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Preface

This book is an outgrowth of a course developed at Stanford University over
the past five years. It is suitable as a self-contained textbook for second-level
undergraduates or for first-level graduate students in almost every field that
employs quantitative methods. As prerequisites, it is assumed that the student
may have had a first course in differential equations and a first course in linear
algebra or matrix analysis. These two subjects, however, are reviewed in
Chapters 2 and 3, insofar as they are required for later developments.

The objective of the book, simply stated, is to help one develop the ability
to analyze real dynamic phenomena and dynamic systems. This objective is
pursued through the presentation of three important aspects of dynamic
systems: (1) the theory, which explores properties of mathematical representa-
tions of dynamic systems, (2) example models, which demonstrate how concrete
situations can be translated into appropriate mathematical representations, and
(3) applications, which illustrate the kinds of questions that might be posed in a
given situation, and how theory can help resolve these questions. Although the
highest priority is, appropriately, given to the orderly presentation of the
theory, significant samples of all three of these essential ingredients are
contained in the book.

The organization of the book follows theoretical lines—as the chapter
titles indicate. The particular theoretical approach, or style, however, is a blend
of the traditional approach, as represented by many standard textbooks on
differential equations, and the modern state-space approach, now commonly
used as a setting for control theory. In part, this blend was selected so as to

vii



viii Preface

broaden the scope—to get the advantages of both approaches; and in part it
was dictated by the requirements of the applications presented. It is recog-
nized, however, that (as in every branch of mathematics) the root ideas of
dynamic systems transcend any particular mathematical framework used to
describe those ideas. Thus, although the theory in this book is presented within a
certain framework, it is the intent that what is taught about dynamic systems is
richer and less restrictive than the framework itself.

The content of the book is, of course, partly a reflection of personal taste,
but in large portion it was selected to directly relate to the primary objective of
developing the ability to analyze real systems, as stated earlier. The theoretical
material in Chapters 2 through 5 is quite standard, although in addition to
theory these chapters emphasize the relation between theory and analysis.
Dominant - eigenvector analysis is used as an extended illustration of this
relationship. Chapter 6 extends the classical material of linear systems to the
special and rich topic of positive systems. This chapter, perhaps more than any
other, demonstrates the intimate relation between theory and intuition. The
topic of Markov chains, in Chapter 7, has traditionally been treated most often
as a distinct subject. Nevertheless, although it does have some unique features,
a great deal of unity is achieved by regarding this topic as a branch of dynamic
system theory. Chapter 8 outlines the concepts of system control—from both
the traditional transform approach and the state-space approach. Chapters 9
and 10 treat nonlinear systems, with the Liapunov function concept serving to
unify both the theory and a wide assortment of applications. Finally, Chapter
11 surveys the exciting topic of optimal control—which represents an impor-
tant framework for problem formulation in many areas. Throughout all chap-
ters there is an assortment of examples that not only illustrate the theory but
have intrinsic value of their own. Although these models are abstractions of
reality, many of these are “classic” models that have stood the test of time
and have had great influence on scientific development. For developing
effectiveness in analysis, the study of these examples is as valuable as the
study of theory.

The book contains enough material for a full academic year course. There
is room, however, for substantial flexibility in developing a plan of study. By
omitting various sections, the book has been used at Stanford as the basis for a
six-month course. The chapter dependency chart shown below can be used to
plan suitable individual programs. As a further aid to this planning, difficult
sections of the book that are somewhat tangential to the main development are
designated by an asterisk™.

An important component of the book is the set of problems at the end of
the chapters. Some of these problems are exercises, which are more or less
straightforward applications of the techniques discussed in the chapter; some
are extensions of the theory; and some introduce new application areas. A few
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Chapter Dependency
Chart (A chapter de-
pends on all chapters
leading to it in the
chart.)

of each type should be attempted from each chapter. Especially difficult
problems are marked with an asterisk®.

The preparation of this book has been a long task that could not have
been completed without the help of many individuals. Many of the problems
and examples in the book were developed jointly with teaching assistants and
students. I wish to acknowledge the Department of Engineering-Economic
Systems at Stanford which provided the atmosphere and resources to make
this project possible. I wish to thank my family for their help, encour-
agement, and endurance. I wish to thank Lois Goularte who efficiently typed
the several drafts and helped organize many aspects of the project. Finally,
I wish to thank the scores of students, visitors, and colleagues who read primitive
versions of the manuscript and made many valuable individual suggestions.

Davip G. LUENBERGER
Stanford, California
January 1979
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chapter 1

Introduction

1.1 DYNAMIC PHENOMENA

The term dynamic refers to phenomena that produce time-changing
patterns, the characteristics of the pattern at one time being interrelated with
those at other times. The term is nearly synonymous with time-evolution or
pattern of change. It refers to the unfolding of events in a continuing evolution-
ary process.

Nearly all observed phenomena in our daily lives or in scientific investiga-
tion have important dynamic aspects. Specific examples may arise in (a) a
physical system, such as a traveling space vehicle, a home heating system, or in
the mining of a mineral deposit; (b) a social system, such as the movement
within an organizational hierarchy, the evolution of a tribal class system, or the
behavior of an economic structure; or (c) a life system, such as that of genetic
transference, ecological decay, or population growth. But while these examples
illustrate the pervasiveness of dynamic situations and indicate the potential
value of developing the facility for representing and analyzing dynamic be-
havior, it must be emphasized that the general concept of dynamics transcends
the particular origin or setting of the process.

Many dynamic systems can be understood and analyzed intuitively, with-
out resort to mathematics and without development of a general theory of
dynamics. Indeed, we often deal quite effectively with many simple dynamic
situations in our daily lives. However, in order to approach unfamiliar complex
situations efficiently, it is necessary to proceed systematically. Mathematics can
provide the required economy of language and conceptual framework.
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With this view, the term dynamics soon takes on somewhat of a dual
meanmg. It is, first, as stated earlier, a term for the time-evolutionary
phenomena in the world about us, and, second, it is a term for that part of
mathematical science that is used for the representation and analysis of such
phenomena. In the most profound sense the term refers simultaneously to both
aspects: the real, the abstract, and the interplay between them.

Although there are endless examples of interesting dynamic situations
anising in a spectrum of areas, the number of corresponding general forms for
mathematical representation is relatively small. Most commonly, dynamic
systems are represented mathematically in terms of either differential or differ-
ence equations. Indeed, this is so much the case that, in terms of pure
mathematical content, at least the elementary study of dynamics is almost
synonymous with the theory of differential and difference equations. It is these
equations that provide the structure for representing time linkages among
variables.

The use of either differential or difference equations to represent dynamic
behavior corresponds, respectively, to whether the behavior is viewed as
occurring 1n continuous or discrete time. Continuous time corresponds to our
usual conception, where time is regarded as a continuous variable and is often
viewed as flowing smoothly past us. In mathematical terms, continuous time of
this sort is quantified in terms of the continuum of real numbers. An arbitrary
value of this continuous time is usually denoted by the letter t Dynamic
behavior viewed in continuous time is usually described by differential equa-
tions, which relate the derivatives of a dynamic variable to its current value.

Discrete time consists of an ordered sequence of points rather than a
continuum. In terms of applications, it is convenient to introduce this kind of
time when events and consequences either occur or are accounted for only at
discrete time periods, such as daily, monthly, or yearly. When developing a
population model, for example, it may be convenient to work with yearly
population changes rather than continuous time changes, Discrete time is
usually labeled by simply indexing, in order, the discrete time points, starting at
a convenient reference point. Thus time corresponds to integers 0, 1, 2, and so
forth, and an arbitrary time point is usually denoted by the letter k. Accord-
ingly, dynamic behavior viewed in discrete time is usually described by equa-
tions relating the value of a variable at one time to the values at adjacent times.
Such equations are called difference equations.

1.2 MULTIVARIABLE SYSTEMS

The term system, as applied to general analysis, was originated as a recognition
that meaningful investigation of a particular phenomenon can often only be
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achieved by explicitly accounting for its environment. The particular variables
of interest are likely to represent simply one component of a complex,
consisting of perhaps several other components. Meaningful analysis must
consider the entire system and the relations among its components. Accordingly,
mathematical models of systems are likely to involve a large number of
interrelated variables—and this is emphasized by describing such situations as
multivariable systems. Some examples illustrating the pervasiveness and impor-
tance of multivariable phenomena arise in consideration of (a) the migration
patterns of population between various geographical areas, (b) the simultane-
ous interaction of various individuals in an economic system, or (c) the various
age groups in a growing population.

The ability to deal effectively with large numbers of interrelated variables
is one of the most important characteristics of mathematical system analysis. It
is necessary therefore to develop facility with techniques that help one clearly
think about and systematically manipulate large numbers of simuitaneous
relations. For one’s own thinking purposes, in order to understand the essential
elements of the situation, one must learn, first, to view the whole set of
relations as a unit, suppressing the details; and, second, to see the important
detailed interrelations when required. For purposes of manipulation, with the
primary objective of computation rather than furthering insight, one requires a
systematic and efficient representation.

There are two main methods for representing sets of interrelations. The
first 1s vector notation, which provides an efficient representation both for
computation and for theoretical development. By its very nature, vector
notation suppresses detail but allows for its retrieval when required. It is
therefore a convenient, effective, and practical language. Moreover, once a
situation is cast in this form, the entire array of theoretical results from linear
algebra is available for application. Thus, this language is also well matched to
mathematical theory.

The second technique for representing interrelations between variables is
by use of diagrams. In this approach the various components of a system are
represented by points or blocks, with connecting lines representing relations
between the corresponding components. This representation is exceedingly
helpful for visualization of essential structure in many complex situations;
however, it lacks the full analytical power of the vector method. It is for this
reason that, although both methods are developed in this book, primary
emphasis is placed on the vector approach.

Most situations that we investigate are both dynamic and multivariable.
They are, accordingly, characterized by several variables, each changing with
time and each linked through time to other variables. Indeed, this combination
of multivariable and time-evolutionary structure characterizes the setting of the
modern theory of dynamic systems.
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That most dynamic systems are both time-evolutionary and multivariable
implies something about the nature of the mathematics that forms the basis for
their analysis. The mathematical tools are essentially a combination of differen-
tial (or difference) equations and vector algebra. The differential (or difference)
equations provide the element of dynamics, and the vector algebra provides the
notation for multivariable representation. The combination and interplay be-
tween these two branches of mathematics provides the basic foundation for all
analysis in this book. It is for this reason that this introductory chapter is
followed first by a chapter on differential and difference equations and then by
a chapter on matrix algebra.

1.3 A CATALOG OF EXAMPLES

As in all areas of problem formulation and analysis, the process of passing from
a “real world” dynamic situation to a suitable abstraction in terms of a
mathematical model requires an expertise that is refined only through experi-
ence. In any given application there is generally no single “correct” model;
rather, the degree of detail, the emphasis, and the choice of model form are
subject to the discretionary choice of the analyst. There are, however, a
number of models that are considered ““classic” in that they are well-known and
generally accepted. These classic models serve an important role, not only as
models of the situation that they were originally intended to represent, but also
as examples of the degree of clarity and reality one should strive to achieve in
new situations. A proficient analyst usually possesses a large mental catalog of
these classic models that serve as valuable reference points—as well-founded
points of departure.

The examples in this section are in this sense all classic, and as such can
form the beginnings of a catalog for the reader. The catalog expands as one
works his way through succeeding chapters, and this growth of well-founded
examples with known properties should be one of the most important objec-
tives of one’s study. A diverse catalog enriches the process of model develop-
ment.

The first four examples are formulated in discrete time and are, accord-
ingly, defined by difference equations. The last two are defined in continuous
time and thus result in differential equations. It will be apparent from a study
of the examples that the choice to develop a continuous-time or a discrete-time
model of a specific phenomenon is somewhat arbitrary. The choice is usually
resolved on the basis of data availability, analytical tractability, established
convention in the application area, or simply personal preference.

Example 1 (Geometric Growth). A simple growth law, useful in a wide
assortment of situations (such as describing the increase in human or other
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Figure 1.1. Geometric growth.

populations, the growth of vegetation, accumulated publications in a scientific
field, consumption of raw materials, the accumulation of interest on a loan,
etc.), is the linear law described by the difference equation

x(k+1)=ax(k)

The value x(k) represents the magnitude of the variable (e.g., population) at
time instant k. The parameter a is a constant that determines the rate of
growth. For positive growth, the value of a must be greater than unity—then
each successive magnitude is a fixed factor larger than its predecessor.

If an initial magnitude is given, say x(0)=1, the successive values can be
found recursively. In particular, it is easy to see that x(1) = a, x(2) = @?, and, in
general, x(k)=a"* for k=0,1,2,.... A typical pattern of growth resulting
from this model i1s shown in Fig. 1.1.

The growth pattern resulting from this simple linear model is referred to as
geometric growth since the values grow as the terms of a geometric series. This
form of growth pattern has been found to agree closely with empirical data in
many situations, and there is often strong accompanying theoretical justifica-
tion for the model, at least over a range of values.

Example 2 (Cohort Population Model). For many purposes (particularly in
populations where the level of reproductive activity is nonuniform over a
normal lifetime) the simple growth model given above is inadequate for
comprehensive analysis of population change. More satisfactory models take
account of the age distribution within the population. The classical model of
this type is referred to as a cohort population model.

The population is divided into age groups (or cohorts) of equal age span,
say five years. That is, the first group consists of all those members of the
population between the ages of zero and five years, the second consists of those
between five and ten years, and so forth. The cohort model itself 1s a
discrete-time dynamic system with the duration of a single time period corres-
ponding to the basic cohort span (five years in our example). By assuming that
the male and female populations are identical in distribution, it is possible to
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simplify the model by considering only the female population. Let x;(k) be the
(female) population of the ith age group at time period k. The groups are
indexed sequentially from O through n, with 0 representing the lowest age
group and n the largest. To describe system behavior, it is only necessary to
describe how these numbers change during one time period.

First, aside from the possibility of death, which will be considered in a
moment, it is clear that during one time period the cohorts in the ith age group
simply move up to the (i+1)th age group. To account for the death rate of
individuals within a given age group, this upward progression is attenuated by a
survival factor. The net progression can be described by the simple equations

Xk +1)=Bx(k), i=0,1,...,n—1 (1-1)

where B; is the survival rate of the ith age group during one period. The factors
B: can be determined statistically from actuarial tables.

The only age group not determined by the equation above is xo(k + 1), the
group of individuals born during the last time period. They are offspring of the
population that existed in the previous time period. The number in this group
depends on the birth rate of each of the other cohort groups, and on how large
each of these groups was during the previous period. Specifically,

xo(k +1) = agxo(k) + a;x1(k) + azxy (k) + - - - + e x, (k) (1-2)

where «; is the birth rate of the ith age group (expressed in number of female
offspring per time period per member of age group i). The factor «; also can be
usually determined from statistical records.

Together Eqgs. (1-1) and (1-2) define the system equations, determining
how x;(k+1)’s are found from x;(k)’s. This is an excellent example of the
combination of dynamics and multivariable system structure. The population
system is most naturally visualized in terms of the variables representing the
population levels of the various cohort groups, and thus it is a multivariable
system. These variables are linked dynamically by simple difference equations,
and thus the whole can be regarded as a composite of difference equations and
multivariable structure.

Example 3 (National Economics). There are several simple models of national
economic dynamics.* We present one formulated in discrete time, where the
time between periods is usually taken as quarters of full years. At each time
period there are four variables that define the model. They are

Y(k) = National Income or National Product

C(k) = Consumption

I(k) = Investment

G(k) = Government Expenditure

* See the notes and references for Sect. 4.8, at the end of Chapter 4.
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The variable Y is defined to be the National Income: the total amount earned
during a period by all individuals in the economy. Alternatively, but equival-
ently, Y can be defined as the National Product: the total value of goods and
services produced in the economy during the period. Consumption C is the
total amount spent by individuals for goods and services. It is the total of every
individual’s expenditure. The Investment I is the total amount invested in the
period. Finally, G is the total amount spent by government during the period,
which is equal to the government’s current revenue. The basic national
accounting equation is

Y(k)= C(k)+I(k)+ G(k) (1-3)

From an income viewpoint, the equation states that total individual income
must be divided among consumption of goods and services, investment, or
payments to the government. Alternatively, from a national product viewpoint,
the total aggregate of goods and services produced must be divided among
individual consumption, investment, or government consumption.

In addition to this basic definitional equation, two relationships are intro-
duced that represent assumptions on the behavior of the economy. First, it is
assumed that consumption is a fixed fraction of national income. Thus,

C(k)=mY(k) (1-4)

for some m. The number m, which is restricted to the values 0 <m <1, is
referred to as the marginal propensity to consume. This equation assumes that
on the average individuals tend to consume a fixed portion of their income.

The second assumption concerning how the economy behaves relates to
the influence of investment. The general effect of investment is to increase the
productive capacity of the nation. Thus, present investment will increase
national income (or national product) in future years. Specifically, it is assumed
that the increase in national income is proportional to the level of investment.
Or,

Y(k+1)— Y(k)=rI(k) (1-5)

The constant r is the growth factor, and it is assumed that r>0.
The set of equations (1-3), (1-4), and (1-5) defines the operation of the
economy. Of the three equations, only the last is dynamic. The first two, (1-3)
and (1-4), are static, expressing relationships among the variables that hold at

every k. These two static equations can be used to eliminate two variables from
the model. Starting with

Y(k)= C(k)+ I(k)+ G(k)
substitution of (1-4) produces

Y(k)=mY(k)+I(k)+ G(k)
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Substitution of (1-5) then produces

Y(k) = mY(k) + e D= XK 12_ (k)

+ G(k)

Rearrangement leads to the final result:
Y(k+1)=[1+r(1-m)]Y(k)—rG(k) (1-6)

The quantity G(k) appears as an input to the system. If G(k) were held equal
to zero, the model would be identical to the first-order (geometric) growth
model discussed earlier.

Example 4 (Exponential Growth). The continuous-time version of the simple
first-order growth model (the analog of geometric growth) is defined by the
differential equation

dx(1)
2 -0
The growth parameter r can be any real value, but for (increasing) growth it
must be greater than zero. The scolution to the equation is found by writing it in
the form
L dx() _
x(t) dt !

Both sides can then be integrated with respect to t to produce
log x(t)=rt+log c=loge" +logc
where c is an arbitrary constant. Taking the antilog yields
x(t)=ce"
Finally, by setting ¢ =0, it is seen that x(0) = ¢, so the solution can be written
x(t) = x(0)e"

This is the equation of exponential growth. The solution is sketched for various
values of r in Fig. 1.2.

The pattern of solutions is similar to that of geometric growth shown in
Fig. 1.1 in Sect. 1.6. Indeed, a series of values from the continuous-time
solution at equally spaced time points make up a geometric growth pattern.

Example 5 (Newton’s Laws). A wealth of dynamic system examples is found in
mechanical systems governed by Newton’s laws. In fact, many of the general
techniques for dynamic system analysis were originally motivated by such
applications. As a simple example, consider motion in a single dimension—of,
say, a street car or cable car of mass M moving along a straight track. Suppose
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r>0

r<0

Figure 1.2. Exponential growth.

the position of the car along the track at time t is denoted by y(f), and the
force applied to the street car, parallel to the track, is denoted by u(t).
Newton’s second law says that force is equal to mass times acceleration, or,
mathematically,

d%y
u(t) = M"Jt—z‘

Therefore, the motion is defined by a second-order differential equation.

A more detailed model would, of course, have many other variables and
equations to account for spring action, rocking, and bouncing motion, and to
account for the fact that forces are applied only indirectly to the main bulk
through torque on the wheels or from a friction grip on a cable. The degree of
detail constructed into the model would depend on the use to which the model
were to be put.

Figure 1.3. Cable car.
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Example 6 (Goats and Wolves). Imagine an island populated primarily by
goats and wolves. The goats survive by eating the island vegetation. The wolves
survive by eating the goats.

The modeling of this kind of population system, referred to as a predator—
prey system, goes back to Volterra in response to the observation that
populations of species often oscillated. In our example, goats would first be
plentiful but wolves rare, and then wolves would be plentiful but goats rare.
Volterra described the situation in the following way.

Let

N, (#) = number of goats at time ¢
N, (1) = number of wolves at time ¢

The proposed model is then

APL0 - o)~ NN
2D — oo+ N ON (D)

where the constants a, b, ¢, and d are all positive.

This model, which is the archetype of predator—prey models, has a simple
biological interpretation. In the absence of wolves [N,(t) = 0], the goat popula-
tion is governed by simple exponential growth, with growth factor a. The goats
thrive on the island vegetation. In the absence of goats [N, () = 0], on the other
hand, the wolf population is governed by exponential decline, declining at a rate
—c. This interpretation accounts for the first terms on the right-hand side of the
differential equations.

When both goats and wolves are present on the island, there are encounters
between the two groups. Under an assumption of random movement, the
frequency of encounters is proportional to the product of the numbers in the
two populations. Each encounter decreases the goat population and increases
the wolf population. The effect of these encounters is accounted for by the
second terms 1n the differential equations.

1.4 THE STAGES OF DYNAMIC SYSTEM ANALYSIS

The principal objectives of an analysis of a dynamic system are as varied as the
range of possible application areas. Nevertheless, it is helpful to distinguish
four (often overlapping) stages of dynamic analysis: representation of
phenomena, generation of solutions, exploration of structural relations, and
control or modification. Most analyses emphasize one or two of these stages,
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with the others having been completed previously or lying beyond the reach of
current technique.

A recognition of these four stages helps motivate the assortment of
theoretical principles associated with the mathematics of dynamic systems, for
there is, naturally, great interplay between general theory and the analysis of
given situations. On the one hand, the objectives for an analysis are strongly
influenced by available theory, and, on the other hand, development of new
theory is often motivated by the desire to conduct deeper analyses.

Representation

One of the primary objectives of the use of mathematics in complex dynamic
systems is to obtain a mathematical representation of the system, and this 1s the
first stage of analysis. The process of obtaining the representation is often
referred to as modeling, and the final product a model. This stage is closely
related to the sciences, for the development of a suitable model amounts to the
employment or development of scientific theory. The theory employed in any
given model may be well-founded and generally accepted, or it may be based
only on one analyst’s hypothesized relationships. A complex modei will often
have both strong and weak components. But in any case the model description
is an encapsulation of a scientific theory.

Development of a meaningful representation of a complex system requires
more than just scientific knowledge. The end product is likely to be most
meaningful if one understands the theory of dynamic systems as well as the
relevant scientific theory. Only then is it possible to assess, at least in qualita-
tive terms, the dynamic significance of various assumptions, and thereby build a
model that behaves in a manner consistent with intuitive expectations.

Generation of Solutions

The most direct use of a dynamic model is the generation of a specific solution
to its describing equations. The resulting time pattern of the variables then can
be studied for various purposes.

A specific solution can sometimes be found in analytical form, but more
often it is necessary to generate specific solutions numericaily by use of a
calculator or digital computer—a process commonly referred to as simulation.
As an example of this direct use of a model, a large cohort model of a nation’s
population growth can be solved numerically to generate predictions of future
population levels, catalogued by age group, sex, and race. The results of such a
simulation might be useful for various planning problems. Likewise, a model of
the national economy can forecast future economic trends, thereby possibly
suggesting the appropriateness of various corrective policies. Or, in the context
of any situation, simulation might be used to test the reasonableness of a new
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model by verifying that a particular solution has the properties usually as-
sociated with the underlying phenomena.

It is of course rare that a single solution of a model is adequate for a
meaningful analysis. Every model really represents a collection of solutions,
each determined by different controlled inputs, different parameter values, and
different starting conditions. In the population system, for example, the specific
future population level is dependent on national immigration policy, on the
birth rates in future years, and on the assumed level of current
population. One may therefore find that it is necessary to generate solutions
corresponding to various combinations of assumptions in order to conduct a
meaningful analysis of probable future population.

As a general rule, the number of required solutions grows quickly with the
number of different parameters and inputs that must be varied independently.
Thus, although direct simulation is a flexible concept applicable to quite large
and complex systems where analysis is difficult, it is somewhat limited in its
capability to explore all ranges of input and parameter values.

Exploration of Structural Relations

Much of the theory of dynamic systems is motivated by a desire to go beyond
the stage of simply computing particular solutions of a model to the point of
establishing various structural relations as, say, between a certain parameter
and its influence on the solution. Such relations are often obtained indirectly
through the use of auxiliary concepts of analysis.

The payoff of this type of structural exploration manifests itself in two
important and complementary ways. First, it develops intuitive insight into
system behavior. With this insight, one is often able to determine the rough
outlines of the solution to a complex system almost by inspection, and, more
importantly, to foresee the nature of the effects of possible system modifica-
tions. But it is important to stress that the value of this insight goes well
beyond the mere approximation of a solution. Insight into system behavior is
reflected back, as an essential part of the creative process, to refinement of the
formulation of the original model. A model will be finally accepted only when
one is assured of its reasonableness—both in terms of its structure and in terms
of the behavior patterns it generates.

The second payoff of structural exploration is that it often enables one to
explicitly calculate relations that otherwise could be deduced only after exami-
nation of numerous particular solutions. For example, as is shown in Chapter 5,
the natural rate of growth of a cohort population model can be determined
directly from its various birth rate and survival rate coefficients, without
generating even a single specific growth pattern. This leads, for example, to a
specific relationship between changes in birth rates and changes in composite
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population growth. In a similar fashion, the stability of a complex economic
process of price adjustment can often be inferred from its structural form,
without generating solutions.

Most of the theoretical development in this book is aimed at revealing
relationships of this kind between structure and behavior. By learning this
theory we become more than just equation writers and equation solvers. Our
analysis is not limited in its application to a particular problem with particular
numerical constants, but instead is applicable to whole classes of models; and
results from one situation can be readily transferred to another.

Control or Modification

Although study of a particular dynamic situation is sometimes motivated by the
simple philosophic desire to understand the world and its phenomena, many
analyses have the explicit motivation of devising effective means for changing
a system so that its behavior pattern is in some way improved. The means for
affecting behavior can be described as being either system modification or
control. Modification refers to a change in the system, and hence in its
describing equation. This might be a change in various parameter values or the
introduction of new interconnective mechanisms. Examples of modification
are: a change in the birth rates of a population system, a change of marriage
rules in a class society, a change of forecasting procedure in an economic
system, a change of promotion rate in an organizational hierarchy, and so
forth. Control, on the other hand, generally implies a continuing activity
executed throughout the operation of the system. The Federal Reserve Board
controls the generation of new money in the economy on a continuing basis, a
farmer controls the development of his herd of cattle by controlling the amount
of grain they are fed, a pilot controls the behavior of his aircraft continuously,
and so forth.

Determination of a suitable medification or control strategy for a system
represents the fourth stage of analysis, and generally marks the conclusion of a
complete analysis cycle. However, at the completion of the best analyses, the
main outlines of the solution should be fairly intuitive—during the course of
analysis the intuition should be heightened to a level sufficient to accept the
conclusions. Mathematics serves as a language for organized thought, and
thought development, not as a machine for generating complexity. The
mathematics of dynamic systems is developed to expedite our requests for
detail when required, and to enhance our insight into the behavior of dynamic
phenomena we encounter in the world.



chapter 2.

Difference and
Differential Equations

Ordinary difference and differential equations are versatile tools of analysis.
They are excellent representations of many dynamic situations, and their
associated theory is rich enough to provide substance to one’s understanding.
These equations are defined in terms of a single dynamic variable (that is, a
single function of time) and therefore represent only a special case of more
general dynamic models. However, ordinary difference and differential equa-
tions are quite adequate for the study of many problems, and the associated
theory provides good background for more general multivariable theory. In
other words, both with respect to problem formulation and theoretical de-
velopment, difference and differential equations of a single variable provide an
important first step in developing techniques for the mathematical analysis of
dynamic phenomena.

2.1 DIFFERENCE EQUATIONS

Suppose there is defined a sequence of points, perhaps representing discrete
equally spaced time points, indexed by k. Suppose also that there is a value
y(k) (a real number) associated with each of these points. A difference equation
is an equation relating the value y(k), at point k, to values at other (usually
neighboring) points. A simple example is the equation

y(k +1) = ay(k) k=0,1,2,... (2-1)

Difference equations may, however, be much more complicated than this. For
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example,

ky(k+2)y(k+1)=y(k)y(k-1) k=0,1,2,... (2-2)

A difference equation is really a set of equations; one equation for each of the
index points k. Therefore, part of the specification of a difference equation is
the set of integers k for which it is to hold. In general, this set of integers must
be a sequence of successive values, of either finite or infinite duration, such as
k=0,1,2,3,..., Nor k=0, 1, 2, 3,.... Often, if the sequence is not ex-
plicitly stated, it is to be understood that either it is arbitrary or that it is the
most frequently used sequence k=0,1,2,3,.... In many cases the practical
context of the equation makes the appropriate range clear. In any event, once
the sequence is defined, the corresponding values of k can each be substituted
into the difference equation to obtain an explicit equation relating various y’s.

As an example, the simple difference equation (2-1) is equivalent to the
following (infinite) set of equations:

y(1) = ay(0)
y(2)=ay(1) (2-3)

y(3)=ay(2)

Difference equations, just as any set of equations, can be viewed in two
ways. If the values y(k) are known, or defined through some alternate
description, the difference equation represents a relation among the different
values. If, on the other hand, the values are not known, the difference equation
is viewed as an equation that can be solved for the unknown y(k) values. In
either interpretation, it is often useful to regard y(k) as a function on the index
set. The difference equation then defines a relationship satisfied by the func-
tion.

The term difference equation is used in order to reflect the fact that the
various time points in the equation slide along with the index k. That is, the
terms involve the unknowns y(k), y(k+1), y(k+2), y(k—1), y(k—2), and so
forth, rather than a mixture of fixed and sliding indices, such as, say, y(k),
y(k—1), y(1), and y(8). Indeed, since all indices-slide along with k, it is
possible by suitable (but generally tedious) manipulation to express a difference
equation in terms of differences A* of various orders, defined by A%(k) = y(k),
AM(k) = A%k +1)— A°(k), A%(k) = A'(k + 1)~ A'(k), and so forth. This difference
formulation arises naturally when a difference equation is defined as an
approximation to a differential equation, but in most cases the more direct
form is both more natural and easier to work with.

The order of a.difference equation is the ditference between the highest
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and lowest indices that appear in the equation. Thus (2-1) is first-order, and
(2-2) is third-order.

A difference equation is said to be linear if it has the form

a (K)y(k+n)+a,(K)y(k+n—1)+-- -+ a,(k)y(k +1) + ao(k)y(k) = g(k)

(2-4)
for some given functions g(k) and a,(k), i=0,1,2,...,n. The unknown
function y appears linearly in the equation. The q;(k)’s in these equations are
referred to as coefficients of the linear equation. If these coefficients do not
depend on k, the equation is said to have constant coefficients or to be
time-invariant. The function g(k) is variously called the forcing term, the
driving term, or simply the right-hand side.

Solutions

A solution of a difference equation is a function y(k) that reduces the equation
to an identity. For example, corresponding to the first-order equation

y(k+1)=ay(k)

the function y(k)=a* reduces the equation to an identity, since y(k +1)=
ak+l P aak = ay(k).

A solution to a difference equation can alternatively be viewed as a
sequence of numbers. Thus, for the equation above with a=1/2 a solution i1s
represented by the sequence 1, 1/2, 1/4, 1/8,.... The solution is easily
expressed in this case as (1/2)*. In general, however, there may not be a simple
representation, and it is therefore often preferable, in order to simplify
conceptualization, to view a solution as a sequence—stepping along with the
time index k. The two viewpoints of a solution as some (perhaps complicated)
function of k and as a sequence of numbers are, of course, equivalent.

Example 1. Consider the linear difference equation
(k+Dy(k+1)=ky(k)=1
for k=1,2,... A solution is
y(k)=1-1/k

To check this we note that y(k)=(k-1)/k, v(k+1)=k/(k+1), and thus,
{(k+Dyk+1)—ky(k)=k—(k-1)=1.
There are other solutions as well. Indeed, it is easily seen that
y(k)=1-A/k

is a solution for any constant A.
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Example 2. A nonlinear difference equation that arises in genetics (see Chapter
10) 1s

y(k)
k+1l)=——"—, k=0,1,2,...
yk+1) T+y(k)
It has the solution
A
YO =17 Ak

where A is an arbitrary constant.
Example 3. Consider the nonlinear difference equation
yk + 12+ y(k)*=—1

Since y(k) is defined as a real-valued function, the left-hand side can never be
less than zero; hence no solution can exist.

2.2 EXISTENCE AND UNIQUENESS OF SOLUTIONS

As with any set of equations, a difference equation need not necessarily possess
a solution, and if it does have a solution, the solution may not be unique. These
facts are illustrated by the examples in Sect. 2.1. We now turn to a general
examination of the existence and uniqueness questions.

Initial Conditions

One characteristic and essential feature of a difference equation is that, over a
finite interval of time, as indexed by k, there are more unknowns than
equations. For example, the first-order difference equation y(k+1)=2y(k)
when enumerated for two time periods k =0, 1 becomes

y(1)=2y(0)
y(2)=2y(1)

which is a system of two equations and three unknowns. Therefore, from the
elementary theory of equations, we expect that it may be necessary to assign a
value to one of the unknown variables in order to specify a unique solution. If
the difference equations were applied to a longer sequence of index values,
each new equation would add both one new equation and one new unknown.
Therefore, no matter how long the sequence, there would always be one more
unknown than equations.

In the more general situation where the difference equation for each fixed
k involves the value of y(k) at n+1 successive points, there are n more
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unknowns than equations in any finite set. This can be seen from the fact that
the first equation involves n+1 unknown variables, and again each additional
equation adds both one more unknown and one more equation—keeping the
surplus constant at n. This surplus allows the values of n variables to be
specified arbitrarily, and accordingly, there are n degrees of freedom in the
solution of a difference equation. These degrees of freedom show up in the
form of arbitrary constants in the expression for the general solution of the
equation.

In principle, the n arbitrary components of the solution can be specified in
various ways. However, it is most common, particularly in the context of
dynamic systems evolving forward in time, to specify the first n values of y(k);
that 1s, the values y(0), y(1),..., y(n—1). The corresponding specified values
are referred to as initial conditions. For many difference equations, specification
of a set of values for initial conditions leads directly to a corresponding unique
solution of the equation.

Example 1. The first-order difference equation
y(k+1)= ay(k)

corresponding to geometric growth, has the general solution y(k)= Ca*. Sub-
stituting k = 0, we see that y(0)= C, and the solution can be written in terms of
the initial condition as y(k)= y{0)a*.

Example 2. Consider the second-order difference equation
y(k+2)=y(k)

This equation can be regarded as applying separately to the even and the odd
indices k. Once y(0) is specified, the equation implies the same value of y(k)
for all even k’s, but the single value of y(k) for all odd k’s remains arbitrary.
Once y(1) is also specified, the entire sequence is determined. Thus, specifica-
tion of y(0) and y(1) determine a unique solution. The solution can be written

as 1= [POEYD] e [0y 0]

Existence and Uniqueness Theorem

Although, in general, difference equations may not possess solutions, most
difference equations encountered in applications do. Moreover, it is usually not
necessary to exhibit a solution in order to be assured of its existence, for the
very structure of the most common difference equations implies that a solution
exists.

As indicated above, even if existence is guaranteed, we do not expect that



2.3 A First-Order Equation 19

the solution to a difference equation will be unique. The solution must be
restricted further by specifying a set of initial conditions. The theorem proved
below 1s a formal statement of this fact. The assumption of suitable structure,
together with appropriately specified initial conditions, guarantees existence of
a unique solution.

The essential idea of the theorem is quite simple. It imposes a rather
modest assumption that allows the solution of a difference equation to be
computed forward recursively, starting with the given set of mitial conditions
and successively determining the values of the other unknowns. Stated another
way, the theorem imposes assumptions guaranteeing that the difference equa-
tion represents a truly dynamic system, which evolves forward in time.

Existence and Uniqueness Theorem. Let a difference equation of the form
y(k+my+flyle+n—1), y(k+n=2),...,y(k),k]=0  (2-5)

where f is an arbitrary real-valued function, be defined over a fimte or
infinite sequence of consecutive integer values of k (k= ko, kg +1, ko+2,.. ).
The equation has one and only one solution corresponding to each arbitrary
specification of the n initial values y(ko), y(ko+1),..., y(kg+n—1).

Proof. Suppose the values y(ky), y(ko+1),..., y(ko+ n—1) are specified. Then
the difference equation (2-5), with k = ko, can be solved uniquely for y(ko+ n)
simply by evaluating the function f. Then, once y(ko+n) is known, the
difference equation (2-5) with k = ko, + 1 can be solved for y(ko+ n+1), and so
forth for all consecutive values of k. I

It should be noted that no restrictions are placed on the real-valued
function f. The function can be highly nonlinear. The essential ingredient of the
result is that the y of leading index value can be determined from previous
values, and this leading index increases stepwise. A special class of difference

equations which satisfies the theorem’s requirements is the nth-order linear
difference equation

y{k+n)+a, (k)y(k+n—1)+-- - +ag(k)y(k) = g(k)

This equation conforms to (2-5), with the function f being just a sum of terms.

2.3 A FIRST-ORDER EQUATION
The first-order difference equation
y(k+1)=ay(k)+b (2-6)

arises in many important applications, and its analysis motivates much of the
general theory of difference equations. The equation is linear, has a constant
coefficient @, and a constant forcing term b.
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The general solution to this equation is easily deduced. The most
straightforward solution procedure is to determine successive values recur-
sively, as outlined in the previous section. Thus, we arbitrarily specify the value
of y at an initial point ko, say k=0, and specify y(0)=C. This leads
immediately to the following successive values:

yo=cC

y(1) = ay(0)+b=aC+b

y(2)=ay(1)+b=a’C+ab+b

y(3)=a*C+a’*b+ab+b
The general term is

y(k)=a*C+(a* "+ a* 2+ ---+a+1)b 2-7)
For a =1, the expression reduces simply to
y(k)=C+kb

For a# 1, the expression can be somewhat simplified by collapsing the geomet-
tic series, using

_qk
1+a+a2+~--~l,-a"'1=1 a
1-a
Therefore, the desired solution in closed-form is
C+kb, a=1
ky=9 . —a* 2-8
y{k) a*c+11_‘; b, a#1l 2-8)

This solution can be checked by substituting it into the original difference
equation (2-6).

When a# 1 another way of displaying the general solution (2-8) is some-
times more convenient:

b
=Pk 42
y(k)= Da" + i a
where D is an arbitrary constant. Clearly this new constant D is related to the
earlier constant C by D= C-[b/(1 - a)]. In this form, it is apparent that the
solution function is the sum of two elementary functions: the constant function
b/(1—a) and the geometric sequence Da*. )

In addition to acquiring familiarity with the analytic solutions to simple
difference equations, it is desirable that one be able to infer these solutions
intuitively. To begin developing this ability, consider the special case corres-
ponding to a =1 in (2-6). For this case, the equation states that the new value
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of y equals the old value plus the constant b. Therefore, successive y’s merely
accumulate successive additions of the constant b. The general solution is
clearly y(k)= C+ kb, where C is the initial value, y(0).

If a# 1 the difference equation multiplies the old value by the factor a
each period and adds the constant b. It is like storing up value and either
paying interest (if a>1) or deducting a tax (if 0<a<1). Clearly, an initial
amount C will, after k periods of such a process, be transformed to a*C. The
term b in the equation acts like additional deposits made each period. This
leads immediately to (2-7), and then by manipulation to (2-8). This interpreta-
tion of the equation is explored formally in Sect. 2.4 where the classical
amortization formula is derived.

24 CHAIN LETTERS AND AMORTIZATION

The examples presented here and in Sect. 2.5 illustrate how first-order differ-
ence equations arise in various situations, and how the general solution formula
provides a basis for analysis. Although the three examples all lead to the same
form of difference equation, they have three different analysis objectives. The
chain letter problem is simply one of computing the solution for a particular
value of k. The amortization problem is one of determining an appropriate
repayment level; it requires full use of the solution formula. The cobweb moedel
of economic interaction leads to an analysis of stability, relating solution
behavior to the model parameters.

Example 1 (The Chain Letter). Suppose you receive a chain letter that lists six
names and addresses. The letter asks you to send 10¢ to the first person on the
list. You are then to make up a new letter with the first name deleted and your
name added to the bottom of the list. You are instructed to send a copy of this
new letter to each of five friends. You are promised that within a few weeks
you will receive up to $1562.50.

Although chain letters are illegal, you might find it amusing to verify the
letter’s promise under the hypothesis that you and everyone else were to follow
the instructions, thus not “breaking the cham.” The spreading of these letters
can be formulated in terms of a difference equation.

Let us follow only those letters that derive from the letter you receive. Let
y(k) denote the number of letters in the kth generation, with the letter you
receive corresponding to y(0) = 1, the letters written by you corresponding to
y(1), the letters written by those you contact as y(2), and so forth. Each letter
written induces five letters in the next generation. Thus, the appropriate
relation between successive generations is

y(k+1)=5y(k)
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With the initial condition y(0)= 1, the solution is
y(k)= 5"

According to the letter’s instructions, all recipients of sixth generation
letters should send you 10¢. This would be 5°= 15,625 letters and $1562.50.

Example 2 (Interest and Amortization). As mentioned earlier, the accumula-
tion of bank deposits can be described by a first-order difference equation.
Suppose deposits are made at the end of each year and let y(k) denote the
amount in the account at the beginning of year k. If the bank pays no interest,
then the account is simply a storage mechanism governed by the equation

y(k+1)= y(k)+b(k)

where b(k) is the amount of deposit at the beginning of year k. If equal
deposits of amount b are made each year, the balance in the account will grow
linearly.

If the bank pays interest i, compounded annually, the account balance is
governed by

y(k+1)=(1+i)y(k)+b

since in addition to the simple holding action the bank pays ty(k) at the end of
the year as interest. If equal deposits are made, the account will grow according
to the solution of the first-order equation.

A similar structure arises when one borrows money at an interest rate i.
The total debt increases just as would the balance in an account paying that
interest. Amortization is a method for repaying an initial debt, including the
interest and original principal, by a series of payments (usually at equal
intervals and of equal magnitude). If a payment B is made at the end of each year
the total debt will satisfy the equation

d(k+1)=(1+i)d(k)— B

where d(0) = D, the initial debt. If it is desired to amortize the debt so that it is
paid off at the end of n years, it is necessary to select B so that d(n)=0.
The general solution developed in Sect. 2.3, implies

d(n)= D(1+i)"—11—_:§(%%
Setting d(n)=0 yields
Bl—_—(_l:-—i)’; D+ i)
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which simplifies to the standard amortization formula
iD

B=T"i+i

25 THE COBWEB MODEL

A classic dynamic model of supply and demand interaction 1s described by a
first-order dynamic equation. The model’s behavior can be conveniently dis-
played using the graph of supply and demand curves. The diagram resulting
from this analysis resembles a cobweb, and this is responsible for the model’s
name.

The cobweb model is concerned with a single commodity, say corn. The
demand d for the commodity depends on its price p through a function d(p).
Since the amount that consumers buy decreases as the price increases, d(p)
decreases as p increases. For purposes of this example, we assume that the
demand function is linear

d(p)=dy—ap

where d, and a are positive constants.

Likewise, the amount s of the commodity that will be supplied by
producers also depends on the price p through a function s(p). Usually, s(p)
increases as p increases. (For instance, a high price will induce farmers to plant
more corn.) We assume the specific linear form

s(p)=so+ bp

where b is positive (s, may have any value, but is usually negative). -

The two curves are shown together in Fig. 2.1a. In equilibrium the
demand must equal supply, which corresponds to the point where the two
curves intersect. The equilibrium price is attained, however, only after a series
of adjustments by consumers and producers. Each adjustment corresponds to
movement along the appropriate demand or supply curve. It 1s the dynamics of
this adjustment process that we wish to describe.

We assume that at period k there is a prevailing price p(k). The producer
bases his production in period k on this price. However, due to the time lag in
the production process (growing corn in our example) the resulting supply is
not available until the next period, k+1. When that supply is available, its
price will be determined by the demand function—the price will adjust so that
all of the available supply will be sold. This new price at k+ 1 is observed by
the producers who then, accordingly, initiate production for the next period,
and a new cycle begins.
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Figure 2.1. The cobweb model.
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The equation
s{k+ 1) = 5o+ bp(k)

expresses the fact that the supply at period k +1 is determined by the price at
period k through the supply function. Also,

d(k+1)=dy—ap(k+1)
formally states the fact that demand at period k +1 is determined by the price
at period k+1 through the demand function. Finally, imposing the condition
that at equilibrium supply must equal demand leads to the dynamic equation

Sot+ bp(k)= do—ap(k +1)
which can be restated in the standard form for difference equations

R __2 do— so
pll+ 1) == p(k) + =2

The equilibrium price can be found by setting p(k)= p(k + 1) leading to

_do"so
a+b

This price, if once established, would persist indefinitely. The question arises,
however, as to whether this price will ever be established or even whether over
successive periods the price will tend toward this equilibrium price, rather than
diverging away from it.

Using the general solution of the first-order equation we find

1—(~bla)

a+b (do—s0)

p(k)=(—bla)p(0)+
If b <a, it follows that as k — o the solution will tend toward the equilibrium
value since the (—b/a)* terms all go to zero. Equilibrium will be attained (at
least in the limit) no matter what the initial price. Obviously b<a is both
necessary and sufficient for this convergence property to hold.

Now for the cobweb interpretation. Let us trace the path of supply and
demand over successive periods on the graphs in Fig. 2.1a. The results are
shown in Figs. 2.1b and 2.1¢, which represent, respectively, a converging and a
diverging situation. The price p(0) determines the supply s, that will be
available in the next period. This supply determines the demand d, and hence
the price p;, and so forth. By this reasoning we are led to trace out a
rectangular spiral. If b<Cq, the spiral will converge inward. If b>a, it will
diverge outward.
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From this analysis we have deduced an important general conclusion for
the cobweb model of economic interaction. For equilibrium to be approached,
the slope b of the supply curve must be less than the slope a of the demand
curve. Said another way, for equilibrium to be attained, the producers must be
less sensitive to price changes than the consumers.

2.6 LINEAR DIFFERENCE EQUATIONS
As defined earlier, a difference equation is linear if it has the form
a,(k)y(k+n)+a,_(k)ylk+n—1)+---+a,(k)y(k+1)

+ag(k)y(k)=g(k) (2-9)

Linearity -makes it possible to explicitly examine the relationship between
various solutions to the difference equation, leading to a rather complete
theory. In some cases this theory actually leads to analytical expressions for
solutions, but even when such expressions are not obtainable, the theory of
linear equations provides important structural information.

The Homogeneous Equation

A basic concept underlying the general theory is that of a homogeneous linear
difference equation. The linear difference equation (2-9) is said to be
homogeneous if g(k)=0 for all k in the set over which the equation is defined.
That is, a linear equation is homogeneous if its forcing term (or right-hand side)
is zero. Equation-(2-9) is said to be nonhomogeneous if g(k)# 0 for some k.
Given a general nonhomogeneous linear difference equation, one associates
with it the corresponding homogeneous equation (2-10) obtained by setting
g(k) to be zero for all k:

a,(k)y(k+n)+a,_y(k)ylk+n—1+---+ay(k)ylk+ 1)+ ao(k)y(k)=0 (2-10)

This corresponding homogeneous equation plays a central role in specifying
solutions to the original nonhomogeneous equation.

Two observations indicate the importance of homogeneous equations for
the theory of linear equations. First, the difference between two solutions of
the nonhomogeneous. equation (2-9) must satisfy the homogeneous equation
(2-10). Second, if a solution to the homogeneous equation is added to a
solution to the nonhomogeneous equation, the result is also a solution to the
nonhomogeneous equation. These two observations (which are carefully jus-
tified in the proof below) are converses, and together they imply the following
theorem characterizing the structure of the solution set of a nonhomogeneous
equation.
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Theorem 1. Let 7(k) be a given solution to the linear difference equation (2-9).
Then the collection of all solutions to this equation is the collection of all
functions of the form y(k)= j(k)+ z(k), where z(k) is a solution of the
corresponding homogeneous equation (2-10).

Proof. Two things must be proved. First, it must be shown that if y(k) and (k)
are both solutions to the nonhomogeneous equation, then the difference
z(k)= y(k)—y(k) is a solution to the homogeneous equation. To prove this
note that if y(k) and y(k) are both solutions to (2-9), then

a, (K)y(k+n)+- - -+ag(k)y(k) = a,(k)j(k +n)+- - -+ ao(k)j(k)
Corresponding terms can be combined to yield
a, (k) y(k +n)=y(k+n)]+- - -+ ao(k)[y(k)— y(k)] =0

Therefore, the difference z(k)= y(k)— y(k) satisfies the homogeneous equa-
tion.

Second, it must be shown that (conversely) when any solution of the
homogeneous equation is added to a solution of the nonhomogeneous equa-
tion, the sum is also a solution of the nonhomogeneous equation. To prove
this, let y(k) and z(k) be solutions of the nonhomogeneous and homogeneous
equations, respectively. Let y(k)= §(k)+ z(k). It then follows that

a, (k) y(k+n)+ z(k+n)]+a,_(k)[yk+n—-1)+z(k +n—1)]
+ - Fag(k)y(k)+ z(k)]
=a,(k)j(k+n)+a,_(k)§(k+n—1)+- - - +ao(k)y(k)
+a,(kyztk+n)+a,_ (k)z(k+n—1)+- - -+ ao(k)z({k)
=g(k)+0
= g(k)
Therefore, y(k) = ¥(k)+ z(k) is a solution of the nonhomogeneous equation. I

Theorem 1 reveals the importance of homogeneous equations in defining
general solutions to the nonhomogeneous equations. This result is useful for
investigating some simple linear difference equations.

Example 1. Consider again (see Sect. 2.1) the linear difference equation
(k+1)y(k+1)—ky(k)=1

defined for k= 1. By inspection, one solution is (k)= 1. From Theorem 1 we
know that the general solution is the sum of this particular solution and the
general solution of the associated homogeneous equation

(k+1)z(k+1)—kz(k)=0
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The general solution to this homogeneous equation is z(k)= A/k, where A is
an arbitrary constant. Thus by Theorem 1, the general solution to the original
nonhomogeneous equation is

y(k)=1+A/k

One interpretation of Theorem 1 is that the solutions of homogeneous
equations provide the flexibility, or the degrees of freedom, in solutions to
linear difference equations. From this view it is natural to seek a characteriza-
tion of the solution set of a homogeneous equation. The remainder of this
section addresses this subject. The next theorem, a first result in this direction,
establishes the linearity of the solution set.

Theorem 2. If z,(k), z,(k),...,z,(k) are all solutions to the homogeneous
equation (2-10), then any linear combination of these m solutions

z(k) = ¢,z,(k) + ;2,(k) + - - - + CuZn (k)
where ¢, c,, ..., ¢, are arbitrary constants, is also a solution of (2-10).

Proof. For notational convenience let us consider the case m =2. The general
case can be proved in the same way.

If z(k)=c,z,(k)+ c,z,(k) is substituted into the left-hand side of (2-10),
one obtains

a,(k)c z\(k+n)+ cyz,(k + n)]+ a, (k) ¢,z (k +n—1)
+z(k+n—1)]+: - -+ ag(k)c,z (k) + ¢, 2,(k)]
This can be rewritten as
afa,(k)zy(k+n)+a,_,(k)z,(k + n—1)+- - - +a,(k)z,(k)}
+cfan(k)zy(k +n)+a, 1(k)za(k +n—1)+- - - +ag(k)z,(k)}
The expression is zero, since each of the two bracketed expressions is zero. I

Theorem 2 shows that a large collection of solutions to the homogeneous
equation can be derived from a few known solutions. This raises the rather
obvious question as to whether it is possible to find a special finite number of
solutions that can be used to generate all other solutions. This is the question
to which we now turn.

A Fundamental Set of Solutions

We focus on the important special case where a, (k) # 0. In that case, Eq. (2-10)
can be divided by a,(k) and, without loss of generality, it can be assumed that
the homogeneous equation under investigation is

z(k+n)+a,_y(k)z(k+n—1)+---+ag(k)z(k)=0 (2-11)
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for k=0,1,2,.... In this form the basic existence and uniqueness theorem of
Sect. 2.2 is applicable. There is, therefore, a natural correspondence between a
set of initial conditions and a solution.

Let us construct a special set of n different solutions Z,(k),
Z,(k), ..., Z,(k). Define Z,(k) to be the solution corresponding to the initial
conditions Z,(0)=1, z,(1)=0, Z,(2)=0,...,2z,(n-1)=0. And, in general,
let Z(k) be the solution corresponding to initial conditions that are all
zero except the (i —1)th, which equals one. This set of n distinct solutions is
called a fundamental set* It can be generated by solving the difference
equation n times, once for each of the special sets of initial conditions. These n
special solutions can be used, as described in the following theorem, to
construct all solutions to the homogeneous equation (2-11).

Theorem 3. If z(k) is any solution to the homogeneous equation (2-11), then
z(k) can be expressed in terms of the n fundamental solutions in the form

z(k)=c1Zy(k)+ c,Z(k)+- - -+ caZa(k)
for some constants ¢, C,, .. ., Co-

Proof. Let z(k) be an arbitrary solution to (2-11). Corresponding to its initial
values define

¢=z(i—1) i=1,2,...,n
Now consider the special solution y(k) defined by
y(k) = €, Zy(k) + ¢ Z5(k) + - - - + €, Z, (k)

It has the same n initial conditions as the original solution z(k), and therefore
it follows by the existence and uniqueness theorem of Sect. 2.2 that y(k)=

z(k). 1

At this point it is perhaps useful to point out that the approach presented
in this section represents the classical theory of difference equations. In this
approach it is recognized that the solution to a linear difference equation is in
general not unique. An nth-order equation has n degrees of freedom expres-
sed earlier by the fact that n arbitrary initial conditions can be specified.
Theorems 1 and 2 of this section provide an alternative characterization of this
nonuniqueness in terms of solutions to the homogeneous equation, which
themselves can be combined in arbitrary combinations. This classical approach,
focusing on the solution function as a unit, is rather algebraic in its viewpoint,
and somewhat suppresses the inherently dynamic character of difference equa-
tions. Essentially, the classic approach exploits linearity more than dynamic
structure.

* This is not the only fundamental set of solutions, but it is the most convenient. In general, as
explained more fully in Chapter 4, a fundamental set is any set of n linearly independent solutions.
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Theorem 3 bridges the gap between purely algebraic and dynamic view-
points. Each of the n free initial conditions defines a single degree of freedom
in the dynamic viewpoint and corresponds directly to a fundamental solution of
the homogeneous equation. Therefore, an arbitrary solution can be specified
either by assigning its n initial conditions or, equivalently, by assigning weights
to its component fundamental solutions.

Example 2. Consider the linear homogeneous difference equation
z(k+2)-2z(k+1)+z(k)=0

Since it is second order, we know that there will be two degrees of freedom in
its general solution. This freedom will be manifested by the fact that two initial
conditions can be specified, or by the fact that two fundamental solutions can
be found..

By inspection it is clear that the two functions
z,(k)=1 (k) =k

are both solutions. The two fundamental solutions can be easily found to be

Zy(k)=1-k

Z(k)=k
An arbitrary solution, therefore, has the form

z{k) = c; Z,(k) + ¢, Z,(k) = ¢, (1 = k) + c,k
=c+(c,— )k

or, since both ¢’s are arbitrary,

z(k)=c+dk

for arbitrary ¢ and d.

Linear Independence

Given a finite set of functions z,(k), z,(k),..., z,(k) defined for a set of
integers, say k=0,1,2,..., N, we say that these functions are linearly inde-
pendent if it is impossible to find a relation of the form

c1zy (k) + cz(k)+- - -+ 2, (k)= 0

valid for all k =0,1,2,..., N, except by setting c,=c,=¢c3=---=¢, =0.If it
is possible to find such a relation, the set of functions is said to be linearly
dependent.

An example of a linearly dependent set of functions for k=0,1,2,... is
the set z,(k) =1, zy(k)=2%, z;(k)=2%""—3 because 3z,(k)—2z,(k)+ z5(k)=
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0. An example of a linearly independent set of functions is the set z,(k)=1,
Z,(k)=2*, z5(k)=3" because if not all coefficients are zero, there 1s no linear
combination of these that is identically equal to zero.

The fundamental set of solutions z,(k), Z,(k), ..., Z,(k) corresponding to
the homogeneous difference equation (2-11) is a linearly independent set. This
is easy to see. Since Z;(k) is the only one in the set that is nonzero for k=1-1,
the only way to get c,Z,(k)+c Zo(k)+---+¢,Z,(k)=0 for k=i~1 is for
¢; =0. This argument is valid for all i=1,2,..., n. Therefore, the only linear
combination that is identically zero is the one having all zero coefficients.

An extension of Theorem 3 is that any set of n linearly independent
solutions of the homogeneous equation can play the role of the fundamental
solutions. This theorem is the final characterization of the solution set. The
details of the proof are not given here, since a more general version is
established in Chapter 4.

Theorem 4. Suppose z((k), z,(k), ..., z,{(k) is a linearly independent set of
solutions to the homogeneous equation (2-11). Then any solution z(k) to
(2.11) can be expressed as a linear combination

z(k)=c1zy (k) + caz5(k) + - - - + €z, (k)

for some constants ¢y, 5, ..., Cy.

Solution of Nonhomogeneous Equation

The theory of this section leads to a general method for finding a solution to a
nonhomogeneous equation of the form

ylk+n)+a,_(k)y(k+n—1)+--+aok)y(k)= g(k) (2-12)

which satisfies a given set of initial conditions. The procedure is to find (a) a set
of n linearly independent solutions to the corresponding homogeneous equa-
tion, and (b) a particular solution to the nonhomogeneous equation that does
not necessarily satisfy the given conditions. The solution to the nonhomogene-
ous equation is then modified by the addition of suitable linear combinations of
solutions to the homogeneous equation so that the initial conditions are
satisfied.

If §(k) is a particular solution and z,(k), z,(k),..., z,(k) are linearly
independent solutions to the corresponding homogeneous equation, then the
general solution of (2-12) is

y(k)=§(k)+ ¢ zi(k) + cazo(k) + - -+ + ¢, 2, (k)

If a different particular solution j(k) were used, it would simply change the
values of the ¢;’s in the general solution.
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Forward recursion methods can always be used to find a particular solution
to the nonhomogeneous equation and the linearly independent solutions to the
homogeneous equations. Analytical methods of finding these solutions are
available only for special cases.

2.7 LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

In the important case of linear difference equations with constant coefficients, it
is possible to find all solutions to the homogeneous equation. As shown in Sect.
2.6, these provide the means for calculating general solutions to an equation
with constant coefficients, once a particular solution is known.

The key result is that corresponding to every linear homogeneous equation
with constant coefficients, there is a geometric sequence that is a solution; that
is, there is a solution of the form z{(k)=A* for some suitable constant A.
Because of this fact, geometric sequences play a major role in the theory of
linear homogeneous equations with constant coefficients.

The Characteristic Equation

Consider the linear difference equation with constant coefficients

z(k+n)+a, 1z(k+n—1)+---+aez(k)=0 (2-13)
We hypothesize a solution of the form
z(k)=A* (2-14)

where A is a constant (not yet specified). Substituting this trial solution into
(2-13) yields

Aktrpg, ARl gk =0 (2-15)
and multiplying this by A~ yields
. A"+a, A" e tad+a,=0 (2-16)

which depends on A, but not on k. This last equation is called the characteristic
equation of the difference equation (2-13). It is clear from the above argument,
that A must satisfy the characteristic equation if z(k)=A* is to be a solution to
the difference equation (2-13). Conversely, since the above steps are reversible,
any A satisfying the characteristic equation provides a solution of the form
(2-14) to the difference equation. Accordingly, the role of the characteristic
equation is summarized by the following statement.

Theorem. A necessary and sufficient condition for the geometric sequence z(k) =
A* to be a solution to (2-13) is that the constant A satisfy the characteristic
equation (2-16).
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The left-hand side of the characteristic equation is a polynomial of degree
n—generally referred to as the characteristic polynomial. A root of this
polynomial is called a characteristic value. By the fundamental theorem of
algebra, it is known that such a polynomial can be factored into n first-degree
terms so that the polynomial has n roots (although the roots may not be
distinct, and some may be complex numbers). Therefore, there is always at
least one solution to the characteristic equation, and, accordingly, there is
always a geometric sequence that is a solution to the homogeneous difference
equation.

If there are n distinct solutions to the characteristic equation, each of them
provides a distinct geometric sequence that is a solution to the difference
equation. Moreover, it can be easily shown that these n solutions are linearly
independent; hence by linear combination they can be used to generate all
solutions to the homogeneous equation. Thus, for this case, the n distinct roots
of ‘the characteristic polynomial, when translated to geometric sequences,
provide a complete resolution to the problem of determining solutions to the
homogeneous equation.

In some cases the characteristic equation will have complex roots. How-
ever, because the coefficients of the characteristic polynomial are all real,
complex roots must occur in complex conjugate pairs. That is, if A\, =a+ib isa
root, then so is A, =a—ib. The expression c,A}+c,A% in the general solution
will be real-valued if ¢, and c, are selected as complex conjugates. Thus, even
though we are interested exclusively in real solutions to difference equations,
complex roots often are used in the construction of such solutions.

Example 1 (First-Order Equation). Consider the familiar first-order equation
y(k+1)=ay(k)

The characteristic equation corresponding to this (homogeneous) difference
equation is

A—a=0
which has the single solution A = a. Therefore, we expect solutions of the form
y(k)=Ca*

which we know to be correct from our earlier discussion of this equation.
Now consider the nonhomogeneous equation

y(k+1)=ay(k)+b

with a# 1. As a trial solution let us set y(k) = ¢ for some constant c. If this is to
be a solution, the equation

c=ac+b
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must hold. Thus,
_ b
1—a

corresponds to a particular solution. The general solutions are the sum of this
particular solution and solutions to the homogeneous equation. Therefore, the
general solution is

C

y(k)=Ca*+

1-a

which agrees with what was deduced by forward recursion in Sect. 2.3,

Example 2 (Second-Order Equation). Consider the difference equation
y(k +2)=3y(k+1)+2y(k)=13*

As a particular solution let us try y(k)=C3* Substitution of this into the
equation yields

C(3k+2_3 . 3k+1+2 . 3k)= 3k

Or, multiplying by 37%, (9—9+2)C = 1. Thus, this form of solution is suitable
provided

c=1
The corresponding characteristic equation is
AZ=31+2=0

which can be factored to yield
(A-2)(A-1)=0

The two roots, which are distinct, are A =1 and A = 2. Therefore, the general
solution to the original nonhomogeneous equation is

y(k) =43+ C,+ C,2*
Example 3 (Fibonacci Segnence). The series of numbers
1,1,2,3,5,8,13,21,...

1s called the Fibonacci sequence. Its terms are generated by the difference
equation

y(k+2)=y(k+1)+y(k)

together with the initial conditions y(1) = y(2) = 1. The direct way to calculate
the members of the sequence is recursively, summing the last two to get the
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next. Alternatively, an analytical expression for the general term can be found
once the characteristic equation is solved.
The characteristic equation corresponding to the Fibonacci sequence is

AZ-1-1=0

Its solutions are

A= >
Thus, the two values are
+5
A= 1445 =1.618
2
A2=—1—:—J—-5-_= -618

2

The number A, is known as the golden section ratio and was considered by
early Greeks to be the most aesthetic value for the ratio of two adjacent sides
of a rectangle.
In terms of these values, the solution to the Fibonacci difference equation
is
y(k)=Ar{+BA%

for some constants A and B. Substitution of the initial conditions for k =ﬂ and
k =2 yield, respectively, the equations

1=A\,+B),
1=Ax}+BA2

After a fair amount of algebra the solutions can be found to be
A=1/5
=-1¥5

Therefore, the expression for the general term is

k _{(1+~/§)k_(1—~/§)k]_1_
y(k)= ) ) Jg
It might be surprising that this expression, involving as it does several

appearances of Vs, generates a sequence composed entirely of integers.
Nevertheless, this is the solution.
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Example 4 (An Imaginary Root Example). Consider the second-order equation
y(k+2)+y(k)=0
with initial conditions y(0) =1, y(1)=0. The characteristic equation is
AZ+1=0
which has the roots A = =i (where i = v~1). The general solution is therefore
y(k) = c(i)* + co~i)*
Substitution of the given initial conditions yields the equations
a+tec=1
c (i) +c(~i)=0
Thus, ¢, = ¢, =3. The desired solution is
y(k)=2(D)* +3(-1)*
Although this solution involves imaginary numbers, the solution is actually

real for all values of k—the imaginary values all cancel. Indeed the solution is
the sequence 1,0,-1,0,1,0,....

Example 5 (Gambler’s Ruin). Consider a gambling situation involving two
players A and B. An example is roulette where, say, player A is a “guest” and
player B 1s the “house.” During any one play of the game there is a probability
p, 0<p<1, that player A wins a chip (or coin) from player B, and a
probability g=1—p that player B wins a chip from player A. The players
begin with initial holdings of a and b chips, respectively. A player wins overall
if he obtains all the chips. What is the probability that player A wins?

To solve this classic problem, consider the general situation where A has k
chips, 0<k=a+b, and B has a+b—k chips. Denote the probability under
these. circumstances that player A eventually wins by u(k). We can deduce a
difference equation for u(k).

Assuming player A has k chips, at the conclusion of the next piay he will
have either k+1 or k—1 chips, depending on whether he wins or loses that
play. The probabilities of eventually winning must therefore satisfy the differ-
ence equation

u(k) = pu(k + 1)+ qu(k — 1)
In addition we have the two auxiliary conditions
u(0)=0 u(a+b)=1

This difference equation for u(k) is linear, homogeneous, and has constant
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Figure 2.2. Roulette wheel.

coefficients. Its characteristic equation is
—pAZ+A—q=0

The corresponding roots are A =1, A = g/p. Accordingly, the general solution
(assuming q# p) is

u(k) = c, +cy(q/p)*
The two auxiliary conditions give the equations

O0=ci+c,

1=c,+c,(g/p)***

These can be solved for ¢, and ¢, and the result substituted into the general
solution. This leads to

1-(g/p)*
u(k)=———""113
=Ty
Finally, at the original position where player A has a chips, the corresponding
probability of winning is
- _1-(q/p)*
1-(g/p)***

As a specific example, suppose you play a roulette wheel that has 37
divisions: 18 are red, 18 are black, and one (number 0) is green (see Fig. 2.2).

u(a)
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If you bet on either red or black you win a sum equal to your bet if the
outcome is a division of that color. Otherwise you lose your bet.* If the house
bank has 1,000,000 francs and you have 100,000 francs, what is the chance
that you can “break the bank,” betting 1000 francs on red or black each spin
of the wheel?

In this case

182 ao100 b=1,000
37 7

Thus,

1-(19/18)'° _
u(100)='1—'_—((1—9/1-gm= 3.29-107%

2.8 DIFFERENTIAL EQUATIONS

Suppose there 1s an interval, say {,=t=t,, representing, perhaps, an interval of
continuous time. Suppose also that there is a value y(t) associated with each
point ¢ in that interval. Then y(r) is a function defined on the interval. A
differential equation is an equation connecting such a function and some of its
derivatives. A simple example is the equation

dy
ar Y

and a more complicated example is the equation

2
%Fy+[sin y]%=cos t
The order of a differential equation is the order of the highest derivative that
appears in the equation. Thus, the first example above is first order and the
second is second order.

As should be reasonably obvious, the mathematics of differential equa-
tions is in many respects analogous to that of difference equations. As a general
rule any concept for one of these mathematical structures has a direct analog
for the other, although in some cases the mechanics or the sharpness of
theoretical statements may vary when the concept 1s implemented in the two
structures. Thus, just as for difference equations, the concepts of 1nitial
conditions, linearity, constant coefficients, and homogeneous linear equations

* In many European casinos the actuai procedure following an outcome of green is quite different,
yielding more favorable odds to the players. See Problem 12.
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all are important for the study of differential equations. These are outlined 1n
the remainder of this chapter.

Quite analogously to the notions associated with difference equations, a
differential equation is said to be linear if 1t has the form

! . d
T o) e+ () P ady = 8(0)

a, (t)
for some functions a,(f), 1=0,1,2,...,n and g(t) defined on the given
interval. Again the a,(t)’s are referred to as coefficients and g(t) as the driving
term or right-hand side.

Initial Conditions

It 1s usually necessary, just as for difference equations, to specify a set of
auxiliary conditions in order to completely specify a unique solution to a
differential equation. For example, the first-order equation

dy_
dt -ay
has solutions of the form
y(t)= Ce™

where C is an arbitrary constant. In order to specify a unique soiution, the
value of this constant must be pinned down. One way to do this is to specify
the 1nitial value y(0), which then determines C by C= y(0).

In general, higher-order differential equations require that additionai
auxiliary conditions be specified. These additional conditions often are
specified by assigning initial conditions to the derivatives of the function as well
as assigning its initial value.

Example. Consider the second-order differential equation
d2
.._i. = 0
dt
This has a general solution of the form
y(t)= A+ Bt

where A and B are arbitrary constants. To specify a unique solution, two
auxiliary conditions must be given. If in this case y(0) and dy(0)/dt are
specified, then the constants A and B are determined by

=y(0)

dy(0)

B= dt
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Existence and Uniqueness Theorem

It is considerably more difficult to establish an existence proof for differential
equations than for difference equations. This is because, although the concept
of computing a solution by moving forward from a set of initial conditions is
usually still valid, the mechanics cannot be reduced to a finite recursion. In
order to avoid difficult mathematical developments, which are somewhat
tangential to our primary objectives, we simply state an existence result for
linear differential equations that is adequate for most of our needs.

Existence and Uniqueness ~ Theorem. Suppose the coefficients a,(1), i=
0,1,2,...,n~1and the function g(t) are continuous on aninterval 0 <t < T.
Then for any set of values b;, i=0,1,2,..., n—1, there is a unique solution
to the linear differential equation

d"y a1y .
T a,_,(t) T ao(n)y = g(t)
satisfying the initial conditions
y(0) = b,
dy(0) _
dt by
d""'y(0)
g e

This theorem allows us to think in terms of solving a differential
equation by moving forward in £. Once a set of initial conditions is specified,
one can imagine moving forward along the resulting solution to a value, say,
t;>0. At this point, even if the original initial conditions are forgotten, the n
corresponding conditions at t, serve to specify the unique solution for all t>t¢,.
In general, the conditions at any point determine the entire future behavior of
the solution. Therefore, one can consider the solution to be generated by
moving forward in time, forgetting the past, but keeping track of the current
derivatives that serve as the. newest initial conditions for the generation
process.

2.9 LINEAR DIFFERENTIAL EQUATIONS

Linear differential equations have an associated theory that is parallel to that of
linear difference equations. Again homogeneous equations play a central role.
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Homogeneous Equations
A linear differential equation

dny dn—ly
dt,.+a..~1(t);‘,.—_r+' - +ag(t)y=g(t) (2-17)

is said to be homogeneous if g(t)=0, otherwise it is nonhomogeneous. As-
sociated with a general linear equation (2-17) is the corresponding homogene-
ous equation obtained by setting g(f)=0. It is quite easy to establish the
following basic results.

-

Theorem 1. Let (1) be a given solution to the linear differential equanon (2-17).
Then the collection of all solutions to this equation is the collection of all
functions of the form y(t)=y(t)+ z(t), where z(t) is a solution to the
corresponding homogeneous equation.

Theorem 2. If z,(1), z,(t), ..., z,,(t) are all solutions to a linear homogeneous
differential equation, then any linear combination of these m solutions

z() = cizy()+ () ++ -+ cuza (1)
where ¢y, Ca, . . ., C, are arbitrary constants, 1s also a solution.
The interpretations and proofs of these results are virtually identical to
those for difference equations. The flexibility of solution to a differential
equation, as characterized earlier in terms of a set of arbitrary initial condi-

tions, can be interpreted in terms of the addition of arbitrary combinations of
solutions to the homogeneous equation. Again, this is the classical viewpoint.

Example 1 (First-Order Equation). Consider the first-order, constant coeffi-
cient equation

dy _
dt—ay+b

This equation arises in many applications, and serves as a building block for
more complex equations.
It can be seen by inspection that one solution is the constant function

y(ty=—bja
This solution is regarded as a parnicular solution and all ether soiutions can be

written as the sum of this solution and a solution to the corresponding
homogeneous equation
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This homogeneous equation has solutions of the form
z(t) = Ce®

where C 1s an arbitrary constant. Therefore, the general solution to the original
nonhomogeneous equation is

y(t) = Ce* - bla

Fundamental Solutions

Corresponding to the homogeneous equation

d"z da~~ 1z
dt" 1(t) = T+ Fag(t)z=0 (2-18)
it is natural to define the set of n fundamental solutions Z,(t), Z,(t), ..., Z,(¢)

by assigning the special initial conditions
d"f,-(O)*{l k=1—1
dr* 0 otherwise
(the zero-th derivative is defined to be the function itself). Thus, each of these

solutions has only one nonzero initial condition. It is then easy to prove the
analog of the earlier result for fundamental solutions to difference equations.

Theorem 3. If z(t) i1s any solution to the homogeneous equation (2-18), then z(t)
can be expressed in terms of the n fundamental solutions in the form

z()= c1Z1 (1) + 2 Z5() +- - - + ¢, Z,(8)
for some constants ¢, ¢y, ..., Cp

The concept of linear independence of functions extends to continuous as
well as discrete time. The functions y,(t), y2(t), ..., Y. (t) are linearly indepen-
dent on an interval t,=<t=<t, if there is no set of constants, c;, ¢, ..., Gn, at
least one of which is nonzero, for which ¢, y,(t)+ ¢, y,(£)+ -+ - + ¢, ym (£) =0 for
all ¢, t(p=t=1,.

Just as for difference equations, it can be shown that the n fundamental
solutions are linearly independent. Accordingly, the result of Theorem 3 can be
extended to an arbitrary set of n linearly independent solutions.

Theorem 4. Suppose z,(t), z,(t), . . ., z,(t) is a linearly independent set of sol-
utions to the homogeneous equation (2-18). Then any solution z(t) can be
expressed as a linear combination

z() =, Z,() + czo(t) +- - - + ¢z, (1)

for some constants cy, ¢y, . . ., Cnr
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The Characteristic Equation

For linear differential equations with constant coefficients, the corresponding
homogeneous equation can be solved by consideration of an associated charac-
teristic equation. This method is based on assuming that solutions of the form
z(t)=e" exist for some constant A. Substituting this expression into the
equation yields a polynomial equation for A. Thus, just as for difference
equations, the assumptions of linearity and time-invariance are jointly sufficient
to simplify greatly the solution of homogeneous differential equations.
To be specific, consider the homogeneous differential equation
ny n—1

%F-l-a""%—t::%-l-”'-l-a"z:o, (2-19)
Suppose there exists a solution of the form z(r)=e* for some constant A.
Substituting this into the equation yields

AteM+a, A TleM 4 -+ aget=0
Cancelling e** (since 1t is never zero) leads to the equation
A"+ A" i+ gg=0 (2-20)

This is the charactenistic equation. The left-hand side is the characterstic
polynomial, and any root of this polynomiai is a characteristic value.

It is clear that if z(f)=e is a solution to the homogeneous equation
(2-19), then A must satisfy the characteristic equation. Conversely, if A 15 a
value satisfying the characteristic equation, then one can trace backward
through the above argument to conclude that z(t)=e is a solution to the
differential equation. Therefore, if the roots of the characteristic polynomial
are distinct, n different solutions are obtained in this way, corresponding to the
n degrees of freedom inherent in the original equation.

Example 2 (First-order Eqnation). The first-order differential equation

has the characteristic equation
A—a=0

There is only one root, A = a, leading to the solution function
y()= Ce*

Example 3 (A Second-order Eqnation). Consider the homogeneous differential

equation
d’y _dy
— s .
dar® T dt 6y=0
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The corresponding characteristic equation is
A2-51+6=0

with roots A =2, 3. Therefore, two solutions to the differential equation are e*
and e* The general solution to the homogeneous differential equation is,
accordingly,

y(1)=c,e* +ce*

where ¢, and c, are arbitrary constants.

2.10 HARMONIC MOTION AND BEATS

To illustrate the analysis of linear time-invariant differential equations, let us
consider the important topic of pure oscillatory motion, referred to as harmonic
monon. This arises 1n many simple physical phenomena, including the motion
of a mass bouncing on a spring, small oscillations of a pendulum, small
vibrations of a violin string, oscillations of a tuned electric circuit, and some
atomic phenomena.
Such motion 1s defined by the second-order homogeneous differential
equation
! dy 2
—5+tw’y=0 (2-21)
dt
where o is a fixed positive constant. Figure 2.3 illustrates this for a mass on a
spring. If the spring exerts a force that is proportional to its displacement from
equilibrium, the displacement y will be governed by this equation. If the force
is —ky and the mass 1s m, then equating mass times acceleration to force yields
d?y

mae T
Thus, in this case w?=k/m.

4

k

=

Figure 2.3. Mass and spring.
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Figure 2.4, Harmonic motion.
The corresponding characteristic equation is
A+o?=0 (2-22)

This has solutions A ==+iw, where 1 =+v—1. Thus, the roots of the characteristic
polynomial are imaginary.
It follows that the general solution to (2-21) is

y{O)=cie +ce™ (2-23)

which in general 1s a complex value for each value of t. If, however, attention 1s
restricted to real-valued solutions, the values of ¢, and ¢, must be restricted so
that c,+c¢, is real, and c,—c, is imaginary. In this case the solution can be
expressed equivalently as

y(t) = A sin wt+ B cos ot

where A and B are arbitrary real constants. Indeed, the functions cos wt and
sin ot form a fundamental set of solutions to the homogeneous equation.

The pattern of solution is the pure harmonic motion illustrated in Fig. 2.4.
It consists of a pure sine or cosine wave. Variation of A and B acts only to
change the height of oscillations and the displacement of phase. It should be
noted that rather than specifying A and B it is possible to specify the initial
conditions y(0) and (dy/dt)(0) to determine a particular solution.

Beats

Suppose now that an oscillatory system is subjected to an additional force,
which itself varies harmonically but at a different frequency. This corresponds
(ruuylily) to motion of a child’s swing being pushed at other than the natural
raic, or to one violin string being subjected to the force of air motion generated
by ¢ vigorous vibrations of a nearby string. We seek to characterize the
general form of the induced vibration,
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The new equation of motion is the nonhomogeneous differential equation

2

d*y

i —+ w?y =sin wyt (2-24)

where w# wo. The magnitude of the external forcing term is set arbitrarily to
one.

As a trial solution it seems reasonable to set
y(t) = Csin wyt
Indeed, substituting this into the equation yields

—Cw} sin wot + Cw? sin wef = sin wet

which is satisfied if

Therefore, a particular solution 1s

1 :
y(t) =-—5— sin wyt (2-25)
0" —wg
The general solution is found simply by adding to this solution the general
solution of the homogeneous equation. Therefore, the general solution to the
whole equation is

1
y() = A sin wt+ B cos wt+-—5— sin wet (2-26)
W —wqg

If, for example, the system were known to be initially at rest, it is possible
to find A and B explicitly. Evaluating (2-26) at t =0 leads to B = 0. Evaluating
the derivative at ¢t =0 leads to

A= ~@o/® (2-27)

w’—wl
Therefore, the solution corresponding to zero initial conditions is

—wolw . 1 .
y(t) = —5—— sin ot +—5—— sin wot (2-28)
W —wq 0= wj

If 1t is assumed that w, is very close to w, the solution can be approximated as

1
y(t) = ——; [sin wot —sin wt]
—Wo
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.
e ale .
AL _
| N

Figure 2.5. Beats

which, using a standard trigonometric identity, can be expressed as

y()= [sin 3(wo— w)t][cos 3w + w)(]

2 2
w g

This solution is sketched in Fig. 2.5. It consists of an oscillation at nearly the
driving frequency wg, but modified by a “beat” frequency 3(wg— ).

2.11 PROBLEMS
1. Solve the nonlinear difference equation

y(k)
b+y(k)

by finding a change of variable that converts it to a linear difference equation.

yk+1)=

2. A bank offers 7% annual interest. What would . be the overall annual rate if the
7% interest were compounded quarterly?

3. Assuming y(0) = y(1)=y(2) =0, find, by direct numerical recursion, the vaiues of
y(k), k=3, 4,5, satisfying the difference equation

y(k+3)~y(k+2)+[y(k+ 1) +y(k)F=1
4. Consider the difference equation
(k+1)y(k+1)-k’y(k)=1

for k=1,2,.... Find the general solution.
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Intelligence Test Sequence. Find the second-order linear homogeneous difference
equation which generates the sequence

1,2,5,12,29,70, 169

What 1s the limiting ratio of consecutive terms?

. Binomial Coefficients. The sequence

0,1,3,6,10, 15,21, 28, 36,...

is a sequence of binomial coefficients. Show (assuming the first term corresponds to
k = 1) that this sequence can be generated in any of the following ways:

kt
(@) y(k) =m Oth order varying coefficient equation
R ) k+1 .
) y(k+1)= 1 y(k) 1st order, varying coefficient, homogeneous
(c) ytk+1D)=y(k)+k 1st order, constant-coefficient,

with varying input term

(d) y(k+1)=2y(k)—y(k—1) 2nd order, constant-coefficient,
+1 with constant input term

() y(k 1)=3y(k)-3y(k—1) 3rdorder homogeneous, constant-
+y(k—2) coefficient

Find the roots of the characteristic polynomial corresponding to part (e).
The Fibonacci numbers are Fi=1, F,=1, F;,=2, F,=3, and so forth. Given that

Fis=4,807,526,976 and F,,=7,778,742,049, what 1s the sum of the squares of the
first forty-eight Fibonacci numbers?

. Supply and Demand Equilibrium—The Effect of Price Prediction. Assume that the

demand for a product at me k 1s given by
d(k)=do—ap(k)

where d; and a are positive constants and p(k) is the price at time k. In the simpie
classical cobweb analysis the supply is assumed to be governed by the equation

s(k)=so+bp(k—1)

where s, and b are positive constants. Equating supply and demand leads to the
dynamuc equation for p(k), which is convergent if b <a.

The p(k—1) that appears in the supply equation can be considered to be an
estimate of the future price. In other words, when planning at time & — 1 how much
to supply at tume k, suppliers would reaily like to know what p(k) will be. Since
they cannot observe the actual price in advance, they do their planning on the basis
of p(k — 1), using it as an estimate of p(k). It 1s possible, however, to conceive more
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1 1 i
k-2 k-1 3

Figure 2.6. Price extrapolation.

10.

complex procedures for esumating the future price. One such procedure 1s to use

linear extrapolation, illustrated in Fig. 2.6. This yields p(k)=2p(k —1)~-p(k—2),

where p(k) denotes the estimate of p(k) based on previous prices. On the surface, 1t

would seem that this “more sophisticated” estimation scheme might be better.

(a) Using p(k) in place of p(k—1) mn the supply equation, equate supply and
demand to find a dynamic equation for p(k). (Answer should be in the form of a
difference equation.)

(b) For notational simplicity let ¢ = b/a. What are the characteristic values of the
equation?

. Information Theory. Imagmne an information transmission system that uses an

alphabet consisting of just two symbols—dot and dash. Messages are transmitted by
first encoding them nto a string of these symbols. Each symbol requires some
length of time for 1ts transmussion. Therefore, for a fixed total time duration only a
finite number of different message strings 1s possible. Let N, denote the number of
different message strings of duration r Shannon defined the capacity of the
transmission system (measured 1n bits per time umit) to be
C=lim 28~
-

If, for example, the dot and the dash each required one unit of time for transmis-
sion, it would follow that N,=2' and, accordingly,

lng 2

C=lim =1 bit per time umt

Suppose now that the dot requires one unit of time for transmission while the dash
requires two units.

(a) What are the values for N, and N,? (Note: Dot and dash are the only two
allowed symbols. A biank space is not allowed.)

(b) Justify the second-order difference equation N,=N,_; + N,_,.

(c) Find the capacity C of this transmission system.

Repeated Roots. Consider the second-order difference equation
y(k+2)-2ay(k+1)+a’y(k)=0

Its charactenistic polynomal has both roots equal to A =a.
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12.
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(a) Show that both
y(k)=a* and y(k)=ka*

are solutions.

(b) Find the solution to this equation that satisfies the auxiliary conditions y(0)=1
and y(1)=0.

Find the solution to the Gambler’s ruin problem in the important special case where
p =4q=3. [Hint: Use the result of problem 10.]

Monte Carlo Roulette. In many European casinos, including Monte Carlo, a bet on

red or black is not lost outright if the outcome is green. (See Example 5, Sect. 2.7.)

Instead, the bet 1s “imprisoned” and play continues until the ball lands on either

red or black. At that point the original bet is either returned to the player or lost,

depending on whether the outcome matches the color originally selected.

(a) Argue that an appropnate difference equation for a gambler’s ruin problem in
this case is

u(k)=8Buk —1)+Huk) +Hulk — 1)+ Bu(k +1)

Find the probability that you can ‘“‘break the bank at Monte Carlo” under the
conditions of Example 5, with this set of rules.

(b) Note that if the outcome is green, there is a probability of 3 that the bet will be
returned. This is, on the average, equivalent to a probability of 4 that twice the
bet will be returned. Therefore, an “equivalent” game, with the same odds, but
having the standard form of Example 5 is obtained by setting

p=S+im=% q=1-p
Show that although this equivalent game exactly matches the odds of Monte

Carlo roulette, its ruin probabilities are not exactly the same as those found in
part (a).

Discrete Queue. A small business receives orders for work, and services those
orders on a first-come, first-served basis. In any given hour of the day there 15 a
probability p (very small) that the business will receive an order. It almost never
receives two orders in one hour. If the company has at least one order in hand,
there is a probability q (also small, but q>p) that it will complete service on the
order within an hour. It never completes two orders in an hour. On the average,
how many orders will there be waiting for service to be completed? [Hint: Let u(n)
be the probability at any one time that the length of the line is n. Then neglecting
pq terms, argue that

u(n)=u(n—Dp+u(n+)g+u(n)l-p—q), n>0

u(0)= u(l)q + u(0)¥1-p), n=0

Use the subsidiary condition ¥ u(n)=1 to find the u(n)’s. The average number
of waiting orders 1s 3, nu(n).]
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14. Geometric Forcing Term. Consider a nonhomogeneous difference equation of the

15.

form
y(k+n)+a,_y(k+n—1)+---+agy(k)=br*

for k=0,1,2,.... Suppose that the roots Ay A;,...,A. of the charactenstic
polynomial are distinct and that r#A, i=1,2,...,n Show that the general
solution to this difference equation is

y(k)=cor* + c, A+ cahk++ - -+ c Ak

Show how to determine the constant co. (The term br* can be regarded as an input
or forcing term applied to the homogeneous difference equation. From this view-
pont, the above result shows that the response of a constant coefficient linear
difference equation to a geometric senes is a multiple of that series plus other
geometric senies defined by the homogeneous equation.)

Numencal Solution of Differennal Equations. Differential equations are often
solved numerically by a discrete forward recursion method. Consider the equation

dx
i f(x) (2-29)

where x 1s scalar-valued. To solve this equation numerically one considers the
sequence of discrete points 0, s, 2s, 3s,..., where s 1s a posiive “step length.”

The simplest solution technique 1s the Euler method, which calculates a
sequence of values according to the recursion

x(k +1)= x(k)+ sf[x(k)] (2-30)
This procedure can be viewed as simple linear extrapolation, over the step length s,
on the basis of x at = ks and 1ts derivative. See Fig. 2.7.
(a) Assuming f(x)= ax, for what range of values of the constant a does the solution
of (2-29) converge to zero, as {—>?
(b) For what range of vaiues of the constant a does the solution of (2-30) converge
to zero?

(c) For a fixed a <0, what is the largest steplength that guarantees convergence n
Euler’s method?

k+1
/)x +1)

] 1 L ¢

k—1 k k+1

Figure 2.7. Euler's method.
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Alternate Method. An alternate method for solving a differential equation (see
previous problem) 1s to calculate x(k +1) on the basis of a mgher-order extrapola-
tion. If x(k—1) and x(k) are known, then the function

_ Izt~ 1) = x(k) + flx(k)]s}
s2

g(

+ flx (k)] + x(k)

1s the quadratic function that satisfies

g(0) = x(k)
g'(0) = flx(k)]
g=s)=x(k—1)
The value g(s) would seem to be a good choice for x(k +1). See Fig. 2.8.

(a) Again assumng f(x)= ax for a fixed a <0, what condition must be satisfied by s
for this new method to be convergent?
(b) Show that no value of s> 0 satsfies these conditions.

’_aox(k*ﬂ)

Figure 2.8. Alternate method.

17.

