing.
It is a well-known fact that, to check the validity
of the regression, there are a lot of tests (p-
values for t-tests, F-test for testing the overall
significance of the model, etc.) which must be
satisfied or rejected: when the number of vari-
ables is high, this objective could be a very hard
task. Consequently, the aim of our work is to
make the investigation of feasible solutions an
automatic process and to choose the best one.

COUNTRY RISK MULTI-
DIMENSIONAL ASSESSMENT

As explained by Meldrum (2000), when busi-
ness transactions occur across international
borders, they carry additional risks not present
in domestic transactions. These additional risks,
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called country risks, typically include risks aris-
ing from a variety of national differences in
economic structures, policies, socio-political
institutions, geography, and currencies. More-
over, if one considers that the liberalization of
economies facilitates and encourages goods
exchange between companies and that ex-
changes are up to 70% short-term payable, one
can realize how important it is to strictly define
and clearly state the country risk.

In our work we propose a method based on
the contextual use of SOM and MCDM algo-
rithms that allows us to study these differences
and compare them. Our aim is to investigate the
dynamics of global economy to gain insight into
exchange policies between different countries.

Data

Our study, outlined in the previous section, has
been applied to country risk data obtained from
many organizations such as World Bank, CIA,

and Coface. On the basis of data availability for
the more recent period (2004), 52 countries
were selected for a variety of factors (21)
involving economic, social, demographic, and
environment indicators (CIA, 2004; World Bank
Group, 2004) (henceforth we will refer to this
database as to “DB1”). The nations were se-
lected as follows:

• 22 countries Europe and CSI area;
• 8 countries from America;
• 9 countries from Asia and Oceania;
• 8 countries from North Africa and Middle

East;
• 9 countries from Sub-Saharan Africa.

Another database has been organized using
data obtained from ISAE (Italian Institute for
Studies and Economic Analysis) that provides
information about 27 developing countries
throughout the period 1983-2000. Henceforth
we will call it “DB2.”

Table 1. Factors included on “DB1” Table 2. Ratios used for the country risk
prediction of developing countries “DB2”

Ratio 1 Coface rate 2004
Ratio 2 Birth rate
Ratio 3 Death rate
Ratio 4 Export (% variation)
Ratio 5 Import (% variation)
Ratio 6 GDP (no PPP)
Ratio 7 GDP (PPP)
Ratio 8 Inflation rate
Ratio 9 GDP growth rate
Ratio 10 Public balance/GDP
Ratio 11 Net migration rate
Ratio 12 Infantility mortality rate
Ratio 13 Life expectancy at birth
Ratio 14 Labor force/tot. pop.
Ratio 15 Internet users
Ratio 16 Production growth rate
Ratio 17 Electricity consumption
Ratio 18 Electricity production
Ratio 19 Fertility rate
Ratio 20 Export/GDP
Ratio 21 Import/GDP

Ratio 1 Default Standard & Poor’s evaluation
Ratio 2 Default S&P’s one year before
Ratio 3 Gross domestic product (GDP)
Ratio 4 GDP growth rate
Ratio 5 Rate of inflation
Ratio 6 Exchange rate in purchasing of power parity (PPP)
Ratio 7 Average interest rate
Ratio 8 Average maturity years
Ratio 9 Total U.S. dollar amount of merchandise exports
Ratio 10 Foreign direct investment
Ratio 11 Total U.S. dollar amount of merchandise imports
Ratio 12 Total interest payment
Ratio 13 International reserve
Ratio 14 Total external debt
Ratio 15 Short-term external debt
Ratio 16 Interest on short-term external debt
Ratio 17 Total debt service
Ratio 18 Long-term debt service
Ratio 19 Current account balance



872

Multiattribute Methodologies in Financial Decision Aid

Self-Organizing Maps

By means of a non-linear ordered regression,
self organizing maps provide a topology pre-
serving mapping from the high dimensional
space of data to map units, which usually forms
a two-dimensional lattice. Thus, SOMs are an
efficient way of visualization for highly multi-
dimensional and highly complex datasets. This
mapping typology guarantees that nearby points
in the space of data are mapped to nearby
points in the map (Kohonen, 1998; Kohonen &
Somervuo, 2001).

SOMs are based on a vectorial regression
on data samples, performed by a set of weight
vectors, each one assigned to a map unit, its
components being iteratively changed in such a
way that they resemble the original data records
as best as possible, leading to an ordered map.
Choosing a proper map visualization, one can
perform two kinds of tasks: inspection of local
variable correlations and cluster analysis.
(Ultsch, 2003).

Results and Their Interpretation

We have considered performing an analysis of
the indicators and general information about the
countries because we think that the very com-
plex equilibrium of a country system could be
understood only by a careful consideration of
these aspects.

Since the 1960s, researchers have tried to
build macroeconomic models starting from the
comprehension of the assets interactions; but
Krugman in 1979 even noted the need for ‘not
simplified’ macroeconomics models that em-
bed a more effective consideration of asset
interactions.

We choose to conduct two kinds of analysis
on “DB1”:

1. Factor study and individuation of local
correlations in order to understand
the logics joining the economics and
social aspects of countries: We trained
a rectangular map with 20x10 hexagonal
nodes during 15000 cycles;

Figure 1. Energy consumption Figure 2. Energy production

Figure 3. GDP growth rate Figure 4. Industrial production growth rate
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2. A clustering analysis based on credit
risks: To produce a visual representation
and verify the World Bank’s classification
according to the income level.

Factor Study

We have obtained, as foreseen by us, some
obvious relations as between “energy con-
sumption” and “energy production” (Figure 1
and Figure 2)—the correlation describing the
degree of relationship between the two vari-
ables is 0,963.

After all, SOMs are very powerful in show-
ing, in certain areas, the non-linear dependen-
cies as in Figure 3 and Figure 4: it appears
clearly how local minima and local maxima are
displayed in the same nodes, meaning that
remarkable variations (positive and negative)
of industrial production growth rate heavily
influence GDP growth rate. A quite predictable
effect, it would not be appreciated using a
classical statistic approach. The statistical cor-
relation between the factors is very low: 0,347.

Cluster Analysis

On the basis of these results, it was decided to
proceed with the second phase of the analysis:
excluding from “DB1” some indicators that had
high correlations with others, a reduced set of
14 indicators has been employed. We trained a
rectangular map with 20x10 hexagonal nodes
through 100,000 learning cycles, and we repre-
sented the U-Matrix1 of the weight vectors.
Since a model of some observation is associ-
ated with each node, it is possible to find the
node that matches best with each entity of the
observation space and therefore to associate a
label to each node.

Following the definition of the groups based
on the World Bank’s classification of the coun-
tries according to the income level (that is: HI

high income level, UM upper middle level, LM
lower middle level, and LI low income level),
we produce the map in Figure 5.

It is worth noting that HI and LI economies
are easier to identify than intermediate cases
such as LM and UM income economies, as
reported in other works (Zopounidis &
Doumpos, 2002b; Doumpos & Zopounidis,
2000).

MCDM Approach

Risk assessments are usually expressed as
classification of countries into predefined groups
according to their performance and level of
risk; otherwise they are examined as ranking of
the countries from the best to the worst ones
according to an appropriate definition of coun-
try risk. In our study we will follow the second
approach.

We adopted a MCDM algorithm proposed
by Sen and Yang (1998, pp. 75-97) called
CODASID. This method attempts to generate
a clear preference order for alternative designs
through a concordance analysis (extending the
original analysis of ELECTRE; Roy, 1996) and
a discordance analysis by similarity to ideal
designs, deriving from the TOPSIS method

Figure 5. U-Matrix with labels associated
according to the income level; light grey
clusters are separated by dark grey peaks
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(Hwang & Yoon, 1981) the basic idea of defin-
ing such a distance measure for each feasible
design from a given reference design. The
basic concept is that the best action should have
the shortest distance from an ideal design and
the greatest from a negative ideal design. The
inputs required by CODASID are a matrix
(“Preference Matrix”) containing the objects
to be explored during the decision procedure,
and a vector of weights expressing the relative
importance of one attribute with respect to the
others.

We performed two different studies:

1. Using “DB2” as “Preference Matrix” and
assigning directly the weights to each
attribute according to their importance,
we could observe the evolution of each
developing country during the considered
period (1983-2000).

2. Using “DB1” as “Preference Matrix” and
the “Entropy Method” to fix the weights,
we ranked the countries and compared
the results with the World Bank’s classi-
fication according to the income level.

Evolution of Developing Countries

DB2 contains data on the following developing
countries: Argentina, Bolivia, Brazil, Chile,
China, Colombia, Costa Rica, Dominican Re-
public, Ecuador, El Salvador, Guatemala, Hun-
gary, India, Indonesia, Jamaica, Jordan, Malay-
sia, Mexico, Morocco, Panama, Paraguay, The
Philippines, Romania, Thailand, Tunisia, Tur-
key, and Uruguay.

To understand the capability of our method-
ology to predict the behavior of the developing
countries, we need to compare the ranking
evolution by CODASID with the historical
events. The ratios used for the countries are
summarizing in Table 1, the time series are from
1983 to 2000. The weights for the multi-crite-
ria decision making are imposed by financial
analyst choice.

From Figure 6, it is possible to note how our
methodology recognizes the important fallouts
historically occurring in a country; in fact it is
possible to visualize a sudden variation in the
country rank. From the visualization, we could
extract some examples to understand the capa-

Figure 6. Rank’s evolution of some developing countries during the period 1983-2000
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bility of the methodology. Regarding the time
series of the China ranking, it is possible to
observe two important events: the Tiananmen
massacre in the 1989 (ranking from 1 to 6), and
some ranking fluctuations during 1994-1995,
mainly correlated with the political repression
in Tibet. Another important event that it is
possible to observe in the ranking evolution is
the Asian economic crisis during 1997-1998; in
these two years it is possible to observe in the
Figure 6 that the Asian countries (China, Ma-
laysia, Thailand, The Philippines) have a rank-
ing degrading that is visible especially for Ma-
laysia (from 3rd to 16th) and The Philippines
(from 8th to 17th). Malaysia quickly improves its

ranking after the crisis, probably related to the
industrial situation, mainly oil extraction. Also
interesting is Argentina’s ranking before the
2001 crisis: our model shows how the position
of Argentina is not very encouraging (the aver-
age rank is 25) in contrast with the idea that
Argentina was an economical model for the
Latin America countries before 2001.

Risk Comparison

To test the capability of our numerical method-
ology with other data, we compared the ranking
by CODASID with the Word Bank classifica-
tion. The used data is summarizing in Table 1,
where it is possible to note how the ratios cover
many economical-social-financial aspects; the
total number of countries examined is 52, uni-
formly distributed around the world. For the
weight assignment in the CODASID method,
we used the Entropy technique that is particu-
larly efficient to investigate contrasts in dis-
crimination between sets of data (Hwang &
Yoon, 1981; Seen & Yang, 1998).

In Table 3 we report the obtained result
compared with the World Bank classification; it
is possible to note how the ranking by our
methodology covers with good accuracy the
Word Bank classification, especially for the
best countries (“high income”) and the worst
(“low income”). A small fluctuation is present
for the intermediate cases, where it is a mixture
between the “upper middle” and “lower middle”
countries. This result valorizes the previous use
of the SOM, where we found similar relations
in the countries’ ranking.

