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Preface

This book, Vol. 6 in the series Topics in Bone Biology, deals with bone
development from growth to mineralization. Understanding tissue devel-
opment involves combining embryological and histological information
with the increasing knowledge from molecular and genetic studies. In each
developmental stage, some genes are expressed and others silenced. Disease,
especially disease progression, also is characterized by changes in gene
expression that then are transmitted to daughter cells. In both situations,
the choreography of gene expression and partial or complete silencing
often are the result of the interaction between the genome and the epige-
nome, i.e., between a very stable set of structures and rapidly changing
environmental factors.

Chapter 1, by O’Connor, Farach-Carson, and Schanen, is an overview of
the field and of topics discussed in greater detail in subsequent chapters.
After discussing bone development in terms of intramembranous and endo-
chondral ossification, the chapter describes gene expression in osteoblasts
and osteoclasts, bone cell coupling, and the regulatory effects of steroid hor-
mones. Primary genetic defects that lead to various bone diseases - Marfan’s
syndrome, Paget’s disease, and juvenile osteoporosis, among others - are
analyzed. The chapter ends with a section on the epigenetic regulation of
bone development, including methylation, histone modifications, and
imprinting. This chapter, like all others, has an extensive bibliography and
figures to illustrate principal points.

Colnot and Alliston, in Chap. 2, describe the complex cellular and molec-
ular interactions that control patterning and morphogenesis during embry-
onic development of the skeleton. The chapter describes chondrocyte and
osteoblast differentiation, their interaction, and the regulatory role of the
perichondrium. The chapter then proceeds to the signal pathways that
stimulate maturation of the perichondrium and the recruitment of per-
ichondrial cells to become matrix-synthesizing osteoblasts. The authors
discuss the role of angiogenesis and of matrix resorbing cells and raise the
question about continuing tissue interactions in postnatal life. They con-
clude by calling attention to animal models and genetic approaches.

The complicated structure that constitutes the epiphyseal growth plate is
discussed in Chap. 3, by Anderson and Shapiro. They describe the architec-
ture, detailed anatomy, and cellular dynamics of the growth plate, the role
of the many regulators, such as parathyroid hormone-related protein, thy-
roxin, glucocorticoids, and leptins, and analyze in detail the mineralization
process. Chondrocytes play an important metabolic role in the growth
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plate, but must ultimately be removed from the organ. This occurs either by
apoptosis via the intrinsic pathway, regulated, in part, by the Bcl-2 gene
family, or by the extrinsic pathway via cell death ligand receptors.
Alternatively, autophagy may result in degradation of cellular components.
The last section of the chapter discusses diseases such as rickets, achondro-
plasia, and enchondromas.

Discovered in Drosophila and largely conserved up to humans, the sig-
naling pathway called Hedgehog affects cellular behavior, including prolif-
eration, differentiation, and survival. Regard, Mak, Gordon, and Yang, in
Chap. 4, describe the effect of two of the three genes that make up the
hedgehog family in vertebrates, Sonic Hedgehog, Indian Hedgehog, and
Desert Hedgehog, with the expression by the latter confined to the gonads.
The chapter describes in detail the Hedgehog signaling pathway and its role
in human genetics and skeletal patterning, including craniofacial develop-
ment. The authors then describe the role of the Sonic Hedgehog, particu-
larly in digit formation and limb outgrowth and point out that Sonic
Hedgehog has emerged as a master regulator of early embryonic pattern
formation and craniofacial morphogenesis, but that Indian Hedgehog is
the key regulator of endochondral bone growth and ossification. The chap-
ter concludes with discussions of the role of Hedgehog in joint formation
and skeletal homeostasis.

MicroRNAs constitute the most abundant mode of posttranscriptional
regulation in the genome. They play an important role in development and
differentiation. Chap. 5, by Gradus and Hornstein, reviews the biology of
these molecules and the evidence that microRNAs are an integral compo-
nent of the genetic hierarchies that govern skeletal and limb development.
MicroRNAs are involved in Hedgehog signaling, and as discussed by the
authors, the specific microRNA-214 is regulated by Twist, a transcription
factor, haploinsufficiency of which causes the Saethre-Chotzen syndrome.
MicroRNAs are linked to bone morphogenetic protein and fibroblast growth
factor signaling, with the cartilage-specific microRNA-140 modulating the
platelet-derived growth factor. The authors conclude by pointing out that
growing understanding of the regulatory role played by these molecules
should lead to better knowledge of development and of diseases due to
mutations that affect microRNA expression.

Pierre Marie, in Chap. 6, discusses in detail the fibroblast growth factor/
fibroblast growth factor receptor signaling pathway, first in the growth
plate, then in chondrodysplasias and the mutations that lead to these dis-
eases. In cranial bone, fibroblast growth factor signaling upregulates osteo-
genesis and missense mutations in the receptor lead to premature fusions
of the cranial sutures and to many skeletal disorders, including Apert and
Crouzon syndromes. Marie concludes that the genes induced by fibroblast
growth factor receptor signaling and implicated in the pathogenesis of dys-
plasias need to be identified.

Embryogenesis proceeds under conditions of hypoxia before the circula-
tory system is established. Chap. 7, by Schipani and Khatri, discusses
hypoxia-inducible factor-1, a transcription factor that is a major regulator
of cellular adaptation to hypoxia. Hypoxia-inducible factor-1ot acts on two
other factors that are involved in sensing variations in oxygen pressure. The
authors discuss these interactions and other target genes of factor-1o,
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relationships to energy metabolism, angiogenesis, and autophagy. Further
discussion is on relationship to chondrocytes, their survival, proliferation,
and differentiation. Hypoxia-inducible factor-1a also plays a role in joint
development, in articular cartilage, and, as analyzed by the authors, in
osteoblasts, osteoclasts, and in bone modeling and remodeling.

Bone morphogenetic proteins, discovered over 40 years ago, but identi-
fied and purified much later, play major roles in patterning, tooth develop-
ment, and regulation of apoptosis, among others. Estrada and Lyons, in
Chap. 8, describe the signaling pathway of these proteins, their role in mes-
enchymal condensation that leads to chondrogenesis, the effect of bone
morphogenetic protein expression on Sox9,a transcription factor, expressed
in all cartilage primordia, and crosstalk with other signaling pathways such
as Indian Hedgehog, parathyroid hormone-related protein, and fibroblast
growth factor. These proteins also play a signaling role in osteogenesis,
modulating the RANKL-osteoprotegerin pathway. The authors point out
that the canonical bone morphogenetic protein signaling pathway has been
implicated in the regulation of the transcription factor Runx2, as well as in
adipogenesis and energy metabolism.

Chapter 9, by Bodine, describes another important signaling pathway,
that of the Wnts, a large family of polypeptides that play a key signaling
function in embryogenesis, organogenesis, and morphogenesis. The chap-
ter describes loss of function and gain of function mutations in LRP5, the
human Wnt coreceptor, and then proceeds to a description of dickkopf
expression in osteoblast function and bone formation. Bodine analyzes the
effects of SOST/sclerostin, which blocks signaling by the bone morphoge-
netic protein and Wnt. Evidently, sclerostin inhibits bone formation by
blunting the canonical Wnt pathway. The chapter describes the effects of
several Wats, of the dickkopf factors, and of the secreted frizzled-related
proteins on bone formation and development. Additional discussion deals
with B-catenin, the adenomatous polyposis coli gene product, and the T-cell
specific transcription factor in skeletogenesis.

The craniofacial complex, head, face, and mouth, provides individual
identity and therefore is the most distinguishing feature of the human body.
D’Souza, Ruest, Hinton, and Svoboda, in Chap. 10, detail the structure and
development of the components of this complex. They describe mandible
development, its molecular regulation, and patterning of the mandibular
neural crest cells in terms of the genes and signal pathways involved. The
chapter then deals with the temporomandibular joint, its morphogenesis,
postnatal growth, and maturation. Morphogenesis and molecular mecha-
nisms in palatal development are discussed, again with much emphasis on
the various signaling pathways, followed by analysis of palate ossification
and palate deformities. The final section deals with tooth development, sig-
naling interactions, and the role of the extracellular matrix in tooth mor-
phogenesis and cytodifferentiation.

Chapter 11, by MacDougall and Javed, complements the previous chapter
and compares mineralization in dentin and bone. After discussion of odon-
togenesis and of primary and secondary dentinogenesis, the cytodifferen-
tiation of osteoblasts and odontoblasts is described and compared, and
transcriptional control of differentiation and regulation by growth factors
and hormones is analyzed, as are the effects of mechanical factors. The dis-
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cussion of remodeling, repair, and genetic syndromes and diseases is con-
cluded by a comparison of bone and dentin.

In Chap. 12, Wang and Lee discuss how bone proteins evolved. Emphasis
is on the genes of extracellular matrix proteins, many of which are specific
to mineralized tissues with no counterparts in tissues of nonmineralizing
organisms. After reviewing the process of gene duplication, of importance
for the development of higher organisms, the authors discuss collagens,
osteocalcin, matrix Gla proteins, and their evolutionary links. The chapter
then discusses the secretory calcium-binding proteins. These have only lim-
ited sequence homology, but gene structure and biochemical characteris-
tics determine their evolutionary relationships. Other topics discussed
include small leucine-rich proteoglycans and the evolution of apatite-bind-
ing peptides. The chapter concludes with an evaluation of the evolutionary
approach to understanding bone formation and ossification.

Osteogenesis imperfecta is a heritable disorder encountered in perhaps
0.02% children at birth, leading to early mortality in many and bone fragil-
ity in the survivors. Arundel and Bishop, in Chap. 13, discuss the biology of
the disease, animal models, and the brittle bones due to the disease, and
then detail the clinical approach. The authors discuss history and examina-
tion of the patient, including dental manifestations, differential diagnosis,
and tests for the disease. These include biochemical analyses, radiography,
and histomorphometry. Evaluation of treatment by calcitonin, growth hor-
mone, and bisphosphonates is followed by an analysis of the problems
encountered in adults, specifically, hearing impairment, cardiovascular, and
respiratory problems.

Kaplan, Groppe, Seemann, Pignolo, and Shore, in Chap. 14, discuss
fibrodysplasia ossificans progressiva, the result of a recurrent heterozygous
missense mutation of one of the receptors for bone morphogenetic protein,
namely, Activin receptor A, type I. The mutation leads to abnormal skeletal
morphogenesis and tissue repair, skeletal metamorphosis of connective tis-
sue, degenerative joint disease, and benign skeletal neoplasms. The chapter
describes the clinical and molecular features of the disease, diagnosis and
misdiagnosis, the signaling pathways, and the gene, followed by discussion
of the dysregulation of morphogenesis, metamorphosis, oncogenesis, and
joint function brought about by this morphogene. Neither definitive treat-
ment nor cure is available for fibrodyplasia ossificans progressiva, but the
authors discuss possible approaches such as intervention in the signaling
pathway or blocking the trigger to inflammation.

Bone mineral homeostasis results from the interactions of the vitamin
D and parathyroid hormone regulatory systems. Peterlik, in Chap. 15,
describes in molecular detail how 1,25-dihydroxyvitamin D, and extracel-
lular calcium ions act as co-regulators of cellular proliferation, differentia-
tion, and function in many organs and cell systems. The chapter describes
how, during development, bone mineral homeostasis is maintained by
the joint actions of parathyroid hormone and the parathyroid hormone-
related protein. Postnatally, however, there is the additional strong input by
the vitamin D endocrine system, through the CYP24A1-encoded enzyme,
25-hydroxy-D3-24-hydroxylase. Peterlik discusses the dysfunction of
short-term and long-term regulation of mineral metabolism, with empha-
sis on vitamin D status and calcium intake. He then analyzes rickets and
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osteomalacia, osteoporosis, cancer, diabetes mellitus type I, hypertension,
chronic vascular disease, and chronic kidney disease in terms of the roles
played by the two endocrine regulatory systems and their effect on the cal-
cium receptor of cell membranes.

Takeda, in Chap. 16, calls attention to the now recognized important rela-
tionship between the skeleton and energy and glucose metabolism. He dis-
cusses the role of leptin in regulating bone mass and bone remodeling,
pointing out that animal experiments indicate a clear separation of the
actions of leptin on appetite and bone metabolism, with the latter mediated
by leptin receptors in the ventromedial hypothalamus. This indicates a role
by the sympathetic nervous system. Neuropeptides that affect appetite,
melacortins, neuromedin, and neuropeptide Y, and their relationship to
bone mass are discussed, with the final sections of the chapter devoted to
bone cell regulation of glucose metabolism and the role of osteocalcin.

With sufficient information, it becomes possible to model a system and to
predictrelationships that can then be experimentally verified. Chen, Schuetz,
and Pearcy, in Chap. 17, describe and simulate mechanobiological regula-
tion of bone growth, remodeling, and fracture healing. They describe bone
function and form and provide an equation relating stress to the fraction of
bending moment/bending resistance, multiplied by the external radius of
the bone. This is not yet a model, but predicts that stress will decrease if the
internal radius increases, provided the area remains constant. Based on
available evidence, the authors then present the concept of an osteogenic
index and formulas that define distortional stress and hydrostatic stress. If
the apparent density of bone is considered characteristic of internal struc-
ture, then this can describe remodeling both for cancellous and cortical
bone. The final section of the chapter deals with fracture healing and the
publications that have proposed simulations of fracture healing.

This book, as previous volumes in this series, reflects the conceptual
interaction between medical science and practice, and how effective prac-
tice benefits from advances in knowledge, yet makes clear how far we
remain from fully understanding the skeleton and its function as an organ
system. We thank all authors for their dedication to their subjects and the
opportunity to integrate a large and often exciting body of knowledge. We
are grateful to Springer, our publisher, for their help in assuring intellectual
and aesthetic quality.

Felix Bronner
Farmington, CT

Mary C. Farach-Carson
Houston, TX

Helmtrud I. Roach
Southampton, UK



Contents

Preface . . oot e e
(003 110’9 1111 ) 35
Abbreviations. ......... ..ottt i e i

4

10

11

12

Genetic and Epigenetic Aspects of Bone Development
Rose D. O’Connot, Mary C. Farach-Carson,
and N. Carolyn Schanen ..............cociviiiiiiiiiinnenn.

Tissue Interactions in Long Bone Development
Céline Colnot and Tamara Alliston ..............coovvinennn.

The Epiphyseal Growth Plate
H. Clarke Anderson and Irving M. Shapiro.....................

Hedgehog Signaling in Growth Plate and Bone Development
Jean B. Regard, Kingston K. Mak, Joshua A. Gordon,
and Yingzi Yang .......c.ouvviuiii i

Role of microRNA in Skeleton Development
Ben Gradus and Eran HOTHSIeIN ......ovvvviiiininvnnennnnns

FGF/FGEFR Signaling in Skeletal Dysplasias
Pierre . Marie. .. ..ovu ettt ittt e e

The Role of Hypoxia-Induced Factors
Ernestina Schipani and Richa Khatri ........... ... ..o

BMP Signaling in Skeletogenesis
Kristine D. Estrada and Karen M. Lyons. ............c..oovue.n.

Wnt Signaling in Bone Development
Peter VV.N.Bodine. . ......oviiiniiiiiiiiiiiiiiiiii e,

Development of the Craniofacial Complex
Rena N. D’Souza, L-Bruno Ruest, Robert J. Hinton,
and Kathy K. H. Svoboda. ..............cooviiiiiiiinnenn.

Dentin and Bone: Similar Collagenous Mineralized Tissues
Mary J. MacDougall and Amjad Javed ........................

Evolution of Bone Proteins
Eddie Wang and Seung-Wuk Lee .. ........cooovviiiiieinnnn.



Xii

Contents

13

14

15

16

17

Subject Index

Osteogenesis Imperfecta

Paul Arundel and Nicolas J. Bishop . .................o.. ..

Fibrodysplasia Ossificans Progressiva:
Developmental Implications of a Novel Metamorphogene
Frederick S. Kaplan, Jay C. Groppe, Petra Seemann,

Robert ]. Pignolo, and Eileen M. Shore ....................

Bone-Mineral Homeostasis and Associated Pathologies

Meinrad Peterlik. .. ....coouiuninei it iiiennnn

Interrelationship Between Bone and Other Tissues:
Brain-Bone Axis and Bone-Adipo Axis

ShuTakeda .......c.uiiiii i,

Mechanobiology of Bone Development
and Computational Simulations

Gongfa Chen, Michael Schuetz, and Mark Pearcy ...........



Contributors

Tamara Alliston, PhD

Department of Orthopaedic Surgery
University of California

San Francisco, CA, USA

H. Clarke Anderson, MD

Department of Pathology and Laboratory Medicine
University of Kansas Medical Center

Kansas City, KS, USA

Paul Arundel, MBBS, DCH

Academic Unity of Child Health, Sheffield Children’s Trust
University of Sheffield

Sheffield, UK

Nicholas J. Bishop, MRCP, MD

Academic Unity of Child Health, Sheffield Children’s Trust
University of Sheffield

Sheffield, UK

Peter V.N. Bodine, PhD

Department of Women’s Health and Musculoskeletal Biology
Wyeth Research

Collegeville, PA, USA

Felix Bronner, PhD

Department of Reconstructive Sciences
University of Connecticut Health Center
Farmington, CT, USA

Gongfa Chen, BSc Meng, PhD

Institute of Health and Biomedical Innovation
Queensland University of Technology
Brisbane, Queensland, AUS



Xiv

Contributors

Céline Colnot, PhD

Department of Orthopaedic Surgery
University of California at San Francisco
San Francisco General Hospital

San Francisco, CA, USA

Rena N. D’Souza, DDS, PhD

Department of Biomedical Sciences

Baylor College of Dentistry

Texas A&M University Health Science Center
Dallas, TX, USA

Kristine D. Estrada, BS

Department of Orthopaedic Surgery

Department of Molecular, Cell and Developmental Biology
University of California at Los Angeles

Los Angeles, CA, USA

Mary C. Farach-Carson, PhD

Department of Biochemistry and Cell Biology
Rice University

Houston, TX, USA

Joshua A. Gordon, BA

Genetic Disease Research Branch

National Human Genome Research Institute
National Institutes of Health

Bethesda, MD, USA

Ben Gradus, BSc, MSc

Department of Molecular Genetics
Weizmann Institute of Science
Rehovot, ISR

Jay C. Groppe, PhD

Department of Biomedical Sciences

Baylor College of Dentistry

Texas A&M University Health Science Center
Dallas, TX, USA

Robert J. Hinton, PhD

Department of Biomedical Sciences

Baylor College of Dentistry

Texas A&M University Health Science Center
Dallas, TX, USA

Eran Hornstein, MD, PhD
Department of Molecular Genetics
Weizmann Institute of Science
Rehovot, ISR



Contributors XV

Amjad Javed, MS, PhD

Department of Oral and Maxillofacial Surgery
University of Alabama at Birmingham

School of Dentistry

Birmingham, AL, USA

Frederick S. Kaplan, MD

Division of Molecular Orthopaedic Medicine
Department of Orthopaedic Surgery

The University of Pennsylvania

School of Medicine

Philadelphia, PA, USA

Richa Khatri, BS

Endocrine Unit

Medicine MGH-Harvard Medical School
Boston, MA, USA

Mary J. MacDougall, PhD

Department of Oral and Maxillofacial Surgery
University of Alabama at Birmingham

School of Dentistry

Birmingham, AL, USA

Kingston K. Mak, PhD

Genetic Disease Research Branch

National Human Genome Research Institute
National Institutes of Health

Bethesda, MD, USA

Seung-Wuk Lee, PhD

Department of Bioengineering
University of California at Berkeley
Berkeley, CA, USA

Karen M. Lyons, PhD

Department of Orthopaedic Surgery

Department of Molecular, Cell and Developmental Biology
University of California at Los Angeles

Los Angeles, CA, USA

Pierre J. Marie, PhD

Laboratory of Osteoblast Biology and Pathology
University Paris 7, Hopital Lariboisiére

Paris, FRA

Rose D. O’Connor, PhD
Department of Biological Sciences
University of Delaware

Newark, DE, USA



Xvi

Contributors

Mark Pearcy, PhD, FIEAust, CPEng (Biomed)
Institute of Health and Biomedical Innovation
School of Engineering Systems

Queensland University of Technology
Brisbane, Queensland, AUS

Meinrad Peterlik, MD, PhD
Department of Pathophysiology
Medical University of Vienna
Vienna, AUT

Robert J. Pignolo, MD, PhD
Department of Medicine
University of Pennsylvania
School of Medicine
Philadelphia, PA, USA

Jean B.Regard, PhD

Genetic Disease Research Branch

National Human Genome Research Institute
National Institutes of Health

Bethesda, MD, USA

Helmtrud I. Roach, PhD

Bone & Joint Research Group
Southampton General Hospital
Southampton, UK

L-Bruno Ruest, PhD

Department of Biomedical Sciences

Baylor College of Dentistry

Texas A&M University Health Science Center
Dallas, TX, USA

N. Carolyn Schanen, MD, PhD
Nemours Biomedical Research

A. 1. duPont Hospital for Children
Wilmington, DE, USA

Ernestina Schipani, MD, PhD

Endocrine Unit

Medicine MGH-Harvard Medical School
Boston, MA, USA

Michael Schuetz, MD, PhD

School of Engineering Systems / IHBI
Queensland University of Technology
Brisbane, Queensland, AUS



Contributors

Xvii

Petra Seemann, PhD

Berlin-Brandenburg Center for Regenerative Therapies
Institution Charité Universitdtsmedizin Berlin

Berlin, GER

Irving M. Shapiro, BDS, PhD
Department of Orthopaedic Surgery
Jefferson Medical College

Thomas Jefferson University
Philadelphia, PA, USA

Eileen M. Shore, PhD

Department of Orthopaedic Surgery
University of Pennsylvania School of Medicine
Philadelphia, PA, USA

Kathy K.H. Svoboda, PhD

Department of Biomedical Sciences

Baylor College of Dentistry

Texas A&M University Health Science Center
Dallas, TX, USA

Shu Takeda, MD, PhD

Section of Nephrology, Endocrinology and Metabolism
Department of Internal Medicine

Keio University

Tokyo, JPN

Eddie Wang, BS

Department of Bioengineering
University of California at Berkeley
Berkeley, CA, USA

Yingzi Yang, PhD

Genetic Disease Research Branch

National Human Genome Research Institute
National Institute of Health

Bethesda, MD, USA



Abbreviations

1,25-(OH),D,

24,25-(0H),D,

25-(OH)D
aBMD
ACVRI/ALK2

AD
ADAM
adrb
AER
AHO
ALP
AMBN
AMEL
AMP
AMPK
AMTN
AP1 (or AP-1)
APAF-1
APC

APO2L

AR
ARC
ARF
ARNT
ATF4
ATG (or Atg)
ATPase
AVp5
BAD
BAFF
Bapxl

BAT
Bcl-2, Bel XL

1,25-Dihydroxyvitamin D,
24,25-Dihydroxyvitamin D,
25-Hydroxyvitamin D

Areal bone mineral density

Activin receptor A type 1/activin-like kinase 2, a
bone morphogenetic protein type I receptor
Autosomal dominant

A disintegrin and metalloprotease domain
Beta-adrenergic receptor

Apical ectodermal ridge

Albright’s hereditary osteodystrophy

Alkaline phosphatase

Ameloblastin

Amelogenin

Adenosine monophosphate

Adenosine monophosphate kinase

Amelotin

Activator protein 1

Apoptotic peptidase activating factor 1
Adenomatous polyposis coli or anaphase-
promoting complex

Tumor necrosis factor-related apoptosis-inducing
ligand

Androgen receptor; autosomal recessive
Arcuate

Activation, resorption, and formation

Aryl hydrocarbon nuclear translocator
Activating transcription factor 4

Autophagy related genes

Adenosine triphosphosphoesterase

Annexin V beta 5

Bcl-2-associated death promoter (BAD) protein
B-cell activating factor of the TNF family
Bagpipe homeobox homolog 1 (also called
Nkx3.2)

Brown adipose tissue

B-cell lymphoma-2, B cell lymphoma-2 long form
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Abbreviations

BDA2
BDC
bFGF
BGP
BH3
bHLH
Bid
Bim
BLYS
BMC
BMD
BMF
BMP
BMPR
BMPRIA

BMPR1B

BMSC
BMU
Bnip3
BrdU
BSP
CamKII
cAMP
CaP
CaR
Cart
CCD
cDNA
C/EBPs
Ci

CK
CL/P
CNC
CNTF
Collal
Colla2
COMP
Cos2
COX4
CP
CREB
CRTAP
CT
C-TAD

CTGF
CTP cell
CVJ]

Brachydactyly type A2

Brachydactyly type C

Basic fibroblast growth factor

Bone y-carboxyglutamate protein (osteocalcin)
Bcl2 homology domain 3

Basic helix-loop-helix

BH3 interacting domain death agonist
Bcl2-interacting mediator of cell death

B lymphocyte stimulator

Bone mineral content

Bone mineral density

Bcl2 modifying factor

Bone morphogenetic protein

Bone morphogenetic protein receptor

Bone morphogenetic protein 1A, a BMP type I
receptor

Bone morphogenetic protein receptor 1B, a BMP
type I receptor

Bone marrow mesenchymal stem cell

Basic multicellular unit

Bcl-2-binding protein Nip3
Bromodeoxyuridine

Bone sialoprotein

Calmodulin-dependent protein kinase II
Cyclic-adenosine monophosphate

Calcium phosphate

Calcium-sensing receptor

Cocaine- and amphetamine-regulated transcript
Cleidocranial dysplasia

Complementary DNA
CCAAT-enhancer-binding proteins

Cubitus interuptus

Casein kinase

Cleft lip with or without cleft palate

Cranial neural crest

Ciliary neurotrophic factor

Collagen type I alpha 1

Collagen type I alpha 2

Cartilage oligomeric matrix protein

Costal2

Cytochrome C oxidase 4

Cerebral palsy; chondroprogenitor; cleft palate
Cyclic AMP response element binding protein
Cartilage associated protein

Computed tomography

Carboxy-terminal transcriptional activation
domain

Connective tissue growth factor

Connective tissue progenitor cell
Costovertebral joint
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XXi

CYP24A1
CYP27B1
CZ

DD
DECM
DEXA
DGI
DHCR?7
Dhh

DI

Disp
Dkk
DIx5
DMP1 (or Dmpl)
DMPI
DNA
Dnm3
DNMTs
DPP

Dsh

DSP
DSPP
DSP-PG
DXA
Ell.5m

ECF
ECM
Ednl
Ednra
EE-2
EMP
EMT
ENAM
ER
ERo
ERK
EXT
EXT1
EXT2
FASL
FBN1
FEM
FGF
FGFR
FIH
FKBP12

25-Hydroxyvitamin D-24-hydroxylase
25-Hydroxyvitamin D-1ca-hydroxylase
Calcifying zone

Dentin dysplasia

Dentin extracellular matrix
Dual-energy X-ray absorptiometry
Dentinogenesis imperfecta
7-Dehydrocholesterol reductase
Desert hedgehog

Dentinogenesis imperfecta
Dispatched

Dickkopf

Distal-less homeobox 5

Dentin matrix protein 1

Dentin matrix acidic phosphoprotein I
Deoxyribonucleic acid

Dynamin3

DNA methyl-transferase enzymes
Dentin phosphoprotein

Disheveled

Dentin sialoprotein

Dentin sialophosphoprotein
Proteoglycan form of DSP

Dual energy X-ray absorptiometry
Embryonic, as in “embryonic day 11.5 in the
mouse”

Extracellular fluid

Extracellular matrix

Endothelin-1

Endothelin-A receptor

Activity elongation factor

Enamel matrix protein
Epithelial-mesenchymal transition
Enamelin

Endoplasmic reticulum

Estrogen receptor o

Extracellular signal-regulated kinase
Exostoses

Multiple hereditary exostoses gene 1
Multiple hereditary exostoses gene 2
FAS ligand

Fibrillin 1

Finite element method

Fibroblast growth factor

Fibroblast growth factor receptor
Factor inhibiting Hif

An inhibitory protein that binds to all the
GS-domains of all TGF-P3 and BMP type I
receptors and prevents promiscuous activation in
the absence of ligand
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Abbreviations

FOP

FZD
GAS-1
GCPS
GDF5
GFP-Rac-1
GH

Gla

Gli
GM-CSF

Groucho/TLE

GS activation domain

GSK
HA (or HAP)
HBM
HC
HDAC4
HDACI
HERS
Hh

HIF
HIP
HME
HMG
HPE
HRE
HSC
HSPG
Hyp mice
HZ
ICAM-1
ICR
ICV
IGE(-1)
Thh

IJO

IL-1
IL-6
iNOS
1P3
JNK
Krm
LC3
LDH
LDL
LEF (or Lef)
LepR

Fibrodysplasia ossificans progressiva
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Histone deacetylase inhibitor
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Hereditary multiple exostoses syndrome
High mobility group

Holoprosencephaly
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Hematopoietic stem cell

Heparin sulfate proteoglycan
Hypophosphatemic mice

Hypertrophic zone

Inter-cellular adhesion molecule 1
Imprinting control region
Intracerebroventricular

Insulin-like growth factor(-1)

Indian hedgehog

Idiopathic juvenile osteoporosis
Interleukin 1

Interleukin-6
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Inositol 1,4,5-trisphosphate
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Leptin receptor



Abbreviations

Xxiii

LFA-1
LIF
Lrp 5,Lrp6

LRP
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1.1 Introduction

It now is widely accepted that genes provide the
template for the cell and ultimately for the organ-
ism, but that was not always the case. Gregor
Mendel first developed the hypothesis that a
hereditary force was at work when he crossed
green and yellow pea plants in the mid 1800s [40].
Although Mendel was unable to identify what we
now know to be genes, several years later, Oswald
Avery led us to that discovery [40]. Genes carry
the information needed to develop in utero, grow
postnatally, and mature into adult beings. As
development proceeds into adulthood, various
genes are expressed at different times. Most
humans carry 23 pairs of chromosomes with 22
pairs made up by somatic chromosomes and 1
pair determining whether an individual will be a
male (XY) or a female (XX). Major advances in
the DNA technology and high throughput
sequencing have shown that there are fewer than
30,000 genes that encode proteins in the human
body, and even fewer than that number are
expressed and still a smaller subset is expressed
at any one time in an individual differentiated
cell. Nonetheless, the transcriptome of a cell is
complex and may include more than tens of
thousands of gene products than the active

1

genes owing to the alternative exon utilization,
allelic preferences, and transcript processing.
The osteoblast transcriptome has been analyzed
and compared with those in similar cells, such as
chondrocytes and fibroblasts [50]. As expected,
while there are many common gene products
expressed, the osteoblast transcriptome is unique
and endows this specialized bone cell with its
characteristic properties. The combined forces of
inherited genetic sequence and epigenetic control
of gene expression further refine the transcrip-
tome of each individual human being, such that
no two individuals possess exactly identical bone
cells. These differences account for the funda-
mental variation in bone shape, length, subarchi-
tecture, mineral density, and responses to stimuli
that occur in the human population.

1.2 Overview of Human Genetic
Disorders of Bone Development

Given the complexity of the temporal and spatial
interplay of the diverse cell types required for
proper bone morphogenesis and homeostasis, it
is perhaps not surprising that disruption of
expression of numerous genes by mutation has
contributed a host of human skeletal disorders.
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These include genes that encode proteins that
are critical mediators of cell-cell communica-
tion, such as growth factors and their receptors,
matrix proteins, and key transcription factors
that define the program of gene activity of the
cells within the bone. In addition, from examin-
ing the numerous human skeletal dysplasias for
which the causative genes have been identified, it
is clear that different mutations in the same gene
(allelic heterogeneity) can have disparate clini-
cal outcomes, indicating that some pathways are
involved in multiple stages of skeletal forma-
tion and growth. As might be predicted, disrup-
tion of pathways that are critical for early
stages of bone formation often lead to abnor-
malities in both patterning and bone morpho-
genesis, and may affect other organ systems,
while those that interfere with specific aspects of
bone growth or mineralization are associated
with disorders that show more normal overall
skeletal patterning, but lead to abnormalities in
limb length, improper maintenance of normal
mineralization, focal bony overgrowth, or ecto-
pic mineralization. Numerous, complex skeletal
malformation syndromes have been identified
in humans. Only in the past two decades, has it
been possible to separate the ones that are genet-
ically related, because many syndromes share
common phenotypic features such as shortening
of long bones, vertebral flattening, thinning of
ribs, and involvement of skull or facial bones.
DNA diagnostics have made a major impact on
the classification and diagnosis of human skele-
tal dysplasias, which in turn, has provided a
wealth of information on the role of a given gene
product in skeletal formation, growth, and func-
tion (for review, see [28] and references therein).

1.3 Bone Development

Ossification, or the development of the hard
component of bone, is generally described as
taking place through two separate processes,
intramembranous vs. endochrondral ossifica-
tion, although evidence from human skele-
tal dysplasias suggests that the demarcation
between the two processes is not always clearly

defined. Intramembranous ossification refers to
the process by which flat bones, including those
of the cranial vault, some facial bones, and the
lateral aspect of the clavicle, develop directly
from the mesenchymal precursor cells [108].
These mesenchymal cells form condensations,
which are then invaded by a network of vascula-
ture and induce differentiation into mature
osteoblasts [109]. The osteoblasts mature and
secrete osteoid, directly laying down the founda-
tion that will become that particular bone [18].
A more complex process termed as endochon-
dral ossification utilizes an intermediary step of
cartilage formation for the development of long
bones as well as other bones of the skeleton [41].
In endochondral ossification, embryonic mesen-
chymal cells condense to form a cartilaginous
template in the approximate size and shape of
the developing bone (reviewed in [35]). The car-
tilage cells or chondrocytes differentiate and
undergo a period of hypertrophic growth before
becoming vascularized and invaded by osteo-
clasts, osteoblasts, and other precursor cells [47].
The mesenchymal to chondrocyte and then to
osteoblast transitions are processes that are
tightly regulated by differential expression of
many genes, several of which are transcription
factors that play central roles in coordinating
the timing of the expression of genes involved
in growth and differentiation of the numerous
cell types found in the developing bone.
Osteoclasts, derived from hematopoietic pre-
cursors, are multinucleated cells that resorb
bone [168], whereas bone-forming osteoblasts
arise from pluripotent mesenchymal stem
cells [7]. Both these cell types were the subjects
of earlier volumes in this series, and will not
be described in detail here. Briefly, osteo-
blasts secrete new osteoid, which then becomes
mineralized, while osteoclasts resorb the old
bone in a defined pattern. This balance of new
bone formation by osteoblasts and subsequent
resorption by osteoclasts allows the bones to
grow to the correct size and shape (reviewed
in [119]). The proper development of bony
structures requires not only the activity of the
cells involved in bone formation, but also the
carefully controlled balance with the activity of
nearby osteoclasts.
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1.4 Gene Expression
in Osteoblast Development

1.4.1 Sox9

One of the earliest transcription factors expressed
by mesenchymal cells as they transition toward
bone development is Sox9. Although Sox9 expres-
sion has been identified in the mesenchymal cells
that are destined to become either osteoblasts or
chondrocytes, it is likely that the transcriptional
regulatory activity of Sox9 induces chondrocyte
maturation while inhibiting osteoblast differen-
tiation [187]. Sox9 has been repeatedly shown to
have an essential role in cartilage development,
whereby it induces chondrogenesis under the
control of bone morphogenetic proteins (BMPs)
[60]. In humans, the SOX9 gene lies on chromo-
some 17q24.3-q25.1 and heterozygosity for the
loss of function mutations in the gene are respon-
sible for campomelic dysplasia (OMIM #114290)
[43]. Clinically, the disorder is characterized by
prenatal curvature of the long bones with dim-
pling of the overlying, modestly flattened verte-
bral bodies, 11 pairs of ribs, and “wingless”
scapulae [72]. Most notably, it is also associated
with sex reversal or ambiguity of external genita-
lia in the affected XY individuals, because Sox9 is
a critical regulator in testes development. The
bones of the face are also affected, leading to a
low nasal bridge and micrognathia, and fre-
quently with cleft palate (Pierre Robin sequence)
[169]. Sox9 directly regulates the expression of
type II collagen [11], and disruption in cartilage
formation leads to abnormalities in the upper
airway. Respiratory insufficiency is a common
cause of death in many newborns with mutations
in this gene [72]. Development in patients with
this disorder ranges from normal to moderately
delayed, and there is progressive scoliosis and
hearing loss over time, although the vast major-
ity succumb to respiratory insufficiency in the
newborn period (forreview,see [169]). Genotype-
phenotype correlations are not straightforward
and variability within the families argues for
genetic background effects [102, 140]. Curiously,
although Sox9 is expressed in the cells that will
become both chondrocytes and osteoblasts, the

skeletal phenotype in campomelic dysplasia
appears to reflect deficiencies primarily in endo-
chondral ossification.

1.4.2 Runx2

Runx2 (Cbfal/Osf2/AML3/PEBP20tA), is a runt
domain containing transcription factor that is
essential for both chondrocyte and osteoblast
maturation. Expression of Runx2 in mesen-
chymal stem cells inhibits differentiation of
these cells into adipocytes or chondrocytes,
while allowing these fated cells to differentiate
into preosteoblasts and osteoblasts (reviewed
in [86]). Although Runx2 has other functions
beyond its role in regulation of gene expression,
it is the transcription factor function of Runx2
that is critical for bone development, as Runx2
preferentially binds to and regulates many genes
that are essential for osteoblast differentiation
in both endochondral and intramembraneous
ossification [86,171]. Knockout studies of Runx2
in a mouse model system caused a complete lack
of skeletal mineralization, which resulted in
embryonic lethality [87].

In humans, the autosomal dominant disor-
der, cleidocranial dysplasia (Fig. 1.1) (OMIM
#119600), is caused by mutation of the RUNX2
gene on chromosome 6p21. Mutations generally
result in the loss of function alleles leading to
haploinsufficiency for the protein product, with
functional analyses of mutant alleles indicating
that some may have dominant negative effects
[99,121,129].Because of the central importance
of RUNX2 in osteoblast differentiation, the
bones that are most obviously abnormal in
cleidocranial dysplasia are those that arise from
intramembranous ossification - the skull and
clavicle, although virtually all bones are affected
[72]. The phenotype is characterized by abnor-
malities in the formation of the frontal, parietal,
and occipital bones with delayed closure of the
cranial sutures. Decreased growth of facial
bones gives the appearance of facial flattening
[108]. The clavicle is rarely completely absent,
but is hypoplastic. Preservation of the medial
aspect of this bone, which expresses type II col-
lagen and Sox9, which are markers of cartilage
lineage, has been used to argue that this bone is
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Figure 1.1.

(a) Patient with cleidocranial dysostosis showing the absence of clavicles and curvature of the humeri. (b) Radiograph of the patient in

panel A showing hypoplasia of the clavicles (arrow), resulting in downsloping shoulders. (Adapted with permission from Kumar [88]).

of mixed origin in terms of formation via
endochondral vs. intremembranous mecha-
nisms [68].In addition, patients with cleidocra-
nial dysplasia have delayed secondary tooth
eruption. Overall growth is affected with short
stature that is relatively proportionate, with
decreased bone mineral density (BMD) and
growth plate abnormalities, evident radio-
graphically [72].

1.4.3 DIx5

Dix5, a homeobox gene, which is the mamma-
lian homolog of Drosophila Distal-less (DII)
genes, encodes a transcription factor expressed
primarily in the developing brain and bone.
DIx5 protein expression is essential for both
axial and appendicular skeletal development.
DIx6, another homeobox gene, shares functional
redundancy with DIx5. Knockout models in
which both DIx5/DIx6 are deleted, show abnor-
mal chondrocyte/osteoblast differentiation as
well as disruption of the proximal-distal pat-
terning in the limb bud [136]. The condensed
cartilage that ultimately forms the bones of
the limbs undergoes both longitudinal and
appositional growth. DIx5 has a particularly
important role in the conversion of immature
chondrocytes to hypertrophic chondrocytes,

highlighted by a chick limb model in which mis-
expression of DIx5 resulted in increased chon-
drocyte maturation and severe shortening of
long bones [160]. In addition to its role in limb
development, DIx5 is involved in normal bone
remodeling by regulating transcription of osteo-
calcin [137,138]. DIx5 can also interact with Msx2,
another protein in a set of expressed homeobox
genes, which serves an essential role in skeletal for-
mation and development of the nervous system.
DIx5 and Msx2 regulate the expression of alkaline
phosphatase, as Msx2 transcriptionally represses
alkaline phosphatase until DIx5 expression
increases to a threshold that allows it to counter-
act Msx2 and induce alkaline phosphatase levels
[78]. Additionally, Msx2 inhibits osteocalcin gene
expression in osteoblasts until the later stage of
maturation, when DIx5 inhabits the osteocalcin
promoter region and upregulates expression of
the gene [58, 78]. Msx2 and DIx5 are likely to have
reciprocal roles in osteoblast proliferation and
maturation by the stimulation of osteocalcin and
alkaline phosphatase expression at the appropri-
ate times during development and differentiation
[116]. To date,no human disorder has been identi-
fied that is caused by mutation in either the DLX5
or DLX6 loci on chromosome 7q21.3-22.1,
although they are considered as positional candi-
dates for the autosomal dominant split-hand split-
foot malformation (OMIM%183600), because
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they lie in the critical region for this disorder
[141, 142]. Loss of function mutations in MSX2,
which lies on chromosome 5q34-q35 lead to
craniosynostosis, type 2, (OMIM #604747), a rel-
atively rare dominant disorder arising from pre-
mature closure of the cranial sutures [71].
Notably, patients with trisomy of this region may
also have craniosynostosis, suggesting that
expression levels need to be tightly balanced for
normal sutural closure [149, 175].

1.4.4 Twist1

A basic helix-loop-helix transcription factor,
Twistl, has emerged as an important regulator
of bone development. TWIST1 has been shown
to particularly induce Runx2 expression in
human calvarial osteoblasts [51, 185], and loss
of Twistl has led to decreased expression of
osteoblast-specific genes, such as FGFR2 [51].
Additionally, Twistl plays an important role in
mouse limb development by regulating the
expression of Fgf, Shh, and Bmp-2, whereby
growth and differentiation of the limb bud are
regulated [118].In a heterozygous Twistl mouse
model, the forelimbs are unaffected while the
hindlimbs show preaxial polydactyly [15].
Twistl knockout mice exhibited severely
retarded limb bud formation, as forelimb and
hindlimb bud growth was prematurely arrested
[118]. Conversely, in the mouse preosteoblastic
cell line, MC3T3-E1 cells were used to reveal that
the Twist1 suppression of osteoblastic differen-
tiation is accomplished through the inhibition
of BMP signaling [59]. Specifically, activation of
HDACI interaction with Smad4 accounted for
this decrease in osteogenesis [59]. Recently,
Twistl has also been implicated in murine
chondrocyte regulation through inhibition of
Runx2 and ultimately Fgf-18, even though
Twistl expression is limited to chondrocytes in
the perichondrium [66]. Although the data on
Twistl regulation of bone development is often
contradictory and not yet fully understood, we
can be sure that Twist1 does have a role in bone
development. This is evident through studies
on Saethre-Chotzen syndrome, which is also
known as acrocephalysyndactyly III (ACS IIL
OMIM#101400), where mutations in TWIST1

that result in loss of TWIST1 activity cause pre-
mature fusion of the cranial sutures, facial dys-
morphisms, and digit defects. The coronal
sutures are most frequently involved, although
others may also undergo premature closure.
Segmentation defects involving the bones of the
thumb and cervical vertebrae as well as radioul-
nar synostosis, occur in this syndrome, suggest-
ing a role for TWIST1 in pattern formation and
segmentation (see [130] for review).