Find the solutions to the following difference equations, for k =0,1,2,- - -

(@) (k+2)y(k+1)—(k+1)%y(k)=2k+3
y(0)=0.

(b) y(k+2)—5y(k +1)+6y(k)=0
y(0)=y(D)=1.

© ylk+2)+y(k+1)+yk)=0
y(0)=0,y(1)=1.

(d y(k+2)—2y(k+1)—4y(k)=0
y(0)=1, y(1)=0.

(e) y(k+2)—3y(k +1)+2y(k)=1
y(0)=2, y(1)=2.
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Radioactive Dating. Normal carbon has an atomic weight of 12. The radioisotope
C', with an atomic weight of 14, 1s produced continuously by cosmic radiation and
is distributed throughout the earth’s atmosphere in a form of carbon dioxide.
Carbon dioxide 1s absorbed by plants, these plants are eaten by ammals, and,
consequently, all living matter contains radioactive carbon. The 1sotope C™* is
unstable—by emitting an electron, it eventually disintegrates to nitrogen. Since at
death the carbon in plant and animal tissue is no longer replenished, the percentage
of C** 1n such tissue begins to decrease. It decreases exponentially with a half-life of
5685 years (that is, after 5685 years one half of the C'* atoms will have disinte-
grated).

Suppose charcoal from an ancient ruin produced a count of 1
disintegration/min/g on a geiger counter while living wood gave a count of 7.
Estimate the age of the ruins.

Newton Cooling. According to Newton’s law of cooling, an object of higher
temperature than its environment cools at a rate that is proportional to the
difference in temperature.

(a) A thermometer reading 70°F, which has been inside a house for a long time, 1s
taken outside. After one minute the thermometer reads 60°F; after two minutes
it reads 53°F. What is the outside temperature?

(b) Suppose you are served a hot cup of coffee and a small pitcher of cream (which
1s cold). You want to drink the coffee only after it coois to your favorite
temperature. If you wish to get the coffee to proper temperature as quickly as
possible, should you add the cream unmediately or should you wait awhile?

The equation

d’y 4dy 2

—S4+=—2+5y=0

a a7
is an example of an equi-dimensional differential equation. Find a set of linearly
independent solutions. [Hint: Try y(t) = t°.]

An Elementary Seismograph. A seismograph is an instrument that records sudden
ground movements. The sumplest kind of seismograph, measuring horizontai dis-
placement, consists of a mass attached to the instrument frame by a spring. The
frame moves when hit by a seismic wave, whereas the mass, 1solated by the spring,
inittally tends to remain still. A recording pen, attached to the mass, traces a
displacement in a direction opposite to the displacement of the frame. The mass will
of course soon begin to oscillate. In order to be able to faithfully record additional
seismic waves, it is therefore desirable to suppress the oscillation of the mass by the
addition of a damper (often consisting of a plunger in a viscous fluid). To be most
effective the setsmograph must have a proper combination of mass, spring, and
damper. (See Fig. 2.9.) If the force exerted by the spring on the mass is proportionai
to displacement x and in an opposite direction; the force exerted by the damper 1s
proportional to the velocity dx/dt and in an opposite direction; and the total force 1s
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—~———
Seismograph
frame

Figure 2.9. Elementary seismograph.

equal to mass nmes acceleration, the equation that describes the motion 1s

(a) Find the roots of the characteristic equation 1n terms of ¢, m, and k.

(b) Distinguish three cases, overdamping, underdamping, and critical damping
based on the reiationship among ¢, m, and k as implied by the solution of the
charactenstic equation. Find the general solutions for x(¢) for all three cases.

(c) Which case 1s best for a seismograph as described 1n this problem? Why?

22. Prove Theorems 1, 2, and 3 of Sect. 2.9.

NOTES AND REFERENCES

General. The elementary theones of difference and differential equations are so
similar that mastery of one essentially implies mastery of the other. However, because
there are many more texts on differential equations than difference equations, the
reader interested in supplemental material may find 1t most convement to study
differential equations. Some excellent popular general texts are Ramville and Bedient
[R1], Coddington [C5], Braun [B11], and Martin and Reissner [M2]. An excellent text
on difference equations, which includes many examples, is Goldberg.[G8]. See also
Miller [M5].

Section 2.5. The cobweb model is an important classic model. For further discussion
see Henderson and Quant [H2].

Section 2.7. The Gambler’s ruin problem (Example 5) 1s treated extensively in Feller
[F1]. 1t is also discussed further 1n Chapter 7 of this book.

Section 2.11. Information theory, as discussed briefly in Problem 9, is due to Shannon.
See Shannon and Weaver [S4].



chapter 3.

Linear Algebra

Linear algebra is a nearly indispensable tool for modern analysis. It provides
both a streamlined notation for problems with many variables and a powerful
format for the rich theory of linear analysis. This chapter is an introductory
account of that portion of linear algebra that is needed for a basic study of
dynamic systems. In particular, the first three sections of the chapter are
essential prerequisites for the next chapter, and the remaining sections are
prerequisites for later chapters. Other results from linear algebra that are
important in the analysis of dynamic systems are discussed 1n individual
sections in later portions of the text.

In some respects this chapter can be regarded as a kind of appendix on
linear algebra. As such it is suggested that the reader may wish to skim much
of the material, briefly reviewing that part which 1s familiar, and spending at
least some preliminary effort on the parts that are unfamiliar. Many of the
concepts presented here strictly from the viewpoint of linear algebra, particu-
lariy those related to eigenvectors, are reintroduced and elaborated on with
appiications in Chapter 5 in the context of dynamic systems. Accordingly,
murs readers will find it advantageous to study this material by referring back
and forth between the two chapters.
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ALGEBRAIC PROPERTIES

3.1 FUNDAMENTALS

Much of linear algebra is motivated by consideration of the general system of
m linear algebraic equations in n unknowns:

Xy +apX+t- - +ax, =y,
AnX1tanXt - taX, =y;

(3-1)

am1x1+am2x2+' ) .+amnxn =¥m

where the x;, j=1,2,...,n are the dependent variables, the y,, i=1,2,..., m
are the independent variables, and the a4, i=1,2,...,m, j=1,2,...,n are
constant coefficients. The values of the y;’s are generally considered to be
known (or given) and the x;’s are considered unknown.

Rather than write out this set in full detail, it is often convenient to use the
alternative summation representation

n
Y oax=y, i=1,2,...,m 3-2)
1=1
This simplifies the notation somewhat, but even it is a bit cumbersome.
A representation that is even more compact but still highly suggestive of the
original detailed form is the matrix notation

Ax=y (3-3)

For this simple notation to be meaningful, however, an associated machinery of
auxiliary definitions must be carefully developed.

Matrices and Vectors

In general a matrix is a rectangular array of elements. If the array has m rows
and n columns it is said to be an m X n (read m by n) matrix, or, equivalently,
the matrix is said to mXn dimensional. Matrices are generally denoted by
boldface capital letters, such as A. Elements of the matrix are denoted,
correspondingly, by lower case letters with subscripts to indicate the position of
the element. Thus, the element in the ith row and jth column of the matrix A is
denoted a;;. To highlight this correspondence, the matrix is sometimes written
A= [aij]-

A special class of matrices are those having m =1 or n =1, corresponding
to a matnx having either a single row or a single column. In either case, the
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corresponding matrix is said to be a vector. Vectors are usually denoted by
lower case boldface letters, and their elements have but a single subscript. A
vector of the form (with m=1)

a=[a1s a2’~'-’an]

is a row vector, while a vector of the form (with n=1)

b
b,

b,
is a column vector. Column vectors are used for most purposes, particularly in
systems of equations, but row vectors also arise naturally.

Special Matrices

For any dimension, one special matrix is the matrix whose elements are all
zero. Such a matrix is denoted by 0, and is called the zero matnix.

A matrix that has the same number of rows as columns (m =n) is said to
be square. Corresponding to a square nXn matrix A, the elements a;,
1=1,2,...,n are referred to as the diagonal elements of A. If all elements
except possibly the diagonal elements are zero, the square matrix A is said to
be diagonal. A very special case of a diagonal matrix is the n X n square matrix
whose elements are zero, except on the diagonal where they are equal to one.
This matrix (for any dimension n) is denoted 1, and called the identity matnix.
Thus,-

100 --- OW

610 ---0
l=

0 0

( 0 0 1]

Elementary Operations

Addition of Matrices. If two matrices A and B are of the same dimension, then
their sum can be defined and is a matrix C, also of the same dimension. If
A=[a;], B=[b,], and C={c;], where C=A-+B, then the elements of C are
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defined by c; = a; + b,. In other words, the addition is carried out element by
element.

Example 1. Suppose A and B are defined as the 2 X3 matrices

1 2 3 2 3 4
A'[O 4 2] B"[O -1 —4]

The sum C=A +B is the matrix

3 5 7
C_[o 3 —2]

It is easily verified that matrix addition satisfies the following two laws:

(i) A+B=B+A (commutative law)
(i) A+(B+C)=(A+B)+C (associative law)

Therefore, addition of matrices acts much like addition of numbers.

Scalar Multiplication. For any matrix A and any scalar (real or complex
number) o, the product aA is the matrix obtained by multiplying every
element of the matrix A by the factor a. In other words, if A=[a;], then
aA=[aag;].

Example 2. If A i1s the matrix

Then (using o =2)

2A—[4 2 o]
2 8 -2

Matrix Multiplication. Multiplication of two matrices to obtain a third is
perhaps the most important of the elementary operations. This is the operation
that neatly packages the bulky individual operations associated with defining
and manipulating systems of linear algebraic equations.

If A is an m X n matrix and B is an n X p matrix, the matrix C=AB is
defined as the m Xp matrix with elements

Cik = Z by (3-4)

=1
This definition of matrix multiplication has several important interpreta-
tions. First, it should be noted that it is consistent with the matrix notation for a
system of linear equations, as described by (3-1) and (3-3). Thus, for an mxn
matrix A and an n X1 matrix x (a column vector) the product Ax is the mx 1
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matrix (another column vector) y with ith element equal to

yi= Zl a;%; (3-5)
=

Second, the product C=AB when B has p columns can be viewed as A
multiplying each of these p columns separately. That is, the first column of C 1s
A times the first column of B, the second column of C is A times the second
column of B, and so forth. Thus, C = AB can be regarded as p separate column

relations.

Matrix multiplication satisfies

A(BC)=(AB)C (associative law)
However, it is not commutative. Thus, in general,

AB#BA

even if both products are defined.
Finally, it should be noted that if A is an arbitrary m X n matrix and I 1s
the m X m identity matrix, then IA = A.

Example 3. Suppose A and B are defined as

1 -3 3 0

-2 0
A=B i 3] B=|1 4 -1 0
2 1 2 1

Then the product C=AB is

[—1 -11 5 O]

9 1 11 3

Example 4 (Inner Prodnct). A special case of matrix multiplication is the dot
or inner product of two vectors. This is just the product of an n-dimensional
row vector, say r, and an n-dimensional column vector, say ¢. The product,
according to the general definition (3-4), is

re=) rc (3-6)

1=1
which is 1Xx1; that is, it is simply a scalar.
One common way that the inner product arises is when one vector
represents quantities and another represents corresponding unit prices. Thus,
grocery purchases of sugar, flour, and potatoes might be represented by the

vectors
X, .
x=| x; p=[p1 p» psl
X3
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where x,, x,, x3 are, respectively, the amounts of the three commodities
purchased, and p,, p,, p; are their respective unit prices. Then the product

3
Px=) px

=1
is the total purchase price of the groceries.

Transpose. Corresponding to an m Xn matrix A={a;], the transpose of A,
denoted A7, is defined as the n X m matrix AT ={[a[] with a] = a;. This means

that AT is defined by interchanging rows and columns in A. As an example,

[1 2 3]T~ ;
0 4 51~

3
An important property of transposes is the way they are transformed in

matrix multiplication. The reader can verify the rule (AB)" = BTAT. Thus, the
transpose of a product is equal to the product of the transposes in the reverse order.

Differentiation. If the elements of a matrix depend on a variable ¢, making the
elements functions rather than constants, it is possible to consider differentia-
tion of the matrix. Differentiation is simply defined by differentiating each
element of the matrix individually. Thus, if

wm LA O

ay(t) ap(t) - a, (0]
az(t) axp() -+ axln)

A=| . I 3-7)

i) amat) - amle).
then

dy()  apn(t) .- dl,.(l)_
Gy () axt) -~ @ (t)

dA(@®)_:,. .
o Als - (3-8)

(0 dpa®) o an() ]

Integration. In a manner analogous to differentiation, integration of a matrix
whose elements depend on a variable ¢ is defined in terms of the integrals of
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the individual elements. Thus for A(¢) as in (3-7), there is defined

—_

—J-a“(t)dt J-au(t)dt J-al,.(z)dt

IA(I) e J-an(.t) dt J-an(t) dt --- J-az,‘(.t) dt o)

'[am,('t)dt Iamz(t) dt .- J-a,,‘,,;t)dx“

An Example: The Leontief Economic Model

To illustrate the value of matrix notation in the description of complex systems,
consider an economy consisting of n industries, each of which produces a single
product. In order to produce its product, each industry must have on hand
various amounts of the products of other industries (and perhaps some of its
own). For example, the automotive industry purchases steel from the steel
industry and tires from the rubber industry, while the agriculture industry
purchases tractors from the automotive industry and fertilizers from the
chemical industry.

Assume that the basic production cycle is one year in duration, and that
for each unit of output from industry j, a; units of the product of industry : are
required. The constants a; are called technical coefficients. Denote by
Xy, X3, - - -, X, the amounts of the products produced in the n industries. Then
the amount of product i required for this pattern of production is

@i X1+ QpXp+ o+ B Xy

The total amount of product ¢ produced goes in part to help produce other
products as described above, and in part to consumers to meet therr demand.
Therefore, ‘

X =@ X+ Xyt + QX+ d, 1=1,2,...,n

where d; is the demand for product i. Thus, total production of a product
exceeds the actual consumer demand because of the use of the product in
various production processes.

Introducing the matrix A ={a;] and the column vectors x and d with
components x;, d,, i=1,2,...,n, respectively, these equations can be written
as

x=Ax+d
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or, equivalently, {I—Alx=d. This is a compact representation of the complex
interrelations among industries. The coefficient matrix is the sum of the identity
I and (—1)A. If a given set of consumer demands is specified (as for example by
a yearly forecast of demand) the required total level of production in each of
the industries can be found by solving for x.

3.2 DETERMINANTS

The determinant of a square matrix is a scalar value that arises naturally in the
solution of sets of linear equations. The determinant of the matrix

an Gy "t Qg

Az Gz " Gy,
A=|

an1 Gn2 " Gpn

is denoted |A], det A, or by simply enclosing the corresponding array with two
vertical lines, as

a5y Gy A1n
az, az G2n
an1 Gpa " Gan

The determinant of a simple 1% 1 matrix A =[a] is defined to be |A|=a.
The determinant of the general 2 X2 matrix is given by the formula

a1 Qrp
= Q4102 G120, : (3-10)

az; Qar;

Laplace’s Expansion

The value of the determinant corresponding to a general n X n matrix can be
found in terms of lower-order determinants through use of Laplace’s expan-
ston. This expansion is defined in terms of minors or cofactors of elements of
the matrix.

The minor M;; of the element a; in a matrix is the determinant of the array
formed by deleting the ith row and the jth column from the original matrix.
Thus, if A is an nXn matrix, each minor is an (n—1)X(n—1) determinant.
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The cofactor C; corresponding to the element a; of A is (—1)*'M;. Thus,
the cofactors are identical to the minors, except for a possible change in sign.
In terms of Laplace’s expansion, the determinant of a matrix A is

detA=) a,C; (3-11)

=1

for any i. Or, equivalently,

detA=) a,C; (3-12)
t=1
for any j. The first of these is called an expansion along the ith row, while the
second is an expansion along the jth column. All such expansions yieid
identical values.

A Laplace expansion expresses an nth-order determinant as a combina-
tion of (n—1)th-order determinants. Each of the required (a—1)th-order
determinants can itself be expressed, by a Laplace expansion, in terms of
(n—2)th-order determinants, and so on, all the way down to first order if
necessary. Therefore, this expansion together with the definition of the deter-
minant for 1X1 matrices 1s sufficient to determine the value of any
determinant.

Example 1. Let us evaluate the fourth-order determinant

detA=

N O O N
O = N O

N O -

3
1
1
4

Since the second row has two zeros, it is convenient to expand along that row.
Thus,

210 3 21
detA=(-1{0 2 1{+2i1 0 2
2 50 4 2 5

The first third-order determinant in this expression can be expanded along the
third column, and the second determinant can be expanded along the second
row, yielding

2

waeofy Yeoenf,

1
det A =(—-1)(-1) l; 5
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All these second-order determinants can be evaluated by use of (3-11),
resulting in

det A= (1)(8) + (—2)(8) + (—=4)(=2)
detA=0

Determinants of Triangular Matrices

A matrix A is said to be either upper or lower triangular if it has the form

a;n Gz 0 0 4y

0 ap - - - a

A= 0 0 Qi3 as,
L0 0 - -0 a,l

or

[a,;, 0 O 07

dy Q3 0- - -0

A=|as az a; - -0
Lan Qny ¢ 0 G ]

respectively. The determinant of a triangular matrix is equal to the product of
its diagonal elements. We can prove this easily using induction on the dimen-
sion n together with Laplace’s expansion. It is certainly true for n = 1. Suppose
then that it is true for n—1. Then, for the upper triangular case, expansion
down the first column yields det A = a,, M,;. (For the lower triangular case, we
would expand along the first row.) Using the induction hypothesis M, is the
product of its diagonal elements, and therefore,

det A=a,,82,03; " * Guy (3-13)

This stmple result is useful in numerous applications.

Products and Transposes

Two mmportant properties of determinants are the product formula
det (AB) = (det A)(det B) (3-14)
where A and B are both n X n square matrices, and the transpose rule

det (AT) =det (A) (3-15)
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Linear Combinations

Determinants can sometimes be evaluated easily by transforming them to
equivalent but simpler forms. This is accomplished by use of rules governing
the change in the value of a determinant when rows or columns of its array are
linearly combined. There are three basic row operations, and associated rules,
from which the effect of any linear combination of rows on the value of a
determinant can be deduced:

(a) If all elements in one row are multiplied by a constant ¢, the value of the
corresponding new determinant is ¢ times the original value.

(b) If two rows are interchanged, the value of the corresponding new deter-
minant is the negative of the original value.

(c¢) If any multiple of one row is added to another row, element by element,
the value of the determinant is unchanged.

Each of these rules can be easily deduced from Laplace’s expansion. Moreover,
since the determinant of the transpose of a matrix is equal to the determinant
of the matrix itself, as given by (3-15), three identical rules hold for column
operations.

Example 2. Using the above rules, the determinant of the matrix below 1s
manipulated step by step to triangular form, from which the value 1s easily
determined:

4 =2 0
A=|0 4 1
2 1 4
Multiply the first row by 3, yielding
2 —1 0
detA=2{0 4 1
2 1 4

Interchange the second and third rows:

2 -1 0
detA=(-2){2 1 4
0 1
Subtract the first row from the second
2 -1 0
detA=(-2){0 2 4
0 4 1




66 Linear Algebra

Subtract twice the second row from the third

2 -1 0
detA=(-2){10 2 4
0 0 -7

Therefore, det A =(—2)-2+2 - (=7) =56.

3.3 INVERSES AND THE FUNDAMENTAL LEMMA

Consider a square n X n matrix A. An n X n matrix A™! is said to be the inverse
of A if A™*A =1. That is, the product of A™" and A is the identity matrix.
Not every square matrix has an inverse. Indeed, as discussed below, a
square matrix has an inverse if and only if its determinant is nonzero. If the
determinant is zero the matrix is said to be singular, and no inverse exists.

Cofactor Formula for Inverses

Perhaps the simplest way to prove that an inverse exists if the determinant is
not zero is to display an explicit formula for the inverse. There is a simple
formula deriving from Cramer’s rule for solving sets of linear equations, which
1s expressed in terms of the cofactors of the matrix. Denoting the elements of
A~! by aj!, that is, A™"=[a;"], the formula is

A~ =[a7'1=11G] (3-16)

where A is the determinant of A. This formula can be verified using Laplace’s
expansion as follows. The ikth element of B=A""A is

e G
b(k ‘gl A a'k

For i=k we obtain from Laplace’s expansion [Eq. (3-12)] that b; =1, and
hence, the diagonal elements are all unity. To verify that the off-diagonal
elements are zero, for a given i and k, i# k, consider the matrix obtained from
A by setting the elements in the ith column all zero. Clearly the determinant
of this new matrix 1s zero. The value of this determinant is unchanged if we
now add the kth column to the ith column, forming the matrix A. However,

0=detA= ) 3,C;= 2 a,C;

1=1 1=1

This shows that b, =0. Thus, A'A =1L
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Example. Let us compute the inverse of the 3 X 3 matrix

1 0 2
A=|3 1 0
01 4
We find
A=10
1 0
co=ml; §|=4
30
3 1
C”_(l)‘o 1!”3
0 2
C"—(_l)ll 4"2
Cyp=4, Cyp=-1
Ca=-2, Cy=6, Cy;=1
Therefore,
1 4 -2
A“=—1-6 -12 4 6
3 -1 1

Properties of Inverses

67

If A is a square nonsingular matrix and A" is its inverse, then by definition

ATTA=1
It also can be verified that A acts as the inverse of A™'. That s,
AA =]

Finally, suppose A and B are nonsingular n X n matrices. Let us compute

(AB)™! in terms of the inverses of the individual matrices. We write

(AB)'=C
Then
I=ABC
A '=BC

B'A'=C
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Therefore,
(AB)'=B'A™! (3-17)

The general rule is: The inverse of a product of square matnces is equal to the
product of the inverses in the reverse order.

Homogeneous Linear Equations

One of the most fundamental results of linear algebra is concerned with the
existence of nonzero solutions to a set of linear homogeneous equations.
Because of its importance, we display this result as a formal lemma, and give a
complete proof. -

Fundamental Lemma. Let A be an nxn matnx. Then the homogeneous
equation

Ax=0 (3-18)

has a nonzero solution (a vector x whose components are not all zero) if and
only if the matrix A is singular.

Proof. The “only if” portion is quite simple. To see this suppose there is a
nonzero solution. If A were nonsingular, the equation could be multiplied
through by A™ yielding

A'Ax=0

or, equivalently, x=0, which is a contradiction. Therefore, there can be a
nonzero solution only if A is singular.

The “if”” portion is proved by induction on the dimension n. Certainly the
statement is true for n = 1. Suppose that it is true for n —1. When written out
in detail the set of equations has the form

anx;tapx,t+a,x, =0

anX, +aypX,+ - +azx, =0

Q1 X+ X+t a,, X, =0

Suppose the corresponding matrix A is singular. We must construct a nonzero
solution.

In this set of equations, if all the coefficients n the first column (the
coeflicients of the form a;,) are all zero, then the solution x, =1, x;, =0, i>1,
satisfies the conditions and the conclusion would follow. Otherwise at least one
such coefficient must be nonzero, and without loss of generality it may be
assumed that a,,; #0.
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By subtracting appropriate multiples of the first equation from the remain-
ing equations, one obtains the equivalent set of equations:

a5 x, +ay,x; +tapsxz+e - +a,,x,=0

{ a a { a
21 21 . 21 _
(422_ ay 2 )xz"' (‘123_ a3 2 )xs"" T (a2n - aln_a__>xn =0

11 11

as, a3y as _
(432“412 >x2+(a33_a13 X3+ | A3y a4, x, =0
\ an \ an a

an an Ay
(anz_alz—>x2+(ans_als_"'>x3+' e (avm —aln_—>xn =0
an a ag
In this form the system can be regarded as consisting of a first equation and a
(n—1)-dimensional system in the varniables x,, x1, ..., X,.

The determinant of the entire transformed n-dimensional set 1s exactly
equal to the determinant of the original set, since the transformed set was
obtained by subtracting multiples of the first row. Laplace’s expansion down
the first column, however, shows that the value of the determinant of the
transformed set is just a;; times the determinant of the n—1 dimensional
system. Since the n X n original determinant is assumed to be zero and a,; #0,
it follows that the determinant of the (n — 1)-dimensional system 1s zero. By the
induction hypothesis this smaller system has a nonzero solution x,, x3, ..., x,.
If this solution is substituted into the very first equation, a corresponding
value for x, can be found. The resulting set of n values x, x,,..., x, then
comprises a nonzero solution to the complete n-dimensional system. I

GEOMETRIC PROPERTIES

3.4 VECTOR SPACE

For purposes of manipulation, the formalism of matrix algebra, as outlined in
the first three sections of this chapter, is extremely valuable. It simultaneously
provides both a compact notational framework and a set of systematic proce-
dures for what might otherwise be complicated operations.

For purposes of conceptualization, however, to most effectively explore
new ideas related to multivariable systems, it is useful to take yet another step
away from detail. The appropriate step is to introduce the concept of vector
space where vectors are regarded simply as elements in a space, rather than as
special one-dimensional arrays of coefficients.
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Define the space E™ as the set of all vectors of the form

where each x; is a scalar (real or complex number). Vectors of this form can be
visualized as points in n-dimensional space or as directed lines emanating from
the origin, and indeed this vector space is equal to what is generally referred to
as (complex) n-dimensional space.

If the coordinate or basis vectors

17 0] (07
0 1 0
0 0 0
“1= . u2= R PP u"= .
.0 Lo_ 1]

are defined, a given vector x can be thought of as being constructed from these
vectors. The components of x are the amounts of the various n coordinate
vectors that comprise x. This is illustrated in Fig. 3.1a. For purposes of
discussion and conceptualization, however, it is not really necessary to continu-
ally think about the coordinates and the components, for they clutter up our
visualization. Instead, one imagines the vector simply as an element in the
space, as illustrated in Fig. 3.1b. Furthermore, vectors can be added together,
or multiplied by a constant without explicit reference to the components, as

uz

o x

Uy

x‘
(a) (b}

Figure 3.1. (a) Coordinate representation, {b) Vector space
representation.
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o=

(b)

(a)

Figure 3.2. (a) Vector addition. {b) Scalar multiplication.

illustrated in Figs. 3.2a and 3.2b. In this view, a vector has a meaning, and can
be conceptually manipulated, quite apart from its representation in terms of
the coordinate system.

Linear Independence

A set of vectors 2, 9,,. .., 4, is said to be linearly dependent if there 1s a set of
numbers a,, a,, a,, ..., a,, not all zero, such that

o +aa+ - +a,a, =0

Visually, this means that two vectors are linearly dependent if they point n the
same direction (or in directly opposite directions), three vectors are linearly
dependent if they lie in a common plane passing through the origin. A set of
vectors is linearly independent if it is not linearly dependent. In general, to
be linearly independent m vectors must “fill out” m dimensions.

In E" there is a sumple test based on evaluating a determunant to check
whether n given vectors are linearly independent. The validity of the test rests
on the Fundamental Lemma for linear homogeneous equations.

Suppose

ag a2 A1n
a ax azn
a= 2= A= ’
A1 a2 2%
are n given vectors. Stacking them side by side, one can form an nXn matnx
A. To test the linear independence of the vectors a, i=1,2,...,n, one

evaluates the determinant of A, as spelled out below.

Theorem. The vectors a,,2,, . .., 2, compnsing the columns of the n X n matrix
A are linearly independent if and only if the matrix A is nonsingular.
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Proof. A linear combination of the vectors a;,a,,...,a, with respective
weights x,,x,,..., X, can be represented as Ax. By the Fundamental
Lemma, Sect. 3.3, there is a nonzero solution to Ax=0 if and only if A is
singular. I

Rank

Suppose now that A is an arbitrary m X n matrix. The rank of A is the number
of linearly independent columns in A.

An important result (which we do not prove) is that the rank of AT is
equal to the rank of A. That means that the number of linearly independent
rows of A is the same as the number of linearly independent columns. It is
therefore apparent that the rank of an m X n matrix A can be at most equal to
the smaller of the two integers m and n. Thus, a matrix with two rows can have
rank at most equal to 2, no matter how many columns 1t has.

Basis

A basis for E" is any set of n linearly independent vectors. The standard basis
1s the set of vectors u,, u,, ..., u, defined earlier. An arbitrary vector can be
represented as a linear combination of basis vectors. In particular, as is
familiar, a vector

X1

can be expressed in terms of the standard basis as
X=x,u; + X0+ +x,0, (3-19)

The elements x; are referred to as the components of x with respect to the
standard basis.

Suppose now that a new basis is introduced. This basis consists of a set of
n linearly independent vectors, say py,p2 ..., P.. The vector x will have a
representation as a linear combination of these vectors in the form

X=2;p;+ 2P+ "+ 2.Pa (3-20)

where now the z’s are the components of x with respect to this new basis.
Stacking the n vectors p;, i=1,2,...,n into a matrix P, the above can be
written as

x=Pz (3-21)
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\
x
>

4

;) AR

Figure 3.3. Change of basis.

where z is the column vector with elements z,. Thus, since we are assured that
P is nonsingular because the p;’s are linearly independent, we can write

z=P'x (3-22)

This equation gives the new components in terms of the old. Both sets of
components represent the same point in the vector space—they just define that
point in terms of different bases.

This process of changing basis is illustrated in Fig. 3.3. The vector x is
shown as being defined both in terms of the standard basis and in terms of a
new basis consisting of the two vectors p; and p,.

Example. As a specific example suppose that, n terms of the standard basis,

we have

Then

and therefore

wll) ol
ef] weB] el

3.5 TRANSFORMATIONS

Once vector space is introduced from a geometric viewpoint, it is possible to
introduce the concept of a transformation which is also geometricaily based. A
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transformation on a vector space is a function taking vectors into vectors.
Geometrically, if one visualizes a vector as a pomnt in n-dimensional space, a
transformation associates a new point with each point in the space. A simple
example of a transformation is a rotation of, say, 90° counterclockwise about a
given axis. Another is an elongation where every vector is multiplied by a
constant, such as 3, and thus moves further away from the zero vector. In
general, a transformation is defined on the vector space itself and has a
meaning that is independent of the method used for representing vectors.

An nXn matrix A (together with a specified basis) defines a linear
transformation. If a vector is represented (in the standard basis) by

Xy

X2

xn
then a new vector y with components
y=Ax (3-23)

defines the result of the transformation. Thus, a matrix transforms vectors into
vectors.

Example 1 (Book Rotations). Let us think of x,, x,, x5 as coordinates of a
pomt in three-dimensional space. The matrix

0 -1 ¢
A=|1 0 O
0 0 1

can then be visualized as corresponding to a counterclockwise rotation of 90°
about the x, axis. As a concrete visualization, one can hold a book vertically,
and face the front cover. The x, direction is to the right, the x, direction is
upward, and x; is a ray coming out toward the viewer. Rotation of the book
90° counterclockwise corresponds to A. To verify that, we note that the vector
n, corresponding to the center of the right edge of the book is transformed to
u,. Likewise, u, is transformed to —u,, and so forth.
In a similar way the matrix

0 0 -1
B=|0 1 0
1 0 O

corresponds to a 90° clockwise (as viewed from above) rotation about the
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vertical axis. If one holds the book and carries out these two rotations
successively, it will be found that the result is the rotation BA. If these two
rotations are carried out in the opposite order the result is the rotation AB,
and it is easily verified that AB# BA. In general, one linear transformation
followed by another corresponds to multiplication of the two associated ma-
trices; and since matrix multiplication is not commutative, the order of the
transformations is important.

Change of Basis

Suppose now that starting with the standard basis u,, u,, . . ., u, there is a given
n X n matrix A defining a transformation. Let us consider the effect of a change
of the basis on the representation of the transformation. The new basis
introduces a new representation of vectors in terms of new components. We
want to construct a matrix that in terms of this basis has the same effect on
vectors as the original matrix.
Suppose the new basis consists of the columns of an n X n matnx P. Then
a vector x having components x,, x,,...,X, with respect to the onginal
standard basis will be represented by the components z; in the new basis. The
two sets of components are related, as shown in Sect. 3.4, by the equation
x=Pz (3-24)
The vector that is represented by y=Ax in the standard basis will be
represented by w="P"'y in the new basis. Therefore, we have w=P'Ax, or
equivalently, w =P 'APz. Thus, in terms of the new basis, the matrix P~'AP
transforms the point represented by z into the point represented by w. For
reference, we write
A o P AP (3-25)

to indicate how a transformation represented by the matrix A m the standard
basis is represented in a new basis.

Let us review this important argument. Given the standard basis, vectors
are defined as an array of n components. A given matrix A acts on these
components yielding a new array of n components, and correspondingly a new
vector defined by these components. The result of this action of A defines a
transformation on the vector space—transformng vectors into new vectors.

If a basis other than the standard basis is introduced, vectors will have new
representations; that is, new components. It is to be expected that to define the
same transformation as before, transforming vectors just as before, a new
muairix must be derived. This matrix must transform components with respect
to the new basis so that the corresponding action is geometrically equivalent to
the way the original matrx transforms components with respect to the standard
basis. The appropriate new matrix is P7*AP.
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Changes of basis are used frequently in connection with eigenvector
analysis, as discussed in the remaining sections of this chapter. The new basis is
selected so as to simplify the representation of a transformation.

Example 2. Consider the 2 X2 matrix
0 -1
A =
N

which, with respect to the standard basis, represents a counterclockwise rotation
of 90°. Let us introduce the new basis defined by

3 -1
e-|
1 1
used in the example of the last section. According to the above result, the
rotation transformation is represented by the matrix

B=P 'AP
with respect to the new basis. This works out to be
ool )
5 1
2 2
which m this case is somewhat more complicated than the original representa-

tion.
We can check that the new matrix is consistent for the vector represented

]

in the standard basis. We easily calculate

s ]

On the other hand, the original vector is represented by

[}

w=Bz=

by

E oL )

in the new basis. Then

)

This corresponds to y, since it is easily verified that y=Pw.

KI\I B
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3.6 EIGENVECTORS

The remainder of this chapter deals with a structural analysis of linear
transformations based on eigenvectors. In essence, the objective of this study is
to find, for a given transformation, a new basis in which the transformation has
a simple representation—perhaps as a diagonal matrix. This topic forms the
framework for much of the study of linear time-invariant systems that 1s a
central subject of later chapters.

Definition. A number A is an eigenvalue of an nxXn matrix A if there 1s a
nonzero n vector x such that
Ax=Ax
The corresponding vector x is said to be an eigenvector of the matnx A.

The terms characteristic value and charactenstic vector are sometimes used
for eigenvalue and eigenvector. The geometric interpretation of an eigenvector
is that operation by A on the vector merely changes the length (and perhaps
the sign) of the vector. It does not rotate the vector to a new position.

The Characteristic Polynomial

For a given value of A, the eigenvector equation

Ax=Ax
is equivalent to the linear homogeneous equation

[A-Alk=0 (3-26)
From the Fundamental Lemma (Sect. 3.3) it is known that such an equation
possesses a nonzero solution if and only if the determinant of the coefficient
matnix vanishes. Therefore, a necessary and sufficient condition for a value A to
be an eigenvalue of the matnx A is that
detfA—AI}=0 (3-27)
This equation is called the characteristic equation of A.

The value of det{A —AI] is a function of the variable A. Indeed, it can be
seen that det[A —Al], when expanded out, is a polynomial of degree n 1n the
variable A with the coefficient of A" being (—1)". (See Problem 13.) This
polynomial p(A) is called the characteristic polynomial of the matrix A. From
the discussion above, it is clear that there is a direct correspondence between
roots of the characteristic polynomial and eigenvalues of the matrix A.

From the Fundamental Theorem of algebra it is known that every polyno-
mial of degree n>1 has at least one (possibly complex) root, and can be

decomposed into first-degree factors The characteristic polynomial can be
written in factored form as

pA) = —A)Az—r)- - (A, —A)
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The A; are the (not necessarily distinct) roots of the polynomial. It follows that
there is always at least one solution to the characteristic equation, and hence,
always at least one eigenvalue. To summarize:

Theorem. Every n X n matrix A possesses at least one eigenvalue and a corres-
ponding (nonzero) eigenvector.

Example 1. Let

The charactenistic polynomial is

2-A
2

1 \
3_AI=(2—A)(3‘)&)—2

=AZ-5)1+4

The characteristic polynomial can be factored as AZ—5A+4=(A~1)(A~4).
Therefore, the polynomial has the two roots: A =1, A =4. These are the
eigenvalues of the matrix.

To find the corresponding eigenvectors, we first set A=1 in the
homogeneous equation [A —AIx=0. This leads to

> 2J5)-L]
2 2 X2 LO
The two scalar equations defined by this set are equivalent to x, = —x,. Thus,
one solution 1s
-]
Tl

=]

for a#0. These vectors are the eigenvectors corresponding to the eigenvalue
A=1.
For A =4 we are led to

[ IR

Thus, one corresponding eigenvector i1s

and the general solution is
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and the general solution is

[ ]
2b
fOI b# 0.

It is a general property that eigenvectors are defined only to within a scalar
multiple. If x is an eigenvector, then so is ax for any nonzero scalar a.

Example 2 (Complex Eigenvalues). Let

3 2'|
A=
[ 1]
The corresponding characteristic equation is
3-x 2 ‘_
I 1 1-al70
or
B-A)1-A)+2=0
Equivalently,
AP=4r+5=0
There are two complex roots:
A=2+i
A=2~i

which, as is always the case for real matrices, are complex conjugate pairs.
Corresponding to A =2+1i, one can find the eigenvector

e ]
Vo1 4+

Likewise, corresponding to the eigenvalue A =2—i, there is the eigenvector

e2=[~12——i]

Linear Independence of Eigenvectors

Each distinct root of the characteristic polynomial defines an eigenvalue of the
matrix A. Associated with each of these distinct eigenvalues there is at least
one eigenvector. As stated below, a set of such eigenvectors, each correspond-
ing to a different eigenvalue, is always a linearly independent set.

Proposition. Let A, A,, ..., A, be distinct eigenvalues of the matnix A. Then
any set e, e,, ..., e, of corresponding eigenvectors is linearly independent.
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Proof. Suppose that the eigenvectors were linearly dependent. Then there
would be a nonzero linear combination of these vectors that was equal to zero.
From  the possible such linear combinations, select one which has the
minimum number of nonzero coefficients. Without loss of generality it can be
assumed that these coeficients correspond to the first k eigenvectors, and that
the first coefficient is unity. That is, the relation is of the form

k
e+ ae,=0 (3-28)
=2
for some set of a;’s, i=2,3,...,k, a#0.
Multiplication of this equation by the matrix A gives

k
Ae,+ Y aAe =0 (3-29)

1=2

Using the fact that the e,’s are eigenvectors, this last equation is equivalent to

K
e+ ) ahe =0 (3-30)
1=2
Multiplying (3-28) by A, and subtracting it from (3-30) yields

k

Z a (A —Ape, =0

=2
This, however, is a linear combination of only k—1 terms, contradicting the
definition of k as the minimum possible value. I

It is important to note that this result on linear independence is true even
if the eigenvalues of A are not all distinct. Any set of eigenvectors, one for
each of the distinct eigenvalues, will be an independent set.

3.7 DISTINCT EIGENVALUES

An important special situation is where the n eigenvalues determined from the
characteristic polynomial of an n X n matrix A are all distinct. In that case, as is
shown in this section, the corresponding n eigenvectors serve as a convenient
new set of basis vectors, and with respect to this basis the original transfor-
mation is represented by a diagonal matrix.

Suppose the n xn matrix A has the n (distinct) eigenvalues A, A5, ..., A,
and corresponding eigenvectors e,, e,, . . ., e,. According to the Proposition of
the last section, the set of eigenvectors is in this case linearly independent.
Therefore, the n eigenvectors can serve as a basis for the vector space E". In
particular, any vector x can be expressed as a linear combination of these basis
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vectors in the form
X=2z,e,+2,e,+- - +2,8€, (3-31)

for some constants z;, i=1,2,..., n. Expressed in this form, it is quite easy to
find the corresponding representation for Ax. Indeed, it follows immediately
that

Ax=),z,8,+ A z8,+ -+ A28, (3-32)

Thus, the new coefficients of the basis vectors are just multiples of the old
coefficients. There is no mixing among coefficients as there would be in an
arbitrary basis.

This simple but valuable idea can be translated into the mechanics of
matrix manipulation, where it takes on a form directly suitable for computa-
tion. Define the modal matnx of A to be the n X n matrix

M=[e e, " e,] (3-33)

That 1s, M has the eigenvectors as its n columns. The vector x and 1its

representation in the new basis with components z, 1=1,2,...,n are then
related by

x=Mz (3-34)

In the new set of coordinates, using the new basis, the matrix A, as derived
in Sect. 3.5, will be represented as
A=M'AM (3-35)

However, from (3-32) it is known that in the new basis the matnx s rep-
resented by a diagonal matrix, for action by A simply multiplies the ith
component value by A;. Thus, the matrix A is the diagonal matrix

A, O - . 0
A=| . i (3-36)
0 . . . ) A"

Thus, we may state the following very useful result.

Theorem. Any square matrix with distinct eigenvalues can be put in diagonal
form by a change of basis. Specifically, corresponding 10 an nXn mainx A
with distinct eigenvalues, there holds

A=M"TAM
where A is defined by (3-36) and M is the modal martrix of A.
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Equation (3-34) is frequently used in the reverse direction as

A=MAM" (3-37)
which gives a representation for the matrix A in terms of its eigenvectors and
eigenvalues.

Another way to write this relation is

AM=MA (3-38)

which is a form that is directly equivalent to the original definition of the
eigenvectors of A. This is seen by viewing the matrix equation one column at a
time. For example, the first column on the left-hand side of the equation is A
times the first column in M; that is, A times the first eigenvector. Correspond-
ingly, the first column on the right-hand side of the equation is just A, times the
first eigenvector. Thus, the correspondence of the first columns is equivalent to
the equation Ae; = A,e,. Identical interpretations apply to the other columns.

Example. Consider again the matrnx
2 1
a-[; 3]
2 3

It was found, in Example 1, Sect. 3.6, that the eigenvalues and corresponding
eigenvectors of A are A,=1, A,=4:

1 1

Then
1 4
AM= [—1 8]

and, finaily,
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3.8 RIGHT AND LEFT EIGENVECTORS

As defined to this point, eigenvectors are right eigenveciors in the sense that

they appear as columns on the right-hand side of the n X n matrix A in the
equation

Ae, = \e, (3-39)
It is also possible to consider left eigenvectors that are multiplied as rows on the
left-hand side of A in the form

fFA =M\ (3-40)
The vector f; is an n~dimensional column, and thus, f7 is an n-dimensional row
vector.

Equation (3-40) can be rewritten in column form by taking the transpose
of both sides, yielding

ATE =, (3-41)

Therefore, a left eigenvector of A is really the same thing as an ordinary right

eigenvector of A”. For most purposes, however, it is more convenient to work
with left and right eigenvectors than with transposes.

The characteristic polynomial of AT is det{AT —Al], which, since the

determinants of a matrix and its transpose are equal, is 1dentical to the

characteristic polynomial of A..Therefore, the right and left eigenvalues (not
eigenvectors) are identical.

Example. For the matrix

o

it has been shown that A, =1, A, =4 with corresponding right eigenvectors

wr[] =l

Let us find the corresponding left eigenvectors. First, for A, = 1 we must solve
11
{y1 val 2] =[0 0]

A solution is y, =2, y,=—1, giving the left eigenvector
=02 -1]

For A,=4, we solve

1

32 Yz][_i -1

|=t0 o
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A solution 1s y, =1, y,=1, giving the left eigenvector
;=1 1]

Orthogonality

There is an important relation between right and left eigenvectors. Suppose A,
and A; are any two (distinct) eigenvalues of the matrix A. Let e, be a right
eigenvector corresponding to A, and let f; be a left eigenvector corresponding
to A;. Then

Aei = '\'iex
£7A = M
Multiplying the first of these equations by £ on the left, and the second by e,
on the right, yields the two equations
fTAe, = A f]e,
£fAe, =\ e,
Subtracting we obtain
0=(A,-A)fe,
Since A;# A; it follows that

To
fie,=0

This relation is referred to as an orthogonaliry relation. It says that the
inner product (or the dot product) of the vectors f; and e, is zero. (The reader
may wish to check this relation on the example above.) As a formal statement
this result is expressed by the following theorem.

Theorem. For any two distinct eigenvalues of a matrix, the left eigenvector of one
eigenvalue is orthogonal to the right eigenvector of the other.

3.9 MULTIPLE EIGENVALUES

If an nXn matrix has nondistinct eigenvalues (that is, repeated or multiple
roots to 1ts characteristic equation) a more involved analysis may be required.
For some matrices with multiple roots it may still be possible to find n linearly
independent eigenvectors and use these as a new basis, leading to a diagonal
representation. The simplest example is the identity matnx I that has 1 as an
eigenvalue repeated n times. This matnx is, of course, already diagonal. In
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general, however, matrices with multiple roots may or may not be diagonaliza-
ble by a change of basis.

Two important concepts for matrices with multiple roots, which help
characterize the complexity of a given matrix, are the notions of algebraic
and geometric multiplicity. The algebraic muluplicity of an eigenvalue A; 1s the
multiplicity determined by the characteristic polynomial. It is the integer o
associated with (A —A,)* as it appears when the polynomial is factored into
distinct factors. If the algebraic multiplicity is one, the eigenvalue 1s said to be
simple.

The geometric multiplicity of A, is the number of linearly independent
eigenvectors that can be associated with A;. For any eigenvalue, the geometric
multiplicity is always at least unity. Also, the geometric multiplicity never
exceeds the algebraic multiplicity.

As an example consider the 2 X2 matrix

51
A =
[O 5]
It has characteristic polynomial (5—A)?, and hence the only eigenvalue is 3,
with algebraic multiplicity of two. A corresponding eigenvector must satisfy the

‘0 1”‘“l| ‘OI
=

The only nonzero solutions to this set are of the form x; = a, x, =0 for some
a#0. Thus, there is only one linearly independent eigenvector, which can be

taken to be
X :

Thus, the geometric multiplicity of A is one.

Jordan Canonical Form

In the general case, when there is not a full set of eigenvectors, a matrix cannot
be transformed to diagonal form by a change of basis. It is, however, always
possibile to find a basis in which the matrix is nearly diagonal, as defined below.
The sesulting matrix is referred to as the Jordan Canonical Form of the matnx.
Sisee derivation of the general result is quite complex and because the Jordan
fors: s only of modest importance for the development in other chapters, we
stase the result without proof.
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Theorem (Jordan Canonical Form). Denote by L, (\) the k X k matnx

_A 1 0 e e 0
0 x 1
Al
L (A)= CE

1

_0 0 e e : A n
Then for any n Xn matnx A there exists a nonsingular matnxT such that
L, (A)
Li,(A2)
T 'AT=

Lk,(’\r)

where k,+k,+---+k =n, and where the A\, i=1,2,_ ..,r are the (not
necessarily distinct) eigenvalues of A.

3.10 PROBLEMS

1. Prove that matrix multiplication is associative, and construct an example showing
that it 1s not commutative.

2. Differentiation Formulas. (a) Suppose A(t) and B(t) are m X n and n X p matrices,
respectively. Find a formula for

d
a [AMB()]

in terms of the derivatives of the individual matrices.
(b) If A(t) 1s nxn and invertible, find a formula for

d 1
& AT

3. Show that for any n, the n Xn identity matnix I has determinant equal to umty.

4. Using Laplace’s expansion evaluate the determinants of the matrices below:

123 4
301 23 45
243 345 6
112 456 7
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12.

13.

14.
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. Prove that det(A") =det(A).

. Using Laplace’s expansion, prove the linear combination properties of determi-

nants.

. Evaluate the determinants below using the rules for row and column operations:

320 4 4 6 2
112 3 345 3
-1 11 2 1131
0 0 4 3 2.2 2 2

. Find the inverses of the matrices of Problem 4.
. Prove Theorem 4, Sect. 2.6.
10.

Consider the two systems of linear equations
Ax=y
Bz=x

where x 1s n X1, yis mx1,zis px1, Ais mxn, and B 1s nXp. Show 1n detail
that if the x; vanables are eliminated the resulting system can be expressed as

ABz=y

Let p1, P2, - - -, Pn be a basis for E™ and let x be a given vector in E" Show that the

representation X = ap, + a;p, +- - * +a,p, 1s unique. That 15, show that the a.’s are
unique.

Consider the basis for E* consisting of the columns of the matrix

2 31
P=11 2 1
1 1 1
Find P!, Suppose that in the standard basis a vector x is given by
2
x=]1
4

Find the representation of x with respect to the basis defined by P.

Prove, by induction on the dimension n, that det[A —AI] is a polynomial of degree
n.

Show that for any n X n matnx A
det(a)=]] r,

where Ay, A, ..., A, are the (not necessarily distinct) eigenvalues of A. (Hinu
Consider the defimtion of the charactenistic polynomial.)
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15.

16.

17.

18.

19.

20.

21.

Linear Algebra

The trace of a square nXn matrix A is the sum of its diagonal elements. That is,

Trace A = i a;
1=l

Show that
Trace A = Z A
1=1
where A, Az, ..., A, are the (not necessarily distinct) eigenvalues of A. (Hint:

Consider the coefficient a,_, in the charactenstic polynomial of A.)

Show that for an upper or lower tnangular matrix the eigenvalues are equal to the
diagonal elements.

(a) Find the eigenvalues and eigenvectors of
5 -1 -3 3
-1 5 3 -3
A=}-3 3 5 -1
3 -3 -1 5
(b) Find a matnx H such that D=H"'AH is diagonal.

For the following two matnces:
-2 0 -1 9 0 -3
A=} 4 2 4 B=-{10 -8 2
0 0 -1 3 0 -1

find (a) the charactenstic polynomal; (b) the determinant and trace; (c) the
eigenvalues; and (d) the right and left eigenvectors.

A real square matrix A is symmetnc if AT = A. Show that for a symmetnc matrix
(a) all eigenvalues are real; (b) if e; and e; are eigenvectors assoctated with A; and
A;, where A, #X,, then e[¢; =0.

For the matrix
1 0 -2
A=]13 2 1
H 0 3

find (a) the charactenstic polynomal; (b) all eigenvalues; (c) all eigenvectors; and
(d) the Jordan form of A.

If two matnices A and B are related by a change of basis (that 1s, if B=P'AP for
some P), then the matrices are said to be similar. Prove that similar matnces have
the same charactenstic polynomial.
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22. The members of the basis associated with the Jordan Canonical Form are often
referred to as occurring in chains—this terminology ansing from the following
interpretation. If the geometnc multiplicity of an eigenvalue X 1s m, then m lineariy
independent eigenvectors are part of the basis. Each of these eigenvectors sausfies
[A ~Alle=0 and each is considered as the first element of one of m separate chains
associated with the eigenvalue A. The next member of the chain associated with e 1s
a vector f such that [A —Al}f=e. The chain continues with a g satisfying [A—Allg=
£, and so forth until the chain ends. The original m eigenvectors generate m
separate chains, which may have different lengths.

Given a matrix J in Jordan form with m blocks associated with the eigenvalue
A, find the m eigenvectors of J. Also find the vectors in the chain associated with
each eigenvector.

*23. Matnx Perturbation. Show that given any n X n matrix A and an arbitrary € >0, it
1s possible to perturb the entries of A by an amount less than ¢ so that the resuiting
matrix 1s diagonalizable. (This result is useful in many theoretical deveiopments,
since it 15 often easiest to work out a theory for diagonalizable matnces and then
extend the theory to the general case by a limiting argument.)

NOTES AND REFERENCES

There are a large number of texts on linear algebra and matnx theory that can be used to
supplement this chapter as background for the remaiming chapters. Some suggestions are
Bellman [B6], Hoffman and Kunze [H3], Strang [S6], and Gantmacher [G2], [G3]. A
bref treatment together with applications is contained in Kemeny, Mirkil, Snell, and
Thompson [K10].

Section 3.1. The Leontief model is used extensively for various empirical
economic investigations, and large matnces representing the economy 1n a given year
have been constructed. For a sample of an actual large matnx see Leonuef [L3].



chapter 4.

Linear
State Equations

At this point the concept of dynamics, as represented by ordinary difference
and differential equations, is combined with the machinery of linear algebra to
begin a study of the modern approach to dynamic systems. The foundation for
this approach is the notion of a system of first-order equations, either in
discrete or continuous time.

4.1 SYSTEMS OF FIRST-ORDER EQUATIONS

In discrete time, an nth-order system is defined in terms of n variables
x,(k), x5(k), . .., x,(k) that are each functions of the index k. These n variables

are related by a system of n first-order difference equations of the following
general form:

xi(k +1) = fy(x,(k), x5(k), . .., x,(k), k)
xz(k + 1) = f2(xl(k)7 xl(k)’ L] X"(k), k)

4-1)
Xy (k +1) = f, (x,(k), x5(k), . . ., x,(k), k)
The functions f,, i =1, 2, ..., n define the system. They may be simple in form

or quite complex, depending on the situation the system describes. The
variables x;(k), i=1,2,..., n are regarded as the unknowns whose values are
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determined (at least in part) by the system of equations. These variables are
referred to as state variables.

If the system is defined for k=0,1,2,..., then the n wvalues
x,(0), x2(0), .. ., x,.(0) are referred to as initial conditions. If the initial condi-
tions are specified, then they may be substituted into the right-hand side of
(4-1) to yield the values of x,(1), x,(1),...,x,(1). These in turn can be
substituted in the right-hand side to yield x,(2), x2(2), . . . , X,(2). This recursive
process can be continued to yield the unique solution corresponding to the
given initial conditions. At each stage k of the recursion, the corresponding set
of state variables x,(k), x»(k),..., x,(k) serve as initial conditions for the
remaining stages.

The analog of (4-1) in continuous time is a system of first-order differential
equations. Such a system is defined in terms of n variables x,(t), x,(1), ..., x, (1)
that are each functions of the continuous variable t. These n variables are
related by a system of n equations of the following general form:*

%0 = 1021 (1), x5(1), . . ., %, (1), 1)
X(8) = fo(x2 (1), x2(0), - - ., % (D), 1)

(4-2)

£u(8) = Fu(rl0), %2(0), - - 20, 1)

Again the n variables x,(?), xz(1), . . ., x.(¢) are referred to as state variables.

Some examples of systems in discrete or continuous time were presented
in Chapter 1. The first-order models of geometric and exponential growth are
simple examples, corresponding to the elementary case n=1. The cohort
populationmodelis an excellentdiscrete-time example for general n. The goatsand
wolves model is an example of a continuous-time system, corresponding to n = 2.
Dozens of others are presented throughout the remainder of the text.

A characteristic of systems of equations, as compared with the ordinary
difference and differential equations discussed in Chapter 2, is that they
simultaneously relate several variables rather than just one. This multivariable
aspect is often characteristic of even the simplest situation, especially if a
particular phenomenon is viewed as consisting of several components. The
variables in a system might, for example, represent a decomposition of a given
quantity, such as population into age groups, or economic production into
commodities. In physical problems, the variables might represent components of
position and velocity in various spacial dimensions. The system framework
retains the distinction among the variables.

. R dx(t
* We employ the standard “dot™ notation :&(t)ath.
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Linear Systems

This chapter addresses linear systems. A discrete-time system is linear if it has
the following form:

xy(k + 1) = a1, (k)x, (k) + ayo(k)xa(k) +- - - +ay, (k) x, (k) + wy (k)
x2(k +1) = az(k)xy(k) + axp(k)xa(k) + - - - + @z, (k) x, (k) + wa(k)

x...(k +1) = a0 (k)x (k) + auo(K)xo(k) + - - - + G (k) x, (k) + W, (k)

Again, the variables x,(k), x5(k),..., x,(k) are the state variables of the
system, and they may take on arbitrary real values. The values a,(k), i=
1,2,...,n,j=1,2,..., n are fixed parameters, or coefficients of the system. As
indicated by their argument k, it is allowable for these parameters to depend
on tume, but this dependency is predetermined and independent of the values
assumed by the state variables. If these parameters do not depend on k, the
system is said to have constant coefficients or to be time-invariant. The values
w;(k), i=1,2,...,n are also parameters denoting the driving or forcing terms
in the system. The essential defining feature of a linear system, of course, is
that all terms are linear with respect to the state variables.

The general description above is somewhat tedious to write out 1n detail,
and matnx notation can be used to great advantage. With this notation, the
system can be expressed in the equivalent form

x(k +1) = A(k)x(k) +w(k)

Here x(k) is the n X 1 state vector and w(k) is the n X1 forcing vector. That is,

0) Cwi(k)]

x,(k) walk)
x(k)=] wk)=]

| x.(0) 2al

The matrix A(k) is the square n X n matrix consisting of the coefficients a; (k).
It is referred to as the system matrix.

For continuous-time systems the situation, as usual, is entirely analogous.
A continuous-time linear dynamic system of order n is described by the set of
n ordinary differential equations:
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%1(t) = a;, ()x1() + (D) x,(8) + -+ + ay, (O x, (1) + (1)
%2(1) = apq(1)x,(1) + any(D)x2(8) + -+ + + a5, ()%, (1) + wa(1)

X (1) = a5 1 (0)%1(0) + @u2()22(1) +* * + + A ()% (1) + W, (1)

As before, the (1), i=1,2,..., n, are state variables, the a;(t) are parameters
or coefficients, and the wi(t), i=1,2,...,n, are forcing terms. In order to
guarantee existence and uniqueness of solution, the a,(t)’s are usually assumed
to be continuous in t.

Just as for discrete-time systems, continuous-time linear dynamic systems
are conveniently expressed in matrix notation. In this notation an nth-order
system takes the form ’

x(1)= A(D)x(1) + w(1)

where x(t) is the n X1 state vector, w(t) is the n X1 forcing vector, and A(?) is
the nXn- matrix of coeflicients referred to as the system matrix.

inputs

In most applications the forcing or driving terms in a system are derived from a
single, or perhaps a few, specific inputs to the system. In some cases these
inputs actually may be consciously controlled in an effort to guide the behavior
of the system. In other cases, they may be fixed by the environment, but still
retain an interpretation as input. When, for example, the simplest first-order
model is viewed as a description of a bank balance, the forcing term corres-
ponds to deposits into the account. Likewise, in more complex systems the
forcing term is typically derived from some identifiable input source.

There is often a simple structural connection between the source of input
and the resulting forcing terms. For instance, a single input source may affect
all of the equations in the system, or an input may enter only a few equations.
It is useful to explicitly display the particular structural relation in the formula-
tion of the system equations. The definition of a linear system is expanded
slightly to account for this additional structure.

A discrete-time linear system with inputs has the following form:

xq(k + 1) = a,,(k)x, (k) + a2 (k)xz(k) +- - - + a,,, (k)x, (k)
+ by (kyuy(k) + - - + by (k) s (k)

Xa(k +1) = ay,(k)x,(k) + azy(k)xa(k) + « + + a2, (K)x,. (k)
. + by(kyuy(k) ++ + + + by (K)u, (k)

£ (k +1) = an, (0)x, (k) ++ -+ + (k)% ()
bt (g (k) + - - - + bron (K e (K)
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The varables uy(k), uy(k),..., u,(k) are the control vanables or the input
variables of the system.
In matrix notation the system takes the form

x(k +1) = A(k)x(k) + B(k)u(k)

where B(k) is an n Xm matrix and u(k) is an m X1 input vector. The matrix
B(k) is referred to as the distribution matnx, since it acts to distribute the inputs
into the system. A common case is where m =1, corresponding to a single
control variable. In this case the B(k) matrix reduces to a n-dimensional
column vector, and accordingly, in this case B(k) is usually replaced by the
notation b(k) to explicitly indicate a column vector rather than a more general
matrix.

In terms of the earlier definition, it is clear that we have simply made the
replacement

w(k)=B(k)u(k)

From a mathematical viewpoint it is somewhat irrelevant how the driving term
is determined. However, for practical purposes this expanded notation is
useful, since it is more closely related to the structure of the situation.

Finally, let us point out the obvious extension to continuous time. A linear
system with input has the form

x(t) = A(D)x(¢) + B(t)u(r)

Example (Obsolescence). Let us consider the life history of a class of goods in a
country—perhaps some appliance, such as washing machines. We assume that
households purchase new washing machines and keep them until they suffer a fatal
breakdown or become obsolete. At any one time, therefore, there is a distribution
of various aged washing machines throughout the country. We shall describe the
system of equations that governs this distribution.

Let us employ a discrete-time formulation based on periods of one year.
The basic assumption we make in order to develop the model is that there is a
certain probability B; that any washing machine i years old will remain in
service at least one more year. This probability may be relatively high for
young machines and low for old machines. We assume that no machine
survives to an age of n+1 years.

With these assumptions, we divide the washing machines into cohorts of
one-year age groups. Let x;(k) be the number of surviving washing machines of
age i years during period (year) k. Then we have the equations

Xk +1) = Bix; (k) i=0,1,2,...,n-1
The number of washing machines less than one year old is equal to the number
of purchases u(k) during the year; that is,
xolk +1) = u(k)
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This system of equations can be put in matrix form as

wk+D] [0 0 . . . Oz} [
x:(k +1) Bo 0 . . . Ol xik) 0

10 B . . . Off- 40 Jutk)
xk+1)] Lo " Bu-y 0dlxa (k)

which is a special case of the general form
x(k +1)= Ax(k) +bu(k)

The variable u(k), representing purchases, is the input to the system. In
order for a solution of the system to be determined, it is of course necessary to
specify an input sequence. This might be done in various ways, depending on
the analysis objectives. The simplest would be to specify purchases directly, as
perhaps an increasing function of k. A more realistic approach might recognize
that purchases partly consist of replacements for those machines that are
retired, so that u(k) must ultimately be tied back to x(k).

This simple model is discussed again later in this chapter and in Problem 2.
It is referred to as the straight-through cohort model, since cohorts pass directly
through without influencing each other.

The State Vector and State Space

The vector x(k) in discrete-time systems [or x(¢) in continuous-time systems] is
referred to as the state vector because this vector is a complete description of
the system at the time k, at least in so far as determining future behavior. As
observed earlier, the state vector serves as a kind of running collection of initial
conditions. Knowledge of these conditions at a given time together with a
specification of future inputs is all that is necessary to specify future behavior.
Indeed, in discrete time, the future behavior can be calculated recursively from
the system of difference equations once the current state is known. In continu-
ous time the future is likewise determined by the current state, although it may
not be quite so easily determined as in the discrete-time case.

One often refers to state space as the n-dimensional space in which the
state vector is defined. Accordingly, one can visualize the evolution of a
dynamic system in terms of the state vector moving within the state space.

4.2 CONVERSION TO STATE FORM

Ordinary difference and differential equations, as treated in Chapter 2, can be
easily converted to equivalent systems of first-order equations. The theory of
systems is, therefore, a proper generalization of that earlier theory.
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Consider the linear difference equation
ykk+n)+a, (K)y(k+n—1)+---+ag(k)y(k)=u(k), k=0,1,2,...

To construct a suitable system representation, define n state variables as n
successive values of y{(k). In particular, let

xy(k) = y(k)
xx(k)=y(k+1)

x.{(k)=y(k+n-1)
With these definitions, it follows immediately that

xy(k +1) = x,(k)
xo(k +1) = x5(k)

Xk +1)=x, (k)

The value of x,(k+1) can be found from the original difference equation as

X (k +1)=—aog(k)x (k)= a,(k)x(k)—- - - — a,_ (k) x, (k) + u(k)
Defining the state vector x(k) having components x,(k), x,(k), ..., x,(k), as
above, produces the linear system

- 0 1 0 . 0 0 7 [07]
0 0 1 o 0 0 0
xk+1)=| . L . x| o
0 0 0 ce 0 1 0
[~ag(k) —a\(k) —ay(k)= = apoa(k) —a,_y(k)] 1]

with
y(k) = x,(k), k=0,1,2,...

Matrices with the special structure above, with ones along an off-diagonal and
zeroes everywhere else except the bottom row, occur frequently in dynamic
system theory, and are referred to as companion matnces.

Differential equations can be converted to state form in a similar way. In
this case the state variables are taken to be the original dependent variable y(t)
and its first n—1 derivatives. The resulting structure is identical to that for
difference equations.
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Example 1. Consider the second-order difference equation
y(k+2) +2y(k +1) + 3y(k) = u(k)

Following the procedures outlined above, we define
x(k)y=y(k)  x(k)=y(k+1)

In terms of these variables the system can be written as
xy(k+1) = x,(k)
xa(k +1) = —-2x,(k) — 3x,(k) + u(k)

or, in matrix form,
xl(k+1)] [ 0 1][x1(k)] [0]
= +
[xz(k )13 —2llgml Tl ]H®
Example 2 (Newton’s Laws). The conversion process for differential equations

is illustrated most simply by the second-order system derived from Newton’s
laws, discussed in Sect. 1.3. The equation takes the form (assuming unit mass)

d’x
P

It can be converted to state variable form by defining the state vanables x, = x,
x5 = (dx/dt). It follows that

In matrix form the system can then be written
e[ e[l
de Lo o [1]"

4.3 DYNAMIC DIAGRAMS

The mathematical device of representing a dynamic situation as a system of
first-order difference or differential equations has the structural interpretation
that a high-order system is just a collection of interconnected first-order
systems. This interpretation often can be effectively exploited visually by
displaying the interconnection pattern diagrammatically. There is a simple and
useful convention for constructing such diagrams.
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x(k) x{k) +y(k) x(k) a(k) x(k)
——t a(k)

yik)
{a) {b)

k) x(k) x(k+1) ll>xm 0 Il> )

x(k)
(c) () (e)

Figure 4.1. Elementary components for dynamic diagrams. {(a) Summer. (b)
Transmission. {(c) Splitting. (d) Unit delay. (e) Integrator.

In the linear case, dynamic diagrams are built up from the five elementary
components illustrated in Figs. 4.1a—4.1e. The diagrams are to be interpreted
as if the scalar value runs along the lines, somewhat like voltage on a wire. The
summer adds whatever comes into it, instantaneously producing the sum. The
transmission multiplies the incoming scalar by the constant indicated in the
box. Splitting refers simply to dividing a line into two lines, each of which
carries the original value. The delay is the basic dynamic component for

(3 &+1) x(k)
s o m) ll>
a(k)
{a)
u(t) qm N x(t)
—ef  b(t) + J‘/

a(t)

(b)
Figure 4.2, First-order systems.
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) k) N
—a{" p > g |"/x'(’ m -»——“ : >0,

Figure 4.3. Straight-through cohort model.

discrete-time systems. Whatever comes in is delayed for one period and
becomes the output for the next period. [Instead of using x(k +1) as input in
Fig. 4.1d, the reader may find it helpful to use x(k) as input, in which case the
output would be x(k —1).] The integrator is the basic dynamic component for
continuous-time systems. Whatever time function comes in is integrated and
the resulting new function appears as output. Thus, the input is the derivative of
the output. These basic components can be combined to represent any linear
system.

Example 1 (First-order Systems). The first-order system
x(k+1)=a(k)x(k)+b(k)u(k)

corresponds tQ the diagram shown in Fig. 4.2a. Entering the summer are the
two terms b(k)u(k) and a(k)x(k). They are summed, and one penod later this
sum appears at the output of the diagram as x(k +1).

The continuous-time system

x()=a(@®)x(@)+ b({Oulr)
corresponds to the diagram in Fig. 4.2b.

Example 2 (The Straight-Through Cohort Model). The cohort model associated
with washing machines is shown in diagram form in Fig. 4.3. A characteristic of the
cohort model, whichis obvious from just the verbal description of the system, is that
withoutinputs thesystem eventually will have zero population in each of its cohorts.
No formal analysis is required to deduce this. This prominent characteristic of the
model is, however, somewhat masked by the matrix representation, until the
structure of the matrix is examined. By contrast, this characteristic is displayed in
full relief by the dynamic diagram of Fig. 4.3, where it is clear that the early state
variables soon become zero if there is no input to rejuventate them.

4.4 HOMOGENEOUS DISCRETE-TIME SYSTEMS

A linear dynamic system is said to be homogeneous or free if there is no forcing
term in its defining equation. In discrete-time the state vector representation
for such a system is

x(k +1) = A(k)x(k) (4-3)
The term homogeneous derives of course from its usage in ordinary difference
and differential equations. In the vernacular of dynamic system theory such
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systems are referred to as free, since they run by themselves without external
control.

Solution to Free System
The free system

x(k +1) = A(k)x(k)

can be solved recursively once an initial value of the state is specified. One
simply writes, by repeated substitution,

x(1) = A(0)x(0)
x(2) = A(1)x(1) = A(1)A(0)x(0)

and, in general,
x(k) = Ak —DAk~-2) - - A(0)x(0)

In view of the expression for the solution to the free system, it is natural to
define the special matrix

Dk, 0)=A(k—1)A(k—2) - - A(0) (4-4)

which is called the state-transiion matnx. Multiplication of any initial state
vector by this matrix yields the state at time k.

The definition of the state-transition matrix can be generalized to account
for the possibility of initiating the system at a time other than zero. The general
definition is given below.

Definition. The state-transition matrix of the homogeneous system (4-4) is -
Ok, )=Ak—-1)A(k-2)--- A(D), k>1

Dk, k)=1
Alternatively (but equivalently), it is the matrix satisfying

(4-5)

Bk +1, )= Ak)P(k, 1), k>1
o, =1 (4-6)
This general definition is consistent with an interpretation of yielding the

value of x(k) if x(I) is known (k=I). Indeed, application of the recursion
process directly yields

x(k) = d(k, Dx(l)
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which is referred to as the state-transition property of ®(k, I). The equivalence
of the two alternative forms stated in the definition should be clear.

The state-transition matrix is defined as a product of system matrices. It is,
essentially, a shorthand way of indicating the product, and therefore is of great
notational value. Unfortunately, however, there is no shortcut procedure for
calculating the state-transition matrix—the product form, although somewhat
implicit, is the simplest general representation. However, as will be seen in the
examples presented later in this section, the special structure of certain systems
often enables one to calculate an explicit expression for the system transition
matrix.

Fundamental Sets of Solutions

The state-transition matrix was defined above as a product of system matrices
because it can be easily demonstrated that that form produces the solutions to
the original difference equation. The concept of the state-transition matrix can
be developed by another line of reasoning that leads to a valuable alternative
interpretation. This viewpoint highlights the role of linearity, and suppresses
the constructive approach to solution determination. This more indirect argu-
ment, although serving only as an alternative procedure in the discrete-time
case, is essential in continuous time, where a direct constructive approach 1s not
available. This alternative approach is based on a set of fundamental solutions,
and is patterned after the classical approach to ordinary difference equations. It
is also closely related to the structure represented by the alternative statement
(4-6) in the original definition of the state-transition matrix.

For simplicity, it is assumed here that the system matrix A(k) is nonsingu-
lar for all k. This is not an essential restriction, but it makes the arguments
and results cleaner.

Consider a collection of n solutions to the homogeneous equation (4-3).
Let us denote these solutions by x!(k), x>(k), . . ., x"(k). Each solution x*(k) is
an n-dimensional vector function of k; that is, each solution is a sequence of
vectors satisfying the recursive relation (4-3). Each of these n solutions might
be found by starting with an initial vector and generating successive terms by
recursion, or they might be found by some alternative procedure. We require,
however, that these n solutions be linearly independent, consistent with the
following general definition.

Definition. A set of m vector sequences x'(k), x*(k), ...,x™(k), k=0,1,2,.

is said to be linearly independent if there is no nontrivial linear combina-

tion of them that is identically zero. That is, if the relation a,x'(k)+

ax*(k)+- - - +a,x™(k)=0, for all k, implies that all the ;’s are zero.

Note that this definition is stated with respect to all k=0,1,2,.... If a
solution were defined on a sequence of finite length, the definition would be
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modified accordingly. Also note, however, that the definition does not require
that, for each fixed k, the vectors x'(k), x*(k), ..., x™(k) be linearly indepen-
dent in the usual sense for n-dimensional vectors. It is sufficient, for example,
that for one value of k (say k =0) they be linearly independent.

Suppose that x'(k), x*(k), . .., x"(k) is a set of n linearly independent solu-
tions to the original difference equation (4-3). Thus, each x*(k), i=1,2,...,n
satisfies

x'(k+1)= A(k)x'(k) “-7

Such a set is called a fundamental set of solutions. As we will show, every
solution of (4-3) can be expressed as a linear combination of these n solutions.

In order to facilitate the required manipulations, it is convenient to stack
these n solution vectors side-by-side as the n columns of a nXn matrix,
denoted X(k); that is,

X(k)=[x"(k)x*(k) - - - x*(k)] (4-8)

This matrix of solutions is referred to as a fundamental marrix of solutions.
A fundamental matrix of solutions satisfies the underlying system equation
as a unit; that is, i

X(k +1) = A(k)X(k) (4-9)

This is true because each column of X(k) is a solution, and therefore satisfies
the system equation. The matrix equation is really just n separate equations—
one for each of the columns.

Lemma. A fundamental matrix of solutions X(k) is nonsingular for every value
of k.

Proof. This result follows from the linear independence of the solutions and the
nonsingularity of A(k). Suppose to the contrary that X(k;) were singular for
some index k,. Then, according to the fundamental lemma of linear algebra, it
would follow that

X(ko)a=0
for some nonzero n-vector a. Multiplication by A(ky) would then lead to
X(ko+ 1a = Alky)X(kp)a=0
while multiplication by A(k,—1)"! would produce
X(ko— D= Alko—1)""X(kg)a =0

By continuing these forward and backward processes, it would follow that
X(k)a=0 for all k. This however is equivalent to

a x'(k)+ ax?(k)+- - +a,x"(k)=0
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which contradicts the assumption that the fundamental set of solutions is
linearly independent. I

With the above result it is easy to derive an expression for the state-transition
matrix. Suppose an arbitrary solution x(k) to (4-3) is given. Its initial condition is
x(0). Now consider the vector sequence X( k) defined in terms of the initial condition
x(0) by

(k) = X(k)X(0)"'x(0)

It is clear that X(0) =x(0). Also, if the vector « is defined by
a=X(0)"'x(0)

we have
x(k) =X(k)a

From this expression it is clear that (k) is just a linear combination of
solutions, and by the linearity of the system this linear combination is itself a
solution. However, since it has the initial value x(0), the two solutions x(k) and
X(k) must be identical (by the uniqueness of solutions); thatis (k) = x(k). It follows
therefore that any solution x(k) can be expressed as

x(k) = X(k)X(0)~'x(0)

The above procedure can be generalized to express x(k) in terms of x(l)
rather than x(0). Indeed the same argument shows that

x(k) =X(k)X(I)~'x())
In view of this relation we may state the following proposition.

Proposition. Let X(k) be a fundamental matrix of solutions, corresponding to the
system

x(k+1) = A(k)x(k)
Then the state-transition matrix is given by the expression

Bk, D) =X{()X(N)™ (4-10)
fork=l

‘The above algebraic result has a simple interpretation in terms of matching
initial conditions. For simplicity let us consider the relation

D(k, 0) =X (k)X(0)™!

Since X(k) is a fundamental matrix of solutions, it is also true that X{(k)X(0)™!
is a fundamental matrix of solutions; the columns of the latter being various
linear combinations of the columns of X(k). Therefore, ®(k, 0) is a fundamen-
tal matrix of solutions. The set is normalized, however, so that ®(0,0)=1L.
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Expressed in terms of its n columns, this fundamental matrix of solutions
consists of n distinct solutions x'(k), x*(k), . ..,x"(k), characterized by the
special initial conditions

[0
0

x0)=] 1 i=1,2,3,...,n

0
0

with the 1 in the ith coordinate position. This special fundamental set of
solutions can be used to construct the solution corresponding to a given
arbitrary set of initial conditions, x(0). The solution is expressed as a linear
combination of the fundamental solutions, and the appropriate linear combina-
tion is simply x(k)=d(k, 0)x(0). It is because the fundamental set has the
special initial conditions, equal to the n unit basis vectors, that construction of
a linear combination that agrees with x(0) is so easy.

Example 1 (Time-Invariant System). An extremely important special case is
that of a time-invariant linear system
x(k +1) = Ax(k)
where A is fixed, independent of k. It is easily seen that
@k, 0=A" k=0
or, more generally,
Ok, H=A", k=l

If A is invertible, then these expressions are valid for k <l as well.
In the time-invariant case, we often write ®(k) instead of d®(k, 0), since
then ®(k, ) =d(k—1).

Example 2 (A Nonconstant System). Consider the linear homogeneous system,

defined for k=0:
[xl(k + 1)] _ [1 k+ 1][x1(k)]
x(k +1) 0 1 x2(k)
A fundamental set of solutions can be found by starting with two linearly
independent initial conditions. It is easy to see that one solution is the sequence

1

x(k) = [o

] all k=0
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A second solution can be constructed by repeated substitution in the system
equation, yielding for k=0,1,2,3,4,...

HE RN

Thus, we have the second solution defined by
(k) = [k(k: 1)/2]

These two solutions form a fundamental set of solutions, which yields the
matrix

- 1

If we are given an arbitrary initial condition vector

<o-[2]

the corresponding solution will be

x(k) = X(k)X(0)"'x(0)

Since X(0) is the identity in this case, we can write the general solution
x(k) = [al +ak(k + 1)/2]

a

Example 3 (Natchez Indian Social Structure). Most societies are organized,
either explicitly or implicitly, into class segments. The higher classes control
power and the distribution of resources. Class membership is determined by
inheritance, and often the higher classes practice endogamy (inner-class
marriage) in order to “‘close” the class and prevent the dispersion of power.
The Natchez Indians in the Lower Mississippi devised an ingenious system
of marriage rules apparently in an attempt to create an “open” class structure
where power could to some extent be rotated rather than perpetuated within
families. The society was divided into two main classes—rulers and commoners,
with the commoners termed stinkards. The ruling class was divided into three
subclasses—Suns, Nobles, and Honoreds. Members of the ruling class could
marry only commoners. Offspring of a marriage between a female member of
the ruling class and a male commoner inherited the class status of the mother,
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while offspring of 2 marriage between a male member of the ruling class
dropped down a notch. Thus, the child of a Sun father became a Noble, and so
forth.

The complete set of allowed marriages and offspring designations is
summarized in Table 4.1. A blank in a box in the table indicates that the
corresponding marriage is not allowed, and the name in a box is the class
designation of the offspring of a corresponding allowed marriage.

Table 4.1. Natchez Marriage Rules

Father
Sun Noble Honored Stinkard
Sun Sun
Noble Noble
Mother
Honored Honored
Stinkard Noble Honored Stinkard Stinkard

It is of interest to investigate the propagation of the class distribution of
this system. For this purpose we develop a state variable description of the
dynamic process implied by these rules. For purposes of developing the model,
we assume that the population can be divided into distinct generations, and we
make the following three simplifying assumptions:

(a) Each class has an equal number of men and women in each generation.

(b) Each individual marries once and only once, and marries someone in the
same generation.

(c) Each couple has exactly one son and one daughter.

Since the number of men is equal to the number of women in each class, it
is sufficient to consider only the male population. Let x;(k) denote the number
of men in class i in generation k, where the classes are numbered (1) Suns, (2)
Nobles, (3) Honored, and (4) Stinkards.

Since a Sun son is produced by every Sun mother and in no other way, and
since the number of Sun mothers is equal to the number of Sun fathers, we may
write

x(k+1) = x,(k)

A Noble son is produced by every Sun father and by every Noble mother and
in no other way; therefore,

Xy(k+ 1) = x(k)+x,(k)
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Similarly, an Honored son is produced by every Noble father and by every
Honored mother and in no other way; therefore,

x3(k+1) = x,(k)+ x5(k)

Finally, the number of Stinkard sons is equal to the total number of Stinkard
fathers minus the number of Stinkard fathers married to Suns or Nobles. Thus,

x4(k+1) =—x,(k) — x,(k) + x,(k)
In state variable form these equations become

x,(k+1) 1 0 0 0k
e+ _| 1 1 0 0f xk)
xs(k+1) 0 1 1 0 xsk)
xu(k+1) -1 -1 0 1l

The system matrix A is in this case a constant 4 X4 matrix, and accordingly
the system is a time-invariant, free, dynamic system of fourth order. The
state-transition matrix can be found as powers of the system matrix. That 1s,

®(k,0)= A+ k=0

These powers can, of course, be found numerically by brute force, but in this
case it is relatively easy to find an analytic expression for them. We write the
matrix A as A=1+B, where

0 0 0 O
1 0 0 O
B:
0 1 o0 OJ
-1 -1 0 o0

We may then use the binomial expansion to write
A =1+B) =1+ (;c)l"‘lB+ (;)l"‘ZBZ-!-- - <+ B*

where (l:) denotes the binomial coefficient k!/(k —i)!(i!). (The binomial expan-

sion is valid in this matrix case because I and B commute—that is, because
IB=BI.) The expression simplifies 1n this particular case because

0 00O

0
B2= 0 00O
- 1 0 00
-1 0 0 0
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but B? (and every higher power) is zero. Thus,

AF=(1+B)"= l-*-kB+k(k2 1)
or, explicitly,
i 0 0 07
k 1 00
2
—k(k+1) -k 0 1
L 2 -

Once A* is known, it is possible to obtain an expression for the class
populations at any generation k in terms of the initial populations. Thus,

x,(0)

kx,(0)+ x,(0)

1k (k~ 1)x,(0) + kx,(0) + x3(0)
~Lk(k + 1)x,(0) — kx,(0) + x,(0)

From this analytical solution one can determine the behavior of the social
system. First, it can be directly verified that the total population of the society
is constant from generation to generation. This follows from the earlier
assumption (c) and can be verified by summing the components of x(k).

Next, it can be seen that unless x,(0)=x,(0)=0, there is no steady
distribution of population among the classes. If, however, x,(0)=x,(0)=0,
corresponding to no Suns or Nobles initially, there will be no Suns or Nobles in
any successive generation. .In this situation, the Honored and Stinkard
population behave according to x3(k + 1) = x5(k), x,(k+1)=x,(k), and there-
fore therr populations remain fixed at their initial values.

If either the Sun or Noble class is initially populated, then the number of
Stinkards will decrease with k, and ultimately there will not be enough
Stinkards to marry all the members of the ruling class. At this point the social
system, as defined by the given marriage rules, breaks down.

x(k)=

4.5 GENERAL SOLUTION TO LINEAR DISCRETE-
TIME SYSTEMS

We turn now to consideration of the forced system

x(k+1)= A(k)x(k)+ B(k)u(k) (4-11)
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As before x(k) is an n-dimensional state vector, A(k) is an nXn system
matrix, B(k) is an nXm distribution matrix, and u(k) is an m-dimensional
input vector. The general solution to this system can be expressed quite simply
in terms of the state-transition matrix defined in Sect. 4.4. The solution can
be established easily by algebraic manipulation, and we shall do this first.
Interpretation of the solution is, however, just as important as the algebraic
verification, and a major part of this section is devoted to exposition of that
interpretation.

Proposition. The solution of the system (4-11), in terms of the irutial state x(0)
and the inputs, is

k—1
x(k) = ®(k, 0)x(0) + Y. ®(k, I+ 1)B(Du(l) (4-12)

i=0
Proof. To verify that the proposed expression (4-12) does represent the solu-
tion, it is only necessary to verify that it satisfies the basic recursion (4-11) and
the initial condition. An important relation for this purpose is

D(k+1,1+1)=A(k)D(k, 1+1) (4-13)
from the basic definition of the state-transition matrix. We note first that the
proposed solution is correct for k=0, since it reduces to x(0)=x(0). The
verification can therefore proceed by induction from k =0.

The proposed solution (4-12) when written with k+1 replacing k is
k
x(k+1) =k +1,0)x(0)+ Y. d(k+1, [+ 1)B(Du(l)
i=0
The last term in the summation (corresponding to I = k) can be separated from
the summation sign to produce

x(k+1)=d(k+1, 0)x(0)+kz Dk +1, 1+ DHB(Du(l)+B(k)u(k)
=0
Using relation (4-13) this becomes

x(k + 1) = A(k)dD(k, 0)x(0)+ A (k) kz_: D(k, 1+ 1)B(Du(l) + B(k)u(k)

=0
This, in turn, with the proposed form for x(k), becomes

x(k +1)= A(k)x(k)+B(k)u(k)
showing that the proposed solution in fact satisfies the defining difference
equation. Il
Superposition

The linearity of the system (4-11) implies that the solution can be computed by
the principle of superposition. Namely, the total response due to several inputs



110 Linear State Equations

is the sum of their individual responses, plus an initial condition term. This
leads to. a useful interpretation of the solution formula (4-12).

Let us investigate each term in the general solution (4-12). The first term
d(k, 0)x(0) is the contribution to x(k) due to the initial condition x(0). It is the
response of the system as if it were free. When nonzero inputs are present this
term is not eliminated, other terms are simply added to it.

The second term, which is the first of the terms represented by the
summation sign, is that associated with the first input. The term is
®(k, 1)B(0)u(0). To see how this term arises, let us look again at the underlying
system equation

x(k +1) = A(k)x(k)+B(k)u(k)
At k=0 this becomes
x(1) = A(0)x(0)+ B(0)u(0)

If we assume for the moment that x(0) =0 [which we might as well assume,
since we have already discussed the contribution due to x(0)], then we have

x(1) =B(0)u(0)

This means that the short-term effect of the input u(0) is to set the state x(1)
equal to the vector B(0)u(0). Even if there were no further inputs, the system
would continue to respond to this value of x(1) in 2 manner similar to its
response to an initial condition. Indeed, the vector x(1) acts exactly like an
initial condition, but at k=1 rather than k=0. From our knowledge of the
behavior of free systems we can therefore easily deduce that the corresponding
response, for k>1, is

x(k) = ®(k, 1)x(1)
In terms of u(0), which produced this x(1), the response is
x(k) = ®(k, 1)B(0)u(0)

which is precisely the term in the expression for the general solution corres-
ponding to u(0).

For an input at another time, say at time [, the analysis is virtually
identical. In the absence of initial conditions or other inputs, the effect of the
input u(l) is to transfer. the state from zero at time [ to B()u(l) at time [+ 1.

From this point the response at k>1+1 is determined by the free system,
leading to

x(k) = D(k, [+ 1)B(Du(l)

as the response due to u(l).
The total response of the system is the superposition of the separate
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responses considered above; the response to each individual input being
calculated as a free response to the instantaneous change it produces. We see,
therefore, in terms of this interpretation, that the total solution (4-12) to the
system can be regarded as a sum of free responses initiated at different times.

Time-Invariant Systems (Impulse Response)

If the system (4-11) is time-invariant, the general solution and its interpretation
can be slightly simplified. This leads to the formal concept of the impulise

response of a linear time-invariant system that is considered in greater detail in
Chapter 8.

Corresponding to the linear time-invariant system

x(k + 1) = Ax(k)+Bu(k) (4-14)
the state-transition matrix takes the simple form
Ok, 1+1)=A "1 (4-15)

Therefore, the general solution corresponding to (4-14) is

k—1
x(k)=A*x(0)+ ) A*""'Bu(l) (4-16)
{=0
Everything said about the more general time-varying solution certainly
applies to this special case. To obtain further insight in this case, however, let
us look more closely at the response due to a single input. For simplicity
assume that the input is scalar-valued (i.e., one-dimensional). In that case we
write the distribution matrix B as b to indicate that it is in fact an n-vector.
The response due to an input u(0) at time k=0 is

x(k) = A*"'bu(0)

If u(0) =1, corresponding to 2 unit input at time k =0, the response takes the
form

x(k)=A*"'b

This response is termed the impulse response of the system. It is defined as the
response due to 2 unit input at time k =0.

The importance of the impulse response is that for linear time-invariant
systems it can be used to determine the response to later inputs as well. For
example, let us calculate the response to an input u(l). Because the system 1s
time-invariant, the response due to an input at time [ is identical to that due to
one of equal magnitude at time zero, except that it is shifted by [ time units.
Thus the response is

x(k)=A*1py(l) fork=1+1

Of course, the response for k <! is zero.
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The response of a linear time-invariant system to an arbitrary sequence of
inputs is made up from the basic response pattern of the impulse response. This
basic response pattern is initiated at various times with various magnitudes by
inputs at those times; the magnitude of an input directly determining the
proportionate magnitude of the corresponding response pattern. The total
response, which may appear highly complex, is just the sum of the individual
(shifted) response patterns.