OPTIMIZED OLS MODEL

Many traders and asset management practitio-
ners use the traditional ordinary least square
(OLS) regression to estimate stock price or
indices. This approach has two limits:

Table 3. Ranking obtained from CODASID
and compared with the World Bank’s
classification

Rank Country 
WB's 

Income 
Level 

 Rank Country 
WB's 

Income 
Level 

1 Singapore HI  27 Thailand LM 
2 Sweden HI  28 Poland UM 
3 Canada HI  29 China LM 
4 Hong Kong HI  30 Mexico UM 

5 Un. Arab 
Emirates HI  31 Tunisia LM 

6 Finland HI  32 Paraguay LM 
7 United States HI  33 Argentina UM 
8 Switzerland HI  34 Bulgaria LM 

9 Ireland HI  35 Russian 
Federation LM 

10 Denmark HI  36 Brazil LM 
11 Belgium HI  37 Morocco LM 
12 Australia HI  38 Uruguay UM 
13 Austria HI  39 Turkey LM 
14 Japan HI  40 South Africa LM 
15 United Kingdom HI  41 Egypt LM 
16 Germany HI  42 Algeria LM 
17 France HI  43 Madagascar LI 
18 Malaysia UM  44 India LI 
19 Spain HI  45 Albania LM 
20 Italy HI  46 Sudan LI 
21 Portugal HI  47 Cambodia LI 
22 Saudi Arabia UM  48 Cote d'Ivoire LI 
23 Slovak Republic UM  49 Ghana LI 
24 Greece HI  50 Nigeria LI 
25 Hungary UM  51 Mozambique LI 
26 Chile UM  52 Zimbabwe LI 
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1. Even the most expert econometrician ex-
periences difficulties in modeling economic
data when the precise formulation of the
equation under analysis is unknown a priori.

2. The method is very time expensive since
a good model (that is able to predict com-
ing situations) includes a large set of tests
(Godfrey, 2005) such as:
• tests for misspecification of regres-

sion mean function and on estimated
coefficients;

• tests for serial correlation and uncon-
ditional heteroscedasticity;

• tests for structural change; and
• tests for non-normality of the residual

distribution.

New directions of research are given by the
automatic modeling methods (Hendry & Krolzig,
2001, 2004, 2005), such as PcGive and RETINA
(RElevant Transformation of the Inputs Net-
work Approach) (Gallo, Perez-Amaral, &
White, 2003, 2004; Maindonald, 2002; Far-
away, 2002). Their purpose is to give proce-
dures which could be able to detect models in a
small amount of time, and also when the re-
searcher has no information or is non-expert.

In our work we propose a new approach
based on the OLS regression coupled with a
multi-objective genetic algorithm (MOGA) and
a multi-criteria decision making (MCDM)
method.

Statistical Assumptions
and Diagnostic Tests

The regression model to be estimated and sub-
ject to diagnostic tests using a sample of size T
can be written as

tt ��y += T
tX

where Xt is the vector containing observations
on exogenous regressors and t�  represents the

error at time t. In particular, it is assumed that
the errors t�  are independently and identically
distributed (i.i.d.) with zero mean and variance,
with normal cumulative density function.

In order to monitor the statistical model, we
used a set of tests to verify the previous prop-
erties. In Table 4 we indicate the category of
tests we have used and the conditions imposed
in order to specify the model correctly.

The variable that is studied through a mul-
tiple regression model is represented by the
price of the MSCI AC Europe Index, which is
an industry index used as a benchmark in the
European Energy sector.

We choose a set of macro and
microeconomic variables to implement our
model. At the first step of the analysis, the set
was comprehensive of 33 variables. About the
macroeconomic variables we considered the
information extracted from a study recently
implemented by Generali Asset Management
(2003). They are classified as follows:

• four variables describing interest rates;
• the price of brent;

Table 4. Scheme of diagnostic tests adopted
by authors

Global test
Adjusted R-squared Close to 1
F-statistic High value
Specific Test (for each var)
p-value Value < 0; 05
Information criterion
Schwarz criterion Low value
Homoskedasticity of residuals
Arch LM Test High probability
White Heteroskedasticity Test High probability
Serial correlation of residuals
Durbin-Watson Stat Close to 2
Breusch Godfrey Test LM High probability
Ljung Box Test High probability
Correlogram - Q statistics High probability
Normality of residuals
Jarque Bera Test High probability
Skewness Close to 0
Kurtosis Close to 3
Stability of coefficients
Chow breakpoint Test High probability
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• an exchange rate;
• four European and American price mark-

ers;
• a set of nine variables relating to global

production and particularly to consump-
tion, investments, and balance trade (both
EU and U.S.); and

• two variables related to the U.S. labor
market.

For the microeconomic predictors we took
into consideration a set of variables whose
historical series were available on the financial
market relative to the Industry Sector Index
that we are analyzing; they are classified as
follows: four earnings per share, one dividend
yield, four kinds of price/earnings, and two
kinds of volatility.

The considered historical series contained
the data observed over the period of time from
February 28, 1995, to December 28, 2003. We
have considered monthly observations.

Multi-Objective Optimization

First of all, it is important to understand which
kind of variables have been adopted: to each
time series we have associated a discrete vari-
able named L that represents the time lag. L
could assume every value from zero to six,
where zero indicates that the variable is not
present in the regression. Every value greater
than zero produces a lagged (i.e., shifted) ver-
sion of the time-series matrix.

Observing Table 4, our problem can be
expressed clearly as follows:
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These equations describe a multi-objective
problem where, in general, the solution is not

unique if the functions are not linearly depen-
dent (as explained in Poloni & Pediroda, 1997).

In our case, the objectives are represented
by the maximization (or minimization) of almost
all tests listed in Table 4 and only one constraint
is fixed: every p-value < 0,05. Since this task is
obviously very hard to realize, it is necessary to
explore the entire solution space in order to
better understand the problem and to redefine
the number of objectives needed to obtain the
optimal solution with the lowest number of
computations required: we have decided to
adopt a technique based on the DOE (design of
experiment) statistic methodology (Montgom-
ery, 1996; Del Vecchio, 1997; Clarich, Mosetti,
Pediroda, & Poloni, 2002). Thus the optimiza-
tion has been run in three phases: in the first one
we have analyzed 49 different configurations
on the basis of the “Latin Square” DOE meth-
odology (Weisstein, 2005); in the second phase,
through a multi-objective genetic algorithm, we
have found the Pareto frontier of the not domi-
nated optimal solutions; in the last phase we
have chosen from the Pareto frontier a particu-
lar configuration through a MCDM algorithm.

First Step: Statistical Analysis

Examining any process, the simplest strategy of
experiments would be to use a “full factorial”
DOE—that is, taking into account every com-
bination of control variables (independent
variables) and levels (different variable set-
tings). If N is the number of control variables
and Li the number of levels of factor i, the total
number of experimental is ∏ =

N

i iL
1

; in our case
it would require more than 7.0e+27 computa-
tions. In order to reduce this number, we have
used a the Graeco-Latin Square, an efficient
algorithm derived by the Latin Squares (we
used a particular algorithm implemented in
modeFRONTIER v.3.1.1 (build 2005.05.09
HJS): the configuration with the minimum vari-
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ables correlation is chosen). This algorithm
requires only the definition of the number of
levels (Li = 7), and the number of generated
designs is Li

2 = 49; by both definition and
implementation, a Graeco-Latin Square repre-
sents a balanced design.

Analyzing the solutions space, it is possible
to understand if any relation exists between the
objectives; as reported in Table 5, many objec-
tives are quite correlated: this result allows the
reduction of their number from 12 to 6 (elimi-
nating DW, SC, kurto, skew, p-LB, and Adj R2);
more precisely:

1. Maximizing F statistic, we obtain the
contextual maximization of Adjusted R2

and the minimization of Schwarz crite-
rion value.

2. Maximizing Breusch Godfrey probabil-
ity, we obtain an high Ljung Box prob-
ability and a minimization of |Durbin
Watson - 2|.

3. Maximizing Jarque Bera probability, we
obtain a reduction of |skewness| and |kur-
tosis - 3|.

Among the objectives, there are some prob-
ability estimations that can be used to state the
truth of the null hypothesis, comparing the p-
value to an acceptable significance value α;
this particular feature allows us to impose some
constraints instead of objectives. Creating a
Broken Constraints pie chart, which shows the
influence of the different constraints on the
unfeasible designs, we obtained as indication
(see Figure 7) that the following constraints are
hardly satisfied simultaneously:

1. p-value < 0.05 for each variable;
2. Breusch Godfrey p-value > α.

To achieve every goal and satisfy every
constraint, we decided to drive the optimization
as follows:

Table 5. Correlation matrix of the objectives: Adjusted R2, F statistic, Arch LM test probability,
LM Breusch Godfrey probability, Ljung-Box probability, White Heteroskedasticity probability,
Jarque Bera probability, Chow breakpoint probability, Skewness to 0, Kurtosis to 3, Durbin-
Watson to 2, Schwarz criterion value
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• Objectives:
1. minimize the number of times the p-

value is greater then 0.05 in each
regression;

2. maximize F statistic;
3. maximize Breusch Godfrey probabil-

ity;
4. maximize Jarque Bera probability;

• Constraints:
1. Arch LM test probability > a;
2. White Heteroskedasticity probability

> a

3. Chow breakpoint probability > a;
4. Breusch Godfrey probability > a;
5. Jarque Bera probability > a;
6. Ljung Box probability > a

with α = 0.30 (for each autocorrelation test, a
number of lags equal to the maximum value of
Li have been adopted).

Second Step: MOGA

In order to solve the multi-objective problem,
we have used a multi-objective genetic algo-
rithm (Deb, 1999) that uses a smart multi-
search elitism able to preserve some excellent
solutions without bringing premature conver-
gence into local optimal fronts (Poles, 2003;
ESTECO, 2005). The initial population (350
entries) has been created using the Sobol
method.

After about 20 generations, the optimization
has been deemed concluded; Figures 8-11 show
plots of the moving average of objectives val-
ues as a function of the Design ID (which
identifies the sequence of design generated). It
appears clearly that each goal has evolved
simultaneously towards better values.

The total time required for the whole optimi-
zation was about 2.5 hours using a single PC

Figure 7. Broken Constraints pie chart

Figure 8. Number of times the p-value constraint was broken
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Figure 9. Jarque Bera probability

Figure 10. F statistic

Figure 11. Breusch Godfrey probability
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CPU (1.4 GHz, 2 GB Ram)—an important
saving of time compared to the traditional manual
procedure.

Third Step: MCDM

After the optimization we needed a tool that
would help to choose one particular configura-
tion from the Pareto-optimal set. We adopted a
MCDM algorithm proposed by Yang and Sen
(1998): CODASID. This method has been
briefly described in a previous section. The
inputs required by CODASID are:

• a decision matrix which contains informa-
tion for multi-attribute evaluations: we used
the entire set of values of configurations
chosen in the Pareto front;

• a vector of weights expressing the relative
importance of one attribute over others:
we used a vector of ones.

In Table 6 we report the objective values of
the first five configurations chosen from the
Pareto front; the ranking is based on the mag-
nitude of “goodness” of every solution.

Having chosen the best alternative, we have
obtained the regression and tested the solution
eight months later than the last data used, as
shown in Figure 12. The short and long trend of
the market are clearly identified. Any inaccu-

racy could be due only to the OLS method
(whose limits are known).

CONCLUSION

In this chapter we have discussed two particu-
lar aspects of financial decision making: the
country risk assessment and an optimized sta-
tistical approach to model the time series. We
proposed some useful tools, developed and
frequently used in modern engineering con-
texts, to study this problem: multi-objective
genetic algorithm, self-organizing maps, and
multi-criteria decision making. We could derive
the following conclusions:

• As Meldrum (2000) said in a recent work,
“A company needs to examine the rela-
tionship between risk and its businesses to
make sure risk measures actually help the

Table 6. Objectives values of the first five
configurations chosen from the Pareto front

Figure 12. Regression obtained choosing
the best configuration; comparison between
the profile of the original data (dotted) and
the forecasted (solid line)
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company improve its business decisions”;
an additional risk is represented by coun-
try risk. In this chapter we show how
SOM and MCDM could be used as tools
to analyze this risk: both proved efficient
in handling many data together and pro-
ducing a consistent classification of coun-
tries according to their risk level. The
results have been compared with other
recent works.

