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Preface 

This book is an outgrowth of a course developed at Stanford University over 
the past five years. It is suitable as a self-contained textbook for second-level 
undergraduates or for first-level graduate students in almost every field that 
employs quantitative methods. As prerequisites, it is assumed that the student 
may have had a first course in differential equations and a first course in linear 
algebra or matrix analysis. These two subjects, however, are reviewed in 
Chapters 2 and 3, insofar as they are required for later developments. 

The objective of the book, simply stated, is to help one develop the ability 
to analyze real dynamic phenomena and dynamic systems. This objective is 
pursued through the presentation of three important aspects of dynamic 
systems: (1) the theory, which explores properties of mathematical representa­
tions of dynamic systems, (2) example models, which demonstrate how concrete 
situations can be translated into appropriate mathematical representations, and 
(3) applications, which illustrate the kinds of questions that might be posed in a 
given situation, and how theory can help resolve these questions. Although the 
highest priority is, appropriately, given to the orderly presentation of the 
theory, significant samples of all three of these essential ingredients are 
contained in the book. 

The organization of the book follows theoretical lines--as the chapter 
titles indicate. The particular theoretical approach, or style, however, is a blend 
of the traditional approach, as represented by many standard textbooks on 
differential equations, and the modem state-space approach, now commonly 
used as a setting for control theory. In part, this blend was selected so as to 
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broaden the scope-to get the advantages of both approaches; and in part it 
was dictated by the requirements of the applications presented. It is recog­
nized, however, that (as in every branch of mathematics) the root ideas of 
dynamic systems transcend any particular mathematical framework used to 
describe those ideas. Thus, although the theory in this book is presented within a 
certain framework, it is the intent that what is taught about dynamic systems is 
richer and less restrictive than the framework itself. 

The content of the book is, of course, partly a reflection of personal taste, 
but in large portion it was selected to directly relate to the primary objective of 
developing the ability to analyze real systems, as stated earlier. The theoretical 
material in Chapters 2 through 5 is quite standard, although in addition to 
theory these chapters emphasize the relation between theory and analysis. 
Dominant. eigenvector analysis is used as an extended illustration of this 
relationship. Chapter 6 extends the classical material of linear systems to the 
special and rich topic of positive systems. This chapter, perhaps more than any 
other, demonstrates the intimate relation between theory and intuition. The 
topic of Markov chains, in Chapter 7, has traditionally been treated most often 
as a distinct subject. Nevertheless, although it does have some unique features, 
a great deal of unity is achieved by regarding this topic as a branch of dynamic 
system theory. Chapter 8 outlines the concepts of system control-from both 
the traditional transform approach and the state-space approach. Chapters 9 
and 10 treat nonlinear systems, with the Liapunov function concept serving to 
unify both the theory and a wide assortment of applications. Finally, Chapter 
11 surveys the exciting topic of optimal control-which represents an impor­
tant framework for problem formulation in many areas. Throughout all chap­
ters there is an assortment of examples that not only illustrate the theory but 
have intrinsic value of their own. Although these models are abstractions of 
reality, many of these are "classic" models that have stood the test of time 
and have had great influence on scientific development. For developing 
effectiveness in analysis, the study of these examples is as valuable as the 
study of theory. 

The book contains enough material for a full academic year course. There 
is room, however, for substantial flexibility in developing a plan of study. By 
omitting various sections, the book has been used at Stanford as the basis for a 
six-month course. The chapter dependency chart shown below can be used to 
plan suitable individual programs. As a further aid to this planning, difficult 
sections of the book that are somewhat tangential to the main development are 
designated by an asterisk·. 

An important component of the book is the set of problems at the end of 
the chapters. Some of these problems are exercises, which are more or less 
straightforward applications of the techniques discussed in the chapter; some 
are extensions of the theory; and some introduce new application areas. A few 



Chapter Dependency 
Chart (A chapter de­
pends on all chapters 
leading to it in the 
chart.) 

Preface ix 

of each type should be attempted from each chapter. Especially difficult 
problems are marked with an asterisk*. 

The preparation of this book has been a long task that could not have 
been completed without the help of many individuals. Many of the problems 
and examples in the book were developed jointly with teaching assistants and 
students. I wish to acknowledge the Department of Engineering-Economic 
Systems at Stanford which provided the atmosphere and resources to make 
this project possible. I wish to thank my family for their help, encour­
agement, and endurance. I wish to thank Lois Goularte who efficiently typed 
the several drafts and helped organize many aspects of the project. Finally, 
I wish to thank the scores of students, visitors, and colleagues who read primitive 
versions of the manuscript and made many valuable individual suggestions. 

DAVID G. LUENBERGER 

Stanford, California 
January 1979 
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chapter 1. 
Introduction 

1.1 DYNAMIC PHENOMENA 

The term dynamic refers to phenomena that produce time-changing 
patterns, the characteristics of the pattern at one time being interrelated with 
those at other times. The term is nearly synonymous with rime-evolutIOn or 
pattern of change. It refers to the unfolding of events in a continuing evolution­
ary process. 

Nearly all observed phenomena in our daily lives or in scientific investiga­
tion have important dynamic aspects. Specific examples may arise in (a) a 
physical system, such as a traveling space vehicle, a home heating system, or in 
the mining of a mineral deposit; (b) a social system, such as the movement 
within an organizational hierarchy, the evolution of a tribal class system, or the 
behavior of an economic structure; or (c) a life system, such as that of genetic 
transference, ecological decay, or population growth. But while these examples 
illustrate the pervasiveness of dynamic situations and indicate the potential 
value of developing the facility for representing and analyzing dynamic be­
havior, it must be emphasized that the general concept of dynamics transcends 
the particular origin or setting of the process. 

Many dynamic systems can be understood and analyzed intuitively, with­
out resort to mathematics and without development of a general theory of 
dynamics. Indeed, we often deal quite effectively with many simple dynamic 
situations in our daily lives. However, in order to approach unfamiliar complex 
situations efficiently, it is necessary to proceed systematically. Mathematics can 
provide the required economy of language and conceptual framework. 
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With this view, the term dynamics soon takes on somewhat of a dual 
meamng. It is, first, as stated earlier, a term for the time-evolutIOnary 
phenomena in the world about us, and, second, it is a term for that part of 
mathematical science that is used for the representation and analysis of such 
phenomena. In the most profound sense the term refers simultaneously to both 
aspects: the real, the abstract, and the interplay between them. 

Although there are endless examples of interesting dynamic situations 
arising in a spectrum of areas, the number of corresponding general forms for 
mathematical representation is relatively small. Most commonly, dynamic 
systems are represented mathematically in terms of either differential or differ­
ence equations. Indeed, this is so much the case that, in terms of pure 
mathematical content, at least the elementary study of dynamics is almost 
synonymous with the theory of differential and difference equations. It is these 
equations that provide the structure for representing time linkages among 
variables. 

The use of either differential or difference equations to represent dynamic 
behavior corresponds, respectively, to whether the behavior is viewed as 
occurring in continuous or discrete time. Continuous time corresponds to our 
usual conception, where time is regarded as a continuous variable and is often 
viewed as flowmg smoothly past us. In mathematical terms, continuous time of 
this sort is quantified in terms of the continuum of real numbers. An arbitrary 
value of this continuous time is usually denoted by the letter t. Dynamic 
behavior viewed in continuous time is usually described by differential equa­
tions, which relate the derivatives of a dynamic variable to its current value. 

Discrete time consists of an ordered sequence of points rather than a 
continuum. In terms of applications, it is convenient to introduce this kind of 
time when events and consequences either occur or are accounted for only at 
discrete time periods, such as daily, monthly, or yearly. When developing a 
population model, for example, it may be convenient to work with yearly 
population changes rather than continuous time changes. Discrete time is 
usually labeled by simply indexing, in order, the discrete time points, starting at 
a convenient reference point. Thus time corresponds to integers 0, 1, 2, and so 
forth, and an arbitrary time point is usually denoted by the letter k. Accord­
ingly, dynamic behavior viewed in discrete time is usually described by equa­
tIOns relating the value of a variable at One time to the values at adjacent times. 
Such equations are called difference equations. 

1.2 MULTIVARIABLE SYSTEMS 

The term system, as applied to general analysis, was originated as a recognition 
that meaningful investigation of a particular phenomenon can often only be 
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achieved by explicitly accounting for its environment. The particular variables 
of interest are likely to represent simply one component of a complex, 
consisting of perhaps several other components. Meanmgful analysis must 
consider the entire system and the relations among its components. Accordingly, 
mathematIcal models of systems are likely to involve a large number of 
interrelated variables-and this is emphasized by describing such situations as 
multivariable systems. Some examples illustrating the pervasiveness and impor­
tance of multivariable phenomena arise in consideration of (a) the migration 
patterns of population between various geographical areas, (b) the simultane­
ous interaction of various individuals in an economic system, or (c) the various 
age groups in a growing populatIOn. 

The ability to deal effectively with large numbers of interrelated vanables 
is one of the most important characteristics of mathematical system analysis. It 
is necessary therefore to develop facility with techniques that help one clearly 
think about and systematically mampulate large numbers of simultaneous 
relations. For one's own thinking purposes, in order to understand the essential 
elements of the situation, one must learn, first, to view the whole set of 
relations as a unit, suppressing the details; and, second, to see the important 
detailed interrelations when required. For purposes of manipulation, with the 
primary objective of computation rather than furthering insight, one reqUires a 
systematic and efficient representatIOn. 

There are two main methods for representing sets of interrelations. The 
first is vector notation, which provides an efficient representation both for 
computation and for theoretical development. By its very nature, vector 
notation suppresses detail but allows for its retrieval when reqUired. It is 
therefore a convenient, effective, and practical language. Moreover, once a 
situation is cast in this form, the entire array of theoretical results from linear 
algebra is available for application. Thus, this language is also well matched to 
mathematical theory. 

The second technique for representing interrelations between variables is 
by use of diagrams. In this approach the various components of a system are 
represented by points or blocks, with connecting lines representing relations 
between the corresponding components. This representation is exceedingly 
helpful for visualization of essential structure in many complex situations; 
however, it lacks the full analytical power of the vector method. It is for this 
reason that, although both methods are developed in this book, primary 
emphasis is placed on the vector approach. 

Most situations that we investigate are both dynamic and multlvariable. 
They are, accordingly, characterized by several variables, each changing with 
time and each linked through time to other variables. Indeed, this combination 
of multivariable and time-evolutionary structure characterizes the setting of the 
modern theory of dynamic systems. 
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That most dynamic systems are both time-evolutionary and multivariable 
implies something about the nature of the mathematics that forms the basis for 
theIr analysIs. The mathematical tools are essentially a combination of differen­
tIal (or difference) equations and vector algebra. The differential (or difference) 
equations provide the element of dynamics, and the vector algebra provides the 
notation for multivariable representation. The combination and interplay be­
tween these two branches of mathematics provides the basic foundation for all 
analysis in this book. It is for this reason that thIS introductory chapter is 
followed first by a chapter on differential and difference equations and then by 
a chapter on matrix algebra. 

1.3 A CATALOG OF EXAMPLES 

As in all areas of problem formulation and analysis, the process of passing from 
a "real world" dynamic situation to a suitable abstraction in terms of a 
mathematical model requires an expertise that is refined only through experi­
ence. In any given application there is generally no single "correct" model; 
rather, the degree of detail, the emphasis, and the choice of model form are 
subject to the discretionary choice of the analyst. There are, however, a 
number of models that are considered "classic" in that they are well-known and 
generally accepted. These classic models serve an important role, not only as 
models of the situation that they were originally intended to represent, but also 
as examples of the degree of clarity and reality one should strive to achIeve in 
new situations. A proficient analyst usually possesses a large mental catalog of 
these classic models that serve as valuable reference points-as well-founded 
points of departure. 

The examples in this section are in this sense all classic, and as such can 
form the beginnings of a catalog for the reader. The catalog expands as one 
works hIS way through succeeding chapters, and this growth of well-founded 
examples with known properties should be one of the most important objec­
tIVes of one's study. A diverse catalog enriches the process of model develop­
ment. 

The first four examples are formulated in discrete time and are, accord­
mgly, defined by difference equations. The last two are defined in continuous 
tIme and thus result in differential equations. It will be apparent from a study 
of the examples that the choice to develop a continuous-time or a discrete-time 
model of a specific phenomenon is somewhat arbitrary. The choice is usually 
resolved on the basis of data availability, analytical tractability, established 
convention in the application area, or simply personal preference. 

Example 1 (Geometric Growth). A simple growth law, useful in a wide 
assortment of situations (such as describing the increase in human or other 
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Figure 1.1. Geometric growth. 

populations, the growth of vegetation, accumulated publications in a scientific 
field, consumption of raw materials, the accumulation of interest on a loan, 
etc.), is the linear law described by the difference equation 

x(k + 1) = ax(k) 

The value x(k) represents the magnitude of the variable (e.g., population) at 
time instant k. The parameter a is a constant that determines the rate of 
growth. For positive growth, the value of a must be greater than unity-then 
each successive magnitude is a fixed factor larger than its predecessor. 

If an initial magnitude is given, say x(O)= 1, the successive values can be 
found recursively. In particular, it is easy to see that x(l) = a, x(2) = a 2

, and, in 
general, x(k) = a k for k = 0,1,2, .... A typical pattern of growth resulting 
from this model is shown in Fig. 1.l. 

The growth pattern resulting from this simple linear model is referred to as 
geometric growth since the values grow as the terms of a geometric series. This 
form of growth pattern has been found to agree closely with empirical data in 
many situations, and there is often strong accompanying theoretical justifica­
tion for the model, at least over a range of values. 

Example 2 (Cohort Population Model). For many purposes (particularly in 
populations where the level of reproductive activity is nonuniform over a 
normal lifetime) the simple growth model given above is inadequate for 
comprehensive analysis of population change. More satisfactory models take 
account of the age distribution within the population. The classical model of 
this type is referred to as a cohort population model. 

The population is divided into age groups (or cohorts) of equal age span, 
say five years. That is, the first group consists of all those members of the 
population between the ages of zero and five years, the second consists of those 
between five and ten years, and so forth. The cohort model itself is a 
discrete-time dynamic system with the duration of a single time period corres­
ponding to the basic cohort span (five years in our example). By assuming that 
the male and female populations are identical in distribution, it is possible to 
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simplify the model by considering only the female population. Let xj(k) be the 
(femaie) population of the ith age group at time perIod k. The groups are 
indexed sequentially from 0 through n, with 0 representing the lowest age 
group and n the largest. To describe system behavior, it is only necessary to 
describe how these numbers change during one time period. 

First, aside from the possibility of death, which will be considered in a 
moment, it is clear that during one time period the cohorts in the ith age group 
simply move up to the (i + l)th age group. To account for the death rate of 
individuals within a given age group, this upward progression is attenuated by a 
survival factor. The net progression can be described by the simple equations 

X;+l(k + 1) = f3iX;(k), i = 0, 1, ... , n-l (1-1) 

where f3i is the survival rate of the ith age group during one period. The factors 
f3i can be determined statistically from actuarial tables. 

The only age group not determined by the equation above is xo(k + 1), the 
group of individuals born during the last time period. They are offspring of the 
population that existed in the previous time period. The number in this group 
depends on the birth rate of each of the other cohort groups, and on how large 
each of these groups was during the previous period. Specifically, 

xo(k + 1) = aoxo(k) + alxl(k)+ a2x2(k)+· .. + anxn(k) (1-2) 

where ai is the birth rate of the ith age group (expressed in number of female 
offspring per time period per member of age group i). The factor aj also can be 
usually determined from statistical records. 

Together Eqs. (1-1) and (1-2) define the system equations, determining 
how xj(k + l)'s are found from xj(k)'s. This is an excellent example of the 
combination of dynamics and multivariable system structure. The population 
system is most naturally visualized in terms of the variables representing the 
population levels of the various cohort groups, and thus it is a multivariable 
system. These variables are linked dynamically by simple difference equations, 
and thus the whole can be regarded as a composite of difference equations and 
multivariable structure. 

Example 3 (National Economics). There are several simple models of national 
economic dynamics.· We present one formulated in discrete time, where the 
time between periods is usually taken as quarters of full years. At each time 
period there are four variables that define the model. They are 

Y(k) = National Income or National Product 

C(k) = Consumption 

I(k):::: Investment 

G(k) = Government Expenditure 

• See the notes and references for Sect. 4.8, at the end of Chapter 4. 
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The variable Y is defined to be the National Income: the total amount earned 
during a period by all mdivlduals in the economy. Alternatively, but eqUival­
ently, Y can be defined as the National Product: the total value of goods and 
services produced in the economy during the period. Consumption C is the 
total amount spent by individuals for goods and services. It is the total of every 
individual's expenditure. The Investment I is the total amount invested in the 
period. Finally, G is the total amount spent by government during the penod, 
which is equal to the government's current revenue. The basic national 
accounting equation is 

Y(k) = C(k) + I(k) + G(k) (1-3) 

From an income viewpoint, the equation states that total individual income 
must be divided among consumption of goods and services, investment, or 
payments to the government. Alternatively, from a national product viewpoint, 
the total aggregate of goods and services produced must be divided among 
individual consumption, investment, or government consumption. 

In addition to this basic definitional equation, two relationships are intro­
duced that represent assumptions on the behavior of the economy. First, it is 
assumed that consumption is a fixed fraction of national income. Thus, 

C(k)= mY(k) (1-4) 

for some m. The number m, which is restricted to the values 0 < m < 1, is 
referred to as the marginal propensity to consume. This equation assumes that 
on the average individuals tend to consume a fixed portion of their income. 

The second assumption concerning how the economy behaves relates to 
the influence of investment. The general effect of"investment is to increase the 
productive capacity of the nation. Thus, present investment will increase 
national income (or national product) in future years. Specifically, it is assumed 
that the increase in national income is proportional to the level of investment. 
Or, 

Y(k + 1) - Y(k) = rI(k) (1-5) 

The constant r is the growth factor, and it is assumed that r > O. 
The set of equations (1-3), (1-4), and (1-5) defines the operation of the 

economy. Of the three equations, only the last is dynamic. The first two, (1-3) 
and (1-4), are static, expressing relationships among the variables that hold at 
every k. These two static equations can be used to eliminate two variables from 
the model. Starting with 

Y(k) = C(k) + I(k) + G(k) 

substitution of (1-4) produces 

Y(k) = m Y(k) + I(k) + G(k) 
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Substitution of (1-5) then produces 

Y(k) == m Y(k) + Y(k + 1)- Y(k) + G(k) 
r 

Rearrangement leads to the final result: 

Y(k + 1) = [1 + r(l- m)]Y(k)- rG(k) (1-6) 

The quantity G(k) appears as an input to the system. If G(k) were held equal 
to zero, the model would be identical to the first-order (geometric) growth 
model discussed earlier. 

Example 4 (Exponential Growth). The continuous-time version of the simple 
first-order growth model (the analog of geometric growth) is defined by the 
differential equation 

dx(t) = rx(t) 
dt 

The growth parameter r can be any real value, but for (increasing) growth it 
must be greater than zero. The solution to the equation is found by writing it in 
the form 

1 dx(t) 
---=r 
x(t) dt 

Both sides can then be integrated with respect to t to produce 

log x(t) = rt+ log c = log err + log c 

where c is an arbitrary constant. Taking the antilog yields 

x(t) = ce rr 

Finally, by setting t = 0, it is seen that x(O) = c, so the solution can be written 

x(t) = x(O)e rr 

This is the equation of exponential growth. The solution is sketched for various 
values of r in Fig. 1.2. 

The pattern of solutions is similar to that of geometric growth shown in 
Fig. 1.1 in Sect. 1.6. Indeed, a series of values from the continuous-time 
solution at equally spaced time points make up a geometric growth pattern. 

Example 5 (Newton's Laws). A wealth of dynamic system examples is found in 
mechanical systems governed by Newton's laws. In fact, many of the general 
techniques for dynamic system analysis were originally motivated by such 
applications. As a simple example, consider motion in a single dimension--of, 
say, a street car or cable car of mass M moving along a straight track. Suppose 
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Figure 1.2. Exponential growth. 

the position of the car along the track at time t is denoted by y(t), and the 
force applied to the street car, parallel to the track, is denoted by u(t). 
Newton's second law says that force is equal to mass times acceleration, or, 
mathematically, 

Therefore, the motion is defined by a second-order differential equation. 
A more detailed model would, of course, have many other variables and 

equations to account for spring action, rocking, and bouncing motion, and to 
account for the fact that forces are applied only indirectly to the main bUlk 
through torque on the wheels or from a friction grip on a cable. The degree of 
detail constructed into the model would depend on the use to which the model 
were to be put. 

Figure 1.3. Cable car. 
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Example 6 (Goats and Wolves). Imagine an island populated primarily by 
goats and wolves. The goats survive by eating the island vegetation. The wolves 
survive by eating the goats. 

The modeling of this kind of popUlation system, referred to as a predator­
prey system, goes back to Volterra in response to the observation that 
populations of species often oscillated. In our example, goats would first be 
plentiful but wolves rare, and then wolves would be plentiful but goats rare. 
Volterra described the situation in the following way. 

Let 

Nt(t) = number of goats at time t 

N 2 (t) = number of wolves at time t 

The proposed model is then 

dNt(t) = aNt(t)-bNt(t)Nit) 
dt 

dN2(t) = -cN
2
(t) + dNt(t)N

2
(t) 

dt 

where the constants a, b, c, and d are all positive. 
This model, which is the archetype of predator-prey models, has a simple 

bIOlogical interpretation. In the absence of wolves [N2(t) = OJ, the goat popula­
tion is governed by simple exponential growth, with growth factor a. The goats 
thnve on the island vegetation. In the absence of goats [Nt(t) = OJ, on the other 
hand, the wolf population is governed by exponential decline, declining at a rate 
-c. This interpretation accounts for the first terms on the right-hand side of the 
differential equations. 

When both goats and wolves are present on the island, there are encounters 
between the two groups. Under an assumption of random movement, the 
frequency of encounters is proportional to the product of the numbers in the 
two populations. Each encounter decreases the goat population and increases 
the wolf population. The effect of these encounters is accounted for by the 
second terms In the differential equations. 

1.4 THE STAGES OF DYNAMIC SYSTEM ANAL VSIS 

The principal objectives of an analysis of a dynamic system are as varied as the 
range of possible application areas. Nevertheless, it is helpful to distinguish 
four (often overlapping) stages of dynamic analysis: representation of 
phenomena, generation of solutions, exploration of structural relations, and 
control or modification. Most analyses emphasize one or two of these stages, 
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with the others having been completed previously or lying beyond the reach of 
current technique. 

A recognition of these four stages helps motivate the assortment of 
theoretical principles associated with the mathematics of dynamic systems, for 
there is, naturally, great interplay between general theory and the analysis of 
given situations. On the one hand, the objectives for an analysis are strongly 
influenced by available theory, and, on the other hand, development of new 
theory is often motivated by the desire to conduct deeper analyses. 

Representation 

One of the primary objectives of the use of mathematics in complex dynamIc 
systems is to obtain a mathematical representation of the system, and this IS the 
first stage of analysis. The process of obtaining the representation is often 
referred to as modeling, and the final product a model. This stage is closely 
related to the sciences, for the development of a suitable model amounts to the 
employment or development of scientific theory. The theory employed in any 
given model may be well-founded and generally accepted, or it may be based 
only on one analyst's hypothesized relatIonships. A complex model will often 
have both strong and weak components. But in any case the model descnption 
is an encapsulation of a scientific theory. 

Development of a meaningful representation of a complex system requires 
more than just scientific knowledge. The end product is likely to be most 
meaningful if one understands the theory of dynamic systems as well as the 
relevant scientific theory. Only then is it possible to assess, at least In qualita­
tive terms, the dynamic significance of various assumptIons, and thereby build a 
model that behaves in a manner consistent with intuitive expectations. 

Generation of Solutions 

The most direct use of a dynamic model is the generation of a specific solution 
to its describing equations. The resulting time pattern of the variables then can 
be studied for various purposes. 

A specific solution can sometimes be found in analytical form, but more 
often it is necessary to generate specific solutions numerically by use of a 
calculator or digital computer-a process commonly referred to as simulation. 
As an example of this direct use of a model, a large cohort model of a nation's 
popUlation growth can be solved numerically to generate predictions of future 
population levels, catalogued by age group, sex, and race. The results of such a 
simulation might be useful for various planning problems. Likewise, a model of 
the national economy can forecast future economic trends, thereby possibly 
suggesting the appropriateness of various corrective policies. Or, in the context 
of any situation, simulation might be used to test the reasonableness of a new 
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model by verifying that a particular solution has the properties usually as­
sociated with the underlying phenomena. 

It is of course rare that a single solution of a model is adequate for a 
meaningful analysis. Every model really represents a collection of solutions, 
each determined by different controlled inputs, different parameter values, and 
different starting conditions. In the population system, for example, the specific 
future population level is dependent on national immigration policy, on the 
birth rates in future years, and on the assumed level of current 
population. One may therefore find that it is necessary to generate solutions 
corresponding to various combinations of assumptions in order to conduct a 
meaningful analysis of probable future population. 

As a general rule, the number of required solutions grows quickly with the 
number of different parameters and inputs that must be varied independently. 
Thus, although direct simulation is a flexible concept applicable to quite large 
and complex systems where analysis is difficult, it is somewhat limited in its 
capability to explore all ranges of input and parameter values. 

Exploration of Structural Relations 

Much of the theory of dynamic systems is motivated by a desire to go beyond 
the stage of simply computing particular solutions of a model to the point of 
establishing various structural relations as, say, between a certain parameter 
and its influence on the solution. Such relations are often obtained indirectly 
through the use of auxiliary concepts of analysis. 

The payoff of this type of structural exploration manifests itself in two 
Important and complementary ways. First, it develops intuitive insight into 
system behavior. With this insight, one is often able to determine the rough 
outlines of the solution to a complex system almost by inspection, and, more 
importantly, to foresee the nature of the effects of possible system modifica­
tIOns. But it is important to stress that the value of this insight goes well 
beyond the mere approximation of a solution. Insight into system behavior is 
reflected back, as an essential part of the creative process, to refinement of the 
formulation of the original model. A model will be finally accepted only when 
one is assured of its reasonableness-both in terms of its structure and in terms 
of the behavior patterns it generates. 

The secbnd payoff of structural exploration is that it often enables one to 
explicitly calculate relations that otherwise could be deduced only after exami­
nation of numerous particular solutions. For example, as is shown in Chapter 5, 
the natural rate of growth of a cohort population model can be detennined 
directly from its various birth rate and survival rate coefficients, without 
generating even a single specific growth pattern. This leads, for example, to a 
specific relationship between changes in birth rates and changes in composite 
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population growth. In a similar fashion, the stability of a complex economic 
process of price adjustment can often be inferred from its structural form, 
without generating solutions. 

Most of the theoretical development in this book is aimed at revealing 
relationships of this kind between structure and behavior. By learning this 
theory we become more than just equation writers and equation solvers. Our 
analysis is not limited in its application to a particular problem with particular 
numerical constants, but instead is applicable to whole classes of models; and 
results from one situation can be readily transferred to another. 

Control or Modification 

Although study of a particular dynamic situation is sometimes motivated by the 
simple philosophic desire to understand the world and its phenomena, many 
analyses have the explicit motivation of devising effective means for changing 
a system so that its behavior pattern is in some way improved. The means for 
affecting behavior can be described as being either system modification or 
control. Modification refers to a change in the system, and hence in its 
describing equation. This might be a change in various parameter values or the 
introduction of new interconnective mechanisms. Examples of modification 
are: a change in the birth rates of a population system, a change of marriage 
rules in a class society, a change of forecasting procedure in an economic 
system, a change of promotion rate in an organizational hierarchy, and so 
forth. Control, On the other hand, generally implies a continuing activity 
executed throughout the operation of the system. The Federal Reserve Board 
controls the generation of new money in the economy on a continuing basis, a 
farmer controls the development of his herd of cattle by controlling the amount 
of grain they are fed, a pilot controls the behavior of his aircraft continuously, 
and so forth. 

Determination of a suitable modification or control strategy for a system 
represents the fourth stage of analysis, and generally marks the conclusion of a 
complete analysis cycle. However, at the completion of the best analyses, the 
main outlines of the solution should be fairly intuitive-during the course of 
analysis the intuition should be heightened to a level sufficient to accept the 
conclusions. Mathematics serves as a language for organized thought, and 
thought development, not as a machine for generating complexity. The 
mathematics of dynamic systems is developed to expedite our requests for 
detail when required, and to enhance our insight into the behavior of dynamic 
phenomena we encounter in the world. 



chapter 2. 
Difference and 
Differential Equations 

Ordinary difference and differential equations are versatile tools of analysis. 
They are excellent representations of many dynamic situations, and their 
associated theory is rich enough to provide substance to one's understanding. 
These equations are defined in terms of a single dynamic variable (that is, a 
smgle function of time) and therefore represent only a special case of more 
general dynamic models. However, ordinary difference and differential equa­
tions are quite adequate for the study of many problems, and the associated 
theory provides good background for more general multivariable theory. In 
other words, both with respect to problem formulation and theoretical de­
velopment, difference and differential equations of a single variable provide an 
important first step in developing techniques for the mathematical analysis of 
dynamic phenomena. 

2.1 DIFFERENCE EQUATIONS 

Suppose there is defined a sequence of points, perhaps representmg discrete 
equally spaced time points, indexed by k. Suppose also that there is a value 
y(k) (a real number) associated with each of these points. A difference equation 
is an equation relating the value y(k), at point k, to values at other (usually 
neIghboring) points. A simple example is the equation 

y(k + 1) = ay(k) k = 0,1,2, ... (2-1) 

Difference equations may, however, be much more complicated than this. For 
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example, 

ky(k + 2)y(k + 1) = !,j y(k)y(k -1) k = 0,1,2, ... (2-2) 

A difference equation is really a set of equatIOns; one equation for each of the 
index points k. Therefore, part of the specification of a difference equation is 
the set of integers k for which it is to hold. In general, this set of integers must 
be a sequence of successive values, of either finite or infinite duration, such as 
k = 0, 1, 2, 3, ... , N or k = 0, 1, 2, 3, .... Often, if the sequence is not ex­
plicitly stated, it is to be understood that either it is arbitrary or that it is the 
most frequently used sequence k = 0, 1, 2, 3, .... In many cases the practical 
context of the equation makes the appropriate range clear. In any event, once 
the sequence is defined, the corresponding values of k can each be substituted 
into the difference equation to obtain an explicit equation relating various y's. 

As an example, the simple difference equation (2-1) is equivalent to the 
following (infinite) set of equations: 

y(1) = ay(O) 

y(2) = ay(1) 

y(3) = ay(2) 
(2-3) 

Difference equations, just as any set of equations, can be viewed m two 
ways. If the values y(k) are known, or defined through some alternate 
description, the difference equation represents a relation among the different 
values. If, on the other hand, the values are not known, the difference equation 
is viewed as an equation that can be solved for the unknown y(k) values. In 
either interpretation, it is often useful to regard y(k) as a functton on the index 
set. The difference equation then defines a relationship satisfied by the func­
tion. 

The term difference equation is used in order to rellect the fact that the 
various time points in the equation slide along with the index k. That is, the 
terms involve the unknowns y(k), y(k + 1), y(k +2), y(k -1), y(k - 2), and so 
forth, rather than a mixture of fixed and sliding indices, such as, say, y(k), 
y(k -1), y(I), and y(8). Indeed, since all indices· slide along with k, it is 
possible by suitable (but generally tedious) manipulation to express a difference 
equation in terms of differences A' of various orders, defined by A o(k) = y(k), 
A l(k) = A O(k + 1) - A O(k), A2(k) = A l(k + 1) - A l(k), and so forth. This difference 
formulatIOn arises naturally when a difference equation is defined as an 
approximation to a differential equation, but in most cases the more direct 
form is both more natural and easier to work with. 

The order of a.difference equation is the difference between the highest 
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and lowest indices that appear in the equation. Thus (2-1) is first-order, and 
(2-2) is third-order. 

A difference equation is said to be linear if it has the form 

an (k)y(k + n)+ an_1(k)y(k + n -1) + ... + al(k)y(k + 1) + ao(k)y(k) = g(k) 
(2-4) 

for some given functions g(k) and aj(k), i = 0,1,2, .. , n. The unknown 
function y appears linearly in the equation. The ~(k)'s in these equations are 
referred to as coefficients of the linear equation. If these coefficients do not 
depend on k, the equation is said to have constant coefficients or to be 
time-invariant. The function g(k) is variously called the forcing term, the 
driving term, or simply the right-hand side. 

Solutions 

A solution of a difference equation is a function y(k) that reduces the equation 
to an identity. For example, corresponding to the first-order equation 

y(k + 1) = ay(k) 

the function y(k) = a k reduces the equation to an identity, since y(k + 1) = 
a k

+ 1 = aa~ = ay(k). 
A solution to a difference equation can alternatively be viewed as a 

sequence of numbers. Thus, for the equation above with a = 1/2 a solution is 
represented by the sequence 1, 1/2, 1/4, 1/8, .... The solution is easily 
expressed in this case as (1/2)k. In general, however, there may not be a simple 
representation, and it is therefore often preferable, in order to simplify 
conceptualization, to view a solution as a sequence-stepping along with the 
time index k. The two viewpoints of a solution as some (perhaps complicated) 
function of k and as a sequence of numbers are, of course, equivalent. 

Example 1. Consider the linear difference equation 

(k + l)y(k + 1)- ky(k) = 1 

for k = 1,2, . .. A solution is 

y(k)=l-l/k 

To check this we note that y(k) = (k -l)/k, y(k + 1) = k/(k + 1), and thus. 
(k+1)y(k+1)-ky(k)=k-(k-l)=1. 

There are other solutions as well. Indeed, it is easily seen that 

y(k)= 1-A/k 

is a solution for any constant A. 
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Example 2. A nonlinear difference equation that arises in genetics (see Chapter 
10) is 

It has the solution 

y(k) 
y(k + 1) = 1+ y(k) , k = 0,1,2, ... 

A 
y(k)= I+Ak 

where A is an arbitrary constant. 

Example 3. Consider the nonlinear difference equation 

y(k + If+ y(k)2 =-1 

Since y(k) is defined as a real-valued function, the left-hand side can never be 
less than zero; hence no solution can exist. 

2.2 EXISTENCE AND UNIQUENESS OF SOLUTIONS 

As with any set of equations, a difference equation need not necessarily possess 
a solution, and if it does have a solution, the solution may not be unique. These 
facts are illustrated by the examples in Sect. 2.1. We now turn to a general 
examination of the existence and uniqueness questions. 

Initial Conditions 
One characteristic and essential feature of a difference equation is that, over a 
finite interval of time, as indexed by Ie, there are more unknowns than 
equations. For example, the first-order difference equation y(k + 1) = 2y(k) 
when enumerated for two time periods k = 0,1 becomes 

y(l) = 2y(0) 

y(2) = 2y(l) 

which is a system of two equations and three unknowns. Therefore, from the 
elementary theory of equations, we expect that it may be necessary to assign a 
value to one of the unknown variables in order to specify a unique solution. If 
the difference equations were applied to a longer sequence of index values, 
each new equation would add both one new equation and one new unknown. 
Therefore, no matter how long the sequence, there would always be one more 
unknown than equations. 

In the more general situation where the difference equation for each fixed 
k involves the value of y(k) at n + 1 successive points, there are n more 
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unknowns than equations in any finite set. This can be seen from the fact that 
the first equation involves n + 1 unknown variables, and again each additional 
equation adds both one more unknown and one more equation-keeping the 
surplus constant at n. This surplus allows the values of n variables to be 
specified arbitrarily, and accordingly, there are n degrees of freedom in the 
solution of a difference equation. These degrees of freedom show up in the 
form of arbitrary constants in the expression for the general solution of the 
equation. 

In principle, the n arbitrary components of the solution can be specified in 
various ways. However, it is most common, particularly in the context of 
dynamic systems evolving forward in time, to specify the first n values of y(k); 
that is, the values yeO), y(l), ... , yen -1). The corresponding specified values 
are referred to as initial conditions. For many difference equations, specification 
of a set of values for initial conditions leads directly to a corresponding unique 
solution of the equation. 

Example 1. The first-order difference equation 

y(k + 1) = ay(k) 

corresponding to geometric growth, has the general solution y(k) = Ca k
• Sub­

stituting k = 0, we see that yeO) = C, and the solution can be written in terms of 
the initial condition as y(k) = y(O)a k

• 

Example 2. Consider the second-order difference equation 

y(k + 2) = y(k) 

This equation can be regarded as applying separately to the even and the odd 
indices k. Once yeO) is specified, the equation implies the same value of y(k) 
for all even k's, but the single value of y(k) for all odd k's remains arbitrary. 
Once y(l) is also specified, the entire sequence is determined. Thus, specifica­
tion of yeO) and y(l) determine a unique solution. The solution can be written 
as 

Existence and Uniqueness Theorem 

Although, in general, difference equations may not possess solutions, most 
difference equations encountered in applications do. Moreover, it is usually not 
necessary to exhibit a solution in order to be assured of its existence, for the 
very structure of the most common difference equations implies that a solution 
exists. 

As indicated above, even if existence is guaranteed, we do not expect that 
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the solution to a difference equatIOn will be unique. The solution must be 
restricted further by specifymg a set of initml conditIOns. The theorem proved 
below is a formal statement of this fact. The assumption of suitable structure, 
together with appropriately specified initial conditions, guarantees existence of 
a unique solution. 

The essential idea of the theorem is quite simple. It imposes a rather 
modest assumption that allows the solution of a difference equation to be 
computed forward recursively, starting with the given set of Initial conditions 
and successively determining the values of the other unknowns. Stated another 
way, the theorem imposes assumptions guaranteeing that the difference equa­
tion represents a truly dynamic system, which evolves forward in time. 

Existence and Uniqueness Theorem. Let a difference equation of the form 

y(k+ n)+f[y(k+ n-l), y(k+ n-2), ... , y(k), k]= 0 (2-5) 

where f is an arbitrary real-valued function, be defined over a finite or 
infinite sequence of consecutive integer values of k (k = ko, ko + 1, ko + 2, ... ) . 
. The equation has one and only one solution corresponding to each arbitrary 
specification of the n initial values y(ko), y(ko+ 1), ... , y(ko + n -1). 

Proof. Suppose the values y(ko), y(ko + 1), ... , y(ko + n -1) are specified. Then 
the difference equation (2-5), with k = ko, can be solved uniquely for y(ko+ n) 
simply by evaluating the function f. Then, once y(ko+ n) is known, the 
difference equation (2-5) with k = ko + 1 can be solved for y(ko + n + 1), and so 
forth for all consecutive values of k. I 

It should be noted that no restrictions are placed on the real-valued 
function f. The fUnction can be highly nonlinear. The essential ingredient of the 
result is that the y of leading index value can be determined from previous 
values, and this leading index increases stepwise. A special class of difference 
equations which satisfies the theorem's requirements is the nth-order linear 
difference equation 

y(k + n) + a.._l(k)y(k + n -1) + ... + ao(k)y(k) = g(k) 

This equation conforms to (2-5), with the function f being just a sum of terms. 

2.3 A FIRST-ORDER EQUATION 

The first-order difference equation 

y(k+ 1)= ay(k)+ b (2-6) 

arises in many important applications, and its analysis motivates much of the 
general theory of difference equations. The equation is linear, has a constant 
coefficient a, and a constant forcing term b. 
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The general solution to this equation is easily deduced. The most 
straightforward solution procedure is to determine successive values recur­
sively, as outlined in the previous section. Thus, we arbitrarily specify the value 
of y at an initial point ko, say ko = 0, and specify y(O) = C. This leads 
immediately to the following successive values: 

The general term is 

y(O) = C 

y(l) = ay(O) + b = aC+ b 

y(2)= ay(l)+b= a2 C+ab+ b 

y(3) = a3 C+ a2 b + ab+ b 

y(k) = akC+ (a k- 1 + a k
- 2 + ... + a + l)b 

For a = 1, the expression reduces simply to 

y(k)= C+kb 

(2-7) 

For a tc 1, the expression can be somewhat simplified by collapsing the geomet-
flC senes, using 

2 k 1 1- ak 

l+a+a + .. ·+a - =-­
l-a 

Therefore, the desired solution in closed-form is 

{

C+kb, a= 1 

y(k)= k .l-a k 

a C+-
1
- b, atc 1 
-a 

(2-8) 

This solution can be checked by substituting it into the original difference 
equation (2~6). 

When a;6 1 another way of displaying the general solution (2-8) is some­
times more convenient: 

b 
y(k) = Da k +--

1-a 

where D is an arbitrary constant. Clearly this new constant D is related to the 
earlier constant C by D = C- [b/(l- a)). In this form, it is apparent that the 
solution function is the sum of two elementary functions: the constant function 
b/(l- a) and the geometric sequence Da k

• . 

In addition to acquiring familiarity with the analytic solutions t~ simple 
difference equations, it is desirable that one be able to infer these solutions 
intuitively. To begin developing this ability, consider the special case corres­
ponding to a = 1 in (2-6). For this case, the equation states that the new value 
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of y equals the old value plus the constant b. Therefore, successive y's merely 
accumulate successive additions of the constant b. The general solution is 
clearly y(k) = C + kb, where C is the initial value, y(O). 

If a"e 1 the difference equation multiplies the old value by the factor a 
each period and adds the constant b. It is like storing up value and either 
paymg interest (if a> 1) or deducting a tax (if 0 < a < 1). Clearly, an initial 
amount C will, after k periods of such a process, be transformed to akC. The 
term b in the equation acts like additional deposits made each period. This 
leads immediately to (2-7), and then by manipulation to (2-8). This interpreta­
tion of the equation is explored formally in Sect. 2.4 where the classical 
amortization formula is derived. 

2.4 CHAIN LETIERS AND AMORTIZATION 

The examples presented here and in Sect. 2.5 illustrate how first-order differ­
ence equations arise in various situations, and how the general solution formula 
provides a basis for analysis. Although the three examples all lead to the same 
form of difference equation, they have three different analysis objectives. The 
chain letter problem is simply one of computing the solution for a particular 
value of k. The amortization problem is one of determining an appropnate 
repayment level; it requires full use of the solution formula. The cobweb model 
of economic interaction leads to an analysis of stability, relatmg solution 
behavior to the model parameters. 

Example 1 (The Chain Letter). Suppose you receive a chain letter that lists six 
names and addresses. The letter asks you to send 1O~ to the first person on the 
list. You are then to make up a new letter with the first name deleted and your 
name added to the bottom of the list. You are instructed to send a copy of this 
new letter to each of five friends. You are promised that within a few weeks 
you will receive up to $1562.50. 

Although chain letters are illegal, you might find it amusing to verify the 
letter's promise under the hypothesis that you and everyone else were to follow 
the instructions, thus not "breaking the cham." The spreading of these letters 
can be formulated in terms of a difference equation. 

Let us follow only those letters that derive from the letter you receive. Let 
y(k) denote the number of letters in the kth generation, with the letter you 
receive corresponding to y(O) = 1, the letters written by you corresponding to 
y(l), the letters written by those you contact as y(2), and so forth. Each letter 
written induces five letters in the next generation. Thus, the appropriate 
relation between successive generations is 

y(k+l)=5y(k) 
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With the initial condition yeO) = 1, the solution is 

y(k) = 5k 

According to the letter's instructions, all recipients of sixth generation 
letters should send you 1O~. This would be 56 = 15,625 letters and $1562.50. 

Example 2 (Interest and Amortization). As mentioned earlier, the accumula­
tion of bank deposits can be described by a first-order difference equation. 
Suppose deposits are made at the end of each year and let y(k) denote the 
amount in the account at the beginning of year k. If the bank pays no interest, 
then the account is simply a storage mechanism governed by the equation 

y(k+ 1)= y(k)+b(k) 

where b(k) is the amount of deposit at the beginning of year k. If equal 
deposits of amount b are made each year, the balance in the account wiII grow 
linearly. 

If the bank pays interest i, compounded annually, the account balance is 
governed by 

y(k + 1) = (1 + i)y(k) + b 

since in addition to the simple holding action the bank pays iy(k) at the end of 
the year as interest. If equal deposits are made, the account will grow according 
to the solution of the first-order equation. 

A similar structure arises when one borrows money at an interest rate i. 
The total debt increases just as would the balance in an account paying that 
mterest. Amortization is a method for repaying an initial debt, including the 
interest and original principal, by a series of payments (usually at equal 
intervals and of equal magnitude). If a payment B is made at the end of each year 
the total debt will satisfy the equation 

d(k + 1) = (1 + i)d(k)- B 

where d(O) = D, the initial debt. If it is desired to amortize the debt so that it is 
paid off at the end of n years, it is necessary to select B so that den) = O. 

The general solution developed in Sect. 2.3, implies 

Setting den) = 0 yields 

den) = D(1 + i)" _ 1-(1 + i)" B 
1-(1+ i) 

B 
1-(I.+i)" 

D(l + i)" 
-I 
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which simplifies to the standard amortization formula 

iD 
B = ----:--::-

1-(1+0 R 

2.5 THE COBWEB MODEL 

A classic dynamic model of supply and demand interaction is described by a 
first-order dynamic equation. The model's behavior can be conveniently dis­
played using the graph of supply and demand curves. The diagram resulting 
from this analysis resembles a cobweb, and this is responsible for the model's 
name. 

The cobweb model is concerned with a single commodity, say corn. The 
demand d for the commodity depends on its price p through a function d(p). 
Since the amount that consumers buy decreases as the price increases, d(p) 
decreases as p increases. For purposes of this example, we assume that the 
demand function is linear 

d(p) = do- ap 

where do and a are positive constants. 
Likewise, the amount s of the commodity that will be supplied by 

producers also depends on the price p through a function s(p). Usually, s(p) 
Increases as p increases. (For mstance, a high price will induce farmers to plant 
more corn.) We assume the specific linear form 

s(p) = so+ bp 

where b is positive (so may have any value, but is usually negative). 
The two curves are shown together in Fig. 2.1a. In equilibrium the 

demand must equal supply, which corresponds to the point where the two 
curves intersect. The equilibrium price is attained, however, only after a series 
of adjustments by consumers and producers. Each adjustment corresponds to 
movement along the appropriate demand or supply curve. It is the dynamics of 
this adjustment process that we wish to describe. 

We assume that at period k there is a prevailing price p(k). The producer 
bases his production in period k on this price. However, due to the time lag in 
the production process (growing corn in our example) the resulting supply is 
not available until the next period, k + 1. When that supply is available, its 
price will be determined by the demand function-the price will adjust so that 
all of the available supply will be sold. This new price at k + 1 is observed by 
the producers who then, accordingly, initiate production for the next period, 
and a new cycle begins. 
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Figure 2.1. The cobweb model. 
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The equation 

s(k+ 1) = so+bp(k) 

expresses the fact that the supply at period k + 1 is determined by the price at 
period k through the supply function. Also, 

d(k + 1) = do- ap(k + 1) 

formally states the fact that demand at period k + 1 is determined by the price 
at period k + 1 through the demand function. Finally, imposing the condition 
that at equilibrium supply must equal demand leads to the dynamic equation 

so+ bp(k) = do- ap(k + 1) 

which can be restated in the standard form for difference equations 

b do- So 
p(k+ 1)= -- p(k)+--

a a 

The equilibrium price can be found by setting p(k) = p(k + 1) leading to 

This price, if once established, would persist indefinitely. The question arises, 
however, as to whether this price will ever be established or even whether over 
successive periods the price will tend toward this equilibrium price, rather than 
diverging away from it. 

Using the general solution of the first-order equation we find 

l-(-b/a)k 
p(k)=(-b/a)kp(O)+ b (do-so) 

a+ 

If b < a, it follows that as k ~ 00 the solution will tend toward the equilibrium 
value since the (-b/a)k terms all go to zero. Equilibrium will be attained (at 
least in the limit) no matter what the initial price. Obviously b < a is both 
necessary and sufficient for this convergence property to hold. 

Now for the cobweb interpretation. Let us trace the path of supply and 
demand over successive periods on the graphs in Fig. 2.1a. The results are 
shown in Figs. 2.1b and 2.1c. which represent, respectively, a converging and a 
diverging situation. The price p(O) determines the supply SI that will be 
available in the next period. This supply determines the demand d l and hence 
the price Ph and so forth. By this reasoning we are led to trace out a 
rectangular spiral. If b < a, the spiral will converge inward. If b> a, it will 
diverge outward. 
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From this analysis we have deduced an important general conclusion for 
the cobweb model of economic interaction. For equilibrium to be approached, 
the slope b of the supply curve must be less than the slope a of the demand 
curve. Said another way, for equilibrium to be attained, the producers must be 
less sensitive to price changes than the consumers. 

2.6 LINEAR DIFFERENCE EQUATIONS 

As defined earlier, a difference equation is linear if it has the form 

an(k)y(k + n) + an _l(k)y(k + n -1) + ... + al(k)y(k + 1) 

+ao(k)y(k)=g(k) (2-9) 

Linearity .makes it possible to explicitly examine the relationship between 
various solutions to the difference equation, leading to a rather complete 
theory. In some cases this theory actually leads to analytical expressions for 
solutIOns, but even when such expressions are not obtainable, the theory of 
linear equations provides important structural information. 

The Homogeneous Equation 
A basic concept underlying the general theory is that of a homogeneous linear 
difference equation. The linear difference equation (2-9) is said to be 
homogeneous if g(k) = 0 for all k in the set over which the equation is defined. 
That is, a linear equation is homogeneous if its forcing term (or right-hand side) 
is zero. Equation (2-9) is said to be nonhomogeneous if g(k) ¥ 0 for some k. 
Given a general nonhomogeneous linear difference equation, one associates 
with it the corresponding homogeneous equation (2-10) obtained by setting 
g(k) to be zero for all k: 

an(k)y(k + n)+an _l(k)y(k + n-l)+'" + a1(k)y(k+ 1)+ ao(k)y(k)= 0 (2-10) 

This corresponding homogeneous equation plays a central role in specifying 
solutions to the original nonhomogeneous equation. 

Two observations indicate the importance of homogeneous equations for 
the theory of linear equations. First, the difference between two solutions of 
the nonhomogeneous equation (2-9) must satisfy the homogeneous equation 
(2-10). Second, if a solution to the homogeneous equation is added to a 
solution to the nonhomogeneous equation, the result is also a solution to the 
nonhomogeneous equation. These two observations (which are carefully jus­
tified in the proof below) are converses, and together they imply the following 
theorem characterizing the structure of the solution set of a nonhomogeneous 
equation. 
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Theorem 1. Let j(k) be a given solution w the linear difference equation (2-9). 
Then the collection of all solutions to this equation is th" collection of all 
functions of the form y(k)= j(k)+z(k), where z(k) is a solution of the 
corresponding homogeneous equation (2-10). 

Proof. Two things must be proved. First, it must be shown that if y(k) and j(k) 
are both solutions to the nonhomogeneous equation, then the difference 
z(k) = y(k)- j(k) is a solution to the homogeneous equation. To prove this 
note that if y(k) and j(k) are both solutions to (2-9), then 

a,. (k)y(k + n) + ... + ao(k)y(k) = a,. (k)j(k + n) + ... + ao(k)j(k) 

Corresponding terms can be combined to yield 

a,. (k)[y(k + n) - j(k + n)] + ... + ao(k)[y(k) - j( k)] = 0 

Therefore, the difference z(k) = y(k) - j(k) satisfies the homogeneous equa­
tion. 

Second, it must be shown that (conversely) when any solution of the 
homogeneous equation is added to a solution of the nonhomogeneous equa­
tion, the sum is also a solution of the nonhomogeneous equation. To prove 
this, let j(k) and z(k) be solutions of the nonhomogeneous and homogeneous 
equations, respectively. Let y(k)= j(k)+z(k). It then follows that 

a,.(k)[j(k + n) + z(k + n)]+ a,._t(k)[j(k + n -1) + z(k + n -1)] 

+ ... +ao(k)[j(k)+z(k)] 

= a,. (k)j(k + n) + a,._t(k)j(k + n -1) + ... + ao(k)j(k) 

+ a,.(k)z(k + n) + a,._t(k)z(k + n -1) + ... + ao(k)z(k) 

':' g(k)+O 

= g(k) 

Therefore, y(k) = y( k) + z( k) is a solution of the nonhomogeneous equation. I 

Theorem 1 reveals the importance of homogeneous equations in defining 
general solutions to the nonhomogeneous equatIOns. This result is useful for 
investigating some simple linear difference equations. 

Example 1. Consider again (see Sect. 2.1) the linear difference equation 

(k + 1)y(k + 1)- ky(k) = 1 

defined for k ~ 1. By inspection, one solution is j(k) = 1. From Theorem 1 we 
know that the general solution is the sum of this particular solution and the 
general solution of the associated homogeneous equation 

(k + 1)z(k + 1)- kz(k) = 0 
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The general solution to this homogeneous equation is z(k) = AJk, where A is 
an arbitrary constant. Thus by Theorem 1, the general solution to the original 
nonhomogeneous equation is 

y(k)= 1+AJk 

One interpretation of Theorem 1 is that the solutions of homogeneous 
equations provide the flexibility, or the degrees of freedom, in solutions to 
linear difference equations. From this view it is natural to seek a characteriza­
tion of the solution set of a homogeneous equation. The remainder of this 
section addresses this subject. The next theorem, a first result in this direction, 
establishes the linearity of the solution set. 

Theorem Z. If zt(k), z2(k), ... , z ... (k) are all solutions to the homogeneous 
equation (2-10), then any linear combination of these m solutions 

z(k) = CIZ1(k) + C2z2(k) + ... + c",z",(k) 

where c1, c2, ..• , c". are arbitrary constants, is also a solution of (2-10). 

Proof. For notational convenience let us consider the case m = 2. The general 
case can be proved in the same way. 

If z(k) = C1z1(k)+ C2z2(k) is substituted into the left-hand side of (2-10), 
one obtains 

u,,(k)[C1Z1(k + n)+ C2Z2(k + n)]+ u,,_1(k)[CIZ1(k + n -1) 

+ C2z2(k + n -1)]+' . -+ ao(k)[c1Z1(k) + C2Z2(k)] 

This can be rewritten as 

Cl{a,. (k)Zl (k + n) + u,,-l(k )Zt (k + n - 1) + ... + ao(k )Zl (k)} 

+ c2{a,.(k)Z2(k + n) + u,,-1(k)Z2(k + n -1) + ... + aO(k)z2(k)} 

The expression is zero, since each of the two bracketed expressions is zero. I 
Theorem 2 shows that a large collection of solutions to the homogeneous 

equation can be derived from a few known solutions. This raises the rather 
obvious question as to whether it is possible to find a special finite number of 
solutions that can be used to generate all other solutions. This is the question 
to which we now tum. 

A Fundamental Set of Solutions 
We focus on the important special case where a,.(k) ~ O. In that case, Eq. (2-10) 
can be divided by a,.(k) and, without loss of generality, it can be assumed that 
the homogeneous equation under investigation is 

z(k + n)+ a,._t(k)z(k + n -1)+' •. + ao(k)z(k) == 0 (2-11) 
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for k = 0, 1,2, .... In this form the basic existence and uniqueness theorem of 
Sect. 2.2 is applicable. There is, therefore, a natural correspondence between a 
set of initial conditions and a solution. 

Let us construct a special set of n different solutions I 1(k), 
I 2(k), ... , z .. (k). Define I1(k) to be the solution corresponding to the initial 
conditions I 1 (0) = 1, Zl (1) = 0, I1 (2) = 0, ... , Zl (n -1) = 0. And, in general, 
let I;(k) be the solution corresponding to initial conditions that are all 
zero except the (i -1)th, which equals one. This set of n distinct solutions is 
called a fundamental set.* It can be generated by solving the difference 
equation n times, once for each of the special sets of initial conditions. These n 
special solutions can be used, as described in the following theorem, to 
construct all solutions to the homogeneous equation (2-11). 

Theorem 3. If z(k) is any solution to the homogeneous equation (2-11), then 
z(k) can be expressed in terms of the n fundamental solutions in the form 

z(k)= C1Z1(k)+ C2I2(k)+·· ·+c,.In(k) 

for some constants C1' c2 , ••• , c ... 

Proof. Let z(k) be an arbitrary solution to (2-11). Corresponding to its initial 
values define 

c; = z(i-1) i= 1,2, ... , n 

Now consider the special solution y(k) defined by 

y (k) = C1 I 1( k) + C2I 2( k) + ... + c,.In (k) 

It has the same n initial conditions as the original solution z(k), and therefore 
it follows by the existence and uniqueness theorem of Sect. 2.2 that y(k) = 
z(k).1 

At this point it is perhaps useful to point out that the approach presented 
in this section represents the classical theory of difference equations. In this 
approach it is recognized that the solution to a linear difference equation is in 
general not unique. An nth-order equation has n degrees of freedom expres­
sed earlier by the fact that n arbitrary initial conditions can be specified. 
Theorems 1 and 2 of this section provide an alternative characterization of this 
nonuniqueness in terms of solutions to the homogeneous equation, which 
themselves can be combined in arbitrary combinations. This classical approach, 
focusing on the solution function as a unit, is rather algebraic in its viewpoint, 
and somewhat suppresses the inherently dynamic character of difference equa­
tions. Essentially, the classic approach exploits linearity more than dynamic 
structure. 

• This is not the only fundamental set of solutions, but it is the most convenient. In general, as 
expiained more fully ID Chapter 4, a fundamental set is any set of n linearly independent solutions. 
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Theorem 3 bridges the gap between purely algebraic and dynamic view­
points. Each of the n free initial conditions defines a single degree of freedom 
in the dynamic viewpoint and corresponds directly to a fundamental solution of 
the homogeneous equation. Therefore, an arbitrary solution can be specified 
either by assigning its n initial conditions or, equivalently, by assignmg weights 
to its component fundamental solutions. 

Example 2. Consider the linear homogeneous difference equation 

z(k +2)-2z(k + 1)+ z(k) = 0 

Since it is second order, we know that there will be two degrees of freedom in 
its general solution. This freedom will be manifested by the fact that two initial 
conditions can be specified, or by the fact that two fundamental solutions can 
be found .. 

By inspection it is clear that the two functions 

are both solutions. The two fundamental solutions can be easily found to be 

zl(k)=l-k 

z2(k)=k 

An arbitrary solution, therefore, has the form 

z(k) = CIZ1(k) + C2z2(k) = c1(1- k)+ C2k 

=Cl+(C2-Cl)k 

or, since both c's are arbitrary, 

z(k)= c+dk 

for arbitrary c and d. 

Unear Independence 
Given a finite set of functions zl(k), z2(k), ... , zrn(k) defined for a set of 
integers, say k = 0, 1,2, ... , N, we say that these functions are linearly inde­
pendent if it is impossible to find a relation of the form 

CIZ1(k) + C2Z2(k) + ... + c".Zrn (k) = 0 

valid for all k = 0, 1,2, ... , N, except by setting C1 = C2 == C3 = ... = Crn = O. If it 
is possible to find such a relation, the set of functions is said to be linearly 
dependent. 

An example of a linearly dependent set of functions for k = 0, 1,2, ... is 
the set zl(k)= 1, z2(k)=2k

, z3(k)=2k
+
I -3 because 3z1(k)-2z2(k)+Z3(k)= 
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O. An example of a linearly independent set of functions is the set zl(k) = 1, 
z2(k) = 2k, z3(k) = 3" because if not all coefficients are zero, there IS no linear 
combination of these that is identically equal to zero. 

The fundamental set of solutions zl(k), z2(k), ... , z.(k) corresponding to 
the homogeneous difference equation (2-11) is a linearly independent set. This 
is easy to see. Since z,(k) is the only one in the set that is nonzero for k = i-I, 
the only way to get C1z1(k)+C2Z2(k)+···+c.z.(k)=O for k=i-l is for 
C1 = O. This argument is valid for all i = 1,2, ... , n. Therefore, the only linear 
combination that is identically zero is the one having all zero coefficients. 

An extension of Theorem 3 is that any set of n linearly independent 
solutions of the homogeneous equation can play the role of the fundamental 
solutions. This theorem is the final characterization of the solution set. The 
details of the proof are not given here, since a more general version is 
established in Chapter 4. 

Theorem 4. Suppose zt(k), z2(k), ... , z.(k) is a linearly independent set of 
solutions to the homogeneous equation (2-11). Then any solution z(k) to 
(2.11) can be expressed as a linear combination 

z(k) = ctzdk) + C2Z2(k) + ... + c.z. (k) 

for some constants Ct. c2, ... , c •. 

Solution of Nonhomogeneous Equation 

The theory of this section leads to a general method for finding a solution to a 
nonhomogeneous equation of the form 

y(k + n)+ a._t(k)y(k + n -1)+" . + ao(k)y(k) = g(k) (2-12) 

which satisfies a given set of initial conditions. The procedure is to find (a) a set 
of n linearly independent solutions to the corresponding homogeneous equa­
tion, and (b) a particular solution to the nonhomogeneous equation that does 
not necessarily satisfy the given conditions. The solution to the nonhomogene­
ous equation is then modified by the addition of suitable linear combinations of 
solutions to the homogeneous equation so that the initial conditions are 
satisfied. 

If Y(k) is a particular solution and zt(k), z2(k), ... , z.(k) are linearly 
independent solutions to the corresponding homogeneous equation, then the 
general solution of (2-12) is 

y(k) = y(k)+ ctzt(k) + C2Z2(k) + ... + c.z. (k) 

If a different particular solution y(k) were used, it would simply change the 
values of the c;'s in the general solution. 
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Forward recursion methods can always be used to find a particular solution 
to the nonhomogeneous equation and the linearly independent solutions to the 
homogeneous equations. Analytical methods of finding these solutions are 
available only for special cases. 

2.7 LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS 

In the important case of linear difference equations with constant coefficients, it 
is possible to find aU solutions to the homogeneous equation. As shown in Sect. 
2.6, these provide the means for calculating general solutions to an equation 
with constant coefficients, once a particular solution is known. 

The key result is that corresponding to every linear homogeneous equation 
with constant coefficients, there is a geometric sequence that is a solution; that 
is, there is a solution of the form z(k) == A k for some suitable constant A. 
Because of this fact, geometric sequences play a major role in the theory of 
linear homogeneous equations with constant coefficients. 

The Characteristic Equation 

Consider the linear difference equation with constant coefficients 

z(k + n) + a,._lz(k + n -1) + ... + aoz(k) = 0 

We hypothesize a solution of the form 

Z(k)=A k 

(2-13) 

(2-14) 

where A is a constant (not yet specified). Substituting this trial solution into 
(2-13) yields 

A k+ .. + a,.-lA k+ .. -I + ... + aoA k = 0 

and multiplying this by A -k yields 

A" +a,.-lA .. -1 + ... + alA +ao = 0 

(2-15) 

(2-16) 

which depends on A, but not on k. This last equation is called the characteristic 
equation of the difference equation (2-13). It is clear from the above argument, 
that A must satisfy the characteristic equation if z(k) = A k is to be a solution to 
the difference equation (2-13). Conversely, since the above steps are reversible, 
any A satisfying the characteristic equation provides a solution of the form 
(2-14) to the difference equation. Accordingly, the role of the characteristic 
equation is summarized by the fol\owing statement. 

Theorem. A necessary and sufficient condition for the geometric sequence z(k) = 
A k to be a solution to (2-13) is that the constant A satisfy the characteristic 
equation (2-16). 
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The left-hand side of the characteristic equation is a polynomial of degree 
n-generally referred to as the characteristic polynomial. A root of this 
polynomial is caned a characteristic value. By the fundamental theorem of 
algebra, it is known that such a polynomial can be factored into n first-degree 
terms so that the polynomial has n roots (although the roots may not be 
distinct, and some may be complex numbers). Therefore, there is always at 
least one solution to the characteristic equation, and, accordingly, there is 
always a geometric sequence that is a solution to the homogeneous difference 
equation. 

If there are n distinct solutions to the characteristic equation, each of them 
provides a distinct geometric sequence that is a solution to the difference 
equation. Moreover, it can be easily shown that these n solutions are linearly 
independent; hence by linear combination they can be used to generate all 
solutions to the homogeneous equation. Thus, for this case, the n distinct roots 
of ·the characteristic polynomial, when translated to geometric sequences, 
provide a complete resolution to the problem of determining solutions to the 
homogeneous equation. 

In some cases the characteristic equation will have complex roots. How­
ever, because the coefficients of the characteristic polynomial are all real, 
complex roots must occur in complex conjugate pairs. That is, if Al = a + ib is a 
root, then so is A2 = a - ib. The expression CIA~+ C2A~ in the general solution 
will be real-valued if c, and C2 are selected as complex conjugates. Thus, even 
though we are interested exclusively in real solutions to difference equations, 
complex roots often are used in the construction of such solutions. 

Example 1 (FIrSt-Order Equation). Consider the familiar first-order equation 

y(k + 1) = ay(k) 

The characteristic equation corresponding to this (homogeneous) difference 
equation is 

A-a=O 

which has the single solution A = a. Therefore, we expect solutions of the form 

y(k) = Ca k 

which we know to be correct from our earlier discussion of this equation. 
Now consider the nonhomogeneous equation 

y(k + 1) = ay(k)+ b 

with a¢' 1. As a trial solution let us set y (k) = c for some constant c. IT this is to 
be a solution, the equation 

c=ac+b 
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must hold. Thus, 

b 
c=--

I-a 

corresponds to a particular solution. The general solutions are the sum of this 
particular solution and solutions to the homogeneous equation. Therefore, the 
general solution is 

. b 
y(k) = Cal< +-­

I-a 

which agrees with what was deduced by forward recursion in Sect. 2.3. 

Example 2 (Second-Order Equation). Consider the difference equation 

y(k +2) - 3y(k + 1)+ 2y(k) = 3k 

As a particular solution let us try y(k) = C3 k
• Substitution of this into the 

equation yields 

C(3 k +2 -3. 3k + 1 +2. 3ic )=3 k 

Or, multiplying by r", (9 - 9 + 2) C = 1. Thus, this form of solution is suitable 
proVided 

C=! 

The corresponding characteristic equation is 

A.2-3A.+2=O 

which can be factored to yield 

(A -2)(A -1)= 0 

The two roots, which are distinct, are A. = 1 and A = 2. Therefore, the general 
solutIOn to the original nonhomogeneous equation is 

y(k) =! 3k + C1 + C22k 

Example 3 (Fibonacci Seqnence). The series of numbers 

I, 1,2,3,5,8, 13,21, ... 

IS called the Fibonacci sequence. Its terms are generated by the difference 
equation 

y(k +2) = y(k + 1)+ y(k) 

together with the initial conditions y(1) = y(2) = 1. The direct way to calculate 
the members of the sequence is recursively, summing the last two to get the 
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next. Alternatively, an analytical expression for the general term can be found 
once the characteristic equation is solved. 

The characteristic equation corresponding to the Fibonacci sequence is 

A2-A-l=0 

Its solutions are 

1±v'1+4 
A=----

2 

Thus, the two values are 

1+E 
A1 =--=1618 2 . 

l-E 
A2 =-2-=-·618 

The number A 1 is known as the golden section ratio and was considered by 
early Greeks to be the most aesthetic value for the ratio of two adjacent sides 
of a rectangle. 

In terms of these values, the solution to the Fibonacci difference equation 
is 

y(k) = AA ~+ BA~ 

for some constants A and B. Substitution of the inItial conditions for k =11 and 
k =1.yield, respectively, the equations 

1 =AA.+BA2 

1 = AAi+BAi 

After a fair amount of algebra the solutions can be found to be 

A=1/./5 

B = -1/./5 
Therefore, the expression for the general term is 

{(
1+ ,J5)k (1- ,J5)k} 1 y(k)= -- - -- -

2 2,J5 

It might be surprising that this expression, involving as it does several 
appearances of ,J5, generates a sequence composed entirely of integers. 
Nevertheless, this is the solution. 



36 Difference and Differential Equations 

Example 4 (An Imaginary Root Example). Consider the second-order equation 

y(k +2)+ y(k)= 0 

with initial conditions y(O) = 1, y(1) = O. The characteristic equation is 

,\2+1=0 

which has the roots ,\ = ±i (where i = J=1). The general solution is therefore 

y(k) = Cl(i)k + c2(-W 
Substitution of the given initial conditions Yields the equations 

C1 + C2 = 1 

Cl(i)+c2(-i)=0 

Thus, c. = C2 = q. The desired solution is 

y(k)=q(it +q(_i)k 

Although this solution involves imaginary numbers, the solution is actual1y 
real for all values of k-the Imagmary values all cancel. Indeed the solutIOn is 
the sequence 1,0, -1, 0,1,0, .... 

Example 5 (Gambler's Ruin). Consider a gambling situation involving two 
players A and B. An example is roulette where, say, player A is a "guest" and 
player B IS the "house." During anyone play of the game there is a probability 
p, 0 < p < 1, that player A wins a chip (or coin) from player B, and a 
probability q = 1- P that player B wins a chip from player A. The players 
begin with initial holdings of a and b chips. respectively. A player wins overaIl 
if he obtains all the chips. What is the probability that player A wins? 

To solve this classic problem, consider the general situatIOn where A has k 
chips, O:s k :S a + b, and B has a + b - k chips. Denote the probability under 
these,circumstances that player A eventuaIly wms by u(k). We can deduce a 
difference equation for u(k). 

Assuming player A has k chips, at the conclusion of the next play he will 
have either k + 1 or k -1 chips, depending on whether he wins or loses that 
play. The probabilities of eventuaIly winning must therefore satisfy the differ­
ence equation 

u(k) == pu(k + 1) + qU(k -1) 

In addition we have the two auxiliary conditions 

u(O) = 0 u(a+b)=1 

This differenc<! equation for u(k) is linear, homogeneous, and has constant 
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Figure 2.2. Roulette wheel. 

coefficients. Its characteristic equation is 

-pA 2 +A - q = 0 

The corresponding roots are A = 1, A = q/p. Accordingly, the general solution 
(assuming q¥ p) is 

u(k) = Cl + c2(q/p)k 

The two auxiliary conditions give the equations 

0= Cl + C2 

1 = Cl + c2(q/pt+b 

These can be solved for Cl and C2 and the result substituted into the general 
solution. This leads to 

u(k)= 1-(q/p)~ 
1-(q/pt+b 

Finally, at the original position where player A has a chips, the corresponding 
probability of winning is 

1-(q/pt 
u ( a) - -:---:-'-''-'-:'-:7 

- 1- (q/pt+ b 

As a specific example, suppose you play a roulette wheel that has 37 
divisions: 18 are red, 18 are black, and one (number 0) is green (see Fig. 2.2). 
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If you bet on either red or black you win a sum equal to your bet if the 
outcome is a division of that color. Otherwise you lose your bet.* If the house 
bank has 1,000,000 francs and you have 100,000 francs, what is the chance 
that you can "break the bank," betting 1000 francs on red or black each spin 
of the wheel? 

In this case 

18 19 
p=- q=-

37 37 
a = 100 b = 1,000 

Thus, 

_ 1-(19/18)100 _ -24 

u(100) - 1- (19/18)1100 - 3.29 . 10 

2.8 DIFFERENTIAL EQUATIONS 

Suppose there is an interval, say to:S t:s t .. representing, perhaps, an interval of 
continuous time. Suppose also that there is a value y(t) associated with each 
point t in that interval. Then y(t) is a function defined on the interval. A 
differential equation is an equation connecting such a function and some of its 
derivatives. A simple example is the equation 

dy 
di= ay 

and a more complicated example is the equation 

The order of a differential equation is the order of the highest derivative that 
appears in the equation. Thus, the first example above is first order and the 
second is second order. 

As should be reasonably obvious, the mathematics of differential equa­
tions is in many respects analogous to that of difference equations. As a general 
rule any concept for one of these mathematical structures has a direct analog 
for the other, although in some cases the mechanIcs or the sharpness of 
theoretical statements may vary when the concept IS implemented in the two 
structures. Thus, just as for difference equations, the concepts of Initial 
conditIOns, lineanty, constant coefficients, and homogeneous linear equations 

• In many European casinos the actuai procedure followmg an outcome of green is quite different, 
yielding more favorable odds to the players. See Problem 12. 
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all are important for the study of differential equations. These are outlined In 

the remainder of this chapter. 
Quite analogously to the notIOns associated with difference equatIOns, a 

differential equation is said to be linear if It has the form 

dny dn-1y dy 
an(t) Fn+ an-l(t) dtn- 1 + ... + a1(t) dt + ao(t)y = g(t) 

for some functIOns aj(t), 1=0, 1,2, ... , nand g(t) defined on the given 
interval. Again the aj(t)'s are referred to as coefficients and g(t) as the dnvmg 
term or right-hand side. 

Initial Conditions 
It IS usually necessary, just as for difference equations, to specify a set of 
auxiliary conditions in order to completely specify a unique solution to a 
differential equation. For example, the first-order equation 

dy 
dt = ay 

has solutions of the form 
y(t) = Cear 

where C is an arbitrary constant. In order to specify a umque sOiution, the 
value of this constant must be pinned down. One way to do this is to specify 
the initial value y(O), which then determines C by C= y(O). 

In general, higher-order differential equations require that additionai 
auxiliary conditions be specified. These additional conditions often are 
specified by assigning initial conditions to the derIvatives of the function as well 
as assigning its initial value. 

Example. Consider the second-order differential equation 

d2 y 
-=0 
dt2 

This has a general solution of the form 

y(t) = A + Bt 

where A and B are arbitrary constants. To specify a umque solution, two 
auxiliary conditions must be given. If in this case y(O) and dy(O)/dt are 
specified, then the constants A and B are determined by 

A = y(O) 

B = dy(O) 
dt 
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Existence and Uniqueness Theorem 

It is considerably more difficult to establish an existence proof for differential 
equations than for difference equations. This is because, although the concept 
of computing a solution by moving forward from a set of initial conditions is 
usually still valid, the mechanics cannot be reduced to a fimte recursion. In 
order to avoid difficult mathematical developments, which are somewhat 
tangential to our primary objectives, we simply state an existence result for 
linear differential equations that is adequate for most of our needs. 

Existellce alld Ulliquelless' Theorem. Suppose the coefficients aj(t), i = 
0, 1,2, ... , n -1 and the function g(t) are continuous on an mteroal O:s t:S T. 
Then for any set of values b;, i = 0, 1, 2, ... , n - 1, there is a unique solution 
to the linear differential equation 

satisfying the initial conditions 

y(O) = bo 

dy(O) = b 
dt 1 

This theorem allows us to think in terms of solving a differential 
equation by moving forward in t. Once a set of initial conditions is specified, 
one can imagine moving forward along the resulting solution to a value, say, 
t1 > O. At this point, even if the original initial conditions are forgotten, the n 
corresponding conditions at tl serve to specify the unique solutIOn for all t> tl • 

In general, the conditions at any point determine the entire future behavior of 
the solution. Therefore, one can consider the solution to be generated by 
moving forward in time, forgetting the past, but keeping track of the current 
derivatives that serve as the. newest initial conditIOns for the generation 
process. 

2.9 LINEAR DIFFERENTIAL EQUATIONS 

Linear differential equations have an associated theory that is parallel to that of 
linear difference equations. Again homogeneous equations playa central role. 
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Homogeneous Equations 

A linear differential equation 

d"y d"-t y 
dt" +a,.-t(t) dt"-t + ... + ao(t)y = g(t) (2-17) 

is said to be homogeneous if g(t) = 0, otherwise it is nonhomogeneous. As­
sociated with a general linear equation (2-17) is the corresponding homogene­
ous equation obtained by setting g(t) = o. It is quite easy to establish the 
following basic results. 

Theorem 1. Let y(t) be a given solutIOn to the linear differentIal equatIOn (2-17). 
Then the collection of all solutions to thIs equatIOn is the collectIOn of all 
functions of the form y(t) = yU) + z(t), where z(t) is a solutIOn to the 
corresponding homogeneous equation. 

Theorem Z. If Zt(t), Z2(t), ... , zm(t) are all solutIOns to a linear homogeneous 
differential equation, then any linear combinatIOn of these m solutIOns 

z(t) = CtZt(t) + C2Z2(t) + ... + CmZm (t) 

where Ch C2, ... , Cm are arbItrary constants, IS also a solution. 

The interpretations and proofs of these results are virtually identical to 
those for difference equations. The flexibility of solution to a differential 
equation, as characterized earlier in terms of a set of arbItrary initial condi­
tions, can be interpreted in terms of the addition of arbitrary combmations of 
solutions to the homogeneous equation. Again, this is the classIcal vlewpomt. 

Example 1 (First-Order Equation). Consider the first-order, constant coeffi­
cient equatIOn 

dy 
-= ay+b 
dt 

This equation arises in many applications, and serves as a building block for 
more complex equations. 

It can be seen by inspection that one solution is the constant function 

y(t) = -bia 

This solution is regarded as a particular solution and all other solutions can be 
written as the sum of this solution and a solution to the corresponding 
homogeneous equation 

dz 
-=az 
dt 
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This homogeneous equation has solutions of the form 

z(t) = Cear 

where C IS an arbitrary constant. Therefore, the general solution to the original 
nonhomogeneous equation is 

y(t) = Ce al
- bta 

Fundamental Solutions 

Corresponding to the homogeneous equation 

d"z d,,-I z 
-+ a,.-I(t) --+ ... + ao(t)z = 0 
dt" dt,,-I 

(2-18) 

it is natural to define the set of n fundamental solutIOns il(t), i 2(t), ... , i,,(t) 
by assigning the special initial conditions 

dkzj(O) = {I 
dt~ 0 

k = 1-1 
otherwIse 

(the zero-th derivative is defined to be the function itself). Thus, each of these 
solutIOns has only one nonzero initial conditIon. It is then easy to prove the 
analog of the earlier result for fundamental soluttons to difference equations. 

Theorem 3. If z(t) IS any solution to the homogeneous equation (2-18), then z(t) 
can be expressed in terms of the n fundamental solutions in the form 

z(t) = clil(t) + C2i2(t) + ... + c"i" (t) 

for some constants c., C2, ••• , c". 

The concept of linear independence of functions extends to continuous as 
well as discrete time. The functions y,(t), Y2(t), ... , Ym (t) are linearly indepen­
dent on an Interval to s; t s; tl if there is no set of constants, cl , C2, ... ,Cm , at 
least one of which is nonzero, for which c,YI(t) + C2Y2(t) + ... + CmYm (t) = 0 for 
all t, to s; t s; tl' 

Just as for difference equations, it can be shown that the n fundamental 
solutions are linearly independent. Accordingly, the result of Theorem 3 can be 
extended to an arbitrary set of n linearly independent solutions. 

Theorem 4. Suppose Zl(t), Z2(t), ... ,z,,(t) is a linearly Independent set of sol­
utions to the homogeneous equation (2-18). Then any solution z(t) can be 
expressed as a linear combination 

for some constants CI> C2, ... , Cn • 
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The Characteristic Equation 

For linear differential equations with constant coefficients, the corresponding 
homogeneous equation can be solved by consideration of an associated charac­
teristic equation. This method is based on assuming that solutions of the form 
z(t) = eAt exist for some constant A. Substitutmg this expression into the 
equation Yields a polynomial equation for A. Thus, just as for difference 
equations, the assumptions of linearity and time-invariance are jointly sufficient 
to simplify greatly the solution of homogeneous differential equations. 

To be specific, consider the homogeneous differential equation 

d"z d"-I Z 
-+n --+ .. ·+a z=O dt" ...,.-1 dt,,-1 0 

(2-19) 

Suppose there exists a solution of the form z(t) = eA. for some constant A. 
Substituting this into the equation yields 

A "eA' + a,,_I A ,,-leA' + ... + aoeA' = 0 

Cancelling eAt (since It is never zero) leads to the equation 

A" +a"_IA "-1 + ... + ao= 0 (2-20) 

This is the characterIStic equation. The left-hand side is the characteristic 
polynomial, and any root of this polynomiai is a characteristIc value. 

It is clear that if z(t) = eA. is a solution to the homogeneous equatton 
(2-19), then A must satisfy the characteristic equation. Conversely, if A IS a 
value satisfying the characteristic equation, then one can trace backward 
through the above argument to conclude that z(t) = eA. is a solution to the 
differential equation. Therefore, if the roots of the charactenstlc polynomial 
are distinct, n different solutions are obtained in this way, corresponding to the 
n degrees of freedom inherent in the original equation. 

Example 2 (First-order Eqnation). The first-order differential equation 

dy 
dt = ay 

has the characteristic equation 
A-a=O 

There is only one root, A = a, leading to the solution function 

y(t)= Cea
• 

Example 3 (A Second-order Eqnation). Consider the homogeneous differential 
equation 
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The corresponding characteristic equation is 

A2 -5A+6=0 

wIth roots A = 2, 3. Therefore, two solutions to the differential equation are e2
' 

and eJ
'. The general solution to the homogeneous differential equation is, 

accordingly, 

y(t) = C1e2' + c2 e J
' 

where C1 and C2 are arbitrary constants. 

2.10 HARMONIC MOTION AND BEATS 

To illustrate the analysis of linear time-invariant differential equations, let us 
consider the important topic of pure oscillatory motion, referred to as harmonic 
motIOn. This arises In many simple physical phenomena, including the motion 
of a mass bouncing on a spring, small oscillations of a pendulum, small 
vibratIOns of a violin string, oscillations of a tuned electnc circuit, and some 
atomic phenomena. 

Such motion is defined by the second-order homogeneous differential 
equation 

(2-21) 

where w is a fixed positive constant. Figure 2.3 illustrates this for a mass on a 
spnng. If the spring exerts a force that is proportional to its displacement from 
equilibrium, the displacement y will be governed by this equation. If the force 
is - ky and the mass is m, then equating mass times acceleration to force YIelds 

d 2 y 
m dt2 = -ky 

Thus, in this case w2 = kIm. 

m 

Figure 2.3. Mass and spring. 
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y 

Figure 2.4. Harmonic motion. 

The corresponding characteristic equation is 

,\2+W2 = 0 (2-22) 

This has solutions ,\ = ±iw, where 1= R. Thus, the roots of the characteristic 
polynomial are imaginary. 

It follows that the general solution to (2-21) is 

(2-23) 

which in generalis a complex value for each value of t. If, however, attentIon is 
restricted to real-valued solutions, the values of C1 and C2 must be restncted so 
that C1 + C2 is real, and c. - C2 is imaginary. In this case the solution can be 
expressed equivalently as 

y(t) = A sin wt+ B cos wt 

where A and B are arbitrary real constants. Indeed, the functions cos wt and 
sin wt form a fundamental set of solutions to the homogeneous equation. 

The pattern of solution is the pure harmonic motion illustrated in Fig. 2.4. 
It consists of a pure sine or cosine wave. Variation of A and B acts only to 
change the height of oscillations and the displacement of phase. It should be 
noted that rather than specifying A and B it is possible to specify the initial 
conditions y(O) and (dy/dt)(O) to determine a particular solution. 

Beats 

Suppose now that an oscillatory system is subjected to an additIOnal force, 
whi.ch itself varies harmonically but at a different frequency. This corresponds 
(roughly) to motion of a child's swing being pushed at other than the natural 
rat", or to one violin string being subjected to the force of air motion generated 
by ;l,e vigorous vibrations of a nearby string. We seek to charactenze the 
general form of the induced vibration. 
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The new equation of motion is the nonhomogeneous differential equation 

dZy 2 . 
dt2 + W Y = sin wot (2-24) 

where w,c Woo The magnitude of the external forcing term is set arbitrarily to 
one. 

As a trial solution it seems reasonable to set 

y(t) = C sin wot 

Indeed, substituting this into the equation yields 

- Cw~ sin wot + Cw z sin wot = sin wot 

which is satisfied if 

Therefore, a particular solution is 

1 . 
y(t) = -2--2 sin wot 

W -wo 
(2-25) 

The general solution is found simply by adding to this solution the general 
solution of the homogeneous equation. Therefore, the general solution to the 
whole equation is 

( )
. 1 . 

Y t = A sm wt+ B cos wt+-2--2 Sin wot 
W -Wo 

(2-26) 

If, for example, the system were known to be Initially at rest, it is possible 
to find A and B explicitly. Evaluatmg (2-26) at t = 0 leads to B = o. Evaluating 
the derivative at t = 0 leads to 

(2-27) 

Therefore, the solution corresponding to zero initial conditions is 

-wo/w . 1. 
y(t)=-z--z Sin wt+-2--2 Sin wot 

w -Wo w -Wo 
(2-28) 

If It is assumed that Wo is very close to w, the solution can be approximated as 

1 ~ . 
y(t)=-2--2 lSin wot-sin wt] 

w -Wo 
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Figure 2.5. Beats 

which, usmg a standard trigonometric identity, can be expressed as 

y(t) =~ [sin !(wo- w)t][cos !(wo+w)t] 
w -Wo 

This solution is sketched in Fig. 2.5. It consists of an oscillation at neariy the 
driving frequency wo, but modified by a "beat" frequency ~(wo-w). 

2.11 PROBLEMS 

1. Solve the nonlinear difference equation 

(k+l)=~ 
Y b+y(k) 

by finding a change of variable that converts it to a linear difference equation. 

2. A bank offers 7% annual mterest. What would be the overall annual rate if the 
7% interest were compounded quarterly? 

3. Assuming y(O) = y(1) == y(2) == 0, find, by direct numencal recursIOn, the vaiues of 
y(k), k = 3, 4, 5, satisfying the difference equation 

y(k + 3)- y(k + 2)+[y(k + 1) + y(k)f= 1 

4. Consider the difference equation 

(k + 1h(k + 1)- k'y(k) = 1 

for k = 1, 2, .... Find the general solutIOn. 
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5. Intelligence Test Sequence. Find the second-order linear homogeneous difference 
equation which generates the sequence 

1,2,5,12,29,70,169 

What is the limiting ratio of consecutive terms? 

6. Binomial Coefficients. The sequence 

0,1,3,6,10,15,21,28,36, ... 

is a sequence of binomial coefficients. Show (assumlOg the first term corresponds to 
k = 1) that this sequence can be generated in any of the followlOg ways: 

k! 
(a) y(k) = 2! (k -2)! 

(b) y(k + 1) = (~~ ~) y(k) 

(c) y(k+l)=y(k)+k 

(d) y(k + 1) = 2y(k) - y(k -1) 
+1 

(e) y(k 1) = 3y(k)- 3y(k -1) 
+y(k-2) 

Oth order varylOg coefficient equation 

1st order, varylOg coefficient, homogeneous 

1st order, constant-coefficient, 
with varylOg input term 

2nd order, constant-coefficient, 
with constant input term 

3rd order homogeneous, constant­
coefficient 

Find the roots of the characteristic polynomial corresponding to part (e). 

* 7. The FibonaCCI numbers are Fi = 1, F2 = 1, FJ = 2, F. = 3, and so forth. Given that 
F4B = 4,807,526,976 and F49 = 7,778,742,049, what IS the sum of the squares of the 
first forty-eight Fibonacci numbers? 

8. Supply and Demand Equilibrium-The Effect of Pnce Prediclion. Assume that the 
demand for a product at time k IS given by 

d(k)=do-ap(k) 

where do and a are positive constants and p(k) is the price at time k. In the simple 
classical cobweb analysis the supply is assumed to be governed by the equation 

s(k)=so+bp(k-l) 

where So and b are positive constants. Equating supply and demand leads to the 
dynamiC equation for p(k), which is convergent if b < a. 

The p(k -1) that appears in the supply equatlon can be considered to be an 
esnmate of the future price. In other words, when planning at time k - 1 how much 
to supply at lime k, suppliers would really like to know what p(k) will be. Since 
they cannot observe the actual price in advance, they do their planmng on the basiS 
of p(k -1), uSlOg it as an estlmate of p(k). It IS possible, however, to conceive more 
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Figure 2.6. Price extrapolation. 

2.11 Problems 49 

_ INk) 

11 

complex procedures for estimating the future price. One such procedure IS to use 
linear extrapolation, illustrated in Fig. 2.6. This Yields p(k) == 2p(k -1) - p(k - 2), 
where p(k) denotes the estimate of p(k) based on previous prices. On the surface, It 
would seem that this "more sophisticated" estimatIOn scheme might be better. 
(a) Using p(k) in place of p(k -1) In the supply equation, equate supply and 

demand to find a dynamic equation for p(k). (Answer should be m the form of a 
difference equation.) 

(b) For notational simplicity let c'" bfa. What are the characteristic values of the 
equation? 

9. Informalion Theory. Imagme an mformatlOn transmiSSIOn system that uses an 
alphabet consisting of just two symbols-<lot and dash. Messages are transmitted by 
first encoding them into a string of these symbols. Each symbol requires some 
length of time for Its transmissIOn. Therefore, for a fixed total time duration only a 
finite number of different message strings IS possible. Let N, denote the number of 
different message strings of duratIOn I. Shannon defined the capaclly of the 
transmission system (measured m bits per time umt) to be 

C I
· log2 N, == Im---

1 

If, for example, the dot and the dash each required one unit of time for transmis­
sion, it would follow that N, = 2' and, accordingly, 

. log22' . 
C"" hm --"" 1 bit per time unit 

.- 1 

Suppose now that the dot requires one unit of time for transmiSSIOn while the dash 
requires two units. 

(a) What are the values for Nt and N2? (Note: Dot and dash are the only two 
allowed symbols. A blank space is nOI allowed.) 

(b) Justify the second-order difference equation N. == N'-i + N'_2' 
(c) Find the capacity C of this transmissIOn system. 

10. Repeaied Rools. Consider the second-order difference equatIOn 

y(k +2) -2ay(k + 1) + a2y(k) = 0 

Its characteristic polynomial has both roots equal to A '" a. 
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(a) Show that both 

are sOlutions. 
(b) Find the solution to this equation that satIsfies the auxiliary conditions y(O) = 1 

and y(l) = O. 

11. Find the solution to the Gambler'S ruin problem in the important special case where 
p = q =!. [Hint: Use the result of problem 10.] 

12. Monte Carlo Roulette. In many European casinos, including Monte Carlo, a bet on 
red or black is not lost outright if the outcome is green. (See Example 5, Sect. 2.7.) 
Instead, the bet is "imprisoned" and play continues until the ball lands on either 
red or black. At that point the original bet is either returned to the player or lost, 
depending on whether the outcome matches the color originally selected. 
(a) Argue that an appropriate difference equation for a gambler's ruin problem in 

this case is 

u(k) =~u(k -1) +1.u(k) +r.,u(k -1)+~u(k + 1) 

Find the probability that you can "break the bank at Monte Carlo" under the 
conditions of Example 5, with this set of rules. 

(b) Note that if the outcome is green, there is a probability of t that the bet will be 
returned. This is, on the average, equivalent to a probability of i that twice the 
bet will be returned. Therefore, an "equivalent" game, with the same odds, but 
having the standard form of Example 5 is obtained by setting 

Show that although this equivalent game exactly matches the odds of Monte 
Carlo roulette, its ruin probabilities are not exactly the same as those found in 
part (a). 

*13. Discrete Queue. A small business receives orders for work, and services those 
orders on a first-come, first-served basis. In any given hour of the day there IS a 
probability p (very small) that the business will receive an order. It almost never 
receives two orders in one hour. If the company has at least one order in hand, 
there is a probability q (also small, but q> p) that it will complete service on the 
order within an hour. It never completes two orders in an hour. On the average, 
how many orders will there be waiting for service to be completed? [Hint: Let u(n) 
be the probability at anyone time that the length of the line is n. Then neglecting 
pq terms, argue that 

u(n) = u(n -1)p + u(n + l)q + u(n)(l- p - q), n > 0 

u(O) = u(l)q + u(O)(I- p), n = 0 

Use the subsidiary condition L u(n) = 1 10 find the u(n)'s. The average number 
of waiting orders is L nu(n).] 
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14. Geometric Forcing Term. Consider a nonhomogeneous difference equatIOn of the 
form 

y(k + n) + a._ly(k + n -1) + ... + a"y(k) = br' 

for k = 0, 1,2, .... Suppose that the roots At> A2, ... , A. of the charactensllC 
polynomial are distmct and that r'¢ A;, i = 1,2, ... ,n. Show that the general 
solution to thIs difference equation is 

y(k) = cor' + CIA~+ C2A~+· •. + C.A= 

Show how to determine the constant co. (The term br· can be regarded as an Input 
or forcIng term applied to the homogeneous difference equation. From thIs vIew· 
pOlOt, the above result shows that the response of a constant coefficient linear 
difference equatIOn to a geometric senes is a multIple of that senes plus other 
geometric senes defined by the homogeneous equation.) 