Example (First-Order System). Consider the system
x(k+1)=ax(k)+u(k)

where 0<a <1. The general solution to the system is

k-1
x(k)=a*c(0)+ ¥ a*"u(l)
=0
The impulse response is a geometric sequence. The total response to any
input is just a combination of delayed versions of this basic geometric se-
quence, each with a2 magnitude equal to that of the corresponding input term.
The interpretation of the solution in terms of the impulse response is
illustrated in Fig. 4.4a—4.4c. Part (a) shows the impulse response, (b) shows a
hypothetical input sequence, and (c) shows the composite response made up
from the components,

~ Y

NN\

NN
A\

{c)
Figure 4.4. Decomposition of response.
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4.6 HOMOGENEOUS CONTINUOUS-TIME SYSTEMS

A solution procedure almost parallel to that for discrete time is applicable to
linear continuous-time dynamic systems. As in the discrete-time case, it is best
to first consider in some detail the homogeneous or free system, which in
continuous time has the form

()= A()x(1) 4-17)
If the elements of the matrix A(f) are continuous functions of t, the system
(4-17) will possess a unique solution corresponding to each initial state vector.
Unlike the discrete-time case, however, where it is possible to write down an
explicit expression for the solution in terms of the initial state vector, no such
general expression exists in the continuous-time case. Although this is perhaps
disappointing, it does not seriously inhibit progress toward the goal of parallel-
ing the development of the discrete-time case. The concepts of state-transition
matrix and fundamental sets of solutions are still applicable, and form the basis
of a very satisfactory theory.

The theory itself is concerned essentially with relations among different
solutions rather than with the issues of whether solutions actually exist.
Accordingly, it is assumed that given a time 7, if x(7) is specified, there is a
unique solution to (4-17) having this value at ¢t = 7. It is then possible to define
the state-transition matrix indirectly as a2 matrx solution to the original
differential equation.

Definition. The state-transition matrix ®(t, v) corresponding to the homogene-
ous system (4-17) is the nXn matrix function satisfying

%d’(l, 7)=A()P(t, 7) (4-18)

O(r, 1) =1 (4-19)

Let us examine this definition to see, at least in principle, how the
state-transition matrix might be found. Let us fix +. The n columns of ®(t, 1)
are then each vector functions of ¢, and to satisfy (4-18) each of these columns
must be solutions to the original equation (4-17). In addition, these solutions
must satisfy the special condition at t =7 implied by ®(r, 7)=1I; that is, at t=7
each solution vector must be equal to one of the standard unit basis vectors. By
finding these n solutions to (4-17), the matrix ®(t, 7) (for the fixed value of 7)
can, be constructed. This (conceptual) procedure is then repeated for all values
of 7. -

The state-transition matrix as defined above has the important state-
transition property. Suppose x(t) is any solution to (4-17). Let 7 be fixed. Then
it is easy to see that for any ¢

x(t)= d)tt, 7)x(7) (4-20)
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This is true because the right-hand side is a linear combination of the columns
of ®(t, r), and hence is itself a solution. This solution is equal to x(t) at t =, and
hence it must be equal to it for all ¢

Fundamental Sets of Solutions

Just as in the discrete-time case, the matrix ®(t, r) can be expressed in terms of
an arbitrary fundamental set of solutions. This procedure helps to clarify the
structure of the state-transition matrix.

Analogously to the discrete-time case, we say that a set of vector-valued
time functions x!(t), x*(t),...,x™(t) is linearly independent if there is no
nontrivial linear combination of them that is identically zero. Let x'(t),
x*(1),...,x"(t) be a linearly independent set of solutions to the homogeneous
system (4-17). We ignore the issue of how to obtain these n solutions (since as
we have said it is impossible to prescribe a general method), but simply assume
that they can be found. These solutions form a fundamental set of solutions. If
arranged as the columns of an nXn matrix X(¢), the resulting matrix is a

fundamental matnx of solutions. The matrix satisfies the matrix differential
equation

X(1) = A()X(1) (4-21)
Lemma. A fundamental matrix of solutions X(t) is nonsingular for all t.

Proof. Suppose to the contrary that for a specific + the matrix X(v) were
singular. This would imply the existence of a nonzero vector e such that

X(1)a=0
Defining
x()=X(a

it would follow that x(t) is a solution to (4-17), equal to zero at t=1. It then
would follow by the uniqueness of solutions that x(t) =0 for all +=r. The same
argument can be applied backward in time (by setting ¢’ = —t) to conclude that
x(#) =0 for t= 1. Hence, X(t)a = 0 for all t. But this contradicts the assumption
of linear independence of the original fundamental set of solutions. i

Proposition. Let X(t) be a fundamental matrix of solutions corresponding to the
system

x(1) = A(0)x(s)
Then the state-transition matrix is given by the expression
®(1, 1) =X(DX(?)! (4-22)
Proof. For fixed 7 the right-hand side of (4-22) is itself a fundamental matrix of
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solutions, and hence satisfies (4-18). The matrix X(r)™* simply combines the
various columns in X(t) so that the particular solutions have the special unit
basis conditions at ¢ = 1, satisfying (4-19). Il

Example 1. To illustrate these concepts, let us consider a simple example in
which analytic expressions for solutions can be easily found. Consider the
two-dimensional system

[0 3o

(defined for t=1, so that all terms are finite).

From the first of the two individual equations, it is clear that x,(t) is
constant; x,(t) = c. Then making the substitution z(t) = x,(t)/t, the second equa-
tion reduces to

tz()+z()=ct+z(1)

This collapses to z(t) = ¢ and hence we deduce that x,(t) = ct*>+dt, where ¢ and
d are arbitrary constants.
In view of the above, one possible fundamental matrix of solutions is

1 0
X()= [t2 t]
Accordingly,

d’(t,T)‘—"x(t)x("')_l:[tlz 0][1 0]

til—-r 1/~
1 0
(1, 7= [t(t—’r) t/-r]

Time-Invariant Systems
Consider the system
x(1) = Ax(t) (4-23)

We can show, for this general time-invariant, or constant coefficient, system,
that the fundamental matrix of solutions satisfying

X(1) = AX(1) (4-24)
X(0)=1 (4-25)
can be e;(pressed as a power-series expansion in the form
A2t2 A3t3 Aktk
X(t)=I+Az+ 31 +———3! et (4-26)
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Before verifying this formula, we point out that a series of this kind,
expressed as a sum of matrices, can be regarded as a collection of separate
series, one for each component of the matrix it defines. That is, the ijth
element of the matrix on the left-hand side of the equation is the sum of the
series defined by the ijth elements of each matrix on the right-hand side of the
equation. The particular series in (4-26) defines an n X n matrix for each fixed
value of . In general, in forming series of this type, one must carefully delineate
conditions under which convergence to a limit is guaranteed, or, specifically,
when convergence of the individual series for each element is guaranteed. In
this particular case it can be shown (see Problem 20) that the series defined by
(4-26) converges for any matrix A and all values of .

To verify that the matrix X(r) defined by the series (4-26) satisfies (4-24)
and (4-25) is simple. Substituting t=0 into the series leads immediately to
X(0)=1. To verify that the differential equation is satisfied, we differentiate
each term of the series, obtaining

3,2

. A
X()=0+A+A%+ 2: o
2,2 \
=A(I+A:+A2: +---)=AX(:)

The series used to define X(t) is the matrix analog of the series for e* in
the familiar scalar case. For this reason it is appropriate, and very convenient,
to denote the series (actually its limit) as an exponential. Thus we define, for
any f, the matrix exponential

A2 Ak
-4
2! k!

which is itself a square matrix the same size as A.
The state-transition matrix of the time-invariant system is

®(1, 7) =X(OX()"

eM=1+Ar+ - (4-27)

This can be written as
®(t, 1) =ere ™"

= eA(t—f)

Thus ®(t, ) depends, in the time-invariant case, only on the difference t—r1.
For this reason, it is customary when working with time-invariant systems to
suppress the double index and define

O(t)=e™
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Example 2 (Harmonic Motion). Let us consider the equation of harmonic
motion, as defined in Chapter 2. The motion is defined by the second-order
homogeneous equation
d*x
—+w?x=0 (4-28)
dt
where o is a fixed positive constant.
In state-variable form this system can be written

X 0 1Ux
-1 ol @)
Xy —w? 0llx,
where x=x, and x=x,. The state-transition matrix corresponding to this
time-invariant system is

B(1)=e™
where A is the coefficient matrix in (4-29). We can easily calculate that
w7 e
From this we can conclude that, if k is even,
Ak =(—1)"2p*1
A= (—1)2p* A
This leads to an explicit expression for the series representation of the

state-transition matrix. For example, the element in the upper left-hand corner
of the matrix is

Similar expressions can be found for the other elements, leading finally to

D)= = [ coswt  (sin wt)/w]

—w sin wt cos wt

(4-30)

Any solution to the original equation, therefore, will be a combination of sine
and cosine terms.

Example 3 (The Lanchester Model of Warfare). A famous model of warfare was
developed by Lanchester in 1916. In this model, members of a fighting force are
characterized as having a hitting power, determined by their military technology.
The hitting power is defined to be the number of casualities per unit time (on the
average) that one member can inflict on the enemy.

Suppose N; units of one force, each with hitting power a, are engaged
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with N, units of a second force, each with hitting power B. Suppose further that
the hitting power of the first force is directed equally against all units of the
second, and vice versa. The dynamic model for the engagement, determining
the reduction in forces, is

Ny(t)= —BN(1)
Ny (1) = —aN,(1)

When expressed as a system, these equations correspond to the system matrix

0 —
S
-a 0
The state-transition matrix can be found in a manner quite analogous to
that used for harmonic motion. We have

wo[T e
and thus, in general, if k is even
A* = (B
A= (o)A
The expansion
242
2!

can be expressed in terms of the hyperbolic functions sinh (VaBt) and
cosh (Vaf t), but we leave the details to the reader. The Lanchester model is
discussed further in Problem 15.

eM=1+Ar+ e

4.7 GENERAL SOLUTION TO LINEAR CONTINUOUS-TIME
SYSTEMS

We turn now to the solution of the general linear continuous-time system

x(1) = A(D)x(t) + B(t)u(r) (4-31)

where as usual x(f) is an n-dimensional state vector, A(t) is an n X n matrix,
u(?) is an m-dimensional vector of inputs, and B(t) is an n xm distribution
matrix. Just as in the discrete-time case, the solution to the general
nonhomogeneous system can be relatively easily expressed in terms of the
state-transition matrix associated with the homogeneous (or free) system.
Again, it is simplest to first propose and verify the solution directly.
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Proposition. The solution of the system (4-31) in terms of the initial state x(0)
and the inputs is

x(¢) =d(1, 0)x(0) + L' &1, )B(v)u(7) dr (4-32)

Proof. Before beginning the actual proof, the integral sign in this formula
deserves a bit of explanation. Let us fix some t>0. Then x(¢f) is an n-
dimensional vector determined by the right-hand side of the equation. The first
term on the right is just a matrix times a vector, so it is a vector. The integrand,
the expression inside the integral sign, is likewise an n vector for each value of
7. The integral is a (continuous) summation of these vectors, and is therefore
itself a vector. The integration can be performed componentwise, each compo-
nent being an ordinary function of the variable .

To verify that (4-32) is in fact the solution to the system (4-31), we
differentiate with respect to t. Differentiation of the integral produces two
terms—one corresponding to differentiation with respect to t inside the integral
sign, and the other corresponding to differentiation with respect to the upper
limit of the integral. Thus,

d d
@t x(t)= P (1, 0)x(0)

+ L ad;@(t, 7)B(r)u(r) dr + &, HB(Du(r)
Using the basic properties of the state-transition matrix
f;‘i’(t, ) =A)®(, 7)

O, 1)=1
the above reduces to

d_ .. _
= x(1) = A(t)d(z, 0)x(0)

+ L' AP, 7)B(r)u(r) dr + B(t)u(r)
= A(1)x(1) + B(t)u(r)

which shows that the proposed solution satisfies the system equation. Il

Superposition

The principle of superposition applies to linear continuous-time systems the
same as it does to discrete-time systems. The overall effect due to several
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u(t)

L.

L \ l x
—>| A=
Figure 4.5. Decomposition of input.

different inputs is the sum of the effects that would be produced by the
individual inputs (if the initial condition were zero). This idea can be used to
interpret the formula for the general solution.

The first term on the right-hand side of the solution (4-32) represents the
response due to the initial condition x(0). This response is determined directly
by the state-transition matrix developed for the free system, and it is a
component of every solution.

To interpret the second term, imagine the input function u(t) as being
broken up finely into a sequence of individual pulses of width A, as illustrated
in Fig. 4.5. At time 7 the pulse will have an (approximate) height of u(s). If the
pulse at v were the only input, and if the initial state were zero, then the
immediate effect of this pulse would be to transfer the state from zero, just
prior to the pulse, to AB(7)u(r) just after it. This is because the resulting value
of the state is the integral of the pulse.

After the state has been transferred from zero to AB(+)u(r), the longer-
term response, in the absence of further inputs, is determined by the free
system. Therefore, for ¢t>+ the response due to the pulse at + would be
AD(1, r)B(v)u(7r). The total effect due to the whole sequence of pulses is the
sum of the individual responses, as represented in the limit by the integral term
on the right-hand side of the solution formula (4-32).

Example (First-Order Decay). Consider a first-order system governed by the
equation

()=—-r(t)+u(l) (4-33)

where r>0. This is referred to as a decay system, since in the absence of inputs
the solution is

x(t)=e""'x(0) (4-34)
which decays to zero exponentially.

Suppose the system is initially at rest, at time t=0, and an input u of unit
magnitude is applied starting at time ¢ =0. Let us calculate the resulting time
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x(t)

)=

t
0

Figure 4.6. Response of decay system.

response. The state-transition matrix (which is 1 X1 in this case) 1s
D(t)=e"*
The solution with zero initial condition and unity input 1s, therefore,

—r(t—7) |t

e

x(t)= L e dr =

T 0
=l[1—e"‘]
r

This response is illustrated in Fig. 4.6.

*4.8 EMBEDDED STATICS

In formulating equations to describe a dynamic situation, the equations one
writes may not initially be in the standard state variable form. It 1s, however, often
most convenient to transform the equations to the standard form. This procedure 1s
usually not difficult; indeed, in many instances it is so straightforward that one
performs the necessary operations without hesitation. Nevertheless, it is worth-
while to recognize that this transformation is in fact a necessary step.
A general form that is likely to arise (arbitrarily expressed in discrete-time
just for-specificity) is
Ex(k +1)= Ax(k)+ Bu(k) (4-35)

where E and A are n X n matrices and B is an n X m matrix. These matrices
may in general depend on k without affecting the essence of our discussion. If
E is nonsingular, it is simple to transform the equations by multiplying by the
inverse of E. This yields the standard state vector form

x(k +1) = E"'Ax(k) + E"'Bu(k) (4-36)

If E is not invertible the situation is more interesting. The system then
consists of a mixture of static and dynamic equations; the static equations being
in some sense embedded within the dynamic framework. Under rather general
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conditions (see Problem 21) such a system with embedded statics can be
transformed to a state vector dynamic system having an order less than the
dimension of the original system of equations. The following examples illus-
trate this point.

Example 1. Consider the system defined by
x,(k + 1)+ x,(k +1) = x, (k) + 2x,(k) + u(k) 4-37)
0 =2x,(k)+x,(k)+ u(k) (4-38)
This has the form of (4-35} with

1 1]
E=
Lo o
which is singular. To obtain the reduced form for this particular system, we add
the two equations to produce

x,(k+ 1)+ x5(k + 1) =3[x, (k) + x,(k)]+ 2u(k) (4-39)
This shows that the variable
z(k) = x,(k)+x5(k) (4-40)

can serve as a state variable for the system. The dynamic portion of the system
takes the form

z(k+1)=3z(k)+2u(k) (4-41)

The original variables x, and x, can be expressed in terms of z and u by
solving (4-38) and (4-40) simultaneously. This leads to

x,(k)=—z(k)—u(k) (4-42)
x,(k)=2z(k)+ u(k) (4-43)
Example 2 (National Economics—The Harrod-Type Model). A dynamic
model of the national economy was proposed in Sect. 1.3. In terms of variables

that have a specific economic meaning, the basis for the model is the following
three equations:

Y(k)=C(k)+I(k)+ G(k)
C(k)=mY(k)
Y(k+1)—Y(k)=rI(k)

In these equations only the variable G(k) is an input vaniabie. The others are
derived variables that, at least in some measure, describe the condition of the
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=

system. In a vector-matrix format the defining equations take the form

0 0 O}f I(k+1) 1 1 —1{] I(k) 1
0 0 0||Clk+1)|=|10 -1 m!|C(k)|+]|0I|G(k)
0 0 1}lY(k+1) r 0 1]LY(k) 0

In this form it is clear that the original equations can be regarded as a dynamic
system with embedded statics. This particular system is easy to reduce to a
first-order system by a series of substitutions, as carried out in Sect. 1.3. This
leads to the first-order dynamic system

Ykk+1)={1+m(Q-r)]Y(k)—rG(k)

The other variables can be recovered by expressing them in terms of Y(k) and
G(k). In particular, -

C(k)=mY (k)
I(k)=(1—-m)Y(k)— G(k)

Example 3 (National Economics—Another Version). The dynamic model of
the national economy presented above can be regarded as being but one of a
whole family of possible (and plausible) models. Other forms that are based on
slightly different hypotheses can result in distinct dynamic structures. The
relationships between these different models is most clearly perceived in the
nonreduced form; that is in the form that contains embedded statics.

Samuelson proposed a model of the national economy based on the
following assumptions. National income Y(k) is equal to the sum of consump-
tion C(k), investment I(k), and government expenditure G(k). Consumption is
proportional to the national income of the preceding year; and investment is
proportional to the increase in consumer spending of that year over the
preceding year.

In equation form, the Samuelson model is

Y(k) = C(k)+I(k)+G(k)
Ck+1)=mY(k)
Itk+1) = p[C(k+1)— C(k)]
In our generalized matrix form, the system becomes
0 0 0ffI(k+1) 1 1 —171]I(k) 1
0 1 0[{Ckk+1)|=]0 0 m||C(k)|+]0{G(k)
1 —p O0flY(k+1) 0 —p 01! Y(k) 0

This system can be reduced to a second-order system in standard form.
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4.9 PROBLEMS

1.

Moving Average. There are many situations where raw data is subjected to an
averaging process before it 1s displayed or used for decision making. This smoothes
the data sequence, and often highlights the trends while suppressing individual
deviations.

Suppose a sequence of raw data is denoted u(k). A simple four-point averager
produces a corresponding sequence y(k) such that each y(k) is the average of the
data points u(k), u(k —1), u(k —2), u(k —3). Find a representation for the averager
of the form

x(k +1) = Ax(k)+bu(k)
y(k)=x,(k)+ u(k)]

where x(k) 1s three-dimensional, A is a 3xX3 mainx, and b 1s a 3x1 (column)
vector.

. Cohort Model. Suppose that the input u(k) of new machines in the example 1n

Sect. 4.1 18 chosen to exactly equal the number of machines going out of service
that year. Write the corresponding state space model and show that 1t 1s a special
case of the general cohort population model described in Chapter 1. Repeat under
the assumption that in addition to replacements there are new purchases amounting
to y percent of the total number of machines in service.

. Consider the linear difference equation

y(k+n)+a,;y(k+tn—1)+---+apy(k)
=ph, uk+n—=1)+b,u(k+n—2)+---+bou(k)

Show that this equation can be put in state space form
x(k +1)=Ax(k)+bu(k)
by defining
x1(k) =—aoy(k ~ 1)+ bou(k—1) |
x2(k) = —apy(k —2) +bou(k —2) f

—a,y(k-1)+buk—1) ‘ e oo

. )\,:;3| YYD
Xpoi(k) =~aoy(k—n+1) +boulk —n+1)

—ay(k—=n+2)+bu(k—n+2)

Y Dy T

e yk-D+bouk-1) -
xa(k) =y (K) ‘;
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4. Nonlinear Systems. Consider the nonlinear difference equation of the form
y(k+n)=Flylk+n-1),...,yk),u(k+n—~1),...,u(k), k]

(a) Find a state space representation of the difference equation. (Hint: The rep-
resentation will be more than n-dimensional.)
(b) Find an n-dimensional representation in the case where F has the special form

F=Y flylk+n—i),u(k+n—i)
r=l

5. Labor-Management Negotations. Consider a wage dispute between labor and
management. At each stage of the negotiations, labor representatives submit a wage
demand to management that, in turn, presents a counter offer. Since the wage offer
will be usually less than the wage demand, further negotiations are required. One
can formulate this situation as a dynamic system, where at each period management
‘“updates” its previous offer by the addition of some fraction a of the difference
between last pertod’s demand and offer. Labor also “updates” its previous demand
by the subtraction of some fraction B8 of the difference between the demand and
offer of the last period. Let x, equal the management offer and x, equal the labor
demand. Wnte the dynamic state equations (in matnx form) for the situation
described above.

6. Consider the two social systems whose marriage rules are summarized i Fig. 4.7.
In each system there are four sociai classes, and every child born to a certain class
combination becomes a member of the class designated in the table. The assump-
tions (a), (b), and (c) of the Natchez Indian example hold as well. For each system:
(a) write the state equation for the social system; and (b) compute the solutton to
the state equations.

7. A Simple Puzzle. We have four timepieces whose performance 15 described as
follows: The wall clock loses two minutes in an hour. The table clock gets two

Mother Mother
1 2 3 4 1 2 3 4
1 4 1 1
2 4 2 2
2 2
3 2
“ 3 4 3 3
4 1 2 3 4 4 2 3 4 4

Figure 4.7. Social systems.
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munutes ahead of the wall clock in an hour. The alarm clock falls two minutes
behind the table clock in an hour. The last piece, the wristwatch, gets two minutes
ahead of the alarm clock in an hour. At noon all four timepieces were set correctly.
Let x, equal the wall clock reading, x, be the table clock reading, x; the alarm clock
reading, and x, the wrnstwatch reading, and consider noon as the starting time (i.e.,
k =0).

(a) Write the dynamic equations corresponding to the four given statements about

performance. Directly translate into the form

Ex(k+1)=Cx(k)+c¢
(b) Convert the system to the standard form
x(k+1)=Ax(k)+b

[Hint: I-B) '=1+B+B*+---+B*+--- whenever B is such that the series
converges.]

(c) Find the state-transition matrix ®(k).

(d) Find a simple general formula for x(k). What time will the wristwatch show at
7:00 p.m. (i.e., at k =7)?

. A Classic Puzzle. Repeat Problem 7 above for the alternate description: The wall

clock loses two minutes i an hour. The table clock gets two minutes ahead of the
wall clock for every hour registered on the wall clock. The alarm clock falls two
minutes behind the table clock for every hour registered on the table clock. The
wrnistwatch gets two minutes ahead of the alarm clock for every hour registered on
the alarm clock.

. Properties of State-Transition Mamix. Let ®(t,r) be the state-transition matrix

corresponding to the linear system

x(8) = A()x(1)
Show:
(@) (1, ty) = D(1,, t)D(1y, t,)

() B, 1) =d(r, 1)
d
(©) —d(t, 1) = —-B(t, DA(7)
dr
A model of a satellite has the form
x(1) = Ax(?)
where A 15 a 4 x4 matrix. Given that the state-transition matrnx for this system 1s
4-3 cos wt sin wifw 0 2(1-cos wt)/w
3w sin wt cos wt 0 2 sin wt
D4, 0)= .
6(—wt+sinwt) —-2(1—coswit)/w 1 (@Esinwt—3wt)lo
6w(—1+cos wt) ~2 sin wt 0 4 cos wt—3

find the matrix A.
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Linearizanion. Suppose one has a system of n nonlinear first-order differentiai
equations:

Vi=filY V2o e e vs Yoo Uy 1)
V2= faly1, V2o o oo s Yoo Us 8)

Vo= fal¥1 Y20 oo oy Yo s 1)

where u(t) 1s an input or forcing term. Further, suppose that for a particular set
of initial conditions and input {¥,(to), ¥2(t0), . - -, ¥ (to), G(t)} there 15 a known
solution

210
(1) .

yy=

§n(t)

We wish to investigate the behavior of the system when the input function and
imtial conditions are changed slightly. That 1s, we require a soiution to the system
when y;(to) = ¥ (to) + z:(to), i=1,2, ..., n and u(t) = i(t) +v(t). To satisfy the origi-
nal system of equations, we seek a solution of the form y(t)=§(t)+z(t). So the
system becomes:

Fr+z)=fiF+ 20, 2+ za, ..o, Fut 2., B+, 0)
(2t 2)=fa(Fri+ 2z, Fat 22, .oy FuF Za i+, 1)

();’n+2n)=fn(91+zh 92'*" Zz,...,i,.-l-z,., E+U, t)

(a) Assume that v and the z{t)’s are smalil (so that the onginal conditions are
slightly different from the conditions for which a solution exists) and expand the
new system of equations in a Taylor series about the original conditions and
input. Neglect terms of order 2 or higher.

From part (a), write down a system of time-varying linear differential equations
that express the effect of the perturbation on the original (known) solution §.
Thus, the new solution will consist of § plus the contribution found in this
section. What is the time-varying system matrix?

(b

—

Application of Linearizanon. Consider the nonlinear system

X1 = X2
%2 =2x7—u(t)x,

(a) For the particular initial conditions x.(1)=1, xy(1)=-1 and the input
function u(t)=0, find the solution x(t). (Hint: Try powers of t.)
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(b) Using the results of Problem 11 above, find a time-varying linear system that
describes the behavior of small perturbations.

(¢) Find an approximate solution to the original system, corresponding to x,(1) =
1.5, x,(1)=0.5, u(t)=0.5.

Consider the first-order dynamic system

x(D=ax(t)+b

with mtial condition x(0)=1.

(a) Find the solution x(t) using the general formula for solutions to nonhomogene-
ous systems.

(b) Note that the system can be expressed as a second-order homogeneous system
in the form

x(t) = ax(t)+by(t)
y()=0

with x(0)=1, y(0)=1. Denoting the corresponding 2X2 system matrix
by A, calculate e®. Use tius to find x(¢) and y(z).

Consider the time-varying differential equation
.4 2
y+'t‘y+py=u(t)

for t>0.
(a) Define state variables x, =y and x,=y and find a representation of the form

x()=A@Ox(0)+bu(r)

(b) Find two linearly independent solutions to the homogeneous scalar equation.
(Hint: Try y =1t*)

(¢) Construct the matnx X(z), a fundamental matrix of solutions, based on the
results of part (b). i

(d) Find the state-transition matrix ®(t, 7).

Lanchester Model. A fair amount of information can be deduced directly from the

form of the Lanchester equations, without actually solving them.

(a) What condition on the sizes of the two forces must be met in order that the
fractional loss rate of both sides be equal? [Fractional loss rate = N/N.]

(b) Find a relation of the form F(N,, N;) = ¢, where ¢ is a constant, which 1s valid
throughout the engagement. [The result should be a simple quadratic expres-
sion similar to the answer in (a).]

(c) If Ny(0) and N,(0) are known, who will win? (The battle continues until one
side 1s totally depleted.)

(d) As a function of time, the size of either side will have the form

N;(t) = A. sinh wt + B: cosh wt :

What is the value of w?
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Floquet Theory. Consider a system of differential equations of the form
x(1) = A(O)x(t)

where the n X n matrix A(t) is periodic with a period T. That is,
A(t+T)=AQ)

for every t. Let X(f) be a fundamental matrix of solutions, with the normalizing

property that X(0)=1L.

(a) Observe that X(1+T) 1s also a fundamental matrix of solutions and write an
equation relating X(t) and X(¢+ T).

(b) Let the matnx C be defined such that

X(T)=e®"
and define B(t) such that

X(t) =B(1)e<

Show that 1n this representation for X(t), the matrix B(r) 1s penodic with period
T.

Vanation of Parameters. The classic derivation of the general solution formula for
a homogeneous system of differential equations 1s based on a method called
variation of parameters. Consider the system

(1) = A(D)x(¢)+b(2)

Let X(1) be a fundamental matrix of solutions for the corresponding homogeneous

equation. It is known that any solution to the homogeneous equation can be written

as X(t)y, where y 1s an n-vector of (fixed) parameters. It is conceivable then that 1t

mught be helpful to express the general solution to the nonhomogeneous equation

1 the form x(t) = X(1)y(t), where now y(t) is an n-vector of varying parameters.

(a) Using the suggested form as a tral solution, find a system of differential
equations that y(t) must satisfy.

(b) Solve the system in (a) by integration and thereby obtain the general solution to
the original system.

(c) Convert the result of (b) to one using the state-transition matrix, and verify that
it 1s the same as the result given 1n the text.

Time-Varying System. A closed-form expression for the transition matnx of a
time-varying system
x(1)= A(t)x(t)

can be found only in special cases. Show that if A()A(7)= A(r)A(r) for all ¢, 7, then
the transition matrix may be written as

®(1, r)=exp I A(¢) de

(Hint: exPj Y =l+[ A® d5+%[ A [ A@ e+ )
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Find the impulse response of the straight-through cohort model.

Given a real n Xn matrix A, let M be a bound for the magnitude of its elements,

that 1s, |a;| =M for all 4, .

(a) Find a bound for the elements of A*.

(b) Let b, and ¢, k=0,1,2,... be two sequences of real numbers with b, >0. If
the series Yo b converges and if |c. | =< b, for all k, then the series Y5..0 ¢, also
converges. Given that the series Y ;.o a“/k! converges (to e”) for any value of a,
show that the matnx series Yr..o A*t*/k! converges.

Embedded Statics. Suppose a system is described by a set of equations of the form

[o et v= [ o+ (5]

where x(k) 1s an n-dimensional vector, T and C are m Xn matrices, D is an
(n—m)Xn matrix, and w(k) and v(k) are m and (n—m)-dimensional vectors,
respectively. Assume that the n X n matrix

[»)

is nonsingular. Following the steps below, it 1s possible to convert this system to
state vector form.

(a) Define y(k)=Tx(k) and show that with this definition, and the lower part of the
system equation, one may express x(k) in the form

x(k) = Hy(k) - Gv(k)

Give an explicit definition of G and H.
(b) Show that the top part of the original system can be wntten i the state vector
form

y(k +1) = Ry(k)+ Bv(k) +u(k)

and give expressions for R and B. Note that x(k) can be recovered from y(k)
using part (a).
(c) Apply this procedure to Example 3, Sect. 4.8.

NOTES AND REFERENCES

General. As with the material in Chapter 2, the theoretical content of this chapter is
quite standard and much of it is contained in the references mentioned at the end of
Chapter 2. This chapter, however, begins to incorporate more explicitly the viewpoint of
dynanmucs, as opposed to simply difference and differential equations. This is manifested
most importantly by the concept of the state vector, by the explicit recognition of inputs,
by the introduction of a state-transition matrix relating the states at two time instances,
and by the view of the general solution to a linear equation as being composed of a
series of free responses. This viewpoint is represented by books such as DeRusso, Roy,
and Close [D1], Kwakernaak and Sivan [K16], and Rugh [R7].
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Section 4.4. Codification of the exact class inheritance rules of the Natchez Indian
social structure is not available. Rather, the rules presented here have been inferred
from observations and writings of early French explorers. There is a possibility that the
actual scheme differed somewhat. See White, Murdock, and Scaglion [W4]. Presenta-
tion in this form (originally due to Robert Busch) is contained in Goldberg [G8].

Section 4.6. For the Lanchester model see Lanchester [L1] or Saaty [S1].

Section 4.8. See Luenberger [L12] for a general theory of this type. For general
background on dynamic economic models see Allen [A1], Baumol [B4], and Gandolfo
[G1]. A concise statement of several possible versions, including the ones referred to
here 1s contained in Papandreou [P1]. For the specific model of the example see
Samuelson [S2].

Section 4.9, The classic puzzle, Problem 8, is contained in Kordemsky [K15].
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Linear Systems with
Constant Coefficients

The subject of linear systems with constant coefficients is in some sense the
core of dynamic systems theory. These systems have a rich full theory, and they
provide a natural format for penetrating analyses of many important dynamic
phenomena.

A linear system with constant coefficients is described in discrete time as

x(k+1) = Ax(k)+ Bu(k)
and in continuous time as

x() = Ax(£)+Bu(t)

In either case, it is known from the general results of Chapter 4 that a major
role is played by the corresponding homogeneous equation. Since the
homogeneous equation is defined entirely by the associated system matrix A. it
can be expected that much of the theory of linear systems with constant
coefficients is derived directly from matrix theory. Indeed, this is the case, and
a good portion of the theory in this chapter is based on the results from linear
algebra presented in Chapter 3.

The most important concept discussed in this chapter is that of system
eigenvalues and eigenvectors, defined by the matrix A. These eigenvectors
define special first-order dynamic systems, embedded within the overall system,
that behave independently of the rest of the system. The original complex
system can be decomposed into 2 collection of simpler systems associated with
various eigenvalues. This decomposition greatly facilitates analyss.

In addition to theory, this chapter also contains several extended examples
and applications. They are included to illustrate the theorv. broaden our scone
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of classic models, and in some cases, to illustrate the kind of analysis that can
be achieved with the theory. In each of the examples, one objective is to
illustrate how mathematical analysis can supplement and guide our intuitive
reasoning, without displacing it.

5.1 GEOMETRIC SEQUENCES AND EXPONENTIALS

A special role is played in the study of linear time-invariant systems by
geometric sequences in discrete time, and by exponential functions in continu-
ous time. They have a unique reproducing property when applied as input
functions, and this property helps explain why these functions occur as natural
solutions to homogeneous systems.

In discrete time the basic dynamic element is the unit delay. If a sequence
u(k) is applied as input to a unit delay, then the output x(k) is governed by

x(k+1)=u(k)

Now if u(k) is a geometric sequence, say u(k)=a*, k=0,1,2, ..., the output
is x(k)=a"'=a%a, k=1,2,.... Thus, for any k=1, the output is just a
multiple of the input. In other words, the effect of a delay is simply to multipiy
a geometric sequence by a constant.

Any nth-order linear constant-coefficient system in discrete time
consists of a combination of n unit delay elements and a number of scalar
multiplications, as depicted in Fig. 5.1. If a geometric sequence is applied as an
input at any point, it will pass through the various delays and constant
multiples to which it is connected without changing its form. Thus, this
particular geometric sequence will be a component of the overall response.

Similarly, it can be seen that geometric sequences occur in the homogene-
ous system. In the homogeneous system the response at any point serves as the
input to other parts of the system. If this response is 2 geometric sequence, 1t
will travel around the system and eventually return to the original point with
the same form. For consistency, however, it must return with the same
magnitude, as well as general form, as it started. Only certain geometric
sequences (that is, only certain values of the parameter a in a*) give this result.
Such a geometric sequence is part of the homogeneous solution.

As a specific example, consider the first-order system

x(k +1) = ax(k)+ bu(k) (5-1)
which is depicted in Fig. 5.2. The homogeneous response is
x(k) = a*x(0)

The geometric sequence a* can pass from x(k) through the multiplication by a,
then through the unit delay, returning to the original point with the same form
and magnitude.
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Figure 5.1. An nth-order system.

Suppose now that an input function is applied, which is itself a geometric
sequence but with a ratio p# a. That is, u(k)=p*. The solution x(k) in this
case consists of the sum of two geometric sequences, one of ratio a and one of
ratio p. Specifically, the solution is

x(k)=(x(0)—pf)_a) a"+(#ia\) T (5-2)

The geometric sequence mput passes through the system with unaltered form

but with changed magnitude, and in addition a component of the homogeneous
response is superimposed.

This discussion, of course, has an exact analog in the continuous-time case.
There, exponential functions of the form e ™ have the reproducing property.

LI ° _i‘_"_’__,.

Figure 5.2. Discrete-time first-order system.
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An nth-order linear constant coefficient system is composed of n differen-
tiators and a number of scalar multipliers. An exponential retains its form
when acted on by any of these.

The discussion in this section shows that even without detailed analysis it
can be inferred that geometric sequences and exponential functions are funda-
mental components of the solution to time-invariant systems. Carrying this
observation further, and developing general techniques for determining which
geometric sequences or exponential functions occur in 2 given system leads to a
study of system eigenvalues and eigenvectors.

5.2 SYSTEM EIGENVECTORS

In this section it is shown that an eigenvector of the system matrix defines
an independent first-order subsystem of the total system. It follows that if a
complete set of n linearly independent eigenvectors can be found, the overall
system can be decomposed into n separate first-order systems.

Consider the homogeneous discrete-time system

x(k +1) = Ax(k) (5-3)

where x(k) is an n-dimensional state vector and A is an n X n matrix. Suppose
the vector e, is an eigenvector of A with associated eigenvalue A,. That is,

Aei = Aiel (5-4)

Suppose also that the initial state vector is set equal to a scalar multiple of this
eigenvector; that is, x(0) = ae,. Then from (5-3) and (5-4) it follows that

x(1) = Ax(0) = a Ae;, = Lae, = A,x(0)

Therefore,-in this special case, the next state is just A; times the initial state.
Furthermore, it is easy to see that all successive states are also various scalar
multiples of the initial state.

The above observation shows that once the state is equal to a multiple of
an eigenvector it remains a multiple of the eigenvector. Therefore, once this
situation is achieved, the state can be characterized at any particular time by
specifying the corresponding multiplying factor. That is, one writes

x(k) = z,(k)e;

where z;(k) is the appropriate scalar multiplying coefficient.
The multiplying coefficient itself satisfies a first-order difference equation.
To see this, note that the system equation yields

x(k +1)= Ax(k) = A;z,(k)e,
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which, by the definition of z;(k +1), shows that z;(k +1) = A,z;(k). These results
are summarized by the following theorem.

Theorem. If the state vector of a linear homogeneous constant coefficient system
is inutially aligned with an eigenvector, it continues to be aligned in subse-
quent time periods. The coefficient, z,(k), determining the multiple of the
eigenvector at a time k, satisfies the first-order equation

zi(k + 1) = Az (k) (5-5)

Example. Consider the second-order difference equation

2y(k +2)=3y(k +1)—y(k)
By defining
x,(k)=y(k)
x2(k)=y(k+1)

the orniginal equation can be converted to the system

[x,(k + 1)] _ [ 0 1][x,(k)]
xo(k +1) —3 3 dlxa(k)
One eigenvalue and associated eigenvector for this system is

1
A=3, e ]

=1
2

If the state vector is inittated with x, and x, in the proportions 1 to 3, the state
vector will continue to have these same proportions for all k. The state vector
will be reduced at each step by a multiplicative factor equal to A, =2

In terms of the original difference equation, the system state is equal to
this eigenvector if two successive y(k)’s are in the proportions 1 to 3. If that
condition holds for any k it will hold for all future k’s. That means that each
successive pair of y(k)’s will be in the proportions 1 to 3, and hence, that for
every k, y(k+1)=3y(k). In this case, therefore, the eigenvector translates
immediately into a simple relation among successive values of the variable that
defines the difference equation. (See Problem 3 for a generalization.)

5.3 DIAGONALIZATION OF A SYSTEM
Again consider the homogeneous system
x(k +1) = Ax(k) (5-6)

Suppose that the system matrix A has a complete set of n linearly independent
eigenvectors €,, e,, ..., e, with corresponding eigenvalues A,, A,, ..., A,. The
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eigenvalues may or may not be distinct. We shall show how these n eigenvec-
tors can be used to define n separate first-order systems. This procedure is
sometimes of direct computational benefit, but it is perhaps most important as
a conceptual aid.

Let an arbitrary value of the state x(k) be specified. Since there are n
eigenvectors, this state can be expressed as a linear combination of the
eigenvectors in the form

x(k)=z,(k)e, + z,(k)e,+- - - + z,(k)e, (5-7)

where z,(k), i=1,2, ..., n are scalars..Using the fact that Ae, = A;e,, muitipli-
cation of (5-7) by the matrix A yields

x(k +1)= Ax(k)
=A1zy(k)e; + Ay zp(k)e, +- - -+ 4,2, (ke,

Therefore, expressing x(k+1) as a linear combination of eigenvectors in the
form

x(k+1)=z(k+1e;+z,(k+1)e,+- - - +z,(k+ e, (5-8)
we see that the scalar coefficients z; satisfy the first-order equations
z(k+1)=A,z,(k)
2k +1) = A,z,5(k)

(5-9)

2.k +1)= Az, (k)

The state vector, therefore, can be considered at each time instant to
consist of a linear combination of the n eigenvectors. As time progresses, the
weighting coeflicients change (each independently of the others) so that the
relative weights may change. Consequently, the system can be viewed as n
separate first-order systems, each governing the coefficient of one eigenvector.

Change of Variable

The above analysis can be transformed directly into a convenient manipulative
technique through the formal introduction of a change of vanable. Let M be
the modal matrix of A. That is, M is the n X n matrix whose n columns are the
eigenvectors of A. For a given x(k), we define the vector z(k) by

x(k) =Mz(k) (5-10)
This is, of course, just the vector representation of the earlier equation (5-7)
with the components of the vector z(k) equal to the earlier z;(k)’s. Substitution
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of this change of variable in the system equation yields
Mz(k + 1) = AMz(k)
or, equivalently,
z(k +1)=M'AMz(k) (5-11)

This defines a new system that is related to the original system by a change of
variable.

The new system matrix M—*AM is the system matrix corresponding to the
system governing the z,(k)’s as expressed earlier by (5-9). Accordingly, we may
write MT'AM = A, where A is the diagonal matrix with the eigenvalues of A on

the diagonal. The modal matrix M defines a new coordinate system in which A

1s represented by the diagonal matrix A. (See Sect. 3.7.) When written out in
detail (5-11) becomes

Fa kAT [A, 0 0 ... 07 [ z(k)]
z,(k+1) 0 A, 0 ... 0 z,(k)

|° As (5-12)
Lz k+1)] Lo ' ad Lz, k)l

which explicitly displays the diagonal form obtained by the change of variable.

Calculation of A*

The state-transition matrix of a constant coefficient discrete-time system is A~
This matrix can be calculated easily by first converting A to diagonal form. The
basic identity

M AM=A (5-13)
can be rewritten as
A=MAM! (5-14)

which provides a representation for A in terms of its eigenvalues and eigenvec-
tors. It follows that

A?=MAM HY(MAM ) =MAM 'M)AM™!
=MA’M™!
because MM =1. In a similar way it follows that for any k =0

A =MA*M™ (5-15)
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Therefore, calculation of A is transferred to the calculation of A*. However,
since A is diagonal, one finds immediately that

A, 0 0 ... 07
0 Ak
Ax= 0 Ak (5-16)
3
L0 Ak

Calculation of A* for all k 1s thus accomplished easily once the transformation
to diagonal form is determined. From the viewpoint of dynamic systems, the
operation represented by (5-15) can be interpreted as one of first transforming
to diagonal form, solving the system in those terms, and then transforming
back.

As a result of this calcuiation, it is clear that when A* is expressed as a
function of k, each element is a linear combination of the geometnc sequences
A%, t=1,2,...,n. This in turn is reflected 1nto the form of solution to the
original homogeneous system. It is made up of these same geometric
sequences.

Continuous-Time Systems

Exactly the same sort of analysis can be applied to continuous-time systems.
Suppose the system is governed by

x(1) = Ax(r) 5-17)

where A is an n X n matrix with n linearly independent eigenvectors. With M
the modal matrix as before, the change of variable

x(£) =Mz(t) (5-18)
transforms the system to
Z(f) =M"*AMz(f) (5-19)
When written out in detail this is
z,(0) A, O .00 z,(0)
2(1) 0 A 0 z,(8)
. = . . . (5-20)

() o o ...l Lz
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The state vector at any time is a linear combination of the n eigenvectors.
In the continuous-time case, the coefficients z,(f) of the eigenvectors each
satisfy a simple first-order differential equation. Hence, again the system can be
considered to be n separate first-order systems.
Calculation of e**

Calculation of the state-transition matrix e*' is also greatly facilitated by
diagonalization. It has already been observed that

A =MA*M! (5-21)
Therefore, it follows that the series

A2t2
+- ..
2!

erM=1+Ar+

can be written as

t2

e =1+MAM 't +MA’M™' 2'+' . (5-22)
Factoring out M and M~ produces
/ 2t2 .
e =M kI+At+A e ) M
2! (5-23)

=MeYM™

Therefore, calculation of e is transferred to the calculation of e*’. However,
since A is a diagonal matrix, each matrix A* is also diagonal, with ith diag-
onal element A¥. Therefore, e** is also diagonal, with ith diagonal element
1+M¢t+-- . Thus,

e 0 0
0 e
oM =
O eA"K

This can be substituted into (5-23) to obtain an explicit expression for e®".
Example. Consider the system

X(t)=[2 !

2 3]“0
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The system matrix has eigenvalues A, =1, A, =4 and corresponding modal

matrix
11 _,_1[2 —1]
M'[—l 2]’ MU=5y

as shown in Chapter 3 (Example 1, Sect. 3.6).
Introduction of the change of variable

z,=3(2x%,— x3)
Zy=3x;+ %)

leads directly to the differential equations

2(D=1z,(1
() =42,()

which is the diagonal form.
The state-transition matrix of the original system can be computed as

Al € 0] _,=L[2e’+e“ e“—e‘]
€ M[O e M™ =3 2e% —2e' e'+2e*

Diagram Interpretation

The diagram interpretation of the diagonalization process is straightforward
and useful. When expressed in the new coordinates (with components z;) the
diagram of the system breaks apart into separate systems. The result is
illustrated in Fig. 5.3 for discrete-time systems, but exactly the same diagram
applies in continuous time with delays replaced by integrators. The z;’s are the
coefficients of the various eigenvectors as they combine to produce the state
vector. The eigenvectors themselves do not show up explicitly in this diagram,
although they must be used to obtain it.

Finally, it should be emphasized that the role of the diagonalization
process is at least as much conceptual -as it .is computational. Although
calculation of the state-transition matrix can be facilitated if the eigenvectors
are known, the problem of computing the eigenvalues and eigenvectors for a
large system is itself a formidable task. Often this form of detailed analysis 1s
not justified by the scope of the motivating study. Indeed, when restricted to
numerical methods it is usually simplest to evaluate a few particular solutions
directly by recursion. A full collection of eigenvectors in numerical form is not
always very illuminating.

On the other hand, from a conceptual viewpoint, the diagonalization
process is invaluable, for it reveals an underlying simplicity of linear systems.
Armed with this concept, we know, when faced with what appears to be a
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Figure 5.3. Diagonal diagram.

complex interconnected system, that there is 2 way to look at it, through a kind
of distorted lenses which changes variables, so that it appears simply as a
collection of first-order systems. Even if we never find the diagonalizing
transformation, the knowledge that one exists profoundly influences our per-
ception of a system and enriches our analysis methodology.

5.4 DYNAMICS OF RIGHT AND LEFT EIGENVECTORS

The diagonalization of a system as discussed in Sect. 5.3 can be clarified further
through the relation of right and left eigenvectors. When referring simply to
“eigenvector” we have meant a right eigenvector defined by

Ae; = A\ (5-24)
However, there are also left eigenvectors defined by
fTA=AS] (5-25)

The two are dual concepts that play together in the diagonalization process.
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In terms of a dynamic system of the form
x(k+1)= Ax(k) (5-26)

the right and left eigenvectors have distinct interpretations. The right eigenvec-
tor is most naturally regarded as a vector in the state space. If the state is set
equal to a right eigenvector then successive states will be scalar multiples of
this eigenvector. Thus, it is proper to regard a right eigenvector as a special
value of the state. And, in the diagonalizable case, any value of the state vector is
a linear combination of the various eigenvectors.

A left eigenvector 1s more naturally regarded as a scalar-valued function of
the state, rather than as a vector in the state space. A left eigenvector f*
defines the scalar function

z(k)=f"x(k) 527

It associates a scalar with each value of the state vector. If, for example, f*
were the vector [100...0], then the corresponding function would be z(k)=
x,(k); that is, it would be the value of the first component of x(k). If, as
another example, f7 were the vector [1 1...1], the corresponding function
would be z(k) = x,(k)+ x5(k)+- - - +x,(k); that is, it would be the sum of the
components of x(k). In general, a left eigenvector defines a certain linear
combination of the components of the state vector. As the state vector evolves
in time, the associated value of the linear combination also evolves.

Suppose 7 is a left eigenvector with corresponding eigenvalue A, From
the system equation

x(k +1) = Ax(k) (5-28)
1t follows that for the corresponding z;
z(k+1)=FfTx(k + 1) =fT Ax(k) = A, fTx(k) = A,z;(k) (5-29)

Thus, the associated scalar function of the state satisfies a first-order difference
equation.

If A has distinct eigenvalues then (as shown in Sect. 3.8) the nght and
left eigenvalues satisfy the biorthogonality relation

fTe, =0 (5-30)

for all i#]. In this case it is natural to normalize the left eigenvectors with
respect to the right eigenvectors so that

fle,=1 (5-31)

for each i=1,72,..., n. With this normalization the z;(k)’s defined above are
exactly the same as the z;(k)’s that serve as the coefficients 1n the eigenvector
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expansion of the state. Specifically, for each k,
x(k) = z,(k)e, + z,(k)ey+- - - +z,(k)e, (5-32)
To verify this, we multiply both sides by T to obtain
£1x(k)=z,(k)iTe, + zo(k)iTe, +- - - + 2, (k)T e,
=z (k)fTe,

where the second equality follows from the biorthogonality relation (5-30). In
view of the normalization (5-31), the above reduces to

fix(k) = z,(k) (5-34)

which coincides with the original definition of z(k).

The interpretation of the two types of eigenvectors shouid be visualized
simultaneously. The right eigenvectors define special directions in the state
space. Once the state vector points in one of these directions, 1t continues to
point in the same direction, although 1ts magnitude may change. In the case of
distinct eigenvalues, the state vector can always be expressed as a linear
combination of the various right eigenvectors—the various weighting coeffi-
cients each changing with time. Each left eigenvector, on the other hand,
defines a system variable that behaves according to a first-order equation. The
two concepts are intimately related. If the state points in the direction of a right
eigenvector, all the variables defined by the left eigenvectors of different
eigenvalues are zero. More generally, the weighting coefficients of the vanous
eigenvectors that make up the state are the vanables defined by the corres-
ponding left eigenvectors. These coefficients are each governed by a first-order
equation, and as their values change the state vector moves correspondingly.

The migration example of the next section illustrates these concepts. It
shows that within the context of a given application the right and left eigenvec-
tors can have a strong intuitive meaning. This example should help clarify the
abstract relations presented in this section.

(5-33)

5.5 EXAMPLE: A SIMPLE MIGRATION MODEL

Assume that the population of a country is divided into two distinct segments:
rural and urban. The natural yearly growth factors, due to procreation, in both
segments are assumed to be identical and equal to a (that is, the population at
year k+1 would be a times the population at year k). The population
distribution, however, is modified by migration between the rural and urban
segments. The rate of this migration is influenced by the need for a base of
rural activity that is adequate to support the total population of the country—
the optimal rural base being a given fraction vy of the total population. The
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yearly level of migration itself, from rural to urban areas, is proportional to the
excess of rural population over the optimal rural base.

If the rural and urban populations at year k are denoted by r(k) and u(k),
respectively, then the total population is r(k)+ u(k), the optimal rural base is
v[r(k)+ u(k)], and thus, the excess rural population is {r(k) —y[r(k) +u(k)]}. A
simple dynamic model of the migration process, based on the above assump-
tions, is then

r(k +1)=ar(k) ~B{r(k) — y[r(k) + u(k) }
u(k +1) = au(k) + g{r(k) — y[r(k) + u(k)J}

In this model, the growth factor a is positive (and usually greater than unity).
The migration factor 8 is positive, and is assumed to be less than a. The
parameter vy is the ideal fraction of the total population that would be rural in
order to support the total population. This parameter is a measure of rural
productivity. Each of these parameters might normally change with time, but
they are assumed constant for purposes of this example.

The model can be easily put in the state vector form

x(k +1)=Ax(k)

where
_[e=BOQ-v) By ]
L Bl-y) a-Bvy
and
_[r(k)
"(")‘[u(k)]

At this point one might normally proceed by writing the characteristic polyno-
mial as a first step toward finding the eigenvalues and eigenvectors of the
matrix A, but in this case at least some of that information can be deduced by
simple reasoning. Because the natural growth rates of both regions are ident:-
cal, it is clear that the total population grows at the common rate. Migration
simply redistributes the population, it does not influence the overall growth.
Therefore, we expect that the growth factor « is one eigenvalue of A and that
the row vector f1 =[1 1] is a left eigenvector of A, because £ x(k) = r(k) + u(k)
is the total population. Indeed, checking this mathematically, we find

—-g(1—
11 [a B(l—-y) By
B(l—y) a—By
which verifies our conjecture. This left eigenvector tells us what variable within
the system (total population in this case) always grows by the factor a.
The corresponding right eigenvector of A defines the distribution of

]=a[1 1
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population that is necessary in order for all variables to grow by the factor a.
Again, 'this vector can be deduced by inspection. In order for both rural and
urban population to grow by the factor « it is necessary that there be no net
migration. Therefore, it is necessary that r(k) = y[r(k)+ u(k)]; or, equivalently,
that rural and urban population be in the balanced proportions v:(1—7v).
Therefore, we expect that
() |
e, 1=

is a nght eigenvector of A corresponding to the eigenvalue . Again, a simple
check verifies this conjecture.

By exploiting the simple observation about total population growth, we
have deduced one eigenvalue together with its corresponding left and right
eigenvectors. We can find the remaining eigenvalue and its corresponding left
and right eigenvectors by use of the biorthogonality relations that hold among
right and left eigenvectors.

The second right eigenvector must be orthogonal to the first left eigenvec-

tor. Thus,
1
€= [— 1]

Multiplying this by A verifies that it is an eigenvector and shows that the
corresponding eigenvalue is a— 8. It represents the population distribution
corresponding to zero total population. This eigenvector has both positive and
negative components, and hence, is not a physically realizable state since
population must be nonnegative. However, this eigenvector (or a multiple of it)
will in general be a component of the actual population vector.

To determine what variable in the system grows by the factor a—8 it is
necessary to find the second left eigenvector. It will be orthogonal to the first
nght eigenvector and hence,

E=01-v —v]

This left eigenvector corresponds to the net rural population imbalance, since
i2x(k) = r(k) — v{r(k) + u(k)}.

The various eigenvectors associated with this system together with their
interpretations and interrelations are summarized in Table 5.1. A simple
diagram in diagonai form summarizing the analysis is shown in Fig. 5.4.

The above analysis can be translated into a fairly complete verbal descrip-
tion of the general behavior of the migration model. Overall population grows
by the factor a each year. If there is an initial imbalance of rural versus urban
population, with say more than a fraction y of the population in the rural
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Table 5.1. Eigenvectors for Migration Example

Left Eigenvector Right Eigenvector
F=[11] ex=[ 7]
1-v

corresponds to total corresponds to the condi-
population tion of zero rural im-

balance
- 1
£=01-v -] e=|
corresponds to net rural corresponds to the condi-
imbalance tion of zero popuiation

sector, then there is migration, and it grows by the factor a—gB. The rural
imbalance also grows by this factor. Since a > >0, the growth factor of rural
imbalance is always less than that of population, s0 eventually the relative
imbalance (that is, the ratio of imbalance to total population) tends to disap-
pear. If B>a, then « —B<0 and migration oscillates, being from rural to
urban one year and from urban to rural the next. If 8 <a, migration 1s in the
same direction each year.

Total

population
v Rural
* ID/ k population
[+ 4

Urban
1 T T | population
Rurat
imbatance
D
«-8

Figure 5.4. Diagonal form for migration example.
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5.6 MULTIPLE EIGENVALUES

If the system matrix A has repeated roots of its characteristic polynomial
corresponding to the presence of multiple eigenvalues, it may not be possible
to find a complete set of eigenvalues. If this is the case, the matrix A cannot be
diagonalized, and the system cannot be reduced to a set of uncoupled first-
order systems. The characteristic response of such systems is somewhat differ-
ent than that of systems which can be diagonalized.

The situation with multiple eigenvalues is typified by the system

e b ] 29

As determined by the characteristic polynomial, this system has both eigen-

values equal to g, but there is only one (linearly independent) eigenvector. The

state-transition matrix can be computed directly in this case, and ts found to be
a* ka*?

0 a* ]

The response due to an arbitrary initial condition will therefore generally

contain two kinds of terms: those of the form a* and those of the form ka*™!.

This 1s a general conclusion for the multiple root case. If there is not a full
set of eigenvectors, the system response will contain terms involving powers of
k times the normal geometric terms associated with the eigenvalues. First there
will be terms of the ka*™!, and then there may be terms of the form kZa*~2,
and so forth. The exact number of such terms required is related to the Jordan
form of the matrix A (see Chapter 3, Sect. 9).

One way to visualize the repeated root situation is in terms of the diagram
of Fig. 5.5 that corresponds to the system (5-35). The system can be regarded
as two first-order systems with one serving as input to the other. The system on
the left generates a geometric sequence of the form a* (times a constant that is
determined by the initial condition). This sequence in turn serves as the input
to the system on the right. If this second system had a characteristic root
different from that of the first, then, as shown in Sect. 5.1, the response
generated at x, would be composed of two geometric series corresponding to
the two roots. However, in this case the output will contain terms of the form
ka*"? as well as a*.

O[>

a a

®(k)=Ak = [ (5-36)
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The general situation can be described in this same way. The system may
contain (either directly or after a change of variable) some chains of first-order
systems with a common root, the output of one serving as the input to another.
If the maximum length chain s only one, the response associated with this root
will consist only of terms of the form a*. If the maximum length is two, terms
of the form a* and ka*™' will appear, and so forth for longer chains. The

highest-order term of this kind that could ever occur in an nth-order system 1s
k"_lak_"+1.

Perturbation Analysis

A system with multiple roots can be perturbed, by introducing a slight change
in some coefficients, to produce a system with distinct roots. Indeed, the
original system can be regarded as the limit of a collection of systems with
distinct roots. For example, consider the collection of systems

xl(k+1)] [a 1][x1(k)] .

= it 7
[xz(k+1) 0 bllxo (5-37)
with b# a. The original system (5-35) is obtained as the limiting case where

b=a. For b# a the system has distinct eigenvalues a, b and therefore can be
diagonalized. The modal matrix M and its inverse are easily found to be

1 1 ,_[1 1a-b)
0 b—a] Ml‘[o 1/(b—a)]

aefy

It follows that A* =MA*M™’, which when written out is
A“'—[l 1 ][ak 0 ][1 1/(a—b)]
0 b—all0 b*1l0 1/(b—a)

Ak = [a" (b* —a“)/(b—a)]
0 b*

When a# b, the right-hand side of (5-38) is well defined and 1t shows explicitly

that all terms are combinations of a* and b*. The value of the right-hand side

of (5-38) in the limiting case of b= a can be found from the identity

bk _ak. =(b—a)(bi“1+b““2a+- . ,+bak—2+ak-—1)

-]

and M 'AM = A, where

or, finally,

(5-38)

In the limit as b— a this yields
bk _ak
b—a

— ka*!
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Therefore, when b=a
«_[a* ka"“]
A= [ 0 ak

which agrees with our earlier calculation.

Continuous-Time Systems
The analysis 1s virtually identical for a continuous-time system defined by

x(1) = Ax(r)
S

13
eA‘=[ea teal]
0 e
Therefore, in addition to the expected exponential term e®, the response

contains terms of the form re*. Longer chains of a common eigenvalue produce
additional terms of the form t?e*, t*¢*, and so forth.

For example, if as before,

we find that

5.7 EQUILIBRIUM POINTS

In many situations the natural rest points of a dynamic system are as much of

interest as the mechanisms of change. Accordingly, we introduce the following
definition.

Definition. A vector X is an equilibrium pont of a dynamic system if it has the
property that once the system state vector is equal to X it remains equal to
X for all future time.

Thus, an equilibrium point is just what the term implies. It is a point where
the state vector is in equilibrium and does not move. It is a general definition,
applying to discrete- and continuous-time systems, and to nonlinear as well as
linear systems. Our present interest, of course, is in linear constant-coefficient
systems.

Homogeneous Discrete-Time Systems
The homogeneous system

x(k +1) = Ax(k) (5-39)
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always has the origin (the point X = 0) as an equilibrium point. Once the state is
equal to 0 it will not change.

In some cases there are other equilibrium points. An equilibrium point
must satisfy the condition

X=AXx (5-40)

and this condition is identical to the statement that X is an eigenvector of A
with corresponding eigenvalue equal to unity. Therefore, if unity is an eigen-
value of A, any corresponding eigenvector is an equilibrium point. If unity is

not an eigenvalue of A, the origin is the only equilibrium point of system
(5-39).

Nonhomogeneous Discrete-Time Systems

We now consider linear systems that have constant coefficients and a constant
input term: specifically, systems of the form

x(k+1)=Ax(k)+b (5-41)
An equilibrium point of such a system must satisfy the equation
X=Ax+b (5-42)

If unity is not an eigenvalue of A, then the matrix I—A is nonsingular, and
there is a unique solution

x=[1-Al"'b (5-43)

If unity is an eigenvalue there may be no equilibrium point or an infinity of
such points, depending on whether or not (5-42) represents a consistent set of
equations. In most cases of interest, there is a unique equilibrium point given
by (5-43).

Continuous-Time Systems

For continuous-time systems the situation is similar. The homogeneous system
x() = Ax(t) (5-44)

always has the origin as an equilibrium point. If the matrix A is singular
(corresponding t0 A having zero as an eigenvalue), then there are other
equilibrium points. If, on the other hand, A is nonsingular, then the origin is
the unique equilibrium point of (5-44).

For the system with constant input

x(1)=Ax(t)+b (5-45)



152 Linear Systems with Constant Coefficients

an equilibrium point X must satisfy the equation

0=Ax+b (5-46)
Thus, if A is nonsingular, there is a unique equilibrium point
x=—A""b

If A 1s singular there may or may not be equilibrium potints.

We see then that, for both discrete- and continuous-time systems, zero is
always an equilibrium point of a homogeneous system. An eigenvalue of unity
is critical in the general determination of equilibrium points for discrete-time
systems. And an eigenvalue of zero is critical in the general determination of
equilibium points for continuous-time systems. In either case, significant
information .can often be obtained by determining how an equilibrium point
changes if various parameters in the system are changed. The example of the
next section illustrates this point.

5.8 EXAMPLE: SURVIVAL THEORY IN CULTURE

McPhee has argued that “‘survival of the fittest” applies to cultures, creative
ideas, and esthetics as well as to biological species. Through audience testing
with an associated box office criterion, or through passage from generation to
generation through apprenticeship and teaching, every cultural form is subject
to screening that favors the best material.

There are seemingly obvious disparities in the quality mix of different
cultures associated with different cultural media. Classical music and classical
literature seem to be of higher caliber than, say, television programming.
Established scientific theories secem to be of higher caliber than motion
pictures. These differences might initially be thought to be influenced primarily
by the differences in creative talent applied to the media, or by differences
in audience discrimination. But, in fact, it is argued here that the observed
quality is most profoundly influenced by the inherent structure of a media and
its screening mechanism. Mass cultures distributed by mass media have a
severe disadvantage when viewed from this perspective, as compared with
cultures that are distributed on a more individualized basis.

We present McPhee’s elementary theory that captures the essence of the
survival argument. The reader should be able to see how the primitive version
can be modified to incorporate additional factors.

The basic characterstic of any cultural media is that of repetitive screen-
ing. The total offering at any one time, or during any one season, consists of a
mix of new material and older material that has survived previous screenings.
In turn, not ail of the current offering will survive to the following season. The
chances for survival are, at least to some extent, related to quality. Typically,
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however, the screening process 1s not perfect. Some poor quality material
survives, when perhaps it should not, and some high quality matenal is lost.
But on an average basis, the chances for survival are usually better for high
quality material than for low. The proportion of good quality material in any
season is determined by the dynamics of the imperfect screening process.

To be specific, suppose that within a given culture it is possible to
distinguish three distinct quality levels—1, 2, and 3—with 1 being the best, 2
the second best, and 3 the worst. Assume that the proportion of the ith quality
material offered in a season that survives to the next season is a;. Clearly, by
definition, 0=q; =1 for each i

Now suppose an amount b; of new material of the ith level is introduced at
the beginning of each season, i =1, 2, 3. The total amount of ith level material
offered in a season s, therefore, the sum of that which survived from the past
season and the new material. In other words, denoting the amount of the ith
level material presented in season k by x;(k) the media can be described by

x(k+1)=ax;(k)+b, (5-47)

The overall mechanism can be described in matrix form as

xy(k+1) ap 0 0] | x(k) b,
x(k+1)|=] 0 a, O xa(k) | +1 b, (5-48)
x3(k +1) 0 0 « x3(k) b,

Because the system matrix is diagonal, the system itself can be regarded as
three separate first-order systems operating simultaneously.

Let us determine the equilibrium quality make-up of this system. Because
of the diagonal structure, the three equilibrium values can be found separately.
They are

X = bl
! 1—a,
b
Xy =2 (5-49)
l1-a,
by
x =
3 1“'(13

Some interesting conclusions can be drawn from this simple result. First, as
expecied, the proportion of highest quality material is enhanced in the limiting
mixiure as compared to the input composition. The screening process has a
positive effect. Second, and most important, as the ;’s increase, the effective-
nesz of the screening process is enhanced. Suppose, for example, that «, = 2a,,
meaning that the chance of first quality material surviving is twice that of the
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second quality grade. At a, =.2, a,=.1, long-term screening factors are

1
=1.2
1—a 3 —ay

=1.11

While for a; =.8, a,=.4 they are 5.00 and 1.67, respectively. We conclude,
therefore, that the benefit of screening is greatest when the chances for survival
of all materal is relatively high.

This 1s in accord with our general observations of cultural media. Televi-
sion programming is of relatively poor quality because the overall survival rate
is low; only a small percentage of programs survive even a single season.
Therefore, the composition almost identically corresponds to the input com-
posttion. On the other hand, the overall survival rate in symphonic music is
high, the offerings changing little from season to season. The composition,
therefore, is more a reflection of the screening discrimination than of current
creative talent,

Unfortunately, the answer for improving quality does not spring directly
from this analysis. Although the low survival rate in mass media is in a sense
responsible for low overall quality, we cannot advocate increasing the survival
rate. The nature of the media itself makes that inappropriate. The particular
medium used to distribute a culture is, t0 a large extent, dictated by the
characteristics of the culture itself. Nevertheless, this analysis does yield insight
as to the underlying processes that inevitably lead to quality characteristics.

5.9 STABILITY

The term stability is of such common usage that its meaning, at least in general
terms, is well known. In the setting of dynamic systems, stability is defined with
respect to a given equilibrium point. An equilibrium point is stable if when the
state vector is moved slightly away from that point, it tends to return to it, or at
least does not keep moving further away. The classic example is that of a stick
perfectly aligned with the vertical. If the stick is balanced on its bottom end, it
is in unstable equilibrium. If on the other hand it is hanging from a support at
the top end, it is in stable equilibrium.

Here we consider stability of equilibrium points corresponding to linear
time-invariant systems of the form

x(k+1)=Ax(k)+b (5-50)
or

x(t) = Ax(t)+b (5-51)
In order to make the discussion precise, the following definition is introduced.

Definition. An equilibrium point % of a linear time-invanant system (5-50) or
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(5-51) is asymptotically stable if for any initial condition the state vector
tends to X as time increases. The point is unstable if for some initial
condition the corresponding state vector tends toward infinity.

It is tmportant to observe that stability issues for (5-50) and (5-51) are tied
directly to the corresponding homogeneous equations. Suppose, for example,
that X is an equilibrium point of (5-50). Then we have

x(k+1)-x=Ax(k)—AX+b—b
and thus,
x(k+1)—x = A(x(k)—X)

It is clear that the condition for x(¢) to tend to X in (5-50) is identical to that
for z(k) to tend to 0 in the homogeneous system

z(k+1) = Az(k)

(A similar argument holds in continuous time.) Therefore, in the case of the
linear systems (5-50) and (5-51), asymptotic stability or instability does not
depend explicitly on the equilibrium point, but instead is determined by the
properties of the homogeneous equation.

Another way to deduce the above conclusion is this. The complete
solution to, say, (5-50), consists of a constant X (a particular solution) and a
solution to the homogeneous equation. Asymptotic stability hoids if every
homogeneous solution tends to zero.

The character of the solutions to the homogeneous equation is determined
by the eigenvalues of the matrix A. The discr=te- and continuous-time cases
are considered separately below.

Discrete-Time Systems
Consider first the system

x(k+1)= Ax(k) (5-52)

To obtain conditions for asymptotic stability assume initially that A can be
diagonalized. Then there is a matrix M such that

A=MAM™
where
A
Az
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and the A;’s are the eigenvalues of A. Furthermore,

—~ —

AT

A*=MA*M'=M . M

3
k- '\n__

The requirement of asymptotic stability is equivalent to the requirement that
the matrix A* tend toward the zero matrix as k increases, since otherwise some
initial condition could be found that had a corresponding solution not tending
toward zero. This requirement, in turn, is equivalent to requiring that all the
terms A% tend toward zero.

All terms will tend toward zero if and only if [A;|<1 for every j. Thus, a
necessary and sufficient condition for asymptotic stability is that all eigenvalues
of A lie inside the unit circle of the complex plane.

There is a less direct, but perhaps more intuitive, way to see this result
in terms of the decomposition of the system nto uncoupled first-order systems.
A first-order system of the form

z(k+1)=2Az(k)

has solution z{k)=A*z(0). It is asymptotically stable, by the reasoning above, if
and only if the magnitude of A is less than one. When A is diagonalizable, the
system can be transformed to a set of uncoupled first-order systems, as shown
in Sect. 5.3, with the eigenvalues of A determining the behavior of the
individual systems. For the whole system to be asymptotically stable, each of
the subsystems must be asymptotically stable.

If the matrix A has multiple eigenvalues, the conclusion is unchanged. A
muitiple eigenvalue A introduces terms of the form A*, kA*~?, k?A*~2, and so
forth into the response. The highest-order term of this form possible for an
nth-order system is k"~'A*""*!  As long as A has magnitude less than one,
however, the decreasing geometric term outweighs the increase in k* for any i
and the overall term tends toward zero for large k. Therefore, the existence of
multiple roots does not change the qualitative behavior for large k.

It is easy to deduce a partial converse result concerning instability. If the
magnitude of any eigenvalue is greater than one, then there will be a vector
x(0), the corresponding eigenvector, which leads to a solution that increases
geometnically toward infinity. Thus, the existence of an eigenvalue with a
magnitude greater than one is sufficient to indicate instability. Summarizing all
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Figure 5.6. Eigenvalues and stability in discrete-time systems. (a) Asymptotically
stable. (b) Unstable. (c) Marginally stable.

of the above, and accounting for the fact that the homogeneous system
determines stability, we may state the following theorem. (Also see Fig. 5.6.)

Theorem 1. A necessary and sufficient condition for an equilibrium point of the
system (5-50) to be asymptotically stable is that the eigenvalues of A all
have magnitude less than one (that is, the eigenvalues must all lie inside the
unit circle in the complex plane). If at least one eigenvalue has magnitude
greater than one, the equilibrium point is unstable.

Because the stability of an equilibrium point of a linear discrete-time
system depends only on the structure of the system matrix A, it is common to
refer to stability of the system itself, or stability of the matrix A. Thus, we say
“the system is asymptotically stable” or “the matrix A it asymptotically stable”
when, in the context of a discrete-time linear system, the matrix A has all of 1ts
eigenvalues inside the unit circle.

Continuous-Time Systems

The condition for asymptotic stability for the continuous-time system (5-51) is
similar in nature to that for a discrete-time system. Assuming first that the
system matrix A is diagonalizable, the system is reduced to a set of first-order
equations, each of the form

z2(=2az(¥)
where A is an eigenvalue of A. The solutions to this diagonal system are
z() = e*z(0)

Each A can be written as a sum of a real and imaginary part as A = u + i,
where i=v-1 and p and w are real. Accordingly, e* = e*e**, and this
exponential tends to zero if and only if u < 0. In other words, the real part of A
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Figure 5.7. Eigenvalues and stability in continuous-time systems. {a) Asymptoti-
cally stable. {b) Unstable. (c) Marginally stable.

must be negative. Therefore, for asymptotic stability it is necessary and
sufficient that the real part of each A be negative. Or, in perhaps more visual
terminology, each A must lie in the left half of the plane of complex numbers.
Again, the presence of multiple roots does not change the conclusion. Such
roots introduce terms of the form e, te™, 2e*,.. ., t" 'e*, which each go to
zero as t-—»>w provided that the real part of A s negative. In conclusion,
therefore, the companion to Theorem 1 is stated below. (Also see Fig. 5.7.)

Theorem 2. A necessary and suffictent condition for an equilibrium pont of the
continuous-time system (5-51) to be asymptotically stable is that the eigen-
values of A all have negative real part (that is, the eigenvalues must lie in
the left half of the complex plane). If at least one eigenvalue has positive real
part, the point is unstable.

As in the discrete-time case, stability of an equilibrium point of a linear
continuous-time system depends only on the structure of the matrix A and not
explicitly on the equilibrium point itself. Thus, we say “the system is asymptoti-
cally stable” or “the matrix A is asymptotically stable”” when, in the context of
a continuous-time linear system, the eigenvalues of A are all inside the left-haif
plane.

Marginal Stability

For discrete- and continuous-time systems, there is an intermediate case that is
not covered by the above stability theorems. For discrete time this case is
where no eigenvalues are outside the unit circle but one or more is exactly on
the boundary of the circle. For continuous time, it is where no eigenvalues are
in the right half of the complex plane, but one or more have real part exactly
equal to zero. (See Figs. 5.6 and 5.7.)
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In these intermediate situations further analysis is required to characterize
the long-term behavior of solutions. If the boundary eigenvalues all have a
complete set of associated eigenvectors, then the only terms they produce are
of the form A* in discrete time, or ¢“* in continuous time. The terms have
constant absolute value. Therefore, the state vector neither tends to infinity nor
to zero. The system is neither unstable, nor asymptotically stable. This special
intermediate situation is referred to as marginal stability. It is an 1mportant
special case, arising in several applications.

Example. Some common two-dimensional systems have the form
x(t) = Ax(¢t)

where the A matrix has the off-diagonal form

[0 cl]

A=

c, O

For instance, the mass and spring model has this form with ¢; =—w?, ¢;=1.

The Lanchester model of warfare has this form with ¢, and ¢, both negative.
The characteristic equation associated with this A matrix is

Ai=¢c;

The relationship of the parameters ¢, and c¢, to stability can be deduced
directly from this equation. There are really only three cases. )

Case 1. The parameters ¢, and ¢, are nonzero and have the same sign.

In the case c,c, is positive, and therefore the two eigenvalues are A, =
Veic, and A, =—+/¢,c,. The first of these is itself always positive and therefore
the system is unstable.

Case 2. The parameters ¢, and ¢, are nonzero and have opposite signs.

In this case (of which the mass and spring is an example) c,c, is negative
and therefore the two eigenvalues are imaginary (lying on the axis between the
left and right halves of the complex plane). This implies oscillatory behavior
and a system which is marginally stable.

Caskt 3. Either ¢, or ¢, is zero.

If both ¢, and ¢, are zero the system is marginally stable. If only one of the
two parameters ¢, and ¢, is zero, the system has zero as a repeated root in a
chain of length two. Some components will grow linearly with k and, therefore,
the system is unstable.

In view of these three cases, it is clear that an off-diagonal system can
never be stable (except marginally).
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5.10 OSCILLATIONS

A good deal of qualitative information about solutions can be inferred directly
from the eigenvalues of a system, even without calculation of the correspond-
ing eigenvectors. For instance, as discussed in Sect. 5.9, stability properties are
determined entirely by the eigenvalues. Other general characteristics of the
solution can be deduced by considering the placement of the eigenvalues in the
complex plane. Each eigenvalue defines both a characteristic growth rate and a
characteristic frequency of oscillation. These relations are examined in this
section.

It is sufficient to consider only homogeneous systems, since their solutions
underlie the general response of linear systems. Even in this case, however, the
complete pattern of solution can be quite complex, for it depends on the initial
state vector ‘and on the time patterns of each of the eigenvectors that in
conjunction comprise the solution. To decompose the solution into compo-
nents, it is natural to consider the behavior associated with a single eigenvalue,
or a complex conjugate pair of eigenvalues. Each of these acts separately and
has a definite characteristic pattern.

Continuous Time

Let A be an eigenvalue of a continuous-time system. It is convenient to express
A in the form A = pu+iw. The characteristic response associated with this
eigenvalue is " =e¢*'e*". The coefficient that multiplies the associated eigen-
vector varies according to this characteristic pattern.

If A is real, then A = & and @ = 0. The coefficient e is then always of the
same sign. No oscillations are derived from an eigenvalue of this type.

If A is complex, then its complex conjugate A =y —iw must also be an
eigenvalue. The solution itself is always real, so, overall, the imaginary num-
bers cancel out. The contribution due to A and A in any component therefore
contains terms of the form (A sin wt+ B cos wt)e*. Such terms oscillate with a
frequency o and have a magnitude that either grows or decays exponentially
according to e*'. In summary, for continuous-time systems the frequency of
oscillation (in radians per unit time) due to an eigenvalue is equal to its
imaginary part. The rate of exponential growth (or decay) 1s equal to its real
part. (See Fig. 5.84.)

Discrete Time

Let A be an eigenvalue of a discrete-time system. In this case it is convenient to
express A in the form A = re® = r(cos #+isin 8). The characteristic response
due to this eigenvalue is A* = r*e™® = r* cos k@ ir* sin k. The coefficient that
multiplies the associated eigenvector varies according to this characteristic
pattern.
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Figure 5.8. Relation of eigenvalue location to oscillation. {a) Continuous time. (b)
Discrete time.

If A is real and positive, the tresponse pattern is the geometric sequence r*,
which increases if r>1 and decreases if r< 1. No oscillations are derived from
a positive eigenvalue. If A is real and negative, the response is an alternating
geometric sequence.

If A 1s complex, it will appear with its complex conjugate. The real
response due to both eigenvalues is of the form r*(A sin k@+ B cos k9). If
0#0, the expression within the parentheses will change sign as k vares.
However, the exact pattern of variation may not be perfectly regular. In fact, if
@ is an irrational multiple of 2, the expression does not have a finite cycle
length since each value of k produces a different value in the expression. This
is illustrated in Fig. 5.9a. Because of this phenomenon, it is useful to superim-
pose a quasi-continuous solution on the discrete solution by allowing k to be
continuous. The period of oscillation then can be measured in the standard
way, and often will be some nonintegral multiple of k. This is illustrated in Fig.
5.9b. In summary, for discrete-time systems the frequency of oscillation (in

(a} (b}

Figure 5.9. A discrete-time pattern and its superimposed quasicontinuous
pattern.
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radians per unit time) due to an eigenvalue is equal to tts angle as measured in
the complex plane. The rate of geometric growth (or decay) is equal to the
magnitude of the eigenvalue. (See Fig. 5.8b.)

Example (The Hog Cydle). For nearly a century it has been observed that the
production of hogs is characterized by a strong, nearly regular cycle of about
four years’ duration. Production alternately rises and falls, forcing prices to cycle
correspondingly in the opposite direction. (See Fig. 5.10). The economic
hardship to farmers caused by these cycles has motivated a number of govern-
ment policies attempting to smooth them, and has focused attention on this
rather curious phenomenon.

One common explanation of the cycle is based on the cobweb theory of
supply and demand interaction, the basic argument being that the cycles are a
result of the farmers’ use of current prices in production decisions. By respond-
ing quickly to current price conditions, hog producers introduce the charac-
teristic cobweb oscillations. However, as shown below, when the pure cobweb
theory is applied to hog production, it predicts that the hog cycle would have a
period of only two years. Thus, this simple view of the behavior of hog
producers is not consistent with the observed cycle length. It seems appropriate
therefore to revise the assumptions and look for an aiternative explanation.
One possible approach is discussed in the second part of this example.

30 T T

Hog prices
{Dollars per 100 Ibs)
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A y
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Figure 5.10. The U.S. hog cycle.
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i

The Cobweb Model

A somewhat simplified description of the hog production process 1s as follows:
There are two hog production seasons a year corresponding to spring and fall
breeding. It is about six months from breeding to weaning, and five or six
months of growth from weaning to slaughter. Very few sows are required for
the breeding stock, so farmers generally slaughter and market essentially their
whole stock of mature hogs. Translated into analytical terms, it is reasonable to
develop a discrete-time model with a basic period length of six months.
Production can be initiated at the beginning of each period, but takes two
periods to complete. In this discrete-time framework we denote the number of
mature hogs produced at the beginning of period k by h(k), and the corres-
ponding unit price by p(k).

As is standard, we assume that demand for hogs in any period is deter-
mined by price according to a linear demand curve. In particular, demand at
period k is given by

d(k)= do—ap(k) (5-53)
In a similar way, we assume that there is a supply curve of the form
h=s,+bp (5-54)

The quantity h represents the level of seasonal production that a farmer would
maintain if his estimate of future hog prices were p.

In the cobweb model, it is assumed that at the beginning of penod k a
farmer decides how many hogs to breed on the basis of current price. This
leads to the equations

h(k +2) = so+bp(k) (5-55)
d(k) = do~—ap(k) (5-56)

where h(k+2) corresponds to the breeding decision at period k, which
specifies the ultimate number of mature hogs at period k +2. Equating supply
and demand [i.e., setting d(k)= h(k)] and eliminating p(k) leads to

h(k+2)=—ph(k)+pdy+ sy - (5-57)

where p = b/a. The charactenstic polynomial of this difference equation 1s
AZ+p=0 (5-58)

which has the two imaginary roots A = +vp.

This result is slightly different in form than that obtained in the usual
cobweb model since there are two imaginary roots rather than a single negative
root. This is because the production interval is now divided into two penods.
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However, the squares of these imaginary roots are equal to the root corres-
ponding to a full production duration.

The interpretation of the results of this model 1s that hog cycles would
have a period of four time intervals (since the roots are imaginary) or,
equivalently, of two years. Furthermore, hog production is a side-line opera-
tion on many farms that is easily expanded or contracted, depending on
economic incentives. This suggests that p>1 and hence the cobweb model
predicts an unstable situation.

Smoothed Price Prediction Model

As an alternative model, we assume that farmers are aware of the inherent
mnstability and accompanying oscillatory nature of the hog market. Accord-
ingly, they act more conservatively than implied by the pure cobweb model by
basing their estimate of future price on an average of past prices. For example,
since the oscillation is roughly four years in duration, it 1s reasonable to
average over a time span Of at least half this long. A uniform average over two
years would have the form

plk)y=5[p(k)+ p(k — 1)+ p(k—2)+p(k—3)+p(k—4)] (5-59)

Using this estimated price in the supply equation (5-54) and equating supply
and demand leads to

h(k+2) =—53[h(k)+ h(k —1)+ h(k—2)+ h(k —3)+ h(k —4)]

+pdo+sg (5-60)

This sixth-order difference equation has the characteristic equation
,\(’+—5e[,\“+,\3+,\2+,\+1]=0 (5-61)

It is of course difficult to compute the roots of this sixth-order polynomial.
However, assuming p=2.07, it can be verified that the roots of largest
magnitude are A =+v2/2+iv2/2. These roots have a magnitude of one and
correspond to a cycle period of exactly four years. The response due to these
eigenvalues is thus an oscillation of a period of four years that persists
indefinitely, neither increasing or decreasing in magnitude.

One can argue of course that different predictors would lead to different
roots, and hence, to different cycle lengths. However, we argue that in the
aggregate, producers average in such a way so as to just maintain (marginal)
stability. A short-term average would lead to shorter cycles but instability. An
excessively long-term average would lead to long cycle lengths, but a sluggish
system in which farmers do not respond to the strong economic incentives to
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adjust to price trends. As a group they tend to walk the fine line between
stability and instability. If p==2, then to reach this balance point, the price
estimate used must be close in form to the one presented by (5-59), and
consequently the cycle length must be close to four years.

5.11 DOMINANT MODES \

The long-term behavior of a linear time-invariant system often is determined
largely by only one or two of its eigenvalues and corresponding eigenvectors.
These dominant eigenvalues and eigenvectors are therefore of special interest
to the analyst.

Discrete-Time System
Consider the discrete-time system
x(k+1) = Ax(k) (5-62)

Suppose the matrix A has eigenvalues Ay, Ay, ..., A, with [A|>]A)|=]A;] - =
[A,|. The eigenvaiue A, of greatest magnitude 1s the dominant eigenvalue. For
simplicity, let us assume that there is a complete set of eigenvectors, and that
there 1s only one eigenvalue of greatest magnitude. If there were two greatest
of equal magnitude (as there would be if the eigenvalues were complex), then
both would be considered dominant.

Any initial condition vector can be expressed as a linear combination of ail
eigenvectors in the form

x(0) = e, +ase,+- - - +a,e, (5-63)

Correspondingly, the solution to (5-62) at an arbitrary time k>0 1s

x(k)=a,Afe, +a, ke, + - -+ adke, (5-64)
Since A¥ grows faster than A¥ for i=2, 3,..., n, it follows that for large k
o, A% > oA k] fori=2,3,...,n

as long as a, #0. In other words, for large values of k, the coefficient of the
first eigenvector in the expansion (5-64) is large relative to the other coeffi-
cients. Hence, for large values of k, the state vector x(k) is essentially aligned
with the eigenvector e;.

If @, =0, the first coefficient in (5-64) is zero for all values of k, and the
state vector will not line up with e,. Theoretically, in this case the eigenvalue of
next greatest magnitude would determine the behavior of the system for large
values of k. In practice, however, the dominant eigenvalue almost always takes
hold—at least ultimately—for a slight perturbation at any step introduces a
small a, #0 that grows faster than any other term.
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From the above discussion, it can be deduced that if there is a single
dominant eigenvalue, the state vector tends to align itself with the correspond-
ing eigenvector. If there is not a single dominant eigenvalue, but two that are
complex conjugates, it can be similarly inferred that the state vector tends
toward the two-dimensional space defined by the two corresponding eigenvec-
tors. Typically, in this case, oscillations are generated, characteristic of the
complex dominate eigenvalues.

A similar analysis applies to nonhomogeneous systems such as

x(k +1) = Ax(k)+b

If there is an asymptotically stable equilibnum pomnt X, then the state
converges to X. The rate at which it converges is governed essentially by the
eigenvalue of greatest magnitude (which is, however, less than one). The error
vector x(k)—x will be closely aligned with the corresponding eigenvector, as it
tends to zero.

Continuous-Time Systems
Consider the system
x(1) = Ax(t) (5-65)

Suppose the matrix A has eigenvalues A,, A,, ..., A, ordered now according to
Re(A,)>Re(r;) =Re(A;) - - - =Re(A,). The eigenvalue A; with greatest real
part 1s the dominant eigenvalue in this case.

As before let us suppose there is a single dominant eigenvalue and that
there is a complete set of eigenvectors. Paralleling the previous analysis, any

initial state vector x(0) can be expressed in terms of the eigenvectors in the
form

x(0)= a e, + e+ - -+ e, i (5-66)

The corresponding solution to (5-65) is

x(1)=a,e’'e, + azette, +- - -t etle, (5-67)
Writing each eigenvalue in terms of its real and imaginary parts as

Ay = e+ o
it is easy to see that |ae™'|=]|a,|e*". Thus, since the real part determines the
rate of growth of the exponential it is clear that as t-»>o
lo et > e, i1=2,3,.. ,n

provided that a, #0. Therefore, the first term in (5-67) dominates all the
others for large values of t, and hence, for large values of t the vector x(t) is
closely aligned with the dominant eigenvector e,.
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Subdominant Modes

The long-term behavior of a system is determined most directly by the
dominant eigenvalue and associated eigenvector. However, the other eigen-
values and eigenvectors also play important roles. These subdominant eigen-
values can be ordered in a natural way (by therr magnitudes for discrete-time
systems, or by their real parts for continuous-time systems) corresponding to
their order of importance for long-term behavior.

The subdominant eigenvalues essentially determine how quickly the sys-
tem state moves toward the eigenvector corresponding to the dominant mode.
A cohort population system, for example, may have a dominant eigenvalue
that is real and greater than one indicating that there is long-term growth. The
corresponding eigenvector defines the population distribution to which the
system tends as it grows. The rate at which the actual population distribution
approaches this distribution is determined largely by the second greatest
eigenvalue.

A special situation in which the first subdominant eigenvalue has a
particularly important role is when the dominant eigenvalue 1s equal to one (or
zero in the continuous-time case). The system is then marginally stable. The
state vector tends toward the corresponding dominant eigenvector, and in the
long term it neither grows nor contracts. Thus, the state converges to a fixed
vector, and it is the eigenvalue of second largest magnitude that determines
how fast it approaches the limiting vector. The following example illustrates
this phenomenon.

Example (Fixed Capacity of a Cultural System). Suppose that in the survival
theory of culture discussed in Sect. 5.8 there is a limit on the capacity of the
system. Such limits might be representative of television programming or
theater where only a fixed number of offerings are feasible in any season. Let
us consider whether the imposition of a capacity constraint changes the
equilibrium quality distribution, and whether it speeds up or slows down the
rate at which equilibrium is achieved.