1.5 Gene Expression
in Osteoclast Development

1.5.1 Initiation and Coupling

Cytokines, including RANKL and M-CSE, pro-
duced by osteoclast-supporting marrow stromal
cells, induce intracellular cascades (Fig. 1.2) in
hematopoietic precursors and immature osteo-
clasts that express receptors for these cytok-
ines (reviewed in [184]). The interaction of the
cytokine receptor-activator nuclear factor x B
(RANK) with its receptor RANKL on the surface
of preosteoclasts and mature osteoclasts plays
a key role in the initiation of this process. In
receiving cells, signal cascades activate down-
stream transcription factors such as c-Fos/AP-1
and NF-kB (reviewed in [184]). These transcrip-
tion factors cue hematopoietic precursors and
immature osteoclasts to express osteoclast-spe-
cific proteins that ultimately support osteoclast
differentiation [74, 156, 164].

Coupling of osteoblasts and osteoclasts is
essential in both bone development as well as
remodeling that occurs throughout life. In devel-
opment, this coupling process results in bone
patterning which produces and maintains the
bones of the skeleton in correct size and shape.
Developmental bone patterning is regulated by
specific patterning genes such as those in the
Hox, Pax, and Sox families, as well as growth fac-
tors such as FGF and TGFp, in addition to matrix
proteins and integrins, including fibronectin and
laminin. This process of bone patterning has
been explored in detail in an earlier book in this
series which focused on bone formation.
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Figure 1.2.  (a) M-CSF signaling cascade in osteoclasts. M-CSF interacts with the c-FMS receptor to induce the Ras/Rak/ERK/MEK pathway as well

as the PI3K/Akt and PLC-y pathways, which converge on regulation of the cell cycle through cyclin D1. (b) The essential RANKI/RANK signaling pathway
works through TRAF6 to induce translocation of NF-xB to the nucleus along with the transcription factors NFATc1,c-Fos, and c-Jun. Activation of this
pathway is critical for osteoclastogenesis from osteoclast progenitor cells. (Adapted with permission from Yavropoulou [184]).

1.5.2 Transcription Factors

Other essential transcription factors in the pro-
cess of osteoclast maturation are PU.1, MITF, and
c-FOS [184]. Specifically, PU.1 knockout mice
not only lack osteoclasts, but also do not have
any macrophages [165]. Ultimately, PU.1 goes on
to stimulate the production of RANK. The
cytokine M-CSF actually mediates the transcrip-
tion of its sole receptor, c-FMS, by stimulating
PU.1.1In the absence of M-CSF, there is a decrease
in tissue macrophages, which ultimately leads to
osteopetrosis, an increased BMD, owing to the
reduction in the number of osteoclasts [31].
MITF is another transcription factor which
plays a role in osteoclast differentiation and sur-
vival. Probably, it is the interaction of MITF with
PU.1 that specifically regulates the target genes
during osteoclastic differentiation [69, 153]. The
transcription factor, AP-1, a heterodimer of FOS
proteins such as c-FOS, also aids in the regulation
of osteoclast differentiation. Mice lacking c-FOS
also have an osteopetrosis phenotype, even
though the number of macrophages increases
[49]. Several years ago, a transcription factor
NFATcl, nuclear factor of activated T cells, was
shown to be a necessary transcription factor in
osteoclastogenesis [70,162]. Even though NFATc1

is not an osteoclast-specific transcription factor,
several studies have shown that deletion of NFATc1
from an osteoclast model system resulted in
reduced osteoclastogenesis [3,24] and even rever-
sal of osteoclastic differentiation [24]. NFATc1 has
another interesting characteristic in that it can
autoregulate; thus, upregulation of NFATcl by
RANK signaling causes a constitutive increase in
NFATc1 expression driving osteoclast maturation
and longevity through the regulation of several
osteoclast-specific genes (reviewed in [161]).

1.5.3 Differentiation and Activation

After the onset of osteoclastogenesis,an entirely
new set of genes play a large role in osteoclast
differentiation, including those that guide the
fusion and multinucleation of preosteoclasts,
as they form mature osteoclastic cells. One such
protein is the receptor for advanced glycation
end (RAGE) products, which augments differ-
entiation, maturation, and function of osteo-
clast precursors. In a RAGE-deficient mouse
model, an increase in bone mass and BMD with
decreased bone resorptive activity was reported
[37, 189]. Osteoclasts lacking RAGE had a dis-
rupted actin ring and impaired sealing zone
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structures, which hindered osteoclast matura-
tion and reduced bone resorption [189]. A sub-
sequent study [188] reported that HMGBI, a
high-mobility group protein, could act as an
autocrine ligand for RAGE. The authors further
showed that RANKL stimulation of HMGB1 led
to the extracellular release of HMGB1, an essen-
tial component of RANKL-induced osteoclast
differentiation.

In addition to the differentiation induced by
the RANKL:RANK pathway, ICAM-1 and LFA-1
have been implicated in promoting cell-cell con-
tact between osteoclast precursors during the
stage when immature mononuclear osteoclasts
fuse to form multinucleated cells (reviewed
in [184]). The production of chemokines MCP-1
and RANTES generate chemotactic signals, which
also lead to mononuclear osteoclast fusion [77].
Several cytokines and colony-stimulating factors
including IL-1, 3, 6, and 11, as well as LIE, OSM,
CNTE TNEFE and GM-CSF play vital roles in initi-
ating this cell-to-cell contact (reviewed in [95]).
After the final stage of osteoclast multinucleation,
activation of these cells is mediated by the princi-
pal osteoclastic integrin OLVBS, ¢-SRC kinase, and
SYK, ultimately leading to Rac activation, which
is essential for cytoskeletal reorganization in the
osteoclast (reviewed in [184]).

1.6 Steroid Hormone Receptors
in Skeletal Development

The sex steroids estrogen and testosterone play
major roles in skeletal development and mainte-
nance (reviewed in [159]). Traditionally, estrogen
and testosterone were defined by their gender-
specific skeletal effects, with estrogen being the
main sex steroid in women and testosterone in
men. However, the evolving view of estrogen and
testosterone effects on bone now includes a role
for both the sex steroids in the maintenance of
the male and female skeleton [120, 135, 173].

1.6.1 Estrogens

Sims et al. [152] performed an elegant knockout
experiment of the estrogen receptors ERo and

ERP, both of which are critical mediators for the
downstream effects of estrogen. Several conclu-
sions were made from this study. First, deletion
of only ERo reduced bone turnover that ulti-
mately increased trabecular bone volume in
both male and female mice. Second, in the ER
knockouts, the male mice were largely unaf-
fected, while the female mice had decreased
bone resorption with increased trabecular bone
volume. Third, the double ERo/B knockouts
demonstrated a suppression of bone turnover
in females, and consequently, a decrease in tra-
becular bone volume, suggesting a compen-
satory mechanism of ERo and ERP in the
regulation of bone mass in female mice. In con-
trast to the female mice, the male double ERo/[3
knockouts showed reduced bone resorption,
ultimately leading to an increase in trabecular
bone volume. Careful interpretation of the
results of these knockout studies are required,
however, because the skeletal phenotype of the
ER knockouts can be attributed to both direct
and indirect effects of circulating estrogen and
testosterone levels, as there may be a compensa-
tory mechanism in place in the event of a total
knockout. Additionally, several ER allelic vari-
ants have been implicated in low BMD suscepti-
bility. ERo. polymorphisms may contribute to
multigenic disorders such as osteoporosis [45],
predict responsiveness to raloxifene treatment
[64], or otherwise, be linked to BMD [133].
Allelic variants of ERP} have also been associ-
ated with changes in BMD [172].

1.6.2 Androgens

In contrast to the osteoprotective effect of estro-
gen in the female skeleton, the role of androgens
has not been as well established, although one
female androgen receptor (AR) knockout model
showed no skeletal abnormalities (reviewed
in [159]). The role of androgens in maintaining
the male skeleton has been better characterized,
and data show that androgens can affect the
skeleton through either direct activation of the
AR or indirectly after aromatization into estro-
gens, which thereby activate the ERs [76]. Loss
of estrogens or androgens increases the rate of
bone remodeling by two methods: suppression
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of osteoblastogenesis and osteoclastogenesis as
well as altering the lifespan of osteoclasts and
osteoblasts [98]. These actions can then disrupt
the balance of bone resorption and formation
[98]. It has been hypothesized that testosterone
chiefly affects mature osteoblasts and osteo-
cytes, while estrogen has a major role in the
regulation of osteoblastic activity through the
many stages of differentiation (reviewed in
[159]). Interestingly, polymorphisms in aro-
matase, the product of the CYP19 gene and the
key enzyme in the conversion of testosterone to
estradiol, have been correlated with the differ-
ences in cortical bone size, but not with trabec-
ular vBMD [97].

1.6.3 VitaminD

The sometimes controversial roles of vitamin D
hormones on bone development and homeo-
stasis were recently reviewed [154]. Clearly, it
is increasingly certain that vitamin D hormones
exert their effects on bone, both directly and
indirectly. In addition to influencing bone
growth by modulating bioavailability of cal-
cium and phosphate, the secosteroid interacts
withthegeneproductsthatarethe25-hydroxyvi-
tamin D-1alpha-hydroxylase and the vitamin D
receptor (VDR). Polymorphisms in these genes
thus can affect both osteoblasts and growth-
plate chondrocytes, and ultimately bone shape,
length, and BMD [96, 104, 154]. Molecular
genetic studies have shown clear roles for the
hormonally active metabolite of vitamin D,
1,25-(OH),D,, in growth-plate chondrocytes
[5, 16, 154]. Functional ablation of the VDR in
collagen typeII-expressing chondrocytes reduces
RANKL expression and delays osteoclastogen-
esis. The net effect of this is an increase in bone
volume at the primary spongiosa [154]. Mice in
which the VDR is ablated in chondrocytes have
reduced circulating levels of FGF23 and ele-
vated serum phosphate concentrations [154]. It
has been suggested that this occurs because
1,25-(OH),D,, acting through specific receptors,
causes a factor to be secreted from chondrocytes,
which in paracrine fashion, alters FGF23 pro-
duction by osteoblasts.

1.7 Primary Genetic Defects
Affecting Bone Development

The following genetic disorders of bone devel-
opment were chosen among many candidate
genes to illustrate the basic principles linking
genetics and bone development. The list is meant
to be illustrative rather than comprehensive.
Genetic disorders of bone development and
their clinical manifestations can be grouped into
three basic categories: (a) primary skeletal dys-
plasias presenting with abnormal bone and car-
tilage development; (b) systemic or localized
homeostatic imbalances resulting in uncoupled
processes of bone formation and resorption;
and (c) mineralization defects resulting in bone
fragility. The occurrence of these syndromes as a
consequence of genetic mutation has provided
much information about the function of these
genes in normal bone and during bone growth.

1.7.1 Achondroplasia (OMIM#100800)

Occurring in 1 in 15,000 to 1 in 40,000 live births,
achondroplasia is the most common primary skel-
etal dysplasia associated with disproportionate
growth of long bones. The patients have rhizomelic
shortening of the limbs (relative shortening of
the proximal segments), large heads with frontal
bossing and flattening of the midface, and thora-
columbar lordosis (Fig. 1.3). Achondroplasia is an
autosomal dominant condition caused by muta-
tions in the FGFR3 gene on chromosome 4p16.3,
with 99% of patients carrying a mutation that
alters the same residue in the transmembrane
domain of the protein leading to a constitutively
active receptor [44, 67, 72]. FGFR3 is a receptor
tyrosine kinase with a split intracellular kinase
domain. It acts as a negative regulator of bone
growth by repression of BMP4 expression and
Hedgehog signaling [115], as well as activation of
Statl pathways [57]. The achondroplasia muta-
tions lead to ligand-independent activation of the
receptor resulting in shortening of the long bone
growth at the level of the growth plate, as dis-
cussed in Chap. 3 of this volume, by inhibiting
chondrocyte proliferation, and decreasing the rate
of chondrocyte differentiation [115]. Moreover, in
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Achondroplasia

Figure 1.3.  (a) Infant with achondroplasia who has macrocephaly with frontal bossing and flattening of the bones in the midface. The thorax is
narrow and extremities are short, with bowing of the long bones in the legs. Note the joint laxity and redundant skin folds. (b) Radiograph from a child
with achondroplasia showing squared off of the roof of the acetabulum and small sacrosciatic notches (arrows). The femur, tibia, and fibula are short
with “chevron deformities” in the distal femur (arrow heads) caused by protrusion of the epiphysis into the metaphyseal space. In the distal portion of
the leg, note the extension of the fibula beyond the end of the tibia. (c) Depicts a 3-year-old boy with achondroplasia, who has rhizomelic (proximal)
shortening of the extremities, small thoracic cage, frontal bossing, and a flattened midface. Curvature of the tibia is evident. (Reprinted from Horton

et al. [85]. Copyright 2007, with permission from Elsevier).

a murine model of the disorder, endochondral
ossification is disrupted with abnormalities in
vascularization of the growth plate [146]. Notably,
mutations in the tyrosine kinase domains of the

FGFR3 receptor lead to thanataphoric dysplasia
(type II), a severe skeletal dysplasia that is almost
uniformly lethal in the neonatal period. Type I
thanatophoric dysplasia, which is distinguished
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clinically by curved femurs, is often caused by
mutations at the termination codon of the gene,
although other mutations have been identified
[163]. The thanatophoric dysplasia mutations are
also caused by the gain of function alleles, which are
more active than the achondroplasia alleles, but
have also been shown to cause apoptosis of the cells
in response to growth stimuli [90, 158]. More infor-
mation on these syndromes can be found in Chap. 6
of this volume. On the other end of the spectrum, a
milder phenotype, hypochondroplasia, is also
caused by mutations in FGFR3 [128], which have
been identified in Muenke coronal craniosynostosis
(OMIM# 602849) [38] and Crouzon syndrome with
acanthosis nigricans (dark pigmentation of the
skin) (OMIM#612247) [103], demonstrating the
wide variable expressivity of mutations in the gene.

Pseudoachondroplasia (OMIM #177170). Babies
with pseudoachondroplasia (Fig. 1.4) have nor-
mal lengths at birth, but typically, are diag-
nosed at the time they begin to walk, because of

a waddling gait. Growth of the long bones is dis-
parately affected, and these individuals develop a
short-limbed form of short stature by the age of
2 years. Facial features are normal. Joint pain
begins in childhood and often is progressive [29].
The disorder is caused by heterozygous muta-
tions in the COMP gene encoding a large extra-
cellular matrix glycoprotein, cartilage oligomeric
matrix protein [63]. It is transmitted in an auto-
somal dominant manner, but new mutations
account for a substantial portion of the cases.
Approximately one-third of the individuals with
pseudoachondroplasia have the same mutation,
involving deletion of an aspartic acid in a calm-
odulin-like calcium-binding domain of the pro-
tein [17]. The remaining mutations are typically
missense alleles that interfere with domain-fold-
ing and processing of the protein [25,34,84]. The
retention of COMP in the endoplasmic reticulum
(ER) of the chondrocytes leads to ER stress and
unfolded protein response, which contribute to

Pseudoachondroplasia

Intracellular Manifestations

Extracellular Manifestations

premature chondrocyte death

!

Clinical manifestations
dwarfism

a b

Figure 1.4.

"ECM contains little
COMP, type IX
collagen, MATN3

Collagen fibrils are
loosely packed and
disorganized

Clinical manifestations
% early onset osteoarthritis

Effects of COMP mutations on skeletal development. (a) Intracellular manifestations of COMP mutations in pseudoachondroplasia. The

mutant COMP protein is improperly folded and retained within the rough endoplasmic reticulum (ER).The resulting ER stress causes apoptotic death
of the chondrocytes at the growth plate leading to short stature. (b) Extracellular outcomes of COMP mutations. Decreases in abundance of COMP as
well as type IX cartilage, and Matrilin 3 in the extracellular matrix. In addition, disorganization and reduction in collagen fibrils in the matrix make it
prone to erosion and account for early-onset osteoarthritis in the affected individuals. (Reprinted with permission from Posey et al. [127]).
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the pathogenesis of the disorder by causing apop-
tosis of the chondrocytes [62].

1.7.2 Marfan Syndrome
(OMIM# 154700)

This is an autosomal dominant connective tis-
sue disorder caused by the mutation of the gene
encoding the extracellular matrix protein, fibril-
lin 1 (FBN1). Clinically, the hallmark features of
Marfan syndrome are disproportionate growth
of the long bones leading to tall stature and
arachnodactyly, with aortic dilation and dislo-
cation of the lens in the eye. The gene lies on
chromosome 15q21.1 and numerous types of
mutations have been identified with a relatively
high frequency of cysteine substitution muta-
tions in the EGF-like repeat domains of the pro-
tein. The pathogenesis of the skeletal overgrowth
is not known, however, FBN1 is expressed in
bone and osteoblast-like cells [80].

1.7.3 Osteogenesis Imperfecta

Osteogenesis imperfecta (OI) includes a group
of disorders associated with variable bone fra-
gility, hearing loss, and in some cases, dentino-
genesis imperfecta [155]. The disorder is divided
into seven types, which differ dramatically in
severity that can range from a relatively mild
form with few fractures, mild short stature (or
normal stature) and normal teeth (type I), to a
perinatal lethal form associated with poor ossifi-
cation of the skeleton, multiple fractures, and
deformity of type II. The majority of the cases of
OI types I-IV are caused by mutation in the
genes encoding the alpha chains of procollagen,
COLIAI and COL1A2. Inheritance is autosomal
dominant, with new mutations underlying the
severe forms. Although genotype-phenotype
correlations are not always completely predict-
able, mutations that lead to decreases in the pro-
duction of protein are associated with milder
phenotypes (type 1) [180]. In contrast, missense
mutations that lead to the production of a stable,
but misfolded procollagen fibril can be incorpo-
rated into the triple helix of a collagen strand
and have dominant negative effects [155]. Studies
in an animal model of a moderate form of OI

suggest that disruption of normal collagen syn-
thesis results in an early reduction in bone for-
mation and an increase in osteoclast production,
leading to poorly mineralized bone [170].

1.7.4 Hereditary Multiple Exostosis

Mutations in the EXTI (chromosome 8q24.11;
OMIM#133700) or EXT2 (chromosome 11p12-
pll; OMIM#133702) genes cause hereditary
multiple exostoses, a syndrome which is inher-
ited in an autosomal dominant manner. The
EXT1 [122] and the EXT2 genes encode the pro-
teins exostosin-1 and exostosin-2, respectively,
which associate to form a functional complex in
the Golgi of the cells actively secreting heparan
sulfate [186]. Both the proteins are ER-resident
type II transmembrane glycosyltransferases
responsible for the chain elongation step of hep-
aran sulfate biosynthesis. Mutations in the EXT1
gene cause the type I form of multiple exostoses,
which is typically more severe than mutations in
EXT2, which lead to the type II form of the syn-
drome. A minority of patients with hereditary
multiple exostoses do not have mutations in
either the EXT1 or the EXT2 gene, and it is not
known why multiple exostoses occur in these
patients [122, 186]. Interestingly, it has been
reported that the periochondrium may be the
source of the stem cells that initiate the forma-
tion of new exostoses [61]. The formation of
what are essentially new auxiliary growth plates
in patients with hereditary multiple exostosis
indicates that heparan sulfate-dependent pro-
cesses play a primary role in the initiation and
control of the processes that regulate bone
growth and growth-plate development.

1.7.5 Paget’s Disease of Bone

Paget’s disease of bone (PDB, OMIM#602080) is
alate-onset disorder characterized by focal areas
of increased bone turnover containing enlarged
hyperactive bone resorbing osteoclasts [65].
Mutations in sequestosome 1 (SQSTMI; chro-
mosome 5q35) are associated with familial and
sporadic disease in up to 40% of cases [65],
supporting the notion that this condition has a
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strong genetic component. Additional genetic
loci almost certainly exist, but are yet to be
definitively identified. Sequestosome 1 is a mul-
tifunctional protein that, among other activities,
binds ubiquitin and modulates the nuclear fac-
tor kappa-B (NF-kB) signaling pathway. As an
intracellular scaffolding or adaptor protein,
sequestosome 1 plays a central role in coordinat-
ing signaling pathways that modulate osteoclast
activation. The focal disturbances in bone turn-
over and homeostasis lead to a variety of clinical
complications, such as bone pain, deformity,
pathological fractures, and deafness [32]. Given
the common theme of skeletal dysplasia in per-
sons suffering from mutations affecting TNF
family member receptors, NFkB signaling path-
ways, transcriptional targets downstream of
NFkB, and scaffolding proteins modulating these
pathways, there is no doubt that this is a funda-
mental pathway in bone growth and develop-
ment as has been described [177].

1.7.6 Familial Expansile Osteolysis
(OMIM#174810)

Mutations in RANK/TNFRSF11A (chromosome
18q22.1) lead to the development of a relatively
rare primary skeletal dysplasia with many mani-
festations that include osteolytic lesions mainly
located in the long bones. This is classified as a
disabling deformity associated with a high risk
of pathological fracture, with deafness and loss
of dentition [177]. The dysplasia is inherited as
an autosomal dominant disorder with some phe-
notypic overlap with Paget’s disease of bone [65].
The syndrome is a direct result of mutations that
lead to constitutive activation of RANK and a
chronic state of rapid skeletal remodeling.

1.7.7 Hyperphosphatasia
(OMIM#239000)

Inactivating mutations in the TNFRSF11B gene
(chromosome 8q24), which encodes osteoprote-
gerin (OPG), are responsible for idiopathic
hyperphosphatasia, a severe bone homeostatic
disorder that shares phenotypic similarity with
PDB and which is inherited in an autosomal
recessive fashion. In essence, loss of both alleles

encoding OPG leads to unregulated RANKL
signaling, excessive osteoclast activation, and
chronic osteolysis. The symptoms of hyperphos-
phatasia mimic many of those of familial expan-
sile osteolysis including high bone turnover,
deafness during early childhood, “idiopathic
external lysis” of adult teeth, and may involve
focal lesions in appendicular bones that mimic
active PDB [177]. Interestingly, till date,no muta-
tions in RANKL itself have been associated
with human disease. However, mutations that
result in enhanced RANK signaling through
inactivation of OPG or activation of RANK are
associated with hyperphosphatasia and famil-
ial expansile osteolysis, respectively [12].

1.7.8 Juvenile Osteoporosis
(OMIM 259750)

The subject of osteoporosis affecting the adult
population was thoroughly discussed in Vol. 2
in this book series. The juvenile version of this
disease, however, appears to have a complex
genetic etiology. No single gene is the culprit,
and disruption of no single pathway appears to
be the root cause. As is discussed in the subse-
quent section, for children with Rett syndrome,
certain genetic syndromes are predictably asso-
ciated with low bone mass. In addition to these
occurrences, many more subtle but nonetheless
important factors can influence the accumula-
tion of bone mass during bone growth. Such
factors include genetics, gender, ethnicity, nutri-
tion (e.g., calcium, vitamin D, and protein), hor-
monal factors (e.g., sex steroids and insulin-like
growth factor I), physical activity, and exposure
to various risk factors (e.g., alcohol, smoking,
and certain medications) [14]. Family and twin
studies have estimated that 60-80% of peak
bone mass variability in the general population
is attributable to genetic factors [14]. It is clear
that bone growth in individuals responds dif-
ferently to external factors including diet and
exercise. As more is learned about the interac-
tions among gene products expressed by bone
cells, it is hoped that molecular signatures will
be developed to assist in predicting personal-
ized responses to external factors, especially
among growing children.
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1.7.9 X-linked Hypophosphatemia
(OMIM#307800)

Familial hypophosphatemia is a rare genetic dis-
ease that is transmitted as an X-linked dominant
trait. Mutations on the phosphate-regulating
gene with homologies to endopeptidases on
the X-chromosome (PHEX) gene (chromosome
Xp22.2-p22.1) are responsible for the familial
form of the disease. The PHEX protein is a trans-
membrane endopeptidase that belongs to the type
IT integral membrane zinc-dependent endopepti-
dase family. Numerous reports demonstrate that
PHEX is involved in mineralization of bone and
dentin, as well as in renal phosphate reabsorption.
Interestingly, the metallopeptidase PHEX is a hep-
arin-binding protein that binds to heparan sulfate
in the extracellular matrix and may modulate its
enzymatic activity, protein stability, and cellular
trafficking [8]. The exact substrates for PHEX,
whose cleavage is dysregulated by mutations in
PHEX, are the subject of much active research.
This research has focused on FGF23 (reviewed
in [110]) and more recently, on the matrix extra-
cellular phosphoglycoprotein (MEPE). Hyp mice
having an inactivating mutation of the PHEX
gene have bones with increased levels of MEPE
[1, 6]. An acidic, serine- and aspartic acid-rich
motif (ASARM) is located in the C-terminus of
MEPE and some other matrix proteins in the min-
eralized tissues. It was recently proposed that
PASARM inhibits mineralization by binding to
hydroxyapatite and that this inhibitor can be
cleaved by PHEX, which provides a mechanism
explaining how loss of PHEX activity can lead to
extracellular matrix accumulation of ASARM
resulting in the osteomalacia of X-linked hypo-
phosphatemia [1]. This hypothesis is intriguing,
but remains to be unequivocally proven.

1.8 Epigenetic Regulation
in Development

1.8.1 Methylation

In addition to genetic regulation in bone
development, epigenetic gene regulation can
also lead to differences in bone formation and

maintenance. Epigenetics refers to the heritable
changes in the genome that are not caused by
differences in the DNA sequence. These epige-
netic modifications include methylation of the
5' carbon of cytosines within a cytosine-guanine
dinucleotides, and acetylation or methylation of
lysine residues on histones. Methylation of CpG
dinucleotides within a stretch of DNA tradition-
ally has been thought to lead to transcriptional
silencing, whereas methylation and acetylation
at the different lysine residues on histones can
either have transcriptional activation or repres-
sion activities depending on whether it allows
the chromatin to open up or forces it to con-
dense. In a normal developmental state, repro-
gramming of major epigenetic marks such as
methylation of the 5 carbon of cytosines are
erased from the gametes during fertilization
and replaced with embryonic marks that are
important for early embryonic development
and beyond (Fig. 1.5) [131, 134, 157]. These spe-
cific “marks” on the DNA are referred to as epi-
genetic modifications, and although it is largely
unknown, there is a mechanism within the cell
that can specifically read these modifications.
For example, methylated cytosines can be bound
and regulated by methyl-binding domain (MBD)
containing proteins, such as a protein in a family
of MBDs, Mecp2, which contains an MBD
domain [100, 101, 114].

1.8.2 Imprinting

Another epigenetic phenomenon is called
imprinting, indicating that certain genes are
expressed from only one chromosome in a par-
ent-of-origin dependent manner [9, 132]. These
allele-specific differences are often maintained
by differential methylation patterns [132],
although there may be other imprints on DNA as
well. The properties of DNA methyl-transferase
enzymes (DNMTs) make them uniquely suited
to play a role in imprinting, as they are needed to
maintain DNA methylation, which is an impor-
tant imprinting mark (reviewed in [126]). Fewer
than 1% of all mammalian genes are imprinted,
totaling just over 30 genes discovered to date.
Imprinted genes are not found sporadically
throughout the genome, but rather they tend to
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Figure 1.5.  The cycle of epigenetic reprogramming in mammalian cells. Epigenetic modifications are reprogrammed twice during development.

Early in the preimplantation development cycle, the parental imprint is erased by DNA demethylation in the pronucleus (PN), followed by reprogram-
ming via de novo DNA methylation to reestablish the parental imprints. After fertilization, DNA demethylation and removal of histone modifications
occurs, although imprinted genes maintain their methylation marks. De novo methylation in the primordial germ cells (PGCs) restores the epigenetic
modifications in the first two lineages of the blastocyte stage, while the inner cell mass (ICM) remains hypermethylated when compared with the

trophoectoderm (TE). (Adapted with permission from Morgan et al. [105]).

cluster together [126]. Often these clusters of
two or more imprinted genes are regulated by a
region called the imprinting control region
(ICR), which determines the allele-specific
expression of those particular genes [79]. For
this small subset of genes, it is very important
that only the correct allele is expressed for each
particular gene that can be either maternal or
paternal. Disease often results in the case where
the incorrect allele is expressed or mutations are
found on the expressed allele.

In this section, we will explore a few represen-
tative disorders that illustrate the consequence of
impaired imprinting and epigenetic gene
regulation. The Gnas gene that encodes the
G-coupled protein receptor o subunit is located
within a cluster of imprinted genes, with tran-
script-specific transcription in both the sense
and antisense directions [125, 182]. Methylation
of the proximal Gnas exon 1 promoter has not
been associated with the imprinting status of
Gnas exon 1, and rather within this cluster of
genes around the Gnas exon 1 locus, there have

been several ICRs that have been shown to
directly regulate Gnas exon 1 tissue-specific
expression [93, 94, 178, 179]. Gnas exon 1 is bial-
lelically expressed in most tissues, but shows an
inclination toward maternal expression in several
tissues, including renal proximal tubes and brown
and white adipose tissue (reviewed in [124]).
Phenotypic abnormalities have been associ-
ated with the loss of imprinting or allele-specific
mutations in many of the genes encoded within
the Gnas locus (reviewed in [124]). Interestingly,
parental-specific inheritance of mutations in the
Gnas exon 1 transcript leads to a particular set
of problems. Pseudohypoparathyroidism (PHP)
results from mutations in Gnas exon 1 transcript,
but several distinct PHP disorders have been
identified, including PPHP and PHP typela. In
addition to hormonal resistance to parathyroid
hormone (PTH), PHP typela cases have features
of Albright’s hereditary osteodystrophy (AHO).
While PPHP also shows features of AHO, these
cases do not exhibit hormone resistance to PTH
[36, 181]. AHO refers to a collection of features
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including short stature, obesity, brachydactyly,
ectopic ossifications, and mental retardation
(reviewed in [10]). While PPHP and PHP typela
share several common features, they actually
arise from mutations on different parental
alleles. Production of PHP typela is a direct
effect of mutations on the maternally derived
allele, while PPHP results from mutations on the
paternal allele [176]. Several other disorders
have also resulted from mutations on the Gnas
exon 1 gene. Progressive osseous heteroplasia
(POH), a devastating disease resulting from
widespread ossification in childhood and pro-
gressive ossification of the skeletal muscle and
deep tissue, has also been shown to be a conse-
quence of paternally inherited mutations in
Gnas exon 1 gene [2, 23, 150]. From the above-
mentioned examples, it is clear that epigenetic
dysregulation can play a large role in disease
state, specifically with regard to bone.

1.8.3 Epigenetic Regulation
of Mediators of Bone Formation
and Remodeling

Several instances of epigenetic regulation affect-
ing bone formation, remodeling, and ulti-
mately, BMD have been documented. Epigenetic
modulation of RANKL expression was initially
described in late passage mouse stromal ST2
cells [83]. In these cells, methylation of two CpG
dinucleotide clusters, one near a putative vita-
min D response element (VDRE) and other near
the start site of transcription in the mouse
RANKL gene was coincident with a decrease in
the ability of osteoblastic cells to support in vitro
osteoclastogenesis [82]. Sequences near the
VDRE were methylated in both early and late
passage cells; however, cytosine methylation sta-
tus increased dramatically from early to late
passage cells in the region flanking the tran-
scription initiation site coincident with the
downregulation of RANKL expression [83].
Additionally, data from the Rubin laboratory
demonstrated complex modulation of histone
modifications associated with RANKL promoter
activity and gene expression, with the SWI/SNF
chromatin remodeling complex being impli-
cated in the control of osteoblast differentiation

[42]. Further studies by Kitazawa even suggest a
direct connection between Mecp2 and RANKL
in late passage ST2 cells [81], a time when
RANKL expression is downregulated.

1.8.4 Histone Modifications

Epigenetic regulation of bone has been reported
to correlate histone deacetylation with the regu-
lation of osteoblast differentiation. Clinically, it
has been observed that children with epilepsy
[52] as well as adult epilepsy patients [13, 139]
treated with valproate (VPA), a histone deacety-
lase inhibitor (HDACI), had a reduction in skel-
etal growth and bone mass and decreased BMD,
respectively. Even though gene profile studies
have linked VPA to the up or downregulation of
several sets of genes, the exact mechanism by
which VPA accelerates bone differentiation, ulti-
mately leading to reduced BMD has not yet been
elucidated [27, 144]. Additionally, there is evi-
dence linking HDACi with accelerated osteoblast
differentiation through inhibition of the interac-
tion of HDAC3 and Runx2 [143, 145]. Other
studies have highlighted the importance of epi-
genetic regulation in bone, as increased histone
3 acetylation was observed in the bone sialopro-
tein promoter [89],and both reduced CpG meth-
ylation and increased acetylation levels have
been implicated in osteocalcin transcriptional
activation [147, 148, 151, 174]. Acceleration of
osteoblast differentiation as a result of HDAC
inhibition has been reported using both osteo-
blastic cell lines as well as clinical observations
[27, 143, 145]. While gene profiling studies have
been performed to uncover key genes that are
disrupted with HDACI treatment, a mechanism
that would lead to reduced BMD is not yet clear.

1.8.5 DNA Methylation
and Rett Syndrome

Over 95% of all patients with the neurodevelop-
mental disorder, Rett syndrome (RTT), are
females who present with neurological dysfunc-
tion that becomes apparent after the first few
months of life [55, 56]. In addition to the promi-
nent neurological symptoms, children with RTT
frequently have reductions in skeletal growth
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and low BMD, which lead to pathological frac-
tures in childhood and early adolescence
[54,91,93]. One of the first studies to document
the risk of osteopenia in RTT compared bone
mineralization in RTT girls with normal con-
trols and individuals diagnosed with cerebral
palsy (CP), who have impaired mobility and
risks for disuse atrophy similar to patients with
RTT [54]. Despite adequate calcium and vita-
min D intake, RTT patients, when compared
with both the control populationshad decreases
in whole body and spinal BMD as well as bone
mineral content (BMC) even when corrected
for age. Longitudinal and cross-sectional stud-
ies of RTT patients revealed that bone mass
increases over time in RTT girls at a much
lower rate than in normal controls [19, 20, 106,
190]. The reduction in cortical bone thickness
and BMD is further exacerbated by anticonvul-
sant use, immobility, and scoliosis, which com-
pound the morbidity imparted by bone fragility
in RTT patients [21, 48,75, 107].

Most cases of RTT are caused by mutations in
MECP2 (murine ortholog Mecp2**) [4],the most
notable in a family of MBD proteins that all share
sequence homology with the MBD of Mecp2
[100, 101, 112]. In addition to the MBD, a tran-
scriptional repression domain (TRD) [111]
and nuclear localization signal (NLS) have
been identified. As mentioned previously, DNA
methylation of cytosines in CpG dinucleotides is
an epigenetic modification that is important for
transcriptional regulation [26, 33, 39], and
imprinting [123]. Mecp2 was identified as a pro-
tein that would preferentially bind to methylated
CpG dinucleotides [112, 114] in the genome and
repress transcription by recruiting corepressors
such as mSin3A, c-Ski, N-CoR [85], as well as
histone deacetylases [73, 113], although there is
evidence that Mecp2 can repress transcription
independent of methylation state [46].

Until recently, it was believed that Mecp2
acted solely as a global transcriptional repres-
sor, even though microarray analyses using
Mecp2 deficient systems did not yield much
information regarding specific targets of Mecp2
[30,166,167].Recent studies have demonstrated
that Mecp2 binding is neither limited to the
promoter regions of the genes [183], nor is
Mecp2 now confined to its role as a long-term

transcriptional silencer. Further work has shown
that Mecp2 has the ability to bind and transcrip-
tionally regulate genes through both transcrip-
tional repression and activation [22].

Several Mecp2-deficient mouse models have
been developed, which harbor various inactivat-
ing mutations in the Mecp2 locus. The strain
developed by the Bird laboratory, B6.129P2(C)-
Mecp2tml.1Bird/], carries a deletion of exons 3
and 4 generated by a constitutive Cre-mediated
recombination event [53]. While extensive work
has established many neurological similarities
between this mouse model and RTT patients,
our laboratory is investigating whether this
mouse model can recapitulate the bone pheno-
type and provide insight into the mechanism by
which Mecp2 regulates BMD. The results of our
work reveal that the Mecp2**" mice have an
abnormal skeletal phenotype that may be simi-
lar to the aberrant phenotype in RTT patients,
which often results in decreased BMD [117].
Further analysis is needed to determine the
exact mechanism by which Mecp2 regulates
BMD; however, this is another example of epige-
netic dysregulation leading to irregular BMD.

1.9 Summary and Conclusions

Here, we describe the importance of genes and
genetics in the regulation of skeletal development,
expressively emphasizing several genetic muta-
tions that can lead to disorders of the bone.
Specifically, Sox9, Runx2, DIx5, and Twistl have
essential roles in bone development, whereby a
mutation in each of these genes can lead to dif-
ferential, yet destructive effects on the skeleton. In
addition to these genes that are expressed in the
osteoblast, it is also crucial to think about the role
of the osteoclast in proper bone formation, pat-
terning, and development. Our brief discussion
regarding genes that are necessary for osteoclast
initiation, coupling, and differentiation, as well as
the critical transcription factors, only highlights
some of the genes that regulate osteoclastogene-
sis. Steroid hormones such as estrogens, andro-
gens, and vitamin D also have an effect on bone
development and each one has a significant
impact on proper skeletogenesis and maintenance
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of bone mineral density. Several primary genetic
defects that result in bone abnormalities have
been examined as examples of disorders that fit
into one of the three criteria: primary skeletal dys-
plasias, systemic or localized homeostatic imbal-
ances, and mineralization defects.

In addition to the effect of DNA sequence-
specific genetic mutations on bone development,
it is necessary to explore the role of epigenetics
on skeletal development and disorders of the
bone. Epigenetic modifications including DNA
methylation and histone methylation and acety-
lation have been implicated in the regulation of
proper bone mineral density. Mutations in genes
that participate in epigenetic gene regulation
(Mecp2) or are acted upon by epigenetic modifi-
cations (Gnas) have been shown to result in
reduced bone volume and cause skeletal defects.
Additionally, bone development can be affected
by improper control of genes with a role in epi-
genetic regulation, such as histone deacetylases.
Coupled together, this illustrates the importance
of epigenetic modifications and regulation of
epigenetically controlled genes in the develop-
ment and maintenance of the skeleton. The
information presented in this chapter leads to a
good overview of the mechanisms whereby bone
development is controlled, but there is undoubt-
edly much more to learn. The understanding of
skeletal development and bone biology as a
whole will continue to improve as we identify
more genes that are critical in bone develop-
ment and maintenance, uncover genes that are
involved in epigenetic regulation, and learn
more about the mechanism by which cells place
an imprint on particular genes.
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Tissue Interactions in Long Bone

Development

Céline Colnot and Tamara Alliston

2.1 Introduction

Most skeletal elements of the adult vertebrate are
composed of several tissues: cartilage,bone,bone
marrow, and blood vessels. Tissue organization
within the skeletal elements is established during
embryonic development through various stages
of patterning, cellular condensation, differentia-
tion, and morphogenesis. The tissues at the sites
of skeletogenesis constitute a unique microenvi-
ronment that coordinates the development of
eachbone [14,44,45,51,72]. Coordination among
bone, cartilage, vasculature, and hematopoietic
cells is mediated by conserved signaling path-
ways, including those initiated by the hedgehog,
What, fibroblast growth factor (FGF), transform-
ing growth factor-f (TGF-), and bone morpho-
genetic protein (BMP) family ligands. The fact
that the function of all resident cell types is con-
trolled by a common set of regulatory pathways
is integral to the inter-tissue interactions that are
required for skeletal development. Growth factor
cues from the microenvironment intersect with
cell-intrinsic factors, such as growth factor recep-
tors or the lineage-specific transcription factors,
Sox9 and Runx2. Each cell type expresses a
unique complement of cell-intrinsic factors that
dictate its response to the same growth factor
signal. In addition, the specific localization or

25

compartmentalization of the receptors and
ligands establishes feedback loops that finely
tune skeletal growth and development.
Discrimination of the effects of these cas-
cades on the differentiation of each cell type is
complicated. Recently, the use of tissue-specific
genetic mouse models has added a powerful new
tool that complements classical embryological
approaches and allows dissection of the role of
each pathway in the tissue interactions that lead
to skeletal development. This chapter will review
the tissue interactions required for long bone
development, where the interdependent devel-
opment of bone and cartilage is particularly
evident. In addition, it will review the current
understanding of the cell’s intrinsic and extrin-
sic factors that coordinate the development of
multiple tissue types during skeletogenesis.

2.2 (Cell Fate Decisions
in Early Bone Development

While most bones of the cranial skeleton form
via intramembranous ossification, bones of the
axial and appendicular skeletons form via endo-
chondral ossification. Both processes are initi-
ated by the condensation of mesenchymal cells.
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The signals that induce these condensations are
still poorly understood, but close physical con-
tact between the mesenchymal cells is critical in
promoting skeletal cell fate decisions and subse-
quent differentiation [34]. Mesenchymal cells
differentiate directly into osteoblasts during
intramembranous ossification, but give rise to
chondrocytes and osteoblasts during endochon-
dral ossification. Cell fate selection and cell dif-
ferentiation are directed by the expression of
essential lineage-specific transcription factors,
So0x9 and Runx2. Secreted factors, such as Wnts,
shift the balance of activity between the chon-
drogenic Sox9 and the osteogenic Runx2 to
drive the differentiation pathway selected by
the common osteochondroprogenitors. During
intramembranous ossification, cells are first
exposed to high levels of Wnt signaling, which
leads to increased Runx2 and decreased Sox9
expression, and guides the cells toward osteo-
genesis. However, the opposite occurs in endo-
chondral ossification [21]. Shortly after the
initial condensation of limb mesenchyme, cells
in the center of the condensation begin to dif-
ferentiate into chondrocytes, while those at the
periphery elongate and form the perichondrium
(Fig. 2.1). Later, during endochondral ossifica-
tion, cells in the perichondrium are exposed to
higher levels of Wnt signaling, and thus, are
driven to osteogenesis.

perichondrium

hypertrophic
cartilage

Figure 2.1.