15. Numencal Solutzon of Differennal Equations. DifferentIal equatIOns are often 
solved numerically by a discrete forward recursion method. Consider the equation 

" 

dx 
dt = f(x) (2·29) 

where x IS scalar-valued. To solve this equatIOn numerically one consIders the 
sequence of discrete points 0, s, 2s, 3s, ... , where s is a posItIve "step length." 

The simplest solutIOn technique is the Euler method, whIch calcuiates a 
sequence of values according to the recursion 

x(k + 1) == x(k)+ sf[x(k)] (2-30) 

This procedure can be vIewed as simple linear extrapolation, over the step length s, 
on the basis of x at t == ks and ItS derivative. See Fig. 2.7. 

(a) Assuming f(x) = ax, for what range of values of the constant a does the solution 
of (2-29) converge to zero, as t-+<XJ? 

(b) For what range of vaiues of the constant a does the solution of (2-30) converge 
to zero? 

(c) For a fixed a < 0, what is the largest steplength that guarantees convergence In 
Euler's method? 

_.-
Figure 2.7. Euler's method. 
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16. Alternate Method. An alternate method for solvmg a differential equation (see 
previous problem) IS to calculate x(k + 1) on the baSIS of a higher-order extrapola­
tion. If x(k -1) and x(k) are known, then the function 

x 

() 
{x(k-1)-x(k)+f[x(k)]s} 2 IT (k)] (k) 

g t = S2 t + X t + X 

IS the quadratic functIOn that satisfies 

g(O) = x(k) 

g'(O) = f[x(k)] 

g(-s)=x(k-1) 

The value g(s) would seem to be a good chOice for x(k + 1). See Fig. 2.8. 

(a) Again assummg f(x) = ax for a fixed a < 0, what condition must be satisfied by s 
for this new method to be convergent? 

(b) Show that no value of s> 0 satisfies these conditIOns. 

Figure 2.8. Alternate method. 

17. Find the solutions to the following difference equatIOns, for k = 0, 1,2, ... 

(a) (k+2)2 y(k+1)-(k+1)2 y(k)=2k+3 

y(O) = O. 

(b) y(k+2)-Sy(k +1)+6y(k)=O 

y(O) = y(1) = 1. 

(c) y(k+2)+y(k+1)+y(k)=0 

y(O) = 0, y(1) = 1. 

(d) y(k+2)-2y(k+1)-4y(k)=O 

y(O)= 1, y(1)=O. 

(e) y(k +2)- 3y(k + 1)+ 2y(k) = 1 

y(O) = 2, y(1) = 2. 
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18. RadioactIVe Dating. Normal carbon has an atomic weight of 12. The radioisotope 
Cl., with an atomic weight of 14, is produced continuously by cosmic radiatIOn and 
is distributed throughout the earth's atmosphere in a form of carbon dioxide. 
Carbon dioxide is absorbed by plants, these plants are eaten by ammals, and, 
consequently, all living matter contains radioactive carbon. The Isotope Cl4 is 
unstable-by emittIng an electron, it eventually disintegrates to nitrogen. Since at 
death the carbon in plant and animal tissue is no longer replenished, the percentage 
of C l4 in such tIssue begins to decrease. It decreases exponentially with a half-life of 
5685 years (that is, after 5685 years one half of the Cl. atoms will have disInte­
grated). 

Suppose charcoal from an ancient ruin produced a count of 1 
disintegration/min/g on a geiger counter while living wood gave a count of 7. 
Estimate the age of the ruins. 

19. Newton Cooling. According to Newton's law of cooling, an object of higher 
temperature than its environment cools at a rate that is proportional to the 
difference in temperature. 

(a) A thermometer reading 70°F, which has been inSide a house for a long time, is 
taken outside. After one minute the thermometer reads 60°F; after two mInutes 
it reads 53°F. What is the outside temperature? 

(b) Suppose you are served a hot cup of coffee and a small pitcher of cream (which 
is cold). You want to drink the coffee only after it cools to your favorIte 
temperature. If you wish to get the coffee to proper temperature as qUickly as 
possible, should you add the cream immediately or should you walt awhile? 

20. The equation 

is an example of an eqUl-dimenslOnal differentIal equatIon. Find a set of linearly 
independent solutions. [Hint: Try y(t) = tp.] 