• The OLS regression is still considered,
thanks to its simplicity and accuracy, the
best method to model time series. Every
regression is characterized by many tests,
probability values, and descriptive mea-
sures; they have to be satisfied or have
adequate values: reaching this objective
could be hard and time expensive. We
proposed an operational research ap-
proach, coupling statistical notions to an
multi-objective genetic algorithm, able to
study, search, and find the best regression
model. This approach appears to be prac-
tical and profitable.
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cate units that are very similar to their neighbor-
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ABSTRACT

This work addresses a real-world adjustment of economic models where the application of
robust and global optimization techniques is required. The problem dealt with is the search for
a set of parameters to calculate the reported claim amount. Several functions are proposed
to obtain the reported claim amount, and a multi-objective optimization procedure is used to
obtain parameters using real data and to decide the best function to approximate the reported
claim amount. Using this function, insurance companies negotiate the underlying contract—
that is, the catastrophic loss ratio defined from the total reported claim amount. They are
associated with catastrophes that occurred during the loss period and declared until the
development period expired. The suitability of different techniques coming from evolutionary
computation (EC) to solve this problem is explored, contrasting the performance achieved with
recent proposals of multi-objective evolutionary algorithms (MOEAs). Results show the
advantages of MOEAs in the proposal in terms of effectiveness and completeness in searching
for solutions, compared with particular solutions of classical EC approaches (using an
aggregation operator) in problems with real data.



886

Multi-Objective Optimization Evolutionary Algorithms in Insurance-Linked Derivatives

INTRODUCTION

The search for models explaining a database
representing different real situations is com-
mon in many practical applications. Usually,
real data represent opposite behaviors so that
the acceptable model should achieve a certain
level of performance with each situation. This
problem can be generally transformed into a
multi-objective optimization, attaining an ap-
propriate trade-off to cover all cases. This field
has been extensively studied in past years by
evolutionary computation (ECs) researchers
(Deb, 2001), defining the properties and advan-
tages for different families of algorithms. Two
basic types of approaches are distinguished: on
the one hand the aggregation of all objectives
into a single scalar function to apply standard
optimization methods, and on the other hand the
use of specific multi-objective evolutionary al-
gorithms (MOEAs), exploiting the concept of
multi-objective domination. In this second case,
the algorithms preserving dominance are in-
tended to maintain diverse population and pro-
vide a representation of the whole Pareto-
optimal front after a single optimization run. In
this chapter we propose the application of these
techniques to search for the most appropriate
model for the underlying loss ratio of cata-
strophic contract of capital markets, consider-
ing at the same time different cases covered in
the available data set.

The frequency and intensity of catastrophe
damages have grown severely in past years,
and this tendency is expected to be continued in
the future (Sigma, 2003, 2005). Insurance com-
panies increase costs to cover these events,
and they need new methods to guarantee the
viability of their business activity with reason-
able economic yield. The expert opinion about
catastrophes shows a high probability of hurri-
canes like Andrew and earthquakes on the
West Coast. Concurrently with these phenom-
ena, zones with a higher risk of hurricanes and

earthquakes experience great demographic
growth. Following NPA Data Services, the
population growth, until 2025, in these areas
(California, Florida, and Texas) will be higher
(up 36.6%) than other areas.

Some insurance companies and financial
engineers have designed new ways to assume
catastrophic risk through the interchange in
financial markets, known as securitization
(Sigma, 2001). Securitization means to trade
with derivatives whose underlying assets are
usually non-negotiated. The securitization al-
lows insurance companies risk reduction and
diversification.

Until today, principal catastrophe risk
securitizations are catastrophe options and
bonds. In this way, the Chicago Board of Trade
(CBOT) begins to trade the first derivative
specifically designed to insurers in December
1992: CAT-futures and CAT-options. Limita-
tions in these products carried that, in Septem-
ber 1995, these contracts were changed by
PCS options. Around the same time (1993), the
first catastrophe bonds, CAT-bonds (Mueller,
2002; Cox, 1997), were issued, presenting a
high-yield restricted loss to the principal and
interest if a catastrophe occurs during the bond
life. Actually, the usual catastrophe bonds and
options are based on indexes to trigger the
contract payment (Loubergé, Kellezi, & Gilli
1999; Muermann, 2003).

The underlying contract is the catastrophic
loss ratio cte

TLLR )( 2= , defined from the total re-
ported claim amount å= )()( 2 tSTL , associated
to occurred catastrophes during the loss pe-
riod, and declared until the development pe-
riod expired.

LR is a random variable because the in-
curred total loss amount L(T2) is an unknown
value during the contract life; the number of
catastrophes, their severity, and the occur-
rence moment, as well as their reported claim
intensity, are all unknown.
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In this theoretical approach, one of the main
parts of the analysis of derivatives is its value
during a certain time interval. Then, a model
ought to be developed to evaluate the loss time
evolution and thus the underlying loss ratio of
both types of contracts L(T2).

Several authors propose the determination
of the underlying loss ratio with the objective of
evaluating these derivatives. Usually, the pro-
posed method uses the continuous models based
on the hypothesis of a geometric Brownian
motion that systematizes the evolution of in-
stantaneous claims. The proposed methods sys-
tematize the instantaneous claim evolution and
include, through Poisson process, the possibility
of appearing severity catastrophes (Cummins,
1995; Geman, 1997; Alegre, Devolder, & Pérez,
2003) proposes a mathematical discrete model
for loss ratio that converges, in average sense,
to the continuous model assumed in this work.

In this chapter, we formalize a continuous
model to determine the underlying loss ratio of
the catastrophic contract of capital markets.
This model calculates the total amount of a
certain catastrophe by aggregating two vari-
ables: the reported claim amount and the in-
curred but not reported claim amount.

The model assumes that catastrophes could
be classified in three categories based on its
intensity. The first category supposes an instan-
taneous declaration (without producing IBNR,
incurred but not reported claims), and second
and third categories represent more severity
catastrophes with a temporal evolution.

In order to fit the available data sets to the
aforesaid models, a multi-objective optimiza-
tion approach has been considered. Several
methods have been implemented, from the stan-
dard evolution strategies (Schwefel, 1981;
Ohkura, 2001) to the advanced MOEAs, also
using different strategies for the aggregation of
partial fitness functions.

The MOEAs have the double goal of guiding
the search towards the global Pareto-optimal

set and at the same time cover as many solu-
tions as possible. This implies the enlargement
of population size and specific procedures in
the genetic operators to guarantee a well-
distributed sample of the front. Deb (2001)
presents a wide analysis of the most outstand-
ing multi-objective evolutionary algorithms.
There are several different approaches, de-
pending on the types of operators for selection,
mutation, and use of domination. Basically, they
can be divided into two groups, non-elitist and
elitist algorithms. The non-elitist group includes
first approaches, such as VEGA (vector evalu-
ated GA; Schaffer, 1985), which divides popu-
lation in subsets assigned to different objectives
or most recent MOGA (multi-objective GA;
Fonseca, 1993), NSGA (non-dominated sorting
GA; Srnivas, 1994) and NPGA (niched-Pareto
GA; Horn, Nafpliotsis, & Goldberg, 1994), and
PESA (Pareto envelope-based selection algo-
rithm; Corne, Knowles, & Oates, 2000). The
last algorithms apply non-dominated classifica-
tion in the GA population, with variations in the
type of selection operators. The elitist ap-
proaches to MOEA are the most recent tech-
niques; they explicitly use operators to preserve
the elites of population in the offspring genera-
tion to assure that fitness does not decrease.
Among them, we can mention the NSGA-II
(non-dominated sorting GA-II; Deb, Pratap,
Agrawal, & Meyarivan, 2002), SPEA (strength
Pareto EA; Zitzler & Thiele, 1998), SPEA2
(Zitzler, Laumanns, & Thiele, 2001), PAES
(Pareto-archived evolution strategy; Knowles,
1999), PESA-II (Corne, Jerram, Knowles, &
Oates, 2001), CAEP (cultural algorithms with
evolutionary programming; Becerra, 2005), and
so forth. These algorithms exploit elitism by
explicitly keeping a population with non-domi-
nated solutions until now, so the selection op-
erators are based on comparisons with them. A
thorough survey regarding the above models
and many others can be found in Tan, Khor, and
Lee (2005) and elsewhere.
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MATHEMATICAL MODELS

Model Definition

Catastrophes are classified into three groups
depending on their severity:

( )tNj

ik
i

i
j

,...,2,1

3,2,1h       wit

=

=
     (1)

where:

• i = 1, 2, 3 represents small-scale catastro-
phes, medium-scale catastrophes, and ma-
jor catastrophes;

• i
jk  are independent random variables iden-

tically distributed inside each group; and
• ( )tN i  represents the random number of

catastrophes in (0, T1). It is modeled by
independent Poisson distributions for each
i-th type of catastrophe, with inten-
sity 3,2,1  with1 =iTil , where 1T  represents
the time interval in which an event of a
catastrophe is included in the study.

Finally, the t i
j  with i = 1,2,3 and j = 1,2,...,Ni(t)

variable is defined as the moment which a
catastrophe occurs, with 1Tt i

j £ .
By modeling the number of catastrophes

occurring with a Poisson distribution, the inter-
occurrence time obtained i

j
i
j tt 1--  follows an

exponential distribution of parameter il .
We can define catastrophe severity as follows:

( ) ( )tRtSk i
j

i
j

i
j +=      (2)

where:

• ( )tR i
j  is a continuous random variable which

determines the incurred but not reported
claim amount at the moment t associated to
the catastrophe occurred in i

jt ; and
• ( )tS i

j  is the continuous random variable
total reported claim amount at time t re-
lated to a single catastrophe occurred in .

Once a catastrophe of severity  has oc-
curred in i

jt , the claim reporting process asso-
ciated with this single catastrophe is initiated
lasting until the end of a certain period T2 (in the
PCS options, development period). The inten-
sity of claim reporting would seem to be great-
est just after the occurrence of the catastrophe
and decreases with time.

Then, instantaneous claim process is repre-
sented by a differential equation that describes
the increase of reported claim amount propor-
tional to the incurred but not reported claim
amount, the main variable of the formal model:

( ) ( ) ( )dttRtttdS i
j

i
j

ii
j -= a      (3)

where ( )i
j

i tt -a  is a real variable function.

By differentiating the equation 2 results:

( ) ( )tdRtdS i
j

i
j -=      (4)

and by substituting in equation 3 ( )tdS i
j  for

equation 4, the differential equation that repre-
sent the evolution of  is obtained:

( ) ( ) ( )dttRtttdR i
j

i
j

ii
j --= a      (5)

Equation 5 shows that the incurred but not
reported claim amount in t decreases with time
according to the function ( )i

j

i tt -a , named claim rate.
In order to determine this function, empiri-

cal data is analyzed considering the hypothesis
that claims associated to a medium-scale ca-
tastrophe (i=2) are declared faster than claims
associated to a major catastrophe (i=3), there-
fore, ( ) ( )i

j
i
j tttt ->- 32 aa . We suppose the small

catastrophes i=1 are reported integrally at the
time of occurrence i

jt , becoming a part of the
index instantaneously ( ) ¥fi- i

jtt1a .
In the general deterministic model (equation

5), randomness is incorporated into the incurred
but not reported claim process, applying a



  889

Multi-Objective Optimization Evolutionary Algorithms in Insurance-Linked Derivatives

Wiener Process to perturb claim reporting rate
( )i

j
i tt -a . Therefore, the following stochastic

differential equation is derived:

( ) ( ) ( ) ( ) ( )tdwtRdttRtttdR i
j

i
j

ii
j

i
j

ii
j sa +--=     (6)

with [ ]1,0 Tt i
j ˛  y [ ]2,Ttt i

j˛ and where:

• ( )i
j

i tt -a  is the claim reporting rate func-
tion that represents the process drift;

• is  is a constant value that represents the
process volatility; and

• ( )i
j

i
j ttw -  is a Wiener process related to

each different catastrophe.