The early emergence of two cell lineages
from a common mesenchymal progenitor estab-
lishes interactions that govern endochondral
ossification. Thus, cartilage-perichondrium
interactions are central to early long bone
development. Following initial tissue interac-
tions, more complex interactions occur because
of the arrival of blood vessels (Fig. 2.1). This
triggers the replacement of the cartilage tem-
plate by bone and bone marrow, and regulates
osteoblast differentiation. Blood vessels also
bring in cells that will form the hematopoietic
compartment of the bone marrow, as well as
matrix-resorbing cells that remove the carti-
lage matrix and cooperate with osteoblasts to
build, maintain, and remodel the bone matrix
throughout life [28, 54, 60].

2.3 Intrinsic Re gulation
of Chondrogenesis
and Osteogenesis

2.3.1 Chondrocyte Differentiation

Chondrocyte proliferation and differentiation
maintain normal skeletal development and
growth (Fig. 2.1). Chondrocytes near the

articular carti zlch

growth \ <ty
plate ‘“-mf
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periphery of the cartilage template proliferate,
and, as they grow toward the center of the car-
tilage elements, they differentiate into prehy-
pertrophic and hypertrophic chondrocytes,
causing the template to grow, be vascularized,
and ossified. During this process, hypertrophic
cartilage is removed, whereas chondrocytes
continue to be produced in the periarticular
region. This coupling of proliferation and dif-
ferentiation forms the growth plate and sup-
ports longitudinal bone growth. Successful
coordination of this process requires the inte-
gration of signals derived from numerous
sources by the intrinsic factors present in each
cell type. Chondrocytes produce factors that
regulate the progression of endochondral ossi-
fication, directly or in cooperation with other
cell types. For example, hypoxia inducible fac-
tor 1 (HIF1) alpha and vascular endothelial
growth factor A (VEGFA) found in chondro-
cytes are essential for cell survival and differ-
entiation [75, 93]. Indian hedgehog (Ihh) in
chondrocytes stimulates chondrocyte prolifer-
ation via the Ihh receptors Smo and Ptc-1 [58,
79]. Other factors that regulate chondrocyte
proliferation are of the TGF-f family, including
multiple isoforms of TGF-f and BMPs [62, 63,
74, 97]. These ligands and their receptors are
expressed and active in chondrocytes and per-
ichondrial cells (see Table 2.1). Members of the
FGF family antagonize the proliferative effects
of Ihh and BMPs primarily through the FGF
receptor isoform FGFR3, expressed by the
chondrocytes [72]. However, the ligand of
FGFR3, FGF18, is expressed in perichondrial
cells [70]. Other growth factor pathways act on
the two cell populations that together permit
functional paracrine FGF signaling. An exam-
ple is Thh that mediates some effects of both
FGF and BMP signaling on chondrocyte prolif-
eration (see next section) [62, 74].

The transition from proliferation to hypertro-
phy is controlled by chondrocyte-intrinsic and
extrinsic signals. The transcription factors,
Runx2 and Runx3, are upregulated in prehyper-
trophic and hypertrophic chondrocytes to regu-
late chondrocyte maturation via Ihh [29, 46,
82, 91]. As will be described subsequently, this
transition is also under the control of the

parathyroid hormone - related protein (PTHrP)
receptor that is expressed in the prehypertrophic
chondrocytes, specifically to prevent early matu-
ration in response to its ligand PTHrP. PTHrP
expression is mediated by a TGF- and Ihh-
responsive pathway in the perichondrium [3, 51,
52,77].1In addition, hypertrophy is stimulated by
BMP signaling, through either perichondrial
cells or chondrocytes [49].

When chondrocytes become hypertrophic,
they express genes that set up the steps leading
toendochondralossification[4,17].Hypertrophic
chondrocytes secrete extracellular matrix com-
ponents that allow matrix mineralization [48,
68], and, at the same time, produce matrix
degrading enzymes that make cartilage removal
possible; they thus induce terminal differentia-
tion and cell death [19, 37, 38, 80]. Removal of
hypertrophic cartilage when blood vessels enter
and bring in matrix-resorbing cells requires
VEGE, released by hypertrophic chondrocytes
themselves [33].

2.3.2 Osteoblast Differentiation

Bone formation follows cartilage formation
during endochondral ossification. Once chon-
drogenesis is initiated in the mesenchymal con-
densations, perichondrial cells at the periphery
of the cartilage differentiate into osteoblasts.
This initial step of osteogenesis is, as mentioned
earlier, stimulated by high Wnt signaling in
the perichondrium. This in turn induces the
upregulation of Runx2 and downregulation of
Sox9 to allow osteoblast differentiation [21].
Factors that act upstream of Runx2 to enhance
osteoblast differentiation include Msx2, Satb2,
and Bapxl1 [25, 76, 84]. Factors that inhibit dif-
ferentiation include Twistl and Shn3 [7, 39, 44].
The transcription factor Osx is also required for
bone formation [67] and, with Runx2, can
directly induce the expression of osteoblast-
specific genes, such as osteocalcin and collagen
type 1. Both Osx- and Runx2-null mutant mice
lack osteoblasts, but Runx2 is upstream of Osx
in the transcriptional cascade [67]. Following
the transition from osteochondroprogenitors to
osteoblasts, another transcription factor, ATF4,
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Table 2.1.

Tissue/cell type Genes

(artilage/chondrocytes Sox9
Runx2
Ihh/Smo/Ptc

Pthrp-r
Vegf

Bmp2,3,4,5,7
Fgfr1and 3
Mmp13

Tgf-B
Runx2
Twist1
Fgf18

Perichondrium/osteoblasts

Smo/Ptc
Pthrp
Vegf

Bmp2,6,7

Fg7,8,17
Fgfr1 and 2
Wnt5a
Mmp13

Mt1-mmp

Opg
Rankl

Tgf-B

Blood vessels/EC Vegf-r

Osteoclasts Mmp9

Rank
EprhinB2
Tgf-3

Key factors regulating tissue interactions in skeletal development

Effects on chondrocytes

Promotes chondrogenesis, inhibits CH
hypertrophy

Stimulates CH differentiation and
hypertrophy

Stimulates CH proliferation, requlates CH
maturation

Delays CH hypertrophy
Promotes CH survival

Promotes CH proliferation and
differentiation

Limits CH proliferation and
differentiation

Degrades ECM, stimulates terminal
differentiation

Promotes chondrogenesis

Inhibits CH proliferation and hypertrophy
Favors CH hypertrophy

Inhibits CH proliferation and
differentiation

Decreases CH hypertrophy

Stimulates CH proliferation, inhibits CH
hypertrophy

Promotes CH hypertrophy

Inhibits CH hypertrophy via PTHrP and
FGF18

Degrades ECM, stimulates CH terminal
differentiation

( cartilage; CH chondrocytes; OB osteoblasts; OC osteoclasts; £C endothelial cells; ECM extracellular matrix.

Effects on osteoblasts—EC-0C

Inhibits osteogenesis

Indirectly stimulates OB differentiation
via C
Stimulates OB differentiation

Stimulates OB differentiation, recruits 0C
and EC

Stimulates OB differentiation

Stimulates OB differentiation

Delays OB differentiation

Stimulates OB differentiation

Stimulates OB differentiation, recruits 0C
and EC

Delays OB differentiation
Promotes ossification

Remodel ECM, promotes 0B
differentiation

Promotes OB differentiation, inhibits
mineralization

Inhibits OC formation
Activates 0C

Promotes proliferation, Inhibits terminal
0B differentiation, regulates 0C
differentiation

Stimulates angiogenesis
Stimulates OB differentiation

Activates 0C
Stimulates OB differentiation
Regulates OC differentiation
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plays a role in the transition to mature osteo-
blasts [89]. These transcription factors regulate
osteoblast differentiation within the perichon-
drium to form the bone collar and regulate
osteoblast differentiation in the cells in the
primary ossification centers that form bone tra-
beculae in the metaphysis.

Many of the growth factors that regulate chon-
drocyte differentiation also direct osteoblast dif-
ferentiation by regulating the expression and
activity of this web of osteogenic transcription
factors. For example, Runx2 integrates signals
from FGE, integrin, BMP, TGF-f3, and Wnt path-
ways through different mechanisms, including
regulated Runx2 expression, phosphorylation,
degradation, and interaction with transcrip-
tional coactivators and corepressors. In this way,
the cell intrinsic and extrinsic regulators of
osteoblast differentiation determine the progres-
sion of osteoblast differentiation [40, 70, 74].
These regulatory networks are the target in both
osteoblasts and chondrocytes of other tissue sig-
nals that interact with bone and cartilage during
development.

2.4 Two-Way Interactions
Between Cartilage and Bone

2.4.1 Tissue Manipulations
Demonstrate the Interconnection
Between Cartilage and Bone
Development

The perichondrium plays a major role in the
coordinated progression of endochondral ossifi-
cation. This thin layer of cells, which surrounds
the cartilage anlagen and persists around the
cartilage, plays an important role in the para-
crine regulation of chondrocyte proliferation
and differentiation. Cartilage and perichon-
drium are closely associated during long bone
development and secrete extracellular factors
that can easily diffuse from one compartment to
the other. This diffusion is essential, because
ligands that are expressed exclusively by the

perichondrium must signal through specific
receptors in chondrocytes. This means that a
functional signaling pathway requires both
cell populations. The skeleton exploits this
compartmentalization of ligand and receptor
expression to provide additional levels of speci-
ficity and control for the many endocrine and
paracrine pathways that impact endochondral
ossification.

In parallel with genetic manipulations, clas-
sic approaches in embryology have revealed
the important role of these tissue interactions
in perichondrium and cartilage maturation.
Culture of chick cartilage templates in the
absence of the perichondrium showed that the
perichondrium inhibits chondrocyte prolif-
eration and hypertrophy [57]. Perichondrial
removal also prevents terminal differentiation
and delays vascular invasion of the hypertrophic
cartilage [16] (Fig. 2.2), probably because the
vascular network is established in the perichon-
drium before it can invade the hypertrophic car-
tilage (see below for the role of angiogenesis).
Furthermore, skeletal elements without per-
ichondrium cannot ossify normally, even when
placed in a vascular environment that normally
supports the replacement of cartilage by bone
and bone marrow [16] (Fig. 2.2). Tissue recom-
bination experiments with genetically labeled
cells have shown that ossification is impaired
because of the absence of osteoblast precursors
that reside in the perichondrium [16]. Recom-
bination of wild-type cartilage templates with a
perichondrium from Rosa26-labeled mice can
rescue ossification via Rosa26-labeled osteo-
blasts [16]. In parallel, these studies showed that
stem cells derived from blood vessels do not give
rise to osteoblasts, further supporting the role of
the perichondrium as the primary source of
osteoblasts [16]. Tissue manipulations have also
helped to elucidate mechanisms of action of
growth factors in the perichondrium. For exam-
ple, TGF-f requires the presence of a perichon-
drium to fully inhibit chondrocyte hypertrophy
[2,66]. The perichondrium therefore is not only
the source of osteoblasts that invade the hyper-
trophic cartilage to form metaphysis, but is also
the source of signals that regulate osteogenesis
and chondrogenesis [14, 16].



30 Bone and Development
a WT in vivo b WT in kidney capsule
Cc
;:
Ihh-/-
e WT-pe removed in kidney
_:‘ P ™ = e VA
‘1 : E
Figure2.2. Tissue interactions required for endochondral ossification. (a) Normal bone development in vivo. (b) Normal development of wild-type

skeletal elements is recapitulated after transplantation in wild-type kidney capsules. (c) Cartilage and perichondrial defects in /hh~'~ mutant mice
prevent vascular invasion and ossification. (d) Partial rescue of endochondral ossification in hh='~ skeletal elements transplanted in wild-type kidney
capsule that provides wild-type blood vessels. (e) Delayed vascular invasion and impaired ossification of skeletal elements stripped of the perichon-
drium and transplanted into wild-type kidney capsule. (f) Inhibition of vascular invasion and endochondral ossification in wild-type skeletal elements
transplanted in the kidney capsule, but separated from the host vasculature by a filter [15, 16].

2.4.2 Signals Produced

by Chondrocytes Influence
Perichondrium Maturation
and Osteoblast Differentiation

Signals from chondrocytes influence the matura-
tion of perichondrium and the recruitment of per-

ichondrial cells into matrix-synthetic osteoblasts.

Some of these signals, such as Ihh, are produced
only by chondrocytes, whereas others, such as
BMP and FGE, are produced by many cell popula-
tions (see Table 2.1).In addition to inducing osteo-
blast differentiation via Ptc-1 and Smo expressed
in osteoblast precursors, Ihh directs the location of
osteoblast differentiation within the perichon-
drium [56]. This signal is required for osteoblast
differentiation in the adjacent perichondrium and
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acts on ectopic cells within the proliferating zone,
which express Ihh to induce osteoblast differentia-
tion in the perichondrium [12,13].

By regulating chondrocyte proliferation and dif-
ferentiation, FGFs and BMPs influence osteoblast
differentiation in the perichondrium indirectly.
The effects of FGFs and BMPs on osteogenesis,
are mediated in part by their ability to regulate
the expression of Ihh in chondrocytes [62, 63,
74]. FGFs and BMPs originating from cartilage
also can directly regulate osteoblast differentia-
tion via their receptors expressed in the per-
ichondrium [40, 70, 97]. As true for cartilage
development, FGFs act by delaying and BMPs by
enhancing osteoblast differentiation. FGFs regu-
late chondrocyte differentiation primarily through
FGFR3, but in the perichondrium FGF action is
mediated by FGFR1 and FGFR2. This makes it
easier to differentiate the action of these growth
factors on chondrocytes and osteoblasts [72].
However, the BMP receptors in cartilage and
perichondrium are the same. Consequently, the
effects of BMPs in the perichondrium are diffi-
cult to distinguish from their effects on cartilage,
until the BMP receptors can be inactivated spe-
cifically in the perichondrium. Another difficulty
in addressing the role of these growth factors in
skeletal tissue is the functional redundancy
among the members of the same family of mol-
ecules. As a result, mutations in FGFs or BMPs
do not always induce skeletal phenotypes such
as those described in Chap. 1 of this volume and
elsewhere [27, 64, 78]. Some mutations, on the
other hand, cannot be compensated for by other
members of the same family, and because they
cause early embryonic lethality, their effect on
skeletal development cannot be assessed [65, 70].

2.4.3 Signals Originating
from the Perichondrium Influence
Chondrocyte Differentiation

The perichondrium expresses signaling molecules
that, through several feedback loops, regulate
osteoblast and chondrocyte differentiation and the
organization of the growth plate. Many feedback
loops require perichondrial cells as well as chon-
drocytes to be complete. A classic example is the
expression of PTHrP by perichondrial cells in the
periarticular region. PTHrP activates its receptors

in proliferative and pre-hypertrophic chondro-
cytes, inducing the transition from proliferation to
hypertrophy. The level of PTHrP expression is a net
result of many interacting signaling pathways. Ihh,
expressed by chondrocytes,induces PTHrP expres-
sion indirectly, by inducing the expression of
TGF-f32 in the perichondrium (3,43, 52,77, 86].

Another growth factor, FGF18, expressed in
the perichondrium, plays a central role in the
feedback loops regulating perichondrium-
cartilage interactions. FGF18 and potentially
other FGF family members originating from the
perichondrium bind to FGFR3 and FGFRI1 in
chondrocytes to prevent chondrocyte prolifera-
tion and differentiation [20, 23, 70]. Induction of
TGEF- expression by Ihh induces the perichon-
drial cell expression not only of PTHrP, but also
of FGF18 [66]. PTHrP and FGF18, together, con-
fer the inhibitory effects of TGF-$ on hypertro-
phy, which are lost or severely reduced without
input by the perichondrium [1, 24].

The BMP pathway also utilizes the combination
of perichondrial cells and chondrocytes to exert
its effects on cartilage. BMP2, 4, 5,and 7, expressed
in the perichondrium, stimulate cartilage growth
via their chondrocyte receptors [62, 63, 74, 97].
Wnt family members that are involved in early cell
fate decisions, as discussed earlier, also play a role
in perichondrium-mediated cartilage differentia-
tion. For example, Wnt5a, produced by the
perichondrium, regulates the transition from pro-
liferating to prehypertrophic chondrocytes [35].
Here again, tissue-specific genetic deletions will
help define the reciprocal roles of various growth
factors on cartilage and perichondrium, doing so
by deletion of the growth factor in a given tissue
or its receptors and downstream targets.

2.5 Four-Way Interactions
Among Cartilage, Bone, Blood
Vessels, and Matrix-Resorbing
Cells

2.5.1 Role of Angiogenesis

Angiogenesis is crucial in bone development.
Before the initiation of skeletogenesis, blood
vessels are distributed uniformly within the limb



32

Bone and Development

bud and then must regress for the occurrence of
mesenchymal condensations [90]. This initial
patterning of limb vasculature is directly under
the influence of Sox9, which controls skeletal cell
differentiation and Vegf expression in mesenchy-
mal condensations [30]. Whether angiogenesis
reciprocally plays a role in regulating mesenchy-
mal condensations and early skeletogenesis is
not yet established, but its role during the later
stages of endochondral ossification is better
understood. Maturation of perichondrium owing
to factors secreted by adjacent differentiating
chondrocytes and intrinsic osteogenic factors
(see above) induces a first wave of angiogenesis
within the perichondrium. Terminal differentia-
tion of chondrocytes supports a second wave of
angiogenesis for the formation of marrow cavity
[19, 92, 94] (Fig. 2.1). The waves of angiogenesis
are triggered by high levels of VEGFA, first in the
perichondrium and then in the hypertrophic
cartilage [94]. Invasion of the perichondrium
and hypertrophic cartilage by blood vessels and
matrix-resorbing cells initiates a new series of
tissue interactions.

As is the case for cartilage-perichondrium
interactions, tissue manipulations have helped
identify the functions of the cell types involved in
this process. For example, physically blocking the
migration of the blood vessels inhibits cartilage
removal and migration of osteoclasts and osteo-
blasts to form the primary ossification center
[16] (Fig. 2.2). Blocking angiogenesis by inhibit-
ing VEGF delays chondrocyte terminal differen-
tiation, osteoblast differentiation, and osteoclast
recruitment [16, 33]. VEGF is essential for coor-
dination of the key steps of endochondral ossifi-
cation,which involve chondrocyte differentiation,
vascular invasion, recruitment of osteoclast, and
osteoblast differentiation [92-94]. Another fac-
tor, Thh, that plays a vital role in chondrocyte and
osteoblast differentiation, is also involved in syn-
chronizing angiogenesis with chondrogenesis
and osteogenesis [15]. This concept was demon-
strated by transplanting Ihh™'~ skeletal elements
into a wild-type vascular environment, where the
recruitment of wild-type blood vessels can par-
tially rescue the ossification defect. However, in
this environment, Ihh~"~ endothelial cells cannot
survive; this indicates an intrinsic defect in
angiogenesis combined with abnormal cartilage

differentiation and a deficient perichondrium
(Fig.2.2) [15].

2.5.2 Role of Matrix-Resorhing Cells

A unique feature of long bone development is the
transient nature of the cartilage templates that
establish the shape and size of the future skeletal
elements. These templates must be removed
before the bones can fully ossify and before the
bone marrow compartment is formed. Removal
of cartilage templates and primary spongiosa is
primarily due to the action of matrix-resorbing
cells, including septoclasts and osteoclasts
[28, 53]. Unlike the osteochondroprogenitor cells
of the long bones, which are of mesenchymal ori-
gin, osteoclasts are derived from the monocyte/
macrophage lineage of the hematopoietic pro-
genitor cell population. Arriving by way of the
vascular invasion of the cartilage template, osteo-
clasts degrade mineralized matrix by generating
an acidic microenvironment that is rich in prote-
olytic enzymes such as cathepsin K. The degra-
dation of the cartilaginous template is also
supported by the action of many extracellular
enzymes, such as MMPs and ADAMs, which are
produced by hypertrophic chondrocytes, osteo-
blasts, and endothelial cells, as well as by osteo-
clasts [8,22, 28, 80, 88].

In addition to removing mineralized matrix,
osteoclasts and other matrix-resorbing cells
release and activate latent growth factors that
are sequestered within the cartilage and bone,
and regulate vascularization, cell proliferation,
and differentiation. Thus, matrix-resorbing cells
are actively involved in the multitissue control
of endochondral ossification. Osteoclasts release
VEGF; this attracts blood vessels and acts on the
adjacent perichondrium to stimulate osteoblast
migration within the primary ossification cen-
ter [5, 33, 73, 88]. Likewise, the inactivation of
latent TGF-B by osteoclasts promotes recruit-
ment and proliferation of osteochondroprogen-
itors to the sites of osteogenesis. In this way,
osteoclasts play a central role in the initiation of
osteogenesis, and by interacting with the osteo-
blasts, regulate bone formation and remodeling
throughout life. Much is known about these sig-
naling pathways in postnatal bone development
and growth (see below), but less is understood
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about the interactions that occur during the
early stages of endochondral ossification or how
the migration of osteoclasts within the per-
ichondrium triggers osteoblast differentiation.

2.6 AreThese Tissue
Interactions Maintained
During Postnatal Life?

Bone continues to develop postnatally and many
tissue interactions that take place in the develop-
ing skeleton remain active in the adult bone.
Numerous studies have focused on bone remod-
eling in coordination with bone deposition.
Osteoclast activation requires the production of
receptor activator of nuclear factor kappa B ligand
(RANKL) by osteoblasts, which binds to its recep-
tor, RANK, on osteoclasts and their precursors
[9]. More recently, ephrin ligands and receptors
have been implicated as factors that mediate the
bidirectional communication between osteoblasts
and osteoclasts [96]. In addition, the transcrip-
tional control of osteoblast differentiation is
linked with the transcriptional control of osteo-
clastogenesis, as indicated by the genetic analyses
of the AP1 family of proteins [44].
Interestingly,a number of molecules that play
a role in long bone development during the
embryonic stages are also involved in the cross-
talk between osteoblasts and osteoclasts post-
natally. Factors such as TGF-f} can regulate both
osteoblast and osteoclast function by the direct
action on both cell types and by regulating
osteoblast expression of osteoclast regulatory
factors, like RANKL and osteoprotegrin (OPG)
[1]. Likewise, BMP can act directly and indi-
rectly to regulate osteoclast function [40-42,71].
Other factors that regulate osteoclast activity do
so via their actions on osteoblasts. While loss of
Thh signaling in mature osteoblasts via condi-
tional inactivation of Smo prevents age-related
bone loss, increased Thh signaling in mice lack-
ing Ptchl in mature osteoblasts is correlated
with enhanced osteoblast differentiation and
excessive bone remodeling [60, 69]. Thh signal-
ing acts primarily in osteoblasts to regulate
osteoclast differentiation by controlling the

expression of PTHrP and RANKL expression
[60]. All the PTH and PTHrP actions on osteo-
clasts - which do not express PTH receptors —
are mediated by the regulation of factors such as
RANKL and OPG in osteoblasts and other cell
types [61]. Disruption of these regulatory path-
ways has pathological consequences and can
result in osteoporosis. Studying these tissue
interactions in skeletal development has led to
the development of a PTH-based therapy for
osteoporosis, currently the only anabolic ther-
apy. Many of the other pathways involved in
skeletal development, including TGF-, BMP,
and Wnt, are now receiving attention as poten-
tial targets of anabolic therapies.

In the course of development of the bone
marrow compartment, osteoblasts also interact
with hematopoietic stem cells (HSCs) to regu-
late the hematopoietic niche and to initiate
hematopoiesis [11, 36]. These interactions
remain critical during postnatal life. Again, the
key molecules that have been involved in
various stages of bone development become
essential in osteoblast-hematopoietic stem cell
interactions. The Wnt signaling pathway that
determines the cell fate decisions at the early
condensation stage in the embryo and that sub-
sequently plays a role in chondrocyte differen-
tiation, is necessary to maintain hematopoietic
stem cell quiescence and renewal [32]. Signaling
through the BMP and PTH-PTHrP receptors
continues after skeletogenesis and is essential
for the regulation of hematopoietic stem cells by
osteoblasts [10, 95].

In the adult, another level of complexity is the
systemic regulation of bone mass via hormonal
control [26, 55]. The skeleton plays a central
role in regulating energy homeostasis and
thereby affects many other tissues and organs,
such as lipid metabolism and the central ner-
vous system.

Finally, the process of bone development
is recapitulated during skeletal regeneration.
Although bone repair involves inflammatory
cytokines and response to mechanical forces,
the intrinsic regulation of chondrocyte and
osteoblast differentiation is under the control of
the same transcription factors and secreted mol-
ecules as in the course of development [31, 87];
interactions among cartilage, bone, osteoclasts,



34

Bone and Development

and blood vessels are critical to the process of
bone healing [6, 18]. Mechanical forces have
been shown to drive the fate of osteochondro-
progenitors and to determine whether skeletal
repair occurs by endochondral or intramembra-
nous ossification [18,83]. The mechanisms guid-
ing these decisions remain unclear, but it is
enticing to think that Wnt signaling may partici-
pate in this decision process, as it does in osteo-
blast/osteocyte development. Most of the growth
factors involved in bone development are also
implicated in bone repair, but the mechanisms
by which these factors coordinate the multiple
tissue interactions required for skeletal repair
remain to be unraveled [47, 50, 59, 81, 85].
Considering that fracture repair is only success-
ful in four of five cases, understanding the tissue
interactions that control skeletal development
and repair may improve the likelihood, quality,
or speed of fracture repair.

2.7 Conclusion/Perspectives

As now known, cartilage and perichondrium
development cannot be dissociated. The tight
interactions between cartilage and perichon-
drium are particularly obvious at the molecular
level, as several feedback loops are needed to
regulate cell proliferation and differentiation.
Moreover, many of these critical signaling path-
ways coordinate chondrogenesis and osteogen-
esis with angiogenesis and osteoclastogenesis.
Thus, the differentiation of chondrocytes, osteo-
blasts, vascular cells, and matrix-resorbing cells
is inseparable during skeletal development.
Although cell differentiation on the whole can
be recapitulated in vitro, the differentiation of
one cell type in vivo is directly under the influ-
ence of adjacent cell types. To better understand
these cellular and tissue interactions, animal
models and genetic approaches can help define
the role played by specific factors in cells and tis-
sues. Animal models will continue to help eluci-
date defects in skeletal development and will be
instrumental in the development of new treat-
ments for skeletal repair and degenerative dis-
eases such as osteoporosis.
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The Epiphyseal Growth Plate

H. Clarke Anderson' and Irving M. Shapiro

3.1 Introduction

...... the soul itself sits on a throne of nucleated cells,
and flashes its mandates through skeins of glassy
filaments which once were simple chains of
vesicles.”

Bones elongate and children grow tall through
the activities of a millimeter thin layer of cells
wedged between the epiphyseal head and the
diaphyseal shaft of the long bones. The form,
function, and regulation of the activities of cells
in this thin, transient, cartilaginous plate have
fascinated scientists for a long time, and this
growth plate is the focus of the studies reviewed
in this chapter. A priori, it is important to
acknowledge that apart from long bone, epiphy-
seal plate activity provides the mechanism of
growth of almost all the osseous tissues of the
human body. Moreover, other bone-related
activities such as fracture repair share common
pathways with those of chondrocytes located
within the growth cartilage. Hence, an under-
standing of endochondral growth is relevant to
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bone elongation and repair, as well as systems
that are central to cartilage formation, matura-
tion and turnover.

The growth plate is a well-circumscribed tissue,
but receives regulatory signals from the contiguous
metaphyseal bone and the more distant articular
cartilage. Moreover, as discussed in Chap. 2, the sur-
rounding perichondrium regulates the activities of
chondrocytes contained within the cartilage core.
Superimposed on these signaling loops are cues
from other organs undergoing somatic growth, con-
tralateral bones,and from growth plates on the same
bone, but in distant locations. How each of these sig-
nals is integrated into a common pathway to provide
growth in a temporally and spatially controlled
manner has not been fully elucidated. Nevertheless,
our current understanding of cartilage physiology
speaks to the extraordinary complexity of this tissue
and its central role in the growth process.

Structure-function and regulatory studies of
epiphyseal chondrocytes form the focus of this
review, but it is the growth plate that is regarded
as the important tissue for studies of the expres-
sion, regulation, and activity of many genes and
proteins. One reason for the use of this transient
tissue is that within the growth cartilage, one sin-
gle cell type (a chondrocyte) undergoes terminal
differentiation in a series of well-demarcated
stages. These stage-specific changes include
recruitment of precursor cells, followed by pro-
liferation and maturation, to become terminally
differentiated hypertrophic chondrocytes. In the

F. Bronner et al. (eds.), Bone and Development, Topics in Bone Biology 6,
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course of maturation and hypertrophy, a com-
plex extracellular matrix is biosynthesized, vesi-
cles are generated,and mineralization is induced.
Subsequently, the differentiated cells exhibit an
autophagic flux and eventually undergo apopto-
sis and die. Gene deletion, mutation, or overex-
pression can provide critical insights into the
role of a specific transcript in the differentiation
pathway. These findings can then be directly
related to the cell function and animal locomo-
tion, providing information of major interest to
clinicians, developmental biologists, geneticists,
biochemists, and cell and molecular biologists.

3.2 Growth Plate Architecture,
Disposition, and Fusion

In 1844, Richard Owen noted that “the seat of the
active growth of the bone is in a cartilaginous
crust at the ends of the diaphysis. When the epi-
physes finally coalesce with the diaphysis, growth
in the direction of the bone’s axis is at one end.”
Owen’s prescient comments concerning the func-
tion of the growth plate are directly relevant to
mammalia. However, evaluation of the growth
plate physiology across animal species indicates
that there exist considerable functional and ana-
tomical disparities: plates vary in shape, volume,
number, fusion, disposition, and, following
growth, in the extent of cartilage removal. In
humans, the long bones - femur and tibia - have
two growth plates that are located at the end of
the bones. However, the small bones of the hands
and feet - metacarpals and phalanges - have only
a single (metapodial) epiphysis. Single center
bones undergo longitudinal growth at one end
only, whereas the growth plates of long bones
generate growth at both ends. The level of coordi-
nation of growth rates in and between bones is
extraordinary. Thus, in humans and many ani-
mals, the cells in the epiphyses of the proximal
humerus stimulate much of the growth at the

*Lectures on the Comparative Anatomy and Physiology of
the Vertebrate Animals: Delivered at the Royal College of
Surgeons of England, in 1844, published by Longman,
Brown, Green, and Longmans, 1846.

shoulder region, whereas the distal epiphyses of
the ulna/radius generate growth of the wrist. The
distal growth cartilage of the humerus and the
proximal cartilage of the ulna/radius contribute
little to overall bone growth [62, 141].

A detailed study comparing the growth plates
across species has not been performed. In the
1940s and also later in the 1960s and 1970s, Haines
[48] reported on the growth plate architecture of a
number of animal species, including marsupials
and lizards. Amphibia have the most extraordi-
nary specialized epiphyseal cartilage. More
recently, Felisbino and Carvalho [40] reported that
the epiphyseal cartilage of the long bones of the
bullfrog (Rana catesbeiana) terminated in a flared
structure that enclosed an epiphyseal-like carti-
lage. The ovoid shape of this cartilage is probably
functionally related to the frog’s aerobic hopping
gait,accompanied by the occasional gasp of “Ribit,”
rather than providing a mechanism for rapid
growth. An extension of the diaphysis covered
with periosteum separates the articular cartilage
from the inner epiphyseal cartilage. Rozenblut
et al. [108] noted that in the European water frog,
the epiphyseal cartilages had an inner “metaphy-
seal”cartilage that plugged the end of the periosteal
bone cylinder, but probably did not function in
longitudinal growth. Rather, on the basis of the
architecture of the tissue, the osteoblasts seem to
be associated with the longitudinal growth medi-
ated by the periosteum. Here, intramembranous
bone formation promotes long-bone lengthening
and the enclosed epiphyseal cartilage provides lat-
eral growth, the reverse of what is seen in mam-
malian plates.

At the other end of the spectrum, and in stark
contrast to both the amphibian and mammalian
growth plate, is the avian physis, a greatly expanded
structure, often 5-8 mm in thickness. Rather than
exhibiting well-ordered columns of chondrocytes,
the cells are arranged in an almost random fashion,
with the entire tissue permeated by the vascular
channels. This may explain the high rate of chon-
drocyte proliferation, the major mechanism for
cartilage expansion. This level of specialization
may be a response to the need that the bird has to
grow rapidly, yet develop a specialized form of
metaphyseal bone. Remarkably, a similar morphol-
ogy exists in some dinosaurs. Barreto et al. [19]
reported that the growth plate of the juvenile
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dinosaur,Maiasaura (Ornithischia: Hadrosauridae),
was characterized by an extensive proliferative
zone (PZ) and the invasion of vascular channels
into the maturing cartilage. The authors noted that
the architecture of the plate was not unlike that of
the chicken!

In rodents, the rate and extent of chondrocytic
hypertrophy are strongly correlated with the rate
of bone elongation. With help of the data provided
by Vanky et al. [134] on the relative size of each
defined region of the growth cartilage in the
mouse and knowledge of the duration of the aver-
age cell cycle, 36 h, similar to that in the rat [38],
one can calculate that the total murine growth rate
approximates 9.0 pm/h, with 80% of the growth
due to chondrocyte hypertrophy.

When bone reaches its genetically determined
length, longitudinal growth ceases and epiphyseal
union takes place, defined by Haines [48] as “begin-
ning with the completion of the first mineralized
bridge between epiphyseal and diaphyseal bone and
ending with its replacement by bone and marrow.”
In mammalia, the cartilage plate is resorbed and
primary and secondary centers of ossification fuse.
In birds, turtles, and crocodiles, a remnant of the
cartilaginous plate remains throughout the life,and
primary and secondary ossification centers remain
separate. As a result, bones continue to grow slowly
throughout life and animals can attain great length.
Why does longitudinal bone growth cease? This
had been assumed to be due to the physis fusing
with the primary and secondary centers of ossifica-
tion. Parfitt [99], using hand radiographs of a
patient with pseudohypoparathyroidism, observed
that growth had slowed several years before fusion
occurred and has argued that “fusion is a marker of
growth cessation, but not a determinant.” From this
perspective, “growth cessation is the culmination of
a progressive decline in the growth rate that begins
years before fusion” [17].

3.3 Detailed Anatomy
and Cellular Dynamics
of the Growth Plate

As mentioned earlier, growth plates at the ends of
long bones constitute the site of longitudinal

growthand the residua of the primary cartilaginous
skeleton of vertebrate embryos (Fig. 3.1a). Figure
3.1b provides better cytologic detail of the proxi-
mal tibial growth plate from a 5-week-old rat.
Growth plates are also present at primary growth
sites in the skull, ribs, vertebra, and pelvis.

In the growing vertebrate animal, cells of
the growth plate proliferate actively, undergo-
ing division about every 48 h [44]. Microscopic
examination of chondrocytes in the prolifera-
tive zone (PZ) of the growing rats (Fig. 3.1b)
typically does not reveal cells undergoing
classical mitosis, with chromosomes aligned
on an equatorial plane. This suggests that
division is extraordinarily fast or that the pat-
tern of cell division is not classical. Still, cell
division in the PZ has been confirmed with
the aid of stains for dividing chromatin, e.g.,
tritiated thymidine, BRDU, or Ki 67/M1B-1
[39, 44, 62 ]. As shown in Fig. 3.1, the growth
plate of a long bone can be divided into longi-
tudinally oriented, stacked chondrocyte col-
umns (Fig. 3.1).

The most superficial region of the upper tibial
growth plate is that “reserve zone” or “resting
zone” (RZ) (Fig. 3.1); it supplies stem-like cells
that generate columnar clones of PZ chondro-
cytes [1].

In the PZ, the chondrocytes are aligned into
vertical columns (rouleaux), with daughter cells
lying beneath the mother cells. The PZ cells are
flattened horizontally, like pancakes, and are
stacked on top of each other to form the upper
ends of the chondrocyte columns (Fig. 3.1). The
rate of cell division in the PZ is rapid, especially in
the embryo and during the immediate postnatal
period. In humans, the linear growth rate in the
fetus exceeds 100 cm/year. By birth, the growth
rate drops to about 50 cm/year, and by age of 10
years, it is only about 5 cm/year. At puberty, there
is a growth spurt [126]. Then, the growth plates
“close” with no further linear growth.

In the hypertrophic zone (HZ), individual
chondrocytes enlarge in circumference, but
remain stacked in the vertical columns and are
surrounded by increasing amounts of cartilage
matrix (Fig. 3.1). The dividing line between PZ
and HZ is indistinct, because there is no sharp
transition point, as the chondrocytes in the lower
PZ mature, differentiate, and actively synthesize
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and secrete matrix proteins, especially collagen
type II and proteoglycans. Maturing HZ chon-
drocytes synthesize and secrete matrix protein
with the aid of more cytoplasm and with an
abundance of the rough endoplasmic reticulum
and Golgi complexes.

The calcifying zone (CZ) is sometimes referred
to as the lower hypertrophic zone because there

PZ LS

is no sharp histological border between the 0O o
upper HZ and the underlying CZ. It is in this og OOOO_\ MV

region that mineralization takes place in the lon-
gitudinal septal cartilage matrix. The presence
of mineral can therefore serve to distinguish the
upper HZ from the CZ. The earliest indication of
the beginning of mineralization is the detection
by electron microscopy of needle-like crystals of
hydroxyapatite (HA) that form in the sap of <cz
matrix vesicles (MVs) (Figs. 3.1a, 3.2, and 3.7a,
below). Soon thereafter, mineralization self-
propagates into the surrounding matrix, first to
the longitudinal septa (where the MVs are con-
centrated), and then to the other parts of the
cartilage matrix (see Figs. 3.1a,3.2). In the lower
CZ, most hypertrophic chondrocytes undergo
apoptosis [38] by swelling or “oncosis” (Fig. 3.3)
[80]. This presents a distinctive histological pat-
tern unlike the more typical cell shrinking and

HZ

Figure3.2.  Successive stages of chondrocyte maturation and matrix
vesicle (MV) budding from the lateral plasma membranes of the growth-
plate chondrocytes in the lower proliferative zone (PZ) and upper hyper-

nuclear condensation seen in the thymus and
other tissues.

At the chondro-osseous junction, beneath the
cartilaginous growth plate, ingrowing capillar-
ies, osteoclasts, and septoclasts [74] from the
underlying bony metaphysis erode and clear
away the largely uncalcified transverse septa of
the cartilage matrix, as well as the fragmentary
remains of apoptotic chondrocytes. Septoclasts

trophic zone (HZ). Needle-like hydroxyapatite crystal deposition begins
within MVs of the hypertrophic zone (see Fig. 3.7a, b). Lower in the HZ,
apatite crystals are released from the calcifying MVs. The apatite crystals
self-nucleate and proliferate to form spherical mineral clusters in the
calcified zone ((Z). These apatite clusters grow and ultimately fuse
together in the (Z at its junction with the metaphysis (M). Capillaries,
growing in from the metaphysis, penetrate the unmineralized transverse
cartilage matrix septa (TS), while unresorbed, fully mineralized longitu-
dinal septa project into the metaphysis, where they serve as a scaffold
for the deposition of new bone matrix by in-growing osteoblasts.
(Reprinted with permission from Front Biosci, 2005).

<
<

Figure 3.1.  (a).Epiphyseal growth plate of a long bone, showing the site at which growth in length occurs. The growth plate is subdivided into
the following anatomical regions: The reserve zone (R) at the top of the growth plate contains reserve stem cells that give rise to the underlying
columns of chondrocytes. The proliferative zone (P) is a zone of active cell division where cell columns first appear, thus allowing the matrix to be
anatomically subdivided into transverse matrix septa (TS) that separate cells within a column, and longitudinal septa (LS) that separate adjacent cell
columns.The hypertrophic zone (H) contains enlarging chondrocytes, actively engaged in cartilage matrix synthesis and secretion. Calcifying matrix
vesicles are released from the lateral edges of hypertrophic chondrocytes and accumulate in clusters in the longitudinal septa (LS). (Matrix vesicle-
mediated calcification is discussed in detail in Sect. 3.6.) The calcifying zone (C) contains degenerating apoptotic chondrocytes. This is the level at
which proliferating mineral spreads from the matrix vesicles radially outward to infiltrate the interstices of the longitudinal septal matrix. At the base
of the growth plate lies the bony metaphysis (M) with small vessels that remove the uncalcified transverse matrix septa and degenerate cells, leaving
calcified longitudinal septa on which osteoblasts from the marrow will deposit new bone (the primary spongiosa). (Reprinted from Anderson [9].)
(b) Light microscopic section of the upper tibial growth plate of a growing, 5-week-old Sprague Dawley rat. Reserve zone (RZ), proliferative zone (PZ),
hypertrophic zone (HZ), and calcifying zone (CZ) are designated. Calcification stained by alizarin red is seen in the longitudinal septa of the (Z just
above a thin sample of the metaphysis (M), which lies beneath the lower edge of the (Z (hematoxylin and alizarin red stain, 1,800x).
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Figure3.3. Ratgrowth plate, TUNEL-stained, showing black-staining

nuclei in chondrocytes that undergo programmed cell death (apoptosis).
Most hypertrophic zone (HZ) nuclei are in a later stage of apoptosis, with
nuclei and cytoplasm showing hydropic swelling (oncosis), as well as
TUNEL staining. Approximately 1/3 of lower proliferative zone (PZ) chon-
drocytes also stain black; this indicates that early apoptosis has already
begun at this level (1,800). (Reprinted with permission from Front
Biosci, 2005).

can be distinguished from osteoclasts by being
mononuclear, rich in cathepsin B, and by pro-
jecting a resorptive villus “finger” of the cyto-
plasm into the empty lacuna formerly occupied
by an apoptotic terminal chondrocyte [74].
Vascular invasion is stimulated by several angio-
genic factors released from the apoptotic chon-
drocytes, including vascular endothelial growth
factor (VEGF) [45, 50] and basic fibroblast
growth factor (FGF) [18]. VEGF is concentrated
in isolated rat growth plate MVs [93]; MV's may
therefore play a major morphogenetic role at the
base of the growth plate by promoting the tran-
sition from cartilage to bone.

Following vascular invasion, new bone is gen-
erated at the surfaces of the unresorbed calcified
cartilage of the persisting longitudinal septa.
Bone is generated by ingrowing osteoblasts,
derived from mesenchymal stromal (stem) cells
of the adjacent marrow [83]. Shortly after its

formation, the new bone of the metaphysis, with
its inclusions of cartilage, is actively remodeled
by ingrowing osteoclasts and osteoblasts to form
the more durable and mechanically resistant
lamellar bone of the endosteum.