21. An Elementary Seismograph. A seismograph is an Instrument that records SUdden 
ground movements. The Simplest kind of seismograph, measuring hOrIzontal dis­
placement, consists of a mass attached to the instrument frame by a spring. The 
frame moves when hit by a seismic wave, whereas the mass, Isolated by the spnng, 
initially tends to remam still. A recording pen, attached to the mass, traces a 
displacement in a direction opposite to the displacement of the frame. The mass will 
of course soon begin to oscillate. In order to be able to faithfully record additIOnal 
seismic waves, it is therefore desirable to suppress the oscillation of the mass by the 
addition of a damper (often consisting of a plunger in a VISCOUS fluid). To be most 
effective the seismograph must have a proper combination of mass, spring, and 
damper. (See Fig. 2.9.) If the force exerted by the spnng on the mass is proporlIonai 
to displacement x and in an opposite direction; the force exerted by the damper IS 
proportional to the velocity dx/dt and in an opposite direction; and the total force IS 
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k 

~~~~~~ 

--­SeISmograph 
frame 

Figure 2.9. Elementary seismograph. 

equal to mass times acceleration, the equation that describes the motIOn IS 

d2x dx 
m-+c-+kx=Q 

dl 2 dl 

(a) Find the roots of the characteristic equation 10 terms of c, m, and k. 
(b) Distinguish three cases, overdampmg, underdamplOg, and cntical damping 

based on the relationship among c, m, and k as Implied by the solutIOn of the 
charactenstlc equatIOn. Find the general solutions for x(t) for all three cases. 

(c) Which case IS best for a seismograph as described m this problem? Why? 

22. Prove Theorems 1, 2, and 3 of Sect. 2.9. 

NOTES AND REFERENCES 

General. The elementary theones of difference and differential equations are so 
similar that mastery of one essentially implies mastery of the other. However, because 
there are many more texts on differential equations than difference equatIOns, the 
reader mterested m supplemental material may find It most convenient to study 
differential equations. Some excellent popular general texts are Ramville and Bedient 
[R1], Coddington [C5], Braun [B11], and MartlO and Relssner [M2]. An excellent text 
on difference equatIOns, which mcludes many examples, is GOldberg.[G8]. See also 
Miller [M5]. 

Section 2.5. The cobweb model is an important claSSIC model. For further discussion 
see Henderson and Quant [H2]. 

Section 2.7. The Gambler's rum problem (Example 5) IS treated extensively in Feller 
[F1]. It is also discussed further 10 Chapter 7 of this book. 

Section 2.11. Information theory, as discussed briefly in Problem 9, is due to Shannon. 
See Shannon and Weaver [S4]. 



chapter 3. 

Linear Algebra 

Linear algebra is a nearly indispensable tool for modern analysis. It provides 
both a streamlined notation for problems with many variables and a powerful 
format for the rich theory of linear analysis. This chapter is an introductory 
account of that portion of linear algebra that is needed for a basic study of 
dynamic systems. In particular, the first three sections of the chapter are 
essential prerequisites for the next chapter, and the remaining sections are 
prerequisites for later chapters. Other results from linear algebra that are 
important in the analysis of dynamic systems are discussed 10 IOdividual 
sections in later portions of the text. 

In some respects this chapter can be regarded as a kind of appendix on 
linear algebra. As such it is suggested that the reader may wish to skim much 
of the material, bnefly reviewing that part which IS familiar, and spending at 
least some preliminary effort on the parts that are unfamiliar. Many of the 
concepts presented here strictly from the viewpoint of linear algebra, particu­
larly those related to eigenvectors, are reintroduced and elaborated on with 
appl;cations in Chapter 5 in the context of dynamic systems. Accordingly, 
mUll' readers will find it advantageous to study thIS material by refemng back 
and forth between the two chapters. 
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ALGEBRAIC PROPERTIES 

3.1 FUNDAMENTALS 

Much of linear algebra is motivated by consideration of the general system of 
m linear algebraic equations in n unknowns: 

allxl + a 12xZ + ... + alnx" = Yl 

aZ I Xl + azzxz + ... + aznx" = Yz 

(3-1) 

amlXl +GmzXz+'" +Gmnx" = Ym 

where the X;, j = 1, 2, ... , n are the dependent variables, the Yi' i = 1, 2, ... , m 
are the independent variables, and the alj' i = 1, 2, ... , m, j = 1, 2, ... , n are 
constant coefficients. The values of the YI'S are generally considered to be 
known (or given) and the X;'s are considered unknown. 

Rather than write out this set in full detail, it is often convenient to use the 
alternative summation representation 

n 

L Il;j~ = YI i=1,2, ... ,m (3-2) 
1=1 

This simplifies the notation somewhat, but even it is a bit cumbersome. 
A representation that is even more compact but still highly suggestive of the 

original detailed form is the matrix notation 

Ax=y (3-3) 

For this simple notation to be meaningful, however, an associated machinery of 
auxiliary definitions must be carefully developed. 

Matrices and Vectors 

In general a matrix is a rectangular array of elements. If the array has m rows 
and n columns it is said to be an m x n {read m by n} matrix, or, equivalently, 
the matrix is said to m x n dimensional. Matrices are generally denoted by 
boldface capital letters, such as A. Elements of the matrix are denoted, 
correspondingly, by lower case letters with subscripts to indicate the position of 
the element. Thus, the element in the ith row and jth column of the matrix A is 
denoted alj' To highlight this correspondence, the matrix is sometimes written 
A=[a;J. 

A special class of matrices are those having m = 1 or n = 1, corresponding 
to a matrix having either a single row or a single column. In either case, the 
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corresponding matrix is said to be a vector. Vectors are usually denoted by 
lower case boldface letters, and their elements have but a single subscnpt. A 
vector of the form (with m = 1) 

a = [at, a2, ... , a,.] 

is a row vector, while a vector of the form (with n = 1) 

b= 

bm 

is a column vector. Column vectors are used for most purposes, particularly in 
systems of equations, but row vectors also arise naturally. 

Special Matrices 

For any dimension, one special matrix is the matrix whose elements are all 
zero. Such a matrix is denoted by 0, and is called the zero matrix. 

A matrix that has the same number of rows as columns (m = n) is said to 
be square. Corresponding to a square n X n matrix A, the elements aii> 
i = 1, 2, ... , n are referred to as the diagonal elements of A. If all elements 
except possibly the diagonal elements are zero, the square matrix A is said to 
be diagonal. A very special case of a diagonal matrix is the n x n square matrix 
whose elements are zero, except on the diagonal where they are equal to one. 
This matrix (for any dimension n) is denoted I, and called the identity matnx. 
Thus,· 

1= 

Elementary Operations 

1 0 0 0 

o 1 0 0 

o 
o 

o 
o 1 

Addition of Matrices. If two matrices A and B are of the same dimension, then 
their sum can be defined and is a matrix C, also of the same dimension. If 
A=[u,/], B = [bij ], and C=[c,;], where C=A+B, then the elements of Care 
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defined by eij = aij + bij• In other words, the addition is carried out element by 
element. 

Example 1. Suppose A and B are defined as the 2 x 3 matrices 

A=[~ 2 
4 

The sum C=A+B is the matrix 

~] 

C=[~ 

B _ [2 3 4] 
o -1 -4 

5 71 
3 -2J 

It is easily verified that matrix addition satisfies the following two laws: 

(i) A+B=B+A (commutative law) 
(ii) A+(B+C)=(A+B)+C (assoCIative law) 

Therefore, addition of matrices acts much like addition of numbers. 

Scalar Multipliation. For any matrix A and any scalar (real or complex 
number) a, the product aA is the matrix obtained by mUltiplying every 
element of the matrix A by the factor a. In other words, if A = [aijJ, then 
aA=[aa;j]' 

Example 2. If A is the rna trix 

A=[~ 
Then (using a = 2) 

2A=[~ 2 0] 
8 -2 

Matrix Multipliafioo. Multiplication of two matrices to obtain a third is 
perhaps the most important of the elementary operations. This is the operation 
that neatly packages the bulky individual operations associated with defining 
and manipulating systems of linear algebraic equations. 

If A is an m x n matrix and B is an n X p matrix, the matrix C = AB is 
defined as the m x p matrix with elements 

elk = I G;jbjk (3-4) 
J-l 

This definition of matrix multiplication has several important interpreta­
tions. First, it should be noted that it is consistent with the matrix notation for a 
system of linear equations, as described by (3-1) and (3-3). Thus, for an m x n 
matrix A and an n X 1 matrix x (a column vector) the product Ax is the m x 1 
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matrix (another column vector) y with ith element equal to 
n 

Yi = L aijXj 
1-1 

(3-5) 

Second, the product C = AB when B has p columns can be viewed as A 
multiplying each of these p columns separately. That is, the first column of C IS 

A times the first column of B, the second column of C is A times the second 
column of B, and so forth. Thus, C = AB can be regarded as p separate column 
relations. 

Matrix multiplication satisfies 

A(BC) = (AB)C (associative law) 

However, it is not commutative. Thus, in general, 

AB;6BA 

even if both products are defined. 
Finally, it should be noted that if A is an arbitrary m x n matrix and I IS 

the m x m identity matrix, then IA= A. 

Example 3. Suppose A and B are defined as 

A=[~ -2 ~] B~[~ 
-3 3 

~J 1 
4 -1 

2 
Then the product C = AB is 

[-1 -11 5 ~] C= 
1 11 9 

Example 4 (Inner Prodnct). A special case of matrix multiplication is the dot 
or inner product of two vectors. This is just the product of an n-dimensional 
row vector, say r, and an n-dimensional column vector, say c. The product, 
according to the general definition (3-4), is 

n 

rc= L ric, (3-6) 
1=1 

which is 1 x 1; that is, it is simply a scalar. 
One common way that the inner product arises is when one vector 

represents quantities and another represents corresponding unit prices. Thus, 
grocery ptlrchases of sugar, flour, and potatoes might be represented by the 
vectors 
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where XI, X2, X3 are, respectively, the amounts of the three commodities 
purchased, and Ph P2' P3 are their respective umt prices. Then the product 

3 

px= I gX; 
.-1 

is the total purchase price of the groceries. 

Transpose. Corresponding to an mXn matrix A=[a;;], the transpose of A, 
denoted AT, is defined as the n x m matrix AT = [a;n with a~ = a;j' This means 
that AT is defined by interchanging rows and columns in A. As an example, 

[1 2 3]T =[1 0] o 4 5 2 4 
3 5 

An important property of transposes is the way they are transformed in 
matrix multiplication. The reader can verify the rule (AB)T = BT A T. Thus, the 
transpose of a product is equal to the product of the transposes In the reverse order. 

Differentiation. If the elements of a matrix depend on a variable t, making the 
elements functions rather than constants, it is possible to consider differentia­
tion of the matrix. Differentiation is simply defined by differentiating each 
element of the matrix individually. Thus, if 

al1(t) al2(t) aln(t) 

azl(t) azz(t) a2n (t) 

A(t) = (3-7) 

a...1(t) a...2(t) ... amn(t) 

then 

al1(t) a12(t) ainU) 
u2l(t) adt) a2n(t) 

dA(t)= A(t) = 
dt (3-8) 

a...l(t) a...2(t) " . amn(t) 

Integration. In a manner analogous to differentiation, integration of a matrix 
whose elements depend on a variable t is defined in terms of the integrals of 
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the individual elements. Thus for A(t) as in (3-7), there is defined 

f all (t) dt f adt) dt f aln{t) dt 

f A(t) dt = 
f a21(t) dt f a22(t) dt f a2n (t) dt 

(3-9) 

f £l".1(t) dt f £l".2(t) dt ... f £l".n (t) dt 

An Example: The Leontief Economic Model 

To illustrate the value of matrix notation in the description of complex systems, 
consider an economy consisting of n industries, each of which produces a single 
product. In order to produce its product, each industry must have on hand 
various amounts of the products of other industries (and perhaps some of its 
own). For example, the automotive industry purchases steel from the steel 
industry and tires from the rubber industry, while the agriculture industry 
purchases tractors from the automotive industry and fertilizers from the 
chemical industry. 

Assume that the basic production cycle is one year in duration, and that 
for each unit of output from industry j, ~j units of the product of industry I are 
required. The constants ajj are called technical coefficients. Denote by 
x .. X2, ••• ,Xn the amounts of the products produced in the n industries. Then 
the amount of product i required for this pattern of production is 

The total amount of product i produced goes in part to help produce other 
products as described above, and in part to consumers to meet their demand. 
Therefore, 

i = 1, 2, ... , n 

where d; is the demand for product i. Thus, total production of a product 
exceeds the actual consumer demand because of the use of the product in 
various production processes. 

Introducing the matrix A=[~;] and the column vectors x and d with 
components X;, d;, i = 1, 2, ... , n, respectively, these equations can be written 
as 

x=Ax+d 
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or, equivalently, [I - A]x = d. This is a compact representation of the complex 
interrelations among industries. The coefficient matrix is the sum of the identity 
I and (-l)A. If a given set of consumer demands is specified (as for example by 
a yearly forecast of demand) the required total level of production in each of 
the industries can be found by solving for x. 

3.2 DETERMINANTS 

The determinant of a square matrix is a scalar value that arises naturally in the 
solution of sets of linear equations. The determinant of the matrix 

A= 

u,,\ u,,2 '" ann 

is denoted IAI, det A, or by simply enclosing the corresponding array with two 
vertical lines, as 

The determinant of a simple 1 x 1 matrix A = [a] is defined to be IAI = a. 
The determinant of the general 2 x 2 matrix is given by the formula 

(3-10) 

Laplace's Expansion 

The value of the determinant corresponding to a general n x" matrix can be 
found in terms of lower-order determinants through use of Laplace's expan­
sion. This expansion is defined in terms of minors or cofactors of elements of 
the matrix. 

The minor ~i of the element u,/ in a matrix is the determinant of the array 
formed by deleting the ith row and the jth column from the original matrix. 
Thus, if A is an n X n matrix, each minor is an (n -1) x (n -1) determinant. 
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The cofactor ei; corresponding to the element ll;; of A is (-1);+11\11;;. Thus, 
the cofactors are identical to the minors, except for a possible change In sign. 

In terms of Laplace's expansion, the determinant of a matrix A is 
.. 

det A = L Cl;;Ci; (3-11) 
1-1 

for any i. Or, equivalently, 

n 

detA= L Cl;;Cii (3-12) 
0-1 

for any j. The first of these is called an expansion along the ith row, while the 
second is an expansion along the Jth column. All such expansions yield 
identical values. 

A Laplace expansion expresses an "th-order determinant as a combina­
tion of (n -1)th-order determinants. Each of the required (n -1)th-order 
determinants can itself be expressed, by a Laplace expansion, In terms of 
(n-2)th-order determinants, and so on, all the way down to first order if 
necessary. Therefore, this expansion together with the definition of the deter­
minant for 1 x 1 matrices is sufficient to determine the value of any 
determinant. 

Example 1. Let us evaluate the fourth-order determinant 

'3 
1 

detA= 
1 

4 

2 

0 

0 

2 

1 

0 

2 

5 

o 
2 

1 

o 

Since the second row has two zeros, it is convenient to expand along that row. 
Thus, 

210 3 2 1 
detA=(-I) 0 2 

2 5 
1 +2 1 0 2 

o 425 

The first third-order determinant in this expression can be expanded along the 
third column, and the second determinant can be expanded along the second 
row, yielding 

detA=(-I)(-I) I~ !1+(2}(-1) I~ !1+(2)(-2) I! ~I 
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All these second-order determinants can be evaluated by use of (3-11), 
resulting in 

det A = (1)(8) + (-2)(8) + (-4)( -2) 

detA=O 

Determinants of Triangular Matrices 

A matrix A is said to be either upper or lower triangular if it has the form 

au a l2 aln 

0 an a2n 

A= 0 0 a:33 a3n 

0 0 ·0 a..n 

or 

all 0 O· ·0 

aZI a22 O· ·0 

A= a31 an a33 .0 

a.. I a.. 2 a.. .. 
respectively. The determinant of a triangular matrix is equal to the product of 
its diagonal elements. We can prove this easily using induction on the dimen­
sion n together with Laplace's expansion. It is certainly true for n = 1. Suppose 
then that it is true for n -1. Then, for the upper triangular case, expansion 
down the first column yields det A = all MIl. (For the lower triangular case, we 
would expand along the first row.) Using the induction hypothesis Mu is the 
product of its diagonal elements, and therefore, 

detA=allaZZa33··· ann 

This simple result is useful in numerous applications. 

Products and Transposes 

Two Important properties of determinants are the product formula 

det (AB) = (det A)(det B) 

where A and B are both n x n square matrices, and the transpose rule 

det (AT) = det (A) 

(3-13) 

(3-14) 

(3-15) 
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Linear Combinations 

Detenninants can sometimes be evaluated easily by transfonning them to 
equivalent but simpler fonns. This is accomplished by use of rules governing 
the change in the value of a determinant when rows or columns of its array are 
linearly combined. There are three basic row operations, and associated rules, 
from which the effect of any linear combination of rows on the value of a 
detenninant can be deduced: 

(a) If all elements in one row are multiplied by a constant c, the value of the 
corresponding new determinant is c times the original value. 

(b) If two rows are interchanged, the value of the corresponding new deter­
minant is the negative of the original value. 

(c) If any multiple of one row is added to another row, element by element, 
the value of the detennmant is unchanged. 

Each of these rules can be easily deduced from Laplace's expansion. Moreover, 
since the detenninant of the transpose of a matrix is equal to the determinant 
of the matrix itself, as given by (3-15), three identical rules hold for column 
operations. 

Example 2. Using the above rules, the detenninant of the matrix below is 
manipulated step by step to triangular fonn, from which the value IS easily 
determined: 

A~[~ 
-2 

!J 4 
1 

Multiply the first row by ~, yielding 

2 -1 0 
detA=2 0 4 1 

2 1 4 

Interchange the second and third rows: 

2 -1 0 
detA=(-2) 2 1 4 

0 4 1 

Subtract the first row from the second 

2 -1 0 
detA=(-2) 0 2 4 

0 4 1 



66 Linear Algebra 

Subtract twice the second row from the third 

2 -1 0 
detA=(-2) 0 2 4 

o 0-7 

Therefore, det A = (-2) ·2·2· (-7) = 56. 

3.3 INVERSES AND THE FUNDAMENTAL LEMMA 

Consider a square n x n matrix A. An n x n matrix A -I is said to be the inverse 
of A if A- ' A=1. That is, the product of A-I and A is the identity matrix. 

Not every square matrix has an inverse. Indeed, as discussed below, a 
square matrix has an inverse if and only if its determinant is nonzero. If the 
determinant is zero the matrix is said to be singular, and no inverse exists. 

Cofactor Formula for Inverses 

Perhaps the simplest way to prove that an inverse exists if the determinant is 
not zero is to display an explicit formula for the inverse. There is a simple 
formula deriving from Cramer's rule for solving sets of linear equations, which 
is expressed in terms of the cofactors of the matrix. Denoting the elements of 
A -\ by ali" that is, A-I = [alii], the formula is 

1 
A-I = [alii] ==~ [C;J (3-16) 

where ~ is the determinant of A. This formula can be verified using Laplace's 
expansion as follows. The ikth element of B = A -I A is 

fC 
bik = L. .-.-.!! ajk 

I-I ~ 

For i == k we obtain from Laplace's expansion [Eq. (3-12)] that b;; == 1, and 
hence, the diagonal elements are all unity. To verify that the off-diagonal 
elements are zero, for a given i and k, i ~ k, consider the matrix obtained from 
A by settmg the elements in the ith column all zero. Clearly the determinant 
of this new matrix is zero. The value of this determmant is unchanged if we 
now add the kth column to the ith column, fonning the matrix A. However, 

0= det A = f. ~;C1i = f. ~kCii 
1=\ 1-\ 

This shows that bile == O. Thus, A -I A = I. 
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Example. Let us compute the inverse of the 3 x 3 matrix 

o 2] 
1 0 
1 4 

We find 

~=1O 

Cll=(l)I~ ~1=4 

C12=(-l)I~ ~1=-12 

1

3 I' 
C l3 = (1) 0 11 = 3 

C21=(-1)1~ ~1==2 
C22 =4, C23 =-1 

Cn = -2, C32 = 6, C33 = 1 
Therefore, 

Properties of Inverses 

If A is a square nonsingular matrix and A-I is its inverse, then by defimtIOn 

A-1A=1 

It also can be verified that A acts as the inverse of A-I. That is, 

AA-'=I 

Finally, suppose A and Bare nonsingular n x n matrices. Let us compute 
(AB)-I in terms of the inverses of the individual matrices. We wnte 

Then 
(AB)-I =C 

I=ABC 

A-'=BC 

B-'A-'=C 
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Therefore, 

(AB)-I = B- 1 A-I (3-17) 

The general rule is: The inverse of a product of square matnces is equal to the 
product of the inverses in the reverse order. 

Homogeneous Linear Equations 

One of the most fundamental results of linear algebra is concerned with the 
existence of nonzero solutions to a set of linear homogeneous equations. 
Because of its importance, we display this result as a formal lemma, and give a 
complete proof. 

Fundamental umma. Let A be an n x n matrix. Then the homogeneous 
equation 

Ax=O (3-18) 

has a nonzero solution (a vector x whose components are not all zero) if and 
only if the matrix A is singular. 

Proof. The "only if" portion is quite simple. To see this suppose there is a 
nonzero solution. If A were nonsingular, the equatIOn could be multiplied 
through by A-I yielding 

or, equivalently, x = 0, which is a contradiction. Therefore, there can be a 
nonzero solution only if A is singular. 

The "if" portion is proved by induction on the dimension n. Certainly the 
statement is true for n = 1. Suppose that it is true for n -1. When written out 
in detail the set of equations has the form 

allxl + a12X2 + ... + alnx" = 0 

a21XI + a22x2 + ... + a2 .. x" = 0 

a .. lxl +a..2X2+··· +a.. .. x" =0 

Suppose the corresponding matrix A is singular. We must construct a nonzero 
solution. 

In this set of equations, if all the coeffiCIents In the first column (the 
coefficients of the form ail) are all zero, then the solution Xl = 1, X; = 0, i> 1, 
satisfies the conditions and the conclusion would follow. Otherwise at least one 
such coefficient must be nonzero, and without loss of generality it may be 
assumed that all ~ O. 
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By subtracting appropriate mUltiples of the first equation from the remam­
ing equations, one obtains the equivalent set of equations: 

In thIS form the system can be regarded as consistmg of a first equation and a 
(n -I)-dimensional system in the van abIes X2' X3, .•. , x,.. 

The determinant of the entire transformed n-dimensional set is exactly 
equal to the determinant of the original set, since the transformed set was 
obtained by subtracting multiples of the first row. Laplace's expansion down 
the first column, however, shows that the value of the determinant of the 
transformed set is just all times the determinant of the n -1 dimensional 
system. Since the n x n original determinant is assumed to be zero and all'" 0, 
it follows that the determinant of the (n -I)-dimensional system IS zero. By the 
induction hypothesis this smaller system has a nonzero SolutIon X2, X3, ••• , Xn • 

If this solution is substituted into the very first equation, a corresponding 
value for Xl can be found. The resulting set of n values X" X2, •.. ,x,. then 
comprises a nonzero solution to the complete n-dimensional system .• 

GEOMETRIC PROPERTIES 

3.4 VECTOR SPACE 

For purposes of manipulation, the formalism of matrix algebra, as outlined in 
the first three sections of this chapter, is extremely valuable. It simultaneously 
provides both a compact notational framework and a set of systematic proce­
dures for what might otherwise be complicated operations. 

For purposes of conceptualization, however, to most effectively explore 
new ideas related to multivariable systems, it is useful to take yet another step 
away from detail. The appropriate step is to introduce the concept of vector 
space where vectors are regarded simply as elements in a space, rather than as 
special one-dimensIOnal arrays of coefficients. 
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Define the space E" as the set of all vectors of the form 

x= 

x" 

where each X; is a scalar (real or complex number). Vectors of this form can be 
visualized as points in n-dimensional space or as directed lines emanating from 
the origin, and indeed this vector space is equal to what is generally referred to 
as (complex) n-dimensional space. 

If the coordinate or basis vectors 

1 0 0 

0 1 0 

0 0 0 0,== °2= ... ° = " 

0 0 1 

are defined, a given vector x can be thought of as being constructed from these 
vectors. The components of x are the amounts of the various n coordinate 
vectors that comprise x. This is illustrated in Fig. 3.1a. For purposes of 
discussion and conceptualization, however, it is not really necessary to continu­
ally think about the coordinates and the components, for they clutter up our 
visualization. Instead, one imagines the vector simply as an element in the 
space, as illustrated in Fig. 3.1b. Furthermore, vectors can be added together, 
or multiplied by a constant without explicit reference to the components, as 

(a) (b) 

Figure 3.1. (a) Coordinate representation, (b) Vector space 
representation. 
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x 

I 
(al 

(bl 

Figure 3.2. (a) Vector addition. (b) Scalar mUltiplication. 

illustrated in Figs. 3.2a and 3.2b. In this view, a vector has a meaning, and can 
be conceptually manipulated, quite apart from its representation in terms of 
the coordinate system. 

Linear Independence 

A set of vectors 31> a2, ••• , am is said to be linearly dependent if there IS a set of 
numbers al> a2, a3, ... ,~, not all zero, such that 

alaI + a2a2+- .. + ~am = 0 

Visually, this means that two vectors are linearly dependent if they point tn the 
same direction (or in directly opposite directions), three vectors are linearly 
dependent if they lie in a common plane passing through the origin. A set of 
vectors is linearly independent if it is not linearly dependent. In general, to 
be linearly independent m vectors must "fill out" m dimensions. 

In En there is a simple test based On evaluating a determmant to check 
whether n given vectors are linearly independent. The validity of the test rests 
on the Fundamental Lemma for linear homogeneous equations. 

Suppose 

[
al2] lain] all a2n 
· . a2 = 3n = · . 
· . 
~2 ~n 

are n given vectors. Stacking them side by side, one can fonn an n x n matnx 
A. To test the linear independence of the vectors ai> i = 1, 2, ... , n, one 
evaluates the detenninant of A, as spelled out below. 

Tlreorem. The vectors al> a2, ... , an compnsing the columns of the n x n matrix 
A are linearly independent if and only if the matrix A is nnnsmgular. 
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Proof. A linear combination of the vectors ai' a2, - .. , an with respective 
weights Xl' X2,' .. , Xn can be represented as Ax. By the Fundamental 
Lemma, Sect. 3.3, there is a nonzero solution to Ax = 0 if and only if A is 
singular. I 

Rank 

Suppose now that A is an arbitrary m x n matrix. The rank of A is the number 
of linearly independent columns in A. 

An important result (which we do not prove) is that the rank of AT is 
equal to the rank of A. That means that the number of linearly independent 
rows of A is the same as the number of linearly independent columns. It is 
therefore apparent that the rank of an m x n matrix A can be at most equal to 
the smaller of the two integers m and n. Thus, a matrix with two rows can have 
rank at most equal to 2, no matter how many columns it has. 

Basis 

A basis for En is any set of n linearly independent vectors. The standard basis 
IS the set of vectors 01> U2, ..• ,Un defined earlier. An arbitrary vector can be 
represented as a linear combmation of basIs vectors. In particular, as is 
familiar, a vector 

x= 

can be expressed in terms of the standard basis as 

(3-19) 

The elements X; are referred to as the components of x with respect to the 
standard basis. 

Suppose now that a new basis is introduced. This basis consists of a set of 
n linearly independent vectors, say PI' Pz, ... , Pn' The vector x will have a 
representation as a linear combination of these vectors in the form 

(3-20) 

where now the z;'s are the components of x with respect to this new basis. 
Stacking the n vectors Ph i = 1, 2, ... , n into a matrix P, the above can be 
written as 

x=Pz (3-21) 
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Figure 3.3. Change of basis. 

where z is the column vector with elements Z;. Thus, since we are assured that 
P is nonsingular because the p;'s are linearly independent, we can WrIte 

(3-22) 

This equation gives the new components in terms of the old. Both sets of 
components represent the same point in the vector space-they Just define that 
point in terms of different bases. 

This process of changing basis is illustrated in Fig. 3.3. The vector x is 
shown as being defined both in terms of the standard basis and In terms of a 
new basis consisting of the two vectors PI and P2. 

Example. As a specific example suppose that, In terms of the standard basIs, 
we have 

Then 

and therefore 

3.5 TRANSFORMATIONS 

°2= [~] 

PI = [~] 

Once vector space is introduced from a geometric viewpoint, it is possible to 
introduce the concept of a transformation which is also geometrically based. A 
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transformatIOn on a vector space is a function taking vectors into vectors. 
Geometrically, if one vISualizes a vector as a point in n-dimensional space, a 
transformation associates a new point wIth each point in the space. A simple 
example of a transformation is a rotation of, say, 90° counterclockwise about a 
given axis. Another is an elongation where every vector is multiplied by a 
constant, such as 3, and thus moves further away from the zero vector. In 
general, a transformation is defined on the vector space itself and has a 
meaning that is independent of the method used for representing vectors. 

An n x n matrix A (together with a specified basis) defines a linear 
transformation. If a vector is represented (in the standard basis) by 

X2 

x= 

then a new vector y with components 

y=Ax (3-23) 

defines the result of the transformation. Thus, a matrix transforms vectors into 
vectors. 

Example 1 (Book Rotations). Let us think of Xh X2, X3 as coordinates of a 
pomt in three-dimensional space. The matrix 

-1 

o 
o ~] 

can then be VIsualized as corresponding to a counterclockwise rotatIon of 90° 
about the X3 axis. As a concrete visualization, one can hold a book vertically, 
and face the front cover. The x, direction is to the right, the X2 direction is 
upward, and X3 is a ray coming out toward the viewer. Rotation of the book 
900 counterclockwise corresponds to A. To verify that, we note that the vector 
0, corresponding to the center of the right edge of the book is transformed to 
U2. LikewIse, U2 is transformed to -Oh and so forth. 

In a similar way the matrix 

B~[~ ! -~] 
corresponds to a 900 clockwise (as viewed from above) rotation about the 
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vertical axis. If one holds the book and carries out these two rotations 
successively, it will be found that the result is the rotation BA. If these two 
rotations are carried out in the opposite order the result is the rotation AB, 
and it is easily verified that AB ~ BA. In general, one linear transformation 
followed by another corresponds to multiplication of the two associated ma­
trices; and since matrix multiplication is not commutative, the order of the 
transformations is important. 

Change of Basis 

Suppose now that starting with the standard basis ut> 02, ... ,On there is a given 
n x n matrix A defining a transformation. Let us consider the effect of a change 
of the basis on the representation of the transformation. The new baSIS 
introduces a new representation of vectors in terms of new components. We 
want to construct a matrix that in terms of this basis has the same effect on 
vectors as the original matrix. 

Suppose the new basis consists of the columns of an n x n matrix P. Then 
a vector x having components Xl> X2, ••• ,x,. with respect to the origmal 
standard basis will be represented by the components Zj in the new basis. The 
two sets of components are related, as shown in Sect. 3.4, by the equation 

x=Pz (3-24) 

The vector that is represented by y = Ax in the standard basis will be 
represented by w = p-ly in the new basis. Therefore, we have w = P- 1 Ax, or 
equivalently, w = P-' APz. Thus, in terms of the new basis, the matrix P-' AP 
transforms the point represented by z into the point represented by w. For 
reference, we write 

(3-25) 

to indicate how a transformation represented by the matrix A m the standard 
basis is represented in a new basis. 

Let us review this important argument. Given the standard baSIS, vectors 
are defined as an array of n components. A given matrix A acts On these 
components yielding a new array of n components, and correspondingly a new 
vector defined by these components. The result of this action of A defines a 
transformation on the vector space-transformmg vectors into new vectors. 

If a basis other than the standard basis is introduced, vectors will have new 
representations; that is, new components. It is to be expected that to define the 
SalTi': transformation as before, transforming vectors just as before, a new 
matrix must be derived. This matrix must transform components with respect 
to the new basis so that the corresponding action is geometrically equivalent to 
the way the original matm< transforms components with respect to the standard 
basis. The appropriate new matrix is P-'AP. 
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Changes of basis are used frequently in connection with eigenvector 
analysis, as discussed in the remaining sections of thIS chapter. The new basis is 
selected so as to simplify the representation of a transformation. 

Example 2. Consider the 2 x 2 matrix 

which, with respect to the standard basis, represents a counterclockwise rotation 
of 90". Let us introduce the new basis defined by 

used In the example of the last section. According to the above result, the 
rotatIOn transformation is represented by the matrix 

B=P-'AP 

with respect to the new basis. This works out to be 

[1 _1] B= 2 2 
~ , 
2 """2 

whIch in this case is somewhat more complicated than the original representa­
tion. 

We can check that the new matrix is consistent for the vector represented 
by 

x= [~] 
in the standard basis. We easily calculate 

On the other hand, the original vector is represented by 

in the new basis. Then 

w=Bz= G] 
This corresponds to y, since it is easily verified that y = Pw. 
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3.6 EIGENVECTORS 

The remainder of this chapter deals with a structural analysis of linear 
transformations based on eigenvectors. In essence, the objective of this study is 
to find, for a given transformation, a new basis in which the transformation has 
a simple representation-perhaps as a diagonal matrix. This topic forms the 
framework for much of the study of linear time-invariant systems that is a 
central subject of later chapters. 

Definition. A number A is an eigenvalue of an n x n matrix A if there IS a 
nonzero n vector x such that 

Ax=AX 

The corresponding vector x is said to be an eigenvector of the matnx A. 

The terms characteristic value and characteristic vector are sometimes used 
for eigenvalue and eigenvector. The geometric interpretation of an eigenvector 
is that operation by A on the vector merely changes the length (and perhaps 
the sign) of the vector. It does not rotate the vector to a new position. 

The Characteristic Polynomial 

For a given value of A, the eigenvector equation 

Ax=AX 
is equivalent to the linear homogeneous equation 

[A-Al]x=O (3-26) 

From the Fundamental Lemma (Sect. 3.3) it is known that such an equatIOn 
possesses a nonzero solution if and only if the determinant of the coefficient 
matrix vanishes. Therefore, a necessary and sufficient condition for a value A to 
be an eigenvalue of the matrix A is that 

det[A-Al]=O (3-27) 
This equation is called the characteristic equation of A. 

The value of det[A - AI] is a function of the variable A. Indeed, it can be 
seen that det[A - AI], when expanded out, is a polynomial of degree n 10 the 
variable A with the coefficient of A" being (-1)". (See Problem 13.) This 
polynomial peA) is called the characteristic polynomial of the matrix A. From 
the discussion above, it is clear that there is a direct correspondence between 
roots of the characteristic polynomial and eigenvalues of the matrix A. 

From the Fundamental Theorem of algebra it is known that every polyno­
mial of degree n > 1 has at least one (possibly complex) root, and can be 
decomposed into first-degree factors. The characteristic polynomial can be 
written in factored form as 

p(A)=(AI-A)(A2-A)'" (,\,. -A) 
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The '\'i are the (not necessarily distinct) roots of the polynomial. It follows that 
there is always at least one solution to the characteristic equation, and hence, 
always at least one eigenvalue. To summarize: 

Theorem. Every n x n matrix A possesses at least one eigenvalue and a corres­
ponding (nonzero) eigenvector. 

Example 1. Let 

A=[~ 
The characteristic polynomial is 

\

2-,\. 

. 2 
1 I . = (2-A)(3- '\')-2 

3-'\' 

=,\.2-5,\,+4 

The characteristic polynomial can be factored as ,\.2-5,\.+4=(,\.-1)(,\.-4). 
Therefore, the polynomial has the two roots: ,\,=1, '\'=4. These are the 
eIgenvalues of the matrIX. 

To find the corresponding eigenvectors, we first set ,\. = 1 In the 
homogeneous equation [A - AI]x = O. This leads to 

[~ ~][::J == [~J 
The two scalar equations defined by this set are equivalent to Xl = -X2' Thus, 
one solution is 

x=L~J 
and the general solution is 

x=L:J 
for a ~ O. These vectors are the eigenvectors corresponding to the eigenvalue 
'\'=1. 

For '\'=4 we are led to 

Thus, one corresponding eigenvector is 

x=GJ 
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and the general solution is 

for b#O. 
It is a general property that eigenvectors are defined only to within a scalar 

multiple. If x is an eigenvector, then so is ax for any nonzero scalar a. 

Example 2 (Complex Eigenvalues). Let 

A=[ 3 21 
-1 1J 

The corresponding characteristic equation is 

\

3-A 
-1 

2 \-0 
I-A, 

or 
(3-A)(I-A)+2=0 

Equivalently, 

There are two complex roots: 
A =2+i 

A =2-i 

which, as is always the case for real matrices, are complex conjugate paIrs. 
Corresponding to A = 2 + i, one can find the eigenvector 

Likewise, corresponding to the eigenValue A = 2 - i, there is the eigenvector 

Linear Independence of Eigenvectors 

Each distinct root of the characteristic polynomial defines an eigenvalue of the 
matrix A. Associated with each of these distinct eigenvalues there is at least 
one eigeilVector. As stated below, a set of such eigenvectors, each correspond­
ing to a different eigenvalue, is always a linearly independent set. 

Proposition. Let A" A2, . .. , Am be distinct eigenvalues of the matnx A. Then 
any set e" ez, ... , em of corresponding eigenvectors is linearly mdependent. 
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Proof. Suppose that the eigenvectors were linearly dependent. Then there 
would be a nonzero linear combination of these vectors that was equal to zerO. 
From- the possible such linear combinations, select one which has the 
minimum number of nonzero coefficients. Without loss of generality it can be 
assumed that these coefficients correspond to the first k eigenvectors, and that 
the first coefficient is unity. That is, the relation is of the form 

k 

el+ I aje. =0 (3-28) 
,=2 

for some set of aj's, i =2, 3, ... , k, aj>"O. 
Multiplication of this equation by the matrix A gives 

k 

Ae, + I ajAe j =0 (3-29) 
l=2 

Using the fact that the e,'s are eigenvectors, this last equation is equivalent to 
k 

A,e, + I OijA;e, =0 (3-30) 
,=2 

Multlplymg (3-28) by A, and subtracting it from (3-30) yields 
k 

I aj(A; -Al)e. =0 
,=2 

This, however, is a linear combination of only k -1 terms, contradicting the 
definition of k as the minimum possible value. I 

It is important to note that this result on linear independence is true even 
if the eigenvalues of A are not all distinct. Any set of eigenvectors, one for 
each of the distinct eigenvalues, will be an mdependent set. 

3.7 DISTINCT EIGENVALUES 

An important special situation is where the n eigenvalues determmed from the 
characteristic polynomial of an n x n matrix A are all distinct. In that case, as is 
shown in this section, the corresponding n eigenvectors serve as a convenient 
new set of basis vectors, and with respect to this baSIS the original transfor­
matIOn is represented by a diagonal matrix. 

Suppose the n x n matrix A has the n (distinct) eigenvalues A" A2, ... , A", 
and corresponding eigenvectors eh ez, ... , en' According to the Proposition of 
the last section, the set of eigenvectors is in this case linearly independent. 
Therefore, the n eigenvectors can serve as a basis for the vector space En. In 
particular, any vector x can be expressed as a linear combination of these basiS 
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vectors in the form 

(3-31) 

for some constants z;, i == 1,2, ... , n. Expressed in this form, it is qUIte easy to 
find the corresponding representation for Ax. Indeed, it follows immediately 
that 

(3-32) 

Thus, the new coefficients of the basis vectors are just multiples of the old 
coefficients. There is no mixing among coefficients as there would be in an 
arbitrary basis. 

This simple but valuable idea can be translated into the mechamcs of 
matrix manipulation, where it takes on a form directly suitable for computa­
tion. Define the modal malnX of A to be the n x n matrix 

(3-33) 

That is, M has the eigenvectors as its n columns. The vector x and its 
representation in the new basis with components Zb 1= 1, 2, ... ,n are then 
related by 

x=Mz (3-34) 

In the new set of coordinates, using the new basis, the matrix A, as derived 
in Sect. 3.5, will be represented as 

A = M""l AM (3-35) 

However, from (3-32) it is known that in the new basis the matnx IS rep­
resented by a diagonal matrix, for action by A simply multiplies the Ith 
component value by Ai. Thus, the matrix A is the diagonal matrix 

Al 0 0 
o A2 

A = (3-36) 

o An 

Thus, we may state the following very useful result. 

Theorem. Any square matrix with distinct eigenvalues can be put in diagonal 
form by a change of basis. Specifically, corresponding 10 an n x n matnx A 
with distinct eigenvalues, there holds 

A=M-'AM 

where A is defined by (3-36) and M is the modal matrix of A. 



82 Linear Algebra 

Equation (3-34) is frequently used in the reverse direction as 

A=MAM-I (3-37) 

which gives a representation for the matrix A in terms of its eigenvectors and 
eigenvalues. 

Another way to write this relation is 

AM=MA (3-38) 

which is a form that is directly equivalent to the original definition of the 
eigenvectors of A. This is seen by viewing the matrix equation one column at a 
time. For example, the first column on the left-hand side of the equation is A 
times the first column in M; that is, A times the first eigenvector. Correspond­
ingly, the first column on the right-hand side of the equation is just Al times the 
first eigenvector. Thus, the correspondence of the first columns is equivalent to 
the equation Ae l = Ale,. Identical interpretations apply to the other columns. 

Example. Consider again the matrIX 

A= [~ !] 
It was found, in Example 1, Sect. 3.6, that the eigenvalues and corresponding 
eigenvectors of A are Al = 1, A2 = 4: 

The modal matrix of A is therefore 

M= [ 1 1] 
-1 2 

and it IS readily computed that 

M-
1 =~ [~ -!] 

Then 

and, finally, 
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3.8 RIGHT AND LEFT EIGENVECTORS 

As defined to this point, eigenvectors are right elgenveclOrs in the sense that 
they appear as columns on the right-hand side of the n x n matrix A in the 
equation 

Ae j =-\e, (3-39) 

It is also possible to consider left eigenvectors that are multiplied as rows on the 
left-hand side of A in the form 

f{A=AJ{ (3-40) 

The vector f j is an n-dimensional column, and thus, fT is an n-dimensional row 
vector. 

Equation (3-40) can be rewritten in column form by taking the transpose 
of both sides, yielding 

(3-41) 

Therefore, a left eigenvector of A is really the same thing as an ordinary right 
eigenvector of AT. For most purposes, however, it is more convenient to work 
with left and right eigenvectors than with transposes. 

The characteristic polynomial of AT is det[A T - AI], which, since the 
determinants of a matrix and its transpose are equal, is Identical to the 
characteristic polynomial of A .. Therefore, the right and left eigenvalues (not 
eigenvectors) are identical. 

Example. For the matrix 

A= [~ ~] 
it has been shown that Al = 1, A2 = 4 with corresponding right eigenvectors 

ez= [~] 
Let us find the corresponding left eigenvectors. First, for Al = 1 we must solve 

[Yl Y2]G ~]=[O 0] 

A solution is Yl = 2, Y2 = -1, giving the left eigenvector 

ff =[2 -1] 
For A2 = 4, we solve 
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A solution is y, = 1, Yz = 1, giving the left eigenvector 

fi =[1 1] 

Orthogonality 

There is an important relation between right and left eigenvectors. Suppose Ai 
and Ai are any two (distinct) eigenvalues of the matrix A. Let e, be a right 
eigenvector corresponding to At and let fi be a left eigenvector corresponding 
to Ai. Then 

Aet = -\e, 

fTA= AifT 

Multiplying the first of these equations by fT on the left, and the second bye, 
on the right, yields the two equations 

Subtracting we obtain 

Since At ~ Aj it follows that 

frAe, = AtfTe. 

fTAe, = AifTe, 

0= (Ai - Aj)fTe, 

fTei =0 

This relation is referred to as an orthogonality relation. It says that the 
inner product (or the dot product) of the vectors fi and e, is zero. (The reader 
may wish to check this relation on the example above.) As a formal statement 
this result is expressed by the following theorem. 

Theorem. For any two distinct eigenvalues of a matrix, the left eigenvector of one 
eigenvalue is orthogonal to the right eigenvector of the other. 

3.9 MULTIPLE EIGENVALUES 

If an n x n matrix has nondistinct eigenvalues (that is, repeated or multiple 
roots to Its characteristic equation) a more involved analysis may be required. 
For some matnces with multiple roots it may still be possible to find n linearly 
independent eigenvectors and use these as a new basis, leading to a diagonal 
representation. The simplest example is the identity matrix I that has 1 as an 
eigenvalue repeated n hmes. This matrix is, of course, already diagonal. In 
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general, however, matrices with multiple roots mayor may not be diagonaliza­
ble by a change of basis. 

Two important concepts for matrices with multiple roots, which help 
characterize the complexity of a given matrix, are the notions of algebraic 
and geometric multiplicity. The algebraic multiplicity of an eigenvalue Ai IS the 
multiplicity determined by the characteristic polynomial. It is the integer o. i 
associated with (A - Ait' as it appears when the polynomial is factored into 
distinct factors. If the algebraic multiplicity is one, the eigenvalue IS said to be 
Simple. 

The geometric multiplicity of A; is the number of linearly independent 
eigenvectors that can be associated with Ai' For any eigenvalue, the geometnc 
multiplicity is always at least unity. Also, the geometric multiplicity never 
exceeds the algebraic multiplicity. 

As an example consider the 2 x 2 matrix 

A= [~ ~] 
It has characteristic polynomial (5 - A)2, and hence the only eigenvalue is 5, 
with algebraic multiplicity of two. A corresponding eigenvector must satisfy the 
equation 

The only nonzero solutions to thIS set are of the form Xl = a., X2 = 0 for some 
a. ~ O. Thus, there is only one linearly independent eigenvector, which can be 
taken to be 

x = [~] 

Thus, the geometric multiplicity of A is one. 

Jordan Canonical Form 

In the general case, when there is not a full set of eigenvectors, a matrix cannot 
be transformed to diagonal form by a change of basis. It is, however, always 
possible to find a basis in which the matrix is nearly diagonal, as defined below. 
Tht: )·csulting matrix is referred to as the Jordan Canonical Form of the matrix. 
Siw:,o derivation of the general result is quite complex and because the Jordan 
fOri" IS only of modest importance for the development in other chapters, we 
stak; the result without proof. 
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Theorem (Jordan Canonical Form). Denote by Lk(A) the k x k matrix 

A 1 0···· 0 

o A 1 

A 1 

1 

o 0·· .,\ 

Then for any n x n matnx A there exists a nonsingular matnxT such that 

L k,(,\,) 

where kl + k2 + ... + Ie,. = n, and where the Ai' i = 1, 2, _ .. , r are the (not 
necessarily distmct) eigenvalues of A. 

3.10 PROBLEMS 

1. Prove that matrix multiplication is associatIve, and construct an example showing 
that it IS not commutative. 

2. DifferentiatIOn Fonnuias. (a) Suppose A(t) and B(t) are m x nand n x p matrices, 
respectively. Find a formula for 

d 
-:- [A(t)B(t)] 
dt 

In terms of the derivatIves of the individual matnces. 
(b) If A(t) is n x n and invertible, find a formula for 

3. Show that for any n, the n x n identIty matrix I has determinant equal to UnIty. 

4. Using Laplace'S expansion evaluate the determinants of the matrices below: 

[~ 
2 3 

;] [: 
0 n 3 4 
4 

4 5 
1 

5 6 
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5. Prove that det(AT
) == det(A). 

6. Using Laplace's expansion, prove the linear combination properties of determi­
nants. 

7. Evaluate the determinants below using the rules for row and column operatiOns: 

8. 

9. 

10. 

3 2 0 4 5 4 6 2 

1 1 2 3 3 4 5 3 

-1 1 1 2 1 3 1 

0 0 4 3 2 2 2 2 

Find the inverses of the matrices of Problem 4. 

Prove Theorem 4, Sect. 2.6. 

Consider the two systems of linear equations 

Ax==y 

Bz=x 

where x is n x 1, y is m x 1, z is P x 1, A is m x n, and B IS n x p. Show In detail 
that if the X; vanables are eliminated the resulting system can be expressed as 

ABz=y 

11. Let PI> p" •.. ,Pn be a basis for En and let x be a given vector In En Show that the 
representation x == illPl + il,p, + ... + iloPn IS unique. That is, show that the a,'s are 
umque. 

12. Consider the basiS for E3 consistmg of the columns of the matrix 

[2 3 1] 
p= 1 2 1 

111 

Find p-i. Suppose that in the standard basis a vector x is given by 

Find the representation of x with respect to the basiS defined by P. 

13. Prove, by induction on the dimension n, that det[A - AI] is a polynomial of degree 
n. 

14. Show that for any n x n matnx A 
n 

det(A)= TIA' 

where AI> A" ... , A. are the (not necessarily distmct) eigenvalues of A. (Him: 
Consider the defirution of the charactensllc polynomial.) 
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15. The trace of a square n x n matrix A is the sum of its diagonal elements. That is, 

n 

Trace A = L £4, 
~-1 

Show that 

n 

TraceA= L A; 
.~, 

where A" A2,' .. ,,\,. are the (not necessarily distinct) eigenvalues of A. (Hint: 
Consider the coefficient a.-, in the characteristic polynomial of A.) 

16. Show that for an upper or lower tnangular matrix the eigenvalues are equal to the 
diagonal eiements. 

17. (a) Find the eigenvalues and eigenvectors of 

[ 5 

-1 -3 -: ] -1 5 3 

A= _~ 3 5 -1 

-3 -1 5 

(b) Find a matrix H such that D = Jr' AH is diagonal. 

18. For the following two matrices: 

A=[-~ ~ -:] 

o 0-1 
B=~ 10 -8 2 [ 

9 0 -3] 
3 0-1 

find (a) the characteristic pOiynomiai; (b) the determinant and trace; (c) the 
eigenvalues; and (d) the right and ieft eigenvectors. 

19. A real square matrix A is symmetnc if AT = A. Show that for a syrnmetnc matrix 
(a) all eigenvalues are real; (b) if e, and e j are eigenvectors associated with A; and 
Ai' where A. '" A" then e;T t; = O. 

20. For the matrix 

A=[~ ~ -~] 
~ 0 3 

find (a) the charactenstic polynomial; (b) all eigenvalues; (c) all eigenvectors; and 
(d) the Jordan form of A. 

21. If two matnces A and B are related by a change of basiS (that IS, if B = p-i AP for 
some PI, then the matnces are saId to be Similar. Prove that Similar matnces have 
the same characteristic polynomial. 
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22. The members of the basis associated with the Jordan Canonical Form are often 
referred to as occurring in chains-this terminology arising from the followmg 
mterpretation. If the geometnc mUltiplicity of an eigenvalue A is m, then m lineariy 
independent eIgenvectors are part of the basIs. Each of these eigenvectors satisfies 
[A - A l]e = 0 and each is considered as the first element of one of m separate chams 
associated with the eigenvalue A. The next member of the cham associated with e is 
a vector f such that [A - A l]f = e. The chain continues with a g satisfying [A - A I]g = 
f, and so forth until the cham ends. The original m eigenvectors generate m 
separate chains, which may have different lengths. 

Given a matnx I in Jordan form with m blocks associated with the eigenvalue 
A, find the m eigenvectors of I. Also find the vectors in the chain associated with 
each eigenvector. 

*23. Matnx Perturbation. Show that gIven any n x n matrix A and an arbitrary (; > 0, it 
IS possible to perturb the entries of A by an amount less than (; so that the resuitmg 
matrIX is diagonalizable. (This result is useful m many theoretical developments, 
since it is often easiest to work out a theory for diagonalizable matnces and then 
extend the theory to the general case by a limiting argument.) 

NOTES AND REFERENCES 

There are a large number of texts on linear algebra and matnx theory that can be used to 
supplement this chapter as background for the remaining chapters. Some suggestIons are 
Bellman [B6], Hofbnan and Kunze [H3], Strang [56], and Gantmacher [G2], [G3]. A 
brief treatment together with applications is contamed in Kemeny, Mirkil, Snell, and 
Thompson [K10]. 

Section 3.1. The Leontief model is used extensively for various empirical 
economic investigations, and large matnces representing the economy m a gIven year 
have been constructed. For a sample of an actual large matnx see Leontlef [L3]. 



chapter 4. 

Linear 
State Equations 

At this point the concept of dynamics, as represented by ordinary difference 
and differential equations, is combined with the machinery of linear algebra to 
begin a study of the modem approach to dynamic systems. The foundation for 
this approach is the notion of a system of first-order equations, either in 
discrete or continuous time. 

4.1 SYSTEMS OF FIRST-ORDER EQUATIONS 

In discrete time, an nth-order system is defined in terms of n variables 
x.(k), xz(k), . .. , x..(k) that are each functions of the index k. These n variables 
are related by a system of n first-order difference equations of the following 
general form: 

xl(k + 1) = fl(Xt(k), xz(k), ... , x.. (k), k) 

xz(k + 1) = Mx.(k), xik), . .. , x..(k), k) 

(4-1) 

x..(k + 1) = f .. (x.(k), xik), ... , x.. (k), k) 

The functions f .. i = 1, 2, ... , n define the system. They may be simple in form 
or quite complex, depending on the situation the system describes. The 
variables -"i(k), i = 1, 2, ... , n are regarded as the unknowns whose values are 
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detennined (at least in part) by the system of equations. These variables are 
referred to as state variables. 

If the system is defined for k = 0, 1,2, ... , then the n values 
x.(O), xz(O), . .. , x..(0) are referred to as initial conditions. If the initial condi­
tions are specified, then they may be substituted into the right-hand side of 
(4-1) to yield the values of x.(I), X2(1), . .. , x..(1). These in turn can be 
substituted in the right-hand side to yield x.(2), x2(2), ... , x.. (2). This recurs.ve 
process can be continued to yield the unique solution corresponding to the 
given initial conditions. At each stage k of the recursion, the corresponding set 
of state variables x.(k), xz(k), ... , x..(k) serve as initial conditions for the 
remaIning stages. 

The analog of (4-1) in continuous time is a system of first-order differentIal 
equations. Such a system is defined in terms of n variables x.(t), xz(t), ... , x,,(t) 
that are each functions of the continuous variable t. These n variables are 
related by a system of n equations of the following general fonn:* 

x\(t) = fI(x.(t), xit), ... , x..(t), t) 

X2(t) = fz(x.(t), X2(t), .. . , x..(t), t) 

(4-2) 

Xn(t) = fn(x.(t), X2(t), . .. ,x..(t), t) 

Again the n variables x\(t), X2(t), . .. , x,,(t) are referred to as state variables. 
Some examples of systems in discrete or continuous time were presented 

in Chapter 1. The first-order models of geometric and exponential growth are 
simple examples, corresponding to the elementary case n = 1. The cohort 
population model is an excellent discrete-time example for general n. The goats and 
wolves model is an example of a continuous-time system, corresponding to n = 2. 
Dozens of others are presented throughout the remainder of the text. 

A characteristic of systems of equations, as compared with the ordinary 
difference and differential equations discussed in Chapter 2, is that they 
simultaneously relate several variables rather than just one. This multivariable 
aspect is often characteristic of even the simplest situation, especially if a 
particular phenomenon is viewed as consisting of several components. The 
variables in a system might, for example, represent a decomposition of a given 
quantity, such as population into age groups, or economic production into 
commodities. In physical problems, the variables might represent components of 
position and velocity in various spacial dimensions. The system framework 
retains the distinction among the variables. 

. . . dx(/) 
• We emplOy the standard "dot" notation x(t)"Tt· 
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Linear Systems 

This chapter addresses linear systems. A discrete-time system is linear if it has 
the following form: 

xl(k + 1) = al1(k)x1(k) + a12(k)x2(k) + ... + aln(k)x..(k) + w1(k) 
xz(k + 1) = a21(k)xl(k) + a22(k)Xz(k) + ... + a2n(k)x..(k) + w2(k) 

Again, the variables xl(k), xz(k), ... , x..(k) are the state variables of the 
system, and they may take On arbitrary real values. The values aij(k), i = 
1,2, ... , n, j = 1,2, ... , n are fixed parameters, or coefficients of the system. As 
indicated by their argument k, it is allowable for these parameters to depend 
on tune, but this dependency is predetermined and independent of the values 
assumed by the state variables. If these parameters do not depend on k, the 
system is said to have constant coefficients or to be time-invariant. The values 
w;(k), i = 1, 2, ... , n are also parameters denoting the driving or forcing terms 
in the system. The essential defining feature of a linear system, of course, is 
that all terms are linear with respect to the state variables. 

The general description above is somewhat tedious to write out In detail, 
and matrix notation can be used to great advantage. With this notation, the 
system can be expressed in the equivalent form 

x(k + 1) = A(k)x(k) + w(k) 

Here x(k) is the n x 1 state vector a~d w(k) is the n x 1 forcing vector. That is, 

x(k) = w(k)= 

The matrix A(k) is the square n x n matrix consisting of the coefficients aij(k). 
It is referred to as the system matrix. 

For continuous-time systems the situation, as usual, is entirely analogous. 
A continuous-time linear dynamic system of order n is described by the s'et of 
n ordinary differential equations: 
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.il(r) = a ll(t)xl(t) + a12(t)xit) + ... + a 1n (t)x..(t) + WI(t) 

.i2(t) = a2t(t)x t (t)+ a2it)xit) + ... + a 2n (t)x..(t) + wit) 

As before, the Xj(t), i = 1, 2, ... , n, are state variables, the Cl;j(t) are parameters 
or coefficients, and the Wi (t), i = 1, 2, ... , n, are forcing terms. In order to 
guarantee existence and uniqueness of solution, the Cl;j(t)'S are usually assumed 
to be contiilUous in t. 

Just as for discrete-time systems, continuous-time linear dynamic systems 
are conveniently expressed in matrix notation. In this notation an nth-order 
system takes the form . 

x(t) = A(t)x(t) + wet) 

where x(t) is the n x 1 state vector, wet) is the n x 1 forcing vector, and A(t) IS 

the n x n- matrix of coefficients referred to as the system matrix. 

Inputs 

In most applications the forcing or driving terms in a system are derived from a 
single, or perhaps a few, specific inputs to the system. In some cases these 
inputs actually may be consciously controlled in an effort to guide the behavior 
of the system. In other cases, they may be fixed by the environment, but still 
retain an interpretation as input. When, for example, the simplest first-order 
model is viewed as a description of a bank balance, the forcing term corres­
ponds to deposits into the account. Likewise, in more complex systems the 
forcing term is typically derived from some identifiable input source. 

There is often a simple structural connection between the SOurce of input 
and the resulting forcing terms. For instance, a single input source may affect 
all of the equations in the system, or an input may enter only a few equations. 
It is useful to explicitly display the particular structural relation in the formula­
tion of the system equations. The definition of a linear system is expanded 
slightly to account for this additional structure. 

A discrete-time linear system with inputs has the following form: 

xl(k + 1) = all(k)xl(k) + a I2(k)x2(k) + ... + a1n (k)x..(k) 
+ bu(k)UI(k) + ... + b1m (k)u",(k) 

x2(k + 1) = a21(k)xl(k) + a2ik)x2(k) + ... + a2n(k)x..(k) 
+b21(k)Ul(k)+'" +b2m (k)u",(k) 

x..(k + 1) = ~1(k)XI(k) +. . . + ~n(k)x..(k) 
+ b .. l(k)ul(k) + ... + bnm(k)u",(k) 



94 Linear State Equations 

The variables ul(k), u2(k), ... , u... (k) are the control vanables or the input 
variables of the system. 

In matrix notation the system takes the form 

x(k + 1) = A(k)x(k) + B(k)u(k) 

where B(k) is an n x m matrix and u(k) is an m x 1 input vector. The matrix 
B(k) is referred to as the distribution matnx, since it acts to distribute the inputs 
into the system. A common case is where m = 1, corresponding to a single 
control variable. In this case the B(k) matnx reduces to a n-dimensional 
column vector, and accordingly, in this case B(k) is usually replaced by the 
notation b(k) to explicitly indicate a column vector rather than a more general 
matrix. 

In terms of the earlier definition, it is clear that we have simply made the 
replacement 

w(k) = B(k)u(k) 

From a mathematical viewpoint it is somewhat irrelevant how the driving term 
is determined. However, for practical purposes this expanded notation is 
useful, since it is mOre closely related to the structure of the situation. 

Finally, let us point out the obvious extension to continuous time. A linear 
system with input has the form 

x(t) = A(t)x(t) + B(t)u(t) 

Example (Obsolescence). Let us consider the life history of a class of goods in a 
country-perhaps some appliance, such as washing machines. We assume that 
households purchase new washing machines and keep them until they suffer a fatal 
breakdown or become obsolete. At anyone time, therefore, there is a distribution 
of various aged washing machines throughout the country. We shall describe the 
system of equations that governs this distribution. 

Let us employ a discrete-time formulation based on periods of one year. 
The basic assumption we make in order to develop the model is that there is a 
certain probability (3; that any washing machine i years old will remain in 
service at least one more year. This probability may be relatively high for 
young machines and low for old machines. We assume that no machine 
survives to an age of n + 1 years. 

With these assumptions, we divide the washing machines into cohorts of 
one-year age groups. Let Xj(k) be the number of surviving waShing machines of 
age i years during period (year) k. Then we have the equations 

xi+l(k + 1) = (3;Xj(k) i = 0, 1,2, ... , n-1 

The number of washing machines less than one year old is equal to the number 
of purchases u(k) during the year; that is, 

xo(k + 1) = u(k) 
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This system of equations can be put in matrix fonn as 

o 0 

f30 0 
o f31 

o xo(k) 

o xl(k) 0 

o + 0 u(k) 

o f3n-l 0 ;t,.(k) 

which is a special case of the general fonn 

x(k + 1) = Ax(k) + bu(k) 

The variable u(k), representing purchases, is the input to the system. In 
order for a solution of the system to be detennined, it is of course necessary to 
specify an input sequence. This might be done in various ways, depending on 
the analysis objectives. The simplest would be to specify purchases directly, as 
perhaps an increasing function of k. A more realistic approach might recognize 
that purchases partly consist of replacements for those machines that are 
retired, so that u(k) must ultimately be tied back to x(k). 

This simple model is discussed again later in this chapter and in Problem 2. 
It is referred to as the straighHhrough cohort model, since cohorts pass directly 
through without influencing each other. 

The State Vector and State Space 

The vector x(k) in discrete-time systems [or x(t) in continuous-time systems] is 
referred to as the state vector because this vector is a complete description of 
the system at the time k, at least in so far as determining future behavior. As 
observed earlier, the state vector serves as a kind of running collection of initial 
conditions. Knowledge of these conditions at a given time together with a 
specification of future inputs is all that is necessary to specify future behavior. 
Indeed, in discrete time, the future behavior can be calculated recursively from 
the system of difference equations once the current state is known. In continu­
ous time the future is likewise detennined by the current state, although it may 
not be quite so easily determined as in the discrete-time case. 

One often refers to state space as the n-dimensional space in which the 
state vector is defined. Accordingly, one can visualize the evolution of a 
dynamic system in tenns of the state vector moving within the state space. 

4.2 CONVERSION TO STATE FORM 

Ordinary difference and differential equations, as treated in Chapter 2, can be 
easily converted to equivalent systems of first-order equations. The theory of 
systems is, therefore, a proper generalization of that earlier theory. 
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Consider the linear difference equation 

y(k + n) + a.._.(k)y(k + n -1) + ... + ao(k)y(k) = u(k), k =0,1,2, ... 

To construct a suitable system representation, define n state variables as n 
successive values of y(k). In particular, let 

xl(k) = y(k) 
xz(k) = y(k + 1) 

xn(k)=y(k+n-l) 

With these definitions, it follows immediately that 

x l(k + 1) = x2(k) 
x2(k + 1) = x3(k) 

Xn-l(k + 1) = Xn (k) 

The value of Xn(k + 1) can be found from the Original difference equation as 

Xn(k +1) = -aO(k)xl(k) - a. (k)x2(k) _ ... - a.._.(k)Xn(k) + u(k) 

Defining the state vector x(k) having components x.(k), x2(k), ... , Xn(k), as 
above, produces the linear system 

0 1 0 0 0 0 

0 0 1 0 0 0 

x(k+1)= x(k)+ u(k) 

0 0 0 0 1 0 

-ao(k) -a.(k) -a2(k) - ••• - a..-z(k) -a..-.(kl 1 

with 
y(k) = x 1(k), k =0,1,2, ... 

Matrices with the special structure above, with ones along an off-diagonal and 
zerOes everywhere else except the bottom row, occur frequently in dynamic 
system theory, and are referred to as companion matrices. 

Differential equations can be converted to state form in a similar way. In 
this case the state variables are taken to be the onginal dependent variable y(t) 
and its first n -1 derivatives. The resulting structure is identical to that for 
difference equations. 
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Example 1. Consider the second-order difference equation 

y(k + 2) + 2y(k + 1) + 3y(k) = u(k) 

Following the procedures outlined above, we define 

x2(k) = y(k + 1) 

In terms of these variables the system can be written as 

xl(k+1)=x2(k) 

xz(k + 1) = -2X2(k) - 3xl(k) + u(k) 

or, in matrix form, 

[ XI (k+1)]=[ ° l][xl(k)]+[O]U(k) 
x2(k + 1) -3 -2 x2(k) 1 

Example 2 (Newton's Laws). The conversion process for differential equations 
is illustrated most simply by the second-order system derived from Newton's 
laws, discussed in Sect. 1.3. The equation takes the form (assuming unit mass) 

d 2 x 
dt2 = u(t) 

It can be converted to state variable form by defining the state vanables Xl = X, 
X2 = (dxldt). It follows that 

dXI 
Tt=X2 

dx2 -=u 
dt 

In matrix form the system can then be written 

~:=[~ ~]x+[~]U(t) 

4.3 DYNAMIC DIAGRAMS 

The mathematical device of representing a dynamic situation as a system of 
first-order difference or differential equations has the structural interpretation 
that a high-order system is just a collection of interconnected first-order 
systems. This interpretation often can be effectively exploited visually by 
displaying the interconnection pattern diagrammatically. There is a simple and 
useful convention for constructing such diagrams. 
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%(k) 

(e) 

•• J. ~'("".J 

y(k) 

(a) 

(d) 

4 a(k) F 

(b) 

(e) 

Figure 4.1. Elementary components for dynamic diagrams. (a) Summer. (b) 
Transmission. (c) Splitting. (d) Unit delay. (e) Integrator. 

In the linear case, dynamic diagrams are built up from the five elementary 
components illustrated in Figs. 4.1a-4.1e. The diagrams are to be interpreted 
as if the scalar value runs along the lines, somewhat like voltage on a wire. The 
summer adds whatever comes into it, instantaneously producing the sum. The 
transmission multiplies the incoming scalar by the constant indicated in the 
box. Splitting refers simply to dividing a line into two lines, each of which 
carries the original value. The delay is the basic dynamic component for 

(a) 

(b) 

Figure 4.2. First-order systems. 

x(k) 

%(1) 
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--~. 
Figure 4.3. Straight-through cohort model. 

discrete-time systems. Whatever comes in is delayed for one period and 
becomes the output for the next period. [Instead of using x(k + 1) as input in 
Fig. 4.1d, the reader may find it helpful to use x(k) as input, in which case the 
output would be x(k -1).] The integrator is the basic dynamic component for 
continuous-time systems. Whatever time function comes in is integrated and 
the resulting new function appears as output. Thus, the input is the derivative of 
the output. These basic components can be combined to represent any linear 
system. 

Example 1 (Fust-order Systems). The first-order system 
x(k + 1) = a(k)x(k) + b(k)u(k) 

corresponds to. the diagram shown in Fig. 4.2a. Entering the summer are the 
two terms b(k)u(k) and a(k)x(k). They are summed, and one penod later this 
sum appears at the output of the diagram as x(k + 1). 

The continuous-time system 

i(t) = a(t)x(t) + b(t)u(t) 

corresponds to the diagram in Fig. 4.2b. 

Example 2 (The Straight-Through Cohort Model). The cohort model associated 
with washing machines is shown in diagram form in Fig. 4.3. A characteristic of the 
cohort model, which is obvious from just the verbal description of the system, is that 
without inputs thesystemeventuallywill have zero population in each of its cohorts. 
No formal analysis is required to deduce this. This prominent characteristic of the 
model is, however, somewhat masked by the matrix representation, until the 
structure of the matrix is examined. By contrast, this characteristic is displayed in 
full relief by the dynamic diagram of Fig. 4.3, where it is clear that the early state 
variables soon become zero if there is no input to rejuve~te them. 

4.4 HOMOGENEOUS DISCRETE-TIME SYSTEMS 

A linear dynamic system is said to be homogeneous or free if there is no forcing 
term in its defining equation. In discrete-time the state vector representation 
for such a system is 

x(k + 1) = A(k)x(k) (4-3) 

The term homogeneous derives of course from its usage in ordinary difference 
and differential equations. In the vernacular of dynamic system theory such 
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systems are referred to as free, since they run by themselves without external 
control. 

Solution to Free System 

The free system 

x(k + 1) = A(k)x(k) 

can be solved recursively once an initial value of the state is specified. One 
simply wntes, by repeated substitution, 

x(1) = A(O)x(O) 

x(2) = A(1)x(1) = A(1)A(O)x(O) 

and, in general, 

x(k) = A(k -l)A(k - 2) ... A(O)x(O) 

In view of the expression for the solution to the free system, it is natural to 
define the special matrix 

cIl(le, 0) = A(k -l)A(k - 2) ... A(O) (4-4) 

which is called the state-transinon matnx. Multiplication of any initial state 
vector by this matrix yields the state at time k. 

The definition of the state-transition matrix can be generalized to account 
for the possibility of initiating the system at a time other than zero. The general 
definition is given below. 

Definition. The state-transition matrix of the homogeneous system (4-4) is -

"'(k, /)=A(k-1)A(k-2)··· A(l), 

"'(Ie, k) = I 

k>1 

Alternatively (but equivalently), it is the matrix satisfying 

4»(k + 1, I) = A(k)"'(k, I), 

"'(I, I) = I 

k>1 

(4-5) 

(4-6) 

This general definition is consistent with an interpretation of yielding the 
value of x(k) if x(l) is known (k ~ /). Indeed, application of the recursion 
process directly yields 

x(k) = "'(k, l)x(l) 
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which is referred to as the state-transition property of ~(k, I). The equivalence 
of the two alternative forms stated in the definition should be clear. 

The state-transition matrix is defined as a product of system matrices. It is, 
essentially, a shorthand way of indicating the product, and therefore is of great 
notational value. Unfortunately, however, there is no shortcut procedure for 
calculating the state-transition matrix-the product form, although somewhat 
implicit, is the simplest general representation. However, as will be seen in the 
examples presented later in this section, the special structure of certain systems 
often enables one to calculate an explicit expression for the system transltlon 
matrix. 

Fundamental Sets of Solutions 

The state-transition matrix was defined above as a product of system matrices 
because it can be easily demonstrated that that form produces the solutions to 
the original difference equation. The concept of the state-transition matrix can 
be developed by another line of reasoning that leads to a valuable alternative 
interpretation. This viewpoint highlights the role of linearity, and suppresses 
the constructive approach to solution determination. This more indirect argu­
ment, although serving only as an alternative procedure in the discrete-time 
case, is essential in continuous time, where a direct constructive approach IS not 
available. This alternative approach is based on a set of fundamental solutions, 
and is patterned after the classical approach to ordinary difference equations. It 
is also closely related to the structure represented by the alternative statement 
(4-6) in the original definition of the state-transition matrix. 

For simplicity, it is assumed here that the system matrix A(k) is nonsingu­
lar for all k. This is not an essential restriction, but it makes the arguments 
and results cleaner. 

Consider a collection of n solutions to the homogeneous equation (4-3). 
Let us denote these solutions by xl(k), r(k), ... , xn(k). Each solution x'(k) is 
an n-dimensional vector function of k; that is, each solution is a sequence of 
vectors satisfying the recursive relation (4-3). Each of these n solutions might 
be found by starting with an initial vector and generating successive terms by 
recursion, Or they might be found by some alternative procedure. We require, 
however, that these n solutions be linearly independent, consistent with the 
following general definition. 

Definition. A set of m vector sequences xl(k), r(k), ... , xm (k), k = 0, 1,2, . 
is said to be linearly independent if there is no nontrivial linear combina­
tion of them that is identically zerO. That is, if the relation alx1(k) + 
a2r(k)+·· ·+amxm(k)=O, for all k, implies that all the ai's are zero. 

Note that this definition is stated with respect to all k = 0, 1,2, .... If a 
solution were defined on a sequence of finite length, the definition would be 
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modified accordingly. Also note, however, that the definition does not require 
that, for each fixed k, the vectors xl(k), x2 (k), ... , xm(k) be linearly indepen­
dent in the usual sense for n-dimensional vectors. It is sufficient, for example, 
that for one value of k (say k = 0) they be linearly independent. 

Suppose that xl(k), r(k), ... , x"(k) is a set of n linearly independent solu­
tions to the original difference equation (4-3). Thus, each x'(k), i = I, 2, ... , n 
satisfies 

x'(k + 1) = A(k)x'(k) (4-7) 

Such a set is called a fundamental set of solutions. As we will show, every 
solution of (4-3) can be expressed as a linear combination of these n solutions. 

In order to facilitate the required manipulations, it is convenient to stack 
these n solution vectors side-by-side as the n columns of a n X n matrix, 
denoted X(k); that is, 

(4-8) 

This matrix of solutions is referred to as a fundamental matrix of solutions. 
A fundamental matrix of solutions satisfies the underlying system equation 

as a unit; that is, 

X(k + 1) == A(k)X(k) (4-9) 

This is true because each column of X(k) is a solution, and therefore satisfies 
the system equation. The matrix equation is really Just n separate equations­
one for each of the columns. 

Lemma. A fundamental matrix of solutions X(k) is nonsingular for every value 
of k. 

Proof. This result follows from the linear independence of the solutions and the 
nonsingularity of A(k). Suppose to the contrary that X(ko) were singular for 
some index ko• Then, according to the fundamental lemma of linear algebra, it 
would follow that 

X(ko)a=O 

for some nonzero n-vector a. Multiplication by A(ko) would then lead to 

X(ko + l)a = A(ko)X(ko)a = 0 

while multiplication by A(ko -1)-1 would produce 

X(ko-1)a:= A(ko-l)-
lX(ko)a = 0 

By continuing these forward and backward processes, it would follow that 
X(k)a=O for all k. This however is equivalent to 

G:1x1(k) + £r2x2(k) + ... + a,.x"(k) = 0 
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which contradicts the assumption that the fundamental set of solutions is 
linearly independent. I 

With the above result it is easy to derive an expression for the state-transition 
matrix. Suppose an arbitrary solution x(k) to (4-3) is given. Its initial condition is 
x(O). Now considerthe vector sequence i(k) defined in tenns of the initial condition 
x(O) by 

i(k) = X(k)X(O)-lx(O) 

It is clear that i(O) = x(O). Also, if the vector (It is defined by 

(It = X(O)-lX(O) 

we have 
i(k) = X(k)(It 

From this expression It IS clear that i(k) is just a linear combination of 
solutions, and by the linearity of the system this linear combination is itself a 
solution. However, since it has the initial value x(O), the two solutions x(k) and 
i(k) must be identical (by the uniqueness of solutions); that is i(k) = x(k).ltfollows 
therefore that any solution x(k) can be expressed as 

x(k) = X(k)X(O)-lX(O) 

The above procedure can be generalized to express x(k) in tenns of x(l) 
rather than x(O). Indeed the same argument shows that 

x(k) =X(k)X(I)-lx(l) 

In view of this relation we may state the following proposition. 

Proposition. Let X(k) be a fundamental matrix of solutions, corresponding to the 
system 

x(k + 1) = A(k)x(k) 

Then the state-transition matrix is given by the expression 

"'(k, 1)=X(k)X(l)-1 

for k ~l. 

(4-10) 

'I11e above algebraic result has a simple interpretation in tenns of matching 
initial conditions. For simplicity let us consider the relation 

"'(k, 0) = X(k)X(O)-l 

Since X(k) is a fundamental matrix of solutions, it is also true that X(k)X(O)-1 
is a fundamental matrix of solutions; the columns of the latter being various 
linear combinations of the columns of X(k). Therefore, "'(k, 0) is a fundamen­
tal matrix of solutions. The set is normalized, however, so that "'(0,0) = I. 
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Expressed in terms of its n columns, this fundamental matrix of solutions 
consists of n distinct solutions x I (k), r(k), _ .. ,x"(k), characterized by the 
special initial conditions 

o 
o 

x'(O)= 1 

o 
0_ 

i = 1, 2, 3, ... , n 

with the 1 in the ith coordinate position. This special fundamental set of 
solutions can be used to construct the solution corresponding to a given 
arbitrary set of initial conditions. x(O). The solution is expressed as a linear 
combination of the fundamental solutions, and the appropriate linear combina­
tion is simply x(k) = cf>(k, O)x(O). It is because the fundamental set has the 
special initial conditions, equal to the n unit basis vectors, that construction of 
a linear combination that agrees with x(O) is so easy. 

Example 1 (Iune-Invariant System). An extremely important special case IS 

that of a time-invariant linear system 

x(k + 1) = Ax(k) 

where A is fixed, independent of k. It is easily seen that 

cf>(k,O)=Ai<, k?:O 
or, more generally, 

cf>(k, I) = A it-I, k ?: 1 

If A is invertible, then these expressions are valid for k < I as well. 
In the time-invariant case, we often write cf>(k) instead of cf>(k,O), since 

then cf>(k, I) = cf>(k -I). 

Example 2 (A NODCOnstant System). Consider the linear homogeneous system, 
defined for k?: 0: 

k + l][xI (k)] 
1 xik) 

A fundamental set of solutions can be found by starting with two linearly 
independent initial conditions. It is easy to see that one solution is the sequence 

all k?:O 
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A second solution can be constructed by repeated substitution in the system 
equation, yielding for k = 0, 1, 2, 3, 4, ... 

Thus, we have the second solution defined by 

These two solutions form a fundamental set of solutions, which yields the 
matrix 

If we are given an arbitrary initial condition vector 

x(O) = [::J 
the corresponding solution will be 

x(k) = X(k)X(O)-lX(O) 

Since X(O) is the identity in this case, we can write the general solution 

Example 3 (Natchez Indian Social Structure). Most societies are organized, 
either explicitly Or implicitly, into class segments. The higher classes control 
power and the distribution of resources. Oass membership is determined by 
inheritance, and often the higher classes practice endogamy (inner-class 
marriage) in order to "close" the class and prevent the dispersion of power. 

The Natchez Indians in the Lower Mississippi devised an ingenious system 
of marriage rules apparently in an attempt to create an "open" class structure 
where power could to some extent be rotated rather than perpetuated within 
families. The society was divided into two mam classes-rulers and commoners, 
with the commoners termed srinkards. The ruling class was divided into three 
subclasses-Suns, Nobles, and Honoreds. Members of the ruling class could 
marry only commoners. Offspring of a marriage between a female member of 
the ruling class and a male commoner inherited the class status of the mother, 
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while offspring of a marriage between a male member of the ruling class 
dropped down a notch. Thus, the child of a Sun father became a Noble, and so 
forth. 

The complete set of allowed marriages and offspring designations is 
summarized in Table 4.1. A blank in a box in the table indicates that the 
corresponding marriage is not allowed, and the name in a box is the class 
designation of the offspring of a corresponding allowed marriage. 

Table 4.1. Natchez Marriage Rules 

Father 

Sun Noble Honored Stinkard I 

Sun Sun 

Noble Noble 
Mother 

Honored Honored 

Slinkard Noble Honored Stinkard Stinkard 

It is of interest to investigate the propagation of the class distribution of 
this system. For this purpose we develop a state variable description of the 
dynamic process implied by these rules. For purposes of developing the model, 
we assume that the population can be divided into distinct generations, and we 
make the following three simplifying assumptions: 

(a) Each class has an equal number oJ men and women in each generation. 
(b) Each individual marries once and only once, and marries someone in the 

same generation. 
(c) Each couple has exactly one son and one daughter. 

Since the number of men is equal to the number of women in each class, it 
is sufficient to consider only the male population. Let :x;(k) denote the number 
of men in class i in generation k, where the classes are numbered (1) Suns, (2) 
Nobles, (3) Honored, and (4) Stinkards. 

Since a Sun son is produced by every Sun mother and in no other way, and 
since the number of Sun mothers is equal to the number of Sun fathers, we may 
write 

xl(k+l)=Xl(k) 

A Noble son is plUduced by every Sun father and by every Noble mother and 
in no other way; therefore, 

x2(k+ 1) = xl(k)+xik) 
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Similarly, an Honored son is produced by every Noble father and by every 
Honored mother and in no other way; therefore, 

x3(k+ 1) = x2(k)+ x3(k) 

Finally, the number of Stinkard sons is equal to the total number of Stinkard 
fathers minus the number of Stinkard fathers married to Suns or Nobles. Thus, 

xik+ 1) = -xl(k) - x2(k) + xik) 

In state variable form these equations become 

[,,(k+1l] [1 0 0 T'(klJ x2(k + 1) = 1 1 0 o x2(k) 

x3(k +1) 0 1 1 o x3(k) 

x4 (k + 1) -1 -1 0 1 x4 (k) 

The system matrix A is in this case a constant 4 x 4 matrix, and accordingly 
the system is a time-invariant, free, dynamic system of fourth order. The 
state-transition matrix can be found as powers of the system matnx. That is, 

~(k,O)=Ak k2:0 

These powers can, of course, be found numerically by brute force, but in this 
case it is relatively easy to find an analytic expression for them. We wnte the 
matrix A as A = 1+ B. where 

0 0 0 

~l B~[ : 0 0 

1 0 

~J -1 -1 0 

We may then use the binomial expansion to write 

Ai< = (I + B)i< =Ik +(~)Ik-lB+ (~)Ik-2B2+ .. '+Bi< 

where (~) denotes the binomial coefficient k !/(k - i) !(i 0. (The binomial expan­

sion is valid in this matrix case because I and B commute-that is, because 
IB = BI.) The expression simplifies in this particular case because 

o 0 

o 0 

o 0 

o 0 
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but B3 (and every higher power) is zero. Thus, 

Ak = (I+B)k =1+ kB+ k(k
2
-1) B2 

or, explicitly, 

1 0 0 0 

k 1 0 0 

Ak= 
k(k-1) 

2 
k 1 0 

-k(k+1) 
-k 0 1 

2 

Once A k is known, it is possible to obtain an expression for the class 
populations at any generation k in terms of the initial populations. Thus, 

[ 

:~~~~) + X2(0) ] 
x(k)= tk(k-1)xl(0)+kx2(0)+X3(0) 

-tk(k + l)xl(O) - kx2(0) + x4 (0) 

From this analytical solution one can determine the behavior of the social 
system. First, it can be directly verified that the total population of the society 
is constant from generation to generation. This follows from the earlier 
assumption (c) and can be verified by summing the components of x(k). 

Next, it can be seen that unless Xl(O) = x2(0) = 0, there is no steady 
distribution of population among the classes. If, however, Xl(O) = X2(0) = 0, 
corresponding to no Suns or Nobles initially, there will be no Suns or Nobles in 
any successive generation .. In this situation, the Honored and Stinkard 
population behave according to x3(k + 1) = x3(k), xik+ 1) == xik), and there­
fore their populations remain fixed at their initial values. 

If either the Sun or Noble class is initially populated, then the number of 
Stinkards will decrease with Ie, and ultimately there will not be enough 
Stinkards to marry all the members of the ruling class. At this point the social 
system, as defined by the given marriage rules, breaks down. 

4.5 GENERAL SOLUTION TO LINEAR DISCRETE­
TIME SYSTEMS 

We tum now to consideration of the forced system 

x(k+ 1) = A(k)x(k)+ B(k)u(k) (4-11) 
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As before x(k) is an n-dimensional state vector, A(k) is an n x n system 
matrix, B(k) is an n x m distribution matrix, and u(k) is an m-dimensional 
input vector. The general solution to this system can be expressed quite simply 
in terms of the state-transition matrix defined in Sect. 4.4. The solution can 
be established easily by algebraic manipulation, and we shall do this first. 
Interpretation of the solution is, however, just as important as the algebraic 
verification, and a major part of this section is devoted to exposition of that 
interpretation. 

Proposition. The solution of the system (4-11), in terms of the initial state x(O) 
and the inputs, is 

k-l 

x(k) = ~(k, O)x(O)+ L ~(k, 1+ l)B(l)u(l) (4-12) 
i=O 

Proof. To verify that the proposed expression (4-12) does represent the solu­
tion, it is only necessary to verify that it satisfies the basic recursion (4-11) and 
the initial condition. An important relation for this purpose is 

~(k + 1, 1+ 1) = A(k)~(k, 1+1) (4-13) 

from the basic definition of the state-transition matrix. We note first that the 
proposed solution is correct for k = 0, since it reduces to x(O) = x(O). The 
verification can therefore proceed by induction from k = O. 

The proposed solution (4-12) when written with k+1 replacing k is 
k 

x(k + 1) = ~k + 1, O)x(O) + L ~(k + 1, 1+ l)B(l)u(l) 
i-O 

The last term in the summation (corresponding to 1= k) can be separated from 
the summation sign to produce 

It-I 

x(k + 1) =~(k+ 1, O)x(O)+ L ~(k + 1, 1+ l)B(l)u(l)+ B(k)u(k) 

Using relation (4-13) this becomes 
ie-l 

x(k+ 1) = A(k)~(k, O)x(O)+ A(k) L ~(k, 1+ l)B(l)u(l)+ B(k)u(k) 

This, in tum, with the proposed form for x(k), becomes 

x(k + 1) = A(k)x(k)+ B(k)u(k) 

showing that the proposed solution in fact satisfies the defining difference 
equation .• 

Superposition 
The linearity of the system (4-11) implies that the solution can be computed by 
the principle of superposition. Namely, the total response due to several inputs 
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is the sum of their individual responses, plus an initial condition term. This 
leads to· a useful interpretation of the solution formula (4-12). 

Let us investigate each term in the general solution (4-12). The first term 
~(k, O)x(O) is the contribution to x(k) due to the initial condition x(O). It is the 
response of the system as if it were free. When nonzero inputs are present this 
term is not eliminated, other terms are simply added to it. 

The second term, which is the first of the terms represented by the 
summation sign, is that associated with the first input. The term is 
~(k, l)B(O)u(O). To see how this term arises, let us look again at the underlying 
system equation 

x(k + 1) = A(k)x(k) + B(k)u(k) 

At k = 0 this becomes 

x(1) = A(O)x(O)+ B(O)u(O) 

If we assume for the moment that x(O) = 0 [which we might as well assume, 
since we have already discussed the contribution due to x(O)], then we have 

x( 1) = B(O)u(O) 

This means that the short-term effect of the input u(O) is to set the state x(1) 
equal to the vector B(O)u(O). Even if there were no further inputs, the system 
would continue to respond to this value of x(1) in a manner similar to its 
response to an initial condition. Indeed, the vector xO) acts exactly like an 
initial condition, but at k = 1 rather than k = O. From our knowledge of the 
behavior of free systems we can therefore easily deduce that the corresponding 
response, for k> 1, is 

x(k) = ~(k, 1)xO) 

In terms of u(O), which produced this x(1), the response is 

x(k) = ~(k, 1)B(0)u(0) 

which is precisely the term in the expression for the general solution corres­
ponding to u(O). 

For an input at another time, say at time I, the analysis is virtually 
identical. In the absence of initial conditions or other inputs, the effect of the 
input uor is to transfer. the state from zero at time 1 to B(I)u(l) at time 1 + 1. 
From this point the response at k> 1 + 1 is determined by the free system, 
leading to 

x(k) = ~(k, 1 + 1)B(l)u(l) 

as the response due to u(l). 
The total response of the system is the superposition of the separate 
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responses considered above; the response to each individual input being 
calculated as a free response to the instantaneous change it produces. We see, 
therefore, in terms of this interpretation, that the total solution (4-12) to the 
system can be regarded as a sum of free responses initiated at different times. 

Time-Invariant Systems (Impulse Response) 

If the system (4-11) is time-invariant, the general solution and its interpretation 
can be slightly simplified. This leads to the formal concept of the Impulse 
response of a linear time-invariant system that is considered in greater detail in 
Chapter 8. 

Corresponding to the linear time-invariant system 

x(k + 1) = A:x(k) + Bu(k) 

the state-transition matrix takes the simple form 

~(k, 1+ 1) = AI<-I-l 

Therefore, the general solution corresponding to (4-14) is 
it-1 

x(k)=Akx(O)+ L A it
- ' -

1Bu(l) 
i-O 

(4-14) 

(4-15) 

(4-16) 

Everything said about the more general time-varying solution certainly 
applies to this special case. To obtain further insight in this case, however, let 
us look more closely at the response due to a single input. For simplicity 
assume that the input is scalar-valued (Le., one-dimensional). In that case we 
write the distribution matrix B as b to indicate that it is in fact an n-vector. 

The response due to an input u(O) at time k = 0 is 

x(k) = A it
-

1bu(0) 

If u(O) = 1, corresponding to a unit input at time k = 0, the response takes the 
form 

x(k) = A k -
1b 

This response is termed the impulse response of the system. It is defined as the 
response due to a unit input at time k = O. 

The importance of the impulse response is that for linear time-invariant 
systems it can be used to determine the response to later inputs as well. For 
example, let us calculate the response to an input u(l). Because the system is 
time-invariant, the response due to an input at time I is identical to that due to 
one of equal magnitude at time zero, except that it is shifted by I time units. 
Thus the response is 

x(k) = Ak-l-Ibu(l) for k ~ I + 1 

Of course, the response for k < I is zero. 
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The response of a linear time-invariant system to an arbitrary sequence of 
inputs is made up from the basic response pattern of the impulse response. This 
basic response pattern is initiated at various times with various magnitudes by 
inputs at those times; the magnitude of an input directly determining the 
proportionate magnitude of the corresponding response pattern. The total 
response, which may appear highly complex, is just the sum of the individual 
(shifted) response patterns. 

Example (First-Order System). Consider the system 

x(k + 1) = ax(k) + u(k) 

where 0 < a < 1. The general solution to the system is 
k-l 

x(k) = a"x(O)+ I a k-I-lu(l) 
1-0 

The impulse response is a geometric sequence. The total response to any 
input is just a combination of delayed versions of this basic geometric se­
quence, each with a magnitude equal to that of the corresponding input term. 

The interpretation of the solution in terms of the impulse response is 
illustrated in Fig. 4.4a-4.4c. Part (a) shows the impulse response, (b) shows a 
hypothetical input sequence, and (c) shows the composite response made up 
from the components. 

--1...--'=::1-- " 
2 3 4 

(a) (b) 

~ . 
i=== == 

I I 
" o 2 3 4 5 6 7 

(e) 

Figure 4.4. Decomposition of response. 
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4.6 HOMOGENEOUS CONTINUOUS-TIME SYSTEMS 

A solution procedure almost parallel to that for discrete time is applicable to 
linear continuous-time dynamic systems. As in the discrete-time case, it is best 
to first consider in some detail the homogeneous or free system, which in 
continuous time has the form 

i(t) = A(t)x(t) (4-17) 

If the elements of the matrix A(t) are continuous functions of t, the system 
(4-17) Will possess a unique solution corresponding to each initial state vector. 
Unlike the discrete-time case, however, where it is possible to write down an 
explicit expression for the solution in terms of the initial state vector, no such 
general expression exists in the continuous-time case. Although this is perhaps 
disappointing, it does not seriously inhibit progress toward the goal of parallel­
ing the development of the discrete-time case. The concepts of state-transition 
matrix and fundamental sets of solutions are still applicable, and form the basis 
of a very satisfactory theory. 

The theory itself is concerned essentially with relations among different 
solutions rather than with the issues of whether solutions actually exist. 
Accordingly, it is assumed that given a time T, if X(T) is specified, there is a 
unique solution to (4-17) having this value at t = T. It is then possible to define 
the state-transition matrix indirectly as a matrix solution to the onginal 
differential equation. 

Definition. The state-transition matrix ~(t, T) corresponding to the homogene­
ous system (4-17) is the n x n matrix function satisfying 

d 
dt~(t,T)=A(t)~(t,T) (4-18) 

~(T, T)=I (4-19) 

Let us examine this definition to see, at least in principle, how the 
state-transition matrix might be found. Let us fix T. The n columns of ~(t, T) 
are then each vector functions of t, and to satisfy (4-18) each of these columns 
must be solutions to the original equation (4-17). In addition, these solutions 
must satisfy the special condition at t = T implied by ~(T, T) = I; that is, at t = T 
each solution vector must be equal to one of the standard unit basis veGtors. By 
finding these n solutions to (4-17), the matrix ~(t, T) (for the fixed value of T) 
can. be constructed. This (conceptual) procedure is then repeated for all values 
of T. 

The state-transition matrix as defined above has the important state­
transition property. Suppose x(t) is any solution to (4-17). Let T be fixed. Then 
it is easy to see that for any t 

x(t)=~(t, T)X(T) (4-20) 
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This is true because the right-hand side is a linear combination of the columns 
of 4»(t, 1"), and hence is itself a solution. This solution is equal to x(t) at t = 1", and 
hence it must be equal to it for all t. 

Fundamental Sets of Solutions 

Just as in the discrete-time case, the matrix 4»(t, 1") can be expressed in tenns of 
an arbitrary fundamental set of solutions. This procedure helps to clarify the 
structure of the state-transition matrix. 

Analogously to the discrete-time case, we say that a set of vector-valued 
time functions x1(t), r(t), ... , xm(t) is linearly independent if there is no 
nontrivial linear combination of them that is identically zero. Let x1(t), 
x2(t), ... , x"(t) be a linearly independent set of solutions to the homogeneous 
system (4-17). We ignore the issue of how to obtain these n solutions (since as 
we have said it is impossible to prescribe a general method), but simply assume 
that they can be found. These solutions form a fundamental set of solutions. If 
arranged as the columns of an n x n matrix X(t), the resulting matrix is a 
fundamental matrix of solutions. The matrix satisfies the matrix differential 
equation 

X(t) = A(t)X(t) (4-21) 

Lemma. A fundamental matrix of solutions X(t) is nonsingular for all t . . 
Proof. Suppose to the contrary that for a specific 1" the matrix X( 1") were 
singular. This would imply the existence of a nonzero vector a such that 

X(1")a=O 

Defining 

x(t)=X(t)a 

it would follow that x(t) is a solution to (4-17), equal to zero at t = 1". It then 
would follow by the uniqueness of solutions that x(t) = 0 for all t ~ 1". The same 
argument can be applied backward in time (by setting t' = -t) to conclude that 
x(t) = 0 for t $1". Hence, X(t)a = 0 for all t. But this contradicts the assumption 
of linear independence of the original fundamental set of solutions .• 

Proposition. Let X(t) be a fundamental matrix of solutions co"esponding to the 
system 

i(t) = A(t)x(t) 

Then the state-transition matrix is given by the expression 

4»(t, 1") = X(t)X( 1")-1 (4-22) 

Proof. For fixed 1" the right-hand side of (4-22) is itself a fundamental matrix of 
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solutions, and hence satisfies (4-18). The matrix X(T)-1 simply combines the 
various columns in X(t) so that the particular solutions have the special unit 
basis conditions at t = T, satisfying (4-19) .• 

Example 1. To illustrate these concepts, let us consider a simple example in 
which analytic expressions· for solutions can be easily found. Consider the 
two-dimensional system 

e [0 i(t) = t 

(defined for t 2: 1, so that all terms are finite). 
From the first of the two individual equations, it is clear that x1(t) is 

constant; x 1(t) = c. Then making the substitution z(t) = xit)/t, the second equa­
tion reduces to 

ti(t)+ z(t) = ct + z(t) 

This collapses to i(t) = c and hence we deduce that x2(t) = ct2 +dt, where c and 
d are arbitrary constants. 

In view of the above, one possible fundamental matrix of solutions is 

X(t)=[l 0] 
t2 t 

Accordingly, 

_ [1 ~(t,T)=X(t)X(T) 1= t 2 

~(t'T)=[(l ) ,0] 
t t-T t T 

Time-Invariant Systems 

Consider the system 

i(t) = Ax(t) (4-23) 

We can show, for this general·time-invariant, or constant coefficient, system, 
that the fundamental matrix of solutions satisfying 

x(t)= AX(t) 

X(O)=J 

can be expressed as a power-series expansion in the form 

A2 t2 A 3 t3 Akt it 

X(t) = I+ At +21+31+' .. +T!+' .. 

(4-24) 

(4-25) 

(4-26) 
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Before verifying this formula, we point out that a series of this kind, 
expressed as a sum of matrices, can be regarded as a collection of separate 
series, one for each component of the matrix it defines. That is, the ijth 
element of the matrix on the left-hand side of the equation is the sum of the 
series defined by the ijth elements of each matrix On the right-hand side of the 
equation. The particular series in (4-26) defines an n x n matrix for each fixed 
value of t. In general, in forming series of this type, one must carefully delineate 
conditions under which convergence to a limit is guaranteed, or, specifically, 
when convergence of the individual series for each element is guaranteed. In 
this particular case it can be shown (see Problem 20) that the series defined by 
(4-26) converges for any matrix A and all values of t. 

To verify that the matrix X(t) defined by the series (4-26) satisfies (4-24) 
and (4-25) is simple. Substituting t = 0 into the series leads immediately to 
X(O) = I. To verify that the differential equation is satisfied, we differentiate 
each term of the series, obtaining 

. A3 t2 

X(t)=O+A+A2t+--+·· . 
2! 

( 
A2t2 \ 

= A I+At+-,-+"') =AX(t) 
2. , 

The series used to define X(t) is the matrix analog of the series for ea. in 
the familiar scalar case. For this reason it is appropriate, and very convenient, 
to denote the series (actually its limit) as an exponential. Thus we define, for 
any t, the matrix exponential 

(4-27) 

which is itself a square matrix the same size as A. 
The state-transition matrix of the time-invariant system is 

cIl(t, T) = X(t)X( T)-l 

This can be written as 

Thus cI»(t, T) depends, in the time-invariant case, only on the difference t - T. 
For this reason, it is customary when working with time-invariant systems to 
suppress the double index and define 

cI»(t) = eA. 
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Example 2 (Harmonic Motion). Let us consider the equation of harmomc 
motion, as defined in Chapter 2. The motion is defined by the second-order 
homogeneous equation 

(4-28) 

where w is a fixed positive constant. 
In state-variable form this system can be written 

[~l]=[ 0 1][Xl] 
X2 -w2 0 X2 

(4-29) 

where x = Xl and x = X2' The state-transition matrix corresponding to this 
time-invariant system is 

~(t) = eA. 

where A is the coefficient matrix in (4-29). We can easily calculate that 

From this we can conclude that, if k is even, 

Ak = (-1)1cI2w it I 

A k + l = (_1)1cI2W k A 

This leads to an explicit expression for the series representation of the 
state-transition matrix. For example, the element in the }lpper left-hand corner 
of the matrix is 

w 2 t2 w 4 t4 
W

6 y6 
1---+-----+·· '=coswt 

2! 4! 6! 

Similar expressions can be found for the other elements, leading finally to 

~(t) = eAl = [ cos. wt (sin wt)/w] 
-w sm wt cos wt 

(4-30) 

Any solution to the original equation, therefore, will be a combination of sine 
and cosine terms. 

Example 3 (The Lanchester Model of Warfare). A famous model of warfare was 
developed by Lanchester in 1916. In this model, members of a fighting force are 
characterized as having a hitting power, determined by their military technology. 
The hitting power is defined to be the number of casual!ies per unit time (on the 
average) that one member can inflict on the enemy. 

Suppose Nl units of one force, each with hitting power a, are engaged 
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with N2 units of a second force, each with hitting power (3. Suppose further that 
the hitting power of the first force is directed equally against all units of the 
second, and vice versa. The dynamic model for the engagement, determining 
the reduction in forces, is 

N1(t) = -(3N2(t) 

N2(t) = -aN1(t) 

When expressed as a system, these equations correspond to the system matrix 

A=[O -(3] 
-a 0 

The state-transition matrix can be found in a manner quite analogous to 
that used for harmonic motion. We have 

and thus, in general, if k is even 

The expansion 

A" = (a(3)kl21 

Ak+l = (a(3)kl2A 

A 2 t2 

eA. =I+At+--+··· 
2! 

can be expressed in terms of the hyperbolic functions sinh (~t) and 
cosh (~t), but we leave the details to the reader. The Lanchester model is 
discussed further in Problem 15. 

4.7 GENERAL SOLUTION TO LINEAR CONTINUOUS-TIME 
SYSTEMS 

We tum now to the solution of the general linear continuous-time system 

i(t) = A(t)x(t) + B(t)u(t) (4-31) 

where as usual x(t) is an n-dimensional state vector, A(t) is an n x n matrix, 
u(t) is an m-dimensional vector of inputs, and B(t) is an n x m distribution 
matrix. Just as in the discrete-time case, the solution to the general 
nonhomogeneous system can be relatively easily expressed in terms of the 
state-transition matrix associated with the homogeneous (or free) system. 

Again, it is simplest to first propose and verify the solution directly. 



4.7 General Solution to Linear Continuous-time Systems 119 

Proposition. The solution of the system (4-31) in terms of the initial state x(O) 
and the inputs is 

x(t) = «I>(t, O)x(O) + l' «I>(t, T)B( T)U( T) dT (4-32) 

Proof. Before beginning the actual proof, the integral sign in this formula 
deserves a bit of explanation. Let us fix some t> O. Then x( t) is an n­
dimensional vector determined by the right-hand side of the equation. The first 
term on the right is just a matrix times a vector, so it is a vector. The integrand, 
the expression inside the integral sign, is likewise an n vector for each value of 
T. The integral is a (continuous) summation of these vectors, and is therefore 
itself a vector. The integration can be performed componentwise, each compo­
nent being an ordinary function of the variable T. 

To verify that (4-32) is in fact the solution to the system (4-31), we 
differentiate with respect to t. Differentiation of the integral produces two 
terrns-one corresponding to differentiation with respect to t inside the integral 
sign, and the other corresponding to differentiation with respect to the upper 
limit of the integral. Thus, 

d d 
dt x(t) = dt «I>(t, O)x(O) 

f' d + .10 dt «I>(t, T)B( T)U( T) dT + «I>(t, t)B(t)u(t) 

Using the basic properties of the state-transition matrix 

d 
dt «I>(t, T) = A(t)«I>(t, T) 

the above reduces to 
«I>(t, t) = I 

d 
dt x(t) = A(t)«I>(t, O)x(O) 

+ l' A(t)«I>(t, T)B( T)U( T) dT + B(t)u(t) 

= A(t)x(t) + B(t)u(t) 

which shows that the proposed solution satisfies the system equation. I 

Superposition 
The principle of superposition applies to linear continuous-time systems the 
same as it does to discrete-time systems. The overall effect due to several 
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u(l) 

Figure 4.5. Decomposition of input. 

different inputs is the sum of the effects that would be produced by the 
individual inputs (if the initial condition were zero). This idea can be used to 
interpret the formula for the general solution. 

The first term on the right-hand side of the solution (4-32) represents the 
response due to the initial condition x(O). This response is determined directly 
by the state-transition matrix developed for the free system, and it is a 
component of every solution. 

To interpret the second term, imagine the input function u(t) as being 
broken up finely into a sequence of individual pulses of width .6., as illustrated 
in Fig. 4.5. At time r the pulse will have an (approximate) height of u( r). If the 
pulse at r were the only input, and if the initial state were zero, then the 
immediate effect of this pulse would be to transfer the state from zero, just 
prior to the pulse, to .6.B(r)u(r) just after it. This is because the resulting value 
of the state is the integral of the pulse. 

After the state has been transferred from zero to .6.B( r)u( r), the longer­
term response, in the absence of further inputs, is determined by the free 
system. Therefore, for t > r the response due to the pulse at r would be 
.6.4»(t, r)B(r)u(r). The total effect due to the whole sequence of pulses is the 
sum of the individual responses, as represented in the limit by the integral term 
on the right-hand side of the solution formula (4-32). 

Example (FIrSt-Order Decay). Consider a first-order system governed by the 
equation 

i(t) = -rx(t)+ u(t) (4-33) 

where r>O. This is referred to as a decay system, since in the absence of inputs 
the solution is 

(4-34) 

which decays to zero exponentially. 
Suppose the system is initially at rest, at time t = 0, and an input u of unit 

magnitude is applied starting at time t = O. Let us calculate the resulting time 
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set) 

o 
Figure 4.6. Response of decay system. 

response. The state-transition matrix (which is 1 x 1 in this case) is 

4»(/) = e-rt 

The solution with zero initial condition and unity input is, therefore, 

'x(t) = l' e-'('-T) d-r = e-·:'-T) [ 

1 
=-[l-e-rt

] 

r 

This response is illustrated in Fig. 4.6. 

*4.8 EMBEDDED STATICS 

In formulating equations to describe a dynamic situation, the equations one 
writes may not initially be in the standard state variable form. It is, however, often 
most convenient to transform the equations to the standard form. This procedure IS 

usually not difficult; indeed, in many instances it is so straightforward that one 
performs the necessary operations without hesitation. Nevertheless, it is worth­
while to recognize that this transformation is in fact a necessary step. 

A general form that is likely to arise (arbitrarily expressed in discrete-time 
just for ,specificity) is 

Ex(k + 1) = A:x(k) + Bu(k) (4-35) 

where E and A are n x n matrices and B is an n x m matrix. These matrices 
may in general depend on k without affecting the essence of our discussion. If 
E is nonsingular, it is simple to transform the equations by multiplying by the 
inverse of E. This yields the standard state vector form 

x(k + 1) = E-1 A:x(k) + E-1Bu(k) (4-36) 

If E is not invertible the situation is more interesting. The system then 
consists of a mixture of static and dynamic equations; the static equations being 
in some sense embedded within the dynamic framework. Under rather general 
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conditions (see Problem 21) such a system with embedded statics can be 
transformed to a state vector dynamic system having an order less than the 
dimension of the original system of equations. The following examples illus­
trate this point. 

Example 1. Consider the system defined by 

xI(k + 1)+ x2(k + 1) = xl(k)+ 2X2(k)+ u(k) 

0= 2XI(k)+ xik)+ u(k) 

This has the form of (4-35) with 

E= [~ ~] 

(4-37) 

(4-38) 

which is singular. To obtain the reduced form for this particular system, we add 
the two equations to produce 

xl(k + 1)+ x2(k + 1) = 3[xl (k) + xik)]+ 2u(k) 

This shows that the variable 

(4-39) 

(4-40) 

can serve as a state variable for the system. The dynamic portion of the system 
takes the form 

z(k+ 1) = 3z(k)+2u(k) (4-41) 

The original variables Xl and x2 can be expressed in terms of z and u by 
solving (4-38) and (4-40) simultaneously. This leads to 

xl(k) = -z(k) - u(k) 

x2(k)=2z(k)+u(k) 

(4-42) 

(4-43) 

Example 2 (National Economics-The Harrod-Type Model). A dynamic 
model of the national economy was proposed in Sect. 1.3. In terms of variables 
that have a specific economic meaning, the basis for the model is the following 
three equations: 

Y(k) = C(k) + I(k) + G(k) 

C(k)= mY(k) 

Y(k + 1) - Y(k) = rI(k) 

In these equatIOns only the variable G(k) is an mput variabie. The others are 
derived variables that, at least in some measure, describe the condition of the 
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system. In a vector-matrix format the defining equations take the form 

[~ ~ ~][~~~:i)]=[~ -~ -~][~~~)]+[~]G(k) 
o 0 1 Y(k + 1) r 0 1 Y(k) 0 

In this form it is clear that the original equations can be regarded as a dynamic 
system with embedded statics. This particular system is easy to reduce to a 
first-order system by a series of substitutions, as carried out in Sect. 1.3. This 
leads to the first-order dynamic system 

Y(k + 1) = [1 + m(1- r)]Y(k)- rG(k) 

The other variables can be recovered by expressing them in terms of Y(k) and 
G(k). In particular, • 

C(k)= mY(k) 

I(k) = (1- m)Y(k)- G(k) 

Example 3 (National Economics-Another Version). The dynamic model of 
the national economy presented above can be regarded as being but one of a 
whole family of possible (and plausible) models. Other forms that are based on 
slightly different hypotheses can result in distinct dynamic structures. The 
relationships between these different models is most clearly perceived in the 