For simplicity let us distinguish only two levels of quality in the culture:
good and bad. In this case the original system, without a capacity constraint, is
represented by the second-order system

=[5 el L]

It 1s assumed that x; represents the amount of “good” material in the system,

while x, represents the amount of “bad” material. According to this specifica-

tion, it should hold that a,> a,, indicating that good matenal has a better
\
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chance to survive than bad materal. The parameters must also satisfy 0 <a, <
1, O<a, <1,
The equilibnum point of the system is

x;=b/(1-a,)
x;=by/(1~a,)

The eigenvalues of the system are a; and «, and therefore the equilibrium is
stable. Since the dominant eigenvalue is a,, the rate at which the equilibrium is
approached is essentially a,*.

Now let us modify the system to incorporate the capacity constraint that
x(k)+x,(k) must be a fixed constant, independent of k. To satisfy this
requirement, the amount of new matenal admitted to the system each season
must be varied, depending on the space available for new entnes. We assume,
however, that the basic screening parameters and the input quality distribution
remain unchanged. Only the level of input is varied.

The new system is then governed by

x, (k+1) a, 07[x,(k) b,
= + u(k)
xy(k+1) 0 a,llx,(k) b,
where u(k) varies 1in order to satisfy the capacity requirement. For notational
simplicity, we assume that b, + b, =1. This entails no loss of generality since a

constant multiple can be incorporated into the definition of u(k). To find an
explicit expression for u(k) we write

x (k+1)+x,(k+1)=ax (k) +ax5(k)+ (b, + by)u(k)
= a,x,(k) + a2x,(k) + u(k)
The requirement x,(k+ 1)+ x,(k + 1) = x,(k) + x;(k) then yields
u(k)=(1—a)x;(k)+(1—az)x,(k)
This shows how u(k) must be adjusted each period on the basis of what is
already in the system. Substituting this value, the new system takes the explicit
form
[xx(k+1)]= [a1+b1(1 —o) b(l-e) ][xx(k)]
x,(k+1) by(1—e,) oy + by(1—ay) L xa(k)
It should be noted that the new system is homogeneous while the original
system is not. Total volume in the system is x,(k)+ x,(k)=[1 1]x(k). Since the
volume 1s constant, it follows that [1 1] is a left eigenvector of the system with

the corresponding eigenvalue equal to one. As we shall verify shortly, this is
also the dominant eigenvalue.

Because one is an eigenvalue, the corresponding right eigenvector (or any
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(=

multiple of it) is an equilibrium point for the system. The right eigenvector
corresponding to the eigenvalue of one must satisfy

[, +by(1 —a)]x, + b(1-a)x, =x,
ba(1—a)x; +[a, + by (1~ as)lx, = x,
A solution is

x,=b/(1—a,)
X, =by/(1- )

Thus, the equilibrium points of the new system are just scalar multiples of that
of the old system. This can be explained by the fact that u(k) approaches a
constant as k — . Thus, for large k the new system looks very much like the
original system.

The speed at which the system converges to the equilibnum is now
governed by the eigenvalue of second largest absolute value. In our second-
order example this is, of course, the only other eigenvalue. To find this
eigenvalue, we write the corresponding characteristic polynomial that (after a
bit of algebra) reduces to

A2=(1+byay+ bia)A + by, + b,

Recalling that A, =1 is an eigenvalue of the system, we can easily factor this
polynomial obtaining the characteristic equation

(A =1)(A~bya;—bya;) =0

The second eigenvalue is therefore

Ay =bya+ b,

Since this second eigenvalue is a weighted average of «, and a5, it follows that
a<A;<ay.

Two conclusions can be drawn from this result. First, since 0<A,<<1 the
system is marginally stable, with A, = 1 being the dominant eigenvalue. Second,
the speed at which the system converges toward equilibrium is governed by this
second eigenvalue. Since this value is less than «,, this new system converges
toward equilibrium faster than the original system.

Finally, as should be routine when completing an analysis, let us interpret
this result by checking its consistency with less formal reasoning. Suppose that
the system is not in equilibnum, with a higher proportion of bad material than
there would be in equilibrium. Since bad material is screened out relatively
rapidly, this means that more than a normal level of input is required in order
to satisfy the capacity requirement. This high level of input tends to quickly
infuse more good material. Later, as the proportions move toward equilibrium,
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the level of 1nput decreases since good material remains in the system a long
time. The initial high level of input, however, acts to move the system more
rapidly than would the constant equilibrium input level. Thus, we do expect the
capacity constraint to speed convergence.

5.12 THE COHORT POPULATION MODEL

The cohort population model, introduced briefly in Chapter 1, is an excellent
example for detailed study. It has a wealth of structure that can be translated
into interesting and significant statements about its dominant eigenvalue and
eigenvector. The cohort model deserves attention, however, not only as an
application of theory, but also as a structure important in many application
areas where items are categonzed by age.

The basic, single sex, cohort population model presented in Chapter 1 is
defined by the difference equations

xolk + 1) = agxo(k) + 0ty x, (k) + ez xy(k) + - - - + ., (k)
X1 (k+1) = Bx; (k), i=0,1,2,...,n—1

where q; is the birthrate of the ith age group and B; i1s the survival rate of the
ith age group. In matrix form the general cohort model becomes

T x(k+1) ] [T, o @ ... o, [ xok)T]
x,(k+1) Bo 0 O ... O
_ o B 0 ... O x, (k) (5-68)
iy | Lo o s olewol
We write this in abbreviated‘form as
x(k +1)=Px(k) (5-69)

Change of Variable

It is convenient to introduce a simple change of variable that preserves the
general structure of the cohort model but simplifies it by making the coeffi-
cients along the lower diagonal (the B,’s) all equal to one. For this purpose
define L=1

=

L =BoB: " Be-1s k=1,2,...,n

The number [, can be interpreted as the probability of a newborn surviving to
reach the kth age group.

(5-70)
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l,

| n

and define the change of variable from x(k) to y(k) by
x(k) =Dy(k)

With respect to the vector y(k), the system takes the form

y(k+1)=Py(k)

where P =D"'PD.

The reader can verify the explicit form

Qg

1

D 'PD=

B

L,

Therefore, defining a; = L, one has

_ao

1

-1
It

a;

Lay - - -
1

4.

0

0

1 0

m

(5-71)

(5-72)

(5-73)

This new matrix has the same structure as the original, but with unity
coefficients below the main diagonal.

The new variables y,(k) and the new matrix P have simple interpretations
in terms of the population system. The variable y;(k) is equal to number of
onginal members in the cohort that now occupies the ith age span. This
number includes the deceased as well as the presently living members of this
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cohort. With the variables defined in this way, there is no possibility of leaving
a cohort, and therefore the appropriate new survival factors are all unity. The
new birthrates account for the fact that only the living members of a cohort can
possibly have children. Since the number of living members of group i is Ly;(k),
the new effective birthrate is la; = a, as indicated in P. Therefore, the new
system is a representation where all members of a cohort, dead or alive, are
accounted for through all n+1 age span penods.

Characteristic Polynomial

The special structure of the population matrix enables one to deduce quite
explicit results concerning the dominant eigenvalue and corresponding eigen-
vector. It is simplest to first work with the matrix P, derived above, and then
transfer the results back to P through the similarity transformation. (The

characteristic polynomial of P is the same as that of P since P and P are
similar.) B .
The characteristic polynomial of P is easily found to be

(_1)n+l(An+1 —aOA" _alAn-—l_. .. ___a")
Accordingly, the characteristic equation is
AT =goA" +a A" - g, (5-74)
Under a rather mild assumption, it is possible to show that the dominant root
of the characteristic equation (the root of largest absolute value) is a real
positive number and the corresponding eigenvector has pasitive components.

The only assumption required is that at least two consecutive a;’s are strictly
positive.

Theorem. Suppose that a; =20, i=0,1,2,..., n, and that for some m, 0<m=n,
there holds a,,_,>0, a,, > 0. Then the charactenistic equation (5-74) has a
unique eigenvalue Ay of greatest absolute value. This eigenvalue is positive
and simple.

Proof. For A#0, (5-74) can be rewritten equivalently as

l=aA"'+a A7+ - - +aA7 0D (5-75)

which is of the form

1=f(A)

Since each of the a.’s is nonnegative, it is clear that f(A) increases strictly
monotonically from zero to infinity as A varies from infinity to zero. Therefore,
there 1s exactly one positive real root of the equation, and that root has
algebraic multiplicity one. Let us denote this positive eigenvalue by A,.
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To show that A, is the dominant eigenvalue, suppose A 1s any other
nonzero solution to the characteristic equation. This solution can be written 1n
the form A ™' = re®, where r > 0. Substitution of this expression into (5-75) gives

1=agre®®+a,r’e®® +- - -+ a,r"+Ve!+0
Taking the real value of this equation gives
1= agr cos 0+a,r’cos 20 +- - -+ a,r"*Vcos(n+1)0

Since cos 8 =1, it is clear that the right-hand side of this equation is no greater
than agr+a,r*+---+a,r"Y, and, therefore, in view of the monotonic be-
havior of this expression, r=r,, where r,=Ag'. In fact, the only way that
equality can be achieved is for all the cosine terms corresponding t0 nonzero
a;’s to be unity. However, since it is assumed that for some m that aq,_, >0
and «, >0, it would follow that cos mé=1 and cos(m+1)¢ =1. But this
would imply that cos 8 =1 and accordingly that A were positive. Therefore, for

any A#A, it must follow that r>r, which means |A|<A, Therefore, the
dominant eigenvalue A, is positive and of algebraic maltiplicity one.

Dominant Eigenvector

The dominant eigenvector, corresponding to the positive dominant eigenvalue
A, is easy to calculate. The eigenvectors €, and e, for the matrices P and P,
respectively, are

A5 ] 1A ]
A3t LA™

€= R €=
Ao Lo
L1 A

Validity of the above form for &, follows because the first component of Pe, is
agAd +- - - +a,, which since A, satisfies the characteristic equation is equal to
AS*! It is then easy to check that Pe,= A& It should be noted that since
Ao>0, the components of &, are all positive. The corresponding dominant
eigenvector of P is found from the relation e, = D&, where D is defined by (5-71).
Thus, the components of e, are also all positive if the B;’s are all positive.

The dominant eigenvalue and eigenvector have natural interpretations
wittinn the context of the population system. The eigenvalue A, is the natural
growih rate of the system. The population ultimately tends to grow at this rate
as ihe system state vector becomes closely aligned with the dominant eigenvec-
tor. This rate is always positive, although 1t may be less than one. The
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eigenvector e, represents the stable distribution of population. Once this
distribution is achieved, all age-group populations simultaneously grew by the
factor A, each period—the population may grow as a whole, but the relative
distribution remains fixed.

*5.13 THE SURPRISING SOLUTION TO
THE NATCHEZ PROBLEM

We recall the rather unhappy prediction concerning the fate of a social culture
organized along the lines of the Natchez Indians. The society was divided into
four classes, with the requirement that everyone in the ruling class must select
a marriage partner from the lowest class. The class designation of the off-spring
of a marriage was the higher of (a) the mother’s class, or (b) the class one level
below the father’s class. By assuming a uniform birthrate, an equal number of
men and women in each class, and no inter-generation marriages, it was
discovered that eventually the society would deplete its lowest class, and
therefore could not continue.

In terms of historical record the Natchez structure did not have the
opportunity to play itself out long enough to test the validity of this analysis.
However, the culture had apparently survived for several generations in
essentially this form before they were discovered and largely destroyed by
French explorers. It may be that the system actually did work well and that,
accordingly, some aspect of our earlier analysis 1s crucially defective, or it may
be that the society had not existed long enough for the inevitable consequences
of the dynamic relations to bring on the predicted disaster.

But let us set aside, as probably unresolvable, the question of what might
have happened to the Natchez. Let us instead ask whether the hypotheses of
our earlier analysis can be altered in order to produce a system that avoids
collapse.

In particular, let us investigate a potential resolution based on an assump-
tion that there are different birth rates in the different classes. This is a
plausible hypothesis since such differences are known to occur in many class
systems. Indeed, to set the stage for this pursuit, let us formally pose the
Natchez problem as follows: Is there a collection of birthrates for each of the
allowable marriage combinations so that the resulting dynamic class structure
can sustain a stable distribution?

One plausible answer suggests itself immediately. Since the onginal system
failed by depleting the lowest class, a balance could probably be attained by
increasing the birthrate in the lowest class. This seems only logical. We increase
the regeneration rate of the critical resource that otherwise tends to be
depleted. In fact, however, this is not a solution to the dilemma. Such an
increase cannot produce a balanced situation. The problem, nevertheless, does
have a solution and that solution is achieved, in part, by decreasing the
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i

Table 5.2 Marriage Rules and Birth-

rates Father
A B C
A A a;
Mother B B a,
C|lB a,| C ailC as

birthrate in the lowest class relative to the other classes.

Many readers will at first find this result surpnsing, but the analysis that
follows should be convincing. When the total solution is derived, and when it 15
discussed in the light of the analysis, it should seem not at all surprising. Indeed
it probably will seem to be the obvious solution after all.

In order to simplify the analysis a three-class system sufficient to capture
the general characteristics of the Natchez structure, rather than the full
four-class system, is investigated. The system is defined by Table 5.2. The three
classes are now designated by the relatively bland labeis A, B, and C. If a label
appears in a box in the table it indicates that that box corresponds to an
allowable marriage. The label in the box indicates the class designation of the
offspring. The parameter «; in the box indicates the (average) birthrate
associated with that type of marriage, expressed in number of male children
per marriage.

Making the usual assumptions that (1) there are an equal number of men
and women in each class every generation, and (2) there are no intergeneration
marriages, it is straightforward to write the dynamic equations implied by this
table. Denote by x,(k), x,(k), and x;(k) the number of males in classes A, B,
and C, respectively, in generation k. Then we can wnte immediately,

x{k+1)=a,x(k)
Likewise, since class B children result from every class A father and every
class B mother, we may write
x2(k+1) = ax, (k) + a3 x5(k)

Finally, class C children are produced by all class B fathers and by all class C
fathers except those who marry class A or class B women. Therefore,

x3(k +1) = a,x;(k) + as[x3(k) — x1(k) — x2(k)]
In matrix form the system is

x (k+1) o 0 0 1} x,(k)
x2(k + 1) =1 Qo ) [s £ 0 XQ(k) (5‘76)
x3(k+1) —as (aa—as) as]lx;(k)

which we abbreviate by x(k+1)= Ax(k)
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Before progressing with the general analysis, let us briefly study the special
case where o, =1 for all 4, in order to verify that this reduced class system is
subject to the same disaster as the four-class Natchez system. In this case

1 00
A=} 1 1 0
-1 0 1

Paralleling our earlier analysis of the full Natchez system, we write A=1+B
and note that B?=0. Thus, A* =1+ kB, which in explicit form is

1 00
A=] kK 1 0
-k 0 1

Therefore, if x,(0)> 0, the solution eventually reaches a stage where x;(k) <0,
corresponding to breakdown. Thus, this reduced system captures the essential
features of the Natchez system.

Now let us return to the general model with vanable birthrates. It is
helpful to spell out what is required of an acceptable solution to the Natchez
problem. First, there must be an eigenvector of the system whose components
are all positive and whose associated eigenvalue is positive. Such an eigenvec-
tor would represent a population distribution that, once achieved, would not
change with time. The total population would grow at a rate equal to the
corresponding eigenvalue, but the relative value of the components would not
change.

A second requirement on a solution is that the eigenvalue of the eigenvec-
tor described above must be the dominant eigenvalue of the system. Only in
this way can it be assured that the population distribution, if perturbed from
this distritution, tends to return to it. Finally, as a third requirement, the stable
distribution, defined in terms of class members in each generation, must have
enough members in the lowest class to supply marriage partners for the higher
classes. In view of these requirements, the problem is reduced to determining
birthrates such that the A matrix has a suitable dominant eigenvector.

Since the A matrix is triangular, its eigenvalues are the same as the
diagonal elements a;, a5, as. (See Problem 16, Chapter 3.) Let us suppose first
that as>a; and as>a;,, so that as is the dominant eigenvalue. This corres-
ponds to the proposal of increasing the birthrate of the lowest class. The
eigenvector associated with this eigenvalue must satisfy the matrix equation

o0 0 01l x, 0
a, (az—as) Ollx, =10
Qs (a,—as) 0llx; 0
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The first line implies immediately, however, that x, =0, and hence any eigen-
vector associated with as cannot have all positive components. Therefore, o
cannot be the dominant eigenvalue and simultaneously satisfy the other con-
ditions imposed by the problem formulation. The same argument can be easily
seen to apply to the eigenvalue aj.

The only remaining possibility, therefore, is to arrange things so that a, is the
dominant eigenvalue. Let us assume, accordingly, that e, > a5 and @, > as. The
eigenvector associated with the eigenvalue «; must satisfy the equations

0 0 0 X1 0
a, (a3—a,) 0 X |=10
—as (ay—as) (as—a)llx, 0

The second equation (which is the first nontrivial equality) yields

a
Xg= ot x 5-77)
2 (o, —a3) !
Since a, > as, it follows that x,> 0 if x,>0. The last equation then yields
1 .
X3= (—as +Q2M5_))xl (5-78)
a;—as oy —ay

Since a, —as>0, 1t follows that x>0 if and only if
—as(0y — az) + o, —as)>0
Equivalently, for the eigenvector to have all positive components we require

;> s
o, > as (5-79)
oz, — as)> as(a; —as)

If these conditions are satisfied, a;, will be the dominant eigenvalue and its
corresponding eigenvector will have positive components.

It is clear that if a,>a;, and a,>0, «a,>0, the other two required
inequalities will be satisfied for small as. This corresponds to having a low
birthrate in the lowest class. Thus, the Natchez problem is solved by having a
relatively low lower-class birthrate.

The above relations, however, are not complete. By themselves they do
not constitute an acceptable solution to our problem—and it is here that our
onginal intuition, that there should be an increase in production of the lower
class, is in a sense validated. It is necessary to check that in every generation
there are enough class C members to supply marriage partners for the upper
classes. In particular, it must hold that

X3=x, 4+ X, (5-80)
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This inequality is an additional requirement to be imposed on the eigenvector
representing the stable population distribution. Substituting (5-77) and (5-78)
into (5-80) produces, after a bit of algebra, the condition

(as—as) _as (o —3) _ () — ;) _
(y—as) a, (a; — ) a

1=0 (5-81)

All terms on the left-hand side of this inequality, except the first, are negative.
Therefore, a necessary condition is easily seen to be a, > a;. Thus, the value of
a,, which represents the indirect production of class C males from the next
higher class, must be increased in order to compensate for the reduction in the
direct production.

A solution to our problem is given by any set of birthrates satisfying the
set of inequalities above. For example, a;=1.1, a;=1.0, a3=1.0, a,=1.3,
and as=.9 works, and has a stable population distribution with proportions 1,
10, and 15.5. A set of numbers of this form does represent a solution to the
formal problem posed, although it is, at best, perhaps questionable that a
society would be able to arrange a set of societal norms producing average
birthrates that vary among marriage types in a fashion even approximating this
peculiar pattern.

Now that the analysis is completed and the answer to our problem has
been derived, let us review the essence of the analysis to discover that the
answer 1s really not so surprising after all. The key to the situation is the simple
equation x,(k+1) = a,x,(k). The highest class can grow only at the rate «;, no
matter how the other classes grow or what values are prescribed for other
parameters. Therefore, growth in the upper class constrains (in fact determines)
the ultimate growth rate of any population distribution. Or, put another way, if
one is seeking a steady growth situation (with nonzero x,), the growth rate
must be «;.

The fallacy in selecting a large value for as, the birthrate of the lowest
class, is that if the birthrate is increased enough to avoid depletion, the lowest
class will ultimately grow at that large birthrate and leave the populations of
the other classes behind. In relative terms, the other classes will be depleted,
for they are unable to keep up. There will not be a balanced distribution in
which all classes grow at the same rate.

The direct growth rates of all classes must not exceed the growth rate a,
of the constraining class A. On the other hand, to insure that there are
sufficient members of the lowest class, their indirect production, as offspring of
the next higher class, must be high enough to compensate for the low birthrate
in the class itself. This brief analysis suggests, therefore, that a solution
obtained by reducing «; and «s with respect to «,, and increasing «,, is not
terribly surpnsing after all!
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5.14 PROBLEMS
1. Verify Eq. (5-2) of Sect. 5.1.
2. Given the system
x(k +1) = Ax(k)

consider a solution of the form x(k)= A“x(0) for some fixed vector x(0) and some
constant A. By substituting this form of soiution into the system equation, find
conditions that must be satisfied by A and x(0).

3. Consider the difference equation
y(k+n)+a,ylk+n—1)+---+apy(k)=0
As defined i Chapter 2, this equation has the characteristic equation
Atta, A" 4 ae=0

and if A; is a root of this equation, then y(k)=A% is a solution to the difference
equation. Write the difference equation in state vector form. Show that the
characteristic polynom:al of the resulting system matrx is identical to that given
above. Find an eigenvector corresponding to A, and show that it is equivalent to the
earlier soiution.

4. Find the eigenvalues and eigenvectors of the harmonic motion system and the
Lanchester model (Examples 2 and 3, Sect. 4.6). Use this information to (re)calcu-
late the state-transition matnx in each case.

*5. Coordinate Symmetry. Suppose a system has the property that its system matrx s
unchanged if the state variables are permuted in some way. Suppose In particular
that P"'AP = A, where P represents a change of variable. Show that if e is a system
eigenvector, then so is Pe. As an example consider the mass and spring system
shown in Fig. 5.11. Formulate the system in state variable form. Identify a
symmetry and find P. Find the eigenvectors.

— x xy~a—]

Figure 5.11. Symmetric system.

6. Convert the migration model of Sect. 5.5 to diagonal form and find the state-
transition matrx.

7. For the migration model of Sect. 5.5, show that the condition

a a
OSBSmin( ,—)
, 1-v v

is necessary and sufficient in order to guarantee that both urban and rural
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populations remain nonnegative given any nonnegative initial conditions. Show that
0=pB=2a is an equivalent condition.

8. Consider the following modification of the migration model discussed in Sect. 5.5.

10.

11.

A third sector, suburban population, is added, and we assume that 1t i1s governed by
s(k+1)=as(k)+6u(k). That is, each year a fraction § of the urban population
moves to suburbia; there is no possibility of a return flow. We modify the other two
equations to

r(k+1) = ar(k)— B{r(k) - ylr(k) +u(k)+s(k)}
u(k+1) = au(k)+p{r(k)— ylr(k)+ u(k) +s(k)I—su(k)

Find the eigenvalues and right and left eigenvectors of this three-sector model and
interpret the results.

. Assume that the nxXn matrix A has n distinct eigenvalues, A, A,, ..., A, Let

M=[e,, e,,...,e,] be the modal matrix of A, where e,, e,,...,e, are the nght
eigenvectors.

(a) Show that

fl
T
2
M=
t;'
where 1, f%, ... ,f% are the corresponding normalized ieft eigenvectors.
(b) Show that A can be expressed as
A= z l\;ex ﬂ-
1]
(c) Show that
A=Y Mefl

[0}

Find the eigenvalues and eigenvectors for the Natchez Indian system (Example 3,
Sect. 4.4). (There are only two eigenvectors.) From the explicit formula for A* infer
what the lengths of the two Jordan chains must be.

Cournot Theory of Duopoly. Duopoly refers to a market structure in which two
firms compete to serve the industry demand. Since price varies with total produc-
tion, it 1s clear that each firm must account for the actions of the other when
determimng its own best production level. Various dynamic processes result,
depending on the particular strategies employed by the two firms.
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Suppose the total industry demand in any period is
d(k)=200-2p(k)

where p(k) 1s current price. Let qi(k), g,(k) denote the output levels of the two
firms. Assumuing that the price adjusts so as to sell all current output, it follows that

p(k)=100—3{q:(k)+ q2(k)]
Suppose further that the total cost of production for the two firms are
Cilk) = 5q,(k)
Cz(k)=%q2(k)2

Both firms know the demand curve, but each knows only its own cost curve. The
current profits for the two firms are revenue minus cost; that is, p(k)q,(k)—C,;(k)
and p(k}g,(k)— Cy(k), respectively.

The Cournot theory is based on the assumption that each firm selects its output
level to maxumize its own profit, using some estimate of its competitor’s output. The
corresponding function, for each firm, expressing the best output level as a function
of the estimate of the competitor’s output, is called a reaction function.

(a) Assuming each firm estimates its competitor’s output by using its competitor’s
actual output of the previous period, derive two reaction functions 1n the form
of two first-order linear difference equations.

(b) Find the equilibrium outputs of each firm.

(c) Derive a general solution for even periods and verify your answer to part (b).

(d) Suppose that both firms estimate each others’ output as a simple average of the
previous two periods in an effort to smooth out the oscillatory response. Show
that for arbitrary initial conditions, the convergence to equilibrium need not be
more rapid. (Hint: You need not factor, but you must analyze, the new
characteristic polynomial.)

Stackelberg Theory of Duopoly (see above). Stackelberg suggested that one firm
might increase its profits if it were able to observe its competitor’s reaction function.
Such a firm would then use its competitor’s reaction function as its estimate of its
competitor’s output.

(a) Show that if the first firm substitutes the second firm’s reaction function of part
(a) of the previous problem into its profit equation and maximizes with respect
to gi(k+1), then the equilibrium is unchanged.

(b) In a Stakelberg strategy the two firms are designated leader and follower. The
leader, knowing the follower’s reaction function, reveals its actual planned
output to the follower. The follower then uses the value supplied by the leader
in its reaction function to determine its output level. The leader’s original plan
anticipates the follower’s response to it. Show that if the first firm is the leader,
its equilibrium profit is higher than in the Cournot equilibrium.

The Routh Test. There is a simple but powerful test to determune whether a given
polynomial has any roots in the right half of the complex plane. Consider the
nth-order polynomial p(A)=a,A" +a, A" '+ -+a,A+a,. The Routh array 1s
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then constructed as shown below:

a, a, a,
a, as; as
bl b2 b3
C, Cy €3

In this array the even-numbered coefficients are placed in sequence in the top row
and the odd-numbered ones in the second row. The elements of the third row are
found by the cross multiplication formulas

213, — Q349

by =———
ay

a,a,— asa,

by =
ay

a:as— a-,a,

by =———
ay

and so forth. Successive rows are computed from the two proceeding rows using the
same formula. Finally, when no more rows can be defined, the number of sign
changes in the first column of the array is equal to the number of roots of p(A) in
the right half-plane.

As an example, the array for P(A) = —4A*+A°+2A%+A +4 is

4 2 -4
11
-2 -4
-1

-4

This array has one change of sign in the first column, indicating that there 1s exactly
one root 1n the night half-plane. For each of the following polynomials determine
how many roots are in the right half-piane:

(a) A2=2A+1
(b) AP+4A%4+50+2
(€} ~2A°—4A*+ A2 +2A%+ A +4

14. (a) Show that reversing the order of coefficients (replacing a; by a,—;) tn the Routh
test must give the same result.
(b) Show that this can be helpful for testing A®+A° +3A*+2A%+4A%+al +8 where
a 1s a parameter.
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For stability analysis of discrete-time systems it is necessary to determine whether
the characteristic equation has all its roots inside the umit circle in the complex
plane. Consider the transformation from z to A
z+1
A=
z—1

(a) How does this transform the unit circle?
(b) Use this transformation together with the Routh test (Problem 13) to determine
how many roots of the polynomial z*+2z%+ z + 1 lie outside the unit circle.

Multidimensional Cobweb Theory. The demands for various commodities are
rarely independent. If the price of one rises then 1t 1s likely that its demand will
decrease, and the demand for similar commodities, which are partial substitutes,
will nse. As an example, demand for two commodities might be described by the
rejation

d=Ap+d,

where d is a two-dimensional vector of demands, p 1s a2 two-dimensional vector of
corresponding prices, d, is 2 constant two-dimensional vector, and

=[5 ]

where a, 3, v, 6 are posttive, and ad —By# 0.
As in the standard cobweb model, assume that supply is determined from price
with a one period deiay

s(k +1)=s,+Ep(k)

Assume also that the supplies of the two commodities are independent, and thus,
that E is a diagonal matrix with positive diagonal elements. For simplicity let E=1.

(a) Equate supply and demand and obtain a dynamic equation for p(k).

(b) Find the characterstic polynomial of the matrix A, and determine whether the
roots are real or complex.

(c) What condition must be satisfied by the eigenvalues of A in order for the
system in (a) to be asymptotically stable?

(d) A bundle of goods (x,, x;) consists of x; umts of the first commodity and x,
units of the second. The price of the bundle 15 g(k)= p;(k)x, + p.(k)x,. For
a=4,8=1, y=2, and § =3, find the bundles whose prices are governed by
first-order dynamic equations, and dispiay the corresponding equations. Hin::
A bundle can be represented as a row vector.

Suppose that hog farmers ‘replace (5-59) in Sect. 5.10 with a price estumator of
the form

p(k)=3lp(k)+ p(k—1)+p(k —2)+p(k ~3)
+plk—4)+p(k—5)+p(k—~6)]



184

18.

19.

Linear Systems with Constant Coefficients

(a) Show that this leads to the characternstic equation
R +ZDS AT AN AT+ A+ 1]=0

(b) Given that p is such that the largest root of this equation has magnitude equal
to one, what is the cycle length corresponding to the root? Hint: Analyze the
characteristic equation geometrically, on the unit circle.

(c) What is p?

Analysis of Structures. Mechanical structures (bridges, aircraft frames, buildings,
etc.) are built from matenals having some elasticity, and are therefore dynamic
systems. To determine their response to varying forces due to traffic, winds,
earthquakes, and so forth, it is important to calculate the natural frequencies of
oscillation. As an example, consider a four story building as illustrated in Fig. 5.12.
As an 1dealization, assume that the elements of the frame are inextensible and that
the mass is concentrated in the floors. The floors can be displaced laterally with
respect to each other, but the bending elasticity of the building frame then
generates restoring forces. Assuming that all frame members have the same
elasticity, the force vector f is related to the displacement vector x by f =Kx, where
K 1s the stiffness matrnix. By Newton’s laws, the force also satisfies —f = MX%(t), where
M 1s the mass matrnx. In this case

1 -1 0 1.0 0
K=kl|-1 2 -1 M=m{0 1 0
0o -1 2 0 0 2

(a) For this structure, show that the natural frequencies of the system are of the
form w =+ where A is an eigenvalue of M™'K.

(b) In order to be immune to earthquakes, the building should have all its natural
frequencies well above 10 cycles/sec. f m = 10* Kg and k = 107 Newtons/meter,
s this an acceptable design? [Note: Using these units, w of part (a) is in
radians/sec.)

*y

3
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Figure 5.12. A four-story building.

Make the following simptifications in the population model:
—women have children between the ages of 15 and 44 inclusive;
—each woman has exactly one female child;

—each woman lives to be at least 45 years old.
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Using a time interval of 15 years with these assumptions, and considering only those
females less than 45 years old gives the following model:
xy(k+1) 0 a 1-al|x(k)
xk+1i=11 0 0 xa(k)
x3(k +1) 01 0 x3(k)
where 0<a=<1.
(a) By finding the eigenvalues, determine the growth rate and how quickly the

population moves to equilibrium.
(b) What happens as a varies from 0 to 1?

Suppose that a cohort population matrix P has been transformed to P, as described

in Sect. 5.12. If a,+a,+ --+a,=1 (i.e.,, each woman has approximately one

female child in her lifetime), 1t can be expected that the eigenvalue A, 15 close to

one. Setting Ao=1+¢, and using the fact that (1+€)™ =1+ me when £ 1s small,

substitute 1n the characteristic equation to find an approximate value for &
Estimate ¢ if

01 78 .25 .01
1 0o 0 0
0 1 0 0
¢ 0 1 0

-1}
f

Reproductive Value. Associated with the dominant eigenvalue A, of a cohort
population matrix P, there is a left eigenvector f3 = [fo, f1, f2, - - - » fa). Show that

fk = i (BkBk+i e Bx-l)a;,\'g_'

Show that fi can be interpreted as a measure of the total number of (female)
children that a woman 1n age group k will have, on the average, during the
remainder of her lifetime. Children born in the future are discounted at a rate A,,
the natural growth rate of the population. Therefore, a child who will be born 1
time periods later is counted now, not as 1, but as the fraction Ap'.

The function value

V=6x(k)=} fxk)
=0
is the total reproductive value of the current population. It 1s the total discounted
number of potential children of the present population. Since f§ 1s a left eigenvec-
tor, it follows that the reproductive value increases by the factor A, each time
peniod, no matter what the population distribution. Verify this n terms of the
interpretation of the reproductive value.

Lattice Vibranons. Many of the observed properties of a solid, such as specific
heat, dielectric properties, optical and sound transmission properties, and electrical
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Figure 5.13 A monatomic lattice.

resistance, are determined in large part by the charactenstic oscillations of the
atoms that comprnse the solid. In a crystal the atoms are arranged in a regular
pattern, or lattice, that determines the charactenstics of the lattice vibrations. As a
simple example of the kind of relations that can be deduced from the lattice
structure, consider a one-dimensional monatomic lattice consisting of an 1nfinite
linear chain of equally spaced identical atoms. (See Fig. 5.13.) Each atom has a point
mass of m, and the nominal spacing between atoms 1s a. If two adjacent atoms have
a spacing different than a, there is an electric force proportional to the error in
separation that tends to restore the nominal spacing. The proportionality constant is
denoted by B.

Let x,(t) denote the position of the kth atom relative to its nominal position.
Then using Newton’s laws .

M5 (0 = Blxe s () = x (D14 Bl - (1) ~ x:. ()]

fork=...,-1,0,1,2,....

As a tnial solution to this infinite set of equations, it is reasonable to suppose
that each atom vibrates with a common frequency but with different phases. Thus,
we seek solutions of the form

x (1) = g™

(a) Find the reiation between w and 9 (a dispersion relation).

(b) What 1s the maximum frequency that can be propagated?

(c) The velocaty of wave propagation 15 «/8. What is the veloaty for small
frequencies?

NOTES AND REFERENCES

Section 5.5. The migration model was developed in collaboration with Stephen Haas.
Section 5.8. This example is based on McPhee [Mc1].

Section 5.10. The hog cycle example was developed in collaboration with Thomas
Keelin. For another approach see Meadows {M3]. For background on expectations and
cycles see Arrow and Nerlove [A3].

Section 5.12. The matrix approach to population analysis is credited to Leslie [L4] and
the matnx in the model is itself often called a Leslie mairix. For an excellent treatment
of population dynamics see Keyfitz [K13].

Section 5.13. The possibility of changing the birthrates in the Natchez model to avoid
collapse has been suggested by Fischer {F3]. The analysis 1n this section, however, is
new.
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Section 5.14. For an introductory discussion of (nondynamic) aspects of Cournot and
Stakelberg equilibria (problems 11 and 12) see Henderson and Quandt {H2]. The Routh
test (Problems 13—15) is sometimes referred to as the Routh—-Hurwitz test. Routh and
Hurwitz obtained different (but essentially equivalent) solutions to the problem of
determining stability 1n about 1880.

The analysis of structures as briefly introduced in Problem 18 is a large field of
application of dynamic systems. See Fertis [F2]. For more on lattice vibrations (Problem
22) see Donovan and Angress [D2].



chapter 6.

Positive
Linear Systems

6.1 INTRODUCTION

A positive linear system is a linear system in which the state variables are
always positive (or at least nonnegative) in value. Such systems arise frequently
since the state variables of many real systems represent quantities that may not
have meaning unless they are nonnegative. In a cohort population model, for
example, each variable remains nonnegative and corresponds to the population
in a cohort class. In many economic systems the variables corresponding to
quantities of goods remain nonnegative. And in an arms race the level of
defense is nonnegative. A positive linear system automatically preserves the
nonnegativity of the state variables.

The theory of positive systems is deep and elegant—and yet pleasantly
consistent with intuition. Practically everything that one might hope to extrapo-
late from an understanding of simple first-order systems does, in fact, carry
over to positive linear systems of arbitrary order. Indeed, just the knowledge
that the system is positive allows one to make some fairly strong statements
about its behavior; these statements being true no matter what values the
parameters may happen to take. It is for positive systems, therefore, that
dynamic systems theory assumes one of its most potent forms.

To explain the concept of positive linear systems more fully and more
precisely, consider the homogeneous discrete-time dynamic system

x(k +1) = Ax(k) (6-1)

If the state vector x(k) is nonnegative but otherwise arbitrary [that is, if every
component of x(k) is nonnegative], under what circumstances can one be
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4

certain that the new state vector x(k +1) will also be nonnegative? Only if the
elements in the matrix A are each nonnegative. To see this, suppose an
element a; were negative. Then for the nonnegative vector x(k)=(0,0,..0, 1,
0, 0, ..0) with the one in the ith component, the new vector would have its jth
component equal to q;, which is negative. Thus, in order to guarantee that a
nonnegative state leads in turn to a new nonnegative state, the A matrix itself
must have nonnegative entries. The converse proposition is even easier to see.
If the elements of A are all nonnegative, then x(k+1)= Ax(k) is certainly
nonnegative for every nonnegative x(k).

A discrete-time linear homogeneous system is therefore defined to be
positive (or nonnegative) if the elements of its system matrix A are all non-
negative. It logically follows that the theory of such systems is built upon the
theory of positive matrices—a theory that is remarkably rich. The cornerstone
of this theory is the famous Frobenius-Perron theorem, which is presented
in the next section. This theorem plays a fundamental role in mathematical eco-
nomics, dynamics, probability theory, and any linear theory involving positivity.

Preview of Frobenius—-Perron Theorem

The main result of the Frobenius-Perron theorem is that for a matrix A, all of
whose elements are strictly positive, there is an eigenvalue of largest absolute
value and this eigenvalue is in fact positive and simple. Furthermore, there s a
positive eigenvector corresponding to this positive eigenvalue.

A major portion of this result can be quickly deduced from a knowledge of
the general theory of linear time-invariant systems. In terms of dynamic system
theory, the eigenvalue of largest absolute value corresponds to the domunant
eigenvalue. Assume that there is a simple, dominant eigenvalue of the matnx
A. For large k and almost any initial condition, the solution x(k) to the system
(6-1) tends to be aligned with the corresponding eigenvector. Since for any
positive initial state vector the subsequent state vectors will all be positive, it
follows immediately that the dominant eigenvector, to which the system
converges, must have positive components and the corresponding eigenvalue
must be positive. Thus, if there is a simple dominant eigenvalue, it is easy to see
that it must be positive and must have an associated positive eigenvector.

The Frobenius-Perron theorem is a refinement of this basic result. It
guarantees that there is in fact a simple dominant eigenvalue. In view of the
importance of dominant eigenvalues, the Frobenius-Perron result is clearly of
great value to dynamic system analysis.

Some Results on Positive Dynamic Systems

As stated earlier in this section, the theory of positive linear systems is both
deep and elegant. It also has strong intuitive content, especially within the
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context of a given application. It is perhaps helpful, before confronting the
somewhat lengthy proof of the Frobenius-Perron theorem, to preview, in
broad terms at least, some of the major results that hold for positive systems.
Perhaps these results and the variety of classical examples that fall in this
category will serve as adequate motivation to master the foundation theory.

The first important property of positive linear systems is that concerning
the dominant eigenvalue and its associated eigenvector, as described by the
Frobenius-Perron theorem. The existence and positivity of the dominant
eigenvalue and eigenvector essentially reduces the computation of long-term
performance to an eigenvector calculation.

The second property of positive systems is a remarkable connection
between stability and positivity. An inhomogeneous positive system, in general,
may Or may not possess an equilibrium point that itself is nonnegative. From
the viewpoint of applications only a nonnegative equilibrium is of any real
interest. There remains, however, the issue as to whether the equilibrium point
1s stable. For positive systems there is a direct correspondence between
existence of a positive equilibrium point and stability. Thus, if a positive
equilibrium point is found, it is stable. Conversely, if the system is stable, the
corresponding equilibrium point is nonnegative.

A third major result comes under the heading of comparative statics,
which is applicable to stable systems. Consider a stable system at rest at its
equilibrium point. If some parameter of the system is slightly modified, the
system moves to a new equilibrium point. Comparative statics refers to the
question of how the change in equilibrium point is related to the parameter
change that produced it. For general linear systems, of course, not much can be
said to describe this relationship. For positive systems, however, it can be
shown that positive changes (such as increasing a term in the A matrix)
produce corresponding positive changes (increases) in the components of the
equilibrium points. This result, and others of a similar nature, mean that
significant qualitative conclusions can be inferred about the behavior of a

positive system even though the values of the parameters may not be known
precisely.

6.2 POSITIVE MATRICES

In this section the fact that a positive matrix has a positive dominant eigenvalue
is established. Before proceeding directly into that development, however, it is
convenient to introduce some notation for distinguishing positive (and non-
negative) vectors and matrices.
If A=[a,] is a matrix, we write:

(i) A>0if a;>0 for all i,j

(i) A=0if q; =0 for all i,j and a; >0 for at least one element
(iii) A=0 if a;=0 for all ij.
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These cases are distinguished verbally by stating that (i) A is strictly posuwe if
all its elements are strictly greater than zero, (ii) A is positive or strnctly
nonnegative if all elements of A are nonnegative but at least one element 1s
nonzero, and (iii) A is nonnegative if all elements are nonnegative. This same
terminology can be applied to matrices of any dimension (whether square or
not), but attention is focused in this section on square matrices and on row and
column vectors.

These definitions are also used to imply meaning for inequalities of the
form A=B. We say A =B for two matrices A and B of the same dimension if
A —B=0. Similar definitions apply to the other forms of positivity.

The proof of the existence of a positive dominant eigenvalue of a positive
(square) matrix A is somewhat indirect. First a positive number is associated
with the matrix A through examination of a set of inequalities, and it is
subsequently shown that this number is in fact an eigenvalue of A.

Let A be a nonnegative n X n matrix; that is, A=0. Consider the set of
real numbers A such that

Ax=Ax

for some x=0 (that is, for some strictly nonnegative vector x). First, 1t can be
noted that one number that always works is A =0, because any x=0 when
multiplied by A =0 must yield a nonnegative vector. Second, it can be seen
that A cannot be arbitrarily large. This is true because each component of the
vector Ax is always less than Mx;, where M is the sum of the elements of A
and x; is the maximum component of x. Thus, for A > M there can be no x=0
with AXxZ Ax. Define A, as the maximum of the real numbers A for which
AXZAx is satisfied for some x=0. In explicit terms®

Ag=max{A: Ax=Ax some x=0} 6-2)

In view of the earlier observation, it follows that 0= Ay <o,

The next theorem below shows that, in the case where A is strictly
positive, the value of A, defined by (6-2) is a dominant eigenvalue for A. This
is equivalent to the statement that the inequality in the defining relation for A,
is satisfied by equality.

The proof of this theorem is substantially more difficult than most others
in the book, and the mechanics of the proof are not essential for later
developments. It may be appropriate, at first reading, to carefully study the
theorem statement itself and then proceed directly to the next subsection
where the statements of Theorems 2 and 3 can be read for comparison.

Theorem 1 (Frobenius-Perron). If A>0, then there exists A\;>0 and x,>0
such that (a) Ax,=AgX,; (b) if A# Ag is any other eigenvalue of A, then
[A]<Ag; () Ag is an eigenvalue of geometric and algebraic mulnplicity 1.

* A continuity argument can be used to show that the maximum always exists.
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Proof. (a) Let A, be defined by (6-2), and let x,=0 be a vector corresponding
to Aq in definition (6-2). That is, let x, satisfy Ax,= Aox,. Clearly A;>0. Since
A >0, it follows that Ax>0 for any x=0. Therefore, A[Ax,—Asx,]>0 unless
Ax, = AgXy. Suppose Axy,=ApXo; then for yo=Ax,>0 it would follow that
Ayo— AgYo >0, or equivalently Ay, > Agy,. But if this were true Ay could be
increased slightly without violating the inequality, which contradicts the defini-
tion of Ay. Therefore, it follows that Ax,=Ayx,. Also since x,=0 implies
Ax, >0, the equation Axy= AgX, implies that x,>0.

(b) Let A# Ay be an eigenvalue of A, and let a corresponding nonzero
eigenvector be y, Ay = Ay. Let ly| denote the vector whose components are the
absolute values of the components of y and consider the vector Ajy|. The first
component of this vector is ay |yl +aioly.l+- - -+a,, ly.l. Since the a;’s are
positive, this sum is greater than or equal to |a;;y;+a,y,+* - - +a,,y,]. Since
a similar result holds for the other components, it follows that Aly| =]Ay|. Thus,
Aly|=|Ay|=|A}lyl. From the definition of A, it follows immediately that [A|=<
Ag.

In order to prove that strict inequality holds, consider the matrix A; =
A — 81, where 8>0 is chosen small enough so that A; is still strictly positive.
From the equation (A—8)I—A; =AI-A, it follows that A;—8 and A—§ are
eigenvalues of A;. Furthermore, because A; is strictly positive, it follows that
A —8]= Ao—8, since Aoy~ & is the largest eigenvalue of A;. However, if |A| = A,
A# Ay (so that only A, is positive), it follows by direct computation of the
absolute value (see Fig. 6.1) that |]A —8]>]Ao—8|. (The subtraction of & affects
the absolute value of a real number more than a complex one.) This is a
contradiction.

Figure 6.1. lllustration that |A|= A, implies |A — 8|>[A,— 8]
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(c) To prove that the geometric multiplicity is 1 it must be shown that (to
within a scalar multiple) x, is the only eigenvector associated with A,. Suppose
there were another. Then, since A is real, there will be a real eigenvector y,
that is linearly independent of x, Since x,>>0, it is possible to find a linear
combination w=ax,+y, such that w=0, but not w>0. However, since
Aw = A\ w is strictly positive (because A is), we have a contradiction. Therefore,
the geometric multiplicity of Aq is 1.

Finally, suppose the algebraic multiplicity is greater than 1. Then, since the
geometric multiplicity is 1, there must be a Jordan chain of length at least two
associated with Ay. (See Problem 22, Chapter 3.) Thus, there is a vector z such
that (A—Ag)z=y and (A~ A D)y =0. In view of what was shown above, y must
be a multiple of x4, and thus, without loss of generality it can be assumed that
(A-ADz=x, Now let f, be the strictly positive eigenvector of AT corres-
ponding to Aq. Then £} is a left eigenvector of A and we have

0=F(A—Adz=fx,

But £, is positive because both £, and x, are strictly positive. We have a
contradiction, and can therefore conclude that the algebraic multiplicity is 1. I

Extensions to Nonnegative Matrices

Many of the results presented in the above theorem for strictly positive
matrices can be extended to nonnegative matrices. We state two alternative
formulations without proof.

The first is a direct extension showing that strict positivity of A can be
replaced by strict positivity of a power of A.

Theorem 2. Let A=0 and suppose A™>0 for some positive integer m. Then
conclusions (a), (b), and (c) of Theorem 1 apply to A.

The second alternative is the corresponding theorem for an arbitrary
nonnegative matrix. In this case the conclusions are weaker.

Theorem 3. Let A=0. Then there exists A\=0 and x,=0 such that (a)
Ax,=AgXo; (b) if A# Ag is any other eigenvalue of A, then |A|=<A,.

There are other versions of this type of theorem that impose requirements
lying somewhere between simple nonnegativity and strict positivity of a power
of A. (See, for example, Problem 10, Chapter 7.)

Exarople 1. Consider the following five nonnegative matrices:

11 0 1
A‘=[1 1] Az_[l 1]

10 0 1 0 1
A3=[o 1] A“=[1 0] A5=[0 o]
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The matrix A, is strictly positive so Theorem 1 applies. Indeed Ag=2 is the
simple dominant eigenvalue. The matrix A, is not strictly positive, but A2>0.
Thus, Theorem 2 applies and indeed A,=(1++v5)/2 is the simple dominant
eigenvalue. In the last three cases, no power of A is strictly positive. For A; the
dominant eigenvalue is Ag=1, but there is not a unique eigenvector. For A,
the two eigenvalues are A =-1,1, so the positive eigenvalue is not strictly
greater in absolute value than the other eigenvalue. For A the dominant

eigenvalue is A, =0, and it has gepmetric multiplicity 1 but algebraic multiplic-
ity 2.

Bounds on A,

The eigenvalue A,=0 associated with a nonnegative matrix A in Theorems 1, 2,
and 3 above 1s referred to as the Frobenius—Perron eigenvalue of A. A useful
set of bounds can be derived for the value of Ay, expressed in terms of either
the row or column sums of the matrix A. These bounds can be used to obtain a
quick numerical estimate of A, for a given nonnegative matrix, and they are
useful in some theoretical investigations.

Let A be a nonnegative matrix with largest eigenvalue Ay Let xp=
(xi, X2, - - -, X,,) be the corresponding positive eigenvector, and for convenience
assume that this eigenvector is normalized such that Y7_, x, =1. We have
Ax, = AgX,, Or in detail

apx,tapx;t---+a,.x, = AeX,

A21X), +AxnXxat+ -t +az,X, = AoX,

A x, +a,0x+ 0t ax, = Aox,

Summing these n equations we obtain
Apxy+Apx, 4+ - -+ A, = Ag(x +x+e -+ x,)

where A; denotes the sum of the elements in the ith column of A. Recalling the
normalization of x,, there results

Ao=A1x,+HArx, +- - -+HA X,

Therefore, Ay is a weighted average of the column sums. Since the average
must lie between *the two extremes, we obtain the useful bounds

Min A; =A,=Max A,
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The same argument can be applied to the matrix A”, which has the same
Ao as A. This yields the bounds

Min §, =\, =Max 5,
where now §; is the sum of elements in the ith row of A.

Example 2. Consider the strictly positive matrix

1 2
S
4 3
Since the column sums are both 5 it follows that A;=5. The row sums are 3

and 7. The eigenvector associated with A, can be found from (either of) the
equations

—4x;+2x,=0
4x,—2x,=0
Thus, x,=(1, 2).

Example 3. Consider the positive matrix

A:

(=2 =]

0 6
0 4
11

which is in companion form. The column sums show that 1 =Ay=11. The row
sums, however, yield the tighter bounds 2=<,=<6. Actually, in this case A, =3.
The corresponding eigenvector is x,=1(2,2,1).

6.3 POSITIVE DISCRETE-TIME SYSTEMS

The theory of positive matrices can be applied directly to positive linear
dynamic systems, and yields some surprisingly strong conclusions.

Dominant Eigenvector Analysis

An obvious role of the Frobenius-Perron theorem in dynamic system
analysis is its guarantee that a positive system has a nonnegative dominant
eigenvalue. The general theory of linear time-invariant systems, discussed in
Chapter 5, reveals the importance of this eigenvalue (and its eigenvector) as
determining the long-term behavior of the system.

Consider, in particular, a homogeneous positive discrete-time system of
the form

x(k +1)= Ax(k) (6-3)
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with A strictly positive, or A™ strictly positive for some m=1. As k— the
solution to (6-3) is approximately equal to

x(k)=ar§x,

where A, is the Frobenius-Perron eigenvalue of A, x, is the corresponding
positive eigenvector, and a depends on the initial condition. As an example,
the system matrix for the cohort population model is nonnegative. (Indeed
under suitable assumptions some power of the matrix is strictly positive.) We
can conclude immediately (as in Sect. 5.12) that it must have a positive
dominant growth rate and a corresponding positive population eigenvector.

Nonhomogeneous Systems and Stability

Consider now a nonhomogeneous system of the form
x(k +1)= Ax(k)+b (6-4)

Such a system is said to be nonnegative if AZ0 and b=0. It is easy to see that
these conditions on the matrix A and the vector b exactly correspond to the
condition that the solution to (6-4) be nonnegative for any nonnegative initial
vector x(0). It is pretty clear that these conditions are sufficient. And, to see
that b= 0 is necessary, just assume x(0)=0. To see that A=0 is necessary,
consider large positive x(0)’s. Therefore, the requirement that A=0 and b=0
in (6-4) is consistent with our earlier motivation.

The nonhomogeneous system (6—4) may have an equilibrium point %
satisfying

2=A%+b (6-5)

Indeed if I—A is nonsingular, there is always a unique equilibrium point.
However, an equilibrnum point satisfying (6-5) may not itself be a nonnegative
vector. Clearly, within the context of positive systems, interest focuses mainly
on nonnegative equilibrium points, and accordingly an important issue is to
characterize those positive systems having nonnegative equilibrium points.

A related, but apparently separate issue, is whether a given equilibrium
point is stable. In fact, however, for positive systems these issues are essentially
identical: if the system (6-4) is asymptotically stable, its equilibrium point is
nonnegative; and conversely if there is a nonnegative equilibrium point for
some b>0, the system is asymptotically stable. This remarkable result is stated
formally below.

Theorem 1. Given A=0 and b>0, the matrix A has all of its eigenvalues
strictly within the unit circle of the complex plane if and only if there is an
xZ 0 satisfying

X=AX+b (6-5)
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r

Proof. Suppose first that A has all eigenvalues inside the unit circle. Then I-A
is nonsingular and a unique % satisfies (6-5). Since the system (6-4) is asymptot-
ically stable, any solution sequence converges to . However, given any x(0)=0
the solution sequence satisfies x(k) = 0 for all k =0. Thus x=0. (Note that this
part of the theorem is true with b=0.)

Conversely, suppose there is x=0 satisfying (6-5). Since b>0, it must
follow that actually x>0. Let A, be the Frobenius—Perron eigenvalue of A, and
let £ be a corresponding left eigenvector, with 3 =0. Multiplication of (6-5)
by fI yields

(1=AJEEx=£Tb

Since both EJX and £3b are positive, it follows that Ao < 1. Thus, all eigenvalues
of A are strictly within the unit circle of the complex plane. I

Although the above theorem is quite strong in that no similar statement
holds for general linear time-invariant systems, the result is consistent with
elementary reasoning. If a positive system is asymptotically stable, its equilib-
rium point must be nonnegative since every solution converges to it, and yet
every solution that is initially nonnegative remains nonnegative.

Example 1 (Population Model with Immigration). Suppose
x(k+1)=Ax(k)+b

represents a cohort population model. The A matrix corresponds to the usual
cohort matrix and is nonnegative. The vector b represents immigration. The
components of b are positive and represent the one-period inflow of the
various cohort groups.

If A is asymptotically stable (corresponding to a population system that
without immigration would eventually be reduced to zero), then there will be a
positive equilibrium population distribution when there is immigration. If A is
unstable (corresponding to an inherently growing population system), there will
be no nonnegative equilibrium population distribution when there is immigra-
tion. (The system equations may have an equilibrium point—but it will not be
nonnegative.) The results of this simple example are in accord with our
intuitive understanding of the behavior of a population system. Theorem 1
translates this intuition into a general result.

Inverses

A property of positive matrices, which is closely related to the stability result
above, is that, for real values A, the matrix AI— A has an inverse that is itself a
positive matrix provided that A > A4. This result, which is an important and
useful part of the theory of positive matrices, can be regarded as an instance



198 Positive Linear Systems

where positive matrices are the analog of positive numbers. In this case
the numerical statement being: if a > 0, then[A —a]™'>0if and only if A > a.
Let us first establish a useful lemma.

Lemma on Series Expansion of Inverse. If A is a matrix with all eigenvalues
strictly inside the unit circle, then

AT =I+A+A2+A%+- - (6-6)

Proof. Assume first that the series on the right converges to a matrix B. Then
we find that

[(I-AIB=I+A+A%*+---
—A—A%2—A3—...
=]
Thus, B=[I-A]".
To see that the series does converge, consider first the case where A can
be put in diagonal form, say

M 'AM=A

where A is diagonal. Then A* =MA*M™" and the series (6-6) is made up of
various geometric series of the form A, where the A;’s are the eigenvalues of
A. These series converge, since it is assumed that |A;]<1. If A is not
diagonalizable, there may be series of the form AX, kAK, k2A% ..., k" 1Ak
Again these converge. Il

Theorem 2. Let A be a nonnegative matrix with associated Frobenius—Perron
eigenvalue Ay. Then the matrix [A\I— A]™" exists and is positive if and only if
A> A,

Proof. Suppose first that A >A,. Clearly A >0, since Ao=0. The matrix A=
A/X has its eigenvalues all less than 1 in absolute value. By the above lemma
1 - 1 ( A A? )
— =1 - N — | F—F—F- -
A=A = - O AT = (1 245
Thus, [AI-A]™" exists, and it is positive since every term of the series
expansion is nonnegative.

To prove the converse statement, suppose A <Aq. Let x,=0 be an eigen-
vector corresponding to Ag. Then Axy= Ax, Or equivalently [AI-Alx,+p=0
[for some p=0. If [AI-A]™? exists, then [AI—-A]"'p= —x,. Thus, since p=0,
[AI-AJ™" cannot be positive. 1

Example 2. For the matrix

>
i

L+ 5]
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considered in Example 2 of Sect. 2, we know A,=5. We can compute

(3

which is positive as expected, since 6> A. However,

a3 T

which is not positive, since 4<A,.

6.4 QUALITY IN A HIERARCHY—THE PETER PRINCIPLE

A simple, although somewhat satirical, observation concerning organizational
hierarchies is the famous Peter Principle: “A man rises until he reaches his
level of incompetence.” This principle has been used to explain our frequently
frustrating perception that most important jobs seem to be held by incompe-
tent individuals. According to the Peter Principle, the hierarchical promotion
structure effectively guides people toward incompetent positions, where they
remain. Thus, by the nature of the hierarchical structure, a perception of
incompetent performance is inevitable.

A hierarchy can be considered to be a positive dynamic system. Once this
notion is formalized, it is possible to introduce detailed assumptions on the
hierarchical promotion patterns and loglcally deduce the corresponding quality
pattern.

From a dynamic systems viewpoint the study of these structures 1s some-
what novel. Rather than focusing on the time evolution of the dynamic system,
consideration is directed at movement up the hierarchy. In other words, the
steps of the hierarchy serve the role that steps in time usually serve. Quality is
considered as the state, which changes as it moves up the hierarchical structure.

Consider a hierarchy consisting of n levels. Level 1 is the lowest, while
level n is the highest. Within each level there are m types of individuals,
characterized by m degrees of performance, or degrees of quality, at that level.
Here the indexing is in the opposite direction, with 1 being the best type and m
the poorest. (See Fig. 6.2.) A given individual in any given year k is therefore
characterized by his level i within the overall hierarchical ladder and by his
quality index j, which rates him with his colleagues at the same hierarchical level.

During the course of one year, each individual may either remain at a
given level, be promoted to the next higher level, or leave the system. During
that year he may also have changed his quality type. For example, if he remains
in the same hierarchical level, he might rise in performance due to longer
experience; or, if he is promoted, his performance level might fall, since he is
(presumably) in a more difficult job.
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Top n
L ‘ 1 Best
< 2
>
3 <
m  Worst
2 Quality types
Bottom 1

Organizational levels

Figure 6.2. Structure of hierarchy

Corresponding to year k we let x(k) be the vector with n X m components
that describes the population (or the expected population) in each level and
quality type. The vector x(k) can be written in partitioned form as

_xltk) -
x2(k)
x(k)=| -
x, (k)
where the ith component vector
—xil(k)
x;2(k)
x(k)=|
| xim ()

has components specifying the number of individuals at level i of various
performance type. Thus x;(k) denotes the number of individuals in year k at
level i and of quality type j. During the course of a year, the population at level
i 1s modified according to two transition matrices. First, there is a recycling
matrix R; that defines the new quality distribution of those who are not
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promoted. The matrix R; is a nonnegative matrix whose elements are the
fractions of those individuals of various quality type who remain in the ith level
and end up with new quality designations. The two extreme cases are R, =1,
meaning everyone remains at level i with exactly the same quality designation,
and R, =0, meaning everyone either leaves or is promoted. In general, R;x; (k)
represents the contribution to x;(k +1) from those who were not promoted.

Second, there is a promotion matrix P;,, that, in a similar way, defines the
proportions of individuals of various quality types who are promoted from level
i and end up with new quality designations at level i+1. This matrix is also
nonnegative.

The population vector corresponding to level i is, according to these
definitions, governed by x;(k+1) =Px;_,(k)+R;x;(k). Therefore, the entire
process is governed by the transition matrix

R,
P, R,

P, R
A= > (6-7)

Pﬂ. R"l_
If we assume that new individuals enter the system only at the lowest level with

quality distribution described by the m-dimensional vector v,, then the entire
process is governed by the dynamic equation

L.

e x(k +1)=Ax(k)+b (6-8)
where
v,
0
b=|0
o]

This is the general model, and it 1s a positive linear system.
The sum of the elements in the jth column of the component matrix

R, ]
| e

represents the total fraction of those individuals in level i and of quality type |
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who either remain in level i or are promoted. We assume that there 1s always
some attrition, so the column sums are less than unity. It follows from the
bound of A, in terms of column sums (in Sect. 2) that A,<1. Therefore, this
system is asymptotically stable. It then follows (by either Theorem 1 or 2 of
Sect. 3) that the solution tends toward a unique equilibrium distribution

x=(I~A)"'b (6-9)

Quality Distribution

In order to address the issues raised at the beginning of this section, we are less
concerned with the time pattern on the way to equilibrium than with the
quality distribution of the equilibrium itself. With this in mind, we set out to
define a recursive relation between quality at one level and quality at the next
higher level.

Assume now that the recycling and promotion matrices do not change with
level. That is, R; =R, P, =P for all i. The equilibrium distribution X is made up
of component m-vectors; that is, Xx=(X,, X,,...,X,), where each X; is the
equilibrium population vector of quality types at the ith level. Writing out (6-8)
one finds that the component equilibrium vectors satisfy

I-R)X, =v,
—P%, +(I1-R)%, =0
—Px, +(I-R)X, =0

-Px,_,+(I-R)x, =0
Thus, the X,’s are defined recursively by
X, =(I-R)7v,
X =I-R)'Px, (6-10)
This 1s a linear dynamic system (indexed by hierarchy level) with system matrix
(I-R)'P.

Since the column sums in R are each less than one, it follows (from
Theorem 2, Sect. 3) that (I—R)™' is positive. Then since P is nonnegative, the
product (I—-R)"'P is nonnegative. In most cases of interest, this matrix, or
some positive power of it, will in fact be strictly positive. Then, the Frobenius-
Perron eigenvalue of this matrix is strictly dominant, and thus for large values
of 1, the vector x;, will be approximately aligned with the corresponding

eigenvector ¢, of (I—R)™'P. The magnitude of e, is somewhat arbitrary and
really not too important. We are mainly interested in the relative distribution
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of quality types (the relative values of the components of e,) rather than the
absolute magnitudes.

Example. Suppose that at each hierarchical level there are two types of

performance quality, competent and incompetent. Suppose the recycling and
promotion matrices are

R=['6 .1]’ P=['2 0]
0 7 a1 1
This would seem to be a fairly effective system. As is seen by summing the
elements in the columns of P, three times as many competent individuals are
promoted as incompetents. And once a competent individual i1s promoted,
there is a two to one chance that he immediately will be competent at the
higher level. An incompetent person can become competent with an extra
year’s experience, but there is a seven to one chance that he will not. Since the
sum of the first column elements in R and P 1s .9 and the sum of the second
column elements is also .9, it follows that 10% of both the competent and the
incompetent individuals leave the system each year (except from the highest
level in the organization where more leave). The system seems to do a
reasonable job of holding back incompetence and rewarding competence. Let
us carry out a detailed analysis.

By direct calculation we find

4 -1
I-R=1 [0 3]
31
[FR]—l:{%[O 4]
~ [7 1]
- — 1p_ L
N D-RI'P=4|,

)
This last matrix, which is the interlevel transition matrix, has characteristic
polynomial

(7—-120)(4~120) -4 = (12X~ 11(12A) +24
=(12A ~3)(12A —8)
Thus, the largest eigenvalue is
Ao=8/12

(This can also be inferred directly from the fact that in this example both row
sums of [I-R]7P are equal to 8/12.) The corresponding eigenvector can be

fol}i"k';': {o be
1
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Therefore, at the highest levels of the hierarchy one can expect that the
quality distribution is about equally divided as between competent and incom-
petent individuals. At the lower levels, on the other hand, the distribution is
determined by the character of the input of new recruits v,. In particular, the

distribution in the first level is
x=I-R)"v,

Because the ratio of the second largest to the largest eigenvalue is 3, the
equilibrium quality distribution will be achieved quite rapidly—that is, at fairly
low levels. Assuming
vz [10]
11

the resulting equilibrium population is shown in Table 6.1. We see that despite
the fact that three times as many competents are promoted as incompetents,
the average number of competents is only 50% at the highest levels.

Table 6.1 Quality Distribution in a Hierarchy

Level
0 1 2 3 4 5
Competents 10 25.83 1535 9.76 6.39 4.23
Incompetents 1 3.33 9.72 8.36 6.04 4.14
Total 11 29.16 25.07 18.12 1243 8.37

% Competents 909 88.6 61.2 53.9 514 50.5

6.5 CONTINUOUS-TIME POSITIVE SYSTEMS

Practically everything derived for discrete-time positive systems has a direct
analogy in continuous time. The structure of continuous-time positive systems
1s slightly different because the system matrix relates the state to the derivative
of the state (and the derivative need not be positive) but the character of the
results is virtually identical in the two cases.

In continuous time, attention focuses on Metzler matrices. A real nXn
matrix A is a Metzler matrix if a; =0 for all 1# j. In other words, A is a Metzler
matrix if all nondiagonal elements are nonnegative.

We say that a homogeneous continuous-time system

(1) = Ax(r) (6-11)

is positive if A is a Metzler matrix. This condition on (6-11) is equivalent to the
requirement that the system preserve nonnegativity of the state vector. To
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verify this we note that to insure that x(f) remains nonnegative it is necessary
that %(t)=0 whenever x(t)=0 for i=1,2,...,n That is, if x(t) is on the
boundary of the positive region its direction of movement cannot be such as to
take it outside that region. This imposes the requirement that a; =0, i#J. Thus,
a; =0, i#] is a necessary condition for nonnegativity of solutions. To show
that this condition is also sufficient, we note that the stronger condition a;; >0,
i#j is certainly sufficient, for in that case x;(t)=0 implies x;(t)>0 [unless
x(t) = 0}. Therefore, the solution, starting from any nonnegative initial condi-
tion, will remain nonnegative. Since the solution depends continuously on the
parameters g, it follows that the weaker condition a; =0, i#j is also sufficient.
Thus, the requirement that A be a Metzler matrix represents the natural
extension of positivity to continuous-time systems.

Metzler matrices are obviously closely related to nonnegative matrices.
Suppose A is a Metzler matrix. Then for some suitable constant ¢ >0, the
matrix P=cI+ A is a nonnegative matrix. The matrix P has a Frobenus-
Perron eigenvalue A,=0 and a corresponding positive eigenvector x,. It
follows immediately that py=2A,—c is an eigenvalue of the Metzler matrix A
and that x, is a corresponding eigenvector. The eigenvalue g, is real, and 1n
fact it readily follows from the nature of A, that p, is the eigenvalue of A
with largest real part. (See Fig. 6.3.) By adding cl to A as above, it is possible
to translate virtually all results for nonnegative matrices to equivalent results
for Metzler matrices. In particular, one obtains:

Theorem 1. Let A be a Metzler matrix. Then there exists a real pug and an

xo=0 such that (a) Axy= poXo; (b) if w7 po is any other eigenvalue of A,
then Re(p) < pg.

Proof. As outlined above, this follows from Theorem 3, Sect. 2. The strict
inequality in (b) holds even if JA| =X, in Fig. 6.3. 1

/// N ~7 N
/ X \x // X \X
/ \ \
l b | L b
x ‘,‘ 0 | x x
| \ f
\ / \ ]
\ / /
NI X N\ x /x
\\h}’// \\\_-/W[/
(a) (b)

Figure 6.3. lllustration that p, is eigenvalue of largest real part. (a} Eigenvalues
of P. (b) Eigenvalues of A.
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As with positive matrices, stronger versions apply if strict positivity as-
sumptions are introduced.

The real eigenvalue p, of Theorem 1 above, being the eigenvalue of
greatest real part, is the dominant eigenvalue of A in the sense of continuous-
time systems. Therefore, this eigenvalue and its corresponding positive eigen-
vector play roles analogous to the Frobenius-Perron eigenvalue and eigen-
vector in discrete-time systems.

Equilibrium Points and Stability

The results relating equilibrium points and stability for nonhomogeneous con-
tinuous-time positive systems are again analogous to the discrete-time case. A
system of the form

x(t) = Ax(t)+b (6-12)
is positive if and only if A is a Metzler matrix and the vector b is nonnegative.
Again these requirements correspond directly to the condition that the system

preserves nonnegativity of the state vector.

The system (6-12) may have an equilibrium point X satisfying

0=Ax+b (6-13)

As in the discrete-time case, however, interest focuses mainly on nonnegative
equilibrium points, and, just as before, it turns out that existence of a
nonnegative equilibrium point satisfying (6-13) essentially corresponds to the
asymptotic stability of the continuous-time system (6-12). This connection
between stability and existence is a powerful and useful result. Its validity for
both discrete- and continuous-time systems makes it a fundamental result of
positive systems.

We simply state the continuous-time version of the stability theorems.
They can be easily proved by translating A to a nonnegative matrix P=cl+A

and then using the results in Sect. 3.
«

Theorem 2. Given a Metzler matrix A and a b>0, the matmx A has all of its
eigenvalues strictly within the left half of the complex plane if and only if
there is an X =0 satisfying

0=Ax+b
Theorem 3. Let, A be a Metzler matrix. Then —A™" exists and is a positive

matrix if and only if A has all of its eigenvalues strictly within the left half
of the complex plane.

6.6 RICHARDSON’'S THEORY OF ARMS RACES

It has often been argued vehemently in national forums that armaments are
insurance against war. A defenseless nation, so the argument goes, invites war
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by its weakness. Argued by both sides of two potentially opposing nations, this
type of perhaps good-intentioned defensive logic can lead to a spiral of defense
build-ups, one nation responding for its own protection to the armament
build-ups of another nation. This is the arms race phenomenon.

Lewis F. Richardson, in a thirty-year study of war, proposed and de-
veloped a series of linear dynamic models of arms races. His study has become
a classic example of the potential of dynamic system analysis in the study of
social phenomena. It is, in fact, one of the earliest comprehensive applications
of linear dynamic systems to the study of a social system.

The theory, and indeed the entire approach, is not without what are
perhaps severe limitations. The proposed dynamic model is mérely a crude
summary description of what is by nature a complex pattern of many individual
actions, and the description may not be valid in every case. However, the
approach does have a certain element of validity and it provides an avenue for
the formal development and exploration of some important concepts related to
arms races.

The Two-Nation Model

In this model two competing nations (or perhaps two competing coalitions of
nations) are denoted X and Y. The variables x(t) and y(r) represent, respec-
tively, the armament levels of the nations X and Y at time t. The general form

of the model is (0= ky()—ax(t)+g
y(O)=Ix(t)—By(D)+h

In this model, the terms g and h are called “grievances.” They encompass the
wide assortment of psychological and strategic motivations for changing arma-
ment levels, which are independent of existing levels of either nation. Roughly
speaking, they are motives of revenge or dissatisfaction, and they may be due
to dissatisfaction with treaties or other past political negotiations. The terms k
and | are called “defense” coefficients. They are nonnegative constants that
reflect the intensity of reaction by one nation to the current armament level of
the other nation. It is these coefficients, associated with the motives of fear and
rivalry, that can cause the exponential growth of armaments commonly as-
sociated with arms races. Finally, @« and B8 are called “fatigue” coefficients.
They are nonnegative constants that represent the fatigue and expense of
expanding defenses. The corresponding terms in the dynamic equations have
the effect of causing a nation to tend to retard the growth of its own armament
level; the retardation effect increasing as the level increases.

The system matrix is
—a k
A —[ ! ~3]
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which is a Metzler matrix. We therefore can apply the theory of positive
systems to this case.

Let us first ask whether the system possesses an equilibrium point; that is,
whether there are levels of defenses for the two nations that, if established, will
be maintained indefinitely. For the two-nation model we can carry out the
required calculations explicitly. We set the time derivatives to zero, arriving at
the equations

O=kyo—axotg

0= lxo_ 3y0 +h
for the equilibrium values x4 and y,. These equations can be solved to yield
o= Bg +kh
° aB—ki
_ah+tlg
Yo aB—ki

This shows that unless B =kl there is an equilibrium point. We note,
however, that if all constants are nonnegative (most particularly the “griev-
ances” g and h, since the others are always assumed to be nonnegative), the
equilibrium point will correspond to nonnegative defense levels if and only if
aB—-kl>0.

According to the general theory of positive systems, we expect this condition
to be identical to the condition of stability. Let us verify directly that this isso. The
eigenvalues of the system are the roots of the characteristic equation

Ata -~k
l -1 A+B =0
or,
A+a)A+B)—ki=0
or,

AM+(a+BA+aB—kl=0

As the reader can verify (using for example the Routh test, Problem 13,
Chapter 5), both roots are in the left half-plane if and only if all coefficients are
positive. In this case this condition reduces to af — kil > 0. Thus, the model is
stable if and only if af —ki>0.

This stability condition has an intuitive meaning within the context of the
arms race situation. The quantity kl is the product of the two ‘“defense™
coefficients, and represents the tendency to perpetrate the race. The term af is
the product of the two “fatigue” coefficients, and represents the tendency tc
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limit defense build-ups. Instability results when the overall ‘“defense” term
outweighs the “fatigue” term.

If the grievances g and h are nonnegative, then the condition for stability
is equivalent to the condition that the process have a nonnegative equilibrium
point. Thus, according to this model of an arms race between two nations, if
one seeks to avoid instability, it is sufficient to try to promote changes which
guarantee a nonnegative equilibrium, for that equilibrium will automatically be
stable.

Multi-Nation Theory

The multi-nation theory is a straightforward generalization of the two-nation
model. However, because explicit computation in terms of the parameters is
infeasible in the general case, the general theory of positive systems is invalu-
able. Also, in the multi-nation model there is the possibility of coalitions, either
explicit or implicit, that enriches the scope of analysis.

Suppose there are n nations. Let x; denote the defense level of the ith
nation. The model for defense dynamics is

x.i(t)zgi—{-ikiixj(t) i=1,2,...,n

As before the numbers g represent ‘“grievances.” The k; for i# are “de-
fense” coefficients, and the k; represent “fatigue.” For convenience we often
denote k; =—a;. It is assumed that k; =0 for i# and that a,>0. In vector
notation the model takes the form

(1) =g+ Kx(1)

where the notation should be obvious. -
It is easy to solve for the equilibrium point by equating the time deriva-
tives of the model to zero. This yields the equilibrium x,,

x=-K"'g
which exists provided that K is nonsingular. This equilibrium point may or may
not, however, correspond to nonnegative defenses.

The rate of growth of the vector x in the model is governed primarily by
the eigenvalue of K with the largest real part. Since the system is positive, the
eigenvalue of greatest real part is real and has a corresponding nonnegative
eigenvector. If this eigenvalue is positive the system is unstable. Furthermore,
if g>0, it follows from the general theory that the condition for asymptotic
stability exactly corresponds to that for the existence of a nonnegative equilib-
rium. ‘
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Coalitions

Let us consider the eigenvalue having the smallest real part. This real part must
be negative since the trace of the matrix K is negative. (See Problem 15,
Chapter 3.) For the moment we assume that this root is real (though it need
not be) and that it is a simple nonrepeated root. Let us denote this eigenvalue
by A,. Let f1 be the corresponding left eigenvector. This eigenvector defines a
composite normal variable z,(t) =£Ix(t) that behaves according to a first-order
dynamic system. Indeed, multiplication of the system equation by £ yields
2, (t) = Az, (r) +EFg. The exponential associated with this variable is e**, which
is the fastest term in the behavior of the total system. Thus, z,(t) approaches its
equilibrium value —£7g/A, quickly, relative to the speed at which the system as
a whole approaches equilibrium. Therefore, as an approximation, the variable
z, can be considered to be constant throughout the duration of the arms race.

Since the eigenvector f, must be orthogonal to the right eigenvector
corresponding to the dominant eigenvalue, and that eigenvector is nonnegative,
we can deduce that the eigenvector 7 cannot have all positive components.
Generally, then, the components divide into two groups—corresponding to
positive and negative components (zero valued components are ignored). These
groups can be thought of as each comprising an alliance, with each country
weighted by the coefficient in the left eigenvector. As the system progresses,
the arms levels of these two groups increase together, at the same rate,
maintaining a constant difference in total defense capability. Each group keeps
up with the other group. Thus, the arms race can be considered as primarily
being a race between the two alliances, with additional adjustments within an
alliance.

A Ten-Nation Example

Richardson has suggested several ten-nation models, each assumed to be a
reasonable representation of the world in 1935. The K matrix for one model is
shown in Table 6.2. In this example, the eigenvalue of greatest real part is
A, =0.2687. The corresponding (normalized) left eigenvector is [0.17011,
0.18234, 0.14102, 0.51527, 0.23095, 0.42807, 0.30557, 0.09696, 0.12624,
0.54510]. This is clearly an unstable arms race.

"The eigenvalue with smallest real part is A,q=-2.25. Its corresponding
left eigenvector has weights as follows: France, 0.588; U.S.S.R., 0.449;
Czechoslovakia, 0.179; Great Britain and Northern Ireland, 0.140; U.S.A.,
0.046; Poland, —0.006; China, —0.015; Japan, —0.178; Italy, —0.238; Ger-
many, —0.557. These weights seem to give a fairly accurate picture of the
alignment of nations in 1935 with France at one pole, and Germany at the
other.
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Table 6.2. Richardson’s Ten-Nation Model
1 2 3 4 5 6 7 8 9 10

1 Czecho- ~10 0 0 2 0 0 0 1 0 0
slovakia
2 China 0 -10 0 0 0 0 4 0 0 2
3 France 0 0 -—-18 4 0 4 0 0 0 0
4 Germany 4 0 4 -10 2 0 0 1 0 8
5 G. Britain 0 0 0 4 =15 6 2 0 0 0
and N.I.
6 Italy 0 0 2 0 4 -5 0 0 0 2
7 Japan 0 4 0 0 0 0 -10 0 4 4
8 Poland 1 0 0 1 0 0 0 -10 0 1
9 US.A. 0 0 0 2 2 2 4 0 -7 2
10 U.S.S.R. 0 2 0 8 2 2 4 1 0 -10

6.7 COMPARATIVE STATICS FOR POSITIVE SYSTEMS

The term comparative statics refers to an analysis procedure that focuses on the
equilibrium point of a dynamic system, and how that equilibrium point
changes when various system parameters are changed. This form of analysis
ignores the actual path by which the state of the dynamic system moves to its
new equilibrium; it is concerned only with how the new point is related to the
old point, not on the means by which it is attained. Essentially, in this
approach, the dynamic aspect of the system is suppressed, and the analysis
reduces to a study of the static equations that determine the equilibrium point.
One aspect of the actual dynamic structure of the system, however, must
be considered if a comparative statics analysis i to be meaningful. Namely, the
system must be stable. If the new equilibrium point is not stable, it is patently
inconsistent to ignore the path to the new equilibrium point—that is, to regard
the path as something of a detail—when without stability the state may not
even itend toward the new equilibrium point. Therefore, implicit in any
comg:xrative statics investigation is an assumption of stability. In this connec-
tion the intimate relationship between stability and existence of positive
equilibrium points for positive systems discussed earlier, in Sects. 6.3 and 6.5,
forms a kind of backdrop for the results on comparative statics of this section.

Positive Change

Consider the linear time-invariant system

x(k +1)= Ax(k)+b (6-14)
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where A =0, b= 0. Assume that the system is asymptotically stable and has the
unique nonnegative equilibrium point X. We investigate how X changes if some
elements of either the matrix A or the vector b (or both) are increased.

As a concrete example, let us consider an arms race, as discussed in Sect.
6.6. Suppose all nations are in equilibrium, and then one nation increases its
grievance coefficient or one of its defense coefficients, but not by so much as to
destroy stability. It seems pretty clear that after all nations readjust, and a new
equilibrium is achieved, the arms levels of all nations will be no less than
before. That is, the change in equilibrium is nonnegative. This is indeed the
case, and is a rather simple consequence of positivity. The general result is
stated below in Theorems 1 and 1’ for discrete-time and continuous-time
systems.

Theorem 1. Suppose X and § are, respectively, the equilibrium points of the two
posttive systems

x(k +1)=Ax(k)+b (6-15)

y(k+1)=Ay(k)+b (6-16)
Suppose also that both systems are asymplotically stable and that
AZA, b=b. Then y=X.

Proof. Actually it is simplest to prove this result by considering the full
dynamic process, rather than just the equilibrium points. Suppose for some k
there holds y(k)Zx(k)=0. Then
y(k +1)=Ay(k)+b

zAy(k)+b

=z Ay(k)+b

= Ax(k)+b=x(k +1)
Thus, y(k)=x(k) implies y(k +1)=x(k +1). Suppose, therefore, that the two
systems (6-15) and (6-16) are initiated at a common point, say 0. Then

y(k)zx(k) for all k. Since both systems are asymptotically stable, these

sequences converge to the respective unique equilibrium points § and x.
Clearly yzx. |

Theorem 1'. Suppose X and § are, respectively, the equilibrium points of the two
positive systems

x(t)=Ax(t)+b
y(t)=Ay(r)+b

Suppose also that both systems are asymptotically stable and that
AzA, b=b. Then y=i.
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Proof. Let ¢>0 be determined such that A+clz0 and A +cI=0. Define
P=1+A/c, P=1+A/c. If p, is the dominant eigenvalue of A, then A=
1+ po/c is the Frobenius-Perron eigenvalue of P. Since py<0, it follows that
Ao<1 and thus the positive matrix P has all its eigenvalues strictly within the
unit circle. Likewise, so does P.

The equation 0=AX+b implies 0=(AX+b)/c, which can be written
%=Px+b/c. Likewise y =Py +b/c. The conclusion now follows from Theorem
1.1

These two companion results, although somewhat simple in terms of
mathematical content, embody a good portion of the theory of positive
systems, and put it in a form that is easy to apply and that has strong intuitive
content. The fact that the results have a qualitative character, rather than a
computational character, means that the statements can be applied to general
classes of applications, without the need for numerical parameter values.

Component of Greatest Change

It is possible to develop a much stronger version of the above result. The
stronger result gives qualitative information on the relative changes of the
various components of the state vector for certain kinds of parameter changes.

An nth-order positive dynamic system is defined in terms of n difference
or differential equations—one for each state variable. Suppose now that some
parameters in the ith equation are increased, while the parameters in all other
equations remain unchanged. From Theorem 1, above, if the system remains
stable, all variables will be at least as large at the new equilibrium as at the old
equilibrium. In addition, we might expect that the ith variable, corresponding
to the equation in which the parameters were increased, might in some sense
be more greatly affected than other variables.

As an example, let us again consider the arms race situation. If a grievance
or defense coefficient of one nation is increased, this will induce nonnegative
changes in the arms levels of all nations. It can be expected, however, that the
nation which experienced the direct change in its coefficient will be more
greatly affected than other nations. That is, the change in arms level of that
nation should in some sense be larger than for other nations. Actually, the
percentage increase of that nation is at least as great as the percentage change
of other nations, and it is this conclusion that generalizes to arbitrary asymptot-
ically stable positive systems. In the theorem below, this is expressed by stating
that the ratio of new component values to old component values is greatest for
the <mponent corresponding to the modified equation.

Theorem 2. Let >0 and y>0 be, respectively, the equilibrium points of the two
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positive and asymptotically stable systems
x(k +1) = Ax(k) +b
y(k+1)=Ay(k)+b
in discrete time, or of
x(t) = Ax(t) +b
¥ =Ay(t)+b

in continuous time. Assume that in either case AéA bz=b but that
d; = a; and b;=b, for all j and all i#r. Then

%2—2—‘ for all i

%

Proof. We prove the theorem only for the discrete-time case, leaving the
continuous-time version to the reader.

Assume first that b>0. For each j=1,2,...,n define A;=y¥/x. From
Theorem 1, A; =1 for all j. Let A =max{}A;, j=1, 2,..., n}. We must show that
A, = A. Suppose to the contrary that for some i, A, =A > A, =1. Then by the
definition of ¥,

yi= 2. 4,3 +b,
1=1
= Z a;y; +b;
1=1
or
,x, Z auA)x +b
1=1
Thus,
+_
. %= ,; a"A 54

However, since AfA; =1 for all j and since A;>1, it follows that
X < Z ayx; +b;
=1

which contradicts the definition of X.
If b is not strictly positive, consider the equations

%(e)=Ax(e)+b+ep
¥(e)=A§(e)+b+ ep
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where p>0. The solutions X(¢) and ¥(¢) depend continuously on . For any
e >0 the earlier result gives

£(0) - %(e) forall:

Then by continuity this is true also for £ =0. ||

6.8 HOMANS-SIMON MODEL OF GROUP INTERACTION

An important contribution to sociology is the theory of group interaction
originally developed in qualitative and verbal form by George C. Homans, and
later interpreted in the sense of a dynamic system model by Herbert A. Simon.
It is a good example of how mathematical formulation can play an effective
role as a medium for theory development even though the associated model
probably cannot be used in explicit form in a given situation.

Consider a social group whose behavior at any time ¢ can be characterized
by the following variables:

I(t)—the intensity of interaction among the members

F(t)—the level of friendliness among the members

A(t)y—the amount of activity carried on by members within the group

E(t)—the amount of activity imposed on the group by the external environ-
ment.

These variables are, of course, at best aggregate characterizations of
certain aspects of group behavior. Interaction, for example, is composed of the
various interactions among members in subgroups of two or more, and it like
all other variables is somewhat difficult to quantify in terms of observed
phenomena. Nevertheless, the verbal definitions associated with these variables
are sufficiently descriptive to elicit a general notion of what is meant. Thus, in
viewing two groups of the same size it is possible to tell whether one displays
significantly more friendliness than another.

Homan’s original verbal postulates relating these variables are:

(a) group interaction is produced by group friendliness and by group activity;

(b) friendliness tends to increase if group interaction is greater than that which
would normally be associated with the existing level of friendliness; and

(c) the level of activity carried on by the group tends to increase if either the
actual friendliness or the imposed activity is greater than that which is
“appropriate” to the existing level of activity.

A dynamic model translating these postulates is defined by the following
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three equations:

I(t)=a,F(t) + a,A(1) (6-17a)
F(t)=b[I()— BF(1)] (6-17b)
A= c,[F(t)~ YA (1)]+ c.[E(t) - A(1)] (6-17¢)

All constants in these equations are assumed to be positive. This particular
model is linear, and although more complex versions can be constructed, this
version is sufficient to illustrate the type of conclusions that can be inferred.

The Equilibrium Point

As posed, the system is not quite in standard form. It consists of two dynamic
and one static equation. It is a simple matter, however, to eliminate the
variable I(tf) to obtain an equivalent description in terms of two dynamic
equations:

F(t)=b[(a;— B)F(1) + a,A(1)] (6-18a)
A@)=c,F()—(cyy+c2)A@) + c,E(1) (6-18b)

This is a positive linear system, since all nondiagonal coefficients are positive.

For this system, interest focuses most particularly on the equilibrium point
associated with a constant E. Accordingly, assume that the parameters of the
system are related in such a way that a positive equilibrium point exists. The
equations for the equilibrium point (F, A) are

0=—(B,~a,)F+a,A (6-19a)
O0=c,F—(c;y+c)A+c,E (6-19b)
The first can be solved to yield
-~a)F
A =M (6-20)
az

This shows that for a positive equilibrium point one must first of all impose the
condition

B>a, (6-21)
Equation (6-20) can be substituted into (6-19b) to yield
((CI’Y+C2) (3a_al)"‘cl) F= C2E
2

Therefore, the additional condition for a positive equilibrium point is

(c1y+c)(B—a)—axe, >0 (6-22)
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From the general theory of positive systems, it follows that together (6-21) and
(6-22) also guarantee that the equilibrium point is asymptotically stable.

Comparative Statics

As an explicit model of a particular group this model is obviously of limited
value. The model is intended, rather, to be a general, but modest, theoretical
statement on the dynamics of group behavior. If one agrees that some model of
this general character is representative of group behavior, even though specific
parameter values cannot be assigned, it is possible to apply the theory of
positive systems to obtain some interesting general qualitative conclusions.

Let us suppose that a certain group is in equilibrium, with positive values
of friendliness F and activity A. The equilibrium must be asymptotically stable.
Suppose now that the externally imposed activity E is increased. How will the
new equilibrium point compare to the original one? First, by Theorem 1’ of
Sect. 5.7, both group friendliness and activity are expected to increase. Second,
by Theorem 2, activity will most likely increase more (on a percentage basis)
than friendliness.