3.4 Regulation of Growth Plate
Development and Function

As with other body tissues, peptide, protein, and
steroid hormones regulate the activities of cells
in the growth plate. Hormones that have been
linked to this activity include leptin, insulin-like
growth factor (IGF), vitamin D metabolites,
parathyroid hormone-related protein (PTHrP),
thyroid hormone, sex steroids, and glucocorti-
coids. Apart from directly modifying chondro-
cyte activity, these molecules influence the
effects of growth factors that regulate chondro-
cyte function. As a response to hormonal agents,
chondrocytes or perichondrial cells express FGE,
Indian hedgehog (IHH), bone morphogenetic
proteins (BMP), transforming growth factor-
beta (TGF-f3), and VEGF; these molecules in turn
modulate the chondrocyte activity in an auto-
crine or paracrine fashion. In a number of
instances, activated chondrocytes upregulate the
receptor expression, thereby enhancing the
effects of hormones and local growth factors.
The activity of cells is further modified by intra-
cellular metabolic sensors, such as mTOR and
AMP kinase (AMPK). Phosphorylation and
dephosphorylation reactions transduce stimuli
that influence the behavior of the activated cells,
thereby amplifying or dampening extracellular
and intracellular signals [59]. Not surprisingly,
limited nutrient intake, decreased hypothalamic
function, and genetic mutations in receptor
structure can cause catastrophic changes in bone
growth. Growth regulation is complex and
depends on the concerted action of many types
of molecules, as discussed in Chap. 2. Here, we
focus on three major signaling loops: PTHrP-
IHH, BMP-FGE, and growth hormone (GH)-
leptin-IGF. Finally, the Wnt B-catenin signaling
pathway will be discussed as an example of a
powerful system that regulates chondrocyte
hypertrophy, bone development, and growth.
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Table 3.1.  Factors that regulate chondrocyte proliferation
Factor References
PTHrP Kronenberg [69]
Bcl-2 Wang etal.[139]
IGF-1 van der Eerden etal.[133]
Wnt Tanamura et al.[124]
3 van der Eerden etal.[133]
FGF Mancilla et al. [82]
Leptin Gordeladze et al.[46]
BMPs Anderson etal.[11]

See Table 3.1 for a summary of factors that regu-
late chondrocyte proliferation.

PTHrP promotes proliferation of chondro-
cytes of the lower RZ and PZ, and retards further
differentiation into prehypertrophic and hyper-
trophic chondrocytes [70]. In the growth plate,
PTHrP is synthesized by perichondrial cells, as
well as RZ and PZ chondrocytes.

Probably, the most exquisite level of control is
exerted by the PTHrP-IHH feedback loop, which
was first described by Vortkamp et al. [136]
(Fig. 3.4). The observation that PTHrP is a
growth factor was surprising, because PTH is an
anabolic hormone that has been linked to the
hypercalcemia of malignancy. However, studies
on transgenic and knockout animals indicated
that both PTHrP and IHH were required for
normal development and growth. Observations
regarding the stage of the chondrocyte life cycle,
which is sensitive to specific mutations or dele-
tions, led to the understanding of the complex
circuitry that regulates epiphyseal development
and bone growth.

In a number of mammalian species, PTHrP, a
molecule that shares extensive homology with
PTH, is expressed by periarticular and perichon-
dral cells, but not by cells in the cartilagenous
plate. Chondrocytes have PTHrP receptors
(PTHrPR), with the level of expression depend-
ing on the maturation state of the cell. In prolif-
erative cells, the number of receptors is quite
low, but their expression increases as the cells
differentiate. The receptor, located on the outer
aspect of the cells membrane, is a transmem-
brane G-protein coupled protein (patched) that
activates downstream pathways, including PKA,
IP3, and PKC.

BMP

Figure3.4. Regulation of chondrocyte proliferation and hypertrophy
mediated by the interaction of IHH with PTHrP/PTH. IHH secreted by
maturing chondrocytes diffuses into the periochondrial tissues and
stimulates the expression of PTHrP/PTH by fibroblasts in the perichon-
drial and periarticular tissues. PTHrP/PTH diffuses back into the cartilage
where it binds to its receptor and inhibits differentiation of the prolifer-
ating cells; at the same time, PTHrP/PTH promotes chondrocyte prolifer-
ation. In addition to the feed forward circuit, IHH is required for
maintenance of chondrocyte proliferation. The maturing chondrocytes
are inhibited by differentiation of BMPs, in particular BMP6.In an auto-
crine—paracrine fashion, chondrocytes can also secrete BMPs, which
then serve to promote proliferation and may enhance PTHrP/PTH secre-
tion by the periarticular chondrocytes.

In contrast to PTH/PTHrP, IHH is expressed
by maturing, i.e., prehypertrophic and hypertro-
phic chondrocytes (Fig. 3.4). IHH is a highly
conserved gene, present in most animals. As a
morphogen, it binds to its receptor, a twelve-pass
membrane protein called patchedl (membrane
protein patchedl). In the absence of IHH,
patchedl seems to interact with Smo to form an
inactive heteromeric-signaling complex. When
the IHH ligand binds to patched1, the membrane
complex undergoes a conformational change
such that Smo is now free and can trigger the
expression of a number of downstream target
genes, including the transcription factor Glil and
BMPs [96]. Also, as IHH levels are raised,
patchedl, serves as a sink for excess ligand,
because its expression is a positive function of
IHH. IHH and BMP signaling pathways can also
interact with one another [90, 144].
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Not surprisingly, there have been numerous
attempts to relate the distribution of receptors
and ligands to the regulation of chondrocyte
differentiation in the growth plate. The most
widely accepted model was put forward by
Vortkamp et al. [136] and Kronenberg [70] and,
notwithstanding many modifications, has been
accepted by many investigators. The starting
point for this model is the postmitotic matur-
ing chondrocyte on its way to a fully devel-
oped hypertrophic cell. As these chondrocytes
express IHH, they can bind to receptors on per-
ichondrial and periosteal cells, as well as peri-
articular fibroblasts. By binding to its cognate
receptor, patchedl, IHH causes PTHrP expres-
sion. In turn, PTHrP, by diffusing into the
plate and blocking differentiation, serves as
a negative feedback function; in the periarticu-
lar regions, PTHrP stimulates continued prolif-
eration. PTHrP also acts on osteoblasts and
osteoclasts in the forming metaphysis, thereby
enhancing bone formation and remodeling.
The final feedback is mediated by hypertrophic
chondrocytes that have escaped the maturation
blockage; these cells downregulate IHH secre-
tion and thus make terminal differentiation
possible [61].

The long diffusion paths that ligands must
travel to modulate the system present a major
conceptual problem in relation to the regulatory
loop discussed earlier. Conceptually, it would be
easier if the ligands are bound to the receptors
on the neighboring cells. In addition to the spa-
tial considerations, temporal factors need to be
built into the feedback circuit. For example, is
inhibition of maturation a continuous or discon-
tinuous process? If discontinuous, one can imag-
ine that with a temporary arrest of inhibition,
some cells escape the inhibitory signals and
undergo terminal differentiation. Another factor
to be considered is the effect of applied forces.
The epiphysis is subject to considerable varia-
tions in tensile and compressive forces. Fluid
flow within the cartilage plate would add flow to
diffusion. Wu et al. [142] have demonstrated that
cyclic mechanical stress induces IHH expression;
Tanaka et al. [125] have reported that mechanical
strain upregulates PTHrP expression. Possibly,
night-day changes in tension and compression
combined with the release of leptin and other

regulatory factors may promote transport of the
signal molecules (see also below).

On the basis of the preceding discussion,
PTHTP is believed to drive chondrocyte prolif-
eration, whereas IHH is considered as a power-
ful brake of the maturation pathway. Under- or
over-activity of these two control systems may
subsequently lead to epiphyseal dysfunction.
For example, genetic deletion of PTHrP or PTH/
PTHrPR results in a profound change in epi-
physeal growth: The characteristic parallel col-
umns of proliferating chondrocytes of the
affected growth plate are atypical or even miss-
ing. Overexpression of PTHrP causes gross
expansion of the proliferative region of the epi-
physis. Mutations in the receptor expression
also cause massive changes in the architecture
of the cartilage; the phenotype can be lethal
and has been likened to Blomstrand chondro-
osteodystrophy. Point mutations in the gene
that encodes the receptor disrupt normal epi-
physeal growth in the mouse and are thought to
be the cause of Jansen chondro-osteodystrophy
in humans, a gross disturbance in the growth
plate architecture that leads to a decrease in
chondrocytic differentiation, resulting in limb
shortening [60, 112].

Bcl-2is a proto-oncogene protein that protects
the growth-plate chondrocytes from terminal
differentiation and apoptosis [139]. Bcl-2 is most
concentrated in the cytoplasm of proliferative
chondrocytes of the growth plate. It functions by
forming inactivating heterocomplexes with Bax,
a related proto-oncogene, which, if not inacti-
vated, induces apoptosis of hypertrophic chon-
drocytes. In this way, Bcl-2 indirectly promotes
the proliferative phase of growth plate chondro-
cytes (For more detail about the functions of
BCl-2, see Sect. 3.9 below).

Whts and [B-catenin. In recent years, there has
been intense interest in the role played by Wnts
and B-catenin in the regulation of growth-plate
development and function [29]. Wnts are one of
the few evolutionarily conserved signal trans-
duction pathways that serve a myriad of func-
tions in almost all animal species, especially
during development after birth and in the patho-
genesis of the disease [47, 54]. Wnt signals are
transduced in at least two distinct ways; the
well-established or “canonical” Wnt/B-catenin
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Figure 3.5.  Schematic of Wnt signaling through the canonical path-
way in maturing chondrocytes. Top figure shows that glycogen synthase
kinase (GSK3[3) is activated and phosphorylates [3-catenin in the
absence of Wnt. Hyperphosphorylated catenin is targeted for ubiquitina-
tion and undergoes degradation in the proteasome. Bottom figure shows
thatin the presence of Wnt, the protein binds to Frizzled and LRP 5/6 and
induces phosphorylation of disheveled (DSH) which then inhibits GSK33.
In the hypophosphorylated state, the axin-SPC-GSK3[3 complex is not
formed and [3-catenin can travel to the nucleus where it serves as a
coactivator with TCF/LEF transcription factors to regulate the expression
of matrix metalloproteinases (MMP’s), cyclins, and other target genes.

pathway (Fig. 3.5), and a B-catenin independent
noncanonical pathway. In the nonstimulated
state (canonical pathway), B-catenin interacts
with APC and axin scaffold proteins and the
macromolecular complex constitutes a substrate
for glycogen synthase kinase (GSK3[) and casein
kinase 1a (CK1a). This assembly enhances phos-
phorylation of B-catenin which, following ubiqui-
nation, undergoes proteolysis.

The membrane ligand for Wnt activation is
the protein, Frizzled, and the coreceptors are the
low-density lipoprotein receptor-related Lrp5
and Lrp6. Frizzled interacts with Wnt and acti-
vates the downstream Disheveled, to prevent
phosphorylation of B-catenin. The protein then
translocates to the nucleus where it interacts
with the TCF/LEF family of the transcription
factors to enhance the expression of target genes
(Fig. 3.5). These genes include cyclin D1, c-myc,

MMP-7, and MMP-26. To add to the complexity
of the system, the noncanonical pathway is also
active in chondrocytes. In chondrocytes, Wnt
binds to Frizzled, which causes activation of PLC
and release of intracellular calcium. Activation
of calmodulin-dependent protein kinase II and
PKC triggers a cellular response [71, 135].
Activation of rho GTPases results in dramatic
changes in both cytoskeletal and microtubule
systems.

It is now clear that the Wnt/B-catenin pathway
is necessary for growth-plate development and
endochondral ossification [3, 37, 55]. Activation
of Wnt signaling in mature chondrocytes induces
hypertrophy, matrix mineralization, and MMP-
7, -9, and -13 production [124]. The canonical
Want signaling pathway is regulated by autocrine
and paracrine molecules that modify the bind-
ing of Wnt and Wnt receptors, as well as secreted
Frizzled-related protein, which inhibits or damp-
ens ligand-mediated signaling [37]. Andrade
et al. [15] have shown that six Wnt family mem-
bers are expressed in the growth plate. Of these,
Wnt 2b, 4, and 10b signal through the canonical
B-catenin pathway, whereas Wnt 5a, 5b, and 11
signal through the noncanonical pathway. Very
surprisingly, the expression levels of proteins in
the canonical and noncanonical pathways do not
correlate significantly to explain the role of Wnt
signaling in chondrocyte maturation and differ-
entiation. When the cells achieve terminal dif-
ferentiation status, there is a decrease in the
expression that suggests that the Wnt proteins
are of major importance early rather than later
in the maturation process, possibly owing to the
“overlapping or interacting roles in postnatal
bone formation” [15]. However, mouse genetic
studies indicate the importance of Wnt/B-
catenin signaling in the progression of late dif-
ferentiation stage of chondrocytes [3, 55]. In a
recent study, Kerr et al. [63] found that GFP-
Rac-1, together with Wnt/B-catenin, regulates
chondrocyte maturation. Activation of Rac-1
increases chondrocyte cell volume and matrix
metalloproteinase (MMP) generation - events
that are associated with chondrocyte matura-
tion; inhibition of Rac-1 stimulates proteoglycan
production and proliferation, characteristics of
the immature chondrocytes. These findings lend
credence to the notion that the Wnt signaling
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pathway is of critical importance in chondrocyte
maturation and growth-plate function. Wnt/B-
catenin signaling also interacts with other regu-
latory signaling pathways, such as PTHrP and
IHH, to control growth-plate structure and func-
tion [81, 92], but details of these complex inter-
actions are not yet known.

FGF-BMP. One advantage of defining a regu-
latory loop is that it makes it possible to use the
molecular circuitry to anchor and integrate the
effects of other paracrine and autocrine growth
factors. In addition to the PTH/PTHrP-IHH loop,
BMPs (Fig. 3.4) and FGFs form a second series of
regulatory proteins. However, whether the two
loops integrate to form one super-loop is yet to
be determined; it should be added that there is a
good reason for believing that individual com-
ponents of one system influence the activities of
the other.

FGF is a member of the heparin-binding fam-
ily of proteins, required for mesenchyme con-
densation and limb formation [95]. In humans,
22 isoforms serve as ligands for a family of five
cognate membrane tyrosine kinase FGF recep-
tors (FGFR1-5). As demonstrated by Krejci et al.
[68], not all proteins are present in the cartilage.
In embryonic human tissue, the predominant
FGF isoforms are 1,2,17,and 19.In the postnatal
plate, the perichondrium robustly expresses FGF
1,2,6,7,9,and 18; in the plate itself expression of
FGF 2,7,18,and 22 is observed; the receptor pro-
teins are FGFR1, 2, and 3 [73]. Loss of FGFR-3
expression in the growth plate causes elevated
proliferation and hypertrophy and abnormal
growth of long bones (see Chap. 1). Most author-
ities agree that FGFR-3 is a negative regulator of
chondrocyte proliferation and, therefore, an
important modulator of the terminally differen-
tiated state.

More recent studies point to the importance
of FGF18 in endochondral ossification. In mice,
this isoform is expressed by cells in the per-
ichondrium [33, 73]. Deletion of perichondrial
FGF18 leads to a phenotype with decreased
chondrocyte proliferation and differentiation,
attributed to the absence of FGFR3 signaling.
FGF18 also promotes VEGF expression in hyper-
trophic chondrocytes; this suggests that FGF18
is needed to bring about skeletal vascularization
and subsequent recruitment of osteoblasts/

osteoclasts [77]. Accordingly, the effects of FGF
18 may extend beyond the growth plate to inte-
grate bone deposition and remodeling with
growth-plate activities.

Like FGF, BMP signaling is needed to develop
the hypertrophic phenotype (Fig. 3.4) [34, 146].
BMP 1-7 proteins are at their highest concentra-
tions in the hypertrophic chondrocytes of the
growth plate [11], with BMP-2 and -6 RNAs
mostly in the hypertrophic cartilage, and BMP-7
predominant in the proliferating cartilage [94].
The BMP receptor (BMPRIA) is expressed in the
perichondrium, as well as in the proliferating
and hypertrophic chondrocytes, whereas other
BMP receptors (BMPRIB, BMPRII, and ALK 2)
are expressed throughout the growth plate [89].
Thus, the sites of BMPs and their receptors show
considerable overlap in the growth plate, not-
withstanding the fact that there is preferential
expression in some regions.

A complicating factor is the presence of inhib-
itors of BMPs throughout the growth plate. These
include fibrillins, heparan sulfate proteoglycans
[56],mutated chondroitin-4-sulfotransferase[122],
and the classic BMP inhibitors gremlin and
chordin, plus inhibitory Smads 6 and 7 [16, 94].
Differential activity of these inhibitors influ-
ences and confounds the effects of FGF-BMP
signaling.

The low levels of BMP signaling in the RZ are
likely to maintain the cells in the RZ in a quies-
cent state [94]. In the maturing regions of the
plate, BMP signaling may induce terminal differ-
entiation. The question now is whether BMP-
dependent signaling influences the activities of
the other regulatory circuits discussed earlier.
Minina et al. [90] showed that BMPs and IHH
promote chondrocyte proliferation, whereas
FGF independently inhibits proliferation, but
influences the transit of chondrocytes to their
terminally differentiated state. In this way,
PTHrP and IHH, together with BMPs and FGE,
form a feedback loop that regulates growth.
Conceivably, signaling by the powerful and
highly regulated BMP system is independent of
the IHH-PTHrP circuit [67, 94], whereas FGF
signaling may influence the IHH signaling path-
way [144], because the IHH and FGF signaling
pathways seem to act independently of each
other in regulating the proliferative phase of the
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Figure 3.6. Regulation of chondrocyte maturation and epiphyseal
growth by growth hormone (GH), insulin-like growth factor (IGF), and
leptin. GH is secreted by secretor cells of the anterior pituitary gland.
Secretion is modulated by hypothalamic proteins: promoted by growth
hormone releasing factor (GHRF) and inhibited by somatostatin, Ghrelin,
a gut hormone, and leptin, a hormone secreted by adipocytes.The hypo-
thalamic proteins serve as GH secretogogues and act directly on the
pituitary gland. In the liver, GH promotes the secretion of two IGF iso-
forms (IGF-1 and IGF-I1), which become bound to carrier protein (IGFBP).
IGF, GH, and leptin act directly on the growth plate and promote chon-
drocyte proliferation and epiphyseal growth.

chondrocyte life cycle [88]. Even though these
pathways exert effects that are independent of
each other, it is likely that, because of redun-
dancy, integration takes place through pathways
not yet discovered.

IGF-1 is expressed by proliferating and prehy-
pertrophic chondrocytes of the growth plate, as
well as by the liver, and is activated by pituitary-
generated GH. IGF-1 synthesis and secretion
stimulates clonal expansion of PZ chondrocytes
in an autocrine/paracrine manner (Fig. 3.6). GH/
IGF-1 is critical for the adolescent growth spurt,
and IGF-1-deficient mice show severe dwarfism.
In the growth plate, IGF-1 stimulates chondro-
cyte proliferation and bone growth. Growth hor-
mone and IGF are both required for normal
growth in the child and adolescent. The major
factors regulating IGF concentrations in serum
are GH, nutritional intake, and thyroid hor-
mones, and the latter stimulates GH secretion.
Growth hormone resistance owing to mutations
or deletion in the GH gene or receptor causes
dwarfism (Laron syndrome).

Leptin (from the Greek leptos, thin) is a 16
kDa helical-rich protein that regulates satiety
and energy expenditure. Leptin also regulates
the activities of GH and IGF (Fig. 3.6) [131]. Cells
in the growth plate express the leptin receptor
and hypertrophic chondrocytes synthesize lep-
tin. Once bound, leptin causes chondrocyte pro-
liferation and expression of collagen types II
and X to increase. It also induces an insulin-like
growth factor isoform (IGF-1) and TGEF-p.
Osteoblasts express active leptin receptors that
mediate signal transduction as indicated by the
phosphorylation of Stat3 [75]. A single daily
injection of leptin into mice that cannot synthe-
size leptin (Ob(Lep)™") causes the long bone to
become longer and denser [75]. Leptin stimu-
lates osteoblast proliferation, promotes expres-
sion of the bone cell phenotype, and enhances
osteoprogenitor cell maturation [131].

As leptin levels increase in obesity and the
robustness of bone increases correspondingly,
this hormone may serve to adjust bone density
to load. Leptin also causes PTHrP to increase
and THH secretion to become inhibited. By act-
ing on these two major components of the feed-
back loop, leptin effectively regulates the
differentiation of epiphyseal chondrocytes.

Thyroid hormone (triiodothyronine, T3) pro-
motes the recruitment of chondrocytes from the
RZ to the PZ, and thus stimulates chondrocyte
proliferation in the growth plate. T3 also promotes
the differentiation of growth-plate chondrocytes
[133]. This helps to account for the increased
growth of long bones, as seen in young children
with hyperthyroidism. However, hyperthyroid-
ism ultimately leads to premature growth-plate
fusion and short stature. As suggested earlier,
thyroid hormone (T3) regulates Wnt/f-catenin
that blocks chondrocyte hypertrophy and endo-
chondral ossification. Nevertheless, postnatally,
a T3-driven increase in Wnt/B-catenin signaling
promotes growth-plate chondrocyte maturation
and bone formation [124].

The main function of the FGE, especially of
FGF-2 or basic FGE, is to control longitudinal
bone growth by inhibiting PZ chondrocyte cell
division [82]. It does this by the activation of
the FGF receptors (FGFR1-4) that are local-
ized in the chondrocytes. The activation brings
about a marked decrease in PZ chondrocyte
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proliferation, along with a major reduction in
the size of the HZ. In humans, activating muta-
tions of the FGFR3 cause achondroplastic dwarf-
ism [133]. Overexpression of FGF-2 causes an
inhibition of the longitudinal growth of long
bones, presumably by activating FGFR3 [30].

VEGF regulates angiogenesis, i.e., vascular
ingrowth into the growth plate from the under-
lying metaphysis [42, 45]. It is most highly
expressed in mature chondrocytes of the lower
HZ, and when secreted by HZ chondrocytes, is
targeted to its receptor, Flt, which is concen-
trated in the endothelial cells of the underlying
metaphysis. VEGF is endothelial cell-specific.
When inactivated in vivo by systemic adminis-
tration of a soluble, decoy VEGF receptor, VEGF
not only suppresses angiogenesis, but also
impairs trabecular bone formation and the
expansion of HZ of chondrocytes [45]. It is also
involved in cell-survival mechanisms [2]. In
some tissues, VEGF expression is regulated by
hypoxia inducible factor (HIF)-1, a transcrip-
tion factor that is expressed by cells of the
growth plate (see section below). See Table 3.2
for a summary of factors regulating vascular
ingrowth.

Several matrix metalloproteinases (MMPs)
have been shown to promote angiogenesis at the
base of the growth plate, especially MMP-3, -9,
and -13 [49]. These MMPs are synthesized and
secreted not only by lower hypertrophic and
apoptotic chondrocytes of the growth plate, but
also by the vascular endothelium of invading
capillaries and nearby chondroclasts and osteo-
clasts [123]. Endothelial cell invasion of the car-
tilage matrix in the lower HZ is greatly aided by
MMP digestion of the matrix collagen and pro-
teoglycans [137]. MMP-9, in particular, may act
directly on the microvessels of the metaphysis,

Table 3.2. Factors regulating vascular ingrowth
Factor References
VEGF Dai and Rabie [32]
MMP-3,-9,-13 Rundhaug [109]

Shukunami etal. [118]
Glucocorticoid Smink et al.[120]
TGF-B Alvarez et al.[5]

CTGF Ivkovic et al.[57]

Chondromodulin

causing them to invade and penetrate the adja-
cent cartilage matrix. MMP-9 may be the most
important MMP, inasmuch as growth-plate vas-
cularization and ossification are delayed in
MMP-9-deficient mice and their growth plate
becomes progressively longer, especially in the
HZ [137]. For ways by which MMPs facilitate
angiogenesis, refer to Rundhaug [109].

Chondromodulin inhibits angiogenesis in the
growth plate, as do the thrombospondins-1 and
-2, and the tissue inhibitors of metalloprotei-
nases-2 and -3 [118].

Glucocorticoids are well-known inhibitors of
growth-plate growth and vascularization. Prepu-
bertal children treated with glucocorticoids
exhibit general growth retardation [21]. In exper-
imental animals, longitudinal bone growth is
inhibited [17]. Glucocorticoids inhibit endochon-
dral bone formation by (a) decreasing the PZ
proliferation rate and height, (b) increasing the
chondrocyte apoptosis rate in the HZ, and (c)
interfering with normal vascularization at the
base of the growth plate by inhibiting the expres-
sion of VEGF [120].

Transforming growth factor-beta (TGF-f) has
multiple functions in the growth plate. It is
most highly expressed in HZ [31], where, by
enhancing PTHrP action [5], it inhibits hyper-
trophy and differentiation in the growth plate.
Although vascular endothelial cells invading
the growth plate from the underlying metaphy-
sis are equipped with receptors for TGF-f [35],
the mechanism of action of TGF-f on angio-
genesis is not clear.

Connective tissue growth factor (CTGF) is
prominently expressed in HZ chondrocytes of
the postnatal growth plate. CTGF deficiency
leads to skeletal dysmorphism, resulting from
decreased chondrocyte proliferation and disori-
ented vascularization at the base of the growth
plate [57]. CTGF binds to several growth and dif-
ferentiation factors that regulate growth-plate
development and endochondral bone formation,
including the BMPs, TGFf3, and MMPs, as well as
VEGE. CTGF-deficient mice not only have
impaired vascularization at the base of the
growth plate, but also lack aggrecan (proteogly-
can) in the cartilage matrix; their chondrocyte
columns are disoriented and the growth plates
have diminished mechanical strength [57].
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3.5 Mechanism of Growth-Plate
Mineralization

The pattern of mineral initiation and propaga-
tion in the growth plate is spatially polarized,
with mineral deposition occurring selectively in
the longitudinal septa of the cartilage matrix at
the lateral edges of the chondrocyte columns
(Figs. 3.1a and 3.2) [6, 10]. The selective localiza-
tion of the mineral in the longitudinal septal
matrix is likely due to the fact that mineral-initi-
ating MV are deposited in the longitudinal sep-
tal matrix through polarized budding from the
lateral edges of early HZ chondrocytes [26] (Fig.
3.2) and from the osteoid-facing surfaces of the
osteoblasts during new bone formation [13].

The mechanism of MV-initiated biomineral-
ization appears to be biphasic (Fig.3.7). During
Phase 1, Ca** and POi_ become concentrated
within MVs, generating hydroxyapatite (HA)
crystals, often along the inner surfaces of the
MV membrane (Fig. 3.7a). Ca** accumulation
within MVs is promoted by Ca**-binding lipids
of MVs, e.g., phosphatidyl serine, which is con-
centrated in MV membranes [101] and by Ca**-
binding proteins, especially the annexins that
are present in the MV sap [64].

Phosphate (POZ) accumulation within and at
the periphery of MVs is achieved by the activity
of phosphatases, especially alkaline phosphatase,
that are concentrated in and near the MV mem-
brane (Fig. 3.7a) [4, 86]. Other phosphatases that
are enriched in MVs and can promote Phase 1
mineral initiation include ATPase, adenosine
monophosphoesterase (AMPase), and inorganic
pyrophosphatase (PPiase). The primary action
of these phosphatases is to hydrolyze the phos-
phate esters that are present in the extracellular
fluid (ECF) and in the vesicle sap, thus releasing
POZ_ (orthophosphate) for incorporation in the
nascent CaPO, mineral. The PO, concentrating
effect of the phosphatases is augmented by the
action of a Na- PO , cotransporter, with Na*
released from the MV, in exchange for the enter-
ing PO;™ [91].

Phase 2 begins as the crystals pass through
the MV membrane into the matrix of the longi-
tudinal septa (Fig. 3.7b). Here, the HA crystals
proliferate, with preformed crystals serving as
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Figure 3.7.  (a) Scheme for mineralization in matrix vesicles. During
phase |, intravesicular calcium concentration is increased by its affinity
for lipids and by Ca-binding proteins of the vesicle membrane and inte-
rior. Phosphatases, e.g., alkaline phosphatase, pyrophosphatase, or
adenosine triphosphatase at the vesicle membrane, act on ester phos-
phate of the matrix or vesicle fluid to produce a local increase in PO, in
the vicinity of the vesicle membrane. This in turn raises the intravesicu-
lar ionic product (Ca**) x(POi_),resuIting in initial deposition of CaPQ,
near the membrane. (b) As intravesicular crystals accumulate and grow,
they are exposed to the extravesicular environment. Phase 2 begins
with the exposure of preformed apatite crystals to extravesicular fluid,
which in normal animals is supersaturated with respect to apatite,
enabling further crystal nucleation to take place. Matrix vesicles
pictured are in rat growth-plate cartilage. (Reprinted with permission
from Anderson [7]).

templates or “nuclei,” if adequate amounts of
Ca** and PO}~ diffuse from the nearby blood
vessels. As new, self-nucleated HA crystals aggre-
gate, they form radial clusters that grow in size
and fuse to form contiguous mineral deposits in
the longitudinal septa of the lower hypertrophic
(calcifying) zone of the growth plate (Fig. 3.2).
The speed and pattern of phase 2 mineraliza-
tion are controlled by known and unknown
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factors outside the MVs. As pointed out earlier,
the rate of mineral crystal growth depends on
the diffusion of plasma Ca** and PO;;’_ ions to the
ECFE. However, their concentration in the ECF is
not sufficient to initiate HA crystal formation.
However, if HA crystals are released from MVs,
the concentration of the two ions in the ECF is
sufficient for HA to deposit on the crystals that
then serve as templates [52]. In this process,
matrix collagen (types I or II) plays a major role
by nucleating and orienting newly formed HA
crystals [72]. Factors that inhibit the rate of HA
crystal proliferation include proteoglycans [27],
osteocalcin [36], osteonectin [23], inorganic
pyrophosphate (PPi) [41], and fetuin [111].
Mineralization inhibitors are important because
they prevent the mineral from spreading to the
tissues that do not normally calcify, e.g., the
arteries in atherosclerosis or the weight-bearing
joints in osteoarthritis [8].

3.6 Chondrocyte Metabolism
Within the Growth Plate

The metabolism of the growth plate cartilage
has been reviewed [117]. Because the life cycle of
the chondrocyte is very short (1-3 days), its
energy requirements are likely to be very high.
The question that then arises is how the cell in
the hypoxic confines of the growth plate can
generate sufficient ATP from glycolysis to main-
tain membrane pumps, secrete a complex
organic matrix, and activate mineral deposition.
The answer to this fundamental question is that,
unlike oxidative phosphorylation where the
energy vield is high, but the rate is slow, the gly-
colytic pathway is very short and can deliver
small amounts of ATP at a rate sufficient to meet
the energy demands of the cell. Moreover, as the
glycolytic pathway is the major energy conserv-
ing pathway in maturing chondrocytes, the O,
needs are small. From this perspective, chondro-
cytes are exquisitely adapted to the avascular
architecture of the growth plate.

While it is fairly obvious that the O, supply to
the avascular plate must be low, till recently, evi-
dence in support of this assumption has been
limited. A derivative of metronidazole has been

used to provide an index of the O, tension in situ
and to demonstrate O, gradient in the growth
plate, with the lowest O, concentrations (2-5%)
in the core HZ [103, 116]. At the calcification
front, the chondro-osseous junction sited closest
to the metaphyseal blood vessels, the oxemic
state of the chondrocytes would be higher than
in the postmitotic core. Increased O, delivery is
likely to favor osteoblast and osteoclast function,
while possibly adversely influencing chondro-
cyte survival.

If there is a gradient in the tissue O, tension,
how then does the cell adjust its metabolism to
the oxemic state? Within the past decade, much
has been learned about the mechanism by which
the cells respond to changes in the local O, ten-
sion. Chondrocytes sense the local tension by the
activities of sensor proteins, prolyl hydroxylases
(PHDs) [130]. When activated, these oxoglu-
tarate- and Fe**-dependent dioxygenases medi-
ate hydroxylation of prolyl and asparagyl residues
of the transcription protein, HIF. It has been
shown that PHD isoenzymes are present in cul-
tured chondrocytes and the growth plate itself
[130]. Under normoxic conditions, the proline-
hydroxylated form of HIF is recognized and
bound to the von Hippel Lindau tumor suppres-
sor protein (pVHL), an ubiquitin ligase. This
complex is targeted to the proteasome for polyu-
biquitination and degradation [98]. However,
when the pO, is low, there is a reduction in PHD
activity, and pVHL-dependent ubiquitination is
suppressed. Under this circumstance, HIF-1o
translocates into the nucleus, binds to hypoxic
responsive elements (HRE) on DNA, and pro-
motes the transcription of specific target genes,
many of which are concerned with the regulation
of the glycolytic pathway. For example, HIF regu-
lates the expression of PFKI, the pacemaker
enzyme of glycolysis.

The question now arises as to whether HIF is
expressed by cells in the growth cartilage. In an
early study of the growth plate, it was shown that
HIF was highly expressed in hypertrophic chon-
drocytes in situ and in culture [105, 130]. The
functional importance of HIF was first demon-
strated by Schipani et al. [113], who reported that
mutant mice with conditionally inactivated
HIF-1ow gene exhibited profound changes in the
cellular architecture of the growth plate. The
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number of hypertrophic cells was reduced, there
was an increase in apoptotic cells in the prolifera-
tive and HZs, and the metaphysis was irregular
and disorganized. The mechanism of these
changes is as yet unknown, but it would not be
unreasonable to assume that in the absence of HIF,
many of the glycolytic genes remain inactivated,
with the cell unable to promote glucose metabo-
lism through anaerobic glycolysis. Moreover, as
HIF regulates the activity of the genes linked to
survival, many of the cells undergo premature
apoptosis. Unlike the growth cartilage, the effect
on the development of metaphyseal bone is not
obvious. However, as the full development of the
hypertrophic phenotype is linked closely with
bone formation, a disturbance in epiphyseal func-
tion is likely to be transduced to cells at the
chondro-osseous junction, with alterations in
bone formation and resorption.

A few more words about the function of the
HIF system (see Chap. 8) are warranted. Apart
from upregulating glycolysis, HIF-1 slows the
mitochondrial function, thereby decreasing the
O, needs of the cell. In a series of recent studies,
it was shown that HIF influenced energy genera-
tion at the mitochondrial level. In this case,
rather than serving as a stimulatory function,
HIF blocks the activity of the enzyme pyruvate
dehydrogenase that converts pyruvate into acetyl
CoA [119]. The enzyme is subject to control by
both stimulatory factors (Ca?*, insulin, etc.) and
inhibitory reactions (phosphorylations), and
serves as a control point that links glycolysis
with the generation of mitochondrial energy
(Fig. 3.8). In hypoxia, HIF stimulates a pyruvate
dehydrogenase kinase to phosphorylate, and
thereby to inhibit the pyruvate dehydrogenase.
When this occurs, the rate of conversion of pyru-
vate to lactate by lactate dehydrogenase is raised.
This reaction regenerates NAD and glycolysis is
enhanced, further stabilizing the metabolism of
the hypoxic cell. In summary, the low level of
vascularization of the growth plate and the con-
comitant decrease in O, supply stabilize HIE.
This in turn upregulates the enzymes involved
in glycolysis, provides a source of reduced NAD,
and downregulates O, consuming reactions at
the mitochondrial level. On the basis of these
findings, the PHD-HIF system must be viewed as
a key regulator of chondrocyte metabolism.

It is noteworthy that a second HIF homolog,
HIF-2, is present in the epiphyseal cartilage.
This HIF isoform may serve as a cytoprotective
function. Upregulation of HIF-2 lowers the
level of reactive oxygen species (ROS) by
enhancing the activities of the dismutating
proteins, catalase and superoxide dismutase
[28]. The low O, tension therefore seems to sta-
bilize HIF-2 expression and raise the superox-
ide dismutase and catalase activities. The
activity of both enzymes suppresses the gener-
ation of radicals in the cartilage and permits
terminal differentiation.

3.7 Deletion of Chondrocytes
from the Epiphyseal Growth
Plate

Chondrocytes are deleted from the epiphysis by
apoptosis, an activity process that, by deleting
the cells from the cartilage, provides space for
metaphyseal bone formation and growth.
Apoptosis or programmed cell death - a process
that has been conserved throughout evolution -
removes unwanted or damaged cells from tis-
sues [143]. In cartilage, the apoptotic event is
marked by plasma membrane breaks, hydropic
swelling [58], a dilated endoplasmic reticulum,
and DNA fragmentation [43, 107].

It is generally agreed that there are two well-
defined apoptotic signaling systems that regulate
the induction of cell death (Fig. 3.8). A wide vari-
ety of stimuli activate the intrinsic pathway
including hypoxia, redox-stress, and serum
(growth factor) deprivation. In terminally differ-
entiated chondrocytes, considerable emphasis has
been placed on determining the role of the Bcl2
family of proteins in regulating the induction of
the intrinsic pathway of apoptosis. Bcl2, Bcl XL,
and Mc-11 are inhibitors of apoptosis that pre-
serve the voltage gradient across the inner mem-
brane of the mitochondrion and prevent protein
loss. In contrast, Bax and Bak create membrane
pores and stimulate apoptosis. A third group of
proteins, including Bad, Bid, NOXA, PUMA Bim,
and BMF that have a conserved BH3-only domain,
also enhance apoptosis. These proteins activate
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Figure 3.8.  Events leading to autophagy and apoptosis in growth-plate chondrocytes. In maturing postmitotic chondrocytes, the low p0, of the

growth plate causes expression of both HIF-1and -2. HIF-1 promotes survival activity by upregulating anaerobic energy metabolism and autophagy.
AMP kinase (AMPK) activity is increased by HIF-1 and by Ca?* released from mitochondria, the endoplasmic reticulum, and possibly from tissue fluid
via annexin channels. In addition to activating autophagic flux, PIM2, together with Bcl2, blocks apoptosis. In hypertrophic chondrocytes, an increase
in HIF-1 activity and a decrease in HIF-2 activity result in the sustained activation of AMPK and an increase in the rate of autophagic flux.This increase
is enhanced by an elevation in the generation of ROS owing to the decrease in both HIF-2 and UCP3 activity, which results in suppression of the PHD
oxygen sensors and an elevation in HIB-1 activity. Furthermore, increased caspase-8 and NO generation, mediated by HIF-1and Pi, results in caspase-
3-mediated apoptosis.The hypertrophic cell is also sensitized to apoptogen challenges, mediated by the CaxP, ion pair. Sensitization is probably due to
the HIF-1-mediated increase in the proapoptotic protein BNIP3 and the progression of autophagic flux.

apoptosis by binding prosurvival Bcl2 proteins
and neutralizing their function [97].

When the pathway of apoptosis is stimulated,
membrane potential is lost and a transient
change in permeability of this mitochondrial
membrane is generated, causing release of one
or more proteins (cytochrome ¢ and APAF-1).
The presence of these proteins in the cytosol
triggers the formation of an apoptosome, a mac-
romolecular complex that recruits and binds
pro-caspase 9. This multimeric enzyme complex
then activates the executioner enzyme, pro-cas-
pase-3. Once activated, this caspase cleaves the

proteins within the cell and elicits changes that
include cell shrinkage, nuclear condensation,
and fragmentation of the organelles and mem-
branes. Products of caspase hydrolysis can be
engulfed by cells; this obviates problems that
result from an inflammatory response.

In contrast to the intrinsic pathway, death
ligands bind receptors on the cell membrane and
trigger cell death. Common ligands include the
TNF family of ligands including FASL, RANKL,
BLYS/BAFE, and APO2L/TRAIL. Formation of a
complex multimeric receptor at the plasma mem-
brane (the DISC complex) binds pro-caspase-8
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and activates it. This caspase can then activate
caspase-3 directly or modulate the mitochondrial
function, so as to release cytochrome ¢ and form
an apoptosome.

Which of these pathways regulates chondro-
cyte apoptosis and what is the activating mole-
cule or condition? Because apoptosis represents
a critical stage in the life cycle of the chondro-
cyte, there can be no simple answer. To stimulate
apoptosis requires inputs from the local envi-
ronment, interactions between the cells and late
stage matrix components, responses to the pres-
ence of other cells at the chondro-osseous junc-
tion, and dependency on both hormonal and
local (paracrine) factors. Moreover, there is
accumulating evidence that it is the extrinsic
pathway that serves as a regulatory system. It has
been assumed that molecules released at the
chondro-osseous junction promote cell death.
When calcified, cartilage is being replaced by
bone, the matrix molecules accumulate in the
microenvironment of the terminally differenti-
ated chondrocytes and, if active, could sensitize
cells to apoptosis or induce it. Solubilization of
apatite by osteoclasts (septoclasts) would cause
Ca’ and phosphate ion (Pi) concentration to
become elevated locally and have an effect on
the viability of hypertrophic chondrocytes.

Mansfield et al. [84] demonstrated that Pi can
serve as an apoptogen, even if Ca** ions are
absent. When the Pi level is low, a small rise in
the medium Ca®" concentration is sufficient to
cause a marked increase in cell death, although
the cation alone does not affect the apoptosis
process. When the Pi concentration in the cul-
ture was raised to 3.0 mM from the normal
serum Pi concentration of 2.0-2.5, an increase in
the Ca?* concentration from 1.8 to 2.8 mM caused
a dramatic elevation in chondrocyte death.
Moreover, irrespective of the medium Pi concen-
tration, the presence of Ca** chelators inhibited
chondrocyte apoptosis. Because it was not clear
whether Pi-mediated apoptosis was receptor-
mediated or linked to loading the treated cells
with Pi, inhibitors were used to block Pi-Na
cotransport. As a result, apoptosis was blocked
[85]. Moreover, this transport system was sensi-
tive to PTH and vitamin D, agents that modulate
chondrocyte maturation and cartilage calcifica-
tion [20]. In addition to being under humoral

control, symport function also depends on the
maturation status of the cell.

Apart from causing changes in the mitochon-
drial function, the ion-pair stimulated ROS gen-
eration by the hypertrophic chondrocytes. The
elevation of intracellular Ca** and Pi caused
hyperpolarization of mitochondria, as well as a
rapid and extensive elevation in ROS levels.
Analysis of the kinetics of release indicated that
there was an initial lag phase after which the ROS
levels increased sixfold before there was any evi-
dence of apoptosis. Moreover, ROS generation
was evident soon after the mitochondria became
hyperpolarized and remained high for most of
the hyperpolarization period [84,106 ]. Evaluation
of NO generation by ion pair-treated chondro-
cytes provided a new slant on the possible trig-
gering mechanisms [128]. Pi caused an elevation
in NO levels in concert with the activation of cas-
pases and inhibition of mitochondrial function.
Recently, Zhong et al. [145], evaluating the role of
a prothrombin peptide fragment in apoptosis,
noted that inhibition of iNOS-dependent NO gen-
eration, possibly involving PKC (see below), also
prevented apoptosis in growth-plate chondro-
cytes. Teixeira et al. [127] showed that when NO
synthesis was blocked, the mitochondrial mem-
brane potential was maintained and apoptosis
was inhibited. Moreover, the generation of NO
leads to the depletion of intracellular thiols [129].
Chondrocyte maturation promotes activation of
the apoptotic pathway; this causes ROS and NO
generation to increase, leading to a loss of the
mitochondrial membrane potential and a
decrease in the intracellular thiols [115]. All these
events enhance the sensitivity of chondrocytes to
environmental apoptogens.