Wiener process randomizes each
catastrophe’s claim reporting rate. Then each
catastrophe follows its own behavior expressed
by independent Wiener processes with differ-
ent volatility parameters. In order to preserve
the decreased behavior of incurred but not
reported claim amount, a small volatility value is
required. This value assures a quasi-null prob-
ability of considering an increase in ( )tR i

j .

General Resolution for
Proposed Model

Applying Itô’s Lemma in equation 6, we obtain ( )tR i
j :

( )
( ) ( ) ( )

2
)(

22

0

i
j

i
j

ii
j

i
jtt

i ttwttdss
i
j

i
j ektR

-+--- ò
=

-

s
s

a           (7)

with the following bound constrains:

• If i
jtt =  then ( ) i

j
i
j

i
j ktR = , the incurred but

not reported claim amount is the total
amount of catastrophe.

• If ¥fit  then ( ) 0=¥i
jR , the incurred but

not reported claim amount is 0.

From the relation defined between  and
defined in equation 2, we obtain :

( )
( )

œ
œ
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Œ
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º

Ø
ò

-=
÷
ł
öç

Ł
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÷
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Ł
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-- i
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i
i
jtt

dssi

i
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j ektS

s
s

a
2

2

01
     (8)

Symmetrically to the incurred but not re-
ported claim amount, bound constrains for the
reported claims amount are:

• If i
jtt =  then ( ) 0=i

j
i
j tS , the reported claims

amount is 0.
• If ¥fit  then ( ) i

j
i
j

i
j ktS = , the reported claim

amount is the total amount of catastrophe.

Solution for Constant
Claim Reported Rate

When claim rate is considered constant
( ) ii s aa = , we can calculate the integral of

equation 7 as:

( ) ( )òò
--

-×==

i
jtt

i

j

ii

i
jtt

i ttdsdss
00

aaa      (9)

By substituting this result in equation 7, the
incurred but not reported claim amount at t is1:
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and the reported claim amount until t is:

( )
( ) ( ) ( )

ï
ï

î

ï
ï

í

ì

=
œ
œ
œ

ß

ø

Œ
Œ
Œ

º

Ø

-

=

= -+-×
÷÷
÷

ł

ö

çç
ç

Ł

æ
+-

3,21

1

2

2

iek

ik

tS
i
j

i
j

ii
j

i
i ttwtt

i
j

i
j

i
j

s
s

a

(11)

( )tR i
j  is a random variable whose distribution

depends on total catastrophe amount distribu-
tion i

jk . With the hypothesis that i
jk  is a constant

value, ( )tR i
j  will follow a lognormal distribution,
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where normal distribution parameters associ-
ated are:

( ) ÷
÷
ł

ö
ç
ç
Ł

æ
--÷÷

ł

ö
çç
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æ
+- i

j
ii

j
ii

j ttttkN s
s

a ,
2

ln
2

    (12)

This means, in average, that the incurred but
not reported claim amount shows an exponen-
tial decreasing asymptotic to abscises axis, and
then the reported claim amount increases as-
ymptotically to i

jk ,

( )[ ] ÷
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Solution for Asymptotic
Claim Reported Rate

When claim rate is considered asymptotic
( ) ( )sii i

es baa --×= 1 , we can calculate the inte-
gral of equation 7 as:

( ) ( ) ( )òò
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By substituting this result in equation 7, the
incurred but not reported claim amount at t is:
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and the reported claim amount until t is:
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In the case of , when volatility is null, equa-
tions 15 and 16 are:
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Solution for Hybrid (Constant and
Asymptotic) Claim Reported Rate

When claim rate is considered hybrid (increas-
ing linearly until moment i

ms  and constant
( ) ii s aa =  from this moment),

( )
ïî

ï
í
ì

>

££
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i
m
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sss
ss
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a
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    (19)

we can calculate the integral of the equation in
two different situations:

• If evaluation moment t is previous to the mo-
ment of claim rate change i

m
i
j

i
j sttt +££ , then:

( ) ( )
òò
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i
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By substituting this result in equation 7, the
incurred but not reported claim amount at t is:
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and the reported claim amount until t is:
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• If evaluation moment t is later than the
moment of claim rate change i

m
i
j stt +> , then,
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By substituting this result in equation 7, the
incurred but not reported claim amount at t is:
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and the reported claim amount until t is:
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In the case of 0=is , when volatility is null,
equations 24 and 25 are:
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Evaluation of ( )2TL

Loss ratio of catastrophic insurance derivatives
is defined as:

( )
cte

2TLLR =     (28)

where ( )2TL  is the total claim reporting amount
at 2T  associated to the catastrophe occurrence
in the [ ]1,0 T  period.

( )2TL  is defined by aggregation of three
components:
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where ( )2TLi  is the total claim reporting amount
at 2T  associated to type i catastrophe occurred
in [ ]1,0 T
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Then ( )2TL  could be expressed as:
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MULTI-OBJECTIVE
OPTIMIZATION WITH
EVOLUTIONARY ALGORITHMS

The concept of optimization refers to the process
of finding one or more feasible solutions of a
problem which corresponds to the extreme values
(either maximum or minimum) of one or more
objective functions. Initial approaches to optimi-
zation were focused on the case of solving prob-
lems involving only one objective. However, as
most real-world optimization problems involve
many objectives, the research on this area has
rapidly broaden this attention to encompass what
has been called multi-objective optimization.

When moving from the single-objective ap-
proach to the multi-objective one, the question
of objective trade-offs arises. This is caused by
the fact that a solution might be optimal with
respect to one objective, but would be less-
than-optimal for the rest. Therefore the glo-
bally optimal solution to a given problem would
be a compromise between feasible ones of the
different objectives.

This leads us to the dilemma that hovers
over all multi-objective optimization algorithms:
how to select a solution from the set of feasible
ones. This selection implies the use of high-
level pondering criteria. An ideal strategy for
solving this issue can be devised as:

1. Find a set of partially optimal solutions
using different selection criteria, and then;

2. choose among the elements of the set
using a high-level knowledge.

Classical approaches to this class of prob-
lems are based on preference-based search

procedures. In these procedures, fitness values
produced by each objective are scaled via a
relative preference vector. This kind of process
is repeated on a point-by-point basis generating
a (hopefully) better solution after each itera-
tion.

As a result of the need for better optimiza-
tion methods, a number of novel optimization
algorithms of stochastic nature have been pro-
posed. Among these new models are evolu-
tionary algorithms (EA). EAs mimic nature’s
evolutionary principles to control the progress
of the search toward an optimal solution. The
fundamental difference of this type of algo-
rithm with regard to the classic ones is that
instead of focusing on a single solution, EAs
maintain a population of solution. This popula-
tion is refined in each iteration using operators
related to the processes of natural selection,
crossover, mutation, and so on.

 In this work we discuss the application of
an evolutionary algorithm known as strength
Pareto evolutionary algorithm (SPEA; Zitzler
& Thiele, 1998, 1999). In particular we apply an
improvement of this method known as SPEA2
(Zitzler, Laumanns, & Thiele, 2002). However,
in order to properly present the details of these
models, we feel that we first need to formally
sketch the theoretical foundation on what they
are built upon.

Multi-Objective Optimization

In general terms, the multi-objective optimiza-
tion problem can be formally stated as

( )
( )
( )

.,,1,
;,1,0
;,,1,0gsuject to
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where nRx˛  is the vector of variables to be
optimized, each bounded by l

ix  and u
ix ; fm (...)

are the objective functions being minimized or
maximized; and gj (...) and hk (...) are the
inequality and equality constraints, respectively.

Following the duality principle 0, we can
rephrase any maximization objective as a mini-
mization one (and vice versa). Thanks to this and
because of the fact that we are not going to deal
with constraints, we can rewrite equation 33 as:

( ) ;,,1,minimize Mmfmm K== xz     (33)

Here the vector zm designates the quality of
a given solution and is known as the objective
vector.

In order to rank the quality of a solution with
respect to others, the concept of dominance has
been introduced.

Evolutionary Algorithms

An evolutionary algorithm (also EA, evolution-
ary computation, artificial evolution) is a ge-
neric term used to indicate any population-
based metaheuristic optimization algorithm that
uses mechanisms inspired by biological evolu-
tion, such as reproduction, mutation and recom-
bination, and so forth. Candidate solutions to
the optimization problem play the role of indi-
viduals in a population, and the cost function
determines the environment within which the
solutions “live.” Evolution of the population
then takes place after the repeated application
of the above operators.

Because they do not make any assumption
about the underlying fitness landscape, it is
generally believed that evolutionary algorithms
perform consistently well across all types of
problems (see, however, the no-free-lunch theo-
rem; Wolpert, 1997).

Genetic algorithms are a particular class of
evolutionary algorithm. Genetic algorithms are

typically implemented as a computer simulation
in which a population of abstract representa-
tions (called chromosomes) of candidate solu-
tions (called individuals) to an optimization prob-
lem evolves toward better solutions. GA theory
is elegant, fascinating, and full of subtle varia-
tions that may—or may not—be useful in cer-
tain applications. Since Holland’s (1975) semi-
nal work, numerous variations of the conven-
tional GA have been proposed. Most of the
variations are well beyond the scope of this
work.

Strength Pareto
Evolutionary Algorithm

The SPEA was proposed by Zitzler and Thiele
(1998, 1999). This algorithm implements elitism
by preserving an external population P . This
external population stores a fixed amount of
non-dominated solutions that were discovered
since the beginning of the simulation. Then,
after every iteration of the algorithm, if a new
non-dominated solution is found, it is compared
with those present in P  preserving the best
solutions. However, SPEA goes beyond just
keeping an elite set of solutions. It uses the
solutions stored in P  along with the plebeian
solutions in all genetic operations with the hope
of inducing a better performance of the search
in the solution space.

Although SPEA has produced a number of
relevant results, it has been pointed out that it
has some potential weaknesses (Zitzler et al.,
2002).

SPEA2 was proposed as an attempt to
overcome the limitations of SPEA. It keeps the
overall scheme of its predecessor, but in con-
trast to SPEA, SPEA2 uses a fine-grained
fitness assignment strategy that incorporates
density information. Furthermore, the external
population has a fixed size; therefore, when-
ever the number of non-dominated solutions is
less than the predefined archive size, the archive
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is filled up by dominated individuals. Finally, the
clustering technique used to prune the external
population has been replaced by an alternative
truncation method, which has similar features
but does not miss boundary points.

PROBLEM STATEMENT

Multi-Objective Problem Definition
Over Empirical Data

The basic problem addressed in this work is the
adjustment of mathematical models described
earlier to fit data representing real disasters.
This process is formulated as an optimization
over the parameters to maximize the models
fitting with respect to real data.

Data are related with seven documented
disasters (floods) that occurred in different
Spanish regions: Alcira (October 1, 1991),
Donosti (June 23, 1992), Barcelona 1 (Septem-
ber 14, 1999), Barcelona 2 (October 20, 2000),
Zaragoza (October 20, 2000), Valencia (Octo-
ber 20, 2000), and Murcia (October 20, 2000).
The data, obtained from the “Consorcio de
Compensación de Seguros” ,2 contains the de-
tails of amounts and dates for claims raised
after each disaster. Data have been filtered and
aggregated to obtain temporal series (evenly
distributed per week, with time origin in zero)
with the variable ( )tR i

j , as defined earlier with
an incurred but not reported claim amount
(IBNR). The resulting time series with these
values, as a relative percentage of total amount
for each disaster, are presented in Table 1.