6.9 PROBLEMS

1. Let A=B =0, and let A,(A) and A4(B) denote the corresponding Frobenius-Perron
eigenvalues. Show that Ag(A)=A(B).

2. Find the largest eigenvalues and corresponding eigenvector of the matrix

1 10
1 21
011

3. A certain psycho-physio-economist has developed a new universal theory. The
theory hinges on the properties of a “‘universal matrix” whose entries have the sign
structure illustrated below:

+ o+ o+ =
+ + + -
V=
+ + + -

- - +

He has examined scores of specific matrices of this structure (using real data!) and
has found in each case that there was a positive eigenvalue. Will this be true
general? [Hint: Look for a change of variable.]

4. Use the lemma on series expansion of the inverse to evaluate
1 -2 17!
0 1 3
0o 0 1
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*5. Let A be a strictly positive n X n matrix. Define g, as the mimmum of real numbers
for which

ux= Ax
for some x=0. That 1s,
so=min{u : ux= Ax,somex =0}
Show that py= A, the Frobenius-Perron eigenvalue of A.

6. It can be shown that a nonnegative matrix A has A,<1 if and only if all principal
minors of B=1—A are positive; that is,
¥

by b2 by
bll b12 "
b,,>0, b b >0, by, by by|>0,...B|>0
2 ks b!l b32 b33
Use this criterion to determine whether the matrix
i 03
A={1 § 1
0%

has all eigenvalues inside the unit circle.

7. The Leontief input-output model is described by a set of equations of the form
x=Ax+te¢

(see Sect. 3.1). Show that there is a feasible production vector x =0 corresponding
to any demand vector ¢=0 if and only if the Frobenius-Perron eigenvalue of A is
less than unity.

8. Let A be a positive n X n matrix and b be a positive n-vector. Suppose the system
x(k +1)=Ax(k)+b

has an equilibrium point X. Suppose also that the system 1s initiated at a point x(0)
such that x{(0)=x. Show that x(k)=x for all k=0.

9. Show that in Theorem 1, Sect. 3.3, the hypotheses on A and b can be changed to
A>0,b=0.

10. Moving Average. Suppose two initial numbers are given and successive numbers
are computed as the average of last two. For example, with 1 and 3, we generate
the sequence

1,3,2,25,24, 2, ...

Note that the sequence seems to be converging, but not to the average of the
original two numbers (which is 2).

(a) Formulate this process in state-space form.
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(b) The system matrix A you obtained should be positive but not strictly positive.
What is the Frobenius-Perron eigenvalue A,?

(c) Is the system asymptotically stable?

(d) What are the right and left eigenvectors corresponding to A,?

(e) What 1s the general formula for the limiting value of a sequence of this kind,
expressed in terms of its first two terms? For the example given, what is the
limiting value?

(f) Now generalize to an nth-order average. That is, n 1nitial numbers are given
and successive numbers are the averages of the last n numbers. What is the
formula for the limit?

In purest form the Peter Principle seems to imply two special features of a
promotional system: (a) once reaching a level of incompetence an individual never
again will be competent, and (b) an incompetent person is never promoted. Show
that, in the case where the promotion and recycling matrices are constant, these two
assumptions 1mply that the distribution of competents and incompetents is the same
at every level except the first.

The Board of Directors of the company, having the hierarchy structure of the
example in Sect. 6.4, was disheartened at the revelation that 50% of its employees
at upper levels of management were incompetent. The Board therefore engaged the
services of two management consulting firms to seek advice on how to improve the
situation. One firm suggested that the promotion policies be tightened up to avoid
promoting incompetents. They outlined a program of regular interviews, testing,
and peer evaluation that they claimed would screen out essentially all incompetents
from promotion. (In our terms this proposal would change P by replacing the
element in the lower right corner by zero.)

The second consulting firm suggested that the screening was already adequate,
but that what was required was the initiation of employee training. They outlined a
program of motivation enhancement, internai courses, and so forth. They estimated
that, with a modest effort, they could increase the number of incompetents who
become competent at their job over a one-year period from the present rate of one
out of eight to a rate of two out of eight. They argued that such a program would
significantly affect the quality of the upper levels. If both proposals were about
equally costly to implement, which should the Board select? Will either plan
drastically affect the ratio of the number of people at successive levels (near the
top)?

Solution of Partial Differential Equations. Partial differential equations arise fre-
quently in the study of fluids, electromagnetic fields, temperature distributions, and
other continuously distributed quantities. As an example, the electric potential V
within an enclosure is governed by Laplace’s equation, which in two dimensions is

& V+62V_

ax?®  ay’
Most often V is specified on the boundary of the enclosure and (*) must be solved
for V inside. (See Fig. 6.4a.)

0 =
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7777 77 h b b b
. v vy [ v,
v Y v- kY
Ox oy b, S i i g by
09 v v v
% by 10 19 12 bro
x
77 7 by by b3 by
{a) (b}

Figure 6.4. Laplace’s equation. {(a) Continuous. (b) Discrete grid.

To solve this problem numerically, an approximating problem 1s defined by
establishing a finite grid of points within the enclosure, as illustrated in Fig. 6.4b.
The second denvatives in Laplace’s equation are then approximated by finite
differences. Thus, at point 2 the approximation is

3’V
B‘x?.z(vs‘vz)“(vz“vl)= Vit V-2V,

Correspondingly, at point 2,
’?vV IV
E+F= Vl+ V3+ V6+b2'—4V2
Thus, (*) translates to the requirement that each grid value should equal the average
of its four neighbors. Wnitten at each interval gnd point, the system takes the form

AV+b=0

where V 1s the vector of unknown potentials, and b consists of vanous (known)
boundary values. Note that A=B-41, where B=0. Also B" >0, for large n.

(a) Show that b=0 implies V=0.
(b) For large numbers of points (e.g., several hundred) it is usually best to solve the
system iteratively. For example, the procedure

AV(k+1)=BV(k)+b

is implemented by setting each new grid value equal to the average of the old
grid values around it. Show that this procedure converges to the solution.

*14. Balanced Growth in an Expanding Economy. Consider an economy consisting of n
sectors. Its output y(k) in any period is used, at least in part, as input for the next
penod. A simple description of such an economy is that successive y(k)’s must
satisfy

yk)y=Ay(k+1)

where A is a stnictly positive input-output matnx, with an interpretation similar to
that of the example in Sect. 3.1. Suppose that a goal is to expand the economy as
rapidly as possible; that is, to increase all components of y as rapidly as possible.
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Since there is no need to produce more output than can be used as input in the next
perniod, the economy will satisfy

y(k)=Ay(k+1)

The expansion rate during period k is
r=mn y;(k +1)/y,(k)

and thus, y(k +1)=ry(k).

(a) For a one period problem, maximal expansion is attained by selecting y(0) and r
with rAy(0)=y(0) such that r i1s maximal. Find r and y(0). (See Problem 5.)

(b) Show that the maximal one period expansion rate can be maintained for all
periods, and all sectors increase at the same rate. (This growth pattern is called
balanced growth.)

Let B be an nXn matrix with b; =0 for i#j. Suppose there is a z=0 such that
Bz<0. Show that B has all its eigenvalues in the left half-plane.

Let A and B be m Xr and r Xm matrices, respectively. Assume both A and B are
nonnegative. Then AB and BA are square nonnegative matrices of dimension
mXm and rXr, respectively. Show that AB and BA have the same Frobenius—
Perron eigenvalue.

Suppose that in an n-nation arms race the nations are explicitly divided into two
alliances, of m and n—m nations. The matrix K of defense and fatigue coefficients
has the structural form
-1 A
<[5 A
B -1

representing the fact that defense coefficients k; are zero if i and ; belong to the
same alliance. The fatigue coefficients are all unity, just for simplicity. The matrices
A and B are mxX(n—m) and (n—m)Xm, respectively, and are both strictly
positive.

The object of this problem is to relate this explicit structural definition of an
alliance to the somewhat mmplicit characterization used in conjunction with the
interpretation of the eigenvector corresponding to the minmimal eigenvalue of K. In
particular, show, in this case, that the eigenvalue of K having minimal real part is in
fact negative, and that the left eigenvector corresponding to this eigenvalue has the
form

xT = [x-{‘) _x:‘]
where x,>0, x,>>0 and x,, x, are of dimension m and n—m, respectively.
Suppose the positive system

x(k+1)=Ax(k)+b
1s asymptotically stable and has equilibrium point X>>0. Suppose b 1s changed by
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increasing a single positive component b; to b, +Ab,, Ab. >0, and let X+ Ax denote
the corresponding new equilibrium point. Show that

Ax, Ab:
—— e
% b

*19. Embedded Statics and Positive Systems. Consider the system

x=A;xtAyy
0=Ax+Ay

where x is n dimensional, y 1s m dimensional, and A;, A,, A, and A, are
nXn, nXm, mxn, and m Xm, respectively. Assume A" exists. This system is
equivalent to the reduced system

x=(A— A A A

[ &

A=

As A,

(a) Show that A being Metzler does not impiy that A; —A,A7 A, is Metzler.

(b) Show that if A s Meizler and stable and A, 15 asymptoucally stable, then
A,— A;A 'A; 1s both Metzler and stable.

(c) Explain how this result relates to the Homans-Simon model of group interac-
tion.

NOTES AND REFERENCES

Section 6.2. The theory of positive matrices goes back to Perron [P2] and Frobenius
[F4]. The theory has been extended in several directions and applied in many areas,
most particularly in economucs. The proof presented here is due to Karlin [K7]. For
another approach see Nikaido [N1]. For a good general discussion of nonnegative
matrices see Gantmacher [G3].

Sectior 6.3. The results on the inverse of I— A have long been an integral component
of the theory of positive matrices. The form and interpretation given here, as relating
stability and positivity of equilibrium points, closely ties together the theones of positive
and Metzler matrices.

Section 6.4. The Peter Principle itself is described in nonmathematical terms in Peter
and Hull [P3]. The quantitative model presented in this section follows Kane [K6],
although the subsequent analysis 1s somewhat different.

Section 6.5. Matrices with positive off-diagonal elements have long been known to be
wmplicitly included within the theory of positive matrices. It is now standard, however,
following the practice 1n economics, to refer to them as Metzler matrices [M4].

Section 6.6. Lewis F. Richardson developed his approach to the analysis of arms races
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during the period of about 1919 to 1953. His book Arms and Insecunty [R3] was
published posthumously in 1960, edited by Nicolas Rashevsky and Ernesto Trucco. In
the preface to the book Kenneth E. Boulding is quoted as follows:

Lewis Richardson’s work in ‘politicometnics’ (if I may coin a word for it) has all the
marks of what might be called, without any sense of disparagement, ‘amateur genius.’

The work is unusual not only in its creative approach to the subject matter, but also its
remarkable 1nsight into principles of dynamics. The only major technical insight we
might add is that embodied by the theory of positive matrices—a subject that was
apparently unfamiliar to Richardson. For a summary and critique of Richardson’s work
see Rapoport [R2] and Saaty [S1].

Section 6.7. The main result on comparative statics, in the form of Theorem 2, is due
to Mornshima [M7]. Also see Sandberg [S3].

Section 6.8. See Homans [H4] and Simon [S5].

Section 6.9. The conditions in Problem 6 are generally referred to as the Hawkins—
Simon conditions [H1]. Problem 14 is a simplified version of the von Neumann model of
an expanding economy [V2]. The result of Problem 18 1s contained in Morishima [M7].
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Markov Chains

Markov chains represent a special class of dynamic systems that evolve
probabilistically. This class of models, which can be regarded in part as a special
subclass of positive linear systems, has a wide variety of applications and a
deep but intuitive body of theory. It is an important branch of dynamic
systems.

A finite Markov chain can be visualized in terms of a marker that jumps
around among a finite set of locations, or conditions. The transition from one
location to another, however, is probabilistic rather than deterministic. A
classic example 1s weather, which can be classified in terms of a finite number
of conditions, and which changes daily from one condition to another. The
possible positions for the process are termed “states.” Since there are only a
finite number of states, the structure of finite Markov chains appears at first to
differ substantially from the standard dynamic system framework in which the
state is defined over an n-dimensional continuum. However, the probabilistic
evolution of a Markov chain implies that future states cannot be inferred from
the present, except in terms of probability assessments. Thus, tomorrow’s
weather cannot be predicted with certainty, but probabilities can be assigned to
the varous possible conditions. Therefore, in general, future evolution of a
Markov process is described by a vector of probabilities (for occurrence of the
various states). This vector, and its evolution, is really the essential description
of the Markov chain, and it 1s governed by a linear dynamic system in the sense
of earlier chapters. The first part of this chapter develops this framework.

The vector of probabilities is a positive vector, and, accordingly, the
dynamic system describing a Markov chain is a positive linear system. The
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results on positive linear systems, particularly the Frobenius-Perron theorem,
thus imply important limiting properties for Markov chains. If the Frobenius-
Perron eigenvector is strictly positive, all the states are visited infinitely often
and with probabilities defined by the components of this eigenvector.

In many Markov chains, the Frobenius-Perron eigenvector is not strictly
positive, and perbhaps not umque. This has important implications in terms of
the probabilistic context, and raises a series of important issues. To analyze
such chains, it 1s necessary to systematically characterize the various possible
chain structures. This leads to new insights in this useful class of models.

7.1 FINITE MARKOV CHAINS

A finite Markov chain is a discrete-step process that at any step can be in one
of a finite number of conditions, or states. If the chain has n possible states, 1t
is said to be an nth-order chain. At each step the chain may change from its
state to another, with the particular change being determined probabilistically
according to a given set of transition probabilines. Thus, the process moves
stepwise but randomly among the finite number of states. Throughout this
chapter only stationary Markov chains are considered, where the transition
probabilities do not depend on the number of steps that have occurred.

Definition. An nth-order Markov chain process is deterrined by a set of n
states {S;,S,,...,S,} and a set of transition probabilities p; 1=
1,2,...,n,j=1,2,...,n The process can be in only one state at any
time instant. If at time k the process is 1n state S, then at time k + 1 1t will
be in state S; with probability p;. An initial starting state 1s specified.

Example 1 (A Weather Model). The weather in a certain city can be charac-
terized as being either sunny, cloudy, or rainy. If it is sunny one day, then sun
or clouds are equally likely the next day. If it is cloudy, then there 1s a fifty
percent chance the next day will be sunny, a twenty-five percent chance of
continued clouds, and a twenty-five percent chance of rain. If it 1s raining, it
will not be sunny the next day, but continued rain or clouds are equally likely.

Denoting the three types of weather by S, C, and R, respectively, this
model] can be represented by an array of transition probabilities:

TO W
Wi = NI
N b= O

This array is read by going down the left column to the current weather
condition. The corresponding row of numbers gives the probabilities associated
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Figure 7.1. The weather chain.

with the next weather condition. The process starts with some weather condi-
tion and moves, each day, to a new condition. There is no way, however, to
predict exactly which transition will occur. Only probabilistic statements,
presumably based on past experience, can be made.

The weather model can be alternatively described in terms of a diagram as
shown 1n Fig. 7.1. In general in such diagrams, nodes correspond to states,
and directed paths between nodes indicate possible transitions, with the proba-
bility of a given transition labeled on the path.

Example 2 (Estes Learning Model). As a simple model of learning of an
elementary task or of a small bit of information, it can be assumed that an
individual is always in either of two possible states: he is in state L if he has
learned the task or materal, and in state N if he has not. Once the individual
has learned this one thing, he will not forget it. However, if he has not yet
learned it, there is a probability «, 0 <a <1 that he will learn it during the next
time period. This chain is illustrated in Fig. 7.2.

o

L N

Figure 7.2. Learning model.

This 1dealized learning process is a two-state Markov chain having
transition probabilities
L N
Lj1 0
Nia 1-a
Example 3 (Gambler’s Ruin). The gambler’s ruin problem of Chapter 2 can be
regarded as a Markov chain with states corresponding to the number of coins
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q q q
3
1 1
» 3 )

Figure 7.3. Gambler's ruin.

or chips held by player A. As a specific example, suppose both players begin
with just two chips, and suppose the probability that A wins in any turn 1s p,
while the probability that B wins is g =1—p. There are five possible states,
corresponding as to whether player A has 0, 1, 2, 3, or 4 chips. The transition
probabilities are

and this structure i1s shown in Flg
corresponding to two chips.

Stochastic Matrices and Probability Vectors

The transition probabilities associated with a Markov chain are most conve-
niently regarded as the elements of an n X n matrix

Pii P12 """ Pin

P21 P22 " Pan
P:

pnl pn2 e pnn

It is clear that all elements of a P matrix associated with a Markov chain are
nonnegative. Furthermore, 1t should be observed that the sum of elements
along any row is equal to 1. This is because if the process is in state i at a given
step, the probability that it goes somewhere during the next step must be 1. A
square matrix P with these properties is often referred to as a stochastic matnx.

A vector 1s a probability vector if all its components are nonnegative and
sum to 1. A fundamental relation between stochastic matrices and probability
vectors is that if X is a row probability vector and P is a stochastic matrix, then
the row vector xTP is also a probability vector. (The reader is asked to verify
this in Problem 1.) Thus, stochastic matrices can be thought of as natural
transformations in the realm of probability vectors.
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The Multistep Transition Process

If an nth-order Markov chain with transitton matrix P is initiated in state S,
then after one step it will be in state S; with probability p;. This fact can be
characterized by stating that the probabilities of the various states after one
step are the compcnents of the row vector

[pi p2 - Pwl

which is a probability vector. This vector is itself obtained by multiplication of
P on the left by the special degenerate row probability vector

[0 -~ 1 -...0]

where the 1 is in the ith place.

Suppose now that we look at the Markov process after two steps. Begin-
ning in a given initial state S; the process will after two steps end up at some
state S;. The overall transition from S; to S; is governed by two applications of
the underlying transition matrix. To work out the details, let p{® be the
probability that starting at state S; the process will move to state S; after two
steps. If it were known that the process would go to state S, after the first step,
we would have

P = Py
However, the probability that the state is S, after one step is p,. Summing
over all possible first steps we obtain

pP= Y puby =[P
k=1

This calculation shows that the probability p{? is equal to the ijth element of
the matrix P2. Thus, the two-step transition matrix is P2,

In a similar way, the transition probabilities for m steps are defined by the
elements of the matrix P™. We write, for notational convenience, p{™ for the
ijth component of P™, and recognize that it is also the probability of going
from §; to §; in m steps.

Much of the above discussion can be expressed more directly in terms of a
natural association between a Markov chain and a standard dynamic system.
Let x(k)T be an n-dimensional row vector with component x, j=1,2,. .,n
corresponding to the probability that the state at step k will be equal to S;. If
the process is initiated in state S;, then x(0)7 is the unit vector with a one in the
-1th coordinate position. Successive probability vectors are generated by the
recursion

x(k+1)T =x(k)™P (7-1)

We recognize (7-1) as a standard, linear time-invariant system, except that it is
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expressed in terms of row rather than column vectors. (By using P” instead of
P the system obviously could be expressed in terms of columns. However, it is
standard convention to work with the row formulation in the context of
Markov chains.)

It must be emphasized that the x(k)T vector is not really the state of the
Markov process. At each step the state is one of the n distinct states
St Sas - - -, S, The vector x(k)T gives the probabilities that the Markov process
takes on specific values. Thus, the sequence of x(k)T does not record a
sequence of actual states, rather it is a projection of our probabilistic knowl-
edge.

It is possible to give somewhat more substance to the interpretation of the
vector x(k)” by imagining a large number N of independent copies of a given
Markov chain. For example, in connection with the Estes learning model we
might imagine a class of N students, each governed by identical transition
probabilities. Although the various chains each are assumed to have the same
set of transition probabilities, the actual transitions in one chain are not
influenced by those in the others. Therefore, even if all chains are 1mitiated n
the same corresponding state, they most likely will differ at later times. Indeed,
if the chains all begin at state S, it can be expected that after one step about
Np,; of them will be in state S;, Np;, 1n state S,, and so forth. In other words,
they will be distributed among the states roughly in proportion to the transition
probabilities. In the classroom example, for instance, the x(k)T vector, ai-
though not a description of the evolution of any single student, 1s a fairly
accurate description of the whole class in terms of the percentage of students n
each state as a function of k. From this viewpoint Markov chains are closely
related to some of our earlier models, such as population dynamuics, promotions
in a hierarchy, and so forth, where groups of individuals or objects move into
different categories.

Analytical Issues

iz viewed in terms of 1ts successive probability vectors, a Markov chain is a
dynamic system with a positive system matrix. Thus, it is expected that
the sirong limit properties of posttive systems play a central role in the theory
of Markov processes. Indeed this is true, and in this case these properties
describe the long-term distribution of states.

In addition to characterization of the long-term distribution, there are
some important and unique analytical issues associated with the study of
Markov chans, One example is the computation of the average length of time
for a Markov process to reach a specified state, or one of a group of states.
Another is the computation of the probability that a specified state will ultimately
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be reached. Such problems do not have direct anaiogies 1n standard determinis-
tic system analysis. Nevertheless, most of the analysis for Markov chains is
based on the principles developed in earlier chapters.

7.2 REGULAR MARKOV CHAINS AND
LIMITING DISTRIBUTIONS

As pointed out earlier, the Frobenius-Perron theorem and the associated
theory of positive systems is applicable to Markov chains. For certain types of
Markov chains, these results imply the existence of a unique limiting probabil-
ity vector.

To begin the application of the Frobentus—Perron theorem we first observe
that the Frobenius-Perron eigenvalue, the eigenvalue of largest absolute value,
1s always 1.

Proposition. Corresponding. to a stochastic matrix P the value Ao=1 15 an
eigenvalue. No other eigenvalue of P has absolute value greater than 1.

Proof. This is a special case of the argument given in Sect. 6.2, since for a
stochastic matrix all row sums are equal to 1. 1

Definition. A Markov chain is said to be regular if P™ >0 for some positive
nteger m.

This straightforward definition of regularity is perhaps not quite so inno-
cent as it might first appear. Although many Markov chains of interest do
satisfy this condition, many others do not. The weather example of the previous
section is regular, for although P itself is not strictly positive, P? is. The Estes
learning model is not regular since in this case P™ has a zero 1n the upper
right-hand corner for each m. Similarly, the Gambler’s Ruin example 1s not
regular. In general, recalling that P™ is the m-step probability transition
matrix, regularity means that over a sufficiently large number of steps the
Markoy chain must be strictly positive. There must be a positive probability
associated with every transition.

The mam theorem for regular chains is stated below and consists of three
parts. The first part 18 simply a restatement of the Frobenius—Perron theorem,
while the second and third parts depend on the fact that the dominant
eigenvalue associated with a Markov matnx is 1.

Theorem (Basic Limit Theorem for Markov Chains). Let P be the transition
matrix of a regular Markov chain. Then:

(a) There is a unique probability vector p* >0 such that

T

p’P=p
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(b) For any initial state 1 (corresponding to an irutial probability vector equal
to the 1th coordinate vector e) the limit vector

vI = lim eP™
ki

exists and s independent of i. Furthermore, v" is equal to the eigenvector
T

p .
(©) Lim,,_.. P™" =P, where P 1s the nXn matrix, each of whose rows is
equal 1o p™.

Proof. Part (a) follows from the Frobenius-Perron theorem (Theorem 2, Sect.
6.2) and the fact that the dominant eigenvalue is Ao = 1. To prove part (b) we
note that since A, =1 is a simple root, it follows that eTP™ must converge t0 a
scalar multiple of pT. However, since each eTP™ is a probability vector, the
multiple must be 1. Part {c) is really just a restatement of (b) because part (b)
shows that each row of P™ converges to p’.

This result has a direct probabilistic interpretation. Parts (a) and (b)
together say that starting at any initial state, after a large number of steps the
probability of the chain occupying state S; is p;, the ith component of p”. The
long-term probabilities are independent of the initial condition.

There are two somewhat more picturesque ways of viewing this same
result. One way is to imagine starting the process in some particular state, then
turning away as the process moves through many steps. Then after turning
back one records the current state. If this experiment i1s repeated a large
number of times, the state S; will be recorded a fraction p;, of the time, no
matter where the process is started.

The second way to visualize the result is to imagine many copies of the
Markov chain operating simultaneously. No matter how they are started, the
distribution of states tends to converge to that defined by the limit probability
vector.

Finally, part (c) of the theorem is essentially an alternative way of stating
the same limit property. It says that the m-step transition matrix ultimateiy
tends toward a limit P. This probability matrix transforms any initial probability
vector into the vector p™.

Example 1 (The Weather Model). The weather example of Sect. 7.1 has
transition matrix
500 500 O
P=].500 .250 .250
0 .500 .500
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This Markov chain is certainly regular since in fact P> 0. Indeed, computing a
few powers of the transition matrix, we find

[.500 375 .125
P?={| 375 .438 .187
|..250 375 .375]

— 3

422 399 179
Pi=1.398 .403 .199
1.359 .399 .242

405 401 .194
Pé=| 400 .401 .199
[ .390 400 .2104

401 401 .198
P®=|.400 .401 .199
L.397 401 .202]

400 400 .200]
Pé=| .400 .400 .200
| .400 .400 .200]

This behavior of the powers of the probability matrix 1s 1n accordance with
part (c) of Theorem 1. It follows that the equilibrium probability vector 1s

pT=[.400 .400 .200]

Indeed, as an independent check it can be verified that this is a left eigenvector
of the transition matrix, corresponding to the eigenvalue of 1.

The interpretation of this vector is that in the long run the weather can be
expected to be sunny 40% of the days, cloudy 40% of the days, and rainy 20%
of the days.

Example 2 (Simplified Monopoly). A simple game of chance and strategy for
two to four players is played on the board shown in Fig. 7.4. Each player has a
marker that generally moves clockwise around the board from space to space.
At each player’s turn he flips a coin: if the result is “heads” he moves one
space, if it 1s ““tails” he moves two spaces. A player landing on the “Go to Jail”
square, goes to “Jail” where he begins at his next turn. During the game,
players may acquire ownership of various squares (except “Jail” and “Go to
Jail”). If a player lands on a square owned by another plaver, he must pay rent
in the amount shown in that square to the owner. In formulating strategy for
the game 1t 1s useful to know which squares are most valuable 1n terms of the
amount of rent that they can be expected to generate. Without some analysis,
the true relative values of the various squares is not apparent.

Movement of players’ markers around the board can be considered to be a
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6 Y
Go To

$50 $100 il

$120 $180

3 2
Jail $100 $300

Figure 7.4. A board game.

£y

Markov chain. The chain has seven states, corresponding to the possible
landing positions on the board. The “Go to Jail” square 1s not counted since no

piece ever really stays there, but goes instead to square number 4. The
transition matrix is

i

0L 10000
001 Li000
0001414100
P={0 0 00 1L 1o
00000}
000100
100400 0]

After a bit of experimentation, it is seen that there is a finite probability of
moving from any square to any square in seven steps; that is, P’ > 0. Therefore,
it is quite clear that this Markov chain is regular, and there is an equilibrium
probability vector that gives the long-term landing probabilities. To find the
equilibrium probabilities we must solve the equation p"P=pT with Y., p;=1.

Written out in detail the equations for the eigenvector*® are

07 =P

3Py =p,

ipy+ip, =ps

ip2+ips +3p6 +3P7 = Ps

Pt ips =Ds

Pa+ips =ps

ZPs +3Pe =p;

* Remember that tha raaffimant matee o BT oo T
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These equations could be solved successively, one after the other, if p, and p,
were known. If we temporarily ignore the requirement that 3 p; =1, the value
of one of the p’s can be set arbitrarily. Let us set p;=1. Then we find

p; =.50
P= .250

pa=.8125+3p
ps =.59375+4p,
ps=.703125 +3p,
p-=1.0

At this point pg can be found from the sixth equation and substituted
everywhere else yielding

pi= .50
p>= .250
ps= .375
ps=1.375
ps= .875
pe=1.125
p;=1.0

The actual equilibrium probability vector is obtained by dividing each of these
numbers by their sum, 5.5. Thus,

PT =[.0909 .0455 .0682 .2500 .1591 2045 .1818]

Not surprisingly we find that ““Jail” is visited most frequently. Accordingly,
it is clear that spaces 1-3 are visited relatively infrequently. Thus, even though
these spaces have high associated rents, they are not particularly attractive to
own. This is verified by the relative income rates for each square, normalized
with state S, having an income of $100, as shown below.

State Rent Relative Income Rank
S, $180. $ 90.00 3
S, $300. $ 75.00 4
S, $100. $ 37.50 6
S, — —

Ss $120 $105.00 1
Se $ 50. $ 56.25 5
S, $100. $100.00 2
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7.3 CLASSIFICATION OF STATES

Many important Markov chains have a probability transition matrix containing
one or more zero entries. This is the case, for instance, in all of the examples
considered so far in this chapter. If the chain is regular, the zero entries are of
littte fundamental consequence since there is an m such that a transition
between any two states 1s possible in m steps. In general, however, the
presence of zero entries may preclude some transitions, even over an arbitrary
number of steps. A first step in the development of a general theory of Markov
chains is to systematically study the structure of state interconnections.

Classes of Communicating States

We say that the state S; is accessible from the state S, if by making
only transitions that have nonzero probability 1t is possible to begin at S, and
arrive at §; in some finite number of steps. A state S; 1s always considered to be
accessible from itself.

Accessibility can be determined by taking powers of the probability
transition matrix. Let pi™ be the ijth element of the matrix P™ If pi™ >0,
then 1t is possible to go from S; to §; in m steps, since there 1s a positive
probability that the Markov chain would make such a transition. Thus, S, s
accessible from S; if and only if p{™ >0 for some integer m = 0.

The property of accessibility 1s not symmetric since S; may be accessibie
from S; while S; 1s not accessible from S;. The corresponding symmetric notion
1s termed communication and it is this property that is used to classify states.

Definition. States S; and §; are said to communicate if each is accessible from
the other.

As the following proposition shows, the concept of communicating states
effectively divides the states of a Markov chain into distinct classes, each with
its own identity. That is, the totality of n states i1s partitioned into a group of
classes; each state belonging to exactly one class. Later we study the classes as
units, and investigate the structure of class interconnections.

Proposition. The set of states of a Markov chain can be divided into com-
municating classes. Each state within a class communicates with every other
state in the class, and with no other state.

Proof. Let C, be the set of states that communicate with S.. If S, and S; belong
to G, they also communicate, since paths of transition between them can be
found in each direction by first passing through S,. See Fig. 7.5a. Thus, all
states in C, communicate with each other.

Suppose that a state S, outside of C, communicated with a state S; within
C. Then a path from S, to §; could be extended to a path from §, to S, by
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(a)

Figure 7.5. Construction for proof.

appending a path from S; to S, See Fig. 7.5b. Likewise paths in the other
direction could be appended. Thus, S, would communicate with S; as well.
Hence, by contradiction, no state outside C, can communicate with any state in
C.. Therefore different communicating classes have no common states. Every
state belongs to one and only one class—the class of all states that communi-
cate with it. 1

An important special case is when all states communicate, in which case
there is only one communicating class. If a Markov chain has only one communt-
cating class the chain is said to be irreducible. Otherwise, it is reducible.

A regular Markov chain is irreducible, since all states communicate.
However, not all irreducible Markov chains are regular. An example 1s the
chain defined by the transition matrix

[} o]

The chain goes from S, to S, or from S, to §; in one step. It can go from either
state back to itself in two steps. However, every power of P contains two zero
entries.

Let us apply the definitions of this section to the examples presented
earlier. The weather example is irreducible, since it 1s possible to go from any
state of weather to any other within two days. In fact, as shown earlier this
chain is regular. The learning model has two states, and each is a different
communicating class. Although the “learned” state is accessible from the
“unlearmed” state, the reverse is not true, and hence, the states do not
communicate. The Gambler’s Ruin chain has three communicating classes.
One is the state corresponding to player A having zero chips. This state
corresponds to an end of the game and no other state is accessible from it.

P=
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Similarly, a second class is the state corresponding to player A having all of the
chips. Finally, the third class consists of all the other states. It is possible to go
from any one of these to any other (or back) in a finite number of steps.

Closed Classes

A communicating class C is said to be closed if there are no possible transitions
from the class C to any state outside C. In other words, no state outside C 15
accessible from C. Thus, once the state of a Markov chain finds its way into a
closed class it can never get out. Of course, the reverse is not necessarily true.
It may be possible to move into the closed class from outside.

A simple example of a closed class is provided by an irreducible Markov
chain. An irreducible chain has a single communicating class consisting of all
states, and it 1s clearly closed.

Closed classes are sometimes referred to as absorbing classes since they
tend to ultimately absorb the process. In particular, if a closed class consists of
just a single state, that state is called an absorbing state.

In the Estes learning model. the state corresponding to “learned” 1s an
absorbing state. In the Gambler’s Ruin problem, the two end-point states are
each absorbing states.

Transient Classes

A communicating class C 1s transient if some state outside of C is accessible
from C. There 1s, therefore, a tendency for a Markov chain process to leave a
transient class.

There may be allowable transitions into a transient class from another
class as well as out. However, it is not possible for a closed path to exist that
goes first outside the class and then returns, for this would imply that there
were states outside of C that communicate with states in C. The connection
structure between communicating classes must have an ordered flow, always
terminating at some closed class. It follows of course that every Markov chain
must have at least one closed class. A possible pattern of classes together with
terconnections is shown in Fig. 7.6. In this figure the individual states within a
class and their individual connections are not shown; the class connections
illustrated are, of course, between specific states within the class. All classes in
the figure are transient, except the bottom two, which are closed.

By definition, a transient class must have at least one path leading from
one of its member states to some state outside the class. Thus, if the process
ever reaches the state that is connected to an outside state, there is a positive
probability that the process will move out of that class at the next step.
Furthermore, no matter where the process begins in the transient class, there is
a positive probability of reaching that exit state within a finite number of steps.
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Figure 7.6. A collection of classes.

All together, over an infinite sequence of steps it seems that there 1s a good
chance of leaving the transient class. In fact, as shown below the probability of
eventually leaving is 1. (The reader can skip over the proof of this theorem
without much loss of continuity.) In view of this result all states within transient
classes are themselves referred to as transient states. The process leaves them,
in favor of closed classes.

Theorem 1. The state of a finite Markov chain s certain (with probability equal
to one) to eventually enter some closed communicating class.

Proof. From each state S; mn a transient class 1t is possible to reach a closed
class in a finite number of steps. (See Problem 7.) Let m, be the mintmum
number of steps required, and let p; be the probability that starting at state S,
the chain will not reach a closed class in m; steps. We have p, <1. Now let m
be the maximum of all the m,’s, and let p be the maximum of all the p;’s. Then,
starting at any state, the probability of not reaching a closed class within m
steps is less than or equal to p. Likewise, the probability of not reaching a
closed class within km steps, where k is a positive integer, is less than or equal
to p*. Since p<1, p* goes to zero as k goes to infinity. Correspondingly, the
probability of reaching a closed class within km steps is at least (1—p*), which
goes to 1. 11

Relation to Matrix Structure

The classification of states as presented in this section leads to new insight in
terms of the structure of the transition probability matrix P and the Frobenius—
Perron eigenvectors. As an example, suppose that the state S; is an absorbing
state; once this state 1s reached, the process never leaves it. It follows
immediately that the corresponding unit vector e (with all components zero,
except the rth, which is 1) 1s an eigenvector. That 1s, e/P=¢[ It represents a
(degenerate) equilibrium distribution. If there are other absorbing states, there
are, correspondingly, other eigenvectors. More generally, the equilibrium eigen-
vectors of P are associated with the closed communicating classes of P.
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These relations can be expressed in terms of a canonical form for Markov
chains. We order the states with all those associated with closed classes first,
followed by those associated with transient classes. If the states are ordered this
way, the transition matrix can be written in the partitioned form

e[l )

Assuming there are r states in closed classes and n—r in transient classes, the
matrix P, is an r Xr stochastic matrix representing the transition probabilities
within the closed classes; Q is an (n—r) X (n—r) substochastic matrix (at least
one row sum is less than 1) representing the transition probabilities among
the transients states, and R is an (n—r)Xr matrix representing the tran-
sition probabilities from transient states to states within a closed class.

The (left) eigenvectors corresponding to the eigenvalue of 1 must have the
form pT =[p], 0], where pT is r-dimensional, representing the fact that only
states 1n closed classes can occur with positive probability in equilibrium. (See
Problem 8.) The closed classes act like separate Markov chains and have
equilibrium distributions. Transtent classes cannot sustain an equilibrium.

7.4 TRANSIENT STATE ANALYSIS

Many Markov chains of practical interest have transient classes and are
initiated at a transient state. The Gambler’s Ruin problem and the Estes
learning model are two examples, which we have already discussed. When
considering such chains, it is natural to raise questions related to the process of
movement within the transient class before eventual absorption by a closed
class. Examples of such questions are: the average length of time that the chain
stays within a transient class, the average number of visits to various states, and
the relative likelihood of eventually entering various closed classes.

The analysis of transient states i1s based on the canonical form described at
the end of Sect. 7.3. We assume that the states are ordered with closed
classes first, followed by transient states. The resulting canonical form 1s

[y

We assume, as before, that there are r states in closed classes and n—r
transient states.

The substochastic matrix Q completely determines the behavior of the
Markov chain within the transient classes. Thus, it is to be expected that
analysis of questions concerning transient behavior 1s expressed in terms of Q.
Actually, a central role in transient analysis 1s played by the matrix
M=[1-QJ] '—this is called the fundamentali mairix of the Markov chain
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when expressed in the canonical form (7-3). As demonstrated below, it is easily
established that the indicated inverse exists, so that M is well defined.

Proposition. The matnix M=[1—- Q]! exists and ts positive.

Proof. It follows from Theorem 1, Sect. 7.3, that Q™ — 0 as m — o since
elements of Q™ are the m-step transition probabilities within the transient
classes. Thus, the dominant eigenvalue of the nonnegative matrix Q is less than

1. The statement of the proposition is then a special case of Theorem 2, Sect.
6.3. 1

The elements of the fundamental matrix have a direct interpretation in
terms of the average number of visits to various transient states. Suppose that
the Markov chain is initiated at the transient state S,. Let S; be another (or the
same, if i = j) transient state. The probability that the process moves from S; to
S; in one step is q;. Likewise, for any k the probability of a transition from S,
t0 S; in exactly k steps is g, the ijth element of the matrix Q. If we include
the zero-step transition probability q’, which 1s the ijth element of Q°=1,
then the sum of all these transition probabilities is

0) 5 (1) D4 ... Y ...
q+ai’+qP - +al

This sum 1s the average number of times that starting in state S; the process
reaches state S; before 1t leaves the transient states and enters a closed class.
This summation can be expressed as the ijth element of the matrix sum

1+Q+Q%+---+QF+---
However, this in turn is equal to the fundamental matrix through the identity
M=[1-Q]"'=1+Q+Q*+ - -+Q*+---

(See the Lemma on Series Expansion of Inverse, Sect. 6.3.) Therefore we may
state the following theorem.

Theorem 1. The element m; of the fundamental matrix M of a Markov chain
with transtent states is equal to the mean number of times the process is in
transient state S; if it is initiated in transient state S,.

Next we observe that if we sum the terms across a row of the fundamental
matrix M, we obtain the mean number of visits to all transient states for a given
starting state. This figure is the mean number of steps before being absorbed by
a closed class. Formally, we conclude:

Theorem 2. Let 1 denote a column vector with each component equal to 1. In a
Markov chain with transient states, the ith component of the vector M1 1s
equal to the mean number of steps before entering a closed class when the
process is ttiated in transient state S,.
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Finally, if a chain is initiated in a transient state, it will (with probability
one) eventually reach some state within a closed class. There may, however, be
several possible closed class entry points. We therefore turn to the question of
computing the probability that, starting at a given transient state, the chain first
enters a closed class through a particular state. In the special case where the
closed classes each consist of a single absorbing state, this computation gives
the probabilities of terminating at the various absorbing states.

Theorem 3. Let by be the probability that if a Markov chain is started in transient
state S,, it will first enter a closed class by visiting state S;. Let B be the
(n—r)Xr matrix with entries b;. Then

B=MR

Proof. Let S; be in a transient class and let S; be in a closed class. The probability
b; can'be expressed as the probability of going from §; to S; directly in one
step plus the probability of going again to a transient state and then uitimately
to §;. Thus,

bij =put Z Pircby
2

where the summation over k is carried out over all transient states. In matrix
form we have B=R+QB and hence, B=[1- Q] 'R=MR. 1

Example 1 (Learning Model). The simple Estes learning model is described by a
Markov chain with transition matrix

1 0
P_[a l—a]

This matrix is already in canonical form with S;, the “learned” state, being an
absorbing state, and S,, the “unlearned” state, being a transient state.

The Q matrix in this case consists of the single element 1 ~a«. Accordingiy,
the fundamental matrix M is the single number [1-(1—a)] ' =1/a.

It follows from Theorem 1 that 1/« is the mean number of steps, starting
from the unlearned state, before entering the learned state. This can vary from
1, if « =1, to infinity, if « =0. Theorem 2 is identical with Theorem 1 in this
example, since Q is one-dimensional.

Theorem 3, in general gives the probabilities of entering closed classes
through various states. Since in this example the closed class consists of just a
singie {absorbing) state, the probability of absorption by that state should be 1.
Inde«:i the formula of the theorem specifies this probability as a(1/a)=1.

Exzinyide 2 (A Prodnction Line). A certain manufacturing process consists of
threc manufacturing stages and a completion stage. At the end of each
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Figure 7.7. The production line chain.

manufacturing stage each item s inspected. At each inspection there is a
probability p that the item will be scrapped, g that it will be sent back to that
stage for reworking, and r that it will be passed on to the next stage. It is of
importance to determine the probability that an 1tem, once started, is eventu-
ally completed rather than scrapped, and to determine the number of items
that must be processed through each stage. (See Fig. 7.7.)

The process can be considered to have five states:

(1) TItem scrapped.

(2) Item completed.

(3) Item 1n first manufacturing stage.
(4) Item in second manufacturing stage.
(5) Item in third manufacturing stage.

The corresponding transition matrix is

1 00 00
01000
P=|p 0 g r O
p 0 0 q r
pr 00g¢g

The first two states are absorbing states and the other three are transient states
The transition matrix 1s in canonical form and the fundamental matrix 1s

M= 0 1—-gq ~-r

It 1s easy to verify that

(1—-9)* r(1—q) r?
0  (1-¢9° r(1-9q
0 0 (1—qg)*

1
M=o
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The elements of the first row of this matrix are equal to the average number of
times each item 1s passed through the first, second, and third manufacturing
stages, respectively.

The probability of entering the two absorbing states s given by the
elements of B =MR. In this case

[(1-9?* r(1-q) r p o
0 (1-q)* r(l-q){}{p O
0 0  (-@*iLp -]
For example, the probability that an item is eventually completed rather than

scrapped, starting from the first stage, 1s the first element of the second column
of B. That s, it is equal to r*/(1—q)>.

Example 3 (Gambler’s Ruin). When there are a total of n comns or chips
between the two players in a Gambler’s Ruin game, 1t can be considered o be
a Markov process with n+1 states S,, S;, S,, .. -, S,, where S, corresponds to
player A having i coins. The states S, and S, are each absorbing, while all
others form one transient class. The kinds of questions one asks when studying
this chain are those typical of transient state analysis—for example, the
probability of player A winning, or the average duration of the game.
The transition matrix can be put in the canonical form

1 00000 - - 0]
01000 0
qg 00 p o0
00 q 0 p
P= 0 q 0 p
00 p
[0 povih 0 g 0
In this representation the states are ordered Sy, S, Si1, Sa, - - -, S.—,. The matrix
Q 1s the (n—1)x(n—1) matrix
0 p O 0]
q 0 p
o-| 17
. P
q 0
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The fundamental matrix 1s M=[I-QJ, but an explicit formula for this
inverse is somewhat difficult to find. It is, however, not really necessary to have
an explicit representation for many purposes. Indeed, for this example, just as
for many other highly structured problems, it 1s possible to convert the general
expressions of Theorems 2 and 3 into alternative and much simpler dynamic
problems.

Let us, for example, compute the probability of player A winning, starting
from various states S,. According to Theorem 3 the vector x=Mr,, where
r;=[0 0 0 0 --. p], has components equal to these probabilities. The vector
x satisfies the equation

[I-Qix=r,
where x=(x;, Xo, .. ., x,_;). Written out in greater detail, this vector equation
18
X;—px,=0
X = qXp—y ~PXisy =0, 2<k=n-2

Xp—i —Q4Xn2 =P

Defining the additional vanables x, =0, x,, = 1, the first and last equations can
be expanded to have the same form as the second. In this way the above system
can be expressed as the single difference equation

X = QXe—i — PXes, =0, k=1,2,...,n—1

This 1s the difference equation identical with that used to solve this problem in
Chapter 2; and it can be solved as shown there.

In a similar fashion the average length of the game, starting from various
states, can be found by application of Theorem 2. These lengths are the
components of the vector y=M1. Equivalently, the vector y can be found as
the solution to the equation [I1-Qly=1. Again with y=(y;, y2,.-., ¥,—1) and
defining y,=0, y, =0, the vector equation for y can be written as the
difference equation

Yk~ QY1 PYe+1 = 1, k=1,2,...,n—1

This equation can be solved by the techmques of Chapter 2. The characteristic
equation 1s

A—q—pri=0

which has roots A =1, A =q/p. Assuming p# q#%, the general solution to the
difference equation has the form

yr = A + Bk + C{q/p)"

The constants A and C are arbitrary, since they correspond to the general
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solution of the homogeneous equation. The constant B is found by temporarily
setting A =0, C=0 and substituting y, = Bk into the difference equation,
obtaining

Bk—qB(k—1)—pB(k+1)=1

—pB+qB=1
1
B=——
qa-p
The actual values of A and C are found by setting y, =0 and y, =0 yielding
0=A+C
0=A+——+ C(ﬂ\“
q-p \p/

Solving for A and C and substituting into the general form leads to the final
result

o
"= @] -1+ kg) ]*;‘p‘

*7.5 INFINITE MARKOV CHAINS

In some applications 1t 1s natural to formulate Markov chain models having a
(countably) infinite number of states S,,S,,. .,S,.-.. An infinite Markov
chain often has greater symmetry, and leads to simpler formulas than a
corresponding finite chain obtained by imposing an artificial termination condi-
tion. This stmplicity of structure justifies the extension of concepts to infinite
Markov chains.

Example (Infinite Random Walk with Reflecting Barrier). An object moves on
a horizontal line in discrete unit steps. Its possible locations are given by the
nonnegative integers 0,1,2,.... If the object is at position i>0, there 1s a
probability p that the next transition will be to position 1 +1, a probability ¢
that it will be to 1—~1, and a probability r that it will remain at ¢. If it 1s at
position 0, it will move to position 1 with probability p and remain at 0 with
probability 1~p. The transition matrix for this infinite chain 1s

M~p p 0 0 ]
q r p O
0 q r
P= P
0 0 q r
L - i
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Although the technicalities associated with infimte Markov chains are
somewhat more elaborate than for finite chamns, much of the essence of the
finite theory is extendible to the infinite chain case. Of particular importance
is that there is an extended version of the basic limit theorem. This extension
is presented in this section, without proof.

The concepts of accessibility, communicating classes, and wrreducibility
carry over directly to infinite chains. The definitions given earlier apply without
change n the infinite case. For example, S; is accessible from §; if there 15 a
path (of fimte length) from §; to S;. In addition to these definitions, it is useful
to introduce the concept of an aperiodic Markov chain. To illustrate this
concept, consider again the two-dimensional chain with transition matrix

[0 1]

1 ol

This chain 1s irreducible since each of the two states 1s accessible from the
other. However, 1n this chain a transition from either state back to the same
state always requires an even number of steps. A somewhat more complex
example 1s represented by the matrix

P=

o=

i
—m O
S O e

o

Starting at S, on Step 0, S, will be visited on all even numbered steps. while
either S, or S; are visited on odd number steps. In general, if some state n a
finite or infinite Markov chain has the property that repeated visits to that state
are always separated by a number of steps equal to a multiple of some integer
greater than 1, that state 1s said to be periodic. A Markov chain 1s aperiodic if 1t
has no periodic states.

The first important result for infinite chains 1s an extension of part (b) of
the Basic Limit Theorem of Sect. 7.2.

Theorem. For an irreducible, aperiodic Markov chain the linuts

v; = lim p{™
im0

exist and do not depend on the ninal state i.

This theorem tells us that, just as in the finite case, the process settles
down with each state having a limiting probability. It is quite possible,
however, in the infinite case, that the limits might all be zero.

As an example, let us refer to the infinite random walk described above.
Provided that p=>0, ¢>0, it is clear that every state communicates with every
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other state since there 1s a path of nonzero transition probabilities from anv
state to any other. Thus, the chain is irreducible. The chain 1s aperiodic stnce
one can return to a state by resting at 0 indefinitely. Assuming p >0, g >0, the
conclusion of Theorem 1 must hold. However, if p>gq, there is a strong
tendency for the moving object to drift toward the right, to higher integer
points. The chance that the object returns to a specific point, say point (.
infinitely often is likely to be quite small. Indeed in this case, the limits v; arc
all zero. the process drifts continually to the right so that each state has the
character of a transient state.

Definition. An irreducible aperiodic Markov chatn 1s said to be posifive recur-
rent if

(@) v;=limy,_... p}y">0 for all j, and
(b) ¥, v;=1.

According to this definition, a chain i1s positive recurrent if the limit
probabilities form a legitimate infinite-dimensional probability vector. The next
theorem establishes the relation between these limit probabilittes and the
existence of an infimte-dimensional eigenvector of the transition matrix.

Theorem. Given an rreducible aperiodic Markov chain.

(a) It s positwe recurrent if and only if there 1s a umque probability
distribution p=(p,, pa, -.) (satsfying p.>0 for all i, Y, p; = 1), which is
a solution to

pi = Z pupi

In this case,

for all j.
(b) If the chain is not posttwe recurrent, then

v; = lim p{™=0
for all |.

Example (continned). In the random walk, suppose p >0, r>0, and g>0. Let
us attempt to find the v;’s by seeking an eigenvector of the transition matrix.
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The v;’s should satisfy the equations
pvo—qu, =0
(1=rv,—pvy_1—quj; =0, j=1,2,3,...

The characteristic equation of the difference equation is (1—r)A —p—gA%*=0,
which has roots A =1, p/q. If p<gq, a solution is

v; =(1-p/q)p/q)

and this satisfies );2, v;=1. Therefore, for p<<q the solution is positive
recurrent. If p> g, no solution can be found, and hence, as suspected (because
of the drift toward infinity) the chain is not positive recurrent.

7.6 PROBLEMS

1. Let P be an nXn stochastic matrix and let 1 denote the n-dimensional column
vector whose components are all 1. Show that 1 1s a night eigenvector of P
corresponding to an eigenvalue of 1. Conclude that if y* = x"P, then y'1=x"1.

2. Social Mobility. The elements of the matnx below represents the probability that
the son of a father in class « will be 1n class j. Find the equilibrium distribution of

class sizes.
Upper class 5 4+ .1
Middle class 1 7 2
Lower class 05 55 4

3. Ehrenfest Diffusion Model. Consider a contamner consisting of two compartments
A and B separated by a membrane. There 1s a total of n molecules in the container.
Individual molecuies occasionally pass through the membrane from one compart-
ment to the other. If at any time there are j molecules in compartment A, and n~
in compartment B, then there is a probability of j/n that the next molecule to cross
the membrane will be from A to B, and a probability of (n—j)/n that the next
crossing Is in the opposite direction.

(a) Set up a Markov chamn model for this process. Is it regular?
(b) Show that there is an equilibrium probability distribution such that the
probability p; that j molecules are in comparunent A 1s

()

4. Languages. The symbols of a language can be considered to be generated by a
Markov process. As a simple example consider a language consisting of the symbois
A, B, and S (space). The space divides the symbol sequence Into words. In this
language two B’s or two S’s never occur together. Three A’s never occur together.
A word never starts with AB or ends with BA. Subject to these restrictions, at any
point, the next symbol 1s equally likely to any of the allowable possibilities.
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Formulate a Markov chain for this language. What are the equilibrium symbot
probabilities? (Hint: Let some states represent pairs of symbols.)

. Entropy. The entropy of a probability vector p* =(pi, p2,...,p.) Is H(p)=

~¥1=, p: log, pi. Entropy 1s a measure of the uncertainty associated with a selection
of n objects, when the seiection is made according to the given probabilities.

(a) For a fixed n show that H(p) is maximized by p* =[1/n, 1/n,..., I/n].
(b) For a regular finite Markov chain with transition matrix P, the entropy is

H(P)= i p:H;

where p; 1s the equilibrium probability of state S; and where H; 1s the entropy of
the 1th row of P. Thus, H is a weighted average of the entropy associated with
the choice of the next state of the chain. Find the entropy of the weather modcl
in Sect. 7.2.

Equivalence Classes. Consider a set X and a reiation R that hoids among certain
pairs of elements of X. One writes xRy if x and y satisfy the retation. The reiation
R is said to be an equivalence relation if

xRx forall x in X
xRy 1implies yRx
xRy and yRz implies xRz
(a) Let [x] denote the collection of all elements y satisfying xRy, where R is an
equivalence relation. This set 1s called the equivalence ciass of x. Show that X
consists of a disjoint collection of equivalence classes.

(b) Let X be the set of states in a Markov chain and let R be the relation of
communication. Show that R 1s an equivalence relation.

. Show that from any state in a Markov chain it is possible to reach a closed ciass

within a finite number of transitions having positive probability.

. Suppose the probability transition matrnix of a finite Markov chain is 1n the

canonical form (7-2). Show that any left eigenvector corresponding to an eigenvalue
of magnitude of 1 must be of the form [p;, 0], where p] 1s r dimensional.

An nXn matrix P 1s a permutation matnx if for all vectors x the components of the
vector Px are sumply a reordering of the components of x. Show that all elements of
a permutation matrix P are either zero or one, and both P and PT are stochastic
matrices.

Theory of Posittve Matnces. An nXn matrix A 1s said to be reducible if there 1s a
nonempty proper subset J of {1,2,..., n} such that

a; =0 for i2J,jeJ
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(a) Show that A s reducible if and only if there 1s a permutation matrix T (see
Problem 9) such that
i All AIZ]
T 'AT=
[0 A

where A, is square.

(b) Let P be a stochastic matrix associated with a finite Markov chain. Show that
the chain has a single communicating class if and only if P 1s irreducible.

(c) Let A be a nonnegative irreducible matrix, with Frobenius-Perron eigenvalue
and eigenvector A, X,, respectively. Show that A,>0, x,>0, and that A, is a
simple root of the characteristic polynomial of A.

Periodic Positive Matrices. Let A be an ureducible positive nXn matrix (see
Probiem 10). Then 1t can be shown that there 1s a permutation matrix T such that

— -

0 0 - 0 G,
G, 0 - 0o o

0 Gz

T 'AT= .
G. 0

where the zero matnces on the main diagonal are square. Let A,>0 be the
Frobenius—Perron eigenvalue of A. Show that A has r eigenvalues of magnitude A,.
[Hint; Let w be an rth root of unity (that 1s, " =1). Show that A =wk, is an
eigenvalue, ]

Finite Random Walk. An object moves on a horizontal line in discrete steps. At
each step 1t 1s equally likely to move one unit to rnight or one unit to the left. The
line 1s a total of five units long, and there are absorbing barriers at either end. Set
up the Markov chain corresponding to this random walk process. Characterize each
state as transient or absorbing. Calculate the canonical form and find the fundamen-
tal matnx.

First Passage Time. Suppose P is the probability transition matrix of a regular
Markov chain. Given an initial state S;# S,, show how by modifying P the average
number of steps to reach S, can be computed. For the weather model, given that
today Is rainy, what 1s the expected number of days until 1t 1s sunny?

Markov Chains with Reward. You might consider your automobile and its random
failures to be a Markov chain. It makes monthly transitions between the states
“running well” and “not running well.” When 1t 1s not runming well 1t must be taken
to a garage to be repayed, at a cost of $50. It 1s possible to improve the likelihcod
that the automobile will continue to run well by having monthly service at a cost of
$10. Depending on your policy your automobile transitions will be governed
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by either of two Markov chans, defined by

] r.- ]

where S, =running well, S, =not running well, and where P, corresponds to no
monthly service, and P, corresponds to having monthly service.

ha

I
||
RN fw
@ Rgm
@i @i

@I~ fol=

(a) For each of the two policies, what Is the equilibrium distribution of states?
(b) In equilibrium, what 1s the average monthly cost of each of the two policies”?

Simplified Blackjack. A game between a ‘“‘dealer” and a “‘customer” 1s piayed
with a (very large) mixed deck of cards consisting of equal numbers of ones, twos,
and threes. Two cards are imtally dealt to each player. After looking at his cards
the customer can elect to take additional cards one at a time until he signals that he
will “stay.” If the sum of the values of his cards exceeds six, he loses. Otherwise the
dealer takes additional cards one at a time until his sum 1s five or more. If his sum
exceeds six, the customer wins. Otherwise, the player with the highest sum (under
seven) wins. Equal values under seven resuit in a draw.

(a) Set up a Markov chain for the process of taking cards until a value of five or
more is obtained, Identify the absorbing states. Find the probabilities of
entering the various absorbing states for each inttial sum. Find the probability of
entering varlous absorbing states.

(b) If the customer follows the strategy of taking cards until his vaiue 1s five or
more, at what rate will he lose?

*(c) If the second card dealt to the dealer 1s face up, the customer can base his
strategy on the value of that card. For each of the three possible cards showing,
at what sum should the customer stay? What are the odds in this case?

Periodic States. Show that if one state 1n a glven communicating class s penodic,
then all states in that class are periodic.

For the following special cases of the infinite random walk, determine if (i) 1t 1s
aperiodic, (ii) irreducible, and (iii) there is a solution to the eigenvector problem.

(@) r=0,p>q>0.
) r>0,p=q>0.

Suppose a (nonfair) coin 1s flipped successively with the probability of heads or tails
on any trial being p and 1—p, respectively. Define an infinite Markov chain where
state S; corresponds to a landing of the coin that represents a run of exactly j heads
on the most recent flips. Show that this Markov chain 15 apeniodic and irreducibte.
Is 1t positive recurrent?

Dynamics of Poverty and Weaith. Income distribution is commonly represented by
the distribution function D(y), which measures the number of individuais with
incomes exceeding y. It has been observed that with surprising regularity, m various
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countries over long histones, the upper end of the distribution closely approximates
the form
Diy)=Cy™

for some parameters C and a. This 1s referred to as Pareto’s law.

One theoreucal explanation for the regularity encompassed by Pareto’s law 1s
based on a Markov chain model of individual income developed by Champernowne.
In this model the income scale is divided into an infinity of income ranges. The in-
come ranges are taken to be of uniform proportionate iength; that is, they might be
$50 to $100, $100 to $200, $200 to $400, and so on. At any one time a given
individual’s income falls within one of these ranges. At the next period (and periods
might correspond to years), his or her income makes a transiuon, either upward or
downward, according to a set of probabilities that are characteristic of the particular
economy in which the person lives.

It 1s assumed that no income moves up by more than one or down by more
than n income ranges 1n a period, where n=11s a fixed integer. Specifically, 1t is
assumed that there are n+2 positive numbers, p_., Pon+y, - - - » Do, P1 Such that

1=Zpu

Then, the transition probabilities for the process are defined as

pi=pi- for —n=j—1=1,;21

po=1— Z p,-. for O0=i=n

r=0

pii =0 otherwise
The pattern of transition probabilities is illustrated in Fig. 7.8 for n =2. (This model
can be viewed as an extension of the infinite random walk.)

Finally, it 1s assumed that the average number of income ranges moved in one
step 1s negative when at the upper levels. That is,
—np_aH(=n+Dpopt -+ (=Dp+0- po+p,; <0

(a) Verify that this Markov chain is irreducible and aperiodic.

(b) Let

FA)==A+ Y pA'™

and show that F(1)=0, F'(1)>0, and F(0)=p,>0. Conclude that there 1s a
root A to the equation F(A)=0 in the range 0<A <1.

(¢} Find an equilibrium probability vector.

(d) Show that the equilibrium ncome distribution satisfies Pareto’s law.
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i 0 1 4 51 6
0 1—-p; D1 0 0 0 0] 0
1 L—po—p PojPmj 0100} O0
2 (1=pay—Po=Pi| P-s | Do | Py 0 0 0
3 0 PP Pl P |0} O
4 0 0 |pa|py| Po|p:i] O
5 0 00 pafpu|po]| P
2 0 0 70| 0 |pa|pafpo

Figure 7.8. Champernowne model

NOTES AND REFERENCES

Sections 7.1-7.4. For general introductions to finite Markov chains and additionai
applications see Bhat [B8], Howard [H7], Kemeny and Snell [K11], or Clarke and
Disney [C4], which is close to our level and order of presentation and considers some of
the same examples. Bartholomew [B2] has several exampies from the social sciences.
The learming model is based on Estes [E1]. The landing probabilities for real game of
Monopoly are available in tabuiated form; see, for exampie, Walker and Lehman [W1].

Section 7.5. For more advanced treatments of Markov chains, including infinite chains,
see Karlin [K8] and Feller [F1].

Section 7.6. Entropy of a Markov process (Problem 5) forms the basis of information
theory as developed by Shannon; see Shannon and Weaver [S4]. For further discussion
of the theory of positive matrices as presented in Probiems 10 and 11, see Karlin [K7],
Nikaido [N1], or Gantmacher [G3). A full theory of Markov processes with reward
(Problem 14) has been developed by Howard [H6]. The optimal strategy for real
blackjack was found (by computer simulation) by Thorpe [T2]. The model of Problem
19 together with various modifications is due to Champernowne [C2].



chapter 8.

Concepts of Control

The analysis of dynamic systems can certainly enhance our understanding of
phenomena around us. But beyond analysis is the higher objective of influenc-
ing the behavior of a system by control or design. The field of control theory is
directed toward this general objective,

8.1 INPUTS, OUTPUTS, AND INTERCONNECTIONS

The state space description of a linear dynamic system focuses on the
behavior of the entire system—the evolution of all state variables as a result of
prescribed mitial conditions and input values. It 1s often the case, however, that
certain variables, or combinations of variables, are of special interest, while
others are of secondary interest. For example, an automobile might be rep-
resented as a high-order dynamic system. During operation, however, one is
generally only interested in a few characterizing variables (such as vehicle
position and velocity) rather than the whole assortment of internal variables
(engne speed, etc.) required for a complete description of the state. It is useful
to explicitly recognize the important variables as systems outputs.

In a linear system the outputs are generally linear combinations of state
variables and input variables. Thus, in the context of outputs, the definition of a
linear discrete-time nth-order system is expanded to the general form

x(k +1) = A(k)x(k)+B(k)n(k)
y(k) = C(k)x(k) +D(k)u(k)

As usual, x(k) 1s an n-dimensional state vector, u(k) is an m-dimensional input
vector, and A(k) and B(k) are nxn and nXm matrices, respectively. The
vector y(k) 1s, say, a p-dimensional output vector, and accordingly C(k) and
D(k) are pxn and p X m matrices, respectively.
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Often only a single output variable y(k) 1s specified. In this case C(k) 1s
1xn and D(k) is 1Xm, and hence, one usually uses the lower-case notation
c(k)™ and d(k)T. If the system has only a single input and a single output, 1t 1s

expressed as
x(k+1) = A(k)x(k)+b(k)u(k)
y (k)= e(k)Tx(k)+d(k)u(k)

The choice of outputs is, from a mathematical viewpoint, quite arbitrary.
However, in practice, variables are designated as outputs if they are available
for measurement or if they have some special importance.

From the perspective of control, the structure of inputs and outputs 1s an
integral component of the description of a dynamic system. The input struc-
ture determines the degree that system behavior can be modified, and the
output structure governs the kind of information available for control. These
structural components of a dynamic system interact, and are basic to the very
objective of control.

If a system has only a single input and a single output, 1t 1s possible to
deduce a single nth-order difference equation that governs the output variabie.
This 15 essentially the reverse of the procedure used in Sect. 4.1 to convert an
nth-order difference equation to state space form. Thus, consideration of
outputs leads us back to the study of linear difference equations. Therefore, the
first few sections of this chapter are concerned with an alternative method of
solution of such equations—the transform method.

If a system has several outputs and several inputs, it 1s often useful to
partition the system into a number of interconnected subsystems each having a
single input and single output. Each subsystem can be analyzed by the trans-
form method, and the results can be appropriateiy combined. This combination
process is an important product of the control (or input-output) viewpoint.

The sections of this chapter are divided into two groups. Those through
Sect. 8.5 cover the transform approach to analysis discussed above. The
transform material is a natural augmentation of methods developed 1n earlier
chapters, but it is not essential for the second half of this chapter. Sections
8.6-8.10 are devoted more explicitly to control issues from a state space
viewpoint. This material represents an introduction to the field of modern
control theory.

TRANSFORM METHODS

8.2 z-TRANSFORMS

The z-transform is a mathematical operation that, when applied to a sequence
of numbers, produces a function of a variable z. The formal definition is given
below.
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Definition. Given a sequence of numbers y(0), y(1), y(2),. .., the z-transform
of this sequence is the series (depending on z)
- y(k
v2)= 3 X (8-1)
k=0 Z

The series (8-1) can be looked at in two ways. First, and perhaps most
naturally, it can be regarded as defining a function of the variable z. Thus,
numerical values of z (either real or complex) yield numerical values for Y(z).
Viewed this way, one must examine the conditions under which the series (8-1)
converges. If the values of y(k) grow at most geometrically [that s, if
lv(k)|=c"* for some ¢ =0], then the series converges for |z| sufficiently large
[1z]>c]- In all our applications this condition is fulfilled.

Another approach 1s to treat this definition formally without concern for
conditions of convergence. The variable z 1s regarded siunply as a symbol, and
the transform Y(z) as a series that is never actually summed. This corresponds
to the approach that one often uses in connection with polynomials. Polyno-
mials in a symbol z can be defined and manipulated algebraically, even if it 1s
never intended that the symbol z be assigned a numerical value. The same
algebraic procedures can be applied to the z-transform series Y(z). However,
as shown below, there 1s often a shorthand representation of the senies, which
1s closely related to the first, function viewpoint.

Example 1. Consider the constant sequence y(k)=: 1. This sequence 1s referred
to as the unit step. The z-transform of this sequence 1s

- 1
vo-5

If z 15 a complex variable such that |z|> 1, this sequence converges and has the
value
1 z

-1z z-1

Y(z)=

Example 2. Consider the sequence y(k) having the specific values 1, 2, 3, 0,
0,.... The z-transform is

2 3 22+42z+3
=1+24S=12
Y@ z z? z?
Example 3. Consider the geometric sequence y(k)=a*. Then
@ ak
Y(2)= ) —
k=0 7%
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For |z|>|al, this series converges to

Rational Functions

A form of function that arises often in the study of linear dynamic equations,
and particularly in the context of transforms, is that of a rational function. A
function F(z) of the variable z 1s said to be rational if it 15 a ratio of
polynomials in z, Thus, a rational function has the form
boz™+b,_z™ 4D

m—1 - Q (8-2)

+-4qg

Fz)= az"+a,_z""
A rational function is called proper if the degree of the numerator polynomial 1s
no greater than the degree of the denominator polynomial. It is strictly proper if
the degree of the numerator polynomial is less than the degree of the
denominator polynomial.

If the numerator and denominator polynomials of a rational function have no
common factors, the function is said to be reduced. Clearly any rationat
function can be converted to a unique reduced form by cancelling out common
factors. The degree of a rational function 1s equal to the degree of its
denominator polynomial when the function is reduced.

In many cases, as in Examples 1, 2 and 3 above, the z-transform of a
sequence converges (for large values of |z]) to a proper rational function. Thus,
the rational function is a representation of the series defining the transform. If
z is treated simply as a symbol rather than a number, the rational function can
be used as a shorthand representation of the original series. If the denominator
of the rational expression 1s divided into the numerator according to the
standard rules of long division of polynomials, the original series i1s obtained.
From this viewpoint the rational function acts as a generator for the seres.
Referring to Example 1, the rational function z/(z —1)=1/(1-1/z) is a formal
generator for the series 1+ 1/z+1/2%+- - - . This formal viewpoint allows us to
suppress considerations of series convergence, especially for sequences whose
z-transforms have rational representations.

Fortunately, proper rational z-transforms are in direct correspondence
with sequences generated by homogeneous linear, constant-coefficient, differ-
ence equations. This result, established below, thereby justifies the special
attention we devote to rational forms.

Theorem 1. A sequence y(k), k=0,1,2,... has a z-transform Y{z) that can
be expressed as a reduced proper rational function of degree n if and only if
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there are n scalars ag, a4, . . ., a,_, such that

ylk+n)+a,_,ylk+n—-1)+---+a,yk)=0 (8-3)
for all k>0.

Proof. Suppose y(k) has a reduced proper rational transform of degree n,

bz"+b, 12" 4o+ b

O" =y(O)+y(D)z7 +y@)z 2+ +- - (8-4)

Y(z)=
(2) Z"+a, 2" '+ ta,

Then it follows that

byz" b, 12" e by ={z" a1z gy}

X{yO@)+y(Dz7"+- -} (8-3)
Equating coefficients of like powers of z gives
b, = y(0)
by_i=a,_,y(0)+y(1)

by2=a, »y(0)+a,_,y(1)+y(2) (8-6)

bo=agy(0)+a,y(1)+---+a,_;y(n—1)+y(n)

and, since the coefficient of z7* on the left side of (8-3) is zero for k>0,
it follows that

0=apy(k)+a,y(k+1)+---+a,.,ylk+n—1D+y(k+n) (8-7)

for all k> 0. This shows that if the transform is (8-4), the sequence must satisfy
(8-3).

To prove the reverse implication, we start with (8-7), which is identical to
(8-3), and then select bg, by, ..., b, so that the equations (8-6) are satisfied. It
1s then possible to go in the reverse direction through the argument to show
that Y(z) is equal to (8-4). I

Transform Properties and Transform Pairs

Transforms of rather complicated sequences can be easily derived by knowing
a few simple properties of transforms and a few simple transform patrs. Stated
below are three useful properties.

Property 1. If f(k) and g(k) are sequences with z-transforms F(z) and G(z),
respectively, then the transform of f(k)+g(k) 1s F(z)+G(z). The trans-
form of af(k) is aF(z).
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Figure 8.1. =ztransform of Ak), lk—1), and fAk+1).

Proof. This property follows from the fact that the defimition (8-1) is lincar in
the sequence values. I

Property 2. If the sequence f(k) has the z-transform F(z), then the umt
delayed sequence

k-1 k=1
g(k)={g( ) k=0

has z-transform
G(2)=z7"'F(z)

Proof. [Figure 8.1 represents the transform series corresponding to f(k)=2.k
and 1ts delayed and advanced versions. It can be seen that the sum obtained n
(b) 1s just z7! times that of (a).] The actual proof is obtained by writing

<0

G)= T 2*s00= L (k1D

- Z—l Z Z~(k—l)f(k__ 1)
k=1
=27V Y 27f()=2z""F(z). |
1=0
Property 3. If the sequence f(k) has z-transform F(z), then the unit advanced

sequence h(k)=f(k+1), k =0 has the transform
H(z)=zF(z)— zf(0)
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Proof. (See Fig. 8.1c.) We have

H(Z)= 3 z*h(k)= 3 z-%f(c+1)

k=0 k=0
=z i 27 fk+ )=z i z7'f()
=z}, 27f()—2f(0)

= zF(z)—zf(0). 1

Let us illustrate how the rules can be used in conjunction with the known
transform patrs to find the transform of other sequences.

Example 4. Consider a pulse of duration N defined by

1 0=k<N

=1y 4=

This can be regarded as the sum of a unit step (from Example 1) and the
negative of a unit step delayed N time periods. Thus, using the result of
Example 1 and N applications of Property 2, the transform of f(k) is

z z_ 1
z—=1 z—-1 z

F(z)=

I
N
[N
p—
P

U

|
Nz} —
~—

,___zif_—_l__
2N Y z-1)

Example 5. Consider the geometric ramp sequence
g(k)=ka*™!

Let f(k) be the geometric sequence f(k)=a* Then

8(0) = f(k)

Using the result of Example 3,
d _z
daz—a

d
G(z)’Z[,'F(Z)'"
O =y

Table 8.1 lists some simple but frequently used z-transform pairs.
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Table 8-1. z-Transform Pairs

f(k) F(z)
1 =
unit impulse: f(k)= {0: ”z>g F(z)=1 .
unit step: f(k)=1 F(z)= —
unit ramp: f(k)=k F(z) :(;'"il-?
geometric seres: flk)=a* F(z)=
z—a
elayed geometric series: f()={ 0, &0 F(z)=
delayed geometric series: @ k>0 2)=-——
geometric ramp: f(k)=ka"™* F(Z)=_._Z_2
(z—a)
delayed geometric ramp: f(k) = {0’ k=0 F(z)=
ayed g mp: (k=1)a*?, k> z (z—a)*

8.3 TRANSFORM SOLUTION OF DIFFERENCE EQUATIONS

The z-transform is the basis of a very effective method for solution of linear,
constant-coefficient difference equations. It essentially automates the process of
determining the coefficients of the various geometric sequences that comprise a
solution.

The heart of the method is the fact that if the sequence y(k) has transform
Y(z), then the advanced sequence y(k + 1) has transform zY(z)~zy(0). (See
Property 3 in Sect. 8.2.) By repeated application of this property one can
deduce the successive correspondences

y(k) e Y(z)
y(k+1) e 2Y(2)—zy(0)
y(k +2) o z22Y(2)— z22y(0) — zy(1)
y(k +3) & 22Y(2)= 2%y (0)~ 2%y(1) — zy(2)

(8-8)

and so forth.
Now consider the nth-order difference equation

yk+n)t+a, y(k+n~1)+a,,y(k+n—2)+---+agylk)=g(k),
k=0,1,2,... (8-9)
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By taking the z-transform of both sides, an algebraic equation is obtained for
the unknown transform Y(z). Let us assume first that the initial conditions are
zero; that is, y(0)=y(1)=---=y(n~1)=0. In this case only the first terms in
the nght-hand side of the correspondences (8-8) are required. The transform of
(8-9) becomes

2"Y(2)+a, 2" Y (2)+ a, 2" Y (2) 4+ +a, Y(2)=G(z)  (8-10)
or
(z"+a,_z" ' +a, ,z" P+t ay) Y(z)=G(z2) (8-11)

Thus,
G(z)

Y(z)= 3
( 2%+ a, 2" 4 a, 2"+ tag

(8-12)

Once the z-transforin of g(k) is computed, the transform Y(z} is determined.
Finally, the solution y(k) can be found by mverung the transform; that is, by
finding the sequence that has this particular transform. (A method for this
inversion 1s presented later in this section.)

We note that if the transform G(z) 1s rational, then the transform Y(z) is
also rational. The polynomial appeaning in the denominator of (8-12) is
recognized as the characteristic polynomial of the original difference equation
(8-9). To determine the basic geometric sequences comprising the solution y(k)
1t 1s necessary to factor this polynomial.

The procedure 1s also applicable if the initial conditions are not all zero.
In that case the additional terms in (8-8) must be incorporated. This, however,
simply modifies the right-hand side of (8-11).

Let us illustrate the procedure with some simple examples. Then we shall
consider a general procedure for inverting rational z-transforms.

Example 1. Consider the difference equation

yk+D)—yk)=0 k=0,1,2,..

with initial condition y(0)=1. (One should be able to deduce the solution
immediately, but let us work through the procedure.) The z-transform of the
equation is

z2Y(z2)—zy(0)—Y(z)=0
or, substituting the initial condition and solving,

z

Y(Z)=z—1

From Table 8.1 of the previous section (or Example 1 of that section) we find
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that this transform corresponds to y(k)=1, k=0,1,2,..., and this is clearly
the correct solution.

Example 2. Consider the difference equation
ylk+1)+2y(k)=4%  k=0,1,...
with y(0) =0. Application of the z-transform yields
2Y(2)+2Y(z) =;—j—z
Thus,

z
Y(z)=——rr—r
&=
One may verify that
: 3 4
(z+2)(z~4) z—4 z+2

Therefore from Table 8.1 it follows that y(k) 1s composed of two deiayed
geometric sequences: one with ratio 4 and the other with ratio —2. Specifically,

0 k=0

o-={
y(k) 2451 4 Y—2)e k=1

Inversion by Partial Fractions

Transform inversion is the process of going from a given z-transform, ex-
pressed as a function of z, to the corresponding original sequence. If the z-
transform 1 given as a rational function, this inversion can always be accom-
plished directly (but tediously) by dividing the denominator polynomual into the
numerator, recovering the series expansion that defines the transform in terms
of the original sequence. There is, however, a simpler procedure in which the
transform is first expressed in what is termed a partial fraction expansion. We
shall outline the general technique and apply it to some examples.
Let F(z) be a reduced strictly proper rational function

bn_IZ"_—i‘*" - '+bo

F(z)=
(@) 2"+ a, 2" 4 4 ag

(8-13)

The denominator can be factored in the form
zha, 2" e dag=(z—z N z—2,) - (z2—2z,)

Let us assume first that the roots z,, z,, . . ., z, are distinct. Then the function
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F(z) can be written in partial fraction form

F(Z)_—_,_C_}_..+__£_2__+...+__&‘_ (8-14)
Z—2, z—2, z—2z,

When the roots are distinct an expansion of the form (8-14) always exists. The
n constants ¢y, Cp, .. ,C, must be determined so that when (8-14) is cross
multiplied to convert 1t to the form (8-13), the n coefficients by, by, ..., b, _,
are correct.

Once a transform is expressed in the partial fraction form (8-14), inversion
is straightforward. Each term on the right-hand stde of (8-14) corresponds to a
delayed geometric series with ratio z;. Thus, the inverse transform of F(z) is the
weighted sum of such sequences.

Specifically,

k=0

e - k=1

n<n

o ={

128V cyz5!

If some of the z;’s are not distinct, then the partial fraction expansion must
in general include higher-order terms. For instance, suppose a root, say z, is
repeated m times. Then the expansion must include the terms

Ciy Ciz C

L)

4ot
z~z (z—z)* (z—z)"

Again, however, each of these can be inverted by extending the result of the

last entry in Table 8.1. This leads to terms of the form z*, kz*™!, k22872, . |
k(m—l)zk—m+lr

Example 3. Consider the transform
z=3

F(z)=22—3z +2

Let us find 1its verse.
Factoring the denominator we obtain
z-3
(z—-1)(z~2) :

Therefore, we look for a partial fraction expansion of the form

F(z)=

Cy Cs
L2

F&)=779+23

Cross multiplying and equating terms we find

-— + " —
F(z)-—‘cl(z 2)+c(z—1)

(z—=1}z-2)
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Comparison with the original expression for F(z) leads to the equations
cite,=1
~2¢c,—¢c,=-3
These have solution ¢; =2, ¢, = —1, and hence the partial fraction expansion 1s

2 1
F(z)_z—l—z¥2

Therefore, using Table 8.1 we can deduce that

f(k)_{o k=0
Tlo-2vt k21
Example 4. Let
222~72+7
Fo= e

To invert this we seek a partial fraction expansion of the form

Cy Cs C3
F(z)= + +
(2) z=1 (z—=1)? z-2
Cross multiplying and equating terms we find (using a procedure similar to that
employed 1n Example 3)

1 2 + 1
z=1 (z—=12% z-2
From Table 8.1 this 1s easily converted to

0, k=
fO)= {1~2(k— D428 k=

F(z)=

0
1
Example 5. Let
2z2-3z
Fz)= 22-3242

This rational function is not strictly proper. However, z is a factor of the
numerator. Thus,
F(z) 2z-3
7 22-=3z42
is strictly proper and can be expressed in partial fraction form

F(z) 1 1
= +
z z—1 z-2
This means that z >
F(z)= +—

z—-1 z-2
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The first term corresponds to the unit step and the second corresponds to a
geometric sertes with ratio 2. Therefore,

flk)y=1+2F k=0
Example 6. Consider

z+2
z—1

F(z)=

This rational function is not strictly proper. However, it can be written as a
constant plus a strictly rational function.

F(z)=1+——
z—1

Therefore,

=

ESE
]
- o

1%

8.4 STATE EQUATIONS AND TRANSFORMS

The transform technique can be applied to state equations, leading to new
relations, new 1nsights, and new analysis techniques.

Transfer Functions

Consider the following single-input, single-output system:

x(k+1) = Ax(k) +bu(k) (8-15a)
y (k) =¢Tx(k)+du(k) (8-15b)
The z-transform can be applied to these equations, yielding
zX(z)—zx(0) = AX(z)+bU(z) (8-16a)
Y(z)=c¢"X(z)+dU(2) (8-16b)

The transform X(z) is a vector with components being the transforms of the
corresponding components of x(k). Since the z-transform s linear, 1t 1s possible
to apply 1t to the linear equations (8-15) in the direct fashion indicated.

Let us assume x(0)=0. Then from (8-16a) one finds

X(z)=[Iz - Al *bU(z) 8-17)
Hence, substituting in (8-16b)
Y(z)=c"[Iz - AT 'bU(z)+dU(z)
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Therefore,

Y(z)=H(z)U(z) (8-18)

where

H(z)=c"[Iz— Al 'b+d (8-19)

[Note that ¢"[I1z— Al 'bis 1x1.]

The transform H(z) defined by (8-19) is called the transfer funcnion of the
system (8-15). It carries all the information necessary to determine the output
in terms of the input. [Direct use of the transfer function always implicitly
assumes x(0)=0.]

Since the state equations (8-15) are closely related te ordinary linear,
constant-coeflicient difference equations. 1t is perhaps not surprising that H(z)
can be expressed as a rational function of z. The proposition below verifies this
fact.

Proposition. The transfer funcuion of a single-wnput, single-output nth-order
linear system s a proper rational function of degree no greater than n.

Proof. This result follows from the cofactor expression for the verse of a
matrix. We know that the determinant of Iz—A 15 a polynomial of degree
n—the characteristic polynomial of A. The elements of the inverse of Iz —A
are, accordingly, each strictly proper rational functions with the characteristic
polynomial as denominator. The transfer function H(z) consists of weighted
sums of these elements, plus the constant d. When expressed with a common
denominator poiynomial (which is the characteristic polynomial) the result 1s a
proper rational function, The degree of the denominator polynomal 1s n. If 1t 1s
possible to reduce the result, the degree 1s less than n. |

Impulse Response

Instead of employing the transform technique, let us solve (8-13) directly for
y(k). This is easily accomplished by using the general solution formula of Sect.
4.5. Assuming x(0) =0, the output y(k) is given by the formula

k—1

y(k)= Y. cTA*""'bu(l)+du(k) (8-20)

i=0

Defining, for k =0, the scalar-valued function

hio={° €=
- cTAF 1 k=1
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the expression for the output can be written
k
y(k)= Y h(k—lu(l) (8-22)
i=0

The function h(k) defined by (8-21) is the impulse response function of the
system (8-15). The interpretation of the impulse response is, of course, that it is
the output corresponding to a unit pulse at k = 0. Clearly, in order to determine
the output for any input sequence (under the assumption of zero 1nitial state), it
is sufficient to have computed the itmpulse response function, rather than all
powers of A. For this reason the impulse response function is a natural
characterization of the system.

The impulse response and the transfer function are inttmately related.
Indeed, the transfer function is the z-transform of the impulse response. The
easiest way to see this is to consider the output produced by application of a
unit impulse at k=0. By definition, the output y(k) i1s h(k), the impulse
response. On the other hand, in terms of z-transforms, the transform y(z) of

the output satisfies
Y(z)=H(z)U(z)

where H(z) is the transfer function and U(z) is the z-transform of the input.
For an input equal to a unit impulse, one has U(z)=1 (see Table 8.1). Thus,
Y(z)= H(z). Since Y(z) is the z-transform of the impulse response, so is H(z).
This result 1s summanzed below.

Theorem. For a linear, constant-coefficient, single-input, single-output system,
the transfer function H(z) is the z-transform of the impulse response n(k).
Example 1 (First-Order System). Consider again the first-order system
x(k+1)=ax(k)+bu(k)

y(k)=cx(k)
The transfer function is
bc

H(z)=Z

In terms of a series expansion we have

Inverting this term by term we see that

h(k)_{o k=0
“beakt k=1

which agrees with the known form for the impulse response.
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ulk) ’\ x(k) u(k) [\ x(k)
|~ ¥

(a) (b)

Figure 8.2. Unit delay.

The Unit Delay

Consider the most elementary dynamic system—a single delay. Its defining
equations are

x(k+1)=u(k)
y(k)=x(k)

and we have often represented it diagrammatically, as in Fig. 8.2a. The
transfer function of this elementary system is easily seen to be H(z)=1/z.
Therefore, the unit delay can be expressed diagrammatically as in Fig. 8.2b.
Indeed we shall find 1t convenient to follow standard convention and refer to
1/z as the delay operaton. It is, of course, the fundamental dynamic compo-
nent for discrete-tume systems. General systems are composed simply of a
number of delays and various static components.

Combinations

An important characteristic of the transfer function, which :s not shared by the
impulse response function, is that the transfer function of a large structured
system can be easily written in terms of the transfer functions of individual
subsystems, thereby reducing a high-order caiculation to a series of smaller-
order calculations.

First consider a paralle] arrangement as shown in Fig. 8.3. Suppose the
two systems S, and S, have transfer functions H,(z) and H,(z), respectively.

Uy b

| S
42 2 Y2

Figure 8.3. A parallel combination.
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e S, S, —-_—-—->-

Figure 8.4. A series combination.
Then, assuming all state variables are initially zero, it follows that
Y.\(2)= Hi(2)Uy(2)
Ya(z) = Hy(2)Uy(z)
Uiz} = Uy(2) = U(z)
Y(z) = Yi(z)+ Ya(2)
Therefore,
Y(z)=[H,(z)+ Hx(2)]U(2)
and hence, the composite transfer function 1s the sum of the two individual

transfer functions. Thus,

The transfer function of a parallel combinanon of systems 1s equal to the

sum of the transfer functions of the individual subsystems.

The above property of addition for paralle] combinations 1s important, but
not particularly striking. This property is possessed by the impulse response
function h(k) as well. The unique property of the transfer function is how 1t
decomposes in a series combination of systems.

Consider the system shown in Fig. 8.4. Suppose the two individual systems
again have transfer functions H,(z) and H,(z), respectively. Then

Y\(z)=H,(2)U(z)

Y(2) = Hy(2)Y,(2)
Thus,

Y(z) = Hy{z)H,(z)U(z)

In general, therefore,

The transfer function of a series combination of systems is equal to the product
of the transfer functions of the individual subsystems.

Feedback Structures

Systems composed of more complex arrangements of component subsystems
can be treated by systematic application of the rules for parallel and series
combinations. One important arrangement is the general feedback form illus-
trated in Fig. 8.5. In this figure G,(z) and G,(z) represent the transfer functions
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sl )< G, (z)
5

Gy(z) [

Figure 8.5. General feedback structure.

from the input to the output of the systems contained within their respective
boxes. The overall transfer function H(z) from u to y is to be determined.

The transfer function H(z) can be determined by writing an equation that
it must satisfy. If the overall transfer function from u to y is H(z), then using
the series rule the transfer function from u to 8 1s H(z)G,(z). Then, using the
parallel rule, the transfer function from u to € must be 1+ H(z)G,(z). Then
again using the series rule the transfer function from u to y must be G,(z)
{1+ H(2)G,(z)}. We therefore obtain the equation

H(z)=G(2){1+ H(2)Ga(2)} (8-23)
and thus we conclude that
Gy(z)
1-G1(2)G,(2)

This formula for the transfer function of a feedback structure, together with the
formulas for parallel and series combinations, generally enables one to quickly
compute the transfer function of complex arrangements.

H(z)= (8-24)

Example 2. A diagram of interconnected systems as shown in Fig. 8.6 might
arise in the study of a control system for a mechanical or electrical system.
This transfer function is readily found by application of the rules described 1n
thus section. The inner feedback loop can be regarded as a system with transfer
function
Gq(2)
1-Gy(z)H,(2)

G, (z) ’ G,(3)
<—J A
H, (3)

H, (3)

Figure 8.6. Interconnected systems.
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This, combined with the system G,, can then be regarded as the upper part of
the outer feedback loop. The overall transfer function is
G.(2)Gs(2)
1-G,(2)H,(z)
_G1(2)Gy(z)H,(2)
1-Gi(2)H,(2)

G1(2)Gy(2)
1-G(2)H(z)— G,(2)G(2)Ha(2)

H(z)=

H(z)=

Note that if the individual transfer functions are rational, the overall transfer
function will also be rational.

8.5 LAPLACE TRANSFORMS

The foregoing developments can be paralleled for continuous-time systems
through 1ntroduction of the Laplace transform.

Definition. Corresponding to a function y(1), t=0 the Laplace transform of
this function 1s

Y

Y(s)= J y(He ™ dt (8-25)

0

where s is an indeterminant variable.