Details of the role played by members of the
Bcl-2 gene family in regulating apoptosis has
been provided by Oshima et al. [97], who
identified a putative proapoptotic gene in the
chondrocytes. When this gene was silenced,
Pi-induced apoptosis was suppressed. Bnip3
expression increased with hypertrophic differ-
entiation and during Pi-induced apoptosis in
ATDCS5 cells [97]. Knockdown of Bnip3 blocked
Pi-induced apoptosis, whereas overexpression
increased Pi-induced chondrocyte apoptosis.
Knockdown of Bcl-xL promoted chondrocyte
apoptosis. Bcl-xL is expressed uniformly in the
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growth plate, whereas Bnip3 expression is local-
ized exclusively in the hypertrophic chondro-
cytes. To further explore the role of Bcl-xL, a
chondrocyte-specific mouse mutant was gener-
ated. In these dwarf mice the HZ was markedly
reduced because of increased apoptosis of the
maturing chondrocytes. These studies confirm
the pivotal role played by members of the Bcl2
family in regulating chondrocyte apoptosis and
in impairing the anti-apoptotic function of
Bcl-xL. Bnip3 expression therefore can be
observed to determine the fate of the hypertro-
phic cells.

One drawback to the studies described above
is that Pi was a necessary component of the cul-
ture system, and hence studies using cultured
cells were confounded by the presence of this
anion. Magne et al. [79] used the ATDCS5 cell line
that expresses the type III Na-Pi cotransporters
to promote mineralization of the extracellular
matrix without the addition of exogenous phos-
phate and confirmed that Pi accelerated chondro-
cyte terminal differentiation and, with Ca*,
induced apoptosis and matrix mineralization.
Magne et al. [79] speculated that the increase in
intracellular Pi levels during maturation acceler-
ates chondrogenic differentiation and, together
with elevated levels of soluble Ca?" in the HZ,
induces apoptosis-dependent mineralization.

One further approach to assessing the validity
of Pi as an inducer of apoptosis is to use Hyp
mice, an animal with depressed blood Pi concen-
tration, and a model of X-linked hypophos-
phatemia. Sabbagh et al. [110] showed that a low
serum Pi is associated with a decrease in the
number of apoptotic hypertrophic chondrocytes
and an expansion of the growth plate. These
findings strongly support the importance of Pi
as a regulator of apoptosis in the growth plate
and explain the expanded epiphysis in rickets,
which is believed to be due to the retention of
chondrocytes. Thus, it is circulating Pi, rather
than locally deposited Pj, that is the key to hyper-
trophic chondrocyte apoptosis.

The changes in Bcl2 family members dis-
cussed earlier lend strong support to the notion
that apoptosis is activated through the intrinsic
pathway. However, this issue is far from settled.
Pucci et al. [104] in a recent study of cultured
chondrocytes found little evidence in support of

apoptosome formation. If this is generally true,
then it is conceivable that the intrinsic canonical
pathway has undergone tissue-specific modifi-
cation. A second pathway that may also regulate
apoptosis links cell death with membrane recep-
tor function and adhesion. It has been known
for some time that when membrane receptor
binding does not occur, a form of apoptosis
called anoikis is triggered. These membrane
receptors are critical for integrin-mediated out-
side-in signaling and for the activation of ligand-
binding affinity (inside-out signaling). Two
proteins are involved in the induction of apopto-
sis, the B5 cytoplasmic domain of ovfB5 and
annexin V that bind to the activated form of PKC
and trigger apoptosis [25, 114]. Building on this
information, Wang and Kirsch [138] demon-
strated that the balance between annexin V/35
integrin and annexin V/PKCa plays a role in reg-
ulating growth-plate apoptosis, with annexin V
binding to the active PKCa, stimulating apopto-
sis, and annexin V binding to B5 integrin, regu-
lating the interactions between annexin V/B5
and annexin V/PKCa. What makes this observa-
tion particularly relevant to the growth plate is
that both annexin V and B5 integrin are robustly
expressed by the hypertrophic chondrocyte
close to the chondro-osseous junction.

3.8 Chondrocyte Survival vs.
Death: Induction of Autophagy

As discussed earlier, some terminally differenti-
ated chondrocytes do not die by apoptosis. One
alternate pathway is autophagy, a term used to
denote a process in which the cell degrades the
organelles, membranes, and isolated proteins. If
the activity is not self-limiting, it results in total
disintegration of the cell. Within the cell,autophagy
is initiated by the formation of an isolation mem-
brane that then sequesters cellular proteins in a
vesicle or autophagosome, which then fuses with
the lysosomes to form an autophagolysosome.
Degradation of the enclosed macromolecules
within the autophagolysosome generates amino
acids and free fatty acids that are recycled to
yield intracellular nutrients and energy. Twenty-
seven genes encode autophagy-related (Atg)
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proteins [66]. These proteins are required for the
formation of multiprotein complexes that
include an autophagy-specific phosphatidyl-
inositol 3-kinase (PI3K) assembly, as well as
ubiquitin-like protein conjugates. Not surpris-
ingly, the autophagic process is closely regulated
by a number of proteins, including AMPK, HIF’s,
PIM2,and mTOR (mammalian target of rapamy-
cin) kinase.

mTOR is a serine-threonine protein kinase
that acts as a nutrient sensor and indirectly
assesses the oxemic status of the cell [24]. The
activated kinase represses autophagy. Hypoxia
and the subsequent stabilization of HIF, together
with nutrient depletion, inhibit mTOR activity.
Both the events are permissive for autophagy
[78]. Energy depletion also inhibits mTOR
with suppression owing to the activation of
AMPK [121]. This kinase is an energy sensor
that is sensitive to the AMP level in the cell; its
activity is dependent on a second enzyme, ade-
nylate kinase [53].

AMPK activity influences glycolysis, glucose
utilization, fatty acid synthesis, fatty acid oxida-
tion, and lipolysis. Protein synthesis may also be
influenced by AMPK, through modification of
the activity elongation factor, EF-2. PIM2 is a ser-
ine-threonine kinase, which is robustly expressed
in the cells of the growth plate, where it promotes
autophagic flux by modulating the expression
and organization of LC3 and Beclin-1, and by
inhibiting the induction of apoptosis [22].

Autophagy has been identified with a non-
apoptotic form of cell death (type II apoptosis)
and dying cells frequently contain autophagic
vacuoles. Yet, induction of autophagy may also
promote cell survival. This prosurvival activity
can be considered to be a biological strategy that
permits survival during periods of nutrient
deprivation, with degradation of membrane
triglycerides and proteins providing the fuel to
stoke mitochondrial ATP energy production,
thereby extending cell longevity. How autophagy
regulates chondrocyte death is important in
relation to the normal tissue function and chon-
drocyte survival.

The fate of the differentiated cell is the result
of the interaction between two groups of pro-
teins: the autophagic ATG protein, Beclin-1, and
the members of the Bcl-2 family of proteins.

Beclin-1 was originally identified as a Bcl-2
interacting protein [100] that, by binding to Bcl-
2, decreases the free concentration of this anti-
apoptotic protein. This, in turn, increases the
sensitivity of the cells to apoptogens [76]. In our
view, the activation of autophagic flux would
also depend on the niche conditions in the
growth plate, regulated by the agents HIF-1, HIF-
2, and AMPK, among others. The protein that
serves as a nexus for inputs from HIF, AMPK,
and other signaling pathways, such as Akt/PI3K,
is mTOR [121]. Two other proteins mediate
autophagic flux. PIM2, together with Bcl2, blocks
apoptosis and UCP3, which, together with HIF-2,
regulates ROS levels in the growth plate [140].

One can then ask how each of these enzymatic
activities regulates autophagy/apoptosis. In
hypertrophic chondrocytes, an increase in HIF-1
activity and a decrease in HIF-2 activity would
sustain AMPK activation and increase the rate of
autophagic flux. The increase in flux is enhanced
by additional generation of ROS, which lowers
HIF-2 and UCP3. As a result, the PHD oxygen
sensors are suppressed and HIF-1 activity is
raised. Conceivably, an HIF-1-and Pi-dependent
increase in caspase-8 and NO generation also
promotes caspase-3-mediated apoptosis.

To test whether autophagy promotes chon-
drocyte survival in the growth plate, Bohensky
et al. [22] evaluated the in vivo expression of the
two proteins that are characteristic of autophagy:
Beclin-1 and LC3, a protein that condenses in the
intracellular  vesicles during autophagy.
Suppression of Beclin increased BID cleavage
and caspase-8 activation, and enhanced cell
death; thus, expression of this autophagy gene
enhanced chondrocyte survival. The authors
commented that other members of the protein
family, including Noxa, Bnip3, and BAD, may
also be activated. The activation of caspase-8
was a novel finding and is related to the role of
the extrinsic pathway of apoptosis. From a phys-
iological perspective, autophagic signaling
seems to enhance cell survival, especially during
the later stages of terminal differentiation, when
the cells are assailed by apoptotic stimuli.

In the same study [22], the linkage between
hypoxia and survival was evaluated. Because
HIF-1 maintained Beclin-1 levels, it seems to
regulate atleast one component of the autophagic
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pathway. It was concluded, therefore, that in the
challenging microenvironment of the growth
plate, HIF-1 maintains the viability of the prolif-
erating and prehypertrophic chondrocytes until
maturation is completed. Eventually, extended
autophagic activity sensitizes terminally differ-
entiated chondrocytes to local and intrinsic sig-
nals, resulting in apoptosis and deletion of cells
from the growth plate. This release, in turn,
accelerates cartilage replacement by bone and
induces bone growth.

3.9 Diseases of the Growth
Plate

Rickets occurs mostly in children whose growth
plates are actively growing and is caused by a
failure of mineralization in the growth plates
and bones. The result is that bones grow poorly
and bend, because poorly mineralized bones
tend to bend when exposed to mechanical stress
during normal activities. Breathing, for example,
causes ribs to bend inward and, in rickets leads
to development of a “pigeon breast,” owing to
compensatory outward bowing of the sternum.
The retarded mineralization causes accumula-
tion of unresorbed cartilage matrix and enlarged
growth plates. The bones in rickets are also
incompletely mineralized, a condition termed
osteomalacia. Decreased mineralization of
growth plates and bones, as seen in rickets, is
owing to a variety of factors that cause lower
Ca* and/or PO, in cartilage and bone. In chil-
dren, hypocalcemia is typically caused by a defi-
ciency of vitamin D leading to impaired calcium
absorption.

Rickets and osteomalacia in adults are also due
to hypophosphatemia. Even if plasma levels of
Ca** are normal, bone mineralization is dimin-
ished in the presence of hypophosphatemia, which
is often the result of excessive urinary excretion
of POZ' [102]. Pathologic causes of hypophos-
phatemia include decreased gastrointestinal PO,
absorption and several hereditary forms of hyper-
phosphaturia [102].

Hypophosphatasia is a heritable form of rickets
and/or osteomalacia that results from defects in the
gene for alkaline phosphatase, an enzyme found in

bones, liver, and kidneys, the so-called tissue non-
specific alkaline phosphatase (TNAP). TNAP pro-
motes normal mineralization of the growth plate
and newly formed bone [13]. Figure 3.9 compares
the relative amount and distribution of mineral in
normal cartilage and bone matrix with that from a
TNAP-deficient growth plate and bone [14]. In
hypophosphatasia, phase 1 of MV mineralization is
not impeded by TNAP deficiency. Rather, the fail-
ure of mineralization in hypophosphatasia is
mostly due to blocking of normal Phase 2 mineral
propagation at the perimeter of TNAP-enriched
MVs [12,14].

Achondroplasia is the most common form of
dwarfism in humans. As discussed in Chap. 1 of
this volume, it is caused by mutations of the FGF
receptor 3 gene (FGFR3) that cause functional
overactivity of this receptor, resulting in slow
chondrocyte proliferation and differentiation in
the growth plate [51]. One of the several related
mutations brings about a Gly 380 Arg amino
acid substitution in the transmembrane domain
of the FGFR3 receptor. Although achondroplasia
is a dominant mutation, over 80% of the cases
result from a new mutation of FGFR3, not car-
ried in the parental genes. The bodily phenotype
is characterized by shortened stature, owing to
reduced growth in the growth plates of the long
bones. The skull is enlarged and the forehead is
bulging. The bones of the midface are small,
because the size of the facial bones is a func-
tion of endochondral bone formation in the
growth plates of the calvarium [51]. Growth
plates throughout the body are disordered, with
narrowed zones of proliferation and hypertro-
phy and disorganized chondrocyte columns.
Horizontal bone trabeculae are prematurely
deposited at the base of the growth plate. This
seals the plate and prevents further growth.

Osteochondromas and enchondromas are
benign tumors that arise from displaced chondro-
cytes that migrate out from the growth plate and/
or its perichondrium [65, 87]. Osteochondromas
are located primarily in or on the surface of the
metaphyseal bone.

Osteochondromas are mushroom-like out-
growths that arise from the periosteal surface of
the metaphysis, close to the perichondrium of
the growth plate. A “cartilage cap” lies on top
of an osteochondroma. It resembles a growth
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Figure 3.9.

Alizarin red calcium stains for mineral in TNAP normal mouse tibial growth plate (A) vs. TNAP-deficient tibial growth plate (B).

The TNAP-deficient tibias show a significant reduction in dark red alizarin-staining of calcium phosphate mineral deposits, in the calcified
zone of the growth plate, and in the bone trabeculae of the underlying metaphysis (Modified from Anderson [14]) ((A) magnification 420x;

(B) magnification 530x).

plate, is rotated 90°, and grows perpendicularly
to the long axis of the bone, with hypertrophic
chondrocytes in a layer closest to its base and
proliferative chondrocytes near the surface. The
bony base of the osteochondroma consists of an
outer cortex with underlying cancellous bone; it
resembles the normal metaphysis and is contin-
uous with it [87]. The growth pattern of osteo-
chondroma is like that of a displaced growth
plate, growing at 90° from the longitudinal axis
of the bone [132]. Almost all osteochondromas
are benign and occur as solitary or multiple
lesions in the hereditary multiple exostoses syn-
drome [132].

Enchondromas usually begin as benign carti-
laginous neoplasms of childhood, arising from
chondrocytes at the base of the growth plate.
Chondrocytes of enchondromas do not undergo
the rigidly controlled pattern of apoptosis and
resorption seen in the growth plate, but form
cartilaginous tumors in the metaphysis [87].
Hereditary multiple enchondromas result from
deletion mutation(s) of the EXT1 or EXT2 gene.

In patients with hereditary multiple enchondro-
matosis syndromes, there is a relatively high risk
to develop chondrosarcoma [132].

3.10 Summary

The growth plate is a remarkable organ where
structure reflects function to an exceptional
degree. Thus, with chondrocytes in the growth
plate, orientation at different levels reflects the
state of cellular maturation and differentia-
tion at that particular level. Partly because of
this it has been possible to analyze and char-
acterize, to a remarkable degree, the metabolic
activity ongoing at a particular level, from
conversion from stem cells, to proliferation, to
differentiation (with matrix synthesis and ini-
tiation of mineralization), and finally to apop-
tosis. However, notwithstanding the advances
in our knowledge of growth plate structure
and function, an understanding of how growth
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plate chondrocytes interact with other, more
distant tissues is far from complete. For exam-
ple, little is known about the mechanisms by
which growth plate chondrocytes communi-
cate with cells of underlying bone, with dis-
tant growth plates, and with other cells of the
body. Active current areas of research include
growth plate interaction with adipose tissue
(which produces leptin) and regulation of the
growth plate by the neurotransmitter, sero-
tonin. A challenge for the coming decade is to
elucidate how these intraorgan signals are
controlled and integrated.
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4.1 Introduction

Genetic studies in Drosophila melanogaster first
published in 1980 revealed mutations called
“hedgehog” and “patched”, named for the odd
appearance of mutant fly embryos [89]. Since
then, work from numerous groups studying
many model organisms has come together to
reveal what is currently called the Hedgehog (Hh)
signaling pathway. Largely, though not com-
pletely, conserved from Drosophila to human,
this pathway has been shown to be a master
regulator of cell proliferation and differentiation,
influencing many critical processes that range
from early embryonic pattern formation to tis-
sue homeostasis in adulthood. As might be
expected for a network of such importance, dys-
regulation of this pathway has also been impli-
cated in a broad spectrum of human diseases,
including many varieties of neoplasia and a
number of congenital malformations [41, 86].
Hh is a secreted morphogen that can form a
gradient over many cell diameters to affect the
basic cellular behavior, including proliferation,
differentiation,and survival. While Drosophila has
a single Hh gene, the family has been expanded
to three in vertebrates: Sonic Hedgehog (Shh),
Indian Hedgehog (Ihh), and Desert Hedgehog
(Dhh). Vertebrate Hhs have both distinct and
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overlapping expression patterns and functions.
Dhh expression is restricted to gonads, where it
regulates spermatogenesis, and to peripheral
neurons, where it regulates the nerve sheath for-
mation [7, 92]. Shh and Thh are more widely
expressed and have sometimes overlapping and
often distinct roles that are determined by their
expression patterns. For example, while Shh and
Thh play redundant roles in the regulation of left/
right asymmetry and cardiac morphogenesis
[122], only Shh is expressed in the zone of polar-
izing activity (ZPA) and is important for anterior-
posterior patterning of the limb bud [99, 101].

In particular, Hh signaling has emerged as one
of the most important and extensively studied
pathways in bone development and homeostasis.
Understanding this pathway’s role in skeletal tis-
sues is paramount to making advances in both
basic and translational bone research, and may
hold clues toward therapeutic development. In
this chapter, we will focus on vertebrate Hh sig-
naling in bone, covering the basic mechanisms of
signaling, roles in skeletal development and dis-
ease, and its emerging importance in adult bone
homeostasis. Special emphasis will be placed on
in vivo findings using mouse genetics, where both
gain-of-function andloss-of-function approaches
have been important in understanding the physi-
ological significance of this pathway.

F. Bronner et al. (eds.), Bone and Development, Topics in Bone Biology 6,
DOI 10.1007/978-1-84882-822-3_4, © Springer-Verlag London Limited 2010



66

Bone and Development

4.2 The Hedgehog Signaling
Pathway

All Hh proteins are first generated as ~45 kDa
proproteins that undergo extensive posttransla-
tional modification prior to secretion (Fig. 4.1a).
Hh proteins contain a catalytic C-terminal region
responsible for autoproteolytic cleavage to pro-
duce the N-terminal 19 kDa active form. During
proteolysis, a cholesterol moiety is attached to
the newly formed C-terminus of Hh proteins
[96]. Hh is further modified by skinny hedgehog,
an acyl-transferase, which adds a palmitate resi-
due to the N-terminus [11, 93]. These modifica-
tions result in a truncated, dually lipid-modified,
fully active Hh that is secreted from cells and
forms a gradient across several cell diameters,
allowing a graded response by the receiving cells.
The precise mechanisms by which these lipid
modifications regulate secretion and gradient
formation are not fully understood. Cholesterol
modification is associated with linking Hh to the
cell membrane and regulating its release from
cells, whereas palmitoylation is thought to allow
higher order Hh complexes to form, thus enabling
long-range signaling [11, 13, 18, 26, 97, 112].
Extensive investigation has revealed that Hh
requires specific proteins for secretion and pas-
sage through the extracellular space. Dispatched
(Disp), a 12-transmembrane-containing protein
with significant homology to Patched (Ptch)
(see below), is required for the release of lipid-
modified Hh [8, 68]. The movement of Hh
through the extracellular space is also regulated.
The glypicans Dally and Dally-like, as well as
enzymes known to be involved in heparan sul-
fate proteoglycan (HSPG) synthesis (Tout-Velu/
EXT-1), regulate Hh diffusion [5, 20, 95, 116].
Upon reaching the sensing cell, Hh binds to
Ptch, which, like Disp, contains 12 transmem-
brane domains (Fig. 4.1c). Hh binding to Ptch
relieves the inhibition of Smoothened (Smo) by
Ptch, which is a 7-transmembrane-containing
protein required for signaling [102, 110]. Hh
binding to Ptch is also modulated by a number
of coreceptors and regulators [including
Hedgehog interacting protein (HIP), megalin,
growth arrest specific-1 (GAS-1), and Thog/
CDO] that participate in cell surface binding of

Hhligands [16,58,63,75-77,81,118]. Apart from
acting as a receptor, Ptch also mediates endocy-
tosis and lysosomal degradation of Hh [39, 108].
The mechanism of Smo inhibition by Ptch
remains unknown, although it appears to be
catalytic in nature [102].

Once Smo is activated, it transmits the Hh sig-
nal through altered processing of Glioblastoma
(Gli) proteins (Fig. 4.1c) [66]. Glil, Gli2, and Gli3
are zinc finger transcription factors and mam-
malian homologs of the Drosophila cubitus
interruptus (Ci) protein [113]. Mammalian Glis
have both overlapping and distinct activities [3,
4,74, 113]. The processing and function of Gli3
most closely resembles that of Ci. In the absence
of Hh, Gli3 is processed to form a shortened
repressor form (Gli-R) that inhibits transcrip-
tion of Hh target genes (Fig. 4.1b). In the pres-
ence of Hh, Gli3 persists in a full-length activator
form (Gli-A) that accumulates in the nucleus and
activates the transcription of Hh target genes
(Fig.4.1c). Gli2, like Gli3, can become a repressor,
but is thought to exist in the pathway mostly as
an activator. Glil lacks the sites required for pro-
cessing and exists only in the activator form [3].
Glil itself is a Hh target, and induces and ampli-
fies the expression of Hh targets, but is not
strictly required for Hh signaling [91].

Hh signal transduction from Smo on the cell
surface to the activation of Ci/Gli proteins is
incompletely understood and some aspects are
not conserved from Drosophila to vertebrates
[111]. In the fly, Hh signaling inhibition requires
a kinesin-like protein Costal2(Cos2), which teth-
ers Ci and allows Ci, after phosphorylation by
several kinases, including protein kinase A and
casein kinase la, to generate the Ci repressor
form [43,67].In mammals, divergence at the level
of Smo, Cos2, and supressor of fused (Su(Fu))
have been documented; Cos2 and its homologs
are not genetically required for Gli processing
and Su(Fu) plays a critical role [77,111,112]. Also,
in vertebrates, primary cilia have emerged as cell
structures required for Hh signaling. Primary
cilia are microtubule-based organelles that pro-
trude from the basal body. Genetic ablation of
components important for the formation or
maintenance of the cilia leads to Hh signaling
deficiencies [4,37,38,59,61, 82].1In the absence of
Hh, Ptchl, Gli2, and Gli3 are present in primary
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Figure 4.1.  (a) Following translation, Hedgehog (Hh) undergoes a round of autoproteolysis and a cholesterol moiety is covalently added to the
C-terminus; subsequently, Hh is palmitoylated on the N-terminus. These lipid modifications are required for proper morphogen gradient formation.
Dispatched (Disp) is important for the release of lipid-modified Hh, so that heparan sulfate proteoglycans (HSPG) can bind Hh and affect its diffusion.
(b) In the absence of Hh, Patched 1 (Ptch1) is present in primary cilia. It excludes the presence of Smoothened (Smo) and suppresses its function. Gli3
is proteolytically cleaved to generate the repressor form (Gli3R) that translocates to the nucleus and suppresses the expression of Hh target genes. (c)
When present, Hh binds to Ptch1 and relieves Smo suppression. Ptch1 migrates away from and Smo migrates to the cilia. GIi3 is converted to a full-
length activator form (Gli3A) that translocates to the nucleus and activates the expression of Hh target genes. Numerous cofactors exist, which play
roles in multiple aspects of Hh secretion and signaling. A number of genetic syndromes are caused by mutations within this pathway (red boxes).
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cilia, but Smo is excluded [31]. As Hh binds to
Ptch1, Ptchl is removed from the cilia and Smo
becomes localized to the cilia. This process acti-
vates the Hh pathway [19, 37, 51].

4.3 Hhin Human Genetics/
Patterning

The importance of Hh signaling in human devel-
opment is underscored by the number of con-
genital malformation syndromes caused by
mutations at various pathway steps. The syn-
dromes overlaid in Fig. 4.1 illustrate the sites of
these mutations.

Mutations in Shh lead to holoprosencephaly
(HPE) [MIM 236100], a common developmental
defect that is characterized by the failure of the
prosencephalon (embryonic forebrain) to form
two distinct cerebral hemispheres. Craniofacial
defects also associated with HPE include cleft
palate, single maxillary incisor,and hypoterolism,
or, in the most extreme cases, cyclopia [100].

Brachydactyly type A-1 [MIM 112500] or acro-
capitofemoral dysplasia [MIM 607778] can be
caused by mutations in IHH. Brachydactylyl type
A-1 is an autosomal dominant, mild skeletal dys-
plasia confined mostly to shortened middle pha-
langes and decreased stature [28, 62, 123].
Acrocapitofemoral dysplasia is transmitted as an
autosomal recessive, characterized by cone-shaped
epiphyses in the hands and hips, and premature
epimetaphyseal fusion that result in early growth
arrest and shortened limbs and stature [32].

Smith-Lemli-Opitz syndrome (SLOS) [MIM
270400] is an autosomal recessive disorder caused
by mutations in the gene encoding 7-dehydroc-
holesterol reductase (DHCR?7), an enzyme that
catalyzes the conversion of 7-dehydrocholester-
olis to cholesterol [25, 107]. Decreased choles-
terol modification of Shh leading to altered Shh
secretion was initially thought to underlie these
defects, but more recent data suggest that the
defect may be the inability of the cells to respond
to Hh [18, 53]. Developmental abnormalities
associated with SLOS include microcephaly,
upturned nose, micrognathia, cleft palate, short
thumbs, reduced stature, syndactyly, and post-
axial polydactyly.

Multiple exostoses, types 1 and 2 [MIM
133700/133701], are autosomal-dominant disor-
ders characterized by bony protuberances called
exostoses or osteochondromas that arise in the
epiphyseal growth plates [21]. Mutations caus-
ing these disorders have been linked to EXT1
and EXT2, which encode glycosyltransferases
required for HSPG formation. These genes con-
strain the range of the Hh gradient. A hypomor-
phic allele of Extl in the reverse expands the
area of Hh signaling and delays chondrocyte
hypertrophy [54]. As mentioned earlier, muta-
tions of the Drosophila ortholog of Ext, Tout-
Veluy, also cause abnormal diffusion of Hh. In the
fly, however, loss of Tout-Velu function causes
decreased Hh diffusion [5].

Gorlin syndrome [MIM 109400], also known
as nevoid basal cell carcinoma syndrome, is due
to mutations in Ptch1. Gorlin syndrome is inher-
ited in an autosomal-dominant fashion and is
caused by haploinsufficiency of Ptch1,leading to
ectopic activation of the Hh pathway [29]. Apart
from developing numerous basal cell carcino-
mas, Gorlin syndrome patients present with
macrocephaly with frontal bossing, hypertelor-
ism, increased stature, calcification of the falces,
axial skeleton anomalies, cystic bone lesions,
and polydactyly [29].

Interestingly, mutations in GLI3 lead to three
overlapping, yet distinct, disorders: Greig cephalo-
polysyndactyly syndrome (GCPS) [MIM 175700]
[114],Pallister-Hallsyndrome (PHS) [MIM146510]
[45], and postaxial polydactyly type A (PAP-A)
[MIM 174200] [98]. GCPS is characterized by poly-
dactyly, syndactyly, and craniofacial abnormali-
ties, including macrocephaly and hypertelorism.
Translocations, deletions, and point mutations
causing loss of Gli3 function have been associ-
ated with GCPS and are thought to be due to
haploinsufficiency. Autosomal-dominant PHS is
caused by frameshift and nonsense mutations
thatlead to constitutive expression of the repres-
sor form of GLI3. Skeletal manifestations of PHS
include polydactyly,syndactyly,and an upturned
nose. PAP-A phenotypes are largely restricted to
postaxial polydactyly.

Rubinstein-Taybi syndrome (RTS) [MIM
600140] is an autosomal-dominant disorder
caused by haploinsufficiency of the CREB bind-
ing protein (CREBBP; P300; CBP), a coactivator
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of Gli3 [2, 94]. There are distinctive facial fea-
tures associated with RTS, such as hypoplastic
maxilla with narrow palate, prominent beaked
nose, large anterior fontanel, microcephaly, as
well as short stature, broad thumbs/first toes,
delayed ossification, axial skeleton abnormali-
ties, and to a lesser extent, syndactyly and poly-
dactyly.

Saethre-Chotzen syndrome (SCS) [MIM
101400], also known as acrocephalosyndactyly
type III, is an autosomal-dominant disorder
characterized by premature fusion of the cra-
nial structures, prominent beaked nose, broad
thumbs/first toes, hypertelorism, ossification
defects, brachydactyly, syndactyly, and decreased
stature. SCS is caused by mutations in the
TWIST1 gene that encodes a basic helix-loop-
helix transcription factor that antagonizes the
function of another basic helix-loop-helix tran-
scription factor, dHAND2 [24]. DHand2 regulates
limb patterning by controlling Shh expression
and inhibiting Gli3 expression in the posterior
limb [12,23, 104].

4.4 Hhin Skeletal Patterning
and Craniofacial Development

As craniofacial development is covered in Chap.
12, the contribution of Hh signaling to craniofa-
cial development will only be briefly described
in this chapter.

Shh plays a critical role in patterning the axial
skeleton. It is expressed in the notochord and
floorplate of the neural tube and specifies the
ventral-medial portion of somites to become
sclerotome [15]. This in turn gives rise to the
vertebrae and ribs. In Shh-null mice, the entire
vertebral column is absent and only a few ribs
are formed partially [15]. Shh is a potent mito-
gen in presomitic mesoderm (PSM) explants,
and, via Gli2 and Gli3, promotes the formation
of sclerotome [9, 15, 22]. Shh induces expression
of the transcription factors Sox9 and Nkx3.2.
This renders PSM sensitive to bone morpho-
genic proteins (BMPs) and allows differentiation
of chondrocytes and the axial skeleton develop-
ment [83, 84, 120].

As reflected by the many human syndromes
associated with altered digit formation/identity,
Shh is a major regulator of limb patterning, but
the mechanism by which Shh patterns limbs is
under active debate. The embryonic primordium
of the limb, the limb bud, is initiated as an out-
growth of the lateral plate mesoderm covered by
a sheath of ectoderm. Cells originating in the
somites also migrate into the limb, adding to
the mesenchyme already present and forming
the full complement of cells that participate
in limb development. Proper skeletal pattern-
ing requires the interaction of many precisely
orchestrated signaling pathways that form a set
of anatomical features along three axes: ventro-
dorsal, anterior-posterior (A-P), and proximo-
distal (P-D). Shh is expressed in the ZPA in the
posterior portion of the early limb and plays a
critical role in patterning these tissues along the
A-P axis. Shh also has an indirect role in P-D
outgrowth and patterning (Fig. 4.2). In particu-
lar, Shh regulates the digit number and identity
[106].If a piece of tissue from the ZPA or if beads
soaked in Shh are transplanted to the anterior
limb bud, digits are duplicated as a mirror image
of the original set of the digits [99, 106]. The
limbs of Shh-null mice contain only the most
anterior digit; this demonstrates an essential
role in A-P axis formation [14]. Similarly, when
limbs are treated with cyclopamine (an Hh
antagonist) after gradient formation, only the
most anterior digit forms properly. Lack of the
repressor and activator forms of Gli3 protein or
removal of both Gli3 and Shh results in unpat-
terned supernumerary digits. This indicates that
Shh regulates the digit number and identity by
controlling the balance of Gli3 repressor and
activator forms [60, 105].

Early models of limb patterning suggested
that ZPA-derived Shh regulates digit formation
in a concentration- and time-dependent man-
ner, with higher or longer doses of Shh specify-
ing the formation of more posterior digits in a
dose-dependent manner [117]. Indeed, cells
derived from the ZPA contribute significantly to
the posterior digits [30]. Current evidence sug-
gests a model in which the anterior-most digit 1
(the “thumb”) is formed independently of Shh.
Digits 2 and 3 form with only low Shh activity;
the most posterior digits 4 and 5 are formed
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Figure4.2. The function of sonic hedgehog in limb patterning. In situ hybridization experiments reveal that sonic hedgehog (Shh) is expressed in

the zone of polarizing activity (ZPA) in the limb bud of a mouse embryo at 10.5 dpc (left image, courtesy of Derek Gildea). Shh plays a direct role in regu-
lating limb patterning along the anterior—posterior (A—P) axis and an indirect role in regulating growth along the proximal—distal (P—D) axis (right).
Shh positively requlates the expression of Gremlin1 that, through inhibition of BMP signaling, permits the expression of fibroblast growth factor (FGF)
4/8inthe apical ectodermal ridge (AER).FGFs, in turn, promote continued expression of Shh from the ZPA, thus forming a positive feedback loop critical

to regulate limb patterning and growth.

from cells that witness the highest levels of Shh
[30]. Decreases in the amount of Shh produced
in the ZPA also have an effect on the posterior
digits; this highlights the importance of a spatio-
temporal gradient of Hh in limb patterning.
Recent work suggests that current models are
incomplete and previous data should be reinter-
preted. Shh, in addition to specifying digits, also
expands the digit progenitor cells. It therefore
has a critical role in integrating growth and pat-
terning [109, 124]. In the chick developing limb,
ectopic Shh induces N-myc and CyclinD2 expres-
sion, and cyclopamine treatment reduces the
number of mesenchymal cells in S-phase; Shh
therefore also controls proliferation [109]. In
contrast to the loss of posterior digits that is
associated with the disruption of Shh signaling,
inhibition of proliferation onlyleads to a decrease
in the anterior digits, with digit progenitor cells
forming posterior structures. Interestingly, when
cell division recovers, Shh expression from the
ZPA is maintained for longer duration. This sug-
gests that the proliferative state of limb mesen-
chyme may feed back to the ZPA to maintain Shh
expression [109]. Removal of a floxed allele of
Shh from the mouse limb bud at various stages
of development with the aid of an inducible Cre

system [124] leads to the progressive loss of dig-
its and a reduced mitotic index, as it does in the
chick. If the role of Shh is to specify the posterior
digits, then later removal of Shh should lead to a
gradual loss of digits, with the direction from the
posterior toward the anterior end. Instead of the
predicted sequential order of digit loss (5-4-3-2),
Zhu et al. [124] witnessed an alternating pattern
of 3-5-2-4. The first digit lost on removal of Shh
was digit 3 (the middle digit), not digit 5 (the
“pinkie”), as had been predicted. Digit forma-
tion followed the order of 4-2-5-3. Therefore, it is
the last digit to form that is the first digit to be
lost when Hh signaling is reduced. Digit location
alone may not be sufficient to define digit iden-
tity, but these findings are further evidence that
our understanding of Shh in patterning the limb
is far from complete.

Apart from regulating A-P axis formation
and patterning, Shh also affects P-D limb out-
growth. Shh plays an indirect role in maintain-
ing the apical ectodermal ridge (AER), a key
regulator of P-D limb growth and patterning.
Shh induces the expression of Gremlinl that
blocks the BMP signaling and maintains the
integrity of the AER [10, 48, 57]. FGFs expressed
in the AER, in turn, control the proliferation of
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limb bud mesenchymal cells along the P-D axis
and also feed back to the ZPA to maintain Shh
expression [87, 88].

Shh also is expressed in the ectoderm of the
frontonasal prominence, where it regulates the
craniofacial patterning and development [33, 35].
Neural crest cells (NCCs), a population of multi-
potent progenitor cells, arise from the border
between the neural and nonneural ectoderm
early in development [27]. A subset of NCCs
migrates to the frontonasal prominence and first
pharyngeal arch to give rise to the craniofacial
skeletal structures. In mice null for Shh, facial
features are unidentifiable and most craniofa-
cial bones are absent [15]. Blocking Shh func-
tion in the head region of the developing chick
leads to an increase in NCC apoptosis and a loss
of some cranial structures [1,34].In the mouse,
removal of Smo from NCCs similarly leads
to decreased proliferation, increased apoptosis,
and a dramatic loss of most of the NCC-derived
craniofacial structures, though the NCCs them-
selves appear to form correctly [42]. Thus, Shh is
neither essential in specifying NCCs, nor in driv-
ing migration, but is required for the correct
proliferation and differentiation of NCCs within
the craniofacial region.

4.5 lhhin Endochondral Bone
Formation

As discussed in Chap. 2, bone formation during
embryonic development occurs by two pro-
cesses: intramembranous ossification and endo-
chondral ossification. During intramembranous
ossification, mesenchymal progenitor cells dif-
ferentiate into osteoblasts that secrete bone
matrix without forming cartilage first. This is
the process through which mandibles and flat
bones of the skull develop. Endochondral ossifi-
cation, on the other hand, occurs in most other
parts of the body. During endochondral ossifica-
tion, mesenchymal progenitor cells differentiate
into chondrocytes to form a cartilage mold of
the future bone. In the developing cartilage,
chondrocytes sequentially go through a tightly
controlled program of proliferation and differ-
entiation, and eventually exit the cell cycle and

become hypertrophic. Osteoblasts and blood
vessels subsequently invade the hypertrophic
cartilaginous region and replace it with trabecu-
lar bone.

Shh has emerged as a master regulator of early
embryonic pattern formation and craniofacial
morphogenesis, but Thh is the key regulator of
endochondral bone growth and ossification. As
mesenchymal cells condense to initiate chondro-
cyte differentiation during endochondral bone
formation, Ihh is first expressed in the newly dif-
ferentiated chondrocytes [6, 40, 115]. Later, in
the formed cartilage, Ihh expression becomes
restricted to postmitotic prehypertrophic and
early hypertrophic chondrocytes, in which the
parathyroid hormone/parathyroid hormone-
related peptidereceptor 1 (Pthrl)isalso expressed
at high levels. The critical role played by Ihh in
regulating the balance of chondrocyte prolifera-
tion and hypertrophy via parathyroid hormone-
related peptide (PTHrP) expression was first
reported by Vortkamp et al. [115]. In chick
embryos, ectopic expression of Ihh in the
developing long bone cartilage led to upregu-
lated Pthrp expression and a severe delay in the
progression from proliferating chondrocytes
to hypertrophic chondrocytes. The phenotype
resulting from this process was the opposite
to the accelerated chondrocyte hypertrophy
observed in mice lacking PTHrP or Pthrl; this
indicates that PTHrP and Ihh form a negative
regulatory feedback loop [46, 56]. The mecha-
nism by which Ihh expressed in the prehypertro-
phic chondrocytes regulates Pthrp expression in
the periarticular joint region is still not known. It
is noteworthy that hypomorphic mutations in a
heparan sulfate producing glycosyltransferase,
exostosin 1 (EXT1), lead to expanded regions of
Thh signaling and delayed chondrocyte hypertro-
phy. This may mean that Thh regulates PTHrP
directly [54]. The Ihh/PTHrP loop then acts as a
sensor within the growth plate to regulate the
pace of chondrocyte hypertrophy (Fig. 4.3). As
chondrocytes leave the PTHrP signaling domain
and undergo hypertrophy, it is the newly differenti-
ated, postmitotic, prehypertrophic chondrocytes
that produce Thh. Enhanced chondrocyte hyper-
trophy therefore will lead to more Ihh produc-
tion which, acting as a negative feedback signal,
will slow down further chondrocyte hypertrophy
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by keeping chondrocytes in the proliferating
state. In turn, this is the result of upregulating
PTHrP expression in the periarticular region.
This negative feedback loop is critical for the bal-
ance between growth and ossification.

Studies with Ihh-null mice have comple-
mented the overexpression studies described
earlier and have significantly enhanced our
understanding of the role played by Ihh in skel-
etal development. Skeletal elements that lack Thh
regulation are in the correct position, but are
dramatically reduced in size. They are even
smaller than PTHrP or Pthrl-null mice [46, 56,
101]. The dramatic reduction in size of the pro-
liferating zone and the acceleration of chondro-
cyte hypertrophy owing to loss of PTHrP
expression, along with the action of Ptchl in
proliferating chondrocytes, suggests that Ihh
also regulates chondrocyte proliferation directly,
independently of PTHrP.

When both Ihh and PTHrP are removed from
mouse embryos, the double mutant mice are
identical with Ihh null mice, but are more
affected than PTHrP-null mice. PTHrP may
therefore mediate a subset of Ihh activity [47].
Interestingly, a ligand-independent, constitu-
tively activated form of (Pthrl*) is capable of
rescuing the PTHrP~~ phenotype. This has pro-
vided an opportunity to explore the PTHrP-
independent functions of IThh. When the Pthr1*
mice are bred into the Ihh™~ background, it
results in Thh™~;Pthr1* mouse embryos that have
shortened long bones, similar to those in the
Thh™ mice [47]. These findings can be inter-
preted as indicating that PTHrP signaling pre-
vents premature chondrocyte hypertrophy in
the absence of Thh signaling, but that chondro-
cyte proliferation is also regulated by Thh signal-
ing, independently of PTHrP.

The direct effects of Thh signaling on chon-
drocyte proliferation have been further explored
by conditional removal of Smo from mouse
chondrocytes in vivo (Smo®*") [65]. Smothn
mice have normal onset of chondrocyte
hypertrophy, normal expression of markers of
chondrocyte hypertrophy, reduced PTHrP
expression in chondrocytes, but increased peri-
articular PTHrP expression. Thus, in contrast to
Ihh-null mice, loss of Hh signaling only in the
chondrocytes does not seem to interfere with

the progression of chondrocyte hypertrophy.
Smo®°" limbs are shorter, however, and showed
decreased chondrocyte proliferation, similar to
that seen in Ihh-null mice. Conversely, ectopic
expression of either Ihh or a constitutively active
form of Smo in chondrocytes leads to increased
proliferation.

One of the most striking features of Ihh-null
mice is their lack of osteoblast differentiation
and bone formation [101]. IThh signaling inhibits
the generation of the Gli3 repressor form. In
Gli375Ihh™ embryos, many of the PTHrP-
dependent and -independent chondrocyte phe-
notypes that are absent in IThh™~ embryos are
present again. However, endochondral bone still
fails to form in Gli3”Ihh~~ mice [55]. Ihh is
required for osteoblast differentiation by induc-
ing expression of Runx2, a transcription factor
required to establish the osteoblast lineage [64].
The expressions of Ptchl and Glil, the transcrip-
tional targets of Thh signaling, are particularly
robust in perichondral regions. This indicates
that perichondral cells are a major target of Thh
signaling [64]. Upregulated Hh signaling
increases osteoblastic marker expression and
induces ectopic bone [50, 85]. However, when Hh
signaling is lost by removing Smo from per-
ichondral cells, bone collar formation is com-
pletely abolished, as is the development of
primary spongiosa [102]. This demonstrates
that Hh signaling is needed to enable the mesen-
chymal progenitor cells to differentiate into the
osteoblast lineage. Gli3 mediates the effect of
Ihh in cartilage development largely by sup-
pressing Gli3 in repressor form, so that the Gli3
in activator form can bring about osteoblast dif-
ferentiation. As the levels of Hh that are needed
to block Gli3R processing are lower than those
required to stimulate Gli3A [44],1ow levels of Hh
signaling can maintain normal cartilage devel-
opment, but higher levels are needed for osteo-
blast differentiation.