Given these data, the optimization problem is
the search for parameters of three certain distri-
bution functions in order to minimize the predic-
tion error for all data samples (total sum per
series). For a model R(ti), with data yij for j-th
disaster (with length Nj), the performance value
to be minimized in the adjustment of R(.) is:

( )å
=

-=
jN

i
ijij ytR

1

2)(e    (34)

The three models analyzed and their param-
eters, under the particular conditions mentioned
above, are:

• Model 1: Constant claim reported model:
an exponential distribution (from equation
13) where a single shape parameter, a
(positive values), must be adjusted to the
real data distribution:

)exp(100)(1 ii ttR a-=

• Model 2: Asymptotic claim reported
model: following equation 17, two shape

Table 1. ES-optimization of model 1, specific
adjustment

NON REPORTED CLAIM AMOUNT (%)
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/0
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99

Ba
rc

el
on

a2
20

/1
0/

20
00

Z
ar

ag
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a
20

/1
0/

20
00

V
al

en
ci

a2
20

/1
0/

20
00

M
ur

ci
a

20
/1

0/
20

00

WEEK
0 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1 84.94 88.08 90.68 85.95 60.11 97.54 88.46
2 53.65 36.04 68.38 61.73 56.91 80.18 75.55
3 34.96 23.67 50.68 34.98 38.30 60.15 48.70
4 24.05 16.68 41.42 24.07 29.79 43.16 31.13
5 18.86 12.29 31.58 14.05 23.40 31.96 21.41
6 13.36 9.94 25.43 12.41 19.15 27.55 15.78
7 10.53 8.72 19.56 8.52 18.09 19.54 11.27
8 8.04 7.76 16.68 5.23 15.43 15.29 8.71
9 6.94 6.80 13.28 5.23 15.43 14.76 8.24
10 5.23 5.78 10.54 5.08 15.43 14.70 6.57
11 4.08 5.18 8.15 3.44 10.64 11.06 5.36
12 3.71 4.33 6.80 3.59 6.91 8.46 4.00
13 3.56 3.45 6.13 2.24 3.72 6.98 3.38
14 2.60 2.69 3.41 1.20 3.72 6.21 2.60
15 1.75 1.81 3.41 0.60 3.72 5.17 2.80
16 1.30 1.59 2.61 0.60 2.66 4.22 2.29
17 0.77 1.39 1.81 0.60 2.66 3.50 2.25
18 0.29 1.16 1.26 0.45 2.13 2.72 2.14
19 0.00 0.96 0.56 0.45 1.60 2.26 1.67
20 0.00 0.76 0.00 0.45 1.60 1.88 1.28
21 0.00 0.45 0.00 0.45 1.60 1.69 1.09
22 0.00 0.28 0.00 0.00 1.60 1.61 0.93
23 0.00 0.20 0.00 0.00 1.60 0.90 0.66
24 0.00 0.17 0.00 0.00 1.60 0.54 0.62
25 0.00 0.11 0.00 0.00 1.60 0.36 0.66
26 0.00 0.06 0.00 0.00 1.60 0.19 0.16
27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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parameters (a and b, both positive) must
be adjusted to obtain the maximum fitting
of data:

)/*))t*exp(--exp((1.0*)t(-exp100)(2 baba iiitR =

• Model 3: Hybrid model: following equa-
tions 19 and 26, two parameters must be
fitted: the time when claim rate changes
from linearly increasing to constant, sm (a
positive discrete parameter since weeks
are represented with integers); and the
shape parameter a:

î
í
ì

>
£

=
mm

mm
2

3 st)),s-t2(exp(-0.5*100.0
st),/stexp(-0.5*100.0)(

ii

ii
itR

a
a

    (35)

Finally, this optimization process has been
carried out in two ways: as a local adjustment
for each disaster ,je  and a global optimization
trying to fit all disasters at the same time

(optimization of total sum of errors å
=

7

1j
je ). In the

case of using a scalar evolution strategies algo-
rithm, a scalar fitness function was used for
each disaster, and each adjustment was a dif-
ferent optimization run, including the additional
optimization of total sum. However, the use of
a multi-objective algorithm allowed us to per-
form optimizations searching in a single run all
parameter sets suitable for the seven situations
and for the total sum (all included in the Pareto
front) at the same time.

RESULTS

The general structure of this section with re-
sults for the optimization problem presented
above is as follows. In the first place, for each
of the three models, the particular optimizations
are obtained for each individual data set (fitting

the models for each region) and the values if the
sum of error of all series is minimized. So, this
first phase presents results for seven indepen-
dent optimizations, all of them carried out with
a evolution strategies algorithm (optimization of
a scalar function depending of one parameter
for first model, and of two parameters for the
second and third ones). In a second phase, the
optimizations with SPEA2 algorithm are pre-
sented. In this case, each model has been
optimized considering the six data sets as dif-
ferent objectives to be fitted at the same time
with a multi-objective optimization. In this case,
2D and 3D views of the final population of
solutions (with seven dimensions) after conver-
gence are depicted. From this set of solutions
(50 individuals in populations) representing the
whole Pareto-optimal front, the particular points
with optimal values for each individual region
and for the total sum are selected, in order to be
compared with those generated with a scalar
optimization for particular functions.

Model 1 (Exponential Distribution,
One Parameter)

For each individual disaster, the optimization
procedure with evolution strategies has been
applied, with the results indicated in Table 2.
There, the optimum parameter a for each data
subset is indicated, together with the optimum
value achieved for that case. Table 3 shows the
results after a global optimization considering
the sum of errors if a single parameter is used
to fit all series. Obviously, the global strategy
presents worse results for each disaster with
respect to the optimum value obtained specifi-
cally for that case. This adjustment of model is
depicted in Figure 1 with all data series. There
can be seen the difficulty to obtain a “global”
value of parameter fitting all series and the
necessity to derive the appropriate value for
each particular series.
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Table 2. ES-optimization of model 1, specific
adjustment

Table 3.  ES-optimization of model 1,
adjustment of sum

Figure 1. Curves obtained with model 1 (specific and global optimizations)

The SPEA2 algorithm results are depicted
in Figures 2 and 3. Since the results comprise
the populations with seven-dimension individu-
als, some views have been selected for graphi-
cal illustration, presenting some 3D and 2D
groups of objectives (model fitting to combina-
tions of different regions). In the figures, the
success to obtain a well-distributed sample of

Pareto optimal front (non-dominated solutions)
can be clearly appreciated.

Finally, from the whole population after
SPEA2 algorithm’s convergence (50 individu-
als), some particular points have been selected:
those corresponding to a minimum value for
each individual dimension (each one of the
seven regions) and for the total sum. Their

Series Alfa
Squared
Error Sum

Alcira 0,317 195,21
Donosti 0,394 680,02
Barcelona1 0,220 138,59
Barcelona2 0,319 341,54
Zaragoza 0,277 533,15
Valencia 0,199 534,69
Murcia 0,259 523,72
TOTAL 2946,93

Series Alfa
Squared
Error Sum

Alcira 399,68
Donosti 1673,43
Barcelona1 605,15
Barcelona2 575,36
Zaragoza 535,77
Valencia 1654,44
Murcia 545,16
TOTAL 0,271609 5988,99
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Figure 1. Curves obtained with model 1 (specific and global optimizations) (cont.)

values (parameters and corresponding errors)
are displayed in Tables 3 and 4. If we compare
these values with those in Tables 1 and 2, we
can check their closeness. The conclusion is
that the multi-objective optimization algorithm
achieves, in a single run, a set of solutions
containing all Pareto optima, including as par-
ticular individuals the values generated with
seven (conventional) scalar optimizations for
the specific objectives defined.

Model 2 (Exponential Distribution,
Two Parameters)

A similar analysis can be done for this second
model with two parameters. In the first phase,
the optima found with particular optimization
runs are presented in Tables 5, 6, and Figure 4.
Compared with the previous model (Tables 1

and 2), we can see that the capability of this
second model to fit the data samples is higher,
with an error reduction for all cases.

Regarding the SPEA2 results for this model,
the results are presented in Figures 5 and 6, and
selected values in the front appear in Tables 7
and 8. The same comments can be said about
the capability to find the whole set of non-
dominated solutions in a single run, including the
previous values (or points very close to them)
as particular individuals in the final population.

Model 3 (Hybrid Model,
Two Parameters)

Finally, a similar analysis of results can be
carried out for this third model, corresponding
to a hybrid combination of exponential distribu-
tions. Tables 9 and 10, and Figure 7 represent
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the values for the first phase, with seven spe-
cific optimizations, while Figures 8 and 9 with
Tables 11 and 12 show the results regarding the
multi-objective optimization run. Compared with
the values obtained in the same situation for the
previous models, we can conclude the highest
capability of this model to fit the available data.

CONCLUSION

The proposed model for the total reported claim
amount probability distribution allows the clas-

sification of catastrophes and stochastic esti-
mation of model parameters. The core of the
model is the definition of the reporting dynam-
ics based on an exponential model with a claim
rate function which can be applied to the in-
curred but not reported claim amount. Initially,
we have considered a deterministic claim re-
porting rate for each type of catastrophe. The
relative simplicity of the presented model eases
parameter estimation and simulation.

In this work, the application of machine
learning techniques allows estimation of the
parameters of the model by the optimization of

Figure 2. 3D views of Pareto front for model 1 (triads of different regions)
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Figure 3. 2D views of Pareto front for model 1 (pairs of first region with the rest)
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Series Alfa
Squared
Error Sum

Alcira 0,319 195,639
Donosti 0,395 680,119
Barcelona1 0,218 141,626
Barcelona2 0,319 341,539
Zaragoza 0,279 533,663
Valencia 0,198 534,837
Murcia 0,257 524,721
TOTAL 2952,145

Table 4. SPEA-2 solutions for model 1, optima
for specific regions

Table 5. SPEA-2 solutions for model 1,
optimum for total sum

Series Alfa

Squared
Error
Sum

Alcira 413,86
Donosti 1.702,41
Barcelona1 584,66
Barcelona2 590,55
Zaragoza 537,38
Valencia 1.621,58
Murcia 540,79
TOTAL 0,27026 5.991,22

Table 6. ES-optimization of model 2, specific
adjustment

Table 7.  ES-optimization of model 1,
adjustment of sum

Series Alfa Beta
Squared
Error Sum

Alcira 0,371 2,252 95,95
Donosti 0,521 1,750 493,84
Barcelona1 0,248 2,006 35,01
Barcelona2 0,436 1,132 77,47
Zaragoza 0,277 262,232 535,98
Valencia 0,252 0,962 172,37
Murcia 0,383 0,750 132,51
TOTAL 1543,12

Figure 4. Curves obtained with model 2 (specific and global optimizations)

Series Alfa Beta
Squared
Error Sum

Alcira 310,05
Donosti 1622,69
Barcelona1 554,14
Barcelona2 385,26
Zaragoza 876,14
Valencia 1489,53
Murcia 319,26
TOTAL 0,30458 2,68828 5557,07
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Figure 5. 3D views of Pareto front for model 2 (triads of different regions)

Figure 4. Curves obtained with model 2 (specific and global optimizations) (cont.)
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Figure 6. 2D views of Pareto front for model 2 (pairs of first region with the rest)
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Table 8. SPEA-2 solutions for model 2, optima
for specific regions

Table 9. SPEA-2 solutions for model 2,
optimum for total sum

Series Alfa Beta
Squared
Error Sum

Alcira 0,385 1,836 100,023
Donosti 0,515 1,836 494
Barcelona1 0,245 2,368 38,439
Barcelona2 0,385 1,836 103,019
Zaragoza 0,282 4,726 726,580
Valencia 0,257 0,805 183,876
Murcia 0,385 0,805 140,528
TOTAL 1786,614

Series Alfa
Beta

Squared
Error
Sum

Alcira 261,74
Donosti 1.536,25
Barcelona1 666,76
Barcelona2 284,76
Zaragoza 1.043,82
Valencia 1.599,72
Murcia  279,64
TOTAL 0,32937 1,83620 5.672,69

Table 10. ES-optimization of model 3, specific
adjustment

Series Alfa s
Squared
Error Sum

Alcira 0,378 0,936 83,92
Donosti 0,545 1,196 424,13
Barcelona1 0,248 0,961 26,54
Barcelona2 0,423 1,470 65,25
Zaragoza 0,274 0,002 534,56
Valencia 0,250 1,982 129,31
Murcia 0,370 2,212 104,94
TOTAL 1368,65

Table 11. ES-optimization of model 1,
adjustment of sum

Series Alfa s
Squared
Error Sum

Alcira 0,378 0,936 83,92
Donosti 0,545 1,196 424,13
Barcelona1 0,248 0,961 26,54
Barcelona2 0,423 1,470 65,25
Zaragoza 0,274 0,002 534,56
Valencia 0,250 1,982 129,31
Murcia 0,370 2,212 104,94
TOTAL 1368,65

Figure 7. Curves obtained with model 3 (specific and global optimizations)
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Figure 7. Curves obtained with model 3 (specific and global optimizations) (cont.)