There are certain convergence condittons assoctated with the integral in
this definition. If y(f) is a continuous function bounded by some exponential
[say |y(£)]=<e™'], then the integral exists for complex values of s having real
part sufficiently large (larger than M). However, analogous to the z-transform
situation, the integral can usually be considered as just a formalism; the
transform itself being represented by a rational expression 1n the variable s.
This is always possible when y(f) is made up of various exponential terms.

Example 1. Consider the function y(t) = e¢®. The corresponding Laplace trans-
form is
Y {a~s)t |oo

Y(s)=J e*e™ dt =
o a—s lo (8-26)

1
Y(s)=—
s—a
The integral corverges if the real part of s is greater than the real part of a.
However, one may sidestep the convergence issue and simply associate the
rational expression (8-26) with the transform of e*.
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The Laplace transform enjoys a set of properties quite similar to those of
the z-transform.

Property 1. If f(t) and g(t) are functions with Laplace transforms F(s) and
G(s), respectively, then the transform of f(t)+g(t) is F(s)+G(s). The
transform of af(t) is aF(s).

Proof. This follows from the linearity of the definition. 1

Property 2. If f(t) has Laplace transform F(s), then the derivative function
g(t)=(d/dt)f(r) has transform G(s)=sF(s)—f(0).

Proof. We have

aa

G(s) =J

0

d -5t
o f()e™ dt

Integration by parts yields

tao

. +sJ; f(De™ dt
= sF(s)—f(0). 1

Property 3. If f(r) has Laplace transform F(s), then the integral function
g(t) =14 f(r) dr has transform

G(s)=f(t)e™

1
G(s)= 3 E(s)
Proof. This can be deduced from Property 2 above, since (d/dr)g(t) = f(¢). Thus,
F(s)=sG(s)— g(0)

since g(0)=0, the result follows. |

Solution of Differential Equations

The Laplace transform provides a convenient mechanism for solving ordinary
linear, constant-coefficient differential equations. The approach s exactly
analogous to the z-transform procedure for difference equations. We illustrate
the techmque with a single example.

Example 2. Consider the differential equation

Sy o dy(®)
32y =1 (8-27)

with the 1ntial conditions
dy(0)

yO=1 —==0
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We note that by two applications of Property 2 the Laplace transform of
(d*y/dt?) is s2Y(s)~—sy(0)—~(dy/de)(0). Then, taking the transform of the
differential equation (8-27) yields

dy(0)
dt

The 1/s term on the right is the transform of 1 (see Example 1, with a =0).
Substituting the given initial conditions yields

(s*=35+2)Y(s)—sy(0)— +3y(0)=§

1 2-3s+1
(s2-35+2)Y(s)=—+s—3 ="~
s s
Therefore,
s2—3s+1
Y(s)=
() s(s2—3s+2)

This transform can be inverted by developing a partial function expansion.
Thus,

vy ly L1
2s s—1 2(s—2)

Therefore, y(t) can be expressed as the corresponding combination of expo-
nential functions,

y()=3+e' —3e”

State Space Equations

Let us now apply the Laplace transform to an nth-order, single-input,
single-output system written in state space form

x(t) = Ax(1)+bu(r) (8-28a)
y()=c"x(t) + du(t) (8-28b)
Assume that x(0) = 0.
Application of the Laplace transform yields immediately
sX(s) = AX(s)+bU(s)
Y(s)=cTX(s)+dU(s)
Elimination of X(s) produces the input-output relation

Y(s)=H(s)U(s)
where

H(s)=c¢"[sI-A]"'b+d (8-29)
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ult) If\ x(t) u(t) B x(t)
b L

(a) (b}

Figure 8.7. The pure integrator.

As before H(s) is called the transfer function of the system (8-28). It is a proper
rational function of degree n or less. The transfer function converts the
complicated dynamic relation between input and output into a simple multi-
plicative operation of transforms. This greatly facilitates calculation, especially
when a system has a natural decomposition as a collection of subsystems.

The Pure Integrator

The simplest continuous-time dynamic system is the system x(tf)=u(t). The
output x(t) 1s just the integral of the input funcuon. This 1s represented
diagrammatically in Fig. 8.7a. The transfer function of this system 1s easily seen
to be 1/s. Thus, we often use 1/s instead of an integral sign in system dia-
grams, as illustrated in Fig. 8.7b.

Combinations

We conclude this section with an example that illustrates how the transfer
function often leads to a more visual and more rapid approach to analysis. 1t
works well i conjunction with dynamic diagrams.

Example 3. Suppose we are given the system

R NEREC
y(t)=x,(1)

The initial condition is x,(0)=x,(0) =0 and the input u(f)=1 is applied, for
t=0. What is the output?

The system is shown in diagram form n Fig. 8.8. From the diagram one
sees immediately that the transfer function is

HE)=5556=2)

The Laplace transform of the constant input is, by Example 1 (with a =0),
U(s)=1/s
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ot}

v v
2

Figure 8.8. Diagram for Exampie 3.

Therefore, the output has Laplace transform Y(s)= H(s)U(s). Thus,

Y(s) I S
s(s—1)(s—2)
This can be written tn partial fraction form
1 1 1
= ———
Yo 2s s—1 2(s=2)

It then follows that

STATE SPACE METHODS

8.6 CONTROLLABILITY

The input and output structure of a system can significantly influence the
available means for control. Two fundamental concepts characterizing the
dynamic mmplications of input and output structure are the dual concepts of
controllability and observability.

Controllability for Discrete-Time Systems

We begin by giving a general definition of controllability for linear discrete-
time systems.

Definition. The nth order system
x(k+1)= Ax(k) +Bu(k) (8-30)

is said to be completely controllable™ if for x(0) =10 and any given n vector

* It 1s possible to define a notion of controllability with respect to a subset of the states that can be
reached. The termunology compietely controllable thus refers to the fact that all states can be
reached. We shall have no need for anything other than the notion of complete controllability,
and, often, for economy of language, we refer to this concept simply as controllability.
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X, there exists a finite index N and a sequence of inputs u(0), u(l),. _,
u{N —1) such that this input sequence, applied to (8-30), yields x(N)=x,.

Thus, somewhat more loosely, a system is completely controllable if the
state can be driven from the origin to any other state in a finite number of
steps.T Actually, the choice of x(0) =0 is simply one of convenience. We will
later show that if the system is completely controllable in the sense of the given
definition, it 1s possible to drive the system from any initial state to any
specified state within a finite number of steps. Thus, complete controllability
corresponds directly to the intuitive notion of being able to control the system
state.

Example 1. In the system shown in Fig. 8.9 the state vaniable x, cannot be
moved from zero by application of inputs u(k). This system 1s not completely
controllable.

It is possible to derive a simple set of conditions on the n X n matrix A and
the n X m matrix B that are equivalent to controllability. This result 1s stated
below.

Theorem 1. A discrete-time system (8-30) 1s completely controllable if and only
if the n X nm controllability matnx

M=[B, AB, ..., A""'B] (8-31)
has rank n.

Before proving this theorem let us briefly study the structure of the
controllability matrix. If the system has only a single, scalar input, the input
matrix B reduces to a vector b. In that case the controllability matrix 1s written

M=[b, Ab,..., A" 'b]

u(k)

*2

RS
52

ay LF

Figure 8.9. A system that is not completely controllable.

+Many authors term this property complete reachability and define a system as compietely
controllable if any mitial state can be driven to zero in finite ime by an appropnate tnput
sequence. The two notions comcide in the discrete-time case if A is nonsingular, and they always
coincide in the continuous-time case.
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and 1t is a square nxn matrix. The condition that this matrix has rank n
is equivalent, in this case, to its being nonsingular. In the general case where
B consists of m columns, the controllability matrix can be regarded as being
composed of m controllability matrices of dimension nXn. As expressed in
(8-31) they are interlaced with the first column of each group forming one of
these matrices, the second forming another, and so forth. The condition for
complete controllability, as stated by the theorem, is that from among the nm
columns there are n that are linearly independent—so that the rank is n.

As an aid to the proof of the theorem, we first prove the following
preliminary result. This result is used later in this section as well.

Lemma. For any N =n, the rank of the matnx
[B, AB, ..., AN"'B]
is equal to the rank of the controllability mairix M.

Proof. As k increases by one unit the rank of the matrix M, =
[B,AB, ..., A 'B] cither increases (by at least 1) or remains constant.
Suppose that k 1s an integer such that the rank of M, ., is equal to the rank of
M,. That means that the m columns comprising A*B are each linearly
dependent on the (previous) columns in M,. That 1s, there 1s a relation of the
form

A“B=BD,+ABD, +- - -+ A*"'BD, _, (8-32)

where each D, 1s an m Xm matrix. Now multiplication of this relation by A
leads to the new relation

A“*1B=ABD,+A?BD, +- - - +A*BD, _, (8-33)

which shows that the columns comprising A**'B are linearly dependent on the
columns in My, ,. Therefore, the rank of M, ,, 1s the same as the rank of M, ;.
By continuing this argument, we see that for all j >k the rank of M, is equal to
that of M,. Thus we have shown that, in the progression of M, ’s, once the rank
fails to increase, it will remain constant even as additional columns are ad-
joined.

In view of the above, the rank of M, increases by at least 1 at each
increment of k until it attains its maximum rank. Since the maximum rank is at
most n, the maximum rank is attained within n steps (that is, by M,). I

Now we turn to the proof of the theorem.

Proof of Theorem 1. Suppose a sequence of mputs u(0), u(1),...,u(N—-1) is
applied to the system (8-30), with x(0) = 0. It follows that

x(N)=AY"1Bu(0) + AN ?Bu(1)+- - -+ Bu(N—-1)
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From this formula we see that points in state space can be reached if and only
if they can be expressed as linear combinations of powers of A times B. Thus,
the issue of complete controllability rests on whether the infinite sequence B,
AB, A’B, .. has a finite number of columns that span the entire n-dimensional
space. By the lemma, however, these span the full n-dimensional space if and
only if M is of rank n. I

As a result of this theorem we see that the condition of complete
controllability is slightly stronger than can be immediately inferred from the
definition. The definition requires only that it be possible to transfer the system
state from the origin to an arbitrary point in some finite number of steps. As a
corollary of the theorem, however, we see that if such transfers are possible in
a finite number of steps, the transfer can in fact be accomplished within n
steps.

It also follows from the theorem that if a system is completely controllable
in the sense of transference from the ongin to an arbitrary point, 1t 1s in fact
controllable 1n the stronger sense of being able to transfer the state between
two arbitrary points within n steps. To show this, suppose x(0) and x(n) are
specified arbitrarily. With zero input the system would move to A"x(0) at
period n. Thus, the desired input sequence is the one that would transfer the state
from the origin to x(n) — A"x(0) at period n. We see that the modest definition of
complete controllability actually implies rather strong and desirable control
characteristics.

Example 2. The system 1n Fig. 8.9 1s described by the equations

xl(k+1)]_[a1 OJ[xl(k)] [o
[xz(k+1) 1 L™ 1]“(")
Thus, the controllability matrix M =[b, Ab] is

well ]
1 a,
Its columns are linearly dependent, and, as deduced earlier, the system 1s

not completely controllable.

Example 3. If the input of the system shown in Fig. 8.9 is shifted to a position
entering the first stage rather than the second, the corresponding controllability

matnx hl [b’ fkb] 18
‘ 1 a, I

which has rank 2. Thus, this system is completely controllable.
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Single-Input Systems

For single-input systems, there is a simple interpretation of complete controlla-
bility in terms of the diagonal representation of the system (assuming that the
system can be diagonalized). Suppose the system

x(k+1) = Ax(k)+bu(k) (8-34)
is converted to diagonal form by the change of variable
x(k)=Pz(k) (8-35)

That is, the matrix P"*AP= A is diagonal. In the new variables the system is
described by the equations

z(k +1)=Az(k)+bu(k) (8-36)
where b=P7'b. It should be clear that complete controllability of the system
(8-34) is equivalent to complete controllability of (8-36), for if any point in
state space for one system can be reached, so can any point in the other.

Complete controllability hinges on the nonsingularity of the matrix
[b, Ab, . ,A""'b]. This matrix is

by Aby A}b, -+ ATTh
b, Aby, AZb, --- A37'B,
M=|" ) ’ ’ (8-37)
b Aby A6, -+ AZTD,
To be nonsingular, it 1s clear that it is necessary that b#0fori=1,2,...,nm,

for otherwise one row would be identically zero. It 1s also clear that there can
be no repeated eigenvalues, for otherwise two rows would be proportional.
These conditions are both necessary and sufficient for complete controllability
of (8-36). (See Problem 14 for the nondiagonalizable case.)

The intuitive meaning of these results is made clear by Fig. 8.10. For the
system to be completely controllable, there must be a nonzero connection from
the mput to each of the subsystems in its diagonal representation—otherwise
that subsystem variable cannot be influenced by the input. Furthermore, the
diagonal system cannot have repeated roots—otherwise the variables of the
corresponding two subsystems will always be in fixed proporton.

Complete controllability of a system means that movement of the state can
be directed by the put. This is possible only if the mput i1s “fully connected”
to the dynamics of the system as described above. The input must reach every
individual first-order subsystem, and these subsystems must have different
dynamic constants if they are to be independently controlled. Complete con-
trollability 1s a general criteria for the “connectivity” of the input structure.
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Figure 8.10. Complete controliability for diagonal systems.

Controllability for Continuous-Time Systems

The defimtion of complete controllability for continuous-time systems is a
direct analog of the definition for discrete-time systems.

Definition. The system
x(t) = Ax(t) + Bu(s) (8-38)

is said to be completely controllable if for x(0) =0 and any given state x,
there exists a finite time ¢, and a piecewise continuous nput u(t), 0 <t =<1,
such that x(t,) =x,.

The criterion for complete controllability in terms of the matrices A and B
1s ai30 analogous to that for discrete-time systems, although the proof is
somewhat different. In continuous time we must employ rather indirect argu-
ments to translate the rank condition to specific input functions. As will be seen
later, however, the interpretation of the condition is tdentical to that for
discrete-time systems.



282 Concepts of Control

Theorem. A continuous-time system (8-38) is completely controllable if and only
if the controllability matrix

=[B, AB, A’B, ..., A" 'B]
has rank n.

Proof. Suppose first that the rank condition does not hold. For any t, and any
input function u(t), 0=<t=t,, we have

x(t,) = J; eACOBu(r) dt (8-39)
x(t)= J; {I+A(t1-t)+%'— (tH,—t)?*- -}Bu(t) dt (8-40)

t, re,
x(t1)=BJ; u(t) dt+ABJ0 (= tu(r) dt+A2BJ (t‘z u(t) dt+

When evaluated, the integrals in the above expression are smmply constant
m-dimensional vectors. Therefore, the expression shows that x(¢,) is a linear
combination of the columns of B, AB, ... By the earlier lemma, if the rank of
M is less than n, then even the infinite set of vectors B, AB, A®B, .. does not
contain a full basis for the entire n-dimensional space. Thus, there is a vector
x, that is linearly independent of all these vectors, and therefore cannot be
attained.

Now suppose that the rank condition does hold. We. will show that the
system is completely controllable and that 1n fact the state can be transferred
from zero to an arbitrary point x; within an arbitrarily short period of time.

We first show that for any t,>0 the matrix

K= J; e"ABBTe~A™ dt (8-41)
is nonsingular. To prove this, suppose there is a vector a such that Ka=0. Then
a"TKa=0 (8-42)

or, more explicitly,
L aTe"ABBTe A™a dr =0 (8-43)

The integrand above has the form ¢(t)Tc(1), where ¢(t)=BTe *™a. It follows
that the integrand 1s always nonnegative. For the integral (8-43) to vanish, it
follows that the integrand must vanish identically for O=t=1,. Therefore,

Te™*B=0
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for all ¢, 0=t =1,. Evaluation of this expression, and its successive derivatives,
with respect to ¢, at t =0 leads to the following sequence of equations:

aTB=0
aTAB=0
aTA’B=0
aTA" 1B=0

This means that the vector a must be orthogonal to all columns of the matrix

M. Since 1t 1s assumed that this matrix has rank n, it must follow that a=0.

Therefore, by the fundamental lemma of linear algebra, K 1s nonsingular.
Now, given x,, select any ;>0 and set

u(t)=BTe ATK 'e"Auy, (8-44)
Then from (8-39) ’

t

x(t) = J eAETIBBTe AT K e ANy, dt
0
x(1) =e* KK le A, =x,

Therefore, the input (8-44) transfers the state from zero to x,, and the system
is completely controllable. I

The interpretation of this result is the same as for the discrete-time case. If
there is only a single input and the system has distinct eigenvalues, then again
controllability corresponds to the conditions that the eigenvalues be distinct,
and that the connection between the input and each of the separate one-
dimensional systems be nonzero.

Example 4 (Stick Balancing). There are several mechanical problems—
including the maintenance of a satellite in proper orbit, the control of a
helicopter, and the control of a rocket while being thrust upward—that have
the character of complex balancing problems. As a simple version of a problem
of this type let us consider the balancing of a stick on your hand, as illustrated
in Fig. 8.11. We know from experience that this is possible—and thus the stick
and hand system must be controllable. Let us verify that it is.

For simplicity we consider balancing a stick of length L all of whose mass
M is concentrated at the top. From Newton’s laws, 1t can be deduced that the
system is governed by the equation

i (t) cos 0(t)+ LO(t) = g sin 6(t) (8-45)
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Figure 8.11. Stick balancing.

where g is the gravitational constant. We also have the relation
x(t)=u(t)+ L sin 6(1) (8-46)

Assuming that the stick is nearly at rest in the vertical position (with 6 small),
the two equations (8-45) and (8-46) can be written in terms of x(¢) as

#(0)=- [x(0) = u(n)]

For ease of notation let us set L = 1. Then defining the velocity v(f) = %(t), the
system has the state space representation

ol=l olliia] el i1

The controllability matrix is
0 -1
mesl ) )
81 o

Since M is nonsingular, the system is completely controllable. (This is easy; but
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Figure 8.12. A controllability probtem.

what about two sticks, one on top of the other as shown i Fig. 8.12!? You may
wish to explore the controllability properties of this system without writing
equations.)

8.7 OBSERVABILITY

Complete observability is a concept quite analogous to complete controllabil-
1ty. In fact; the two are often referred to as dual concepts in that resuits for one are
the transpose of results for the other.

Observability for Discrete-Time Systems
We begin by stating the formal definition.

Definition. The discrete-time system
x(k +1) = Ax(k)

y(k) = Cx(k) (8-47)
is completely observable if there is a finite index N such that knowl-
edge of the outputs y(0),y(1),...,y(N~1) is sufficient to determine the
value of the initial state x(0).

In the above definition, it 15 assumed that the equations (8-47) governing
the system and its outputs are known but that the initial state is unknown
before the outputs become available. By watching the outputs, the value of the
initial state can be inferred if the system 1s completely observable. In a sense
the state is observed through the autput structure.
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The definition above easily extends to general time-invariant linear sys-
tems of the form

x(k +1) = Ax(k) +Bu(k) (8-48a)
y(k) = Cx(k) +Du(k) (8-48b)

having both an input and an output structure. (As usual A is nXn, Bis nxm,
C s pXn, and D is p X m.) One simply imposes the requirement that all inputs
u(k) be zero. This reduces the system to (8-47). Thus, both complete control-
lability and complete observability of (8-48) can be investigated.

Complete observability is an important concept in the context of system
control. Control inputs are usually determined on the basis of observation of
available outputs. If the output structure is deficient in that 1t does not
eventually convey full information about the state vector, then it may not be
possible to devise suitable control strategies. Thus, in general, good control
requures both the ability to infer what the system 1s doing (observability) and
the ability to change the behavior of the system (controllability).

Example 1. The system shown in Fig. 8.13 is not completely observable from
the single output y. There is no way to infer the value of x,.

The criterion for complete observability in terms of the specific system
description is analogous to that of complete controllability.

Theorem 1. The system (8-47) is completely observable if and only if the pn X n
observability matrix

— -

C
CA
CA?
S: =
. L CA"~1]
has rank n.
¥y
x, e > — X
a a3

Figure 8.13. Not completely observable.
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Proof. Suppose that S has rank n. We will show that we can take N=n 1n the
definition and that, accordingly, the imitial state can be determined from
knowledge of the n outputs y(0), y(1),...,y(n—1).

Solution of the system equation (8-47) yields the set of equations

y(0) = Cx(0)
y(1) = CAx(0)

- 2
y.(2) CA*x(0) (8-49)

y(n—=1)=CA""'x(0)
This 1s a set of pn equations. In view of the rank condition, n of these
equations can be selected that are linearly independent, and they can be solved
uniquely for x(0).
The proof of the converse follows a pattern similar to that for complete
controllability. One can write

C
CA

CA® _
— [CT, ATCT, (AT)ZCT, e (AN—-A)TcT]T

L CAN ]

Therefore, from the lemma of the previous section, it follows that for N=n the
matrix on the left is of rank n if and only if the observability matrix S is of rank
n. Therefore, if an initial state can be uniquely determined from a finite
number of output observations, it can be so determined from just
y(©),y(1),...,y(n-1).1

As a simple application, one can find that the observability matrix for the
system of Fig. 8.13 s
S— [0 1 ]
l.O a,

Since this is not of full rank, it follows, as deduced earlier, that the system
is not completely observable.

For systems with a single output and which have a diagonal form, the
above result has a natural interpretation in terms of connections of the outputs
to the individual subsystems. Referring to Fig. 8.14, the system is completely
observable if and only if the A;’s are distinct and the ¢;’s are all nonzero. This
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Figure 8.14. Complete observability for diagonal
system.

means that for complete observability the output must be connected to each of
the first-order subsystems (in the diagonal form) and it means that no two
subsystems can be identical; for otherwise it would be impossible, on the basis
of output observations alone, to distinguish responses of the two subsystems.

Observability for Continuous-Time Systems

For continuous-time systems the development exactly parallels what one would
expect.

Definition. A system

x(t) = Ax(r)
y(£) = Cx(1) (8-50)

is completely observable if there is a t;>0 such that knowledge of y(1),
for all 1, 0=t =1, 1s sufficient to determine x(0).
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The statement of the following theorem should not be unexpected; we
leave its proof to the reader.

Theorem 2. The system (8-50) is completely observable if and only if the
observability matrix

' C
CA
S=1CA?

LCA"" L
has rank n.

The concepts of complete controllability and complete observability
should be viewed from both a mathematical and a practical perspectuive. In
terms of the formal (mathematical) development of modern control theory,
they are fundamental notions, and many techniques of control design rely on
satisfaction of these conditions. The concepts are important from a practical
viewpoint as well (because of their basis in theory), but it is rare that in specific
practical applications controllability or observability represent cloudy issues
that must be laboriously resolved. Usually, the context, or one’s intuitive
knowledge of the system, makes it clear whether the controllability and
observability conditions are satisfied.

A good analogy is the concept of nonsingularity of a square matrix. The
concept of nonsingularity is vitally important to the theory of linear algebra,
and many analytical techniques are based on an assumption of nonsingularity.
Nevertheless, in a given problem context, if a matrix is singular, there is usually
a good reason for it, deriving from the general character of the problem; and
the good analyst is not surprised. It is similar with controlability and observa-
bility. The good analyst rarely needs to go through the formal calculations.

8.8 CANONICAL FORMS

The concepts of controllability and observability provide a strong link between
the state vector {matrix) description of linear systems and the (scalar) transfer
function description, for it is these concepts that relate the input and output
structure t0 the internal state mechanism. The linkage is displayed most
directly by converting the state vector description to one of several available
canonical forms.

These particular canonical forms are based on the companion form of
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matrices. Companion form matrices were used before, in Chapter S, to convert
high-order scalar difference equations to state variable form, and their use in
this section is an extension of that original use.

The companion canonical forms provide valuable insight into the struc-
tural relations of a system; but, even beyond that, these canonical forms have
significant utility. In the development of control theory it 1s often most
convement to work with systems expressed in companion form, just as in
earlier chapters the diagonal form was often used. Moreover, because the
companion canonical forms are relatively easy to compute (as compared to the
diagonal form), they are often used for system representation in the course
of a sophisticated analysis or control design.

The development of canonical forms applies identically to discrete-time
and continuous-time systems since the canonical forms are really transforma-
tions on the matrix A, the input matrix B, and output matrix C. For conveni-
ence we work with continuous-time systems. Also, for simplicity our de-
velopment is restricted to systems with a single input and a single output.

There are essentially two classes of canonical forms. One class is based on
complete controllability of the input, the other is based on complete observability
of the output. The two classes are duals.

Controllability Canonical Forms

Suppose the system
x(t) = Ax(t) +bulr) (8-51)

is completely controllable. This is equivalent to nonsingulanty of the controlla-
bility matrix .
M=[b, Ab, A’b, .. ., A""'b] (8-52)

Therefore, given complete controllability, the controllability matrix can be used
to define a change of vanable in (8-51). Indeed let us set

x(t) =Mz(t) (8-53)
This transforms (8-51) to the form
#(t) =M 'AMz(r) + M ‘bu(t) (8-54)

The system (8-54) has an especially simply structure, which we can easily
derive. Let A=M"'AM, b=M"'b. We find immediately that
1

0



8.8 Canonical Forms 291

because M is a matrix whose rows are each orthogonal to b; except the first
row, and that row when multiplied by b yields 1. The matrix A can be
expressed as

A=M"'[Ab, A%, ..., A"b]

Each row of M™! is orthogonal to all columns A*b in A, except for two.
Consider, specifically, the ith row of M~!. It is orthogonal to A*b for all k,
0=k=n, except for k=1:—1 and k =n. For k=i—1, the product 1s 1. For
k = n, it is some, as yet unknown, value that we denote by —a;. . Therefore, we
conclude that A has the structure of a companion matrix, and the system (8-54)
is in the canonical form

0 0 0 -+ —ap ] 1]
1 0 0 - —a, 0
. 010 --- —Qas .
(=] . )+ ] . u(t) (8-55)
(0 0 0 -1 —a,_, 1 0.
The constants ag, ay, . .., a,— in (8-55) are the negatives of the values of

the product of the individual rows of M™' with the vector A"b. However,
although it might at first appear that these constants possibly depend on the
vector b, they actually do not. They are the coefficients of the characteristic
polynomial of A. That is, when the characteristic polynomial of A 1s written
with its leading coefficient as +1, it 1s

pA)=A"+a,_ A" '+ - +tadA+ag (8-56)

where the a;’s are those in the companion matrix A. This is most easily verified
by simply calculating the characteristic polynomial of A, a calculation that has
been carried out before (see Problem 3, Chapter 5), although the reader may
wish to verify this again at this point. This shows that the characteristic
polynomial of A is given by (8-56). Then, since A and A are similar, and
therefore have the same characteristic polynomial (Problem 21, Chapter 3), 1t
follows that the charactenstic polynomial of A is given by (8-56).

If the system (8-51) also has a linear output structure, the output will have
the representation

y{t)=cTz(t) + du(t) (8-57)

in the new coordinate system. The vector €' 1n general does not possess any
special structure in this canonical form. The diagram of a system in this
canonical form is shown in Fig. 8.15. Any completely controllable single-input,
single-output system can be put in the canonical form represented in Fig. 8.15
by a change of vanables.



292 Concepts of Control

Figure 8.15. First controllability canonical form.

A converse result 1s also of interest. Given the structure of Fig. 8.15,
suppose the coefficient values aq, a,,...,a,_, and ¢y, ¢5, ..., ¢, are assigned
arbitrary values. It can be easily shown that the resulting system is always
completely controllable. Thus the structure shown in Fig. 8.15 is a complete
characterization of completely controllable systems.

A second canonical form for a completely controllable system is obtained
by selecting a different coordinate change. As before, corresponding to the
system (8-51), let

M=[b, Ab, ..., A" 'b]

Suppose that M™! is expressed in terms of its rows as

€
e;
M-t=| (8-58)
eq
We can show that the row vectors er, eTA, . .,eTA""! generated by the last

row of M™! are linearly independent. To prove this, suppose there were
constants a,, @, ..., a, such that

aer+aefA+ - +a,efAV =0 (8-59)
Muluplication on the right by b gives
ae’b+aefAb+- -+ a,eTA"'b=0 (8-60)

However, in view of the definition of e], the first n—1 terms of this equation
vanish identically. The equation therefore implies that «, =0. Now that it is
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known that a, =0, multiplication of (8-59) by Ab yields «,_, = 0. Continuing
in this way, we conclude that «; =0 for all 1=1,2,. .., n. Thus, the vectors are
linearly independent.

Starting with the completely controllable combination A, b, we have
deduced a corresponding row vector eX such that the combination e, A 15
completely observable. We now use this combination to define an appropnate
change of coordinates, much the way that the A, b combination was used
above,

Let el
eTA

P= : (8-61)

efA™!

and define the change of coordinates for the system (8-51) by

z(t) =Px(1) (8-62)
This transforms the original system to
() =PAP 'z(t)+ Pbu(r) (8-63)

Now, following a procedure similar to that employed before, we find that
(8-63) has the explicit structure

0 10 ... 07 07
0O 0 1 ... 0 0
= . R YT I (8-64)
o 0 0 ... 1 0
|86 —ay —ay ... "‘a"__l_‘ | 1]
yiy= [ Cy Cs ... Co] z(D)+ du(r)

The values of the a;’s are the same as in the first form although the ¢;’s are not.
The diagram of a system in this canonical form, having an arbitrary single
output, is shown in Fig. 8.16.

Observability Canonical Forms

Exactly parallel procedures can be worked out for a completely observabie
single-output system
x(1) = Ax(t) +bu(t)

y(1) = cTx(t)+ du(t)

(8-65)



294 Concepts of Control

Figure 8.16. Second controllabitity canonical form.

These canonical forms and their underlying change of variables are based on
the nonsingularity of the observability matrix

cTA
s=| (8-66)

cTAn—l

The derivations of these forms are entirely analogous to those for the controll-
ability forms. The first observability canonical form 1s derived from the change of
variable z(t) = Sx(¢). The second is based on the fact that the last column of §7*
together with A forms a completely controllable combination, and thus a non-
singular matrix P can be derived with columns equal to powers of A times this
column. The resulting two canonical forms are, respectively,

0 1 0o ... 0 b,
0 0 1 ... 0 b,
()= . . z(t) + . Hu@) (8-67)
o 0 o0 ... 1 by
a0 —ar —a; ... =an,] Lb,‘ ]

viy)=[1 0 0 ... 07 z()+ du(n
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and
[0 .0 —ap | [ b,]
1 0 0 -y bz
0 ... 0 —as bg
= |. . )+ - Jul®) (8-68)
L() 0...1 —a,]| Lbn_

yn={0 0 ... 0 1] z(®)+ du(®)

Again, the values of the a;’s are the same as in the earlier canonical forms.
However, the b;’s are not necessarily the same as those in (8-65) and not the
same 1n the two canonical forms.

Relation to Transfer Functions

The canonical forms presented in this section can be used to obtain state
space representations of a given rational transfer function. This brings out the
strong connection between transfer functions, controliability and observability,
and canonical forms.

As an example, consider the system in controllable canonical form (8-64)
represented in Fig. 8.16. The corresponding transfer function is

H(s)=c"[sI-A] 'b+d

The corresponding rational function can be derived by straightforward (but
somewhat lengthy) substitution of the special forms for A and b. Another way,
which we employ, is to apply the combination properties of transfer functions
to the diagram of Fig. 8.16. For this purpose let us denote by H, (s) the transfer
function from the input u to the state variable z,. It is immediately clear that
H,_,(s)=(1/s)H,(s). Therefore,

s"T*H, (s)= H,(s) (8-69)

The transfer function H,(s) can be decomposed into the part that comes
directly from u and the part that comes indirectly from the state variables.
Thus,

()= (1- T ac ) (8-70)

In view of (8-69) this becomes

H,,(s)=l<1— y = H,.(S)>

s k=1
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Multiplying by s" leads to
[s"+a,_,s" '+ -+qg,]H (s)=5"""
Thus,
sn—l

H.(s)=
(s s"a, . s"T 4 tag

8-71)
Once this explicit form is known, the transfer function from u to y can be
immediately deduced using (8-69). Thus,

n-1 -2
C 8" T st Ty

stHa,_y st tag

H(s)= +d (8-72)

From this result it follows that by appropriate choice of the parameters
ag, a1, -., a,_, and ¢, ¢, ..., C, the transfer function can be made equal to
any proper rational function. Similar correspondences apply to the other
canonical forms. Therefore, canonical forms provide a simple and direct
solution of the problem of constructing a state vector representation of a
system for which only the transfer function 1s specified.

8.9 FEEDBACK

In rough terms, the task of control ts to manipulate the available inputs of a
dynamic system to cause the system to behave in a manner more desirable than
it otherwise would. Control can be designed for many purposes, however, and
it can be applied in many ways. This section briefly discusses the difference
between open-loop control and feedback control and illustrates some of the
advantages of feedback control. The primary theoretical development in the
section is the Eigenvalue Placement Theorem, which is an important achieve-
ment of modern control theory.

Open-loop Control

In open-loop control the input function is generated by some process external
to the system itself, and then is applied to the system. The input might be
generated by any of several means: by analysis, by some physical device, or by
some random phenomenon. A specific input might be generated by analysis,
for example, when designing a ten-year national immigration policy on the
basis of a current census, or when developing the yearly production pian for a
company. The control input might be repeatedly generated by a physical device
when directing a physical process or machine. For example, in a heating system
the furnace might be programmed- to go on and off in cycles of fixed duration.
In any case, the defining feature of open-loop control is that the input function
is determined completely by an external process.
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Closed-loop Control {(Feedback)

In closed-loop control the input is determined on a continuing basis by the
behavior of the system itself, as expressed by the behavior of the outputs. This
kind of control is feedback control since the outputs are fed back (in perhaps
modified form) to the input.

There are many common and familiar examples of feedback control. One
is the thermostatic home heating system. The output of the heating system is
the temperature in the house, which is measured by the thermostat. When the
temperature falls below a certain level the furnace is turned on; and when the
temperature rises above a given level the furnace is turned off. This operation
represents feedback from the output to the input of the heating system. It
contrasts sharply with the programmed furnace, since now the duration of the
heating cycles depends on system behavior.

Perhaps one of the earliest examples of feedback control 1s a water clock
believed to be built by Ktesibios in Alexandna in the third century B.c. The
principle 1s still used today. A sketch of the water clock is shown in Fig. 8.17.
In order to maintain a constant flow rate into the main tank of the clock, the
water level in a regulating tank is held nearly constant. This constant level 1s
achieved by a float valve, which is essentially a feedback mechanism. Water
from an external supply enters the regulating tank through a small pipe. A ball
floats on the surface of the water in the tank below the pipe opening. When the
water level rises it forces the ball to tighten against the pipe opening, reducing
the input supply rate. When the level drops, the input rate increases.

Regulating 4
tank - —

Time
scale

I|I|
Main tank f— |__

Float

Figure 8.17. Water clock.
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There are many reasons why feedback or closed-loop control is often
preferable to open-loop control. One reason is that a feedback rule is often
simple, while a comparable open-loop scheme might require a fair amount of
calculation and complex implementation. One could, for example, conceive of
a sophisticated open-loop furnace control that on a programmed basis varied
the cycle lengths during a 24-hour period to account for expected outside
temperature variations. A thermostat, however, would be simpler and more
effective. In general, a feedback control rule does the required computation as
1t goes along, and immediately implements the results.

Beyond the issue of implementation, feedback is often superior to open-
loop control from a performance standpoint. Feedback can automatically
adjust to unforeseen system changes or to unanticipated distrubance inputs.
The heating system with thermostatic control adjusts automatically to varying
external temperatures, the water clock regulating tank adjusts to changes in
incoming water pressure, and feedback introduced 1n planning can correct for
unforeseen events. This desirable characteristic, which we intuitively attribute
to feedback control, is analyzed mathematically in terms of the general
concepts of dynamic systems. In particular, the fact that feedback can rapidly
adjust to changes is a manifestation of the fact that feedback can increase the
stability of a system. Indeed a basic feature of feedback is that it can influence
the characteristic polynomial of a system.

Example 1. Let us consider the effect of feedback applied to the very simple
system

() =ul(r)

This might, for example, represent the equation governing the water level in a
closed tank, with u(r) denoting the inflow. Suppose it is desired to bring the
value of x from some initial value to a value x,. This can be done, of course, by
open-loop control using a suttable choice of u(t). In this form, however, the
system is only marginally stable, and any error or disturbance will be per-
petuated indefinitely.

Now suppose that the input is controlled by feedback. In particular,
suppose u(t) = alx,— x(t)]. For x{t) < x,, but close to xq, this might correspond
to the flow through the float valve, the constant « depending on the pipe size
and incoming water pressure. The system is then governed by

x() = a[xo—x(1)]
This system certainly yields x(t) — x,.

We note that by defining the variable y = x — x,, the closed-loop system is
governed by the simple first-order equation

y(®) =—ay(r)
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The vanable y(t) is the error. Feedback has converted the original marginally
stable system to one which is asymptotically stable.

Eigenvalue Placement Theorem

As stated above, an important objective of feedback (either implicitly or
explicitly) is often to make the system somewhat more stable than it would be
otherwise. It is natural, therefore, to ask how much influence feedback can
really have on the eigenvalues of a system. A major result in this direction 1s
the Eigenvalue Placement Theorem. This result states that if a system 1s
completely controllable and if all state variables are available (as outpuis), then
by suitable direct feedback it is possible for the closed-loop system to have any
desired characteristic polynomial. In a sense this provides another characteriza-
tion of complete controllability. If the system is completely controllable, the
input is connected to the internal dynamic structure in sufficient diversity so
that feedback to the input can arbitrarily change the characteristic polynomial.

Eigenvalue Placement Theorem. Let (A, B) be a completely controllable par of
real matrices; thatis, therank of [B, AB, . .., A""'Blis n. Then givenany nth-
order real polynomial p(A) =A"+a,_;A" "'+ - - + a, there 1s a real matnx C
such that A +BC has p(A) as its charactenstic polynomual.

Proof. We prove this result only for the case where m =1, corresponding to a
single-input system. In that case we put B=b and seek an n-vector ¢’

Since the pair (A, b) is completely controllable, we may, without loss of
generality, assume that they are in a form corresponding to the second
controllable canonical form of the previous section. Specifically,

[~ 0 1 0 ... 0 7 [0
0 0 1 ... 0O 0
A= b=
0 0 0 .. 1 0
|—ag —aQ; TAaz ... T4py | 25
Selection of €T =[c, ¢, --- c¢.] gives
0 0 0... 07
0 0 0... 0
be' =
0 0 0. 0
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Therefore, the matrix A +be” will have a characteristic polynomial with
coefficients a;_, —¢;, and these can be made arbitrary by appropriate choice of the
¢’s. 1

Example 2 (Stick Balancing). The stick balancing system of Example 4, Sect. 6,
1s unstable without control, but since it is completely controllable, it must be
possible to select a feedback strategy that will stabilize it.

As a first attempt, one might try a control strategy based solely on x(t);
that is, one might set u(t) = cx(t) for some values of c. However, this leads to
the closed-loop system % =g(l—c)x and the characteristic equation A%=
g(1-c). Hence, at best this system will be marginally stable,

To attain a suitable feedback strategy it is necessary to use both x(t) and
v(t). Thus, setting u(t)=c,x(t)+c,v(r), we obtain the closed-loop charac-
teristic equation

A2+ ged—g(l—c)=0

Clearly, as predicted by the Eigenvalue Placement Theorem, we have complete
flexibility 1n the choice of the characteristic polynomial through selection of the
two coefficients ¢, and c,. If we decide to place both roots at —1, we select
c,=1+1/g, c;=2/g. The resulting system is then asympototically stable.

8.10 OBSERVERS

Many sophisticated analytical procedures for control design are based on the
assumption that the full state vector is available for measurement. These
procedures specify the current input value as a function of the current value of
the state vector—that 1s, the control is a static function of the state, Mathemati-
cally, of course, there is very good reason for this kind of control specification.
The system evolves according to 1ts state vector equations, and thus intelligent
control, influencing future behavior, should be based on the current value of
the state. A simple but important example of such a control procedure is
embodied by the eigenvalue placement theorem presented in Sect. 8.9. In that
case, the complete flexibility in specification of the characteristic polynomial
assumes that all state vanables can be measured.

In many systems of practical importance, however, the entire state vector
1s not available for measurement. In many physical systems, for example,
measurements require the use of costly measurement devices and it may be
unreasonable to measure all state variables. In large social or economic
systems, measurements may require extensive surveys or complex record-
keeping procedures. And, in some systems, certain components of the state
vector correspond to inaccessible internal variables, which cannot be measured.
In all these situations, control strategies must be based on the values of a subset
of the state variables.
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When faced with this rather common difficulty, there are two avenues of
approach. The first is to look directly for new procedures that require fewer
measurements—either restricting the choice of static feedback functions or
developing more complex (dynamic) feedback processing procedures. The
second (simpler) approach is to construct an approximation to the full state
vector on the basis of available measurements. Any of the earlier static control
procedures can then be implemented using this approximate state in place of
the actual state. In this way the relatively simple and effective control proce-
dures, which assume that the state is available, are applicable to more general
situations.

We recall that a system 1s completely observable if by observation of the
system outputs the value of the initial state can be deduced within a finite ume
period. In our earlier discussion of observability, the required calculation was
treated rather indirectly. Within the present context, however, it 1s apparent
that such calculations becomes a matter of practical significance.
Effective control can be dependent on the results.

It is shown in this section that the state (or an approximation to it) can be
conveniently computed by a device known as an observer. The observer is self
a linear dynamic system. Its input values are the values of measured outputs
from the original system, and its state vector generates missing information
about the state of the original system. The observer can be regarded as a
dynamic device that, when connected to the available system outputs, gener-
ates the entire state.

A Trivial Observer

A trivial solution to the problem of estimating the state of a system is to build a
copy of the onginal system, If, for example, the original system is

x(t) = Ax(t)+Bn(t)
The observer would be

Z(t) = Az(t) + Bn(1r)

The inputs u(t) to the original system are controls that we supply, and hence
they can be applied to the copy as well. Also, since the second system is a
model, its state z(t) can be measured. If z(0) =x(0), the model will follow the
onginal system exactly. (See Fig. 8.18.)

The trouble with this technique is that errors do not die out quickly.
Indeed it is easy to see that

[2(0) — x(1)] = Alz(1) —x(1)]
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u x=Ax+ B [>x

i=Az+Bu [—>2

Figure 8.18. A system copy used as
observer.

and hence, the error in the estimate tends to zero only if the original system is
stable—and then only at a speed determined by the eigenvalues of the original

system. This is a serious limitation, which is overcome by the more general
approach to observers.

Identity Observer

To begin the development of more general observers, consider the following
system:

x(t) = Ax(¢t) + Bu(t)
y(8)=Cx(1)

The system is assumed to be n dimensional, and the output vector is p
dimensional.* The system is assumed to be completely observable.
We construct an observer for (8-73) of the form

z(t) = Az(r) + E[y(1)— Cz(£)]+ Bn(¢) (8-74)

(8-73)

where the n xp matnix E is yet to be specified (see Fig. 8.19). The observer is
an n-dimensional system with state vector z(t). The inputs to the observer are
of two types. The first set consists of the measurements y(t) available from the
original system. The second set 1s a copy of the inputs to the original system.
These inputs are the control inputs, so they are available to us. Note that this
observer 1s a generalization of the trivial observer discussed above. If z(t)=
x(1), then, since y(f) = Cx(t), the observer (8-74) would collapse to a copy of the
original system.

Using y(t) = Cx(t)} and subtracting (8-73) from (8-74), we find in general
that

Z(t)—x(t) =[A - EC][2() ~ x(1)]
If the observer is initiated such that z(0) =x(0), then it follows that z(t) =x(r)

* More generally, the output will have the form y(¢) = Cx(¢) + Du(s). The additional term can be
easily incorporated into our development.
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——j‘:
"
)

e

Figure 8.19. An identity observer.

for all t>0. The state of the observer tracks the state of the originai
system. An observer of this type is an identity observer since it tracks the
entire state.
If z(0) #x(0), then the error vector e(t)=2z(t)—x(t) 1s governed by the
homogeneous system
() =[A-ECle(t)

If the system matrix A—EC is asymptotically stable, the error vector tends to
zero. Indeed, the error tends to zero at a rate determined by the dominant
eigenvalue of A—EC. The eigenvalues of this matrix are controiled by our
choice of the matrix E. A significant result is the following theorem.

Identity Observer Theorem. Given a completely observable system (8-73), an
identity observer of the form (8-74) can be constructed, and the coefficients
of the characteristic polynomial of the observer can be selected arbitrarily.

Proof., This follows from the Eigenvalue Placement Theorem. The pair
(AT, CT) is completely controllable. Thus, E can be selected so that AT —CTET
has an arbitrary characteristic polynomial, and this is the same as the charac-
teristic polynomial of A~EC.1

Example 1 (A First-Order System). Consider the first-order system
() =ax(®

with x(¢) as an available output. There is, of course, no need to construct an
observer for this system, since the (one-dimensional) state is assumed to be an
output. However, consideration of this simple system should help relate the
above observer result to the basic principles of dynamic systems.

Suppose that we decide to construct an observer having a root of b+ a.
The general form of the observer must be

z2(t)=az(t)+e[x(t)—z(t)]



304 Concepts of Control

In order that the root of the observer be equal to b, we set e = a~—b. Thus, the
observer is defined by

Z(®) =bz()+(a—b)x(t) (8-75)

If z(0)=x(0), then z(t) = x(¢) for all t>0.

Now let us interpret this result in terms of elementary properties of differ-
ential equations. We know explicitly that x(t) = x(0)e®. When this is substituted
into the observer (8-75), the resulting solution z(f) will consist of two
exponential terms-—one with e* and the other with ™. Explicitly

z(t) = x(0)e* +[z(0) - x(0)]e™

Thus, if z(0) is properly chosen, only the exponential associated with the input
to the observer will appear in the solution.

This first-order example illustrates the general mechanism of observers.
With zero input, the outputs of the original system consist of various exponen-
tial terms (perhaps multiplied by a power of t.) These exponentials serve as inputs
to the observer. The state variables of the observer will, accordingly, each consist
of a sum of exponential terms; some generated internally and some being
passed through from the input. By properly arranging the structure and the
initial condition of the observer, it can be made to follow the exponential terms
of the original system. If the original system has a nonzero input, its effect
on the observer 1s cancelled out by suitably applying this same input to the
observer.

Reduced Order Observers

The 1denuity observer described above possesses a certain degree of redun-
dancy. It reconstructs all n state variables of the original system even though p
of these variables—the output vanables—are already known precisely. It seems
plausible that by eliminating this redundancy an observer could be devised with
order equal to n—p rather than n; the full state of the original system being
obtained from the n—p state variables of the observer together with the p
measurements. This is indeed possible, as explained below.
Let us again consider the completely observable system

x(0)=Ax(®)+Bu(t)
y()=Cx(1)
We assume now that the p X n matrix C has rank p. This corresponds to the
condition that the p measurements are linearly independent.

It 1s possible to transform (8-76) so that the output structure is particularly
simple. Let V be any (n —P) X n matrix such that the matrix

e-[¥] @7

(8-76)
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is nonsingular. It is possible to find such a V since C has rank p. Now introduce
the change of variable
() =Px(1) (8-78)

The new state vector %(t) can be partitioned as

o)

where w(t) is n —p dimensional and y(f) is the p-dimensional vector of outputs.
In this form the output variables are equal to the last p state variables.

We assume that the system has been put in the special form indicated
above. Specifically, after transforming the system matrices to reflect the change
of variable (8-78), the system can itself be written in partitioned form

v(t A, A t B
[W( )]___[ 11 12][W( )]+[ 1]14([) (8-80)
0] Ay Anldly() B,
We can extract this system a subsystem of order n—p that has as inputs
the known quantities u(t) and y(r). Furthermore, we shall show that a
subsystem with arbitrary characteristic polynomial can be selected.

Multiply the bottom part of (8-80) by an arbitrary (n —p) X p matrix E and
subtract from the top part. This leads to

w()—Ey(t)=(An—EA;)w(t)
+ (A2~ EA)y(0)+ (B, ~EB,)u(t) (8-81)

()= [ (8-79)

This can be rewritten as
w()—Ey(t)= (A, —EA, )[w()—Ey(®)]
+[ALE-EA, E+A,,—EA,ly(1)
+B,—EByu(r) (8-82)
Letting v(t) = w(t)—Ey(r), we have
() = (A, —EA,)v(r)
+[ALE-EAE+A,—EA,,y(r)
+ (B, —EB,)u(t) (8-83)
In this equation v(t) is unknown, while y(¢) and u(f) serve as known inputs. We

have no observations of the (n —p)-dimensional vector v(t). Thus, the observer
is formed by merely copying the system (8-83). It is,

z() = (A —EAy)z(1)
+[ALE-EA, E+A,;—EA,ly()
+(B,—EB,)u(t) (8-84)
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This serves as an observer for (8-80). By subtracting (8-83) from (8-84), it
follows immediately that

()~ ()= (A —EA)[z()—v(1)] (8-85)
Thus, the state z(t) of the observer tends toward v(t) at a speed determined by
the eigenvalues of the matrix A;; —EA,,.

From the state vector z(t) of the observer, the original state of (8-80) is
estimated by w(t) and §(t) determined by

w(t)=z(5)+Ey(r)

F()=y()
The state vector z(f) together with the original measurements y(t) provide
enough information to construct an approximation to the state of the original
system.

The effectiveness of the observer depends to a great extent on the location
of the eigenvalues of the observer system matrix A,;; —EA,,. It can be shown
(see Problem 16) that if the original system (8-80) [or equivalently (8-76)] is
completely observable, the pair A,;, A,;; 1s completely observable. By the
Eigenvalue Placement Theorem the coefficients of the characteristic poly-
nomial of A;; —EA,, can be selected arbitrarily by proper selection of E. Thus,
the reduced order observer can be constructed with the same kind of dynamic
flexibility as the identity observer. We summanze by the following

(8-86)

Observer Theorem. Given an nth-order completely observable system (8-76)
with p linearly independent outputs, an observer of order n—p can be
* constructed and the coefficients of the characteristic polynomial of the
observer can be selected arbitrarily.

Example 2 (Stick Balancing). Consider once again the stick balancing problem
originally posed in Sect. 8.6. Let us suppose that only position can be measured
(as might be the case in complex mechanical balancing problems). We shall
construct a reduced order observer to produce an approximation to the

velocity.
[§§i§]= [(1) 8'] [Zfi§]+ 8 [h;] u(®) (8-87)

The system is
where, to be consistent with the above development, we have reordered the
state variables so that the measured variable x(¢) is the bottom part of the state
vector. Applying (8-84) and (8-86), the observer has the general form

2(t) = —ez(t)+ (g —eDx(t) - gu(r) (8-88a)
(1) =z(t)+ex(r) (8-88b)
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An estimate of the velocity can be obtained from the observer, which is
first-order. The position is available by direct measurement, and hence an
approximation to the whole state is available by use of the first-order observer.
The eigenvalue of the observer is —e, which can be selected arbitrarily.

Eigenvalue Separation Theorem

There i1s an important result which shows that in some sense it is meaningful to
separate the problem of observer design from that of control design. Suppose
one has the system

X()=Ax()+Bu(r)
y(£)=Cx(t)

which is both completely controllable and completely observable. A feedback
control law might be first designed under the assumption that the entire state
were available for direct measurement. This would entail setting u(t) =XKx(t)
resulting in the closed-loop system

() =(A+BK)x(t)

The charactenstic polynomial of A +BK can be selected arbitrarily.

Next an observer (either identity or reduced order) can be designed that
will generate an approximation £(¢) of the state x(z). The characteristic polyno-
mial of the observer can also be selected arbitrarily.

Finally, the two design can be combined by setting the control input equal
to u(t) = KX(r)—that is, using the observer generated state in place of the actual
state. The resulting closed-loop system containing the observer is a somewhat
complicated dynamic system. It can be shown, however, that the characteristic
polynomial of this composite system is the product of the characteristic
polynomial of the feedback system matrix A+BK and the characteristic
polynomial of the observer. This means that the eigenvalues of the composite
system are those of the feedback system together with those of the observer. In
other words, insertion of an observer in a feedback system to replace unavaila-
ble measurements does not affect the eigenvalues of the feedback system; it
merely adjoins its own eigenvalues.

We prove this eigenvalue separation theorem for the special case of an
identity observer.

Eigenvalue Separation Theorem. Consider the system
() =Ax()+Bu(r)

y()=Cx(r)
the 1dentity observer

2()=(A-ECQ)z(t) +Ey(t) +Bul(r)
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and the control law

u(t)=Kz(t)
The characteristic polynomial of this composite is the product of the charac-
teristic polynomials of A+BK and A—EC.

Proof. Substituting the control law u(t) =Kz(t) and the output equation y(t) =
Cx(r) yields the two differential equations
x(t)=Ax(t)+BKz (1)
()= (A-EC)z(t)+ECx(t)+Bl_(z(r)
Defining €(t) = z(t)—~x(t) and subtracting the first equation from the second
yields
X()=(A+BK)x(r)+BKe(t)
e =(A-EQe(r)
The corresponding system matrix in partitioned form is

[A+BK BK ]
0 A-EC

The result then follows from the fact that the characterstic polynomial of a
matrix of this type is the product of the characteristic polynomials of the two
blocks on the diagonal. (See Problem 22.) 1

Example 3. Consider once again the stick balancing problem. In Example 2,
Sect. 8.9, a feedback control scheme was devised that placed both closed-loop
eigenvalues at —1. This scheme required both position and velocity measure-
ments. In Example 2 of this section an observer was derived to estimate
velocity when only position can be measured. Let us select e =2 so that the
single eigenvalue of the observer is —2, somewhat more negative than the roots
of the feedback control system designed earlier. We can then combine these
designs and check whether the eigenvalue separation theorem holds using the
reduced order observer.

The corresponding complete control system, consisting of the original
system, the control law, and the observer, is governed by the equations

x(t)=v(t)

v(t) = gx()— gu(t)

2(t)=—2z(t) +(g—Hx()—gu(r)
gu(®)=(g+ Dx()+26()

8(t) =z () +2x(¢)
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Eliminating the static equations for gu(r) and 6(f) shows that the closed-loop
system is governed by

() =v()
(1) =gx()—(g+Dx(r)—2z(t)—4x(r)

() ==2z(t)+(g—Dx()— (g + Dx(e) ~2z(t) — 4x(¢)
or finally

x(r) 0 1 0f]x(®
o()[=1-5 0 =2|}v (8-89)
.2(8) -9 0 —4]Lz(r

This system has characteristic equation
—A2(A+4)+18-5(A+4)=0
or, equivalently,
AP+H40%+50+2=0
This can be factored as
A+12A+2)=0

Therefore, the roots of the overall system are —1, —1, —2 in agreement with
the eigenvalue separation theorem.

8.11 PROBLEMS

1. Find a rational expression for the z-transform of the sequence 1,4,9, 16, . ...

2. If f(k) has a rational z-transform F(z), find the z-transform of the sequence g(k)
defined by

k
glk)= 2 f()
1=0
3. Show that the z-transforms of the sequences f(k)=b" sin ak and g(k)=b* cos ak
are:
bzsma
F(z)_zz-—sz cos a+b?
G(2)= z?—bz cos a

z2~2bz cos a +b?

4. Partial Fractions. The coefficients of a partial fraction expansion can be found in a
simple straightforward way as follows. Suppose F(z) is a reduced strictly proper
rational function of degree n.
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(a) Suppose the roots of the denominator of F(z) are distinct. Then
¢ n
F(z)=—"—+ 2 4.
2—z, 22—z, -2,

Show that ¢, can be evaluated as
G = lij_r:‘(z —~2z,)F(2)

(b) Suppose z 1s a root that is repeated m times. Then the partial fraction of F(z)
includes terms of the form

Ciy Ciz et Cim _
z—2z (z—z) (z—z)

Show that ¢;,, 1==p=m can be evaluated as

m—p

= fim———
T R m-p)dz"

[(z—z)"F(z)]

5. Find the imverse z-transform of

z(z—1}(z-2)
(22+2z+2)(2%+4z +4)

(Hint: Use the results of Problems 3 and 4.)
6. A firm’s inventory is governed by the equation
I(k + 1) = BI(k)+ P(k)—S(k)

where I(k)=inventory at time k, P(k)=production during time period k, S(k)=
sales during time period k, and 1—p =spoilage rate. Suppose the firm decides to
produce as much during a given time pertod as was sold during the previous time
period; that 1s, P(k)=S(k~—1). This gives

I(k +1)=BI(k)+ Sk — 1) S(k)

(a) Using z-transforms, find I(k) if S(k)=a* a>1, k=0. [Assume I(0)=2,
S(-1)=0.]

(b) Using z-transforms, find I(k) if

1 k even A

S(k)={l where k=0
3 k odd
7. Transfer Gain. The transfer function H(z) of a single-input, single-output

discrete-time system can be viewed as a gain function. Assume that a 1s a number
such that H(a) is finite. Show that if the geometric sequence a* is applied as input
to the system, the same geometric series appears in the output multiplied by the
gamn H(a) [that is, H(a)a* appears as an output term].

8. Diagram Mamnpulation. Find the transfer function from u to y for the systems
represented by the diagrams of Fig. 8.20.
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u G(z) H(z) >y

(a)

u + G(z) + H(z) >y

(b}
Figure 8.20. Interconnected systems. (a) Double feedback.
{b) Interlaced feedback.
9. State Space and Series Connections. Consider the series arrangement of two
single-input, single-output systems
xy(k+1)=A,x,(k)+bu(k)
v(k)=clx,(k)+d,u(k)
xy(k +1) = A,x,(k)+ b,v(k)
y(k) = c3xy(k)+ dyv (k)
Let Hi(z)=cf(zI-A) b +d;, for 1=1,2.
(a) Eliminate v(k) and find the state space representation of the composite system.

(b) Show directly, by matrix manipulation, that the transfer function of the compos-
ite system 1s H(z) = H,(z)H(z).

10. Use Laplace transforms to solve each of the following differential equations, with
intial conditions y(0)}=0, y(0)=1.

d’y dy
(a) dt2+dt 6y=1
d? .

) S3-y=e
d’y dy =
(c) d[2+zt-+y—te

11. Show that two sticks (with masses concentrated at their tops) placed side by side a
little distance apart on one hand can be simultaneously balanced in most cases.
What conditions on the lengths and masses render the simultaneous balancing feat
impossible?
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*12. The Finute-Settling Time Problem. Suppose the nth-order single-input system
x(k+1)=Ax(k)+bu(k)

1s completely controllable. Then it is known that any initial state can be dniven to
zero within n steps. We shall seek a linear feedback law that automatically drives
the state to zero in the shortest possible time,

(a) Let M be the controllability matrix of the system. Let e[ denote the ith row of
M™*; that 1s,

T
€,

'Y

M=

e

Show that setting
u(k)=—e,_ A"x(0) k=0,1,2,...,n—1

will drive the initial state to zero in the shortest time.

(b) Define ¢™ =—erA". Show that the feedback rule u(k)= c"x(k) will yield the same
result as part (a).

(c) The ciosed-loop system 1s governed by

x(k +1)=(A+bcT)x(k)

Conclude that all eigenvalues of A +bc” are zero. What is the Jordan form of
A+bc™?

13. Controllability. For the discrete-time system

x(k +1)=Ax(k)+bu(k)
A=[2 1]
0 2

SHIESH

(a) For each b, determine if the system is controllable.
(b) For each b that results in a completely controllable system, find the shortest
mput sequence that drives the state to zero if

w-f]

14. Multiple Eigenvalues and Controllability. Suppose the system
x(t)=Ax(t)+bu(t)

where

let



15.

16.

17.

18.

19.
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has all eigenvalues equal to A. Show that this system is completely controllable if
and only if the Jordan form of A has only a single chain and (in the same
coordinate system) b has a nonzero component in the last component. Give a
dynamic diagram interpretation of this result.

Controllability and Feedback. Show that feedback does not destroy complete
controllability. Specifically, show that if the system

x(k+1)=Ax(k)+Bu(k)
is completely controllable, then the system
x(k+1)=Ax(k)+BCx(k)+Bu(k)

1s also completely controllable.
(Hint: Rather than checking the rank condition, apply the original definition
of complete controllability.)

Observability. Suppose that the partitioned system
[“-’(t)]z[An Al2][w(t)]
y(1) Az Axnlly(®)
with output y(t) is completely observable. Show that the combination of A,, as

system and A.,, as output matrix is a completely observable pair. (Hint: Youmay find it
simpler to prove complete controllability of the transposed combination.)

Structure of Canonical Forms. Show that the controllability canonical forms are
completely controllable and the observability canonical forms are completely ob-
servable for all values of the parameters ay, a,,..., @G,—;.

Observability Canonical Forms. Work out the detailed derivation of the two
observability canonical forms.

Consider the two dynamic systems

Sl SZ
X;=Xx,+u X3= X3+ W
X2=—2x;-3x, Z=X,4 .
y=ax;+X;

S, has state (x;, x,), control u, and output y. S, has state x,, control w, and
output z.

(a) Determine whether each system is controllable, observable, stable. (Note « is a
parameter.)

(b) These two systems are connected in series, with w =y. The resulting system
is called S,. Determine whether it is controllable, observable, stable.

(c) The systems are now connected mn a feedback configuration as shown in Fig.
8.21 to produce S,. Determine whether S, 1s controllable, observable.
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Figure 8.21. System for Problem 19.

20. Observer Design. Design an observer for the system shown n Fig. 8.22. The
observer should be of second order, with both eigenvalues equal to —3.

21. Uncontrollability of Observers. Let S, be a linear time-1nvariant system with input
u(t) and output y(t). An observer S, is connected appropriately to S;. Show that the
resulting system is always uncontrollable from the input u(f) (that 1s, it 18 not
completely controllable.)

22. Assume that A and C are square matrices. Use Laplace’s expansion to show that

10 A B
=|C =
lO C Ic, 0 ll Al
Use this result to show that
A B
0 C =1AllC|.

23. Prove the Eigenvalue Separation Theorem for reduced order observers.

() : 3 1 ) R

Figure 8.22 System for Problem 20.

NOTES AND REFERENCES

Sections 8.2-8.5. Transform methods have long been used to solve linear, constant-
coeffictent differential and difference equations. Actually, Laplace transform
methods were developed first, since differentiai equations were generally used to
represent dynamic phenomena. The books by Gardner and Barnes [G4] and Carslaw
and Jaeger [C1] published in the early 1940s served as the classic references for many
years. With the advent of digital techniques in the 1950s the z-transform also attamed
popularity. See Aseltine [A4]. A good deal of attention typically was devoted to 1ssues
of convergence in transform methods. The recent trend, however, is to view them more
algebraically n terms of an indeterminant symbol rather than as a branch of compiex
variable theory. An example of this is Rugh [R7].
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Sections 8.6-8.7. The concepts of controllability and observability are due to Kaiman.
(See, for example, [K1] which was highly instrumental in development of modern
control theory.) Also see Gilbert [G6] for discussion of the reilation of controllability to
diagonal representations. For early work on canonical forms, see Kalman [K3].

Section 8.8. For multivariable (many inputs and outputs) versions of the canonical
forms, see Luenberger [L8].

Section 8.9. We have only been able to hint at the general area of feedback and its
many applications and ramifications. See, for example, Clark [C3]. The eigenvaiue
placement theorem for single-mput systems follows directly from the single-input
canonical forms. The more general result is closely tied to more general canonical
forms. See Luenberger [L7], [L8] or, for a more explicit statement, Wohnam [W6].

Section 8.10. For the original development of reduced order observers refer to
Luenberger [L6], [L7], and [L10]. The particular presentation at the end of this section
(and the result of Problem 16) is based on a construction due to Gopinath [G10].



chapter @

Analysis of
Nonlinear Systems

9.1 INTRODUCTION

The analysis of nonlinear systems 1s in some respects similar to that of linear
systems, but in other respects it is quite different. The similarity derives from
the fact that one of the principal techniques for analysis of nonlinear systems is
to approximate or bound them by appropriate linear systems, and then use
linear theory. The differences derive from the fact that entirely new types of
behavior can arise in nonlinear systems, compared to linear systems, as 1s
illustrated below. The analysis is also different because explicit solutions are
rarely available for nonlinear systems, and thus, behavioral characteristics must
be inferred by more subtle methods. Nevertheless, accounting for both the
similarities and differences with linear system analysis, there is a set of useful
general principles for nonlinear systems analysis that provides coherence to this
important topic.

We focus attention on noniinear systems defined by either a set of
difference equations or differential equations, as described in the beginning of
Chapter 4. An nth-order discrete-time system has the following general form:

xy(k+1) = f,(x,(k), x;(k), . . ., x,(k), k)
x2(k + 1) =f2(xl(k)’ X;_(k), [N x,,(k), k)

(-1

Xo(k+1) = fo(x,(k), x2(K), . . ., x.(k), k)
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for k=0,1,2,.... Of course, we often find it convenient to express (9-1) in
the vector form

x(k+1)=1f(x(k), k) (9-2)

where x(k) is the n-dimensional state vector, and f is the n-dimensional vector
function whose components are the f;’s.
Similarly, an nth-order continuous-time system has the following form:

()= f1(x, (), x2(8), . . ., xa(8), 1)
X3(8) = f2(xi (), x2(8), . . ., x,(£), 1)

X,‘(f) =fn(xl(t), XZ(t)) DRI xn(t)) t)

which 15 often expressed in the vector form
x() = f(x(1), 1) (9-4)

The functions defining the systems (9-2) and (9-4) [or equivalently (9-1)
and (9-3)] depend on both the state x and on time, k or ¢. These systems are
thus, in general, time-varying. If the functions do not depend explicitly on tume,
the system is said to be time-invanant. Our attention is devoted mainly to such
systems; that is, to systems that can be written as

x(k + 1) =f(x(k)) (9-3)
or

x(1) =£(x(t)) (9-6)

New Forms of Behavior

Certain, even first-order nonlinear systems exhibit forms of behavior that are
either somewhat different or drastically different than that obtainable in linear
systems. The following two examples are classic.

Example 1 (The Logistic Curve). The standard first-order linear differential
equation defining exponential growth is often modified to reflect the fact that,
due to crowding, limited resources, or a variety of other reasons, growth cannot
continue indefinitely. There are invariably restraining factors whose influence
eventually dominates. A standard modified equation that accounts for the
restraining influence is

x()=a[1—x(t)/c]x(r)
where a >0, ¢ > 0. The term a[1—x(t)/c] can be interpreted as the instantane-

ous growth rate. This rate decreases as the growth variable x(f) increases
toward its maximum possible level c.
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Figure 9.1. Logistic curve.

The solution to this equation (which is easy to obtamn; see Problem 1) is
x(0= 1+ be ™

where b>0 15 determined by the initial condition x(0)<c. The corresponding
curve, shown m Fig. 9.1, is the logistic curve. It has a characteristic S shape that
approximates exponential growth at the low end and saturation at the upper
end.

This solution does not represent particulariy unusual behavior. Indeed, the
pomnt of this example is that nonlinear terms can be meaningfully introduced
nto system equations in order to better represent natural phenomena. The
general character of the resulting solution should be consistent with ntuitive
expectations. In this particular example, the linear model is modified to
account for growth limitations, and the solution does exhibit the limitation
property. Nonlinear modifications, then, are not necessarily obtuse, but 1n fact
they may be quite consistent with one’s intuitive understanding of both the
system structure and the solution pattern.

Example 2 (Finite Escape Time). As an example of an entirely new form of
behavior, not exhibited by linear systems, we consider a growth model where
the growth rate increases with size. Specifically, we consider the differential
equation

() =a(l+x()/c)x(1)

where a >0, ¢>0. If x(0)>0, the solution for t>0 is

X([) —_.—C___..__
be ™™ —1

where b> 1. This solution is illustrated in Fig. 9.2. Its primary characteristic is

that the variable x(¢) not only tends to infinity (as would be expected) but it

gets there in finite ttme!
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Figure 9.2. Finite escape time.

The Main Tool for Analysis of Nonilinear Systems

The objectives of analysis for nonlinear systems are similar to the objectives
pursued when nvestigating complex linear systems. In general, one does not
seek detailed solutions eirther in numerical or analytical form, but rather one
seeks to characterize some aspect of system behavior. For example, one might
ask whether there are equilibium points, and whether they are stable. One
seeks estimates of growth rates, estimates of behavior resulting from perturba-
tions, and characterizations of limiting behavior. In nonlinear systems, one
might also look for finite escape time phenomena, saturation effects, or
threshold effects. The role of analysis, therefore, is to characterize in broad
outline the critical aspects of system behavior—not the details.

By far the most useful device or tool for nonlinear system analysis 1s the
summanzing function. The idea is a simple one, but one of great power and
utility. The very concept of a summarizing function is a reflection of the general
objectives of analysis. It summarizes behavior, suppressing detail.

In formal terms, a summarizing function is just some function of the
system state vector. As the system evolves in time, the summarizing functizn
takes on various values conveying some information. It is often possible,
however, and this is a key requirement for analysis, to write an approximate
first-order difference or differential equation that describes the behavior of the
summarizing function. An analysis of that first-order equation is then in some
sense a summary analysis of the entire system.

This idea was first systematically introduced by Liapunov for the study of
stability of nonlinear systems. The special summarizing functions used for this
purpose are, accordingly, referred to as Liapunov functions. It is now recog-
nized that this idea in its generalized form is perhaps the most powerful device
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for the analysis of nonlinear systems—its power being derived from its simplic-
ity, its generality, and its flexibility. It is this idea that is developed in this
chapter and applied to several examples in both this chapter and the next.

This chapter contains most of the general theoretical development of the
summarizing function concept, emphasizing the Liapunov theory. The theory is
built up in stages, and one does not have to go through it all in order to begin
to apply it. Some examples are interleaved with the development in this
chapter, but other more extended examples are presented in the following
chapter. It is suggested that the reader essentially read this chapter and the
next in parallel. The examples in the next chapter themselves progress from the
relatively simple to the more complex, so 1t will be helpful to refer back and
forth between the two chapters.

9.2 EQUILIBRIUM POINTS

The concept of an equilibrium point, which was used extensively in earlier
chapters in connection with linear dynamic systems, carries over directly to
nonlinear dynamic systems. The general definition 1s repeated here.

Definition. A vector X is an equilibnum point for a dynamic system if once the
state vector is equal to X 1t remains equal to X for all future time.

In particular, if a system is described by a set of difference equations

x(k + 1) =f(x(k), k) 9-7N
an equilibrium point is a state X satisfying
x=1(x, k) (9-8)
for all k. Similarly, for a continuous-time system
() =), 1) 9-9)
an equilibrium point 1s a state X satisfying
fx,n=0 (9-10)

for all ¢.

In most situations of practical interest the system is time-invariant, in
which case the equilibrium points X are solutions of an n-dimensional system of
algebraic equations. Specifically,

x=£(x) (9-11)

tn discrete time, or
0=1(X) (9-12)

In contmuous time.
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An anpalysis of a nonlinear dynamic system may devote considerable
attention to the characterization of equilibrium points. This contrasts with a
typical analysis of linear systems where equilibrium points are basically solu-
tions to linear equations, and hence, are treated 1n a rather routine manner.
The nonlinear case is different in two essential respects. First, since equilibrium
points are solutions, in this case, to nonlinear equations, finding such solutions
is somewhat more of an accomplishment than in the linear case (from a purely
technical viewpoint). Thus, a description of equilibrium points often constitutes
significant information. Second, and perhaps more fundamentaily, the equilib-
rium point distribution is potentially more complex in the nonlinear case than
in the linear case. A system may have none, one, any finite number, or an
infinity of equilibrium points in virtually any spacial pattern in state space.
Thus, characterization of equilibrium points is not only technically more
difficult, it is a much broader question. Ultimately, however, as in the linear
case, interest centers not just on the existence of equilibria but also on their
stability properties.

Example 1. Consider again the equation for the logistic curve
() =a(—x()/c)x(r)

A value x is an equilibrium point of this first order equation if it satisfies the
algebraic equation

0=a[l—x/c]x

There are two solutions: X =0 and % =c.

In terms of the population system that 1s modeled by this system, a
population level of zero or of ¢ represents a level that once attained will not
change.

Example 2 (A Discrete-time System). Consider the system
x,(k +1) = ax, (k) + x,(k)?
xy(k+1) = x,(k)+ Bxy(k)
an equilibrium point is a two-dimensional vector X=(%,, X,) satisfying
£, =aX, +%,°
%, =%, +B%,
The second equation can be solved for X, in terms of %,. This can then be
substituted in the first equation yielding

(1-a)(1-B)x,= i22
Clearly, there are two equilibrium points
£=(0,0) and x=((1-)(1—B)*,(1—a)(1-B)).
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9.3 STABILITY

Stability properties characterize how a system behaves if its state is imtiated
close to, but not precisely at, a given equilibrium point. If a system is initiated
with the state exactly equal to an equilibrium point, then by definition it will
never move. When nitiated close by, however, the state may remain close by,
or it may move away. Roughly speaking, an equilibrium point 1s stable if
whenever the system state is initiated near that point, the state remamns near 1t,
perhaps even tending toward the equilibrium pont as time increases.

Suppose that X is an equilibrium point of a time-invariant system. That is,
X 15 an equilibrium point of erther

x(k +1) =f(x(k)) (9-13)

or of
x(1) =Ex(1) (9-14)

For a precise definition of stability, it is convenient to introduce the
notation S(X, R) to denote the spherical region™ n the state space with center
at X and radius R. Using this notation we then can state four important
definitions related to stability. These definitions might at first appear somewhat
obscure because of their somewhat mathematically mvoluted character. For
this reason they require careful study. We state them all as a unit, and then
interpret them verbally and geometrically.

Definition.

(1) An equilibrium point X is stable if there is an Ry,>0 for which the
following is true: For every R <R,, there is an r, 0<<r <R, such that if
x(0) 1s mnside S(x, r), then x(r) is inside S(X, R) for all +>0.

(2) An equilibrium point X is asymptotically stable whenever it is stable
and m addition there is an Ry>0 such that whenever the state is
initiated inside S(X, Ry), it tends to X as time increases.

(3) An equilibrium point X is margwally stable if it is stable but not
asymptotically stable.

(4) An equilibrium point X is unstable if it is not stable. Equivalently, X is
unstable if for some R>0 and any r>0 there is a point in the
spherical region S(X, r) such that if initiated there, the system state will
eventually move outside of S(x, R).

* Specifically, we define the distance between two points x and y mn the n-dimensional state space
by lIx—yll= 3., (x; —y;)»"? This 1s called the Euclidean distance. The region S(X, R) 1s the set of
vectors x satisfying flx — ¥ << R; that 1s, 1t 1s the set of ail points whose Euclidean distance from X 1s
less than R,
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Marginally
stable

AY
Asymptotically
stable‘

Figure 9.3. Definitions.

These definitions are best understood in terms of their geometric interpre-
tations. Let us refer to the path traced by the state of a system as the state
trajectory. Any initial point defines a corresponding trajectory emanating from
it. In this terminology, the first definition says that an equilibrium point X is
stable if it is possible to confine the trajectory of the system to within an
arbitrary distance from X by restricting the imtial state to within some other
(perhaps smaller) distance of X. According to the definition, one first selects an
R >0, and then to assure that the state trajectory remains within S(X, R), a
(smaller) r>0 is found specifying the allowable region S(X,r) for the mmuali
state. This is the formalization of the inturtive notion that stability means that if
the state is inmtiated near X, it remains near X.

The other three definitions are, of course, based upon the first. Asymptotic
stability requires that, in addition to simply remaining near X, the state
trajectory, when initiated close to X, should tend toward X. (It can get there mn
either finite or infinite time.) Asymptotic stability is the strongest of the
stability properties and the one which in most instances is considered most
desirable. The definition of marginal stability is introduced primmarily for
convenience of discussion. It distinguishes stability from asymptotic stability.
Instability implies that there are trajectories that start close to X but eventually
move far away.

The definitions are illustrated in Fig. 9.3. This figure should be studied in
conjunction with the formal definitions. Note, however, that the definitions of
stability in this section apply both to discrete-time and continuous-time $ys-
tems. For purposes of discussion (and following tradition) it is often convenient
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and most picturesque to talk as if the trajectories are continuous. Nevertheless,
such discussions, and figures such as Fig. 9.1, must be understood as having
direct discrete-time analogs.

Example 1 (First-order Linear Equation). The differential equation
x(t) =ax(t)

has the origin as an equilibrnum point. This point is (1) stable if a=<0, (2)
asymptotically stable if a <0, and (3) unstable if a > 0.

Example 2 (The Logistic Equation Again). The equation for logistic popula-
tion growth
(1) =a(l—x()/c)x(¢)

with a >0, ¢ >0, has the equilibrium points ¥ =0 and x = ¢. The point ¥ =0 is
unstable since any small, but positive, initial population level will increase
monotonically toward x = c¢. The point X =¢ is asymptotically stable since if
slightly displaced from that point, either upwards or downwards, the popula-
tion level will tend toward it again.

Example 3. Consider the discrete-time system

x(k)

k)= o

which arises in genetics. (See Chapter 10.) An equilibrium point X of this
system must satisfy the equation

]

[y
+
=

The only solution is X =0.

Any positive initial state will produce a trajectory tending toward zero as
k — o, Small negative initial states, however, lead to movement away from
zero, at least to the point —1. Thus, in terms of the general definition, the
equilibrium point ¥ =0 is unstable.

9.4 LINEARIZATION AND STABILITY

According to the basic defimitions, stability properties depend only on the
nature of the system near the equilibrium point. Therefore, to conduct an
analysis of stability it is often theoretically legitimate and mathematically
convenient to replace the full nonlinear description by a simpler description
that approximates the true system near the equilibrium point. Often a linear
approximation is sufficient to reveal the stability properties. This idea of
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/ *
Figure 9.4. Llinear approximation.

checking stability by examination of a linearized version of the system 13
referred to as Liapunov’s first method, or sometimes as Liapunov’'s indirect
method. It is a simple and powerful technique, and 1s usually the first step in the
analysis of any equilibrium point.

The linearization of a nonlinear system is based on linearization of the
nonlinear function f in its description. For a first-order system, defined by a
single function f(x) of a smgle variable, the procedure is to approximate f near
X by

G+ y)=f(D)+ 2 Dy (9-15)

This is illustrated in Fig. 9.4.
An nth-order system is defined by n functions, each of which depends on
n variables. In this case each function is approximated by the relation

fiE ity Xty ..., B Ftya)

R = a o . =
=fi(xhx2’~--’xn)+5—fi(xb X2, . '!xn)YI
Xy

R (f ¥ —) 0 - = -
+ ’i 3 X2y e nay R f s X2y -9 Xn)Vn
52 1 2 an2 5 x(xl X2 )y

The linear approximation for the vector f(x) is made up of the n separate
approximations for each component function. The complete result 1s expressed
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compactly in vector notation as

f(X +y) =£x) +Fy (9-16)
In this expression F is the n X n matrx
E A
9x; 09x, ox,
ax; 0x, ax,
F=1 . 9-17)
ax; 0x, ax, )

The matrix F 1s referred to as the Jacobian matrix of f.

Now let us apply this procedure to derive the linearized versions of
discrete- and continuous-time systems. Suppose first that X is an equilibrium
pownt of the discrete-time system

x(k + 1) =f(x(k)) (9-18)
Then substituting x(k) =X+y(k) in (9-18) and using (9-16), we obtain
x+y(k +1)=£f(x)+Fy(k) (9-19)

However, the equilibrium point X satisfies X=£(x). It follows therefore that
(approximately)

y(k +1) =Fy(k) (9-20)
This is the linear approximation valid for small dewviations y(k) from the
equilibrium point X.
Next suppose that X is an equilibrium point of the continuous-ttme system

X(£) =£(x(¢)) (9-21)

Setting x(f) =X+ y(¢) and using the approximation (9-16) leads in a sumilar way
to the linear approximation

y(6) =Fy(t) (9-22)

Thus, in either discrete or continuous time, the linear approximation of a
nonlinear system has F as 1ts system matrix. The state vector of the approxima-
tion 1s the deviation of the original state from the equilibrium point.

As we know, the stability properties of a linear system are determined by
the location (in the complex plane) of the eigenvalues of the system matrix,



9.4 Linearization and Stability 327

and the stability properties of the linearized version of a nonlinear system can
be determined that way. Then, stability properties of the original system can be
inferred from the linearized system using the following general results:

(1) If all eigenvalues of F are strictly inside the unit circle for discrete-time
systems (strictly in the left half-plane for continuous-time systems), then x
is asymptotically stable for the nonlinear system.

(2) If at least one eigenvalue of F has absolute value greater than one for
discrete-time systems (or has a positive real part for contmuous-time
systems), then X is unstable for the nonlinear system.

(3) If the eigenvalues of F are all inside the unit circle, but at least one 1s on the
boundary for discrete-time systems (or all in the left half-plane, but at least
one has a zero real part in continuous-time systems), then X may be either
stable, asymptotically stable, or unstable for the nonlinear system.

The essence of these ruies 1s that, except for the boundary situation, the
eigenvalues of the lineanzed system completely reveal the stability properties
of an equilibrium point of a nonlinear system. The reason is that, for small
deviations from the equilibrium point, the performance of the system 15
approximately governed by the linear terms. These terms dominate and thus
determine stability—provided that the linear terms do not vanish. If there are
boundary eigenvalues, a separate analysis is required.

Example 1 (First-order Quadratic System). Consider the system
X(6) = ax(t)+ cx(t)?
The origin x =0 is an equilibrium point for any parameter values a and ¢. The
linearized version of the system, linearized about the point x =0, 15
y(O)=ay(1)

Based on the general principles above, we can deduce the following relations
between parameters and stability.

(1) a <0: asymptotically stable
(2) a>0: unstable
(3) a =0: cannot tell from linearization.

In the third case, a =0, it is not possible to infer stability characteristics
without an analysis of higher-order terms. For this case the system reduces to

() =cx(6)?

If ¢ =0, it is clear that the origin is stable. If ¢# 0, then it is easy to see that it 1s
unstable. [For example, if ¢ >0, then any x(0)>0 will lead to ever-increasing

x(0).]
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Example 2. Consider the discrete-time system
x(k+1)=ax,(k)+x,(k)*
Xa(k +1) = x, (k) + Bx,(k)

In Example 2, Sect. 9.2, 1t was found that this system has the two equilibrium
points X=(0,0) and X=((1-a)(1-B)? (1—a)(1—B)). Let us attempt to
analyze the stability of each of these equilibrium points. We assume that
O<a<l, 0<pB<l.
P [a 0]
1 B8

For x=(0, 0) we find that
and thus, the corresponding linearized system is
yi(k +1}=ay, (k)

ya(k + 1) =y, (k) + By, (k)

The eigenvalues of this lower triangular system are a and B, hence under our
assumptions on a and B, we can conclude that the equilibnum point 1s
asymptotically stable.

For x=((1—a)(1—B)?, (1—a)(1—B)), we find that

F:[T z<1—a£(1—3>]

The characteristic equation of this matrix 18 (A —a)(A —B)=2(1~a)(1-B).
The left side of this equation increases with A, and 1s smaller than the right side
at A =1. It is clear, therefore, that there is a root A with A > 1. Thus, this
second equilibrium point is unstable.

9.5 EXAMPLE: THE PRINCIPLE OF
COMPETITIVE EXCLUSION

The principle of competitive exclusion in biology states that it is unlikely for
two or more similar species to coexist in a common environment. The competi-
tive struggle for food and other resources results 1n extinction of all but the
most fit. When similar species do coexist over a long period of time, they
generally evolve distinct differences in their food and habits. Each of the
species tends to occupy a unique ecological niche so it does not directly
compete with other species. A version of the principle of competitive exclusion
can be demonstrated mathematically by developing a2 model of interaction
between species. The model presented here was originally developed by
Volterra.



9.5 Example: The Principle of Competitive Exclusion 329

Suppose that a number of different species share the resources of a
common environment. There is no predation among them, and indeed the onty
interaction between species that influences growth is the indirect fact that they
share the common environment. The growth rate of each of the different
species is slowed as the overall community population level increases because
of crowding, deterioration of the environment, and lack of food. The effect 1s
an aggregate one—due to all species, and influencing each of them.

The starting point for a corresponding mathematical description s the
logistic curve, which is a commonly accepted model of growth in a crowded
environment. Let us denote the population of the various species by x; for
1=1,2,...,n. Each of the species imposes somewhat different burdens on the
environment (due to differences in average size, etc.). We assume that the
aggregate burden is a linear combination

FX)= ) ax (9-23)
=1
where a;, >0, i=1,2, ..., n Then, as an extension of the usual logistic model,

it is reasonable to hypothesize that population growth 1s governed by the set of
equations

x,(0)=[B:— v, F(x(1))]x,(r)
x5(0) =[B, — v F(x(1)) ]x2(1)

(9-24)

X (8) = [Br — ¥ F(x(1)) 1%, (£)

where 8,>0, v,>0 for 1=1,2,...,n The B;’s represent the natural growth
rates 1 the absence of crowding effects. The v;’s represent the sensitivities of
the growth rates to the aggregate crowding effect. For technical reasons (which
shall soon be apparent) we assume that

Bi B
Y v

(9-25)

for all i#].
Let us look for the (nonnegative) equilibrium points of the system. These,
of course, are solutions to the set of equations

0=[B: —vF(®Ix% 1=1,2,...,n

For each such equation, we distinguish the cases % >0 and X, =0. If X, >0 for
some i, it follows that

B~ vF® =0
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or, equivalently,

F®) =B/, (9-26)

In view of our assumption (9-25), however, such an expression for F(x) can
hold for at most one index i since otherwise F(x) would supposedly have two
different values. Therefore, at most one component can be positive in an
equilibrium point. In other words, a group of species cannot coexist in
equilibrium in this model; at most one can have nonzero population.

Suppose X; is the single positive equilibrium component. Its value can be
found from (9-23) and (9-26), yielding

X = Bil(evy:) (9-27)

This system has a total of n+1 equilibrium points; the zero point and the n
equilibria corresponding to a single positive population level, as given by
(9-27).

The next question, of course, 1s whether these various equilibria are stable.
Or, 1n the terms of the biological setting, if one of the species dominates the
environment, 18 its position secure, or can 1t be driven out of existence by the
least perturbation? A simple analysis of this question can be conducted by the
linearization technique of the previous section.

Let us consider the equilibrium point X corresponding to

%, =Bul(a,vy) (9-28a)

% =0, i>1 (9-28b)

This 1s really quite general, since the species can always be renumbered so that
the one under consideration is the first.

The lineanzed system is found by differentiating the original system at the

equilibrium point. The required operations fall into a number of cases, corres-
ponding to the equation index : and the variable index j.

(@ i=1,j=1.
] i a a
—[Bi— v F(x)]x, l =Bl—71_l§l_71 1By
09X, % Yy 30 41
=-B,
(b) i=1, j>1.
] | B
5—[31—71F(X)]X1 l ="'Ylai_}—
X x Yy
B
=g =t

la1
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(©1>1, ;=1

I
»
|
2
|

2
gx_,- [8: —'YiF(x)]xi . i "

(d i>1, j#i

!
o

x

5‘;’; [8, — vF(x)x

As a result of these tedious but elementary calculations, it is found that the
linearized system has the form

—"Bx € &3 - 8,,—
0 4 O --- 0
X 0 0 A -+ 0
¥ = - Ly (9-29)
L 0 0 0 .-+ A, ]
where
_ Yi
A =88 (9-30a)
Y1
g =B (9-30b)
ay

It follows, because of its upper triangular structure, that the eigenvalues of the
linearized system are equal to the diagonal elements of the matrix in (9-29).
The equilibrium point, corresponding to having only the first population
nonzero, will be asymptotically stable if A; <O for all 1. If any A, >0, the
equilibrium point is unstable. The condition A; <0 corresponds to

BB

Yi Vi
Therefore, in order for this equilibrium point to be stable, the ratio 8/, must
be maximized by 1 =1.

We have now reached the point where we can summarize the results of
our analysis. First, under our assumptions, it is not possible for a group of
species to live together in equilibrium—an equilibrium can have a nonzero
population level of only one of the species. If the fitmess factors By, 1 =
1,2,...,n (the ratios of natural growth rate to crowding sensitivity) are
associated with the species, the largest fitness factor determines the one, among
the many species, for which the corresponding equilibrium is stable.
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9.6 LIAPUNOV FUNCTIONS

The second method of Liapunov, often referred to as the direct method, works
explicitly with the nonlinear system rather than the linearized version. This has
the advantage, first, of being applicable in marginal situations, and, second, of
enabling the analysis to extend beyond only a small region near the equilibrium
point.

The basic idea of the direct method for verifying stability is to seek an
aggregate summarizing function that continually decreases toward a minimum
as the system evolves. The classic example for mechamical systems (which is
treated 1n detail later) is that of energy. The energy of a free mechanical system
with friction always decreases unless the system is at rest; and this fact can be
used to establish stability. In general, a function of this type, which allows one
to deduce stability, is termed a Liapunov function.