The requirement for Thh does not appear to
be absolute, inasmuch as osteoblasts still form
in the intramembranous bones of the skull of
Thh~- mice, and limbs of Thh™- can still form
bone when transplanted to the renal capsule
[17,101]. Conceivably, Hh signaling activity may
still be present in the Thh™~ skull and Thh~~ limb.
How Hh signaling drives osteoblast formation
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Growth plate structure and regulation by Indian hedgehog. /hh is expressed by postmitotic prehypertrophic and early hypertrophic

chondrocytes and requlates multiple aspects of endochondral ossification. lhh controls proliferation of chondrocytes in the resting/proliferating zones.
Ihh also signals to the periarticular region and positively regulates PTHrP expression. PTHrP subsequently feeds back to the prehypertrophic zone,
inhibiting chondrocyte hypertrophy.This forms an Ihh/PTHrP negative feedback loop that acts as a sensor within the growth plate to regulate the pace
of chondrocyte hypertrophy. lhh also signals to the perichondrium and newly formed bone to promote osteoblast differentiation.

remains to be determined, but interactions
with Wnt and BMP pathways may be important
[36, 64, 119]. Through a poorly defined mecha-
nism, Ihh also controls vascular invasion and
maintenance in long bones. Loss of Thh causes
abnormal blood vessel positioning surround-
ing the hypertrophic cartilage and delayed
angiogenesis. Subsequently, these blood vessels
regress and disappear and do not support per-
sistence or expansion of the ossification cen-
ters [17].

Many signaling pathways, such as FGE, BMP,
and canonical Wnt signaling, function upstream
or downstream of Hh signaling. The relation-
ships between these pathways are cell context-
dependent. For instance, canonical Wnt and Hh

signaling interact distinctly to control osteo-
blast differentiation, chondrocyte proliferation,
hypertrophy, survival, and synovial joint forma-
tion in the developing endochondral bone [110].
From [-catenin loss-of-function and Hh gain-
of-function double-mutants studies, canonical
Wnt signaling is known to be required for osteo-
blast differentiation downstream of Hh signal-
ing. However, in chondrocyte survival, canonical
Wnt signaling is required upstream of Hh sig-
naling to inhibit chondrocyte apoptosis. Yet, Hh
signaling also inhibits chondrocyte hypertrophy
and synovial joint formation independently of
canonical Wnt signaling. FGF signaling is
required upstream of Hh signaling to regulate
the onset of chondrocyte hypertrophy, but acts
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independently of Hh signaling in regulating ter-
minal chondrocyte hypertrophy and prolifera-
tion [79]. BMP and Ihh signals act in parallel to
induce chondrocyte proliferation [80], but BMP
may mediate Hh signaling activity in regulating
synovial joint development [72]. Thus, the inter-
action of these pathways involves complicated
networks with multiple levels of crosstalk that
are essential for proliferation and differentiation
of chondrocytes and osteoblasts.

Thh also plays a role in maintaining the post-
natal growth plate. Loss of Thh signaling activity
later in life through either pharmacologic block-
ade or genetic removal leads to premature loss of
the growth plate and short stature. Administering
asmall molecule hedgehogantagonist (HhAntag)
to 10-day-old mice causes a rapid and perma-
nent disruption of the growth plate within 2 days,
leading to a decrease in chondrocyte prolifera-
tion, inducing premature hypertrophy and dis-
rupting long bone development so that the limbs
are markedly shortened [49]. Maeda et al. [70],
using the genetic cre/lox system, removed Thh
from chondrocytes in neonates. This leads to
reduced Pthrp expression, premature chondro-
cyte hypertrophy, and abnormal mineralization
of the growth plate and joints [70].

Within a week of tamoxifen treatment, the
growth plate disappears and limbs shorten.
However, autonomous downregulation of Hh
signaling in postnatal chondrocytes using the
same tamoxifen-inducible Cre line and a floxed
allele of Smo leads to delayed hypertrophy and
reduced mineralization [73]. The discrepancies
between these two studies can be explained by
the difference in PTHrP expression levels. In the
postnatal cartilage, PTHrP expression is pro-
gressively weaker when compared with that in
the embryonic cartilage. In addition, only peri-
articular cells and the upper layer of articular
chondrocytes are competent to express low lev-
els of PTHrP. Thus, loss of Thh leads to reduced
PTHrP expression in both periarticular cells and
the upper layer of articular chondrocytes and
subsequent premature chondrocyte hypertro-
phy. In contrast, cell autonomous reduction of
Hh signaling takes place only in the cartilage,
including the chondrocytes deep in the joint
cartilage and the growth plates, and will not
downregulate PTHrP expression in periarticular

cells. It is therefore apparent that in this case, the
role of Ihh in promoting chondrocyte hypertro-
phy independently of PTHrP dominates over its
PTHrP-dependent role. As a result, chondrocyte
hypertrophy is delayed.

As is the case for the Thh™~ mouse pheno-
type [101], loss of chondrocyte-derived Ihh in
neonates leads to reduced osteoblast differen-
tiation and function, including a loss of trabe-
culation and reduced bone mineral density in
the metaphyseal region [70]. Similarly, inhibi-
tion of Hh signaling with HhAntag diminishes
osteoblast proliferation and function, and
causes bone formation to be reduced [49].
Ohba et al. [90] administered the Smo antago-
nist cyclopamine to 8-week-old mice for 1
month and witnessed a mild decrease in bone
mineral density, with reduced trabeculation,
decreased bone deposition, and fewer osteo-
blasts. Surprisingly, sustained upregulation of
Hh signaling in osteoblasts leads to severe
osteopenia. This suggests that bone formation
and bone resorption are both subject to regu-
lation by the Hh signaling pathway.

4.6 HhinJoint Formation

Hh signaling also plays a key role in synovial
joint and articular cartilage formation. Both an
increase and decrease in Hh activation lead to
abnormal joint formation. A striking feature of
the Thh null mice is the failure to segment and
form joints, with multiple joints remaining par-
tially fused [101]. In the distal chick wing, ret-
roviral-induced misexpression of either Shh or
Thh leads to a loss of interphalangeal joints and
misexpression of gdf-5, a BMP family member
[78]. Similarly, ectopic activation of the Hh
pathway in mouse chondrocytes leads to joint
cartilage fusions. Overexpression of either Thh
or Shh under the control of the Col2al-promoter
leads to misformed, fused, or missing joints of
the elbow and phalanges [52, 80, 103]. Cell
autonomous upregulation of the Hh pathway in
cartilage by selectively removing Ptch1 in chon-
drocytes also leads to joint fusions and miner-
alization within the joints [72]. Consistent with
the report by Minina et al. [80], BMPs are
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upregulated in the joint region when Ptchl is
removed. As BMP signaling inhibits synovial
joint formation, it is likely that BMPs, in regu-
lating this process, mediate the activity of Hh
signaling.

Removal of either Ptchl or Smo alters joint
cartilage maintenance in postnatal cartilage
[73]. Inasmuch as PTHrP expression levels in
the joint cartilage and in periarticular cells of
mutants are dramatically reduced in the postna-
tal cartilage, it is apparent that Hh signaling
promotes chondrocyte hypertrophy around the
second ossification center, whereas reduced Hh
signaling decreases chondrocyte hypertrophy
in this region. These findings indicate that
Hh signaling is critical for postnatal cartilage
homeostasis and that unduly high levels of
Hh signaling may constitute a risk factor for
osteoarthritis.

4.7 Hhin Skeletal Homeostasis

The effects of activating Hh signaling on adult
bone homeostasis have recently been explored
[71, 90]. Because Ptchl suppresses Smo func-
tion, its removal leads to ligand-independent
activation of Hh signaling [72]. Genetic gain-
and loss-of-function experiments in postnatal
bone, by conditionally removing Ptchl or Smo
alleles from mature osteoblasts, have uncovered
novel roles of Hh signaling in bone homeostasis
[71, 121]. Removing Ptchl from mature osteo-
blasts (referred to hereafter as Ptch1°") in mice
results in skeletal features reminiscent of Gorlin
syndrome, including frontal bossing, large cal-
varia, and hypertelorism. In these mice, cortical
and trabecular bone mass decreased dramati-
cally, yet osteoblast differentiation increased.
Ohba et al. [90] studied mice that were globally
heterozygous for Ptchl (referred to hereafter as
Ptch1*~),and observed an increase in bone mass,
along with an increase in osteoblasts differentia-
tion. In vivo, both of the mutant-strains exhib-
ited an increase in the number of osteoblasts and
accelerated bone deposition. The major differ-
ence between these two mutants lies in osteoclast
differentiation. The long bones of Ptchl*~ mice
contained ~50% more osteoclasts than controls,

whereas those of Ptch1™® mice exhibited a
3+-fold increase. In both the mutants, loss of
Ptchl in osteoblasts increased the expression of
receptor activator of NF-B (Rankl) and induced
osteoclastogenesis [71, 90]. However, osteoblasts
from PtchI*~ mice induced only a doubling of
osteoclast formation, whereas those from
Ptch1%* mice induced an eightfold increase.
Bone turnover in both the strains increased, but
because of the much greater increase in bone
resorption in the Ptch1"° mice, they developed
osteopenia.

Blocking Hh signaling in mice using a floxed
allele of Smo (referred to hereafter as Smo™°?)
showed a complimentary phenotype. Smo°
mice have reduced PTHrP and Rankl expres-
sion and fewer osteoclasts. Very interestingly,
1-year-old, but not 3-month-old Smo"°* mice
exhibit increased trabecular bone mass and
cortical thickness [71]. Additional experiments
[71] have made it evident that Hh signaling
controls PTHrP expression in osteoblasts, as it
does in cartilage development. PTHrP signal-
ing in osteoblasts mediates Hh signaling that
promotes Rankl expression. It does so by acti-
vating protein kinase A (PKA) and its target
transcription factor, the cAMP responsive ele-
ment-binding protein (CREB). This is consis-
tent with the earlier finding that sustained PTH
infusion leads to increased bone resorption
[69]. Thus, Hh signaling controls bone homeo-
stasis by regulating the temporal and spatial
expression of PTHrP. Hh signaling decreases
progressively as the osteoblasts mature and
move further away from the growth plates.
With this progressive loss of Hh signaling
activity, PTHrP expression is gradually reduced
in maturing osteoblasts, and as a result, the
ability of osteoblasts to induce osteoclast dif-
ferentiation is reduced. Therefore, for normal
bone maintenance and remodeling, Hh signal-
ing must be kept low in mature osteoblasts to
ensure low PTHrP expression and to prevent
excessive osteoclast formation. In contrast to
its role in embryonic endochondral bone for-
mation, Hh signaling plays an opposite role
in postnatal bone formation and resorption.
Therefore, careful manipulation of the enhanc-
ing and inhibiting roles of Hh signaling may be
beneficial for osteoporosis treatment.
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Role of microRNA in Skeleton Development

Ben Gradus and Eran Hornstein

5.1 What Are miRNAs?

5.1.1 miRNA Genes and Their Genomic
Organization

miRNAs are single-stranded RNAs of ~22 nucle-
otides that repress protein expression at a
posttranscriptional level through base pairing,
usually with the 3’ untranslated region (3’ UTR)
of the target mRNA [1, 5, 75]. Since the discov-
ery of the founding members of the miRNA
family, lin-4 and let-7 [37, 64, 81], hundreds
of miRNA genes have been identified. Many of
these are independent transcriptional units
that do not differ much from other protein-
coding genes in recruiting transcription factors
and RNA polymerase II for their transcription.
miRNA genes may have promoter-enhancing
regulatory sequences upstream - however, about
half of miRNA genes are embedded within the
introns of protein-coding genes. This omits the
need for independent transcriptional regulatory
elements and results in coupled transcriptional
control, i.e., where the miRNA is coexpressed
with the gene that codes for the protein.
Posttranscriptional processing of miRNA pre-
cursors is then conducted in concert with the
splicing of the mRNA that codes for the given
protein.

81

5.1.2 Posttranscriptional Processing
of miRNAs

miRNAs are subject to extensive posttranscrip-
tional processing, essential for their functional
maturation. Inside the nucleus, “microprocess-
ing” refers to the cleavage of a primary miRNA
precursor (pri-miRNA), which initially may be
dozens of kilobases long. The resulting RNA
stem-and-loop structure is about 70 nucleotides
long and is known as the “pre-miRNA” hairpin.
Often, a pri-miRNA is in fact a polycistron
genetic element that harbors a few miRNA
hairpins. The microprocessor is a multiprotein
complex that contains the RNaselll-containing
protein Drosha, with cofactors such as DGCR8
and p68. The microprocessor is a prerequisite
for the biosynthesis of most miRNAs [3, 8, 25,
67]. After microprocessing, the pre-miRNA hair-
pin is exported from the nucleus by Exportin-5
[47, 86] and is subject to further cleavage by the
RNasellI-containing protein Dicer [31, 38]. This
yields a mature miRNA, which is a ~22nt single-
stranded RNA oligonucleotide. The mature
miRNA is then loaded onto the RNA-induced
silencing complex (RISC), which endows it with
repressive capacity. As perturbation of the single
Dicer gene in the vertebrate genome inactivates
the miRNA function, this approach often is used
as an experimental loss-of-function strategy to
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uncover the role of the miRNA pathway [15, 23,
27,32,33,83].

5.1.3 miRNA Regulation
of the Target Genes

The mature miRNA inside the RISC provides
target specificity, whereas the Argonaute pro-
teins provide catalytic activity [49, 59]. Argonaute
proteins deadenylate and decap the mRNAs
that are undergoing miRNA-dependent destabi-
lization [7, 53], whereas other mechanisms pro-
vide translational repression [13, 14]. Together,
RISC-dependent translational repression and
RISC-dependent mRNA decay constitute the two
dominant mechanisms by which miRNAs mod-
ulate gene expression [4, 44, 68, 82].

How do miRNAs confer target specificity? The
discovery of the first miRNA, lin-4, established
the principle of partial sequence complementa-
tion [37, 81]. Later, comparative genomic tools
characterized the general rules for target recog-
nition [9, 19, 34,40, 41]. These studies uncovered
the importance of a minimal “seed” sequence
that is only 7-8 nucleotides long, located at the
5’ end of the miRNA. Some miRNA-target pairs
do not follow these rules, exhibiting virtually
perfect complementarity of the miRNA:target
pair [28, 84, 85] or seedless 3’-compensatory
sites. In the latter, insufficient 5’ pairing is com-
pensated for by strong pairing to the miRNA 3’
region [9, 26].

5.1.4 miRNAs as Regulators
of Development

The function of the first miRNA, discovered by
Ambros et al. [37], was to regulate the cell-fate
decisions in the development of the nematode,
Caenorhabditis elegans. Since then, a large
body of work has indicated that miRNAs
play a role in the development and regula-
tion of many embryological processes [10, 11, 80].
These inferences have derived support from the
striking spatial expression patterns observed
for many miRNAs in the embryos of multiple
species [17, 74, 79] and from the bioinformatic
studies that showed that developmental genes

are significantly enriched with miRNA-binding
sites at their 3’ UTR [40, 62, 70, 88].

5.2 Introduction to Bone
Development and Mesenchymal
Stem Cells

The developmental process that initiates bone
organogenesis (reviewed in [35] and the pre-
ceding volumes of this book series) starts
when mesenchymal cells respond to specific
cues to form condensations. These mesenchy-
mal condensations in turn give rise to bone
through direct (intramembranous) osteoblast
differentiation, similar to that for the flat bones
of the skull. In bones derived through the
endochondral ossification pathway, mesenchy-
mal condensations give rise to chondrocytes
that subsequently produce cartilage by the
secretion of a defined extracellular matrix. The
cartilage shapes the mold for endochondral
bone and is later replaced by osteoblasts in a
highly regulated process, as described in Chap.
2. Chondrocytes proliferate and further differ-
entiate into a hypertrophic stage, whereby they
direct the mineralization of their surrounding
matrix, attract blood vessels, and induce osteo-
blast differentiation. These osteoblasts invade
the cartilage, replace the chondrocytes in an
organized fashion, and secrete bone matrix or
osteoid.

Mesenchymal stem cells (MSCs) are multipo-
tent cells that arise from the mesenchyme dur-
ing development. In vitro, they can proliferate
and differentiate into several cell types, such as
osteoblasts, myocytes, adipocytes, or chondro-
cytes. Signaling pathways that regulate skeletal
tissue formation, in vivo and in cultured MSCs,
include Hedgehog, Wnt, fibroblast growth fac-
tors (FGF), and bone morphogenetic proteins
(BMP) signaling. Specific pathways are acti-
vated by a secreted ligand and induce an intra-
cellular cascade. These signals activate a specific
transcriptional program, in which miRNAs
also are embedded. This chapter will discuss
miRNA involvement in bone development on
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the basis of mouse and zebrafish experiments
and in vitro studies of MSCs.

5.3 Mouse Models

of Dicer-Dependent Inactivation
of miRNA Activity in the early
Limb Mesenchyme

and the Growth Plate

Conditional loss of Dicer function provides a
good, entry-level model to evaluate the role of
the miRNA pathway in vivo. The Tabin and
Kronenberg groups were able to show that miR-
NAs are involved in limb development, using a
set of Cre deletions and a Dicer conditional
allele [27,33]. The role of miRNAs, downstream
of the Dicer, was evaluated using early onset
prx1-Cre, expressed throughout the limb mes-
enchyme. Loss of Dicer activity results in mas-
sive cell death; this suggests that miRNA activity
is important in repressing unwanted apoptosis
in early limb mesenchyme, possibly through
regulation of FGF signaling [27]. Loss of Dicer
expression also blocks the synthesis of miR-196
in the hind limb, needed upstream of Hoxb8
expression [28]. The apoptosis observed in the
prx1-Cre; Dicer model is consistent with the
reports that indicate that a Dicer model
is involved in other organs, in the sense that
apoptosis emerges as a common consequence
of inactivation of master regulators of miRNA
synthesis. However, the early limb-bud model is
significantly different from the later effect of
Dicer in differentiated chondrocytes, where
loss of miRNA activity owing to a Dicer condi-
tional allele recombining with a Col2al-Cre
deletion does not induce apoptosis. A likely
interpretation is therefore that miRNAs are no
longer essential for chondrocyte survival after
differentiation has occurred. Nonetheless, the
loss of miRNA function in growth-plate chon-
drocytes causes decreased proliferation and
enhanced differentiation into hypertrophy [33].
The combination of precocious maturation and
decreased proliferation results in a smaller
chondrocyte pool, a reduction in the number of

columnar proliferating chondrocytes, and a
reduction in bone width. Altogether, these
changes subsequently lead to a smaller skeleton
[33], but the molecular mechanism by which
miRNA affects chondrocyte proliferation and
differentiation is not well understood. To study
if stimulation of hypertrophy in the Dicer
model perturbsThh/PTHrP signaling,Kobayashi
et al. [33] evaluated Hh signaling through the
detection of Patchedl mRNA levels, a readout
of Hh activity. If patchedl expression is not
affected, then accelerated hypertrophic differ-
entiation is probably downstream of Hh signal-
ing or resides in an independent pathway. The
authors, therefore, crossed a constitutively active
PTHTrP receptor allele onto the background of
the Col2al-Cre; Dicer mice. As this allele also
failed to rescue the Dicer phenotype, it was con-
cluded that the involvement of miRNAs resides
outside of the Ihh/PTHrP signaling pathway [33].
Consequently, the Prx1-Cre; Dicer and Col2al-
Cre; Dicer models are still without a mechanis-
tic explanation for the observed phenotype.
Two pathways, FGF and BMP, regulate chondro-
cyte proliferation and differentiation at the
growth plate, and thus may be important for a
better understanding of the Dicer phenotype.
In addition, deregulation of miRNA function
affects BMP and FGF signaling, as discussed
later in this chapter.

5.4 Evaluation of miRNA
Function in the Signaling
Pathway that leads to Bone
development

5.4.1 miRNAs in Hh Signaling

Hedgehog signaling through the function
of the morphogen Sonic Hedgehog (Shh) is
pivotal in early limb development, and in
regulating bone development through Indian
Hedgehog (Ihh).In the earlylimb bud, upstream
of the activation of Shh, miR-196 is a hind limb-
specific repressor of the Shh inducer, Hoxb8.
This provides the hind limb with a safeguard
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mechanism to inhibit unwanted Hoxb8 expres-
sion [28,71].

Another miRNA, miR-214, may be involved in
hedgehog signaling during muscle development
in zebra fish [22, 42]. When miR-214 is knocked
down, fish embryos exhibit “U-shaped” somites
and a ventrally curved body axis. This defect is
typically associated with perturbation of Hh sig-
naling in cell-type specification of somite mus-
culature. These experiments uncovered that
suppressor of fused (Sufu) and dispatched-2
(Disp2) are targets of miR-214 [22, 42]. The Sufu
and Disp2 3" UTRs are regulated in vivo by mis-
expression of miR-214; in turn, the miR-214
knockdown phenotype can be rescued by simul-
taneous repression of Sufu or Disp2 [22, 42].
Modulating the activity of Sufu and Disp2 by
miR-214 may therefore provide a means to fine-
tune cell response to Hh signaling. However,
these observations should be substantiated by
genetic studies in a mouse model before the rel-
evance of miR-214 as a component of Hh signal-
ing in zebra fish is extrapolated to mammals. The
need for further evaluation is underscored by the
initial characterization of the mouse knockout of

Hedgehog
signaling

the miR-214 gene, that does not seem to lead to a
simple hedgehog signaling phenocopy [78].

5.4.2 miR-214 Functions
in Hh and Twist Signaling

miR-214 is intriguing not only because of its
possible role as a regulator of Hh signaling, but
also because it is regulated by Twist, a transcrip-
tion factor involved in osteoblast differentiation
[58]. Twist haploinsufficiency causes Saethre-
Chotzen syndrome, a disorder characterized by
craniosynostosis, facial dysmorphism, and pre-
axial polydactyly [30] (see Chap. 1 in this vol-
ume). However, how Twist regulates bone
development is not understood. Twist is engaged
in Hh signaling through regulation of Gli tran-
scription factors [57, 77], and therefore, may
regulate Hh signaling in more than one way
(Fig.5.1). Interestingly,a 7.9-kb noncoding tran-
script, contained within an intron of the mouse
Dynamin3 (Dnm3) gene, was recently discov-
ered downstream of Twist [39, 46, 78]. This non-
coding gene, Dnm3os, is the primary precursor
(pri-miRNA) of miR-214 and of another miRNA,

Figure 5.1.

\ 4 miR-199a2/miR-214

-y ! j precursor

¥
miR-214

miRNA are intertwined through the Twist and Hh signaling pathways during bone development. Twist controls Hh signaling directly

through the regulation of Gli-family protein expression [57, 77]. Twist may also be affecting Hh signaling in a miRNA-dependent fashion, because it
activates the transcription of the miR-199a2/miR-214 precursor (purple and green, respectively) [39, 78]. Processing of this miRNA precursor pair
results in the formation of a mature miR-214 form (green), which represses the expression of Sufu and Disp2 mRNA (dashed boxes), at least in some
contexts [22,42]. Downregulation of Sufu allows for Gli activation, because Sufu is a posttranslational repressor of Gli expression.
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miR-199a2 (Fig.5.1). This indicates that the tran-
scription of these miRNAs is regulated by the
transcription factor Twist [39, 78]. Dnm3os
knockout mice are viable, but exhibit skeletal
abnormalities, including craniofacial hypopla-
sia, defects in dorsal neural arches, and mal-
formation of the vertebral spinous processes.
Together, these observations suggest that one or
both miRNAs embedded inside the Dnm3os
precursor are involved in bone development. If
miR-214 is indeed a Hh component, its knock-
out should be phenocopying recognized Hh
mutants. At present, however, it is difficult to
know whether the relatively subtle bone defects
in the miR-214/mir-199a2 knockout mouse
reflect attenuation of Hh signaling [78]. As two
miRNA genes have been deleted, it is a challenge
to determine which part of the phenotype is
downstream of miR-214, and what is the conse-
quence of the miR-199a2 knockout. If additional
characterization of the miR-214/miR-199a2
knockout would reveal if these miRNAs are
indeed the fine-tuning genes involved in Hh sig-
naling, this would magnify the importance of
miRNA in functioning as the genetic modifiers
and molecular “fine-tuners” [6, 29].

If Twist regulates Gli transcription factors [57,
771, and if miR-214 is in fact involved in mam-
malian Hh signaling, this implies that Twist
would regulate Gli protein expression, probably
by regulating their transcription; at the same
time, Twist may also target other Hh compo-
nents indirectly through the activation of the
miRNA gene (Fig. 5.1).

5.4.3 miRNAs Are Tightly Linked
to BMP Signaling

BMPs are members of the transforming growth
factor beta (TGF beta) superfamily that activate
transcriptional programs for lineage determina-
tion. Their effectors are Smad proteins that play a
central role in intracellular signaling. When a
BMP ligand is bound to its receptor, a cascade is
initiated, which leads to phosphorylation and
activation of the receptor-regulated Smads (Smad
1/5/8), which form heteromeric complexes with
their cofactor, Smad4. They then translocate into
the nucleus and regulate the transcription of var-
ious target genes.

BMP?2 treatment of C2C12 mesenchymal cells
induces osteoblast differentiation, concomitantly
with the repression of an alternative myocytic
fate. In the course of BMP2-induced osteogene-
sis, the expression levels of many miRNAs
change, becoming downregulated. The downreg-
ulated miRNAs are thought to target components
of multiple osteogenic pathways. Conceivably, the
downregulation of the miRNAs paves the way for
the upregulation of osteogenic genes. In this con-
text, it may be useful to look at the two roles played
by the muscle-specific miR-133 in myocyte and
osteoblast differentiation. In myocyte differentia-
tion, miR-133 is upregulated downstream of the
transcription factors myogenin, MyoD, SRE, and
Mef2 [12, 45, 63]. In osteoblast differentiation, the
myocyte-specific RNA, miR-133, targets Runx2,an
early BMP response gene that is essential for bone
formation. Similarly, miR-135 targets Smad5, a key
transducer of the BMP2 osteogenic signal. miR-
133 and miR-135, together, inhibit the differentia-
tion of osteoprogenitors by attenuating Runx2
and Smad5 expression [43]. miR-133 and miR-135
may therefore function as safeguards against the
activation of the osteoblastic program in differ-
entiating muscle cells. In the absence of miR-133,
committed myogenic progenitors are more likely
to respond to pro-osteoblastic signals. BMP-2
imposes transcriptional repression of miR-133;
this process seems to be a prerequisite for
osteoblast fate selection. Indeed, failure to down-
regulate miR-133, as when it is experimentally
overexpressed, restrains the BMP2-induced Runx2
and the upregulation of Smad5 [43]. It appears,
therefore, that BMP2 can commit mesenchymal
cells to the osteoblast lineage, not only by the
direct activation of the pro-osteoblastic programs,
but also by inhibiting the expression of miRNAs
that promote a different sibling cell fate (Fig. 5.2).

miR-125b is another miRNA gene that is
expressed in MSCs and acts as a repressor of
osteoblastic differentiation. Introduction of BMP-4
downregulates miR-125b expression, thereby
enabling osteoblast differentiation. Conversely,
overexpression of miR-125b inhibits BMP-4-
induced osteoblast differentiation [54]. Thus, it is
possible that miR-125b, miR-135, and miR-133
play a role in maintaining the progenitor state or
in reinforcing an alternative (myocyte) fate for
cultured MSCs. This probably helps in conferring
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Figure 5.2.  The choice of a particular cell fate is reinforced by miRNA activity. (@) When a promyocytic program is activated in mesenchymal stem

cells, the myocyte-specific miR-133 represses Runx2 expression, to insure that the sibling, osteoblast cell fate is not induced. (b) The expression of miR-
133 s transcriptionally repressed by BMP signals, promoting a coherent osteoblast differentiation program [43]. BMP commits mesenchymal cells into
the osteoblast lineage by direct activation of pro-osteoblast programs, and by inhibiting miRNAs that promote an alternative, sibling cell fate. This
interpretation is consistent with a more general view of miRNA function as genes that confer robustness to the genetic program by safequarding

against the expression of unwanted genes [16,23, 24,28,70].

robust transitions between different cell fates.
When those miRNAs are taken away, the transition
becomes fuzzy and there is a bigger chance for the
emergence of ill-defined, ambiguous fates. This
interpretation is consistent with the general view
that miRNAs function to confer robustness to the
genetic program and safeguard against the expres-
sion of unwanted genes [16,23,24,28,29,70].
However, there is more to the BMP/Smad path-
way with miRNA activity. For example, miRNAs
may act as upstream regulators of Smad1 expres-
sion [48] and as downstream target of Smadl
activity. Intriguingly, Smadl is involved in the
regulation of miRNA processing, downstream of
BMP signaling [18]. It appears that Smadl, a
transcription factor, interacts with the Drosha/
DGCR8/p68 microprocessor complex and is a
cofactor of Drosha, required for efficient post-
transcriptional microprocessing of a subset of
miRNAs. Thus, Smadl-dependent maturation
facilitates microprocessing of the miRNA pri-
mary precursor (Fig. 5.3). Smadl proteins con-
trol Drosha-mediated miRNA maturation [18],
which should be further evaluated in vivo and in
processes other than smooth muscle differentia-
tion. Currently, Smadl appears to be the first
protein that endows tissue specificity to post-
transcriptional regulation of miRNA expression.
Moreover, Smadl is unique in that it provides
sequence specificity that affects some, but not all,
miRNAs [18]. Finally, Smadl-dependent, post-
transcriptional regulation of miRNAs responds
to BMP and TGF-beta signaling; miRNAs, there-
fore, may be effectors of BMP signaling. miR-21

is one miRNA whose expression correlates with
TGF-beta signaling in tumors [61], probably as a
result of Smadl-dependent microprocessing
[18]. miR-21 is highly expressed in osteosarco-
mas [36] and osteoblasts (Gradus and Hornstein,
unpublished 2010). It may therefore be worth-
while to explore whether miR-21, by inducing
BMP/TGF-beta signaling, plays a role in bone
development.

5.4.4 miRNA and FGF Signaling

Regulation of chondrocyte proliferation and
hypertrophic differentiation by BMPs is bal-
anced by the antagonistic signal of FGF [50, 60,
87] (see Chap. 6 of this volume). The importance
of FGF is brought out by FGF receptor 3 mutations
leading to inherited human dwarfism syndromes,
e.g.,achondroplasia (see Chap. 1 of this volume).
The Sprouty proteins, spryl and spry2, regulate
the ERK-mediated signaling downstream of the
FGF receptor. The expression of spryl and spry2 is
repressed by miR-21; this upregulates the ERK sig-
naling in cardiomyocytes [65,73]. spry4, another
homolog expressed with spryl and spry2 in devel-
oping bone, may also contain an miR-21 binding
site [40]. Thus, miR-21 emerges as a gene that can
regulate the intensity of FGF signaling through its
regulation of spryl, spry2, and possibly spry4.
In limb buds lacking Dicer activity, FGF sig-
naling is reduced, whereas spry2 expression is
upregulated [27]. Moreover, the massive apopto-
sis observed in Dicer limb buds is due to spry2
upregulation, because spry2 is known to induce
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Smad?1 is a context-specific requlator of miRNA maturation, downstream of BMP signaling. (a) Smad1 (red) is a cofactor of the micro-

processor protein complex along with p68, Drosha, and DGCR8, whose activity is modulated by BMP signaling (red lightning) [18]. (b) This complex
facilitates the maturation of at least two pre-miRNAs: miR-21 (black) and miR-199a2 (green) from their longer, pri-miRNA, precursor. miR-214 (purple)
that is derived from the same transcript as miR-199a2, is not as sensitive to Smad1 posttranscriptional regulation [18].

programed cell death [27, 52]. As miR-21 is
expressed in the limb bud [28, 33] and acts
upstream of the spry genes, the elevated spry2
levels in the Dicer-null limb bud may reflect
inactivation of miR-21. miR-21 may also act
downstream of Smadl in the growth plate [18].
If that is true, then miR-21 can mediate BMP sig-
naling and affect the regulation of FGF levels.
miR-21-dependent regulation of spry in the
growth plate may therefore have the role of coor-
dinating the contra-regulatory BMP and FGF
signals (Fig. 5.4).

5.4.5 The Cartilage-Specific miR-140
and its Role in PDGF Signaling
Inrecentyears,anumber of miRNAshave attracted

interest with respect to osteoblast and chondro-
cyte differentiation. One of these, miR-140, has a

striking chondrocyte-specific expression pattern
[17, 74, 79], with a potential role in cartilage dif-
ferentiation [56, 74]. At the molecular level, one
role of miR-140 may be to repress histone
deacetylase 4 (HDAC4), known to be important
for bone development as a repressor of chondro-
cyte hypertrophy [76]. Multiple binding sites for
miR-140 on HDAC4 3' UTR are conserved in the
vertebrate gene products, and miR-140 and
HDAC4 interact with one another [74]. If substan-
tiated by in vivo studies, miRNA may turn out to
play a role in regulating chondrocyte hypertrophic
differentiation.

In zebra fish, miR-140 is important in cranial
cartilage development, functioning as a modula-
tor of the platelet derived growth factor (PDGF)
pathway. In vertebrate species, migratory cranial
neural crest cells can differentiate into several cell
types, including chondrocytes that populate and
establish craniofacial structures. A migratory
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Figure 5.4.  The microprocessing of miR-21 (green) requires Smad1 (red) function within the microprocessor complex and BMP signaling (dashed

red lightning). Mature miR-21 represses the expression of sprouty genes (spry1, spry2, dashed blue squares), which are intracellular negative regulators
of FGF-ERK signaling (blue lightning).Thus, miR-21 may act as an intermediary factor downstream of BMP signaling in the regulation of FGF levels.This
may provide a means to coordinate the contra-regulatory BMP and FGF signals in the growth plate.

stream of neural crest cells that generate the roof
of the mouth express PDGF receptor alpha
(pdgfra), and are subject to PDGF signaling that
modulates the migration of these cranial neuronal
crest cells along typical trajectories [2, 20].

The pdgfro transcript 3' UTR contains a bind-
ing site for miR-140, which downregulates the
protein levels in vivo [20]. Introduction of
ectopic miR-140 into fish embryos has resulted
in the repression of pdgfra expression.
Morphologically, a range of facial defects results,
including clefting of the crest-derived cartilage
that develops in the roof of the larval mouth.
These defects are similar to that in the mouse
pdgfra gene knockout [55, 66, 69, 72]. This rein-
forces the interpretation that pdgfro is the major
component affected by miR-140 overexpression
[20]. Conversely, miR-140 morpholino knock-
down in fish elevates the pdgfra protein levels,
yet, takes the PDGF signaling off balance, so that
excessive neural crest cells accumulated around
the optic stalk, a source of the ligand. As the
binding sites for miR-140 in the 3’ UTR of pdgfra
are conserved across vertebrate species, and
because the pdgfr knockout mice are reminis-
cent of the miRNA defect, mir-140 may play a
similar role in other vertebrates.

5.5 AnIntegrative Model
for miRNA Activity in Limb
Development

In summary, miRNAs constitute a large group of
posttranscriptional regulators whose fuller
involvement in the development is likely to be
known in the coming years. miRNAs are interwo-
ven in specific pathways related to bone develop-
ment. Conditional loss of Dicer function has
provided insight into miRNA function in vivo
[27, 33], but the transition from this model to
deciphering the role of specific miRNAs is com-
plicated. One important result from the work of
Kobayashi et al. [33] is that miRNAs involved in
the development of Col2al descendent are not a
part of Thh/PTHrP signaling. In this connection,
it is worth noting the role of miRNAs in BMP sig-
naling, as this pathway is downstream of or in
parallel with the Ihh pathway. miRNAs interact
with BMP signals at many levels. BMP/Smad sig-
naling regulates proliferation and hypertrophic
differentiation of the chondrocytes [50]. Ihh and
BMP signaling together regulate the level of
chondrocyte proliferation, thereby pushing the
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chondrocytes out of the PTHrP signaling range.
A drop in BMP signaling leads to smaller skeletal
elements, because proliferation is decreased and
hypertrophy is accelerated. This outcome is remi-
niscent of the Dicer phenotype [51]. Based on the
evidence that supports a close interaction of
miRNAs with the BMP/Smad signaling network,
we suggest that this network may be significantly
involved in bone development. We also predict
that BMP-related miRNAs explain at least part of
the Dicer phenotypes; other miRNAs involved in
the proliferation may contribute to regulating the
size of the skeletal components.

Understanding the impact of miRNAs in
embryonic development is still in its infancy.
However, the wealth of resources currently uti-
lized to assess function will lead to a fuller pic-
ture. Knowing how individual miRNAs are
integrated in the pathways that regulate osteo-
blast and chondrocyte differentiation will lead
to better understanding of how genetic networks
bring about normal development and what dis-
eases result from perturbing their expression.
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FGF/FGFR Signaling in Skeletal Dysplasias

Pierre J. Marie

6.1 Introduction

Fibroblast growth factor (FGF) signaling plays
an important role during endochondral and
intramembranous bone development. The iden-
tification of skeletal abnormalities induced by
genetic mutations in FGF receptors (FGFR) that
induce chondrodysplasias and craniosynostosis
in humans has provided major insights into the
role of FGF/FGFR signaling in the control of car-
tilage and bone formation. This chapter summa-
rizes the role of FGF/FGFR signaling in cellular
and molecular mechanisms in chondrogenesis
in the growth plate and in osteogenesis in cra-
nial bone. The chapter also describes what is
known about the pathological processes that
have resulted in skeletal dysplasias owing to FGR
mutations.

6.2 FGF Signaling in the Growth
Plate

The epiphyseal growth plate consists of several
cellular zones (Fig. 6.1). In the proximal resting
zone, cells give rise to proliferating chondrocytes
that are located in the proliferating zone. These
cells differentiate into prehypertrophic chon-
drocytes and then become mature hypertrophic
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chondrocytes. Close to the metaphyseal area,
hypertrophic chondrocytes undergo apoptosis.
Chondrocyte proliferation, differentiation, and
death in the growth plate are tightly controlled
by FGF/FGFR signaling [101]. The FGF family
includes 22 molecules that signal by activating
four distinct receptors (FGFR1-4) with different
isoforms [32]. However, a limited number of
FGFs and FGFR are expressed in endochondral
bone. FGF2 and FGF9 are expressed in chondro-
cytes, but their function in cartilage formation is
not known, because deletion of FGF2 or FGF9
does not lead to abnormal cartilage in mice [17,
18, 89]. FGF7, FGF8, FGF17, and FGF18 are
expressed in the perichondrium [73, 97, 134]. In
contrast to FGF7, FGF8 and FGF17 do not regu-
late chondrogenesis in vivo [41,83,133], whereas
FGF18 plays an important role in chondrogene-
sis control, as discussed below.

FGFs activate FGFRs, the key regulators
of endochondral bone growth [99]. FGFRI is
expressed in prehypertrophic and hypertrophic
chondrocytes, whereas FGFR3 is expressed in
the resting and proliferating zones [7, 26, 103];
this implies a role in the regulation of chondro-
cyte proliferation and differentiation. FGF18
signals to FGFRI in hypertrophic chondrocytes
and to FGFR1 or FGFR2 in the perichondrium
(Fig.6.1). Activated FGFR1 signaling in vivo sup-
presses growth-plate chondrocyte mitogenesis;
this results in achondroplasia-like dwarfism

F. Bronner et al. (eds.), Bone and Development, Topics in Bone Biology 6,
DOI 10.1007/978-1-84882-822-3_6, © Springer-Verlag London Limited 2010
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Figure 6.1.  FGF/FGFR signaling in the growth plate. Several FGFs and FGFRs are expressed differently in the zones of the growth plate. FGF18

interaction with FGFR3 leads to growth arrest in proliferating chondrocytes. FGFRT and FGFR2 regulate chondrocyte and osteoblast differentiation in

the hypertrophic zone and metaphyseal regions, respectively.

[127]. FGF18, by activating FGFR3c in the chon-
drocytes [35], causes limited chondrocyte pro-
liferation [22, 29, 100] by direct signaling
events [116]. Activated FGFR3 reduces chondro-
cyte cell proliferation in mice [27]; FGFR-37/~
mice show excessive long bone growth associated
with increased chondrocyte proliferation [16,
68, 95]. In addition to regulating chondrocyte
proliferation, FGF18 regulates skeletal vascular-
ization and recruitment of osteoblasts to the
metaphysis by regulating VEGF expression [73].
Consistent with its important role in chondro-
genesis, FGF18 expression is closely regulated in
chondrocytes. It is upregulated by the inhibition
of glycogen synthase kinase 3. The latter is an
important mediator of Wnt signaling and reflects
the link between Wnt signaling and FGF signal-
ing in the course of endochondral bone develop-
ment [57]. FGF18 expression is transcriptionally
upregulated by Runx2, which in turn is induced
by Wnt signaling [108].

Activation of FGFR3 in chondrocytes induces
nuclear translocation of STAT1 and the expres-
sion of the cell-cycle inhibitor p21 [44, 117, 124]
that inhibits cell growth. Furthermore, FGFR3-
mediated signaling through STAT1 induces cell

death in chondrocytes [63] (Fig. 6.1). FGF18
may also act on chondrocytes indirectly by
modulating bone morphogenetic protein (BMP)
signaling. FGF18 suppresses the induction of
noggin, a BMP antagonist [107]. Conversely,
BMP pathways inhibit FGF signaling in the
growth plate [84, 137]. This indicates multiple
interactions between FGF and BMP signaling
pathways in modulating proliferation and
differentiation of chondrocytes. FGFR3 signal-
ing may also control chondrocytes indirectly
through downregulation of Thh and BMP4 in
the growth plate [93]. Interestingly, a recent
report indicates that chondrocyte-specific acti-
vation of FGFR3 in mice induces premature
synchondrosis closure and fusion of ossification
centers through a MAPK-dependent BMP path-
way; this suggests a role for BMP signaling in
the fusion of ossification centers and decreased
endochondral bone growth brought about by
the activation of FGFR3 in chondrocytes [82].
These reports make obvious the complicated
regulation needed to balance proliferation and
differentiation of chondrocytes, and the impor-
tant role played by FGF signaling during endo-
chondral development.
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6.3 Implication of FGF/FGFR
Signaling in Chondrodysplasias

The importance of FGF signaling in chondro-
genesis was brought out by evidence that
FGFR3 genetic mutations result in chondrodys-
plasias [99, 132]. The first finding was that a
point mutation in the transmembrane domain
of FGFR3 is involved in achondroplasia, the most
common genetic form of human dwarfism with
devastating effects on skeletal development
(Fig.6.2a) [113,119]. Other forms of skeletal dys-
plasias related to FGFR3 have been identified,
including hypochondroplasia [4] and thanato-
phoric dysplasia [114, 115, 125, 126]. In achon-
droplasia, point mutation in the transmembrane
domain of FGFR3 activates the receptor in the
absence of ligand [69, 88, 94, 131]. In thanato-
phoric dysplasia type 1, two substitutions in the
extracellular domain of FGFR3 result in ligand-
insensitive constitutive activation of FGFR3,
whereas in thanatophoric dysplasia type 2, a
substitution in the FGFR3 tyrosine kinase domain
results in ligand-sensitive hyperactivation of the
receptor [94] as a result of stabilization of a non-
inhibitory conformation of the kinase regulatory

B3

agEsan

EE RS

Figure 6.2.