nonreduced form; that is in the form that contains embedded statics. 

Samuelson proposed a model of the national economy based on the 
following assumptions. National income Y(k) is equal to the sum of consump­
tion C(k), investment I(k), and government expenditure G(k). Consumption is 
proportional to the national income of the preceding year; and investment is 
proportional to the increase in consumer spending of that year over the 
preceding year. 

In equation form, the Samuelson model is 

Y(k) = C(k) + I(k) + G(k) 

C(k+ 1)= mY(k) 

I(k + 1) = 11-[ C(k + 1) - C(k)] 

In our generalized matrix form, the system becomes 

[
0 0 0][I(k+1)] [1 1 o 1 0 C(k + 1) = 0 0 
1 -II- 0 Y(k+1) 0.-11-

-1][I(k)] [1] m C(k) + 0 G(k) 
o Y(k) 0 

This system can be reduced to a second-order system in standard form. 
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4.9 PROBLEMS 

1. Moving Average. There are many situations where raw data IS subjected to an 
averaging process before it is displayed or used for decision making. This smoothes 
the data sequence, and often highlights the trends while suppressing individual 
devIations. 

Suppose a sequence of raw data is denoted u(k). A sImple four-point averager 
produces a corresponding sequence y(k) such that each y(k) is the average of the 
data points u(k), u(k -I), u(k - 2), u(k - 3). Find a representatlOn for the averager 
of the form 

x(k + 1) = Ax(k) + buCk) 

y(k)=;[Xl(k)+ u(k)] 

where x(k) IS three-dimensional, A is a 3 x 3 matnx, and b is a 3 x 1 (column) 
vector. 

2. Cohort Model. Suppose that the 10put u(k) of new machmes in the example 10 
Sect. 4.1 is chosen to exactly equal the number of maclunes go1Og out of serv,ce 
that year. Write the corresponding state space model and show that it is a special 
case of the general cohort population model described 10 Chapter 1. Repeat under 
the assumption that in addition to replacements there are new purchases amounting 
to y percent of the total number of machines in service. 

3. Consider the linear difference equation 

y(k + n)+ a..-ly(k + n -1)+· .. + aoy(k) 

= b._lu(k + n -1)+ b._2u(k + n -2) + ... + houCk) 

Show that thiS equation can be put in state space form 

by defining 

x(k + 1) = Ax(k)+bu(k) 

x,(k) = -aoy(k -1) + bou(k -1) 

x2(k) = -aoy(k - 2) + houCk -2) 

-a,y(k -1) + b,u(k-1) 

x.-l(k) = -aoy(k - n + 1) + bou(k - n + 1) 

-a,y(k - n +2)+b,u(k - n +2) 

-a..-2y(k -1) + b._2u(k-1) 

x.(k)=y(k) 'i 

) 

10... 
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4. Nonlinear Systems. Consider the nonlinear difference equation of the form 

y(k + n) = F[y(k + n -1), ... , y(k), u(k + n -1), ... , u(k), k] 

(a) Find a state space representation of the difference equation. (Hint: The rep­
resentation will be more than n-dimensional.) 

(b) Find an n-dimensional representation in the case where F has the special form 

~ 

F= I f.(y(k+n-i), u(k+n-i» 
,-1 

5. Labor-Management Negotiations. Consider a wage dispute between labor and 
management. At each stage of the negotiations, labor representatives submit a wage 
demand to management that, in tum, presents a counter offer. Since the wage offer 
will be usually less than the wage demand, further negotiations are required. One 
can formulate this situation as a dynamic system, where at each periOd management 
"updates" its previous offer by the addition of some fraction Ct of the difference 
between last period's demand and offer. Labor also "updates" its prevIous demand 
by the subtraction of some fraction (3 of the difference between the demand and 
offer of the last period. Let X, equal the management offer and X2 equal the labor 
demand. Wnte the dynamic state equations (in matrix form) for the situation 
described above. 

6. Consider the two SOCial systems whose marriage rules are summanzed m Fig. 4.7. 
In each system there are four social classes, and every child born to a certain class 
combination becomes a member of the class designated in the table. The assump­
tions (a), (b), and (c) of the Natchez Indian example hold as well. For each system: 
(a) write the state equation for the soctal system; and (b) compute the solutlon to 

the s ta te eq ua tions. 

7. A Simple Puzzle. We have four timepieces whose performance is described as 
follows: The wall clock loses two minutes in an hour. The table clock gets two 

Mother Mattler 

2 3 4 2 3 4 

4 1 

2 4 2 2 

3 4 3 3 

4 1 2 3 4 4 2 3 4 4 

Figure 4.7. Social systems. 
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mmutes ahead of the wall clock in an hour. The alann clock falls two minutes 
behmd the table clock in an hour. The last piece, the wristwatch, gets two minutes 
ahead of the alann clock in an hour. At noon all four tunepleces were set correctly. 
Let x, equal the wall clock reading, X2 be the table clock reading, Xl the alann clock 
reading, and X4 the wristwatch reading, and consider noon as the starting time (i.e., 
k =0). 
(a) Write the dynamic equations corresponding to the four given statements about 

perfonnance. Directly translate into the fonn 

Ex(k + 1) = Cx(k)+c 

(b) Convert the system to the standard fonn 

x(k+1)=Ax(k)+b 

[Hint: (1- B)-' = I + B + B2 + ... + Bk + .. whenever B is such that the series 
converges. ] 

(c) Find the state-transition matrix cI»(k). 
(d) Find a simple general fonnula for x(k). What tune will the wristwatch show at 

7 :00 p.m. (i.e., at k = 7)? 

8. A ClaSSIC Puzzle. Repeat Problem 7 above for the alternate descnption: The wall 
clock loses two minutes in an hour. The table clock gets two minutes ahead of the 
wall clock for every hour registered on the wall clock. The alann clock falls two 
minutes behmd the table clock for every hour registered on the table clock. The 
wristwatch gets two minutes ahead of the alann clock for every hour registered on 
the alann clock. 

9. Properties of State-Transition Matrix. Let cI»(t, 'T) be the state-transition matrix 
corresponding to the linear system 

i(t) = A(t)x(t) 
Show: 
(a) cI»(t2 , to) = cI»(t" t,)cI»(t" to) 

(b) cl»(t,T)-'=cI»(T,t) 

(c) ddT cl»(t, 'T) = -cI»(t, T)A(T) 

10. A model of a satellite has the fonn 
i(t)= Ax(t) 

where A IS a 4 x 4 matrix. Given that the state-transition matnx for thiS system IS 

l
4-3coswt 

cl»(t,O)= 6(~:t:~I:twt) 
6w(-1+coswt) 

find the matrix A. 

sinwt/w 

coswt 

-2(1-cos wt)/w 

-2sm wt 

° 2(1- cos wt)/w j 
~ (4 sm2~;~ ~~t)/w 
° 4 cos wt-3 
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11. Linearization. Suppose one has a system of n nonlinear first-order differentlai 
equations: 

YI = 'I(Y" Y2,' .. , Yn, u, t) 
Y2 = '2(Y" Y2, ... , Yn, u, t) 

Yn = 'n(Y" Y2, ..• , Yn, u, t) 

where u(t) is an input or forcing term. Further, suppose that for a particular set 
of initial conditions and input {YI(tO), Y2(tO), ... , Yn (to), u(t)} there IS a known 
solution 

y(t) = 

Yn (t) 

We wish to investigate the behavior of the system when the Input function and 
Initial conditions are changed slightly. That is, we reqUITe a soiutlon to the system 
when y,(to) = y,(to)+ z,(to), i = 1, 2, ... , nand u(t) = u(t)+ v(t). To satisfy the ongl­
nal system of equations, we seek a solution of the form y(t)=y(t)+z(t). So the 
system becomes: 

(YI+ZI)=f.(YI+Z" Y2+Z2,"" Yn +zn, u+v, t) 

(Y2+Z2)=!iYI+Z" Y2+Z2,"" Yn+zn, u+v, t) 

(a) Assume that v and the z,(to)'s are small (so that the onginal condillons are 
slightly different from the conditions for which a solution exists) and expand the 
new system of equations In a Taylor series about the original conditions and 
input. Neglect terms of order 2 or higher. 

(b) From part (a), wnte down a system of time-varying linear differential equations 
that express the effect of the perturbation on the original (known) solution y. 
Thus, the new solution will consist of y plus the contribution found in this 
secllon. What is the time-varying system matrix? 

12. Appli<;ation 0/ Linearizatwn. Consider the nonlinear system 

XI =X2 

X2 = 2x~- U(t)X2 

(a) For the particular initial conditions x,(I) = 1, x2(1) = -1 and the input 
function u(t) = 0, find the solution i(t). (Hint: Try powers of t.) 
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(b) Using the results of Problem 11 above, find a time-varying linear system that 
describes the behavior of small perturbations. 

(c) Find an approximate solution to the original system, corresponding to Xl(1) = 
1.5, xiI) = 0.5, u(t) = 0.5. 

13. Consider the first-order dynamic system 

x(t) = ax(t) + b 

with imtial condition x(O) = 1. 
(a) Find the solution x(t) usmg the general formula for solutions to nonhomogene­

ous systems. 
(b) Note that the system can be expressed as a second-order homogeneous system 

in the form 

x(t) = ax(t) + by(t) 

y(t) = 0 

with x(O) = 1, y(O) = 1. Denoting the corresponding 2 x 2 system matrix 
by A, calculate eA·o Use this to find x(t) and y(t). 

14. Consider the time-varying differential equation 

.. 4 2 
y +- y +- Y :: u(t) 

t t2 

for t>O. 
(a) Define state variables Xl = Y and X2:: y and find a representation of the form 

i(t) = A(t)x(t) + bu(t) 

(b) Find two linearly mdependent solutions to the homogeneous scalar equation. 
(Hint: Try y :: tk.) 

(c) Construct the matnx X(t), a fundamental matnx of solutions, based on the 
results of part (b). 

(d) Find the state-transition matrix cI»(t, 1'). 

15. Lanchester Model. A fair amount of information can be deduced directly from the 
form of the Lanchester equations, without actually solving them. 
(a) What condition on the sizes of the two forces must be met in order that the 

fractional loss rate of both sides be equal? [Fractional loss rate = NIN.] 
(b) Find a relation of the form F(Nh N0 = c, where c is a constant, which is valid 

throughout the engagement. [The result should be a simple quadratic expres­
sion similar to the answer in (a).] 

(c) If Nl(O) and NiO) are known, who will win? (The battle continues until one 
side IS totally depleted.) 

(d) As a function of time, the size of either side will have the form 

N,(t) = A sinh wt + B. cosh wt 

What is the value of w? 
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16. Floquet Theory. Consider a system of differential equations of the form 

itt) = A(t)x(t) 

where the n x n matrix A(t) is periodic with a period T. That is, 

A(t + T) = A(t) 

for every t. Let X(t) be a fundamental matrix of solutions, with the normalizmg 
property that XeD) = I. 
(a) Observe that X(t + T) is also a fundamental matrix of solutions and wnte an 

equation relating X(t) and X(t + T). 
(b) Let the matnx C be defined such that 

X(T) = eCT 

and define B(t) such that 

X(t) = B(t)ec, 

Show that in this representation for X(t), the matrix B(t) IS penodic WIth period 
T. 

17. Va natIOn of Parameters. The classic derivation of the general solutIOn formula for 
a homogeneous system of differential equations is based on a method called 
variatIOn of parameters. Consider the system 

itt) = A(t)x(t)+ bet) 

Let X(t) be a fundamental matrix of solutions for the corresponding homogeneous 
equation. It is known that any solution to the homogeneous equation can be written 
as X(t)y, where y IS an n-vector of (fixed) parameters. It is conceIvable then that It 
might be helpful to express the general solution to the nonhomogeneous equation 
m the form x(1) = X(t)y(t), where now yet) is an n-vector of varyIng parameters. 
(a) Using the suggested form as a trial solUtion, find a system of differential 

equations that yet) must satisfy. 
(b) Solve the system in (a) by integration and thereby obtain the general solutIon to 

the onginal system. 
(c) Convert the result of (b) to one using the state-transition matrix, and verify that 

it is the same as the result given m the text. 

18. Time-Varying System. A closed-form expression for the transItion matnx of a 
time-varying system 

i(1) = A(t)x(t) 

can be found only in special cases. Show that if A(t)A(r) = A(r)A(t) for all t, '1", then 
the transition matrix may be written as 

cI»(t, r) = exp f A(~) d~ 
(Hint: exp r AW ~ = 1+ f A(~) d~+l f A(~) d~ f A(~) d~+···) 
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19. Find the impulse response of the straight-through cohort model. 

20. Given a real n x n matrix A, let M be a bound for the magnitude of its elements, 
that is, Ia.j 1:5 M for all i, j. 
(a) Find a bound for the .elements of A·. 
(b) Let b. and c., k = 0, 1,2, ... be two sequences of real numbers with b. > O. If 

the series L. -0 b. converges and if Ie. I :5 b. for all k, then the series L. -0 c. also 
converges. Given that the series L:-o ak/k! converges (to eO) for any value of a, 
show that the matnx series :[;-0 Akt·'k! converges. 

21. Embedded Statics. Suppose a system is described by a set of equations of the form 

[:]X(k + 1) = [~]X(k)+ [:i~~] 
where x(k) IS an n-dimensIOnal vector, T and Care m x n matrices, D is an 
(n-m)xn matnx, and u(k) and v(k) are m and (n-mJ-dimensional vectors, 
respectively. Assume that the n x n matrix 

[~] 
is nonsingular. Following the steps below, it is possible to convert thiS system to 
state vector form. 
(a) Define y(k)=Tx(k) and show that with this definition, and the lower part of the 

system equation, one may express x(k) In the form 

x(k) = Hy(k)-Gv(k) 

Give an explicit definition of G and H. 
(b) Show that the top part of the original system can be wntten In the state vector 

form 

y(k + 1) = Ry(k)+ BV(k)+u(k) 

and give expressions for Rand B. Note that x(k) can be recovered from y(k) 
usmg part (a). 

(c) Apply this procedure to Example 3, Sect. 4.8. 

NOTES AND REFERENCES 

General. As with the material in Chapter 2, the theoretical content of this chapter is 
quite standard and much of it is contained in the references mentioned at the end of 
Chapter 2. This chapter, however, begins to incorporate more explicitly the Viewpoint of 
dynaIDlcs, as opposed to simply difference and differential equations. This is manifested 
most importantly by the concept of the state vector, by the explicit recognition of inputs, 
by the introduction of a state-transition matrix relating the states at two time instances, 
and by the view of the general solution to a linear equation as being composed of a 
senes of free responses. This viewpoint is represented by books such as DeRusso, Roy, 
and Gose [01], Kwakemaak and Sivan [K16], and Rugh [R7]. 
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Section 4.4. Codification of the exact class inheritance rules of the Natchez Indian 
social structure is not available. Rather, the rules presented here have been inferred 
from observations and writmgs of early French explorers. There is a possibility that the 
actual scheme differed somewhat. See White, Murdock, and Scaglion [W4]. Presenta­
tion in this form (originally due to Robert Busch) is contained in Goldberg [G8]. 

Section 4.6. For the Lanchester model see Lanchester [Ll] or Saaty [Sl]. 

Section 4.8. See Luenberger [L12] for a general theory of this type. For general 
background on dynamic economic models see Allen [AI], Baumol [B4], and Gandolfo 
[G 1]. A concise statement of several possible versions, including the ones referred to 
here is contained in Papandreou [PI]. For the specific model of the example see 
Samuelson [S2]. 

Section 4.9. The classic pu:zzle, Problem 8, is contained in Kordernsky [KlS]. 



chapter 5. 

Linear Systems with 
Constant Coefficients 

The subject of linear systems with constant coefficients is in some sense the 
core of dynamic systems theory. These systems have a rich full theory, and they 
provide a natural format for penetrating analyses of many important dynamic 
phenomena. 

A linear system with constant coefficients is described in discrete time as 

x(k + 1) = Ax(k) + Bu(k) 
and tn continuous time as 

i(t) = Ax(t) + Bu(t) 

In either case, it is known from the general results of Chapter 4 that a major 
role is played by the corresponding homogeneous equation. Since the 
homogeneous equation is defined entirely by the associated system matrix A. it 
can be expected that much of the theory of linear systems with constant 
coefficients is derived directly from matrix theory. Indeed, this is the case, and 
a good portion of the theory in this chapter is based on the results from linear 
algebra presented in Chapter 3. 

The most important concept discussed in this chapter is that of system 
eigenvalues and eigenvectors, defined by the matrix A. These eigenvectors 
define special first-order dynamic systems, embedded within the overall system, 
that behave independently of the rest of the system. The original complex 
system can be decomposed into a collection of simpler systems associated with 
various eigenvalues. This decomposition greatly facilitates analysIS. 

In additton to theory, this chapter also contains several extended examples 
and applicatIons. Thev are included to illustrate the theorv. hroaden our "cone 
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of classic models, and in some cases, to illustrate the kind of analysis that can 
be achieved with the theory. In each of the examples, one objective is to 
illustrate how mathematical analysis can supplement and guide our intuitive 
reasoning, without displacing it. 

5.1 GEOMETRIC SEQUENCES AND EXPONENTIALS 

A special role is played in the study of linear time-invariant systems by 
geometric sequences in discrete time, and by exponential functions in continu­
ous time. They have a unique reproducing property when applied as input 
functions, and this property helps explain why these functions occur as natural 
solutions to homogeneous systems. 

In discrete time the basic dynamic element is the unit delay. If a sequence 
u(k) is applied as input to a unit delay, then the output x(k) is governed by 

x(k + 1) = u(k) 

Now if u(k) is a geometric sequence, say u(k) = a k, k =0,1,2, ... , the output 
is x(k) = a k- I = a'!ia, k = 1, 2, .... Thus, for any k ~ 1, the output is just a 
multiple of the input. In other words, the effect of a delay is simply to multiply 
a geometric sequence by a constant. 

Any nth-order linear constant-coefficient system in discrete time 
consists of a combination of n unit delay elements and a number of scalar 
multiplications, as depicted in Fig. 5.1. If a geometric sequence is applied as an 
input at any point, it will pass through the various delays and cOnstant 
multiples to which it is connected without changing its form. Thus, thIS 
particular geometric sequence will be a component of the overall response. 

Similarly, it can be seen that geometric sequences occur in the homogene­
ous system. In the homogeneous system the response at any point serves as the 
input to other parts of the system. If this response is a geometric sequence, It 
will travel around the system and eventually return to the original point with 
the same form. For consistency, however, it must return with the same 
magnitude, as well as general form, as it started. Only certain geometric 
sequences (that is, only certain values of the parameter a in a k

) give this result. 
Such a geometric sequence is part of the homogeneous solution. 

As a specific example, consider the first-order system 

x(k + 1) = ax(k) + bu(k) (5-1) 

which is depicted in Fig. 5.2. The homogeneous response is 

x(k) = akx(O) 

The geometric sequence a k can pass from x(k) through the multiplication by a, 
then through the unit delay, returning to the original point with the same form 
and malmitude. 
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• 
• 
• 

"n 

Figure 5.1. An nth-order system. 

Suppose now that an input function is applied, which is itself a geometric 
sequence but with a ratio IL'" a. That is, u(k) = ILk. The solution x(k) in this 
case consists of the sum of two geometric sequences, one of ratio a and one of 
ratio IL. Specifically, the solution is 

x(k)= (X(O) __ b_) a k + (_b_\) ILk 
IL-a IL-a 

(5-2) 

The geometric sequence input passes through the system with unaltered form 
but with changed magnitude, and in addition a component of the homogeneous 
response is superimposed. 

This discussion, of course, has an exact analog in the continuous-time case. 
There, exponential functions of the form e-at have the reproducing property. 

,,(.1:) 

Figure 5.2. Discrete-time first-order system. 
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An nth-order linear constant coefficient system is composed of n differen­
tiators and a number of scalar multipliers. An exponential retains its form 
when acted on by any of these. 

The discussion in this section shows that even without detailed analysis it 
can be inferred that geometric sequences and exponential functions are funda­
mental components of the solution to time-invariant systems. Carrying this 
observation further, and developing general techniques for determining which 
geometric sequences or exponential functions occur in a given system leads to a 
study of system eigenvalues and eigenvectors. 

5.2 SYSTEM EIGENVECTORS 

In this section it is shown that an eigenvector of the system matrix defines 
an independent first-order subsystem of the total system. It follows that if a 
complete set of n linearly mdependent eigenvectors can be found, the overall 
system can be decomposed into n separate first-order systems. 

Consider the homogeneous discrete-time system 

x(k + 1) = Ax(k) (5-3) 

where x(k) is an n-dimensional state vector and A is an n x n matnx. Suppose 
the vector e, is an eigenvector of A with associated eigenvalue A;. That is, 

(5-4) 

Suppose also that the initial state vector is set equal to a scalar mUltiple of this 
eigenvector; that is, x(O) = ae,. Then from (5-3) and (5-4) it follows that 

x(l) = Ax(O) = aAei =A;ae, = AiX(O) 

Therefore, in this special case, the next state is just Ai times the initial state. 
Furthermore, it is easy to see that all successive states are also various scalar 
multiples of the initial state. 

The above observation shows that once the state is equal to a multiple of 
an eigenvector it remains a multiple of the eigenvector. Therefore, once this 
situation is achieved, the state can be characterized at any particular time by 
specifying the corresponding multiplying factor. That is, one writes 

X(k)=Zi(k)ei 

where zi(k) is the appropriate scalar multiplying coefficient. 
The multiplying coefficient itself satisfies a first-order difference equation. 

To see this, note that the system equation yields 

x(k + 1) = Ax(k) = Aizi(k)e, 
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which, by the definition of Zi (k + 1), shows that Z; (k + 1) = AiZi (k). These results 
are summarized by the following theorem. 

Theorem. If the state vector of a linear homogeneous constant coefficient system 
is initially aligned with an eigenvector, it continues to be aligned in subse­
quent time periods. The coefficient, zi(k), determining the multiple of the 
eigenvector at a time k, satisfies the first-order equation 

Example. Consider the second-order difference equation 

By defining 

2y(k +2) = 3y(k + 1)- y(k) 

XI (k) = y(k) 

x2(k) = y(k + 1) 

the original equation can be converted to the system 

[
XI(k+1)]= [ ~ ;][XI(k)] 
x2(k + 1) -2 2 x2(k) 

One eigenvalue and associated eigenvector for this system is 

AI=t el=~J 

(5-5) 

If the state vector is initiated with XI and X2 in the proportions 1 to !, the state 
vector will continue to have these same proportions for all k. The state vector 
will be reduced at each step by a multiplicative factor equal to A I=!' 

In terms of the original difference equation, the system state is equal to 
this eigenvector if two successive y(k)'s are in the proportions 1 to !. If that 
condition holds for any k it will hold for all future k's. That means that each 
successive pair of y(k)'s will be in the proportions 1 to !, and hence, that for 
every k, y(k+1)=!y(k). In this case, therefore, the eigenvector translates 
immediately into a simple relation among successive values of the variable that 
defines the difference equation. (See Problem 3 for a generalization.) 

5.3 DIAGONALIZATION OF A SYSTEM 

Again consider the homogeneous system 

x(k + 1) = Ax(k) (5-6) 

Suppose that the system matrix A has a complete set of n linearly independent 
eigenvectors el> ~, ... ,en with corresponding eigenvalues AI> A2, ••• ,~. The 
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eigenvalues mayor may not be distinct. We shall show how these n eigenvec­
tors can be used to define n separate first-order systems. This procedure is 
sometimes of direct computational benefit, but it is perhaps most important as 
a conceptual aid. 

Let an arbitrary value of the state x(k) be specified. Since there are n 
eigenvectors, this state can be expressed as a linear combination of the 
eigenvectors in the form 

(5-7) 

where zJk), i = 1, 2, - .. , n are scalars .. Using the fact that Ae. = Aie" multIpli­
catIon of (5-7) by the matrix A yields 

x(k + 1) = Ax(k) 

= A1z1(k)el + A2zik)e2 + ... + Anzn(k)en 

Therefore, expressing x(k + 1) as a linear combination of eigenvectors In the 
form 

x(k + 1) = zl(k + 1)e1 + z2(k + 1)e2 + ... + Zn (k + 1)en (5-8) 

we see that the scalar coefficients Zi satisfy the first-order equations 

zl(k + 1) = A1Z1(k) 

zik + 1) = A2Z2(k) 

(5-9) 

The state vector, therefore, can be considered at each time Instant to 
consist of a linear combination of the n eigenvectors. As time progresses, the 
weighting coefficients change (each independently of the others) so that the 
relative weights may change. Consequently, the system can be viewed as n 
separate first-order systems, each governing the coefficient of one eigenvector. 

Change of Variable 

The above analysis can be transformed directly into a convenient mampulative 
technique through the formal introduction of a change of variable. Let M be 
the modal matrix of A. That is, M is the n x n matrix whose n columns are the 
eigenvectors of A. For a given x(k), we define the vector z(k) by 

x(k)=Mz(k) (5-10) 

This is, of course, just the vector representation of the earlier equation (5-7) 
with the components of the vector z(k) equal to the earlier zi(k)'s. SubstitutIon 
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of this change of variable in the system equation yields 

Mz(k + 1) = AMz(k) 

or, equivalently, 

z(k + 1) = M-1AMz(k) (5-11) 

This defines a new system that is related to the original system by a change of 
variable. 

The new system matnx M-1 AM is the system matrix corresponding to the 
system governing the z,(k)'s as expressed earlier by (5-9). Accordingly, we may 
write M- 1 AM = A, where A is the diagonal matrix with the eigenvalues of A on 
the diagonal. The modal matrix M defines a new coordinate system in which A 
IS represented by the diagonal matrix A. (See Sect. 3.7.) When wntten out in 
detail (5-11) becomes 

o 

o 
o 

(5-12) 

which explicitly displays the diagonal form obtained by the change of variable. 

Calculation of Ak 

The state-transition matrix of a constant coefficient discrete-time system is A". 
This matrix can be calculated easily by first converting A to diagonal form. The 
basic identity 

(5-13) 

can be rewritten as 
A=MAM-1 (5-14) 

which provides a representation for A in terms of its eigenvalues and eigenvec­
tors. It follows that 

A2=(MAM-l)(MAM-I)=MA(M-IM)AM-1 

=MA2M-1 

because M-1M = I. In a similar way it follows that for any k 2:0 

Ak=MA"M-1 (5-15) 
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Therefore, calculation of Ak is transferred to the calculation of A k. However, 
since A is diagonal, one finds immediately that 

A~, 0 0 0 

0 A~ 

Ak= 
0 A~ 

(5-16) 

o 
Calculation of A k for all k is thus accomplished easily once the transformation 
to diagonal form is determined. From the viewpoint of dynamic systems, the 
operatIon represented by (5-15) can be interpreted as one of first transformmg 
to diagonal form, solving the system in those terms, and then transforming 
back. 

As a result of this calcuiation, it is clear that when A k is expressed as a 
function of k, each element is a linear combination of the geometric sequences 
A~, t = 1, 2, ... , n. This in turn is reflected mto the form of solution to the 
original homogeneous system. It is made up of these same geometric 
sequences. 

Continuous-Time Systems 

Exactly the same sort of analysis can be applied to continuous-time systems. 
Suppose the system is governed by 

x(t) = Ax(t) (5-17) 

where A is an n x n matrix with n linearly independent eigenvectors. With M 
the modal matrix as before, the change of variable 
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The state vector at any time is a linear combination of the n eigenvectors. 
In the continuous-time case, the coefficients Zj(t) of the eigenvectors each 
satisfy a simple first-order differential equation. Hence, again the system can be 
considered to be n separate first-order systems. 

Calculation of eAt 

Calculation of the state-transition matrix eA
' is also greatly facilitated by 

diagonalization. It has already been observed that 

A"=MA"M- 1 (5-21) 

Therefore, it follows that the series 

can be written as 

(5-22) 

Factoring out M and M- 1 produces 

I A
2

t
2 

) 
eA

' =M ~I+At+2!+'" M- i 

(5-23) 
=MeA'M- 1 

Therefore, calculation of eA
' is transferred to the calculation of eA

'. However, 
since A is a diagonal matrix, each matrix A" is also diagonal, with ith diag­
onal element A~. Therefore, e A

' is also diagonal, with ith diagonal element 
1 + Ait + .... Thus, 

eA,t 0 o 
0 e.A.:zt 

eA'= 

0 

This can be substituted into (5-23) to obtain an explicit expression for eA
'. 

Example. Consider the system 

x(t) = [~ ~] x(t) 
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The system matrix has eigenvalues AI = 1, A2 = 4 and corresponding modal 
matrix 

as shown in Chapter 3 (Example 1, Sect. 3.6). 
Introduction of the change of variable 

zl=1(2xl-X2) 

Z2 = ~(Xl + x2 ) 

leads directly to the differential equations 

Zl(t) = ZI(t) 

i 2(t) = 4z2(t) 

which is the diagonal form. 
The state-transition matrix of the original system can be computed as 

[
e t 

eAt =M 0 

Diagram Interpretation 

e4t -e' ] 
et +2e4t 

The diagram interpretation of the diagonalization process is straightforward 
and useful. When expressed in the new coordinates (with components z.) the 
diagram of the system breaks apart into separate systems. The result is 
illustrated in Fig. 5.3 for discrete-time systems, but exactly the same diagram 
applies in continuous time with delays replaced by integrators. The Zi'S are the 
coefficients of the various eigenvectors as they combine to produce the state 
vector. The eigenvectors themselves do not show up explicitly in this diagram, 
although they must be used to obtain it. 

Finally, it should be emphasized that the role of the diagonalizatlon 
process is at least as much conceptual as it ·is computational. Although 
calculation of the state-transition matrix can be facilitated if the eigenvectors 
are known, the problem of computing the eigenvalues and eigenvectors for a 
large system is itself a formidable task. Often this form of detailed analysis is 
not justified by the scope of the motivating study. Indeed, when restricted to 
numerical methods it is usually simplest to evaluate a few particular solutions 
directly by recursion. A full collection of eigenvectors in numerical form is not 
always very illuminating. 

On the other hand, from a conceptual viewpoint, the diagonalization 
process is invaluable, for it reveals an underlying simplicity of linear systems. 
Armed with this concept, we know, when faced with what appears to be a 
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• 
• 

Figure 5.3. Diagonal diagram. 

complex interconnected system, that there is a way to look at it, through a kind 
of distorted lenses which changes variables, so that it appears simply as a 
collection of first-order systems. Even if we never find the diagonalizing 
transformation, the knowledge that one exists profoundly influences our per­
ception of a system and enriches our analysis methodology. 

5.4 DYNAMICS OF RIGHT AND LEFT EIGENVECTORS 

The diagonalization of a system as discussed in Sect. 5.3 can be clarified further 
through the -relation of right and left eigenvectors. When referring simply to 
"eIgenvector" we have meant a right eigenvector defined by 

However, there are also left eigenvectors defined by 

t;A=A,f; 

(5-24) 

(5-25) 

The two are dual concepts that play together in the diagonalizatlOn process. 
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In terms of a dynamic system of the form 

x(k+1)=Ax(k) (5-26) 

the right and left eigenvectors have distinct interpretations. The right eigenvec­
tor is most naturally regarded as a vector in the state space. If the state is set 
equal to a right eigenvector then successive states will be scalar multiples of 
this eigenvector. Thus, it is proper to regard a right eigenvector as a specmi 
value of the state. And, in the diagonalizable case, any value of the state vector is 
a linear combination of the various eigenvectors. 

A left eigenvector is more naturally regarded as a scalar-valued function of 
the state, rather than as a vector in the state space. A left eigenvector fI" 
defines the scalar function 

(5-27) 

It assoCiates a scalar with each value of the state vector. If, for example, fT 
were the vector [100 ... 0], then the corresponding function would be z(k) = 

xl(k); that is, it would be the value of the first component of x(k). If, as 
another example, fT were the vector [1 1 ... 1], the corresponding function 
would be z(k)=xl (k)+x2(k)+·· ·+x,,(k); that is, it would be the sum of the 
components of x(k). In general, a left eigenvector defines a certain linear 
combination of the components of the state vector. As the state vector evoives 
in time, the associated value of the linear combination also evolves. 

Suppose if is a left eigenvector with corresponding eigenvalue Ai. From 
the system equation 

x(k + 1) = Ax(k) (5-28) 

it follows that for the corresponding Zi 

zj(k + 1) =f; x(k + 1) =fT Ax(k) = Aif; x(k) = A,z,(k) (5-29) 

Thus, the associated scalar function of the state satisfies a first-order difference 
equation. 

If A has distinct eigenvalues then (as shown in Sect. 3.8) the nght and 
left eigenvalues satisfy the biorthogonality relation 

fT eJ = 0 (5-30) 

for all iT' j. In this case it is natural to normalize the left eigenvectors With 
respect to the right eigenvectors so that 

(fe, = 1 (5-31) 

for each i = 1, 2, ... , n. With this normalization the z,(k)'s defined above are 
exactly the same as the z,(k)'s that serve as the coefficients In the eigenvector 
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expansion of the state. Specifically, for each k, 

x(k) =: zl(k)el + z2(k)e2 + ... + zn(k)en 

To verify thiS, we mUltiply both sides by iT to obtain 

iT x(k) =: zl(k)fT e l + z2(k)iT ~ + ... + Zn (k)fT en 

= zi(k)fT e, 

(5-32) 

(5-33) 

where the second equality follows from the biorthogonality relation (5-30). In 
view of the normalization (5-31), the above reduces to 

fT x(k) = zi(l4 (5-34) 

which coincides with the original definition of zi(k). 
The interpretation of the two types of eigenvectors should be visualized 

simultaneously. The right eigenvectors define special directions in the state 
space. Once the state vector points in one of these directtons, it continues to 
pomt in the same direction, although Its magnitude may change. In the case of 
distinct eigenvalues, the state vector can always be expressed as a linear 
combination of the various right eigenvectors-the various weighting coeffi­
cients each changing with time. Each left eigenvector, on the other hand, 
defines a system variable that behaves according to a first-order equation. The 
two concepts are intimately related. If the state points in the direction of a right 
eigenvector, all the variables defined by the left eigenvectors of different 
eigenvalues are zero. More generally, the weighting coefficients of the various 
eigenvectors that make up the state are the variables defined by the corres­
ponding left eigenvectors. These coefficients are each governed by a first-order 
equation, and as their values change the state vector moves correspondingly. 

The migration example of the next section illustrates these concepts. It 
shows that within the context of a given application the right and left eigenvec­
tors can have a strong intuitive meaning. This example should help clarify the 
abstract relations presented in this section. 

5.5 EXAMPLE: A SIMPLE MIGRATION MODEL 

Assume that the population of a country is divided into two distinct segments: 
rural and urban. The natural yearly growth factors, due to procreation, in both 
segments are assumed to be Identical and equal to a (that is, the population at 
year k + 1 would be a times the population at year k). The population 
distribution, however, is modified by migration between the rural and urban 
segments. The rate of this migration is influenced by the need for a base of 
rural activity that is adequate to support the total population of the country­
the optimal rural base being a given fraction 'Y of the total population. The 
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yearly level of migration itself, from rural to urban areas, is proportional to the 
excess of rural population over the optimal rural base. 

If the rural and urban populations at year k are denoted by r(k) and u(k), 
respectively, then the total population is r(k).+ u(k), the optimal rural base is 
y[r(k) + u(k)], and thus, the excess rural population is {r(k) - y[r(k) + u(k)TI. A 
simple dynamic model of the migration process, based on the above assump­
tions, is then 

r(k + 1) = ar(k) - (3{r(k) - y[r(k) + u(k)TI 

u(k + 1) = au(k) + (3{r(k) - y[r(k) + u(k)TI 

In this model, the growth factor a is positive (and usually greater than unity). 
The migration factor (3 is positive, and is assumed to be less than a. The 
parameter y is the ideal fraction of the total population that would be rural in 
order to support the total population. This parameter is a measure of rural 
productivity. Each of these parameters might normally change with time, but 
they are assumed constant for purposes of this example. 

The model can be easily put in the state vector form 

x(k + 1) = Ax(k) 

where 

and 

At this point one might normally proceed by writing the characteristic polyno­
mial as a first step toward finding the eigenvalues and eigenvectors of the 
matrix A, but in this case at least some of that information can be deduced by 
simple reasoning. Because the natural growth rates of both regions are identi­
cal, it is clear that the total population grows at the common rate. Migration 
simply redistributes the population, it does not influence the overall growth. 
Therefore, we expect that the growth factor a is one eigenvalue of A and that 
the rOw vector fi = [11] is a left eigenvector of A, because fi x(k) = r(k) + u(k) 
is the total population. Indeed, checking this mathematically, we find 

[1 1] [a - (3(1- y) {3y] = a[1 1] 
(3(1-y) a-{3y 

which verifies our conjecture. This left eigenvector tells us what variable Within 
the system (total population in this case) always grows by the factor a. 

The corresponding right eigenvector of A defines the distribution of 
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population that is necessary in order for all variables to grow by the factor Q. 

Again, this vector can be deduced by inspection. In order for both rural and 
urban population to grow by the factor Q it is necessary that there be no net 
migration. Therefore, it is necessary that r(k) = y[r(k) + u(k)]; or, equivalently, 
that rural and urban population be in the balanced proportions 'Y: (1- 1'). 
Therefore, we expect that 

is a right eigenvector of A corresponding to the eigenvalue Q. Again, a simple 
check verifies this conjecture. 

By exploiting the simple observation about total population growth, we 
have deduced One eigenvalue together with its corresponding left and right 
eigenvectors. We can find the remaining eigenvalue and its corresponding left 
and right eigenvectors by use of the biorthogonality relations that hold among 
right and left eigenvectors. 

The second Tight eigenvector must be orthogonal to the first left eigenvec­
tOr. Thus, 

Multiplying this by A verifies that it is an eigenvector and shows that the 
corresponding eigenvalue is Q -{3. It represents the population distribution 
corresponding to zero total population. This eigenvector has both positive and 
negative components, and hence, is not a physically realizable state since 
population must be nonnegative. However, this eigenvector (or a multiple of it) 
will in general be a component of the actual population vector. 

To determine what variable in the system grows by the factor Q -{3 it is 
necessary to find the second left eigenvector. It will be orthogonal to the first 
Tight eigenvector and hence, 

fi=[l-y -1'] 

This left eigenvector corresponds to the net rural population imbalance, since 
fJx(k) = r(k) - y[r(k) + u(k)]. 

The various eigenvectors associated with this system together with their 
interpretations and interrelations are summarized in Table 5.1. A simple 
diagram in diagonal form summarizing the analysis is shown in Fig. 5.4. 

The above analysis can be translated into a fairly complete verbal descrip­
tion of the general behavior of the migration model. Overall population grows 
by the factor Q each year. If there is an initial imbalance of rural versus urban 
population, with say more than a fraction l' of the population in the rural 
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Table 5.1. Eigenvectors for Migration Example 

Left Eigenvector 

Ii = [11] 

corresponds to total 
populatIon 

Ii =[I-'Y --y] 

corresponds to net rural 
imbalance 

Right Eigenvector 

e 1 =[ -y] I--y 

corresponds to the condi­
tion of zero rural im­
balance 

corresponds to the condi­
lion of zero population 

sector, then there is migration, and it grows by the factor a - {3. The rural 
imbalance also grows by this factor. Since a> {3 > 0, the growth factor of rural 
imbalance is always less than that of population, sO eventually the relative 
imbalance (that is, the ratio of imbalance to total population) tends to disap­
pear. If {3 > a, then a - {3 < 0 and migration oscillates, being from rural to 
urban one year and from urban to rural the next. If {3 < a, migration IS in the 
same direction each year. 

Rural 
}----~ populatIon 

Figure 5.4. Diagonal form for migration example. 

Urban 
populatIon 
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5.6 MULTIPLE EIGENVALUES 

If the system matrix A has repeated roots of its characteristic polynomial 
corresponding to the presence of multiple eigenvalues, it may not be possible 
to find a complete set of eigenvalues. If this is the case, the matrix A cannot be 
diagonalized, and the system cannot be reduced to a set of uncoupled first­
order systems. The characteristic response of such systems is somewhat differ­
ent than that of systems which can be diagonalized. 

The situation with mUltiple eigenvalues is typified by the system 

[
Xl(k+ 1)1 = [a l][x l (k)] 
x2(k + l)J 0 a x2(k) (5-35) 

As determined by the characteristic polynomial, this system has both eigen­
values equal to a, but there is only one (linearly Independent) eigenvector. The 
state-transition matrix can be computed directly in this case, and is found to be 

«I»(k)=Ak = a a. [ 
kkk-I] 

o a k 
(5-36) 

The response due to an arbitrary initial condition will therefore generally 
contain two kinds of terms: those of the form ak and those of the form ka k

-
l

• 

This is a general conclusion for the multiple root case. If there is not a full 
set of eigenvectors, the system response will contain terms involVing powers of 
k times the normal geometric terms associated with the eigenvalues. First there 
will be terms of the kak-t, and then there may be. terms of the form k2 ak- 2

, 

and so forth. The exact number of such terms required is related to the Jordan 
form of the matrix A (see Chapter 3, Sect. 9). 

One way to visualize the repeated root situation is in terms of the diagram 
of Fig. 5.5 that corresponds to the system (5-35). The system can be regarded 
as two first-order systems with one serving as input to the other. The system on 
the left generates a geometric sequence of the form a k (times a constant that is 
determined by the imtial condition). This sequence in turn serves as the input 
to the system on the right. If this second system had a characteristic root 
different from that of the first, then, as shown in Sect. 5.1, the response 
generated at Xl would be composed of two geometric series corresponding to 
the two roots. However, in this case the output will contain terms of the form 
ka k

-
1 as well as a k

• 
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(" 

The general situation can be described in this same way. The system may 
contain (either directly or after a change of variable) SOme chains of first-order 
systems with a common root, the output of one serving as the input to another. 
If the maximum length chain is only one, the response associated with this root 
will consist only of terms of the form a k

• If the maximum length is two, terms 
of the form a k and ka k- 1 will appear, and so forth for longer chains. The 
highest-order term of this kind that could ever occur in an nth-order system is 
kn-lak-n+l. 

Perturbation Analysis 

A system with multiple roots can be perturbed, by Introducing a slight change 
in some coefficients, to produce a system with distinct roots. Indeed, the 
original system can be regarded as the limit of a collection of systems with 
distinct roots. FOr example, consider the collection of systems 

[
Xl(k + 1)] = [a 1][x1(k)] 
x2(k+1) 0 b x2(k) 

(5-37) 

with b 1= a. The original system (5-35) is Obtained as the limiting case where 
b = a. For b 1= a the system has distinct eigenvalues a, b and therefore can be 
diagonalized. The modal matrix M and its inverse are easily found to be 

[
1 . 1 1 

M= 0 b-aJ 
M-1 =[1 l!(a-b)] 

o l!(b-a) 

and M-1AM=A, where 

A= [~ ~] 
It follows that A k = MA kM-I, which when written out is 

Ak=[l 1 ][a k 0][1 
o b-a 0 bk 0 

or, finally, 

l!(a-b)] 
1J(b-a) 

(5-38) 

When a 1= b, the right-hand side of (5-38) is well defined and it shows explicitly 
that all terms are combinations of a k and b k

• The value of the right-hand side 
of (5-38) in the limiting case of b = a can be found from the identity 

b k -a k = (b -a)(b k- 1 + bk
-

2 a + ... + bak- 2 + ak- 1
) 

In the limit as b~ a this yields 
bk k 
---=.!!...~ ka k-l 

b-a 
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Therefore, when b = a 

which agrees with our earlier calculation. 

Continuous-Time Systems 

The analysis is virtually identical for a continuous-time system defined by 

x(t)=Ax(t) 

For example, if as before, 

A= [~ ~] 
we find that 

e A '= [
ea, tea,] 

o e a
' 

Therefore, in addition to the expected exponential term ea
" the response 

contains terms of the form tea,o Longer chains of a COmmon eigenvalue produce 
additional terms of the form t2 ea

" t3 ea
., and so forth. 

5.7 EQUILIBRIUM POINTS 

In many situations the natural rest points of a dynamiC system are as much of 
interest as the mechanisms of change. Accordingly, we introduce the following 
definition. 

Definition. A vector i is an equilibrium pomt of a dynamic system if it has the 
property that once the system state vector is equal to i it remains equal to 
i for all future time. 

Thus, an equilibrium point is just what the term implies. It is a point where 
the state vector is in equilibrium and does not move. It is a general definition, 
applying to discrete- and continuous-time systems, and to nonlinear as well as 
linear systems. Our present interest, of course, is in linear constant-coefficient 
systems. 

Homogeneous Discrete-Time Systems 

The homogeneous system 

x(k + 1) = Ax(k) (5-39) 
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always has the origin (the point i = 0) as an equilibrium point. Once the state is 
equal to 0 it will not change. 

In some cases there are other equilibrium points. An equilibrium point 
must satisfy the condition 

i=AX (5-40) 

and this condition is identical to the statement that i is an eigenvector of A 
with corresponding eigenvalue equal to unity. Therefore, if unity is an eigen­
value of A, any corresponding eigenvector is an equilibrium point. If umty is 
not an eigenvalue of A, the origin is the only equilibrium point of system 
(5-39). 

Nonhomogeneous Discrete-Time Systems 

We now consider linear systems that have cOnstant coefficients and a constant 
input term: specifically, systems of the form 

x(k+l)=Ax(k)+b 

An equilibrium point of such a system must satisfy the equation 

i=AX+b 

(5-41) 

(5-42) 

If umty is not an eigenvalue of A, then the matrix I - A is nonslngular, and 
there is a unique solution 

(5-43) 

If unity is an eigenvalue there may be no equilibrium point Or an Infinity of 
such points, depending on whether or not (5-42) represents a consistent set of 
equations. In most cases of interest, there is a unique equilibrium point given 
by (5-43). 

Continuous-Time Systems 

For continuous-time systems the sItuation is similar. The homogeneous system 

i(t) = Ax(t) (5-44) 

always has the ongm as an equilibrium point. If the matrix A is singular 
(corresponding to A having zerO as an eigenvalue), then there are other 
equilibrium points. If, on the other hand, A is nonsingular, then the origin is 
the unique equilibrium point of (5-44). 

For the system with constant input 

i(t)=Ax(t)+b (5-45) 
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an equilibrium point i must satisfy the equation 

O=AX+b 

Thus, if A is nonsingular, there is a unique equilibrium point 

i=-A-'b 

If A IS singular there mayor may not be equilibrium points. 

(5-46) 

We see then that, for both discrete- and continuous-time systems, zero is 
always an equilibrium point of a homogeneous system. An eigenvalue of unity 
is critical in the general determination of equilibnum points for discrete-time 
systems. And an eigenvalue of zero is critical in the general determination of 
equilibrium points for continuous-time systems. In either case, significant 
Information .can often be obtained by determining how an equilibrium point 
changes if various parameters in the system are changed. The example of the 
next section illustrates this point. 

5.8 EXAMPLE: SURVIVAL THEORY IN CULTURE 

McPhee has argued that "survival of the fittest" applies to cultures, creative 
ideas, and esthetics as well as to biological species. Through audience testing 
wIth an associated box office criterion, Or through passage from generation to 
generation through apprenticeship and teaching, every cultural form is subject 
to screening that favors the best material. 

There are seemingly obvious disparities in the quality mix of different 
cultures associated with different cultural media. Classical music and classical 
literature seem to be of higher caliber than, say, television programming. 
Established scientific theories seem to be of higher caliber than motion 
pictures. These differences might initially be thought to be influenced primarily 
by the differences in creative talent applied to the media, or by differences 
in audience discrimination. But, in fact, it is argued here that the observed 
quality is most profoundly influenced by the inherent structure of a media and 
its screening mechanism. Mass cultures distributed by mass media have a 
severe disadvantage when viewed from this perspective, as compared with 
cultures that are distributed on a mOre individualized basis. 

We present McPhee's elementary theory that captures the essence of the 
survival argument. The reader should be able to see how the primitive version 
can be modified to incorporate additional factors. 

The basic characteristic of any cultural media is that of repetitive screen­
ing. The total offenng at anyone time, or during anyone season, consists of a 
mix of new material and older material that has survived prevIous screenings. 
In turn, not all of the current offering will survive to the following season. The 
chances for survival are, at least to some extent, related to quality. Typically, 
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however, the screening process is not perfect. Some poor quality material 
survives, when perhaps it should not, and some high quality matenal is lost. 
But On an average basis, the chances for survival are usually better for high 
quality material than for low. The proportion of good quality material in any 
seaSOn is determined by the dynamics of the imperfect screening process. 

To be specific, suppose that within a given culture it is possible to 
distinguish three distinct quality levels-I, 2, and 3-with 1 being the best, 2 
the second best, and 3 the WOrst. Assume that the proportion of the ith quality 
material offered in a season that survives to the next season is a i • Oeariy, by 
definition, O:s a, :s 1 for each j. 

Now suppose an amount bi of new material of the ith level is introduced at 
the beginning of each season, i = 1, 2, 3. The total amount of ith level material 
offered in a season is, therefore, the sum of that which survived from the past 
season and the new material. In other words, denoting the amount of the ith 
level material presented in season k by x,(k) the media can be described by 

x,(k + 1) = a,x;(k) + b, (5-47) 

The overall mechanism can be described in matrix form as 

(5-48) 

Because the system matrix is diagonal, the system itself can be regarded as 
three separate first-order systems operating simultaneously. 

Let us determine the equilibrium quality make-up of this system. Because 
of the diagonal structure, the three equilibrium values can be found separately. 
They are 

(5-49) 

Some interesting conclusions can be drawn from this simple result. First, as 
expected, the proportlon of highest quality material is enhanced in the limiting 
mixtllre as compared to the input composition. The screening process has a 
posHlve effect. Second, and most important, as the a, 's increase, the effectlve­
nes', df the screening process is enhanced. Suppose, for example, that a 1 = 2a2> 

meaning that the chance of first quality material surviving is twice that of the 
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second quality grade. At a! = .2, a 2 = .1, long-term screening factors are 

1 
--=1.25 
I-a! 

1 
--=1.11 
l-a2 

While for a! = .8, a 2 =.4 they are 5.00 and 1.67, respectively. We conclude, 
therefore, that the benefit of screening is greatest when the chances for survival 
of all material is relatively high. 

This is in accord with our general observations of cultural media. Televi­
sion programming is of relatively poor quality because the overall survival rate 
is low; only a small percentage of programs survive even a single season. 
Therefore, the composition almost identically corresponds to the input com­
position. On the other hand, the overall survival rate in symphonic music is 
high, the offerings changing little from season to season. The composition, 
therefore, is more a reflection of the screening discrimination than of current 
creative talent. 

Unfortunately, the answer for improving quality does not spnng directly 
from this analysis. Although the low survival rate in mass media is in a sense 
responsible for low overall quality, we cannot advocate increasing the survival 
rate. The nature of the media itself makes that inappropriate. The particular 
medium used to distribute a culture is, to a large extent, dictated by the 
characteristics of the culture itself. Nevertheless, this analysis does yield insight 
as to the underlying processes that inevitably lead to quality characteristics. 

5.9 STABILITY 

The term stability is of such common usage that its meaning, at least in general 
terms, is weIl known. In the setting of dynamic systems, stability is defined with 
respect to a given eqUilibrium point. An equilibrium point is stable if when the 
state vector is moved slightly away from that point, it tends to return to it, or at 
least does not keep moving further away. The classic example is that of a stick 
perfectly aligned with the vertical. If the stick is balanced On its bottom end, it 
is in unstable equilibrium. If on the other hand it is hanging from a support at 
the top end, it is in stable equilibrium. 

Here we consider stability of equilibrium points corresponding to linear 
time-invariant systems of the form 

x(k + 1) = Ax(k)+b (5-50) 

or 

x(t) = Ax(t) +b (5-51) 

In order to make the discussion precise, the following defimtion is Introduced. 

Definition. An equilibnum point 51: of a linear time-invanant system (5-50) or 
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(5-51) is asymptotically stable if for any initial condition the state vector 
tends to i as time increases. The point is unstable if for some imtlal 
condition the corresponding state vector tends toward Infinity. 

It is important to observe that stability issues for (5-50) and (5-51) are tied 
directly to the corresponding homogeneous equations. Suppose, for example, 
that i is an equilibrium point of (5-50). Then we have 

x(k+ l)-x=Ax(k)-AX+b-b 
and thus, 

x(k + l)-i = A(x(k)-x) 

It is clear that the condition for x(t) to tend to x in (5-50) is Identical to that 
for z(k) to tend to 0 in the homogeneous system 

z(k+ 1) = Az(k) 

(A similar argument holds in continuous time.) Therefore, In the case of the 
linear systems (5-50) and (5-51), asymptotic stability or instability does not 
depend explicitly on the equilibrium point, but instead is determined by the 
properties of the homogeneous equation. 

Another way to deduce the above conclusion is this. The complete 
solution to, say, (5-50), consists of a constant i (a particular solution) and a 
solution to the homogeneous equation. Asymptotic stability holds if every 
homogeneous solution tends to zero. 

The character of the solutions to the homogeneous equation is determined 
by the eigenvalues of the matrix A. The discrde- and continuous-time cases 
are considered separately below. 

Discrete-Time Systems 

Consider first the system 

x(k + 1) = Ax(k) (5-52) 

To obtain conditions for asymptotic stability assume initially that A can be 
diagonalized. Then there is a matrix M such that 

A=MAM-1 

where 

A= 
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and the Ai'S are the eigenvalues of A. Furthermore, 

A" =MA"M- I =M 

A" 1 

~l 

The requirement of asymptotic stability is equivalent to the requirement that 
the matrix A k tend toward the zero matrix as k increases, since otherwise some 
initial condition could be found that had a corresponding solution not tending 
toward zero. This requirement, in turn, is equivalent to requiring that all the 
terms A ~ tend toward zero. 

All terms will tend toward zero if and only if IAil < 1 for every j. Thus, a 
necessary and sufficient condition for asymptotic stability is that all eigenvalues 
of A lie inside the unit circle of the complex plane. 

There is a less direct, but perhaps mOre intuitive, way to see this result 
in terms of the decomposition of the system mto uncoupled first-order systems. 
A first-order system of the form 

z(k+l)=Az(k) 

has solution z(k) = A "z(O). It is asymptotically stable, by the reasoning above, if 
and only if the magnitude of A is less than one. When A is diagonalizable, the 
system can be transformed to a set of uncoupled first-order systems, as shown 
in Sect. 5.3, with the eigenvalues of A determining the behavior of the 
individual systems. For the whole system to be asymptotically stable, each of 
the subsystems must be asymptotically stable. 

If the matrix A has mUltiple eigenvalues, the conclusion is unchanged. A 
mUltiple eigenvalue A introduces terms of the form A ie, kA k-I, k2 A "-2, and so 
forth into the response. The highest-order term of this form possible for an 
nth-order system is kn-lAk-n+l. As long as A has magnitude less than one, 
however, the decreasing geometric term outweighs the increase in k' for any i, 
and the overall term tends toward zero for large k. Therefore, the existence of 
multiple roots does not change the qualitative behavior for large k. 

It is easy to deduce a partial converse result concerning instability. If the 
magnitude of any eigenvalue is greater than one, then there will be a vector 
x(O), the corresponding eigenvector, which leads to a solution that increases 
geometncally toward infinity. Thus, the existence of an eigenvalue with a 
magnitude greater than one is sufficient to indicate instability. Summarizing all 
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(a) (b) (e) 

Figure 5.6. Eigenvalues and stability in discrete-time systems. (a) Asymptotically 
stable. (b) Unstable. (e) Marginally stable. 

of the above, and accounting for the fact that the homogeneous system 
determines stability, we may state the following theorem. (Also see Fig. 5.6.) 

Theorem 1. A necessary and sufficient condition for an equilibrium point of the 
system (5-50) to be asymptotically stable is that the eigenvalues of A all 
have magnitude less than one (that is, the eigenvalues must all lie Inside the 
unit circle in the complex plane). If at least one eigenvalue has magnitude 
greater than one, the equilibrium point is unstable. 

Because the stability of an equilibrium point of a linear discrete-time 
system depends only on the structure of the system matrix A, it is common to 
refer to stability of the system itself, or stability of the matrix A. Thus, we say 
"the system is asymptotically stable" or "the matrix A it asymptotically stable" 
when, in the context of a discrete-time linear system, the matrix A has all of Its 
eigenvalues inside the unit circle. 

Continuous-Time Systems 

The condition for asymptotic stability for the continuous-time system (5-51) is 
similar in nature to that for a discrete-time system. Assuming first that the 
system matrix A is diagonalizable, the system is reduced to a set of first-order 
equations; each of the form 

i(t) = Az(t) 

where A is an eigenvalue of A. The solutions to this diagonal system are 

z(t) = e"'z(O) 

Each A can be written as a sum of a real and imaginary part as A = IL + iw, 
where i=J-l and IL and ware real. Accordingly, e"'=e .... e-, and this 
exponential tends to zero if and only if IL < O. In other words, the real part of A 
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Figure 5.7. Eigenvalues and stability in continuous-time systems. ia) Asymptoti­
cally stable. (b) Unstable. (e) Marginally stable. 

must be negative. Therefore, for asymptotic stability it is necessary and 
sufficient that the real part of each A be negative. Or, in perhaps mOre visual 
terminology, each A must lie in the left half of the plane of complex numbers. 

Again, the presence of multiple roots does not change the conclusion. Such 
roots introduce terms of the form eA

', teAt, t2 eAt, . .. , tn-leA', which each go to 
zero as t-.+oo provided that the real part of A is negative. In conclusion, 
therefore, the companion to Theorem 1 is stated below. (Also see Fig. 5.7.) 

Theorem 2. A necessary and suffiCient condition for an equilibrium pomt of the 
continuous-time system (5-51) to be asymptotically stable is that the eigen­
values of A all have negative real pan (that is, the eigenvalues must lie in 
the left half of the complex plane). If at least one eigenvalue has positive real 
pan, the point is unstable. 

As in the discrete-time case, stability of an equilibrium point of a linear 
continuous-time system depends only on the structure of the matrix A and not 
explicitly on the equilibrium point itself. Thus, we say "the system is asymptoti­
cally stable" or "the matrix A is asymptotically stable" when, in the context of 
a continuous-time linear system, the eigenvalues of A are all inside the left-half 
plane. 

Marginal Stability 

For discrete- and continuous-time systems, there is an intermediate case that is 
not covered by the above stability theorems. For discrete time this case is 
where no eigenvalues are outside the unit circle but one or more is exactly on 
the boundary of the circle. For continuous time, it is where no eigenvalues are 
in the right half of the complex plane, but one or more have real part exactly 
equal to zero. (See Figs. 5.6 and 5.7.) 
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In these intermediate situations further analysis is required to characterize 
the long-term behavior of solutions. If the boundary eigenvalues all have a 
complete set of associated eigenvectors, then the only terms they produce are 
of the form "- k in discrete time, or e"'" in continuous time. The terms have 
constant absolute value. Therefore, the state vector neither tends to infimty nor 
to zero. The system is neither unstable, nor asymptotically stable. This speciai 
intermediate situation is referred to as marginal stability. It is an Important 
special case, arising in several applications. 

Example. Some common two-dimensional systems have the form 

x(t)=Ax(t) 

where the A matrix has the off-diagonal form 

For instance, the mass and spring model has this form with C1 = -w2
, Cz = l. 

The Lanchester model of warfare has this form with C1 and C2 both negative. 
The characteristic equation associated with this A matrix is 

The relationship of the parameters C1 and C2 to stability can be deduced 
directly from this equation. There are really only three cases. ' 

CASE 1. The parameters C I and C2 are nonzero and have the same sign. 
In the case C I C2 is positive, and therefore the two eigenvalues are AI = 

Fc;C2 and "-2 = -.JC;C2. The first of these is itself always positive and therefore 
the system is unstable. 

CASE 2. The parameters Cl and C2 are nonzero and have opposite signs. 
In this case (of which the mass and spring is an example) C1C2 is negative 

and therefore the two eigenvalues are imaginary (lying on the axis between the 
left and right halves of the complex plane). This implies oscillatory behavior 
and a system which is marginally stable. 

CASE 3. Either Cl or C2 is zero. 
If both Cl and C2 are zero the system is marginally stable. If only one of the 

two parameters CI and C2 is zero, the system has zero as a repeated root in a 
chain of length two. Some components will grow linearly with k and, therefore, 
the system is unstable. 

In view of these three cases, it is clear that an off-diagonal system can 
never be stable (except marginally). 
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5.10 OSCILLATIONS 

A good deal of qualitative information about solutions can be inferred directly 
from the eigenvalues of a system, even without calculation of the correspond­
ing eigenvectors. For instance, as discussed in Sect. 5.9, stability properties are 
determined entirely by the eigenvalues. Other general characteristics of the 
solution can be deduced by considering the placement of the eigenvalues in the 
complex plane. Each eigenvalue defines both a characteristic growth rate and a 
characteristic frequency of oscillation. These relations are examined in this 
section. 

It is sufficient to consider only homogeneous systems, since their solutions 
underlie the general response of linear systems. Even in this case, however, the 
complete pattern of solution can be quite complex, for it depends on the initial 
state vector and on the time patterns of each of the eigenvectors that in 
conjunction comprise the solution. To decompose the solution into compo­
nents, 'it is natural to consider the behavior associated with a single eigenvalue, 
or a complex conjugate pair of eigenvalues. Each of these acts separately and 
has a definite characteristic pattern. 

Continuous Time 

Let A be an eigenvalue of a continuous-time system. It is convenient to express 
A in the form A = IL + iw. The characteristic response associated with this 
eigenvalue is ell' = e""e .... '. The coefficient that multiplies the associated eigen­
vector varies according to this characteristic pattern. 

If A is real, then A = IL and w = O. The coefficient ell' is then always of the 
same sign. No oscillations are derived from an eigenvalue of this type. 

If A is complex, then its complex conjugate X = IL - iw must also be an 
eigenvalue. The solution itself is always real, so, overall, the imaginary num­
bers cancel out. The contribution due to A and A in any component therefore 
contains terms of the form (A sin wt + B cos wt)e""'. Such terms oscillate with a 
frequency w and have a magnitude that either grows or decays exponentially 
according to e"". In summary, for continuous-time systems the frequency of 
oscillation (in radians per unit time) due to an eigenvalue is equal to its 
imaginary part. The rate of exponential growth (or decay) IS equal to its real 
part. (See Fig. 5.8a.) 

Discrete Time 

Let A be an eigenvalue of a discrete-time system. In this case it is convenient to 
express A in the form A = re i9 = r(cos 8 + i sin 8). The characteristic response 
due to this eigenvalue is A k = r ke ik9 = rk cos k8+ irk sin k8. The coefficient that 
multiplies the associated eigenvector varies according to thiS characteristic 
pattern. 
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Figure 5.S. Relation of eigenvalue location to oscillation. (a) Continuous time. (b) 
Discrete time. 

If A is real and positive, the response pattern is the geometnc sequence rk, 
which increases if r> 1 and decreases if r < 1. No oscillations are derived from 
a positive eigenvalue. If A is real and negative, the response is an alternating 
geometric sequence. 

If A is complex, it will appear with its complex conjugate. The reai 
response due to both eigenvalues is of the form rk(A sin kO + B cos kO). If 
0;6 0, the expression within the parentheses will change sign as k vanes. 
However, the exact pattern of variation may not be perfectly regular. In fact, if 
o is an irrational multiple of 21T, the expression does not have a finite cycle 
length since each value of k produces a different value in the expression. This 
is illustrated in Fig. 5.9a. Because of this phenomenon, it is useful to supenm­
pose a quasi-continuous solution on the discrete solution by allowing k to be 
continuous. The period of oscillation then can be measured in the standard 
way, and often will be some nonintegral multiple of k. This is illustrated in Fig. 
5.9b. In summary, for discrete-time systems the frequency of oscillation (in 
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Figure 5.9. A discrete-time pattern and its superimposed quasicontinuous 
pattern. 
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radians per unit time) due to an eigenvalue is equal to Its angle as measured in 
the complex plane. The rate of geometric growth (or decay) is equal to the 
magnitude of the eigenvalue. (See Fig. 5.8b.) 

Example (!be Hog Cycle). For nearly a century it has been observed that the 
productIon of hogs is characterized by a strong, nearly regular cycle of about 
four years' duration. Production alternately rises and falls, forcing prices to cycle 
correspondingly in the opposite direction. (See Fig. 5.10). The economic 
hardship to farmers caused by these cycles has motivated a number of govern­
ment policies attempting to smooth them, and has focused attention on this 
rather curious phenomenon. 

One common explanation of the cycle is based on the cobweb theory of 
supply and demand interaction, the basic argument being that the cycles are a 
result of the farmers' use of current prices in production decisions. By respond­
ing quickly to current price conditions, hog producers introduce the charac­
teristic cobweb oscillations. However, as shown below, when the pure cobweb 
theory is applied to hog production, it predicts that the hog cycle would have a 
period of only two years. Thus, this simple view of the behavior of hog 
producers is not consistent with the observed cycle length. It seems appropriate 
therefore to revise the assumptions and look for an alternative explanation. 
One possible approach is discussed in the second part of this example. 

3or-----r-----r----.~--_.----_,----_.----_, 

Hog Prices 

(00"= I "" ". "," 

1~~---1~9~10----1~9W~---19~3-0----19~40-----1~~O----19~6-0--~1970 

Figure 5.10. The U.S. hog cycle. 
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The Cobweb Model 

A somewhat simplified description of the hog production process IS as follows: 
There are two hog production seasons a year corresponding to spring and fall 
breeding. It is about six months from breeding to weaning, and five or six 
months of growth from weaning to slaughter. Very few sows are required for 
the breeding stock, so farmers generally slaughter and market essentially their 
whole stock of mature hogs. Translated into analytical terms, it is reasonable to 
develop a discrete-time model with a basic period length of six months. 
Production can be initiated at the beginning of each period, but takes two 
periods to complete. In this discrete-time framework we denote the number of 
mature hogs produced at the beginning of period k by h(k), and the corres­
ponding unit price by p(k). 

As is standard, we assume that demand for hogs in any period is deter­
mined by price according to a linear demand curve. In particular, demand at 
period k is given by 

d(k) = do- ap(k) (5-53) 

In a similar way, we assume that there is a supply curve of the form 

(5-54) 

The quantity Ii represents the level of seasonal production that a farmer would 
maintain if his estimate of future hog prices were fj. 

In the cobweb model, it is assumed that at the beginning of penod k a 
farmer decides how many hogs to breed on the basis of current price. This 
leads to the equations 

h(k + 2) = So + bp(k) 

d(k) = do- ap(k) 

(5-55) 

(5-56) 

where h(k+2) corresponds to the breeding decision at penod k, which 
specifics the ultImate number of mature hogs at period k + 2. Equating supply 
and demand [i.e., setting d(k) = h(k)] and eliminating p(k) leads to 

h(k +2) = -ph(k)+pdo+so (5-57) 

where p = bl a. The characteristic polynomial of thIS difference equatIon is 

(5-58) 

which has the two imaginary roots A = ±IJP. 
This result is slightly different in form than that obtained in the usual 

cobweb model since there are two imaginary roots rather than a single negative 
root. This is because the production interval is nOw divided into two penoos. 



164 Linear Systems with Constant Coefficients 

However, the squares of these imaginary roots are equal to the root corres­
ponding to a full production duration. 

The interpretation of the results of this model is that hog cycles would 
have a period of four time intervals (since the roots are imaginary) or, 
equivalently, of two years. Furthermore, hog production is a side-line opera­
tion on many farms that is easily expanded or contracted, depending on 
economic incentives. This suggests that p > 1 and hence the cobweb model 
predicts an unstable situation. 

Smoothed Price Prediction Model 

As an aiternatJve model, we assume that farmers are aware of the inherent 
Instability and accompanying oscillatory nature of the hog market. Accord­
ingly, they act mOre conservatively than implied by the pure cobweb model by 
basmg their estimate of future price on an average of past prices. For example, 
since the oscillation is roughly four years in duratIOn, it IS reasonable to 
average Over a time span of at least half this long. A uniform average over two 
years would have the form 

p(k) = ![p(k) + p(k -1) + p(k - 2) + p(k - 3) + p(k -4)] (5-59) 

Using this estimated price in the supply equation (5-54) and equating supply 
and demand leads to 

h(k +2) =-~ [h(k)+ h(k -1)+ h(k -2)+ h(k -3)+ h(k -4)] 

+pdo+So (5-60) 

This sixth-order difference equation has the characteristic equation 

(5-61) 

It is of course difficult to compute the roots of this sixth-order polynomial. 
However, assuming p = 2.07, it can be verified that the roots of largest 
magnitude are A = .J2i2 ± i .J2i2. These roOts have a magnitude of one and 
correspond to a cycle period of exactly four years. The response due to these 
eigenvalues is thus an oscillation of a period of four years that persists 
indefinitely, neither increasing or decreasing in magnitude. 

One can argue of course that different predictors would lead to different 
roots, and hence, to different cycle lengths. However, we argue that in the 
aggregate, producers average in such a way so as to Just maintain (marginal) 
stability. A short-term average would lead to shorter cycles but instability. An 
excessively long-term average would lead to long cycle lengths, but a sluggish 
system in which farmers do not respond to the strong economic incentives to 
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adjust to price trends. As a group they tend to walk the fine line between 
stability and instability. If p = 2, then to reach this balance point, the pnce 
estimate used must be close in form to the one presented by (5-59), and 
consequently the cycle length must be close to four years. 

5.11 DOMINANT MODES 

The long-term behavior of a linear time-invariant system often is determined 
largely by only one or two of its eigenvalues and corresponding eigenvectors. 
These dominant eigenvalues and eigenvectors are therefore of spectal Interest 
to the analyst. 

Discrete-Time System 

Consider the discrete-time system 

x(k + 1) = Ax(k) (5-62) 

Suppose the matnx A has eigenvalues AI' A2, ... ,An with IAII > IA212: IA3 1· 0 02: 
IAnl. The eigenvalue Al of greatest magnitude IS the dominant eigenvalue. For 
simplicity, let us assume that there is a complete set of eigenvectors, and that 
there IS only one eigenvalue of greatest magnitude. If there were two greatest 
of equal magnitude (as there would be if the eigenvalues were complex), then 
both would be considered dominant. 

Any initial condition vector can be expressed as a linear combination of all 
eigenvectors in the form 

x(O) = aiel + a2e2 + ... + anen 

Correspondingly, the solution to (5-62) at an arbitrary time k > 0 IS 

x(k) = alA ~el + a2A~e2 + ... + anA~en 

(5-63) 

(5-64) 

Since A ~ grows faster than A ~ for i = 2, 3, ... , 11, it follows that for large k 

for i = 2,3, ... , n 

as long as a l ~ O. In other words, for large values of k, the coefficient of the 
first eigenvector in the expansion (5-64) is large relative to the other coeffi­
cients. Hence, for large values of k, the state vector x(k) is essentially aligned 
with the eigenvector el' 

If al = 0, the first coefficient in (5-64) is zero for all values of k, and the 
state vector will not line up with e l . Theoretically, in this case the eigenvalue of 
next greatest magnitude would determine the behavior of the system for large 
values of k. In practice, however, the dominant eigenvalue almost always takes 
hold-at least ultimately-for a slight perturbation at any step introduces a 
small al ~ 0 that grows faster than any other term. 
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From the above discussion, it can be deduced that if there is a single 
dominant eigenvalue, the state vector tends to align itself with the correspond­
ing eigenvector. If there is not a single dominant eigenvalue, but two that are 
complex conjugates, it can be similarly inferred that the state vector tends 
toward the two-dimensional space defined by the two corresponding eigenvec­
tors. Typically, in this case, oscillations are generated, characteristic of the 
complex dominate eigenvalues. 

A similar analysis applies to nonhomogeneous systems such as 

x(k + 1) = Ax(k) +b 

If there is an asymptotically stable equilibrium point i, then the state 
converges to x. The rate at which it converges is governed essentially by the 
eigenvalue of greatest magnitude (which is, however, less than one). The error 
vector x(k) -x will be closely aligned with the corresponding eigenvector, as it 
tends to zerO. 

Continuous-Time Systems 

Consider the system 

i(t) = Ax(t) (5-65) 

Suppose the matrix A has eigenvalues AI> A2 , ••• , An ordered now according to 
Re(A I ) > Re(A2) 2!: Re(A3 ) ••• 2!: Re(An). The eigenvalue Al with greatest real 
part is the dominant eigenvalue in this case. 

As before let us suppose there is a single dominant eigenvalue and that 
there is a complete set of eigenvectors. Paralleling the previous analysis, any 
initial state vector x(O) can be expressed in terms of the eigenvectors in the 
form 

x(O).= aiel + a 2e2 + ... + anen 

The corresponding solution to (5-65) is 

Writmg each eigenvalue in terms of its real and imaginary parts as 

Ak = ILk + iw" 

(5-66) 

(5-67) 

it is easy to see that lake""" I = lakle~t. Thus, since the real part determines the 
rate of growth of the exponential it is clear that as t_co 

i == 2,3, . , n 

provided that a l 1= O. Therefore, the first term in (5-67) dominates all the 
others for large values of t, and hence, for large values of t the vector x(t) is 
closely aligned with the dominant eigenvector e l. 
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Subdominant Modes 

The long-term behavior of a system is determined most directly by the 
dominant eigenvalue and associated eigenvector. However, the other eIgen­
values and eigenvectors also play important roles. These subdominant eigen­
values can be ordered in a natural way (by therr magnitudes for discrete-time 
systems, or by their real parts for continuous-time systems) corresponding to 
their order of importance for long-term behavior. 

The subdominant eigenvalues essentially determine how quickly the sys­
tem state moves toward the eigenvector corresponding to the dominant mode. 
A cohort population system, for example, may have a dommant eigenvaiue 
that is real and greater than One indicating that there is long-term growth. The 
corresponding eigenvector defines the population distribution to which the 
system tends as it grows. The rate at which the actual population distributiOn 
approaches this distribution is determined largely by the second greatest 
eigenvalue. 

A special situation in which the first subdominant eigenvalue has a 
particularly important role is when the dominant eigenvalue is equal to one (or 
zero in the continuous-time case). The system is then marginally stable. The 
state vector tends toward the corresponding dominant eigenvector, and in the 
long term it neither grows nor contracts. Thus, the state converges to a fixed 
vector, and it is the eigenvalue of second largest magnitude that determmes 
how fast it approaches the limiting vector. The following example illustrates 
this phenomenon. 

Example (Fixed Capacity of a Cultural System). Suppose that in the sUfVlval 
theory of culture discussed in Sect. 5.8 there is a limit on the capacity of the 
system. Such linuts might be representative of television programming or 
theater where only a fixed number of offerings are feasible in any season. Let 
us consider whether the imposition of a capacity constraint changes the 
equilibrium quality distribution, and whether it speeds up Or slows down the 
rate at which equilibrium is achieved. 

For simplicity let us distinguish only two levels of quality in the culture: 
good and bad. In this case the original system, Without a capacity constramt, is 
represented by the second-order system 

It is assumed that Xl represents the amount of "good" material in the system, 
while X2 represents the amount of "bad" material. According to this specifica­
tion, it should hold that QI> Qz, indicating that good matenal has a better 

\ 
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chance to survive than bad material. The parameters must also satisfy 0 < al < 
1,O<a2<1. 

The equilibrium point of the system is 

x l =bd(l-a l) 

Xz = bz/(l- az) 

The eigenvalues of the system are a l and az and therefore the equilibrium is 
stable. Since the dominant eigenvalue is ai' the rate at which the equilibrium is 
approached IS essentially a/'. 

Now let us modify the system to incorporate the capacity constraint that 
xl(k) + x2(k) must be a fixed constant, independent of k. To satisfy this 
requirement, the amount of new material admitted to the system each seaSOn 
must be varied, depending on the space available for new entries. We assume, 
however, that the basic screening parameters and the input quality distribution 
remain unchanged. Only the level of input is varied. 

The new system is then governed by 

where u(k) varies in order to satisfy the capacity requirement. For notational 
Simplicity, we assume that b l + b2 = 1. This entails no loss of generality since a 
constant multiple can be incorporated into the definition of u(k). To find an 
explicit expression for u(k) we write 

xl(k + 1) + x2(k + 1) = alxl(k) + a2xz(k) + (b l + b2)u(k) 

= a 1x l(k)+a 2x 2(k)+ u(k) 

The requirement xl(k+1)+xz(k+1)=xl(k)+x2(k) then yields 

u(k) = (1- al)xt(k) + (1-az)x2(k) 

This shows how u(k) must be adjusted each period on the basis of what is 
already in the system. Substituting this value, the new system takes the explicit 
form 

[XI(k + 1)] = [al + bt (l- al) b1(1- a2) ,][XI(k)] 
x2(ki-1) bz(1-at) a z i-bz(1-a2) xz(k) 

It should be noted that the new system is homogeneous while the original 
system is not. Total volume in the system is xI(k)+xz(k)=[ll]x(k). Since the 
volume IS constant, it follows that [1 1] is a left eigenvector of the system with 
the corresponding eigenvalue equal to one. As we shall verify shortly, this is 
also the dominant eigenvalue. 

Because one is an eigenValue, the corresponding right eigenvector (or any 
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multiple of it) is an equilibrium point for the system. The right eigenvector 
corresponding to the eigenvalue of one must satisfy 

A solution is 

[a l + bl(l- a l)]X I + bl(1-a2)xz = Xl 

bz(l-a l )XI +[az+ b2(1-a Z)]xz = X 2 

Xl = bd(l-al) 

X2 = bz/(l- a2) 

Thus, the equilibrium points of the new system are Just scalar multiples of that 
of the old system. This can be explained by the fact that u(k) approaches a 
constant as k ~ 00_ Thus, for large k the new system looks very much like the 
original system. 

The speed at whIch the system converges to the equilibrium IS now 
governed by the eIgenvalue of second largest absolute value. In Our second­
order example this is, of course, the only other eigenvalue. To find this 
eigenvalue, we write the corresponding characteristic polynomial that (after a 
bit of algebra) reduces to 

A 2_(1 +b2al + bla2)A + b2a l + blaz 

Recalling that AI = 1 is an eigenvalue of the system, we can easily factor thIS 
polynomial obtaining the characteristic equation 

(A -l)(A - b2 a l - bla2) = 0 

The second eigenvalue is therefore 

A2 = bZa l + b l a 2 

Since this second eigenvalue is a weighted average of a l and a 2 , it follows that 
a2<A2<al. 

Two conclusions can be drawn from this result. First, since 0< A2 < 1 the 
system is marginally stable, with AI = 1 being the dominant eigenvalue. Second, 
the speed at which the system converges toward equilibrium IS governed by thIS 
second eigenvalue. Since this value is less than ai' this new system converges 
toward equilibrium faster than the original system. 

Finally, as should be routine when completing an analysis, let us Interpret 
this result by checking its consistency with less formal reasoning. Suppose that 
the system is not in equilibrium, with a higher proportion of bad material than 
there would be in equilibrium. Since bad material is screened out relatively 
rapidly, this means that more than a normal level of input is required in order 
to satisfy the capacity requirement. This high level of input tends to quickly 
infuse more good material. Later, as the proportions move toward equilibrium, 
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the level of input decreases since good material remains in the system a long 
time. The initial high level of input, however, acts to move the system more 
rapidly than would the constant equilibrium input level. Thus, we do expect the 
capacity constraint to speed convergence. 

5.12 THE COHORT POPULATION MODEL 

The cohort population model, introduced briefly in Chapter 1, is an excellent 
example for detailed study. It has a wealth of structure that can be translated 
into interesting and significant statements about its dominant eigenvalue and 
eigenvector. The cohort model deserves attention, however, not only as an 
application of theory, but also as a structure important in many application 
areas where items are categorized by age. 

The basic, single sex, cohort population model presented in Chapter 1 is 
defined by the difference equations 

xo(k + 1) = aoxo(k) + a1x1(k) + a2x2(k) + ... + anx" (k) 

Xi+1(k + 1) = f3iXi(k), i = 0, 1,2, ... , n-1 

where ai is the birthrate of the ith age group and f3i is the survival rate of the 
ith age group. In matrix form the general cohort model becomes 

xo(k+1) a o al a 2 an xo(k) 

x 1(k+1) f30 0 0 0 
0 f31 0 0 x1(k) 

(5-68) 

xn (k+1) 0 0 f3n-l 0 x,,(k) 

We write this in abbreviated form as 

x(k+1)=Px(k) (5-69) 

Change of Variable 

It is convenient to introduce a simple change of variable that preserves the 
general structure of the cohort model but simplifies it by making the coeffi­
cients along the lower diagonal (the i31's) all equal to one. For this purpose 
define 

10= 1 
k = 1, 2, ... , n 

(5-70) 

The number Ik can be interpreted as the probability of a newborn surviving to 
reach the kth age group. 
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In terms of these numbers, define the diagonal matrix 

10 

D= 

and define the change of variable from x(k) to y(k) by 

x(k) =Dy(k) 

With respect to the vector y(k), the system takes the form 

y(k + 1) = Py(k) 

where P == D-1pD. 
The reader can verify the explicit form 

ao 11a1 /Za2 I"a" 

1 

Therefore, defining lZ; = ljaj, one has 

1 

1 

1 

o 
o 

1 0 

a.. 
o 
o 

1 0 

171 

(5-71) 

(5-72) 

(5-73) 

This new matrix has the same structure as the original, but with unity 
coefficients below the main diagonal. 

The new variables Yj(k) and the new matrix P have simple interpretations 
in terms of the population system. The variable yj(k) is equal to number of 
original members in the cohort that now occupies the ith age span. This 
number includes the deceased as well as the presently living members of this 
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cohort. With the variables defined in this way, there is no possibility of leaving 
a cohort, and therefore the appropriate new survival factors are all unity. The 
new birthrates account for the fact that only the living members of a cohort can 
possibly have children. Since the number of living members of group i is ljyj(k), 
the new effective birthrate is IjCt j = aj, as indicated in P. Therefore, the new 
system is a representation where all members of a cohort, dead or alive, are 
accounted for through all n + 1 age span periods. 

Characteristic Polynomial 

The special structure of the population matrix enables one to deduce quite 
explicit results concerning the dominant eigenvalue and corresponding eigen­
vector. It is simplest to first work with the matrix P, derived above, and then 
transfer the results back to P through the similarity transformation. (The 
characteristic polynomial of P is the same as that of P since P and Pare 
similar.) 

The characteristic polynomial of P is easily found to be 

(-l)"+I(A "+1_ aoA" - a
1
A,,-I_ . .. - a.,) 

Accordingly, the characteristic equation is 

A ,,+1 = aoA" +a
1
A ,,-1+ ... + a., (5-74) 

Under a rather mild assumption, it is possible to show that the dominant root 
of the characteristic equation (the root of largest absolute value) is a real 
positive number and the corresponding eigenvector has fJ(lsltive components. 
The only assumption required is that at least two consecutive a;'s are strictly 
positive. 

Theorem. Suppose that aj 2!: 0, i = 0, 1, 2, ... , n, and that for some m, 0 < m :S n, 
there holds a,..-1>0, a,.. >0. Then the charactenstic equation (5-74) has a 
unique eigenvalue Ao of greatest absolute value. ThIs eIgenvalue is positive 
and Simple. 

Proof For A;60, (5-74) can be rewritten equivalently as 

(5-75) 

which is of the form 

1 = f(A) 

Since each of the a;'s is nonnegative, it is clear that f(A) increases strictly 
monotonically from zerO to infinity as A varies from infinity to zero. Therefore, 
there is exactly one posItive real root of the equation, and that root has 
algebraic mUltiplicity one. Let us denote this pOSItive eIgenvalue by Ao. 
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To show that Ao is the dominant eigenvalue, suppose A IS any other 
nonzero solution to the characteristic equation. This solution can be written m 
the form A -I = re ill, where r > O. Substitution of this expression into (5-75) gives 

1 = aore i8 + alr2ei28 + ... + a,.r(n+l)e i(n+1)8 

Taking the real value of this equation gives 

1 = aor cos 8+ alr2 cos 28+· .. + a,.r(n+l) cos(n + 1)8 

Since cos 8:s 1, it is clear that the right-hand side of this equation is no greater 
than aor+alr2+ .. ·+a,.r(n+I), and, therefore, in view of the mOnotOnIC be­
havior of this expression, r 2!: ro, where ro = AOI. In fact, the only way that 
equality can be achieved is for all the cosine terms corresponding to nonzero 
a/s to be unity. However, since it is assumed that for some m that am-I> 0 
and a". > 0, it would follow that cos m8 = 1 and cos(m + 1)8 = 1. But this 
would imply that cos 8 = 1 and accordingly that A were positive. Therefore, for 
any A;6 Ao it must follow that r> ro, which means IAI < Ao. Therefore, the 
dominant eigenvalue Ao is positive and of algebraic multiplicity one. I 

Dominant Eigenvector 

The dominant eigenvector, corresponding to the positive dominant eigenvalue 
Ao, is easy to calculate. The eigenvectors eo and eo for the matnces P and P, 
respectively, are 

Ao 10Ao 
AO- I IIAo-1 

eo = eo= 

Ao In-lAo 

1 In 

Validity of the above form for eo follows because the first component of Pen is 
aoAo + ... + a,., which since Ao satisfies the characteristic equation is equal to 
AO+I. It is then easy to check that Pen=Aoeo. It should be noted that since 
Ao>O, the components of eo are all positive. The corresponding dominant 
eigenvector of P is found from the relation eo = Den, where D is defined by (5-71). 
Thus, the components of eo are also all positive if the {3i'S are all positive. 

The dominant eigenvalue and eigenvector have natural mterpretations 
wiHnn the context of the population system. The eigenvalue Ao is the natural 
groH',h rate of the system. The population ultimately tends to grow at this rate 
as nlt! system state vector becomes closely aligned with the dominant eigenvec­
tor. This rate is always positive, although It may be less than one. The 
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eigenvector eo represents the stable distribution of population. Once this 
distribution is achieved, all age-group populations simultaneously grow by the 
factor Ao each p6riod-the population may grow as a whole, but the relative 
distribution remains fixed. 

*5.13 THE SURPRISING SOLUTION TO 
THE NATCHEZ PROBLEM 

We recall the rather unhappy prediction concerning the fate of a social culture 
organized along the lines of the Natchez Indians. The society was divided into 
four classes, with the req uirement that everyone in the ruling class must select 
a marriage partner from the lowest class. The class designation of the off-spring 
of a marriage was the higher of (a) the mother's class, or (b) the class one level 
below the father's class. By assuming a uniform birthrate, an equal number of 
men and women in each class, and no inter-generation marriages, it was 
discovered that eventually the society would deplete its lowest class, and 
therefore could not continue. 

In terms of historical record the Natchez structure did not have the 
opportunity to play itself out long enough to test the validity of this analysis. 
However, the culture had apparently survived for several generations in 
essentially this form before they were discovered and largely destroyed by 
French explorers. It may be that the system actually did work well and that, 
accordingly, some aspect of our earlier analysis IS crucially defective, Or it may 
be that the society had not existed long enough for the inevitable consequences 
of the dynamic relations to bring on the predicted disaster. 

But let us set aside, as probably unresolvable, the question of what might 
have happened to the Natchez. Let us instead ask whether the hypotheses of 
our earlier analysis can be altered in order to produce a system that avoids 
collapse. 

In particular, let us investigate a potential resolution based on an assump­
tion that there are different birth rates in the different classes. This is a 
plausible hypothesis since such differences are known to occur in many class 
systems. Indeed, to set the stage for this pursuit, let us formally pose the 
Natchez problem as follows: Is there a collection of birthrates for each of the 
allowable marriage combinations so that the resulting dynamic class structure 
can sustain a stable distribution? 

One plausible answer suggests itself immediately. Since the original system 
failed by depleting the lowest class, a balance could probably be attained by 
increasing the birthrate in the lowest class. This seems only logical. We increase 
the regeneration rate of the critical resource that otherwise tends to be 
depleted. In fact, however, this is not a solution to the dilemma. Such an 
increase cannot produce a balanced situation. The problem, nevertheless, does 
have a solution and that solution is achieved, in part, by decreasing the 
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Table 5.2 Marriage Rules and Birth-
rates Father 

A B C 

A A a, 

Mother B B a3 

C B az C a. C a, 

birthrate in the lowest class relative to the other classes. 
Many readers will at first find this result surpnsing, but the analysis that 

follows should be convincing. When the total solution is derived, and when it IS 

discussed in the light of the analysis, it should seem not at all surpnsing. Indeed 
it probably will seem to be the obvious solution after all. 

In order to simplify the analysis a three-class system sufficient to capture 
the general characteristics of the Natchez structure, rather than the full 
four-class system, is investigated. The system is defined by Table 5.2. The three 
classes are now designated by the relatively bland labels A, B, and C. If a label 
appears in a box in the table it indicates that that box corresponds to an 
allowable marriage. The label in the box indicates the class designahOn of the 
offspring. The parameter Q i in the box indicates the (average) birthrate 
associated with that type of marriage, expressed in number of male children 
per marriage. 

Making the usual assumptions that (1) there are an equal number of men 
and WOmen in each class every generation, and (2) there are no intergeneratlOn 
marriages, it is straightforward to write the dynamic equations implied by this 
table. Denote by x1(k), xz(k), and x3(k) the number of males in classes A, B, 
and C, respectively, in generation k. Then we can write immediately, 

x1(k + 1) = QIXl(k) 

Likewise, since class B children result from every class A father and every 
class B mother, we may write 

xz(k + 1) = Qzx1(k) + Q3xz(k) 

Finally, class C children are produced by all class B fathers and by all class C 
fathers except those who marry class A Or class B women. Therefore, 

x3(k + 1) = Q4xz(k) + Qs[x3(k) - xl(k) - x2(k)] 

(5-76) 

which we abbreviate bv x( k + 1) = Ay{ k) 
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Before progressing with the general analysis, let us briefly study the special 
case where a, = 1 for all i, in order to verify that this reduced class system is 
subject to the same disaster as the four-class Natchez system. In this case 

A=[ ~ 
-1 

o 0] 
1 0 
o 1 

Paralleling Our earlier analysis of the fujI Natchez system, we write A = 1+ B 
and note that B2 = O. Thus, Ai< = 1+ kB, which in explicit form is 

o OJ 1 0 
o 1 

Therefore, if XI(O» 0, the solution eventually reaches a stage where x3(k) < 0, 
corresponding to breakdown. Thus, this reduced system captures the essential 
features of the Natchez system. 

Now let us return to the general model with variable birthrates. It is 
helpful to spell out what is required of an acceptable solution to the Natchez 
problem. First, there must be an eigenvector of the system whose components 
are all positive and whose associated eigenvalue is positive. Such an eigenvec­
tor would represent a popuJation distribution that, once achieved, would not 
change with time. The total population would grow at a rate equal to the 
corresponding eigenvalue, but the relative value of the components would not 
change. 

A second requirement on a solution is that the eigenvalue of the eigenvec­
tor described above must be the dominant eigenvalue of the system. Only in 
this way can it be assured that the population distribution, if perturbed from 
this distritution, tends to return to it. Finally, as a third requirement, the stable 
distribution, defined in terms of class members in each generation, must have 
enough members in the lowest class to supply marriage partners for the higher 
classes. In view of these requirements, the problem is reduced to determining 
birthrates such that the A matrix has a suitable dominant eigenvector. 

Since the A matrix is trianguJar, its eigenvalues are the same as the 
diagonal elements al> a 3 , as. (See Problem 16, Chapter 3.) Let us suppose first 
that as> a 3 and as> al> so that as is the dominant eigenvalue. This corres­
ponds to the proposal of increasing the birthrate of the lowest class. The 
eigenvector associated with this eigenvalue must satisfy the matrix equation 
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The first line implies immediately, however, that Xl = 0, and hence any eigen­
vector associated with as cannot have all positive components. Therefore, as 
cannot be the dominant eigenvalue and simultaneously satisfy the other con­
ditions imposed by the problem formulation. The same argwnent can be easily 
seen to apply to the eigenvalue a 3 • 

The only remaining possibility, therefore, is to arrange things so that al is the 
dominant eigenvalue. Let us assume, accordingly, that a l > a3 and a l > as. The 
eigenvector associated with the eigenvalue a l must satisfy the equations 

[ ~2 (a3~al) ~ ] [::] = [~] 
-as (a4-aS) (as-al) X3 0 

The second equation (which is the first nontrivial equality) yields 
a 2 (5-77) 

Since a l > a3, it follows that xz> 0 if Xl> O. The last equation then yields 

Since al-aS>O, it follows that X3>0 if and only if 

-as(a l -a3)+ az(a4 -as» 0 

(5-78) 

Equivalently, for the eigenvector to have all positive components we require 

a l >a3 

al>as (5-79) 

az(a4 - as) > as(a l - a 3) 

If these conditions are satisfied, al will be the dominant eigenvalue and its 
corresponding eigenvector will have positive components. 

It is clear that if a l > a3, and a 2 > 0, a4 > 0, the other two required 
inequalities will be satisfied for small as. This corresponds to having a low 
birthrate in the lowest class. Thus, the Natchez problem is solved by having a 
relatively low lower-class birthrate. 

The above relations, however, are not complete. By themselves they do 
not constitute an acceptable solution to our problem-and it is here that our 
original intuition, that there should be an increase in production of the lower 
class, is in a sense validated. It is necessary to check that in every generation 
there are enough class C members to supply marriage partners for the upper 
classes. In particular, it must hold that 

(5-80) 
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This inequality is an additional requirement to be imposed on the eigenvector 
representing the stable population distribution. Substituting (5-77) and (5-78) 
mto (5-80) produces, after a bit of algebra, the condition 

(a4- a S) _ as (a l -a3) _ (al-a3) -12:0 
(al - as) a2 (a l - as) az 

(5-81) 

All terms on the left-hand side of this inequality, except the first, are negative. 
Therefore, a necessary condition is easily seen to be a 4 > al' Thus, the value of 
a 4 , which represents the indirect production of class C males from the next 
higher class, must be increased in order to compensate for the reduction in the 
direct production. 

A solution to Our problem is given by any set of birthrates satisfying the 
set of inequalities above. For example, al = 1.1, az == 1.0, a 3 = 1.0, a 4 = 1.3, 
and as =.9 works, and has a stable population distribution with proportions 1, 
10, and 15.5. A set of numbers of this form does represent a solution to the 
formal problem posed, although it is, at best, perhaps questionable that a 
society would be able to arrange a set of societal norms producing average 
birthrates that vary among marriage types in a fashion even approximating this 
peculiar pattern. 

Now that the analysis is completed and the answer to our problem has 
been derived, let us review the essence of the analysis to discover that the 
answer is really not so surprising after all. The key to the situation is the simple 
equation xI(k + 1) = alxl(k). The highest class can grow only at the rate al> no 
matter how the other classes grow Or what values are prescribed for other 
parameters. Therefore, growth in the upper class constrains (in fact determines) 
the ultimate growth rate of any population distribution. Or, put another way, if 
One is seeking a steady growth situation (with nonzerO XI), the growth rate 
must be at. 

The fallacy in selecting a large value for as, the birthrate of the lowest 
class, is that if the birthrate is increased enough to avoid depletion, the lowest 
class will ultimately grow at that large birthrate and leave the populations of 
the other classes behind. In relative terms, the other classes will be depleted, 
for they are unable to keep up. There will not be a balanced distribution in 
which all classes grow at the same rate. 

The direct growth rates of all classes must not exceed the growth rate al 
of the constraining class A. On the other hand, to insure that there are 
sufficient members of the lowest class, their indirect production, as offspring of 
the next higher class, must be high enough to compensate for the low birthrate 
in the class itself. This brief analysis suggests, therefore, that a solution 
obtained by reducing a 3 and as with respect to ai' and increasing aM is not 
terribly surpnsing after all! 



5.14 Problems 179 

5.14 PROBLEMS 

1. Verify Eq. (5-2) of Sect. 5.1. 

2. Given the system 

x(k + 1) = Ax(k) 

consider a solution of the form x(k) = A ·x(O) for some fixed vector x(O) and some 
constant A. By substituting thiS form of soluhon into the system equation, find 
conditions that must be satisfied by A and x(O). 

3. Consider the difference equation 

y(k + n)+a._Iy(k + n -1)+' .. + aoy(k) = 0 

As defined in Chapter 2, this equation has the characteristic equalton 

A· +a,.-IA .-1+ ... + ao = 0 

and if Ai is a root of this equation, then y(k) = A ~ is a solution to the difference 
equahon. Write the difference equation In state vector form. Show that the 
characteristic polynomial of the resulting system matflX is Identical to that given 
above. Find an eigenvector corresponding to A, and show that it is eqUivalent to the 
earlier sol uti on. 

4. Find the eigenvalues and eigenvectors of the harmonic motion system and the 
Lanchester model (Examples 2 and 3, Sect. 4.6). Use this mformatlon to (re)calcu­
late the state-transition matnx 10 each case. 

*5. Coordinate Symmetry. Suppose a system has the property that its system matnx IS 

unchanged if the state vanables are permuted in some way. Suppose In particular 
that p-1AP= A, where P represents a change of variable. Show that if e is a system 
eigenvector, then so is Pe. As an example consider the mass and sprmg system 
shown in Fig. 5.11. Formulate the system 10 state vanable form. Identify a 
symmetry and find P. Find the eigenvectors. 

Figure 5.11. Symmetric system. 

6. Convert the migration model of Sect. 5.5 to diagonal form and find the state­
transition matrix. 

7. For the migration model of Sect. 5.5, show that the condition 

Os (3 Smin(_a_,~) 
. 1-,( '( 

is necessary and sufficient in order to guarantee that both urban and rural 
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populations remain nonnegative given any nonnegative initial conditions. Show that 
Os (3 s 2a is an eqUivalent condition. 

8. Consider the following modification of the migration model discussed In Sect. 5.5. 
A third sector, suburban population, is added, and we assume that it is governed by 
s(k+l)=as(k)+8u(k). That is, each year a fraction 8 of the urban population 
moves to suburbia; there is no possibility of a return flow. We modify the other two 
equations to 

r(k + 1) = ar(k) - (3{r(k) - y[r(k) + u(k) + s(k)D 

u(k + 1) = au(k)+ (3{r(k)- y[r(k)+ u(k) + s(k)D- 8u(k) 

Find the eigenvalues and right and left eigenvectors of this three-sector model and 
interpret the results. 

9. Assume that the n x n matrix A has n distinct eigenvalues, A" A2 , ••. , An. Let 
M = [e" e" ... , en] be the modal matrix of A, where eh e" . .. , en are the nght 
eigenvectors. 

(a) Show that 

where fi, fI, ... , f~ are the corresponding normalized ieft eigenvectors. 

(b) Show that A can be expressed as 

(c) Show that 

n 

A" = I A~dT 
,-I 

10. Find the eigenvalues and eigenvectors for the Natchez Indian system (Example 3, 
Sect. 4.4). (There are only two eigenvectors.) From the explicit formula for Ak infer 
what the lengths of the two Jordan chains must be. 

11. Coumot Theory of Duopoly. Duopoly refers to a market structure in which two 
firms compete to serve the industry demand. Since pnce varies with total produc­
tion, it IS clear that each firm must account for the actions of the other when 
determimng its own best productJon level. Various dynamiC processes result, 
depending on the particular strategies employed by the two firms. 
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Suppose the total industry demand in any period is 

d(k} = 200-2p(k} 

where p(k} IS current price. Let q,(k}, q2(k} denote the output levels of the two 
firms. Assuming that the pnce adjusts so as to sell all current output, it follows that 

p(k} = lOO-i[q,(k}+ q2(k)] 

Suppose further that the total cost of production for the two firms are 

CI(k} = 5q,(k} 

C,(k} = iq,(k}2 

Both firms know the demand curve, but each knows only its own cost curve. The 
current profits for the two firms are revenue minus cost; that is, p(k}q,(k) - C,(k) 
and p(k}q,(k}- C,(k}, respectively. 

The Cournot theory is based on the assumption that each firm seiects Its output 
level to maxunize its own profit, using some estimate of its competitor's output. The 
corresponding function, for each firm, expressing the best output levei as a function 
of the estimate of the competitor's output, is called a reaction function. 

(a) Assuming each firm esUDlates Its competitor's output by using its competitor's 
actual output of the previous period, derive two reaction functions In the form 
of two first-order linear difference equations. 

(b) Find the equilibnum outputs of each firm. 
(c) Derive a general solution for even periods and verify your answer to part (b). 
(d) Suppose that both firms estimate each others' output as a simple average of the 

previous two periods in an effort to smooth out the oscillatory response. Show 
that for arbitrary initial conditions, the convergence to equilibrium need not be 
more rapid. (Hint: You need not factor, but you must analyze, the new 
characteristic polynomiaL) 

12. Stackelberg Theory of Duopoly (see above). Stackelberg suggested that one firm 
might increase its profits if it were able to observe its competitor's reaction funCtion. 
Such a firm would then use its competitor's reaction function as its estimate of its 
competitor's output. 

(a) Show that if the first firm substitutes the second firm's reaction function of part 
(a) of the previous problem into its profit equation and maximizes With respect 
to q,(k + 1), then the equilibrium is unchanged. 

(b) In a Stakelberg strategy the two firms are designated leader and follower. The 
leader, knowing the follower's reaction function, reveals its actual planned 
output to the follower. The follower then uses the value supplied by the leader 
in its reaction function to determine its output level. The leader's original plan 
anticipates the follower's response to it. Show that if the first firm is the leader, 
its equilibrium profit is higher than in the Cournot equilibrium. 

13. The Routh Test. There is a simple but powerful test to determine whether a given 
polynomial has any roots in the right half of the complex piane. Consider the 
nth-order polynomial p(A}=a"A"+a,,_IA"-'+" ·+aIA+ao. The Routh array IS 
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then constructed as shown below: 

ao a2 a4 

al a, a, 

bl b2 b, 

C, C2 C, 

In this array the even-numbered coefficients are placed m sequence in the top row 
and the odd-numbered ones in the second row. The elements of the third row are 
found by the cross multiplication formulas 

and so forth. Successive rows are computed from the two proceeding rows using the 
same formula. Finally, when no more rows can be defined, the number of sign 
changes in the first coiumn of the array is equal to the number of roots of p(A) in 
the right half-plane. 

As an exampie, the array for P(A) = -4A 4 + A' +2A 2+ A +4 is 

4 2-4 

-2 -4 

-1 

-4 

ThIS array has one change of sign in the first column, indicating that there is exactly 
one root In the nght half-plane. For each of the following polynomials determine 
how many roots are in the right half-plane: 

(a) A2-2A+l 
(b) A'+4A 2+5A +2 
(c) -2A'-4A4+A3+2A2+A +4 

14. (a) Show that reversmg the order of coeffiCients (repiacmg a; by u,,-;) in the Routh 
test must give the Same result. 

(b) Show that this can be helpful for testing ,\ 6 +,\' + 3'\ 4 + 2A' + 4A 2 + aA + 8 where 
a IS a parameter. 
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15. For stability analysis of discrete-time systems it is necessary to determme whether 
the characteristic equation has all its roots inside the unit circle in the complex 
plane. Consider the transformation from z to A 

z+l 
A=-­

z-l 

(a) How does this transform the unit circle? 
(b) Use this transformation together with the Routh test (Problem 13) to determine 

how many roots of the polynomial z· + 2Z2 + Z + 1 lie outside the unit circle. 

16. MultidimensIOnal Cobweb Theory. The demands for vanous commodities are 
rarely independent. If the pnce of one rises then It is likely that its demand will 
decrease, and the demand for similar commodities, which are partial substitutes, 
will nse. As an example, demand for two commodities might be described by the 
reiatlOn 

d=Ap+do 

where d is a two-dimensional vector of demands, p is a two-dimensIOnal vector of 
corresponding pnces, do is a constant two-dimensIOnal vector, and 

A= [-a 13] 
'Y -/) 

where cr, 13, 'Y, /) are poSitive, and a/) - 13-y'" o. 
As in the standard cobweb model, assume that supply IS determmed from pnce 

with a one period delay 

s(k+1)=So+Ep(k) 

Assume also that the supplies of the two commodities are mdependent, and thus, 
that E is a diagonal matrix With positive diagonal elements. For Simplicity let E = I. 

(a) Equate supply and demand and obtain a dynamic equation for p(k). 
(b) Find the charactenstic polynomial of the matrix A, and determme whether the 

roots are real or complex. 
(c) What condition must be satisfied by the eigenvalues of A 10 order for the 

system in (a) to be asymptotically stable? 
(d) A bundle of goods (Xl> X2) consists of X, umts of the first commodity and X2 

units of the second. The price of the bundle IS q(k) = p,(k)x, + P2(k)X2' For 
cr = 4, 13 = 1, 'Y = 2, and /) = 3, find the bundles whose prices are governed by 
first-order dynamic equations, and display the corresponding equations. Hinl: 
A bundle can be represented as a row vector. 

*17. Suppose that hog farmers 'replace (5-59) in Sect. 5.10 WIth a price estunator of 
the form 

p(k) = ~[p(k)+ p(k -1)+ p(k -2)+ p(k - 3) 

+ p(k -4)+ p(k -5)+ p(k -6)] 



184 Linear Systems with Constant Coefficients 