Figure 8. 3D views of Pareto front for model 3 (triads of different regions)
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Figure 9. 2D views of Pareto front for model 3 (pairs of first region with the rest)
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the accumulative quadratic error. Evolutionary
computation techniques optimize the parameter
values of different possible models in order to
adjust them to a real data distribution. Models
represent different distributions that explain the
behavior of reported claims after a catastrophe
occurs. Besides, the application of multi-objec-
tive evolutionary algorithms allows obtaining a
full description of possible solutions for this
fitting problem, containing all particular cases
that could be approached after individual analy-
sis for data subsets. This capability is important
for these types of applications, where there are
not appropriate global parameters to explain the
whole set of data, but specific parameters are
needed to describe subsets corresponding to
the same model under different situations.

ENDNOTES

1 For  we obtain the differential equation
that describes the incurred but not re-
ported claim amount in a deterministic
model.

2 These data are available from the authors
upon request.
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ABSTRACT

This chapter presents an artificial stock market created to analyze market dynamics from the
behavior of investors. It argues that information—delivered by financial intermediaries as
rating agencies and considered as cognitive institution—directs the decisions of investors who
are heterogeneous agents endowed with capabilities of learning in a changing environment.
The objective is to demonstrate that information influences market dynamics as it allows the
coordination of the decisions of investment in the same direction: information is a focal
point for investors and contributes to generate a speculative dynamic on the market.

INTRODUCTION

Since their creation, stock markets have al-
ways experienced an alternation of phases of
financial bubbles and crashes, the last impor-
tant one being the bubble observed on the
American and European stock markets be-
tween 1990 and 2000. The aim of the chapter is
precisely to focus on the dynamic of prices to
try to understand the phenomenon of financial
bubble on stock markets.

The purpose is in fact to consider the emer-
gence of a dynamic of stock prices as the result

of investors’ behaviors. On the one hand, we
refer to the works that analyze economy as an
evolving complex system (Arthur, Holland,
LeBaron, Palmer, & Tayler, 1997): a market is
a complex system in permanent evolution, whose
product is explained by the numerous pro-
cesses of interactions between its components.
On the other hand, we consider market dynam-
ics and stock prices as the consequence of the
confrontation and evolution of investors’ het-
erogeneous representations (Keynes, 1936;
Kirman, 1997, 1999; Orléan, 1999; Tordjman,
1997).



910

Modeling an Artificial Stock Market

To analyze the decisions of investors and
their opinions about market dynamics, we pro-
pose an artificial model created thanks to the
techniques of data-processing simulation, and
more precisely to classifiers systems. These
techniques allow apprehending an emergent dy-
namic as the result of the interactions between
the decisions of investors composing the market.

Our model refers to the work of Arthur et al.
(1997), known as the Santa Fe Artificial Stock
Market, in which investors have to optimize the
allocation of their portfolios between two kinds
of assets: a stock and a bond. In this model,
investors: (1) are characterized by a function of
utility, (2) do not communicate, (3) form expec-
tations according to a self-referential process,
and (4) test different models of representation
selecting only the ones that have generated
profits in the past. The results of Arthur et al.
(1997) notably demonstrate that when inves-
tors test few models, the market finally reaches
an equilibrium state, whereas the market is
characterized by a more complex dynamic when
they explore several models of representation.
Our artificial model differs from the work of
Arthur et al. (1997) in the sense that: (1)
investors do not optimize the value of their
portfolios but are characterized by a “satisficing”
behavior (Simon, 1979); (2) it allows testing the
influence of institutions on financial markets
and more precisely the impact of different kind
of information on investors’ representations;
and (3) from a technical point of view, it is
innovative because the model introduces two
classifier systems as decision engines for each
artificial investor.

Our work is original in the sense that it
allows understanding behaviors according to
the nature of the informational signals provided
to investors. We consider two kinds of informa-
tion: an endogenous one, representing infor-
mation produced in the financial sphere and
resulting from the interactions between inves-

tors; and an exogenous one, indicating infor-
mation produced outside the market by finan-
cial intermediaries such as rating agencies or
financial analysts. Thanks to this typology of
information, we obtain two kinds of results. In
simulations with endogenous signal, investors
manage to coordinate their decisions: the stock
market quickly converges towards a stationary
state, whereas when investors dispose of exog-
enous information, the market is not character-
ized any more by a stable state but by the
emergence of a financial bubble.

Finally, the model highlights the power of
information in the orientation of market dynam-
ics. We demonstrate that information polarizes
the anticipations formed by investors with dif-
ferent representations on their environment:
information directs the evolution of the market
in the sense that it generates a financial bubble
and is a framework for individual action.

A JUSTIFICATION OF THE
ARTIFICIAL MODEL

The objective consists of modeling the emer-
gence of a collective dynamic on the stock
market starting from an analysis of investors’
decisions. Data-processing simulation is mobi-
lized as it allows analyzing the decision-making
process of agents in situations of uncertainty by
considering that they do not make optimal deci-
sions but adapt their decisions to the changes of
their environment. Generally, simulation is a
relevant tools as soon as the market is charac-
terized by an alternation of phases—in other
words, when it is a question of analyzing a
dynamic and an open system (Lane, 1993).
Simulation allows studying a global dynamic
without providing an analytical representation
of it, and accounts for the emergence of a
global phenomenon and for the adaptation of
agents to this phenomenon.



  911

Modeling an Artificial Stock Market

One of the arguments often advanced in
favor of a data-processing simulation is that
market is composed of many investors who
make their decisions simultaneously and whose
networks of interactions are too numerous to be
studied in an analytical way (Tordjman, 1997).
Another justification, undoubtedly more global,
supports that this technique is adapted to any
kind of study in which the environment of
agents is complex, in the sense that the infor-
mation available exceeds the processing ca-
pacity of agents (Moss & Rae, 1992). Finally,
simulation must be considered as a useful in-
strument to improve our analysis of phenomena
of “order” or “disorder” on a market (Lesourne,
1991).

The artificial stock market is built thanks to
classifier systems that are well adapted to the
analysis of the emergence of a complex dy-
namic. Classifier systems recognize the impor-
tance of agents’ cognition to explain their be-
haviors and market dynamics: investors evolve
in a changing environment and are endowed
with representations of their environment as
well as capabilities of learning. Their represen-
tations are not fixed ex-ante, but are emergent
and change over the course of time thanks to
the process of adjustment of investors to the
evolution of their environment. Learning is con-
sidered as the driving principle of the evolution
of the market. Learning is primarily: (1) induc-
tive because investors observe the sequence of
their last decisions and try to find some regulari-
ties in stock price dynamics to build a general
law (Arthur, 1994); (2) path-dependent, hav-
ing resulted from the history of the interactions
(David, 1985); and (3) cumulative because
investors learn how to replay rules that have
procured them satisfaction in the past (David,
1985; Arthur, 1994; Kirman, 1999; Tordjman,
1997). This conception of learning supposes
that investors have a memory to record their
past results and criteria of judgment to select a
rule of investment (Paulré, 1997).

The period of learning is divided in two
phases: an exploration phase during which in-
vestors try to discover profits related to each
rule and another, during which they tend to
replay actions which have generated profits.
The rationality of investors enables them to
summarize past profits and to create an index of
profit for each activated rule, knowing that they
tend to reinforce decisions that have already
generated profit. In fact, investors’ prefer-
ences are expressed through an index that
synthesizes their last experiments.

But to which kind of rationality do we pre-
cisely refer to model investors? We postulate
that their rationality is limited in the sense that
each agent: (1) does not know the whole op-
tions that are offered to him (informational
limits), and (2) is not able to evaluate all the
consequences of his choices (computational
limits) (Simon, 1979). Investors do not select
rules that could allow them to maximize their
portfolios’ value, but more simply try to find a
rule that could increase this value. Investors
are also endowed with a cognitive rationality:
they must carry out adequacy between the
information they possess and their representa-
tions on their environment and on themselves
(Lesourne, Orléan, & Walliser, 2002).

MICROSTRUCTURE
OF THE MARKET

We analyze market dynamics considering stock
prices as the result of the confrontation be-
tween the personal opinions of
investors (Keynes, 1936; Orléan, 1999). More
precisely, prices represent the average opinion
of the investors’ community1 which means that
investors account of the others and of their
evolving environment to make their decisions
(Keynes, 1936). While trying to guess the fu-
ture average opinion to beat the market, inves-
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tors can lead prices to excessive levels in
comparison with real economic data.

Our stock market is a system in which it is
possible to observe phenomena of self-organi-
zation: we recognize the capacity of the market
to produce a structure, a behavior, and/or its
own rules of functioning (Lesourne, 1991;
Paulré, 1997). Self-organization is apprehended
on two levels: first, it indicates the capacity of
the market to produce some rules of invest-
ment. Then, it supposes that investors are able
to adapt their behaviors to their changing envi-
ronment. In fact, each investor transforms and
structures the environment of the others, and
market dynamics are open.

Investors and Firms

The artificial market consists of 20 investors
that must allocate the amount of their portfolios
(composed of liquidities and stocks) on 10
firms. The latter are different by their stock
exchange capitalization: the number of stocks
and stock prices are different for each firm.
There is neither creation, nor destruction of
firms and stocks during the simulations.

Besides, there are no transaction costs on
the market, and information is free and acces-
sible to all investors without discrimination.

To characterize each firm, we create an
indicator that can be compared to a ranking of
firms delivered by a rating agency. This indica-
tor, called expected percentage of growth
(EPG), attests the possibilities of real growth of
the firm: it is information on the fundamental
value of the firm. The rating agency diffuses a
grading of the 10 firms according to this indica-
tor, knowing that the EPG indicator can take
values ranging between less than 10% and
more than 10% of the current stock price.
Negative values of the EPG indicator mean
unfavorable prospects of growth of stock prices.
On the contrary, positive values testify favor-

able prospects. EPG values are randomly given
to each firm at the beginning of simulation, and
they reflect information for stock prices for the
following periods. The objective is to test the
impact of EPG value on investors’ strategies
and on market dynamics.