Proliferating
chondrocytes

loop [86]. Attenuation of FGFR through ubiquit-
ination or internalization may also induce chon-
drocyte abnormalities in chondrodysplasias.
Activating mutations in FGFR3 in achondropla-
sia increase the stability of the receptor through
disruption of Cbl-mediated ubiquitination and
lysosomal degradation of FGFR3, notwithstand-
ing excessive ubiquitination. This amplifies the
FGFR3 signal [5, 13, 70, 88]. Consistent with the
findings is the increase in FGFR3 and STAT1
expression in growth plates and cultured chon-
drocytes from patients with achondroplasia and
thanatophoric dysplasia [25, 64].

Activated FGFR3 signaling acts on several cel-
lular mechanisms that are involved in achondro-
plasia and thanatophoric dysplasias. As described
earlier, FGFR3 is an important signaling molecule
that negatively regulates chondrogenesis [9, 129].
Overexpression of activated FGFR-3 reduces
chondrocyte cell proliferation in mice [48, 68, 93,
118], whereas FGFR3 mutations increase abnor-
mal signaling activity [45, 70] to activate STATs
and upregulate cell-cycle inhibitors [68,123]. This
occurrence indicates that STAT1 mediates inhibi-
tion of endochondral growth by mutant FGFR3.
FGFR3 mutants also activate ERK1/2 MAPK sig-
naling [71]. It is not surprising, therefore, that

Activated
FGFR3

ERK1/2 STATH
Apoptosis
Growth pop

Hypertrophic Zone

(a) Severe skeletal deformities in a patient with achondroplasia (courtesy of Dr.M.LeMerrer, Inserm U781, Hopital Necker, Paris, France).

(b) Abnormal FGF/FGFR signaling induced by FGFR3 mutations in the growth plate. Activating FGFR3 mutations in achondroplasia activate ERK1/2 and
STAT1, which in turn cause growth arrest in proliferating chondrocytes and apoptosis in the hypertrophic zone.
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when the MAPK pathway is inhibited, achondro-
plasia induced by FGFR3 activation can be over-
come [135]. Constitutive activation of MEK1 in
chondrocytes inhibits chondrocyte differentia-
tion [92]; this suggests that FGFR3 signaling
inhibits chondrocyte differentiation through the
MAPK pathway and inhibits chondrocyte prolif-
eration through the STAT1 pathway (Fig. 6.2b).

A limited number of downstream targets of
FGFR3 signaling in chondrocytes have been
identified. Snaill, a transcriptional effector, is
upregulated by activated FGFR3; this in turn
represses chondrocyte differentiation in thanato-
phoric dysplasia [23]. Phosphorylation of pRb
family members and Akt may also help to regu-
late chondrocyte proliferation by FGFR3 [62,
106]. In vitro, FGF signaling inhibits prolifera-
tion of chondrocytes by the inhibition of Rb and
p107, both of which mediate cell growth [62].
FGF signaling also interacts with Wnt signaling
in chondrocyte regulation. Wnt signaling induces
FGF18 expression [108] and may thereby inhibit
chondrocyte proliferation [12, 30, 46, 122]. Wnt-
induced inhibition of chondrocyte proliferation
is abrogated in FGFR-3 null mice [57]; this points
to a role for Wnt signaling in chondrogenesis
inhibition due to FGFR3 signaling. FGFR3 sig-
naling may also have indirect effects on chon-
drocytes, by affecting hedgehog signaling and
BMP4 expression [93]. A FGFR3 mutation down-
regulates Thh/PTHrP signals in a mouse model
of thanatophoric dysplasia type 1 [10], but this
may not apply to human chondrodysplasias
because Thh/PTHrP expression is normal in
human achondroplasias or thanatophoric dys-
plasia types 1 or 2 [19].

FGFR3 activation in human chondrocytes
induces cell apoptosis. Chondrocytes from
patients with thanatophoric dysplasia show
increased PLCy-activated STAT1, resulting in an
increase in the Bax/Bcl-2 ratio and apoptosis
[43, 63]. Interestingly, IGF-1 treatment prevents
apoptosis induced by FGFR3 mutation by acti-
vating PI3K and MAPK pathways [60]. In sum-
mary, FGFR3 activation in chondrodysplasias
induces abnormalities in chondrocyte prolifera-
tion, differentiation, and life span by activation
of specific signaling pathways (Fig. 6.2b). These
findings may lead to developing targeted thera-
peutics in achondroplasia [2].

6.4 FGF Signaling
in Cranial Bone

Cranial bones are formed by intramembranous
ossification and expand during development,
but do not fuse at the junction with other cra-
nial bones; this allows skull expansion during
growth [15, 91, 98, 110]. The junction between
calvarial bones, called suture, allows for separa-
tion between two membrane bones. Most cells
surrounding the suture are mesenchymal cells,
a minority of which differentiate into preosteo-
blasts and mature osteoblasts that form the bone.
When bone is the formed, most osteoblasts
become osteocytes or bone-lining cells,but some
die by apoptosis (Fig. 6.3).

Rodent studies have shown that suture cells
are subject to regulation by multiple factors,
including transforming growth factor § BMPs,
FGFs,and Wnt proteins [98, 110]. FGF/FGEFR sig-
naling plays a major role in cranial suture devel-
opment [21]. The mesenchymal splice variant of
FGFR2 (FGFr2lIlc) is expressed in early mesen-
chymal condensates and later in sites of intra-
membranous ossification where it interacts with
FGF18 [33, 35]. During cranial bone develop-
ment, FGF18 is expressed in mesenchymal cells
and differentiating osteoblasts [97], whereas
FGFR1 and FGFR2 are expressed in preosteo-
blasts and osteoblasts [26, 51, 54, 59, 87], and
FGFR2 expression is associated with endoge-
nous FGF2 expression [109, 111] (Fig. 6.3).

In cranial bone, FGF signaling is a positive
regulator of osteogenesis. In vitro, FGF2, 9, and

Osteoblasts:
FGFR1, FGFR2

Periosteum Mesenchymal Cells:

FGF2, FGF9, FGF18

—

\.\\\_

Dura :
FGFR1, FGFR3

Cranial Suture \
Osteoprogenitor Cells:

FGF18. FGFR1, FGFRZ

Figure6.3.  FGF/FGFR signaling in the cranial suture.FGF interactions
with FGFRs in suture cells requlate the balance between osteoblast pro-
liferation differentiation and survival thereby maintaining the cranial
suture.
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18 upregulate the replication of calvarial cells [8,
24, 120] and promote osteogenic differentiation
[51]. Sustained treatment with FGF2 promotes
replication and differentiation of cranial osteo-
blasts in vitro [24]. Bone formation in FGF2-
deficient mice is therefore decreased [89] and if
FGF2 biological activity is blocked, cranial
osteogenesis is prevented in vivo [39, 90]. FGF18
also stimulates osteoblast proliferation and dif-
ferentiation in vivo [97], whereas cranial suture
closure and ossification are delayed in FGF18-
deficient mice [97, 72].

FGFRs are important regulators of osteo-
blastogenesis. In vivo studies have shown that
FGFRI1 regulates osteoblasts at different stages
of maturation, whereas FGFR3 regulates the
activation of more differentiated osteoblasts
[53]. Mice that conditionally lack FGFR2 or har-
bor mutations in the mesenchymal splice form
of FGFR2 develop skeletal dwarfism, with
decreased osteoblast proliferation and bone
mineral density [33, 140]. FGF signaling also
controls osteoblast apoptosis, inducing apopto-
sis in differentiated osteoblasts in vitro [24] and
increased apoptosis in mouse calvaria [77, 81].
Thus, FGF/FGEFR signaling regulates osteoblas-
togenesis at all stages of the osteoblast lineage
(Fig. 6.3).

Several signaling pathways induced by FGF/
FGFR activation have been identified in osteo-
blasts, including ERK1/2, protein kinase C
(PKC), Src, and PI3K/Akt [49, 79]. When these
signaling pathways are activated, many genes
involved in osteogenesis are expressed, from
the osteoprogenitor cell to the end of osteo-
blast life. In cranial bone, FGFs regulate osteo-
blast function indirectly by interaction with
BMP signaling [59]; this suggests that BMP
signaling regularly plays a role in cranial suture
fusion. FGF2 and FGFR2 inhibit the expression
of the BMP antagonist, noggin, in the patent
cranial suture. This results in increased BMP4
activity and suture fusion [130]. FGF2 also
promotes BMP2 during cranial bone develop-
ment by causing Runx2 levels to increase [14].
It is therefore likely that the biological activi-
ties of FGFs in bone not only depend on the
balance between FGF and FGFR, but also
on the activity of other signaling molecules,
including BMPs.

6.5 Implication of FGF/FGFR
Signaling in Craniosynostosis

The role of FGFR signaling in craniosynostosis
has been made clear by multiple lines of genetic
evidence. Missense gain-of-function mutations
in FGFR1-3 induce premature fusion of one or
more cranial sutures in about 1 over 2,500 live
births, causing over 100 skeletal disorders includ-
ing Apert, Crouzon, and other syndromes [52,
61, 132]. The molecular mechanisms that con-
tribute to FGFR gain-of-functions mutations
include constitutive (ligand-independent) acti-
vation [38, 76, 96, 104, 112] or ligand-dependent
activation of FGFRs [1, 50, 102, 138, 139]. This
emphasizes the complexity of the molecular
mechanisms that result in the activation of
FGFRs inducing craniosynostosis [85]. The phe-
notype induced by the activating FGFR muta-
tions in cranial suture cells has been determined
in vitro and in vivo. In Apert craniosynostosis,
the most severe syndrome, activated FGFR2,
clearly induces acceleration of osteoblast differ-
entiation in human cranial osteoblasts and pre-
mature cranial suture ossification (Fig. 6.4). This

Figure 6.4.  Premature suture fusion in a young patient with Apert
syndrome (courtesy of Drs. Arnaud and Renier, Hopital Necker-Enfants
Malades, Paris, France).



98

Bone and Development

leads to increased subperiosteal osteogenesis
in the cranial suture (reviewed in [80]) and
results from an increased expression of osteo-
blast genes, induced by activated FGFR2. These
include alkaline phosphatase, type I collagen,
and osteocalcin [36, 66, 75, 124]. These studies
provide important insights into the molecular
mechanisms that play a role in the premature
cranial suture fusion in craniosynostosis. FGFR
mutations in mice lead to results similar to what
happens to humans, i.e., premature fusion of
cranial sutures, but the cellular phenotype in
mice and humans is not the same [79]. In mice,
Apert or Crouzon FGFR2 mutations stimulate
calvarial cell proliferation, but inhibit osteoblast
differentiation and mineralization [77, 78, 105].
FGFRI1 or FGFR2 activating mutations in mice
may or may not increase osteoblast prolifera-
tion and differentiation [11, 128, 136, 141]. This
variation may be due to the variable effects
of FGFR mutations on different sutures or the
effect of FGFR mutations on osteoblasts at dif-
ferent stages of maturation [132]. Apart from
these variable effects,matrix depositionincreases
and suture closure accelerates [42].

Several signaling pathways induced by FGFR
gain-of-function mutations are involved in cran-
iosynostosis (Fig. 6.5). Initial studies in human
mutant osteoblasts have shown that Apert FGFR2
mutations activate PLC gamma and its down-
stream effector PKC alpha; this leads to increased
osteoblast gene expression [36,66]. Apert FGFR2
mutations also induce Cbl-mediated downregula-
tion of the two Src family members, Lyn and Fyn,
in human osteoblasts; this contributes to prema-
ture osteoblast differentiation ([56]; Fig. 6.5).
Inhibition of MEK-ERK signaling inhibits cran-
iosynostosis induced by Apert FGFR2 mutation
in mouse models. Therefore, ERK activation may
play a pathogenic role in mouse craniosynosto-
sis [58,121].

Another important mechanism in cranio-
synostosis is FGFR2 downregulation induced by
FGFR2 mutations. Apert FGFR2 mutations
induce Cbl-mediated FGFR2 degradation by the
proteasome in Apert osteoblasts [65], thereby
increasing osteoblast differentiation (Fig. 6.5).
This observation is consistent with the decreased
expression of FGFR2 in Crouzon syndrome [6].
Activated FGFR2 also showed increased binding

Activated
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Cranial
osteoblast

R —

Lyn, Fyn__+—

Ub l \ PI3K
PKC Ub
|

Ub

IL-1

Runx2, ALP, Col 1 Apoptosis
OC, BSP

-----  [rone]

PP —

Premature osteoblast
differentiation and
ossification

Figure 6.5.  Signaling and phenotype induced by FGFR2 mutations in
cranial osteoblasts in Apert craniosynostosis. Apert FGFR2 mutations
activate PKC activity, which in turn upregulates osteoblast gene expres-
sion and osteogenesis, thus causing premature cranial ossification. FGFR2
mutations also induce Chl-mediated Src (Lyn Fyn) proteasome degrada-
tion; this promotes osteoblast differentiation in mutant human cranial
osteoblasts. FGFR2 activation results in PI3K and o5 integrin ubiquitina-
tion and proteasome degradation, causing cell survival to decrease.
Another mechanism involves PKC-mediated IL1-dependent activation of
caspases, resulting in the apoptosis of more mature osteoblasts.

to the adaptor protein FRS2 [47], which is
involved in the negative feedback mechanism
that is induced by FGFR stimulation [34].
Uncoupling between the docking protein FRS2
alpha and activated Crouzon-like FGFR2c
mutant can prevent Crouzon-like craniosynos-
tosis induced by activated FGFR2 in mice [34].
These findings emphasize the role of FRS2 alpha
in the attenuation of signals in osteoblasts
induced by FGFR activation, and the important
role of role of Cbl and FRS2 alpha in the attenu-
ation of signals induced by FGFR2 activation.
Some progress has been made in the identifi-
cation of genes that act downstream of activated
FGFR signaling in craniosynostosis. Runx2, an
essential transcription factor involved in osteo-
blastogenesis, is a target gene for activated FGFR
signaling. In human cranial osteoblasts, FGFR2
upregulates Runx2 expression [40]. Consistent
with this observation is that activating FGFR1
and FGFR2 mutations increase Runx2 expres-
sion in mouse and human osteoblasts [3, 31,
121]. Conversely, disruption of FGFR2IIIc, the
mesenchymal splice variant of FGFR2, decreases
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the transcription of Runx2 and thereby retards
ossification [33]. This suggests that FGFR2-
induced Runx2 expression may contribute to the
accelerated osteoblast differentiation in cranio-
synostosis. Other transcription factors such as
Sox2 may also be involved in FGFR2-induced
craniosynostosis in mice [78]. Interestingly,
Apert or Crouzon FGFR2 mutations downregu-
late some Wnt target genes in mice [78]. Micro-
array analysis of patent sutures in children with
craniosynostosis has shown that other genes are
upregulated during suture fusion [20]. However,
whether these genes are actually implicated in
expressing the phenotype induced by FGFR
mutations has not been determined. Interactions
between several signaling molecules, some not
yet identified, probably contribute to premature
osteoblast differentiation and cranial suture
ossification.

Activated FGFR signaling in human and
mouse models of craniosynostosis also causes
osteoblast apoptosis. Apoptosis is a normal
occurrence in suture development and is essen-
tial for eliminating osteoblasts when differen-
tiation is complete [37]. Apert and Crouzon
activating FGFR2 mutations promote apoptosis
in mature osteoblasts in mouse and human
genetic models [11, 14, 74]. In Apert syndrome,
activation of osteoblast apoptosis is mediated by
PKC activation and increased IL-1 and Fas, cas-
pase-8, and Bax/Bcl-2 levels [67]. Moreover,
FGFR2 activation in this syndrome reduces
osteoblast matrix attachment. This results from
Cbl-mediated recruitment, ubiquitination, and
proteasome degradation of the a5 integrin. The
subsequent reduction in cell attachment triggers
caspase-dependent apoptosis through Bax/Bcl-2
and activation of the cascade-9-caspase-3-cas-
cade [55]. Additionally,activated FGFR2 in Apert
syndrome induces Cbl-mediated PI3K ubiquit-
ination and proteasome degradation. These
cause a decrease in the survival of more mature
osteoblasts ([28]; Fig. 6.5). This effect of acti-
vated FGFR2 signaling on osteoblast apoptosis
may appear surprising, given the overall posi-
tive effect of mutant FGFR on bone formation.
However, the increased apoptosis induced by
activated FGFR2 in mature osteoblasts may be
necessary to compensate for the accelerated
osteoblast differentiation induced by FGFR2

signaling. It is evident that in craniosynostosis,
activated FGFR signaling has a complicated,
maturation-dependent effect on osteoblastogen-
esis and cranial ossification.

6.6 Conclusion and Perspectives

In the course of the last decade, cellular, molecu-
lar, and genetic approaches have led to better
understanding of the regulatory role of FGF/
FGFR signaling in endochondral and cranial
ossification. Analysis of the skeletal and cellular
phenotypes induced by FGFR mutations in
mouse models and in children bearing FGFR
mutations has improved our knowledge of the
pathogenesis of chondrodysplasias and cranio-
synostosis. Genetic and functional studies have
identified cellular and molecular pathways that
are targeted by activated FGF/FGFR signaling
and involved in the development of skeletal dys-
plasias. This has led to the concept that antago-
nists of FGFR or downstream signaling pathways
may prevent skeletal dysplasias induced by FGFR
mutations in mice. This constitutes an important
step toward therapy.

More work is needed to identify the precise
role of FGFRs and their ligands in regulating cell
proliferation, differentiation, and apoptosis dur-
ing endochondral and cranial ossification in
humans. Moreover, studies are needed to iden-
tify the role of signaling pathways in the abnor-
mal chondroblast and osteoblast phenotypes
induced by FGFR mutations. The sequence of
genes induced by activated FGFR signaling and
implicated in the pathogenesis of human skeletal
dysplasias needs to be identified. This may add
new information about the pathogenesis of
human skeletal dysplasias and lead to novel
therapeutic approaches.
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The Role of Hypoxia-Induced Factors
Ernestina Schipani and Richa Khatri

7.1 Hypoxia and the Hif Family
of Transcription Factors

The definition of “physiologically” normoxic
conditions for either embryonic or adult cells
varies significantly. The vast majority of adult
normal tissues function at oxygen (O,) levels
between 2 and 9%, with ambient air at 21% 0,
[135]. Bone marrow, cartilage, kidney medulla,
and thymus, on the other hand, can exist at 1%
O, or lower [135]. In general, when O, tension
reaches below 2%, this condition is consid-
ered to be moderate hypoxia. When O, tension
goes below 0.5%, hypoxia is considered severe.
Hypoxia is not only a pathophysiological com-
ponent of many human disorders, including
cancer and ischemic diseases, but is also a crit-
ical factor in fetal development and differenti-
ation [21, 39, 82]. Before the circulatory system
is established, mammalian development pro-
ceeds in a relatively low O, environment of
about 3% [100, 120]. Moreover, studies that
have utilized small-molecule hypoxia markers
have shown the existence of specific regions of
moderate to severe hypoxia in the developing
embryos [21, 82].

Hypoxia-inducible factor-1 (Hif-1), a ubiqui-
tously expressed transcription factor, is a major
regulator of cellular adaptation to hypoxia [14,
38, 65, 88, 130] (Fig. 7.1). It is a heterodimeric
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DNA-binding complex that consists of two basic
helix-loop-helix (bHLH) proteins of the PER/
ARNT/SIM (PAS) subfamily, Hif-1a. and Hif-1f3
[155]. Hif-1a. and Hif-1 mRNAs are ubiqui-
tously expressed [160]. In general, alpha-class
members of the PAS subfamily respond to envi-
ronmental signals, whereas beta-class molecules
aid in targeting the heterodimer to their nuclear
targets [45]. In the Hif-1 system, Hif-1a is acti-
vated when O, levels drop below 5%j; its activity
increases as 0, tension decreases [18, 58, 60, 99,
112, 156] (Fig. 7.1). On the other hand, Hif-1§
(also known as aryl hydrocarbon nuclear trans-
locator or ARNT) is nonoxygen responsive.
Upon heterodimerization with Hif-1a., the com-
plex Hif-1a/Hif-1p binds to a specific sequence
RCGTG, the hypoxia response element (HRE),
and transactivates the target genes containing
HREs [67] (Fig.7.1).

Hif-1a does not directly sense variations in O,
tension [19]; a class of 2-oxoglutarate-dependent
and Fe**-dependent dioxygenases are the O,
sensors [112] (Fig. 7.1). Two types of O, sensors
are involved in Hif-1a action, namely, prolyl-
hydroxylase domain proteins (PHDs) and aspara-
ginyl hydroxylase. PHDs hydroxylate two prolyl
residues (P402 and P564) in the Hif-1a region
referred to as the O,-dependent degradation
domain (ODDD) [7]. This modification occurs
in normoxic conditions and mediates the bind-
ing of the von Hippel-Lindau tumor suppressor

F. Bronner et al. (eds.), Bone and Development, Topics in Bone Biology 6,
DOI 10.1007/978-1-84882-822-3_7, © Springer-Verlag London Limited 2010
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Figure7.1.  Hif-1q,its posttranslational modifications, and interacting proteins. For details, see text.

protein (pVHL), which is an E3 ubiquitin ligase,
to Hif-1o (Fig. 7.1). Hif-1a is then marked with
polyubiquitin chains and targeted for degrada-
tion by the proteasome (Fig. 7.1). In well-oxy-
genated tissues, where O, tension is higher than
5%, Hif-1a displays one of the shortest half-lives

(<5min) among the cellular proteins. Conversely,
as described earlier, under hypoxic conditions,
the activity of the PHDs is largely impaired and
proline hydroxylation cannot occur. As a result,
Hif-1o. protein accumulates and this initiates
a multi-step pathway that includes nuclear
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translocation of Hif-1a, dimerization with its
partner Hif-1B, recruitment of transcriptional
coactivators, and binding to HREs within the
promoters of hypoxia-responsive genes [68]
(Fig. 7.1). The second type of O, sensor is an
asparaginyl hydroxylase, also called factor inhib-
iting Hif (FIH) [80]. This enzyme hydroxylates
an asparagine residue (N803) in the carboxy-
terminal transcriptional activation domain
(C-TAD) of Hif-1a. (Fig.7.1). This covalent mod-
ification blocks C-TAD interaction with tran-
scriptional co-activators, such as p300 and CBP.
Thus, the two O, sensors, PHD and FIH, by regu-
lating the destruction and activation of Hif-1a,
respectively, ensure the repression of the Hif-1a
pathway in well-oxygenated cells. As PHDs have
lower affinity for O, and 2-oxyglutarate than
FIH, they may be inactivated in vivo at O, values
that still maintain FIH activity, yet keep C-TAD
under repression [112]. Consistent with this
model, two classes of Hif-1a-dependent genes
have been reported, which are sensitive and
nonsensitive to FIH [112]. According to the
model, stabilization of Hif-1a alone may not be
adequate to regulate genes that are both Hif-1a.-
dependent and FIH-sensitive.

pVHL, made up of 213 amino acids, is
expressed in most tissues and cells [48]. Hetero-
zygous missense mutations of the VHL gene are
probably the cause of the von Hippel-Lindau
syndrome [66, 115], a disease characterized by a
dominant predisposition to develop pheochro-
mocytomas and highly vascular tumors of the
kidney, the central nervous system, and the ret-
ina [66, 115]. Tumorigenesis results from the
loss or inactivation of the wild-type allele [66,
115]. The importance of VHL for proteolysis of
Hif-1a is underscored by the finding that cells
lacking a functional pVHL cannot degrade this
transcription factor; as a result, Hif-1o. accumu-
lates [66, 115].

Stimuli other than hypoxia also cause Hif
proteins to accumulate in normoxic cells, but
the molecular mechanisms are not yet under-
stood [168].

To date, more than 100 putative Hif-1o. target
genes have been identified [8, 43, 84, 162]. They
are involved in biological processes including
energy metabolism, angiogenesis, erythropoie-
sis, cell survival, apoptosis, and pH regulation

[43, 97]. Mouse embryos lacking Hif-1o exhibit
multiple morphological defects as early as
embryonic day E8.5, and die in utero by E11 [25,
59, 121]. Hif-1a is also a strong promoter of
tumor growth [38,130]. Hypoxia and Hif-1a play
a role in tumor development and progression,
and they are responsible, at least in part, for the
resistance of malignant lesions to radiation ther-
apy [114]. Some highly malignant tumors exist
in a severe hypoxic microenvironment, and inhi-
bition of Hif-1a is currently being explored as a
therapeutic approach [20]. Interestingly, genes
associated with cell death, such as BNip3,a mem-
ber of the Bcl-2 family of proapoptotic proteins
[137], can also be induced by Hif-1 [11]. On the
whole, however, Hif-lo. promotes survival of
hypoxic cells.

Two isoforms of Hif-1a have been character-
ized: Hif-2o and Hif-3a [42]. Hif-1o and Hif-2o
have similar protein structure and undergo the
same oxygen-dependent proteolysis. This may
mean that they function redundantly, at least in
some settings [108]. However, the pattern of
expression of Hif-2a is restricted to blood ves-
sels, lung, kidney, interstitial cells, liver, and
neural crest [161], whereas Hif-1a is expressed
in all cells. Moreover, mice that are null for Hif-
lo. die at early stages of embryonic develop-
ment, but mice deficient in Hif-2a survive until
mid-to-late gestation, or depending on the
strain, until birth [17, 24, 25, 59, 109, 121, 126,
148]. The two isoforms, therefore, seem to have
distinct developmental functions. Lastly, some
genes are activated by both Hif-1a and Hif-2a,
whereas others are preferentially activated by
one or the other [55,116, 157]. For a comprehen-
sive review of the roles played by Hif-1o. and
Hif-2a in embryonic development and differen-
tiation, see reference [135].

Hif-3a is not closely related to Hif-1o and Hif-
200 [159]. Alternative splicing of the Hif-3a gene
produces at least six different isoforms [98], one
of which is an inhibitory protein that contains
the N-terminal bHLH and PAS domains, yet
lacks the C-TAD [96]. This protein acts as a nega-
tive regulator of Hif-mediated gene expression.

ARNT is constitutively expressed and is insen-
sitive to changes in O, levels. Two homologs,
ARNT?2 and ARNTS3, or bMAL are components
of O,-independent pathways [13, 70].
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7.1.1 Hifs and Energy Metabolism

Hif-1o. promotes cell survival in hypoxic condi-
tions by a variety of mechanisms. Some involve
regulation of glucose metabolism. In aerobic con-
ditions, glucose is converted to pyruvate in the
cytoplasm. Pyruvate then enters the tricarboxylic
acid (TCA) cycle and oxidative phosphorylation
takes place in the mitochondria [159]. Louis
Pasteur was the first to record that O,-deprived
cells convert more glucose to lactate than cells in
the normoxic cultures. This is the so-called
“Pasteur effect.” Induction of the Pasteur effect
depends on Hif-1a that upregulates glucose trans-
porters such as Glutl, glycolytic enzymes that
stimulate ATP production by anaerobic glycolysis
such as phosphoglycero-kinase 1 (PGK1),and the
enzyme lactic dehydrogenase that converts pyru-
vate to lactate [59, 127, 128]. Moreover, Hif-1a
inhibits mitochondrial oxidative phosphoryla-
tion by diminishing pyruvate entry into the TCA
cycle [73, 106], at the same time upregulating
expression of pyruvate dehydrogenase kinase, an
enzyme that phosphorylates and inhibits pyru-
vate dehydrogenase. By preventing conversion of
pyruvate to acetyl CoA, pyruvate cannot enter the
TCA cycle [73]. Interestingly, Hif-1o also modu-
lates the differential expression of cytochrome ¢
oxidase 4 (COX4) isoforms, COX4-1 and COX4-2.
It does so by activating the transcription of the
genes that encode COX4-2 and LON. The latter is
a mitochondrial protease that degrades COX4-1
[33]. This enables optimal mitochondrial respira-
tion in hypoxia [159]. Paradoxically, cells under
hypoxia are subject to oxidative stress and release
of reactive oxygen species (ROS) [33]. By inhibit-
ing the entry of pyruvate into the mitochondria,
Hif-1o attenuates not only the mitochondrial res-
piration, even though its efficiency is improved,
but also diminishes ROS production in hypoxic
cells [33]. Lastly, Hif-lo. regulates intracellular
pH. In anaerobic glycolysis, lactic acid accumu-
lates in the cytosol which is extruded with the
help of Hif-1a. Hif-1a. regulates the expression of
the monocarboxylate transporter (MCT) 4 of the
H*/lactate cotransporter family [117,152] and the
Na*/H* exchanger (NHE)1 [117].

Notably, Hif-20. does not significantly affect
glucose metabolism, a further indication that Hif-
1o and Hif-20 do not have the same targets [55].

7.1.2 Hifs and Angiogenesis

Both Hif-1a and Hif-2a are important modula-
tors of angiogenesis, an essential process in nor-
mal development, as well as in pathological
conditions such as cancer. Hif-1a. is required for
proper vascularization of the mouse embryo
[121]. Hypoxia and Hifs induce expression of
vascular endothelial growth factor A (VEGF-A)
and other proangiogenic factors [35].

VEGF-A is a homodimeric glycoprotein of 45
kDA, which belongs to the dimeric cysteine-knot
growth factor super-family. VEGF-A is a major
regulator of angiogenesis and is also a most
potent angiogenic factor [32, 171]. The mouse
VEGF-A gene encodes at least three isoforms
(VEGF120, VEGF164, and VEGF188) that arise
via alternative splicing [54, 149]. In contrast to
the two other isoforms, VEGF120 does not bind
the extracellular matrix component heparan
sulfate, an important signaling proteoglycan [23,
119]. VEGF-A may have a survival function in
hematopoietic stem cells, acting through an
internal autocrine loop [36].

A role of VEGF-A as a critical mediator of the
survival action of Hif-1a is still under investiga-
tion. Paradoxically, in Hif-la null embryos,
VEGF-A expression is increased, not reduced,
and vascular regression appears to be secondary
to mesenchymal cell death, rather than to
VEGF-A deficiency [25,78].

7.1.3 Hifs and Autophagy

Hypoxia and Hif-1a, but not Hif-2a, modulate
the autophagic process. Autophagy is lysosomal-
dependent and is activated in numerous stress
conditions. In autophagy, cells digest their cyto-
plasm and organelles; this provides macromol-
ecules for energy generation and helps the cells
to survive [63, 85, 134]. The term autophagy was
introduced by deDuve, who discovered lyso-
somes, and provided the first evidence that lyso-
somes are involved in autophagy. Autophagy is
linked to a variety of conditions of health and
disease, including development and differentia-
tion, cancer, tissue degeneration, and infections.

Autophagy can be differentiated into two classes:
“microautophagy” and “macroautophagy” [85].
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Microautophagy involves the direct engulfment of
cytoplasm by the lysosomes; macroautophagy
refers to the formation of a double-membrane
vesicle that contains portions of cytoplasm and
subsequently fuses to the lysosome. Autophagy is
essential in mitochondrial homeostasis; moreover,
the autophagic process, which is also triggered by
endoplasmic reticulum (ER) stress, is required to
counterbalance the expansion of ER during the
unfolded protein response (UPR) [6, 164]. Auto-
phagy can promote either survival, or if prolonged,
canlead to death [134]. Hypoxia triggers autophagy
and promotes cell survival with the aid of mecha-
nisms that may involve Hif-1a. [5, 107, 150, 172].
The hypoxic stress is also a trigger of UPR [31].
This could be a mechanism by which hypoxialeads
to autophagy.

7.2 Hifs and Chondrocytes

Skeletal development depends on two mecha-
nisms, intramembranous and endochondral [69].
In the first, mesenchymal cells develop directly
into osteoblasts and form the flat bones of the
skull. The second, accounting for the develop-
ment of most other bones, involves a two-stage
mechanism,whereby chondrocytes form a matrix
template, the growth plate, which is then replaced
by bone. During endochondral bone develop-
ment, growth-plate chondrocytes undergo well-
ordered and controlled phases of cell proliferation,
maturation, and death. Proliferative chondro-
cytes synthesize collagen type II and form a
columnar layer. They then stop proliferating
and differentiate into postmitotic hypertrophic
cells. Hypertrophic chondrocytes predominantly
express type-X collagen and mineralize their
surrounding matrix. Differentiation is followed
by death of hypertrophic chondrocytes, followed
by blood vessel invasion, and finally, by replace-
ment of the cartilaginous matrix with bone.

The fetal growth plate is unique among mes-
enchymal tissues, because it is avascular and
requires an angiogenic switch for bone to replace
it. Consistent with its avascularity and differing
from what is observed in a postnatal setting [132],
the fetal growth plate contains a hypoxic central
region [125]. The presence and degree of hypoxia

in mammalian fetal cartilage can be made evi-
dent by injecting EF5, a marker for bioreductive
activity, into pregnant female mice at various
gestational times. EF5 reacts with cytoplasmic
proteins in hypoxic cells; these adducts can be
detected with a specific antibody [81, 92]. By this
analysis, the fetal chondrocytic growth plate has
been shown to bind to EF5, with no binding
detected in the surrounding soft tissues. The
most hypoxic chondrocytes are in the round pro-
liferative layer near the joint space, in the center
of the columnar proliferative layer and in the
upper portion of the hypertrophic zone (Fig.7.2)
[125]. The EF5 findings document a gradient of
oxygenation, from the proliferative to the hyper-
trophic zone, as well as from the outer to the
inner region of the fetal growth plate. The high
rate of O, diffusion to the mineralized hypertro-
phic layer may be the reason for the hypoxic con-
dition of the early hypertrophic chondrocytes,
even though they are located near the blood ves-
sels of the primary spongiosa [125].

7.2.1 Hif-1ocand Chondrocyte Survival

The analysis of genetically modified mice has
demonstrated that Hif-1a is essential for endo-
chondral bone development. No such role has
been documented for Hif-2a.

Figure7.2. Histological section of the proximal epiphysis of an E15.5
mouse tibia. Staining with the marker of hypoxia, EF5 (red signal), shows
that in an E15.5 mouse tibia growth plate, the round proliferative layer,
the center of the columnar layer, and the upper hypertrophic zone are
highly hypoxic (red signal), whereas, consistent with extensive vascular-
ization of the primary spongiosa, the late hypertrophic chondrocytes are
not hypoxic. (Reprinted from Schipani et al. [125], with the permission of
Cold Spring Harbor Laboratory Press).
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With the aid of a Cre-loxP conditional knock-
out strategy in which the Cre recombinase is
driven by a fragment of the collagen type II pro-
moter (Col2al-Cre) and a floxed Hif-1a allele, it
has been possible to demonstrate the critical and
nonredundant role of Hif-1a in endochondral
bone development [125]. As chondrocytes null
for Hif-1a (Col2al-Cre; Hif-1a"f) undergo mas-
sive cell death, particularly in the center of the
developing growth plate, Hif-1a is essential for
the survival of hypoxic chondrocytes in vivo
[125] (Fig.7.3). Death of cells at the center of the
developing growth plate is not preceded by ecto-
pic hypertrophy [125]. This suggests that chon-
drocyte death secondary to lack of Hif-1a is
different at the molecular level from chondrocyte
apoptosis that precedes blood vessel invasion and
replacement of cartilage with bone.

Hif-1o is essential for hypoxic chondrocytes,
but whether downstream mediators assure Hif-1a
survival of chondrocytes is unknown. Hif-1o. may
regulate energy metabolism. The mRNA that
encodes PGK1, a key enzyme of anaerobic glycol-
ysis, is strikingly upregulated in the fetal growth
plate [125], whereas PGK1 mRNA expression is
reduced to background levels in the Col2al-Cre;
Hif-1af growth plate [125]. These findings indi-
cate that in the absence of Hif-1c, anaerobic glyc-
olysis is impaired and hypoxic chondrocytes
cannot maintain adequate ATP levels. The more
severe hypoxia of Hif-1o—null chondrocytes [125]
may be owing to the greater O, consumption by
their mitochondria, inasmuch as Hif-1o inhibits
mitochondrial activity.

Hif-1o. may promote survival of hypoxic chon-
drocytes by upregulating VEGF-A. In the fetal
growth plate, VEGF-A is expressed in late hyper-
trophic chondrocytes, where it is critical for blood
vessel invasion and replacement of cartilage by
bone [37,94,153,167,169,170].1tis also expressed,
although at a considerably lower level, in the cen-
ter of the proliferative and upper hypertrophic
layers, i.e., in the hypoxic zones of the growth
plate [111, 169]. VEGF-A expression in the
“hypoxic” domain of the growth plate is Hif-1o.-
dependent [111] [26, 110]. On the basis of these
findings, VEGF-A may well be a downstream
mediator of the survival function of Hif-1a.
Consistent with this inference is that the univer-
sal knockout of VEGF164 and VEGF120 and the
conditional knockout of all three VEGF-A iso-
forms leads to chondrocyte death in the center of
the proliferative layer and in the upper hypertro-
phic zone of the fetal growth plate [95, 169, 171].
Although the degree of death is lower than what
is observed in the Hif-1o-deficient growth plates,
the conditional knockout of all three VEGF iso-
forms clearly mimics what happens in the Hif-
lo—deficientgrowth plates [98,173].Paradoxically,
VEGF-A expression is upregulated in viable
chondrocytes adjacent to the area of cell death in
the Hif-1a-deficient growth plate [125]. The ques-
tion therefore remains open as to whether
VEGF-A is a critical downstream effector of the
Hif-1a survival function. VEGF-A binds to and
activates two tyrosine kinase receptors, VEGFR1
(Flt-1) and VEGFR2 (KDR/Flk-1), which regulate
both physiological and pathological angiogenesis

Figure 7.3.

Histological sections of the distal epiphysis of newborn control (a) and Col2a1-Cre; Hif-1c./" (b) mouse tibias stained with H & E.The

center of the mutant growth plate is dramatically hypocellular as a consequence of massive central cell death. (Reprinted from Schipani et al.[125],

with the permission of Cold Spring Harbor Laboratory Press).
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[133]. Interestingly, fetal growth-plate chondro-
cytes neither express VEGFR2 nor VEGFR1; how-
ever, neuropilin-1 and 2, which are coreceptors
for VEGF164 ligand, and VEGFR3, which does
not bind VEGF-A, are present in chondrocytes.
Autophagy is another survival mechanism
adopted by Hif-1a in hypoxic cells [129]. Chon-
drocyte death secondary to lack of Hif-la
may involve the autophagic pathway, inasmuch
as accumulation of autophagic proteins such as
Beclinl in chondrocytes is a function of Hif-1a., at
least in vitro [9]. Moreover, the lysosomal-depen-
dent process of autophagy functions in growth-
plate chondrocytes [131]. Therefore, chondrocyte
survival in a hypoxic environment may indeed
involve upregulation of the autophagic process.

7.2.2 Hif-10and Chondrocyte
Proliferation

Studies of gain-of-function mutations of the
Hif-1o.-mediated pathway in chondrocytes have
shown that this transcription factor also modu-
lates chondrocyte proliferation. Mice that lack
pVHL in chondrocytes are viable, though
severely dwarfed [111]. They have increased Hif-
lo transcriptional activity in cartilage and their
pVHL-deficient growth plates are remarkably
hypocellular, with the chondrocyte proliferation
rate markedly decreased. This inhibition is
reversed in the Col2al-Cre; Hif-1a!/f VHLY/!
double-mutant mice that lack both VHL and
Hif-1a.. Therefore, Hif-loo accumulation sup-
presses chondrocyte proliferation. Lack of VHL
reduces cell proliferation in an in vitro fibrosar-
coma model [93]. Moreover, in fetal growth
plates deficient in Hif-1a, the proliferation rate
of viable chondrocytes is strikingly increased
[125]. Finally, hypoxia leads to cell cycle arrest in
the G1/S phase, at least in part through upregu-
lation of Hif-1a. transcriptional activity [41].
Recent work has suggested that Hif-1a induces
expression of cyclin kinase inhibitors by antago-
nizing c-Myc [77]. In VHL-deficient growth
plates, the expression of the cyclin kinase inhibi-
tor, p57, is increased [111], whereas the cyclin
kinase inhibitors, p21 and p27, are elevated in the
VHL-null fibrosarcoma model [41]. Additionally,
cyclin G2, a cell cycle inhibitor, is upregulated by

hypoxia [113, 162]; this indicates that modula-
tion of cyclin G2 expression may be an addi-
tional tool used by the hypoxia/VHL/Hif-1a
pathway to control cell proliferation.

7.2.3 Hifs and Chondrocyte
Differentiation

An essential and specific function of chondro-
cytes is to synthesize extracellular matrix, whose
two principal components are proteoglycans and
collagens [72]. Hypoxia and Hifs increase carti-
laginous matrix and thus drive mesenchymal
cells to differentiate into chondrocytes. Growth
plates of Col2al-Cre; VHLY" mice have more
matrix in-between cells [111]; moreover, hypoxia
leads to a Hif-1o-dependent increase in collagen
type II protein in monolayer culture of mouse
primary chondrocytes [110]. Embryonic mesen-
chymal condensations, which exclude blood ves-
sels, are highly hypoxic and express Hif-1o in
both limb bud and axial skeleton [3, 113].
Moreover, hypoxia-inducible reporter mice
(5XHRE-LacZ reporter) show activation of the
reporter in mesenchymal condensations [113].
Lastly, in conditional knockout mice (Prx1-Cre;
Hif-1a/f), whose Hif-1a is inactivated in limb-
bud mesenchyme, Hif-1o stimulates mesenchy-
mal cells to differentiate into chondrocytes [3,
113]. Prx1 is a homeobox gene that is expressed
predominantly in mesenchyme [147]. Prx1-Cre
mice express Cre recombinase largely in limb-
bud mesenchyme, starting from E9.5, before any
condensation forms [91]. Analysis of Prx1-Cre;
Hif-1a/f has shown that Hif-1a is not required
for the formation of precartilaginous condensa-
tions [3,113],but has a nonredundant and critical
role in the differentiation of mesenchymal cells
into chondrocytes. Lack of Hif-1a in limb-bud
mesenchyme causes a remarkable delay in carti-
lage formation [3, 113], and the findings were
confirmed in vitro [3, 118, 163]. The findings
demonstrate the positive role of Hif-1a in chon-
drocyte differentiation and establish its essential
role in endochondral bone development.