(a) Show that this leads to the charactenstic equation 

A8 +~[A6+As+A'+A3+A2+A +1]=0 
7 

(b) Given that p is such that the largest root of this equation has magmtude equal 
to one, what is the cycle length corresponding to the root? Hint: Analyze the 
characteristic equation geometrically, on the unit circle. 

(c) What is p? 

18. AnalysIs of Structures. Mechanical structures (bridges, aircraft frames, buildings, 
etc.) are built from materials having some elasticity, and are therefore dynamic 
systems. To determ10e their response to varying forces due to traffic, winds, 
earthquakes, and so forth, it is important to calculate the natural frequencies of 
oscillatIOn. As an exampie, consider a four story building as illustrated 10 Fig. 5.12. 
As an Idealization, assume that the elements of the frame are inextensible and that 
the mass is concentrated in the floors. The floors can be displaced laterally with 
respect to each other, but the bending elasticity of the building frame then 
generates restoring forces. Assuming that all frame members have the same 
elasticity, the force vector f is related to the displacement vector x by f = Kx, where 
K is the stiffness matnx. By Newton's laws, the force also satisfies -f = Mi(t), where 
M IS the mass matnx. In thIS case 

[
1 0 0] 

M=m 0 1 0 

002 

(a) For this structure, show that the natural frequencies of the system are of the 
form w =.fi. where A is an eigenvalue of ~iK. 

(b) In order to be immune to earthquakes, the building should have all Its natural 
frequencies well above 10 cycles/sec. If m = 10' Kg and k = 107 Newtons/meter, 
is thiS an acceptable design? [Note: Using these Untts, w of part (a) is m 
radians/sec.] 

, 
m 

m 

2m 

--E-..!.f.!.l_r-__ ~ ___ X, 

__ --<..12"-1:----+--_ x2 

__ -'t:.:::.3-t----t--i~ x3 

Figure 5.12. A four-story bUilding. 

19. Make the following simplifications in the populatIOn model: 
-WOmen have children between the ages of 15 and 44 mclusive; 
--each woman has exactly one female Child; 
--each woman lives to be at least 45 years old. 
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Using a time interval of 15 years with these assumptions, and considering only those 
females less than 45 years oid gIVes the follOWing model: 

[::i:: ~~] = [~ ~ 
x3(k + 1) 0 1 

l-a][X,(k)] 
o x2(k) 

o x3(k) 

where Os as 1. 

(a) By finding the eigenvalues, determine the growth rate and how quickly the 
population moves to equilibrium. 

(b) What happens as a vanes from 0 to I? 

20. Suppose that a cohort populauon matnx P has been transformed to P, as described 
in Sect. 5.12. If ao+ a, + ... + a,. = 1 (i.e., each woman has approxunately one 
female child In her lifetune), it can be expected that the eigenvaiue Ao is close to 
one. Setting Ao = 1 + e, and using the fact that (1 + elm = 1 + me when € IS small, 
substitute In the charactenstic equation to find an approximate value for e.. 

Estimate € if 

(

.01 
_ 1 
P= 

o 
o 

.78 .25 

o 0 

1 0 

o 1 

*21. Reproductive ValUe. Associated With the dominant eigenvalue Ao of a cohort 
population matrix P, there is a left eigenvector f~ = [fo, f" f2,"" fn). Show that 

fk = t (!3k!3k+l ... !3I-l)a,A~-' 
,-k 

Show that fk can be interpreted as a measure of the total number o~ (female) 
children that a woman in age group k will have, on the average, dunng the 
remainder of her lifetime. Children born in the future are discounted at a rate Ao, 
the natural growth rate of the population. Therefore, a child who will be born I 
time periods later is counted now, not as 1, but as the fraction A;;'. 

The function value 
n 

V=~x(k)= L t.x.(k) 
'-0 

is the total reproductive value of the current population. It IS the total discounted 
number of potentiai children of the present population. Since ~ IS a ieft eigenvec­
tor, it follows that the reproductive value increases by the factor Ao each time 
period, no maner what the population distribunon. Verify this In terms of the 
interpretation of the reproductive value. 

22. Lattice Vibranons. Many of the observed properties of a solid, such as specific 
heat, dielectric properties, optical and sound transmiSSion properties, and electncal 
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• • • • La-l 
Figure 5.13 A monatomic lattice. 

• • 
resistance, are determined in large part by the charactenstic oscillations of the 
atoms that comprise the solid. In a crystal the atoms are arranged in a regular 
pattern, or lattice, that determines the characteristics of the lattice vibrations. As a 
simple example of the kind of relations that can be deduced from the lattice 
structure, consider a one-dimensional monatomic lattice consisting of an mfinite 
linear chain of equally spaced identtcal atoms. (See Fig. 5.13.) Each atom has a point 
mass of m, and the nominal spacing between atoms IS a. If two adjacent atoms have 
a spacing different than a, there is an electnc force proportional to the errOr in 
separation that tends to restore the nominal spacing. The proportionality constant is 
denoted by /3. 

LeI X.(I) denOte the position of the kth atom relative to its nommal position. 
Then using Newton's laws 

MX.(I) = /3[Xk+I(I) - x. (1)]+ /3[x,.-I(I) - X. (I)] 

for k= ... ,-I, 0, 1,2, .... 
As a tnal solution to this infinite set of equations, It is reasonable to suppose 

that each atom vibrates with a common frequency but With different phases. Thus, 
we seek solutions of the form 

Xk(l) = e .... e'· ... 
(a) Find the reiation between wand 0 (a dispersion relation). 
(b) What is the maximum frequency that can be propagated? 
(c) The velOCity of wave propagation is w/O. What is the velOCIty for small 

frequenCies? 

NOTES AND REFERENCES 

Section 5.5. The migration model was developed in collaboration with Stephen Haas. 

Section 5.8. ThIS example is based on McPhee [Mel]. 

Section 5.10. The hog cycle example was developed in collaboration With Thomas 
Keelin. FOr another approach see Meadows [M3]. For background on expectations and 
cycles see Arrow and Nerlove [A3]. 

Section 5.12. The matnx approach to population anaiysis is credited to Leslie [L4] and 
the matrix in the model is itself often called a Leslie matrix. For an excellent treatment 
of population dynamiCS see Keyfitz [K13]. 

Section 5.13. The possibility of changing the birthrates in the Natchez model to avoid 
collapse has been suggested by Fischer [F3]. The analysis m thiS section, however, is 
new. 
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Section 5.14. For an introductory discussion of (nondynamic) aspects of Coumot and 
Stakelberg equilibria (problems 11 and 12) see Henderson and Quandt [H2]. The Routh 
test (Problems 13-15) is sometimes referred to as the Routh-Hurwitz test. Routh and 
Hurwitz obtained different (but essentially equivalent) solutions to the problem of 
determining stability in about 1880. 

The analysis of structures as briefly mtroduced in Problem 18 is a large field of 
application of dynamic systems. See Fertis [F2]. For more on lattice vibrations (Problem 
22) see Donovan and Angress [D2]. 



chapter 6. 

Positive 
Linear Systems 

6.1 INTRODUCTION 

A positive linear system is a linear system in which the state variables are 
always positive (or at least nonnegative) in value. Such systems arise frequently 
since the state variables of many real systems represent quantities that may not 
have meaning unless they are nonnegative. In a cohort population model, for 
example, each variable remains nonnegative and corresponds to the population 
in a cohort class. In many economic systems the variables corresponding to 
quantities of goods remain nonnegative. And in an arms race the level of 
defense is nonnegative. A positive linear system automatically preserves the 
non negativity of the state variables. . 

The theory of positive systems is deep and elegant-and yet" pleasantly 
consistent with intuition. Practically everything that one might hope to extrapo­
late from an understanding of simple first-order systems does, in fact, carry 
over to positive linear systems of arbitrary order. Indeed, just the knowledge 
that the system is positive allows one to make some fairly strong statements 
about its behavior; these statements being true no matter what values the 
parameters may happen to take. It is for positive systems, therefore, that 
dynamic systems theory assumes one of its most potent forms. 

To explain the concept of positive linear systems more fully and more 
precisely, consider the homogeneous discrete-time dynamic system 

x(k+1)=Ax(k) (6-1) 

If the state vector x(k) is nonnegative but otherwise arbitrary [that is, if every 
component of x(k) is nonnegative], under what circumstances can one be 
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certain that the new state vector x(k + 1) will also be nonnegative? Only if the 
elements in the matrix A are each nonnegative. T~ see this, suppose an 
element Cl;j were negative. Then for the nonnegative vector x(k) = (0, 0, . ,0, 1, 
0,0, .. 0) with the one in the ith component, the new vector would have its }th 
component equal to Cl;J, which is negative. Thus, in order to guarantee that a 
nonnegative state leads in turn to a new nonnegative state, the A matrix itself 
must have nonnegative entries. The converse proposition is even easier to see. 
If the elements of A are all nonnegative, then x(k + 1) = Ax(k) is certainly 
nonnegative for every nonnegative x(k). 

A discrete-time linear homogeneous system is therefore defined to be 
positive (or nonnegative) if the elements of its system matrix A are all non­
negative. It logically follows that the theory of such systems is built upon the 
theory of positive matrices-a theory that is remarkably rich. The cornerstone 
of this theory is the famous Frobenius-Perron theorem, which is presented 
in the next section. This theoremplays a fundamental role in mathematical eco­
nomics, dynamics, probability theory, and any linear theory involving positivity. 

Preview of Frobenius-Perron Theorem 

The main result of the Frobenius-Perron theorem is that for a matrix A, all of 
whose elements are strictly positive, there is an eigenvalue of largest absolute 
value and this eigenvalue is in fact positive and simple. Furthermore, there is a 
positive eigenvector corresponding to this positive eigenvalue. 

A major portion of this result can be quickly deduced from a knowledge of 
the general theory of linear time-invariant systems. In terms of dynamic system 
theory, the eigenvalue of largest absolute value corresponds to the dominant 
eigenvalue. Assume that there is a simple, dominant eigenvalue of the matrtx 
A. For large k and almost any initial condition, the solution x(k) to the system 
(6-1) tends to be aligned with the corresponding eigenvector. Since for any 
positive initial state vector the subsequent state vectors will all be positive, it 
follows immediately that the dominant eigenvector, to which the system 
converges, must have positive components and the corresponding eigenvalue 
must be positive. Thus, if there is a simple dominant eigenvalue, it is easy to see 
that it must be positive and must have an associated positive eigenvector. 

The Frobenius-Perron theorem is a refinement of this basic result. It 
guarantees that there is in fact a simple dominant eigenvalue. In view of the 
importance of dominant eigenvalues, the Frobenius-Perron result is clearly of 
great value to dynamic system analysis. 

Some Results on Positive Dynamic Systems 

As stated earlier in this section, the theory of positive linear systems is both 
deep and elegant. It also has strong intuitive content, especially within the 
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context of a given application. It is perhaps helpful, before confronting the 
somewhat lengthy proof of the Frobenius-Perron theorem, to preview, in 
broad terms at least, some of the major results that hold for positive systems. 
Perhaps these results and the variety of classical examples that fall in this 
category will serve as adequate motivation to master the foundation theory. 

The first important property of positive linear systems is that concerning 
the dominant eigenvalue and its associated eigenvector, as described by the 
Frobenius-Perron theorem. The existence and positivity of the dominant 
eigenvalue and eigenvector essentially reduces the computation of long-term 
performance to an eigenvector calculation. 

The second property of positive systems is a remarkable connection 
between stability and positivity. An inhomogeneous positive system, in general, 
mayor may not possess an equilibrium point that itself is nonnegative. From 
the viewpoint of applications only a nonnegative equilibrium is of any real 
interest. There remains, however, the issue as to whether the equilibrium point 
IS stable. For positive systems there is a direct correspondence between 
existence of a positive equilibrium point and stability. Thus, if a positive 
equilibnum point is found, it is stable. Conversely, if the system is stable, the 
corresponding equilibrium point is nonnegative. 

A third major result comes under the heading of comparative statics, 
which is applicable to stable systems. Consider a stable system at rest at its 
equilibrium point. If some parameter of the system is slightly modified, the 
system moves to a new equilibrium point. Comparative statics refers to the 
question of how the change in equilibrium point is related to the parameter 
change that produced it. For general linear systems, of course, not much can be 
said to describe this relationship. For positive systems. however, it can be 
shown that positive changes (such as increasing a term in the A matrix) 
produce corresponding positive changes (increases) in the components of the 
equilibrium points. This result, and others of a similar nature, mean that 
significant qualitative conclusions can be inferred about the behavior of a 
positive system even though the values of the parameters may not be known 
precisely. 

6.2 POSITIVE MAIRICES 

In this section the fact that a positive matrix has a positive dominant eigenvalue 
is established. Before proceeding directly into that development, however, it is 
convenient to introduce some notation for distinguishing positive (and non­
negative) vectors and matrices. 

If A = [aij ] is a matrix, we write: 
(i) A> 0 if Il;j > 0 for all i,j 

(ii) A 2:: 0 if a jj 2:: 0 for all i,j and a jj > 0 for at least one element 
(iii) A ~ 0 if Il;j 2:: 0 for all i,j. 
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These cases are distinguished verbally by stating that (i) A is strictly positive if 
all its elements are strictly greater than zero, (ii) A is positIVe or strictly 
nonnegative if all elements of A are nonnegative but at least one element IS 
nonzero, and (iii) A is nonnegative if all elements are nonnegative. This same 
terminology can be applied to matrices of any dimension (whether square or 
not), but attention is focused in this section on square matrices and on row and 
column vectors. 

These definitions are also used to imply meaning for inequalities of the 
form A2:B. We say A2:B for two matrices A and B of the same dimension if 
A - B 2: O. Similar definitions apply to the other forms of positivity. 

The proof of the existence of a positive dominant eigenvalue of a positive 
(square) matrix A is somewhat indirect. First a positive number is associated 
with the matrix A through examination of a set of inequalities, and it is 
subsequently shown that this number is in fact an eigenvalue of A. 

Let A be a nonnegative n x n matrix; that is, A~O. Consider the set of 
real numbers A such that 

for some x 2: 0 (that is, for some strictly nonnegative vector x). First, It can be 
noted that one number that always works is A = 0; because any x 2: 0 when 
multiplied by A~O must yield a nonnegative vector. Second, it can be seen 
that A cannot be arbitrarily large. This is true because each component of the 
vector Ax is always less than Mx;, where M is the sum of the elements of A 
and Xi is the maximum component of x. Thus, for A> M there can be no x 2: 0 
with Ax~ Ax. Define Ao as the maximum of the real numbers A for which 
Ax~AX is satisfied for some x2:0. In explicit terms· 

AO=max{A: Ax~AX some x2:0} (6-2) 

In view of the earlier observation, it follows that O$Ao<oo. 
The next theorem below shows that, in the case where A is strictly 

positive, the value of Ao defined by (6-2) is a dominant eigenvalue for A. This 
is equivalent to the statement that the inequality in the defining relation for '\0 
is satisfied by equality. 

The proof of this theorem is substantially more difficult than most others 
in the book, and the mechanics of the proof are not essential for later 
developments. It may be appropriate, at first reading, to carefully study the 
theorem statement itself and then proceed directly to the next subsection 
where the statements of Theorems 2 and 3 can be read for comparison. 

1'heorem 1 (Frobenius-Perron). If A>O, then there exists Ao>O and Xo>O 
such that (a) Axo = AoXo; (b) if A;= Ao is any other eigenvalue of A, then 
IAI < Ao; (c) Ao is an eigenvalue of geometric and algebraic multiplicity 1. 

.. A continuity argument can be used to show that the maximum always exists. 
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Proof. (a) Let Ao be defined by (6-2), and let Xo 2:: 0 be a vector corresponding 
tOAo in definition (6-2). That is, let Xo satisfy Axo;;;AoXo. Clearly Ao>O. Since 
A>O, it follows that Ax>O for any x2::0. Therefore, A[Axo-AoXo]>O unless 
Axo = AoXo· Suppose Axo ~ AoXo; then for Yo = AXo> 0 it would follow that 
Ayo - AoYo > 0, or equivalently Ayo> AoYo. But if this were true Ao could be 
increased slightly without violating the inequality, which contradicts the defini­
tion of Ao. Therefore, it follows that AXo = AoXo. Also since Xo ~ 0 implies 
Axo> 0, the equation Axo = AoXo implies that Xo> o. 

(b) Let A;t. Ao be an eigenvalue of A, and let a corresponding nonzero 
eigenvector be y, Ay=Ay. Let Iyl denote the vector whose components are the 
absolute values of the components of y and consider the vector Ajyl. The first 
component of this vector isallIYII+an\Y21+···+al"ly"l. Since the ai/s are 
positive, this sum is greater than or equal to lallYI + a 12 Y2 + ... + al"y"l. Since 
a similar result holds for the other components, it follows that Alyl;;; IAyl. Thus, 
Alyl;;; IAYI = IAllyl. From the definition of Ao it follows immediately that IAI:5,; 
Ao. 

In order to prove that strict inequality holds, consider the matrix As = 
A-51, where 5> 0 is chosen small enough so that As is still strictly positive. 
From the equation (A-5)I-As=H~A, it follows that Ao-5 and A-5 are 
eigenvalues of As. Furthermore, because As is strictly positive, it follows that 
IA - 51:5,; Ao-5, since Ao-5 is the largest eigenvalue of As. However, if IAI = Ao, 
A ;t. Ao (so that only Ao is positive), it follows by direct computation of the 
absolute value (see Fig. 6.1) that IA - 51 > lAo - 51. (The subtraction of 5 affects 
the absolute value of a real number more than a complex one.) This is a 
contradiction. 

Complex plane 

Figure 6.1. Illustration that IA 1= Ao implies IA - III > lAo - ,,"I· 
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(c) To prove that the geometric multiplicity is 1 it must be shown that (to 
within a scalar multiple) Xo is the only eigenvector associated with Ao. Suppose 
there were another. Then, since A is real, there will be a real eigenvector Yo 
that is linearly independent of Xo. Since Xo> 0, it is possible to find a linear 
combination w=aXo+Yo such that W2:0, but not w>O. However, SInce 
Aw= AoW is strictly positive (because A is), we have a contradiction. Therefore, 
the geometric multiplicity of Ao is 1. 

Finally, suppose the algebraic multiplicity is greater than 1. Then, since the 
geometric multiplicity is 1, there must be a Jordan chain of length at least two 
associated with Ao. (See Problem 22, Chapter 3.) Thus, there is a vector z such 
that (A - AoI)z = y and (A - AoI)y = O. In view of what was shown above, y must 
be a multiple of Xo, and thus, without loss of generality it can be assumed that 
(A - AoI)z = Xo. Now let fa be the strictly positive eigenvector of AT corres­
ponding to Ao. Then f5 is a left eigenvector of A and we have 

° =f5(A - AoI)z= f5Xo 

But f5Xo is positive because both fo and Xo are strictly positive. We have a 
contradiction, and can therefore conclude that the algebraic multiplicity is 1. I 

Extensions to Nonnegative Matrices 

Many of the results presented in the above theorem for strictly positive 
matrices can be extended to nonnegative matrices. We state two alternative 
formulations without proof. 

The first is a direct extension showing that strict positivity of A can be 
replaced by strict positivity of a power of A. 

Theorem 2. Let A~O and suppose Am >0 for some positive Integer m. Then 
cone/usions (a), (b), and (c) of Theorem 1 apply to A. 

The second alternative is the corresponding theorem for an arbitrary 
nonnegative matrix. In this case the conclusions are weaker. 

Theorem 3. Let A~O. Then there exists Ao2:0 and Xo2:0 such that (a) 
Axo=AoXo; (b) if A;eAo is any other eigenvalue of A, then IAI:5,;Ao. 

There are other versions of this type of theorem that impose requirements 
lying somewhere between simple non negativity and strict positivity of a power 
of A. (See, for example, Problem 10, Chapter 7.) 

Example 1. Consider the following five nonnegative matrices: 

A,=G~] A2=[~ 

A3= [~ ~] 
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The matrix AI is strictly positive so Theorem 1 applies. Indeed Ao = 2 is the 
simple dominant eigenvalue. The matrix A2 is not strictly positive, but A~ > o. 
Thus, Theorem 2 applies and indeed Ao = (1 + v's)/2 is the simple dominant 
eigenvalue. In the last three cases, no power of A is strictly positive. For A3 the 
dominant eigenvalue is Ao= 1, but there is not a unique eigenvector. For A4 
the two eigenvalues are A =-1,1, so the positive eigenvalue is not strictly 
greater in absolute value than the other eigenvalue. For As the dominant 
eigenvalue is Ao = 0, and it has ge~metric multiplicity 1 but algebraic multiplic­
ity 2. 

Bounds on Ao 

The eigenvalue Ao2::0 associated with a nonnegative matrix A in Theorems 1, 2, 
and 3 above IS referred to as the Frobenius-Perron eigenvalue of A. A useful 
set of bounds can be derived for the value of '\0, expressed in terms of either 
the row or column sums of the matrix A. These bounds can be used to obtain a 
quick numerical estimate of Ao for a given nonnegative matrix, and they are 
useful in some theoretical investigations. 

Let A be a nonnegative matrix with largest eigenvalue Ao. Let Xo = 
(XI> X2, • •• , xn) be the corresponding positive eigenvector, and for convenience 
assume that this eigenvector is normalized such that I~~I X; = 1. We have 
AXo = AoXo, or in detail 

allXI + al2x2 + ... + a1nXn = AoXl 

a21 xI + a22x 2 + ... + a2nXn = AoX2 

Summing these n equations we obtain 

Alxl +A2X2+··· +An~ = Ao(XI +X2+·· .+~) 

where Ai denotes the sum of the elements in the ith column of A. Recalling the 
normalization of Xo, there results 

Ao = A1X1 + A2x2 + ... + Anxn 

Therefore, Ao is a weighted average of the column sums. Since the average 
must lie between the two extremes, we obtain the useful bounds 

Min Ai :5,; Ao:5,; Max Ai . . 
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The same argument can be applied to the matrix AT, which has the same 
Ao as A. This yields the bounds 

Min a i :5,;Ao:5,;Maxai , , 

where now ai is the sum of elements in the ith row of A. 

Example 2. Consider the strictly positive matrix 

A= [~ ~] 
Since the column sums are both 5 it follows that Ao = 5. The row sums are 3 
and 7. The eigenvector associated with Ao can be found from (eIther of) the 
equations 

Thus, Xo = (1,2). 

-4x1 +2x2 =O 

4x l -2Xc2=O 

Example 3. Consider the positive matrix 

A:[! ~ ;] 
which is in companion form. The column sums show that 1:5,; Ao:5,; 11. The row 
sums, however, yield the tighter bounds 2:5,; Ao:5,; 6. Actually, in this case Ao = 3. 
The corresponding eigenvector is Xo = (2,2,1). 

6.3 POSITIVE DISCRETE-TIME SYSTEMS 

The theory of positive matrices can be applied directly to positive linear 
dynamic systems, and yields some surprisingly strong conclusions. 

Dominant Eigenvector Analysis 

An obvious role of the Frobenius-Perron theorem in dynamic system 
analysis is its guarantee that a positive system has a nonnegative dominant 
eigenvalue. The general theory of linear time-invariant systems, discussed in 
Chapter 5, reveals the importance of this eigenvalue (and its eigenvector) as 
determining the long-term behavior of the system. 

Consider, in particular, a homogeneous positive discrete-time system of 
the form 

x(k + 1) = Ax(k) (6-3) 
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with A strictly positive, or Am strictly positive for some m 2:: 1. As k ~oo the 
solution to (6-3) is approximately equal to 

x(k) = aA~Xo 

where Ao is the Frobenius-Perron eigenvalue of A, Xo is the corresponding 
positive eigenvector, and a depends on the initial condition. As an example, 
the system matrix for the cohort population model is nonnegative. (Indeed 
under suitable assumptions some power of the matrix is strictly positive.) We 
can conclude immediately (as in Sect. 5.12) that it must have a positive 
dominant growth rate and a corresponding positive population eigenvector. 

Nonhomogeneous Systems and Stability 

Consider now a nonhomogeneous system of the form 

x(k + 1) = Ax(k) + b (6-4) 

Such a system is said to be nonnegative if A~O and b~O. It is easy to see that 
these conditions on the matrix A and the vector b exactly correspond to the 
condition that the solution to (6-4) be nonnegative for any nonnegative initial 
vector x(O). It is pretty clear that these conditions are sufficient. And, to see 
that b~O is necessary, just assume x(O)=O. To see that A~O is necessary, 
consider large positive x(O)'s. Therefore, the requirement that A ~ 0 and b ~ 0 
in (6-4) is consistent with our earlier motivation. 

The nonhomogeneous system (6-4) may have an equilibrium point i 
satisfying 

i=AX+b (6-5) 

Indeed if I - A is nonsingular, there is always a unique equilibrium point. 
However, an equilibrium point satisfying (6-5) may not itself be a nonnegative' 
vector. Clearly, within the context of positive systems, interest focuses mainly 
on nonnegative equilibrium points, and accordingly an important issue is to 
characterize those positive systems having nonnegative equilibrium points. 

A related, but apparently separate issue, is whether a given equilibrium 
point is stable. In fact, however, for positive systems these issues are essentially 
identical: if the system (6-4) is asymptotically stable, its equilibrium point is 
nonnegative; and conversely if there is a nonnegative equilibrium point for 
some b>O, the system is asymptotically stable. This remarkable result is stated 
formally below. 

Theorem 1. Given A~O and b>O, the matrix A has all of its eigenvalues 
strictly within the unit circle of the complex plane if and only if there is an 
i~O satisfying 

i=AX+b (6-5) 
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Proof. Suppose first that A has all eigenvalues inside the unit circle. Then I - A 
is nonsingular and a unique i satisfies (6-5). Since the system (6-4) is asymptot­
ically stable, any solution sequence converges to i. However, given any ,,(0) ~ 0 
the solution sequence satisfies x(k) ~ 0 for all k 2: O. Thus i ~ O. (Note that this 
part of the theorem is true with b~O.) 

Conversely, suppose there is i~O satisfying (6-5). Since b>O, it must 
follow that actually i>O. Let Ao be the Frobenius-Perron eigenvalue of A, and 
let f~ be a corresponding left eigenvector, with f~ 2:0. Multiplication of (6-5) 
by f~ yields 

(1- Ao)f~i = f~b 

Since both fJi and 101), are positive, it follows that Ao < 1. Thus, all eigenvalues 
of A are strictly within the unit circle of the complex plane. I 

'-

Although the above theorem is quite strong in that no similar statement 
holds for general linear time-invariant systems, the result is consistent with 
elementary reasoning. If a positive system is asymptotically stable, its equilib­
rium point must be nonnegative since every solution converges to it, and yet 
every solution that is initially nonnegative remains nonnegative. 

Example 1 (Population Model with Immigration). Suppose 

x(k+ 1) = Ax(k) +b 

represents a cohort population model. The A matrix corresponds to the usual 
cohort matrix and is nonnegative. The vector b represents immigration. The 
components of b are positive and represent the one-period inflow of the 
various cohort groups. 

If A is asymptotically stable (corresponding to a popUlation system that 
without immigration would eventually be reduced to zero), then there will be a 
positive equilibrium population distribution when there is immigration. If A is 
unstable (corresponding to an inherently growing population system), there will 
be no nonnegative equilibrium population distribution when there is immigra­
tion. (The system equations may have an equilibrium point-but it will not be 
nonnegative.) The results of this simple example are in accord with our 
intuitive understanding of the behavior of a population system. Theorem 1 
translates this intuition into a general result. 

Inverses 

A property of positive matrices, which is closely related to the stability result 
above, is that, for real values A, the matrix A1- A has an inverse that is itself a 
positive matrix provided that A> Ao. This result, which is an important and 
useful part of the theory of positive matrices, can be regarded as an instance 
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where posltlve matrices are the analog of positive numbers. In this case 
the numerical statement being: if a > 0, then [A - a)-I> 0 if and only if A > a. 

Let us first establish a useful lemma. 

Lemma on Series Expansion of Inverse. If A is a matrix with all eigenvalues 
strictly inside the unit circle, then 

(6-6) 

Proof. Assume first that the series on the right converges to a matrix B. Then 
we find that 

[I-A]B=I+A+A2+ ... 
-A-A2-A3 - ••• 

=1 
Thus, B=[I-Ar'. 

To see that the series does converge, consider first the case where A can 
be put in diagonal form, say 

M-1AM=A 

where A is diagonal. Then Ak =MAkM- 1 and the series (6-6) is made up of 
various geometric series of the form A;", where the Ai'S are the eigenvalues of 
A. These series converge, since it is assumed that IAi 1< 1. If A is not 
diagonalizable, there may be series of the form At', kA/', k 2 >..;", ...• kn-l>..;k. 
Again these converge. I 

Theorem 2. Let A be a nonnegative matrix with associated Frobenius-Perron 
eigenvalue Ao. Then the matrix [AI - Ar ' exists and is positive if and only if 
A>Ao· 

Proof. Suppose first that A> Ao. Clearly A> 0, since Ao 2:: O. The matrix A = 
AlA has its eigenvalues all less than 1 in absolute value. By the above lemma 

[AI-A]-'=.!.[I-Ar=.!.(1+~+ A2 + ... ) 
A A A A2 

Thus, [AI-Ar' exists, and it is positive since every term of the series 
expansion is nonnegative. 

To prove the converse statement, suppose A <Ao. Let Xo2::0 be an eigen­
vector corresponding to Ao. Then Axo2::AXo. Or equivalently [AI-AlXo+p=O 
[for some p2::0. If [AI-A]-l exists, then [AI-A]-lp= -Xo. Thus, since p2::0, 
[AI - A]-' cannot be positive. I 

Example 2. For the matrix 

A= [! ~] 
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considered in Example 2 of Sect. 2, we know Ao = 5. We can compute 

[6I-At 1 =[_! -~rl=M! ~] 
which is positive as expected, since 6> A. However, 

which is not positive, since 4<Ao. 

6.4 QUALITY IN A HIERARCHY-THE PETER PRINCIPLE 

A simple, although somewhat satirical, observation concerning organizational 
hierarchies is the famous Peter Principle: "A man rises until he reaches his 
level of incompetence." This principle has been used to explain our frequently 
frustrating perception that most important jobs seem to be held by incompe­
tent individuals. According to the Peter Principle, the hierarchical promotion 
structure effectively guides people toward incompetent positions. where they 
remain. Thus, by the nature of the hierarchical structure, a perception of 
incompetent performance is inevitable. 

A hierarchy can be considered to be a positive dynamic system. Once this 
notion is formalized, it is possible to introduce detailed assumptions on the 
hierarchical promotion patterns and "logically deduce the corresponding quality 
pattern. 

From a dynamic systems viewpoint the study of these structures is some­
what novel. Rather than focusing on the time evolution of the dynamic system, 
consideration is directed at movement up the hierarchy. In other words, the 
steps of the hierarchy serve the role that steps in time usually serve. Quality is 
considered as the state, which changes as it moves up the hierarchical structure. 

Consider a hierarchy consisting of n levels. Level 1 is the lowest, while 
level n is the highest. Within each level there are m types of individuals, 
characterized by m degrees of performance, or degrees of quality, at that level. 
Here the indexing is in the opposite direction, with 1 being the best type and m 
the poorest. (See Fig. 6.2.) A given individual in any given year k is therefore 
characterized by his level i within the overall hierarchical ladder and by his 
quality index j, which rates him with his colleagues at the same hierarchical level. 

During the course of one year, each individual may either remain at a 
given level, be promoted to the next higher level, or leave the system. During 
that year he may also have changed his quality type. For example, if he remains 
in the same hierarchical level, he might rise in performance due to longer 
experience; or, if he is promoted, his performance level might fall, since he is 
(presumably) in a more difficult job. 
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1 Best 

F 
3 

2 Quality types 

Bottom 

Organtzatlonal levels 

Figure 6.2. Structure of hierarchy 

Corresponding to year k we let x(k) be the vectOr with n x m components 
that describes the population (or the expected popUlation) in each level and 
quality type. The vector x(k) can be written in partitioned form as 

xltk) 

x2(k) 

x(k) = 

where the ith component vector 

x:;(k) = 

has components specifying the number of individuals at level i of various 
performance type. Thus X;j(k) denotes the number of individuals in year k at 
level i and of quality type j. During the course of a year, the population at level 
i is modified according to two transition matrices. First, there is a recycling 
matrix R that defines the new quality distribution of those who are not 
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promoted. The matrix R, is a nonnegative matrix whose elements are the 
fractions of those individuals of various quality type who remain in the ith level 
and end up with new quality designations. The two extreme cases are R j = I, 
meaning everyone remains at level i with exactly the same quality designation, 
and R; = 0, meaning everyone either leaves or is promoted. In general, R,X;(k) 
represents the contribution to xj(k + 1) from those who were not promoted. 

Second, there is a prOltwrion matrix PHI that, in a similar way, defines the 
proportions of individuals of various quality types who are promoted from level 
i and end up with new quality designations at level i + 1. This matrix is also 
nonnegative. 

The population vector corresponding to level i is, according to these 
definitions, governed by x,(k + 1) = P jXi_1(k) + Rjxi(k). Therefore, the entire 
process is governed by the transition matrix 

Rl 

P2 R2 

A= 
P3 R3 

(6-7) 

Pn Rn 

If we assume that new individuals enter the system only at the lowest level wIth 
quality distribution described by the m-dimensional vector Yo, then the entire 
process is governed by the dynamic equation 

~ 
where 

x(k + 1) = Ax(k) +b 

o 
b= 0 

o 
This is the general model, and it IS a positive linear system. 

(6-8) 

The sum of the elements in the jth column of the component matrix 

[
R 1 

P:+.J 
represents the total fraction of those individuals in level i and of quality type 1 
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who eIther remain in level i or are promoted. We assume that there is always 
some attrition, so the column sums are less than unity. It follows from the 
bound of Ao in terms of column sums (in Sect. 2) that Ao < 1. Therefore, this 
system is asymptotically stable. It then follows (by either Theorem 1 or 2 of 
Sect. 3) that the solution tends toward a unique equilibrium distributIon 

(6-9) 

Quality Distribution 

In order to address the issues raised at the beginning of this section, we are less 
concerned with the time pattern on the way to equilibrium than with the 
quality distribution of the equilibrium itself. With this in mind, we set out to 
define a recursive relation between quality at one level and quality at the next 
higher level. 

Assume now that the recycling and promotion matrices do not change with 
level. That is, R = R, P, = P for all i. The equilibnum distribution x is made up 
of component m-vectors; that is, x = (Xl> x2 , ••• , xn), where each Xi is the 
equilibrium population vector of quality types at the ith level. Writing out (6-8) 
one finds that the component equilibrium vectors satisfy 

(I-R)xI 

-Pil + (I-R)X2 

-Px2 +(1 -R)X3 

=Yo 

=0 

=0 

-PXn - 1 +(I-R)xn =0 

Thus, the Xi'S are defined recursively by 

Xl = (I - R)-lyo 

Xi+l = (I-R)-lPi, 

This is a linear dynamic system (indexed by hierarchy level) with system matrix 
(I-R)-IP. 

Since the column sums in R are each less than one, it follows (from 
Theorem 2, Sect. 3) that (I - R)-l is positive. Then since P is nonnegative, the 
product (I - R)-l P is nonnegative. In most cases of mterest, this matrix, or 
some pOSItive power of it, will in fact be strictly positive. Then, the Frobenius­
Perron eigenvalue of this matrix is strictly dominant, and thus for large values 
of i, the vector x, will be approximately aligned with the corresponding 
eigenvector eo of (I - R)-IP. The magnitude of eo is somewhat arbitrary and 
really not too important. We are mainly interested in the relative distribution 
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of quality types (the relative values of the components of eo) rather than the 
absolute magnitudes. 

Example. Suppose that at each hierarchical level there are two types of 
performance quality, competent and incompetent. Suppose the recycling and 
promotion matrices are 

R= [.6 .1] 
o .7 ' p= [:~ .~] 

This would seem to be a fairly effective system. As is seen by summing the 
elements in the columns of P, three times as many competent individuals are 
promoted as incompetents. And once a competent individual is promoted, 
there is a two to one chance that he immediately will be competent at the 
higher level. An incompetent person Can become competent with an extra 
year's experience, but there is a seven to one chance that he will not. Since the 
sum of the first column elements in Rand P is .9 and the sum of the second 
column elements is also .9, it follows that 10% of both the competent and the 
incompetent individuals leave the system each year (except from the highest 
level in the organization where more leave). The system seems to do a 
reasonable job of holding back incompetence and rewarding competence. Let 
us carry out a detailed analysis. 

By direct calculation we find 

r: 
This last matrix, which 
polynomial 

I [4 -31] I-R=iii 0 

[I-R]-l=~ [~ !] 
[I-R]-IP=i2 G !] 

is the interlevel transition matrix, has characterIstic 

(7 -12A.)(4-12A)-4 = (12A.)2-11(12A.) +24 

= (12A. -3)(12A. -8) 

Thus, the largest eigenvalue is 
A.o = 8/12 

(This Can also be inferred directly from the fact that in this example both row 
sumS of [I - Rr1p are equal to 8/12.) The corresponding eigenvector can be 
fomid to be 

eo= [~] 
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Therefore, at the highest levels of the hierarchy one can expect that the 
quality distribution is about equally divided as between competent and incom­
petent individuals. At the lower levels, on the other hand, the distribution is 
determined by the character of the input of new recruits Yo. In particular, the 
distribution in the first level is 

Xl = (I - R)-IVO 

Because the ratio of the second largest to the largest eigenvalue is t the 
equilibrium quality distribution will be achieved quite rapidly-that is, at fairly 
low levels. Assuming 

the resulting equilibrium population is shown in Table 6.1. We see that despite 
the fact that three times as many competents are promoted as incompetents, 
the average number of competents is only 50% at the highest levels. 

Table 6.1 Quality DistributIon in a Hierarchy 

Level 

0 2 3 4 5 

Competents 10 25.83 15.35 9.76 6.39 4.23 
Incompetents 1 3.33 9.72 8.36 6.04 4.14 

Total 11 29.16 25.07 18.12 12.43 8.37 
% Competents 90.9 88.6 61.2 53.9 51.4 50.5 

6.5 CONTINUOUS-TIME POSITIVE SYSTEMS 

Practically everything derived for discrete-time positive systems has a direct 
analogy in continuous time. The structure of continuous-time positive systems 
is slightly different because the system matrix relates the state to the derivative 
of the state (and the derivative need not be positive) but the character of the 
results is virtually identical in the two cases. 

In continuous time, attention focuses on Metzler matrices. A real n x n 
matrix A is a Metzler matrix if ll;j 2:: 0 for all I;t. j. In other words, A is a Metzler 
matrix if all nondiagonal elements are nonnegative. 

We say that a homogeneous continuous-time system 

i(t)= Ax(t) (6-11) 

is positIve if A is a Metzler matrix. This condition on (6-11) is equivalent to the 
requirement that the system preserve nonnegativity of the state vector. To 
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verify this we note that to insure that x(t) remains nonnegative it is necessary 
that .i;(t)~O whenever .\:;(t)=O for i = 1, 2, ... , n. That is, if x(t) is on the 
boundary of the positive region its direction of movement cannot be such as to 
take it outside that region. This imposes the requirement that /1;/ ~ 0, i,e j. Thus, 
aij ~ 0, i,e j is a necessary condition for non negativity of solutions. To show 
that this condition is also sufficient, we note that the stronger condition /1;j > 0, 
i,ej is certainly sufficient, for in that case .\:;(t)=O implies .i;(t»O [unless 
x(t) = 0). Therefore, the solution, starting from any nonnegative initial condi­
tion, ~ill remain nonnegative. Since the solution depends continuously on the 
parameters aij, it follows that the weaker condition aij ~ 0, i,e j is also sufficient. 
Thus, the requirement that A be a Metzler matrix represents the natural 
extension of positivity to continuous-time systems. 

Metzler matrices are obviously closely related to nonnegative matrices. 
Suppose A is a Metzler matrix. Then for some suitable constant c > 0, the 
matrix P = cI + A is a nonnegative matrix. The matrix P has a Frobenius­
Perron eigenvalue Ao ~ 0 and a corresponding positive eigenvector Xo. It 
follows immediately that 1L0 = Ao - c is an eigenvalue of the Metzler matrix A 
and that Xo is a corresponding eigenvector. The eigenvalue 1L0 is real, and in 
fact it readily follows from the nature of Ao that 1L0 is the eigenvalue of A 
with largest real part. (See Fig. 6.3.) By adding cI to A as above, it is possible 
to translate virtually all results for nonnegative matrices to equivalent results 
for Metzler matrices. In particular, o~e obtains: 

Theorem 1. Let A be a Metzler matrix. Then there exists a real 1L0 and an 
Xo ~ 0 such that (a) AXo = lLoXo; (b) if 1L,e 1L0 is any other eigenvalue of A, 
then Re(lL) < 1L0. 

Proof. As outlined above, this follows from Theorem 3, Sect. 2. The strict 
inequality in (b) holds even if IAI =Ao in Fig. 6.3. I 
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Figure 6.3. Illustration that "'0 is eigenvalue of largest real part. (a) Eigenvalues 
of P. (b) Eigenvalues of A. 
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As with positive matrices, stronger versions apply if strict positivity as­
sumptions are Introduced. 

The real eigenvalue lLo of Theorem 1 above, being the eigenvalue of 
greatest real part, is the dominant eigenvalue of A in the sense of continuous­
time systems. Therefore, this eigenvalue and its corresponding positive eigen­
vector play roles analogous to the Frobenius-Perron eigenvalue and eigen­
vector in discrete-time systems. 

Equilibrium Points and Stability 

The results relating equilibrium points and stability for nonhomogeneous con­
tinuous-time positive systems are again analogous to the discrete-time case. A 
system of the form 

i(t)=Ax(t)+b (6-12) 

is positive if and only if A is a Metzler matrix and the vector b is nonnegative. 
Again these requirements correspond directly to the condition that the system 
preserves nonnegativity of the state vector. 

The system (6-12) may have an equilibrium point i satisfying 

0= Ai+b (6-13) 
As in the discrete-time case, however, interest focuses mainly on nonnegative 
equilibrium points, and, just as before, it turns out that existence of a 
nonnegative equilibrium point satisfying (6-13) essentially corresponds to the 
asymptotic stability of the continuous-time system (6-12). This connection 
between stability and existence is a powerful and useful result. Its validity for 
both discrete- and continuous-time systems makes it a fundamental result of 
positive systems. 

We simply state the continuous-time version of the stability theorems. 
They can be easily proved by translating A to a nonnegative matrix P = cI + A 
and then using the results in Sect. 3. 

" Theorem 2. Given a Metzler matrix A and a b>O, the matrix A has all of its 
eigenvalues strictly within the left half of the complex plane if and only if 
there is an i;::: 0 satisfying 

O=Ai+b 

Theorem 3. Let, A be a Metzler matrix. Then -A -1 exists and is a positive 
matrix if and only if A has all of its eigenvalues strictly within the left half 
of the complex plane. 

6.6 RICHARDSON'S THEORY OF ARMS RACES 

It has often been argued vehemently in natIOnal forumS that armaments are 
insurance against war. A defenseless nation, so the argument goes, invites war 
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by its weakness. Argued by both sides of two potentially opposing nations, thIs 
type of perhaps good-intentioned defensive logic can lead to a spiral of defense 
build-ups, one nation responding for its own protection to the armament 
build-ups of another nation. This is the arms race phenomenon. 

Lewis F. Richardson, in a thirty-year study of war, proposed and de­
veloped a series of linear dynamic models of arms races. His study has become 
a classic example of the potential of dynamic system analysis in the study of 
social phenomena. It is, in fact, one of the earliest comprehensive applications 
of linear dynamic systems to the study of a social system. 

The theory, and indeed the entire approach, is not without what are 
perhaps severe limitations. The proposed dynamic model is ~erely a crude 
summary description of what is by nature a complex pattern of many individual 
actions, and the description may not be valid in every case. However, the 
approach does have a certain element of validity and it provides an avenue for 
the formal development and exploration of some important concepts related to 
arms races. 

The Two-Nation Model 

In this model two competing nations (or perhaps two competing coalitions of 
nations) are denoted X and Y. The variables x(t) and y(t) represent, respec­
tively, the armament levels of the nations X and Y at time t. The general form 
of the model is i(t) = ky(t) - ax(t) + g 

y(t) = [x(t) - (3y(t) + h 

In this model, the terms g and h are called "grievances." They encompass the 
wide assortment of psychological and strategic motivations for changing arma­
ment levels, which are independent of existing levels of either nation. Roughly 
speaking, they are motives of revenge or dissatisfaction, and they may be due 
to dissatisfaction with treaties or other past political negotiations. The terms k 
and [ are called "defense" coefficients. They are nonnegative constants that 
reflect the intensity of reaction by one nation to the current armament level of 
the other nation. It is these coefficients, associated with the motives of fear and 
rivalry, that can cause the exponential growth of armaments commonly as­
sociated with arms races. Finally, a and (3 are called "fatigue" coefficients. 
They are nonnegative constants that represent the fatigue and expense of 
expanding defenses. The corresponding terms in the dynamic equations have 
the effect of causing a nation to tend to retard the growth of its own armament 
level; the retardation effect increasing as the level increases. 

The system matrix is 

A= [-a k] 
[ -(3 
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which is a Metzler matrix. We therefore can apply the theory of positive 
systems to this case. 

Let us first ask whether the system possesses an equilibrium point; that is, 
whether there are levels of defenses for the two nations that, if established, will 
be maintained indefinitely. For the two-nation model we can carry out the 
required calculations explicitly. We set the time derivatives to zero, arriving at 
the equations 

0= kYo-axo+g 

0= Ixo- (3yo+ h 

for the equilibrium values Xo and Yo. These equations can be solved to yield 

(3g + kh 
Xo=---

a(3 -kl 

ah+lg 
Yo= a(3-kl 

This shows that unless a(3 = kl there is an equilibrium point. We note, 
however, that if all constants are nonnegative (most particularly the "griev­
ances" g and h, since the others are always assumed to be nonnegative), the 
equilibrium point will correspond to nonnegative defense levels if and only if 
a(3 - kl >0. 

According to the general theory of positive systems, we expect this condition 
to be identical to the condition of stability. Let us verify directly that this is so. The 
eigenvalues of the system are the roots of the characteristic equation 

or, 

or, 

I,\+a -kl=o 
-I '\+(3 

(,\ +a)('\ +(3)-kl =0 

,\ 2 +(a + (3)'\ +a(3 -kl = 0 

As the reader can verify (using for example the Routh test, Problem 13, 
Chapter 5), both roots are in the left half-plane if and only if all coefficients are 
positive. In this case this condition reduces to a(3 - kl > O. Thus, the model is 
stable if and only if a(3 - kl > O. 

This stability condition has an intuitive meaning within the context of the 
arms race situation. The quantity kl is the product of the two "defense" 
coefficients, and represents the tendency to perpetrate the race. The term a(3 is 
the product of the two "fatigue" coefficients, and represents the tendency to 
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limit defense build-ups. Instability results when the overall "defense" term 
outweighs the "fatigue" term. 

If the grievances g and h are nonnegative, then the condition for stability 
is equivalent to the condition that the process have a nonnegative equilibrium 
point. Thus, according to this model of an arms race between two nations, if 
one seeks to avoid instability, it is sufficient to try to promote changes which 
guarantee a nonnegative equilibrium, for that equilibrium will automatically be 
stable. 

Multi-Nation Theory 

The multi-nation theory is a straightforward generalization of the two-nation 
model. However, because explicit computation in terms of the parameters is 
infeasible in the general case, the general theory of positive systems is invalu­
able. Also, in the multi-nation model there is the possibility of coalitions, either 
explicit or implicit, that enriches the scope of analysis. 

Suppose there are n nations. Let X; denote the defense level of the ith 
nation. The model for defense dynamics is 

.. 
.tj(t) = g. + L k,jXj(t) i=1,2, ... , n 

1=1 

As before the numbers g. represent "grievances." The k,j for i Y£ j are "de­
fense" coefficients, and the k,i represent "fatigue." For convenience we often 
denote k,j = -Uj • It is assumed that k,j 2: 0 for i Y£ J and that U j > O. In vector 
notation the model takes the form 

i(t)=g+Kx(t) 

where the notation should be obvious. 
It is easy to solve for the equilibrium point by equating the time deriva­

tives of the model to zero. This yields the equilibrium Xo, 

Xo=-K-1g 

which existS-provided that K is nonsingular. This equilibrium point mayor may 
not, however, correspond to nonnegative defenses. 

The rate of growth of the vector x in the model is governed primarily by 
the eigenvalue of K with the largest real part. Since the system is positive, the 
eigenvalue of greatest real part is real and has a corresponding nonnegative 
eigenvector. If this eigenvalue is positive the system is unstable. Furthermore, 
if g >0, it follows from the general theory that the condition for asymptotic 
stability exactly corresponds to that for the existence of a nonnegative equilib­
rium. 
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Coalitions 

Let us consider the eigenvalue having the smallest real part. This real part must 
be negative since the trace of the matrix K is negative. (See Problem 15, 
Chapter 3.) For the moment we assume that this root is real (though it need 
not be) and that it is a simple nonrepeated root. Let us denote this eigenvalue 
by A". Let f~ be the corresponding left eigenvector. This eigenvector defines a 
composite normal variable z" (t) = f~x(t) that behaves according to a first-order 
dynamic system. Indeed, multiplication of the system equation by f~ yields 
i" (t) = A"Z" (t) +f~ g. The exponential associated with this variable is eA.', which 
is the fastest term in the behavior of the total system. Thus, Z" (t) approaches its 
equilibrium value -f~g/ A" quickly, relative to the speed at which the system as 
a whole approaches equilibrium. Therefore, as an approximation, the variable 
Z" can be considered to be constant throughout the duration of the arms race. 

Since the eigenvector f~ must be orthogonal to the right eigenvector 
corresponding to the dominant eigenvalue, and that eigenvector is nonnegative, 
we can deduce that the eigenvector f~ cannot have all positive components. 
Generally, then, the components divide into two groups--corresponding to 
positive and negative components (zero valued components are ignored). These 
groups can be thought of as each comprising an alliance, with each country 
weighted by the coefficient in the left eigenvector. As the system progresses, 
the arms levels of these two groups increase together, at the same rate, 
maintaining a constant difference in total defense capability. Each group keeps 
up with the other group. Thus, the arms race can be considered as primarily 
being a race between the two alliances, with additional adjustments within an 
alliance. 

A Ten-Nation Example 

Richardson has suggested several ten-nation models, each assumed to be a 
reasonable representation of the world in 1935. The K matrix for one model is 
shown in Table 6.2. In this example, the eigenvalue of greatest real part is 
A1 = 0.2687. The corresponding (normalized) left eigenvector is [0.17011, 
0.18234, 0.14102, 0.51527, 0.23095, 0.42807, 0.30557, 0.09696, 0.12624, 
0.54510]' This is clearly an unstable arms race. 

'The eigenvalue with smallest real part is AlO = -2.25. Its corresponding 
left eigenvector has weights as follows: France, 0.588; U.S.S.R., 0.449; 
Czechoslovakia, 0.179; Great Britain and Northern Ireland, 0.140; U.S.A., 
0.046; Poland, -0.006; China, -0.015; Japan, -0.178; Italy, -0.238; Ger­
many, -0.557. These weights seem to give a fairly accurate picture of the 
alignment of nations in 1935 with France at one pole, and Germany at the 
other. 
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Table 6.2. Richardson's Ten-Nation Model 

1 2 3 4 5 6 7 8 9 10 

1 Czecho- -10 0 0 2 0 0 0 1 0 0 
slovakia 

2 China 0 -10 0 0 0 0 4 0 0 2 
3 France 0 0 -18 4 0 4 0 0 0 0 
4 Gennany 4 0 4 -10 2 0 0 1 0 8 
5 G. Britain 0 0 0 4 -15 6 2 0 0 0 

and N.!. 
6 Italy 0 0 2 0 4 -5 0 0 0 2 
7 Japan 0 4 0 0 0 0 -10 0 4 4 
8 Poland 1 0 0 1 0 0 0 -10 0 1 
9 U.S.A. 0 0 0 2 2 2 4 0 -7 2 

10 U.S.S.R. 0 2 0 8 2 2 4 1 0 -10 

6.7 COMPARATIVE STATICS FOR POSITIVE SYSTEMS 

The term comparative statics refers to an analysis procedure that focuses on the 
equilibrium point of a dynamic system, and how that equilibrium point 
changes when various system parameters are changed. This form of analysIs 
ignores the actual path by which the state of the dynamic system moves to its 
new equilibrium; it is concerned only with how the new point is related to the 
old point, not on the means by which it is attained. Essentially, in this 
approach, the dynamic aspect of the system is suppressed, and the analysis 
reduces to a study of the static equations that determine the equilibrium point. 

One aspect of the actual dynamic structure of the system, however, must 
be considered if a comparative statics analysis is to be meaningful. Namely, the 
system must be stable. If the new equilibrium point is not stable, it is patently 
inconsistent to ignore the path to the new equilibrium point-that is, to regard 
the path as something of a detail-when without stability the state may not 
even tend toward the new equilibrium point. Therefore, implicit in any 
cornp"rative statics investigation is an assumption of stability. In this connec­
tion the intimate relationship between stability and existence of positive 
equilibrium points for positive systems discussed earlier, in Sects. 6.3 and 6.5, 
forms a kind of backdrop for the results on comparative statics of this section. 

Positive Change 

Consider the linear time-invariant system 

x(k +1) =Ax(k)+b (6-14) 
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where A ~ 0, b ~ O. Assume that the system is asymptotically stable and has the 
unique nonnegative equilibrium point i. We investigate how i changes if some 
elements of either the matrix A or the vector b (or both) are increased. 

As a concrete example, let us consider an arms race, as discussed in Sect. 
6.6. Suppose all nations are in equilibrium. and then one nation increases its 
grievance coefficient or one of its defen"e coefficients, but not by so much as to 
destroy stability. It seems pretty clear that after all nations readjust, and a new 
equilibrium is achieved, the arms levels of all nations will be no less than 
before. That is, the change in equilibrium is nonnegative. This is indeed the 
case, and is a rather simple consequence of positivity. The general result is 
stated below in Theorems 1 and l' for discrete-time and continuous-time 
systems. 

Theorem 1. Suppose i and yare, respectively, the equilibrium points of the two 
positive systems 

x(k+l)=Ax(k)+b 

y(k+l)=Ay(k)+b 

(6-15) 

(6-16) 

Suppose also that both systems are asymptotically stable and that 
A~A, b~b. Then Y~i. 

Proof. Actually it is simplest to prove this result by considering the full 
dynamic process, rather than just the equilibrium points. Suppose for some k 
there holds y(k)~x(k)~O. Then 

y(k + 1) == Ay(k) +b 

~Ay(k)+b 

~Ay(k)+b 

~Ax(k)+b=x(k+l) 

Thus, y(k)~x(k) implies y(k+l)~x(k+l). Suppose, therefore, that the two 
systems (6-15) and (6-16) are initiated at a common point, say O. Then 
y(k)~x(k) for all k. Since both systems are asymptotically stable, these 
sequences converge to the respective unique equilibrium points y and i. 
Clearly y~i. I 
Theorem 1'. Suppose i and yare, respective/y, the equilibrium pOints of the two 

positive systems 

x(t) = Ax(t)+b 

y(t)=Ay(t)+b 

Suppose also that both systems are asymptotically stable and that 
A~A, b~b. Then y~i. 
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Proof. Let c > 0 be detennined such that A + cI E; 0 and A + cI E; O. Define 
P=I+A/c, P=I+A/c. If 1L0 is the dominant eigenvalue of A, then Ao= 
1 + lLoic is the Frobenius-Perron eigenvalue of P. Since 1L0 < 0, it follows that 
Ao < 1 and thus the positive matrix P has all its eigenvalues strictly within the 
unit circle. Likewise, so does P. 

The equation O=Ai+b implies 0= (Ai+b)/c, which can be written 
i=Pi+b/c. Likewise y=:Py+b/c. The conclusion now follows from Theorem 
1. I 

These two companion results, although somewhat simple in tenns of 
mathematical content, embody a good portion of the theory of positive 
systems, and put it in a fonn that is easy to apply and that has strong intuitive 
content. The fact that the results have a qualitative character, rather than a 
computational character, means that the statements can be applied to general 
classes of applications, without the need for numerical parameter values. 

Component of Greatest Change 

It is possible to develop a much stronger version of the above result. The 
stronger result gives qualitative infonnation on the relative changes of the 
various components of the state vector for certain kinds of parameter changes. 

An nth-order positive dynamic system is defined in terms of n difference 
or differential equations-one for each state variable. Suppose now that some 
parameters in the ith equation are increased, while the parameters in all other 
equations remain unchanged. From Theorem 1, above, if the system remains 
stable, all variables will be at least as large at the new equilibrium as at the old 
equilibrium. In addition, we might expect that the ith variable, corresponding 
to the equation in which the parameters were increased, might in some sense 
be more greatly affected than other variables. 

As an example, let us again consider the arms race situation. If a grievance 
or defense coefficient of one nation is increased, this will induce nonnegative 
changes in the arms levels of all nations. It can be expected, however, that the 
nation which experienced the direct change in its coefficient will be more 
greatly affected than other nations. That is, the change in arms level of that 
nation should in some sense be larger than for other nations. Actually, the 
percentage increase of that nation is at least as great as the percentage change 
of other nations, and it is this conclusion that generalizes to arbitrary asymptot­
ically stable positive systems. In the theorem below, this is expressed by stating 
that the ratio of new component values to old component values is greatest for 
the ,dmponent corresponding to the modified equation. 

Theorem 2. Let i>O and y>O be, respectively, the equilibrium points of the two 
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positive and asymptotically stable systems 

x(k + 1) = Ax(k) +b 

y(k + 1) =Ay(k)+1) 

in discrete time, or of 

i(t)=Ax(t)+b 

Ht) = Ay(t) +1) 

in continuous time. Assume that in either case A ~ A, I) ~ b but that 
£Ii; = ail and bi = b; for all j and all if' r. Then 

~r2:~ for all i 
x.. Xi 

Proof. We prove the theorem only for the discrete-time case, leaving the 
continuous-time version to the reader. 

Assume first that b > O. For each f = 1,2, ... ,n define AI = Y/~. From 
Theorem 1, Aj 2: 1 for all j. Let A = max{Aj, j == 1,2, ... , n}. We must show that 
>... = A. Suppose to the contrary that for some i, Ai = A > Ar 2: 1. Then by the 
definition of y, 

n 

Yi = I tlijYj+bi 
/=1 

= f ailYj+bi 
/=1 

or 

Aji; = f aijA/ij + bi 
/-1 

Thus, 

However, since A/Ai S 1 for all j and since Ai> 1, it follows that 

i; < f aijxj +bi 
/=1 

which contradicts the definition of i;. 
If b is not st~ctly positive, consider the equations 

i(e) =Ai(e)+b+ ep 

y(e)=Ay(e)+I)+ep 
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where p>O. The solutions i(e) and y(e) depend continuously on e. For any 
e > 0 the earlier result gives 

y,(e) y;(e) 
--::>-- for all i 
x,(e) - x;(e) 

Then by continuity this is true also for e = O. I 

6.8 HOMANS-SIMON MODEL OF GROUP INTERACTION 

An important contribution to sociology is the theory of group interaction 
originally developed in qualitative and verbal form by George C. Homans, and 
later interpreted in the sense of a dynamic system model by Herbert A. Simon. 
It is a good example of how mathematical formulation can play an effective 
role as a medium for theory development even though the associated model 
probably cannot be used in explicit form in a given situation. 

Consider a social group whose behavior at any time t can be characterized 
by the following variables: 

[(t)-the intensity of interactIOn among the members 
F(t)-the level of friendliness among the members 
A(t)-the amount of activity carried on by members within the group 
E(t)-the amount of activity imposed on the group by the external environ-

ment. 

These variables are, of course, at best aggregate characterizations of 
certain aspects of group behavior. Interaction, for example, is composed of the 
various interactions among members in subgroups of two or more, and it like 
all other variables is somewhat difficult to quantify in terms of observed 
phenomena. Nevertheless, the verbal definitions associated with these variables 
are sufficiently descriptive to elicit a general notion of what is meant. Thus, in 
viewing two groups of the same size it is possible to tell whether one displays 
significantly more friendliness than another. 

Homan's original verbal postulates relating these variables are: 

(a) group interaction is produced by group friendliness and by group activity; 
(b) friendline~ tends to increase if group interaction is greater than that which 

would normally be associated with the existing level of friendliness; and 
(c) the level of activity carried on by the group tends to increase if either the 

actual friendliness or the imposed activity is greater than that which is 
"appropriate" to the existing level of activity. 

A dynamic model translating these postulates is defined by the followmg 
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three equations: 

I(t) = aIF(t) + azA(t) 

F(t) = b[I(t) - (3F(t)] 

A(t) = cl[F(t)- 'YA(t)] + cz[E(t)- A(t)] 

(6-17a) 

(6-17b) 

(6-17c) 

All constants in these equations are assumed to be positive. This particular 
model is linear, and although more complex versions can be constructed, this 
version is sufficient to illustrate the type of conclusions that can be inferred. 

The Equilibrium Point 

As posed, the system is not quite in standard form. It consists of two dynamic 
and one static equation. It is a simple matter, however, to eliminate the 
variable I(t) to obtain an equivalent description in terms of two dynamic 
equations: 

F(t) = b[(ac (3)F(t) + azA(t)] 

.A(t) = CIF(t) -(CI 'Y + cz)A(t) + czE(t) 

(6-18a) 

(6-18b) 

This is a positive linear system, since all nondiagonal coefficients are positive. 
For this system, interest focuses most particularly on the equilibrium point 

associated with a constant E. Accordingly, assume that the parameters of the 
system are related in such a way that a positive equilibrium point exists. The 
equations for the equilibrium point (F, A) are 

0= -({31 - al)F + azA 

0= cIF-(cl'Y + cz)A +czE 

The first can be solved to yield 

(6-19a) 

(6-19b) 

(6-20) 

This shows that for a positive equilibrium point one must first of all impose the 
condition 

{3 >al 

Equation (6-20) can be substituted into (6-19b) to yield 

( 
({3-a l») 

(c1'Y+cz)-a-z--cl F=czE 

Therefore, the additional condition for a positive equilibrium point is 

(CI'Y + cz)({3 - a l)- azcl >0 

(6-21) 

(6-22) 
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From the general theory of positive systems, it follows that together (6-21) and 
(6-22) also guarantee that the equilibrium point is asymptotically stable. 

Comparative Statics 

As an explicit model of a particular group this model is obviously of limited 
value. The model is intended, rather, t<;> be a general, but modest, theoretical 
statement on the dynamics of group behavior. If one agrees that some model of 
this general character is representative of group behavior, even though specific 
parameter values cannot be assigned, it is possible to apply the theory of 
positive systems to obtain some interesting general qualitative conclusions. 

Let us suppose that a certain group is in equilibrium, with positive values 
of friendliness F and activity A. The equilibrium must be asymptotically stable. 
Suppose now that the externally imposed activity E is increased. How will the 
new equilibrium point compare to the original one? First, by Theorem l' of 
Sect. 5.7, both group friendliness and activity are expected to increase. Second, 
by Theorem 2, activity will most likely increase more (on a percentage basIs) 
than friendliness. 

6.9 PROBLEMS 

1. Let A;;;B ;;;0, and let Ao(A) and Ao(B) denote the corresponding Frobemus-Perron 
eigenvalues. Show that Ad(A) 2: Ao(B). 

2. Find the largest eigenvalues and corresponding eigenvector of the matrix 

[: : :] 
3. A certain psycho-physio-economist has developed a new universal theory. The 

theory hinges on the properties of a "universal matnx" whose entries have the sign 

"=rure iII~'m'oo ~ow, V = [; : : ] 

He has examined scores of specific matrices of this structure (using real data!) and 
has found in each case that there was a positive eigenvalue. Will thiS be true In 

general? [Hint: Look for a change of variable.] 

4. Use the lemma on series expansion of the inverse to evaluate 
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*5. Let A be a strictly positive n x n matrix. Define /Lo as the mInImum of real numbers 
for which 

for some x 2: O. That is, 

/Lo= min {/L: /Lxe:Ax,somex2:0} 

Show that /Lo = Ao, the Frobenius-Perron eigenvalue of A. 

6. It can be shown that a nonnegative matrix A has Ao< 1 if and only if all principal 
minors of B=J-A are positive; that is, 

b,,>O, Ib" bt21>0 
b2t b22 ' 

b" bt2 bl3 

b2t b22 b23 >0, ... IBI>O 

b31 b32 b33 

Use this criterion to determine whether the matrix 

[

! 0 !] 
A= ~ ! ~ 

! 0 } 

has all eigenvalues inside the unit circle. 

7. The Leontief input-output model is described by a set of equations of the form 

x=Ax+c 

(see Sect. 3.1). Show that there is a feasible production vector x2:0 corresponding 
to any demand vector c2:0 if and only if the Frobenius-Perron eigenvalue of A is 
less than unity. 

8. Let A be a positive n x n matrix and b be a positive n-vector. Suppose the system 

x(k+1)=Ax(k)+b 

has an equilibrium point x. Suppose also that the system is initiated at a point x(O) 
such that x(O);:;; x. Show that x(k);:;; x for all k 2: o. 

9. Show that in Theorem 1, Sect. 3.3, the hypotheses on A and b can be changed to 
A>O, b2:0. 

10. Moving Average. Suppose two initial numbers are given and successive numbers 
are computed as the average of last two. For example, with 1 and 3, we generate 
the sequence 

1, 3, 2, 2!, 2t 2t ... 

Note that the sequence seems to be converging, but not to the average of the 
original two numbers (which is 2). 

(a) Formulate this process in state-space form. 
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(b) The system matrix A you obtained should be positive but not strictly positive. 
What is the Frobenius-Perron eigenvalue >"o? 

(c) Is the system asymptotically stable? 
(d) What are the right and left eigenvectors corresponding to >"o? 
(e) What is the general formula for the limiting value of a sequence of this kmd, 

expressed in terms of Its first two terms? For the example given, what is the 
limIting value? 

(f) Now generalize to an nth-order average. That is, n initial numbers are gIven 
and successIve numbers are the averages of the last n numbers. What is the 
formula for the limit? 

11. In purest form the Peter Principle seems to imply two special features of a 
promotional system: (a) once reaching a level of incompetence an individual never 
again will be competent, and (b) an incompetent person is never promoted. Show 
that, in the case where the promotion and recycling matrices are constant, these two 
assumptions Imply that the distributiOn of competents and incompetents is the same 
at every level except the first. 

12. The Board of Directors of the company, having the hierarchy structure of the 
example in Sect. 6.4, was disheartened at the revelation that 50% of its employees 
at upper levels of management were incompetent. The Board therefore engaged the 
services of two management consulting firms to seek advice on how to improve the 
situation. One firm suggested that the promotion policies be tightened up to avoid 
promoting incompetents. They outlined a program of regular interviews, testmg, 
and peer evaluation that they claimed would screen out essentially all incompetents 
from promotIon. (In our terms this proposal would change P by replacing the 
element in the lower right corner by zero.) 

The second consulting firm suggested that the screening was already adequate, 
but that what was required was the initiation of employee training. They outlined a 
program of motivation enhancement, internal courses, and so forth. They estimated 
that, with a modest effort, they could increase the number of incompetents who 
become competent at their job over a one-year period from the present rate of one 
out of eight to a rate of two out of eight. They argued that such a program would 
significantly affect the quality of the upper levels. If both proposals were about 
equally costly to implement, which should the Board select? Will either plan 
drastically affect the ratio of the number of people at successive levels (near the 
top)? 

l3. Solution of Partial Differential Equations. Partial differential equations arise fre­
quently in the study of fluids, electromagnetic fields, temperature distributions, and 
other continuously distributed quantities. As an example, the electric potential V 
within an enclosure is governed by Laplace's equation, which in two dimensions is 

a2 v a2 v 
-+-=0 ax2 ay2 

Most often V is specified on the boundary of the enclosure and (*) must be solved 
for V inside. (See Fig. 6.4a.) 
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Figure 6.4. Laplace's equation. (a) Continuous. (b) Discrete grid. 

To solve this problem numerically, an approximating problem IS defined by 
establishing a finite grid of points within the enclosure, as illustrated 10 Fig. 6.4b. 
The second derivatives in Laplace's equation are then approximated by fimte 
differences. Thus, at point 2 the approximation is 

a2 y 
-2 =(Y3- Y2)-(Y2 - V,) = Yi + Y3-2Y2 ax . 

Correspondingly, at poIOt 2, 

a2 y a2 y 
-2 +-2 = Y, + Y3+Y6 +b2 -4Y2 ax ay 

Thus, (*) translates to the requirement that each grid value should equal the average 
of its four neighbors. Wntten at each interval gnd point, the system takes the form 

AV+b=O 

where V is the vector of unknown potentials, and b consists of various (known) 
boundary values. Note that A=B-4I, where B2:0. Also B">O, for large n. 

(a) Show that b2:0 implies V2:0. 
(b) For large numbers of points (e.g., several hundred) It is usually best to solve the 

system iteratively. For example, the procedure 

4V(k + 1) =BV(k)+b 

is implemented by setting each new grid value equal to the average of the old 
grid values around it. Show that this procedure converges to the solution. 

* 14. Balanced Growth in an Expanding Economy. ConSider an economy consisting of n 
sectors. Its output y(k) in any period is used, at least in part, as input for the next 
penod. A simple description of such an economy is that successive y(k)'s must 
satisfy 

y(k) ii;;; Ay(k + 1) 

where A IS a stnctly positive lOput-output matnx, with an interpretation sllnilar to 
that of the example 10 Sect. 3.1. Suppose that a goal is to expand the economy as 
rapidly as possible; that is, to increase all components of y as rapidly as possible. 
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Since there is no need to produce more output than can be used as input in the next 
period, the economy will satisfy 

y(k)=Ay(k+1) 

The expansion rate during period k is 

r = min Yi(k + l)/Yi(k) 

and thus, y(k + 1);;;; ry(k). 

(a) For a one period problem, maximal expansIon is attained by selectmg y(O) and r 
wIth rAy(O)~y(O) such that r is maximal. Find rand y(O). (See Problem 5.) 

(b) Show that the maximal one period expansion rate can be maintained for all 
periods, and all sectors increase at the same rate. (This growth pattern is called 
balanced growth.) 

15. Let B be an n x n matrix with bit 2: 0 for i;i j. Suppose there is a z 2: 0 such that 
Bz<O. Show that B has all its eigenvalues in the left half-plane. 

16. Let A and B be mXr and rXm matrices, respectively. Assume both A ana Bare 
nonnegative. Then AB and BA are square nonnegative matrices of dimensIOn 
m x m and r x r, respectively. Show that AB and BA have the same Frobemus­
Perron eigenvalue. 

*17. Suppose that in an n-nation arms race the nations are explicitly divIded mto two 
alliances, of m and n - m nations. The matnx K of defense and fatigue coefficients 
has the structural fonn 

K= [-I A] 
B -I 

representing the fact that defense coefficients "'I are zero if i and j belong to the 
same alliance. The fatigue coefficients are all unity, just for simplicity. The matrices 
A and B are mX(n-m) and (n-m)Xm, respectIvely, and are both strictly 
posItive. 

The object of this problem is to relate this explicit structural defimtlon of an 
alliance to the somewhat implicit characterization used in conjunction wIth the 
interpretation of the eigenvector corresponding to the minimal eigenvalue of K. In 
particular, show, in this case, that the eigenvalue of K having minimal real part IS 10 

fact negative, and that the left eigenvector corresponding to this eigenvalue has the 
fonn 

xT = [xi,-xD 

where x,>O, X2>0 and x" X2 are of dimenSIon m and n-m, respectively. 

18. Suppose the positive system 

x(k+1)=Ax(k)+b 

IS asymptotically stable ana has equilibrium pomt i> O. Suppose b IS changed by 
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increasing a smgle positive component b; to b; +Dob" Dob; >0, and let X+Dox denote 
the corresponding new equilibrium point. Show that 

DoX. Dob; 
-<-
i; - b

i 

*19. Embedded StatiCs and Positive Systems. Consider the system 

X=AIX+A2Y 

O=A3x +A4Y 

where x is n dimensional, y is m dimensional, and At. A2 , A3 , and A4 are 
n x n, n x m, m x n, and m x m, respectively. Assume A;I exists. This system is 
equivalent to the reduced system 

Let 

A= [AI A2] 
A3 A. 

(a) Show that A being Metzler does not imply that Al - AlA;' A3 is Metzler. 
(b) Show that if A is Metzler and stable and A. IS asymptotIcally stable, then 

Al - A2A;' A3 is both Metzler and stable. 
(c) Explain how this result relates to the Homans-Simon model of group interac­

tion. 

NOTES AND REFERENCES 

Section 6.2. The theory of positIve matnces goes back to Perron [P2] and Frobenius 
[F4]. The theory has been extended in several directions and applied in many areas, 
most particularly in econonucs. The proof presented here is due to Karlin [K7]. For 
another approach see Nikaido [N1]. FOr a good general diSCUSSion of nonnegative 
matrices see Gantmacher [G3]. 

Section 6.3. The results On the inverse of I - A have long been an integral component 
of the theory of positive matrices. The form and mterpretation given here, as relating 
stability and positivity of equilibrium points, closely ties together the theories of positIve 
and Metzler matrices. 

Section 6.4. The Peter Principle itself is described in nonmathematical terms in Peter 
and Hull [P3]. The quantitative model presented in this section follows Kane [K6], 
although the subsequent analysis is somewhat different. 

Section 6.5. Matrices with positive off-diagonal elements have long been known to be 
implicitly included ,.,ithin the theory of positIVe matrices. It is now standard, however, 
following the practice m economics, to refer to them as Metzler matrices [M4]. 

Section 6.6. Lewis F. Richardson developed his approach to the analysIS of arms races 
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during the period of about 1919 to 1953. His book Arms and Insecunty [R3] was 
published posthumously in 1960, edited by Nicolas Rashevsky and Ernesto Trucco. In 
the preface to the book Kenneth E. Boulding is quoted as follows: 

Lewis Richardson's work in 'poliucometncs' (if I may coin a word for it) has all the 
marks of what might be called, without any sense of disparagement, 'amateur gemus.' 

The work is unusual not only in its creative approach to the subject matter, but also its 
remarkable insight into pnnciples of dynamiCS. The only major techmcal inSight we 
might add is that embodied by the theory of positive matrices-a subject that was 
apparently unfamiliar to Richardson. For a summary and critique of Richardson's work 
see Rapoport [R2] and Saaty [SI]. 

Section 6.7. The malO result on comparative statIcs, in the form of Theorem 2, is due 
to Monshlma [M7]. Also see Sandberg [S3]. 

Section 6.8. See Homans [H4] and Simon [S5]. 

Section 6.9. The conditions in Problem 6 are generally referred to as the HawklOs­
Simon conditions [HI]. Problem 14 is a Simplified version of the von Neumann model of 
an expanding economy [V2]. The result of Problem 18 IS contamed in Morishlma [M7]. 



chapter 7. 

Markov Chains 

MarkOv chains represent a special class of dynamic systems that evolve 
probabilistically. This class of models, which can be regarded in part as a special 
subclass of positive linear systems, has a wide vanety of applications and a 
deep but intuitive body of theory. It is an important branch of dynamic 
systems. 

A finite Markov chain can be visualized in terms of a marker that jumps 
around among a finite set of locations, or conditions. The transition from one 
location to another, however, is probabilistic rather than deterministic. A 
classic example is weather, which can be classified in terms of a finite number 
of conditions, and which changes daily from one condition to another. The 
possible positions for the process are termed "states." Since there are only a 
finite number of states, the structure of finite Markov chains appears at first to 
differ substantially from the standard dynamic system framework in which the 
state is defined over an n-dimensional continuum. However, the probabilistic 
evolution of a Markov cham implies that future states cannot be inferred from 
the present, except in terms -of probability assessments. Thus, tomorrow's 
weather cannot be predicted with certainty, but probabilities can be assigned to 
the vanous possible conditions. Therefore, in general, future evolution of a 
Markov process is described by a vector of probabilities {for occurrence of the 
varIOUS states}. This vector, and its evolutIon, is really the essential description 
of the Markov chain, and it IS governed by a linear dynamic system in the sense 
of earlier chapters. The first part of this chapter develops thiS framework. 

The vector of probabilities is a positive vector, and, accordingly, the 
dynamic system describing a Markov chain is a positive linear system. The 
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results on positive linear systems, particularly the Frobenius-Perron theorem, 
thus imply important limiting properties for Markov chains. If the Frobenius­
Perron eigenvector is strictly positive, all the states are visited infinitely often 
and with probabilities defined by the components of this eigenvector. 

In many Markov chains, the Frobenius-Perron eigenvector is not strIctly 
positive, and perhaps not unique. This has important implications in terms of 
the probabilistic context, and raises a series of important issues. To analyze 
such chains, it is necessary to systematicaIIy characterize the various possible 
chain structures. This leads to new insights in this useful class of mOdels. 

7.1 FINITE MARKOV CHAINS 

A finite Markov chain is a discrete-step process that at any step can be 10 one 
of a finite number of conditions, or states. If the cham has n possible states, it 
is said to be an nth-order chain. At each step the chain may change from Its 
state to another, with the particular change being determined probabilistically 
according to a given set of transition probabilities. Thus, the process moves 
stepwise but randomly among the finite number of states. Throughout this 
chapter only stationary Markov chains are considered, where the transitlon 
probabilities do not depend on the number of steps that have occurred. 

Definition. An nth-order Markov chain process is determmed by a set of n 
states {51, 52, . - . , 5n } and a set of transition probabilities Pij, i = 
1,2, ... ,n. 1 = 1, 2, . - . , n. The process can be in only one state at any 
time instant. If at time k the process is m state 5 i , then at hme k + 1 it win 
be in state 5j with probability Pij' An initial starting state is specified. 

Example 1 (A Weather Model). The weather in a certain city can be charac­
terized as being either sunny, cloudy, or rainy. If it is sunny one day. then sun 
or clouds are equally likely the next day. If it is cloudy, then there IS a fifty 
percent chance the next day wiII be sunny, a twenty-five percent chance of 
continued clouds, and a twenty-five percent chance of rain. If it is rammg, it 
will not be sunny the next day, but continued rain or clouds are equally likely. 

Denoting the three types of weather by S, C, and R, respectIvely, this 
model can be represented by an array of transitIon probabilities: 

S C R 
S 1 1 0 2 2: 
C 1 1 1 

2: 4 4 
R 0 1 1 

2: 2: 

This array is read by going down the left column to the current weather 
condition. The corresponding row of numbers gives the probabilities associated 
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.25 

.5 .5 

Figure 7.1. The weather chain. 

with the next weather condition. The process starts with some weather condi­
tIon and moves, each day, to a new condition. There is no way, however, to 
predict exactly which tranSItion will occur. Only probabilistic statements, 
presumably based on past experience, can be made. 

The weather model can be alternatively described In terms of a diagram as 
shown in Fig. 7.1. In general in such diagrams, nodes correspond to states, 
and directed paths between nodes indicate possible transitions, with the proba­
bility of a given transItion labeled on the path. 

Example 2 (Estes Learning Model). As a simple model of learning of an 
elementary task or of a small bit of information, it can be assumed that an 
individual is always in either of two possible states: he is in state L if he has 
learned the task or material, and in state N if he has not. Once the individual 
has learned this one thIng, he will not forget it. However, if he has not yet 
learned it, there is a probability a, 0 < a < 1 that he will learn it during the next 
time period. This chain is illustrated in Fig. 7.2. 

1-0< 

Figure 7.2. Learning model. 

This idealized learning process is a two-state Markov chain having 
transition probabilities 

L N 
L 1 0 
N a 1-a 

Example 3 (Gambler's Ruin). The gambler's ruin problem of Chapter 2 can be 
regarded as a Markov chain with states corresponding to the number of COInS 
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p p p 

Figure 7.3. Gambler's ruin. 

or chips held by player A. As a specific example, suppose both players beglll 
with Just two chips, and suppose the probability that A wins in any turn IS p, 
while the probability that B wins is q = 1- p. There are five possible states, 
corresponding as to whether player A has 0, 1, 2, 3, or 4 chips. The transition 
probabilities are 

o 123 4 
0 1 0 0 0 0 
1 q 0 P 0 0 
2 o q 0 P 0 
3 o 0 q 0 P 
4 o 0 0 0 1 

and this structure is shown in Fig. 7.3. The process IS imtiated at the state: 
corresponding to two chips. 

Stochastic Matrices and Probability Vectors 

The transition probabilities associated with a Markov chain are most COnve­
niently regarded as the elements of an n x n matrix 

Pi1 PI2 Pin 

P21 P22 P2n 
p= 

Pnl Pn2 .•. Pnn 

It is clear that all elements of a P matrix associated with a Markov chain are 
nonnegative. Furthermore, it should be observed that the sum of elements 
along any row is equal to 1. This is because if the process is in state i at a given 
step, the probability that it goes somewhere during the next step must be 1. A 
square matrix P with these properties is often referred to as a stochastic matnx. 

A vector IS a probability vector if all its components are nonnegative and 
sum to 1. A fundamental relation between stochastic matrices and probability 
vectors is that if xT is a row probability vector and P is a stochastic matnx, then 
the row vector xTp is also a probability vector. (The reader is asked to verify 
this in Problem 1.) Thus, stochastic matrices can be thought of as natural 
transformations in the realm of probability vectors. 
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The Multistep Transition Process 

If an nth-order Markov chain with transition matrIX P is initiated in state S" 
then after one step it will be in state Sj with probability Pi;' This fact can be 
characterized by stating that the probabilities of the various states after one 
step are the compC'nents of the row vector 

[Pi! Pi2 Pin] 

which is a probability vector. This vector is itself obtained by multiplication of 
P on the left by the special degenerate row probability vector 

[0 ... 1 ... 0] 

where the 1 is in the ith place. 
Suppose now that we look at the Markov process after two steps. Begin­

ning in a given imtial state S, the process will after two steps end up at some 
state Sj. The overall transition from Si to Sj is governed by two applications of 
the underlying transition matrix. To work out the details, let p~~) be the 
probability that starting at state Si the process will move to state Sj after t)Vo 
steps. If it were known that the process would go to state Sk after the first step, 
we would have 

pll) = Pk; 

However, the probability that the state is Sk after one step is Pik' Summing 
over all possible first steps we obtain 

n 

p~f) = I PikPkj = [P21i 

This calculation shows that the probability plf) is equal to the ijth element of 
the matnx p2 Thus, the two-step transition matrix is P2. 

In a similar way, the transition probabilities for m steps are defined by the 
elements of the matrix pm. We write, for notational convenience, pli) for the 
ijth component of pm, and recognize that it is also the probability of going 
from Si to Si in m steps. 

Much of the above discussion can be expressed more directly in terms of a 
natural association between a Markov chain and a standard dynamic system. 
Let X(k)T be an n-dimensional row vector with component Xj' j = 1,2,. ., n 
corresponding to the probability that the state at step k will be equal to Sj' If 
the process is initiated in state S;, then X(O)T is the unit vector with a one in the 
Ith coordinate position. Successive probability vectors are generated by the 
recursiOn 

(7-1) 

We recognIZe (7-1) as a standard, linear time-invariant system, except that it is 
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expressed in terms of row rather than column vectors. (By using pT instead of 
P the system obviously could be expressed in terms of columns. However, it IS 

standard convention to work with the row formulation in the context of 
Markov chains.) 

It must be emphasized that the X(k)T vector is not really the state of the 
Markov process. At each step the state is one of the n distinct states 
SI> S2, .. - , Sn. The vector X(k)T gives the probabilities that the Markov process 
takes on specific values. Thus, the sequence of X(k)T does not record a 
sequence of actual states, rather it is a projection of our probabilistic knowl­
edge. 

It is possible to give somewhat more substance to the interpretation of the 
vector X(k)T by imagining a large number N of independent copies of a given 
Markov chain. For example, in connection with the Estes learning model we 
might imagine a class of N students, each governed by identical transltlon 
probabilities. Although the various chains each are assumed to have the same 
set of transition probabilities, the actual transitions in one chain are not 
influenced by those in the others. Therefore, even if all chains are il11tiated in 
the same corresponding state, they most likely will differ at later times. Indeed, 
if the chains all begin at state Si, it can be expected that after one step about 
Npil of them will be in state SI> Npi2 in state S2, and so forth. In other words, 
they will be distributed among the states roughly in proportion to the transition 
probabilities. In the classroom example, for instance, the X(k)T vector, al­
though not a description of the evolution of any single student, IS a fairly 
accurate description of the whole class in terms of the percentage of students m 
each state as a function of k. From this viewpoint Markov chains are closely 
related to some of our earlier models, such as population dynamiCS, promotions 
in a hierarchy, and so forth, where groups of mdividuals or objects move mto 
different categories. 

Analytical Issues 

Wh'.,n viewed in terms of its successive probability vectors, a Markov chain is a 
lin";,, dynamic system with a positive system matrix. Thus, it is expected that 
the :;[rong limit properties of positive systems playa central role in the theory 
of Markov processes. Indeed this is true, and m this case these properties 
describe the long-term distribution of states. 

In addition to characterization of the long-term distribution, there are 
some important and unique analytical issues associated with the study of 
Markov chains. One example is the computation of the average length of time 
for a Markov process to reach a specified state, or one of a group of states. 
Another is the computation of the probability that a specified state will ultimately 
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be reached. Such problems do not have direct anaiogies 10 standard determims­
tic system analysis. Nevertheless, most of the analysis for Markov chams is 
based on the principles developed in earlier chapters. 

7.2 REGULAR MARKOV CHAINS AND 
LIMITING DISTRIBUTIONS 

As pointed out earlier, the Frobenius-Perron theorem and the associated 
theory of positive systems is applicable to Markov chains. For certain types of 
Markov chaIns, these results imply the exi5tence of a unique limiting probabil­
ity vector. 

To begin the applicatIOn of the Frobemus-Perron theorem we first observe 
that the Frobenius-Perron eigenvalue, the eigenvalue of largest absolute value, 
is always 1. 

Proposition. Corresponding. to a stochastic matrix P the value Ao = 1 IS an 
eigenvalue. No other eIgenvalue of P has absolute value greater than 1. 

Proof This is a special case of the argument given in Sect. 6.2, since for a 
stochastic matrIX all row sums are equal to 1. I 

Definition. A Markov chain is said to be regular if pm > 0 for some positive 
mteger m. 

This straightforward definition of regularity is perhaps not quite so inno­
cent as it might first appear. Although many Markov chains of Interest do 
satisfy this condition, many others do not. The weather example of the previous 
sectIOn is regular, for although P itself is not strIctly positive, p 2 is. The Estes 
learning model is not regular SInce in thIS case pm has a zero In the upper 
right-hand corner for each m. Similarly, the Gambler's Ruin example is not 
regular. In general, recalling that pm is the m-step probability transition 
matrix, regularity means that over a sufficiently large number of steps the 
Markov chain must be strictly positive. There must be a pOSitive probability 
associated with every transition. 

The maIn theorem for regular chains is stated below and consists of three 
parts. The first part I~ simply a restatement of the Frobenius-Perron theorem, 
while the second and third parts depend on the fact that the dominant 
eigenvalue associated WIth a Mark.ov matrix is 1. 

Theorem (Basic Limit Theorem for Markov Chains). Let P be the transition 
matrix of a regular Markov chain. Then: 

(a) There is a unique probability vector p T > 0 such that 

pTp=pT 
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(b) For any inittal state i (corresponding to an initial probability vector equal 
to the Ith coordinate vector e;'J the limit vector 

exists and IS independent of i. Furthermore, vT is equal to the eigenvector 
pT. 

(c) Limm--'" pm = P, where P IS the n x n matrix, each of whose rows IS 

equal to pT. 

Proof. Part (a) follows from the Frobenius-Perron theorem (Theorem 2, Sect. 
6.2) and the fact that the dominant eigenvalue is Ao = 1. To prove part (b) we 
note that since Ao'" 1 is a simple root, it follows that e;pm must converge to a 
scalar multiple of pT However, since each e;pm is a probability vector, the 
multiple must be 1. Part (c) is really just a restatement of (b) because part (b) 
shows that each row of pm converges to pT. I 

This result has a direct probabilistic interpretatIOn. Parts (a) and (b) 
together say that starting at any initial state, after a large number of steps the 
probability of the chain occupying state Si is Pi' the Ith component of pT. The 
long-term probabilities are independent of the initial condition. 

There are two somewhat more picturesque ways of viewing thiS same 
result. One way is to imagine starting the process in some particular state, then 
turning away as the process moves through many steps. Then after turning 
back one records the current state. If this expenment is repeated a large 
number of times, the state S; will be recorded a fraction Pi of the time, no 
matter where the process is started. 

The second way to visualize the result is to imagine many copies of the 
Markov chain operating simultaneously. No matter how they are started, the 
distribution of states tends to converge to that defined by the limit probability 
vector. 

Finally, part (c) of the theorem is essentially an alternative way of stating 
the same limit property. It says that the m-step transition matrix ultimately 
tends toward a limit P. This probability matrix transforms any initial probability 
vector into the vector pT. 

Example 1 (The Weather Model). The weather example of Sect. 7.1 has 
transition matrix 

[

.500 .500 0 1 
p", .5

0
00 .250 .250 

.500 .500 
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This Markov chain is certainly regular since in fact p2 > O. Indeed. computing a 
few powers of the transition matrix, we find 

[

.500 .375 
p2 = .375 .438 

.250 .375 

[

.422 .399 
p4 = .398 .403 

.359 .399 

[405 
.401 

p6= .400 .401 
.390 .400 

[401 
.401 

p8= .400 .401 
.397 401 

[400 
400 

p16= .400 .400 
.400 .400 

.125J 

.187 

.375 

.179] 

.199 

.242 

194] 
.199 
.210 

198J 
.199 
.202 

200J .200 
.200 

This behavior of the powers of the probability matnx is In accordance with 
part (c) of Theorem 1. It follows that the equilibnum probability vectOr is 

pT=[.400 .400 .200] 

Indeed, as an Independent check it can be verified that this is a left eigenvector 
of the transition matrix, corresponding to the eigenvalue of l. 

The interpretation of this vector is that In the long run the weather can be 
expected to be sunny 40% of the days, cloudy 40% of the days, and raInY 20% 
of the days. 

Example 2 (Simplified Monopoly). A simple game of chance and strategy for 
two to four players is played on the board shown in Fig. 7.4. Each player has a 
marker that generally moves clockwise around the board from space to space. 
At each player's turn he flips a coin: if the result is "heads" he moves one 
space, if it is "tails" he moves two spaces. A player landing on the "Go to Jail" 
square, goes to "Jail" where he begins at his next turn. Dunng the game, 
players may acquire ownership of various squares (except "Jail" and "Go to 
Jail"). If a player lands on a square owned by another player, he must pay rent 
in the amount shown in that square to the owner. In formulating strategy for 
the game It is useful to know which squares are most valuable In terms of the 
amount of rent that they can be expected to generate. Without some analysis, 
the true relative values of the various squares is not apparent. 

Movement of players' markers around the board can be conSidered to be a 
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Jail $100 $300 

Figure 7.4. A board game. 

Markov chain. The chain has seven states, corresponding to the possible 
landing positions on the board. The "Go to Jail" square IS not counted SInce no 
piece ever really stays there, but goes instead to square number 4. The 
transition matrix is 

I~ 
1 1 0 0 0 0 2 '2 

0 1 1 0 0 0 '2 '2 

0 0 1 1 0 0 2 '2 

P~l~ 
0 0 0 1 1 0 '2 '2 

0 0 0 0 I I 
'2 '2 

0 0 1 0 0 1 
'2 2 

0 0 1 0 0 0 '2 

After a bit of experimentation, it is seen that there is a finite probability of 
moving from any square to any square in seven steps; that is, P7>O. Therefore, 
it is quite clear that this Markov chain is regular, and there is an equilibrium 
probability vector that gives the long-term landing probabilities. To find the 
equilibrium probabilities we must solve the equation pTp= pT with r~-l Pi = 1. 
Written out in detail the equations for the eigenvector* are 

~P7 = PI 

lPl = pz 

~Pl +!P2 = P3 

!pz +!P3 +!P6 +lp7 = P4 

!P3 +!P4 = Ps 

!P4 +!Ps = P6 

!Ps +iP6 = P7 
* Rememhe.r th::.t th~ rru:o.ffi,...a. ..... .-. ..... _ ....... nT ----- - T 
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These equations could be solved successively, one after the other, if Pb and P7 
were .known. If we temporarily ignore the requirement that 2:: Pi = 1, the value 
of one of the p;'s can be set arbitrarily. Let us set P7 = 1. Then we find 

PI =.50 

P2 = .250 

P3 = .375 

p4=.8125+~P6 

Ps = .59375 +1P6 

P6 = .703125 +~P6 

P7 = 1.0 

At this point P6 can be found from the sixth equation and substituted 
everywhere else yielding 

PI = .50 

pz = .250 

P3 = .375 

P4 = 1.375 

Ps = .875 

P6=1.125 

P7 = 1.0 

The actual equilibrium probability vector is obtaIned by dividing each of these 
numbers by their sum, 5.5. Thus, 

pT=[.0909 .0455 .0682 .2500 .1591 .2045 .1818] 

Not surprisingly we find that "Jail" is visited most frequently. Accordingly, 
it is clear that spaces 1-3 are visited relatively infrequently. Thus, even though 
these spaces have high associated rents, they are not particularly attractive to 
own. This is verified by the relative income rates for each square, normalized 
with state S7 having an income of $100, as shown below. 

State Rent Relative Income Rank 

S, $180. $ 90.00 3 
S, $300. $ 75.00 4 
SJ $100. $ 37.50 6 
S. 
S, $120 $105.00 1 
S6 $ 50. $ 56.25 5 
S7 $100. $100.00 2 
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7.3 CLASSIFICATION OF STATES 

Many important Markov chains have a probability transition matrix containIng 
one or more zero entries. This is the case, for instance, in all of the examples 
considered so far in this chapter. If the chain is regular, the zero entnes are of 
little fundamental consequence since there is an m such that a transition 
between any two states IS possible in m steps. In general, however, the 
presence of zero entries may preclude some transitIOns, even over an arbitrary 
number of steps. A first step in the development of a general theory of Markov 
chains is to systematically study the structure of state interconnections. 

Classes of Communicating States 

We say that the state Sj is accessible from the state S if by making 
only transitions that have nonzero probability It is possible to begin at S, and 
arrive at Sj in some finite number of steps. A state S, IS always considered to be 
accessible from itself. 

Accessibility can be determined by taking powers of the probability 
transition matrix. Let p)i) be the ijth element of the matrix pm If p~i»O, 
then it is possible to go from S, to Sf in m steps, since there IS a positive 
probability that the Markov chain would make such a transition. Thus, SI IS 
accessible from S, if and only if p)j) > 0 for some integer m:2: O. 

The property of accessibility IS not symmetric since Sf may be accessible 
from S, while S, IS not accessible from Sj. The corresponding symmetnc notIOn 
is termed communication and it is this property that is used to classify states. 

Definition. States S, and Sf are said to communIcate if each is accessible from 
the other. 

As the following proposition shows, the concept of communicating states 
effectively divides the states of a Markov chain into distinct classes, each with 
its own identity. That is, the totality of n states is partitioned into a group of 
classes; each state belonging to exactly one class. Later we study the classes as 
units, and investigate the structure of class interconnections. 

Proposition. The set of states of a Markov cham can be divided into com­
municating classes. Each state withm a class communicates with every other 
state in the class, and with no other state. 

Proof. Let e, be the set of states that communicate with S,. If Sk and Sf belong 
to Coo th€y also communicate, since paths of transition between them can be 
found in each direction by first passing through S,. See Fig. 7.5a. Thus, all 
states in e. communicate with each other. 

Suppose that a state SI outside of e, communicated with a state Sf withIn 
e,. Then a path from S! to Sj could be extended to a path from SI to S, by 
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(a) (b) 

Figure 7.5. Construction for proof. 

appending a path from Sj to Si' See Fig. 7.Sb. Likewise paths in the other 
direction could be appended. Thus, SI would communicate with So as well. 
Hence, by contradiction, no state outside C, can communicate with any state in 
C,. Therefore different communicating classes have no common states. Every 
state belongs to one and only one class-the class of all states that communi­
cate with it. I 

An important special case is when all states communicate, m which case 
there is only one communicating class. If a Markov chain has only one communi­
cating class the cham is said to be irreducible. Otherwise, it is reducible. 

A regular Markov chain is irreducible, since all states communicate. 
However, not all Irreducible Markov chains are regular. An example IS the 
chain defined by the transition matrix 

p= [~ 11 
oj 

The chain goes from SI to S2 or from S2 to SI in one step. It can go from either 
state back to itself in two steps. However, every power of P contains two zero 
entries. 

Let us apply the definitions of this section to the examples presented 
earlier. The weather example is irreducible, since it is possible to go from any 
state of weather to any other within two days. In fact, as shown earlier this 
chain is regular. The learning model has two states, and each is a different 
communicating class. Although the "learned" state is accessible from the 
"unlearned" state, the reverse is not true, and hence, the states do not 
communicate. The Gambler's Ruin chain has three communicating classes. 
One is the state corresponding to player A having zero chips. This state 
corresponds to an end of the game and no other state is accessible from it. 
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Similarly, a second class is the state corresponding to player A having all of the 
chips. Finally, the third class consists of all the other states. It is possible to go 
from anyone of these to any other (or back) in a finite number of steps. 

Closed Classes 

A communicating class C is said to be closed if there are no pOssible tranSitIOns 
from the class C to any state outside C. In other words, no state outSide C IS 

accessible from C. Thus, once the state of a Markov chain finds its way into a 
closed class it can never get out. Of course, the reverse is not necessarily true. 
It may be possible to move into the closed class from outside. 

A Simple example of a closed class is provided by an irreducible Markov 
chain. An irreducible chain has a single communicating class consisting of all 
states, and it is clearly closed. 

Closed classes are sometimes referred to as absorbing classes since they 
tend to ultimately absorb the process. In particular, if a closed class consists of 
just a single state, that state is called an absorbing state. 

In the Estes learning model. the state corresponding to "learned" IS an 
absorbmg state. In the Gambler's Ruin problem, the two end-pomt states are 
each absorbing states. 

Transient Classes 

A communicating class C IS transient if some state outside of C is accessible 
from C. There is, therefore, a tendency for a Markov chain process to leave a 
transient class. 

There may be allowable transitions into a transient class from another 
class as well as out. However, it is not possible for a closed path to eXist that 
goes first outside the class and then returns, for this would imply that there 
were states outside of C that communicate with states in C. The connectIOn 
structure between communicating classes must have an ordered flow, always 
terminating at some closed class. It follows of course that every Markov cham 
must have at least one closed class. A possible pattern of classes together with 
Interconnections is shown in Fig. 7.6. In this figure the individual states within a 
class and their individual connections are not shown; the class connections 
illustrated are, of course, between specific states withm the class. All classes in 
the figure are transient, except the bottom two, which are closed. 

By definition, a transient class must have at least one path leading from 
one of its member states to some state outside the class. Thus, if the process 
ever reaches the state that is connected to an outside state, there is a positive 
probability that the process will move out of that class at the next step. 
Furthermore, no matter where the process begms in the transient class, there is 
a positive probability of reaching that exit state withm a fimte number of steps. 
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Figure 7.6. A collection of classes. 

All together, over an infinite sequence of steps it seems that there IS a good 
chance of leaving the transient class. In fact, as shown below the probability of 
eventually leaving is 1. (The reader can skip Over the proof of this theorem 
without much loss of continuity.) In view of this result all states within transient 
classes are themselves referred to as transient srares. The process leaves them, 
in favor of closed classes. 

Theorem 1. The state of a finire Markov cham IS certain (with probability equal 
ro one) ro eventually enter some closed communlcarlng class. 

Proof. From each state S; in a transient class It is possible to reach a closed 
class in a finite number of steps. (See Problem 7.) Let m; be the mimmum 
number of steps required, and let p; be the probability that startIng at state Si 
the chaIn will not reach a closed class in m; steps. We have p; < 1. Now let m 
be the maximum of all the m; 's, and let p be the maximum of all the p;'s. Then, 
startIng at any state, the probability of not reaching a closed class within m 
steps is less than or equal to p. Likewise, the probability of not reaching a 
closed class within km steps, where k is a positive integer, is less than or equal 
to pk. Since p < 1, pk goes to zero as k goes to infimty. Correspondingly, the 
probability of reaching a closed class within km steps is at least (1- pk), which 
goes to 1. I 

Relation to Matrix Structure 

The classification of states as presented in this section leads to new inSight in 
terms of the structure of the transition probability matrix P and the Frobenius­
Perron eigenvectors. As an example, suppose that the state S; is an absorbing 
state; once this state is reached, the process never leaves it. It follows 
immediately that the corresponding unit vector e; (with all components zero, 
except the Ilh, which is 1) IS an eigenvector. That IS, e:P = e;. It represents a 
(degenerate) equilibrium distribution. If there are other absorbmg states, there 
are, correspondingly, other eigenvectors. More generally, the equilibrium eigen­
vectors of P are associated with the closed communicating classes of P. 



7.4 Transient State Analysis 239 

These relations can be expressed in terms of a canonical [om I for Markov 
chains. We order the states with all those associated with closed classes first, 
followed by those associated with transient classes. If the states are ordered this 
way, the transition matrix can be written in the partitioned form 

p= [~ ~] (7-2) 

Assuming there are r states in closed classes and n - r in transient classes, the 
matrix Pi is an r X r stochastIc matrix representing the transitIOn probabilities 
within the closed classes; Q is an (n - r) X (n - r) substochastic matrix (at least 
one row sum is less than 1) representing the transition probabilities among 
the transients states, and R is an (n - r) X r matrix representing the tran­
sition probabilities from transient states to states within a closed class. 

The (left) eigenvectors corresponding to the eigenvalue of 1 must have the 
form pT=[pi,O], where pi is r-dimensional, representIng the fact that Only 
states in closed classes can Occur with positive probability In equilibrium. (Sec 
Problem 8.) The closed classes act like separate Markov chains and have 
equilibrium distributiOns. Transient classes cannot sustain an equilibrium. 

7.4 TRANSIENT STATE ANALYSIS 

Many Markov chams of practical interest have transient classes and arc 
initiated at a transient state. The Gambler's Rum problem and the Estes 
learning model are two examples, which we have already discussed. When 
considering such chains, it is natural to raise questions related to the process of 
movement within the transient class before eventual absorptIon by a closed 
class. Examples of such questions are: the average length of tIme that the cham 
stays within a transient class, the average number of visits to various states, anti 
the relative likelihood of eventually entering various closed classes. 

The analysis of transient states is based on the canonical form described at 
the end of Sect. 7.3. We assume that the states are ordered With closed 
classes first, followed by transient states. The resulting canonical form IS 

P= 1 
[
p 

R ~] (7-3) 

We assume, as before, that there are r states in closed classes and n - r 

transient states. 
The substochastic matrix Q completely determines the behaVior of the 

Markov chain within the transient classes. Thus, it is to be expected that 
analysis of questions concerning transient behavior IS expressed in terms of Q. 
Actually, a central role In transient analYSIS is played by the matriX 
M=[I-Q]-I-this is called the [undamentai matrix of the Markov chaIn 
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when expressed in the canonical form (7-3). As demonstrated below, it is easily 
established that the indicated inverse exists, so that M is well defined. 

Proposition. The matrix M = [I - Q]-I eXists and IS positIVe. 

Proof. It follows from Theorem 1, Sect. 7.3, that Qm ~ 0 as m ~ 00 since 
elements of Qm are the m -step transition probabilities within the transient 
classes. Thus, the dominant eigenvalue of the nonnegative matrix Q is less than 
1. The statement of the proposition is then a special case of Theorem 2, Sect. 
6.3. I 

The elements of the fundamental matrix have a direct interpretation in 
terms of the average number of visits to various transient states. Suppose that 
the Markov chain is initiated at the transient state S" Let Sj be another (or the 
same, if i = j) transient state. The probability that the process moves from Sj to 
Sj in one step is qij' Likewise, for any k the probability of a transitIOn from S, 
to Sj in exactly k steps is qW), the ijth element of the matrix Qk. If we include 
the zero-step transition probability q~f), which IS the ijth element of QO = I, 
then the sum of all these transition probabilities is 

q~f) + qfjl) + q:;) + ... + qW l + ... 

ThIS sum is the average number of times that starting in state Sj the prOcess 
reaches state Si before it leaves the transient states and enters a closed class. 
This summation can be expressed as the ijth element of the matrix sum 

I+Q+Q2+ .. '+Qk + ... 

However, this in tum is equal to the fundamental matrix through the identity 

M=[I-Qtl == I+Q+Q2+ ... +Qk + ... 

(See the Lemma on Series Expansion of Inverse, Sect. 6.3.) Therefore we may 
state the following theorem. 