General Requirements

Since the Liapunov function concept applies to both discrete-time and
continuous-time systems, with slightly different forms, we first outline the
general considerations. Later we present the separate results for discrete-time
and continuous-time systems.

Suppose that X i1s an equilibrium point of a given dynamic system. A
Liapunov function for the system and the equilibrnum point X is a real-valued
function V, which 1s defined over a region () of the state space that contains X,
and satisfies the three requirements:

(1) V 1s continuous.

(2) V(x) has a unique minimum at X with respect to all other points in .

(3) Along any trajectory of the system contained in 2, the value of V never
increases.

Let us go over these three requirements 1n order to bring out their full
meaning. The function V can be conveniently visualized in two ways. The first
1s to imagine its graph constructed over the state space, as illustrated in Fig.

.Sa. The first requirement, that of continuity, simply means that the graph is
connected without breaks. The second requirement, that V(x) is minimized at
X, means that the graph has its lowest point at X. Liapunov and many
researchers after him required in addition that this minimum value be zero (as
1n the figure), but this is neither necessary nor always convenient. The impor-
tant property is simply that X be the unique mnimum point.

The third requirement is perhaps the most difficult to visualize, at least at
first. It 1s this condition, however, which relates the function V to the system.
Let us consider the successive values of V(x) taken as the point x(t) moves
along a path defined by the system. (We use continuous-time notation simply
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/xz

X2 x(c)

x{(t)

*

/ (a} * (b}

Figure 9.5. Graph and contours.

for convemience. The discussion applies to both discrete and continuous time.)
As the state moves in state space according to the laws of motion, we associate
with each time point ¢t the corresponding value of the function V(x(t)). This 1s
the summarizing idea discussed before. the time behavior of the function V 1s
a summary of the behavior of x(t). The third requirement on a Liapunov
function 1s that the value of V, associated with the state vector, never increases
with time as the system evolves. In the geometric terms of the figure this
requirement means that the curves on the graph corresponding to system
motion must run downhill—never uphill.

A second way to visualize a Liapunov function is in terms of 1ts contours
the state space, as illustrated in Fig. 9.5b. The center point is the equilibrium
point, which corresponds to the minimum value of the Liapunov function. The
closed curves in the figure are contours; that is, loc1 of points where V 15
constant. The value of V increases as one moves to contours further distant
from the equilibrium point. The condition that V does not increase for
movement along trajectories can be interpreted as meaning that the trajec-
tories must always cross contours in the direction toward the center—never
outward.

The important point to remember is that the Liapunov function is just a
function on the state space; that is, given x in () there is a corresponding value
V(x). The function 1s not defined by motion of the system; rather, as the system
evolves, the state moves and the corresponding value of V changes.

Example 1. Consider the system

(K
xikt D=2 j_‘x(z (L)z
xz(k + 1) :ﬂﬂ_

1+ x,(k)?
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which has x=(0, 0) as an equilibrium point.
Let us define the function

V(x;, x2) = x,% + x5
This V 1s continuous and has a unique minimum at the equilibrium point. To
check whether V increases along a trajectory, we consider any two vectors x(k)
and x(k +1) related by the system equation. We find
Vix(k+ 1) =x(k+1)* + x,(k +1)*
o xo(k)? N x,(k)?
f1+ xz(k)z]2 [1+x,(k)*F
_ X (k)?+xp(k)?
[1+x,(k)*F

_ Vak)
N

Thus, this V 1s a Liapunov function for this system and this equilibrium point.
There are, of course, many other functions that satisfy the first two require-

ments but fail to satisfy the third. One must often search hard for a function
satisfying all three requirements.

Liapunov Theorem For Discrete Case

We now focus specifically on a discrete-time system
x(k + 1) =f(x(k)) (9-31)

together with a given equilibrium point X. We assume that the function f(x) 18
continuous. The requirement on a Liapunov function that it never increases
along a trajectory can then be translated into a specific mathematical relation.

If at any time k the state of the system (9-31) is equal to x, then at the
next time instant k+1 the state will be f(x). The values of the Liapunov
function at these points are, accordingly, V(x) and V(f(x)). Therefore, the
change in value 1s

- AV(x)= V(f(x))— V(x) (9-32)

If V is a Liapunov function on £, this change is less than or equal to zero for
all possible states x in Q. In other words, the requirement that the Liapunov
function not increase along a trajectory translates into the relation

AV(x)=V({Ex)-V(x)=0 (9-33)

for all x in Q. It is this form that is used in the formal defimtion for
discrete-time systems,
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Definition. A function V defined on a region () of the state space of (9-31) and
containing X is a Liapunov function for the discrete-time system (9-31) if 1t
satisfies the following three requirements:

(1) V is continuous.
(2) V(x) has a unique minimum at X with respect to all other points in {}.
(3) The function AV(x) = V(f(x)) — V(x) satisfies

AVx)=0
for all x in Q.

The geometric interpretation of a Liapunov function makes it atmost
immediately clear that if a Liapunov function exists the corresponding equilib-
rium point must be stable. The general idea 1s that if V can only decrease with
time as the system evolves, 1t must tend toward its minimum value. Accord-
ingly x must tend to X. The precise statement 1s the following theorem.

Theorem 1 (Liapunov Theorem-—Discrete Time). If there exists a Liapunov
function V(x) in a sphenical region S(X, Ry) with center X, then the equilib-
rium point X is stable. If, furthermore, the function AV(X) s stnictly negative
at every point (except X), then the stability is asymptotic.

Proof. The proof is based on geometric relations illustrated in Fig. 9.6. Sup-
pose V(x) exists within the spherical region S(X, R;). Let R be arbitrary with
O0<R<R, Let R;<R be selected so that if xe S(X, R,) then f(x)e
S(X, Ry). Such an R, exists because f is continuous. With this choice, if the
state vector lies inside S(X, R,), it will not jump out of the larger sphere
S(&, Ro) in one step.

Figure. 9.6. Regions defined in proof.
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Now let m be the minimum value of V(x) over the region defined by
R,=[x—X|=R,. This minimum value exists because V(x) is assumed to be
continuous. Also we have m > V(X) since V has a unique minimum at X,

Now again since V(x) 1s continuous, it is possible to select an r, 0<r<R,
such that for x in S(X, r) there holds V(x)<<m. This is because near X the
function V must take values close to V(X).

Now suppose x(0) 1s taken as an arbitrary point in S(X, r). Then V(x(0)) <
m. Since AV(x)=0 the value of V cannot increase with time. Therefore, the
trajectory can never go outside S(x, R,), and consequently 1t can never go
outside S(X, R). Thus, for this arbitrary R >0 we have found r> 0, correspond-
ing to the requirements of the definition of stability.

If 1n addition AV(x) <0 for every point except X, then V(x) must actually

decrease continually (either for all k, or until the state reaches X if this happens
in finite time). Thus V converges to some limiting value m. The only question
is whether 1t 1s possible for m > V(X). This 1s not possible because, since
V(x(k)) converges to m, it must be true that AV(x(k)) converges to zero [since
AV(x) 15 continuous]. But AV(x) 1s strictly negative everywhere except at X.
Thus, x(k) must converge to X and V(x(k)) must converge to m. This is
asymptotic stability. §
Example 1 (continued). Since there 1s a Liapunov function for Example 1, it
can be concluded that the equilibrium point is stable. Note that this conclusion
cannot be obtained by examination of the linearized system, since the eigen-
values of this system are A = 1.

Liapunov Theorem for Continuous Case
We now consider the continuous-time system
x(r) =£(x(1)) (9-34)

together with a given equilibrium point X. Again we assume that f is continu-~
ous. In the continuous-time case the requirement that the value of a Liapunov
function never increases along a trajectory is expressed in terms of the time
derivative. Suppose x(t) is a trajectory. Then V(x(t)) represents the corres-
ponding values of V along the trajectory. In order that V not increase, we
require that V(x(¢))=0 for all . This derivative can be expressed, using the
chain rule for differentiation, as

. A% VvV . AN
V() =-—x () +-— %)+ - -+ — %, (1) (9-35)
axl aX2 axn
Then using the onginal system equation (9-34) this becomes

. \% \% \%4
V() = 5= FK(0) + 5 Fox(0) ++ - +:—x" £ (x(1) (9-36)
1 2

&
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Defining the gradient (row) vector

Ve g V(s
VVX) = ["’ax(“), a;;(:), o aax(:)] 9-37)
(9-36) can be written as
V(x(£)) = V V(x(£))E(x(1)) (9-38)

Therefore, the requirement that V not increase along any trajectory of the
system tianslates into the requirement that V(x)=V V(x)f(x) =<0 for all x n Q.
It is this form that is used in continuous time. The definition of Liapunov
function and the theorem are given below.

Definition. A function V defined on a region {} of the state space of (9-34) and
containing X 1s a Liapunov function if it satisfies the following three
requirements:

(1) V 1s continuous and has continuous first partial derivatives.
(2) V(x) has a unique minimum at X with respect to all other points in (3.
(3) The function V(x)=V V(x)f(x) satisfies V{(x)=0 for all x in Q.

Theorem 2 (Liapunov Theorem— Continuous Time). If there exists a Liapunov
function V(x) in a spherical region S(X, R,)) with center X, then the equilibrium
point X is stable. If, furthermore, the function V(x) is strictly negative at every
point (except X), then the stability is asymptotic.

Proof. The proof is similar to that for the discrete-time case, but
simpler because it is not possible for the trajectory to jump outside of a
region under consideration. We leave the details to the reader. 1
Example 2. Consider the system

x,(1) = x(¢)

Xa(1) = — x,(£) — x,(t)

which has an equilibrium point at x, = x, =0. Define the function
Vixy, x)= x12+x22

This function is certainly continuous with continuous first derivatives, and 1t 1s
clearly minimized at the origin (which is also the equilibrum pont). This
function satisfies the first two requirements of a Liapunov function. To check
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the final requirement, we write

V(xy, X5) = 2X,%, +2X,%,
=2X, X+ 2X,(— X~ X5)

= —-2x,°=0

where we have substituted the system equations for the time derivatives of the
state variables. Thus, V 1s a Liapunov function, and the system is stable. We
cannot infer asymptotic stability, however, since V is not strictly negative at
every nonzero point.

Constants of Motion

An 1mportant special situation 1s when a Liapunov function can be found that
does not change value along a trajectory; that is, it neither increases nor
decreases. This corresponds to AV(x)=0 or V(x)=0 in discrete and continu-
ous time, respectively. In this case, V is constant along a trajectory—and the
function V 1s said to be a constant of motion. If such a function can be
determined, it conveys a good deal of information because we then know that any
trajectorv must lie on a contour of the function V. In an n-dimensional space a
contour usually defines an (n— 1)-dimensional surface. If n =2, for example,
knowledge of a constant of motion yields curves along which trajectories must
lie.

Example 3. Consider the system

xy(8) = x,(t)
x2(8) = —x,(t)

Let V(v)=x,2+x,%. Then 1t is seen that V(x)=0. The function V is a
constant of motion. Therefore, the system trajectories are restricted to con-
tours of V. In this case the contours are circles centered at the origin. Thus any
trajectory must travel around such a circle. The particular circle followed
depends on the initial condition.

Extent of Stability

It should be clear from the proof of the Liapunov stability theorems that if a
Liapunov function is defined over a large region {2, we can say more than if it 1s
defined only in a small region. In fact, it is clear that if the initial point x(0) is
selected with, say, V(x(0))=gq, then the subsequent trajectory never goes
outside of the region V(x) =gq. Therefore, the region over which the Liapunov
function is defined delineates a region throughout which system performance 1s
easily related to the equilibrium point. This kind of information, concerning the
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extent of stability, cannot be obtained by the simple linearization technique, and
for this reason a Liapunov function analysis often follows a linearization
analysis even if stability has been established.

An important special case of asymptotic stability is when the extent
includes the entire state space; that is, when an equilibrium point X 15
asymptotically stable, and, in addition, when initiated at any point in the entire
state space the system state tends to X. This property is referred to as
asymprotic stability in the large. It is often a most desirable property. The
following theorem, stated without proof, gives conditions guaranteeing asymp-
totic stability in the large.

Theorem 3. Suppose V is a Liapunov function for a dynamic system and an
equilibrium point X. Suppose in addition that

(1) V is defined on the entire state space.
(i) AV()<0 [or V(x)<<0] for all x#X.
(iiiy V(x) goes to infinity as any component of X gets arburarily large in
magnitude.

Then X s asymptotically stable in the large.

9.7 EXAMPLES

This section presents three examples illustrating the construction and use of
Liapunov functions. From these examples, the reader should begin to recognize
that the construction of a suitable Liapunov function generally springs from the
context, or original motivation, of the system equations. This theme 1s elabo-
rated throughout this chapter and the next. Once it is appreciated, the concept
of a Liapunov function becomes much more than an abstract mathematical
tool. It becomes an 1ntegral component of overall system description.

Example 1 (Iterative Procedure for Calculating Square Roots). Successive
approximation techniques or other iterative procedures can be formulated as
dynamic processes. Convergence of a procedure can be guaranteed if a
Liapunov function is found. As an example, consider the problem of finding
the square root of a positive number a. If we start with an estimate of the
square root, we might square it to see how close the result is to a and then try
to improve our estimate. By repeating this process, we develop a successive
approximations procedure.
In algebraic terms, we seek a solution to the equation

x*—a=0 (9-39)

This can be written as
x=x+a—x*
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Successive approximations can then be generated by the dynamic system
x(k+ ) =x(k)+a—x(k) (9-40)

This seems a reasonable, if not terribly inspired, approach to the calculation.
We modify the current estimate by adding to it the difference between a and
the square of the estimate. Clearly, if the current estimate is too small, the
process will increase it, and vice versa. Will it work?
As a first step of the analysis it is simplest to use the linearization method.
The linearized version (9-40) at the point % =Va is
y(k+1)=(1-2Va)y(k) (9-41)

where, as usual, y(k)=x(k)—% The condition for asymptotic stability is
therefore

l1-2va|<1
or, equivalently,
0<a<l1

Already we can conclude that this method can work only for a limited
range of a values.

The linear analysis tells us that for 0<<a<(1 the method will work
provided we start close enough. But it does not tell us how close the initial
estimate must be. A Liapunov function would give us more information.

It 1s natural to define

V(x)=la—x?| (9-42)

This function is continuous and has a minimum at % Denoting the right-hand
side of (9-40) by f(x(k)), it follows that

V(f(x) =la—(x+a—x>?
=la—x*-2x(a—x*)—(a—x??¥
=|(a—x)[1-2x—(a—x)]|
=la—x*|(1-x)*-a| (9-43)

Therefore,
AV(x)= V(f(x))~ V(x)= V(O)[|(1—x)*~a|~1] (9-44)
The condition for AV(x)<<0 is thus
(1= x)—al<1 (9-45)

For 0<a<1, this is equivalent to the requirement that

1-vV1ita<x<l+vl+a
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In particular, the requirement is satisfied for all x, 0=x=1. Thus, the
Liapunov results show us that this simple procedure converges to va, 0<a <1,
provided only that the initial estimate x satisfies 0=<x=<1.

As a special instance, suppose we set a =3 and try to calculate its square
root {which we already know is x =3) using this method and starting at x =1.
We obtain the following successive estimates:

X

0 1.0000000

1 25000000

2 .43750000

3 49609375

4 .49998474

5 49999999

6 .50000000

However, let us try a number close to unity, say a =.98. Then we obtain:

0 1.0000 20 9966471659
1 .980 30 9954176614
2 .9996 40 9944139252
3 .98039984 50 9935944066
4 .9992159937 51 9863645618
5 .9807833916 75 9877494455
6 .9988473304 76 9921004784
7 981151341 100 9912712204
8 .9984933871 101 988652588
9 981504343 125 989153085
10 9981535677 126 9907292594
11 1981843023 150 .9904285409
12 9978273012 151 9894798463

The exact result is x =.9899494936

This slow rate of convergence is, of course, not unexpected 1n view of the
linearized version. The eigenvalue of the linearized system is —.979899, which
indicates extremely slow convergence.

We now know the range of a values for which the procedure will work,
have found a range of acceptable starting values, and have an estimate of the
speed of convergence. Through a combination of linear analysis and a
Liapunov function, we have been able to obtain a fairly complete characterization
of the properties of the iteration procedure (9-40).

Example 2 (Swinging Pendulum). This is an example of the type that appar-
ently originally motivated the invention of the Liapunov function concept. A
simple swinging pendulum has an equilibrium point when hanging straight
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Figure 9.7. Swinging pendulum.

down. This point is stable, as is intuitively clear. Furthermore, if it is assumed
that there 1s some friction 1n the bearing, then, as 1s equally clear, the point is
asymptotically stable. The equations of motion come from Newton’s laws, but
they are nomnlinear in this case. How can one mathematically establish the
strong stability properties that one feels must hold for this simple system? The
answer is to look at the energy of the system. Since energy is constantly
dissipated by the system, mechanical energy serves as a suitable Liapunov
function.

We assume that the pendulum is of length R and has point mass M
concentrated at the end. The position of the pendulum at any time 1s described
by the angle 6. We assume that the frictional force is proportional to the speed
of the pendulum. (See Fig. 9.7.) To write the equations governing the pen-
dulum, we equate mass times acceleration to total force in the direction
perpendicular to the pendulum arm. Mass times acceleration is MRA(t). The
force 18 the component of gravitational force in this direction, —Mgsin 6(¢)
plus the retarding force due to friction —Mk6(t). Here g >0 is the gravitational
constant and k>0 is a friction coefficient. Thus, we have

MR (1) = — Mg sin 6(t) — Mké(r) (9-46)
In state variable form this becomes
() =w(t)
(9-47)
w(t)= "igi sin B(t)~—1’-;— w(t)

The second state vanable w(t) is the angular velocity of the pendulum.
We now define the function

V(8, w) =iMR?w?*+ MgR(1-cos 0) (9-48)
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This function V is the mechanical energy of the system (which is the sum of the
kinetic and the potential energy). Although the physical significance of V is a
major conceptual tool, 1t 18 for our present purposes irrelevant. Our main
interest is that this V is a Liapunov function.

To verify that V 1s a Liapunov function, we note first that V is continuous
and has continuous partial derivatives. It is positive everywhere except at 6 =0,
o =0, where 1t is zero. Thus, V is minimized at the equilibrium point. Finally,
we compute V:

V(6, ) = MR2wo + MgR# sin 8
=~ MRgo sin § — kMRw? + MgRw sin ¢
= —kMRw?=0 (9-49)
Thus, V is a Liapunov function, and we can immediately conclude that the
equilibrium is stable.

Example 3 (A Pursuit Problem). Suppose a hound is chasing a rabbit. The
rabbit runs a straight course along the x-axis at constant velocity R. The hound
runs at a constant velocity H, but in such a way as to always pomt directly
toward the rabbit. Let us write the differential equations describing the motion
of the hound and the rabbit. (See Fig. 9.8.)

Let x,(f), y,(t) and x,(t), y,(t) denote the x and y coordinates of the rabbit
and hound, respectively. Then

% =R (9-50a)
)-’r =%= 0 (9'50b)

Figure 9.8. Hound and rabbit.
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The fact that the velocity of the hound is H means that
%ty =H? (9-51)
The fact that the velocity vector of the hound always points toward the rabbit
means that
%= —k(x,—x) (9-52a)
Vo= —k(yn—y,) (9-52b)

for some positive constant k.
Using (9-52a) and (9-51) one may determine k for (9-52b), thereby
obtaining the equations

~(x,—x)H
Vi(x, — xv)z + )’h2
—y H
o (£) = e e (9-53b)
Y (xh_xr)2+Yh2

The system is perhaps more meanmmngful when expressed in terms of
relative coordinates—the coordinates of the difference in position of the hound
and rabbit. Defining

X, = (9-53a)

X=X, —X,
Y=Yu
there results
—xH
X =—==—=—R (9-54a)
Vx%+ y2
- yH
§ = (9-54b)

\/xz-!-y2

It 1s this final system that we examine.

We ask whether the hound will always catch the rabbit. With respect to
the system (9-54) this is equivalent to asking whether a trajectory with an
arbitrary initial condition x(0), y(0) will eventually get to the origin, where the
relative coordinates are zero. This particular system is indeterminant at the
origin, but it is well-defined everywhere else. Clearly for our purpose we can
consider the origin as an equilibrium point. To establish the desired conclusion
it is natural to seek a Liapunov function for (9-54). But how can we find a
suitable Liapunov function for such a complicated highly nonlinear system?
The answer is found most casily by recalling the original source of the
equations. The hound is trying to catch the rabbit, and his movement at every
instant directly contributes to satisfying that objective. It is natural therefore to
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suppose that distance (or distance squared) from the origin might serve as a
Liapunov function, since it is the separating distance that the hound seeks to
diminish.

Indeed setting

V(x,y)=x*+y? (9-55)
one finds
Vix, y)=—2H~x*+y*—2Rx (9-56)

We can show that if H>R, then V(x, y) is negative for any point other than
the origin. If x=0, y#0, this is clear. If x#0, then —HVx?+y>—Rx<
—(H-R)|x|<0. Thus, V(x, y)<0 for all x, y except the origin. It follows that
if the hound runs faster than the rabbit, he always catches the rabbit.

*9.8 INVARIANT SETS

The Liapunov function concept and the stability theorems can be generalized
in several directions to treat special circumstances. One generalization, based
on the idea of an invariant set, is particularly useful for two sorts of common
situations. The first situation is where a Liapunov function is found, and AV (x)
for V(x)] is strictly less than zero for some values of x but not for all x. The
original Liapunov theorem only assures stability in this case. By employing the
invariant set concept, however, one can often establish asymptotic stability with
the same Liapunov function.

The second place where the invariant set concept is useful is for systems
that do not have equilibrium points, butin which the state vector does tend to follow
a fixed pattern as time increases. For example, in two dimensions the state may
tend toward a trajectory that endlessly travels clockwise around the unit circle.
The Liapunov function concept can be extended to handle such situations by
use of the nvariant set concept.

Definition. A set G is an nvanant set for a dynamic system if whenever a
point X on a system trajectory is in G, the trajectory remams in G.

An equilibrium point is perhaps the simplest example of an invariant set.
Once the system reaches such a point, 1t never leaves. Also, if a system has
several equilibrium points, the collection G of these points is an invariant set.
Here is a somewhat different example.

Example 1 (A Limit Cyde). Consider the two-dimensional system.,
x=y+x[1-x*—y’]

y=-x+y[1-x>-y?]
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The origin 1s an equilibrium point, and 1t can be easily shown that this system
has no other equilibrium points. However, once the system is on the unit circle
x*+y?=1, it will stay there. The unit circle is an invariant set of the system. To
verify this we simply note that x%+yy =(x*+y?)[1—x>—y?], and hence the
velocity vector is orthogonal to the state vector on the unit circle. Thus, the
unit circle is an invariant set.

To obtain the useful generalized Liapunov result, the concept of invariant
sets 1s combined with another key idea that emerged (at least briefly) in the
course of the proof of the Liapunov stability theorem. When AV/(x) =0 for all x
[or V(x)=0 for all x], then certainly V must always decrease—moreover, and
this is the important observation, AV(x) [or V(x)] must tend to zero if V has a
lower limit. So in some sense it 1s more relevant to look at the places where
AV(x)=0 [or where V(x)=0] than where V is minimized (although the latter
includes the former). The following theorem combines the two ideas. Essen-
tially it states that if a V 1s defined such that AV(x) =<0, then the state must go
both to an invariant set and to a place where AV(x)=0.

Theorem (Invariant Set Theorem). Let V(x) be a scalar function with continu-
ous first partial denvatives. Let §); denote the region where V(x)<<s. Assume
that ), is bounded and that AV(x)=<0 [or V(X)=<0 in continuous time)
within Q.. Let S be the ser of pownts within Q, where AV(x)=0 [or
V(x)=0], and let G be the largest invariant set within S. Then every
trajectory in () tends to G as nme increases.

Proof. The conditions on AV(x) imply that V 1s a nonincreasing function of
time. Therefore, any solution initiated within O, does not leave (). Further-
more, since V must be bounded from below (because (), 1s bounded), it follows
that V(x) tends to a finite limiting value, and accordingly AV(x) tends to zero.
Again since (), is bounded, the trajectory must tend to the set S.

Define the limiting set T as the set of all points to which the trajectory
tends as time increases. It can be shown (using techniques beyond the scope of
this book) that this set contains at least one point and 1s an invariant set. This
set must be contained in the set S, and therefore it must be part of the largest
invariant set G within S. 1

This one theorem is an extremely powerful tool for system analysis. It
contains the original Liapunov stability theorem as a special case, but can often
supply additional results.

Example 2 (The Pendulum). Let us return to the pendulum example that was
treated i the previous section. The energy Liapunov function V had

V(0, w) = —kMRw*
Since V =0, the original Liapunov theorem only establishes marginal stability.
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However, using the invariant set concept we can go somewhat further. The set
S is in this case the set where w =0. An invariant set with w =0 must be
a rest position, and the largest invariant set within S consists of the two rest
positions; at the bottom and the top. The invariant set theorem enables us to
conclude that solutions must tend to one of the two equilibrium points.

Example 3 (The Limi¢ Cyde). For the system
x=y+x[1-x2—y?]
y=-x+y[l-x*-y’]

define the function
Vix, y)=(1-x*—y?

Then

V(x, y) = ~2(1—x*— y»)(2xx +2yy)

- _4(x2+y2)(1 _xz_ y2)2
Limit cycle \

\

Figure 9.9. A limit cycle.

Thus, V =0 for all points in the state space. The set S consists of the origin and
the unit circle. Since we have seen that S is also an invanant set, every
solution tends to S. Furthermore, the-origin is not included in ,. It easily
follows that no solution tends to the origin, except the solution that starts
there. The origin is therefore unstable, and all other solutions tend toward the
unit circle. The form of the solutions are illustrated in Fig. 9.9.

9.9 A LINEAR LIAPUNOV FUNCTION FOR POSITIVE SYSTEMS

In general there is no easy way to find a Liapunov function for a stable
nonlinear system. Like modeling itself, one must rely on experience, a spark of
insight, and familiarity with what has worked in the past (which in this case s
other Liapunov functions). There are, however, general types of Liapunov
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functions that work for certain classes of systems. Some of these are presented
in the following four sections, and they can be used as suitable references in
other situations.

The basic results for positive linear systems can be interpreted in terms of
Liapunov functions (or more generally in terms of summarizing functions). This
interpretation adds a bit of insight and clarification to both subjects.

For simplicity let us first consider a discrete-time strictly positive homo-
geneous system

x(k+1) = Ax(k) (9-57)

Consistent with the general motivation of such systems, we only consider
nonnegative solutions. Likewise, the Liapunov function need only be defined
for nonnegative vectors in this case.

Suppose that the system is asymptotically stable. The eigenvalue of great-
est absolute value is the Frobenius—Perron eigenvalue A4, with 0=<A,<1. Let
£5 be the corresponding strictly positive left eigenvector, and define

V(x)=1fix
For this function we have (since f5>0)
V(x)>0 for all x=0 (9-58)
Vio)=0

Thus, V has a minimum point {(with respect to nonnegative vectors) at x=0.
Furthermore, for any x(k)=0, we have

Vix(k +1)) = EFAx(k)
= Aofgx(k) (9-59)
= Ao V(x(k)) < V(x(k))

Since V strictly decreases as k increases, V is a Liapunov function, and
it explicitly demonstrates the asymptotic stability of the origin.

This idea can be extended to include nonhomogeneous positive systems
and to allow for arbitrary state vectors by slight modification. The resulting
Liapunov function employs absolute values and hence is no longer linear, but it
is still of first degree. Consider the system

x(k+1)=Ax(k)+b (9-60)
where A>0. Suppose that there is a unique equilibrium point
x=[1-A]"'b (9-61)

which is asymptotically stable.
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We now define
V(x) =3 [x—x| (9-62)

where here {x—X| is the vector with components equal to the absolute values of
the corresponding components of x—X.
Clearly V(x) 1s minimized at x=X. Also we have

Vix(k + 1)) = ££ |x(k + 1) |
=f5 jAx(k)—~ Ax|
=HA Ix(k) —%| = Aofg [x(k)— %]
< Vix(k)) (9-63)

for x(k) #X. Again V 1s a Liapunov function.

9.10 AN INTEGRAL LIAPUNOV FUNCTION

Another important Liapunov function is constructed by integrating the right-
hand side of the system equation. Although this construction, by itself, 1s
applicable only to scalar systems, the idea can be combined with other forms of
Liapunov functions in some high-order systems.

Consider the system

x()=f(x(2)) (9-64)

Here x(t) is just scalar-valued. The function f(x) is assumed to satisfy the
following properties:

(1) f(x) 1s continuous
(2) xf(x)<0 for x#0
() —Ff(x)dx =00, [ f(x)dx=0

The general form of f(x) is shown in Fig. 9.10. These properties can be
regarded as a rather general extension of what one would require if f(x) were
linear. If, say, f(x)=ax, then the requirement a <0 would imply the three
requirements above. Overall, the conditions on f are very modest.

The origin is clearly an equilibrium point (the only one) since f(x) =0 only
for x =0. We can prove that the origin is asymptotically stable in the large. To
do so we let

Vix)= - ff(o) do

Clearly V(x) is continuous and has a continuous derivative. In view of the sign
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fix)

Figure 9.10. General form of fAx).

assumption on f, it 1s easily seen that V(x)>0 for x#0, V(0)=0. Also

_dV(x)
= J®

= —f(x)*<0 (9-65)

for all x#0. Finally, V(x)— = as |x]— = because of the assumption of the
integral of f(x). Thus, all conditions for asymptotic stability in the large are
satisfied, according to Theorem 3 of Sect. 6.

As an example, this result establishes asymptotic stability in the large of a
system such as

Vi(x)

x =tanh (x)—x

which when linearized about x =0 gives x = 0. The linearization technique is
inconclusive, while the integral Liapunov function yields extremely strong
results.

*3.11 A QUADRATIC LIAPUNOV FUNCTION FOR
LINEAR SYSTEMS

A very important form for a Liapunov function 1s a general quadratic function.
It 1s used in numerous special cases. It has a special role in iinear systems, since
in that case the time derivative of the function is also quadratic.

Quadratic Forms

By a quadratic form in the variables x,, x,,._., x, we mean a function of the
form

V(X):P11x12+P12x1x2+P13x1x3+' T Pin XX,
+p21x2xl+' n +p2nx2xn+. o +pnnxn2 (9-66)
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It is a function where each term is a constant times the product of two
vartables. When written out 1n length this way, each pair of distinct variables
may enter two different terms. For example, there is a term of the form p,,x,x,
and another of the form p,,x,x,. Only one of these is really necessary, but it is
convenient to divide the term involving the product of two variables into two
equal parts. Then p; =p; for all i and J.

The quadranc function (9-66) can be expressed in matrix notation as

V(x)=x"Px (9-67)

where P 1s an nXn matnx whose entries are the coefficients in the tong
expression. By selecting the coefficients as described above, the matrix P will be
symmetric. Here are some examples of quadratic forms.

(1) Vi(x,, x,)=x.2+x,% is equivalent to

Vx)=[x, xz][(l) (1)][;;]

=x"kx
2 ; 2
(2) Vix, xp)={x;+x2)" = x2+2x,X,+ X,
= X 24X, X+ X%, + X7

Ths is equivalent to

-t} ]

1]1Lx,

(3) Vi(xi, x,) =x,2—x,” +4x,x, is equivalent to

VX =[x, xz]B _2][X1]

1 Xa

A quadratic form x"Px 1s said to be positive semidefinite if X" Px=0 for
every x. It is said to be positive definite if X"Px>0 for every x# 0. The form
x,%+ x,? is positive definite. The form (x, —x,)? is positive semidefinite. The form
x> - X2 +4x,x, is not positive semidefinite. Since a quadratic form is defined
completely by its associated symmetric matrix P, we can apply these same
definttions to the matrix itself. Thus, a symmetric matrix P 1s said to be posiive
semidefinite if its associated quadratic form is positive semudefinite—and
similarly for the other definitions.

It is, of course, important to be able to determine whether a given
symmetric matrix P is positive definite without directly verifying that x" Px>>0
for all x. Fortunately, this is not too difficult. One procecure s to examine the
eigenvalues of P. Since P is symmetric the eigenvalues are all real. (See
Problem 19, Chapter 3.) The symmetric matnx P is positive semidefinite if and
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only if all its eigenvalues are nonnegative. It is positive definite if and only if
the eigenvalues are strictly positive.

Another test is in terms of the principal minors of P. Specifically, the
matrix P is positive semidefinite if and only if

Pui1 P12
P21 P22
The matrix P is positive definite if and only if the above inequalities are all

strict. The reader should be able to quickly apply erther of these tests to the
three examples given above.

P =0, =0,... [Pj{=0

Liapunov Functions

Consider the linear homogeneous continuous-time system
x(1) = Ax(1)

Let us associate with this system and the equilibrium pomt X= 0 the quadratic
function

V(x) =x"Px (9-68)

where P is symmetric and positive definite. This V is continuous and has
continuous first partial derivatives. Furthermore, since P is positive definite, the
origin is the unique minimum point of V. Thus i terms of general characteris-
tics, such a positive definite quadratic form is a suitable candidate for a
Liapunov function. It remains, of course, to determine how V(x) is influenced
by the dynamics of the system.

We have*

. d .
=—x Px
V(x) r X

=x"Px+x' Pk
=x"ATPx+x"PAx
=x"(ATP+PA)x (9-69)
Therefore, defining the symmetric matrix
~Q=ATP+PA (9-70)
we have
V(x)=—x"Qx (9-71)

*The earlier formula V(x)=VV(x)f(x) yieids V(x)=2xTPAx. However, 2xTPAx=xT(PA+
ATP)x, giving the same resuit as (9-69). The latter form 1s preferred since 1t expresses the result as
a symmetnc quadratic form.
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We see that the function V(x) is also a quadratic form. The function V will be a
Liapunov function if the matnx Q is positive semidefinite. If, in fact, Q 1s
positive definite (rather than just semidefinite), we can infer that the system 1s
asymptotically stable.

Example 1. Consider the system

x(1)= [_(2) _;]x(t) 9-72)

This system is asymptotically stable. Indeed, its eigenvalues are A =—1, A =-2.
However, using P =1, corresponding to the positive definite function V(x)=
x,2+x,2, does not yield a Liapunov function because in this case

wnn L LY om

which 1s not positive semidefinite. [Note, for instance, that [{Q|=—1.]

Example 2. For the system (9-72) of Example 1, let us use

51
e[} 1]
11
This P is positive definite. The corresponding Q is
_I5 1][ 0 1] 0 —2][5 1]
="y 1l -3 [1—311
_[4 0]
0 4
which is positive definite. Thus, the function V(x)=x"Px is a Liapunov
function that explicitly demonstrates the asymptotic stability of (9-72). This
illustrates that in general only certain positive definite quadratic forms can
serve as a Liapunov function for a given asymptotically stable system.

Nevertheless, if the system is asymptotically stable, it is always possible to find
a suitable P. (See Problem 17.)

9.12 COMBINED LIAPUNOV FUNCTIONS

When faced with a new system structure, it is sometimes possible to combine
two or more of the simple forms presented in the last few sections n order to
construct an appropriate Liapunov function. As an example, consider a non-
linear oscillatory system defined by

X+ki+g(x)=0 (9-74)
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where g(x) satisfies xg(x)>0 for x# 0 and where k >0. This might represent
the equation of a mass and nonlinear spring, subject to friction.
In state variable form the system becomes

x=y
y=—ky—g(x) (9-75)

We shall show that a suitable Liapunov function is

Ve ) =ty*+ [ g do (9-76)
(¢]

This 1s a combmation of a quadratic Liapunov function and an integral
Liapunov function. It is easily verified that this function satisfies the first two
requirements for a Liapunov function. To verify that the third requirement is
satisfied, we calculate

V(x, y)=yy+g(x)x
= —ky?—yg(x)+g(x)y
=—ky*=0

This establishes the stability of this general system. By using the mvanant set
stability theorem, asymptotic stability can be established.

As a final note, we point out that although systematic trial and error of
analytical forms can often successfully lead to a surtable Liapunov function (as
it apparently did in the above example), generally a Liapunov function has
some tuitive significance within the context of the system itself—beyond
simple mathematics. As an illustration, one should look again at the pendulum
example of Sect. 9.7. It will be found to be a special case of the example of this
section with g(0)={g/r) sin . The Liapunov function used here is the same as
that used in this example: namely, the energy of the system. Thus, in this case,
as in many others, the appropriate mathematical construct has great physical
significance.

9.13 GENERAL SUMMARIZING FUNCTIONS

As discussed 1n the beginning of this chapter, the Liapunov function can be
regarded as a special case (a most important special case) of the concept of a
summarizing function. The general underlying idea 1s to simplify the analysis of
a complex high-order dynamic system by considering a single scalar-valued
function whose time behavior can be estimated. In the case of a Liapunov
function one concludes that the V function goes to a minimum. It follows that
the state must go to the equilibrium point—although we do not know its
precise path. This i1dea can often be used to summanze the general nature of
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the system even if it is unstable. The following two examples illustrate the
general approach.

Example 1. Consider the system

X; =X X, (9-77a)
X, = X, (9-77b)

Define V(x)= x,%+x,?, which is the square of the distance from the origin. We
then have

V(X) = 2x,%, +2X,%5
= 2(x12x2+x22) (9-78)

For x,=1 we can write
V(x)=2V(x) (9-79)

From (9-77b) it is easy to see that if x,(0)> 1, then x,(¢t)>1 for all ¢>0. Thus,
the inequality (9-79) will be valid for all >0 provided only that x,(0)> 1. We
can conclude that

V(x()) = V(x(0))e™ (9-80)

We conclude that the square of the length of the state vector grows at least as
fast as e®. The length itself, the distance from the origin, increases at least as
fast as e'. This general qualitative information is obtained without detailed
knowledge of the solution.

Example 2. The summarizing concept is sometimes valuable even in connec-
tton with linear systems. By selecting the summarizing function as an aggregate
of several variables, a simple approxmmation can sometimes be deduced.

As a simple illustration of this idea, consider the positive system

X, (k+1) 1 2 3|[x(k)
k+1) =12 1 1 |ix(k) (9-81)
xk+1 ] L0 1 1{]lxa(k)
where each x;(k) 1s nonnegative. Define the summarizing function
V() =x;+x;+ X5 (9-82)
By application of {9-81) we find
Vx(k +1)) = x,(k + 1)+ x,(k + 1)+ x5(k + 1)
=3x,(k)+4x,(k)+ 5x,(k)
Recalling that each x;(k)= 0, we may write from the above
V(x(k +1)) = 5[x, (k) + x,(k) + x3(k)] = 5 V(x(k))
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Likewise,
Vx(k+1))=3[x,(k) +x,(k)+ x5(k)]= 3 V(x(k))

Thus, we have obtained the two inequalities

Vix(k +1))=5V(x(k)) (9-83a)
V(x(k +1))=3V(x(k)) (9-83b)

Thus, we can easily deduce that
3*V(x(0))= V(x(k)) = 5“V(x(0)) (9-84)

Therefore, we have both upper and lower bounds on the summarizing function,
and these bounds were quite easily found.

9.14 PROBLEMS
1. By a suitable change of varnable, convert the logistic equation

x(r)=a(1—x—“—)>x(t)

c
(with a>0, ¢>0) to a linear first-order differential equation. Show that if 0<
x(0)<c, then

C
x(t)=——T""x
® 1+be™
and b > 0.
2. Verify that the solution to the equation

x(t)= a[l +f?]x(t)

L
where a>0, ¢>0, x(0)>0 is

c
be ™™

x(t)= Y

for some b>0.
3. For the system
%(t) =smlx () + y(1)]
y(“ = ex(l)_l

determine all the equilibrium points, and using Liapunov’s first method, classify
each equilibrium point as stable or unstable.
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Asymptotically Unstable Marginally
stable stable

Figure 9.11. Which label is incorrect?

4. A classic “textbook” illustration of stability 1s that of Fig. 9.11. (Only pivoting
motion is considered for the first two objects, and only rolling for the third.) Each
object when at rest is in a state of mechanical equilibrium, but a small dispiacement
of angular position leads 1n the three cases, respectively, to return to equilibrium, a
large displacement, and no further change. Actually, although the above statements
are correct, one of the labels is incorrect if the objects are considered as dynamic
systems governed by Newton’s laws. Which one, and why? (You do not need to
write any equations.)

5. Using Liapunov’s first method, determime whether the origin 1s a stable equilibrium
pomt for each of the following systems:

(@) x,=—x,+x;°
X2 = —x,{x;+ 1)
(®) x,=x+x,

Xy =Xy =Xq

(© %= —x,+x;
Xy = —x2+x.2
(d) x;(k +1)=2x,(k)+xa(k)?

xa(k +1) = x,(k) + x2(k)

(e) xi(k+1)=1—e=®=®
xa(k + 1) = x,(k)+2x,(k)

6. Model of Bacterial Growth. An industrial plant’s effluent waste 1s fed into a pooi
of bacteria that transforms the waste to nonpolluting forms. Maintamnng the
bacterial concentrations at effective levels 1s a critical problem. If the pool’s oxygen
supply, temperature, and pH are kept within acceptable limits, then the bacteria's
ability to grow is primarily dependent on the supply of some nourshing organic
substrate (for example, glucose or the waste itself).

A simple mathematical model of growth can be.derived from a few basic
assumptions that were deduced from batch culture expernments by Monod. One
observation is that the rate of growth of bactena in the culture s approximately
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i inflow of substrate

i |

!
r_- Bacteria p;ﬂ

Qutflow of culture

Figure 9.12. Bacteria pool.

proportional to the substrate concentration when the substrate 1s scarce, but tends
towards a constant saturation level as the substrate becomes more plentiful. If we
iet x, equal the concentration of bacteria and x, equal the concentration of
substrate, then we can represent the result by the equation

X
x,+K

X, =a X,
where a and K are positive constants.

A second observation 1s that the weight ratio of bacteria formed to substrate
used 1s a constant. This gives a rate of change equation for the substrate

X2
x,+ K

X;=—b X,
where b 1s a posiuve constant.

In the pollution control application, there 1s a continual flow of nourishing
substrate nto the pool that 1s matched by a flow of bacterial culture out of the pool.
(See Fig. 9.12.) Also, the rate of flow is controlled to be proportional to the volume
of culture present in the pool. Adding this information to the equations above,
setting a and b equal 1, and normalizing so that the concentration of substrate in
the inflow stream s 1, yields the following model:

X2

X, = xy—Dx

! x;+ K ! !
—x

X, = 2 x4+ D[1—x,]
x;+ K

A stability analysis will reveal whether in the face of slight disturbances the culture

will continue to be effective. In the following, assume K>0 and 0<D <1,

(a) Determine the equilibrium points. What condition on D and K s required to
insure that all equilibrium points are nonnegative?

(b) For each equilibrium pomnt determine what condittons on D and K are required
to insure asymptotic stability. Compare with part (a).

Liapunov Instability Theorem. Prove the following: Let X be an equilibrium point
of the dynamic system x(k + 1) =f(x(k)). Assume there is a function V(x) such that
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V(X) =0, V(X) assumes positive values arbitrarily near X, and AV (x)>>0 for all x#x.
Then X 1s unstable. (You should also state and prove the continuous-time version.)

. No Marginal Stability. Consider the system ~

f1=x,0a% —x,.2 = 0,2+ xa+ x, 2+ x,2]
X =-xla’+x2+ 021+ x (a2 = x, = x,%]
and the function V(x)=x]+x3}. Show that the system 1s asymptotically stable for

a =0 and unstable for a# 0. (Use Problem 7.) Thus, the transition from asymptotic
stability to instability does not pass through a point of marginal stability.

Alternative System Formulations. In many situations the choice between a discrete-
time and a continuous-time representation is somewhat arbitrary. It 1s, of course,
possible to approximate one version by another. Suppose that the system

(1) = £(x(t)) (0)
1s given. By selecung a step size of A this can be approximated by a discrete-ume
system by either of two methods:

x(k+1)—x(k)
A
x(k+1)—x(k)

A

= (x(k)) (&)

=f(x(k +1)) (B)

Suppose that the orgin 1s stable for the original system (0) and that V(x) is a

corresponding Liapunov function. Suppose also that V(x) is quasi-convex; that 1s,

for any c if V(x)=<c and V(y)=g¢, then V(ax+(l—a)y)=c for all a, Osa=1.

[The contours of V(x) are convex.] Finally, assume that VV(x)# 0 for all x # 0.

(a) Show that the corresponding discrete-time system defined by method A is not
necessarily stable.

(b) Show that the corresponding discrete-tume system defined by method B 1s
stable.

(c) Suppose the linear system

x(t) = Ax(t)

is asymptotically stable. Show directly, 1n terms of eigenvalues, that the corres-
ponding discrete-time system defined by method B 1s also asymptotically stabie.

Prove that the origm 1s stable for each of the systems below using Liapunov’'s
second method. [In parts (2) and (b) find a suitable Liapunov funcuon. In part (c)
try the suggested function.]

(a) x=y (© x=y(1-x)
y=-x’ y ==x(1-y)
(b) £ =-x’~y? V=—x—log(l1—x)—y—log(l—y)

y=xy—y’
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11.

12.

13.

14.

Analysis of Nonlinear Systems

For a discrete-time linear system
x(k + 1) = Ax(k)

let V(x)=x"Px, where P is a symmetric positive definite matrix. What condition
will insure that V(x) s 2 Liapunov function. (Express the answer in terms of the
positive semidefiniteness of some other symmetric matrix.)

Margin of Safety. Show that if there are symmetric, positive definite matrices P
and Q such that

PA+ATP+2AP=-Q
then all eigenvalues of A have a real part that 1s less than —A.

Steepest Descent. Suppose that a funcuion f(x) 1s to be minmmized with respect to
the n-dimensional vector x. A numerical procedure for finding the minimum 1s the
method of steepest descent, which starts from an initial estimate x, and successively
computes new estimates according to

Kpe a1 = Ko — 0t Z(X0)

where g(x,) 1s the (transpose) of the gradient of f at x,. The scalar «, 1s chosen so as
to mimimize the function f(x, —ag(x.)) with respect to a. (This last operation
mvolves a one-dimensional numerical search.)

Assume that the function f satisfies the following properues:

(1) f has a umque minumum at the point X.

(2) f has continuous partial derivatives, and the gradient of f vanishes only at X.
(3) f(x) > © as the magnitude of any component x goes to infinty.

(4) ay =alx,) is continuous I X,.

Show that the 1terative procedure converges to the solution X from any starting
point.

Musicians, Jugglers, and Biological Clocks. How 1s 1t that a group of musicians,
playing together without a leader, are able to stay together? How do a parr of
Jugglers, whose performance depends on precise tuming, keep synchronized? Or, in
a biological context, why do the muscle elements that compose the heart contract at
the same rate, and how do certain orgamsms become synchronized to the daily light
cycle?

In general we can conjecture that synchronization is possible because an
individual responds to the general performance of others, speeding up if the others
are ahead, and slowing down if they are behind. To construct a model along these
lines, we define the variable x, as the position of the :th member of the group. The
position 1s a general measure of the total phase transversed from some reference
point (e.g., in music, x; is the position in the musical score, which should increase
linearly with time). We assume that each member : has a notion as to the proper
speed A;, which he would adopt if he were alone. In the presence of others,
however, he modifies his speed if he deviates from the group average. Thus letting



15.

16.

17.
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£ =Y., xJ/n we postulate

x ()= A~ filxy () — X))
x2(t) = Az — fo(x,(8) — 2 (1))

Xa(t) = An — fu 00 (1) =~ X(1))
We assume that the response function f has a continuous derivative and satisfies
(1) (=0, 1=1,2,...,n
2 fy)>0allyand1=1,2,...,n
3 If.(Wl—=® as ly|l>oi=1,2,...,n

(a) In this example one does not seek an equilibrium point m the usual sense, but
rather a trajectory that moves according to x;(t) = A for all i, corresponding to
a situation where the relative positions of all indiniduals are constant. To show
that such a condition 1s sustainable, assume there is a umque A and a set of

numbers 8, 1=1,2,..., n with X §, =0 such that A; —f,(8;)= A for all i.. Find a
corresponding synchronized trajectory, and show that 1t i1s an invariant set of
the system.

(b) For the case n=2, convert the two equations to a single equation in the
variable z(t)=x,(t)—-X(t) and show that the equilibrium point 1s asymptotically
stable in the large using an integral Liapunov function.

Observability and Stability. Consider the nth-order system

x(1) = Ax(t)
Suppose that there is a symmetric positive definite matrix P such that PA+A'P=
—cc’, where ¢” is an n-dimensional vector. Suppose aiso that the pair A, ¢ 18

completely observable. Show that the system 1s asymptotically stabie. Interpret this
result.

The van der Pol Equation. The equation

f+elx®~1lx+x=0
arises 1n the study of vacuum tubes. Show that if € <0, the ongin is asymptoucally

siable. (An mmportant but deep resuit is that for £ >0 there is a limit cycle that 1s
approached by all other trajectories.)

Liapunov Equation. The quadratic Liapunov function for linear systems is actually
completely general. We can show: If A 1s an n X n matrix with all eigenvaiues in the
ieft half of the complex plane, and if Q 1s any symmetric positive definite n X n
matrix, then there is a positive definite P such that PA + AP = ~ Q. To prove this
define

P= L eA"Qe™ dt
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(a) Show that the integral exists and that P 1s symmetric and positive definite.
(b) Show that
=4 ]
-Q= J’ o (e*"Qe™)dt =PA+A"P
(]

18. A Cubic System. Given the system

X=X,

X2 = X3

- 3

X3= —(x,+cx;) ~bx,

consider the funcuon

b 1
Vixy, xa, x3)=z Xx4+zz (x, +cxa)*

1 a b’ 2 1.2
——— X, +-2—x2'+bx2x3+ix3

4c

(a) What condition on b>>0, ¢ >0 insures that V(x,, x,, x3)> 0 for (x,, x3, x3) # 0?
(b) Show that V has the form

V(xb Xo, X3) = ’szz[(%xl + CX:)Z +%x12]
and determine the constant .
(c) Is V always a Liapunov function if b and c¢ satisfy the conditions of part (a)?

(d) Is the origin asymptouically stable under these conditions?

19. Krasovskii’s Method. Consider the system x = f(x). Assume that f(x) =0 if and only

if x=0, and that F, the Jacobian, exists in the region of interest. A trial Liapunov
function 1s chosen to be the Euclidean norm of x squared

V(x) = {lxl* = f(x)"f(x)

(a) Find sufficient condiuons for V to be a Liapunov function (with respect to
x=0). Express the answer in terms of the posiive semidefiniteness of a
symmetric matrix. Note that if the matrix is positive definite the origin 1s
asymptotically stable.

(b) Consider the control system given by

xy = g1(xq) + ga2(x2)

X2 = Xy aXy

Use the results of part (a) to establish conditions for asymptouc stability.
(c) Now suppose for the system of part (b)

gilx) = —x’—x,
g:(x2)=%x22
a=1

Apply the results of part (b) to this system.
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NOTES AND REFERENCES

Sections 9.1-9.13. Most of the foundation for stability analysis was laid by Liapunov
[L14]. A very readable introduction is LaSalle and Lefschetz [L2]. Also see Kalman and
Bertram [K4], [K5). The principle of competitive exclusion example is due to Volterrz
[V1], who actually considered more general forms for F(x). The quadratic Liapunov
function for linear systems was proposed in Liapunov’s original investigation. The
combined mtegral and quadratic function 1s referred to as the Luré form.

Section 9.14. The results of Problems 6 and 7 appear to be new. For details on the
bacteria culture probfem see Monod [M6].



chapter 10,

Some Important
Dynamic Systems

As emphasized in Chapter 9, one of the most useful principles for analysis of
nonlinear systems is that of the Liapunov function—or, more generally, the
summarizing function. To apply this principle, however, it is necessary to
construct a special function suitable for the particular situation at hand; and
such a construction for an unfamiliar set of equations is rarely easy. Knowledge
of particular examples can be helpful, for, sometimes, a suitable function can
be found by combining or modifying functions that work in other situations.
Nevertheless, as a purely mathematical venture, discovery of a suitable sum-
marizing function is far from routine. Indeed, from this viewpoint, the sum-
marizing function principle might be dismissed as elegant in concept, but not
readily useful. From a broader viewpomt, however, the principle has great
utility, for a suitable function often has significance within the physical or social
context of the system. We observed this earlier by noting that a Liapunov
function might correspond to energy in the pendulum example, or distance in a
pursuit problem. Most Liapunov functions have similar intuitive or instructive
interpretations.

This theme is expanded in this chapter. It 1s argued that the summarizing
function concept is almost a fundamental principle of scientific advance—at
least in connection with phenomena described n terms of nonlinear dynamics.
Many sciences were finally considered to have attained a state of maturity only
when the underlying dynamic laws possessed the degree of simplicity and order
represented by the discovery of a suitable summarizing function. Indeed, in
some cases the summarizing function is regarded as perhaps more important
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than the dynamic equations of motion. And in nearly every case, the sum-
marizing function has important scientific or intuitive meaning and is consi-
dered to be an integral part of the discipline. Thus, the summarizing function 1s
more than a fragile mathematical concept; it is a concept that links together
various scientific fields.

This chapter explores mechanics, thermodynamics, population ecology,
epidemics, economics, and population genetics to illustrate how the summariz-
ing function concept relates to the underlying scientific laws. The correspond-
ing summarizing functions include the widely known constructs of energy,
entropy, and fitness. The sections are essentially independent and some are
simply bnief outlines of broad fields, but together this collection forms a
fascinating set of important dynamic systems.

10.1 ENERGY IN MECHANICS

The dynamic behavior of a mechanical system is governed by Newton’s Second
Law of Motion, which for a single particle of fixed mass m is

dv
f=m & (10-1)
where f is the total force vecior acting on the particle and v is the velocity
vector of the particle. To apply this equation to a given situatton, it is necessary
to have a clear understanding of what constitutes force. To a great extent this 1s
clarified through the introduction of energy.
We define the work done by a force f acting on a particle going from point
1 to point 2 to be the integral
2
W= j' ff ds
1
That is, incremental work is the scalar product of the force vector with the
vector of incremental movement. When this definition is applied to a particle of
mass m, Eq. (10-1) yields*

2 dvTds 2 dvT 1 r dv®
= ——— s = ———— =i _.____dt
Wi Lm ; tdt Lm tvdt 2m1 ;

and therefore
lezém(vzz_vlz) (10-2)

The quantity
T =imp? (10-3)

* In this secuon a symbol such as v denotes the magnitude of the corresponding vector v.
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is termed the kinenc energy of the particle, and, accordingly, the change in
kinetic energy is equal to the work done.

If the force f has the property that the total work done around any closed
path is zero, then the force 1s said to be conservative. For example, gravitational
forces are conservative, but frictional forces are nonconservative. When the
force is conservative, it is possible to define a potential energy function V on
the coordinate space. Setting the potential at some reference point equal to
zero, the potential of any other point is defined to be the negative of the work
done in moving to it from the reference point. This value is unique, indepen-
dent of the path chosen between the two points, because the work around any
closed path is zero. The potential function 1s often simpler to deal with than the
force because potential is scalar-valued while force 1s vector-valued. However,
the force vector can be easily recovered from the potential energy by the
relation

=-VV (10-4)

That is, the force is the negative of the gradient of the potential energy
function.

It 1s now possible to formulate the law of conservation of energy. For a
conservative force, the work done in moving from point 1 to point 2 is

W=V, -V,
However, from (10-2) and (10-3)
Wo=T,-T,

By subtracting these two equations we obtain the relation
T+ V,=To+V, (10-5)

This resuit can be formulated as the law of conservation of mechanical energy:
If the forces acting on a particle are conservative, then the total mechanical
energy, T+ V, 1s conserved.

The above development for motion of a single particle can be extended to
more complex mechanical systems consisting of several interacting bodies.
Again, if the external forces are conservative, total mechanical energy is
conserved. In many situations, of course, a system is subjected to frictional and
other dissipative forces that generate heat. (The pendulum example of Sect. 9.7
is a good illustration.) These systems are not mechanically conservative—the
total mechanical energy decreases with time. Because of this decreasing prop-
erty, it is clear that the mechanical energy can serve as a Liapunov function for
dissipative as well as conservative mechanical systems. It is important to
recognize that this general property can be applied to any mechanical system,
even if the associated differential equations appear complex. One simply



10.2 Entropy in Thermodynamics 367

expresses the total mechanical energy in terms of the system variables. Thus,
mechanical energy serves both as a fundamental physical concept, which adds
clarification and unity to Newton’s laws, and as a Liapunov function for
stability analysis.

Example (Planetary Motion). Newton’s explanation of planetary motion, as
described by Kepler’s laws, is that planets are subjected to a conservative force
derived from a potential of the form

V=—kir

where r is the distance from the sun and k is a constant (depending on the
masses of the planet and the sun). The associated force on the planet is

f=-Vv
The force has magnitude
f==kir

and is directed toward the sun. The force can therefore be regarded as a
(gravitational) attraction of the planet toward the sun. The fact that the force 1s
derived from a potential guarantees that the force is conservative and that
total energy is conserved. Thus, even without writing and solving the specific
system of differential equations governing planetary motion, we can conclude
that periodic orbits are sustainable.

10.2 ENTROPY IN THERMODYNAMICS

Entropy in thermodynamics represents one of the most significant scientific
laws having a Liapunov character, and it is therefore an important example
supporting the general theme of the chapter. Our discussion of ther-
modynamics is, however, brief, for it is merely intended to illustrate the general
nature of the field and the role of entropy. A more complete discussion would
require a thorough study of background material.

Thermodynamics is concerned with processes involving heat exchanges. In
fact, the science of thermodynamics began in about 1760 with the recogmition
by Joseph Black of the distinction between heat and temperature. Different
substances of the same weight and temperature may contain different amounts
of heat. The first law of thermodynamics states that heat is a form of energy
and that, when account 1s taken of this equivalence, the energy of an isolated
system is conserved. This is, of course, a generalization of the resuit for
conservative mechanical systems.

Another fundamental principle is the second law of thermodynanucs. The
second law is expressed in terms of entropy, and the law, stating that entropy of
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a thermodynamic system cannot decrease, can be interpreted in our terms as
stating that entropy 1s a Liapunov function. Unlike our previous examples,
however, the second law is stated as a umversal law governing a broad class of
dynamic processes, even without an explicit statement of the underlying
dynamic equations. Whatever the dynamic processes might be, they must obey
the second law.

A given substance constituting a thermodynamic system (an amount of
liquid, gas, or solid) is described by its state—its temperature, pressure,
volume, and so forth. The substance may undergo changes in state by the
addition of heat, the performance of work, or by simply moving toward
equilibrium. Among all these processes of change, there 1s distinguished an
idealized set of reversible processes, defining paths of movement in the state
space that 1deally couid be traversed in either direction. Such processes are
only hypothetical, for to achieve them would require that the substance be held
completely homogeneous (with respect to temperature, pressure, etc.) through-
out the change. In practice the ideal sometimes can be approximated by
conducting the process very slowly.

The first part of the second law of thermodynamics says that there is a
function S, called entropy, that is a function of the state of a thermodynamic
system. If two states 1 and 2 are connected by a reversible path, then the
difference in entropy is

S,—S,= jhi(—) (10-6)

, T

where Q 1s the instantaneous heat added to the substance, and T is the
temperature. If a value of entropy is assigned at a reference state, the
value at another state can be found by devising a reversible process from one
to the other, and evaluating the integral.

The second part of the second law of thermodynamics states that for
real (irreversible) processes, (10-6) is replaced by

2
d
S2—SIZI _.9

T (10-7)

Thus, an entropy change is greater for an irreversible process than for a
reversible one. As a consequence of the second law, the entropy of an isolated
system (one in which no heat or work is exchanged with the external environ-
ment) can never decrease. Therefore, thermodynamic processes of isolated
systems follow paths of nondecreasing entropy, and accordingly entropy acts as
a (negative) Liapunov function, which assures us that natural thermodynamic
processes tend toward equilibrium.

Example. Suppose two identical bricks of material are initially at different
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temperatures T; and T,. They are placed together so that through the process
of heat conduction, heat may pass from one to the other. We assume that the
heat contained in such a material is proportional to its temperature; that s,
Q=cT.

If no work is done and no additional heat is added or none is lost from the
system, the first law states that the energy in the two bricks must not change
during the conduction process. Thus, the heat added to one brick must equal
the heat subtracted from the other. It is easy to see that the condition of both
bricks having the common temperature of Tr=(T,+ T,)/2 is consistent with
this energy requirement. However, it is not possible, using the first law alone,
to deduce that the two-brick system actually tends to this common temperature
configuration. That is, it does not establish that this configuration 1s actually a
stable equilibrium point, since there are many other configurations with the
same total heat content.

Now let us consider the change in entropy of the two brick system if 1t
moves from the initial condition to the configuration where the two tempera-
tures are equal. For each brick we have Q =cT for some positive constant c.
The change in entropy of the first brick, going from temperature T; to T, is
therefore

= c—=clog—~

TdQ (™ dT Te
A = ——
St L T . T T,

Likewise for the second brick
Te

AS,=clog—

2= C 10g T2

The total entropy change is therefore

2

T,
AS=AS, +AS,=c log—=

T,T,
Using Te=3}(T,+ T,), we find
(T\+T)*
AS =c¢ log —————
eyt T,
T, T.

=cl l(—i+2+—2> 10-8
clogs T, T, (10-8)

This last term is always nonnegative (being zero only if T, =T,). Thus, the
entropy is greater for equal brick temperatures than for the original configura-
tion.

One can show directly that the state corresponding to equal temperatures
of T represents maximization of entropy consistent with the given amount of
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T

7 ! \
Figure 10.1. Entropy vs. temperature difference.

heat. If the bricks share heat of 2cTy, this heat can be divided to have one
brick at temperature Te—T and the other at Tg+T, where T is arbitrary (but
with 0=|T|=Tg). The entropy of the combination for various T is shown in Fig.
10.1 and 1s maximized at T =0, corresponding to equality of temperature.
Thus, even without reference to a specific set of equations governing conduc-
tion, the Liapunov character of entropy assures us that the equal temperature
configuration Is a stable equilibrium.

10.3 INTERACTING POPULATIONS

In this section we investigate the rather rich theory of interacting populations.
The theory can be considered as the study of a certain class of nonlinear
differential equations characterized by quadratic terms. The theory has en-
dured, and has been borrowed by other fields as well, partly because the
quadratic term has a natural probabilistic interpretation, and partly because a
simple explicit Liapunov function is available for a large class of these equa-
tions. The Lotka-Volterra equations are essential items in one’s catalog of
examples.

The Predator—Prey Model

A classical model for a predator—prey system of two interacting populations
(say wolves and goats) is given by the Lotka-Volterra equations

N,=aN,~bN N,

(10-9)
N,=—cN,+dN,N,

In these equations N, and N, represent, respectively, the prey and predator
populations. The constants a, b, ¢, and d are all positive.

The model is based on the assumption that in the absence of predators the
prey population will increase exponentially with a growth rate factor a.
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Similarly, in the absence of prey, the predator population will diminish at a rate
¢. When both populations are present, the frequency of ‘‘encounters™ 1s
assumed to be proportional to the product of the two populations. The
encounters directly decrease the number of prey and increase the number of
predators; the associated coefficients being b and d, respectively. Of course,
these equations are highly simplified and do not account for a number of
external factors. Other factors, which may either influence the coefficient
values or add additional terms include the general environmental conditions
(temperature, rainfall, etc.), the supply of other food for both predators and
prey, and migration of the populations.

Volterra originally developed this model in order to explain the periodic
oscillation in the composition of fish catches in the Adriatic Sea. The model has
been used, however, in a variety of contexts to explain or predict fluctuating
populations. An important application of a model of this type is to the study
and control of pests that feed on agricultural crops. The pest population 1s
often controlled by the introduction of predators, and the predator-prey model
often forms a foundation for the design of important programs of ecological
intervention.

The nonlinear dynamic equations (10-9) cannot be solved analytically n
terms of elementary functions. It is, however, easy to see that there are
equilibrium points. They are found by setting N,=N,=0. This produces

0=aN,~bN,N,
0=—cN,+dN,N,
Thus, there is one equilibrium point at N, =N, =0 and another at
N,=c/d N,=a/b

It is convenient to normalize variables so as to eliminate the need to carry
along four parameters. Let

d b
x;=— N, X, =— N,
c a

In terms of these variables the dynamic equations are

X, =ax,(1—x,) (10-10)
X,=—cx,(1-x))
with the nonzero equilibrium point at x, =1, x,=1.
Let us investigate the stability of the two equilibrium points (0, 0) and
(1, 1). First it is clear that (0, 0) is unstable, for if x, i1s increased slightly 1t will
grow exponentially. The point (1,1), however, requires a more detailed
analysis. A linearization of the system, in terms of displacements Ax,, Ax, from
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the equilibrium point (1, 1) is found, by evaluation of the first partial deriva-
tives of (10-10) at (1, 1), to be

(Ax,))=—a(Axy)
(Axy)=c(Axy)

[Ail]_[o -a [Ax1

A%, | e 0 |lAx,

The linearized system has eigenvalues +ivac representing a marginally stable
system. From a linear analysis (the first method of Liapunov) it is impossible to
infer whether in fact the equilibrium point is stable or unstable. It is necessary,
therefore, to study the nonlinearities more explicitly.

We derive a function V that is constant along solutions. From (10-10) we
can write

or, in matrix form,

X, —exp(l—xy)

% ax,(1-xp)

Rearranging this so as to collect x, terms together and x, terms together leads
to

. b T X,
cxX;—c—+ax,—a—=0
Xy X2

Each term can be integrated separately, producing

cx,—clogx,+ax,—alogx,=logk
where k 1s a constant.
In view of the above, let us define the function, for x, >0, x,>0:

V(xy, x2)=cx, —clog x, +ax,—a log x, (10-11)

We can conclude that V is a constant of motion, since its time derivative is
zero. Therefore, the trajectory of population distribution lies on a fixed curve
defined by V = k. Figure 10.2 shows what the curve might look like for various
values of k. :

From this analysis we see that the trajectories cycle around the equilibrium
point. Hence the equilibrium is stable, but not asymptotically stable. The
function V is easily shown to achieve a minimum at the equilibrium point
(1, 1). Thus, V serves as a Liapunov function for the predator-prey system, and
establishes stability. This function is a natural summarizing function associated
with the system of interacting populations, and as shown below it plays an
important role even in cases where it is not constant along trajectories. We
refer to this function as the ecological Liapunov function.
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*y

Figure 10.2. Predator-prey cycles.

The Effect of Crowding

As an illustration of how the basic ecological Liapunov function for the pure
predator—prey system can be used to study modifications of the predator—prey
model, let us introduce a term representing retardation of prey growth due to
crowding. In particular, we consider the equations

N,=aN,—-bN,N,~eN,?

_ (10-12)
N, =—cN,+dN,N,

The interpretation of these equations is essentially the same as before, except
that now in the absence of predators growth of the prey population is governed
by a standard logistic equation. The constants a, b, ¢, d, and e are again
assumed to be positive.

One equilibrium point is again N, =N, =0. Another is N, =afe, N,=0,
corresponding to the equilibrium of the logistic growth of the prey in the
absence of predators. Any equilibrium point with nonzero values of both N,
and N, must satisfy the equations

0=a—bN,—eN,
0=—c+dN,
This set of equations has the unique solution
da—ec
bd

Therefore, there is a positive equilibrium only if afe >c/d.
Following the earlier procedure, we introduce the change of variables

d bd

3==N, x,=
c

N,=c/d N,=

(10-13)

- N, 10-1+4
da—ec 2 ( )



374 Some Important Dynamic Systems

which converts (10-12) to the simpler form

%, = ax (1-x5)+ Bx,(1—x,)

. (10-15)
Xo=—cx,(1—x,)
where

a ec ec

a = —— —_——

d d

Now let us define, as before, for x,>0, x5>0:

V(xy, X5) = cx,—c log x; + ax, —a log x, (10-16)

This function has 1ts minimum at the equilibrium point (1, 1). Furthermore, by
direct calculation we find

- . X, X2
V(xy, Xp) =cx —c~+ax,—a—=
Xy X2

= ca(l=x)(x, — 1)~ cB(l—x,)?
—~ca(l=x)(x.—1)
Thus,
Vixy, x))=—cB(1—x,)°=<0

Therefore, V 1s a Liapunov function of the system. Using the invariant theory
of Sect. 9.8 it can be shown that (1, 1) is asymptotically stable (over the
interior of the positive quadrant).

The n-species Case

Let us consider the general n-species model of population interaction:

n
X=kx+b7' Y axx,  1=1,2, ..,n (10-17)
=1
In this system k; is the linear growth constant, which.can be either positive or
negative. The term q; represents the quadratic growth term, which 1s usually
zero or negative. The a;’s, j# i represent the species interaction terms arising
from predation, competition for resources, and so forth. These terms may have
any value. Finally, the b,’s are positive normalizing factors that are used simply
to provide some flexibility in defining the matrix A of coefficients a;;.

An important special case is the case where each g; =0 and the interaction
coefficients a; are due to predation. An encounter of species 1 and j results in
an increase of one and a decrease of the other in their individual growth rates.
In that case a; and a; have opposite signs. It may be possible to select b;’s so
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that in every case b;'/b;" is the ratio of the respective increase and decrease.
In this case a; = —a; for all 1, j and this antisymmetric case is referred to as a
Volterra ecology.
Let us assume that the system (9-17) has an equilibrium point in which all
species have nonzero population. In this case the equilibrium population levels
1=1,2,..., n must satisfy the system of linear equations

kb + Y. a;% =0 (10-18)

1=1i
Motivated by the two-dimensional case, we seek a generalization of the
ecological Liapunov function. We define

V@)=Y bi(x—% logx) (10-19)

This function is minimized at the equilibrium point. It remains to calculate
V(x). We have

V(x)—- b,(x; — % log x;)

$0(1-
-

I
Q.‘

1M= I=-
L'M=

01 EM=

_> A
—)kkn +b7 ; aiixq-x,-\)

il aiixi>

bi(xi—fi)(kﬁb:‘

=1

Using (10-18)
V=Y (6-%) L ay(x—%)
Finally,
Vx) =x—-%)TAX—%) (10-20)

Therefore, V(x) is a quadratic form, and stability of the ecology can be easily
inferred under appropriate conditions on the matrix A.

In the case of a Volterra ecology, A 1s antisymmetric and it follows that
(x—X)TA(x—x) =0 for all x. Thus, as in the simplest two-dimensional predator-
prey system, the function V 1s a constant of motion and the trajectories follow
closed paths.

In general, if A+AT is negative semidefinite, the equilibrium of the
n-species model is stable. This general result provides a simple and effective
basis for the analysis of many cases.
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104 EPIDEMICS

Epidemics of disease in human or other populations represent large-scale,
important, and often tragic examples of dynamic phenomena. From a small
initial group of infected individuals, a disease can spread to enormous
proportions. The bubonic plague, smallpox, typhus, and other diseases have in
some cases killed a substantial portion of the existing population of a country.
While it is often possible to cure affected individuals directly, the most effective
means of health maintenance has been preventative in nature, essentially
altering the dynamic mechanism by which the epidemic spreads. Mathematical
analysis has provided the necessary basis for these control programs.

A Simple Deterministic Model

A simple model for an epidemic is the basis for the famous threshold effect
stated in 1927 by Kermac and McKendrick. This model, which as we shall see
is a degenerate form of the predator-prey equations, captures much of the
essence of the epidemic process and provides a solid starting point for analysis.
Many generalizations are, of course, possible.

Let us consider a large population of n individuals, and a disease 1n which
infection spreads by contact between individuals. Individuals who are once
infected eventually either die, are isolated, or recover and are immune. Thus,
at any one time the population is comprised of x susceptible individuals, y
infected and circulating individuals, and z individuals who either have been
removed (by death or isolation) or are immune. We have x+y+z =n for all .
We assume that the population is subject to some form of homogeneous
mixing, and that the rate of contact between susceptibles and infectives is
proportional to the product xy. The rate of generation of new infectives is
therefore Bxy, where B is an infection-rate constant. Infectives are assumed to
be removed (or become immune) at a rate proportional to their number with
an associated removal constant y. The governing differential equations are
therefore

= 10-21a
5 Bxy ( )
Y grey—yy (10-21b)
dt

dz

dz_ (10-21¢)
a v

It is easy to verify that
d
—(x+y+2)=0
d‘( Ty+z)

so that x+y+z =n for all ¢ in this model.
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Figure 10.3. Eptdemic trajectories.

It is sufficient to consider the first two equations, since z does not appear
in them. It is recognized that they represent a degenerate form of the
predator-prey equations. In this case, however, it is clear that every point on
the x-axis (that is, any point where y = 0) is an equilibrium point. There are no
other equilibrium points. There is, however, a constant of motion for the
system that reveals the qualitative nature of the solutions to these equations.

Dividing the first equation by the second, we obtain
X —pBx

Bx—vy
or upon rearrangement
. px
X——+y=0
x y

where p = y/B. Therefore we conclude that the function
Vix,y)=x—plogx+y (10-22)
is a constant of motion. It follows then that along a trajectory
x—plogx+y=xo—plog x,+yo
where X,, Yo are the initial values of x and y. We may thus solve for y in terms
of x along the trajectory as
y(x)=yotx0—x + p log(x/xo) (10-23)

The family of trajectories is shown in Fig. 10.3.
Several interesting qualitative conclusions follow from these curves, as
determined by (10-23).

(1) The Threshold Effect. It 1s easily verified that the maximum value of y,
the number of infectives, occurs at the point x = p. Suppose, then, that a
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number of infectives y, is introduced into a population x, of susceptibles. If
xo<p, the level of infectives will decrease monotonically to zero, while if
Xo>> p, the level of infectives will increase until the number of susceptibles
1s reduced to p and will decrease thereafter. Thus, p represents a threshold
value of susceptibles for the phenomena of an epidemic to occur. Recalling
that p = /B, it follows that within a given community, epidemic activity is
increased as B is increased (by high population density, for example) or as
v is decreased (by not isolating infectives).

(2) The Escape Effect. Since in (10-23) y(0)=—w, it follows that y must
vanish at some positive value of x. This means that, as shown in Fig. 10.3,
the trajectories terminate on the x-axis at a positive value. Therefore, the
epidemic terminates for lack of infectives rather than lack of susceptibles,
and some individuals escape the disease entirely.

(3) Symmetry Effect. For the case where x,>p but xo—p 1s small, the
epidemic curves are nearly symmetric with respect to the point x = p. This
means that during the course of the epidemic the number of susceptibles is
ultimately reduced to a level about as far below the critical value p as it
was initially above this value.

10.5 STABILITY OF COMPETITIVE
ECONOMIC EQUILIBRIA

Consider an economy in which n different commodities are produced and
consumed. In order to facilitate orderly exchange of the commodities in a
market, the n commodities are each given a price. A set of prices is an
equilibrium set if at those prices the amount of each commodity demanded by
consumers is exactly equal to the amount supplied by producers. Under rather
general assumptions it 1s possible to prove that such equilibrium prices do exist.
However, an important fundamental issue in economic theory is concerned
with the construction and analysis of a market adjustment mechanism by which
the set of equilibrium prices can be determined. That is, starting with an
arbitrary set of prices, what market mechanism will adjust these prices toward
equilibrium? To consider this question, economic theorists impose a dynamic
structure representing market adjustments on top of the purely static
framework of equilibrium theory, and then seek conditions guaranteeing that
the equilibrium is stable with respect to this dynamic structure.

The Tatonnement Process

The Swiss economist Walras, who at the end of the nineteenth century laid
much of the foundation for present day equilibrium theory, dealt with the issue
of stability by introducing a price adjustment mechanism referred to as
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tdtonnement. The process assumes the existence of a “referee’” who imtiates the
process by announcing a set of prices for the n commodities to the members of
the economy. Then, following that announcement, each member submits a list
to the referee showing the amount of each commodity that he intends to
demand or supply at those prices. If, as finally determined by these lists, the
aggregate supply equals aggregate demand for each commodity, the announced
prices are equilibrium prices and trading takes place at these prices. If, on the
other hand, there is a mismatch between supply and demand for some
commodity, the referee adjusts that price—increasing the price if demand
exceeds supply and decreasing the price if supply exceeds demand. No trading
is allowed at a nonequilibrium set of prices. Instead, after the referee makes
the price adjustments, the participants submit new lists and the process s
continued until equilibrium is attained, at which time trading takes place.
Assuming an equilibrium exists, it is considered (asymptotically) stable if this
adjustment mechanism converges to it.

The above description of the titonnement process serves essentially as
motivation for considering a more explicit dynamic mathematical process
where the prices are governed by a system of differential equations. Let
p={(py, p2»- - -, Pn) be the vector of (announced) prices of the n commodities.
The aggregate demand for the ith commodity, given these prices, is given by a
function x:(p). Similarly, the aggregate supply is given by a funcuon y;(p). Thus,
the excess demand.of the i1th commodity is f;(p) = x,(p)— y:(p). Accordingly,
following the spirit of the description of the price adjustment mechanism, the
mathematical version of the tiAtonnement process 1s defined by the system of
equations:

p1=d;f,(p)
p2= d2f2(p)
’ (10-24)
Pr = dufu(p)
In this system, the constants d,, d,, - - ., d, are arbitrary positive adjustment

factors, which reflect the possibility of adjusting various commodity prices at
different rates.

D-Stability

A special case is, of course, the case where the excess demand functions f,,
i=1,2,...,n are linear with respect to the price vector. Then we may assume,
without loss of generality, that the system (10-24) has the form

p(t) =DA[p()-p] (10-25)
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where p(t) is the current price vector, p is the equilibrium price vector, A is an
nXn matrix defining the n excess demand functions, and D is an nXn
diagonal matrix whose diagonal entries are the arbitrary positive adjustment
factors d,, d,, . - ., d,.

Equation (10-25) is equivalent to

d
@ ®-P)=DA(p-P) (10-26)

and therefore, as is always the case for linear systems, stability 1s determined
entirely by the coefficient matrix, which in this case is DA. Within the context
of the titonnement process, however, the positive diagonal of D is considered
arbitrary. It is therefore natural to seek conditions for which (10-25) is
asymptotically stable for all choices of the adjustment parameters. This is the
motivation for the following definition.

Definition. An nxXn matrix A is said to be D-stable if the matrix DA is
asymptotically stable for all diagonal matrices D with positive diagonal
entries.

It is possible to derive a simple condition guaranteeing that a matrix 18
D-stable. ~

Theorem (Arrow-McManus). If there exists a diagonal matrix C with positive
diagonal entries such that CA+ATC is negative definite, then A 15 D-
stable.

Proof. Consider DA where D is diagonal wn’th arbitrary positive diagonal
entries. To show that DA is asymptotically stable, it is sufficient to find a
positive definite matrix P such that P(DA)+(DA)"P 1s negative definite. (See
Sect. 9.11.) However, the matrix P = CD™" satisfies this requirement; it is itself
diagonal with positive diagonal entries, and P(DA)+(DA)"P=CA+ATC,
which is negative definite by assumption. Thus, A is D-stable. I

A special case of the criterion of this theorem is where C=1. This yields
A+ AT negative definite as a sufficient condition for D-stability. This condition
can in turn be expressed as the requirement that x* Ax<0 for all x#0, which
can be interpreted as a negative definiteness condition when A is not necessar-
ity symmetric. It follows, as the reader may easily show, that under this
assumption the quadratic form V(p)=(p—p) D~ (p—p) serves as a Liapunov
function for the system.

From economic considerations, it is clear that the diagonal elements of A
are usually negative, so that an increase in price of a commodity reduces the
excess demand for that commodity. Also, it is frequently true that the off-
diagonal elements of A are positive; that is, an increase in the price of one
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commodity tends to increase the excess demand for other goods. In this
situation A is a Metzler matrix, and all of the strong stability results for such
matrices apply to the adjustment process.

The above analysis of D-stability is really only a slight extension of earlier
results for stability of linear systems. To take a more significant step, we must
relate the requirement of negative definiteness to natural economic assump-
tions. That is, we must show that the quadratic form is a Liapunov function
under reasonable economic hypotheses. This is the task to which we next turn,
while simultaneously generalizing to the nonlinear case.

Nonlinear Theory

Suppose now that the excess demand functions are nonlinear. In order to
establish global stability of the tatonnement process, it is necessary to
present some additional economics and to introduce some assumptions on the
behavior of the members of the economy.

First, we make explicit the assumption that we are dealing with a closed
economy. All supply and all consumption of the n commodities is resiricted to
a fixed set of individuals. Furthermore, since there is only a single trading
period, individuals in the closed economy can purchase commodities only to
the extent that they obtain cash through supply of some other commodity.

Based on this assumption of a closed economy, it is assumed that the
excess demand functions satisfy Walras’ law

2 pifi®)=0 (10-27)

This result is essentially an accounting identity, under the assumption that
everyone will spend for consumption all the income they derive from supply.
Given a set of announced prices p with associated demand vector x(p) and
supply vector y(p), the aggregate income that is derived from sales is p"y(p).
Likewise the total expenditure in the form of demand is p"x(p). These two
must be equal, leading to p " x(p)—p y(p)=p " f(p)=0. Thus, Walras’ law is
applicable.

-A further economic assumption is based on the weak axiom of revealed
preference. Consider two price vectors p, and p, with associated excess
demands f(p,) =z, and f(p,) =z,, with z, #z,. If pTz, <pTz,, it follows that at
the prices p,, the vector z, is no more costly than the vector z,. Since z, was
actually selected even though z, could have been, we say that z, is revealed
preferred to z,. The weak axiom of revealed preference asserts that if z, # z,, it
is not possible for both z, to be revealed preferred to z, and z, to be revealed
preferred to z,. That is, piz, <p.z, implies that plz, >psz,. This axiom is
always assumed to hold for individuals, and in some cases it will hold for the
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aggregate excess demand functions as well. This 1s our second economic
assumption.

It is now possible to formulate an important global stability result for
economic equilibria. We state the result for the dynamic system

p =1f(p) (10-28)
leaving the generalization to arbitrary adjustment rates to a problem.

Theorem. If Walras® law is sansfied, if the aggregate excess demand functions
satisfy the weak axiom of revealed preference, and if there 1s a umque
equilibnum price P, then the system (10-28) 15 asymptotically stable in the
large and* V(p)=3p—dI° is a Liapunov function.

Proof. Let V(p)=3lp-pl>. Then for any p#p, V() =@-p)ip)=
p i(p)—p f(p). By Walras’ law the first term is zero, so V(p)=—p i(p).

Now by definition of p 1t follows that p™(p) = 0. By Walras’ law p™f(p) = 0.
Therefore,

0=p EP)=p i(p)=0

(actually equality holds). Using the fact that. by uniqueness, f(p)~#£(p), it
follows by the weak axiom of revealed preference of the aggregate, that

P i(p)>pTEP) =0

Therefore ~p f(p) <0 and, accordingly, V(p)< 0 for all p# p. This shows that
V(p) 15 a Liapunov function. 1

10.6 GENETICS

Genetic evolution is the basis for perhaps one of the most profound dynamic
processes. Its subtle action repeated over generations shapes the composition
of life, providing both diversity and viability, The most famous concept 1n this
area, of course, 1s Darwin’s principle of evolution, based on survival of the
fittest. This principle can be interpreted as postulating that average fitness is a
Liapunov-type function, which tends to increase from generation to generation.
Darwin enunciated the principle on the basis of aggregate observation without
reference to an explicit dynamic mechamsm. The genetic theory of evolution,
on the other hand, provides a specific dynamic mechanism in the form of a
system of nonlinear difference equations. It is natural, then, to attempt to
reconcile the two theories by investigating whether average fitness is a
Liapunov function for the nonlinear system. This is indeed the case, at least for
the simplest genetic mechanism, and provides a profound example of how the
search for summarizing functions can be regarded as a fundamental component

* We employ the “norm” notation p—pl>=@~p @ —b)-
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of scientific investigation, and how the analyst must probe for functions with
strong contextual meaning.

Background

Genetic information in living matter is stored in chromosomes, which are
thread-shaped bodies occurring in cell nuclel. Along the chromosome structure
there 1s a linear progression of specific locations, each location being occupied
by exactly one of a set of possible genes. Two or more genes that are each
capable of occupying a specific location are called alleles. Thus, the gene at a
particular location represents a specific choice from a set of possible alleles.
Human beings, and many other forms of life (including laboratory mice), are
diploid, meaning that chromosomes occur in homologous pairs, but with
perhaps different alleles at the two corresponding locations.

Individual inherited physical characteristics are generally traceable to
specific combinations of genes. Some characteristics, such as ABO blood type
or eye pigmentation in humans, are determined by the combination of genes on
a pair of chromosomes at a single location. Other characteristics, however,
involve genes at two or more locations. We shall focus on singie location
characteristics, for which the theory s simplest and most complete. In this case
if there are two alternative genes (alleles), say A and a, individuals are
characterized as being one of the three genotypes AA, Aa, or aa.

In diploid reproduction, one set of chromosomes is obtained from each of
two parents to form the diploid structure of the offspring. Thus, in the case of
one locus and two alleles, each parent, depending on its genotype, may
contribute either A or a.

The Hardy—Weinberg Proportions

Our specific interest here is that of population genetics, which 1s the study of
the evolution of the genetic composition of a population. We assume distinct
generations and a random mating system in which any member of one sex 1s
equally likely to mate with any member of the opposite sex in the same
generation. It is then of interest to calculate the way in which the distribution
of geneotypes evolves from generation to generation. Also, as stated above, we
concentrate on the one-locus two-allele case.

Under the random mating assumption, the relative proportions of the
three geneotypes AA, Ag, and aa in an offspring population 1s determined
directly by the relative proportions of the alleles A and a m the parent
population. The resulting geneotype proportions are referred to as the Hardy-
Weinberg proportions. Specifically, let p and q (with p+gq=1) denote the
portion of A and a alleles, respectively, in a parent population. During a
generation of random mating, these alleles form a gene pool from which pairs
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Figure 10.4. Hardy-Weinberg proportions.

are drawn to form the offspring geneotypes. The proportions of AA, Aq, and
aa geneotypes formed will be p?, 2pg, and g°, respectively. These are the
Hardy-Weinberg proportions. The process of recombination is illustrated in
Fig. 10.4. It 1s the random mating assumption that allows us to deduce the
offspring geneotype proportions by knowledge only of the parent allele propor-
tions rather than the parent geneotype proportions.

Example 1 (Eye Color). Blue eyes in humans occur when both genes at a
certain location are the recessive gene that does not produce the brown
pigment, melanin, in the iris of the eyes. When the dominant allele 1s present,
some pigment i1s present, but its amount and distribution are controlled by
genes at other locations. With no pigment in the outer layer of the iris, the eyes
appear blue, with a little they appear green, and with more they appear hazel,
light brown, dark brown, and finally black.

Suppose that in a random mating population ten percent of the people
have biue eyes. What percent of the people have at least one recessive gene at
the location that controls the production of melanin?

Let the alleles be A and a, respectively, with a being the gene that does
not produce pigment. Assume that these genes occur in the proportions p and
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g, respectively. Then in equilibrium the geneotype aa that yields blue eyes has
frequency

This yields g =.32. And accordingly p =.68. The frequency of the gencotype
Aa is 2pq = .43. Altogether, the proportion of those individuals who have at
least one a gene is .43+.10=.53, and they therefore constitute over half of the
population.

Fitness and Selection

Evolutionary behavior is introduced into the genetic process through the
phenomena of natural selection based on geneotype. Individuais of a certain
geneotype may be disadvantaged, as compared with others, in terms of their
likelihood to reproduce. (This might be due to a lower likelihood to survive, as
in the case of sickle cell anemia, or to a lower reproductive rate, as in the case
of a gene that reduces fertility.) Such geneotypes, accordingly, contribute
relatively less to the gene pool from which the next generation 1s composed
than do other geneotypes. This selective difference mechanism leads to a
gradual evolution in the proportions of the various alleles—and consequently
in the proportions of the various geneotypes.

Again for the one-locus two-allele case, suppose that on an average basis
an individual of geneotype AA, Aa, or aa contributes genes to form individu-
als in the next generation with relative frequency w,,, w,,, or w,,, respectively.
The numbers w,,, w,,, and w,, are the relative firness factors of the
geneotypes.