The role of hypoxia and Hif-1a in cell differ-
entiation is tissue-specific, because Hif-1o. main-
tains stem cells in an undifferentiated state [47,
62, 64, 87, 123, 135], inhibits differentiation of
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mesenchymal cells into osteoblasts, adipocytes,
and myocytes [124, 135, 165, 166],and yet stimu-
lates the differentiation of trophoblastic cells
and dopaminergic neurons and chondrocytes
[28,101, 135, 143].

Regulation of posttranslational modification
of collagens, with hydroxylation of collagen
prolines, in particular, is one modality by which
Hif-1a regulates chondrocyte differentiation.
Prolyl-4-hydroxylases I and II (P4Hal and
P4Hall) are the enzymes responsible for gener-
ating 4-hydroxyprolines in the collagens; these
are essential for the formation of triple-helical
collagens. P4Has are a. 3, tetramers [103]; the o
subunit contains the major portion of the cata-
lytic site [103]. Because more 3 subunit than a
subunit is produced [103], enzymatic activity is
limited by the abundance of the o subunit. Two
isoforms of o have been characterized, namely I
and II, which form the P4Hal and P4Hall
tetramers, respectively [103]. The ol B, tetramer
(P4Hal) is the main enzyme form in most cell
types and tissues, whereas at least 70% of the
total prolyl-4-hydroxylase activity in cultured
mouse chondrocytes is due to the allf,
(P4HalI) enzyme.In mouse cartilage, it amounts
to about 80% [4]. The P4Hall is also the main
enzyme form in capillary endothelial cells [4].
P4Hal and II require Fe**, 2-oxoglutarate, and
O, for their enzymatic activity [103], with ascor-
bate required to maintain the iron ions in their
biologically active Fe** form. P4Has have much
lower Km for O, than the PHDs, which trigger
Hif-1o. degradation (20 vs. 250, respectively)
[52]. This indicates that P4Has require a mini-
mal amount of O, for proper function, i.e., they
still function enzymatically atlow O, levels [54].
The a subunits of P4Hal and P4HalI are targets
of hypoxia in chondrocytes and other cell types
in a Hif-1o-dependent fashion [44, 53,113, 145].
Proper accumulation of extracellular matrix is
not only essential for organ development, but
also promotes cell differentiation and survival
through specific cell-matrix interactions
[30, 144]. Hif-1o. may thus operate as a survival
and differentiation factor in chondrocytes,
improving the efficiency of posttranslational
modifications of collagen type II and, in doing

so, promote the formation of a proper extracel-
lular matrix. A defect in posttranslational
hydroxylation of collagens leads to a decrease in
extracellular matrix and an increase in under-
hydroxylated collagens. This in turn may trig-
ger a UPR [105, 151, 173] and may be a cause of
the delayed chondrogenesis in mice that lack
Hif-1o in limb-bud mesenchyme. The positive
effect of Hif-lo on matrix accumulation in
chondrocytes is consistent with the role of
hypoxia in promoting fibrosis in pathological
conditions [51].

Hypoxia and Hif-1a may also modulate chon-
drogenesis by upregulating expression of Sox9
[3, 118], a master regulator of chondrogenesis
[2, 56, 83, 136]. In mouse bone marrow stromal
(ST2) cells, in particular, hypoxia brings about
an increase in nuclear accumulation of Hif-1a
and Sox9 transcription [118]. Similar findings
have been reported in limb-bud micromass cul-
tures [3], but not in primary chondrocytes or ex
vivo metatarsal explants [113].

On the basis of a teratoma model in which
Hif-20 had been knocked into the Hif-1a locus,
Hif-2a may have a role in chondrocyte differen-
tiation and chondrogenesis [26]. Hif-2a. is also
elevated during chondrocyte differentiation, but
no role in endochondral bone development has
yet been reported [140].

7.2.4 Hif-10and Joint Development

Hif-1a protein and VEGF-A mRNA are particu-
larly abundant in the highly hypoxic developing
joints, possibly because the avascular perichon-
drium surrounding them is thickened [113].
Even after the joint space has formed, articular
chondrocytes are significantly more hypoxic
than the rest of the cartilage [113]. Lack of Hif-
lo in limb-bud mesenchyme delays joint devel-
opment, without altering the thickening of the
perichondrium [3, 113]. Thickening of the per-
ichondrium, therefore, precedes joint formation
and is likely to be critical for joint development.

GDF5, Wntl4, and Noggin are essential regu-
lators of joint development [12, 46, 50, 74, 141].
Interestingly, microarray experiments have
shown that brief exposure to 1% O, does not
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induce GDF5, Wntl4, or Noggin mRNA expres-
sion in ex vivo metatarsal explants [113]. This
finding indicates that these factors are not a
direct, transcriptional target of Hif-1c. Similar
results were obtained with primary chondro-
cytes briefly cultured in hypoxic conditions
[113]. Inasmuch as chondrogenesis and joint
formation are tightly coupled [76], the delay of
early chondrogenesis, secondary to the lack of
Hif-1o, may impair joint formation. However,
because of the pronounced expression of Hif-
la in the prospective joint, the delayed joint
formation associated with loss of Hif-lo. may
not be the only consequence of a delay in early
chondrogenesis.

7.2.5 Articular surface chondrocytes
and Hifs

Like the fetal growth plate, articular cartilage is
also an avascular tissue, which depends on syn-
ovial fluid diffusion for its metabolic needs [40].
Hypoxia upregulates the expression of cartilage
matrix genes in human articular chondrocytes
[102]. With the aid of RNA interference, it has
been shown that Hif-2a, not Hif-1a,, is necessary
for Sox9 induction of key cartilage genes in
articular surface chondrocytes [79]. Moreover,

low O, enhances chondrogenesis of mesenchy-
mal stem cells (MSCs) in vitro. These stem cells
may be candidates for cell-based articular carti-
lage repair, involving a mechanism that utilizes
Hif-2a rather than Hif-1a [71]. Nevertheless, the
role played by Hif-2a in the developing articular
surface chondrocytes is as yet uncertain.

7.3 Hif-1s and Osteoblasts

7.3.1 Hifsin Bone Modeling
and Remodeling

Hypoxia is also responsible for coupling angio-
genesis and bone formation. Osteoblasts, like
other oxygen-sensitive cells, express components
of the Hif-1 pathway. Studies in the late 1990s
have shown that hypoxia is a potent stimulator of
VEGF-A mRNA expression in osteoblastic cells
[139]. More recently, manipulation of the Hif-1a
pathway in osteoblasts has led to overproduction
of VEGF-A and a dramatic increase of bone [158]
(Fig.7.4). Mutant mice that lack VHL in fully dif-
ferentiated osteoblasts (AVHL) and thus overex-
press Hifs, have a strikingly increased bone
volume. Conversely, lack of Hif-1a in osteoblasts
(AHif-1o.) negatively impacts bone volume.

Control

AVhl

Figure 7.4.  MicroCT of 6-week-old control (a) and AVHL (b) femurs; cross-sections are shown. Lack of VHL in osteoblasts results in dramatic
increase in bone volume. Reprinted with permission from Wang et al. [158], with permission from the American Society for Clinical Investigation).
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Moreover, bone formation in ovariectomized
AHif-1o. female mice is significantly more
reduced than in ovariectomized wild-type mice
[90]. The amount of bone in both AVHL and
AHif-1o. mice is directly proportional to the
amount of skeletal vasculature. This suggests that
regulation of bone mass in these mutants may be
secondary to regulation of VEGF-A and angio-
genesis. Consistent with this idea, VEGF-A mRNA
expression is upregulated in trabecular bone of
AVHL mice. In addition, in an ex vivo assay,
AVHL metatarsals exhibit a dramatic increase in
endothelial sprouting, which is entirely reversed
by pre-incubation with an anti-VEGF neutraliz-
ing antibody. However, the putative mechanisms
responsible for coupling angiogenesis to osteo-
genesis in both AVHL and AHif-1o mice remain
to be determined. It has been proposed that the
vascular setting provides a true niche for peri-
cytic MSC-like cells and could be a source of
osteoprogenitors or MSCs with osteogenic poten-
tial [122]. Thus, the VEGF-dependent increase in
angiogenesis observed in AVHL mice leads to
more bone by providing a larger pool of MSCs.
However, VEGF-A has also been reported to
be critical for osteoblast differentiation. In par-
ticular, mice that express only the VEGF120 iso-
form exhibit both delayed invasion of the vessels
into the primary ossification center and altered
osteoblastic differentiation in vitro [170].
Interestingly, hypoxia per se is an inhibitor of
osteoblast differentiation in vitro [124], which
further suggests that the dramatic increase in
bone volume in mice lacking pVHL in osteoblasts
is not a cell-autonomous effect, but is rather sec-
ondary to the increase in blood vessels.
Numerous factors other than hypoxia stabilize
Hif activity and increase VEGF-A expression in
osteoblasts; an example is insulin-like growth fac-
tor (IGF) I. In human osteoblast-like cells, IGF-I
induces a rapid, threefold increase in VEGF-A
mRNA [1]. This is accompanied by an increase in
Hif-20 protein without a corresponding change
in Hif-2a. mRNA expression [1]. IGF-I also stimu-
lates phosphorylation of Akt, which is abolished
by pretreating the cells with the phosphatidylinosi-
tol-3 kinase (PI3K) inhibitor, LY294002. Treatment
with this inhibitor also significantly reduced
Hif-2 o accumulation and induction of VEGF
mRNA expression by IGF-1. Thus, IGF-1 appears

to induce VEGF-A expression in osteoblasts by
increasing the accumulation of Hif-2a protein in
a PI3K-dependent fashion [1]. These findings
highlight a potential role for Hif-2a. in osteo-
blasts, that needs to be documented in vivo.

Interestingly, manipulation of Hif levels in
osteoblasts does not noticeably influence the
formation of the flat bones of the skull. The cal-
varial bones are formed through an intramem-
branous process, in which mesenchymal cells
differentiate directly into osteoblasts without an
intermediate avascular cartilaginous template. It
is possible that signals from cranial sutures and/
or from the dura induce the angiogenesis neces-
sary for intramembranous ossification. This
would explain the lack of blood vessel and bone
phenotypes in the skull of AVHL- and AHif-1o.-
mutant mice.

7.3.2 Hifsin Bone Regeneration
and Repair

Angiogenesis is essential for bone repair. It has
been proposed that at fracture sites mechanical
loading stimuli, along with hypoxia that results
when the vascular and nutrient supply is inter-
rupted, initiate the events that lead to bone repair
[29]. If angiogenesis is delayed, chondrocytic
cells, rather than osteoblasts, make up the healing
tissue. This suggests that Hifs play a role in allo-
cating mesenchymal lineage during repair [22].
Distraction osteogenesis (DO) is valuable for
examining the cellular mechanisms that couple
angiogenesis and bone formation during repair
and regeneration. In DO, intramembranous bone
formation is induced by the application of an
external fixation device that applies gradual
mechanical distraction across an osteotomy [57].
This procedure leads to a close temporal and
spatial relationship between bone formation and
vascular proliferation [29]. DO has also been
used to investigate the role of Hif-1la in bone
healing. In AVHL mice, loss of VHL at sites of DO
is accomplished by increases in Hif-1a protein,
in VEGF-A mRNA and protein, and in endothe-
lial cells, leading to more blood vessels and more
dense woven bone [154]. At DO sites in AHif-1o
mice, the opposite takes place, namely deficient
angiogenesis and delayed bone consolidation
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[154]. Additionally, the mRNA and protein
expressions of VEGF-A and osteoblast markers
Runx2, alkaline phosphatase (ALP), and osteo-
calcin (OC) are decreased, but increased in AVHL
[89]. Perhaps not surprisingly, desferrioxamine
(DFO), a small molecule that, when administered
directly into the distraction gap blocks the PHD
activity and thus elevates Hif-1a, can improve
healing in a manner virtually identical to that
seen when Hif-1a is activated [154]. These stud-
ies provide proof for the principle that a thera-
peutic approach that modulates the Hif pathway
may speed bone healing.

Numerous studies have highlighted the role of
VEGF-A receptor signaling in bone repair and
regeneration. Both receptors, which have different
affinities for the VEGF-A ligands [16], are
expressed by osteoblasts [49, 142]. During normal
DO, both VEGFRI and VEGFR2 and all three
VEGF-A isoform mRNAs are induced. Moreover,
inhibition of VEGF-A activity in the distraction
gap by antibody blockade of VEGFR1 and VEGFR2
leads to a dramatic decrease in bone formation
and a smaller number of blood vessels [61].

7.4 Hifs and Osteoclasts

Bone development demands a continuous supply
of bone-resorbing osteoclasts, cells that are
derived from the monocyte lineage and are multi-
nucleated. Experimental evidence in favor of a
role of Hif-1a as a survival factor for osteoclasts
has been reported recently. Mice that lack the
transcription factor Fra2 or are impaired in leu-
kemia inhibitory factor (LIF) signaling display
giant osteoclasts, and their bone marrow is highly
hypoxic. This lack of oxygen may be the conse-
quence of a placental defect that at the same time
causes Hif-1a protein to accumulate in the bone
[10]. Formation of tartrate-resistant acid phos-
phatase (TRAP) positive cells from fetal liver pro-
genitors is significantly augmented by hypoxia
[10]. These findings suggest that hypoxia together
with Hif-1a favor formation, activity, and sur-
vival of multinucleated osteoclasts.

When the mouse leukemic monocyte cell line
RAW 264.7 is exposed to hypoxia, the expression
of the osteoclast markers of calcitonin receptors

and cathepsin K is increased and their differen-
tiation into TRAP-positive osteoclast-like cells is
favored [138]. Hypoxia also positively modulates
osteoclastogenesis in vitro because the support-
ing osteoblastic stroma releases IGFII [34]. Lastly,
cultured monocyte-derived osteoclasts upregu-
late the Hif pathway in hypoxic conditions [75].

VEGF-A regulates osteoclastic differentiation,
migration, and activity. Cells of the monocyte
lineage express VEGFR1, and VEGF-A can sub-
stitute for M-CSF as a costimulator to support
osteoclastogenesis in the presence of the recep-
tor activator for nuclear factor kappa-B ligand
(RANKL) [75,104]. Moreover, osteoclasts stimu-
late angiogenesis by producing a variety of
proangiogenic factors [15, 146]. These findings
are in line with the well-known antiangiogenic
properties of antiresorptive agents such as bis-
phosphonates [15], and with the findings that
macrophages that share the same lineage with
osteoclasts, express numerous proangiogenic
factors [86]. Macrophage survival and activity in
pathological settings such as inflammation are
Hif-1o-dependent [27].

7.5 Summary

This chapter has highlighted the critical role of
hypoxia and Hif-1a in cartilage development
and bone modeling, remodeling, and regenera-
tion. It will now be important to identify molec-
ular mechanisms that mediate the complex and
multifaceted action of this transcription factor
in chondrocytes, osteoblasts, and osteoclasts.
Identifying these mechanisms will significantly
expand our understanding of normal cellular
adaptation to hypoxia as well as bone and carti-
lage homeostasis.
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8.1 Introduction

Bone is a dynamic tissue that provides skeletal
support to the body and is essential in the main-
tenance of hematopoiesis and calcium homeosta-
sis. Bone development and remodeling are tightly
regulated by local paracrine factors and systemic
hormones. Bone morphogenic proteins (BMPs)
were first identified in the 1960s as proteins with
the ability to induce ectopic cartilage and bone
formation in vivo [87]. The proteins, however,
were not identified until the late 1980s, when sev-
eral polypeptides with BMP activity were cloned
and purified [94]. To date, more than 20 BMP-
related proteins have been identified and charac-
terized. These molecules constitute the BMP
family of secreted factors and form a subgroup of
the transforming growth factor B (TGFp) super-
family. Extensive studies have shown that BMPs
are also essential for nonosteogenic developmen-
tal processes. For example, BMPs play roles in
dorsal-ventral patterning, specification of the epi-
dermis, development of neuronal phenotypes,
tooth development, and regulation of apoptosis
[10,16,21,26,61,105]. The mechanisms by which
BMPs regulate these processes will not be dis-
cussed here. This chapter will focus on how BMP
signaling and crosstalk between other signaling
pathways controls chondrogenic, osteogenic, and
adipogenic processes.

125

8.2 The BMP Signaling pathway

The regulation of cellular responses by BMPs is
mediated by at least two distinct pathways: the
canonical Smad pathway and the noncanonical
mitogen-activated protein kinase (MAPK) path-
ways [11, 53, 89]. BMP signaling is transduced
through type I and type II transmembrane ser-
ine/threonine kinase receptors. So far, three
type II receptors that bind to the BMP ligands
have been identified: type II BMP receptor
(BMPRII), and type ITIA and IIB activin recep-
tors (ActRIIA and ActRIIB) [38, 64, 74, 96].
Three type I receptors have also been identified:
activin receptor-like kinase (ALK) 2, ALK3/
BMPRIA, and ALK6/BMPRIB [42, 51, 85]. The
pattern of oligomerization of the type I and
type II BMP receptors is flexible and susceptible
to modulation by ligand binding. Specifically,
prior to ligand binding, a low level of preformed
type I and II BMP heteromeric complexes is
present on the cell surface. However, the major
fraction of BMP receptors is recruited into the
heteromeric complexes only after ligand bind-
ing [19]. Binding of BMP-2 to preformed heter-
omeric BMP receptor complexes triggers the
canonical Smad pathway, whereas binding of
BMP-2 with the consequent formation of heter-
omeric receptor complexes triggers the MAPK
pathway [63].
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In the canonical Smad pathway, the type II
receptors phosphorylate serine and threonine
residues of the type I receptors upon ligand
binding. In turn, activated type I receptors
phosphorylate and thereby activate a subgroup
of the Smad family of proteins, called receptor-
regulated Smads (R-Smads: Smadl, 5, and 8).
Activation is at serines present in their con-
served C-terminal SSXS motif. Subsequently,
the activated R-Smads form a trimeric complex
with a common-partner Smad, Smad4, a com-
ponent of both the TGFB and BMP signaling
pathways. The R-Smad/Smad4 complex trans-
locates into the nucleus and regulates the tran-
scription of genes by interacting with the
DNA-binding proteins or by binding directly to
the DNA containing Smad-binding elements. In
the noncanonical Smad signaling pathway,
BMPs signal via the MAPK pathway by activat-
ing TGFP activated kinase 1 (TAK1). TAKI
leads to the activation of several MAPKs,
including JNK, p38, and extracellular signal-
regulated kinases (ERKs) [57, 89].

Several mechanisms regulate the duration
and intensity of BMP signaling. BMP-mediated
responses are regulated extracellularly by antag-
onists, such as decorin, noggin, and chordin,
while BMP responses are regulated intracellu-
larly through attenuation of R-Smad activity by
scaffolding proteins that can sequester R-Smad
proteins, by inhibitory phosphorylation of
R-Smads by MAPK that blocks their nuclear
entry, and by the actions of the inhibitory Smads
(I-Smads), Smads6 and 7.

I-Smads are structurally related to R-Smads,
but lack the C-terminal phosphorylation
site present on R-Smads. I-Smads can act as
intracellular antagonists of BMP signaling
by forming stable associations with activated
type I receptors, thereby preventing the phos-
phorylation of R-Smads [28, 59]. I-Smads
can also compete with activated R-Smads for
interaction with Smad4 [24]. I-Smads inhibit
BMP signaling by recruiting the Smad ubiq-
uitin regulatory factor (Smurf) family of E3
ubiquitin ligases to their respective type I
receptors,causingtheubiquitinationand degra-
dation of activated type I receptors [37, 58,
83, 84].

8.3 BMP Signaling

in Mesenchymal Cell
Condensation and Commitment
to Chondrogenic Lineage

The process of bone formation begins with
aggregation and condensation of mesenchy-
mal cells. This process is associated with an
increase in cell-cell and cell-matrix contacts
and interactions, which are the result of
increased expression and activity of cell adhe-
sion molecules (CAMs), such as neural cad-
herin (N-cadherin) and neural cell adhesion
molecule (N-CAM). N-cadherin interacts with
the actin cytoskeleton through the formation
of afunctional complex with cytoplasmic caten-
ins, such as a- and B-catenin [25, 60]. The spa-
tiotemporal expression pattern of N-cadherin
in the developing limb bud suggests that it
is required in chondrogenesis. In turn, when
N-cadherin activity is disrupted in vitro by
NCD-2, an antibody directed against the func-
tional region of N-cadherin, cell condensation
and chondrogenesis are inhibited in the micro-
mass cultures of the limb-bud mesenchymal
cells. Inhibiting N-cadherin activity in vivo
interferes with the development of the embry-
onic limb bud [65].

BMP signaling is essential in prechondrogenic
condensations, with inhibition of BMP signaling
by overexpression of either Smad7 [30] or nog-
gin [6, 71] blocking condensation. BMPs pro-
mote mesenchymal cell condensation partly by
upregulating N-cadherin expression and func-
tion [22]. This may involve crosstalk with the
Wnt signaling pathway, because BMP-2 modu-
lates the expression of B-catenin and Wnt family
members,including Wnt-3a and Wnt-7a,in high-
density micromass cultures of the C3H10T1/2
mesenchymal progenitor cell line [15]. Specifi-
cally, BMP-2 upregulates Wnt-3a expression and
overexpression of Wnt-3a enhances BMP-2-
mediated chondrogenesis of C3HI10T1/2 cells
through the stabilization of B-catenin and regu-
lation of N-cadherin-mediated adhesion [14]. In
contrast, BMP-2 downregulates Wnt-7a expres-
sion [15] and retroviral expression of Wnt-7a
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blocks the progression of condensation of limb-
bud micromass cultures through alterations in
the expression of CAMs [82]. It can be inferred
from these studies that crosstalk between BMP
and Wnt signaling pathways regulates the initial
events in mesenchymal condensation and pro-
motes the commitment of these cells to the chon-
drogenic lineage.

8.4 BMP Signaling
in Chondrogenesis

Bone is formed by intramembranous or endo-
chondral ossification [44, 72, 102]. Intramem-
branous ossification leads to the formation of
flat bones, especially those found in the skull,
where mesenchymal cells condense and directly
differentiate into osteoblasts. Endochondral ossi-
fication is the process by which most other bones
are formed. Subsequently, mesenchymal cells
condense and then differentiate into chondro-
cytes that form a matrix template, the growth
plate, which is invaded by blood vessels and
osteoblasts to initiate ossification.

The chondrocytes in the growth plate undergo
a complicated differentiation program of prolif-
eration, maturation, and apoptosis [44, 72, 104].
At the center of condensation, mesenchymal
cells differentiate into round, slowly proliferat-
ing chondrocytes that express various extracel-
lular matrix and CAMs, such as type II collagen,
aggrecan, N-cadherin, and N-CAM, as well as
the transcription factor, Sox9. The cells at the
border of condensation form the perichon-
drium. The chondrocytes then align to form a
columnar layer of flattened cells that proliferate
rapidly and express low levels of the transcrip-
tion factors, Runx2 and Osterix. Chondrocytes
then exit the cell cycle to undergo hypertrophic
differentiation and to express the signaling fac-
tor, Indian hedgehog (Ihh), as well as type-X col-
lagen. The enlarged, hypertrophic chondrocytes
terminally differentiate, mineralize,and undergo
apoptosis. Expression of type-X collagen, Runx2,
and growth factors that control chondrocyte
proliferation and differentiation is enhanced in

these cells. Following chondrocyte apoptosis,
the residual cartilage matrix serves as a scaffold
for trabecular bone.

During embryonic development, BMP signal-
ing is essential for chondrogenesis. Mutations of
individual BMPs, as well as compound deletions
of either type-I BMP receptors or R-Smads,
result in skeletal defects [40, 49, 73, 81, 98].
Moreover, individual BMPs and type-I BMP
receptors are expressed in distinct and overlap-
ping regions of the growth plate; this suggests
that BMP molecules act in synergy to mediate
chondrogenic events [13,27, 50, 52, 62, 103].

8.4.1 Effect of BMP Signaling on Sox9
Expression

One of the earliest events in chondrogenesis is
the commitment of mesenchymal cells to the
chondrogenic lineage. Sox9, a member of the
Sry-related high-mobility superfamily of tran-
scription factors, is essential in this process. Sox9
is expressed in all cartilage primordia [3], spe-
cifically in prechondrogenic condensations dur-
ing embryogenesis [95]. In mouse chimeras,
Sox9 null cells do not participate in mesenchy-
mal condensations and fail to express chondro-
cyte-specific markers, such as type-II collagen
and aggrecan [3]. Sox9 also plays a role in chon-
drocyte differentiation and maturation. Sox9
haploinsufficiency in vivo results in defective
cartilage primordia and premature mineraliza-
tion [4]. In vitro, both Sox9"~ and Sox9~'~ mouse
embryonic stem cells show reduced type-II col-
lagen expression and Alcian blue staining, exhib-
iting defects in maturation [23]. Several studies
indicate that BMP signaling directly regulates
Sox9 expression. In particular, Sox9 expression
is upregulated in vitro in BMP-2-induced chon-
drogenesis of C3H10T1/2 cells and in mouse
embryonic fibroblasts. In both cell types, Sox9
expression is required for BMP-2-mediated
chondrogenesis. When antisense Sox9 nucle-
otides downregulate Sox9 expression and when
Sox9 expression is downregulated by Sox9-
targeted siRNA, type-II collagen expression and
Alcian blue staining are reduced [69, 101]. The
regulation of Sox9 expression by BMP is direct; a
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CCAAT box on the Sox9 promoter is the regula-
tory sequence responsible for BMP-2-induced
Sox9 expression [69]. The mechanism by which
BMP-2 activates Sox9 expression is attributed to
BMP-2-induced association of NF-Y transcrip-
tion factors with p300, which may contribute to
chromatin remodeling at the Sox9 proximal pro-
moter region [68, 69].

8.4.2 C(rosstalk Between BMP Signaling
and Other Signaling Pathways: lhh/
PTHrP and FGF

One of the other signal pathways besides BMP
that regulates chondrocyte proliferation and dif-
ferentiation involves the secreted signaling fac-
tors, Thh and parathyroid hormone-related
protein (PTHrP). Loss of Ihh leads to reduced
proliferation and premature maturation of chon-
drocytes [80]. Similarly, loss of PTHrP results in
increased chondrocyte differentiation and accel-
erated bone growth [35]. Ihh is initially expressed
in early mesenchymal condensations and, with
the initiation of hypertrophic differentiation, it
becomes restricted to prehypertrophic chondro-
cytes. IThh stimulates the production of PTHrP in
the periarticular region of the developing bone.
Thh expression is suppressed when PTHrP sig-
nals its receptor, PP-R, which is expressed at high
levels in the transitional region between the pro-
liferating and hypertrophic chondrocytes [45,
90]. The interaction between Ihh and PTHrP
constitutes a negative feedback loop that regu-
lates hypertrophic differentiation by keeping the
chondrocytes in the proliferative state and
thereby controlling bone growth (Fig. 8.1d, f).
BMP signaling interacts with the Thh/PTHrP
pathway (see Chap. 4) by increasing the Ihh
expression in prehypertrophic chondrocytes
(Fig. 8.1h) [54, 55]. Consequently, Thh upregu-
lates the BMP expression in the adjacent peri-
chondrium and proliferating chondrocytes (Fig.
8.1g). This creates in a positive feedback loop
between the two pathways to maintain the rate
of chondrocyte proliferation [55, 70]. Evidence
that the Ihh promoter contains BMP-responsive
elements and is activated by treatment with BMP
indicates direct regulation of Ihh expression by
BMPs [73, 77]. Additional evidence of direct

Figure8.1.  Crosstalk between BMP signaling and the Ihh/PTHrP and
FGF signaling pathways. FGF signaling has the opposite effect of BMP
signaling on chondrogenesis. FGFs inhibit proliferation (a), hypertrophic
differentiation (b), and promote terminal differentiation (c). BMP signal-
ing interacts with the Ihh/PTHrP feedback loop to maintain the rate of
chondrocyte proliferation and to regulate hypertrophic differentiation.
PTHrP inhibits hypertrophic differentiation by maintaining chondrocytes
in the proliferative state (d). Ihh stimulates the expression of PTHrP in
the periarticular region (e). Ihh is expressed in the prehypertrophic
region and promotes chondrocyte proliferation (7). Ihh and BMPs pro-
mote the expression of each other (g, h). R resting zone; P proliferative
zone; PH prehypertrophic zone; H hypertrophic zone.

regulation comes from Gli transcription factors
that upregulate the promoter activity of Bmp-4
and -7, as key effectors of hedgehog signaling
[39]. Even though both the BMP and IThh/PTHrP
pathways regulate chondrocyte proliferation,
neither pathway acts downstream of the other.
In particular, double treatment with BMP-2 and
cyclopamine, which blocks IThh signaling, also
blocks chondrocyte proliferation. Similarly,
overexpression of Ihh does not overcome the
block to chondrocyte proliferation, induced by
treatment with the BMP antagonist, noggin [55].
Regulation of PTHrP expression by Ihh is also
independent of BMP signaling [55,73].

BMP signaling also interacts with the fibroblast
growth factor (FGF) signaling pathways, which
plays an important role in chondrogenesis (see
Chap. 6 of this volume). This is suggested by the
expression patterns of FGFs and their receptors in
distinct regions of the growth plate and at various
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stages of endochondral bone formation [67, 97].
The role of FGF receptors as negative regulators of
chondrocyte proliferation has been demonstrated
in humans with missense activating mutations in
Fgfr3(75,79].In addition, Fgf18 deficiency in mice
leads to increased zones of proliferative and
hypertrophic chondrocytes [48, 66]. These studies
indicate that the effect of FGF signaling on chon-
drocyte proliferation is the opposite of BMP sig-
naling (Fig. 8.la-c): FGF signaling inhibits
chondrocyte proliferation, whereas BMP signal-
ing promotes it. Similarly, FGF signaling inhibits
Ihh expression, while BMP signaling induces it
[48]. Antagonism between FGF and BMP signal-
ing in regulating chondrocyte proliferation and
Ihh expression has been confirmed in limb explant
cultures treated with FGF-2. The molecular mech-
anism by which these two signaling pathways
antagonize each other is unclear. Inactivation by
the suppression of ligand expression is not
involved, because FGF-2 upregulates the expres-
sion of Bmp-4 and Bmp-7, whereas BMP-2 upreg-
ulates the expression of Fgf18 [54]. Defects in BMP
signaling resulting from targeted deletion of type-
I BMP receptors [99] or R-Smads [73] in mouse
cartilage suggest that the inhibition of FGF signal-
ing by BMP signaling is due to the inactivation of
ERK1/2 and STAT1, partly, as the result of inhibit-
ing Fgfrl expression in the growth plate.

The mechanism by which the effectors of FGF
signaling, ERK1/2 and STAT1, are involved in
BMP/FGF antagonism has been examined in vitro.
In particular, FGF signaling inhibits BMP signal-
ing through ERK2-mediated phosphorylation of
the linker region of Smadl, thereby inactivating
Smadl via Smurfl-mediated ubiquitination and
subsequent degradation. In addition, binding of
Smurfl to linker-phosphorylated Smadl limits
the nuclear accumulation of Smad1 by inhibiting
its association with nucleoporin [76]. As these
studies were conducted with immortalized cell
linesand neuroectodermal explants from Xenopus
embryos, it is uncertain whether linker phospho-
rylation of R-Smads by ERKs or ERK/STAT inac-
tivation is the general model for BMP/FGF
antagonism. Inhibition of BMP signaling by FGFs
in the growth plate may involve inactivation of
R-Smads by inhibition of C-terminal Smad phos-
phorylation, rather than via Smad linker phos-
phorylation. In fact, stimulation or antagonism of

FGF pathways leads to respective decreases or
increases in C-terminal phosphorylated (acti-
vated) Smad1/5,but causes no change in the levels
of linker-phosphorylated Smad1/5. Interestingly,
Smadl/5 linker phosphorylation was detected
primarily in proliferating, but not in resting and
hypertrophic chondrocytes [73]. Conceivably, the
regulation of linker and C-terminal phosphoryla-
tion of R-Smads by BMP and FGF signaling is
required to tightly control the duration and inten-
sity of BMP signaling in distinct zones at the
growth plate.

8.5 BMP Signaling
in Osteogenesis

Progression from chondrocyte proliferation to
endochondral ossification requires the upregu-
lation of genes for matrix proteins, transcrip-
tion factors, and growth factors that coordinate
the initiation of mineralization and induction of
vascular invasion. BMPs can stimulate ectopic
bone formation through increased expression
of genes associated with osteoblast differentia-
tion, such as alkaline phosphatase, osteocalcin,
osteopontin, and the bone-specific transcrip-
tion factor, Runx2 [7, 46]. The function of BMPs
in osteoblasts has been extensively examined
in vitro [9]. More recently, the Cre-loxP system, in
conjunction with a promoter of an osteoblast-
specific Cre transgene, such as Collal-Cre or
Osteocalcin2-Cre, has been used to investigate
the role of BMP signaling in vivo. This system
has made the essential role of BMP signal-
ing apparent not only in osteoblast, but also in
osteoclast differentiation. Targeted deletion of
BMPRI1A in osteoblasts, obtained by mating con-
ditional BMPR1A knockout mice with transgenic
mice expressing Cre under the control of the
Osteocalcin2 promoter, led to reduced osteoblast
activity and bone mass in 3-month-old mice. In
10-month-old mutant mice, on the other hand,
bone mass was increased because of a decrease
in osteoclast activity [56]. This indicates that
BMP signaling plays an essential role in bone cell
metabolism. The age-dependent function of BMP
signaling in bone formation was further investi-
gated with the aid of a tamoxifen-inducible
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Cre-loxP system, where the administration of
tamoxifen was observed to disrupt BMP signal-
ing in osteoblasts. Targeted deletion of BMPRIA
in osteoblasts of mice, either 2 days or 2 months
old, caused the bone mass to increase after 3
weeks of tamoxifen administration because
bone resorption had decreased [33]. The differ-
ence in the bone phenotypes of the conditional
BMPRI1A knockout mice, in which Cre expres-
sion was controlled by either the Osteocalcin2 or
the Collal promoter, may involve the differences
in recombination efficiencies or the timing of
recombination. These findings indicate that loss
of BMP signaling leads to reduced osteoclast
activity, because osteoblast-mediated osteoclast
differentiation has been diminished.

8.5.1 Mechanistic Role of BMP
Signaling in Osteoclastogenesis

The decrease in osteoclast function that leads to
decreased bone resorption may involve interac-
tions between the receptor activator of NF-«B
ligand (RANKL) and its receptor, RANK. Osteo-
blasts express RANKL, while osteoclast precur-
sors express RANK. Thus, cell-cell interactions
between RANKL-expressing osteoblasts and
RANK-expressing cells promote osteoclast differ-
entiation [36]. Osteoblasts also produce osteopro-
tegerin (OPG), a decoy receptor for RANKL that
can prevent RANKL-RANK interactions [41].
BMP signaling modulates the RANKL-OPG path-
way in vitro,as BMP-2 treatment stimulates Rankl
expression [29,88].In vivo studies have also shown
that BMP signaling regulates the RANKL-OPG
pathway by BMP-induced Opg expression via
Hoxc-8-binding sites located on the Opg promoter
[33, 34]. Smadl competes with Hoxc-8, which
inhibits Opg promoter activity, by binding to the
Opg Hox sites [91]. BMP signaling may also medi-
ate the RANKL-OPG pathway via secondary
mediators such as Wnts, which regulate Rankl and
Opg expression [20]. Bmprla-deficient calvaria
showed upregulation of canonical Wnt signaling
via downregulation of the expression of scleros-
tin, the Wnt pathway inhibitor. In these calvaria,
reduction of Rankl expression is accompanied by
an increase in Opg. Treatment of Bmprla-deficient
calvaria with sclerostin reverses the expression
patterns of Rankl and Opg [34]. Similarly, secreted

Wnt inhibitors from the Dickkopf (Dkk) family
facilitate osteoclastogenesis by enhancing Rankl
expression and reducing Opg expression [17].It is
thus apparent that BMP signaling controls the
extent of bone formation by regulating osteoblast-
induced osteoclastogenesis by its mediation of the
RANKL-OPG pathway, and/or indirectly by its
downregulation of Wnt signaling.

8.5.2 Effects of BMP Signaling
on Runx2 Activity

Matrix protein expression by osteoblasts during
intramembranous and endochondral bone for-
mation is regulated by the transcription factor,
Runx2/Cbfal/Osf2 (hereafter referred to as
Runx2), which binds to responsive elements on
osteoblast-specific genes to regulate their tran-
scription. The essential role of Runx2 in osteo-
blast differentiation has been brought out by
studies with mice that have a homozygous muta-
tion in Runx2. These mice die perinatally and
completely lack bone owing to defects in osteo-
blast maturation [43]. Interestingly, overexpres-
sion of either Runx2 or dominant-negative Runx2
causes osteopenia attributed to diminished matrix
production and mineralization. In either case,
overexpression of Runx2 resulted in diminished
function of fully differentiated osteoblasts, as
indicated by reduced expression of osteocalcin, a
marker for terminally differentiated osteoblasts
[12,47]. Thus, transcriptional regulation of Runx2
is crucial in controlling its function during both
early and late stages of osteoblast differentiation.
The canonical BMP signaling pathway has been
implicated in the regulation of Runx2 transcrip-
tion and activity [46]. The nuclear matrix target-
ing signal (NMTS) on the C-terminal region of
Runx2 directs Runx2 to specific sites within the
nuclear matrix, thus promoting the expression of
osteoblast-specific genes [100]. Deletion mutant
studies have identified a R-Smad/Runx2 interac-
tion domain on Runx2 that overlaps the NMTS
[1], where HTY residues on the R-Smad/Runx2
interaction domain initiate BMP-induced osteo-
blast differentiation [31]. Therefore, R-Smads may
facilitate subnuclear targeting of Runx2 to pro-
mote the expression of osteoblast-specific genes.
Degradation of Runx2 modulates its transcrip-
tional activity. BMP signaling regulates Runx2
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Osteoblast differentiation: OFF

Figure 8.2.

Osteoblast differentiation: ON

Osteoblast differentiation: OFF

Proposed model for BMP-mediated Smad6/Runx2 feedback loop to control osteogenesis. (a) Osteoblast differentiation is inhibited in

the absence of BMP signaling.In the absence of BMP-2, Smurf1 binds to Runx2 on the Smad6 promoter and induces Runx2 degradation, thus inhibiting
Smadé transcription. Degradation of Runx2 can also inhibit transcription of genes associated with osteoblast differentiation, such as osteocalcin (Ocn).
(b) BMP signaling promotes osteoblast differentiation. In the presence of BMP-2, Runx2 is acetylated, which inhibits Smurf1-mediated degradation.
Also, phosphorylated R-Smads replace Smurf1 to promote Runx2-mediated Smad6 and/or Ocn transcription. (c) Expression of Smadé results in the
attenuation of BMP signaling. Smad6 of Smad interacts with Smurf1 to induce Runx2 degradation. Smad6 can also interact with R-Smads and/or BMP

receptors to prevent activation (phosphorylation) of R-Smads.

activity by acting on Runx2 stability (Fig. 8.2).
Treatment of the pluripotent mesenchymal cell
line, C2C12, with BMP-2 causes R-Smads to inter-
act with Runx2 and precludes Smurfl binding on
the Smad6 promoter, thus promoting Smad6 gene
transcription (Fig. 8.2b) [93].In turn, Smadé6 inter-
acts with Smurfl to induce Runx2 degradation
(Fig. 8.2c) [78]. Treatment of C2C12 cells with
BMP-2 has shown that BMP signaling also pro-
tects Runx2 from degradation. BMP-2 stimulates
Runx2 acetylation, which inhibits Smurfl-
mediated degradation and promotes BMP-induced
osteoblast differentiation and bone formation
(Fig. 8.2b) [32]. It is unclear, however, whether the
tight regulation of Runx2 stability by BMP signal-
ing occurs in vivo.

8.6 BMP Signaling
in Adipogenesis and Energy
Metabolism

Adipocytes, crucial for the maintenance of proper
energy balance, store energy in the form of lipids
and expend energy in response to hormonal
stimulation. Obesity develops when energy intake

exceeds energy expenditure. Understanding the
development and regulation of adipogenesis is
important in managing the health implications
of obesity. Like cartilage and bone, adipose tissue
arises from a multipotent stem cell population of
mesodermal origin. BMP signaling commits
mesenchymal stem cells to the adipocyte lineage,
and thus represents the initial stage of adipocyte
differentiation [5, 92]. Interestingly, adipocyte
and osteoblast commitment can be altered by
selective blockage or activation of type-I BMP
receptors [8]. Also, BMP-induced commitment of
the mesenchymal to the adipocyte lineage is
dose-dependent [92].

Once committed, preadipocytes differentiate
into adipocytes. Adipose tissue exists as either
white (WAT) or brown adipose tissue (BAT).
WAT is the primary site of energy storage and is
dispersed throughout the body of mammals and
birds. Most WAT is subcutaneous and intra-
abdominal. BAT provides basal and inducible
energy expenditure in the form of thermogene-
sis. This in turn involves increased expression of
uncoupling protein 1 (UCP-1). In humans and
rodents, BAT, localized in the intrascapular and
paraspinal regions, is abundant during the pre-
natal and neonatal periods. After birth, only
small amounts of BAT remain and its function
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in adults has been considered negligible [18].
However, recent reports have shown that high
energy expenditure in obesity-resistant mice
correlates with high expression of UCP-1 in BAT,
interspersed between muscle bundles, and that
UCP-1 expression is inducible [2]. The regula-
tion of UCP-1 in BAT, as well as brown adipogen-
esis, may protect against obesity. Moreover,
treatment with BMP-7, but not with BMP-2, -4,
or -6,induces differentiation of brown preadipo-
cytes, as indicated by increased UCP-1 expres-
sion. Overexpression of BMP-7 in mice has also
led to increased brown fat mass, increased
energy expenditure, and reduced weight gain
[86]. Thus, BMP-7 may prove to be a therapeutic
option for treating human obesity.

8.7 Perspectives

Studies using cell-specific Cre-mediated recom-
bination in mice, coupled with in vitro molecu-
lar and biochemical assays, have revealed that
BMP signaling plays an essential role in all
aspects of skeletogenesis. BMP signaling induces
the commitment of mesenchymal progenitor
cells into the chondrogenic, osteogenic, and adi-
pogenic lineages, and regulates the progression
of these cell types through their complex differ-
entiation program. A major challenge is whether
the mechanisms by which BMP signaling regu-
lates the expression of target genes in vitro are
the general mode for regulation of skeletogene-
sis in vivo. How BMP signaling interacts with
other signaling pathways, such as the Thh/PTHrP,
FGF, and Wnt, is essential to understand how
imbalance in signaling affects bone development
and homeostasis. Such understanding may lead
to the development of new therapies for the
treatment of skeletal diseases.
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