Theorem 1. The element mij of the fundamental matrix M of a Markov chain 
with transient states is equal to the mean number of times the process IS in 
transient state Sj if it is initiated m transient state S" 

Next we observe that if we sum the terms across a row of the fundamental 
matrix M, we obtalO the mean number of visits to all transient states for a given 
startlOg state. This figure is the mean number of steps before being absorbed by 
a closed class. Formally, we conclude: 

Theorem 2. Let 1 denote a column vector with each component equal to 1. In a 
Markov cham with transient states, the ith component of the vector Ml IS 

equal to the mean number of steps before entering a closed class when the 
process is initiated in transient state S" 
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Finally, if a chain is initiated in a transient state, it will (with probability 
one) eventually reach some state within a closed class. There may, however, be 
several possible closed class entry points. We therefore turn to the question of 
computing the probability that, starting at a given transient state, the chain first 
enters a closed class through a particular state. In the special case where the 
closed classes each consist of a single absorbing state, this computation gives 
the probabilities of terminating at the various absorbing states. 

Theorem 3. Let bi ; be the probability that if a Markov cham is started in transient 
state Si' it will first enter a closed class by visiting state Sj. Let B be the 
(n - r) X r matrix with entries bu. Then 

B=MR 

Proof. Let Si be in a transient class and let S; be in a closed class. The probability 
bu can ·be expressed as the probability of going from Si to Si directly in one 
step plus the probability of going again to a transient state and then ultimately 
to S;. Thus, 

bi; = Pi; + I Pikbk; 
k 

where the summation over k is carried out over all transient states. In matrix 
form we have B=R+QB and hence, B=[I-Q]-IR=MR. I 

Example 1 (Learning Model). The simple Estes learning model is described by a 
Markov chain with transition matrix 

p= [~ I~J 
This matrix is already in canonical form with SI' the "learned" state, beIng an 
absorbing state, and S2' the "unlearned" state, beIng a transient state. 

The Q matrix in this case consists of the single element I-a. Accordingly, 
the fundamental matrix M is the single number [1-(I-a)]-i = l/a. 

It follows from Theorem 1 that l/a is the mean number of steps, startIng 
from the unlearned state, before entering the learned state. This can vary from 
1, if a = 1, to infinity, if a = O. Theorem 2 is Identical with Theorem 1 in this 
example, since Q is one-dimensional. 

Theorem 3, In general gives the prObabilities of entenng closed classes 
through various states. Since in this example the closed class consists of just :J. 

singh': (absorbing) state, the probability of absorption by that state should be 1. 
Imk I the formula of the theorem specifies this probability as a(l/a) = 1. 

EX:ib'\ile 2 (A Prodnction line). A certain manufacturing process consIsts of 
thnx: manufacturing stages and a completiOn stage. At the end of each 
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q 2 

q q 

Figure 7.7. The production line chain. 

manufacturIng stage each item is inspected. At each inspection there is a 
probability p that the item will be scrapped, q that it will be sent back to that 
stage for reworkmg, and r that it will be passed on to the next stage. It is of 
Importance to determine the probability that an Item, once started, is eventu­
ally completed rather than scrapped, and to determine the number of items 
that must be processed through each stage. (See Fig. 7.7.) 

The process can be considered to have five states: 

(1) Item scrapped. 
(2) Item completed. 
(3) Item In first manufacturing stage. 
(4) Item in second manufacturing stage. 
(5) Item in third manufacturing stage. 

The corresponding transition matrix is 

1 0 0 0 0 

0 1 0 0 0 

p= p 0 q r 0 

p 0 0 q r 

p r 0 0 q 

The first two states are absorbing states and the other three are transient states 
The transition matrix IS in canonIcal form and the fundamental matrix is 

It IS easy to verify that 

[

l-q 

M= 0 
o 

-r 

l-q 

o 

o ]_1 
-r 

l-q 

__ 1_[(1-q)2 

M- (l_q)3 ~ 
r(l-q) 

(l-qf 

o 
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The elements of the first row of this matrix are equal to the average number of 
times each item is passed through the first, second, and third manufacturing 
stages, respectively. 

The probability of entering the two absorbing states is given by the 
elements of B = MR. In this case II r(l_q)2 

B=MR=-- 0 
(l_q)3 0 

r(l-q) 
(l_q)2 

o 
,2 ] [P 01 r(l-q) p 0 

(l-qf p rJ 
For example, the probability that an item is eventually completed rather than 
scrapped, starting from the first stage, is the first element of the second column 
of B. That is, it is equal to r3/(l-q)3. 

Example 3 (Gambler's Ruin). When there are a total of n COinS or chips 
between the .two players in a Gambler's RUin game, it can be considered to be 
a Markov process with n + 1 states So, SI> S2, .. - , S", where 5, corresponds to 
player A having i COinS. The states So and S" are each absorbing, while all 
others form one transient class. The kinds of questions one asks when studying 
this chain are those typical of transient state analysis-for example, the 
probability of player A winmng, Or the average duration of the game. 

The transition matrix can be put in the canomcal form 

1 0 0 0 0 0 0 

0 1 0 0 0 0 

q 0 0 p 0 

0 0 q 0 p 
p= 0 q 0 p 

I~ 0 p 
.... p ......... 0 q 0 

In this representation the states are ordered So, S", SI> 52, - - . , S,,-,. The matrix 
Q IS the (n-l)x(n-l) matrix 

Q= 

o p 0 0 

q 0 p 

q 0 

p 

q 0 
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The fundamental matrix is M = [I - Qrl, but an explicit formula for this 
inverse is somewhat difficult to find. It is, however, not really necessary to have 
an explicit representation for many purposes. Indeed, for this example, Just as 
for many other highly structured problems, it IS possible to convert the general 
expressions of Theorems 2 and 3 into alternative and much simpler dynamic 
problems. 

Let us, for example, compute the probability of player A winning, starting 
from variOUS states Sk. According to Theorem 3 the vector x = Mrz, where 
r~ = [0 0 0 0 ... p], has components equal to these probabilities. The vector 
x satisfies the equation 

[I - Q]x= r2 

where x = (Xi> X2 , 0' x,,-I). Written out in greater detail, this vector eqaation 
IS 

XI-PXZ =0 

Xk - qXk - 1 - PXk+1 = 0, 

Defining the additional variables Xo = 0, x" = 1, the first and last equations can 
be expanded to have the same form as the second. In thiS way the above system 
can be expressed as the smgle difference equation 

k = 1,2, .. 0 , n-1 

This IS the difference equation identical with that used to solve this problem in 
Chapter 2; and it can be solved as shown there. 

In a Similar fashion the average length of the game, starting from various 
states, can be found by application of Theorem 2. These lengths are the 
components of the vector y = MI. Equivalently, the vector y can be found as 
the SOlution to the equation [I - Q]y = 1. AgaIn with y = (Yi> Yz,. ., YM-I) and 
defining Yo = 0, Yn = 0, the vector equation for y can be written as the 
difference equation 

k=1,2, ... ,n-1 

This equation can be solved by the techmques of Chapter 2. The characteristic 
equation IS 

A -q-pA 2 =0 

which has roots A == 1, A = q/p. Assuming p1"'- q 1"'-!, the general solution to the 
difference equation has the form 

Yk = A + Bk + C(q/p)" 

The constants A and C are arbitrary, since they correspond to the general 
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solution of the homogeneous equation. The constant B is found by temporarily 
setting A = 0, C = 0 and substituting Yk = Bk into the difference equation, 
obtaining 

Bk -qB(k-1)- pB(k + 1) = 1 

-pB +qB = 1 

B=_l_ 
q-p 

The actual values of A and C are found by setting Yo = 0 and y" = 0 yielding 

O=A+C 

n (q\" O=A+--+C -I 
q-p pI 

Solving for A and C and substitutmg into the general form leads to the final 
result 

n [(' q)kl k Yk= -1+- +--
(q-p)[l-(q/p)"] p J. q-p 

*7.5 INFINITE MARKOV CHAINS 

In some applications it IS natural to formulate Markov chain models havmg a 
(countably) infinite number of states S [, S2,. ., Sk> . .. An infinite Markov 
chain often has greater symmetry, and leads to simpler formulas than a 
corresponding finite chain obtained by imposing an artificial termination condi­
tion. This simplicity of structure Justifies the extensIOn of concepts to infimte 
Markov chains. 

Example (Infinite Random Walk with ReOecting Barrier). An object moves on 
a horizontal line in discrete unit steps. Its possible locations are given by the 
nonnegative integers 0, 1,2, .... If the object is at position i > 0, there IS a 
probability p that the next transition will be to position i + 1, a probability q 
that it will be to i-I, and a probability r that it will remain at I. If it is at 
position 0, it will move to position 1 with probability p and remain at 0 with 
probability 1-p. The transition matrIX for this infinite cham IS 

1-p P 0 0 

"1 
q r p 0 .. 

0 q r p 
p= 

0 0 q r 
, . 

J L 
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Although the technicalittes associated wIth mfintte Markov chains are 
somewhat more elaborate than for finite chams, much of the essence of the 
finite theory is extendible to the infinite chain case. Of particular importance 
is that there is an extended version of the basic limit theorem. This extension 
is presented in this section, without proof. 

The concepts of accessibility, communIcating classes, and trreducibility 
carryover directly to infinite chains. The definitions given earlier apply without 
change 10 the infinite case. For example, 5 j is accessible from 5; if there IS a 
path (of finite length) from 5; to 5j • In addition to these definitIOns, it is useful 
to introduce the concept of an aperiodic Markov chain. To illustrate this 
concept, consider again the two-dimensional chain with transition matrix 

p= [~ 11 
oj 

This chain IS irreducible slOce each of the two states IS accessible from the 
other. However, in this chain a transition from either state back to the same 
state always reqUIres an even number of steps. A somewhat more complex 
example IS represented by the matnx 

Startmg at 51 on Step 0, 51 will be visited on all even numbered steps. while 
either 52 or 53 are visited on odd number steps. In general, if some state m a 
fintte or infinite Markov cham has the property that repeated visits to that state 
are always separated by a number of steps equal to a multiple of some integer 
greater than 1, that state is said to be periodic. A Markov cham IS aperiodic if It 
has no periodic states. 

The first important result for infinite chams is an extenSion of part (b) of 
the Basic Limit Theorem of Sect. 7.2. 

Theorem. For an irreducible, aperiodic A1arkov cham the limits 

eXIst and do not depend on the initial state i. 

This theorem tells us that, just as in the finite case, the process settles 
down with each state having a limIting probability. It is quite possible, 
however, in the infinite case, that the limits might all be zero. 

As an example, let us refer to the infinite random walk described above. 
Provided that p > 0, q > 0, it is clear that every state communicates with every 
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other st2te since there IS a path of nonzero transition probabilities from any 
state to any other. Thus, the chain is Irreducible. The chain IS aperiodic SinCe 
one can return to a state by resting at 0 indefinitely. Assuming p > 0, q > 0, the 
conclusion of Theorem 1 must hold. However, if p > q, there is a strong 
tendency for the moving object to drift toward the right, to higher Integer 
points. The chance that the object returns to a specific point, say pomt o. 
infinitely often is likely to be quite small. Indeed in this case, the limits Vi an; 
all zero. the process drifts continually to the right so that each state has the 
character of a transient state. 

Definition. An irreducible aperiodic Markov chain is said to be poslIlve reCLIr­
rerIt if 

(a) Vj = limm~ p~i") > ° for all j, and 
(b) IJ Vi = 1. 

According to this definitIon, a chain is positive recurrent if the limit 
probabilities form a legitImate infinite-dimensional probability vector. The next 
theorem establishes the relation between these limit probabilitIes and the 
existence of an infimte-dimensional eigenvector of the transition matrIx. 

Theorem. Given an Irreducible aperIOdic Markov chain. 

(a) It IS positIVe recurrent if and only if there IS a unique probability 
distribution p = (Pb P2, •• ) (satisfYing Pi > 0 for all i, I, Pi = 1), IV/uell IS 

a solution to 

In this case, 

for all J. 
(b) If the chain is not positIVe recurrent, then 

Vi = lim P;~') = 0 
m~ . 

for all j. 

Example (continned). In the random walk, suppose p > 0, r> 0, and q >0. Let 
us attempt to find the Vi'S by seeking an eigenvector of the tranSition matrix. 
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The Vi'S should satisfy the equations 

PVO-qVI =0 

(1- r)vj - PVj-l- qVj + 1 = 0, j = 1, 2, 3, .. , 

The characteristic equation of the difference equation is (1-r)A-p-qA2 =0, 
which has roOlS A = 1, p/q. If p < q, a solution is 

Vj = (1- piq)(p/q)1 

and this satisfies L~~l Vj = 1. Therefore, for p < q the solution is positive 
recurrent. If p > q, no solution can be found, and hence, as suspected (because 
of the drift toward infinity) the chain is not positive recurrent. 

7.6 PROBLEMS 

1. Let P be an n X n stochastic matrIX and let 1 denote the n-dimension'al column 
vector whose components are all 1. Show that 1 IS a nght eigenvector of P 
corresponding to an eigenvalue of 1. ConclUde that if yT = xTp, then yTl = xTl. 

2. Social Mobility. The elements of the matnx below represents the probability that 
the son of a father In class i will be 10 class f. Find the equilibnum distributIOn of 
class sizes. 

Upper class .5 -+ .1 i 
Middle class .1 .7 .2 
Lower class .05 .55 4 

3. Ehrenfest DiffusIOn Model. Consider a contamer consiSting of two compartments 
A and B separated by a membrane. There IS a total of n molecules in the container. 
Individual molecules occasionally pass through the membrane from one compart­
ment to the other. If at any tIme there are j molecules in compartment A, and n - ] 
in compartment B, then there is a probability of i/n that the next molecule to cross 
the membrane will be from A to B, and a probability of (n - j)/n that the next 
crossIng is in the opposite direction. 

(a) Set up a Markov cham model for this process. Is it regular? 
(b) Show that there is an equilibrium probability distributIon such that the 

probability PI that j molecules are in compartment A IS 

4. Languages. The symbols of a language can be considered to be generated by a 
Markov process. As a Simple example consider a language conSisting of the symbols 
A, B, and S (space). The space diVIdes the symbol sequence Into words. In thts 
language two B's or two S's never occur together. TIrree A's never occur together. 
A word never starts with AB or ends with BA. Subject to these restrictions, at any 
point, the next symbol is equally likely to any of the allowable possibilitIes. 
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Fonnulate a Markov chain for this language. What are the equilibnum symbol 
probabilities? (Hint: Let SOme states represent pairs of symbols.) 

5. Entropy. The entropy of a probability vector p T = (PI> P2, ... , p.) is H(p) = 

-I7-, p, log2 Pi, Entropy IS a measure of the uncertamty associated with a selection 
of n objects, when (he selection is made according to the given probabilities. 

(a) For a fixed n show that H(p) is maximized by pT = [lIn, lIn •...• lIn]' 
(b) For a regular fimte Markov chain with transition matrix P, the entropy is 

H(P) = I p,H 

where p, is the equilibrium probability of state S, and where H IS the entropy of 
the Ith row of P. Thus, H is a weighted average of the entropy associated with 
the choice of the next state of the chain. Find the entropy of the weather model 
in Sect. 7.2. 

*6. EqUivalence Classes. Consider a set X and a relatIOn R that hOlds among cerlal11 
pairs of elements of X. One writes xRy if x and y satisfy the relatIon. The relatiOn 
R is said to be an equivalence relatIOn if 

xRx for all x in X 

xRy implies yRx 

xRy and yRz implies xRz 

(a) Let [x] denote the collectIOn of all elements y satisfying xRy. where R is an 
equivalence relation. This set IS called the eqUivalence class of x. Show that X 
consists of a disjoint collectIOn of equivalence classes. 

(b) Let X be the set of states in a Markov chain and let R be the relatiOn of 
commumcation. Show that R is an equivalence relation. 

7. Show that from any state 10 a Markov chain it is possible to reach a closed class 
within a fimte number of transitions having positive probability. 

8. Suppose the probability transition matnx of a finite Markov chain is 10 the 
canonical fonn (7-2). Show that any left eigenvector corresponding to an eigenvalue 
of magnitude of 1 must be of the fonn [pi, 0], where pJ IS r dimensional. 

*9. An n x n matrix P is a permutation mamx if for all vectors x the components of the 
vector Px are simply a reordering of the components of x. Show that all elements of 
a pennutation matnx P are eIther zero or one, and both P and p T are stochastic 
matrices. 

*10. Theory of POSitIVe Mamces. An n x n matrix A IS said to be reducible if there IS a 
nonempty proper subset J of {I, 2, ... , n} such that 

£1;;=0 for i,U.}EJ 
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(a) Show that A IS reducible if and only if there IS a permutation matrIX T (see 
Problem 9) such that 

r'AT= [~" 
where All is square. 

(b) Let P be a stochastic matflX assocIated with a finite Markov chain. Show that 
the chain has a single commumcating class if and only if P IS Irreducible. 

(c) Let A be a nonnegative irreducibie matrix, with Frobenius-Perron eIgenvalue 
and eigenvector, AD, Xo, respectlveiy. Show that AD> 0, Xo> 0, and that A" is a 
simple root of the characteristic polynOmIal of A. 

11. Periodic PositIVe Matrices. Let A be an Irreducibie positive n X n matrix (see 
Probiem 10). Then It can be shown that there IS a permutation matnx T such that 

0 0 0 G, 

G , 0 0 0 

0 G2 
r'AT= 

G,_. 0 

where the zero matnces on the main diagonai are square. Let AD> 0 be the 
Frobemus-Perron eigenvalue of A. Show that A has r eigenvalues of magmtude AD. 
[Hint; Let w be an rth root of unity (that is, w' = 1). Show that A = wAD is an 
eigenvalue.) 

12. Finite Random Walk. An object moves on a hOrizontal line in discrete steps. At 
each step It IS equally likely to move one umt to nght or one unit to the left. The 
line IS a totai of five umts iong, and there are absorbing barriers at either end. Set 
up the Markov cham corresponding to this random walk process. Characterize each 
state as transient or absorbmg. Calculate the canomcal form and find the fundamen­
tai matrix. 

13. First Passage Time. Suppose P is the probability transition matrix of a regular 
Markov cham. Given an imtiai state S, "" SI> show how by modifymg P the average 
number of steps to reach S, can be computed. For the weather modei, given that 
today IS ramy, what IS the expected number of days until It is sunny? 

14. Markov Chams with Reward. You might consider your automobile and its random 
failures to be a Markov chain. It makes monthly transitions between the states 
"runmng well" and "not runmng well." When It IS not runlllng well It must be taken 
to a garage to be repaved, at a cost of $50. It is possible to Improve the Iikelihcod 
that the automobile will contmue to run well by havmg monthly service at a cost of 
$10. Depending on your policy your automobile transitions will be governed 
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by either of two Markov chams, defined by 

where S I = runmng well, S2 = not runnmg well, and where p. correspOnos to no 
monthly service, and P 2 cOrresponds to having monthly service. 

(a) For each of the two policies, what is the equilibrium distribution of states? 
(b) In equilibrium, what IS the average monthly cost of each of the two policies') 

15. Simplified Blackjack. A game between a "dealer" and a "customer" IS played 
with a (very large) mixed deck of cards consisting of equal numbers of ones, twos, 
and threes. Two cards are imtially dealt to each player. After looking at his cards 
the customer can elect to take additional cards one at a time until he signals that he 
will "stay." If the sum of the values of his caras exceeds SIX, he loses. Otherwise the 
dealer takes additional caros one at a time until his sum IS five or more. If his sum 
exceeds six, the customer wins. Otherwise, the player with the highest sum (unoer 
seven) wins. Equal values under seven result In a draw. 

(a) Set up a Markov cham for the process of taking cards until a value of five or 
more is obtaineo. Ioentify the absorbing states. Find the probabilities of 
entering the various absorbing states for each Imtial sum. Fino the probability of 
entering variOUS absorbing states. 

(b) If the customer follows the strategy of taking caras until his value IS five or 
more, at what rate will he lose? 

*(c) If the second card dealt to the dealer IS face up, the customer can base his 
strategy on the value of that card. For each of the three possible cards showmg, 
at what sum should the customer stay? What are the odds in this case? 

16. Periodic States. Show that if one state 10 a given commumcating class IS periodic, 
then all states in that class are periodic. 

17. For the following special cases of the infinite random walk, determme if (i) 11 IS 
aperiodic, (ii) irreducible, and (iii) there is a solution to the eigenvector problem. 

(a) r =0, p >q >0. 
(b) r>O, p =q >0. 

18. Suppose a (nonfair) coin IS flipped successively with the probability of heads or tails 
on any trial being p and 1 - p, respectively. Define an mfimte Markov chain where 
state S; corresponds to a landing of the coin that represents a run of exactly i heads 
on the most recent flips. Show that this Markov chain IS apenodic and irreducible. 
Is it positive recurrent? 

19. DynamiCS of Poverty and Wealth. Income distribution is commonly represented by 
the distribution functIon D(y), which measures the number of individuals with 
incomes exceeding y. It has been observed that with surpnsing regularity, 10 various 
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countnes over long histories, the upper end of the distribution closely approxImates 
the form 

for some parameters C and IX. This IS referred to as Pareto's law. 
One theoretical explanation for the regulanty encompassed by Pareto's law IS 

based on a Markov chain mode! of indivloual income developeo by Champernowne. 
In thiS model the income scale is divided Into an Infinity of income ranges. The in­
come ranges are taken to be of uniform proportIOnate length; that is, they might be 
$50 to $100, $100 to $200, $200 to $400, and so on. At anyone time a given 
individual's inCOme falls within one of these ranges. At the next period (and penods 
might correspond to years), his or her income makes a transition, either upward or 
downwaro, according to a set of probabilities that are characteristic of the particular 
economy in which the person lives. 

It is assumed that no Income moves up by more than one or down by more 
than n Income ranges In a penod, where n 21 IS a fixed Integer. Specifically, 11 is 
assumed that there :Ire n +2 positive numbers, P-n, P-n+" ... , Po, PI such that 

Then, the transition probabilities for the process are oefined as 

Pii = Pi-< for -n Sf -I s 1, j 21 

pio=l- L PI-' for OSisn .-0 
Pii = 0 otherwise 

The pattern of transltlon probabilities is illustrated in Fig. 7.8 for n = 2. (This mooe! 
can be viewed as an extension of the mfimte random walk.) 

Finally, it IS assumed that the average number of mcome ranges moved in one 
step IS negative when at the upper levels. That is, 

-np-n +(-n + I)P-n+1 + ... + (-I)p_1 + O· Po+ PI <0 

(a) Verify that this Markov chain is irreducible ana aperiodic. 

(b) Let 
, 

F(A)=-A+ L PuAt-. 

and show that F(1)=O, F'(1»O, and F(O)=PI>O. Conclude that there IS a 
root A to ti.e equation P(A) = 0 in the range 0 < A < 1. 

(c) Find an equilibnum probability vector. 

(d) Show that the equilibnum mcome distribution satisfies Pareto's law. 
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~ 0 I 2 3 4 5 6 

o I I-p, p, 0 0 0 0 0 .. -

1 I-po-p, Po p, 0 0 0 0 .. -

2\I- P_,-PO-PI P-. Po PI 0 0 0 . -
3 0 P-2 P-. Po p, 0 0 ... 
4 0 0 P-2 P-. Po p, 0 ... 
5 

I 
0 0 0 P-2 P-, Po p, - . 

6 0 0 

I 
0 0 P-2 P-I Po .. 

7 

I ! I I 

Figure 7.8. Champernowne model 
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(Problem 14) has been developed by Howard [H6]. The optimal strategy for real 
blackjack was found (by computer simulation) by Thorpe [TI]. The model of Problem 
19 together with various modifications is due to Champernowne [C2]. 



chapter 8. 

Concepts of Control 

The analysis of dynamic systems can certaInly enhance our understanding of 
phenomena arollnd us. But beyond analysis is the higher objective of influenc­
ing the behavior of a system by control or design. The field of control theory is 
directed toward this general objective. 

8.1 INPUTS, OUTPUTS, AND INTERCONNECTIONS 

The state space description of a linear dynamic system focuses on the 
behavIOr of the entire system-the evolution of all state variables as a result of 
prescribed Initial conditions and input values. It is often the case, however, that 
certain vanables, or combinatIOns of variables, are of special Interest, while 
others are of secondary mterest. For example, an automobile might be rep­
resented as a high-order dynamic system. During operation, however, one is 
generally only Interested in a few characterIzing variables (such as vehicle 
position and velocity) rather than the whole assortment of internal variables 
(engIne speed, etc.) required for a complete description of the state. It is useful 
to explicitly recognize the important variables as systems outputs. 

In a linear system the outputs are generally linear combinations of state 
variables and input variables. Thus, in the context of outputs, the definition of a 
linear discrete-time nth-order system is expanded to the general form 

x(k + 1) = A(k)x(k) + B(k)n(k) 

y(k) = C(k)x(k) + D(k)u(k) 

As usual, x(k) IS an n-dimensional state vector, u(k) is an m-dimensional Input 
vector, and A(k) and B(k) are n X nand n X m matrices, respectIvely. The 
vector y(k) IS, say, a p-dimenslOnal output vector, and accordingly C(k) and 
D(k) are p X nand p x m matrices, respectively. 
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Often only a single output variable y(k) IS specified. In this case C(k) IS 

1 x nand D(k) is 1 x m, and hence, one usually uses the lower-case notation 
C(k)T and d(k)T. If the system has only a single Input and a single output, It IS 

expressed as 
x(k + 1) == A(k)x(k) + b(k)lI(k) 

y(k) == C(k)T x(k) + d (k)lI(k) 

The choice of outputs is, from a mathematical viewpoint, quite arbitrary. 
However, in practice, variables are designated as outputs if they are available 
for measurement or if they have some special importance. 

From the perspective of control, the structure of inputs and outputs is an 
integral component of the description of a dynamic system. The mput struc­
ture determines the degree that system behavior can be modified, and the 
output structure governs the kind of mformation available for control. These 
structural components of a dynamiC system interact, and are basic to the very 
objective of control. 

If a system has only a single input and a single output, It IS possible to 
deduce a single nth-order difference equation that governs the output vanable. 
This IS essentially the reverse of the procedure used in Sect. 4.1 to convert an 
nth-order difference equation to state space form. Thus, consideration of 
outputs leads us back to the study of linear difference equatIons. Therefore, the 
first few sections of this chapter are concerned with an alternative method of 
solution of such equations-the transform method. 

If a system has several outputs and several IOputs, it IS often useful to 
partition the system into a number of interconnected subsystems each havmg a 
single input and single output. Each subsystem can be analyzed by the trans­
form method, and the results can be appropriately combined. This combmatlon 
process is an important product of the control (or Input-output) vlewpomt. 

The sections of this chapter are divided into two groups. Those through 
Sect. 8.5 cover the transfann approach to analysis discussed above. The 
transform material is a natural augmentation of methods developed 111 earlier 
chapters, but it is not essential for the second half of this chapter. Sections 
8.6-8.10 are devoted more explicitly to control issues from a stare space 
viewpoint. This material represents an introduction to the field of modern 
control theory. 

TRANSFORM METHODS 

8.2 z-TRANSFORMS 
The z-transform is a mathematical operation that, when applied to a sequence 
of numbers, produces a function of a variable z. The formal definition is given 
below. 
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Definition. Given a sequence of numbers y(O), y(l), y(2), ... , the z-transform 
of this sequence IS the series (depending on z) 

Y(z) = f y(~) 
.=0 z 

(8-1) 

The series (8-1) can be looked at in two ways. First, and perhaps most 
naturally, it can be regarded as defining a functIon of the variable z. Thus, 
numerical values of z (either real or complex) yield numerical values for Y(z). 
Viewed this way, one must examme the conditions under which the senes (8-1) 
converges. If the values of y(k) grow at most geometncally [that IS, if 
ly(k)l::s;c k for some C2:0], then the series converges for Izl sufficiently large 
[Izl > c]. In all our applications this condition is fulfilled. 

Another approach is to treat this defimtIOn formally without concern for 
conditIons of convergence. The variable z IS regarded simply as a symbol, and 
the transform Y(z) as a series that is never actually summed. This corresponds 
to the approach that one often uses in connectIOn with polynomials. Polyno­
mials in a symbol z can be defined and mampulated algebraIcally, even if it IS 
never intended that the symbol z be assigned a numencal value. The same 
algebraic procedures can be applied to the z-transform series Y(z). However, 
as shown below, there is often a shorthand representation of the series, which 
IS closely related to the first, function viewpoint. 

Example 1. Consider the constant sequence y(k)= 1. This sequence IS referred 
to as the unit step. The z-transform of this sequence IS 

~ 1 
Y(z)= I k 

k=O Z 

If z IS a complex variable such that Izl> 1, this sequence converges and has the 
value 

1 z 
Y(z)=l-l/z = z-l 

Example 2. Consider the sequence y(k) having the specific values 1, 2, 3, 0, 
0, .... The z-transform is 

Example 3. Consider the geometric sequence y(k) = a k Then 

~ a k 

Y(z)= I k 
k=O Z 
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For Izl > lal, this series converges to 

Rational Functions 

z 
Y(z)=­

z-a 

A form of function that arises often in the study of linear dynamic equations, 
and partIcularly in the context of transforms, is that of a rational fUnctIon. A 
function F(z) of the variable z is said to be ratIOnal if it IS a ratio of 
polynomials in z. Thus, a rational fUllction has the form 

b m+b m-\' +b F(z)= m Z . m-l z T'" 0 

anz n + a n - 1 zn-l + ... + ao 
(8-2) 

A rational function is called proper if the degree of the numerator polynomial IS 
no greater than the degree of the denominator polynomIal. It is strictly proper if 
the degree of the numerator polynomial is less than the degree of the 
denominator polynomial. 

If the numerator and denominator polynomials of a ratIonal function have nO 
common factors, the functIon is said to be reduced. Clearly any ratIOnal 
function can be converted to a unique reduced form by cancelling out common 
factors. The degree of a rational function is equal to the degree of its 
denominator polynomial when the function is reduced. 

In many cases, as 10 Examples 1, 2 and 3 above, the z-transform of a 
sequence converges (for large values of Izl) to a proper rational function. Thus, 
the rational function is a representation of the series defining the transform. If 
z is treated Simply as a symbol rather than a number, the rational function can 
be used as a shorthand representation of the original series. If the denominator 
of the rational expressIOn IS divided into the numerator according to the 
standard rules of long division of polynomials, the original series is obtained. 
From this viewpoint the rational function acts as a generator for the senes. 
Referring to Example 1, the rational function z/(z -1) = 1/(I-I/z) is a formal 
generator for the series 1 + 1/ z + liz z + .... This formal viewpoint allows us to 
suppress considerations of series convergence, especially for sequences whose 
z-transforms have ratIonal representations. 

Fortunately, proper rational z-transforms are in direct correspondence 
with sequences generated by homogeneous linear, constant-coefficIent, differ­
ence equations. This result, established below, thereby justifies the special 
attention we devote to rational forms. 

Theorem 1. A sequence y(k), k == 0,1,2, ... has a z-transform Y(z) that can 
be expressed as a reduced proper rational functIOn of degree n if and oniy if 
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there are n scalars ao, a" ... ,a .. _1 such that 

y(k + n)+ an_1y(k + n -1)+· .. + aoy(k) = 0 (8-3) 

for all k >0. 

Proof. Suppose y(k) has a reduced proper rational transform of degree n, 

Y(z) = bnz
n 

+ bn_1z
n
-

1 
+ ... + bo y(O) + y(l)z-1 + y(2)Z-2 + ... + ... 

Z"+a.._IZn 1+ ... +ao 
(8-4) 

Then it follows that 

X{y(O)+y(l)z-I+ ... } (8-5) 

Equating coefficients of like powers of z gives 

bn = y(O) 

bn - 1 = a n - 1 y(O) + y(l) 

bn - 2 = a..-2Y(0) + a"-l y(1) + y(2) 
(8-6) 

bo = aoY(O) + a,y(l) + ... + a..-,y(n -1) + y(n) 

and, since the coefficient of Z-k on the left side of (8-5) is zero for k >0, 
it follows that 

0= aoy(k)+a,y(k + 1)+·· . +an-ly(k + n -1)+ y(k +n) (8-7) 

for all k > O. This shows that if the transform is (8-4), the sequence must satisfy 
(8-3). 

To prove the reverse implication, we start with (8-7), which is identical to 
(8-3), and then select bo, b" ... , bn so that the equations (8-6) are satisfied. It 
IS then possible to go in the reverse direction through the argument to show 
that Y(z) is equal to (8-4). I 

Transform Properties and Transform Pairs 

Transforms of rather complicated sequences can be easily derived by knowing 
a few simple properties of transforms and a few simple transform palfS. Stated 
below are three useful properties. 

Property 1. If [(k) and g(k) are sequences with z-transforms F(z) and O(z), 
respectively, then the transform of [(k)+ g(k) IS F(z) +O(z). The trans­
form of af(k) is aF(z). 
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r It. I':' I~ r I~ I~ 
3 

(a) (b) 

I-is 
(e) 

Figure S.1. z-transform of flkl. flk-1}, and flk+l). 

Proof. This property follows from the fact that the definition (8-1) is linear 111 

the sequence values. I 

Property 2. If the sequence f(k) has the z-transform F(z), then the unit 
delayed sequence 

has z-transform 

{
f(k -1) 

g(k)= 
o 

O(z) = z-'F(z) 

k2:1 

k=O 

Proof. [Figure 8.1 represents the transform series corresponding to f(k) = ilt: 
and its delayed and advanced versions. It can be seen that the sum obtained 111 

(b) is just Z-I times that of (a).J The actual proof is obtained by writmg 
~ ~ 

O(z) = I z-kg(k) = I z-kf(k -1) 
k=O k=l 

~ 

= Z-l I z-(k-Ilf(k -1) 
k=1 

~ 

= Z-I I z-'fU) = Z-l F(z). I 
1=0 

Property 3. If the sequence f(k) has z-transform F(z), then the unit advanced 
sequence h(k)=f(k+1), k2:0 has the transform 

H(z) = zF(z)- zf(O) 
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Proof. (See Fig. 8.1c.) We have 
~ ~ 

H(z) = I z-kh(k) = I z-kf(k + 1) 
k=O 

~ ~ 

= z I Z-k-l f(k + 1) = z I z-Jfv) 
k=O 

00 

= z I z-J fv) - z[(O) 

=zF(z)-z[(O). I 

Let us illustrate how the rules can be used 10 conjunction with the known 
transform pairs to find the transform of other sequences. 

Example 4. Consider a pulse of duration N defined by 

f(k)= G O~k<N 

k";?N 

This can be regarded as the sum of a UnIt step (from Example 1) and the 
negatlve of a unit step delayed N time periods. Thus, using the result of 
Example 1 and N applications of Property 2, the transform of f(k) is 

z z 1 
F(z)= z-l- z-l· ZN 

= z ~ 1 (1- zlN) 
ZN -1 

ZN-l(Z_l) 

Example S. Consider the geometric ramp sequence 

g(k) = ka k
-

l 

Let f(k) be the geometric sequence f(k)=a k Then 

d 
g(k) = da [(k) 

Using the result of Example 3, 

d d z 
O(z)=- F(z)=---

da da z-a 

O(z)=-( Z)2 
z-a 

Table 8.1 lists some simple but frequently used z-transform pairs. 
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Table 8-1. z-Transform Pairs 

f(k) 

unit impulse: f(k) = {I, 
0, 

unit step: f(k) = I 

unit ramp: f(k) = k 

geometric series: f(k) = a" 

k=O 
k>O 

~ {a, 
delayed geometnc senes: f(k) = K-J 

a , 

geometric ramp: f(k) = ka 0-1 

k=O 
k>O 

delayed geometric ramp: f(k) = {Ok' k-2 
(-I)a , 

k=O 
k>O 

F(z) 

F(z)= I 

F(z)=_z_ 
z-l 

z 
F(z) = (z _1)2 

F(z)=_Z_ 
z-a 

I 
F(z)=-

z-a 

F(z)=_z_ 
(z-a)2 

I 
F(Z)=-( )2 z-a 

8.3 TRANSFORM SOLUTION OF DIFFERENCE EQUATIONS 

The z-transform is the basis of a very effective method for solution of linear, 
constant-coefficient difference equations. It essentially automates the process of 
determining the coefficients of the various geometric sequences that comprise a 
solution. 

The heart of the method is the fact that if the sequence y(k) has transform 
Y(z), then the advanced sequence y(k + 1) has transform zY(z) - zy(O). (See 
Property 3 in Sect. 8.2.) By repeated application of this property one can 
deduce the successive correspondences 

y(k) - Y(z) 
y(k + 1) - zY(z)- zy(O) 

y(k + 2) - z2 y(z) - Z2 y(0) - zy(l) 
(8-8) 

y(k +3) - z3 y(z)- Z3 y(0)- z2y(1)- zy(2) 

and so forth. 
Now consider the nth-order difference equation 

y(k + n) + a..-ly(k + n -1)+ a..-zy(k + n -2)+· .. + aoy(k) = g(k), 

k = 0, 1, 2, ~ (8-9) 
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By taking the z-transform of both sides, an algebraic equation is obtained for 
the unknown transform Y(z). Let us assume first that the initIal conditions are 
zero; that is, y(O) = y(l) =. - . = y(n -1) = O. In this case only the first terms in 
the right-hand side of the correspondences (8-8) are required. The transform of 
(8-9) becomes 

zny(z) + a.._lZn-1 Y(z) + a.._2Zn-Zy(z) + ... + ao Y(z) = O(z) (8-10) 

or 

(8-11) 

Thus, 

Y(z) = _ O(z) _0 

z"+an_1z n l+a.._Z Z " .+. - '+ao 
(8-12) 

Once the z-transfonn of g(k) is computed, the transform Y(z) is determined. 
Finally, the solution y(k) can be found by InvertIng the transform; that is, by 
finding the sequence that has this particular transfoml. (A method for this 
inversIon IS presented later in thIs sectIon.) 

We note that if the transform O(z) IS rational, then the transform Y(z) is 
also rational. The polynOITllal appeanng in the denominator of (8-12) is 
recognized as the characteristIc polynomIal of the ongmal difference equation 
(8-9). To determine the basic geometric sequences comprising the solution y(k) 
it IS necessary to factor this polynomIal. 

The procedure is also applicable if the initial conditIons are not all zero. 
In that case the additional terms In (8-8) must be Incorporated. ThIs, however, 
SImply modifies the right-hand side of (8-11). 

Let us illustrate the procedure with some simple examples. Then we shaH 
consider a general procedure for inverting rational z -transforms. 

Example 1. Consider the difference equation 

y(k + 1)- y(k) = 0 k =0,1,2, .. 

with initial condition y(O) = 1. (One should be able to deduce the solutIOn 
Immediately, but let us work through the procedure.) The z-transform of the 
equation is 

zY(z)-zy(O)- Y(z)=O 

or, substituting the initial condition and solving, 

z 
Y(z)=-l z-

From Table 8.1 of the previous section (or Example 1 of that section) we find 
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that this transform corresponds to y(k) = 1, k = 0,1,2, ... , and this is clearly 
the correct solution. 

Example 2. Consider the difference equation 

y(k+1)+2y(k)=4k k =0,1, ... 

with y(O) = O. Application of the z-transform Yields 

Thus, 

One may verify that 

z 
zY(z)+2Y(z)=-­

z-4 

z 
Y(z) = (z + 2)(z - 4) 

z ~ 1 _____ =_3_+_3_ 
(z+2)(z-4) z-4 z+2 

Therefore from Table 8.1 it follows that y(k) IS composed of two delayed 
geometric sequences: one with ratio 4 and the other with ratio -2. Specifically, 

Inversion by Partial Fractions 

k=O 

k2!l 

Transform inversion is the process of going from a given z-transform, ex­
pressed as a function of z, to the corresponding original sequence. If the z­
transform IS given as a rational function, this inversion can always be accom­
plished directly (but tediously) by dividing the denominator polynomIal mto the 
numerator, recovering the series expansion that defines the transform In terms 
of the original sequence. There is, however, a simpler procedure in which the 
transform is first expressed in what is termed a partial fraction expansion. We 
shall outline the general technique and apply it to some examples. 

Let F(z) be a reduced strictly proper rational function 

F(z)= bn_1z n- i + .. '+bo 
zn + a.._lZ"-1 + ... + ao 

(8-13) 

The denominator can be factored In the form 

zn + a.._lZn-1 + ... +ao = (z - ZI)(Z - Z2)' • '(z - zn) 

Let us assume first that the roots Z1> Z2, .•. ,Zn are distinct. Then the function 
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F(z) can be written in partial fraction form 

(8-14) 

When the roots are distinct an expansion of the form (8-14) always exists. The 
n constants c" C2, '. , Cn must be determined so that when (8-14) is cross 
multiplied to convert it to the form (8-13), the n coefficients bo, b l , •• -, bn - I 

are correct. 
Once a transform is expressed in the partial fraction form (8-14), inversion 

is straightforward. Each term on the right-hand side of (8-14) corresponds to a 
delayed geometric series with ratio Z,. Thus, the inverse transform of F(z) is the 
weighted sum of such sequences. 

Specifically, 

{
o 

f(k) = - - -
C Z K-I+C Zk-l+ •. '+c Zk-I 

1 J. 2 2, . n n 

k=O 
k2:1 

If some of the Zi'S are not distinct, then the partial fraction expansion must 
in general mclude higher-order terms. For instance, suppose a root, say z" is 
repeated m times. Then the expansion must include the terms 

~+ Ci 2 + .. 0-i- elm 

z-z, (z-z,)Z (z-zJm 

Again, however, each of these can be inverted by extending the result of the 
last entry in Table 8.1. ThIS leads to terms of the form z7, kZ~-I, k2Z~-2,_ 
k(m-l)z~-m+l 

Example 3. ConsIder the transform 

Let us find its Inverse. 
Factonng the denominator we obtain 

z-3 
F(z) = (z -l)(z - 2) 

Therefore, we look for a partial fraction expansion of the form 

CI C2 F(z)=--+-­
z-l z-2 

Cross multiplying and equating terms we find 

F(z)= CI(Z -2)+C2(Z -1) 
(z -l)(z -2) 
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Comparison with the original expression for F(z) leads to the equatIons 

Cl +c2 = 1 

-2C,-C2= -3 

These have solution Cl = 2, C2 = -1, and hence the partial fraction expansion IS 

2 1 
F(z)=----­

z-l z-2 

Therefore, using Table 8.1 we can deduce that 

Example 4. Let 

{
o 

k)= f( 2-2k - 1 

k=O 

k2:1 

2Z2-7z+7 
F(z) = (z -1)2(z -2) 

To invert this we seek a partial fraction expansion of the form 

c, C2 C3 
F(z)=--+--+-­

z-l (z-W z-2 

Cross mUltiplying and equating terms we find (USIng a procedure similar to that 
employed in Example 3) 

121 
F(z)= z-1-(z-1)2+ z-2 

From Table 8.1 this IS easily converted to 

Example 5. Let 

{
a, 

f(O)= 1-2(k-l)+2k -" 

F(z) = 2Z2 - 3z 
z2-3z +2 

k=O 
k2:1 

This rational functIon is not strictly proper. However, z is a factor of the 
numerator. Thus, 

F(z) = 2z-3 
z z2-3z+2 

is strictly proper and can be expressed in partIal fraction form 

This means that 

F(z) 1 1 
--=--+--

z z-1 z-2 

z z 
F(z)=--+-­

z-l z-2 
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The first term corresponds to the unit step and the second corresponds to a 
geometric series with ratio 2. Therefore, 

Example 6. Consider 

f(k) = 1 +2k k '2:0 

F(Z)=z+2 
z-l 

This ratIOnal function IS not strictly proper. However, it can be wntten as a 
constant plus a strictly rational function. 

Therefore, 

3 
F(z)= 1+-­

z-1 

f(k) = G k=O 
k'2:1 

8.4 STATE EQUATIONS AND TRANSFORMS 

The transform technique can be applied to state equatIOns, leading to new 
relatIOns, new msights, and new analysis techmques. 

Transfer Functions 

Consider the following single-input, single-output system: 

x(k + 1) = A.x(k) + buCk) 

y(k) = cT x(k) + du(k) 

The z-transform can be applied to these equations, yielding 

zX(z) - zx(O) = AX(z) + bU(z) 

y(z) = cTX(z)+ dU(z) 

(8-15a) 

(8-15b) 

(8-16a) 

(8-16b) 

The transform X(z) is a vector with components being the transforms of the 
corresponding components of x(k). Since the z-transform IS linear, It is possible 
to apply it to the linear equations (8-15) in the direct fashion mdicated. 

Let us assume x(O)=O. Then from (8-16a) one finds 

X(z) = [Iz - A]-lbU(z) 

Hence, substituting in (8-16b) 

y(z) = cT[lz - A]-ibU(z)+ dU(z) 

(8-17) 
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Therefore, 

Y(z) = H(z) U(z) (8-18) 

where 

(8-19) 

[Note that cT[Iz - At1b is 1 x 1.] 
The transform H(z) defined by (8-19) IS called the transfer fUllctlOn of the 

system (8-15). It carries all the information necessary to determIne the output 
III terms of the input. [Direct use of the transfer function always implicItly 
assumes x(O) = 0.] 

Since the state equations (8-15) are closely related to ordinary linear, 
constant-coefficient difference equations. It is perhaps not surpnsmg that H(z) 
can be expressed as a rational function of z. The propositIon below verifies thiS 
fact. 

Proposition. The transfer functIOn of a slngle-lnpllt, smgle-outpw nth-order 
linear system is a proper rational functIOn of degree no greater thall n. 

Proof ThiS result follows from the cofactor expression for the ll1verse of <l 

matrix. We know that the determinant of Iz - A IS a polynomial of degree 
n-the characteristic polynomial of A. The elements of the inverse of I: - A 
are, accordingly, each strictly proper rational functIOns with the charactenstlc 
polynomial as denominator. The transfer function H(z) consists of weighted 
sums of these elements, plus the constant d. When expressed with a common 
denominator polynomial (which is the charactenstic polynomial) the result 15 a 
proper rational function. The degree of the denominator polynomial IS II. If It IS 
possible to reduce the result, the degree is less than n. I 

Impulse Response 

Instead of employing the transform technique, let us solve (8-15) directly for 
y(k). ThIS is easily accomplished by using the general solution formula of Sect. 
4.5. Assuming x(O) = 0, the output y(k) is gIven by the formula 

,,-i 

y(k) = L eTA k-I-tbu(I) + duCk) 
(=0 

Defining, for k ~ 0, the scalar-valued function 

k=O 
k~l 

(8-20) 

(8-21) 
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the expression for the output can be written 

k 

y(k) = I h(k -l)u(l) (8-22) 
;=0 

The functIon h(k) defined by (8-21) is the impulse response function of the 
system (8-15). The interpretation of the impulse response is, of course, that it is 
the output corresponding to a unit pulse at k = O. Clearly, in order to determine 
the output for any input sequence (under the assumption of zero Initial state), it 
is sufficient to have computed the impulse response function, rather than all 
powers of A. For this reason the impulse response function is a natural 
characterization of the system. 

The impulse response and the transfer function are intimately related. 
Indeed, the transfer function is the z-transform of the impulse response. The 
easiest way to see this is to consider the output produced by application of a 
unit impulse at k = O. By definition, the output y(k) is h(k), the impulse 
response. On the other hand, in terms of z-transforms, the transform y(z) of 
the output satisfies 

Y(z) = H(z) U(z) 

where H(z) is the transfer function and U(z) is the z-transform of the input. 
For an input equal to a unit impulse, One has U(z) = 1 (see Table 8.1). Thus, 
Y(z) = H(z). Since Y(z) IS the z-transform of the Impulse response, so is H(z). 
This result IS summanzed below. 

Theorem. For a linear, constant-coefficient, single-input, single-output system, 
the transfer function H(z) is the z-transform of the Impulse response h(k). 

Example 1 (First-Order System). Consider again the first-order system 

x(k + 1) = ax(k) + buCk) 

The transfer functiOn is 

y(k) = cx(k) 

bc 
H(z)=­

z-a 
In tenns of a series expansion we have 

H(z)= ~c (1+;+ ::+. _.) 
InvertIng this tenn by tenn we see that 

h(k)={O _ 
bca k

- 1 

k=O 

k~1 

which agrees with the known fonn for the Impulse response. 
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Figure 8.2. Unit delay. 

The Unit Delay 
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Consider the most elementary dynamic system-a single delay. Its defimng 
equations are 

x(k + 1) = u(k) 

y(k) = x(k) 

and we have often represented it diagrammatically, as in Fig. 8.2a. The 
transfer function of this elementary system is easily seen to be H(z) = l/z. 
Therefore, the unit delay can be expressed diagrammatically as in Fig. 8.2b. 
Indeed we shall find It convenient to follow standard conventIOn and refer to 
1/ z as the delay operation. It is, of course, the fundamental dynamiC compo­
nent for discrete-tune systems. General systems are composed Simply of a 
number of delays and various statIc components. 

Combinations 

An important characteristic of the transfer function, whIch :s not shared by the 
impUlse response function, is that the transfer function of a large structured 
system can be easily written in terms of the transfer functions of individual 
subsystems, thereby reducing a high-order calculation to a series of smaller­
order calculatIOns. 

First consider a parallel arrangement as shown in Fig. 8.3. Suppose the 
two systems SI and S2 have transfer functions HI(z) and H 2(z), respectively. 

y 
U 

Figure S.3. A parallel combination. 
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y, = y , 

Figure 8.4. A series combination. 

Then, assuming all state variables are initially zero, it follows that 

Therefore, 

Yt(Z) = Ht(z) UI(z) 

Y2(Z) = H 2(z) U2(Z) 

Ut(Z) = U 2 (Z) = U(z) 

Y(Z) = Yt(Z)+ Y2 (Z) 

and hence, the composite transfer function is the sum of the two individual 
transfer functions. Thus, 

The transfer function of a parallel combmatlOn of systems IS equal to the 
sum of the transfer functions of the individual subsystems. 

The above property of addition for parallel combinations IS important, but 
not particularly striking. This property is possessed by the Impulse response 
functIOn h(k) as well. The unique property of the transfer function is how it 
decomposes in a senes combination of systems. 

Consider the system shown in Fig. 8.4. Suppose the two individual systems 
agam have transfer functions HI(z) and H 2 (z), respectively. Then 

Thus, 

In general, therefore, 

YI(z)=Ht(z)U(Z) 

Y(z) = H 2 (z)Y1(z) 

The transfer function of a senes combination of systems IS equal to the product 
of the transfer functions of the individual subsystems. 

Feedback Structures 

Systems composed of more complex arrangements of component subsystems 
can be treated by systematic application of the rules for parallel and series 
combmations. One Important arrangement is the general feedback form illus­
trated in Fig. 8.5. In this figure Gt(z) and G 2 (z) represent the transfer functIons 
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Figure 8.5. General feedback structure. 

from the input to the output of the systems contained within their respective 
boxes. The overall transfer function H(z) from u to y is to be determined. 

The transfer function H(z) can be determined by writing an equation that 
it must satISfy. If the overall transfer function from u to y is H(z), then uSlllg 
the series rule the transfer function from u to 8 is H(z )G2(z). Then, using the 
parallel rule, the transfer function from u to e must be 1 + H(z)G2 (z). Then 
again using the series rule the transfer function from u to y must be G 1(z) 
{I + H(z)G2(z)}. We therefore obtain the equation 

(8-23) 

and thus we conclude that 

(8-24) 

This formula for the transfer function of a feedback structure, together with the 
formulas for parallel and series combinations, generally enables one to qUickly 
compute the transfer function of complex arrangements. 

Example 2. A diagram of interconnected systems as shown in Fig. 8.6 might 
arise in the study of a control system for a mechanical or electncal system. 
This transfer function is readily found by application of the rilles described III 

tlus section. The inner feedback loop can be regarded as a system WIth transfer 
function 

y 

Figure 8.6. Interconnected systems. 
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This, combined with the system G 2 , can then be regarded as the upper part of 
the outer feedback loop. The overall transfer function is 

G 1(Z)G2 (z) 

H(z) = 1- G I (z)H1(z) 
1- G 1(Z)G2(z)H2(z) 

1-G1(z)H1(z) 

H(z) = G 1(Z)G2 (z) 
1- G1(z)H1(z) - G 2 (Z)G 1(z)H2 (z) 

Note that if the mdividual transfer functions are rational, the overall transfer 
function will also be rational. 

8.5 LAPLACE TRANSFORMS 

The foregomg developments can be paralleled for continuous-time systems 
through introduction of the Laplace transform. 

Definition. Corresponding to a functIOn yet), t ~ 0 the Lap/ace transform of 
thiS function is 

yes) = r y(t)e-SI dt (8-25) 

where s is an indeterminant variable. 

There are certam convergence conditions associated with the integral in 
thiS definition. If yet) is a continuous function bounded by some exponential 
[say ly(t)l::s; eM'], then the integral exists for complex values of s having real 
part sufficiently large (larger than M). However, analogous to the z-transform 
situation, the integral can usually be considered as just a formalism; the 
transform itself being represented by a rational expression in the variable s. 
This is always possible when yet) is made up of various exponential terms. 

Example 1. Consider the function y(t) "" ea,. The corresponding Laplace trans­
form is 

i
~ (a-s)' I~ 

Y(s) = ea'e-Sldt=-e--
o a-s 0 

1 
Y(s)=-

s-a 

(8-26) 

The integral corverges if the real part of s is greater than the real part of a. 
However, one may sidestep the convergence issue and simply associate the 
rational expression (8-26) with the transform of ea,. 



8.5 Laplace Transforms 273 

The Laplace transform enJoys a set of properties quite similar to those of 
the z-transform. 

Property 1. If f(t) and get) are functions with Laplace transforms F(s) and 
G(s), respectively, then the transfonn of f(t)+g(t) is F(s)+G(s). The 
transform of af(t) is aF(s). 

Proof. ThIS follows from the linearity of the definition. I 

Property 2. If f(t) has Laplace transfonn F(s), then the derivatIve functIon 
get) = (dldt)f(t) has transform G(s) = sF(s)- f(O). 

Proof. We have 

i
~ d 

G(s) = - f(t)e- st dt 
o dt 

Integration by parts yields 

G(s) = f(t)e-" [ + s r f(c)e-" dt 

=sF(s)-f(O).1 

Property 3. If f(t) has Laplace transform F(s), then the mtegral functIon 
get) = S~ J(T) dT has transform 

1 
G(s)=-F(s) 

s 
Proof. This can be deduced from Property 2 above, smce (dldt)g(tl = f(t). Thus, 

F(s) = sG(s) - g(O) 

since g(O) = 0, the result follows. I 

Solution of Differential Equations 

The Laplace transform provides a convenient mechanism for solvmg ordinary 
linear, constant-coefficient differential equations. The approach IS exactly 
analogous to the z-transform procedure for difference equations. We illustrate 
the techmque with a single example. 

Example 2. Consider the differential equation 

with the imtIal conditions 

d
2

y(t) _ 3 dy(t) + 2 (t) = 1 \ 
dt2 dt y 

yeO) = 1 dy(O) = 0 
dt 

(8-27) 
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We note that by two applications of Property 2 the Laplace transform of 
(d 2 Yldt2) is S2 yes) - sy(O) - (dyldt)(O). Then, takIng the transfonn of the 
differential equation (8-27) yields 

(s2-3s+2)Y(s)-sy(0)- dy(O) +3y(0)='~ 
dt s 

The lIs term on the right is the transform of 1 (see Example 1, with a = 0). 
SubstItuting the given initial conditions yields 

1 s2-3s+1 
(s2-3s+2)Y(s) =-+s-3 =----

s s 

Therefore, 

This transfonn can be Inverted by developing a partial function expansion. 
Thus, 

1 1 1 
yes) =-+----

2s s -1 2(s - 2) 

Therefore, yet) can be expressed as the corresponding cOmbInatIOn of expo­
nential functions, 

yet) = 1+ et _!e 2t 

State Space Equations 

Let us nQw apply the Laplace transfonn to an nth-order, single-Input, 
single-output system written in state space fonn 

Assume that x(O) = O. 

x(t) = Ax(t) + bu(t) 

yet) = cT x(t) + duet) 

Application of the Laplace transfonn yields immediately 

sX(s) = AX(s) + bU(s) 

yes) = cTX(s) + dUes) 

Elimination of Xes) produces the input-output relation 

yes) = R(s) U(s) 
where 

(8-28a) 

(8-28b) 

(8-29) 
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Figure 8.7. The pure integrator. 

As before R(s) is called the transfer function of the system (8-28). It is a proper 
rational function of degree n or less. The transfer function converts the 
complicated dynamic relation between input and output into a simple multI­
plicative operation of transforms. This greatly facilitates calculatIOn, especIally 
when a system has a natural decompositIon as a collection of subsystems. 

The Pure Integrator 

The simplest continuous-time dynamic system is the system x(t) = ll(t). The 
output x(t) is just the Integral of the Input functIOn. This IS representeel 
diagrammatically in Fig. 8.7a. The transfer function of this system IS easily seen 
to be lIs. Thus, we often use lis instead of an integral sign In system dia­
grams, as illustrated in Fig. 8.7b. 

Combinations 

We conclude this section with an example that illustrates how the transfer 
function often leads to a more visual and more rapid approach to analysis. It 
works well in conjunction with dynamic diagrams. 

Example 3. Suppose we are given the system 

[Xl] [1 0] [Xl] [1] ) x
2 

= 1 2 X
2 

+ 0 u(t 

y(t) = X2(t) 

The initial condition is xl(O) = X2(0) = 0 and the input u(t) = 1 is applied, for 
t ~ O. What is the output? 

The system is shown in diagram form in Fig. 8.8. From the diagram one 
sees immediately that the transfer function is 

1 
R (s) = -(s---l-)(-s --2-) 

The Laplace transform of the constant input is, by Example 1 (with a = 0), 

U(s) = lis 
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u 

2 

Figure S.S. Diagram for Exampie 3. 

Therefore, the output has Laplace transfonn Yes) = R(s) U(s). Thus, 

1 
Y(s)=----

s(s -l)(s - 2) 

This can be written in partial fraction form 

It then follows that 

1 1 1 
Y(s) =---+--

2s s - 1 2(s - 2) 

STATE SPACE METHODS 

8.6 CONTROLLABILITY 

The input and output structure of a system can significantly influence the 
available means for control. Two fundamental concepts characterizing the 
dynamic implications of input and output structure are the dual concepts of 
controllability and observability. 

Controllability for Discrete-Time Systems 

We begin by givmg a general definition of controllability for linear discrete­
time systems. 

Definition. The nth order system 

x(k + 1) = Ax(k) + Bu(k) (8-30) 

is said to be completely controllable* if for x(O) = 0 and any given n vector 

* It IS possible to define a notion of controllability With respect to a subset of the states that can be 
reached. The termInology completely controllable thus refers to the fact that all states can be 

reached. We shall have no need for anything other than the nouon of complete controllability, 
and, often. for economy of language, we refer to this concept simply as concrollability. 
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Xl there exists a finite index N and a sequence of inputs 0(0), 0(1), . 
o(N -1) such that this input sequence, applied to (8-30), Yields x(N) = Xl' 

Thus, somewhat more loosely, a system is completely controllable if the 
state can be driven from the origin to any other state in a finite number of 
steps.! Actually, the choice of x(O) = 0 is simply one of convenience. We will 
later show that if the system is completely controllable in the sense of the given 
definition, it is possible to drive the system from any initial state to any 
specified state within a finite number of steps. Thus, complete controllability 
corresponds directly to the intuitive notion of being able to control the system 
state. 

Example 1. In the system shown III Fig. 8.9 the state vanable Xl cannot be 
moved from zero by application of inputs u(k). ThiS system IS not completely 
controllable. 

It is possible to denve a simple set of conditions on the n x n matrix A and 
the n x m matrix B that are equivalent to controllability. This result IS stated 
below. 

Theorem 1. A discrete-time system (8-30) IS completely controllable if and only 
if the II X nm controllability matnx 

M=[B,AB, .. ,A"-lB] (8-31) 
has rank n. 

Before proving this theorem let us briefly study the structure of the 
controllability matrix. If the system has only a single, scalar input, the input 
matrix B reduces to a vector b. In that case the controllability matrix is wntten 

M=[b, Ab, ... , A"-lb] 

Figure 8.9. A system that is not completely controllable. 

t Many authors tenn this property complete reachability and define a system as compieteiy 
controllable if any inillal state can be driven to zero in finlle time by an appropnate Input 
sequence. The two nOllons COincide in the discrete-time case if A is nonsmgular, and they aiways 
coincide in the contmuous-time case. 
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and it is a square n X n matrix. The condition that this matrix has rank n 
is equivalent, in this case, to its being nonsingular. In the general case where 
B· consists of m columns, the controllability matrix can be regarded as being 
composed of m controllability matrices of dimension n x n. As expressed in 
(8-31) they are Interlaced with the first column of each group forming one of 
these matrices, the second forming another, and so forth. The condition for 
complete controllability, as stated by the theorem, is that from among the nm 
columns there are n that are linearly independent-so that the rank is n. 

As an aid to the proof of the theorem, we first prove the following 
preliminary result. This result is used later in this section as well. 

Lemma. For any N::::. n, the rank of the matrix 

[B, AB, ... , AN-IB] 

is equal to the rank of the controllability matrix M. 

Proof. As k increases by one unit the rank of the matrix Mk = 
[B, AB, .. ~ , Ak-IB] either increases (by at least 1) or remains constant. 
Suppose that k is an integer such that the rank of Mk+1 is equal to the rank of 
M k. That means that the m columns compriSIng AkB are each linearly 
dependent on the (prevIous) columns in Mk. That IS, there is a relation of the 
form 

(8-32) 

where each D j IS an m x m matrix. Now multiplication of this relation by A 
leads to the new relation 

(8-33) 

which shows that the columns comprising Ak+lB are linearly dependent on the 
columns in Mk+ l • Therefore, the rank of Mk-t-2 is the same as the rank of M k + l • 

By continuing this argument, we see that for all j> k the rank of M; is equal to 
that of Mk. Thus we have shown that, in the progression of Mk's, oll.ce the rank 
fails to increase, it will remain constant even as additional columns are ad­
joined. 

In view of the above, the rank of Mk increases by at least 1 at each 
increment of k until it attains its maximum rank. Since the maximum rank is at 
most n, the maximum rank is attained within n steps (that is, by Mn). I 

Now we turn to the proof of the theorem. 

Proof of Theorem 1. Suppose a sequence of Inputs nCO), n(l), . ~ ., n(N -1) is 
applied to the system (8-30), with x(O) = O. It follows that 

x(N) = AN-IBn(O) + AN- 2 Bn(1) + ... + Bn(N -1) 
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From this fonnula we see that points in state space can be reached if and only 
if they can be expressed as linear combinations of powers of A times B. Thus, 
the issue of complete controllability rests on whether the infinite sequence B, 
AB, A2B, ... has a finite number of columns that span the entire n-dimenSIOnal 
space. By the lemma, however, these span the full n-dimensional space if and 
only if M is of rank n. I 

As a result of this theorem we see that the condition of complete 
controllability is slightly stronger than can be immediately inferred from the 
definition. The definitIon requires only that it be possible to transfer the system 
state from the origin to an arbitrary point in some finite number of steps. As a 
corollary o~ the theorem, however, we see that if such transfers are possible in 
a finite number of steps, the transfer can in fact be accomplished wlthm n 
steps. 

It also follows from the theorem that if a system is completely controllable 
in the sense of transference from the origin to an arbitrary point, It IS in fact 
controllable in the stronger sense of being able to transfer the state between 
two arbitrary points wlthm n steps. To show this, suppose x(O) and X(fl) are 
specified arbitrarily. With zero input the system would move to Anx(O) at 
period n. Thus, the desired input sequence is the one that would transfer the state 
from the origin to x(n) - Anx(O) at period n. We see that the modest definition of 
complete controllability actually implies rather strong and deSirable control 
characteris tics. 

Example 2. The system in Fig. 8.9 IS described by the equations 

Thus, the controllability matnx M = [b, Ab] is 

M= [~ ~J 
Its columns are linearly dependent, and, as deduced earlier, the system IS 
not completely controllable. 

Example 3. If the input of the system shown in Fig. 8.9 is shifted to a posItion 
entering the first stage rather than the second, the corresponding controllability 
matrix M = [b, Ab] is 

which has rank 2. Thus, this system is completely controllable. 
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Single-Input Systems 

For single-input systems, there is a simple interpretation of complete controlla­
bility in terms of the diagonal representation of the system (assuming that the 
system can be diagonalized). Suppose the system 

x(k + 1):= Ax(k) + buCk) (8-34) 

is converted to diagonal form by the change of variable 

x(k) = pz(k) (8-35) 

That is, the matrix p- l Ap:= A is diagonal. In the new variables the system is 
described by the equations 

z(k+1):=Az(k)+bu(k) (8-36) 

where b = P-1b. It should be clear that complete controllability of the system 
(8-34) is equivalent to complete controllability of (8-36), for if any point in 
state space for one system can be reached, so can any point m the other. 

Complete controllability hinges on the nonsmgularity of the matrix 
[b, Ab, . , An-1b]. This matrix is 

6[ A161 
2 • 

A Ib l A7- 161 

62 A2 62 A~62 A~-i 62 

M= (8-37) 

6n Anbn A~6n A~-16n 

To be nonsmgular, it is clear tha t it is necessary that 6, oF- 0 for i = 1, 2, ... , n, 
for otherwise one row would be identically zero. It IS also clear that there can 
be no repeated eigenvalues, for otherwise two rows would be proportional. 
These conditions are both necessary and sufficient for complete controllability 
of (8-36). (See Problem 14 for the nondiagonalizable case.) 

The intuitive meaning of these results is made clear by Fig. 8.10. For the 
system to be completely controllable, there must be a nonzero connectIon from 
the input to each of the subsystems in its diagonal representation--otherwise 
that subsystem variable cannot be influenced by the input. Furthermore, the 
diagonal system cannot have repeated roots--otherwise the variables of the 
corresponding two subsystems will always be in fixed proportion. 

Complete controllability of a system means that movement of the state can 
be directed by the Input. This is possible only if the mput is "fully connected" 
to the dynamics of the system as described above. The input must reach every 
individual first-order subsystem, and these subsystems must have different 
dynamic constants if they are to be independently controlled. Complete con­
trollability is a general criteria for the "connectivity" of the input structure. 
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Figure 8.10. Complete controllability for diagonal systems. 

Controllability for Continuous-Time Systems 

The defimtion of complete controllability for continuous-time systems is a 
direct analog of the definition for discrete-time systems. 

Definition. The system 

i(t) = Ax(t) + Bn(t) (8-38) 

is said to be completely controllable if for x(O) = 0 and any given state X, 

there exists a finite time tl and a piecewise continuous Input net), O::s; t::s; tl 
such that x( t1) = Xl' 

The critenon for complete controllability in terms of the matnces A and B 
IS "1;;0 analogous to that for discrete-time systems, although the proof is 
SOlllcwhat different. In continuous time we must employ rather indirect argu­
melllS to translate the rank condition to specific input functIOns. As will be seen 
later, however, the interpretation of the condition is identIcal to that for 
discrete-time systems. 
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Theorem. A continuous-time system (8-38) IS completely controllable if and only 
if the controllability matrix 

M = [B, AD, A2B, ... , An-IB] 

has rank n. 

Proof. Suppose first that the rank condition does not hold. For any t I and any 
input function u(t), O:s; t:s; t., we have 

When evaluated, the integrals in the above expression are simply constant 
m-dimensional vectors. Therefore, the expresSIOn shows that x(t1) is a linear 
combination of the columns of B, AD, . . By the earlier lemma, if the rank of 
M is less than n, then even the infinite set of vectors B, AB, A2B, .. does not 
contain a full basis for the entire n-dimensional space. Thus, there is a vector 
XI that is linearly independent of aU these vectors, and therefore cannot be 
attained. 

Now suppose that the rank conditIOn does hold. We. will show that the 
system is completely controllable and that In fact the state can be transferred 
from zero to an arbitrary point Xl WithIn an arbitrarily short period of time. 

We first show that for any tl > 0 the lTlatnx 

(8-41) 

is nonsingular. To prove this, suppose there is a vector a such that Ka = O. Then 

(8-42) 

or, more explicitly, 

(8-43) 

The integrand above has the fonn e(t)T e(l), where e(t) = BTe-AT'a. It follows 
that the integran(' IS always nonnegative. For the integral (8-43) to vanish, it 
follows that the integrand must vanish identically for O:s; t:s; t[. Therefore, 

aTe-A'B=O 
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for all t, 0$ t $ t l • Evaluation of this expression, and its successive derivatIves, 
with respect to t, at t = 0 leads to the following sequence of equations: 

aTB=O 

aTAB=O 

aT A2B=O 

aTAn-IB=O 

This means that the vector a must be orthogonal to all columns of the matnx 
M. Since it is assumed that this matrix has rank n, it must follow that a = O. 
Therefore, by the fundamental lemma of linear algebra, K IS nonsingular. 

Now, given Xl' select any II> 0 and set 

Then from (8-39) 

X(tl) = f' eA(,,-tlBBT e-AT'K-ie-A"xi dt 

X(tl) = eA',KK-1e-A'rXI = XI 

(8-44) 

Therefore, the input (8-44) transfers the state from zero to Xl> and the system 
is completely controllable. I 

The interpretation of this result is the same as for the discrete-time case. If 
there is only a single input and the system has distinct eigenvalues, then agam 
controllability corresponds to the conditions that the eigenvalues be distinct, 
and that the connection between the input and each of the separate one­
dimenSIOnal systems be nonzero. 

Example 4 (Stick Balancing). There are several mechanical problems­
including the maintenance of a satellite in proper orbit, the control of a 
helicopter, and the control of a rocket while being thrust upward-that have 
the character of complex balancing problems. As a simple version of a problem 
of this type let us consider the balancing of a stick on your hand, as illustrated 
in Fig. 8.11. We know from experience that this is possible-and thus the stIck 
and hand system must be controllable. Let us verify that it is. 

For simplicity we consider balancing a stick of length L all of whose mass 
M is concentrated at the top. From Newton's laws, it can be deduced that the 
system is governed by the equation 

!'let) cos 8(t) + LO(t) = g sin 8(t) (8-45) 
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Figure S.11. Stick bala nci ng. 

where g is the gravitational constant. We also have the relation 

x(t) = u(t)+ L sin OCt) (8-46) 

Assuming that the stick is nearly at rest in the vertical position (with 0 small), 
the two equations (8-45) and (8-46) can be written in terms of xU) as 

x(t) = t [x(t) - u(t)] 

For ease of notation let us set L = 1. Then definmg the velocity vet) = x(t), the 
system has the state space representation 

[
x(t)] = [0 
vet) g 

1] [x(t)] [0] o v(t) + g -1 u(t) 

The controllability matnx is 

M= [ 0 -1] 
g -1 0 

Since M is nonsingular, the system is completely controllable. (This is easy; but 
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Figure 8.12. A controllability problem. 

what about two sticks, one on top of the other as shown in Fig. 8.12!? You may 
wish to explore the controllability properties of this system without writing 
equations.) 

8.7 OBSERVABILITY 

Complete observability is a concept quite analogous to complete controllabil­
Ity. In fact; the two are often referred to as dual concepts III that resuits for one are 
the transpose of results for the other. 

Observability for Discrete-Time Systems 

We begin by stating the formal definition. 

Definition. The discrete-time system 

x(k + 1) = Ax(k) 

y(k) = Cx(k) (8-47) 
is completely observable if there is a timte index N such that knowl­
edge of the outputs yeO), y(I), ... , yeN -1) is sufficient to deterrmne the 
value of the initial state x(O). 

In the above definition, it is assumed that the equations (8-47) govermng 
the system and its outputs are known but that the initial state is unknown 
before the outputs become available. By watching the outputs, the value of the 
initial state can be inferred if the system is completely observable. In a sense 
the state is observed through the output structure. 
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The definition above easily extends to general time-invariant linear sys­
tems of the form 

x(k + 1) = Ax(k) + BU(k) 

y(k) = Cx(k) + Du(k) 

(8-48a) 

(8-48b) 

having both an input and an output structure. (As usual A is n x n, B is n x m, 
C is p x n, and D is p x m.) One simply imposes the requirement that all inputs 
u(k) be zero. This reduces the system to (8-47). Thus, both complete control­
lability and complete observability of (8-48) can be investigated. 

Complete observability is an important concept In the context of system 
control. Control inputs are usually determined on the basis of observation of 
available outputs. If the output structure is deficient in that it does not 
eventually convey full information about the state vector, then it may not be 
possible to devise suitable control strategies. Thus, in general, good control 
requIres both the ability to infer what the system is doing (observability) and 
the ability to change the behavior of the system (controllability). 

Example 1. The system shown in Fig. 8.13 is not completely observable from 
the single output y. There is no way to Infer the value of XI' 

The criterion for complete observability In terms of the specific system 
description is analogous to that of complete controllability. 

Theorem 1. The system (8-47) IS completely observable if and oniy if the pn X n 
observability matrix 

s= 

has rank n. 

r---------------------~y 

Figure 8.13. Not completely observable. 
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Proof. Suppose that S has rank n. We will show that we can take N = n In the 
definition and that, accordingly, the initial state can be determined from 
knowledge of the n outputs y(O), y(l), 0 •• , y(n -1). 

Solution of the system equation (8-47) yields the set of equations 

yeO) = Cx(O) 

y(1) = CAx(O) 

y(2) = CA2x(O) 
(8-4lJ) 

y(n -1) = CA n-ix(O) 

This is a set of pn equations. In view of the rank condition, n of these 
equations can be selected that are linearly independent, and they can be solved 
umquely for x(O). 

The proof of the converse follows a pattern similar to that for complete 
controllability. One can write 

hl 
J 

= [CT, ATCT, (AT)2CT, ... , (AN-l)TCTy 

CAN - 1 

Therefore, from the lemma of the previous section, it follows that for N"Z n the 
matrix on the left is of rank n if and only if the observability matrix S is of rank 
n. Therefore, if an initial state can be uniquely determined from a finite 
number of output observations, it can be so determined from just 
yeO), y(l), ... , yen -1).1 

As a simple application, one can find that the observabiIity matrix for the 
system of Fig. 8.13 is 

s _ ro 1] - Lo a, 

Since this is not of full rank, it follows, as deduced earlier, that the system 
is not completely observable. 

For systems with a smgle output and which have a diagonal form, the 
above result has a natural interpretatIOn in terms of connections of the outputs 
to the individual subsystems. Referring to Fig. 8.14, the system is completely 
observable if and only if the A; 's are distinct and the c; 's are all nonzero. This 
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y 

Figure 8.14. Complete observability for diagonal 
system. 

means that for complete observability the output must be connected to each of 
the first-order subsystems (in the diagonal form) and it means that no two 
subsystems can be identical; for otherwise it would be impossible, on the basis 
of output observations alone, to distinguish responses of the two subsystems. 

Observability for Continuous-Time Systems 

For continuous-time systems the development exactly parallels what One would 
expect. 

Definition. A system 

i(t) = Ax(t) 
y(t) = Cx(t) (8-50) 

is completely observable if there is a t1 > 0 such that knowledge of y(t), 
for all t, 0:5 t :5 t1 is sufficient to determine x(O). 
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The statement of the following theorem should not be unexpected; we 
leave its proof to the reader. 

Theorem 2. The system (8-50) is completely observable if and only if the 
observability matrix 

has rank n. 

C 

CA 

s= CA2 

The concept:? of complete controllability and complete observability 
should be viewed from both a mathematical and a practical perspectIve. In 
terms of the formal (mathematical) development of modern control theory, 
they are fundamental notions, and many techniques of control design rely on 
satisfaction of these conditions. The concepts are important from a practical 
viewpoint as well (because of their basis 10 theory), but it is rare that 10 specific 
practical applications controllability or observability represent cloudy issues 
that must be laboriously resolved. Usually, the context, or one's intuitive 
knowledge of the system, makes it clear whether the controllability and 
observability conditions are satisfied. 

A good analogy is the concept of nonsingularity of a square matrix. The 
concept of nonsingularity is vitally important to the theory of linear algebra, 
and many analytical techniques are based on an assumption of nonsingulanty. 
Nevertheless, in a given problem context, if a matrix is singular, there is usually 
a good reason for it, deriving from the general character of the problem; and 
the good analyst is not surprised. It is similar with controllability and observa­
bility. The good analyst rarely needs to go through the formal calculations. 

8.8 CANONICAL FORMS 

The concepts of controllability and observability provide a strong link between 
the state vector (matrix) description of linear systems and the (scalar) transfer 
function description, for it is these concepts that relate the input and output 
structure to the internal state mechanism. The linkage is displayed most 
directly by converting the state vector description to One of several available 
canonical forms. 

These particular canonical forms are based on the companion form of 
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matrices. Companion form matrices were used before, in Chapter 5, to convert 
high-order scalar difference equations to state variable form, and their use in 
this section is an extension of that original use. 

The companion canonical forms provide valuable insight into the struc­
tural relations of a system; but, even beyond that, these canonical forms have 
significant utility. In the development of control theory it is often most 
convenIent to work with systems expressed in companion form, Just as in 
earlier chapters the diagonal form was often used. Moreover, because the 
companIon canonical forms are relatively easy to compute (as compared to the 
diagonal form), they are often used for system representation in the course 
of a sophisticated analysis or control design. 

The development of canonical forms applies identically to discrete-time 
and continuous-time systems since the canonical forms are really transforma­
tions on the matrix A, the input matrix B, and output matrix C. For conveni­
ence we work wIth continuous-time systems. Also, for simplicity our de­
velopment is restricted to systems with a single input and a single output. 

There are essentially two classes of canonical forms. One class is based on 
complete controllability of the input, the other is based on complete observability 
of the output. The two classes are duals. 

Controllability Canonical Forms 

Suppose the system 
i(t) = Ax(t) + bu(t) (8-51) 

is completely controllable. This is equivalent to nonsingulanty of the controlla­
bility matnx 

(8-52) 

Therefore, given complete controllability, the controllability matrix can be used 
to define a change of variable in (8-51). Indeed let us set 

x(t) = Mz(t) 

ThIS transforms (8-51) to the form 

i(t) = M-1AMz(t) + M-1bu(t) 

(8-53) 

(8-54) 

The system (8-54) has an especially simply structure, which we can easily 
denve. Let A=M-'AM, b=M-ib. We find immediately that 

J~l 
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because M-1 is a matrix whose rows are each orthogonal to b; except the first 
row, and that row when multiplied by b yields 1. The matrix A can be 
expressed as 

A= M-1[Ab, A 2b, ... , Anb] 

Each row of M-1 
IS orthogonal to all columns Akb in A, except for two. 

Consider, specifically, the ith row of M-1
• It is orthogonal to Akb for all k, 

O:s k:S n, except for k = i -1 and k = n. For k = i -1, the product is 1. For 
k = n, it is some, as yet unknown, value that we denote by -a;-l' Therefore, we 
conclude that A has the structure of a companion matrix, and the system (8-54) 
is in the canonical form 

0 0 0 -ao 1 

1 0 0 -a1 0 

0 1 0 -a2 0 
i(t) = z(t)+ u(t) (8-55) 

0 0 0 .. 1 -an - 1 0 

The constants ao, a h ... , an - 1 in (8-55) are the negatives of the values of 
the product of the individual rows of M- 1 with the vector Anb. However, 
although it might at first appear that these constants possibly depend on the 
vector b, they actually do not. They are the coefficients of the characteristic 
polynomial of A. That is, when the characteristic polynomial of A IS written 
with its leading coefficient as + 1, it is 

(8-56) 

where the ai's are those in the companion matrix A. This is most easily verified 
by simply calculating the characteristic polynomial of A, a calculation that has 
been carried out before (see Problem 3, Chapter 5), although the reader may 
wish to verify this again at this point. This shows that the characteristic 
polynomial of A is given by (8-56). Then, since A and A are similar, and 
therefore have the same characteristic polynomial (Problem 21, Chapter 3), It 

follows that the charactenstic polynomial of A is given by (8-56). 
If the system (8-51) also has a linear output structure, the output will have 

the representation 

yet) = cT z(t) + duet) (8-57) 

in I.he new coordinate system. The vector cT 
10 general does not possess any 

special structure in this canonical fonn. The diagram of a system 10 this 
canonical form is shown in Fig. 8.15. Any completely controllable single-lOput, 
single-output system can be put in the canonical form represented in Fig. 8.15 
by a change of variables. 
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y 

u 

Figure 8.15. First controllability canonical form. 

A converse result IS also of interest. Given the structure of Fig. 8.15, 
suppose the coefficient values ao, a l , . • , ll,.-I and c" c2 , •.• , c,. are assigned 
arbitrary values. It can be easily shown that the resulting system is always 
completely controllable. Thus the structure shown in Fig. 8.15 is a complete 
charactenzation of completely controllable systems. 

A second canomcal form for a completely controllable system is obtained 
by selecting a different coordinate change. As before, corresponding to the 
system (8-51), let 

M = [b, Ab, ... , An-'b] 

Suppose that M- ' is expressed in terms of its rows as 

(8-58) 

e~ 

We can show that the row vectors e~, e~A, ... , e~An-' generated by the last 
row of M-1 are linearly independent. To prove this. suppose there were 
constants ai' a 2 , • •. , an such that 

(8-59) 

Multiplication on the right by b gives 

ale~ +a2e~Ab + ... +ane~An-'b = 0 (8-60) 

However, in view of the definition of e~, the first n - 1 terms of this equation 
vanish identically. The equation therefore implies that an = O. Now that it is 
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known that an = 0, multiplication of (8-59) by Ab yields a n - 1 = O. Continuing 
in this way, we conclude that a j = 0 for all 1= 1, 2, . ~ . , n. Thus, the vectors are 
linearly independent. 

Starting with the completely controllable comblOation A, b, we have 
deduced a corresponding row vector e~ such that the combination e~, A IS 
completely observable. We now use this combination to define an approprIate 
change of coordinates, much the way that the A, b combination was usel1 
above. 

Let e~ 

e~A 

P= 

and define the change of coordinates for the system (8-51) by 

z(t) = Px(t) 

ThIS transforms the onginal system to 

i(t) = PAP-'Z(t)+ Pbu(t) 

(8-61) 

(8-62) 

(8-63) 

Now, following a procedure similar 
(8-63) has the explicit structure 

to that employed before, we find that 

i(t) = 

010 

o 0 1 

o 0 0 

o 
o 

z(t)+ 

o 
o 

1 0 

-a..-I 1 

u(t) 

cn ] z(t)+ duet) 

(8-64) 

The values of the ~ 's are the same as in the first fonn although the c;'s are not. 
The diagram of a system in this canonical fonn, having an arbitrary single 
output, is shown in Fig. 8.16. 

Observability Canonical Forms 

Exactly parallel procedures can be worked out for a completely observabie 
single-output system 

i(t) = Ax(t) + bu(t) (8-65) 
yet) = cT x(t) + duet) 
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••• 

Figure 8.16. Second controllability canonical form. 

These canomcal forms and their underlymg change of variables are based on 
the nonsingulanty of the observability matrix 

S= (8-66) 

The derivations of these forms are entirely analogous to those for the controll­
ability forms. The first observability canonical form IS derived from the change of 
variable z(t) = Sx(t). The second is based on the fact that the last column of S-I 
together with A forms a completely controllable combination, and thus a non­
singular matrix P can be derived with columns equal to powers of A times this 
column. The resulting two canonical forms are, respectively, 

0 1 0 0 b1 

0 0 1 0 b2 

i(t) = z(t)+ u(t) (8-67) 

0 0 0 1 bn - 1 

-au -a l -a2 ... -an - l bn 

yet) = [ 1 0 0 0] z(t) + duet) 



8.8 Canonical Forms 295 

and 

0 0 0 -an b, 

1 0 0 -at b2 

0 1 0 -a2 b3 

i(t) = z(t)+ u(t) (8-68) 

0 0 1 -an - 1 bn 

y(t)=[O 0 0 1] z(t) + duet) 

Again, the values of the aj's are the same as in the earlier canonical forms. 
However, the bj's are not necessarily the same as those in (8-65) and not the 
same III the two canonical forms. 

Relation to Transfer Functions 

The canonical forms presented in this section can be used to obtain state 
space representations of a given rational transfer fUnction. This brings out the 
strong connection between transfer functions, controllability and observability, 
and canonical forms. 

As an example, consider the system in controllable canonical form (8-64) 
represented in Fig. 8.16. The corresponding transfer function is 

H(s) = cT[sI - Artb+ d 

The corresponding rational function can be derived by straightforward (but 
somewhat lengthy) substitution of the special forms for A and b. Another way, 
which we employ, is to apply the combination properties of transfer functions 
to the diagram of Fig. 8.16. For this purpose let us denote by Hk(s) the transfer 
function from the input u to the state variable Zk' It is immediately clear that 
Hk-t(s) = (1js)Hk(s). Therefore, 

sn-kHk(s) = Hn(s) (8-69) 

The transfer funchon Hn(s) can be decomposed into the part that comes 
directly from u and the part that comes indirectly from the state variables. 
Thus, 

1 (n \ 
Hn(s) =-; 1-k~l ak-tHk(s») (8-70) 

In view of (8-69) this becomes 
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Multiplying by s" leads to 

[s" + an-I S"-I + ... + ao]Hn(s) = S"-I 

Thus, 

(8-71) 

Once this explicit form is known, the transfer function from u to y can be 
immediately deduced using (8-69). Thus, 

(8-72) 

From this result it follows that by appropnate choice of the parameters 
ao, a

" 
-., ~ _I and c., C2, ... , c" the transfer function can be made equal to 

any proper rational function. Similar correspondences apply to the other 
canonical forms. Therefore, canonical forms provide a simple and direct 
solution of the problem of constructing a state vector representation of a 
system for which only the transfer function IS specified. 

8.9 FEEDBACK 

In rough terms, the task of control IS to manipulate the available inputs of a 
dynamic system to cause the system to behave in a manner more desirable than 
it otherwise would. Control can be designed for many purposes, however, and 
it can be applied in many ways. This section briefly discusses the difference 
between open-loop control and feedback control and illustrates some of the 
advantages of feedback control. The primary theoretical development in the 
section is the Eigenvalue Placement Theorem, which is an important achieve­
ment of modern control theory. 

Open-loop Control 
In open-loop control the input function is generated by some process external 
to the system itself. and then is applied to the system. The input might be 
generated by any of several means: by analysis, by some physical device, or by 
some random phenomenon. A specific input might be generated by analysis, 
for example, when designing a ten-year national immigration policy On' the 
basis of a current census, or when developing the yearly production plan fbr a 
company. The control input might be repeatedly generated by a physical de~ice 
when directing a physical process or machine. For example, in a heating system 
the furnace might be programmed- to go On and off in cycles of fixed duration. 
In any case, the defining feature of open-loop control is that the input function 
is determined completely by an external process. 
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Closed-loop Control (Feedback) 

In closed-loop control the input is determined on a continuing basis by the 
behavior of the system itself, as expressed by the behavior of the outputs. This 
kind of control is feedback control since the outputs are fed back (in perhaps 
modified form) to the input. 

There are many common and familiar examples of feedback control. One 
is the thermostatic home heating system. The output of the heating system IS 

the temperature in the house, which is measured by the thermostat. When the 
temperature falls below a certain level the furnace is turned on; and when the 
temperature rises above a given level the furnace is turned off. This operation 
represents feedback from the output to the input of the heatmg system. It 
contrasts sharply with the programmed furnace, since now the duration of the 
heating cycles depends on system behavior. 

Perhaps one of the earliest examples of feedback control IS a water clock 
believed to be built by Ktesibios in Alexandria in the third century B.C. The 
pnnciple is still used today. A sketch of the water clock is shown in Fig. 8.17. 
In order to maintain a constant flow rate into the main tank of the clock, the 
water level in a regulating tank is held nearly constant. This constant level is 
achieved by a float valve, which is essentially a feedback mechanism. Water 
from an external supply enters the regulating tank through a small pipe. A ball 
floats on the surface of the water in the tank below the pipe opening. When the 
water level rises it forces the ball to tighten against the pipe opemng, reducing 
the input supply rate. When the level drops, the input rate increases. 

II1I 

MaIO tank 1==;:"li;",11 ~=;;:t;=4 
-- Float 

Figure 8.17. Water clock. 

Time 
scale 
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There are many reasons why feedback or closed-loop control is often 
preferable to open-loop control. One reason is that a feedback rule is often 
simple, while a comparable open-loop scheme might require a fair amount of 
calculation and complex implementation. One could, for example, conceive of 
a sophisticated open-loop furnace control that on a programmed basis varied 
the cycle lengths during a 24-hour period to account for expected outside 
temperature variations. A thennostat, however, would be simpler and more 
effective. In general, a feedback control rule does the required computation as 
It goes along, and immediately implements the results. 

Beyond the issue of implementation, feedback is often superior to open­
loop control from a perfonnance standpoint. Feedback can automatically 
adjust to unforeseen system changes or to unanticipated distrubance inputs. 
The heating system with thennostatic control adjusts automatically to varying 
external temperatures, the water clock regulating tank adjusts to changes in 
incoming water pressure, and feedback introduced in planning can correct for 
unforeseen events. This desirable characteristic, which we intuitively attribute 
to feedback control, is analyzed mathematically in tenns of the general 
concepts of dynamic systems. In particular, the fact that feedback can rapidly 
adjust to changes is a manifestation of the fact that feedback can increase the 
stability of a system. Indeed a basic feature of feedback is that it can influence 
the characteristic polynomial of a system. 

Example 1. Let us consider the effect of feedback applied to the very simple 
system 

i (t) = u(t) 

This might, for example, represent the equation governing the water level in a 
closed tank, with u(t) denoting the inflow. Suppose it is desired to bring the 
value of x from some initial value to a value Xo. This can be done, of course, by 
open-loop control using a suitable choice of u(t). In this form, however, the 
system is only marginally stable, and any error or disturbance will be per­
petuated indefinitely. 

Now suppose that the input is controlled by feedback. In particular, 
suppose u(t)=a[xo-x(t)]. For x(t)<xo, but close to xo, this might correspond 
to the flow through the float valve, the constant a depending on the pipe size 
and incoming water pressure. The system is then governed by 

i(t)=a[xo-x(t)] 

ThiS system certainly yields x(t) -+ Xo-

We note that by defining the variable y = x - xo, the closed-loop system is 
governed by the simple first-order equation 

yet) = -ay(t) 



8.9 Feedback 299 

The variable yet) is the error. Feedback has converted the original marginally 
stable system to one which is asymptotically stable. 

Eigenvalue Placement Theorem 

As stated above, an important objective of feedback (either implicitly or 
explicitly) is often to make the system somewhat more stable than it would be 
otherwise. It is natural, therefore, to ask how much influence feedback can 
really have on the eigenvalues of a system. A major result in this direction IS 

the Eigenvalue Placement Theorem. This result states that if a system IS 

completely controllable and if all state variables are available (as outputs), then 
by suitable direct feedback it is possible for the closed-loop system to have any 
desired characteristic polynomial. In a sense this provides another characteriza­
tion of complete controllability. If the system is completely controllable, the 
input is connected to the internal dynamic structure in sufficient diversity so 
that feedback to the input can arbitrarily change the characteristic polynomial. 

Eigenvalue Placement Theorem. Let (A, B) be a completely controllable pair of 
real matrices: that is, the rank of[B, AB, ... , An-'B] is n. Then gIVen any nth­
order real polynomial p('\') =,\. n + a..-I'\' n-l + ... + ao there IS a real matrix C 
such that A + BC has p('\') as its characteristic polynomial. 

Proof. We prove this result only for the case where m = 1, corresponding to a 
single-input system. In that case we put B = b and seek an n-vector eT 

Since the pair (A, b) is completely controllable, we may, without loss of 
generality, assume that they are in a form corresponding to the second 
controllable canonical form of the previous section. Specifically, 

A= 

Selection of eT = [c i 

o 
o 

o 
-ao 

C2 

beT = 

1 

o 

o 
-al 

0 

0 

0 

o 
1 

o 

o 
o 

1 

-a2 .. ~ -a..-I 

cn ] gives 

0 0 0 

0 0 0 

0 0 ... 0 

b= 

o 
o 

o 
1 
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Therefore, the matrix A + bcT will have a characteristic polynomial with 
coefficients llj_1 - Ci , and these can be made arbitrary by appropriate choice of the 
Ci'S. I 

Example 2 (Stick Balancing). The stick balancing system of Example 4, Sect. 6, 
is unstable without control, but since it is completely controllable, it must be 
possible to select a feedback strategy that will stabilize it. 

As a first attempt, one might try a control strategy based solely on x(l); 
that is, one might set u(t) = cx(t) for some values of c. However, this leads to 
the closed-loop system x = g(1- c)x and the characteristic equation ,\2= 

g( 1-C). Hence, at best this system will be marginally stable. 
To attain a suitable feedback strategy it is necessary to use both x(l) and 

vet). Thus, setting u(t) = CIX(t) + C2V(t), we obtain the closed-loop charac­
teristic equation 

,\ 2+ gc2'\ - g(1- CI) = 0 

Clearly, as predicted by the Eigenvalue Placement Theorem, we have complete 
flexibility in the choice of the characteristic polynomial through selection of the 
two coefficients CI and C2 • If we decide to place both roots at -1, we select 
c, = 1 + l/g, C2 = 2/g. The resulting system is then asympototically stable. 

8.10 OBSERVERS 

Many sophisticated analytical procedures for control design are based on the 
assumption that the full state vector is available for measurement. These 
procedures specify the current input value as a function of the current value of 
the state vector-that is, the control is a static function of the state. Mathemati­
cally, of course, there is very good reason for this kmd of control specification. 
The system evolves according to Its state vector equations, and thus intelligent 
control, influencing future behavior, should be based on the current value of 
the state. A simple but important example of such a control procedure is 
embodied by the eigenValue placement theorem presented in Sect. 8.9. In that 
case, the complete flexibility in specification of the characteristic polynomial 
assumes that all state variables can be measured. 

In many systems of practical importance, however, the entire state vector 
is not available for measurement. In many physical systems, for example, 
measurements require the use of costly measurement devices and it may be 
unreasonable to measure all state variables. In large social or economic 
systems, measurements may require extensive surveys or complex record­
keepmg procedures. And, in some systems, certain components of the state 
vector correspond to inaccessible internal variables, which cannot be measured. 
In all these situations, control strategies must be based on the values of a subset 
of the state variables. 
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When faced with this rather common difficulty, there are two avenues of 
approach. The first is to look directly for new procedures that require fewer 
measurements--either restricting the choice of static feedback functions or 
developil}g more complex (dynamic) feedback processing procedures. The 
second (simple"r) approach is to construct an approximation to the full state 
vector on the basis of available measurements. Any of the earlier static control 
procedures can then be implemented using this approximate state in place of 
the actual state. In this way the relatively simple and effective control proce­
dures, which assume that the state is available, are applicable to more general 
situations. 

We recall that a system is completely observable if by observation of the 
system outputs the value of the initial state can be deduced within a finite time 
period. In our earlier discussion of observability, the required calculation was 
treated rather indirectly. Within the present context, however, it is apparent 
that such calculations becomes a matter of practical significance. 
Effective control can be dependent On the results. 

It is shown in this section that the state (or an approximation to It) can be 
conveniently computed by a device known as an observer. The observer is Itself 
a linear dynamic system. Its input values are the values of measured outputs 
from the original system, and its state vector generates missing information 
about the state of the original system. The observer can be regarded as a 
dynamic device that, when connected to the available system outputs, gener­
ates the entire state. 

A Trivial Observer 

A trivial solution to the problem of estimating the state of a system is to build a 
copy of the original system. If, for example, the original system is 

x(t) = Ax(t) + Bo(t) 

The observer would be 

i(t) = Az(t) + Bo(t) 

The inputs u(t) to the original system are controls that we supply, and hence 
they can be applied to the copy as well. Also, since the second system is a 
model, its state z(t) can be measured. If z(O) = x(O), the model will follow the 
original system exactly. (See Fig. 8.18.) 

The trouble wIth thIS technique is that errors do not die out quickly. 
Indeed it is easy to see that 

[i(t) - x(t)] = A[z(t) - x(t)] 
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x~Ax+ Bu x 

z=Az+Bu Z 

Figure 8.18. A system copy used as 
observer. 

and hence, the error in the estimate tends to zero only if the origmal system is 
stable-and thep only at a speed determined by the eigenvalues of the ongmal 
system. This is a serious limitation, which is overcome by the more general 
approach to observers. 

Identity Observer 

To begin the development of more general observers, consider the following 
system: 

x(t) = Ax(t) + Bu(t) 

yet) = Cx(t) 
(8-73) 

The system is assumed to be n dimensional, and the output vector is p 
dimensional.* The system is assumed to be completely observable. 

We construct an observer for (8-73) of the form 

i(t) = Az(t) + E[y(t)- Cz(t)]+ Bo(t) (8-74) 

where the n x p matnx E is yet to be specified (see Fig. 8.19). The observer is 
an n-dimensional system with state vector z(t). The inputs to the observer are 
of two types. The first set consists of the measurements yet) available from the 
original system. The second set is a copy of the inputs to the original system. 
These inputs are the control inputs, so they are available to us. Note that this 
observer is a generalization of the trivial observer discussed above. If z(t) = 
x(t), then, since yet) = Cx(t), the observer (8-74) would collapse to a copy ofthe 
original system. 

Using y(t)=Cx(t) and subtracting (8-73) from (8-74), we find in general 
that 

i(t)-x(t) = [A - EC][z(t)- x(t)] 

If the observer is initiated such that z(O) = x(O), then it follows that z(t) = x(t) 

• More generally, the output will have the foon y(t) = ex(t) + Du(t). The additional teon can be 
easily incorporated mto Our development. 
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Figure 8.19. An identity observer. 

for all t > O. The state of the observer tracks the state of the original 
system. An observer of this type is an identity observer since it tracks the 
entire state. 

If z(O);6x(O), then the error vector E(t)=Z(t)-x(t) is governed by the 
homogeneous system 

t(t) = [A - EC]E(t) 

If the system matrix A - EC is asymptotically stable, the error vector tends to 
zero. Indeed, the error tends to zero at a rate determined by the dommant 
eigenvalue of A - EC. The eigenvalues of this matrix are controlled by our 
choice of the matrix E. A significant result is the following theorem. 

Identity Obseroer Theorem. Given a completely observable system (8-73), an 
identity observer of the form (8-74) can be constructed, and the coeffiCIents 
of the characteristic polynomial of the observer can be selected arbitrarily. 

Proof. This follows from the Eigenvalue Placement Theorem. The pair 
(AT, CT) is completely controllable. Thus, E can be selected so that AT - CTET 
has an arbitrary characteristic polynomial, and this is the same as the charac­
teristic polynomial of A - Ec.1 

Example 1 (A First-Order System). Consider the first-order system 

i (t) = ax(t) 

with x(t) as an available output. There is, of course, nO need to construct an 
observer for this system, since the (one-dimensional) state is assumed to be an 
output. However, consideration of this simple system should help relate the 
above observer result to the baSIC principles of dynamic systems. 

Suppose that we decide to conStruct an observer having a root of b;6 a. 
The general fonn of the observer must be 

i(t) = az(t) + e[x(t)- z(t)] 
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In order that the root of the observer be equal to b, we set e = a-b. Thus, the 
observer is defined by 

i(t) = bz(t) + (a - b )x(t) 

If z(O) = x(O), then z(t) = x(t) for all t > O. 

(8-75) 

Now let us interpret this result in terms of elementary properties of differ­
ential equations. We know explicitly that x(t) = x(O)e a

'. When this is substituted 
into the observer (8-75), the resulting solution z(t) will consist of two 
exponential terms-one with ea

, and the other with e b
'. Explicitly 

z(t) =x(O)e a
, +[z(O)-x(O)le b

' 

Thus, if z(O) is properly chosen, only the exponential associated with the input 
to the observer will appear in the solution. 

This first-order example illustrates the general mechanism of observers. 
With zero input, the outputs of the original system consist of various exponen­
tial terms (perhaps multiplied by a power of t.) These exponentials serve as inputs 
to the observer. The state variables of the observer will, accordingly, each consist 
of a sum of exponential terms; some generated internally and some being 
passed through from the input. By properly arranging the structure and the 
initial condition of the observer, it can be made to follow the exponential terms 
of the original system. If the original system has a nonzero input, its effect 
on the observer is cancelled out by suitably applying this same input to the 
observer. 

Reduced Order Observers 

The identity observer described above possesses a certain degree of redun­
dancy. It reconstructs all n state variables of the onginal system even though p 
of these variables-the output van ables-are already known precisely. It seems 
plausible that by eliminating this redundancy an observer could be devised with 
order equal to n - p rather than n; the full state of the original system being 
obtained from the n - p state variables of the observer together with the p 
measurements. This is indeed possible, as explained below. 

Let us again consider the completely observable system 

x(t) = Ax(t) + Bu(t) 

yet) = Cx(t) 
(8-76) 

We assume now that the p x n matrix C has rank p. This corresponds to the 
condition that the p measurements are linearly independent. 

It IS possible to transform (8-76) so that the output structure is particularly 
simple. Let V be any (n - f) X n matrix such that the matrix 

p = [~] (8-77) 
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is nonsingular. It is possible to find such a V since C has rank p. Now introduce 
the change of variable 

x(t) =Px(t) (8-78) 

The new state vector f(t) can be partitioned as 

X(t)=[;i:n (8-79) 

where wet) is n - p dimensional and yet) is the p-dinlensional vector of outputs. 
In this fonn the output variables are equal to the last p state variables. 

We assume that the system has been put in the special form indicated 
above. Specifically, after transfonning the system matrices to reflect the change 
of variable (8-78), the system can itself be written in partitioned fonn 

[ ~(t)] = [All AI2][W(t)]+ [BI]U(t) 
yet) A21 An yet) B2 

(8-80) 

We can extract this system a subsystem of order n - p that has as mputs 
the known quantities u(t) and yet). Furthennore, we shall show that a 
subsystem with arbitrary characteristic polynomial can be selected. 

Multiply the bottom part of (8-80) by an arbitrary (n - p) x p matrix E and 
subtract from the top part. This leads to 

w(t)- EYCt) = (An- EA21)W(t) 

+ (A12 - EA22)y(t) + (B, - EB2 )u(t) 

This can be rewritten as 

wet) - EYCt) = (An - EA21)[ wet) - Ey(t)] 

+ [AnE- EA2IE+ A12 - EAn]y(t) 

+ (BI - EB2)u(t) 

Letting vet) = wet) - Ey(t), we have 

vet) = (An - EA21)v(t) 

+[AnE- EA21E + A 12 - EA22]y(t) 

+(BI-EB2)u(t) 

(8-81) 

(8-82) 

(8-83) 

In this equation vet) is unknown, while yet) and u(t) serve as known inputs. We 
have no observations of the (n - p )-dimensional vector vet). Thus, the observer 
is fonned by merely copying the system (8-83). It is, 

i:(t) = (An - EA21)Z(t) 

+[AnE- EA2I E+ A 12 - EA22]y(t) 

+(B1 -EB2)u(t) (8-84) 
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This serves as an observer for (8-80). By subtracting (8-83) from (8-84), it 
follows immediately that 

i(t) - v(t) = (All - EA21)[z(t)- v(t)] (8-85) 

Thus, the state z(t) of the observer tends toward v(t) at a speed detennined by 
the eigenvalues of the matrix All - EA21 • 

From the state vector z(t) of the observer, the original state of (8-80) is 
estimated by w(t) and y(t) detennined by 

w(t) = z(t) + Ey(t) 

y(t) = y(t) 
(8-86) 

The state vector z(t) together with the original measurements y(t) provide 
enough infonnation to construct an approximation to the state of the original 
system. 

The effectiveness of the observer depends to a great extent on the location 
of the eigenvalues of the observer system matrix All -EA21 • It can be shown 
(see Problem 16) that if the original system (8-80) [or equivalently (8-76)] is 
completely observable, the pair A21> All is completely observable. By the 
Eigenvalue Placement Theorem the coefficients of the characteristic poly­
nomial of All - EA21 can be selected arbitrarily by proper selection of E. Thus, 
the reduced order observer can be constructed with the same kind of dynarruc 
flexibility as the identity observer. We summanze by the following 

Observer Theorem. Given an nth-order completely observable system (8-76) 
with p linearly independent outputs, an observer of order n - p can be 
constructed and the coefficients of the characteristic polynomwl of the 
observer can be selected arbitrarily. 

Example 2 (Stick Balancing). Consider once again the stick balancing problem 
originally posed in Sect. 8.6. Let us suppose that only position can be measured 
(as might be the case in complex mechanical balancing problems). We shall 
construct a reduced order observer to produce an approximation to the 
velocity. 

The system is 

[
v(t)] [0 g] [v(t)] [-1J 
x(t) = 1 0 x(t) + g 0 u(t) (8-87) 

where, to be consistent wIth the above development, we have reordered the 
state variables so that the measured variable x(t) is the bottom part of the state 
vector. Applying (8-84) and (8-86), the observer has the general fonn 

i(t) = -ez(t) + (g - e2)x(t) - gu(t) 

tilt) = z(t) + ex(t) 

(8-88a) 

(8-88b) 
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An estimate of the velocity can be obtained from the observer, which is 
first-order. The position is available by direct measurement, and hence an 
approximation to the whole state is available by use of the first-order observer. 
The eigenvalue of the observer is - e, which can be selected arbitrarily. 

Eigenvalue Separation Theorem 

There is an important result which shows that in some sense it is meaningful to 
separate the problem of observer design from that of control design. Suppose 
one has the system 

x(t) = Ax(t) + Bu(t) 

yet) = Cx(t) 

which is both completely controllable and completely observable. A feedback 
control law might be first designed under the assumption that the entire state 
were available for direct measurement. This would entail setting u(t) = Kx(t) 
resulting in the closed-loop system 

x(t) == (A + BK)x(t) 

The characteristic polynomial of A + BK can be selected arbitrarily. 
Next an observer (either identity or reduced order) can be designed that 

will generate an approximation x(t) of the state x(t). The characteristic polyno­
mial of the observer can also be selected arbitrarily. 

Finally, the two design can be combined by settmg the control input equal 
to u (t) = Kx(t)-that is, using the observer generated state in place of the actual 
state. The resulting closed-loop system containing the observer is a somewhat 
complicated dynamic system. It can be shown, however, that the characteristic 
polynomial of this composite system is the product of the characterIstIc 
polynomial of the feedback system matrix A + BK and the characteristIc 
polynomial of the observer. This means that the eigenvalues of the composite 
system are those of the feedback system together with those of the observer. In 
other words, insertion of an observer in a feedback system to replace unavaila­
ble measurements does not affect the eigenvalues of the feedback system; it 
merely adjoins its own eigenvalues. 

We prove this eigenvalue separation theorem for the special case of an 
identity observer. 

Eigenvalue Separation Theorem. Consider the system 

x(t) = Ax(t) + Bu(t) 

yet) = Cx(t) 
the Identity observer 

i(t) = (A - EC)z(t) + Ey(t) + Bu(t) 
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and the control law 

u(t) = Kz(t) 

The characteristic polynomial of this composite is the product of the charac­
teristic polynomials of A + BK and A - Ji;C. 

Proof. Substituting the control law u(t) = Kz(t) and the output equation y(t) = 
Cx(t) yields the two differential equations 

x(t) = Ax(t) + BKz(t) 

i(t) = (A - EC)z(t) + ECx(t)+ BKz(t) 

Defining e(t) = z(t) - x(t) and subtracting the first equation from the second 
yields 

x(t) = (A + BK)x(t) + BKe(t) 

e(t) = (A - EC)e(t) 

The corresponding system matrix in partitioned form is 

[
A+BK BK] 

o A-EC 

The result then follows from the fact that the charactenstic polynomial of a 
matrix of this type is the product of the characteristic polynomials of the two 