To simulate investors and to observe the
emergence of various investment strategies
based on the “satisficing” postulate (Simon,
1979), two kinds of classifier systems (both
based on ZCS; Wilson, 1994) are used to model
the behavior of a unique investor. The first one
generates decision regarding the purchase of
stocks: an investor can decide to buy or to
ignore stocks of a firm. The second one gener-
ates decisions regarding the sale of owned
stocks: an investor can choose to sell or to
conserve stocks of a firm. Using two classifier
systems instead of a unique one is mainly due to
the chosen rewarding strategy. Indeed, we
assumed that “purchase” and “sell” rules are
not evaluated with the same temporality. Mix-
ing both kinds of classifiers in a unique system
may quickly favor rules with instantaneous
rewards (“sell” classifiers) over rules with
continuous rewards (“purchase” classifiers).
On the contrary, separating them avoids that
any kind of rule becomes dominant and breaks
convergence dynamics of the system. The two
classifier systems are independent: they simply
each produce the best investment order (i.e.,
the one that will generate more profit). Their
necessary coordination emerges from the spe-
cific functioning scheme of classifier systems
that detect, classify, and generalize environ-
mental situations (the market configuration),
from the arbitration of the auctioneer, and from
the way it handles transactions between inves-
tors.

In addition to our specific rewarding scheme,
we choose not to use a genetic algorithm to
generate new rules of investment. Indeed, our
goal is not to optimize a set of rules, but to
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generate the emergence of a variety of good
and bad strategies among investors. We do not
obtain only investors that always make the good
choice. Finally, we introduce covering in order
to avoid situations where investors cannot pro-
vide an order.

The condition part of both kinds of classifier
systems is mostly similar: it consists of a con-
catenation of exogenous and endogenous sig-
nals which can produce an effect on the behav-
ior or on the cognitive state of an investor.
Endogenous signals—which represent infor-
mation produced by financial actors of the
market—are (1) the historical data for stock
prices of a firm over the last 20, last 10, and last
two periods; (2) the configuration of stocks at
the preceding period—do stocks have a ten-
dency to be purchased or to be sold?; and (iii-
a) the number of stocks investors can purchase
considering their liquidities—“purchase” clas-
sifier system, or (3-b) the percentage of owned
stocks of a firm—“sell” classifier system. The
only exogenous data is the current EPG value.
The historical data enable the postulation of the
existence of “chartists” behaviors as well as
the role of memory: do investors hold account
of the past data to make their decisions? Do
they have a short-term or a long-term memory?

The action parts of both classifier systems
consist of the next investment order, a percent-
age of stocks to buy or to sell, and a purchase
or sale price. To avoid a tendency to high
speculation, we create an institutional rule: for
their purchase orders, investors can propose a
purchase price ranging between 0 and 10% of
the current price; concerning their sale orders,
they can propose a price ranging between 0 and
less than 10% of the current price. This institu-
tional rule validates the thesis of the organizing
function of the market since we recognize that
institutional rules are a framework for indi-
vidual action.

Transactions on the
Artificial Market

At the beginning of each simulation, the artifi-
cial market is created out of nothing with ficti-
tious stock prices: prices and the allocation of
portfolios on the various stocks are randomly
generated.

A simulation is a succession of periods of
transactions that reproduce the operation of the
notebook of orders before the opening of the
stock exchange: all investors make their deci-
sion in a simultaneous way, and transmit their
purchase and sale orders for each firm to an
auctioneer.

In real financial markets, to pass a stock
exchange order, it is important to know the
notebook of orders which indicates, at one
given moment, the state of supply and demand
on a value to produce an equilibrium price, and
the price being determined to maximize the
number of transactions on the market. Here,
the auctioneer counts the orders, eliminates
‘invalid’ orders, and treats orders firm by firm
in a random way. A purchase order will be
accepted if investors have sufficient liquidities
to buy stocks and if they manage to find a
counterpart. A purchasing order will have pri-
ority on the other purchasing orders if it pro-
poses the highest purchase price. Conversely, a
sale order will have priority on the others if it
proposes the weakest selling price. All orders
cannot be carried out in the market, in particular
when investors do not have sufficient liquidities
at their disposal or do not find a counterpart.2 In
conformity with the treatment of orders on real
financial markets, orders are only valid on the
day where they are emitted, in other words for
only one period. Some investors can be ‘ra-
tioned’ over one period. But at the end of each
period, orders that are not carried out are
withdrawn from the notebook. Finally, at each
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period, the notebook of orders is automatically
set to zero (market clearing).

Between two periods, portfolios of inves-
tors are evaluated considering the evolution of
stock prices. The generated rewards will be
distributed to active classifiers.

The market is “built” by investors since
market dynamics are the result of their interac-
tions: the behavior of others is important for the
decision making. Investors are not isolated
calculators—their choices of investment relate
to the choices and behaviors of others. How-
ever, this method of evaluation does not mean
for all that investors only decide according to
the opinion of the others. They can also decide
to invest according to external information de-
livered by the rating agency: the EPG value.

The Rewarding System

A classifier receives a reward based on the
profit that its activated order has generated.
Regarding the “ignore,” “conserve,” and “sell”
orders, rewards are immediate: they represent
immediate gain or loss of portfolio value3 during
the last transactions. On the contrary, a “pur-
chase” order is never remunerated at the mo-
ment of the transaction, for when one investor

purchases a stock, he only transforms his li-
quidities into stocks. The classifier is remuner-
ated by the profits or losses that acquired
stocks generate from the moment of their pur-
chase to the moment of their sale.

The equations of Table 1 show calculation
of rewards in both kinds of simulations: the
simulations without influence of the exogenous
data and the ones where investors take EPG
values into account. In this last kind of simula-
tion, the EPG parameter does not have a real
influence on the stock price of a firm, so
investors cannot learn automatically how to use
it. To compensate for this, we choose to incor-
porate this parameter in reward calculation,
making the assumption that the information
provided by the rating agency is always cor-
rect.

For each period Ti of the simulation and for
each firm, we consider the following data:

• pi1: stock price at Ti before the transaction
(i.e., stock price at the time of decision-
making);

• pi2: stock price at Ti after the (i.e., new
emergent price on the market);

• Gi: profit for the classifier involved in the
decision of investment for Ti;

Table 1. Rewarding system
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Figure 1. The artificial stock market
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j At the beginning of one period of simulation , each investor receives from each firm one
incoming message for its “purchase” classifiers system and one for its “sell” one . Incoming
messages are built using firms data and investor’s own portfolio (figure 2).

k Using its classifiers systems , each investor produces one “purchase” order and one “sell”
order for each firm. All orders are collected and transferred to the auctioneer .

l “Ignore” and “conserve” orders are kept aside . “Purchase” and “sell” orders concerning a
firm are organized in books of orders . Books of orders , and resulting transactions , are
randomly handled one by one . During this operation , the auctioneer evaluates the
consistency and the coherence of orders : “purchase” orders that can not be fulfilled (lack of
liquidities) are eliminated; in case of both “purchase” and “sell” orders from one investor
and concerning the same firm , one of them is randomly kept .

m Firms’ data and investors’ portfolios are updated according to the transactions (i.e. new
stock prices and new repartition of stocks and liquidities between investors ).

n According to the new configuration of the market , gains and losses are evaluated and
generate activated classifiers’ rewards (see 3.2). So, at the end of the period , classifiers that
have produced a good decision and that have generated profit , are strengthened (and thus
more inclinable to be activated again ), while the “bad” ones are weakened according to the
losses that they have generated .

• Gij: profit for the rule of investment from
Ti to period Tj;

• N: number of stocks of a firm;
• NPi: number of purchased stocks at Ti;
• NOi: number of owned stocks Ti;
• NSi: number of sold stocks Ti; and
• EPGi: EPG value at Ti.

Figures 1 and 2 summarize the functioning
of our artificial market and present the descrip-
tion of the two classifier systems.

SIMULATIONS AND RESULTS

We present the results of two kinds of simula-
tions to understand the emergence of particular
market dynamics. The first kind designs cases
in which investors have only endogenous infor-
mational signals, whereas the second type in-
cludes information delivered by the rating
agency. For each simulation, we analyze mar-
ket dynamics thanks to a stock index.4 This
index represents the evolution of firms’ capi-



916

Modeling an Artificial Stock Market

talization and allows comparing the global per-
formance of the market to the performance of
the different firms: do investors reproduce the
performances of the market, or under-perform
or out-perform the market? We also propose a
typology of investors according to their perfor-
mances of management (do their portfolio val-
ues increase or decrease) and according to
their strategies of investment (which rules of
investment do they use).

Each simulation is carried out over 4,000
periods, one period being theoretically compa-
rable to one day of pre-opening to the stock
exchange.

Coordination of the Decisions of
Investment around a Stationary State

The results of simulation, in which investors
have only endogenous signals, look like the
results of the Efficient Market Theory, accord-
ing to which the market converges towards a
state of equilibrium (Fama, 1970). This state of
equilibrium means that prices contain all infor-
mation available on the market: prices allow
investors to make their decisions without hav-
ing a perfect knowledge of the global function-
ing of the market. But how is it possible to

Figure 2. Structures of messages and classifiers (investment rules) of both kind classifiers
systems (‘purchase’ and ‘sell’ systems)
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justify the coordination of investors in the same
direction in our artificial model?

Market Dynamics:
Towards a Stationary State

The analysis of the stock index reveals that it
grows on average of 90% on the whole period
for all the simulations carried out. This progres-
sion is not continuous: the market always goes
through a phase of strong growth, then through
a decrease of firms’ capitalization, to finally
stabilize itself after the period of learning. More
than to stabilize itself, the market balances
between the period t=2000 and the period
t=3000 for the whole simulations carried out.
Investors manage to coordinate their behaviors
without having an identical reference for all at
the beginning, reference on which they could
have coordinated each other. Then how is it
possible to justify such a stable state?

We cannot explain this coordination by the
fact that investors have an identical idea of the
equilibrium market price, for there is no refer-
ence, no precedent, no convention at the begin-
ning of each simulation (Schelling, 1960). There-
fore, we propose an explanation starting from
the process of learning that characterizes in-

vestors. At the start, rules are mobilized in a
random way by investors. If the first emergent
rules lead to an increase in the portfolio’s value,
these rules have a strong probability of being
selected again, in accordance with the func-
tioning of classifier systems. Then investors
are likely not to explore all possible alternatives
because of their limited computational capabili-
ties. And if all behave in the same way, each
one persisting in the exploitation of the first
emergent rules that have generated profit, they
can succeed in coordinating with each other,
and prices finally stabilize after the period of
learning: “…the place where the price stabi-
lizes is random, it depends on the direction
of the first ‘good’ rules which emerge”
(Tordjman, 1997, p. 891). Finally, coordination
of the decisions towards a stable state is justi-
fied by the fact that investors persist in the
exploitation of the first emergent rules and do
not explore many alternatives (Holland, 1975).5

Typology of Investors

An analysis of investors’ strategies reveals
three recurring kinds of behavior of investment.

Type 1 includes investors whose perfor-
mances are poor and negative, although these

Figure 3. Stock index evolution
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investors manage the largest portfolios at the
start.6 These investors have a very aggressive
behavior: at the beginning, they purchase stocks
until exhaustion of their liquidities, then they
massively sell stocks before stabilizing their
portfolios at the end of the period. They buy
whatever the configuration of the stock on the
market is, and they propose sale and purchase
prices so that their orders are treated in priority.
The rule that generates the highest profit con-
sists of purchasing a stock whatever its con-
figuration. Finally, they are speculators without
precise strategy with respect to prices, or with

respect to the others. They behave as isolated
calculators and only seek short-term profits by
adopting very aggressive positions: they con-
tinuously purchase and sell stocks.