Suppose that in generation k the proportions of alleles A and a are p and
q, respectively. The geneotypes AA, Ag, and aa therefore occur 1n the
proportions p?, 2pq, and g>, respectively. However, in terms of contribution to
the gene pool for the next generation they have effective proportions w,,p?,
2w,.pq, and w.,q>. (Here the proportions do not sum to one, but we shall
normalize shortly.) The ratio of A alleles to a alleles in the next generation 1s,
accordingly, W1ip? + Wiapd
w12pq + W2q®

Denoting the new proportions of A and a by p(k+1) and q(k + 1), and the old
proportions by p(k) and gq(k), respectively, we deduce the recursive form

_ W11P(k)2+ wip(k)q(k) ~
ple+ D)= 0 + 2wrap ()q(K) + w2q (k) (10-29a)
2
qlk+1)= wyp(k)q(k) +waq(k) (10-29b)

w1p(k)? +2w1op(k)q(k) + wapq(k)?
This is the nonlinear system that governs the process of natural selection.
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As a special case, consider w,; = w,, = w,,, corresponding to no geneotype
differentiation. In that case p(k+1)=p(k), q(k+1)=q(k), for all k. ln the
general case, however, the process is more complex.

Fitness

A casual examination of the difference equations (10-29) tends to be rather
discouraging. How would one deduce a suitable Liapunov function for this
highly nonlinear system? The answer, of course, is found by explicit considera-
tion of the mean fitness of the population.

Given the allele proportions p and q (with p+q=1) the corresponding
mean fitness 1s

w= W11P2+2W12Pq + W22q2
:Wnpz'*'2""1217(1—17)‘*'sz(l—P)2 (10-30)
=wp+wal-p)
where
wy=pwtqwy,

Wy = pWip +qWas

We show first that the mean fitness never decreases. Then we examine the
various equilibrium points of the system.

The gene frequencies at the next generation (denoted here by p’ and q')
can be expressed as

Wy
'=p— 10-31a
p=p ( )
g =q2 (10-31b)
w
Thus,
-w Wi— Wip— Waq
Ap=p'—p= 1 M 1
p=pmp=Tp " p
:pqlﬁ:ﬂ (10-32)
w

Since mean fitness 1s a quadratic function of p, its value at p’ can be expressed
n the form

1 2
W =W+ Ap+= o (Ap)? (10-33)
P P
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The first derivative is evaluated at p, and the second derivauve will be a
constant. We find

dw
d—p— =2[wy,p+ Wi = 2Wiap = wa(1—p)]
=2fw,p+ wia(1—p)— wyp — wa(l-p)]
=2(w,—w,) (10-34)
Also,
d2
:i—%v=2(w“—-2w12+ Wa) (10-35)
p

Therefore, combining (10-32), (10-33), (10-34), and (10-35)

Aw=w'—w
(Wl wa)” (Wl—Wz)z 2
AR SEERAS AN 2

o) .
=2 PQ*(W11_2W12+W22)_‘W2__17 qQ

(w 'Wz)z . .
P(I'—l;'z— (2w +(w; —2wis + wa)pq]

i

2
Wi~ Wy
=pq(—~‘7vz—i(w+wup+w2zq)zo (10-36)

Thus, mean fitness never decreases.

The dynamic system (10-29) describing the evolution of gene frequencies
has, in general, three distinct equilibrium points. The first two are the degener-
ate proportions p =0 and p = 1. These points correspond to absence of one of
the alleles. The third equilibrium point is found by solving

b wiip®+ wip(1—p)
wip? +2wp(1—p)+ way(1—p)?

This equation can be solved by multiplying through by the denominator of the
right-hand side. The resulting cubic equation can then be reduced to a linear
equation by dividing by p and by (1—p) corresponding to the known solutions
p=0, p=1. This leads to the equilibrium point

Wiz~ Woo

p= (10-37)

2Wim Wi — Way

On the other hand, the point where Aw =0 is found by setting w, = w,, where
as before

wi=pw, H(1—p)w,

W =pwip+(1—plwy,
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Figure 10.5. Fitness.

This yields exactly the same value of p as in (10-37). Thus, the equilibrium
polnts are exactly the same as the points where Aw =0. We can conclude
therefore that mean fitness always increases unless the gene frequencies are in
equilibrium.

Depending on the values of w,,, w;,, and w,, and on the initial gene
frequencies, the process may converge toward any one of the three equilibrium
points. Of greatest nterest, however, are conditions under which the equilib-
rium p is stable. Accordingly, let us assume that 0<p <1. We recall that the
mean fitness function w is quadratic in p, with second derivative equal to
Wiy — 2w, 2+ wo,. If this derivative is negative, then the function is shaped as in
Fig. 10.5 and has a maximum at the point p. In this case p is the only stable
equilibrium point. If, on the other hand, the second derivative is positive, the
curve is shaped the opposite way, and P is unstable.

A more explicit condition can be derived for asymptotic stability of a
nondegenerate equilibrium point. As noted above, for asymptotic stability we
must have

2w > Wi+ was (10-38)
Then from (10-37) it follows that for p >0 we must have
Wio>> Woo (10-39)
Similarly for p <1 we must have
Wi2>> Wy (10-40)

The inequalities (10-39) and (10-40) of course imply (10-38). This leads to the
important qualitative conclusion that in order for a population to have a stable
mixed distribution of geneotypes, it is necessary that the fitness of geneotype
Aa be greater than the fitness of each of the geneotypes AA and aa.

The above analysis, showing that the mean fitness is always increasing at
nonequilibrium points, can be generalized to the case of multiple alleles at a
single location. The analysis, however, cannot be extended to the case where
traits are governed by genes at several locations. Maximal fitness no longer
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always corresponds to equilibria, and fitness does not necessarily increase. This
leaves open the possibility of determining an alternative simple goverming
principle underlying the complex process of inheritance.

Example 2. Many congenital diseases can be explained as the result of both
genes at a single location being the same recessive gene. Suppose that due to
almost certain death or due to voluntary nonreproduction, individuals with the
disease do not have any offspring. Suppose that the other two geneotypes have
identical fitness factors. In this case the frequency of the recessive gene will
decrease, but at a very slow rate.

Let w;, =w;,=1, w,,=0. Then the frequency of the recessive gene 1n
generation k+1 is

[1—q(k)]q(k)
[1—q(k)P+2[1—q(k)]q(k)
__atk)

1+q(k)

qk+1)=

It is easily verified that this converges to zero, but very slowly. This explains
why even deadly genetic diseases can remain active for hundreds of genera-
tions.

10.7 PROBLEMS

1. Conservation of Angular Momentum. Show that in planetary motion, not oniy is
energy conserved, but so is angular momentum A = mré.

2. Escape Velocity. A rocket near the Earth 1s subjected to a conservative gravita-
tional force defined by a potential of the form

V=—k/r

where r is the distance to the center of the Earth. The rocket 1s to be launched by
giving it an initial upward velocity at the Earth’s surface r,, but supplying no
additional thrust thereafter. What is the mimmum ntiai velocity such that the
rocket will not fall back to Earth?

3. Thermal Efficiency. A difference in temperature of two heat reservoirs (such as a
furnace and the outside atmosphere) can be used as the basis for an engine to
produce work. During a complete cycle of the engine (which might consist of a
gas-filled chamber and piston) an amount of heat Q, is taken from the higher-
temperature reservoir and an amount Qp is added to the lower-temperature
reservorr. The net heat lost Q =Q, — Q. will (ideally) be W, the amount of work
generated. The thermal efficiency of the engine is defined to be

n=WQ.



390

(4

*8.

Some Important Dynamic Systems

Using the second law of thermodynamics, show that the maximum possible effi-
clency Is

n=1-T./T,

where Ty and T, are the temperatures of the low- and high-temperature reservoirs,
respectively.

. Show that the predator-prey model with crowding is a special case of the general

n-species theory at the end of Sect. 10.3. What s the A matrix n this case?

. Epidemics in an Evolving Society. In the epidemic model of Sect. 10.4 1t 1s tacitly

assumed that the dynamic behavior 1s fast compared with the general population
turnover. Suppose that one accounts for the turnover. For a small but extended
ume pertod epidemic 1t 1s reasonable to modify the equauon for x to

x = ax - f3xy

for some a>0. This reflects the fact that new susceptibles are continually being
introduced into the population. Discuss the qualitative nature of the resulting
solutions. Does this provide a possible explanauon of the observation that some
diseases, such as measies, have recurred 1n periodic outbreaks?

. It s often the case that the A matrix defining excess demand functions 1s a Metzler

matrix. Show that a Metzier matrix 1s D-stable if and only if 1t is (asymptoucally)
stable.

. Arburary Adjustment Rates. Replace Eq. (10-28) by

p=Df(p)

where D 15 an n X n diagonal matrix with posiuive diagonal terms. Find an analog
for this case of the theorem that applies to (10-28).

A Barter Process. In the tatonnement process no exchange of goods 1s allowed to
take piace until after the equilibrium prices are obtained. More advanced models
allow for the possibility of exchange during the price adjustment process.

As a simple exampie, consider two individuals A and B and two commodities
1 and 2. Each individual has a utility function that depends on the amounts of the
two commodiues he possesses. Thus if A has amounts x, and y, of the two
commodities, he has utility U*(x,, ya)—and sumilarly for B. At each point in the
process there is a price p for commodity B 1n terms of commodity A, which 1s the
current exchange rate between the two commodities. From these assumptions 1t
follows that

Xg =—Xa, Ya="Ya
Xa +0y¥a =0, xpFpys=0

We assume that individual B essentially governs the price. Specifically, for all ¢,

_UY(xa(0), ya()

PO = U8 ka0, ya )
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The level of exchange 1s governed by individual A according to the equation
Xa (1) = UZ2(xa(0), ya(0) — Uy (xa (1), ya ()P (0)

Consider the function V =U"*. Show that V=0. Show that V=0 mplies
x4 =0. What 1s the interpretauion of the finai vaiue of p?

9. Albiism. Albinism in humans occurs when an individual 1s of geneotype aa for a
certain gene. If all albinos voiuntarily agreed to avoid having children, how many
generations would it take to reduce the incidence of albinism in a society from one
1n ten thousand to one 1n one hundred thousand?

10. Sickle Cell Anemia. Sickle cell anemia, a deficiency of the red biood cells, 1s
controlled by a single allele (Hb®). Individuals of geneotype (Hb*Hb®) suffer severe
sickle cell anemia and usually die in childhood. Individuals of geneotype (Hb*Hb™)
have the sickle cell trait only mildly, and suffer no serious ill-effects. And of course
mdividuals of geneotype (Hb"Hb™) do not show the trait.

It has been determined that individuals of the geneotype (Hb*Hb®) are
decidedly more resistant to malaria than those of geneotype (Hb*Hb*). This
suggests that in regions with high malaria incidence, w,,> w,, +w,, for this gene
location. This 1s of course the condition for stability of a populaton of muixed
geneotypes. If w,, =0, w;, =.8, and w;» =1, what 1s the equilibrium distribution of
geneotypes?

NOTES AND REFERENCES

There 1s, of course, a vast selection of literature, including 1ntroductory textbooks, on
each of the subjects included within this chapter. We cannot hope to cite even a
representative sample of the most mmportant references. Instead, we settle for a
scattered selection—including the ones found to be most heipfui 1n preparing this
chapter.

Section 10.1. For a general introduction to mechanics see Housner and Hudson [H5],
or Goldstemn [G9).

Section 10.2. For introductory treatments of thermodynamics see Prigogine [P6] or
Weinreich [W3].

Section 10.3. The classic references for interacting popuiations are Volterra [V1] and
Lotka [L5] for the theory, and Gause [G5] for expertmental verification. A modern
(somewhat advanced) treatment is Goel, Maitra, and Montroll [G7]. Also see Watt
[W2] and Pielou [P4].

Section 10.4. The onginal mathematical paper on epidemic theory 1s Kermac and
McKendrick [K12]. The standard book on epidemics, including stochastic as well as
determunistic theory, 1s Bailey [B1]. For stochastuc models of epidemics see also Bartlett
[(B3].

Section 10.5. An excellent survey of the dynamic theory of economic equilibria 1s



392 Some Important Dynamic Systems

contamed in Quirk and Saposnik [Q1] The Liapunov function of the titonnement
process, the squared Euclidean distance of the current price from the equilibrium price,
does not appear to have a strong economic interpretation. The study of more advanced
processes, however, leads one to consider other Liapunov-type functions directly related
to fundamental economic notions. See Problem 8, and for a more advanced treatment
see Arrow and Hahn [A2] or Takayama [T1).

Section 10.6. A very readable introduction to population genetics and various other
subjects that overlap with some of the examples in this chapter is Wilson and Bossert
[W5]. For more advanced work on population genetics see Ewens [E2] and Karlin [K9).



chapter 11,

Optimal Control

Underlying a serious study of a specific dynamic system is often a motivation to
improve system behavior. When this motivation surfaces in explicit form, the
subject of optimal control provides a natural framework for problem definition.

The general structure of an optimal control problem 1s straightforward. In
the simplest version, there is a given dynamic system (linear or nonlinear,
discrete-time or continuous-time) for which input functions can be specified.
There is also an objective function whose value is determined by system
behavior, and is in some sense a measure of the quality of that behavior. The
optimal control problem is that of selecting the input function so as to optimize
(maximize or minimize) the objective function. For example, the dynamic
system might be a space vehicle (as often it was in some of the first modern
applications) with inputs corresponding to rocket thrust. The objective might
then be to reach the moon with minimum expenditure of fuel. As another
example, the system might represent the dynamics of an individual’s accumula-
tion of wealth, with controls corresponding to yearly work effort and expendi-
ture levels. The problem might then correspond to planning the lifetime
pattern of work and expenditure inorder to maximize enjoyment. Finally, as a third
example, the system might be the nation’s economy, with controls correspond-
ing to government monetary and fiscal policy. The objective might be to
minimize the aggregate deviations of unemployment and interest rates from
fixed target values.

There 1s a diversity of mathematical issues associated with optimal
control—and these form the subject matenal for optimal control theory. There
is, first of all, the question of characterizing an optimal solution. That is, how
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can a particular control function be recognized as being optimal or not. This
question is treated in the first several sections of the chapter. There is also the
issue of open-loop versus closed-loop control, as introduced in Chapter 8. This
is treated in the later sections of the chapter. Finally, there is the issue of
computation. That is, how does one actually find the optimal control function—
either 1n analytical form (if possible) or numerically? The analytic approach is
emphasized 1n this chapter. Overall, the subject of optimal control theory has a
long and deep history, an expanding range of applications, and a large
assortment of numerical techniques. This chapter (including the assortment. of
applications treated in the problems at the end) presents a sampling of this
important subject.

11.1 THE BASIC OPTIMAL CONTROL PROBLEM

Opumal control problems can be formulated for both discrete-ume and
continuous-time systems. In keeping with the spirit of the rest of the book,
both types are discussed 1n this chapter, but in this instance greater attention is
devoted to the continuous-time case. The reasons for this emphasis are that
continuous-time problems are notationally simpler; most illustrative examples
are more natural in continuous time; and, most importantly, the Pontryagin
maximum principle results are stronger in continuous time than in discrete
time. Naturally, however, discrete-time formulatons also arnise frequently,
especially in large-scale systems, treated by digital computers. Much of the
theory is directly applicable to both discrete- and continuous-time systems.

This section formulates a basic continuous-time optimal control problem
and develops the associated Pontryagin maximum principle. This section is
relatively long, and the development is quite different in character than that of
earlier chapters. A good strategy for the reader, on his first encounter with this
material, might be to read this first subsection where the problem is formu-
lated, and then skip to the end of the section where the final result is presented.
Next the examples in Sect. 11.2 should be studied. Finally, this whole first
section should be studied on a second reading,.

The basic optimal control problem in continuous time is formulated as
follows: one is given a system, defined on a fixed time interval 0=t =<T,

(1) =f(x(t), u(t)) (11-1a)
a (fixed) 1nitial condition
x(0) = x, (11-1b)
a set of allowable controls

wneU (11-1¢)
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and an objective function

T

J=¢(x(T)+ J I(x(t), u(r)) dt (11-1d)

to be maximized.*

Let us examine the elements of the problem (11-1). The structure of
system equation (11-1a) together with the initial condition (11-1b) 1s by this
point quite familiar. Generally, we assume that the state x(t) is n dimensional
and the control (or input) u(t) is m dimensional. The function f is composed of
n separate component functions that are all well behaved so that the system
(11-1a) with the initial condition (11-1b) has a unique solution, once the
control 1s specified.

The set of allowable controls U is an important component of the optimai
control problem. In some cases, this set 1s the whole of m-dimenstonal
space—in which case there 1s no real constraint on wu(t). In other cases,
however, this set takes the form of nequalities on the components of u(t). For
example, if u(t) is one dimensional, there may be a limitation of the form
u(t)=0, or perhaps 0=u(t)=1. Such constraints reflect the fact that, in some
systems, control, to be physically meaningful, must be positive or must not
exceed a certain bound. For example, in a planning problem the control
variable might represent the fraction of current profit that 1s remnvested (and
thus must lie between 0 and 1).

In the objective function (11-1d), both ¢ and [ are real-valued functions of
their respective arguments. The term y«{(x(T)) is the contribution to the objec-
tive of the final state. For example, this form of objective arises if it is desired
to control an object so as to attain maximum velocity in a given time, or to plan
resource allocations over tume so as to obtain as much as possible at the end,
and so forth. The integral term represents a contribution that accumulates over
time. Such a term arises, for example, if the objective 1s to minimize total fuel
expenditure of a machine or to maximize total production in a production
facility. A specific problem may, of course, have either  or [ identically equal
to zero (but not both).

The interpretation of the optimal control problem (11-1) 1s straightfor-
ward, but worth emphasizing. The unknown is the control function u(t) on
0=t =T. Once this function is specified, it determines, in conjunction with the
system equation (11-la) and the initial condition (11-1b), a unique state
trajectory x(t), 0=t=<T. This trajectory and the control function then deter-
mine a value of J according to (11-1d). The problem 1s to find the control
function wu(t), 0=t =T, satisfying the constraint (11-1c), which leads to the
largest possible value of J.

* Almost all components of this problem (£, , and U) can depend explicily on ume without
changing the nature of the resuits that follow.
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The Modified Objective and the Hamiltonian

In many respects optimal control is a natural extension of the maximization of
a function of a single variable, as considered in the study of calculus. The
conditions for maximization are derived by considering the effect of small
changes near the maximum point. This similarity is explicitly recognized by the
term calculus of varnations, which is the name of that branch of mathematics
that first extended the “variational” idea to problems where the unknown is a
function rather than a scalar. This general ‘“‘variational” approach is followed
here.

To characterize an optimal control, we shall trace out the effect of an
arbitrary small change in u(t) and require that it be nonimproving for the
objective. That is, we start with the assumption that the control function u(t) is
optimal, we then make a small change in u(t) and determine the corresponding
change in the objective J. This change should be negative (nonimproving) if the
original u(¢) is optimal. However, because a change in u(t) also changes x(t), it
1s difficult to carry out this plan and directly determine the net influence on the
value of the objective, Therefore, a somewhat indirect approach is helpful. The
“trick” that 1s used is to adjoin to J some additional terms, which sum to zero.
In particular, we form the modified objective function

T
J=J- _,[, AOT[x(8) —E(x(c), u(e))] dt (11-2)

The term in brackets is zero for any trajectory. The coefficient n-vector A(t) is

at this pownt arbitrary. It is clear, however, that for any choice of A(t) the value

of J is the same as that of J for any x(¢) and u(t) satisfying (11-1a). We can

therefore consider the problem of maximizing J rather than J. The flexibility in

the choice of A(¢) can then be used to make the problem as simple as possible.
For convenience we define the Hamiltonian function

H(\, x, w)=\TE(x, w)+ {(x, u) (11-3)
In terms of the Hamiltonian, the modified objective takes the explicit form

T
T=y(x(T)+ L {H(1), x(1), n(6)) = N(0)T%(0)} dt (11-4)

The Hamiltonian is therefore fundamental for consideration of this modified
objective.

Suppose now that a nommal control function u(r), satisfying the constraint
u(t)e U, 1s specified. This determines a corresponding state trajectory x(t). Now
we consider a “small” change 1n the control function to a new function v(t)e U.
This change is “small” in the sense that the integral of absolute value of the
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(b)
Figure 11.1. Effect of a small
change.

difference is small (for each component of the control); that is,

J |t (1) —~vi (1) dt <& (11-5)
Q

for each i, where € is small. Therefore, the actual change can be large over a
very short interval of time. (See Fig. 11.1a.)

This new control leads to a new state trajectory, which we write as
x(t)+86x(t). The change 8x(¢) i1s small for all t+ because the state depends
(essentially) on the integral of the control function. (See Fig. 11.1b.)

If we define 87T as the corresponding change in the modified objective, we

have* _
8T = y(x(T)+ 8x(T))— y(x(T))
+L [HX, x+8%, v)— H(\, x, w)—AT8x] dt (11-6)
An integration by parts yields
J AT8% dt = AN(T)"8x(T) — M(0)T6x(0) — L ATox dt (11-7)
Q
Therefore, we have
8T = y(x(T)+ 8x(T)) ~ ¢(xX(T)) = N(T)"8x(T) +A(0)"5x(0)
+L [H(\, x+8x, v)— H(X\, x, wy+AT8x] dt (11-8)

We now approximate this expression (11-8) to first order (that is, to the order
of &) by using differential expressions for small differences.

* We drop the ¢ arguments for simplicity and write x for x(t), and so forth.
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We use the multidimension version of Taylor’s Theorem to write*

T
j [H(\, x+8x, v)—H(A, x, w)] dt
Q

T
= I [H\, x+8x, )~H\, x, v+ HQ\, x, v)— HQA, x, w)] dt

0

T
== j [H (N, x, v)8x+ H(X, x, v)— H(A, x, w)] dt

T
= L [Hx(xa X, “)8X+ (Hr(xy X, V) - Hx(x9 X, “))ax
+HMN, x, V) —H(\, x, w)] dt
zL [HX, x, w)8x+H(\, x, v)— H(\, x, w)] dt (11-9)

where at each stage = denotes *‘equal to within the order of £.” (The last line
follows by noting that both 8x and the integrai of H (X, x, v)— H, (A, X, u) are of
order &, hence the product is of order &2.)

Substituting (11-9) into (11-8) and using a differential approximation to
the first two terms 1n (11-8) yields

87 = [y (x(T)) = MT)"J8x(T) + \(0)T8x(0)

T
+ j [HX, x, w)+AT)5x dt
Q

+LT[H(X, X, v)—H(\, x, w)] dt+p(e) (11-10)

where p(e) denotes terms that are of smaller order than e. This then is the
general expression for the change in J resulting from an arbitrary change in
u(t). We next simplify this expression by proper selection of the function A(r).

The Adjoint Equation
Note that 8x(0) =0, since a change in the control function does not change the

* Throughout this chapter the subscript notation 1s used for partial derivattves—scalar, vector, and
matrix—as appropriate. Thus, for a function f(x,, x5, ..., x,) = f(x) we write f, (xy, x,,.. ., x,) for
(@f/ax,)(xy, x5, . . ., x,.). The gradient of f is denoted Vf(x) or f,(x) and is the row vector [3f/ax,,
aflex,, . .., oflox,). If i(x) is m dimensional, then VE(x)=f(x) is the m xn Jacoblan matrnx
[(af/ax,)(x)). For a function f(x, u) the notation £(x,u) similarly represents the matrx of partiat
derivatives of f with respect to the x;’s; that 1s,

t(x )= (5'1— fix )
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initial state. Thus, the second term on the right-hand side of (11-10) is always
zero. We shall select A(t) to make all other terms vanish except for the last
integral. This is accomplished by selecting A(t) as the solution to the adjoint
differential equation

=N = H(\8), x(1), u(t)) (11-11)
or, more explicitly,

= A)T= 2(e)Tfx (x (&), u (£)) + € (x

with final condition

MT)™ = o (x(T)) (11-13)

Let us see what is involved here. First, we recall that f(x(r), u(t)) 1s an
nXn matrix. It is, in general, time varying; but for a particular nominal u(r)
and x(t) it 18 known. Likewise L (x(¢),u(?)) 1s a known (tuime-varying) n-
dimensional row vector. Therefore (11-12) is a linear (time-varying) differential
equation in the unknown (row) vector A(f)”. Associated with this system is a
final condition on A(T)T. Thus, one can consider solving the adjomnt equation
by moving backward in time from T to 0. This determines a unique solution
(D).

With this particular A(t), the expression {(11-10) for 8J becomes simply

T
8T = L [HAW®, x(1), v())— H(0), x{(1), w())] dt + p(¢) (11-14)

Since N(t), x(t), and u(t) are known and are independent of v(t), this expression
gives a direct simply way to calculate the approximate consequence of a change
to a new control function v(t). We can use this expression to deduce the
conditions for optimality.

If the original control function w is optimal, it follows that for any ¢

HQA(®), x(1), v) = H(\ (1), x(1), u(t))

for all ve U. [Here ¢ is fixed, u(t) is the value of the optimal control at ¢, while v
is arbitrary in U; v 1s not a time function.] To verify this inequality, suppose
that for some t there were a ve U with

HA(D), x(¢), v) > HA(1), x(1), u(r))

Then we could change the function w as indicated in Fig. 11.1a so as to make the
integrand in (11-14) positive over a small interval (say of width £) containing
this ¢. The integral itself would be positive (and of order &). Thus, 8J would be
positive, contradicting the fact that the function u produces the maximal J.

This result means that at every ¢ the particular value wu(t) in an optimal
control has the property that it maximizes the Hamiltonian. This result is the
Pontryagin maximum principle for this problem.
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The Maximum Principle

We now summarize the #lve complete set of conditions for optimality.

In the origmal problem one seeks w(t) and x(t) sausfying the system
equation (11-1a), with the initial condition (11-1b), and the constraint (11-1c),
while maximizing the objective function {11-1d). The necessary conditions
serve as a test for a given u(t) and x(¢) that must be satisfied if they are optimal.
These conditions are stated in terms of an adjoint vector function A(f).

Theorem (Maximum Principle). Suppose u(t)e U and x(t) represent the optimal
control and state trajectory for the optimal control problem (11-1). Then
there is an adjoint trajectory N(t) such that together w(t), x(t), and A(t)

satisfy

x(t) =f(x(t),u(t)) (system equation) (11-152)

x(0)=x, (initial state condition) (11-15b)
AT = AOTE(X(), u(t)) + L(x(1), u(t)) (adjoint equation) (11-15¢)

AMT)T =y (x(T)) (adjoint final condition) (11-15d)

Forallt, 0=t=<T, and all ve U
H(A(t), x(t), v) < H(\(t), x(¢), u(t)) (maximum condition) (11-15¢)
where H is the Hamiltonian

H, x, u) = AT(x, w) + I(x, u)

This set of conditions can be regarded as a set of equations. The last
condition, the maximum condition, is essentially a set of m static equations.
One way to see this is to suppose that u(t) is interior to U (that is, not on the
boundary of an inequality). Then the condition that H has a maximum at u(t)
means that the derivatives of H with respect to each component of u must
vanish. This gives m equations for each t.

The set of conditions (11-15) is complete in the sense that there are as
many equations as unknowns. The unknowns are u(t), x(t), and A(t)—a total of
2n + m functions. The necessary conditions consist of 2n differential equations
with 2n end conditions and m static equations (depending on t)—the total
being sufficient to determine 2n +m functions. Thus, barring possible singular
situations, these conditions can be used to find the optimal solution.

Before turning to some examples, one final point should be noted. As
expressed in (11-15¢) the adjoint equation is written in terms of A(¢t)". This is a
natural consequence of the development. In pracuce, however, it is often
convenient to write it in column-vector form in terms of A(t). The result is

—x=£(x, w)TA+ I (x, u) (11-15¢)
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The important point to note is that the adjoint equation has system matnx (£)7
rather than f,.

11.2 EXAMPLES

This section presents three examples of the use of the maximum principle.
They illustrate how the necessary conditions can be used to find a solution. The

particular method employed, however, depends on the structure of the
problem.

Example 1 (The Triangle). It is desired to draw a curve x(t), 0=t =T, starting
at x(0)=0, whose slope at each point is no greater than 1 and that artains
maximum height at T. This is a simple problem, for it is clear that the solution
is to select x(¢) as the straight line with slope equal to 1. (See Fig. 11.2)
However, it is Instructive to go through the mechanics of the maximum
principle.

We may formulate the problem as having the components

() =u(t)

x(0)=0

u()=1
J=x(T)

In this problem, both f,(x, u)=0 and l(x, u)=0. Therefore, the adjoint
equation is

~-X()=0

The final condition is A(T) =1, since Y(x) = x. Hence, we conclude immediately
that A(t)=1. The optimal control must maximize the Hamiltonian, which in
this case reduces to

H=Au=u
Optimal curve

Possible x(t)
curves

|
0 T

Figure 11.2. Triangle problem.
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Thus, u(f) must be as large as possible, subject to its constraint. We find
therefore u(t)=1, which agrees with our intuitively derived solution.

Example 2 (Push Cart). A problem involving a second-order system is the
problem of accelerating a cart in such a way as to maximize the total distance
traveled in a given time, minus the total effort. The system is

x()=u(r)
x(0)=0
x(0)=0

where x 1s the horizontal position and u is the applied force. The objective 1s
1 T
J=x(T)—= j u(t) di
2k

where the integral term represents a penalty for effort. There are no control
constraints.

Defining the state variables x, = x, x, =X, the problem takes the standard

form
[e)-lo ol
x,(0)=x,(0y=0
J= xl(T)—-% Lru(t)z dt

The adjoint system equation is*
X, (=0
—Xa(t) = M, (1)
The final conditions on the adjoint equations are (since ¢ = x,(T))
AM(T)=1
AA(T)=0
The adjoint equations can be solved to yield
AD=1
A(D)=T~—t
The Hamiltonian 1s
H(\ X, u)= A, x, 4+ A u —5u”

* For a linear system with system matrix A, the system matrix for the adjoint equation 1s AT
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Since u is unconstrained, the Hamiltonian can be maximized by setting its
derivative with respect to u equal to zero. This yields

u(t) = A(1)
as the condition for maximization. Thus, the final result is
u(ty=T—t

We conclude that the applied force should decrease linearly with time, reaching
zero at the final time.

Example 3 (Insects as Optimizers). Many insects, such as wasps (including
hornets and yellowjackets) live in colonies and have an annual life cycle. Their
population consists of two castes: workers and reproductives (the latter com-
prised of queens and males). At the end of each summer all members of the
colony die out except for the young queens who may start new colonies 1n early
spring. From an evolutionary perspective, it 1s clear that a colony, in order to
best perpetuate itself, should attempt to program its production of reproduc-
tives and workers so as to maximize the number of reproductives at the end of
the season—in this way they maximize the number of colonies established the
following year.

In reality, of course, this programming is not deduced consciously, but s
determined by complex genetic characteristics of the insects. We may
hypothesize, however, that those colonies that adopt nearly optimal policies of
production will have an advantage over thewr competitors who do not. Thus, it
1s expected that through-continued natural selection, existing colonies shouid
be nearly optimal. We shall formulate and solve a simple version of the insects’
optimal control problem to test this hypothesis.

Let w(t) and q(t) denote, respectively, the worker and reproductive
population levels in the colony. At any time ¢ 0=<(=T, in the season the
colony can devote a fraction u(t) of its effort to enlarging the worker force and
the remaining fraction 1—u(t) to producing reproductives. Accordingly, we
assume that the two populations are governed by the equations:

w(t)=bu(t)w(t)— puw(t)
au)=c(l—u()w(r)

These equations assume that only workers gather resources. The positive
constants b and ¢ depend on the environment and represent the availability of
resources and the efficiency with which these resources are converted into new
workers and new reproductives. The per capita mortality rate of workers is w,
and for simplicity the small mortality rate of the reproductives is neglected. For
the colony to be productive during the season it is assumed that b > . The
problem of the colony is to maximize

J=q(T)
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subject to the constraint 0= u(f) =<1, and starting from the initial conditions
w(0)=1 q(0)=0

(The founding queen is counted as a worker since she, unlike subsequent
reproductives, forages to feed the first brood.)

To apply the maximum principle to this problem we write the adjoint
equations and terminal conditions, which, as the reader should verify, are

=X () =bu(OA(6) — pA () + c(L—u(t)A(1)
—X, (=0
ML(T=0, A(T)=1

In this case, unlike the previous two examples, the adjoint equations cannot be
solved directly, since they depend on the unknown function u(t). The other
necessary conditions must be used in conjunction with the adjoint equations to
determine the adjoint variables.

The Hamiltonian of the problem 1s

H(Ay, Ag, w, G, )= Ay (bu— ww + Aye(1— w)w
=w(Ab—=Azc)u+(Ac— A, pw)w

Since this Hamiltonian 1s linear in u, and since w >0, it follows that it is
maximized with respect to 0<u =1 by either u=0 or u=1, depending on
whether A,b—A,c is negative or positive, respectively.

It is now possible to solve the adjoint equations and determine the optimal
u by moving backward in time from the terminal point T. In view of the known
conditions on A,(t) and A,(1) at T, we find A, (T)b—A,(T)c =—c <0, and hence
the condition for maximization of the Hamiltoman yields u(T)=0. Also, it is
clear, from the second adjoint equation, that A,(t) =1 for all t. Therefore near
the terminal time T the first adjoint equation becomes

~Xu(0) = —pA () +c

which has the solution
(D)= (1—e=eT)
I

Viewed backward in time it follows that A,(t) increases from its terminal value
of 0. When it reaches a point {,<T where A(t,) = ¢/b, the value of u switches
from 0 to 1. At that point the first adjoint equation becomes

=M= (b= A, (1)

which, in view of the assumption that b >y, implies that, moving backward in
time, A (¢) continues to increase. Thus, there is no additional switch in u. The
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t

Figure 11.3. Solution to insect
adjoint equation.

solution for A,(t) is shown in Fig. 11.3. The point ¢ is easily found to be

t, =T+lln(1—ﬁ)
n b

In terms of the original colony problem, it is seen that the optimal solution
is for the colony to produce only workers for the first part of the season, and
then beyond a certain critical ime to produce only reproductives. Social nsect
colonies do in fact closely follow this policy, and experimental evidence
indicates that they adopt a switch time that is nearly optimal for their naturai
environment.

11.3 PROBLEMS WITH TERMINAL CONSTRAINTS

The basic optimal control problem discussed in Sect. 11.1 is referred to as a
free endpoint problem since the final value of the state vector is completely
arbitrary. There are, however, many problems in which the terminal value of
the state vector is constrained 1n some manner. A simple example 1s the
problem of finding the shortest path between two specified points. Another is
the problem of economic planning to reach a given goal at minimum cost.

The maximum principle can be extended to such problems. This extension
is simple and very natural in terms of the form of the final result. A rigorous
proof, however, is exceedingly complex. Indeed, this extended result represents
a major mathematical achievement, and 1s the capstone of the calculus of
variations approach to optimal control. Our objective here is simply to state
the result so that we can apply it, and to give plausibility argument.

In an optimal control problem with terminal constraints one 1s given a time
interval 0=t =T, a system

x(t) =£(x(t), u(t)) (11-16a)

an 1itial condition

x(0) =x, (11-16b)
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a control constraint
u(t)e U (11-16c¢)
a set of terminal constraints
x(T)=% 1=1,2,...,r (11-16d)

and an objective function
T
J=ypx(TH+ L [(x(1), u(t)) dt (11-16e)

The terminal constraints take the form of specification of the final values
of some of the state variables. The number of variabies specified can vary from
1 to n (the dimension of the state). All other components of the problem are
the same as in the free endpoint problem of Sect. 11.1.

When terminal constraints are present, there is a possibility that the
problem has a certain degree of degeneracy. One new possibility, of course, 1s
that there 1s no feasible control function and state trajectory satisfying the
terminal constraint. No solution exists in this case. Another possibility 1s that
there 1s only one trajectory satisfying the terminal constraint. In that case there
1s a solution, but it 1s unaffected by the particular objective function. The
maximuin principle must account for this type of degeneracy. A well-
formuiated problem, however, will not have such anomalies; rather, there will
be a complete family of competing solutions.®

To deduce the conditions satisfied by an optimal solution for this problem,
we go through the same procedure as in Sect. 11.1. Thus, we form the modified
objectuive function and consider the change induced by a change in control from
u(t) to a new control v(t) also satisfying all constraints. This leads to (11-10) of
Sect. 11.1, which 1s repeated below:

8T = [ (x(T))— N(T)T16x(T) + M(0)T8x(0)

T
+ j [H (A, x, u)+AT15x dt
0

+IT[H(X, x, VV—H\, x,w)]dt+p(e) {11-17)

Again we select A(f) to make all terms on the right-hand side of (11-17)
vanish, except the last integral. As before 8x(0) is always zero, so the second
term on the right is zero. Also as before we require A(t) to satisfy the adjoint
equation

—AO)T = Hy(A0), x(1), u(2)) (11-18)

* The mathematical condition for a well-formulated problem 1s closely related to a controllability
crnitenon in that a full range of terminal positions can be achieved by various control functions.
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However, specification of boundary conditions is somewhat different than
before. Since x;(T) is constrained for i=1,2,...,r it follows that 8x,(T)=
0,i=1,2,...,r for all possible competing trajectories. Therefore, it is not
necessary to specify all components of A(T) in order to guarantee that the first
term on the right-hand side of (11-17) vanishes. Only components correspond-
ing to possibly nonzero components of §x(T) must be specified. Accordingly, it
is necessary only to require

AT = g (x(T)): (11-19)

for t=r+1, r+2,.. ., n. This guarantees that all component products in the
first term of (11-17) vanish. Thus, the general rule is: If x,(T) is constrained,
then A,(T) is free; if x.(T) is free, then A,(T) is constrained.

The complete statement of the maximum principle for this problem 1s
given below.

Theorem (Maximum Principle). Let x(t), u(t)€ U be an optimal solution to the
problem with terminal constraints (11-16). Then there is an adjoint trajectory
A1) and a constant Aa=0 [with (Ag, N(1)) % 0] such that together u(t), x(1),
A(1), and A, satsfy

x(t) =£(x(t), u(t)) (system equation) (11-20a)
x(0) =x, (initial state condition) (11-20Db)
x(T) =X, 1=1,2,...,r (terminal state conditions) (11-20c¢)

—MOT = MOTE(E), u(D)) + Aol (x(1), u(t)) (adjoint equation)  (11-20d)
MDD =g (x(T)), i=r+1,r+2,...,n
(adjoint final conditions) (11-20e)

Forallt, 0<t=<T, and all ve U.

>

HA(D), x(1), v)= HA(1), x(1), u(t)) (maximum condition)
(11-20f)
where H 1s the Hamiltonian
H(\, x, w)= ATH(x, u)+ Ayl(x, u)

The presence of the constant A in-this version of the maximum principle is
to account for the degeneracy situation discussed earlier. These degenerate
situations (where the terminal constraint is overwhelmingly imposing) corres-
pond to Ay=0. In these cases the objective does not enter the conditions. In
well-formulated problems, however, A, >0, and without loss of generality one
may then set A,=1. In practice, therefore, one always tries to apply the
maximum principle with A, = 1. Indeed, for all examples and probiems 1n this
chapter this procedure will work—except for Problem 13.
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Example 1 (Shortest Path between Two Points). Consider the classic problem
of finding the curve x(t) with x(0) =0, x(1) =1 with minimum total length. For
this problem we write
X=u
x(0)=0, x(1)=1

1
I=——L~/1+u2dt

There are no constraints on the value of u(t).
For this problem the adjoint equation is easily seen to be

-X=0
There 1s no terminal conditton on A(T). However, it is clear that A(t)=A, a

constant.
The Hamiltonian is

H=Au—v1+u®

The optimal u(t) must maximize this at each t. However, since all terms in the
Hamiltonian (other than u) do not depend on ¢, it is clear that u(t) is constant.
Thus, the slope of x(t) is constant—that is, the best curve is a straight line.

Example 2 (The Classic Isoperimetric Problem). Problems subject to various
integral constraints can be converted to problems with terminal constraints by
introducing additional variables whose sole purpose is to keep track of how
much of the integral constraint has been used. To illustrate this 1dea we
consider the classic problem of determining the curve that connects two fixed
points on the t-axis, has fixed arc length L, and encloses the maximum area
between utself and the t-axis. (See Fig. 11.4))
This problem can be defined with

X =u
x(0)=0
x(T)=0

T
J= L x dt
Curve x(t)
—m t

0 T

Figure 11.4. The isoperimetnc
problem.
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but, in addition, there 1s the arc length constraint
T
j V1+u?dt=L
0

(with L> T). This constraint can be incorporated by introducing an additional
state variable y(t) satisfying

y=v1+u®
y(0)=0
y(T)=L

The overall problem then has a two-dimensional state vector.
The adjoint equations are found to be

-X =1
-A,=0

Thus, A,(t) is linear in t and A,(t) is constant. The Hamiltonian is

H=Mu+Av1+u?+x

The condition for maximization is obtained by setting the derivative of H with
respect to u equal to zero. This yields

Asu
V1+u?

Therefore, substituting x = u and using the fact that A, is linear in ¢, we can
conclude that the curve x(t) satisfies an equation of the form

A+ =0

X

T ==A+Bt
+%

for some constants A and B. It can be verified that the arc of a circle
(x=x > +(t—=1)*=r?

satisfies this equation. The parameters x,, t,, and r are chosen to satisfy the
constraints.

11.4 FREE TERMINAL TIME PROBLEMS

In some problems the terminal time is not fixed, but is allowed to vary. The
terminal time is therefore another variable that can be selected in order to
attain the maximum possible objective value. For example, in determining the
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path of a rocket ship to the moon that minimizes fuel consumption, there is no
reason to specify the time of landing. Such problems are treated by yet another
simple addition to the maximum principle.

The problem statement in this section is identical to that of the last
section, except that the terminal ume T is not specified. Explicitly, the problem
is: Given

x(1) = £(x(1), u(1)) (11-21a)
x(0) = x4 (11-21b)
uw(t)e U (11-21¢)
x(T) =X, 1=1,2,...,r (11-21d)

find T>0 and u(t), 0=t=T so as to maximize

T = g(x(T)) + L 1(x(1), u(t)) dt (11-21e)

Clearly if the best T were known, we could fix T at this value and the
problem would be one of the type treated in Sect. 11.3. Thus, all of the
maximum principle conditions of that section must apply here as well. We
require, however, one additional condition from which the unknown value of T
can be determined. To find this condition we must go through the procedure of
calculating the change in the modified objective function once again, but for
this new problem.

The modified objective 1s

T =yx(T)+ LT[I(X, )+ ATE(x, )~ ATx] dt (11-22)

We consider a change to a new control v(¢) with an associated new trajectory
x(t)+ 8x(¢) and a new terminal time T+dT. We denote the corresponding new
value of the modified objective funcuon by J +dJ.

The important new feature of this problem is that the change in the
terminal value of the state 1s not 8x(T), since the final time 1itself changes. The
new terrmunal state is actually x(T)+8x(T +dT). If we denote the new terminal
state by x(T)+dx(T), then to a first-order approximation

dx(T)=8x(T)+x(T) dT = 8x(T) +£(x(T), w(T)) AT (11-23)

(See Fig. 11.5.)

As before, we find the change in J by considering a first-order Taylor
expansion with respect to 8x. In this case we also consider the change dT. We
suppress the details here, but a procedure similar to that used in Sect. 11.1
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x(t) + bx(t)

x(T) + 8x(T)
x(t)

x(T) + dx(T)

T T+dT
Figure 11.5. Free terminal time.

leads to
dT = Y (x(T)) dx(T)— NT)T8x(T) + MO0)T5x(0)
+I(x(T), w(T)) dT

T
+I [H (X, x, u)+AT]5x dt
(]

+I LHO, %, V= HQ x, w]dt (11-24)

By selecting A" (t) to satisfy the adjoint equation, the first integrai term
vanishes. The term AT(0)8x(0) vanishes, since §x(0)=0. Using (11-23), we
substitute §x(T)=dx(T)— #(x(T),u(T)) dT and find that the oniy nonzero
terms are then

dJ = [ (x(T)~MT)"] dx(T)
+[ANT(DE(T), w(T)) + L(x(T), w(T))] dT

+ IT[H(X, x, v)— H(X, x, w)] dt

The first term vanishes if conditions are imposed on the components A;(T),
t=r+1,r+2,...,n, the same as for the problem with fixed terminal time.
Consideration of the integral term yields the maximum condition as usual.
Finalls the only remaining term 1s the second. It i1s recogmized that it 1s
H@ o (T),w(T)) dT. It follows that, in order for T to be optimal,
H\ i x(T), u(T)) =0; otherwise a change dT could be found that would
improve J. Thus, the new condition is that the Hamiltonian must vanish at the
terminal time.

To summarize, for problems with free terminal time all the usual condi-
tions of the maximum principle of Sect. 11.3 apply, and in addition

HNT), x(T),w(T))=0 (11-25)

This is the additional condition required to solve for the additional unknown T.
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Figure 11.6. Crossing a nver with
currents,

Example (Zermelo’s Problem). We consider the problem of navigating a boat
across a river, in which there is strong current, so as to get to a specified point
on the other side in mimmum time. We assume that the magnitude of the
boat’s velocity with respect.to the water is a constant V. The downstream
current at any point depends only on this distance from the bank. (See Fig.
11.6.)

The equations of the boat’s motion are

x=V cos 8+u(y) (11-26a)
y=Vsin 8 (11-26b)
where x is the downstream position along the river, y is the distance from the
origin bank, u(y) is the downstream current, and 6 is the heading angle of the
boat. The heading angle is the control, which may vary along the path.
Both initial and final values of x and y are specified. The objective
function is (negative) total time so we set Y =0, [=—1.
The adjoint equations are easily found to be

-x,=0 (11-27a)
=Xy =u'(y)A, (11-27b)
There are no terminal conditions on the adjoint variables. The Hamiltonian is
H=\AVcos@+Au(y)+Aa,Vsingd—1 (11-28)
The condition for maximization yields
Hy=—A, Vsin@+A,Vcos8=0 (11-29)
and hence,
tan 6(t) = A, (0)/A4(1) (11-30)

Next we observe that

d . .
m H=\,Vcos 8-+Au(y)+aru'(y)y
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Using (11-26b), (11-27), and (11-29) this is seen to be identically zero. (Also
see Problem 7.) Thus, H is constant. Since this is a free-time problem we use
the condition derived in this section to infer that this constant is zero. Thus,

H=0 (11-31)
Substituting (11-30) into (11-28) we obtain

_M[V+u(y)cos 8]
cos @

H 1

Since according to (11-27a) A, is constant, we use (11-31) to obtain the final
result:

V+u(y)cos @
—_————=A 11-32
cos 8 ( )
for some constant A. Once A is specified this determines 8 as a function of y.
The constant A is chosen to obtain the proper landing point.

A special case is when u(y)=u is independent of y. Then the optimal
paths are straight lines.

115 LINEAR SYSTEMS WITH QUADRATIC COST

Problems in which the dynamic system is linear and the objective is quadratic
represent an extremely important special family of optimal control problems.
This importance stems in part from the fact that in many situations this
structure represents a natural formulation; but in actuality the mam source of
importance derives from the strong analytic results available for this family.
The primary feature of these problems is that the optimal control can be
expressed in linear feedback form. Thus, the resulting closed-loop system is
also a linear dynamic system.

In the standard “linear-quadratic” problem one is given a linear nth-order
system

x() = A()x(t) + B(HHu(t) (11-33a)

and a cost function
J=1 LT[x(t)TQ(t)x(t) +u(t)TR(OHu(t)] dt (11-33b)

The cost function 1s to be minimized. In this problem u(t) 1s an m-dimensional
input function, and it is not subject to any constraints. The cost function 18
quadratic in both the state and the control. The quadratic functions are defined
by the matrices Q(t) and R(¢) that are symmetric matrices of dimension nXxn
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and m X m, respecuively. The matrix Q(f) is assumed to represent a positive
semidefinite quadratic form [so x(£)TQ(t)x(¢)=0 for all x(¢); see Sect. 9.11].
The matrix R(t) is assumed to represent a positive definite quadratic form [and
hence, R(t) 1s nonsingular]. All functions are assumed to be continuous with
respect to t.

This problem is a special case of the basic free endpoint probiem of Sect.
11.1. Thus, we can easily write down the necessary conditions satisfied by an
opumal solution. The adjoint equation is

—AOT =NOTAD)—x(HT Q1) 11-34)

with terminal condition A(T)=0. The minus sign on the right-hand side of
(11-34) 1s due to the fact that we are maximizing —J.
The Hamiltonian 1s

H =X0TAWDxX(0) +AOTB()u(t)
—3x()TQ(1)x(8) — u(t) "R()u(t) (11-35)

The condition for maximizing the Hamiltonian with respect to u(t) is H,=0:
or

’

AOTB()—u()"R(t) =0 (11-36}

Therefore,
u(t) =R()'B()T\() (11-37)
This expression can be substituted into the original system equation. If this

substitution is made, and if the adjoint equation (11-34) is written in trans-
posed form, we obtain the equations

()= AOx() +B(OR(H BT (11-38a)
At = Q(0)x(t) — A(DTA(r) (11-38b)
with conditions
x(0)=x, (11-38¢)
AT)=0 {11-38d)

In (11-38) there are 2n differential equations, 2n endpoint conditions, and 2n
unknown functions. The difficulty, of course, 1s that the 2n conditions are not
all at the same endpoint. If they were, say, all 1nitial conditions, the system
could be solved (numerically) by integrating forward. Since they are at different
ends, a special technique must be developed.
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Riccati Equation

Since the system (11-38) is linear, it is clear that both x(t) and A(t) depend
linearly on x,. Accordingly, A(t) depends linearly on x(¢). This motivates us to
try a solution of the form

A() =—P(t)x(t) (11-39)

where P(t) 1s an (as yet unknown) n X n matrix. Substituting (11-39) in the
system (11-38) yields the two equations

() =[A()—BOR)T'B()TP()Ix(¢) (11-40a)
—P()x(t)— P()x(1) =[Q(1) + A() TP(t) Ix(2) (11-40b)
Multiplication of (11-40a) by P(t) and addition to (11-40b) then yields
0=[P()+P()A() + A()TP(1)
—~P()B(HR()™'B(0)TP(1) + Q(6) (1) (11-41)

This will be satisfied for any x(t) if P(t) is chosen so as to satisfy the matrix
differential equation

~P(1) =P(HA() + A()TP()

—P(OB(OR'B()TP(t) + Q(¢) (11-42a)
From the endpoint condition AM(T) =0 we derive the corresponding condition
P(T)=0 (11-42b)

The differential equation (11-42), which is quadratic in the unknowx} P(t),
is called a Riccati equation. The solution P(t) is symmetric, since P(t) is
symmetric for all ¢. It can also be shown that P(t) is positive semdefinite.

Feedback Solution

The solution to the control problem (11-33) 1s now obtained as follows. One
first solves the matrix Riccati equation (11-42) by backward integration starting
at t=T with the condition P(T)=0. This solution is usually determined
numerically. Once P(t) is known, it can be used to solve (11-33) in feedback
form for any initial state x,. The control is found by combining (11-37) and
(11-39) to obtain

u(t) =—R(t)"'B()TP(£)x(t) (11-43)
or, equivalently,

u(t) =K()x(t) (11-44)

where

K(0)=-R(t)""B(t)TP(1) (11-45)
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The m X n matrix K(t) can be computed before operation of the system. Then
as the system evolves, the control is computed at each instant on the basis of
the current state. This is a feedback solution; and in this case it is linear
feedback.

Time-Invariant Case

Suppose now that all matrices (A, B, Q, and R) in the problem definition are
constant, independent of time. Suppose also that we consider letting T — o in
the problem definition. Then, since the Riccati equation is integrated backward
in time, the solution can be expected to approach a constant matrix for ¢ near
0. Accordingly, P approaches 0, and the limiting constant matrix P is a solution
to the matrix algebraic equation

0=PA+A"P-PBR'B'P+Q (11-46)
In this case the optimal control is
u(t) =—R7'BTPx(t) = Kx(t) (11-47)

which 1s 1tself a time-invariant linear feedback structure. The overall resulting
optimal system 1s thus governed by

x(1) = (A + BK)x(t) (11-48)

Hence, this optimal control approach provides a sophisticated alternative to the
problem of selecting a feedback matrix (compare with Sect. 8.9) to improve the
performance of a system.

11.6 DISCRETE-TIME PROBLEMS

Optimal control problems can also be formulated for discrete-time systems.
The resulting necessary conditions are quite similar to those for continuous-
time systems, although their form is slightly weaker than the maximum
principle.
The basic discrete-time optimal control problem consists of a dynamic
system (defined for k=0,1,2,...,N—1)
x(k +1) =f(x(k), u(k)) (11-49a)

an mitial condition

x(0)=x, (11-49b)

and an objective

N-1
J=yx(N)+ Y, l(x(k), u(k)) (11-49¢)
k=0
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Note that in this formulation there is no constraint on u(k). Otherwise, the
formulation and interpretation are entirely analogous to the continuous-time
problem of Sect. 11.1.

The modified objective is in this case taken to be

N-—

1
T=7-Y Mk+1)Tx(k+1)— Ak +1)TEx(k), u(k))]
k=0
where the A(k)’s are yet to be selected. This can be written as

N-1
T=yx(N)+ Y, [HO(k +1), x(k), u(k)) — (k)T x(k)]
k=0
= AN x(N) + X 0)Tx(0) (11-50)

where H is the Hamiltonian
H(, x, w) = ATf(x, w)+ [(x, u) 11-51)

This 1s quite analogous to (11-3).

Following a procedure parallel to that used in Sect. 11.1, the effect of a
small change in u(t) on the modified objective can be determined. The
conditions for optmality are then obtained by requinng that this change be
zero (at least to first-order). The result of this analysis 1s expressed in the
following theorem.

Theorem (Discrete-Time Optimality). Suppose uw(k) and x(k), k=0,1, .., N
represent the optimal control and state trajectory for the optimal control
problem (11-49). Then there is an adjoint trajectory A(k), k=0,1, .., N
such that together u(k), x(k), and A(k) satisfy
x(k +1) =f(x(k), u(k)) (system equation) (11.52a)
x(0)=x, (initial state condition) (11-52b)
AK) = Nk + DE(x(k), u(k))+ L (x(k),u(k)) (adjointequation) (11-52c¢)
AN) =y (x(N) (adjoint final condition)

H,(\(k+1), x(k), u(k))=0 (variational condition) (11-52d)
where H is the Hamiltonian (11-51).

Thus s quite analogous to the maximum principle of Sect. 11.1, except that
instead of requiring that the Hamiltonian be maximized, the condition is that
the Hamiltonian must have zero derivative with respect to the control vari-
ables.

This general pattern applies to the discrete-time analogs of the
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continuous-time problems treated in Sects. 11.1 and 11.3. The adjoint equa-
tion* 1s (11-52c¢). The terminal boundary conditions of the adjoint are deter-
mined exactly as in continuous-time problems. Rather than maximization of
the Hamiltoman, however, the condition is that the derivative of the Hamilto-
nian with respect t0 w must vanish. This 1s a slightly weaker condition than
maximization.

Example 1 (A Simple Resource Allocation Problem). A special but important
class of optimization problems is where a fixed resource must be distributed
among a number of different activities. If the resource is money, for example,
one may seek an optimal allocation among a number of projects. Suppose an
amount A of the resource is given, and there are N activities. If an amount u is
allocated to the kth activity, the value accrued by this allocatior: is g, (u). The
optimization problem is then to maximize

Bo(u(O) + gy (u(1))+- - - + gy (u(N —1))
subject to the constraint that

u(O)y+u(}+---+u(N-1)=A

172

As a special case we assume g, (u)=u'’>. Thus, the problem is to maximize

N-—1
2 u(k)”? (11-53)
k=0
subject to
N-—1
Y ouk)=A (11-54)
k=0

This problem 1s equivalent to the control problem having system equation
x(k+1)=x(k)—u(k)

with end conditions
x(0)= A, x(N)=0

and objective (to be maximized)

N-1

T=72 u(k)'”
k=0
This formulation assumes that the allocation is made serially. The state x(k)
represents the amount of the resource that is available for allocation to
activities k through N.
* To account for the possibility of a degenerate problem, one must include A,= 0 as a coefficient of

[ in (11-51) and (11-52), and for ¢ m the termmal conditions, if there are terminai state
constrants.
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According to the general theory for discrete-time optimal control, the
adjoint equation is

AMl)=Ar(k+1)

and there are no endpoint conditions. Thus, A (k) is constant, say, A(k)=A. The
Hamiltonian is

H = Ax(k)— Au(k) + u(k)'”?
The optimality condition 1s
H, =—A+iu(k)y""*=0
Thus, u(k)=1/4A% and hence, u(k) is also constant. The constant 1s deter-
mined so that the constraint is satisfied. Finally,
u(k)=A/N

@

11.7 DYNAMIC PROGRAMMING

We now present an alternative approach to optimal control; an approach that
in fact exploits the dynamic structure af these problems more directly than the
variational approach. The basic concept has a long history, but 1ts scope was
broadened considerably by Bellman who coined the term dynamic program-
mung. It is an approach that fully exploits the state concept and 1s therefore
quite consistent with the modern approach to dynamic systems.

The Principle of Optimality

The basic observation underlying dynamic programming is the pnnciple of
opumality that points out a fundamental relation between a given opumal
control problem and various other subproblems. Suppose that a dynamic
system, either in discrete time or continuous time, is characterized at each time
instant by a state vector x. Suppose that, as usual, the evolution of this state s
influenced by control inputs. The optimal control problem is to select the
inputs so as to maximize a given objective while satisfying various terminal
constraints.

Imagine an optimal control problem defined over an interval of time, and
suppose the solution is known. Suppose we follow the corresponding trajectory
to a time ¢, arriving at state x(t). We then consider a new problem, initiated at
time ¢ with state x(t) and for which it is desired to maximize the total objective
from that point. Under quite broad assumptions, the solution to that subprob-
lem exactly corresponds to the remainder of the original solution. This obser-
vation is stated formally as .

The Principle of Optimality: From any point on an optimal trajectory, the
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Optimai solution to subproblem
initiated at ¢, x(t), 1s final
segment of trajectory -)

/

x(t)

Optimal solution to original
probtem is entire trajectory

1 ! :

t T

x{0)

Figure 11.7. Principle of optimality.

remaimng trajectory is optimal for the corresponding problem initiated at that
point.

This principle, illustrated in Fig. 11.7, allows us to build up solutions by
progressing backward in time. It 1s the basis for a powerful solution procedure.

An example should help clarify this idea. Suppose that from a given
location in the city, you pose the optimal control problem of finding the
minimum distance path to your home. In this case the objective is path length
(which now is to be minimized). Suppose you solve this problem and start out
along the optimal path. As you travel, the state is your current position. From
any intermediate position, you could formulate the new problem of finding the
path that minimizes the distance home from that point. The result would be the
same as the remaining path in the old solution.

The Optimal Return Function

The principle of optimality is captured in mathematical terms by introducing
the concept of the optimal return function. It is possible to associate with a
given state x at a given time (say t) a value V(x,t) which represents the
maximum value of the objective that could be obtained starting at x at time £
This function 1s the opnmal return function.

For instance, in the case of finding the shortest path to your home, the
optimal return function is the shortest distance from each point. [ V(x, t) does
not depend on t in this case.}

As a more general example, consider the system

x(t) = f(x(¢), u(t)) (11-553)

with objective

T=y(x(T)+ LTl(x(t), u(?)) dt (11-56)
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Optimal paths

1 J
0 ¢ T

Figure 11.8. Definition of Wx, t).

To define the optimal return function V(x, t) one considers the optimal control
problem, starting at time ¢ and state x,

X(7) =K(x(7), u(r)) (11-57a)
x(t)=x (11-57b)
J = g(x(T))+ [ I(x(7), u(7)) dr (11-58)

The value V(x,t) is the maximum possible value of J for this problem. The
optimal return function, then, represents the objective value associated with a
subproblem of the original problem, initiated at an intermediate time and from
an arbitrary state. This is illustrated in Fig. 11.8.

Discrete-Time Systems

Let us apply the dynamic programming idea to the standard discrete-time
optimal control problem defined by a system

x(k+1) = f(x(k), u(k)) (11-59a)
an initial condition
x(0)=xo (11-59b)
control constraints
u(t)e U (11-59¢)
and an objective
J= ¢<x<N)>+l:Zs 1(x(k), u(k)) (11-59d)

For simplicity we take N as fixed.
The corresponding subproblems are exactly the same, except that they are
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wintiated at some k>0 and at a specified value of x(k)=x. The optimal
objective value corresponding to such a subproblem is defined as V(x, k).

The simplest subproblem is the one starting at k = N with a specified x(N).
In this problem the imitial point is already the terminal point. No inputs can be
selected, and the optimal return is

V(x(N), N) = ¢s(x(N)) (11-60)

To determine the other optimal return functions, we work backward a step

at a ume using the principle of optimality. Suppose the function V(x, k +1) has

been calculated for a given k and all values of x. We wish to calculate the

funcnon V(x, k) for all values of x. Starting with x(k)=x, we can select a

u(k)=u. This yields an immediate reward of [(x, uw) derived from the summa-

non term in the objective, and it will transfer that state to a value x(k-+1)=

f(x, u) at the next period k + 1. However, once the state 1s known at k+1, the

remaining objective is determined by the previously evaluated optimal return
function. Thus, for a given 1pitial u, the total objective value 1s

T=1(x, u)+ V((x, w), k +1) (11-61)

assuming an optimai path from k+1 to the terminal point N. The opumal
return from x at k 1s, accordingly, the maximum of (11-61) with respect to all
possible choices of u. Thus,

Vix, k)= Mad([l(x, u)+ V(E(x, w), k+1)] (11-62)
This 1s the fundamental recursive expression for V(x, k). It can be evaluated
backward, starting with the condition
Vix, N)=y(x)

Example (The Allocation Problem). Consider the allocation problem discus-
sed in Sect. 11.6 defined by

x(k+1)=x(k)—u(k)

x(0)=A
x(N)=0
J=3 u(k)?
k=0

The optimal return function V(x, k) is the opumal value that can be
obtained by allocating a total of x units of resource among that last N—k
project or actwvity terms. In this example, we may put V(x, N)=0. The first
nontrnivial term s really V(x, N—1). This is the best that can be done by
allocating x to the last project. Clearly

Vix, N—1)=x"?
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For N—2 we have
Vix, N—-2)= 1\/Iuax[u”2 +V(x—u, N=1)}
= Muax[u”z-‘r(x —u)'?}
The best value of u is u = x/2 leading to

Vix, N—-2)=+2x
For N-3

Vix, N—3)=Max[u"?+v2 (x - u)'4
The best value of u is u=x/3 leading to

V(x, N=3)=+/3x

It is clear that in general

V(x, N—k)=kx
and the best control is
u(N—k)=x(N-k)/k

At each stage, one determines the amount of remaiming resource, and
divides by the number of remaining stages. This determines the allocation to
the current stage. Thus, the procedure yields the solution in feedback form—
the control is given in terms of the current state. In paruicular, for the originai
problem with x(0)= A, we obtain u(0)=A/N.

Continuous Time

Let us apply the dynamic programming idea to the continuous-time problem
defined by

x(t) =£(x(1), u(t)) (11-63a)
%(0) = X (11-63b)
u(t)e U (11-63c)

= T+ L Hx(0), (D)) dt (11-63d)

Let V(x, ) denote the optimal return function; that is, V(x, t) 1s the best
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value of the objective starting at x at time t. To develop a formula for V(x, t)
we assume that the function is known for t+A, where A>0 is ““small,” and
then work backward to t.

Following the logic of the discrete-time case, we write

Vix, t)=1§./IEad([l(x, WA+ V{x+f(x, w)A, t +A)] (11-64)

To derive this relation, we have assumed that between times t and t+A a fixed
u is applied. This yields an immediate contribution of (approximately) [(x, w)A
from the integral term in the objective. In addition, it will transfer the state
(approximately) to the point x+f(x, w)A at time t+A. The optimal return is
known from that point.

To simplify expression (11-64) we let A— 0. Assuming that V(x, 1) is a
smooth function, we may write

Vix+i(x, WA, t+A)= V(x, ) + V{x, )A+ V(x, Df(x, ))A  (11-65)
Substituting this in (11-64) we obtain

Vix, t)= M“ax[l(x, WA+ V(x, )+ Vi(x, DA+ V(x, Hi(x, wA] (11-66)

Now V(x, r) does not depend on u, so it can be taken outside the maximization,
where 1t then cancels with the left-hand side. Then Vi(x, t)A can be taken
outside the maximization, and all terms divided by A. This yields the final
result:

0=V, 1) +Muax[l(x, )+ V(x, Df(x, u)] (11-67)

There is also the associated boundary condition
Vix, T)=y(x) (11-68)

which is clearly the optimal value obtainable starting at the terminal time.

Equation (11-67) is the Hamilton—Jacobi—Bellman equation. It is a partial
differential equation for the optimal return function V(x,t). It 1s sometimes
(but not very often) possible to solve this equation 1n analytic form. If so, it
provides a complete solution to the whole family of optimal control problems
defined by the system, the constraints, and the objective. In many situations,
however, it must be solved numerically.

A significant advantage of the dynamic programming approach is that it
automatically determines the optimal control in feedback form. Once the
optimal return functon is known, the maximization with respect to u indicated
in (11-67) yields the value of u that should be employed if the state is x at time
L
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Example (Linear System and Quadratic Cost). Dynamic programming can be
applied to the standard ‘linear-quadratic” problem of Sect. 11.5. Thus, let us
consider

x=Ax+Bu (11-69a)
T
J=3 L [x" Qx+ u"Ru] dt (11-69b)

The objective is to be minimized. The Hamilton—Jacobi-Bellman equation is
(the maximization now becomes minimization)

0=V{x, ) +Min[ix"Qx+iu"Ru+ V,(x, )(Ax+Bu)] (11-70a)

Vix, T)=0 (11-70b)
We hypothesize a solution of the form
Vix, t) =3x"P(t)x (11-71)
where P(t) 1s an n X n symmetric matrix. Substituting this into (11-70a) yields

0=1xTP(t)x + Min[3x" Qx + 2u" Ru+x"P(t)(Ax + Bu)] (11-72)

The minimum with respect to u is obtained by solving
" R+x"P(t)B=0 (11-73)
yielding
s=—R'BTP(r)x (11-74)
Substituting this into (11-72) and noting that
xTP(DAx =3xT(P()A + ATP(1))x
yields
0=x"(P(t) + Q+P(HA +ATP(t)— P()BR'BTP(1))x (11-75)

This will be identically true if P(¢) is selected as the solution to the Riccati
equation (11-42). Thus, thus procedure leads to exactly the same solution as
found in Sect. 11.5.

*11.8 STABILITY AND OPTIMAL CONTROL

There 1s a strong relationship between some optimal control problems and
stability theory. Often the optimal return function serves as a Liapunov
function.
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Consider the optimal control problem with fixed terminal state but free
terminal time defined by

x(t) =f(x(1), u(t)) (11-76a)
ut)eU (11-76b)
x(T)=Xx {11-76c¢)

J= j 1(x(1), u(t)) dt (11-76d)

The initial state is given. In the present context it is assumed that the
problem is to nmunimize J.
We assume that for all x#X and any ue U

I(x,u)>0 (11-77)

We assume also that for any 1nitial condition x(0) there 1s a unique solution to
the problem having a finite objective value. Finally, we assume there 1s a ie U
such that f(x, i) = 0. ‘

This problem has an important time-invariant property. The optimal
trajectory from a given state x to the endpoint X 1s independent of the time t, at
which x(t,) = x. That 1s, if x(0)=x leads to the optimal trajectory x(t) for t>0
with final time T, then the condition x(f;)=x must lead to the trajectory
x(t+ty) with final ime T +¢,. Delaying the starting time merely delays the
whole solution. This follows because the system, the constraints, and the
objective are independent of t. (The time to termination 1s really some
unknown function of the initial state only.)

The optimal control is also a time-nvariant function of the state. That is,
u(t) =u(x(1)). To see this, note that the initial control clearly depends only on
the initial state, not on the initial time; then reapply this argument at each
instant to the remaining problem. We can assume that u(x) = .

The system, when guided by the optimal control law, 1s governed by

() =f(x(1), u(x(1))) (11-78)
This is a time-invariant (but most likely nonlinear) system. The point X 1s
clearly an equilibrium point. Furthermore, given any initial state, this system
eventually reaches X. Thus, the system exhibits strong stability properties by its
very construction.

Let V(x) be the optimal return function for this problem. That 15, V(x) is
the minimum achievable value of the objective when the system is initiated at
x. The optimal return function 1s also time invariant in this case. (Clearly the
minimum value depends only on where the system is imtiated—not when.) The
function V(x) satisfies

i V=0
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since no objective value is accrued if the system is initiated at X. Also, the
function satisfies

(i) V(xX)>0 for x#Xx
since I(x, w)>0 for x#X. Finally, since
V()= | x(r), u(x(r) dr

we have
V(x) = —1(x, u(x))
Therefore, V(x) satisfies
(i) V(x)<<0 for x#X

Thus, V is a Liapunov function.

The net result of an optimal control problem 1s to transform a system with
inputs to a free system—since the inputs are specified by the optimization.
Thus, after the solution of an optimal control problem 1s found, the behavior of
the resulting system can be analyzed using the principles developed throughout
this book. If the control s implemented in feedback form, then it may be
possible to establish stability as indicated in the above special case. This again
is an instance of the theme of Chapter 10—that an appropriate Liapunov
function is often directly related to the origin of the system. In this case the
connection is the objective function.

11.9 PROBLEMS

1. Time-Varying Systems. The theory of optimal control can be easily extended to
problems where the system equations, the constramts, and the objective functions
are all explicit functions of ume. Consider the problem with

x(6) =1(x(¢), u(r), 1)
x(0)=xXo
u(t)e U
x(T)=%{T), 1=12,...,r
T
T=¢x(T), )+ L L(x(1), u(t), 1) dt
with T either free or fixed. Show that by defimmng an additional state vanabie

X.+i =t this problem can be converted to an equivalent problem without explicit ¢
dependence.
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2. Equivalence of Problem Types. A continuous-time optimal control problem is
sometimes characterized by the form of its objective function as follows:

(i) T=y(x(T)) (problem of Mayer)
(i) J={3 l(x(1),u(r)) dt (problem of Lagrange)
(i) J = y(x(T))+fs I(x(t), u(t)) dt (probiem of Bolza)

Show that these three types are equivalent. In particular, show that a problem of
Boiza can be converted to a problem of Mayer and to a problem of Lagrange.

3. Push Cart with Fricnon.  Solve the push cart problem of Example 2, Sect. 11.2 with
the dynamic equation modified to account for friction. Specifically, replace the
equation ¥ =u by X = u—kx.

4. Consider the following optimal control problem:

x=x+u
x(0)=5
O=u(n=2

Minimize
2
J= L (=2x +3u+au’) dt

Use the maximum principle to solve for the optimal control m the following two
cases:

(a) a=0
by a=1

5. The Minimum Pnnciple. Consider an optimal control probiem that 1s 1n the form
presented in Sect. 11.1, except that the objective J 1s to be miminmized. Show that
the necessary conditions can be expressed exactly as usual but with the Hamiltonian
bemg minimized.

6. Optimal Investment. Consider the problem of determining the optimal investment
plan of a production facility. Assume that without any investment the production
rate of the facility decreases at a rate proportional to the production rate at that
time, but that investment tends to increase the production rate. Specifically, letting
P be the production rate and I the 1vestment rate, assume that

P=—-aP+vyl, P0)=P,

where a >0, y>0. Assume that the facility operates until ume T and is then
salvaged at a price proportional to its production rate at that ume. Correspondingly,
the objective 1s

J=BP(T)+ J; [P()—I(5)] dt
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where 8> 0. The investment rate is assumed to be positive and bounded above;
that is,

o=sI(=T

(a) Write the necessary conditions for the above problem.

(b) Show that if v is outside the interval spanned by « and 1/8, the optimal policy
1s constant for 0=<t=T [either I(t)=0 or I{t)=1I].

(c) Show that if the optimal policy contalns a switch, 1t occurs at

t, = T_lln(ﬂ_)
a lja—1/y

(d) Show that if the facility were to operate from time T on without any further
investment, it could produce a terminal revenue

J P(t) dt = (1/a) P(T).
T
(e) Show that if y>a and the salvage value is at least as high as the terminal

revenue (that is, 8§ = 1/a), then the optimal policy 1s to invest at the maximum
rate for the entire period.

. The Hamiltonian s Constant. Suppose u 1s unconstramned and f and [ do not

depend explicitly on t. Let A(t), x(t), u(t) sausfy the necessary conditions for
optimality (with any form of end-point conditions), then show that H(XA(r), x(t), u(t))
is constant for 0=<t=<T.

. Geodesics. Let two points be given on the surface of a sphere of radius R. Show

that the curve on the sphere connecting the points and having minimum arc length
is the arc of a great circle (that is, a portion of a circle of radius R).

. Thrust Programmung. A particle of fixed mass 1s acted on by a thrust force of

constant magnitude. Assuming planar motion, the equations of motion are
u=Acos6, X=u
v =Asin6, y=v
where @ is the angle of the thrust. Show that to maximize some function of the
terminal state, the angle of thrust i1s of the form

t+b
tan O(t)=————a -
ct+d

for some counstants a, b, c, d.

The Brachistochrone Problem. A particle under the force of gravity slides without
friction along a curve connecting two fixed pomts. Consider the problem of
determining the shape of the curve that will produce the minimum time path
between the two points.

Energy is conserved since there is no friction. Thus, the magnitude of the
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particle’s velocity is V(y)=\/_, where y is the vertical distance it has fallen. The
equations of motion are

x = V(y)cos 8
y=V(y)sm 6

where 6 1s the mstantaneous angle of the curve. Find an equation relating 6 and y.
Show that 6 s constant.

*11. Estate Planmuing. A man is considering his lifetime plan of investment and ex-

12.

penditure. He has an mitial level of savings S and no income other than that which
he obtains from investment at a fixed interest rate. His total capital x 1s therefore
governed by the equation

x()y=ax(t)—r(t) -

where a >0 and r denotes his rate of expenditure. His immediate enjoyment due to
expenditure 1s U(r), where U is hs utility function. In his case U(r)=r"2. Future
enjoyment, at time ¢, 1s counted less today, at time 0, by incorporation of a discount
term e™® Thus, he wishes t0 maxmnize

J =J e P'U(r) dt
0

subject to the terminal constramnt x(T)=0. Usmg the maxmmum principle find a
compilete solution for r(t).

Catenary. A cable of length L hangs with 1ts two ends fixed at two supports
separated by a horizontal distance T. The shape of the curve 1s x(t). The potential
energy of the hanging cable is

T
V=mgL xJ1+x%ar

where m 1s the mass per unit length. The cable hangs so as to minimize the
potential energy subject to the condition that 1ts length 1s fixed.

T
L= L V1+x*dt
(a) Formulate the necessary conditions for this problem and reduce them to a
singie second-order differential equation m x(t).
*(b) Show that the cable hangs in the shape of a catenary

ft+b
x(t)=a cosh(—-——\+d
c /

where a, b, ¢, d are constants depending on the parameters of the problem.
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13. Ili-Conditioned Problem. Consider the problem

14.

2(8)=u(r)*

x(0)=0, x(1)=0
]=L u(r) dt

(a) What is the solution?

(b) Show that this solution does not satisfy the necessary conditions of the max-
imum principle with A,=1.

(c) Show that the solution does satisfy the conditions with A, =0.

State Vanables Constrained to Lie on a Surface. In a generalization of the free
terminal ume problem one 1s given

X =f(x,u) (system equation)
x(0)=x, (initial condition)
T
J=y{x(T)}+ [ I(x,u) dt (objective)
Jo
¢[x(T)]=0 (termmal constraints)

where ¢ is r-dimensional. The terminal constraints require the state vector to liec on
the surface given by ¢[x(T)]=0 at the unspecified final time T.

To find the necessary conditions for this problem, let ¥* be an r-dimensional
vector of (unknown) Lagrange multipliers associated with the constrant ¢{x(T)]=
0. By appending v &(x(T)] to the objective function one removes the constramt
and the problem becomes

maximize J=y[x(T)]+ v x(T)]+ J I(x, u) dt

subjectto  x=f(x, u)
x(0)=x,

Find a complete set of necessary conditions, mcluding a specification of the terminal
constraints on the adjoint vanables. Check your condition by verifymg that for the
constraints x;(T)=x, i=1,2,...,r the condition yields the known resuits.

*15. It is desired to transfer the state vector of the system

X, ==X,
Xo=u

from x,(0) = x,(0)=0 to the line x,(T)+3x,(T)= 18 while mimumizing

. T
]=%L u? dt
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The final ttme T 1s unspecified and u is unconstramed. Solve this problem by the
method of Problem 14.

Fish Harvesting. Consider the problem of determining the optimal plan for
harvesting a crop of fish in a large lake. Let x(t) denote the number of fish in the
lake, and let u(r) denote the intensity of harvesting activity. In the absence of
harvesting x(r) grows exponentially according to X = ax, where a > 0. The rate at
which fish are caught when there is harvesting is r=gu'"x~ for >0, 0<y<1.
(Thus, the rate increases as the intensity increases or as there are more fish t0 be
harvested.) There is a fixed unit pnice for the harvested crop and a fixed cost per
unit of harvesting intensity. The probiem is to maximize the total profit over the
period 0=¢=<T.
The system is

() =ax(t)—r(t)
x(0) = x4

and the objective is

T
J= L [pr(t)—cu()] dt
where p 1s the unit price for the crop and c 1s the unit cost for harvesting intensity.
The objective represents the integral of the profit rate—that 1s, the total profit.

(a) Write the necessary conditions for this problem using the maxunum principle.

(b) Show that u can be written in feedback form as a linear function of x.

(c) Find a differential equation for the adjoint variable, which does not depend on
X or u.

(d) Show that the optimal return function is of the form V(x, t) = A(t)x +q(t). How
1s q(t) determined?

A Linear-Quadranic Problem. Counsider the problem with system
x(6) = A()x(¢) + B(r)u(r)

and objective to be mimmized
T
7=} J; [x()TQ1)x()+ u(t) R(t)u(1)] dt

with both x(0)=x, and x(T) =x, fixed. The final iume T is also fixed. The matrices
Q(t) and R(t) are as in Sect. 11.5. Write the necessary conditions for this problem.
Assume a nonsingular transformation of the form

x(t) = —~P(A(t) +b(t)

and find differential equations for P(r) and b(t). Find the control in terms of the
state and P(r) and b(t).

*18. Opumal Economic Growth. A standard aggregate model of the national economy
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1s based on the following three equations:

Y=C+I
K=—uK+I
Y=F(K,L)

where Y 1s total economic production, C is consumption, I is investment, K 1s
capital, and L is labor. The first equation is the basic income identity. The second
states that capital depreciates but can be replenished by investment. The thurd
equation states that the level of production is a function of the capital and labor
employed. If we assume that F exhibits constant returns to scale, then F(aK, aL) =
aF(K, L) for a>0. Selecting a =1/L we find Y/L = F(K/L, 1)=f(K/L). We may
then express everything in a per-worker basis. We assume that L grows exponen-
trally according to L = pL. Then defining y = Y/L, ¢ = C/L. and so forth, we obtain

y=c+i
k=-rk+:
y=f(k)
where r=p +p. By some easily mampulation this leads to
k=f(k)—uk~-c

which is the fundamental equation of growth.

The society selects its growth trajectory by selecting c¢(t), the consumption per
worker. If the society wishes to maxmnize its discounted aggregate utility, it should
determine ¢(t) to maximize

J= Lme""‘U(c(t)) dt

subject to 0 =c¢ =f(k), where k and ¢ are related by the fundamental equation. The
function U(c) is the utility function of consumption.

(a) Using the maximum principle (without yet worrying about endpoint conditions)
express the necessary conditions 1n terms of a pair of differential equations with
variables k and c.

(b) Find a special solution corresponding to k =0, ¢ =0. Explain why this soiution
is called balanced growth.

Housing Maintenance. Suppose that the quality of a rental house is characterized
by a single variable x. The quality 1s governed by the equation

u(ky
x(k+1)=ax(k)+u(k)————
x—x(k)
where 0<a<<1, u(k) 1s the mamtenance expenditure wn period k, and >0
corresponds to “‘perfect” condition. The rent is proportional to the quality. A
landlord wishes to determine the maintenance policy that maxmmizes his discounted
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net profit up to peniod N, at which point he plans to sell the house. In particular, he

wishes to maximize
N-1

T=g ex(N)+ Y [px(k)—u(k)]B*
k=0

where p>0, 0<g <1. The quantity cx(N) is the sales price at tume N.

(a) Using the variational approach write the necessary conditions and find an
equation for A (k) that is independent of x(k) and u(k).

(b) Show that u(k) can be expressed in feedback form.

{c) Find the opumal return function (and show that it is linear m x).

(d) What s a “fair” price ¢? That is, what value of ¢ would make the landlord
ndifferent to selling or retaining the house?

Estate-Plannung. Counsider again the situation of Problem 11. Assume 8> a/2.

(a) Formulate the Hamilton-Jacobi-Bellman equation for the problem.

(b) Find a solution of the form V(x,t)=f(t)g(x) but which does not satisfy the
boundary condition. (Hint: Try g(x)= Ax"?)

(c) Find a suitable function ¢(x, T) to append to the objective function so that the
solution found 1n (b) 15 correct. What 1s the corresponding feedback control?

. Relanon of Dynanmuc Programming to the Maximum Principle. Let x(t), u(t) be an

optimal solution to the continuous-time control probiem
(1) =H(x(1), u(s))
u(t)e U

T

J= d/(x(T))+J [(x(t), u(r)) dt

Let V(x,t) be the optimal return function for the problem. Define A(1)" =
V(x(1), t). Show that A(t), x(t), and u(r) satusfy the conditions of the maximum
principle. (Hint: dV,/dt = V + V_X.)

22. Stability. Consider the optimal control problem (with J to be minmized)

() = K(x(r), u(s))
J= L L(x(1), u(r)) dt

Assume that there is an X and i such that
f(x,u)=0, I(x,u)=0
I(x,u)>0 ifX#xoru#u
The functions f and | are smooth.

(a) Assume also that there is a unique solution to the problem for any initial
condition. Show that X 15 an equilibrium point of the closed-ioop optimal
system, and that it is asymptotically stable.
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(b) Verify this result for

x=x+tu

]=L (x®+u® de

NOTES AND REFERENCES

Sections 11.1-11.4. The order of development in these sections deviates substantially
from the chronological order, since the maximum principle was a relatively late
development. The calculus of variations was imtiated with the study by the Bernoulli
brothers 1n about 1696 of the brachristochrone problem. A standard book on the
classical approach, which inciudes an outline of the history, is Bliss [B9]. Also see Bliss
[(B10]. The classical approach was extended to problems with inequality constramts 1n
about 1930, mamly by McShane [Mc2]. The classical formulation contains no explicit
control variable, but the substitution x =u can be used to convert these problems to
control form. The scope of application was considerably broadened and the notation
greatly streamlined by the explicit mtroduction of the control formulation, and by the
general maximum principle of Pontryagin see [P5]. For an early expository discussion,
see Rozonoer [R4], [R5], [R6]. A good ntroduction to optimal control 1s Bryson and
Ho [B12]. The example on insect colonies 1s adapted from Macevicz and Oster [M1].

Section 11.5. This problem was originally worked out n detail by Kalman [K2].

Section 11.7. As discussed in the text, the Hamilton-Jacobi approach 1s a traditional
branch of the calculus of variations. Dynamic programming, developed by Bellman [B5])
(see also Bellman and Dreyfus [B7]), is now one of the most general and powerful
approaches to dynamic optimization. It 1s applicable to a broad range of problem
structures, including several not discussed 1n this text.

Section 11.8. For an early result along these lines see Kalman and Bertram [Kd4).

Section 11.9. For more exampies smilar to those of these problems, and additional
theory, see Bryson and Ho [B12), Luenberger [L9], and Intriligator [I1]. The special
structure of Problems 16 and 19, which leads to linear feedback laws, was mtroduced
Luenberger [L11].
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of vector functions, 14
of vector sequences, 101
Linearization, 127-128, 324-328
Linear-quadratic problem, 413-416, 425, 432
Linear system, 92, 132
Logistic, 317-318, 321, 324, 356, 373
Lotka, 370-391
Lure, 363

McPhee's model, 152-154, 186
Marginal stability, 157-159, 322
Markov chain, 225

Matnx, 56

Maximum principie, 394, 400, 407, 411
Metzier matnx, 204-206, 222, 390
Migration model, 144-147, 179-180, 186
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Minor, of elements of matrix, 62
Modal matnx, 81, 137, 180
Modified objective, 396-398, 406, 410-41i1, 417
Monopoiy game, 232-234, 253
Multiple eigenvalues, 84-86, 148-150
\

Natchez Indians, 105-108, 131, 174-178, 180, 186

Newton cooling, 53

Newton’s laws, 8-9, 97, 365-367

Nonhomogeneous equation, 26-27, 31-32, 41

Nonhomogeneous system, 108-112, 118-121,
196-199

Nounlinear systems, 125, 127, 316-363

Nonnegative mainx, 190-191, 193

Objective, 393, 395

Observability, 285-289, 315
Observability canonicai forms, 293-295
Observers, 300-309, 314, 315

Optimal controf, 393-435

Optimal return function, 420-421
Order, 15-16, 38, 90

Orthogonality, 84

Oscillations, 160-165

Outputs, 254-255

Pareto’s law, 252

Partial fractions, 263-266, 309-310

Pendulum, 341-343, 346-347, 366

Perlodic Markov chain, 246, 251

Permutation matrix, 249, 250

Perron, 189, 222

Peter principle, 199-204, 219, 222

Planetary motion, 367, 389

Pontryagin, 394, 435

Population, 5-6, 10, 144-147, 170-174, 184-185,
186, 370-375

Positive definite, 351-352

Positive eigenvalue, 172, 191-195

Positive matrix, 190-191, 249-250

Positive recurrent chain, 247-248

Positive system, 188, 195-199, 204-206, 347-349,
355-356

Poverty and wealth, 251-253

Predator-prey model, 10, 370-375, 390

Prnciple of optimality, 419-420

Probability vector, 227

Production line, 241-243

Proper rational function, 257

Pursuit problem, 343-345

Pushcart, 402-403, 428

Puzzle, 125-126, 131
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Quadratic cost, 413-416, 432
Quadratic form, 350-353
Queue, 50

Radioactive dating, 53

Random walk, 245, 247-248, 250, 251
Rank, 72

Rational function, 257

Reduced order observers, 304-306, 315
Reducible chain, 236, 249

Reguiar Markov chain, 230

Repeated roots, 49, 84-86, 148-150, 264
Reproductive value, 185

Riccati equation, 415, 425

Richardson’s theory, 206-211, 221, 222-223
Right eigenvector, 83, 142-147
Roule:te, 36-38, 50

Routh test, 181-183, 187

Samueison, 123, 131
Scalar muluplication, 58
Seismograph, 53-54
Separation theorem, 307-308
Series expansion of inverse, 198, 217
Sickle cell anemia, 385, 391
Similar matnces, 88
Simulation, 11
Singuiar matrix, 66
Social system, 105-108, 125
Square root algorithm, 339-341
Stability, 154-159, 322-328
and optimal control, 425-427, 434-435
of positive systems, 190, 196-197, 206, 222
State of Markov chain, 225
State-transition matnx, 100, 113, 126, 138, 140
State-transition property, 100-101
State vanables, 91, 92, 93
State vector, 95, 317
Stick baiancing, 283-285, 300, 306-307, 308-309,
31
Stochastic matrices, 227
Straight-through cohort model, 94-95, 99, 124
Structures, 184, 187

Subdominant modes, 167

Substochastic matrix, 239

Summanzing function, 319, 354-356, 364
Superposition, 109-112, 119-121

Supply and demand, 23-26, 48-49
Symmetric matrix, 88, 352

System, 2, 90

System eigenvectors, 135-150

System matrix, 92, 93

TAtonnement, 378-382, 392

Terminal constraints, 405-409, 431
Thermodynamucs, 367-370, 391
Time-invanant, 16, 92, 104, 115-118, 317
Trace, 88

Trajectory, 323

Transfer function, 266-267, 275, 295-296
Transformation, 73-76

Transforms, 255-276, 314

Transient ciass, 237, 239-245

Transition probabilities, 225, 228
Transpose, 60, 64

Trangle problem, 401-402

Triangular matrix, 64, 88

Untt step, 256, 261
Unstable, 154-155, 322
Utility, 390-391, 433

Van der Pol, 361

Vartation of parameters, 129
Vector, 3, 57

Vector space, 69

Volterra, 10, 328, 363, 370-375, 391
Von Neumann model, 223

Walras' law, 381-382

Washing machines, 94, 124

Water clock, 297-299

Weather modei, 225-226, 231-232, 236

Z-transform, 255-272, 314
Zermelo’s problem, 412-413
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