blocks on the diagonal. (See Problem 22.) I 

Example 3. Consider once again the stick balancing problem. In Example 2, 
Sect. 8.9, a feedback control scheme was devised that placed both dosed-loop 
eigenvalues at -1. This scheme required both position and velocity measure­
ments. In Example 2 of this section an observer was derived to estimate 
velocity when only position can be measured. Let us select e = 2 so that the 
single eigenvalue of the observer is -2, somewhat more negative than the roots 
of the feedback control system designed earlier. We can then combine these 
designs and check whether the eigenValue separation theorem holds using the 
reduced order observer. 

The corresponding complete control system, consisting of the original 
system, the control law. and the observer, is governed by the equations 

x(t) = v(t) 

v(t) = gx(t)- gu(t) 

i(t) = -2z(t) +(g -4)x(t) - gu(r) 

gu(t) = (g + l)x(t) + 2v(t) 

v(t) = z(t) + 2x(t) 
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Eliminating the static equations for gu(t) and v(t) shows that the closed-loop 
system is governed by 

x(t) = v(t) 

tilt) = gx(t) -(g + l)x(t) - 2z(t)-4x(t) 

i(t) == -2z(t) +(g -4)x(t)- (g + l)x(t) - 2z(t) -4x(t) 
or finally 

[
X(t)J [0 
tilt) = -5 
i(t) -9 

1 OJ [X(t)J o -2 v(t) 

o -4 z(t) 

(8-89) 

This system has characteristic equation 

-.\ 2(.\ +4)+ 18- 5(.\ +4) = 0 

or, equivalently, 

This can be factored as 

(.\ + 1f(.\ + 2) = 0 

Therefore, the roots of the overall system are -1, -1, -2 in agreement with 
the eigenvalue separation theorem. 

8.11 PROBLEMS 

1. Find a rational expression for the z-transforrn of the sequence 1,4,9,16, .... 

2. If t(k) has a rational z-transforrn F(z), find the z-transforrn of the sequence g(k) 
defined by 

k 

g(k) == L t(j) 
,-0 

3. Show that the z-transforrns of the sequences t(k) == bk sin ak and g(k) = bk cos ak 
are: 

bz Sifl a 
F(z) z2-2bzcosa+b 2 

) 
z2-bzcosa 

G (z == -::-------;;: 
z2-2bz cos a +b2 

4. Partial Fractions. The coefficients of a partial fraction expansion can be found in a 
slfllple straightforward way as follows. Suppose F(z) is a reduced strictly proper 
rational function of degree n. 
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(a) Suppose the roots of the denominator of F(z) are distinct. Then 

F(z)=~+~+ ... +~ 
z-z. Z-Z2 z-z!'\ 

Show that c. can be evaluated as 

c, = lim(z - z,)F(z) 
z-.. 

(b) Suppose Z; IS a root that is repeated m times. Then the partial fraction of F(z) 
includes terms of the form 

~+~+ ... +~ 
Z-Z; (z-zY (z-z,)m 

Show that c,p, 1:5 P :5 m can be evaluated as 

1 d m - p 

c'p = lim -( --)' d m-p [(z - z,)mF(z)] 
Z_Zj m -p. z 

5. Find the inverse z-transform of 

z(z -l)(z -2) 

(z2+2z +2)(Z2+4z +4) 

(Hint: Use the results of Problems 3 and 4.) 

6. A firm's inventory IS governed by the equation 

l(k + 1) = (31(k) + P(k) - S(k) 

where l(k) = inventory at time k, P(k) = production during tIme perIod k, S(k) = 
sales during time period k, and 1 - (3 = spoilage rate. Suppose the firm decides to 
produce as much dUrIng a given time period as was sold during the previous time 
period; that is, P(k) = S(k -1). This gives 

l(k + 1) = (31(k) + S(k - 1) - S(k) 

(a) Using z-transforms, find l(k) if S(k) = ex k
, ex> 1, k 2: O. [Assume 1(0) = 2, 

S(-l)=O.] 
(b) Using z-transforms, find l(k) if 

k even 

k odd 
where k 2:0 

7. Transfer Gain. The transfer function H(z) of a sIngle-input, single-output 
discrete-time system can be viewed as a gain fUnction. Assume that a IS a number 
such that H(a) is fimte. Show that if the geometric sequence a k is applied as Input 
to the system, the same geometric series appears in the output multIplied by the 
gaIn H(a) [that is, H(a)a k appears as an output term]. 

8. Diagram MampulatlOn. Find the transfer functIon from u to y for the systems 
represented by the diagrams of Fig. 8.20. 
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Figure 8.20. Interconnected systems. (a) Double feedback. 
(b) Interlaced feedback. 

9. State Space and Senes ConnectIOns. Consider the series arrangement of two 
single-input, single-output systems 

x,(k + 1) = A,x,(k) + b,u(k) 

v(k) = c; x,(k) + d,u(k) 

x,(k + 1) = A 2x,(k) + b2v(k) 

y(k) = crx,(k) + d 2 v(k) 

Let H,(z) = cT(zI-A,)-'b; +11;, for 1= 1,2. 

(a) Eliminate v(k) and find the state space representation of the composite system. 
(b) Show directly, by matrix manipulation, that the transfer functIOn of the compos­

ite system is H(z) = H,(z)H2 (z). 

10. Use Laplace transforms to solve each of the following differential equatIons, With 
imtIal conditions y (0) = 0, y (0) = 1. 

d 2 y dy 
(a) dt 2 + dt -6y = 1 

d 2 y 
(b) dt 2 - y =e-' 

d
2
y dy • 

(c) dt2 + dt +y =te-' 

11. Show that two sticks (with masses concentrated at their tops) placed side by side a 
little distance apart on one hand can be SImultaneously balanced in most cases. 
What conditions on the lengths and masses render the sImultaneous balancIng feat 
impossible? 
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*12. The Finite-Settling Time Problem. Suppose the nth-order single-input system 

x(k + 1) =Ax(k)+bu(k) 

is completely controllable. Then it is known that any initial state can be driven to 
zero wlthm n steps. We shall seek a linear feedback law that automatically drives 
the state to zero in the shortest possible time. 

(a) Let M be the controllability matrix of the system. Let e~ denote the Ith row of 
M-'; that is, 

Show that settmg 

k = 0, I, 2, ... , n - 1 

will drive the initial state to zero in the shortest time. 
(b) Define e T = -e~A". Show that the feedback rule u(k) = e T x(k) will yield the same 

result as part (a). 
(c) The ciosed-loop system IS governed by 

x(k + 1) = (A+be T)x(k) 

Conclude that all eigenvalues of A + be T are zero. What IS the Jordan form of 
A+beT? 

13. Controllability. For the discrete-time system 

x(k + 1) = Ax(k) +bu(k) 
where 

A= [~ ~] 
let 

b , = [~] 
(a) For each b, determine if the system is controllable. 
(b) For each b that results in a completely controllable system, find the shortest 

input sequence that drives the state to zero if 

x(O)= r2] 
Ll 

14. Multiple Eigenvalues and Conrrollability. Suppose the system 

x(t) = Ax(t)+ bu(t) 
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has all eigenvalues equal to A. Show that this system is completely controllable if 
and only if the Jordan form of A has only a single chain and (in the same 
coordinate system) b has a nonzero component in the last component. Give a 
dynamic diagram interpretation of this result. 

15. Controllability and Feedback. Show that feedback does not destroy complete 
controllability. Specifically, show that if the system 

x(k + 1) = Ax(k)+Bu(k) 

is completely controllable, then the system 

x(k + 1) = Ax(k) +BCx(k)+ Bu(k) 

is also completely controllable. 
(Hint: Rather than checking the rank condition, apply the origmal definitIon 
of complete controllability.) 

16. Observability. Suppose that the partitioned system 

[wet)] = [Au AI2][W(t)] 
yet) A21 A22 yet) 

with output yet) is completely observable. Show that the combinatIOn of Au as 
system and A21 as output matrix is a completely observable pair. (Hint: You may find it 
simpler to prove complete controllability of the transposed combination.) 

17. Structure of Canonical Forms. Show that the controllability canonical forms are 
completely controllable and the observability canonical forms are completely ob­
servable for all values of the parameters ao, a" ... , a..-i. 

18. Observability Canonical Forms. Work out the detailed derivation of the two 
observability canonical forms. 

19. Consider the two dynamic systems 

S, S2 

X, =X2 +u X3 = x,+w 

x2=-2x,- 3x2 z =x, 

SI has state (x" X2), control u, and output y. S2 has state x" control w, and 
output z. 

(a) Determine whether each system is controllable, observable, stable. (Note a is a 
parameter.) 

(b) These two systems are connected in series, with w = y. The resultmg system 
is called S3. Determine whether it is controllable, observable, stable. 

(c) The systems are now connected In a feedback configuration as shown in Fig. 
8.21 to produce S •. Determine whether S4 IS controllable, observable. 
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Figure 8.21. System for Problem 19. 

20. Observer Design. Design an observer for the system shown In Fig. 8.22. The 
observer should be of second order, with both eigenvalues equal to -3. 

21. Uncantrallability of Observers. Let S, be a linear tlme-mvarlant system with input 
u(t) and output y(t). An observer S2 is connected appropnately to S •. Show that the 
resulting system is always uncontrollable from the input u(t) (that IS, it IS not 
completely controllable.) 

22. Assume that A and C are square matrices. Use Laplace's expansIOn to show that 

\~ ~\=IAI 
Use this result to show that 

I ~ ~ I = IAIICI. 

23. Prove the Eigenvalue Separation Theorem for reduced order observers. 

f~_s!_t--lH,--_s:_2--,P1IJf--X'-' -.---;)00--

Figure 8.22 System for Problem 20. 

NOTES AND REFERENCES 

Sections 8.2-8.5. Transform methods have long been used to solve linear, constant­
coefficIent differential and difference equations. Actually, Laplace transform 
methods were developed first, since differentiai equations were generally used to 
represent dynamIC phenomena. The books by Gardner and Barnes [G4] and Carslaw 
and Jaeger [C1] published in the early 1940s served as the classic references for many 
years. With the advent of digital techniques in the 1950s the z-transform also attaIned 
popularity. See Aseltine [A4]. A good deal of attention typically was devoted to issues 
of convergence in transform methods. The recent trend, however, is to view them more 
algebraically In terms of an indetermmant symbol rather than as a branch of compiex 
variable theory. An example of this is Rugh [R7]. 
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Sections 8.6-8.7. The concepts of controllability and observability are due to Kalman. 
(See, for example, [Kl] which was highly instrumental in development of modern 
control theory.) Also see Gilbert [G6] for discussion of the relation of controllability to 
diagonal representations. For early work on canonical forms, see Kalman [K3]. 

Section 8.8. For multlvanable (many inputs and outputs) versions of the canonIcal 
forms, see Luenberger [LS]. 

Section 8.9. We have only been able to hint at the general area of feedback and Its 
many applications and ramifications. See, for example, Clark [C3]. The eigenvalue 
placement theorem for single-mput systems follows directly from the smgle-mput 
canonical forms. The more general result is closely tied to more general canonIcal 
forms. See Luenberger [L7], [LS] or, for a more explicit statement, Wohnam [W6]. 

Section 8.10. For the onginal development of reduced order observers refer to 
Luenberger [L6], [L7], and [LID]. The particular presentatIon at the end of this section 
(and the result of Problem 16) IS based on a construction due to Gopmath [G 10]. 



chapter9. 

Analysis of 
Nonlinear Systems 

9.1 INTRODUCTION 

The analysis of nonlinear systems is in some respects similar to that of linear 
systems, but in other respects it is quite different. The similarity derives from 
the fact that one of the principal techniques for analysis of nonlinear systems is 
to approximate or bound them by appropnate linear systems, and then use 
linear theory. The differences derive from the fact that entirely new types of 
behavior can arise in nonlinear systems, compared to linear systems, as is 
illustrated below. The analysis is also different because explicit solutions are 
rarely available for nonlinear systems, and thus, behavioral characteristIcs must 
be inferred by more subtle methods. Nevertheless, accounting for both the 
similaritIes and differences with linear system analysis, there is a set of useful 
general pnnciples for nonlinear systems analysis that provides coherence to this 
important topic. 

We focus attention on nonlinear systems defined by either a set of 
difference equations or differential equations, as described in the beginning of 
Chapter 4. An nth-order discrete-time system has the following general form: 

x1(k + 1) = fl(Xl(k), x2(k), ... , x,,(k), k) 

x2(k + 1) = f2(x 1(k), xAk), ... , x,,(k), k) 

(9-1) 
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for k = 0,1,2, .... Of course, we often find it convenient to express (9-1) in 
the vector form 

x(k + 1) = f(x(k), k) (9-2) 

where x(k) is the n-dimensional state vector, and f IS the n-dimensional vector 
function whose components are the ti'S. 

Similarly, an nth-order continuous-time system has the following form: 

~\(t)= fI(x1(t), x2 (t), ... , x,,(t), t) 

X2(1) = t2(X 1(t), x2(t), , .. , x,,(t), t) 

which is often expressed in the vector form 

x(t)=f(x(t), t) 

(9-3) 

(9-4) 

The functions defining the systems (9-2) and (9-4) [or equivaiently (9-1) 
and (9-3)] depend on both the state x and on time, k or I. These systems are 
thus, in general, time-varying. If the functions do not depend explicitly on tIme, 
the system is said to be nme-invananc. Our attention is devoted mainly to such 
systems; that is, to systems that can be written as 

x(k + 1) = f(x(k)) (9-5) 
or 

x(t) = f(x(t)) (9-6) 

New Forms of Behavior 

Certain, even first-order nonlinear systems exhibit forms of behaVior that are 
either somewhat different or drastically different than that obtainable in linear 
systems. The following two examples are classic. 

Example 1 (The Logistic Curve). The standard first-order linear differential 
equation defining exponential growth is often modified to reflect the fact that, 
due to crowding, limited resources, or a variety of other reasons, growth cannot 
continue indefinitely. There are invariably restraining factors whose influence 
eventually dominates. A standard modified equation that accounts for the 
restraining influence is 

x(t) = a[1- x(t)/c]x(t) 

where a> 0, c > O. The term a[1- x(t)/c] can be interpreted as the instantane­
ous growth rate. This rate decreases as the growth variable x(t) increases 
toward its maximum possible level c, 
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x 

l 
Figure 9.1. Logistic curve. 

The solution to this equation (which is easy to obtain; see Problem 1) is 
c 

x(t) = 1 + be-a, 

where b > 0 IS determined by the initial condition x(O) < c. The corresponding 
curve, shown In Fig. 9.1, is the logistic curve. It has a characteristic S shape that 
approxImates exponential growth at the low end and saturation at the upper 
end. 

ThIs solution does not represent particulariy unusual behavior. Indeed, the 
pomt of this example is that nonlinear terms can be meaningfully introduced 
into system equations in order to better represent natural phenomena. The 
general character of the resulting solution shOUld be consIstent with intuitive 
expectations. In this particular example, the linear model is modified to 
account for growth limitatIons, and the solutIon does exhibit the limitation 
property. Nonlinear modifications, then, are not necessarily obtuse, but in fact 
they may be quite consistent with one's intUItive understanding of both the 
system structure and the solution pattern. 

Example 2 (Finite Escape Time). As an example of an entirely new form of 
behavior, not exhibited by linear systems, we consider a growth model where 
the growth rate Increases WIth size. Specifically, we consider the differential 
equation 

x(t) = a(1 + x(t)/c)xlt) 

where a> 0, c > O. If x(O) > 0, the solution for t> 0 is 

. c 
xU) = be-a' - 1 

where b> 1. This solution is illustrated in Fig. 9.2. Its primary characteristic is 
that the variable x(t) not only tends to infinity (as would be expected) but it 
gelS there in finite time! 
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. 

1 

Figure 9.2. Finite escape time. 

The Main Tool for Analysis of Nonlinear Systems 

The objectives of analysis for nonlinear systems are similar to the objectives 
pursued when investigating complex linear systems. In general, one does not 
seek detailed solutions either in numerical or analytical form, but rather one 
seeks to characterize some aspect of system behavior. For example, one mIght 
ask whether there are equilibnum points, and whether they are stable. One 
seeks estimates of growth rates, estimates of behavior resulting from perturba­
tions, and characterizations of limiting behavior. In nonlinear systems, one 
might also look for finite escape time phenomena, saturation effects, or 
threshold effects. The role of analysis, therefore, is to characterize in broad 
outline the critical aspects of system behavior-not the details. 

By far the most useful device or tool for nonlinear system analysis IS the 
summanzmg function. The idea is a simple one, but one of great power and 
utility. The very concept of a summarizing function is a reflection of the general 
objectives of analysis. It summarizes behavior, suppressing detail. 

In formal terms, a summarizing function is Just some function of the 
system state vector. As the system evolves in time, the summarizing functi(m 
takes on various values conveying some information. It is often possible, 
however, and this is a key requirement for analysis, to write an approximate 
first-order difference or differential equation that describes the behavior of the 
summarizing function. An analysis of that first-order equation is then in some 
sense a summary analysis of the entire system. 

This idea was first systematically introduced by Liapunov for the study of 
stability of nonlinear systems. The special summarizing functions used for this 
purpose are, accordingly, referred to as Liapunov functions. It is now recog­
nized that this idea in its generalized form is perhaps the most powerful device 
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for the analysis of nonlinear systems-its power being derived from its simplic­
Ity, its generality, and its flexibility. It is this idea that is developed in this 
chapter and applied to several examples in both this chapter and the next. 

This chapter contains most of the general theoretical development of the 
summarizing function concept, emphasizing the Liapunov theory. The theory is 
built up in stages, and one does not have to go through it all in order to begin 
to apply it. Some examples are interleaved with the development in this 
chapter, but other more extended examples are presented in the following 
chapter. It is suggested that the reader essentially read this chapter and the 
next in parallel. The examples in the next chapter themselves progress from the 
relatively simple to the more complex, so it will be helpful to refer back and 
forth between the two chapters. 

9.2 EQUILIBRIUM POINTS 

The concept of an equilibrium point, which was used extensively in earlier 
chapters in connection with linear dynamic systems, carries over directly to 
nonlinear dynamic systems. The general definition IS repeated here. 

Definition. A vector i is an equilibrium POInI for a dynamic system if once the 
state vector is equal to i it remains equal to i for all future time. 

In particular, if a system is described by a set of difference equations 

x(k + 1) = (x(k), k) 

an equilibrium point is a state i satisfying 

x= ((x. k) 

for all k. Similarly, for a continuous-time system 

x(t) = (x(t), I) 

an equilibrium point IS a state i satisfying 

(i, t) = 0 
for all t. 

(9-7) 

(9-8) 

(9-9) 

(9-10) 

In most Situations of practical interest the system is time-invariant, in 
which case the equilibnum points x are solutions of an n-dimensional system of 
algebraic equations. Specifically, 

i= (i) (9-11) 
In discrete time. or 

o =f(i) (9-12) 

in continuous time. 
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An analysis of a nonlinear dynamic system may devote consIderable 
attention to the characterization of equilibrium points. This contrasts with a 
typical analysis of linear systems where equilibrium points are basically solu­
tions to linear equations, and hence, are treated in a rather routine manner. 
The nonlinear case is different in two essential respects. First, since equilibrIum 
points are solutions, in this case, to nonlinear equations, finding such solutions 
is somewhat more of an accomplishment than in the linear case (from a purely 
technical viewpoint). Thus, a description of equilibrium points often constitutes 
significant information. Second, and perhaps more fundamentally, the equilib­
rium point distribution is potentially more complex in the nonlinear case than 
in the linear case. A system may have none, one, any finite number, or an 
infinity of equilibrium points in virtually any spacial pattern in state space. 
Thus, characterization of equilibrium points is not only teChnically more 
difficult, it is a much broader question. Ultimately, however, as in the linear 
case, interest centers not just on the existence of equilibria but also on theIr 
stability propertIes. 

Example 1. Consider agam the equation for the logistic curve 

x(t) = a(l - x(t)/c)x(t) 

A value x is an equilibrium point of this first order equation if it satIsfies the 
algebraic equation 

0= a[1- x/c]x 

There are two solutions: x = ° and x = c. 
In terms of the population system that is modeled by this system, a 

population level of zero or of c represents a level that once attamed will not 
Change. 

Example 2 (A Discrete-time System). ConSIder the system 

x\(k + 1) = axl(k) +x2(kf 

x2(k + 1) = xl(k)+ !3x2(k) 

an equilibrium point is a two-dimensional vector x = (XI' x2 ) satIsfying 

x\=ax\+x/ 
x2 =x\ + (3X2 

The second equation can be solved for Xl in terms of x2 • This can then be 
substituted in the first equation yielding 

(1-a)(1- (3)x2 = x/ 

Clearly, there are two equilibrium points 

i=(O,O) and i=«1-u)(1-(3)2,(1-a)(1-(3)). 
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9.3 STABILITY 

Stability properties characterize how a system behaves if its state is initiated 
close to, but not precisely at, a given equilibrium point. If a system is initiated 
with the state exactly equal to an equilibrium point, then by definition it will 
never move. When Initiated close by, however. the state may remain close by, 
or it may move away. Roughly speaking, an equilibrium point is stable if 
whenever the system state is initiated near that point, the state remams near it, 
perhaps even tending toward the equilibrium point as time increases. 

Suppose that i is an equilibrium point of a time-invariant system. That is, 
i IS an equilibrium point of either 

x(k + 1) = f(x(k)) (9-13) 

or of 

x(1) =f(x(t)) (9-14) 

For a precise definition of stability, it is convenient to introduce the 
notation S(i, R) to denote the spherical region'" in the state space with center 
at x and radius R. Using this notation we then can state four important 
definitIOns related to stability. These definitions might at first appear somewhat 
obscure because of their somewhat mathematically involuted character. For 
this reason they require careful study. We state them all as a unit, and then 
interpret them verbally and geometrically. 

Definition. 

(1) An equilibrium point x is stable if there is an Ro> 0 for which the 
followmg is true: For every R < Ro, there is an r, 0 < r < R, such that if 
x(O) is Inside S(i, r), then x(t) is inside S(i, R) for allt>O. 

(2) An equilibnum point x is asymptotically stable whenever it is stable 
and In addition there is an Ro>O such that whenever the state is 
initiated inSide Sex, Ro), it tends to x as time increases. 

(3) An equilibnum point i is margmally stable if it is stable but not 
asymptotically stable. 

(4) An equilibrium point i is unstable if it is not stable. Equivalently, x is 
unstable if for some R > 0 and any r > 0 there is a point In the 
spherical region SCi, r) such that if initiated there, the system state will 
eventually move outside of Sex, R) . 

• Specifically, we define the distance between two POints x and Y In the n-dimensional state space 
by lix-Y11 = (I~-l (x; - y,j2)ll2 This IS called the Euclidean distance. The region S(i, R) 15 the set of 
vectors x satISfying Ilx -ill < R; that 15, It 15 the set of all pOints whose Euclidean distance from i 15 

less than R. 
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Figure 9.3. Definitions. 

These definitions are best understood in terms of their geometric interpre­
tations. Let us refer to the path traced by the state of a system as the state 
trajectory. Any initial point defines a corresponding trajectory emanatmg from 
it. In this terminology, the first definition says that an equilibrium point i is 
stable if it is possible to confine the trajectory of the system to withm an 
arbitrary distance from i by restricting the initial state to within some other 
(perhaps smaller) distance of x. According to the definition, one first selects an 
R > 0, and then to assure that the state trajectory remains Within S(i, R), a 
(smaller) r> 0 is found specifying the allowable region S(i, r) for the initIai 
state. This is the formalization of the intuitive notion that stability means that if 
the state is initiated near i, it remains near i. 

The other three definitions are, of course, based upon the first. Asymptotic 
stability requires that, in addition to simply remaining near i, the state 
trajectory, when initiated close to i, should tend toward i. (It can get there In 

either finite or irtfinite time.) Asymptotic stability is the strongest of the 
stability properties and the one which in most instances is considered most 
desirable. The definitIon of marginal stability is introduced pnmarily for 
convenience of discussion. It distinguishes stability from asymptotic stability. 
Instability implies that there are trajectories that start close to i but eventually 
move far away. 

The definitions are illustrated in Fig. 9.3. This figure should be stUdied in 
conjunction with the formal definitions. Note, however, that the definitIOns of 
stability in this section apply both to discrete-time and continuous-time sys­
tems. For purposes of discussion (and following tradition) it is often convement 
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and most picturesque to talk as if the trajectories are continuous. Nevertheless, 
such discussions, and figures such as Fig. 9.1, must be understood as having 
direct discrete-time analogs. 

Example 1 (First-order Linear Equation). The differential equation 

i(t) = ax(t) 

has the origin as an equilibnum point. This point is (1) stable if a $ 0, (2) 
asymptotically stable if a < 0, and (3) unstable if a> O. 

Example 2 (The Logistic Equation Again). The equation for logistIc popula­
tion growth 

i(t) = a(l- x(t)/c)x(t) 

with a> 0, c > 0, has the equilibrium points i = 0 and i = c. The point i = 0 is 
unstable since any small, but positive, initial population level will increase 
monotonically toward x = c. The point i = c is asymptotically stable since if 
slightiy displaced from that point, either upwards or downwards, the popula­
tIOn levei will tend toward it again. 

Example 3. ConsIder the discrete-time system 

x(k + 1) = x(k) 
1 +x(k) 

which arises in genetics. (See Chapter 10.) An equilibrium point i of this 
system must satisfy the equation 

The only solution is i = O. 

i 
i=-­

l+i 

Any positive initial state will produce a trajectory tending toward zero as 
k ~ 00. Small negative initial states, however, lead to movement away from 
zero, at least to the point -1. Thus, in terms of the general definition, the 
equilibrium point i = 0 is unstable. 

9.4 LINEARIZATION AND STABILITY 

According to the basic definitions, stability properties depend only on the 
nature of the system near the equilibrium point. Therefore, to conduct an 
analysis of stability it is often theoretically legitimate and mathematically 
convenient to rtplace the full nonlinear description by a simpler description 
that approximates the true system near the equilibrium point. Often a linear 
approXimation is sufficient to reveal the stability properties. This idea of 
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Figure 9.4. Linear approximation. 

checking stability by examination of a linearized version of the system IS 

referred to as Lwpunov's first method, or sometimes as Llapunov's Indirect 
method. It is a simple and powerful technique, and IS usually the first step in the 
analysis of any equilibrium point. 

The linearization of a nonlinear system is based on linearization of the 
nonlinear function f in its description. For a first-order system, defined by a 
single function f(x) of a smgle variable, the procedure is to approximate f near 
x by 

d 
f(x + y) = f(x)+ dx f(x)y (9-15) 

This is illustrated in Fig. 9.4. 
An nth-order system is defined by n functions, each of which depends on 

n variables. In this case each function is approximated by the relatIon 

f,(x I + Yl> x2 + Y2' ... ,i,. + Yn) 

a a 
+ -a f, (Xl> x2 , ••• , i,.)Y2 + ... +-a t. (Xl' x2 , •.. , i,,) y" 

X2 Xn 

The linear approximation for the vector f(x) is made up of the n separate 
approximations for each component function. The complete result IS expressed 
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compactly in vector notation as 

f(x+y) =f(x) + Fy (9-16) 

In this expression F is the n x n matrIX 

aft aft aft 
aXl aX2 ax,. 
af2 af2 af2 

F= 
aXl aX2 ax,. 

(9-17) 

afn afn afn 
aXl aX2 ax,. 

x=:i 

The matrix F IS referred to as the Jacobian matrix of f. 
Now let us apply this procedure to derive the linearized versions of 

discrete- and continuous-time systems. Suppose first that x is an equilibrium 
point of the discrete-time system 

x(k + 1) = f(x(k)) 

Then substituting x(k) =x+y(k) in (9-18) and usmg (9-16), we obtain 

x + y(k + 1) = f(x) + Fy(k) 

(9-18) 

(9-19) 

However, the equilibrium point i satisfies x = f(x). It follows therefore that 
(approximately) 

y(k + 1) = Fy(k) (9-20) 

This is the linear approximation valid for small deviations y(k) from the 
equilibrium point x. 

Next suppose that x is an equilibrium point of the continuous-time system 

x(t) = f(x(t)) (9-21) 

Settmg x(t) = x + yet) and using the approximation (9-16) leads in a similar way 
to the linear approximation 

y(t)=Fy(t) (9-22) 

Thus, in either discrete or continuous time, the linear approximation of a 
nonlinear system has F as its system matrIX. The state vector of the approxima­
tion IS the deviation of the original state from the equilibrium point. 

As we know, the stability properties of a linear system are determined by 
the location (in the complex plane) of the eigenvalues of the system matrix, 
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and the stability properties of the linearized version of a nonlinear system can 
be determined that way. Then, stability properties of the original system can be 
inferred from the linearized system using the following general results: 

(1) If all eigenvalues of F are strictly inside the unit circle for discrete-time 
systems (strictly in the left half-plane for continuous-time systems), then x 
is asymptotically stable for the nonlinear system. 

(2) If at least one eigenvalue of F has absolute value greater than one for 
discrete-time systems (or has a positive real part for contInUOus-tllne 
systems), then x is unstable for the nonlinear system. 

(3) If the eigenvalues of F are all inside the unit cucle, but at least one IS on the 
boundary for discrete-tune systems (or all in the left half-plane, but at least 
one has a zero real part In continuous-time systems), then x may be either 
stable, asymptotically stable, or unstable for the nonlinear system. 

The essence of these rules is that, except for the boundary situation, the 
eigenvalues of the lineanzed system completely reveal the stability properties 
of an equilibrium point of a nonlinear system. The reason is that, for small 
deviations from the equilibnum point, the performance of the system IS 
approximately governed by the linear terms. These terms domInate and thus 
determine stability-provided that the linear terms do not vanish. If there are 
boundary eigenvalues, a separate analysis is required. 

Example 1 (First-order Quadratic System). Consider the system 

x(t) = ax(t) + CX(t)2 

The origin x = 0 is an equilibrium point for any parameter values a and c. The 
linearized version of the system, linearized about the point x = 0, is 

y(t) = ay(t) 

Based on the general principles above, we can deduce the folloWIng relations 
between parameters and stability. 

(1) a <0: asymptotically stable 
(2) a> 0: unstable 
(3) a == 0: cannot tell from linearization. 

In the third case, a = 0, it is not possible to irtfer stability characteriStics 
without an analysis of higher-order terms. For this case the system reduces to 

x(t) = cx(tf 

If c = 0, it is clear that the origin is stable. If c,e 0, then it is easy to see that it IS 

unstable. [For example, if c > 0, then any x(O) > 0 will lead to ever-IncreaSIng 
x(t).] 
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Example 2. Consider the discrete-time system 

x\(k + 1) = ax\(k)+x2(kf 

x 2(k + 1) = x\ (k) + (3x2(k) 

In Example 2, Sect. 9.2, it was found that this system has the two equilibrium 
points i=(O,O) and i=«(l-a)(l-(3)2, (l-a)(l-(3)). Let us attempt to 
analyze the stability of each of these equilibrium points. We assume that 
O<a<l,O<(3<1. 

For i = (0, 0) we find that 

and thus, the corresponding linearized system is 

y\(k + 1) = ay\(k) 

Y2(k + 1) = y\(k)+ (3Y2(k) 

The eigenvalues of this lower triangular system are a and (3, hence under our 
assumptions on a and (3, we can conclude that the equilibnum pomt IS 

asymptotically stable. 
For i=«(l-a)(1-(3f, (l-a)(l-(3)), we find that 

F=[~ 2(l-a~(1-(3)] 

The characteristic equation of this matrix is (A-a)(A-(3)=2(1-a)(l-(3). 
The left side of this equation increases with A, and is smaller than the right side 
at A = 1. It is clear, therefore, that there is a root A with A> 1. Thus, this 
second equilibrium point is unstable. 

9.5 EXAMPLE: THE PRINCIPLE OF 
COMPETITIVE EXCLUSION 

The principle of competitive exclusion in biology states that it is unlikely for 
two or more similar species to coexist in a common environment. The competi­
tive struggle for food and other resources results in extinction of all but the 
most fit. When similar species do coexist over a long period of time, they 
generally evolve distinct differences in their food and habits. Each of the 
species tends to occupy a unique ecological niche so it does not directly 
compete with other species. A version of the principle of competitive exclusion 
can be demonstrated mathematically by developing a model of interaction 
between species. The model presented here was originally developed by 
Volterra. 
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Suppose that a number of different species share the resources of a 
common environment. There is no predation among them, and indeed the only 
interaction between species that influences growth is the indirect fact that they 
share the common environment. The growth rate of each of the different 
species is slowed as the overall community population level increases because 
of crowding, deterioration of the environment, and lack of food. The effect IS 

an aggregate one-due to all species, and influencing each of them. 
The starting point for a corresponding mathematical description is thc 

logistic curve, which is a commonly accepted model of growth in a crowded 
environment. Let us denote the population of the various species by X; for 
1= 1,2, ... , n. Each of the species imposes somewhat different burdens on the 
environment (due to differences in average size, etc.). We assume that the 
aggregate burden is a linear combination 

n 

F(x) = I a;x; (9-23) 
,=1 

where a; > 0, i = 1,2, ... , n. Then, as an extension of the usual logistic model, 
it is reasonable to hypothesize that population growth is governed by the set of 
equations 

x\(t) =[(31-'Y,F(x(t))]x\(t) 

X2(t) = [(32 - 'Y2F (XCt)) ]x2 (t) 

(9-24) 

where (3; > 0, 'Yi > 0 for 1= 1, 2, ... , n. The (3i'S represent the natural growth 
rates In the absence of crowding effects. The 'Yi'S represent the sensitivities of 
the growth rates to the aggregate crowding effect. For technical reasons (which 
shall soon be apparent) we assume that 

(3;~!!.i (9-25) 
'Yi 'Yi 

for all i~ J. 
Let us look for the (nonnegative) equilibrium points of the system. These. 

of course, are solutions to the set of equations 

0= [(3; - 'YiF(i)]i; 1= 1, 2, ... , n 

For each such equation, we distinguish the cases i; > 0 and X. = O. If X; > 0 for 
some i, it follows that 

(3; - 'YiF(X) = 0 
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or, equivalently, 

F(x) = f3/'Yi (9-26) 

In view of our assumption (9-25), however, such an expression for F(x) can 
hold for at most one index i since otherwise F(x) would supposedly have two 
different values. Therefore, at most one component can be positive in an 
equilibrium point. In other words, a group of species cannot coexist in 
equilibrium in this model; at most one can have nonzero population. 

Suppose Xi is the single positive equilibrium component. Its value can be 
found from (9-23) and (9-26), yielding 

Xi = f3/(ai'Yi) (9-27) 

This system has a total of n + 1 equilibrium points; the zero point and the n 
equilibria corresponding to a single positive population level, as given by 
(9-27). 

The next question, of course, is whether these various equilibria are stable. 
Or, in the terms of the biological setting, if one of the species domInates the 
environment, is its posItion secure, or can it be driven out of eXIStence by the 
least perturbation? A simple analysis of this question can be conducted by the 
lineanzation technique of the previous section. 

Let us consider the equilibrium point x corresponding to 

i>l 

(9-28a) 

(9-28b) 

This is really quite general, since the species can always be renumbered so that 
the one under consideration is the first. 

The linearIZed system is found by differentiatIng the original system at the 
equilibnum point. The required operations fall Into a number of cases, corres­
ponding to the equation index I and the variable index J. 

(a) i = 1, j = 1. 

(b) i = 1, j> 1. 
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(c) i>1, J=i. 

(d) i> 1, j ~ i. 

-aa [{3i - 'Y,F(X)]Xi I = 0 
Xj i 

As a result of these tedious but elementary calculations, it is found that the 
linearized system has the form 

-(31 13 2 133 en 
0 Ll2 0 0 

0 0 Ll3 0 
y(t)= y(t) (9-29) 

0 0 0 Lln 

where 
'Yi 

Lli ={3i -- {31 (9-30a) 
'Vt 

a·(3t £,= __ 1 _ 

at 
(9-30b) 

It follows, because of its upper triangular structure, that the eigenvalues of the 
linearized system are equal to the diagonal elements of the matrIX in (9-29). 
The equilibrium point, corresponding to having only the first populatlon 
nonzero, will be asymptotically stable if Lli < 0 for all I. If any Il; > 0, the 
equilibrium point is unstable. The condition Ll, <0 corresponds to 

{3t {3; 
->­
'Y 1 'Yi 

Therefore, in order for this equilibrium point to be stable, the ratio {3J'Yi must 
be maximized by 1=1-

We have now reached the point where we can summarize the results of 
our analysis. First, under our assumptions, it is not possible for a group of 
species to live together in equilibrium-an equilibrium can have a nonzero 
population level of only one of the species. If the fitness factors {3J'Y" I = 

1,2, ... , n (the ratios of natural growth rate to crowding sensitivity) are 
associated with the species, the largest fitness factor determines the one, among 
the many species, for which the corresponding equilibrium is stable. 
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9.6 LlAPUNOV FUNCTIONS 

The second method of Liapunov, often referred to as the direct method, works 
explicitly with the nonlinear system rather than the linearized version. This has 
the advantage, first, of being applicable in marginal situations, and, second, of 
enabling the analysis to extend beyond only a small region near the equilibrium 
point. 

The basic idea of the direct method for verifying stability is to seek an 
aggregate summarizing function that continually decreases toward a minimum 
as the system evolves. The classic example for mechanical systems (which is 
treated in detail later) is that of energy. The energy of a free mechanical system 
with friction always decreases unless the system is at rest; and this fact can be 
used to establish stability. In general, a function of this type, which allows one 
to deduce stability, is termed a Liapunov function. 

General Requirements 

Since the Liapunov function concept applies to both discrete-time and 
continuous-time systems, with slightly different forms, we first outline the 
general considerations. Later we present the separate results for discrete-time 
and continuous-time systems. 

Suppose that x is an equilibrium point of a given dynamic system. A 
Ltapunov function for the system and the equilibnum point x is a real-valued 
function V, which is defined over a region n of the state space that contains x, 
and satisfies the three requirements: 

(1) V IS continuous. 
(2) Vex) has a unique minimum at x with respect to all other points in n. 
(3) Along any trajectory of the system contained in n, the value of V never 

mcreases. 

Let us go over these three requirements in order to bring out their full 
meaning. The function V can be conveniently visualized m two ways. The first 
is to imagine its graph constructed over the state space, as illustrated m Fig. 
~a. The fir~t requirement, that of continui.ty, simply means that the. g~aph is 
connected without breaks. The second reqUirement, that Vex) is mimrmzed at 
x, means that the graph has its lowest point at i. Llapunov and many 
researchers after hun required in addition that this minimum value be zero (as 
in the figure), but thIS is neither necessary nor always convel1.ient. The impor­
tant property is simply that x be the unique mmimum point. 

The third requuement is perhaps the most difficult to visualize, at least at 
first. It is this conditIOn, however, which relates the function V to the system. 
Let us consider the successive values of Vex) taken as the point x(t) moves 
along a path defined by the system. (We use continuous-tune notation simply 
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(al (b) 

Figure 9.S. Graph and contours. 

for convelllence. The discussion applies to both discrete and contmuous tIme.) 
As the state moves in state space according to the laws of mOtion, we assoCiate 
with each time point t the corresponding value of the function V(x(t)). This is 
the summarizing idea discussed before. the tune behavior of the function V is 
a summary of the behavior of x(t). The third requirement on a Llapunov 
function is that the value of V, associated with the state vector, never increases 
with time as the system evolves. In the geometric terms of the figure this 
requirement means that the curves on the graph corresponding to system 
motion must run downhill-never uphill. 

A second way to visualize a Liapunov function is in terms of its contours III 
the state space, as illustrated in Fig. 9.Sb. The center point is the equilibnum 
pomt, which corresponds to the minimum value of the Liapunov function. The 
closed curves in the figure are contours; that is, loci of points where V IS 

constant. The value of V increases as one moves to contours further distant 
from the equilibrium point. The condition that V does not increase for 
movement along trajectories can be interpreted as meaning that the trajec­
tories must always cross contours in the direction toward the center-never 
outward. 

The important point to remember is that the Liapunov function is Just a 
function on the state space; that is, given x in n there is a corresponding value 
Vex). The function is not defined by motion of the system; rather, as the system 
evolves, the state moves and the corresponding value of V changes. 

Example 1. Consider the system 

x (k+l)= x2 (k) 
1 1 +x2(kf 

xl(k) 
x2 (k + 1) 

1 +x2(k)2 
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which has x = (0, 0) as an equilibrium point. 
Let us define the function 

V(x l , x2) = x/ + x/ 

This V is continuous and has a unique minimum at the equilibnum point. To 
check whether V increases along a trajectory, we consider any two vectors x(k) 
and x(k + 1) related by the system equation. We find 

V(x(k + 1)) = xl(k + If + x2(k + 1)2 

Xo(k)2 XI (k)2 - + ::-----'-'--'--;;::;;: 
[1 + x2(k)2Y [1 + x2(k)2]2 

xl(kf + x2(k)2 

[1 +x2(k)2]2 

V(x(k)) 
[1 + x2(k)2]2 <: V(x(k)) 

Thus, this V IS a Lmpunov functIon for this system and thIs equilibrium point. 
There are, of course, many other functIons that satisfy the first two require­
ments but fail to satisfy the thIrd. One must often search hard for a function 
satisfying all three requirements. 

Liapunov Theorem For Discrete Case 

We now focus specifically on a discrete-time system 

x(k + 1) = f(x(k)) (9-31) 

together with a given equilibrium point x. We assume that the function f(x) is 
continuous. The requirement on a Liapunov function that it never increases 
along a trajectory can then be translated into a specific mathematical relation. 

If at any time k the state of the system (9-31) is equal to x, then at the 
next time instant k + 1 the state will be f(x). The values of the Liapunov 
function at these points are, accordingly, Vex) and V(f(x)). Therefore, the 
change in value is 

----- Ll Vex) = V(f(x)) - Vex) (9-32) 

If V is a Liapunov function on fl, this change is less than or equal to zero for 
all possible states x in fl. In other words, the requirement that the Liapunov 
function not increase along a trajectory translates into the relation 

Ll Vex) EO V(f(x)) - V(x):5 0 (9-33) 

for all x in fl. It is thIs form that is used in the formal definition for 
discrete-time systems. 
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Definition. A function V defined on a region fl of the state space of (9-31) and 
containing x is a Llapunov function for the discrete-time system (9-31) if It 
satisfies the following three requirements: 

(1) V is continuous. 
(2) Vex) has a unique minimum at x with respect to all other points in fl. 
(3) The function Ll Vex) = V(f(x)) - Vex) satisfies 

Ll V(x):5 0 
for all x in fl. 

The geometric Interpretation of a Lmpunov function makes It almost 
immediately clear that if a Liapunov function exists the corresponding equilib­
rium point must be stable. The general idea is that if V can only decrease with 
time as the system evolves, it must tend toward its minimum value. Accord­
ingly x must tend to x. The precise statement is the following theorem. 

Theorem 1 (Liapunov Theorem-Discrete Time). If there exists a Llapunov 
function Vex) In a spherical region sex, Ro) with center x, then the equilib­
rium point x is stable. If, furthennore, the function Ll Vex) IS smctly negatIVe 
at every point (except x), then the stability is asymptOtic. 

Proof. The proof is based on geometric relations illustrated In Fig. 9.6. Sup­
pose Vex) exists within the spherical region sex, Ro). Let R be arbitrary with 
0< R < Ro. Let R, < R be selected so that if x E Sex, R,) then f(x) E 

sex, Ro). Such an RI exists because f is continuous. With this chOice, if the 
state vector lies inside Sex, R I ), it will not jump out of the larger sphere 
sex, Ro) in one step. 

Figure. 9.S. Regions defined in proof. 
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Now let m be the minimum value of V(x) over the region defined by 
R t :5l\x-ill:5Ro. This mmimum value eXists because V(x) is assumed to be 
continuous. Also we have m> V(i) since V has a umque minimum at i. 

Now again since V(x) is continuous, it IS possible to select an r, 0 < r < R t 

such that for x in S(i, r) there holds V(x) < m. This is because near i the 
function V must take values close to V(i). 

Now suppose x(O) is taken as an arbitrary point in S(i, r). Then V(x(O)) < 
m. Since Il V(x):5 0 the value of V cannot increase with time. Therefore, the 
trajectory can never go outside S(x, R t ), and consequently it can never go 
outside S(i, R). Thus, for this arbitrary R > 0 we have found r> 0, correspond­
mg to the requirements of the definition of stability. 

If m addition Il V(x) < 0 for every point except i, then V(x) must actually 
decrease continually (either for all k, or until the state reaches i if this happens 
in finite time). Thus V converges to some limitmg value m. The only question 
is whether it is possible for m> V(i). This IS not possible because, since 
V(x(k)) converges to m, it must be true that Il V(x(k)) converges to zero [since 
Il V(x) IS contmuous]. But Il V(x) IS strictly negative everywhere except at i. 
Thus, x(k) must converge to i and V(x(k)) must converge to m. This IS 

asymptotic stability. I 
Example 1 (continued), Since there IS a Liapunov function for Example 1, it 
can be concluded that the equilibrium point is stable. Note that this conclUSion 
cannot be obtained by examination of the linearized system, since the eigen­
values of this system are A = ± 1. 

Liapunov Theorem for Continuous Case 

We now consider the continuous-time system 

x(t) = f(x(t)) (9-34) 

together with a given equilibrium point i. Again we assume that f is continu­
ous. In the continuous-time case the requirement that the value of a Liapunov 
function never increases along a trajectory is expressed in terms of the tIme 
derivative. Suppose x(t) is a trajectory. Then V(x(t)) represents the corres­
ponding values of V along the trajectory. In order that V not increase, we 
require that V(x(t)):5 0 for all t. This derivative can be expressed, using the 
chain rule for differentiation, as 

. av av av . 
V(x(t)) = - xt (t) +- X2(t) + ... +- x,. (t) 

aXt aX2 ax,. 
(9-35) 

Then using the onginal system equation (9-34) this becomes 

. av av av 
V(x(t)) =- fl(X(t)) +- f2(X(t)) + ... +- f,,(x(t)) aXl aX2 ax,. 

(9-36) 
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Defining the gradient (row) vector 

(9-37) 

(9-36) can be written as 

V(x(t)) = V V(x(t))f(x(t)) (9-38) 

Therefore, the requirement that V not increase along any trajectory of the 
system translates into the requirement that V(x) =VV(x)f(x):5 0 for all x In D. 
It is this form that is used in continuous time. The definition of Liapunov 
function and the theorem are given below. 

Definition. A functIOn V defined on a region D of the state space of (9-34) and 
containing i IS a Llapunov function if It satisfies the following three 
requirements: 
(1) V is continuous and has continuous first partial derivatives. 
(2) Vex) has a unique minimum at i with respect to all other points In D. 
(3) The function Vex) == V V(x)f(x) satisfies V(x):5 0 for all x In D. 

Theorem 2 (Liapunov Theorem-Continuous Time). If there eXIsts a Liapunov 
function Vex) in a spherical region SCi, Ro) with center i, then the equilibrrum 
pomt i is stable. If, furthermore, the functIOn V(x) is strictly negative at every 
pomt (except i), then the stability is asymptotrc. 

Proof. The proof is similar to that for the discrete-time case, but 
slffipler because it is not possible for the trajectory to jump outside of a 
region under consideration. We leave the details to the reader. I 

Example 2. Consider the system 

x l (t)=X2(t) 

x2(t)= -XI(t)-X2(t) 

which has an equilibrium point at Xl = X2 = O. Define the functIon 

This function is certainly continuous With continuous first derivatives, and It IS 

Clearly minimized at the origin (which is also the equilibrium pOint). ThiS 
function satisfies the first two requirements of a Lmpunov function. To check 
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the final requirement, we wnte 

V(XI> X2) = 2xtxt +2X2X2 

= 2XtX2 +2X2( - X t -X2) 

= -2X22S;O 

where we have substituted the system equations for the time derivatives of the 
state variables. Thus, V IS a Liapunov function, and the system is stable. We 
cannot infer asymptotic stability, however, since V is not strictly negative at 
every nonzero point. 

Constants of Motion 

An important special situation is when a Liapunov function can be found that 
does not change value along a trajectory; that is, it neither mcreases nor 
decreases. This corresponds to Il V(x) == 0 or V(x) == 0 in discrete and continu­
ous time, respectively. In this case, V is constant along a trajectory-and the 
function V is said to be a constant of motIOn. If such a function can be 
determined, it conveys a good deal of information because we then know that any 
trajectory must lie on a contour of the function V. In an n-dimensIOnal space a 
contour usually defines an (n -1)-dimensionai surface. If n "" 2, for example, 
knowledge of a constant of motion yields curves along which trajectories must 
lie. 

Example 3. Consider the system 

Xt(t) "" x2 (t) 

X2(t) = -Xt(t) 

Let V(v)""x/+x/. Then it is seen that V(x)==O. The function V is a 
constant of mohon. Therefore, the system trajectories are restricted to con­
tours of V. In this case the contours are circles centered at the origm. Thus any 
trajectory must travel around such a circle. The particular circle followed 
depends on the initial condition. 

Extent of Stability 

It should be clear from the proof of the Liapunov stability theorems that if a 
Liapunov function is defined over a large region fl, we can say more than if it is 
defined only in a small region. In fact, it is clear that if the initial point x(O) is 
selected With, say, V(x(O)) = q, then the subsequent trajectory never goes 
outside of the region V(x) s; q. Therefore, the region over which the Liapunov 
function is defined delineates a region throughout which system performance is 
easily related to the equilibrium point. This kind of information, concerning the 
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extent of stability, cannot be obtained by the simple linearization technique, and 
for this reason a Liapunov function analysis often follows a lineanzation 
analysis even if stability has been established. 

An important special case of asymptotic stability is when the extent 
includes the entire state space; that is, when an equilibrium point x IS 

asymptotically stable, and, in addition, when initiated at any point in the entire 
state space the system state tends to x. This property is referred to as 
asymptotic stability In the large. It is often a most desirable property. The 
following theorem, stated without proof, gives conditions guaranteeing asymp­
totic stability in the large. 

Theorem 3. Suppose V is a Ltapunov function for a dynamic system and an 
equilibrium point x. Suppose in addition that 

(i) V is defined on the entire state space. 
(ii) Il V(x)<O [or V(x) <0] for all x,.ox. 

(iii) Vex) goes to infinity as any component of x gets arbitrarily large In 

magnitude. 

Then x is asymptotically stable in the large. 

9.7 EXAMPLES 

This section presents three examples illustrating the construction and use of 
Liapunov functions. From these examples, the reader should begin to recognIZe 
that the construction of a suitable Liapunov function generally spnngs from the 
context, or original motivation, of the system equations. This theme is elabo­
rated throughout this chapter and the next. Once it is appreciated, the concept 
of a Liapunov function becomes much more than an abstract mathematical 
tool. It becomes an integral component of overall system description. 

Example 1 (Iterative Procedure for Calculating Square Roots). Successive 
approximation techniques or other iterative procedures can be formulated as 
dynamic processes. Convergence of a procedure can be guaranteed if a 
Liapunov function is founG. As an example, consider the problem of finding 
the square root of a positive number a. If we start with an estimate of the 
square root, we might square it to see how close the result is to a and then try 
to improve our estimate. By repeating this process, we develop a successive 
approximations procedure. 

In algebraic terms, we seek a solution to the equation 

(9-39) 

This can be written as 
x =x+a-x2 
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Successive approximations can then be generated by the dynamic system 

x(k + 1) = x(k) + a - X(k)2 (9-40) 

This seems a reasonable, if not terribly inspued, approach to the calculation. 
We modify the current estimate by adding to it the difference between a and 
the square of the estimate. Clearly, if the current estimate is too small, the 
process will increase it, and vice versa. Will it work? 

As a first step of the analysis it is simplest to use the linearization method. 
The linearized version (9-40) at the point x = Fa is 

y(k + 1) = (1-2Fa)y(k) (9-41) 

where, as usual, y(k) = x(k) - X. The condition for asymptotic stability is 
therefore 

or, equivalently, 

O<a<l 

Already we can conclude that this method can work only for a limited 
range of a values. 

The linear analYSIS tells us that for 0 < a < 1 the method will work 
provided we start close enough. But it does not tell us how close the initial 
estimate must be. A Liapunov function would give us more mformation. 

It IS natural to define 

(9-42) 

This function is contmuous and has a minimum at X. Denoting the right-hand 
side of (9-40) by f(x(k)), it follows that 

Therefore, 

V(f(x)) = \a - (x + a - X2)2\ 

= \a - x 2 -2x(a - x 2
) -(a - X2)2\ 

= lea - x 2 )[1- 2x - (a - x 2)]\ 

= \a -x2\\(1-X)2_ a \ 

Il V(x):; V(f(x)) - Vex) = V(x)[\(1- x)' - a\- 1] 

The condition for Il Vex) < 0 is thus 

\(1-x)2-a\< 1 

For O<a<l, this is equivalent to the requirement that 

(9-43) 

(9-44) 

(9-45) 
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In particular, the requirement is satisfied for all x, 0:5 x:5 1. Thus, the 
Liapunov results show us that this simple procedure converges to.fa, O<a < 1, 
provided only that the initial estimate x satisfies 0:5 x :51. 

As a special instance, suppose we set a =! and try to calculate its square 
root (which we already know is x =~) using this method and starting at x = 1. 
We obtain the following successive estimates: 

x 
0 1.0000000 
1 .25000000 
2 .43750000 
3 .49609375 
4 .49998474 
5 .49999999 
6 .50000000 

However, let us try a number close to unity, say a = .98. Then we obtam: 

0 1.0000 20 .9966471659 
1 .980 30 .9954176614 
2 .9996 40 .9944139252 
3 .98039984 50 .9935944066 
4 .9992159937 51 .9863645618 
5 .9807833916 75 .9877494455 
6 .9988473304 76 .9921004784 
7 .981151341 100 .9912712204 
8 .9984933871 101 .988652588 
9 .981504343 125 .989153085 

10 .9981535677 126 .9907292594 
11 .981843023 150 .9904285409 
12 .9978273012 151 .9894798463 

The exact result is x = .9899494936 
This slow rate of convergence is, of course, not unexpected in view of the 

linearized version. The eigenvalue of the linearized system is -.979899, which 
indicates extremely slow convergence. 

We now know the range of a values for which the procedure will work, 
have found a range of acceptable starting values, and have an estimate of the 
speed of convergence. Through a combination of linear analysis and a 
Liapunov function, we have been able to obtain a fairly complete characterIZation 
of the properties of the iteration procedure (9-40). 

Example 2 (Swinging Pendulum). This is an example of the type that appar­
ently originally motivated the invention of the Liapunov function concept. A 
simple swinging pendulum has an equilibrium point when hanging straight 
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M 

Figure 9.7. Swinging pendulum. 

down. This point is stable, as is intuitively clear. Furthermore, if it is assumed 
that there is some friction In the bearing, then, as is equally clear, the point is 
asymptotically stable. The equations of motion come from Newton's laws, but 
they are nonlinear in thIs case. How can one mathematically establish the 
strong stability properties that one feels must hold for this SImple system? The 
answer is to look at the energy of the system. Since energy is constantly 
dissIpated by the system, mechanical energy serves as a suitable Liapunov 
function. 

We assume that the pendulum is of length R and has point mass M 
concentrated at the end. The position of the pendulum at any time is described 
by the angle O. We assume that the frictional force is proportional to the speed 
of the pendulum. (See Fig. 9.7.) To write the equatIOns governing the pen­
dulum, we equate mass times acceleration to total force In the direction 
perpendicular to the pendulum arm. Mass times acceleration is MRO(t). The 
force is the component of gravitational force in this direction, - Mg sin oct) 
plus the retarding force due to friction -MkiJ(t). Here g> 0 is the gravitational 
constant and k > 0 is a friction coefficient. Thus, we have 

MRO(t) = - Mg sin oct) - MkiJ(t) (9-46) 

In state variable form this becomes 

OCt) = wet) 

w(t)= -~sin O(t)-~ wet) 
R R 

(9-47) 

The second state vanable w (t) is the angular velocity of the pendulum. 
We now define the function 

(9-48) 
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This function V is the mechanical energy of the system (which is the sum of the 
kinetic and the potential energy). Although the physical significance of V is a 
major conceptual tool, it is for our present purposes irrelevant. Our mam 
interest is that this V is a Liapunov function. 

To verify that V is a Liapunov function, we note first that V is continuous 
and has continuous partial derivatives. It is positive everywhere except at 11 = 0, 
w = 0, where it is zero. Thus, V is minimized at the equilibrium point. Finally, 
we compute V: 

V(I1, w) = MR 2 ww + MgRO sin 11 

= - MRgw sin 11 - kMRw 2 + MgRw sin 11 

= -kMRw 2 :50 (9-49) 

Thus, V is a Liapunov function, and we can immediately conclude that the 
equilibrium is stable. 

Example 3 (A Pursuit Problem). Suppose a hound is chasing a rabbit. The 
rabbit runs a straight course along the x-axis at constant velocity R. The hound 
runs at a constant velocity H, but in such a way as to always point directly 
toward the rabbit. Let us write the differential equations describing the motion 
of the hound and the rabbit. (See Fig. 9.S.) 

Let xr(t), Yr(c) and xh(t), Yh(t) denote the x and Y coordinates of the rabbit 
and hound, respectively. Then 

Y~ 
I 

Figure 9.8. Hound and rabbit. 

xr=R 

Yr = Yr =0 

x 

(9-50a) 

(9-50b) 
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The fact that the velocity of the hound is H means that 

Xh2 +y/=H2 (9-51) 

The fact that the velocity vector of the hound always points toward the rabbit 
means that 

for some positive constant k. 

Xh = - k(xh -x,) 

Yh = - k(Yh - y,) 

Using (9-52a) and (9-51) one may determine 
obtaining the equations 

(9-52a) 

(9-52b) 

k for (9-52b), thereby 

(9-53a) 

(9-53b) 

The system IS perhaps more meanmgful when expressed m terms of 
relative coordinates-the coordinates of the difference m position of the hound 
and rabbit. Defining 

there results 

-xH 
x= R 

.JX2+y2 
(9-54a) 

. -yH 
y= 

.JX2+y2 
(9-54b) 

It is this final system that we examine. 
We ask whether the hound will always catch the rabbit. With respect to 

the system (9-54) this is equivalent to asking whether a trajectory with an 
arbitrary initial condition x(O), yeO) will eventually get to the origin, where the 
relative coordinates are zero. This particular system is indeterminant at the 
origm, but it is well-defined everywhere else. Clearly for our purpose we can 
consider the origin as an equilibrium point. To establish the desired conclusion 
it is natural to seek a Liapunov function for (9-54). But how can we find a 
suitable Lmpunov function for such a complicated highly nonlinear system? 
The answer is found most easily by recalling the original source of the 
equations. The hound is trying to catch the rabbit, and his movement at every 
mstant directly contributes to satisfying that objective. It is natural therefore to 
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suppose that distance (or distance squared) from the origin might serve as a 
Liapunov function, since it is the separating distance that the hound seeks to 
diminish. 

Indeed setting 

(9-55) 

one finds 

vex, y)= -2HJx2+y2_2Rx (9-56) 

We can show that if H> R, then Vex, y) is negative for any point other than 
the origin. If x=O, y~O, this is clear. If x~O, then -H-/X2+y2_Rx< 
- (H - R) Ixl < O. Thus, vex, y) < 0 for all x, y except the origin. It follows that 
if the hound runs faster than the rabbit, he always catches the rabbit. 

"'9.8 INVARIANT SETS 

The Liapunov function concept and the stability theorems can be generalized 
in several directions to treat special circumstances. One generalization, based 
on the idea of an invariant set, is particularly useful for two sorts of common 
situations. The first SItuation is where a Liapunov function is found, and Il Vex) 
[or vex)] is strictly less than zero for some values of x but not for all x. The 
original Liapunov theorem only assures stability in this case. By employing the 
invariant set concept, however, one can often establish asymptotic stability with 
the same Liapunov function. 

The second place where the invariant set concept is useful is for systems 
that do not have equilibrium points, but in which the state vector does tend to follow 
a fixed pattern as time mcreases. For example, in two dimensions the state may 
tend toward a trajectory that endlessly travels clockwise around the unit CIrcle. 
The Liapunov function concept can be extended to handle such sItuations by 
use of the invariant set concept. 

Definition. A set G is an invariant set for a dynamic system if whenever a 
point x on a system trajectory is in G, the trajectory remams in G. 

An equilibrium point is perhaps the simplest example of an invariant set. 
Once the system reaches such a point, it never leaves. Also, if a system has 
several equilibrium points, the collection G of these points is an invariant set. 
Here is a somewhat different example. 

Example 1 (A Limit Cycle). Consider the two-dimensional system., 

x=y+x[1-x2-y2] 

y=-x+y[1-x2 - y2] 
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The origin is an equilibrium point, and It can be easily shown that this system 
has no other equilibrium points. However, once the system is on the unit circle 
x2 + y2 = 1, it will stay there. The unit circle is an invariant set of the system. To 
verify this we sImply note that xx+yy=(x2+y2)[1-x2- y2], and hence the 
velocity vector is orthogonal to the state vector on the unit circle. Thus, the 
unit circle is an invariant set. 

To obtain the useful generalized Liapunov result, the concept of invariant 
sets IS combined with another key idea that emerged (at least briefly) in the 
course of the proof of the Liapunov stability theorem. When ~ V(x)::; 0 for all x 
[or V(x)::;O for all x], then certainly V must always decrease-moreover, and 
this is the important observation, ~ V(x) [or V(x)] must tend to zero if V has a 
lower limIt. So in some sense it is more relevant to look at the places where 
~ V(x) = 0 [or where V(x) = 0] than where V is minimized (although the latter 
includes the former). The following theorem combines the two ideas. Essen­
tially it states that if a V IS defined such that ~ V(x)::; 0, then the state must go 
both to an invariant set and to a place where ~ V(x) = O. 

Theorem (Invariant Set Theorem). Let V(x) be a scalar functIOn with continu­
ous first parttal denvatives. Let Os denote the regIOn where V(x) < s. Assume 
tltat ns is bounded and that ~ V(x)::; 0 [or V(x)::; 0 in continuous time] 
within ns. Let S be the set of pOints within Os where ~ V(x) = 0 [or 
V(x) = 0], and let G be the largest invariant set wIthin S. Then every 
traJectory In ns tends to G as time Increases. 

Proof. The conditions on ~ V(x) imply that V IS a nomncreasing functIon of 
tIme. Therefore, any solution initiated within ns does not leave ns. Further­
more, since V must be bounded from below (because ns is bounded), it follows 
that V(x) tends to a finite limiting vaiue, and accordingly ~ V(x) tends to zero. 
Again since n. is bounded, the trajectory must tend to the set S. 

Define the limIting set r as the set of all points to which the trajectory 
tends as time increases. It can be shown (using techniques beyond the scope of 
this book) that this set contains at least one point and is an invariant set. This 
set must be contained in the set S, and therefore it must be part of the largest 
invariant set G within S. I 

This one theorem is an extremely powerful tool for system analysis. It 
contains the original Liapunov stability theorem as a special case, but can often 
supply additional results. 

Example 2 (The Pendulum). Let us return to the pendulum example that was 
treated III the previous section. The energy Liapunov functIon V had 

V(O, w) = - kMRw 2 

Since V::; 0, the original Liapunov theorem only establishes marginal stability. 
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However, using the invariant set concept we can go somewhat further. The set 
S is in this case the set where w = O. An invariant set with w = 0 must be 
a rest position, and the largest invariant set within S consists of the two rest 
positions; at the bottom and the top. The invarIant set theorem enables us to 
conclude that solutions must tend to one of the two equilibrium points. 

Example 3 (The Limit Cycle). For the system 

define the function 

Then 

x = y +x[1-x2- y2] 

y=-x+y[1-x2- y2] 

vex, y)= -2(1-x2- y2)(2xx+2yy) 

= _4(x2+y2)(1_x2_y2)2 

Figure 9.9. A limit cycle. 

Thus, V::5 0 for all points in the state space. The set S consists of the origin and 
the unit circle. Since we have seen that S is also an invariant set, every 
solution tends to S. Furthermore, the- origin is not included in n l . It easily 
follows that no solution tends to the origin, except the solution that starts 
there. The origin is therefore unstable, and all other solutions tend toward the 
unit CIrcle. The form of the solutions are illustrated in Fig. 9.9. 

9.9 A LINEAR LlAPUNOV FUNCTION FOR POSITIVE SYSTEMS 

In general there is no easy way to find a Liapunov function for a stable 
nonlinear system. Like modeling itself, one must rely on experience, a spark of 
insight, and familiarity with what has worked in the past (which in this case IS 

other Liapunov functions). There are, however, general types of Liapunov 
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functions that work for certain classes of systems. Some of these are presented 
in the following four sections, and they can be used as suitable references in 
other situations. 

The basic results for positive linear systems can be interpreted in terms of 
Liapunov functions (or more generally in terms of summarizing functions). This 
interpretation adds a bit of insight and clarification to both subjects. 

For simplicity let us first consider a discrete-time strictly positive homo­
geneous system 

x(k + 1) = Ax(k) (9-57) 

Consistent with the general motivation of such systems, we only consider 
nonnegative solutions. Likewise, the Liapunov function need only be defined 
for nonnegative vectors in this case. 

Suppose that the system is asymptotically stable. The eigenvalue of great­
est absolute value is the Frobenius-Perron eigenvalue Ao, with 0::5 Ao < 1. Let 
f~ be the corresponding strictly positive left eigenvector, and define 

V(x)=~x 

For this function we have (since f~ > 0) 

V(x) > 0 for all X2:0 

YeO) =0 

(9-58) 

Thus, V has a minimum point (with respect to nonnegative vectors) at x = O. 
Furthermore, for any x(k) 2: 0, we have 

V(x(k + 1» = f~Ax(k) 

= AJ~x(k) (9-59) 

= Ao V(x(k» < V(x(k» 

Since V strictly decreases as k increases, V is a Liapunov function, and 
it explicitly demonstrates the asymptotic stability of the origin. 

This idea can be extended to include nonhomogeneous positive systems 
and to allow for arbitrary state vectors by slight modification. The resulting 
Liapunov function employs absolute values and hence is no longer linear, but it 
is stilI of first degree. Consider the system 

x(k + 1) = Ax(k) + b 

where A> O. Suppose that there is a unique equilibrium point 

i=[I-A]-lb 

which is asymptotically stable. 

(9-60) 

(9-61) 
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We now define 

V(x) =fJlx-xl (9-62) 

where here lx-xl is the vector with components equal to the absolute values of 
the corresponding components of x-x. 

Clearly V(x) is minimized at x = x. Also we have 

V(x(k + 1)) = fJ Ix(k + 1) -xl 

= fJ jAx( k) - AXI 

::5f;fA Ix(k) -xl = A£ Ix(k)-xl 

< V(x(k)) 

for x(k) ,ex. Again V is a Liapunov function. 

9.10 AN INTEGRAL LlAPUNOV FUNCTION 

(9-63) 

Another important Liapunov function is constructed by integratmg the right­
hand side of the system equation. Although this construction, by itself, IS 

applicable only to scalar systems, the idea can be combined with other forms of 
Liapunov functions in some high-order systems. 

Consider the system 

x(t) = [(x(t)) (9-64) 

Here x(t) is just scaiar-valued. The function [(x) is assumed to satisfy the 
following properties: 

(1) [(x) is continuous 
(2) x[(x)<O for x,eO 
(3) -f;;[(x)dx=oo, f!-=[(x)dx=oo 

The general form of [(x) is shown in Fig. 9.10. These properties can be 
regarded as a rather general extension of what one would require if [(x) were 
linear. If, say, [(x) = ax, then the requirement a <0 would imply the three 
requirements above. Overall, the conditions on [ are very modest. 

The origin is clearly an equilibrium point (the only one) since [(x) = 0 only 
for x = O. We can prove that the origin is asymptotically stable in the large. To 
do so we let 

V(x) = - r [(u) do-

Clearly V(x) is continuous and has a continuous derivative. In view of the sign 
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((x) 

________________ ~--------------------~x 

Figure 9.10. General form of t(x). 

assumption on f, it IS easily seen that V(x»O for x.eO, V(O)=O. Also 

V(x) = d~;X) f(x) 

(9-65) 

for all x.e o. Finally, V(x)---700 as \xi---700 because of the assumption of the 
integral of f(x). Thus, all conditions for asymptotic stability in the large are 
satisfied, according to Theorem 3 of Sect. 6. 

As an example, this result establishes asymptotic stability in the large of a 
system such as 

x=tanh(x)-x 

which when linearized about x = 0 gives x = o. The linearization technique is 
inconclusive, while the integral Liapunov function yields extremely strong 
results. 

*9.11 A QUADRATIC L1APUNOV FUNCTION FOR 
LINEAR SYSTEMS 

A very important fonn for a Liapunov function IS a general quadratic function. 
It IS used in numerous special cases. It has a special role in iinear systems, since 
in that case the time derivative of the function is also quadratic. 

Quadratic Forms 

By a quadratiC fonn in the variables XI> x2, ... ,x" we mean a function of the 
fonn 

V(x) = PllX1
2 + P12XIX2 + P13XIX3 + •.. + PlnXIx" 

+P21X2Xl + ••• +P2nX2x" + ... + Pnnx,,2 (9-66) 
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It is a function where each term is a constant times the product of two 
variables. When written out in length this way, each pair of distinct varIables 
may enter two different terms. For example, there is a term of the form P12XIX2 

and another of the form P21~XI' Only one of these is really necessary, but it is 
convenient to divide the term involving the product of two variables into two 
equal parts. Then Pij = Pji for all i and j. 

The quadratic function (9-66) can be expressed in matrix notation as 

(9-67) 

where P is an n x n matrix whose entries are the coeffiCients in the long 
expression. By selecting the coefficients as described above, the matrix P will be 
symmetric. Here are some examples of quadratic forms. 
(1) Vex!> x2 )=x/+x/ is equivalent to 

(2) V(Xl>X 2)=(XI+X2)2= X I
2 +2x I X 2 +X/ 

= X I
2

+X IX2 +X:X, +x/ 

This is equivalent to 

[ 1 11][XX~] Vex) = [Xl X2] 1 ~ 

(3) vex!> x2 ) = X l
2 

- x/ +4X I X2 is equivalent to 

[1 _21] [XX __ I] Vex) = [Xl X 2] 2 , 

A quadratic form xTPx is said to be positive semidefinite if XTPx2:0 for 
every x. It is said to be positive definite if xTPx > 0 for every x;.f O. The form 
Xl

2 
+X22 is positIVe definite. The form (Xl -x2f is positIve semldefimte. The form 

x,2~"~x/+4xIX2 is not positive semidefinite. Since a quadratic form is defined 
completely by its associated symmetric matrix P, we can apply these same 
defimtions to the matrix itself. Thus, a symmetrIc matrix P IS said to be positIVe 
semidefinite if its associated quadratic form is positive semidefinite-and 
similarly for the other definitions. 

It is, of course, important to be able to determine whether a given 
symmetric matrix P is positive definite without directly verifying that XTPx> 0 
for all x. Fortunately, this is not too difficult. One procecure is to examine the 
eigenvalues of P. Since P is symmetric the eigenvalues are all real. (See 
Problem 19, Chapter 3.) The symmetric matrix P is positive semidefinite if and 
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only if all its eigenvalues are nonnegative. It is positive definite if and only if 
the eigenvalues are strictly positive. 

Another test is in terms of the principal minors of p, Specifically, the 
matrix P is positive semidefinite if and only if 

Pll2:0, 
\ 
Pll 

P21 

P12\2: 0, .. _ 
P22 

IPI2:0 

The matrix P is positive definite if and only if the above inequalities are all 
strict. The reader should be able to quickly apply eIther of these tests to the 
three examples given above. 

Liapunov Functions 

Consider the linear homogeneous continuous-time system 

x(t) = Ax(t) 

Let us associate with this system and the equilibrium pomt x = 0 the quadratic 
functIon 

(9-68) 

where P is symmetric and positive definite. This V is continuous and has 
continuous first partial derivatives. Furthermore, since P is positive definite, the 
origin is the unique minimum point of V. Thus m terms of general characteris­
tiCS, such a positive definite quadratic form is a suitable candidate for a 
Liapunov function. It remains, of course, to determine how V(x) is influenced 
by the dynamics of the system. 

We have* 
- d 

V(x)=-xTPx 
dt 

=iTPx+XTpx 

=XT ATPx+xTpAx 

=xT(ATp+PA)x 

Therefore, defining the symmetric matrix 

-Q=ATP+PA 

we have 

(9-69) 

(9-70) 

(9-71) 

*The earlier formula V(x)=VV(x)[(x) YIelds V(x) = 2xT pAx. However, 2xT pAx=xT (PA+ 
A TP)X, gtving the same resuit as (9-69). The latter form IS preferred Slllce It expresses the result as 
a syrnmetnc quadratic form. 
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We see that the function V(x) is also a quadratic form. The function V will be a 
Liapunov function if the matrix Q is positive semidefinite. If, in fact, Q IS 

positive definite (rather than just semidefinite), we can infer that the system IS 

asymptotically stable. 

Example 1. Consider the system 

. [0 x(t)=: 
-2 

1]X(t) 
-3 

(9-72) 

This system is asymptotically stable. Indeed, its eigenvalues are A = -1, A = -2. 
However, using P = I. corresponding to the positive definite function V(x) = 
X I

2 +X/, does not yield a Liapunov function because in this case 

[0 -1J [ 0 2] [0 1] Q= -A-AT = 2 3 + -1 3 = 1 6 

which is not positive semidefinite. [Note, for instance, that IQI = -1.] 

Example 2. For the system (9-72) of Example 1, let us use 

P= [~ ~J 
ThIS P is positive definite. The corresponding Q is 

Q r5 1][ 0 
= -b 1 -2 

= [~ ~] 

-2][5 
-3 1 ~] 

(9-73) 

WhICh is pOSItIve definite. Thus, the functIOn V(x) = xTPx is a Liapunov 
function that explicitly demonstrates the asymptotic stability of (9-72). This 
illustrates that in general only certain positive definite quadratic forms can 
serve as a Liapunov function for a given asymptotically stable system. 
Nevertheless, if the system is asymptotically stable, it is always possible to find 
a suitable P. (See Problem 17.) 

9.12 COMBINED LlAPUNOV FUNCTIONS 

When faced with a new system structure, it is sometimes possible to combme 
two or more of the simple forms presented in the last few sections in order to 
construct an appropriate Liapunov function. As an example, consIder a non­
linear oscillatory system defined by 

x+kX+g(x)=O (9-74) 
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where g(x) satisfies xg(x»O for x;ioO and where k>O. This might represent 
the equation of a mass and nonlinear spring, subject to friction. 

In state variable form the system becomes 

x=y 

y = - ky - g(x) (9-75) 

We shall show that a suitable Liapunov function is 

V(x, y) =h2 + r g(o-) d<T (9-76) 

ThIS IS a combmation of a quadratic Liapunov function and an mtegral 
Lmpunov function. It is easily verified that this functIon satisfies the first two 
requirements for a Liapunov function. To verify that the third requirement is 
satisfied, we calculate 

V(x, y) = yy + g(x)x 

= -ky2_yg(X)+g(x)y 

= - ky 2 :S0 

ThIS establishes the stability of thIS general system. By usmg the mvanant set 
stability theorem, asymptotic stability can be established. 

As a final note, we point out that although systematic trial and error of 
analytIcal forms can often successfully lead to a sUItable Liapunov function (as 
it apparently did in the above example), generally a Liapunov function has 
some mtuitive Significance within the context of the system itself-beyond 
simple mathematics. As an illustration, one should look again at the pendulum 
example of Sect. 9.7. It will be found to be a special case of the example of this 
sectIon with g(O) = (gjr) sin O. The Liapunov function used here is the same as 
that used in this example: namely, the energy of the system. Thus, in this case, 
as in many others, the appropriate mathematical construct has great physical 
significance. 

9.13 GENERAL SUMMARIZING FUNCTIONS 

As discussed in the beginning of thIS chapter, the Liapunov function can be 
regarded as a special case (a most Important speCIal case) of the concept of a 
summarizmg functIon. The general underlymg idea IS to sunplify the analysis of 
a complex high-order dynamic system by conSidering a single scalar-valued 
function whose time behavior can be estimated. In the case of a Liapunov 
function one concludes that the V functIon goes to a mmimum. It follows that 
the state must go to the equilibrium point-although we do not know its 
preCIse path. This idea can often be used to summarize the general nature of 
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the system even if it is unstable. The following two examples illustrate the 
general approach. 

Example 1. Consider the system 

Xl = XI X2 

X2 = X 2 

(9-770.) 

(9-77b) 

Define Vex) = x/ + x/, which is the square of the distance from the origin. We 
then have 

For X2 2: 1 we can write 

Vex) = 2XIXI +2X2X2 

= 2(XI
2 X2 +X/) 

Vex) 2: 2 Vex) 

(9-78) 

(9-79) 

From (9-77b) it is easy to see that if X 2(0) > 1, then x2(t» 1 for all t>O. Thus, 
the inequality (9-79) will be valid for all t> 0 provided only that X2(0) > 1. We 
can conclude that 

V(x(t)) 2: V(x(0))e2' (9-80) 

We conclude that the square of the length of the state vector grows at least as 
fast as e21

• The length itself, the distance from the origin, increases at least as 
fast as e'. This general qualitative information is obtained without detailed 
knowledge of the solution. 

Example 2. The summarizing concept is sometunes valuable even in connec­
tIon with linear systems. By selectmg the summanzing function as an aggregate 
of several variables, a simple approximation can sometimes be deduced. 

As a simple illustration of this idea, consider the posItive system 

[~~~~:~~l=[~ ~ ~J~~~~;J 
x3(k + l;J 0 1 1 ~3(k) 

where each x;(k) is nonnegative. Define the summanzing function 

vex) = Xl + x 2 + x) 

By application of (9-81) we find 

V(x(k + 1» = xI(k + 1)+ x2(k + 1) + x3 (k + 1) 

= 3Xl (k) + 4x2(k) + 5x3(k) 

Recalling that each X;(k)2:0, we may write from the above 

V(x(k + 1» ::5 5[x l (k) + x2 (k) + x)(k)] = 5 V(x(k» 

(9-81) 

(9-82) 
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LikewISe, 

Thus, we have obtained the two inequalities 

V(x(k + 1))::5 5 V(x(k)) 

V(x(k + 1)) 2: 3 V(x(k)) 

Thus, we can easily deduce that 

3 k V(x(O))::5 V(x(k))::5 5K V(x(O)) 

(9-83a) 

(9-83b) 

(9-84) 

Therefore, we have both upper and lower bounds on the summarizing function, 
and these bounds were quite easily found. 

9.14 PROBLEMS 

1. By a suitable change of variable, convert the lOgiStiC equation 

I X (I)) 
x(t) = a~ l--c- x(tl 

(with a> 0, c> 0) to a linear first-order differential equation. Show that if 0 < 
x (0) < c, then 

and b >0. 

c 
x(t) = 1 + be-a, 

2. Verify that the sOlution to the equation 

where a>O, c>O, x(O»O is 

for some b > O. 

3. For the system 

r X(t)] x(t)=a 1+- x(t) 
L c 

c 
x(t)=--­

be-a, -1 

x (t) = sm[x(tl + y(tl] 

yet) = e'<<)-1 

determine all the equilibrium points, and usmg Liapunov's first method, classify 
each equilibrium point as stable or unstable. 



Asymptotically 
stable 

Unstable 

Figure 9.11. Which label is incorrect? 
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Margonally 
stable 

4. A classic "textbook" illustratton of stability IS that of Fig. 9.11. (Only plvollng 
motion is considered for the first two objects, and only rolling for the thUd.) Each 
object when at rest is in a state of mechamcal equilibnum, but a small displacement 
of angular position leads in the three cases, respectively, to return to equilibrium, a 
large displacement, and no further change. Actually, although the above statements 
are correct, one of the labels is lllcorrect if the objects are considered as dynamIC 
systems governed by Newton's laws. Which one, and why? (You do not need to 
write any equatlOns.) 

5. Using Liapunov;s first method, determme whether the origin IS a stable equilibnum 
pomt for each of the following systems: 

(a) 

X2 = - X2(XI + 1) 

(b) Xl = Xl'+X2 

(c) Xl = -Xl +X2 

(d) xl(k+1)=2x l(k)+X2(kj' 

x2(k + 1) = xl(k) + x2(k) 

(e) xl(k + 1) = 1_ex ,(k)x,<k) 

x2(k+ 1)=xl(k)+2x,(k) 

6. Model of Bactelial Growth. An industrial plant's effluent waste is fed into a pool 
of bactena that transforms the waste to nonpolluting forms. Maintamlllg the 
bacterial concentratlons at effective levels is a critical problem. If the pool's oxygen 
supply, temperature, and pH are kept Within acceptable linllts, then the bacteria'S 
ability to grow is primarily dependent on the supply of some nOUflShmg orgamc 
substrate (for example, glucose or the waste itself). 

A simple mathematical model of growth can be, derived from a few baSIC 
assumptions that were deduced from batch culture expenments by Monod. One 
observation is that the rate of growth of bacteria in the culture is approximately 
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===u 
t Inflow of substrate 

k Bactena pool 9 L,--------,-,U 
~ 

Outflow of culture 

Figure 9.12. Bacteria pool. 

proporttonal to the substrate concentratton when the substrate IS scarce, but tends 
towards a constant saturation level as the substrate becomes more plentiful. If we 
iet x, equal the concentration of bacteria and X 2 equal the concentration of 
substrate, then we can represent the result by the equation 

where a and K are positive constants. 
A second observatIon is that the weight ratIo of bacterIa formed to substrate 

used IS a constant. This gIVes a rate of change equatton for the substrate 

_ X2 
X,= -b---x 

- X2+ K ' 

where b is a positive constant. 
In the pollutIon control application, there is a continual flow of nourishing 

substrate Into the pool that is matched by a flow of bacterial culture out of the pool. 
(See Fig. 9.12.) Also, the rate of flow is controlled to be proponional to the volume 
of culture present in the pool. Adding thIS mformation to the equations above, 
setttng a and b equal 1, and normalizmg so that the concentration of substrate m 
the Inflow stream IS 1, yields the following model: 

_ X 2 
X, =---x,-Dx, 

X2+ K 

-X2 
x2 =--x,+D[1-x2] 

x 2 +K 

A stability analysIS will reveal whether in the face of slight disturbances the culture 
will contInue to be effectIve. In the fO\)bwing, assume K > 0 and 0 < D < 1. 
(a) Determme the equilibrium points. What condition on D and K IS required to 

insure that all equilibrium points are nonnegative? 
(b) For each equilibnum pomt determine what conditions on D and K are required 

to irISure asymptotic stability. Compare with part (a). 

*7. Llapunov Instability Theorem. Prove the following: Let i be an equilibnum point 
of the dynamIC system x(k + 1) =f(x(k». Assume there is a function V(x) such that 
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Vex) = 0, Vex) assumes positive values arbitrarily near X, and ~ Vex) > 0 for all x"" X. 
Then x IS unstable. (You should also state and prove the continuous-time version.) 

8. No Margmal Stability. Consider the system 

x, = x,[a 2- X,2_ x/]+ x2[a 2+ X,2+ X/] 

X2 = -x,[a2+ x,' + x/]+ x2[a 2- x,'- x/] 

and the function Vex) = xi + x~. Show that the system IS asymptotically stable for 
a = 0 and unstable for a"" O. (Use Problem 7.) Thus, the transition from asymptotic 
stability to instability does not pass through a pomt of marginal stability. 

*9. AlternatIVe System Formulations. In many situations the choice between a discrete­
time and a continuous-time representatlon is somewhat arbitrary. It IS, of course, 
possible to approximate one version by another. Suppose that the system 

x(t) = f(x(t» (0) 

IS given. By selecting a step sIZe of ~ thiS can be approximated by a discrete-time 
system by either of two methods: 

x(k + 1)- x(k) 

~ 

x(k + 1)-x(k) 

~ 

f(x(k» 

f(x(k + 1» 

(Al 

(B) 

Suppose that the origm is stable for the ongmal system (0) and that Vex) IS 3 

corresponding Liapunov function. Suppose also that Vex) is quasI-convex; that IS, 
for any c if V(x)!5C and V(y)!5c, then V(ax+(l-a)y)!5c for all a, O!5a!5 i. 
[The contours of Vex) are convex.] Finally, assume that V Vex) j 0 for all x f O. 
(a) Show that the corresponding discrete-ttme system defined by method A is not 

necessarily stable. 
(b) Show that the corresponding discrete-ttme system defined by method B IS 

stable. 
(c) Suppose the linear system 

x(t) = Ax(t) 

is asymptotlcally stable. Show directly, in terms of eigenvalues, that the corres­
ponding discrete-time system defined by method B IS also asymptotlcally stable. 

10. Prove that the origin IS stable for each of the systems below using Llapunov's 
second method. [In parts (a) and (b) find a suitable Ltapunov function. In part (c) 
try the suggested function.] 

(a) x = y (c) X = y(l-x) 

Y =_x 3 y =-x(l-y) 

(b) i =_X 3 _y2 V = -x -log(l- x)- y -log(l- y) 
. 3 
Y =xy-y 
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11. For a discrete-time linear system 

x(k + 1) = Ax(k) 

let Vex) = XTPx, where P is a symmetric positive definite matrIX. What condition 
will IOsure that Vex) IS a Liapunov function. (Express the answer in terms of the 
positive semidefiniteness of some other symmetric matrix.) 

12. Margm of Safety. Show that if there are symmetric, positive definite matrices P 
and Q such that 

then all eigenvalues of A have a real part that is less than -A. 

13. Steepest Descent. Suppose that a function f(x) IS to be minimIZed with respect to 
the n-dimensional vector x. A numerical procedure for finding the minimum is the 
method of steepest descent, which starts from an initial estunate Xo and successively 
computes new estlffiates according to 

where g(x.) IS the (transpose) of the gradient of f at x •. The scalar a, is chosen so as 
to minimize the function f(x, - ag(x.» with .respect to a. (This last operatlon 
involves a one-dimensional numencal search.) 

Assume that the function f satIsfies the followlOg properties: 

(1) f has a unique mlnlffiUm at the point i. 
(2) f has contlnuous partIal derivatives, and the gradient of f vanishes only at i. 
(3) f(x) --> 00 as the magnitude of any component x goes to infinity. 
(4) a. =a(x.) is continUOUS in x •. 

Show that the Iterative procedure converges to the solution i from any starting 
point. 

14. MusIcians, Jugglers, and Biological Clocks. How is it that a group of musicians, 
playmg together without a leader, are able to stay together? How do a pair of 
Jugglers, whose performance depends on precise tlmmg, keep synchronIZed? Or, in 
a bioioglcal context, why do the muscle elements that compose the heart contract at 
the same rate, and how do certain organisms become synchronized to the daily light 
cycle? 

In general we can conjecture that synchronIZation is possible because an 
mdividual responds to the general performance of others, speeding up if the others 
are ahead, and slowing down if they are behind. To construct a model along these 
lines, we define the variable X; as the positIOn of the uh member of the group. The 
pOSition is a general measure of the total phase transversed from some reference 
pomt (e.g., in mUSIC, X; is the position in the musical score, which should increase 
linearly with time). We assume that each member I has a notion as to the proper 
speed A" which he would adopt if he were alone. In the presence of others, 
however, he modifies hIS speed if he deviates from the group average. Thus letting 



X=L~_,xJn we postulate 

XI(t) = AI - Mxl(t)- x(t» 

X2(t) = A2 - f2(X2(t) - x(t» 

Xn(t) = An - fn (x. (t) - .1:(t» 
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We assume that the response function f has a contmuous denvatlve and satisfies 

(1) f,(O) =0, 1=1,2, ... ,n 

(2) tay»O all y and 1=1,2, ... ,n 

(3) If,(Y)I~oo as IYI~oo i = 1,2, ... , n 

(a) In thIS example one does not seek an equilibnum point in the usual sense, but 
rather a trajectory that moves according to x, (t) = A for all i, corresponding to 
a situation where the relative positions of all indiVIduals are constant. To show 
that such a condition is sustainable, assume there is a umque A and a set of 
numbers S" 1= 1,2, ... , n with ~ S, = 0 such that A - f,(S,) = A for all i. Find a 
corresponding synchronIZed trajectory, and show that it is an mvanant set of 
the system. 

(b) For the case n = 2, convert the two equations to a singie equation In the 
vanable z(t) = XI(t) -- x(t) and show that the equilibnum pomt IS asymptotically 
stable in the large using an integral Liapunov function. 

15. Observability and Stability. Consider the nth-order system 

X(I) = Ax(t) 

Suppose that there is a symmetnc positive definite matrix P such that PA+ATp= 
-ccT

, where cT is an n-dimensional vector. Suppose also that the pair A, cT IS 
completely observable. Show that the system is asymptotically stable. Interpret thiS 
result. 

16. The van der Pol Equation. The equation 

x+E[x 2 -1]x+x =0 

arises m the study of vacuum tubes. Show that if E < 0, the ongin is asymptotically 
;"table. (An important but deep resuit is that for E > 0 there is a limit cycle that IS 
"pproached by all other trajectories.) 

17. Liapunov Equation. The quadratic Liapunov function for linear systems is actually 
completely general. We can show: If A IS an n x n matrix with all eigenvalues m the 
left half of the complex plane, and if Q IS any syrnmetnc positive definite n x n 
matnx, then there is a positive definite P such that PA + A Tp = - Q. To prove thiS 
define 
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(a) Show that the integral exists and that P IS symmetric and positive definite. 
(b) Show that 

18. A Cubic System. Given the system 

X2 =XJ 

X3= -(X,+CX2)3_bx3 

consider the function 

1 4 b
2 

, 1 2 
--x, +-X2 +bx2x,+,X3 

4c 2 

(a) What condition on b> 0, c > 0 insures that V(x" X" X3) > 0 for (Xl> X2, X3) '" O? 
(b) Show that V has the form 

V(Xl> X2, X3) = "YX22[(h, + CX,)2 +h. 2] 

and determine the constant 'Y. 

(c) Is V always a Liapunov function if band c sallsfy the conditions of part (a)? 
(d) Is the origin asymptotically stable under these conditions? 

19. Krasovskii's Method. Consider the system x = f(x). Assume that f(x) = 0 if and only 
if x = 0, and that F, the Jacobian, exists in the region of Interest. A trial Liapunov 
funcllon IS chosen to be the Euclidean norm of x squared 

V(x) = lIill' = f(x) Tf(x) 

(a) Find sufficient conditions for V to be a Liapunov function (with respect to 
i = 0). Express the answer In terms of the positive semidefinite ness of a 
symmetric matnx. Note that if the matrix is positive defirute the on gin IS 

asymptotically stable. 
(b) Consider the control system given by 

Use the results of part (a) to establish conditioflS for asymptotiC stability. 
(c) Now suppose for the system of part (b) 

g,(x 1)= -x/-x, 

g,(x2 ) = ~x,' 

a=l 

Apply the results of part (b) to this system. 
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NOTES AND REFERENCES 

Sections 9.1-9.13. Most of the foundation for stability analysis was laid by Liapunov 
[LI4]. A very readable mtroduction is LaSalle and Lefschetz [L2]. Also see Kalman and 
Bertram [K4], [K5]. The prmclple of competitive exclusion example is due to Vol term 
[VI], who actually considered more general forms for F(x). The quadratlc Llapunov 
function for linear systems was proposed in Liapunov's original investigatlon. The 
combined integral and quadratic function IS referred to as the Lure form. 

Section 9.14. The results of Problems 6 and 7 appear to be new. For details on the 
bactena culture problem see Monod [M6]. 



chapter 10. 

Some Important 
Dynamic Systems 

As emphasIZed in Chapter 9, one of the most useful principles for analysis of 
nonlinear systems is that of the Liapunov functlQn-Dr, more generally, the 
summarizing function. To apply this principle, however, it is necessary to 
construct a special function suitable for the particular situation at hand; and 
such a construction for an unfamiliar set of equatIons is rarely easy. Knowledge 
of particular examples can be helpful, for, sometimes, a suitable function can 
be found by combining or modifying functions that work in other situations. 
Nevertheless, as a purely mathematical venture, discovery of a suitable sum­
marizing function is far from routine. Indeed, from thIS viewpoint, the sum­
marizing functIon principle might be dismissed as elegant in concept, but not 
readily useful. From a broader viewpoint, however, the principle has great 
utility, for a suitable function often has significance within the physical Or social 
context of the system. We observed this earlier by noting that a Liapunov 
functIon might correspond to energy in the pendulum example, or distance in a 
pursuit problem. Most Liapunov functions have similar intuitive or instructive 
interpretations. 

This theme is expanded in this chapter. It IS argued that the summarizing 
function concept is almost a fundamental principle of scientific advance-at 
least in connection with phenomena described In terms of nonlinear dynamics. 
Many sciences \'fere finally considered to have attained a state of matunty only 
when the underlying dynamic laws possessed the degree of simplicity and order 
represented by the discovery of a suitable summarizing function. Indeed, in 
some cases the summarizing function is regarded as perhaps more important 



10.1 Energy in Mechanics 365 

than the dynamic equations of motIon. And in nearly every case, the sum­
marizing function has important scientific or intuitive meamng and is consi­
dered to be an integral part of the discipline. Thus, the summarizing function IS 
more than a fragile mathematical concept; it is a concept that links together 
various scientific fields. 

This chapter explores mechanics, thermodynamics, population ecology, 
epidemics, economics, and population genetics to illustrate how the summariz­
ing function concept relates to the underlying scientific laws. The correspond­
ing summarizing functions include the widely known constructs of energy, 
entropy, and fitness. The sections are essentially independent and some are 
simply brief outlines of broad fields, but together this collection forms a 
fascinating set of important dynamic systems. 

10.1 ENERGY IN MECHANICS 

The dynamic behavior of a mechanical system is governed by Newton's Second 
Law of MOlion, which for a single particle of fixed mass m is 

dv 
f= m- (10-1) 

dl 

where f is the total force vector acting on the particle and v is the velocity 
vector of the particle. To apply this equation to a given situation, it is necessary 
to have a clear understanding of what constitutes force. To a great extent thiS IS 
clarified through the introduction of energy. 

We define the work done by a force f acting on a particle going from pomt 
1 to point 2 to be the integral 

That is, incremental work is the scalar product of the force vector wIth the 
vector of incremental movement. When this definition is applied to a partIcle of 
mass m, Eq. (10-1) yields* 

[2 dvT ds [2 dvT [2 dv 2 
. 

W12 = J1 md"l dt dt = J1 md"lVdl=4m J1 d"ldl 

and therefore 
(10-2) 

The quantity 

(10-3) 

• In this secuon a symbol such as v denotes the magnitude of the corresponding vector v. 
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is termed the kinetic energy of the particle, and, accordingly, the change in 
kmetIc energy is equal to the work done. 

If the force f has the property that the total work done around any closed 
path is zero, then the force is said to be conservative. For example, gravitational 
forces are conservative, but frictional forces are nonconservative. When the 
force is conservative, it is possible to define a potential energy function V on 
the coordinate space. Setting the potential at some reference point equal to 
zero, the potential of any other point is defined to be the negative of the work 
done in moving to it from the reference point. This value is unique, indepen­
dent of the path chosen between the two points, because the work around any 
closed path is zero. The potential function is often simpler to deal with than the 
force because potential is scalar-valued while force is vector-valued. However, 
the force vector can be easily recovered from the potential energy by the 
relation 

f= -VV (10-4) 

That is, the force is the negative of the gradient of the potential energy 
function. 

It IS now possible to formulate the law of conservation of energy. For a 
conservative force, the work done in moving from pomt 1 to point 2 is 

W\2= V i -V2 

However, from (10-2) and (10-3) 

W 12 =T2 -T\ 

By subtracting these two equations we obtain the relation 

T\ + VI = T2 + V2 (10-5) 

This result can be formulated as the law of conservation of mechanical energy: 
If the forces actmg on a particle are conservative, then the total mechanical 
energy, T+ V, is conserved. 

The above development for motion of a single particle can be extended to 
more complex mechanical systems consisting of several interacting bodies. 
Again, if the external forces are conservative, total mechanical energy is 
conserved. In many situations, of course, a system is subjected to frictional and 
other dissipative forces that generate heat. (The pendulum example of Sect. 9.7 
is a good illustration.) These systems are not mechanically conservative-the 
total mechamcal energy decreases with time. Because of this decreasing prop­
erty, it is clear that the mechanical energy can serve as a Liapunov function for 
dissipative as well as conservative mechanical systems. It is important to 
recognize that thIS general property can be applied to any mechamcal system, 
even if the associated differential equations appear complex. One simply 
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expresses the total mechanical energy in terms of the system variables. Thus, 
mechanical energy serves both as a fundamental physical concept, which adds 
clarification and unity to Newton's laws, and as a Liapunov function for 
stability analysis. 

Example (Planetary Motion). Newton's explanation of planetary mOtion, as 
described by Kepler's laws, is that planets are subjected to a conservative force 
denved from a potential of the form 

v = -k/r 

where r is the distance from the sun and k is a constant (depending on the 
masses of the planet and the sun). The associated force on the planet is 

f= -VV 

The force has magnitUde 

f= - k/r2 

and is directed toward the sun. The force can therefore be regarded as a 
(gravitational) attraction of the planet toward the sun. The fact that the force IS 
derived from a potential guarantees that the force is conservative and that 
total energy is conserved. Thus, even without writing and solvmg the specific 
system of differential equations governing planetary motion, we can conclude 
that periodic orbits are sustainable. 

10.2 ENTROPY IN THERMODYNAMICS 

Entropy in thermodynamics represents one of the most significant SCientific 
laws having a Liapunov character, and it is therefore an important example 
supporting the general theme of the chapter. Our discussion of ther­
modynamics is, however, brief, for it is merely intended to illustrate the general 
nature of the field and the role of entropy. A more complete discussIOn would 
require a thorough study of background material. 

Thermodynamics is concerned with processes involving heat exchanges. In 
fact, the science of thermodynamics began in about 1760 with the recognition 
by Joseph Black of the distinction between heat and temperature. Different 
substances of the same weight and temperature may contain different amounts 
of heat. The first law of thennodynamics states that heat is a form of energy 
and that, when account is taken of this equivalence, the energy of an isolated 
system is conserved. This is, of course, a generalization of the result for 
conservative mechanical systems. 

Another fundamental principle is the second law of thennodynamlcs. The 
second law is expressed in terms of entropy, and the law, stating that entropy of 
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a thermodynamic system cannot decrease, can be interpreted in our terms as 
statmg that entropy is a Liapunov function. Unlike our previous examples, 
however, the second law is stated as a universal law governing a broad class of 
dynamic processes, even without an explicit statement of the underlying 
dynamic equations. Whatever the dynamic processes might be, they must obey 
the second law. 

A given substance constituting a thermodynamic system (an amount of 
liquid, gas, or solid) is described by its state-its temperature, pressure, 
volume, and so forth. The substance may undergo changes in state by the 
addition of heat, the performance of work, or by simply moving toward 
equilibrium. Among all these processes of change, there is distmguished an 
idealized set of reversible processes, defining paths of movement in the state 
space that ideally could be traversed in either direction. Such processes are 
oniy hypothetical, for to achieve them would require that the substance be held 
completely homogeneous (with respect to temperature, pressure, etc.) through­
out the change. In practice the ideal sometimes can be approximated by 
conducting the process very slowly. 

The first part of the second law of thermodynamics says that there is a 
function S, called entropy, that is a function of the state of a thermodynamic 
system. If two states 1 and 2 are connected by a reversible path, then the 
difference in entropy is 

r2 dQ 
S2- SI= J

1 
T (10-6) 

where Q is the instantaneous heat added to the substance, and T is the 
temperature. If a value of entropy is assigned at a reference state, the 
value at another state can be found by devismg a reversible process from one 
to the other, and evaluating the integral. 

The second part of the second law of thermodynamics states that for 
real (irreversible) processes, (lQ-6) is replaced by 

(10-7) 

Thus, an entropy change is greater for an irreversible process than for a 
reversible one. As a consequence of the second law, the entropy of an isolated 
system (one irl which no heat or work is exchanged with the external environ­
ment) can never decrease. Therefore, thermodynamic processes of isolated 
systems follow paths of nondecreasing entropy, and accordirlgly entropy acts as 
a (negative) Liapunov function, which assures us that natural thermodynamic 
processes tend toward equilibrium. 

Example. Suppose two identical bricks of material are initially at different 
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temperatures Tl and T2. They are placed together so that through the process 
of heat conduction, heat may pass from one to the other. We assume that the 
heat contained in such a material is proportional to its temperature; that is, 
Q=cT. 

If no work is done and no additional heat is added or none is lost from the 
system, the first law states that the energy in the two bricks must not change 
during the conduction process. Thus, the heat added to one brick must equal 
the heat subtracted from the other. It is easy to see that the condit.J.on of both 
bricks having the common temperature of TF=(T1 + T2)/2 is consIStent with 
this energy requirement. However, it is not possible, using the first law alone, 
to deduce that the two-brick system actually tends to this common temperature 
configuration. That is, it does not establish that this configuration is actually a 
stable equilibrium point, since there are many other configurations with the 
same total heat content. 

Now let us consider the change in entropy of the two brick system if It 

moves from the initial condition to the configuration where the two tempera­
tures are equal. For each brick we have Q = cT for some positive constant c. 
The change in entropy of the first brick, going from temperature TI to TF , is 
therefore 

Likewise for the second brick 

The total entropy change is therefore 

1 (Tl T2) =clog4 -+2+-
T2 Tl 

(10-8) 

This last term is always nonnegative (being zero only if Tl = T J. Thus, the 
entropy is greater for equal brick temperatures than for the original configura­
tion. 

One can show directly that the state corresponding to equal temperatures 
of TF represents maximization of entropy consistent with the given amount of 
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Figure 10.1. Entropy vs. temperature difference. 

heat. If the bricks share heat of 2cTF , this heat can be divided to have one 
brick at temperature TF-T and the other at TF+T, where T is arbitrary (but 
with 0 :5\T\:5 TF)' The entropy of the combination for various T is shown in Fig. 
10.1 and IS maxunized at T=O, corresponding to equality of temperature. 
Thus, even without reference to a specific set of equations governing conduc­
tion, the Liapunov character of entropy assures us that the equal temperature 
configuration is a stable equilibrium. 

10.3 INTERACTING POPULATIONS 

In this section we investigate the rather rich theory of interactmg populations. 
The theory can be considered as the study of a certain class of nonlinear 
differentiai equations characterized by quadratic terms. The theory has en­
dured, and has been borrowed by other fields as well, partly because the 
quadratic term has a natural probabilistic interpretation, and partly because a 
simple explicit Liapunov function is available for a large class of these equa­
tions. The Lotka-Volterra equations are essential items in one's catalog of 
examples. 

The Predator-Prey Model 

A classicai model for a predator-prey system of two interacting populations 
(say wolves and goats) is given by the Lotka-Volterra equations 

N1 = aN1 -bN1N 2 

N 2 =-cN2 +dN1 N 2 

(10-9) 

In these equations NI and N2 represent, respectively, the prey and predator 
populations. The constants a, b, c, and d are all positive. 

The model is based on the assumption that in the absence of predators the 
prey population will increase exponentially with a growth rate factor a. 
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Similarly, in the absence of prey, the predator population will diminish at a rate 
c. When both populations are present, the frequency of "encounters" IS 

assumed to be proportional to the product of the two populations. The 
encounters directly decrease the number of prey and increase the number of 
predators; the associated coefficients being band d, respectively. Of course, 
these equations are highly simplified and do not account for a number of 
external factors. Other factors, which may either influence the coefficient 
values or add additional terms include the general environmental conditions 
(temperature, rainfall, etc.), the supply of other food for both predators and 
prey, and migration of the populations. 

Volterra originally developed this model in order to explain the periodic 
oscillation in the composition of fish catches in the Adriatic Sea. The model has 
been used, however, in a variety of contexts to explain or predict fluctuatmg 
populations. An important application of a model of this type is to the study 
and control of pests that feed on agricultural crops. The pest population IS 

often controlled by the introduction of predators, and the predator-prey model 
often forms a foundation for the design of important programs of ecological 
intervention. 

The nonlinear dynamic equations (10-9) cannot be solved analytically 111 

tenns of elementary functions. It is, however, easy to see that there are 
equilibrium points. They are found by setting N\ = N2 = o. This produces 

0= aNi - bN\N1 

0= -cN2 +dN I N 2 

Thus, there is one equilibrium point at NI = N2 = 0 and another at 

It is convenient to normalize variables so as to eliminate the need to carry 
along four parameters. Let 

In terms of these variables the dynamiC equations are 

XI = ax\(1- X2) 

x2 = -cx2(1- XI) 

with the nonzero equilibrium point at XI = 1, x2 = 1. 

(10-10) 

Let us investigate the stability of the two equilibrium points (0,0) and 
(1, 1). First it is clear that (0,0) is unstable, for if XI is increased slightly it will 
grow exponentially. The point (1,1), however, requires a more detailel1 
analysis. A lineanzatlon of the system, in terms of displacements ~x" ~Xl from 
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the equilibrium point (1, 1) is found, by evaluation of the first partial deriva­
tives of (10-10) at (1,1), to be 

or, in matrix form, 

(~XI) = -a(~x2) 

(~i2) = c(~XI) 

[~~IJ=[O -aJ[~xIJ 
~X2 c 0 ~X2 

The linearized system has eigenvalues ±iJaC representing a marginally stable 
system. From a linear analysis (the first method of Liapunov) it is impossible to 
infer whether in fact the equilibrium point is stable or unstable. It is necessary, 
therefore, to study the nonlinearities more explicitly. 

We derive a function V that is constant along soiutions. From 00-10) we 
can write 

X2 = -cx2(1- XI) Xl axl(l- x2 ) 

Rearranging this so as to collect Xl terms together and X2 terms together leads 
to 

Each term can be integrated separately, producing 

CX I - c log Xl + aX2 - a log x2 = log k 
where k is a constant. 

In view of the above, let us define the function, for XI > 0, x2 > 0: 

(10-11) 

We can conclude that V is a constant of motion, since its time derivative is 
zero. Therefore, the trajectory of population distribution lies on a fixed curve 
defined by V = k. Figure 10.2 shows what the curve might look like for various 
values of k. 

From this analysis we see that the trajectones cycle around the equilibnum 
point. Hence the equilibrium is stable, but not asymptotically stable. The 
function V is easily shown to achieve a minimum at the equilibrium point 
(1,1). Thus, V serves as a Llapunov function for the predator-prey system, and 
establishes stability. This function is a natural summarizing function associated 
with the system of interacting populations, and as shown below it plays an 
important role even in cases where it is not constant along trajectories. We 
refer to tfiis function as the ecological Liapunov function. 
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Figure 10.2. Predator-prey cycles. 

The Effect of Crowding 

As an illustration of how the basic ecological Liapunov function for the pure 
predator-prey system can be used to study modifications of the predator-prey 
model, let us introduce a term representing retardation of prey growth due to 
crowding. In particular, we consider the equations 

NI =aNI-bNIN2-eNI2 

N2=-cN2 +dNIN 2 

(10-12) 

The interpretation of these equations is essentially the same as before, except 
that now in the absence of predators growth of the prey population is governed 
by a standard logistic equation. The constants a, b, c, d, and e are agam 
assumed to be positive. 