Type 2 includes investors whose perfor-
mances are positive while remaining lower than
the progression of the stock index. These inves-
tors purchase and sell stocks in a very frequent
way, but they differ from the first type by the
adoption of specific rules: they always pur-
chase a small quantity of stocks and they sell
stocks in a more massive way. They generally
buy when stocks have a tendency to be sold—

Figure 4. Portfolio of investors belonging to TYPE 1

Figure 5. Portfolio of investors belonging to TYPE 2
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in other words when a potential offer exists on
the market—and they sell whatever the stocks’
configuration. These investors are strategic
calculators in the sense that they learn how to
split up their orders, and they take account of
the existence of an offer on the market to make
their decisions. So, they do not behave as pure
isolated calculators.

Type 3 gathers investors whose perfor-
mances are positive and much higher than the
progression of the stock index. They manage to
out-perform the average performance of the
market. They purchase stocks when they have a
tendency to be sold at the preceding period and
sell stocks whatever their configuration. Con-
trary to investors belonging to type 2, they are
characterized by behaviors very targeted on
certain firms—that is, by a strong concentration
of their portfolios on a limited number of firms.
The rule that generates the highest profit for this
group consists of conserving stocks whatever
their configuration. These investors combine a
short-term behavior characterized by rapid move-
ments of purchases and sales on some firms, and
a medium-term behavior as their stable holdings
on a targeted number of firms attest it. As the
overview of these investors is not only the short
term, we qualify them as “careful” investors.

This first kind of simulation, in which inves-
tors have only endogenous signals, enables us
to find stylized facts observed on real financial
markets, namely: (1) aggressive investors be-
having as isolated calculators and being not
averse to risk; (2) investors taking account of
the others (strategic calculators); and (3) care-
ful investors adopting complex strategies com-
bining stable holdings on some firms and fre-
quent movement of purchases and sales on
others. However, this simulation proposes re-
sults that are only valid for the case of a pure
speculation market. Indeed, investors make
their decisions from informational signals that
are the product of their decisions: there is no
information on the fundamental value of firms.

When Exogenous Information
Generates a Financial Bubble

In the second kind of simulation, investors
dispose of two kinds of signals to make a
decision: endogenous information and a signal
delivered by a rating agency. In this case, we
demonstrate that the market is self-organized
according to a more complex dynamic. Initially,
the market is characterized by an alternation of
phases of financial bubbles and crashes, then

Figure 6. Portfolio of investors belonging to TYPE 3
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by the persistence of a financial bubble. We
justify this dynamic by the presence of the
exogenous information. But how does the EPG
signal precisely operate on the decisions of
investors and on market dynamics?

Emergence and Persistence of a
Speculative Dynamic

Our analyses reveal that the stock index grows
on average 600% over the period for all the
simulations to be carried out. The market dy-
namics are open-ended since they are charac-
terized by a continuous growth of stock prices,
in other words by a phase of financial bubble.
Contrary to the first type of simulation, it is not
possible to observe any stabilization or coordi-
nation of investors’ decisions on a particular
point.

However, the progression of the stock index
does not reflect the evolution of the capitaliza-
tion of the various firms. Firms whose EPG
value is negative or null (i.e., firms with a bad
ranking) are those that carry out the worst
performances with regard to the progression of
their capitalization. Besides, investors have
short-term holdings on these firms since their

purchase and sale orders are very frequent. On
the other hand, firms whose EPG value is
positive (i.e., firms with a good ranking) are
those that obtain higher performances than the
progression of the stock index. Investors have
medium-term or even long-term holdings on
these firms.

These results tend to demonstrate that in-
vestors take stable and important holdings in
firms with positive EPG value for they have
discovered, after the period of learning, that
investing in these firms was rewarded. Finally,
investors who adopt behaviors in conformity
with the information delivered by the rating
agency are those who carry out the best perfor-
mances.

These results, largely inductive, validate the
idea that the rating agency has a real capacity
on the orientation and the evolution of the
system: it allows the coordination of investors
on some firms and generates a speculative
dynamic. But how is it possible to justify this
mechanism of coordination?

To make their decisions, investors formed
representations which they successively test,
knowing that they use EPG signal to forge
expectations on the stocks’ prospects of growth.

Figure 7. Stock index evolution
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If all investors take account of the EPG signal,7

they will all decide to invest in firms with
positive EPG value. This behavior will me-
chanically cause an increase in the stock price,
the supply of stocks becoming higher to the
demand. Carrying out profits on firms with a
strong EPG value thanks to plus-values, the rule
will be rewarded and considered as a ‘good’
rule. So investors will continue to mobilize this
rule by a process of self-reinforcement, and
this behavior will generate a new increase of
stock prices. Finally, there is a self-realization
of the prospects of growth announced by the
rating agency: while following the exogenous
information and while investing in the ‘recom-
mended’ firms, investors generate an increase
of those firms’ capitalization. Market dynamics
that result from this mechanism of learning by
“self-reinforcement” of the good rules are not
characterized by a coordination of investors on
a stable state, but rather by a dynamic of
financial bubble.

Typology of Investors

The analysis of the rules selected by investors
reveals again three recurring kinds of behavior.

Type 1 includes, as previously, investors
who manage at the start the largest portfolios

Figure 8. Portfolio of investors belonging to type 1
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factor for the decision of investment. Finally,
these investors are short-sighted speculators
behaving as isolated calculators, without any
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investment. Their orders are massive and fre-
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stocks whose EPG value is positive. Globally,
these investors purchase stocks when they
have a tendency to be sold and sell stocks when
they have a tendency to be purchased at the
preceding period. So their behaviors depend on
the existence of a potential offer on the market
at the previous period. Finally, they do not
behave as isolated calculators, but take into
account the others and have stable holdings on
firms recommended by the agency.

Lastly, type 3 includes investors whose
portfolio growth is higher than the one of the

stock index. For this group, the EPG indicator is
a determining factor of the decision of invest-
ment. Globally, these investors have very stable
holdings—and even quasi-monopoly behav-
iors—in firms with positive EPG value and a
very aggressive behavior on firms with nega-
tive or null EPG value. In other words, they
adopt a medium-term strategy on firms recom-
mended by the rating agency and an aggressive
behavior on firms with the worst prospects of
growth. In a very clear way and concerning
their decision on firms with negative EPG value,

Figure 9. Portfolio of investors belonging to type 2

Figure 10. Portfolio of investors belonging to type 3
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these investors purchase stocks when their
prices increase, sell stocks when they drop, and
conserve stocks when their prices are stable (in
accordance with the principle of destabilizing
speculation; De Long, Shleifer, Summers, &
Waldmann, 1990). Generally, this group of in-
vestors learns to propose a very high purchase
price—near 10% of the current price—so that
their orders are treated in a priority way. Lastly,
the rule that generates the highest profit at the
end of the period of learning is the decision to
conserve stocks whose EPG value is positive.
Finally, investors of type 3 manage to outper-
form the market by adopting a complex strat-
egy: (1) they consider the other agents through
the recognition of a potential offer on the mar-
ket; (2) they conform to the information deliv-
ered by the rating agency to decide to invest in
such or such firm; and (3) they adopt a careful
strategy that includes conserving stocks whose
EPG value is positive—that is, stocks recom-
mended by the rating agency.

CONCLUSION

The main interest of this model is to register
market dynamics from the point of view of
cognitive economics which grants a central role
to investors’ representations and to their pro-
cesses of interactions. It is a question of analyz-
ing their way of reasoning in a situation of
uncertainty through the formation of their rep-
resentations, symbolized by the rules of invest-
ment. The purpose is especially to understand
the emergence of a global dynamic on the
market, starting from the interactions of dis-
persed investors who are endowed with capa-
bilities of learning. Investors are able to adapt
to the evolution of their environment that evolves
under the effect of their own decisions of
investment.

The model allows the prediction of several
elements for the potential dynamic of the mar-

ket and makes it possible to find stylized facts
of financial markets.

The model brings light to the question of the
coordination of the decisions of heterogeneous
and decentralized agents. Indeed, it allows partly
answering an old question: how an economic
order can emerge, starting from the interac-
tions of investors motivated by the search for
their personal interests—the increase of their
portfolios’ values. We demonstrate that when
investors have only endogenous informational
signals, which are the result of their interac-
tions, they succeed in coordinating each other
on a stable state. This result, all the more
surprising as there is no precedent or no com-
mon reference enabling them to coordinate
quickly, has been explained by the process of
learning and by the functioning of classifier
systems.

The artificial model highlights the power of
a cognitive institution—the information deliv-
ered by the rating agency and represented by
the EPG signal—in the orientation of market
dynamics. This information has the power to
direct investors’ representations in the same
direction. The rating agency has a capacity of
influence since it contributes to the generation
of a speculative dynamic. Indeed, when they
take into account the EPG indicator and invest
in firms recommended by the rating agency,
investors cause mechanically, by their deci-
sions, a rise of the stock prices: there is a self-
realization of the prospects of growth announced
by the agency.

In fact, the artificial model enables us to
postulate that information delivered by the rat-
ing agency can generate a financial bubble.
However, the purpose is not to deliver a judg-
ment on the function or the utility of rating
agencies. It is rather to underline the influence
that a particular kind of information can exert
on the representations of investors and on
market dynamics. In a sense, the model pleads
for recognition of public regulation since we
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demonstrate that institutions have a capacity to
act on the representations of the agents (in
inciting them by an inflow of information) and
thus on market dynamics.8
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KEY TERMS

Cognitive Institution: An institution which
allows the polarization of the anticipations
formed by actors with different representations
on their environment or their respective
characteristics (Walliser, 2000).

Complex System: (1) A system that con-
stantly evolve and unfolded over time (Arthur,
2000). (2) A system with multiple elements
adapting or reacting to the pattern these ele-
ments create (Arthur, 2000). (3) A system in
which the information-processing capacities of
agents are limited relative to the information
available to them (Moss & Rae, 1992).

Information: A signal, message, or per-
ception that produces an effect (a decision) on
agents’ behavior or on their cognitive state.

Limited Rationality: Each agent (1) does
not know all the options offered to him (infor-
mational limits), or (2) is not able to evaluate all
the consequences of his choices (computa-
tional limits) (Simon, 1979). This concept im-
plies a satisficing behavior for each investor.

Market Dynamics: The result of the inter-
actions between the decisions of the various
investors evolving in a complex environment.
This result can be described on a global level
without referring to the specific attributes of
the microeconomic agents composing the mar-
ket and depends on the initial conditions of the
system (Lane, 1993).

Path-Dependent Learning: The decisions
of an agent result from the history of the
interactions of investors in the market (David,
1985).

Self-Organization: A global structure,
which did not exist at the start, can appear as
the result of the many interactions between
investors (Lesourne, 1991). Self-organization
design the capacity of a system to produce—in
a way that is not necessarily voluntary or
conscious—a structure, an organization, a be-
havior, and/or its own rules of functioning
(Paulré, 1997; Lesourne, 1991).

ENDNOTES

1 The approach of Keynes (1936) differs
from the standard financial theory ac-
cording to which stock price corresponds
to the actualized sum of future flow of
earnings that the stock will generate dur-
ing the life of the firm.

2 Investors make their decisions under bud-
getary constraints: purchase is impossible
when liquidities are not sufficient.

3 In case of “ignore” orders, loss or gain is
only evaluated in order to determine in
which case it is better not to buy stocks.

4 The stock index is calculated from the
aggregation of stock prices of the 10 firms
composing the market. The stock index
value corresponds to the arithmetical mean
of firms’ capitalization.

5 Holland (1975) underlines that the number
of alternatives complicates the phase of
exploration: agents with limited capabilities
are compelled to simplify the problem and
will not explore the entire set of alternatives.

6 Negative performances correspond to a
decrease in portfolios value.

7 Our system lightly encourages investors
to take care of the EPG signal.

8 This model presents preliminary results.
A perspective could consist of modifying
the ranking proposed by agencies to mea-
sure the effect of this shock on investors’
behaviors and on market dynamics.
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