One equilibrium point is again NI = N2 = O. Another is NI = ale, N2 = 0, 
corresponding to the equilibrium of the logistic growth of the prey in the 
absence of predators. Any equilibrium point with nonzero values of both N I 
and N2 must satisfy the equations 

0= a-bN2 -eNI 
O=-c+dNI 

This set of equations has the unique solution 

N = da-ec 
2 bd 

Therefore, there is a positive equilibrium only if ale> cld. 

(10-13) 

Following the earlier procedure, we introduce the change of vanables 

bd 
x2 =-_--N2 da-ec 

(10-1-1-) 
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which converts (10-12) to the simpler form 

where 

XI =ax l (I-x2)+/3x l (l-x l ) 

X2 = -ex2{1- XI) 

ee 
/3=­

d 

Now let us define, as before, for X I> 0, X2 > 0: 

V(X l , X2) = eXl - e log XI + aX2 - a log X2 

(10-15) 

(10-16) 

This function has Its minimum at the equilibnum point (1, 1). Furthermore, by 
direct calculation we find 

Thus, 

=ea(I-x2)(x,-l)-e/3(I-x[)2 

-ca(l-x,)(x 2 -I) 

Therefore, V is a Liapunov function of the system. Using the invariant theory 
of Sect. 9.8 it can be shown that (1, 1) is asymptotically stable (over the 
intenor of the positive quadrant). 

The n-species Case 

Let us consider the general n-species model of population interaction: 

" x; = k;.x:; + bit L aijx,xj 1= 1,2, __ -, n (10-17) 
J=l 

In thIS system k; is the linear growth constant, which.can be either positive or 
negative. The term £l;, represents the quadratic growth term, which is usually 
zero or negative. The a,;'s, ji' i represent the species interaction terms arising 
from predation, competition for resources, and so forth. These terms may have 
any value. Finally, the b,'s are positive normalizmg factors that are used simply 
to provide some flexibility in defining the matrix A of coefficients a,;. 

An important special case is the case where each £l;, = 0 and the interaction 
coefficients a" are due to predation. An encounter of species i and j results in 
an increase of one and a decrease of the other in therr individual growth rates. 
In that case a,j and aji have opposite signs. It may be possible to select b;'s so 
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that in every case b;i fbj' is the ratio of the respective increase and decrease. 
In this case aij = -au for all I, j and this antisymmetric case is referred to as a 
Volterra ecology. 

Let us assume that the system (9-17) has an equilibrium point in which all 
species have nonzero population. In this case the equilibrium popUlation levels 
Xi' 1 = 1, 2, ... , n must satisfy the system of linear equations 

n 

k,bi + L aux; = 0 (10-18) 

Motivated by the two-dimensional case, we seek a generalization of the 
ecological Liapunov function. We define 

n 

V(x) = L bi(x. -Xi log.",;) (10-19) 
I~l 

This function is minimized at the equilibrium pomt. It remams to calculate 
Vex). We have 

_ d n 

Vex) = -:- L b;(x. - Xi logx,) 
dtl~l 

= f. b,(l-~) Xi 
.=1 Xi 

Usmg (10-18) 

V(x) = f. (X;-xi ) f. a,;(xi-i;) 
1=1 1=1 

Finally, 

V(x) = (x-x.jT A(x-i) (10-20) 

Therefore, \I(x) is a quadratic form, and stability of the ecology can be easily 
inferred under appropriate conditions on the matnx A. 

In the case of a Volterra ecology, A is antisymmetric and it follows that 
(X-i)T A(x-i) = 0 for all x. Thus, as in the simplest two-dimensional predator­
prey system, the function V is a constant of motion and the trajectories follow 
closed paths. 

In general, if A + AT is negative semidefinite, the equilibrium of the 
n-species model is stable. ThIS general result proVides a simple and effective 
basis for the analysis of many cases. 
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10.4 EPIDEMICS 

Epidemics of disease in human or other populations represent large-scale, 
important, and often tragic examples of dynamic phenomena. From a small 
imtiai group of infected individuals, a disease can spread to enormous 
proportions. The bubonic plague, smallpox, typhus, and other diseases have in 
some cases killed a substantial portion of the existing population of a country. 
While it is often possible to cure affected individuals directly, the most effective 
means of health maintenance has been preventative in nature, essentially 
altering the dynamic mechanism by which the epidemic spreads. Mathematical 
analysis has provided the necessary basis for these control programs. 

A Simple Deterministic Model 

A simple model for an epidemic is the basis for the famous threshold effect 
stated in 1927 by Kermac and McKendrick. This model, which as we shall see 
is a degenerate form of the predator-prey equations, captures much of the 
essence of the epidemic process and provides a solid starting point for analysis. 
Many generalizations are, of course, possible. 

Let us consider a large population of n individuals, and a disease m which 
infection spreads by contact between individuals. Individuals who are once 
mfected eventually either die, are isolated, or recover and are immune. Thus, 
at anyone time the population is comprised of x susceptible individuals, y 
infected and circulating individuals, and z individuals who either have been 
removed (by death or isolation) or are immune. We have x + y + z = n for all r. 
We assume that the population is subject to some form of homogeneous 
mixmg, and that the rate of contact between susceptibles and infectives is 
proportional to the product xy. The rate of generation of new infectives is 
therefore (3xy, where (3 is an infection-rate constant. Infectives are assumed to 
be removed (or become immune) at a rate proportional to their number with 
an associated removal constant 'Y. The governing differential equations are 
therefore 

It is easy to verify that 

dx 
dt =-(3xy 

dy 
dt = (3xy - 'YY 

dz 
dt = 'YY 

d 
-:-(x+y+z)=O 
dt 

so that x + y + z = n for all t in this model. 

(1O-2Ia) 

(1O-2Ib) 

(IO-2Ic) 
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Figure 10.3. Epidemic trajectories. 

.. 
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It is sufficient to consider the first two equations, since z does not appear 
in them. It is recognized that they represent a degenerate form of the 
predator-prey equations. In this case, however, it is clear that every point on 
the x-axis (that is, any point where y = 0) is an equilibrium point. There are no 
other equilibrium pomts. There is, however, a constant of motion for the 
system that reveals the qualitative nature of the solutions to these equations. 

DiVIding the first equation by the second, we obtain 

or upon rearrangement 

~= -(3x 
y (3x - "( 

. pi . 
x--+y=O 

x 

where p = "(1(3. Therefore we conclude that the function 

V(x, y) = x - p log x + y 

is a constant of motion. It follows then that along a trajectory 

x - p log x + y = Xo - P log Xo + Yo 

(10-22) 

where xo, Yo are the initial values of x and y. We may thus solve for y in terms 
of x along the trajectory as 

(10-23) 

The family of trajectories is shown in Fig. 10.3. 
Several interesting qualitative conclusions follow from these curves, as 

determined by (10-23). 

(1) The Threshold Effect. It is easily verified that the maximum value of y, 
the number of infectives, occurs at the point x = p. Suppose, then, that a 
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number of infectives Yo is introduced into a population Xo of susceptibles. If 
Xo < p, the level of infectives will decrease monotonically to zero, while if 
xo> p, the level of infectives will increase until tbe number of susceptibles 
is reduced to p and will decrease thereafter. Thus, p represents a threshold 
value of susceptibles for the phenomena of an epidemic to occur. Recalling 
that p == -y/(3, it follows that within a given community, epidemic activity is 
increased as (3 is increased (by high population density, for example) or as 
'Y is decreased (by not isolating infectives). 

(2) The Escape Effect. Since in (10-23) yeO) == -00, it follows that y must 
vanish at some positive value of x. This means that, as shown in Fig. 10.3, 
the trajectories terminate on the x-axis at a posItive value. Therefore, the 
epidemIc terminates for lack of infectives rather than lack of susceptibles, 
and some individuals escape the disease entirely. 

(3) Symmetry Effect. For the case where xu> p but Xo - P is small, the 
epidemic curves are nearly symmetric with respect to the point x = p. 'Ilus 
means that during the course of the epidemic the number of susceptibles is 
Ultimately reduced to a level about as far below the critical value p as it 
was initially above this value. 

10.5 STABILITY OF COMPETITIVE 
ECONOMIC EQUILIBRIA 

Consider an economy in which n different commodities are produced and 
consumed. In order to facilitate orderly exchange of the commodities in a 
market, the n commodities are each given a price. A set of prices is an 
equilibrium set if at those prices the amount of each commodity demanded by 
consumers is exactly equal to the amount supplied by producers. Under rather 
general assumptions it is possible to prove that such equilibrium prices do exist. 
However, an important fundamental issue in economic theory is concerned 
with the construction and analysis of a market adjustment mechanism by which 
the set of equilibrium prices can be determined. That is, starting with an 
arbitrary set of prices, what market mechanism will adjust these prices toward 
equilibrium? To consider this question, economic theorists impose a dynamic 
structure representing market adjustments on top of the purely static 
framework of equilibrium theory, and then seek conditions guaranteeing that 
the equilibrium is stable with respect to this dynamic structure. 

The Tfltonnement Process 

The Swiss economist Walras, who at the end of the nineteenth century laid 
much of the foundation for present day equilibrium theory, dealt with the issue 
of stability by introducing a price adjustment mechanism referred to as 



10.5 Stability of Competitive Economic Equilibria 379 

rcironnemenr. The process assumes the existence of a "referee" who initiates the 
process by announcing a set of prices for the n commodities to the members of 
the economy. Then, following that announcement, each member submits a list 
to the referee showing the amount of each commodity that he intends to 
demand or supply at those prices. If, as finally determined by these lists, the 
aggregate supply equals aggregate demand for each commodity, the announced 
prices are equilibrium prices and trading takes place at these prices. If, on the 
other hand, there is a mismatch between supply and demand for some 
commodity, the referee adjusts that price-increasing the pnce if demand 
exceeds supply and decreasing the price if supply exceeds demand. No trading 
is allowed at a nonequilibnum set of prices. Instead, after the referee makes 
the price adjustments, the participants submit new lists and the process IS 
continued until equilibrium is attained, at which time trading takes place. 
Assuming an equilibrium exists, it is considered (asymptotically) stable if thiS 
adjustment mechanism converges to it. 

The above description of the tatonnement process serves essenually as 
motivation for considering a more explicit dynamic mathematical process 
where the prices are governed by a system of differential equations. Let 
P = (PI' pz, ... , Pn) be the vector of (announced) prices of the n commodities. 
The aggregate demand for the ith commodity, given these pnces, is given by a 
function x,(p). Similarly, the aggregate supply is given by a functIon Yi(P), Thus, 
the excess demand.of the Ith commodity is f,(p)=x.(p)-Yi(p), Accordingly, 
following the spirit of the description of the price adjustment mechanism, the 
mathematical version of the tatonnement process IS defined by the system of 
equations: 

PI =ddl(P) 

P2 = d2 f2(P) 

(10-24) 

In this system, the constants d l , d 2 , - - • , d,. are arbitrary positive adjustment 
factors, which reflect the possibility of adjusting various commodity prices at 
different rates. 

D-Stability 

A special case is, of course, the case where the excess demand functions fi, 
i = 1, 2, ... , n are linear with respect to the price vector. Then we may assume, 
without loss of generality, that the system (10-24) has the form 

per) =DA[p(r)-p] (10-25) 
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where p(t) is the current price vector, p is the equilibrium price vector. A is an 
n x n matrix defining the n excess demand functions, and D is an n x n 
diagonal matrix whose diagonal entries are the arbitrary positive adjustment 
factors d 1> d2 ,· ., d,.. 

Equation (10-25) is equivalent to 

!!. (p -p) = DA(p-p) 
dt 

(10-26) 

and therefore, as is always the case for linear systems, stability is determined 
entirely by the coefficient matrix, which in this case is DA. Within the context 
of the tatonnement process, however, the positive diagonal of D is considered 
arbitrary. It is therefore natural to seek conditions for which (10-25) is 
asymptotically stable for all choices of the adjustment parameters. This is the 
motivation for the following definition. 

Definition. An n x n matrix A is said to be D-stable if the matrix DA is 
asymptotically stable for all diagonal matrices D with positive diagonal 
entries. 

It is possible to derive a simple condition guaranteeing that a matrix IS 

D-stable. .. 

Theorem (Arrow-McManus). If there exists a diagonal matrix C with positive 
diagonal entnes such that CA + AT C is negative definite, then A IS D­
stabie. 

Proof. Consider DA where D is diagonal wfrh arbitrary positive diagonal 
entries. To show that DA is asymptotically stable, it is sufficient to find a 
positive definite matrix P such that P(DA) + (DA)TP is negative definite. (See 
Sect. 9.11.) However, the matrix P=CD-1 satisfies this requirement; it is itself 
diagonal with positive diagonal entries, and P(DA)+(DA)TP=CA+ATC, 
which is negative definite by assumption. Thus, A is D-stable. I 

A special case of the criterion of this theorem is where C = I. This yields 
A + AT negative definite as a sufficient condition for D-stability. This condition 
can in turn be expressed as the requirement that x TAx < 0 for all x;to 0, which 
can be interpreted as a negative definiteness condition when A is not necessar­
ily symmetric. It follows, as the reader may easily show, that under this 
assumption the quadratic form V(P) = (p_j»TD-1(p_p) serves as a Liapunov 
function for the system. 

From economic considerations, it is clear that the diagonal elements of A 
are usually negative. so that an increase in price of a commodity reduces the 
excess demand for that commodity. Also, it is frequently true that the ofI­
diagonal elements of A are positive; that is, an increase in the price of one 



10.5 Stability of Competitive Economic Equilibria 381 

commodity tends to increase the excess demand for other goods. In this 
situation A is a Metzler matrix, and all of the strong stability results for such 
matrices apply to the adjustment process. 

The above analysis of D-stability is really only a slight extension of earlier 
results for stability of linear systems. To take a more significant step, we must 
relate the requirement of negative definiteness to natural economic assump­
tions. That is, we must show that the quadratic form is a Liapunov function 
under reasonable economic hypotheses. This is the task to which we next turn, 
while simultaneously generalizing to the nonlinear case. 

Nonlinear Theory 

Suppose now that the excess demand functions are nonlinear. In order to 
establish global stability of the tatonnement process, it is necessary to 
present some additional economics and to introduce some assumptions on the 
behavior of the members of the economy. 

First, we make explicit the assumption that we are dealing with a closed 
economy. All supply and all consumption of the n commodities is restricted to 
a fixed set of individuals. Furthermore, since there is only a single trading 
penod, individuals in the closed economy can purchase commodities only to 
the extent that they obtain cash through supply of some other commodity. 

Based on this assumption of a closed economy, it is assumed that the 
excess demand functions satisfy Walras' law 

" L pJi(P)=O (10-27) 
1=1 

This result is essentially an accounting identity, under the assumption that 
everyone will spend for consumption all the income they derive from supply. 
Given a set of announced prices p with associated demand vector x(p) and 
supply vector yep), the aggregate income that is denved from sales is p T yep). 
Likewise the total expenditure in the form of demand is pTx(p). These two 
must be equal, leading to pTX(p)_pTy(p)=pTf(p)=O. Thus, Walras' law IS 
applicable. 

A further economic assumption is based on the weak aXIOm of revealed 
preference. Consider two price vectors Pa and Pb with associated excess 
demands f(Pa) = Za and f(Pb) = Zb, with Za ~ Zb. If P~Zb :5 p~za, it follows that at 
the prices Pa' the vector Zb is no more costly than the vector Za. Since Za was 
actually selected even though Zb could have been, we say that Za is revealed 
preferred to Zb. The weak axiom of revealed preference asserts that if Za r= Zb it 
is not possible for both Za to be revealed preferred to Zb and Zb to be revealed 
preferred to Za. That is, P~Zb :5p~za implies that prza > prZb. This axiom is 
always assumed to hold for individuals, and in some cases it will hold for the 
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aggregate excess demand functions as well. This IS our second economic 
assumption. 

It is now possible to formulate an important global stability result for 
economic equilibria. We state the result for the dynamic system 

P =f(p) (10-28) 

leaving the generalization to arbitrary adjustment rates to a problem. 

Theorem. If Walras' law is satisfied, if the aggregate excess demand functions 
satisfy the weak aXIOm of revealed preference, and if there IS a unique 
equilibnum price p, then the system (10-28) IS asymptotically stable in the 
large and* V(P)=~I\P_pIl2 is a Liapunov function. 

Proof. Let V(p)=~llp-pI12. Then for any p~p, V(p)=(p-p)Tf(p)= 
pTf(p)_pTf(p). By Walras' law the first term is zero, so V(p)=-pTf(p). 

Now by defimtion of p It follows that pTf(p) = O. By Walras' law pTf(p) = O. 
Therefore, 

0= pTf(p) :5pTf(p) = 0 

(actually equality holds). Using the fact that. by uniqueness, f(p) ~ f(p), it 
follows by the weak aXIOm of revealed preference of the aggregate, that 

pTf(p) > pTf(p) = 0 

Therefore _pTf(p)<0 and, accordingly, V(p)<O for all p~p. This shows that 
V(p) IS a Liapunov function. I 

10.6 GENETICS 

Genetic evolution is the basis for perhaps one of the most profound dynamic 
processes. Its subtle action repeated over generations shapes the composition 
of life, providing both diversity and viability. The most famous concept In this 
area, of course, IS Darwin's principle of evolution, based on survival of the 
fittest. This principle can be interpreted as postulating that average fitness is a 
Liapunov-type function, which tends to Increase from generation to generation. 
Darwin enunciated the principle on the basis of aggregate observation without 
reference to an explicit dynamic mechamsm. The genetic theory of evolution, 
on the other hand, provides a specific dynamic mechanism in the form of a 
system of nonlinear difference equations. It is natural, then, to attempt to 
reconcile the two theories by investigating whether average fitness is a 
Lmpunov function for the nonlinear system. This is indeed the case, at least for 
the simplest genetic mechanism, and provides a profound example of how the 
search for summanzing functions can be regarded as a fundamental component 

• We employ the "norm" notation \Ip_p\l2=(p_p)T(p_p). 
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of scientific investigation, and how the analyst must probe for functions with 
strong contextual meaning. 

Background 

Genetic information in living matter is stored in chromosomes, which are 
thread-shaped bodies occurring in cell nuclei. Along the chromosome structure 
there is a linear progression of specific locations, each location being occupIed 
by exactly one of a set of possible genes. Two or more genes that are each 
capable of occupying a specific location are called alleles. Thus, the gene at a 
particular location represents a specific choice from a set of possible alleles. 
Human beings, and many other forms of life (including laboratory mice), are 
diploid, meaning that chromosomes occur m homologous pairs, but with 
perhaps different alleles at the two corresponding locations. 

Individual inherited physical characteristics are generally traceable to 
specific combinations of genes. Some charactenstics, such as ABO blood type 
or eye pigmentation in humans, are determined by the combination of genes on 
a pair of chromosomes at a single location. Other characteristics, however, 
involve genes at two or more locations. We shall focus on smgie location 
characteristics, for which the theory is simplest and most complete. In thIS case 
if there are two alternative genes (alleles), say A and a, individuals are 
characterized as being one of the three genotypes AA, Aa, or aa. 

In diploid reproduction, one set of chromosomes is obtamed from each of 
two parents to form the diploid structure of the offspring. Thus, in the case of 
one locus and two alleles, each parent, depending on its genotype, may 
contribute either A or a. 

The Hardy-Weinberg Proportions 

Our specific interest here is that of population genetics, which IS the study of 
the evolution of the genetic composition of a population. We assume distinct 
generations and a random mating system in which any member of one sex IS 
equally likely to mate with any member of the opposite sex in the same 
generation. It is then of interest to calculate the way in which the distribution 
of geneotypes evolves from generation to generation. Also, as stated above, we 
concentrate on the one-locus two-allele case. 

Under the random mating assumption, the relative proportions of the 
three geneotypes AA, Aa, and aa in an offsprirlg population IS determined 
din:ctly by the relative proportions of the alleies A and a m the parent 
population. The resulting geneotype proportions are referred to as the Hardy­
Wemberg proPOrtIOns. Specifically, let p and q (with p + q = 1) denote the 
portion of A and a alleles, respectively, in a parent population. During a 
generation of random mating, these alleles form a gene pool from which pairs 
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Figure 10.4. Hardy-Weinberg proportions. 

are drawn to form the offspring geneotypes. The proportions of AA, Aa, and 
aa geneotypes formed will be p2, 2pq, and q2, respectively. These are the 
Hardy-Weinberg proportions. The process of recombination is illustrated in 
Fig. 10.4. It IS the random mating assumption that allows us to deduce the 
offspring geneotype proportions by knowledge only of the parent allele propor­
tions rather than the parent geneotype proportions. 

Example 1 (Eye Color). Blue eyes in humans occur when both genes at a 
certam locatIOn are the recessive gene that does not produce the brown 
pigment, melanin, in the iris of the eyes. When the dominant allele IS present, 
some pigment is present, but its amount and distribution are controlled by 
genes at other locations. With no pigment in the outer layer of the iris, the eyes 
appear blue, with a little they appear green, and with more they appear hazel, 
light brown, dark brown, and finally black. 

Suppose that in a random mating population ten percent of the people 
have blue eyes. What percent of the people have at least one recessive gene at 
the location that c0ntrols the production of melanin? 

Let the alleles be A and a, respectively, with a being the gene that does 
not produce pigment. Assume that these genes occur in the proportions p and 
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q, respectively. Then in equilibrium the geneotype aa that yields blue eyes has 
frequency 

q2=.10 

This yields q = .32. And accordingly p = .68. The frequency of the geneotype 
Aa is 2M = .43. Altogether, the proportion of those mdividuals who have at 
least one a gene is .43 + .10 = .53, and they therefore constitute over half of the 
population. 

Fitness and Selection 

Evolutionary behavior is introduced into the genetic process through the 
phenomena of natural selection based on geneotype. Illdividuais of a certain 
geneotype may be disadvantaged, as compared with others, in terms of their 
likelihood to reproduce. (This might be due to a lower likelihood to survIve, as 
in the case of sickle cell anemia, or to a lower reproductive rate, as in the case 
of a gene that reduces fertility.) Such geneotypes, accordingly, contribute 
relatively less to the gene pool from which the next generation is composed 
than do other geneotypes. This selective difference mechamsm leads to a 
gradual evolution in the proportions of the various alleles-and consequentiy 
in the proportions of the various geneotypes. 

Again for the one-locus two-allele case, suppose that on an average basIs 
an individual of geneotype AA, Aa, or aa contributes genes to form Illdivldu­
ais in the next generation with relative frequency W l1 , W 12, or W 22 , respectiveiy. 
The numbers W Il , W12, and W22 are the relative fitness facrors of the 
geneotypes. 

Suppose that in generation k the proportions of alleles A and a are p and 
q, respectively. The geneotypes AA, Aa, and aa therefore occur III the 
proportions p2, 2pq, and q2, respectively. However, in terms of contribution to 
the gene pool for the next generation they have effective proportions Wl1p2, 

2W 12M, and W22q2. (Here the proportions do not sum to one, but we shall 
normalize shortly.) The ratio of A alleles to a alleles in the next generation IS, 
accordingly, 

WIlp2 + W12M 

W12Pq + W22q2 

Denoting the new proportions of A and a by p(k + 1) and q(k + 1), and the old 
proportions by p(k) and q(k), respectively, we deduce the recursive form 

wIlP(k)2+ w 12p(k)q(k) 
p(k + 1) = 2 2 (l0-29a) 

wIlP(k) + 2WI2P(k)q(k) + W22q(k) 

k _ w12P(k)q(k) + W22q(k)2 
q( + 1) - wl1p(k)2 +2w12P(k)q(k) + W22q(k)2 

(l0-29b) 

This is the nonlinear system that governs the process of natural selection. 
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As a special case, consider W ll = w12 = W 22 , corresponding to no geneotype 
differentiation. In that case p(k + 1) = p(k), q(k + 1) = q(k), for all k. In the 
general case, however, the process is more complex. 

Fitness 

A casual exammation of the difference equations (10-29) tends to be rather 
discouraging. How would one deduce a suitable Liapunov function for this 
highly nonlinear system? The answer, of course, is found by explicit considera­
tion of the mean fitness of the population. 

Given the allele proportions p and q (with p + q = 1) the corresponding 
mean fitness is 

where 

W = Wllp2 + 2w 12pq + W22q2 

= Wllp2+2w12P(1-P)+ w22(1- p? 
=wIP+w2(1-p) 

WI = PWII +qw 12 

W2 = PW12 + qW22 

(10-30) 

We show first that the mean fitness never decreases. Then we examine the 
vanous equilibrium points of the system. 

The gene frequencies at the next generation (denoted here by p' and q') 
can be expressed as 

Thus, 

, WI 
P =p­

W 

q'=q W 2 

W 

(10-31a) 

(10-31b) 

(10-32) 

Since mean fitness is a quadratic function of p, its value at p' can be expressed 
m the form 

, dw 1 d 2w 2 
W = W +-Llp +--_- (Llp) 

dp 2 dp2 
(10-33) 
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The first derivative IS evaluated at p, and the second derivative will be a 
constant. We find 

Also, 

dw 
dp =2[Wl1P+W12 - 2w12P-wd1-p)] 

= 2[w ll P + w12(1- p)- WI2P - w22(1- p)] 

= 2(w,- W2) 

d2 w 
~=2(wll-2w12+ W 22) 
dp" 

Therefore, combining (10-32), (10-33), (10-34), and (10-35) 

~W=W'-W 

_ (W I -W2)" . (WI- W2)2 2 2 
-2 pq-r(Wl1-2w12+W22) 2 p q 

W W 

(w, -w2f. . 
=pq 2 [2w-t-(W\l- 2W 12-rW22)pq] 

W 

(WI- W2)2 
=pq 2 (W+WllP+W22q)~0 

W 

Thus, mean fitness never decreases. 

(10-34) 

(10-35) 

(10-36) 

The dynamic system (10-29) describing the evolution of gene frequencies 
has, in general, three distinct equilibrium points. The first two are the degener­
ate proportions p = 0 and p = 1. These points correspond to absence of one of 
the alleles. The third equilibrium point is found by solvmg 

W\lp2+ W12P (1-p) 

p= Wllp2+2w 12P(1-p)+W22(1-p)2 

This equation can be solved by multiplying through by the denominator of the 
right-hand side. The resulting cubic equation can then be reduced to a linear 
equation by dividing by p and by (1- p) corresponding to the known solutions 
p = 0, p = 1. This leads to the equilibrium point 

(10-37) 

On the other hand, the point where ~w = 0 is found by setting W, = W 2 , where 
as before 

WI = PW\l + (1- p)w 12 

w2 = pw 12 + (1- p)wn 
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Figure 10.5. Fitness. 

This yields exactly the same value of p as in (10-37). Thus, the equilibnum 
pOints are exactly the same as the points where ~ W = O. We can conclude 
therefore that mean fitness always increases unless the gene frequencies are in 
equilibrium. 

Depending on the values of Wll , W,2, and W 22 and on the initial gene 
frequencies, the process may converge toward anyone of the three equilibrium 
points. Of greatest Interest, however, are conditions under which the equilib­
rium p is stable. Accordingly, let us assume that 0 < P < 1. We recall that the 
mean fitness function W is quadratic in p, with second derivative equal to 
W ll - 2W12 + W 22• If this derivative is negative, then the function is shaped as in 
Fig. 10.5 and has a maximum at the point p. In this case p is the only stable 
equilibrium pOint. If, on the other hand, the second derivative is positive, the 
curve is shaped the opposite way, and p is unstable. 

A more explicit condition can be derived for asymptotic stability of a 
nondegenerate equilibrium point. As noted above, for asymptotic stability we 
must have 

(10-38) 

Then from (10-37) it follows that for p > 0 we must have 

(10-39) 

Similarly for p < 1 we must have 

(10-40) 

The inequalities (10-39) and (10-40) of course imply (10-38). This leads to the 
important qualitative conclusion that in order for a population to have a stable 
mixed distribution of geneotypes, it is necessary that the fitness of geneotype 
Aa be greater than the fitness of each of the geneotypes AA and aa. 

The above analysis, showing that the mean fitness is always increasing at 
nonequilibrium points, can be generalized to the case of mUltiple alleles at a 
single location. The analysis, however, cannot be extended to the case where 
traits are governed by genes at several locations. Maximal fitness no longer 
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always corresponds to equilibria, and fitness does not necessarily increase. This 
leaves open the possibility of detennining an alternative simple governing 
principle underlying the complex process of inheritance. 

Example 2. Many congenital diseases can be explained as the result of both 
genes at a single location being the same recessive gene. Suppose that due to 

almost certain death or due to voluntary nonreproduction, individuals with the 
disease do not have any offspring. Suppose that the other two geneotypes have 
identical fitness factors. In this case the frequency of the recessive gene will 
decrease, but at a very slow rate. 

Let Wll = W12 = 1, W 22 = O. Then the frequency of the recessive gene m 
generation k + 1 is 

k + 1 _ [1- q(k)]q(k) 
q( )-[1-q(k)f+2[1-q(k)]q(k) 

=~ 
1 +q(k) 

It is easily verified that this converges to zero, but very slowly. This explams 
why even deadly genetic diseases can remain active for hundreds of genera­
tions. 

10.7 PROBLEMS 

1. Conseroation of Angular Momentum. Show that III planetary motion, nOI oniy is 
energy conserved, but so is angular momentum A = mriJ. 

2. Escape VelOCIty. A rocket near the Earth is subjected to a conservatIve gravIta­
tional force defined by a potential of the form 

V=-k/r 

where r is the distance to the center of the Earth. The rocket IS to be launched by 
giving it an initial upward velocity at the Earth's surface ro, but supplymg no 
additional thrust thereafter. What is the mmirnum mitlal veiocity such that the 
rocket will not fall back to Earth? 

3. Thermal Efficiency. A difference III temperature of two heat reservoirs (such as a 
furnace and the outside atmosphere) can be used as the basis for an engine to 
produce work. During a complete cycle of the engine (which might COnsISt of a 
gas-filled chamber and piston) an amount of heat Q k is taken from the hlgher­
temperature reservoir and an amount Q L is added to the lower-temperature 
reservoir. The net heat lost Q = Qk - QL will (ideally) be W, the amount of work 
generated. The thermal efficiency of the engine is defined to be 

TJ '" Wlo.. 



390 Some important Dynamic Systems 

USIng the second law of thermodynamics, show that the maximum possible effi­
ciency IS 

where TL and Th are the temperatures of the low- and high-temperature reservoirs, 
respectively. 

4. Show that the predator-prey model with crowding is a special case of the general 
n-specles theory at the end of Sect. 10.3. What IS the A matrIX In this case? 

5. EpIdemIcs In an Evolving SocIety. In the epidemic model of Sect. 10.4 it IS tacitly 
assumed that the dynamiC behavior is fast compared with the general population 
turnover. Suppose that one accounts for the turnover. For a small but extended 
time penod epidemic it is reasonable to modify the equation for x to 

x =ax-l3xy 

for some a> O. This reflects the fact that new susceptibles are continually beIng 
wtroduced into the populatIOn. Discuss the qualitative nature of the resuitIng 
solutions. Does this provide a possible explanatIOn of the observatIOn that some 
diseases, such as measles, have recurred In periodic outbreaks? 

6. It IS often the case that the A matrIX defimng excess demand functIOns IS a Metzler 
matnx. Show that a Metzler matnx IS D-stable if and only if It is (asymptotically) 
stable. 

7. Arbmary Adjustment Rates. Replace Eq. (10-28) by 

p=Df(p) 

where D IS an n x n diagonal matnx with positive diagonal terms. Find an analog 
for this case of the theorem that applies to (10-28). 

*8. A Barter Process. In the tatonnement process no exchange of goods is allowed to 
take place until after the equilibnum pnces are obtaIned. More advanced models 
allow for the possibility of exchange dunng the pnce adjustment process. 

As a simple example, coflSlder two Individuals A and B and two commodities 
1 and 2. Each Individual has a utility function that depends on the amounts of the 
two commodities he possesses. Thus if A has amounts X A and YA of the two 
commodittes, he has utility UA(XA> YA)-and Similarly for B. At each POInt in the 
process there is a pnce P for commodity B In terms of commodity A, which is the 
current exchange rate between the two commodities. From these assumptions It 
follows that 

XA + PYA = 0, Xa + PYa = 0 

We assume that individual B essentially governs the pnce. Specifically, for all t, 
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The level of exchange is governed by individual A according to the equation 

XA(t)= U:-(xA(t), YA(t)) - U;'(XA(t), YA(t))/P(t) 

Consider the function V= UA. Show that V~O. Show that \1=0 Implies 
xA = O. What is the interpretation of the finai vaiue of p? 

9. AlbInIsm. Albinism in humans occurs when an individual IS of geneotype aa for a 
certaIn gene. If all albinos voiuntarily agreed to avoid having children, how many 
generations would it take to reduce the incIdence of albInIsm in a socIety from one 
in ten thousand to one In one hundred thousand? 

10. Sickle Cell AnemIa. Sickle cell anemia, a deficiency of the red biood cells, IS 
controlled by a SIngle allele (Hb'). IndiVIduals of geneotype (Hb'Hb') suffer severe 
SIckle cell anemIa and usually die in childhood. Individuals of geneotype (Hb'HbA) 
have the SIckle cell trait only mildly, and suffer no serious ill-effects. And of course 
mdividuals of geneotype (HbAHbA

) do not show the traIt. 
It has been determIned that individuals of the geneotype (Hb'HbA

) are 
decidedly more resIstant to maiaria than those of geneotype (HbAHbA

). ThIS 
suggests that in regions WIth high malaria InCIdence, w\2 > W,' + W22 for thIS gene 
location. This is of course the condition for stability of a population of mIXed 
geneotypes. If W 22 = 0, W,' = .8, and W'2 = 1, what is the equilibrium distributIOn of 
geneotypes? 

NOTES AND REFERENCES 

There IS, of course, a vast seiection of literature, Including introductory textbooks, on 
each of the subjects Included withIn this chapter. We cannot hope to cIte even a 
representative sample of the most important references. Instead, we settie for a 
scattered selection-including the ones found to be most heipfui In preparing thIs 
chapter. 

Section 10.1. For a general IntroductIOn to mechamcs see Housner and Hudson [HS], 
or GoldsteIn [G9]. 

Section 10.2. For introductory treatments of thermodynamICS see Pngogine [P6] or 
Weinreich [W3]. 

Section 10.3. The classic references for InteractIng popuiations are Volterra [VI] and 
Lotka [LS] for the theory, and Gause [GS] for expenmental verification. A modern 
(somewhat advanced) treatment is Goel, Maltra, and Montroll [G7]. Also see Watt 
[W2] and Pielou [P4]. 

Section 10.4. The onginal mathematical paper on epidemIC theory IS Kermac and 
McKendrIck [KI2l The standard book on epidemICS, Including stochastic as well as 
deterministic theory, IS Bailey [B 1]. For stochastic models of epidemics see also Bartlett 
[B3]. 

Section 10.5. An excellent survey of the dynamic theory of economIc equilibna is 
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contamed in QUIrk and Saposnik [Q1]. The Liapunov functIon of the tatonnement 
process, the squared Euclidean distance of the current price from the equilibrium price, 
does not appear to have a strong economic interpretation. The study of more advanced 
processes, however, leads one to consider other Liapunov-type functions directly related 
to fundamental economIc notIOns. See Problem 8, and for a more advanced treatment 
see Arrow and Hahn [A2] or Takayama [TI]. 

Section 10.6. A very readable introduction to population genetics and various other 
subjects that overlap with some of the examples in this chapter is Wilson and Bossert 
[WS]. For more advanced w0rk on population genetics see Ewens [E2] and Karlin [K9]. 



chapter 11. 

Optimal Control 

Underlying a serious study of a specific dynamic system is often a motivation to 
improve system behavior. When this motivation surfaces In explicit form, the 
subject of optimal control provides a natural framework for problem definitIOn. 

The general structure of an optimal control problem IS straightforward. In 
the simplest version, there is a given dynamic system (linear or nonlinear, 
discrete-time or continuous-time) for which input functions can be specified. 
There is also an objective function whose value is determined by system 
behavior, and is in some sense a measure of the quality of that behavior. The 
optimal control problem is that of selecting the input function so as to optimize 
(maximize or minimize) the objective function. For example, the dynamic 
system might be a space vehicle (as often it was in some of the first modern 
applications) with inputs correSpOnding to rocket thrust. The objective might 
then be to reach the moon with minimum expenditure of fuel. As another 
example, the system might represent the dynamics of an individual's accumula­
tion of wealth, with controls corresponding to yearly work effort and expendi­
ture levels. The problem might then correspond to planning the lifetime 
pa ttern of work and expenditure in orderto maximize enjoyment. Finally, as a third 
example, the system might be the nation's economy, with controls correspond­
ing to government monetary and fiscal policy. The objective might be to 
minimize the aggregate deviations of unemployment and interest rates from 
fixed target values. 

There IS a diversity of mathematical issues associated with optimal 
control-and these form the subject material for optimal control theory. There 
is, first of all, the question of characterizing an optimal solution. That is, how 
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can a particular control function be recogmzed as being optimal or not. This 
questIon is treated in the first several sections of the chapter. There is also the 
issue of open-loop versus closed-loop control, as introduced in Chapter 8. This 
is treated In the later sections of the chapter. Finally, there is the issue of 
computation. That is, how does one actually find the optimal control function­
either in analytical form (if possible) Or numerically? The analytic approach is 
emphasIZed In this chapter. Overall, the subject of optimal control theory has a 
long and deep history, an expanding range of applications, and a large 
assortment of numencal techniques. This chapter (including the assortment of 
applications treated in the problems at the end) presents a sampling of this 
Important subject. 

11.1 THE BASIC OPTIMAL CONTROL PROBLEM 

OptImal control problems can be formulated for both discrete-time and 
contInuous-time systems. In keeping with the SPlflt of the rest of the book, 
both types are discussed m this chapter, but in this instance greater attentIOn is 
devoted to the contmuous-time case. The reasons for this emphasis are that 
continuous-time problems are notauonally simpler; most illustrative examples 
are more natural in contmuous time; and, most Importantly, the Pontryagin 
maximum prInciple results are stronger in contInUOUS time than in discrete 
tIme. Naturally, however, discrete-time formulations also arise frequently, 
especially in large-scale systems, treated by digital computers. Much of the 
theory is directly applicable to both discrete- and continuous-time systems. 

This section formulates a basic continuous-time optimal control problem 
and develops the associated Pontryagin maximum principle. This section is 
relatively long, and the development is quite different in character than that of 
earlier chapters. A good strategy for the reader, on his first encounter with this 
material, might be to read this first subsection where the problem is formu­
lated, and then skip to the end of the section where the final result is presented. 
Next the examples in Sect. 11.2 should be studied. Finally, this whole first 
section should be studied on a second reading. 

The basic optimal control problem in contInUOUS time is formulated as 
follows: one is given a system, defined on a fixed time interval O:5t:5T, 

x(t) = f(x(t), u(t» (ll-la) 

a (fixed) mitial condition 

x(O) = Xo (ll-lb) 

a set of allowable controls 

U(t)E U (11-Ie) 
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and an objective function 

J = t/I(x(T» + r [(x(t), oCt»~ dt (ll-ld) 

to be maxlmized.* 
Let us examine the elements of the problem (11-1). The structure of 

system equation (11-la) together with the initial condition (ll-lb) IS by this 
point quite familiar. Generally, we assume that the state x(t) is n dimensional 
and the control (or input) oCt) is m dimensional. The function f is composed of 
n separate component functions that are all well behaved so that the system 
(ll-la) with the initial condition (ll-lb) has a umque solution, once the 
control is specified. 

The set of allowable controls U is an important component of the optimal 
control problem. In some cases, this set is the whole of m-dimenslOnal 
space-in which case there IS no real constraInt on oCt). In other cases, 
however, this set takes the form of inequalities on the components of ott). For 
example, if u(t) is one dimensional, there may be a limitation of the form 
u(t)~O, or perhaps O:Su(t):Sl. Such constraints reflect the fact that, In some 
systems, control, to be physically meaningful, must be positive or must not 
exceed a certain bound. For example, in a planmng problem the control 
variable might represent the fractIon of current profit that IS reinvested (and 
thus must lie between 0 and 1). 

In the objective function (ll-ld), both t/I and [ are real-valued fUnctlons of 
their respectIve arguments. The term t/I(x(T» is the contribution to the obJec­
tive of the final state. For example, this form of objective arises if it is desired 
to control an object so as to attain maximum velocity in a given time, or to plan 
resource allocations over trrne so as to obtain as much as possible at the end, 
and so forth. The integral term represents a contribution that accumulates over 
time. Such a term arises, for example, if the objective IS to minimize total fuel 
expenditure of a machine or to maximize total production in a production 
facility. A specific problem may, of course, have eIther t/I or [ identically equal 
to zero (but not both). 

The interpretation of the optimal control problem (11-1) is straightfor­
ward, but worth emphasizing. The unknown IS the control function oCt) on 
O:S t :S T. Once this function is specified, it determines, in conjunctIOn with the 
system equation (ll-la) and the initial condition (ll-lb), a unique state 
trajectory x(t), O:s t:S T. This trajectory and the control function then deter­
mine a value of J according to (ll-ld). The problem is to find the control 
function oCt), O:S t :S T, satisfying the constraint (11-1e), which leads to the 
largest possible value of J. 

* Almost all components of this problem (f, t, and U) can depend explicitly on time Without 
changmg the nature of the resUlts that follow. 
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The Modified Objective and the Hamiltonian 

In many respects optimal control is a natural extension of the maximization of 
a function of a single variable, as considered in the study of calculus. The 
conditions for maximization are derived by considering the effect of small 
changes near the maximum point. This similarity is explicitly recognized by the 
term calculus of variations, which is the name of that branch of mathematics 
that first extended the "variational" idea to problems where the unknown is a 
function rather than a scalar. This general "variational" approach is followed 
here. 

To characterize an optimal control, we shall trace out the effect of an 
arbitrary small change in u(t) and require that it be nonimproving for the 
objective. That is, we start with the assumption that the control function u(t) is 
optimal, we then make a small change in u(t) and determine the corresponding 
change in the objective 1. This change should be negative (non improving) if the 
original u(t) is optimal. However, because a change in u(t) also changes x(t), it 
is difficult to carry out this plan and directly determIne the net influence on the 
value of the objective. Therefore, a somewhat Indirect approach is helpful. The 
"trick" that IS used is to adjoin to I some additional terms, which sum to zero. 
In particular, we form the modified objectIVe function 

j,= I - fT A(t)T[X(t) -f(x(t), u(t»] dt 
-'0 

(11-2) 

The term in brackets IS zero for any trajectory. The coefficient n-vector A(t) is 
at this pOInt arbitrary. It is clear, however, that for any choice of A(t) the value 
of j is the same as that of J for any x(t) and u(t) satisfying (ll-la). We can 
therefore consider the problem of maximizing j rather than 1. The flexibility in 
the choice of A(t) can then be used to make the problem as simple as possible. 

For convenience we define the Hamiltonian functIOn 

H(A,X, U)=ATf(x, u)+l(x, u) (11-3) 

In terms of the Hamiltonian, the modified objective takes the explicit form 

j,= t/I(x(T» + r {H(A(t), x(t), u(t»_A(t)TX(t)} dt (11-4) 

The Hamiltonian is therefore fundamental for consideration of this modified 
obJecuve. 

Suppose now that a nomInal control function u(t), satisfYIng the constramt 
u(t) E U, IS specified. This determInes a corresponding state trajectory x(t). Now 
we consider a "small" change In the control function to a new function v( t) E U. 
TJus change is "small" in the sense that the integral of absolute value of the 
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(a) 

(b) 

Figure 11.1. Effect of a small 
change. 

difference is small (for each component of the control); that is, 

LT Iu;(t) - Vi (t)1 dt < e (11-5) 

for each i, where e is small. Therefore, the actual change can be large over a 
very short interval of time. (See Fig. I1.Ia.) 

This new control leads to a new state trajectory, which we write as 
x(t) + ax(t). The change ax(t) is small for all t because the state depends 
(essentially) on the integral of the control function. (See Fig. I1.Ib.) 

If we define aj as the corresponding change III the modified objective, we 
have* 

aj = t/I(x(D+ ax(D)- t/I(x(T» 

+ r [H(A, x+ax, v)- H(A, x, U)-ATOXJ dt 

An integration by parts yields 

LT ATaxdt=A(DTax(D-A(O)Tax(O)-r iTaxdt 

Therefore, we have 

aj = t/I(x(D+ ax(D)- t/I(x(T» -A(DTax(D +A(O)Tax(O) 

+ r [H(A, x+ ax, v) - H(A, x, u) + i Tax] dt 

(11-6) 

(11-7) 

(11-8) 

We now approximate this expression (11-8) to first order (that is, to the order 
of e) by using differential expressions for small differences. 

• We drop the I arguments for sunpliClty and wnte x for X(I), and so fonh. 
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We use the multidimension version of Taylor's Theorem to write* 

f [H(A, x + /lx, v) - H(A, x, u)] dt 

= f[H(A, x+/lx, V)-H(A, x, V)+H(A, x, V)-H(A, x, u)] dt 

= f [H.(A, x, v)/lx+ H(A, x, v) - H(A, x, u)] dt 

= f [H.(A, x, u)/lx + (H,,(A, x, v) - H.(A, x, u»/lx 

+ H(A, x, v)- H(A, x, u)] dt 

= r [Hx(A, x, u)/lx+ H(A, x, v) - H(A, x, u)] dt (11-9) 

where at each stage = denotes "equal to withIn the order of e." (The last line 
follows by noting that both /lx and the integrai of H.(A, x, v) - H.(A, x, u) are of 
order e, hence the product is of order e 2

.) 

Substituting (11-9) into (11-8) and using a differential approximation to 
the first two terms In (11-8) yields 

/lj = [t{!.(x(T»- A(T)T]/lx(T) + A(O)T/lX(O) 

+ f[Hx(A,X,u)+iT]/lXdt 

+ f[H(A, x, v) - H(A, x, u)] dt + p(e) (11-10) 

where pee) denotes terms that are of smaller order than e. This then IS the 
general expression for the change in j resulting from an arbitrary change in 
u(t). We next simplify this expression by proper selection of the function A(t). 

The Adjoint Equation 

Note that /lx(O) = 0, since a change in the control functIOn does not change the 

• Throughout thIS chapter the subscript notauon IS used for partlai denvatlves-sca]ar, vector, and 
matrIX-as appropriate. Thus, for a fUnction (XI' x2' ••• ,xn ) = (x) we write f.,(x" x2 , ••• ,xn ) for 
(a(/ax,)(x" x2' ••• ,xn ). The gradient of ( is denoted Vf(x) or f,(x) and is the row vector [a(/ax" 
af/ax2 , ... ,aflax.]. If I(x) is m dimenSIOnal, then Vf(x) = ''(x) is the m x n Jacobian matrtx 
[(ilf.lax,)(x)]. For a function f(x, u) the notation "(x, u) sunilarly represents the matrtx of partIal 
derivatIves of I witn respect to the X; 's; that IS, 

"(x, u) = (~ f'(x, U)) 
OXj 
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initial state. Thus, the second term on the right-hand side of (11-10) is always 
zero. We shall select A(t) to make all other terms vanish except for the last 
integral. This is accomplished by selecting A(t) as the solution to the adjoint 
differential equation 

(11-11) 

or, more explicitly, 

with final conditIOn 

(11-13) 

Let us see what is mvolved here. First, we recall that f.(x(t), u(t» IS an 
n x n matrix. It is, in general, time varying; but for a particular nominal u(t) 
and x(t) it is known. Likewise l.(x(t), u(t» is a known (time-varying) n­
dimensional row vector. Therefore (11-12) is a linear (time-varying) differential 
equation in the unknown (row) vector A(t)T. Associated with this system is a 
final condition on A(T)T Thus, one can consider solving the adjOInt equation 
by moving backward in time from T to O. This determmes a unique solution 
A(t). 

With this particular A(t), the expression (11-10) for aJ becomes simply 

aJ = f[H(A(t), x(t), v(t»- H(A(t), x(t), u(t»] dt + p(e) (11-14) 

Since A(t), x(t), and u(t) are known and are independent of v(t), this expression 
gives a direct simply way to calculate the approximate consequence of a change 
to a new control function v(t). We can use this expression to deduce the 
conditions for optimality. 

If the original control function u is optimal, it follows that for any t 

H(A(t), x(t), v) oS H(A(t), x(t), u(t» 

for ail v E U. [Here t is fixed, u(t) is the value of the optimal control at t, while v 
is arbitrary in U; v is not a time function.] To verify this inequality, suppose 
that for some t there were a v E U with 

H(A(t), x(t), v) > H(A(t), x(t), u(t» 

Then we could change the function u as indicated in Fig. 11.1a so as to make the 
integrand in (11-14) positive over a small interval (say of width e) containing 
this t. The integral itself would be positive (and of order e). Thus, aJ would be 
positive, contradicting the fact that the function u produces the maximal J. 

This result means that at every t the particular value u(t) in an optimal 
control has the property that it maximizes the Hamiltonian. This result is the 
Pontryagin maximum pnnciple for this problem. 
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The Maximum Principle 

We now summarize the. complete set of conditions for optimality. 
In the onginal problem one seeks u(t) and x(t) satisfying the system 

equation (11-1a), with the initial condition (11-1b), and the constraint (11-1c), 
while maximizIng the objective function (l1-1d). The necessary conditions 
serve as a test for a given u(t) and x(t) that must be satisfied if they are optimal. 
These conditions are stated in tenns of an adjoint vector function A(t). 

Theorem (Maximum Principle). Suppose U(t)E U and x(t) represent the optimal 
controi and state traJectory for the optimal control problem (11-1). Then 
there is an adjoint traJectory A(t) such that together u(t), x(t), and A(t) 
satisfy 

x(t) = f(x(t), u(t» (system equation) 

x(O) = Xo (initial state condition) 

_i(t)T = A(t)Tfx(x(t), u(t»+ Ix(x(t), u(t» (adjOint equation) 

A(T)T = t/lx(x(T» (adjoint final condition) 

For all t, O:s t :s T, and all v E U 

H(A(t), x(t), v):s H(A(t), x(t), u(t» (maximum condition) 

where H is the Hamiltonian 

H(A, x, u) = A Tf(x, u) + I (x, u) 

(11-15a) 

(11-15b) 

(11-15c) 

(11-15d) 

(11-15e) 

This set of conditions can be regarded as a set of equations. The last 
condition, the maximum condition, is essentially a set of m statIc equatIons. 
One way to see this is to suppose that u(t) is interior to U (that is, not on the 
boundary of an inequality). Then the condition that H has a maximum at u(t) 
means that the derivatives of H with respect to each component of u must 
vanish. ThIS gives m equations for each t. 

The set of conditions (11-15) is complete in the sense that there are as 
many equations as unknowns. The unknowns are u(t), x(t), and A(t)-a total of 
2n + m functions. The necessary conditions consist of 2n differential equations 
with 2n end conditions and m static equations (depending on t)-the total 
being sufficient to detennine 2n + m functions. Thus, barring possible singular 
situations, these conditions can be used to find the optimal solution. 

Before turning to some examples, one final point should be noted. As 
expressed in (11-15c) the adjoint equation is written in tenns of A(t)T. This is a 
natural consequence of the development. In pracnce, however, it is often 
convenient to write it in column-vector fonn in tenns of A(t). The result is 

-i = fx(x, u) TA + Ix(x, u) (11-15c') 
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The important point to note is that the adjoint equation has system matnx (I.)T 
rather than I •. 

11.2 EXAMPLES 

This section presents three examples of the use of the maximum principle. 
They illustrate how the necessary conditions can be used to find a solution. The 
particular method employed, however, depends on the structure of the 
problem. 

Example 1 (The Triangle). It is desired to draw a curve x(t), 0 oS t oS T, starting 
at x(O) = 0, whose slope at each point is no greater than 1 and that attams 
maximum height at T. This is a slITIple problem, for it is clear that the solution 
is to select x(t) as the straight line with slope equal to 1. (See Fig. 11.2.) 
However, it is instructive to go through the mechanics of the maximum 
prinCiple. 

We may formulate the problem as having the components 

i(t) = u(t) 

x(O) = 0 

u(t) oS 1 

J= x(T) 

In this problem, both tx(x, u)=O and l(x, u)=O. Therefore, the adjomt 
equation is 

-A(t)=O 

The final condition is A(T) = 1, since "'(x) = x. Hence, we conclude immediately 
that AU)"" 1. The optimal control must maximize the Hamiltonian, which in 
this case reduces to 

H=Au=u 

Figure 11.2. Triangle problem. 
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Thus, u(t) must be as large as possible, subject to its constraint. We find 
therefore u(t) = 1, which agrees with our intuitively derived solution. 

Example 2 (Push Cart). A problem involving a second-order system is the 
problem of accelerating a cart in such a way as to maximize the total distance 
traveled in a given time, minus the total effort. The system is 

x (t) = u(t) 

x(O) = 0 

x(O) = 0 

where x IS the horizontal position and u is the applied force. The objective IS 

, 1 IT ~ J = x(T)-"2 0 u(t)- dt 

where the mtegral term represents a p~nalty for effort. There are no control 
constramts. 

Defining the state vanables XI = X, X2 = X, the problem takes the standard 
form 

T 

J = X'(D-~ i U(t)2 dt 

The adjomt system equation is* 

-AI(t) =0 

-A2(t) = A,(t) 

The final conditions on the adjoint equations are (since t/I = xI(T» 

A,(T) = 1 

AiD=O 
The adjoint equations can be solved to yield 

AI(t)=1 

A2(t)=T-t 
The Hamiltonian IS 

• For a linear syslem wnh system matrix A, the system matrIX for tne adjOInt equatIon IS AT 
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Since u is unconstrained, the Hamiltonian can be maximized by setting its 
derivative with respect to u equal to zero. This yields 

u(t) = A2(t) 

as the condition for maximization. Thus, the final result is 

u(t)=T-t 

We conclude that the applied force should decrease linearly with time, reaching 
zero at the final time. 

Example 3 (Insects as Optimizers). Many insects, such as wasps (including 
hornets and yellowjackets) live in colonies and have an annual life cycle. Their 
population consists of twO castes: workers and reproductives (the latter com­
prised of queens and males). At the end of each summer all members of the 
colony die out except for the young queens who may start new colomes In early 
spring. From an evolutionary perspective, it IS clear that a colony, in order to 
best perpetuate itself, should attempt to program its production of reproduc­
tives and workers so as to maximize the number of reproductlves at the end of 
the season-in this way they maximIZe the number of colonies established the 
following year. 

In reality, of course, this programming is not deduced consciously, but IS 

determined by complex genetic characteristics of the insects. We may 
hypothesize, however, that those colonies that adopt nearly optimal policies of 
production will have an advantage over their competitors who do not. Thus, it 
IS expected that through -contInued natural selection, eXISting colonies should 
be nearly optimal. We shall formulate and solve a simple version of the msects' 
optimal control problem to test this hypothesis. 

Let w(t) and q(t) denote, respectively, the worker and reproductive 
population levels in the colony. At any time t, O:s t :S T, in the season the 
colony can devote a fraction u(t) of its effort to enlarging the worker force and 
the remaining fraction 1- u(t) to producing reproductives. Accordingly, we 
assume that the two populations are governed by the equations: 

w(t) = bu(t)w(t) -lLW(t) 

4(t) = c(1- u(t»w(t) 

These equations assume that only workers gather resources. The positive 
constants band c depend on the environment and represent the availability of 
resources and the efficiency with which these resources are converted into new 
workers and new reproductives. The per capita mortality rate of workers is iJ., 
and for simplicity the small mortality rate of the reproductives is neglected. For 
the colony to be productive during the season it is assumed that b > iJ.. The 
problem of the colony is to maximize 

J =q(T) 



404 Optimal Control 

subject to the constraint 0 oS u(t) oS 1, and starting from the initial conditions 

w(O) = 1 q(O) = 0 

(The founding queen is counted as a worker since she, unlike subsequent 
reproductives, forages to feed the first brood.) 

To apply the maximum principle to this problem we write the adjoint 
equations and terminal conditions, which, as the reader should verify, are 

- Al (t) = bu(t)A, (t) - lLA l(t) + c(l- u (t»A2(t) 

-A2 (t) = 0 

A,(n=O, 

In this case, unlike the previous two examples, the adjoint equatIons cannot be 
solved directly, SInce they depend on the unknown function u(t). The other 
necessary conditions must be used in conjunction with the adjoint equations to 
determine the adjoint variables. 

The Hamiltonian of the problem IS 

HU ... l, A2, W, q, u) = A,(bu -lL)W + A2C(1- u)w 

= w(A,b-A2c)u+(A2C-A,lL)W 

Since this Hamiltonian IS linear in u, and since W > 0, it follows that it is 
maximIZed WIth respect to 0 oS u oS 1 by either u = 0 or u = 1, depending on 
whether A,b - A2 C is negative or positive, respectively. 

It is now possible to solve the adjoInt equations and determine the optimal 
u by moving backward in time from the terminal point T. In view of the known 
conditions on A,(I) and A2(1) at T, we find AI(nb - A2(nC = -c <0, and hence 
the condition for maximization of the Hamiltoman yields u(T) = O. Also, it is 
clear, from the second adjoint equation, that A2(t) = 1 for all t. Therefore near 
the terminal time T the first adjoint equation becomes 

-'\'\(/) = -lLAI (t) + C 

which has the solution 

A\(t) =~ (l-e,,"(I-T) 
lL 

Viewed backward in time it follows that A\(t) Increases from its terminal value 
of O. When it reaches a point ts < T where A\ (ts) = clb, the value of u switches 
from 0 to 1. At that point the first adjoint equation becomes 

-A\(t) = (b -lL)A,(t) 

which, in view of the assumption thal b > lL, implies that, moving backward in 
time, A\(t) continues to increase. Thus, there is no additional switch in u. The 
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I, T 

Figure 11.3. Solution to insect 
adjoint equation. 

solution for A,(t) is shown in Fig. 11.3. The point ts is easily found to be 

t =T+~ln(·l-.!:) 
s lL b 

In terms of the original colony problem, it is seen that the optImai solution 
is for the colony to produce only workers for the first part of the season, and 
then beyond a certain critical time to produce only reproductives. Social insect 
colonies do in fact closely follow this policy, and experimental eVidence 
indicates that they adopt a sWitch time that is nearly optimal for their naturai 
environment. 

11.3 PROBLEMS WITH TERMINAL CONSTRAINTS 

The basic optimal control problem discussed in Sect. 11.1 is referred to as a 
free endpoint problem since the final value of the state vector is completely 
arbitrary. There are, however, many problems in which the terminal value of 
the state vector is constramed in some manner. A simple example IS the 
problem of finding the shortest path between two specified points. Another is 
the problem of economic planning to reach a given goal at minimum cost. 

The maximum principle can be extended to such problems. ThIs extension 
is simple and very natural in terms of the form of the final result. A rigorous 
proof, however, is exceedingly complex. Indeed, this extended result represents 
a major mathematical achievement, and is the capstone of the calcuius of 
variations approach to optimal control. Our objective here is simply to state 
the result so that we can apply it, and to give plausibility argument. 

In an optimal control problem with terminal constramts one is given a time 
interval 0 oS t oS T, a system 

x(t) = f(x(t), u(t)) (1l-16a) 

an minal condition 

x(O) =Xo (1l-16b) 
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a control constraint 

U(t)E U (11-16c) 

a set of terminal constraints 

i = 1,2,. _, r (11-16d) 

and an objective function 

J = t/I(x(T) + r I (x(t), u(t)) dt (1l-16e) 

The terminal constraints take the form of specification of the final values 
of some of the state variables. The number of variables specified can vary from 
1 to n (the dimension of the state). All other components of the problem are 
the same as in the free endpoint problem of Sect. ILL 

When terminal constraints are present, there is a possibility that the 
problem has a certain degree of degeneracy. One new possibility, of course, IS 
that there is no feasible control function and state trajectory satisfYing the 
terminal constraint. No solution eXIsts in thIS case. Another possibility IS that 
there IS only one trajectory satIsfying the tenmnal constraint. In that case there 
is a solutIon, but it IS unaffected by the particular objectIve functIon. The 
maXImum principle must account for this type of degeneracy. A well­
formulated problem, however, will not have such anomalies; rather, there will 
be a complete family of competing solutions.* 

To deduce the conditions satisfied by an optImal solution for this problem, 
we go through the same procedure as in Sect. 11.1. Thus, we form the modified 
objectIve function and consIder the change induced by a change in control from 
u(t) to a new control v(t) also satisfying all constraints. This leads to (11-10) of 
Sect. 11.1, WhICh is repeated below: 

ai = [t/I.(x(T»- A(T)T]ax(T) + A(O)Tax(O) 

+ [[Hx(A, x, u)+iT]ax dt 

+ [[H(A, x, V)-H(A, x, u)] dt+p(e) (11-17) 

Again we select A(t) to make all tenns on the right-hand side of (11-17) 
vanish, except the last integral. As before ax(O) is always zero, so the second 
term on the right is zero. Also as before we require A(t) to satisfy the adjoint 
equation 

-i(t)T = H.(A(t), x(t), u(t)) (11-18) 

• The mathematical conditton for a well-formulated problem IS closely related to a controllability 
cntenon in that a full range of terminal pOSItiOnS can be achieved by various control functions. 
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However, specification of boundary conditions is somewhat different than 
before. Since xi(T) is constrained for i:= 1, 2, ... , r, it follows that aXi(T) = 
0, i = 1, 2, _ -, r for all possible competing trajectories. Therefore, it is not 
necessary to specify all components of A(T) in order to guarantee that the first 
term on the right-hand side of (11-17) vanishes. Only components correspond­
ing to possibly nonzero components ofax(T) must be specified. Accordingly, it 
is necessary only to require 

(11-19) 

for 1:= r + 1, r + 2, . - _ , n. This guarantees that all component products in the 
first term of (11-17) vanish. Thus, the general rule is: If x;(T) is constrained, 
then A;(T) is free; if x;(T) is free, then A;(T) is constraIned. 

The complete statement of the maxImum princIple for this problem IS 
given below. 

Theorem (Maximum Principle). Let x(t), U(t)E U be an optImal solutIOn to the 
problem with term mal constramts (11-16). Then there is an adjoltIt trajectory 
A(t) and a constant Ao 2: 0 [with (Ao, A(t» ¢ OJ such that together u(t), x(t), 
A( t), and Ao satisfy 

x(t) = f(x(t), u(t» (system equation) 

x(O) =Xo (initial state condition) 

1= 1,2, . _ . , r (terminal state conditions) 

i = r + 1, r + 2, .. _ , n 

(adjoint final conditions) 

For all t, 0 ~ t ~ T, and all v E U. 

(l1-20a) 

(l1-20b) 

(11-20c) 

(11-20d) 

(11-20e) 

H(A(t), x(t), v) ~ H(A(t), x(t), u(t» (maxImum condition) 
(11-20£) 

where H IS the Hamiltonian 

H(A, x, u):= ATf(x, u) + Aol(x, u) 

The presence of the constant Ao in- this version of the maxlffium prIncIple is 
to account for the degeneracy situation discussed earlier. These degenerate 
situations (where the terminal constraint is overwhelmingly impOSIng) corres­
pond to Ao = O. In these cases the objective does not enter the conditions. In 
well-formulated problems, however, Ao> 0, and without loss of generality one 
may then set Ao:= 1. In practice, therefore, one always tries to apply the 
maximum principle with Ao:= 1. Indeed, for all examples and problems In thIS 
chapter this procedure will work--except for Problem 13. 
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Example 1 (Shortest Path between Two Points). Consider the classic problem 
of finding the curve x(t) with x(O) = 0, x(1) = 1 with mInimum total length. For 
this problem we write 

x=u 

x(O) = 0, x(1) = 1 

J=-f.J1+U 2 dt 

There are no constraints on the value of u(t). 
For this problem the adjoInt equation is easily seen to be 

-,\ = 0 

There is no terminal condition on A(T). However, it is clear that A(t) = A, a 
constant. 

The Hamiltonian is 

H=AU-.Jl+u 2 

The optimal u(t) must maximize this at each t. However, since all tenns in the 
Hamiltonian (other than u) do not depend on t, it is clear that u(t) is constant. 
Thus, the slope of x(t) is constant-that is, the best curve is a straIght line. 

Example 2 (The Classic Isoperimetric Problem). Problems subject to various 
Integral constraints can be converted to problems with tenninal constraints by 
introducing additional variables whose sole purpose is to keep track of how 
much of the Integral constraint has been used. To illustrate this idea we 
consider the classic problem of determIning the curve that connects two fixed 
points on the t-axis, has fixed arc length L, and encloses the maximum area 
between itself and the t-axis. (See Fig. 11.4.) 

This problem can be defined with 

~urve x(t) 

o T 

x=u 

x(O) = 0 

x(D=O 

J = iT xdt 

.. t 

Figure 11.4. The isoperimetnc 
problem. 
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but, in addition, there is the arc length constraint 

LT Jl+u 2 dt=L 

(with L> D. This constraint can be incorporated by introducing an additIOnal 
state variable yet) satisfying 

y=Jl+u 2 

y(O)=O 

y(D=L 

The overall problem then has a two-dimensional state vector. 
The adjoint equations are found to be 

-A1 = 1 

-,\2 = 0 

Thus, A1(t) is linear in t and A2(t) is constant. The Hamiltonian is 

H=A 1U+A 2 Jl+u 2 +x 

The condition for maximization is obtained by setting the derivative of H with 
respect to u equal to zero. This yields 

A2 U 
A 1 + r;-:---:, = 0 

,,1 + u2 

Therefore, substituting x = u and using the fact that A1 is linear in t, we can 
conclude that the curve x(t) satisfies an equation of the form 

x 
~=A+Bt 

,,1 + x2 

for some constants A and B. It can be verified that the arc of a circle 

(X-X 1)2+(t-t1)2= ,2 

satisfies this equation. The parameters Xi> ti> and r are chosen to satisfy the 
constraints. 

11.4 FREE TERMINAL TIME PROBLEMS 

In some problems the terminal time is not fixed, but is allowed to vary. The 
terminal time is therefore another variable that can be selected in order to 
attain the maximum possible objective value. For example, in determining the 
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path of a rocket ship to the moon that minimizes fuel consumption, there is no 
reason to specify the time of landing. Such problems are treated by yet another 
simple addition to the maximum principle. 

The problem statement in this section is identical to that of the last 
section, except that the terminal time T is not specified. Explicitly, the problem 
is: Given 

x(t) = f(x(t), u(t)) 

x(O) = Xo 

U(t)E U 

i= 1, 2, .. , r 

find T> 0 and u( t), 0:$ t :$ T so as to maxunize 

J = ",(x(T)) + r l(x(t), u(t)) dt 

(1l-21a) 

(1l-21b) 

(11-21c) 

(1l-21d) 

(11-21e) 

Clearly if the best T were known, we could fix T at this value and the 
problem would be one of the type treated In Sect. 11.3. Thus, all of the 
maxImum principle conditions of that section must apply here as well. We 
reqUIre, however, One additional condition from which the unknown value of T 
can be determined. To find this conditIOn we must go through the procedure of 
calculating the change in the modified Objective function once agam, but for 
this new problem. 

The modified objective is 

(11-22) 

We consider a change to a new control v(t) with an associated new trajectory 
x(t)+/lx(t) and a new terminal time T+dT. We denote the corresponding new 
value of the modified objective function by j +d1. 

The important new feature of this problem is that the change in the 
terminal value of the state is not /lx(T), since the final time itself changes. The 
new termmal state is actually x(T) + /lx(T + dT). If we denote the new terminal 
state by x(T) + dx(T), then to a first-order approximation 

dx(T) = /lx(T)+x(T) dT = /lx(T)+f(x(T), u(T)) dT (11-23) 

(See Fig. 11.5.) 
As before, we find the change in j by considering a first-order Taylor 

expansIon with respect to /lx. In this case we also consider the change dT. We 
suppress the details here, but a procedure similar to that used in Sect. 11.1 
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x(t) + 8x(t) 

Figure 11.5. Free terminal time. 

leads to 

dJ = ",.(X(T) dx(T)- >"(T)T/lX(T) + >..(O)T/lX(O) 

+ l(x(T), oCT)~ dT 

+ r [H.(>", x, 0) + i TJ/lX dt 

+ r [H(>", x, v)- H(>", x, o)J dt (11-24) 

By selecting >..T(t) to satisfy the adjoint equation, the first Integral term 
vanishes. The term AT (O)/lx(O) vanishes, since /lx(O) = O. USing (11-23), we 
substitute /lx(T) = dx(T)- (x(T), oCT)~ dT and find that the only nonzero 
terms are then 

dJ = [",.(x(T) - >"(Tn dx(T) 

+ [>..T(T)f(x(T), oCT»~ + l(x(T), o(1)J dT 

+ r[H(>", x, v)- H(>", x, o)J dt 

The first term vanishes if conditions are imposed on the components Ai(T), 
i = r+ 1, r+2,. __ , n, the same as for the problem with fixed terminal time. 
Consideration of the integral term yields the maximum condition as usual. 
Final!, the only remaining term is the second. It is recognized that it IS 
H()~(i x(T), oCT»~ dT. It follows that, in order for T to be optimal, 
H(MI ; "I(T), oCT»~ = 0; otherwise a change dT could be found that would 
improve 1. Thus, the new condition is that the Hamiltonian must vanish at the 
terminal time. 

To summarize, for problems with free terminal time all the usual condi­
tions of the maximum principle of Sect. 11.3 apply, and in addition 

H(A(T), x(T), oCT)~ = 0 (11-25) 

This is the additional condition required to solve for the additional unknown T. 
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Figure 11.6. Crossing a river with 
currents. 

Example (Zermelo's Problem). We consider the problem of navigating a boat 
across a river, in which there is strong current, so as to get to a specified point 
on the other side in minimum time. We assume that the magnitude of the 
boat's velocity with respect .to the water is a constant V. The downstream 
current at any point depends only on this distance from the bank. (See Fig. 
11.6.) 

The equations of the boat's motion are 

x=VcosO+u(y) 

y = V sin 0 

(1l-26a) 

(1l-26b) 

where x is the downstream position along the river, y is the distance from the 
origin bank, u(y) is the downstream current, and 0 is the heading angle of the 
boat. The heading angle is the control, which may vary along the path. 

Both initial and final values of x and y are specified. The objective 
function is (negative) total time so we set", = 0, 1==-1. 

The adjoint equations are easily found to be 

-A 1 =0 (1l-27a) 

(1l-27b) 

There are no terminal conditions on the adjoint variables. The Hamiltonian is 

H=A 1 VCOSO+A 1 U(y)+A2 VsinO-l 

The condition for maxiImzation yields 

Ho = -A 1 V sin 0 + A2 V cos 0 = 0 
and hence, 

Next we observe that 

(11-28) 

(11-29) 

(11-30) 
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Using (11-26b), (11-27), and (11-29) this is seen to be identically zero. (Also 
see Problem 7.) Thus, H is constant. Since this is a free-time problem we use 
the condition derived in this section to infer that this constant is zero. Thus, 

H=O 

Substituting (11-30) into (11-28) we obtain 

H A1[V+U(y)cos 0] 1 
cos 0 

(11-31) 

Since according to (11-27a) A1 is constant, we use (11-31) to obtaIn the final 
result: 

V+U(y)cosO A 
cos 0 

(11-32) 

for some constant A. Once A is specified this determines 0 as a function of y. 
'Ibe constant A is chosen to obtain the proper landing point. 

A special case is when u(y) = u is independent of y. Then the optimal 
paths are straight lines. 

11.5 LINEAR SYSTEMS WITH QUADRATIC COST 

Problems in which the dynamic system is linear and the obJecuve is quadratic 
represent an extremely important special family of optimal control problems. 
This importance stems in part from the fact that In many SItuations thIS 
structure represents a natural formulation; but in actuality the main source of 
importance derives from the strong analytic results available for thIS family. 
The primary feature of these problems is that the optimal control can be 
expressed in linear feedback form. Thus, the resulting closed-loop system is 
also a linear dynamic system. 

In the standard "linear-quadratic" problem one is given a linear nth-order 
system 

i(t) = A(t)x(t) + B(t)u(t) (11-33a) 

and a cost function 

(11-33b) 

The cost function is to be minimized. In this problem u(t) IS an m-dimensional 
input function, and it is not subject to any constraints. The cost function is 
quadratic in both the state and the control. The quadratic functions are defined 
by the matrices Q(t) and R(t) that are symmetric matrices of dimension n x n 
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and m x m, respectively. The matrix Q(t) is assumed to represent a positive 
semidefinite quadratic fonn [so X(t)TQ(t)X(t)2:0 for all x(t); see Sect. 9.11]' 
The matrix R(t) is assumed to represent a positive definite quadratic fonn [and 
hence, R(t) IS nonsingular]. All functions are assumed to be continuous with 
respect to t. 

This problem is a special case of the basic free endpoint problem of Sect. 
11.1. Thus, we can easily write down the necessary conditIons satisfied by an 
optimal solution. The adjoint equation is 

(11-34) 

WIth terminal condition ACT) == O. The minus sign on the right-hand side of 
(11-34) IS due to the fact that we are maximizing -1. 

The Hamiltonian is 

H == A(t) T A(t)x(t) + A(t)TB(t)u(t) 

-~x(rf Q(t)x(t) - ~u(t)TR(t)u(t) (11-35) 

The conditIon for maXimIZIng the Hamiltonian with respect to u(t) is Hu == 0: 
or, 

(11-36) 

Therefore, 

(11-37) 

This expression can be substituted into the original system equation. If this 
substitution is made, and if the adjoint equation (11-34) is written in trans­
posed form, we obtain the equations 

with conditions 

x(t) == A(t)x(t) + B(t)R(t)-IB(t)TA(t) 

i(t) == Q(t)x(t) - A(t)TACt) 

x(O) =Xo 

A(T)=O 

(1l-38a) 

(1l-38b) 

(1l-38c) 

(1l-38d) 

In (11-38) there are 2n differential equations, 2n endpoint conditions, and 2n 
unknown functions. The difficulty, of course, is that the 2n conditions are not 
all at the same endpoint. If they were, say, all Initial conditions, the system 
could be solved (numerically) by integrating forward. Since they are at different 
ends, a special technique must be developed. 
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Riccati Equation 

Since the system (11-38) is linear, it is clear that both x(t) and A(t) depend 
linearly on Xo. Accordingly, A(t) depends linearly on x(t). This motivates us to 
try a solution of the fonn 

A(t) = -P(t)x(t) (11-39) 

where pet) is an (as yet unknown) n x n matrix. Substituting (11-39) in the 
system (11-38) yields the two equations 

x(t) = [A(t) - B(t)R(t)-lB(t)TP(t)]x(t) 

- P(t)x(t) - P(t)x(t) = [Q(t) + A(t)TP(t)]x(t) 

(11-40a) 

(11-40b) 

Multiplication of (11-40a) by pet) and addition to (l1-40b) then Yields 

0= [pet) + P(t)A(t) + A(t)TP(t) 

- P(t)B(t)R(t)-lB(t)Tp(t) + Q(t)]x(t) (11-41) 

This will be satisfied for any x(t) if pet) is chosen so as to satisfy the matnx 
differential equation 

-pet) = P(t)A(t)+ A(t)Tp(t) 

(11-42a) 

From the endpoint condition A(T) = 0 we derive the corresponding conditIOn 

P(T)=O (11-42b) 

The differential equation (11-42), which is quadratic in the unknown P(t), 
is called a Riccati equation. The solution pet) is symmetric, since pet) IS 

symmetric for all t. It can also be shown that pet) is positive semidefinite. 

Feedback Solution 

The solution to the control problem (11-33) IS now obtained as follows. One 
first solves the matrix Riccati equation (11-42) by backward integration starting 
at t = T with the condition p(n = O. This solution is usually determined 
numencally. Once pet) is known, it can be used to solve (11-33) in feedback 
form for any initial state Xo. The control is found by combining (11-37) and 
(11-39) to obtain 

(11-43) 

or, equivalently, 

o(t) = K(t)x(t) (11-44) 

where 

(11-45) 
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The m x n matrix K(t) can be computed before operation of the system. Then 
as the system evolves, the control is computed at each instant on the basis of 
the current state. This is a feedback solution; and in thIS case it is linear 
feedback. 

Time-Invariant Case 

Suppose now that all matrices (A, B, Q, and R) in the problem definition are 
constant, independent of time. Suppose also that we consider letting T __ 00 in 
the problem definition. Then, since the Riccati equation is integrated backward 
in time, the solution can be expected to approach a constant matrix for t near 
O. Accordingly, P approaches 0, and the limiting constant matrix P is a solution 
to the matrix algebraic equation 

0=PA+ATP-PBR-1BTP+Q 

In thiS case the optimal control is 

u(t) = -R-1BTPx(t) = Kx(t) 

(11-46) 

(11-47) 

which is itself a time-invariant linear feedback structure. The overall resulting 
optimal system is thus governed by 

x(t) = (A + BK}x(t) (11-48) 

Hence, this optimal control approach provides a sophisticated alternative to the 
problem of selecting a feedback matrix (compare with Sect. 8.9) to improve the 
performance of a system. 

11.6 DISCRETE-TIME PROBLEMS 

Optimal control problems can also be formulated for discrete-time systems. 
The resulting necessary conditions are quite similar to those for continuous­
time systems, although their form is slightly weaker than the maximum 
principle. 

The basic discrete-time optimal control problem consists of a dynamic 
system (defined for k = 0, 1,2, ... , N -1) 

x(k + 1) =f(x(k), u(k)) (11-49a) 

an mitial condition 

x(O) =Xo (1l-49b) 

and an objective 
N-l 

J = t/J(x(N)) + L l(x(k), u(k)) (1l-49c) 
k~O 
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Note that in this fonnulation there is no constraint on u(k). Otherwise, the 
formulation and interpretation are entirely analogous to the continuous-time 
problem of Sect. 11.1. 

The modified objective is in this case taken to be 

N-l 

J = J - L [A(k + l)T x(k + 1)- A(k + I)Tf(x(k), u(k»] 
k=O 

where the A(k)'s are yet to be selected. This can be written as 

N-l 

J = t/I(x(N)+ L [H(A(k + 1), x(k), U(k»-A(k)T x(k)] 
k=O 

- A(N)T x(N) + A(O)T x(O) (11-50) 

where H is the Hamiltonian 

H(A, x, u) = ATf(x, u) + lex, u) (11-51) 

This is quite analogous to (11-3). 
Following a procedure parallel to that used in Sect. 11.1, the effect of a 

small change in u(t) on the modified objective can be detennined. The 
conditions for optunality are then obtained by requinng that this change be 
zero (at least to first-order). The result of this analysIs is expressed In the 
following theorem. 

Theorem (Discrete-Time Optimality). Suppose u(k) and x(k), k =0, 1, , N 
represent the optimal control and state trajectory for the optimal control 
problem (11-49). Then there is an adjomt trajectory A(k), k =0,1, ... , N 
such that together u(k), x(k), and A(k) satisfy 

x(k + 1) = f(x(k), u(k» (system equation) (11.52a) 

x(O) = Xo (initial state condition) (11-52b) 

A(k) = A(k + l)f,.(x(k), u(k» + l,.(x(k), u(k» (adjoint equation) 01-52c) 

A(N) = t/I",(x(N) (adjoint final condition) 

Ha(A(k + 1), x(k), u(k» = 0 (variational condition) 

where H is the Hamiltonian (11-51). 

(11-52d) 

Tlus is quite analogous to the maximum principle of Sect. 11.1, except that 
instead of requiring that the Hamiltonian be maximized, the condition is that 
the Hamiltonian must have zero derivative with respect to the control varI­
ables. 

This general pattern applies to the discrete-time analogs of the 



418 Optimal Control 

continuous-time problems treated in Sects. 11.1 and 11.3. The adjoint equa­
tion* is (1l-52c). The tenninal boundary conditions of the adjoint are deter­
mined exactly as in continuous-time problems. Rather than maximization of 
the Hamiltonian, however, the condition is that the derivative of the Hamilto­
nian with respect to u must vanish. This is a slightly weaker condition than 
maximization. 

Example 1 (A Simple Resource Allocation Problem). A special but unportant 
class of optimization problems is where a fixed resource must be distributed 
among a number of different activities. If the resource is money, for example, 
one may seek an optimal allocation among a number of projects. Suppose an 
amount A of the resource is given, and there are N activities. If an amount u is 
allocated to the kth activity, the value accrued by thIS allocatior: is gdu). The 
optimization problem is then to maximIZe 

subject to the constraInt that 

u(O)+ u(l)+· .. + u(N -1)=A 

As a special case we assume gk(U)= ul/2. Thus, the problem is to maximIZe 

(11-53) 

subject to 
N-l 

L u(k)=A (11-54) 
1(.=0 

This problem IS equivalent to the control problem having system equation 

x(k + 1) = x(k)- u(k) 

with end conditions 

x(O)=A, x(N) = 0 

and objectIve (to be maximized) 
N-t 

J = L U(k)I/2 
k~O 

ThIS formulation assumes that the allocation is made serially. The state x(k) 
represents the amount of the resource that is available for allocation to 
activities k through N. 

* To account for the possibility of a degenerate problem, one must include "'02::0 as a coefficient of 
i in (11-51) and (11-52), and for t/I m the term mal conditions, if there are termtnal state 
constramts. 
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According to the general theory for discrete-time optimal control, the 
adjoint equation is 

A(k) = A(k + 1) 

and there are no endpoint conditions. Thus, A(k) is constant, say, A(k) = A. The 
Hamiltonian is 

H = h(k) - Au(k) + U(k)1/2 

The optimality condition is 

Hu = -A +~U(k)-1/2 = 0 

Thus, u(k) = 1/4A 2, and hence, u(k) is also constant. The constant IS deter­
mined so that the constraint is satisfied. Finally, 

u(k) = A/N 

".7 DYNAMIC PROGRAMMING 

We now present an alternative approach to optimal control; an approach that 
in fact exploits the dynamic structure <If these problems more directly than the 
variational approach. The basic concept has a long history, but Its scope was 
broadened considerably by Bellman who coined the term dynamic program­
mmg. It is an approach that fully exploits the state concept and IS therefore 
quite consistent with the modern approach to dynamic systems. 

The Principle of Optimality 

The basic observation underlymg dynamic programming is the pnnclple of 
optimality that points out a fundamental relation between a given optimal 
control problem and various other subproblems. Suppose that a dynamic 
system, either in discrete time or continuous time, is characterIZed at each time 
instant by a state vector x. Suppose that, as usual, the evolution of this state IS 
influenced by control inputs. The optimal control problem is to select the 
inputs so as to maximize a given objective while satisfymg various terminal 
constraints. 

Imagine an optimal control problem defined over an interval of time, and 
suppose the solution is known. Suppose we follow the corresponding trajectory 
to a time t, arriving at state x(t). We then consider a new problem, initiated at 
time t with state x(t) and for which it is desired to maxunize the total objective 
from that point. Under quite broad assumptions, the solution to that subprob­
lem exactly corresponds to the remainder of the original solution. This obser­
vation is stated formally as 

The Principle of Optimality: From any pomt on an optimal trajectory, the 
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Figure 11.7. Principle of optimality. 

remaining trajectory is optimal for the corresponding problem initzated at that 
point. 

This principle, illustrated in Fig. 11.7, allows us to build up solutions by 
progressing backward in time. It is the basis for a powerful solution procedure. 

An example should help clarify this idea. Suppose that from a given 
location in the city, you pose the optimal control problem of finding the 
minimum distance path to your home. In this case the objective is path length 
(whIch now is to be minimized). Suppose you solve this problem and start out 
along the optimal path. As you travel, the state is your current position. From 
any intermediate position, you could formulate the new problem of finding the 
path that minimizes the distance home from that point. The result would be the 
same as the remaining path in the old solution. 

The Optimal Return Function 

The principle of optimality is captured in mathematical terms by introducing 
the concept of the optimal return function. It is possible to associate with a 
given state x at a given time (say t) a value Vex, t) which represents the 
maximum value of the objective that could be obtained starting at x at time t. 
This function is the optimal return function. 

For instance, in the case of finding the shortest path to your home, the 
optimal return function is the shortest distance from each pOint. [V(x, t) does 
not depend on t in this case.] 

As a more general example, consider the system 

x(t) = (x(t), o(t» .(11-55) 

with objective 

J = ",(x(T) + r l(x(t), oCt»~ dt (11-56) 
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x 

o T 

Figure 11.8. Definition of V\x, t). 

To define the optimal return function V(x, t) one considers the optimal control 
problem, starting at time t and state x, 

i(T) ==f(X(T), U(T» 

x(t)==x 

J == ",(x(T) + r l(x(T), U(T» dT 

(1l-57a) 

( 11-57b) 

(11-58) 

The value V(x, t) is the max unum possible value of J for this problem. The 
optimal return function, then, represents the objective value associated with a 
subproblem of the original problem, initiated at an intermediate time and from 
an arbitrary state. This is illustrated in Fig. 11.8. 

Discrete-Time Systems 

Let us apply the dynamic programming idea to the standard discrete-time 
optimal control problem defined by a system 

x(k + 1) = f(x(k), u(k» (11-59a) 

an initial condition 

x(O) =Xo (11-59b) 

control constraints 

U(t)E U (11-59c) 

and an objective 
N-t 

J == t/J(x(N) + L l(x(k), u(k» (11-59d) 
k~O 

For simplicity we take N as fixed. 
The corresponding subproblems are exactly the same, except that they are 
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mitiated at some k > 0 and at a specified value of x(k) = x. The optimal 
objective value corresponding to such a subproblem is defined as Vex, k). 

The simplest subproblem is the one starting at k = N with a specified x(N). 
In this problem the imtial point is already the terminal point. No inputs can be 
selected, and the optimal return is 

V(x(N), N) = ",(x(N) (11-60) 

To determine the other optimal return functions, we work backward a step 
at a time USing the pnnciple of optimality. Suppose the function vex, k + 1) has 
been calculated for a given k and all values of x. We wish to calculate the 
function Vex, k) for all values of x. Starting with x(k)=x, we can select a 
D(k) = D. This Yields an immediate reward of lex, D) derived from the summa­
tion term in the objective, and it will transfer that state to a value x(k + 1) = 
f(x, D) at the next period k + 1. However, once the state is known at k + 1, the 
remaining objective is determined by the previously evaluated optimal return 
function. Thus, for a given mitia! D, the total objective value IS 

J = lex, D) + V(f(x, D), k + 1) (11-61) 

assuming an optimal path from k + 1 to the terminal point N. The optimal 
return from x at k is, accordingly, the maximum of (11-61) with respect to all 
possible choices of D. Thus, 

Vex, k}=Max[l(x, D)+ V(f(x, D), k+ 1)] 
ueU 

(11-62) 

This is the fundamental recursive expression for Vex, k). It can be evaluated 
backward, starting with the condition 

Vex, N) = "'(x) 

Example (The Allocation Problem). Consider the allocation problem discus­
sed in Sect. 11.6 defined by 

x(k + 1) = x(k)- u(k) 

x(O)= A 

x(N) = 0 
N-l 

J = L U(k)I/2 
k-O 

The optimal return function vex, k) is the optimal value that can be 
obtained by allocating a total of x umts of resource among that last N - k 
project or actiVity terms. In thiS example, we may put Vex, N) = O. The first 
nontrivial term is really Vex, N -1). This is the best that can be done by 
allocating x to the last project. Clearly 

vex, N -1) = Xl/2 



11.7 Dynamic Programming 423 

For N -2 we have 

V(x, N - 2) = Max[u 1/2 + V(x - u, N -1)] 
u 

= Max[u l/2 + (x - U)1/2] 
u 

The best value of u is u = xl2 leading to 

V(x, N -2) = 5x 
For N-3 

V(x, N - 3) = Max[u 1/2 +J2 (x - U)1/2] 
u 

The best value of u is u = xl3 leading to 

V(x, N-3)=& 

It is clear that in general 

V(x, N-k)=fu 

and the best control is 

u(N - k) = x(N - k)/k 

At each stage, one detennines the amount of remalmng resource, and 
divides by the number of remaining stages. This detennines the allocation to 

the current stage. Thus, the procedure yields the solution in feedback form­
the control is given in tenns of the current state. In particular, for the original 
problem with x(O) = A, we obtain u (0) = AI N. 

Continuous Time 

Let us apply the dynamic programming idea to the continuous-time problem 
defined by 

i(t) =f(x(t), u(t» 

x(O)=Xo 

U(t)E U 

J = t{I(x(T) + r l(x(t), u(t» dt 

(11-63a) 

(1l-63b) 

(11-63c) 

(1l-63d) 

Let V(x, t) denote the optimal return function; that is, V(x, t) IS the best 
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value of the objective starting at x at time t. To develop a formula for Vex, t) 
we assume that the function is known for t+~, where ~>O is "small," and 
then work backward to t. 

Following the logic of the discrete-time case, we write 

Vex, t)=Max[l(x, u)~+ V(x+f(x, u)~, t+~)] 
ueU 

(11-64) 

To derive this relation, we have assumed that between times t and t + ~ a fixed 
u is applied. This yields an immediate contribution of (approximately) lex, u)~ 
from the integral term in the objective. In addition, it will transfer the state 
(approximately) to the point x+f(x, u)~ at time t+~. The optimal return is 
known from that point. 

To simplify expression (11-64) we let ~ -- O. Assuming that Vex, t) is a 
smooth function, we may write 

V(x+f(x. u)~, t+~)= vex, t)+ V.(x, t)~+ Vx(x, t)f(x, u)~ 

Substitutmg this in (11-64) we obtain 

(11-65) 

Vex, t)=Muax[l(x, u)~+ Vex, t)+ V,(x, t)~+ Vx(x, t)f(x, u)~] (11-66) 

Now vex, t) does not depend on u, so it can be taken outside the maximization, 
where It then cancels with the left-hand side. Then V,(x, t)~ can be taken 
outside the maximization, and all terms divided by ~. This yields the final 
result: 

0= V,(x, t)+Muax[l(x, u)+ Vx(x, t)f(x, u)] (11-67) 

There is also the associated boundary condition 

Vex, T) = t/J(x) (11-68) 

which is clearly the optimal value obtainable starting at the terminal time. 
Equation (11-67) is the Hamilton-Jacobl-Bellman equation. It is a partial 

differential equation for the optimal return function Vex, t). It is sometimes 
(but not very often) possible to solve this equation in analytic form. If so, it 
provides a complete solution to the whole family of optimal control problems 
defined by the system, the constraints, and the objective. In many situations, 
however, it must be solved numerically. 

A significant advantage of the dynamic programming approach is that it 
automatically determines the optimal control in feedback form. Once the 
optimal return funct:::m is known, the maximization with respect to u indicated 
in (11-67) yields the value of u that should be employed if the state is x at time 
t. 
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Example (Linear System and Quadratic Cost). Dynamic programming can be 
applied to the standard "linear-quadratic" problem of Sect. 11.5. Thus, let us 
consider 

x=Ax+Bu (11-69a) 

J =~ IT[xTQx + uTRu] dt (11-69b) 

The objective is to be minimized. The Hamilton-1acobi-Bellman equation is 
(the maximization now becomes minimization) 

V(x, D=O (11-70b) 

We hypothesize a solution of the form 

V(x, t) = ~x TP(t)X (11-71) 

where P(t) IS an n x n symmetric matrix. Substituting this into (11-70a) yields 

The minimum with respect to u is obtained by solving 

uTR+xTP(t)B = 0 

yielding 

u= -R-iBTP(t)x 

Substituting this into (11-72) and noting that 

xTP(t)Ax = ~xT(P(t)A+ ATP(t))x 

yields 

(11-72) 

(11-73) 

(11-74) 

(11-75) 

This will be identically true if P(t) is selected as the solution to the Riccati 
equation (11-42). Thus, tlus procedure leads to exactly the same solution as 
found in Sect. 11.5. 

*11.8 STABIUTY AND OPTIMAL CONTROL 

There is a strong relationship between some optimal control problems and 
stability theory. Often the optimal return function serves as a Liapunov 
function. 
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Consider the optimal control problem with fixed terminal state but free 
termmal time defined by 

x(t) = ((x(t), u(t)) 

U(t)E U 

x(T) =x 

J = r l(x(t), u(t)) dt 

(11-76a) 

(11-76b) 

(11-76c) 

(1l-76d) 

The initial state is given. In the present context it is assumed that the 
problem is to minimize 1. 

We assume that for all x I' x and any u E U 

lex, u»O (11-77) 

We assume also that for any mitial condition x(O) there is a unique solution to 
the problem having a finite objective value. Finally, we assume there is a iiE U 
such that I(x, ii) = O. 

This problem has an important time-invariant property. The optimal 
trajectory from a given state x to the endpoint x IS independent of the time to at 
which x(to) = x. That is, if x(O) = x leads to the optimal trajectory x(t) for t > 0 
with final time T, then the condition x(to) = x must lead to the trajectory 
x(t+to) with final time T+to. Delaying the starting time merely delays the 
whole solution. This follows because the system, the constraints, and the 
objective are independent of t. (The time to termination is really some 
unknown function of the initial state omy.) 

The optimal control is also a time-mvariant function of the state. That is, 
u(t) = u(x(t)). To see this, note that the initial control clearly depends only on 
the initial state, not on the mitial time; then reapply this argument at each 
instant to the remaining problem. We can assume that u(x) = ii. 

The system, when guided by the optimal control law, is governed by 

x(t)=f(x(t), u(x(t))) (11-78) 

This is a time-invariant (but most likely nonlinear) system. The point x is 
clearly an equilibrium point. Furthermore, given any initial state, this system 
eventually reaches X. Thus, the system exhibits strong stability properties by its 
very construction. 

Let Vex) be the optimal return function for this problem. That IS, Vex) is 
the minimum achievable value of the objective when the system is initiated at 
x. The optimal return function is also time invariant in this case. (Clearly the 
minimum value depends only on where the system is initiated-not when.) The 
functIOn Vex) satisfies 

(i) Vex) = 0 
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since no objective value is accrued if the system is initiated at x. Also, the 
function satisfies 

(ii) Vex) > 0 for x I' x 
Since I (x, u) > 0 for x I' x. Finally, since 

V(x(t)) = fl(X(T), U(X(T))) dT 
( 

we have 

VeX) = -I(x, u(x)) 

Therefore, Vex) satisfies 

(iii) Vex) < 0 for x I' x 
Thus, V is a Liapunov function. 

The net result of an optimal control problem IS to transform a system with 
inputs to a free system-since the Inputs are specified by the optimIZation. 
Thus, after the solution of an optimal control problem IS found, the behavior of 
the resulting system can be analyzed using the principles developed throughout 
this book. If the control is implemented in feedback form, then it may be 
possible to establish stability as indicated in the above special case. This again 
is an Instance of the theme of Chapter IO-that an appropriate Liapunov 
functIOn is often directly related to the origin of the system. In this case the 
connection is the objective function. 

11.9 PROBLEMS 

1. Time- Varymg Systems. The theory of optimal control can be easily extended to 
problems where the system equations, the constramts, and the objective functions 
are all explicit functions of time. ConSider the problem with 

i(t) = f(x(t), u(t), t) 

x(O) = Xo 

U(t)E U 

x,(T) = x, (T), i = 1,2, ... , r 

J = o{!(x(T), T)+ r l(x(t), u(t), t) dt 

wIth T either free or fixed. Show that by defimng an additional state variabie 
x..+i = t thIS problem can be converted to an equivalent problem without explicit t 

dependence. 



428 Optimal Control 

2. EqUIvalence of Problem Types. A continuous-time optimal control problem is 
sometimes characterized by the form of its objective function as follows: 

(i) J = "'(x(T» (problem of Mayer) 
(ii) J = Sci I(x(t), u(t» dt (problem of Lagrange) 
(iii) J = ",(x(T» + Sci I(x(t), u(t» dt (problem of Bolza) 

Show that these three types are equivalent. In particular, show that a problem of 
Bolza can be converted to a problem of Mayer and to a problem of Lagrange. 

3. Push Cart wIth FrictIon. Solve the push cart problem of Example 2, Sect. 11.2 with 
the dynamic equation modified to account for fnctIon. Specifically, replace the 
equation x=u by x=u-kx. 

4. Consider the following optimal control problem: 

i=x+u 

x(0)=5 

MinimIZe 

J= r (-2x +3u +au 2
) dt 

Use the maximum prinCiple to solve for the optimal control In the following two 
cases: 

(a) a =0 
(b) a = 1 

5. The Mintmum Prmclple. Consider an optimal control problem that IS In the form 
presented in Sect. 11.1, except that the objective J IS to be mmlmlzed. Show that 
the necessary conditions can be expressed exactly as usual but with the Hamiltonian 
beIng mInimized. 

6. Optimal Investment. Consider the problem of determinmg the optImal investment 
plan of a production facility. Assume that without any investment the productIon 
rate of the facility decreases at a rate proportional to the productIon rate at that 
tIme, but that investment tends to increase the production rate. Specifically, lettmg 
P be the production rate and I the investment rate, assume that 

P=-aP+yI, P(O)=Po 

where a> 0, 'Y > O. Assume that the facility operates until tIme T and is then 
salvaged at a pnce proportional to its production rate at that time. Correspondingly, 
the obJective IS 

J={3P(T)+ f[P(t)-I(t)]dt 
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where (3 > O. The investment rate is assumed to be positive and bounded above; 
that is, 

O$I(t)$[ 

(a) Write the necessary conditions for the above problem. 
(b) Show that if y is outside the interval spanned by a and 1/{3, the optimal policy 

IS constant for 0 $ t $ T [either l(t) = 0 or 1(t) = f]. 
(c) Show that if the optimal policy contains a switch, It occurs at 

t =T-.!.ln( l/a-(3) 
, aI/a -l/y 

(d) Show that if the facility were to operate from time T on without any further 
investment, it could produce a terminal revenue r P(t) dt = (l/a)P(T). 

(e) Show that if y>a and the salvage value is at ieast as hIgh as the terminai 
revenue (that is, (3;;" l/a), then the optunal policy IS to invest at the maximum 
rate for the entIre period. 

7. The Hamiltoman IS Constant. Suppose u is unconstramed and f and I do not 
depend explicitly on t. Let ~(t), x(t), u(t) satISfy the necessary conditIons for 
optimality (with any form of end-point conditions), then show that H(~(t), x(t), u(t» 
is constant for 0 $ t $ T. 

8. GeodeSICS. Let two points be given on the surface of a sphere of radius R. Show 
that the curve on the sphere connecting the points and having minimum arc iength 
is the arc of a great circle (that is, a portion of a CIrcle of radius R). 

9. Thrust Programmmg. A particle of fixed mass is acted on by a thrust force of 
constant magnitude. Assuming planar motIon, the equatIons of motIon are 

Ii =A cos 8, x=u 

Ii =A sin 8, y=v 

where 8 is the angle of the thrust. Show that to maximize some function of the 
terminal state, the angle of thrust is of the form 

at+b 
tan 8(t) =--~ 

ct+d 

for some constants a, b, c, d. 

10. The Brachistochrone Problem. A particle under the force of gravity slides without 
friction along a curve connecting twO fixed pomts. COrISider the probiem of 
determining the shape of the curve that will produce the minimum tune path 
between the two points. 

Energy is conserved since there is no friction. Thus, the magnitude of the 
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particle's velocity is V(y) = JY, where y is the vertical distance it has fallen. The 
equatIons of motion are 

x=V(y)cos8 

y = V(y)sm 8 

where 8 IS the mstantaneous angle of the curve. Find an equation relatIng 8 and y. 
Show that 8 is constant. 

* 11. Estate Plannmg. A man is consIdering his lifetime plan of investment and ex­
penditure. He has an mitial level of savings S and no income other than that which 
he obtains from investment at a fixed interest rate. His total capital x IS therefore 
governed by the equation 

x(t)=aX(t)-r(t) • 

where a> 0 and r denotes his rate of expenditure. His immediate enjoyment due to 
expenditure IS U(r), where U is hIS utiliTy functIOn. In his case U(r) = ,1/2 Future 
enjoyment, at tune t, is counted less tOday, at tune 0, by incorporatIon of a discount 
term e-~' Thus, he wIshes to maxunlZe 

subject to the termmal constramt x(T) = O. Usmg the maxunum prmclple find a 
complete solutIon for r(t). 

12. Catenary. A cable of length L hangs with Its two ends fixed at two supports 
separated by a horizontal distance T. The shape of the curve IS x(t). The potential 
energy of the hangmg cable is 

V=mg iTXv'l+:ectt 

where m is the mass per unit length. The cable hangs so as to minimize the 
potential energy SUbject to the condition that Its length IS fixed. 

L= fv'I+X 2 dt 

(a) Formulate the necessary conditions for this problem and reduce them to a 
single second-order differential equation m xU). 

*(b) Show that the cable hangs in the shape of a catenary 

(
t+b\ 

x(t)=acosh --)+d 
c i 

where a, b, c, d are constants depending on the parameters of the problem. 



13. nt-Conditioned Problem. Consider the problem 

i(t) = U(t)2 

X(O)=o, x(I)=O 

J=i'U(t)dt 

(a) What is the solution? 
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(b) Show that this solution does not satisfy the necessary conditIons of the max­
Imum principle with A.o = 1. 

(c) Show that the solution does satisfy the conditions with A.o = O. 

14. State Vanables Constramed to Lie on a Surface. In a generalization of the free 
terminal time problem One is given 

i = f(x, u) (system equation) 

x(O) = Xo (initial condition) 

J = ",[x(T)]+ rT 

l(x, u) dt (obJectIve) 
Jo 

cP[x(T)] = 0 (term mal constramts) 

where cP is r-dimenslOnal. The term mal constraints requIre the state vector to lie on 
the surface given by cP[x(D] = 0 at the unspecified final tlffie T. 

To find the necessary conditions for this problem, let v T be an r-dimenslOnal 
vector of (unknown) Lagrange multipliers associated with the constramt cP[x(T)] = 
O. By appending v T cP(x(T)] to the objective function one removes the constramt 
and the problem becomes 

maxlffiize j = ",[x(T)]+ v T cP[x(T)]+ r l(x, u) dt 

subject to x=f(x, u) 

x(O) = Xo 

Find a complete set of necessary conditions, Including a specification of the termmal 
constraints on the adjoint variables. Check your condition by verifyIng that for the 
constraints X; (T) = i;, i = 1,2, ... ,r the condition Yields the known results. 

* 15. It is desired to transfer the state vector of the system 

from Xl(O)=X2(O)=O to the line xl(T)+ 3x2(T) = 18 while minimIZIng 

J=~ru2dt 
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The final tune T is unspecified and u is unconstramed. Solve this problem by the 
method of Problem 14. 

16. Fish Haroestmg. ConsIder the problem of determinmg the optimal plan for 
harvestmg a crop of fish in a large lake. Let x(t) denote the number of fish in the 
lake, and let u(t) denote the intensity of harvesting activity. In the absence of 
harvesting x (t) grows exponentially according to x = ax, where a> O. The rate at 
which fish are caught when there is harvesting is r = {3u ,--,x -, for {3 > 0, 0 < Y < 1. 
(Thus, the rate increases as the mtensity increases or as there are more fish to be 
harvested.) There is a fixed umt pnce for the harvested crop and a fixed cost per 
unit of harvesting intensity. The problem is to maximize the total profit over the 
period 0::5 t::5 T. 

The system is 

and the Objective is 

x(t) '" ax(t)- r(t) 

x(O)=xo 

J= f[pr(t)-CU(t)]dt 

where p IS the unit price for the crop and C IS the umt cost for harvesting intenSIty. 
The objective represents the integral of the profit rate-that IS, the total profit. 

(a) WrIte the necessary conditions for this problem using the maximum principle. 
(b) Show that u can be written in feedback form as a linear function of x. 
(c) Find a differential equation for the adjoint variable, whIch does not depend on 

x or u. 
(d) Show that the optunal return functIon is of the form V(x, t) = A.(t)x +q(t). How 
IS q(t) determined? 

17. A Lmear-QuadratIc Problem. Consider the problem WIth system 

i(t) = A(t)x(t) + B(t)u(t) 

and Objective to be minimized 

with both x(O) = Xo and x(T) = X, fixed. The final time T is also fixed. The matnces 
Q(t) and R(t) are as in Sect. 11.5. Write the necessary conditiorlS for this problem. 
Assume a nOrlSingular transformation of the form 

x(t) = -P(t)~(t) +b(t) 

and find differential equatIons for P(t) and b(t). Find the control in terms of the 
state and P(t) and b(t). 

*18. OptImal &onomlc Growth. A standard aggregate model of the national economy 



IS based on the followmg three equations: 

Y=C+I 

K =-uK +1 

Y=F(K,L) 
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where Y is total economIc produclIon, C is consumption, I is investment, K IS 
capital, and L is labor. The first equation is the basic mcome identity. The second 
states that capital depreciates but can be replenished by inveslInent. The thlfd 
equation states that the level of production is a function of the capital and labor 
employed. If we assume that F exhibits constant returns to scale, then F(aK, aLl = 
aF(K, L) for a> O. Selecting a = l/L we find YIL = F(KIL, 1) = f(KIL). We may 
then express everything in a per-worker basis. We assume that L grows exponen­
tially according to L = pL. Then defimng y = YI L, c = C! L. and so forth, we obtain 

Y =C+I 

k =-rk+1 

y = f(k) 

where r = jL + p. By some easily manipulation this leads to 

whIch is the fundamental equation of growth. 
The society selects its growth trajectory by selecting c(t), the consumplIon per 

worker. If the society wishes to maxulllze its discounted aggregate utility, it should 
determine c(t) to maximize 

subject to 0:5 C :5 f(k), where k and c are related by the fundamental equallon. The 
function U(c) is the utiliry function of consumptIOn. 

(a) Using the maximum principle (without yet worrying about endpomt conditions) 
express the necessary conditions in terms of a pair of differentIal equations with 
variables k and c. 

(b) Find a speCIal solution corresponding to k = 0, c = O. Explain why thIS solutIon 
is called balanced growth. 

19. HOUSIng MaIntenance. Suppose that the quality of a rental house is charactenzed 
by a smgle variable x. The quality IS governed by the equation 

U(k)2 
x(k+l)=ax(k)+ u(k)---­

i-x(k) 

where O<a<l, u(k) is the mamtenance expenditure In period k, and i>O 
corresponds to "perfect" condition. The rent is proponlOnai to the quality. A 
landlord wishes to de term me the maintenance policy that maXUlllzes his discounted 
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net profit up to penod N, at which point he plans to sell the house. In particular, he 
Wishes to maximize 

N-I 

1= (3Ncx(N)+ I [px(k)-u(k)]{3" 
k-o 

where p > 0, 0 < 13 < 1. The quanllty cx(N) is the sales price at tune N. 

(a) Using the vanatlonal approach write the necessary conditIons and find an 
equallon for A.(k) that is mdependent of x(k) and u(k). 

(b) Show that u(k) can be expressed m feedback form. 
(c) Find the optimal return function (and show that it is linear m x). 
(d) What IS a "fair" pnce c? That is, what value of c would make the landlord 

indifferent to selling or retaining the house? 

20. Estate-Plannmg. Consider again the Slluallon of Problem 11. Assume (3 > a/2. 

(a) Formulate the Hamilton-Jacobi-Bellman equation for the problem. 
(b) Find a solution of the form Vex, I) = f(l)g(x) but which does not sallsfy the 

boundary conditIon. (Hint: Try g(x)=Axl/2
.) 

(c) Find a SUitable functIon tb(x, T) to append to the objective function so that the 
solution found m (b) IS correct. What IS the corresponding feedback control? 

21. Relatwn of DynamIc Programmmg to the MaxImum PrincIple. Let x(t), u(t) be an 
opllmal solutIon to the continuous-time COntrol problem 

x(l) = f(x(l), u(t» 

u(l) E U 

1= tb(x(T»+ r l(x(l), U(I» dl 

Let vex, I) be the optunal return function for the problem. Define ~(t)T = 
V.(x(l), t). Show that Mt), x(l), and U(I) satisfy the conditions of the maximum 
prinCiple. (Hint: dVJdl = V .. + V~X.) 

22. Slabiliry. Consider the optimal control problem (with I to be mmunized) 

X(I) = f(x(l), u(l)) 

1= r l(x(I), u(l» dl 

Assume that there is an i and ii such that 

f(i, ii) = 0, l(i, ii) = 0 

l(x, u) > 0 if i ;e x or u i' ii 

The funcllons f and I are smooth. 

(a) Assume also that there is a unique solution to the problem tor any initial 
condition. Show that i IS an equilibnum point of the closed-loop optunal 
system, and that it is asymptotically stable. 
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(b) Verify this result for 

x=x+u 

NOTES AND REFERENCES 

Sections 11.1-11.4. The order of development in these sections devIates substantially 
from the chronological order, since the maxImum princIple was a relatively late 
development. The caiculus of varIations was in mated WIth the study by the Bernoulli 
brothers in abOut 1696 of the brachrIstochrone problem. A standard book On the 
Classical approach, whIch includes an outline of the hIstory, is Bliss [B9]. Also see Bliss 
[BIO]. The classical approach was extended to problems wIlh mequality constraInts In 
about 1930, maInly by McShane [Mc2]. The classIcal formulation contains no explicIl 
control varIable, but the substitution x = u can be used to convert these problems to 
control form. The scope of application was considerably broadened and the notation 
greatly streamlined by the explicit Introduction of the control formulation, and by the 
general maximum princIple of Pontryagin see [P5]. For an early exposIlory discussIOn, 
see Rozonoer [R4], [R5], [R6]. A good Introduction to optImal cOntrOl IS Bryson and 
Ho [BI2]. The example on insect colonies IS adapted from Macevicz and Oster [MI]. 

Section 11.5. ThIS problem was OrIginally worked Out m detail by Kalman [K2]. 

Section 11.7. As discussed in the text, the Hamilton-Jacobi approach IS a traditIonal 
branch of the calculus of varIations. DynamIC programming, developed by Bellman [B5] 
(see also Bellman and Dreyfus [B7]), is now one of the most general and powerfUl 
approaches to dynamIC optimization. It IS applicable to a broad range of problem 
structures, induding several not discussed in this text. 

Section 11.8. For an early result along these lines see Kalman and Bertram [K4]. 

Section 11.9. For more examples slffiilar to those of these problems, and additional 
theory, see Bryson and Ho [BI2], Luenberger [L9], and Intriligator [11]. The special 
structure of Problems 16 and 19, which leads to linear feedback laws, was Introduced In 
Luenberger [Lll]. 
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