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Preface

Overview 

Two important challenges facing current communities of researchers and 
practitioners in the field of software engineering and technology (SET) are 
knowledge integration and computer-based automatic support. The first 
challenge implies wasting a lot of time and effort and this is due to one of 
the difficulties in human relationships, namely the lack of explicit knowl-
edge shared among members of a group/project, with other groups and 
with other stakeholders. The second challenge arises because many pro-
jects include the design/construction of advanced tools for supporting dif-
ferent software engineering activities. These tools should provide as much 
functionality as possible with the smallest cost of development. 

Both challenges can be better and more easily approached by using on-
tologies. In this book, we will mainly deal with two of the multiple appli-
cations of ontologies in software engineering and technology that have 
been identified in the literature: (1) sharing knowledge of the problem do-
main and using a common terminology among all the interested people 
(not just researchers); and (2) filtering the knowledge when defining mod-
els and metamodels.  

The utility of the first application is obvious. However, it is important 
and convenient to pay it opportune attention. Communication is one of the 
main activities (regarding duration and impact) in software projects. It is 
proven that participants in projects have a different knowledge of the prob-
lem domain and/or use different languages. The ambiguity of the natural 
language implies mistakes and nonproductive efforts. Ontologies can miti-
gate these problems and, farther, some authors have intended to use on-
tologies as back-bone of software tools and environments. 

The second application is focused on the filtering of knowledge of a 
given domain. Models and metamodels are abstract representations of real-
ity and, by definition, they only include a part of the reality they are aimed 
at modeling, obviating the unwanted characteristics. In this sense, ontolo-
gies can also help us decide what must be extracted from the real systems 
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to build models or what must be taken into account when defining meta-
models. 

So, this book should not be considered as a book written by ontology ex-
perts for ontology experts, but one written by people who use the ontologies 
mainly for the two applications mentioned above. For that reason, this book 
is oriented to researchers and practitioners in SET and includes the advanced 
trends in the use of ontologies within software projects and software engi-
neering research. It also deals with two main challenges the SET discipline: 
(1) knowledge integration and (2) design of more powerful and generic tools. 

Organization

The book is composed of eleven chapters structured into three parts: an in-
troductory part; a part composed of ontologies that conceptualize a SET
domain or subdomain; and a part where some proposals on the use of on-
tologies as software artifacts in some software processes and technologies 
are described.  

The last introductory part comprises two chapters. The first one, written 
by Oscar Corcho, Mariano Fernández-López and Asunción Gómez-Pérez, 
will introduce the ontologies’ concepts and the main aspects related to on-
tological engineering. The second chapter (by Francisco Ruiz and José R. 
Hilera) will deal with the state of the art of the use of ontologies in SET.
Also, this chapter defines a taxonomy for classifying the uses of ontologies 
in SET, together with the result of the classification into this taxonomy of 
about 50 ontologies (including the proposals of this book).  

The second part is made up of five chapters. Chapter 3 will present the en-
gineering of the ontology for the Software Engineering Body of Knowledge, 
written by Alain Abran, Juan-José Cuadrado, Elena García-Barriocanal, 
Olavo Mendes, Salvador Sánchez-Alonso and Miguel-Angel Sicilia. An on-
tology for software development methodologies and endeavours will be pre-
sented by Cesar Gonzalez-Perez and Brian Henderson-Sellers in Chap. 4. 
Chapter 5 presents a software maintenance ontology developed by Nicolas 
Anquetil, Káthia M. de Oliveira and Márcio G.B. Dias, and an ontology for 
software measurement by Manuel F. Bertoa, Antonio Vallecillo and Félix 
García is the topic of Chap. 6. An ontological approach to the SQL:2003 de-
veloped by Coral Calero and Mario Piattini will be explained in Chap. 7, 
closing this second part. 

The final part begins with the Object Management Group Ontology 
Definition Metamodel (Chap. 8), developed by Robert Colomb, Kerry 
Raymond, Lewis Hart, Patrick Emery, Chris Welty, Guo Tong Xie and 
Elisa Kendall. Chapter 9, written by Uwe Assmann, Steffen Zschaler and 
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Gerd Wagner, deals with ontologies, metamodels and the model-driven 
paradigm. Chapter 10 will presents the use of ontologies in software 
development environments in the work of Káthia Marçal de Oliveira, 
Karina Villela, Ana Regina Rocha and Guilherme Horta Travassos. Fi-
nally, the topic of the last chapter of the book (Chap. 11) is a semantic 
upgrade and publication of legacy data by Jesús Barrasa Rodríguez. 

As a complement to this book, the Alarcos Group (the research group of 
the editors) have created a web site (http://alarcos.inf-cr.uclm.es/ontoset) 
to store and share, in an open way and by using standardized formats, ex-
amples of interesting ontologies in the SET discipline. In addition to the 
examples referred to in the book, other examples of ontologies elaborated 
by the international community will be included in this web site. 

Audience

The audience for this book is software engineering researchers and practi-
tioners (professors, PhD and postgraduate students, industrial R&D de-
partments, etc.). The reader is assumed to have previous knowledge of 
software engineering.
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1.1 Introduction 

In 1991, the DARPA Knowledge Sharing Effort ([88], p. 37) envisioned a 
new way to build intelligent systems. It proposed the following: 

Building knowledge-based systems today usually entails con-
structing new knowledge bases from scratch. It could be in-
stead done by assembling reusable components. System devel-
opers would then only need to worry about creating the 
specialized knowledge and reasoners new to the specific task 
of their system. This new system would interoperate with exist-
ing systems, using them to perform some of its reasoning. In 
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this way, declarative knowledge, problem-solving techniques 
and reasoning services would all be shared among systems. 
This approach would facilitate building bigger and better sys-
tems and cheaply.

Static knowledge is modeled by means of ontologies while problem 
solving methods specify generic reasoning mechanisms. Both types of 
components can be viewed as complementary entities that can be used to 
configure new knowledge-based systems from existing reusable compo-
nents.

Since DARPA’s idea, considerable progress has been made in develop-
ing the conceptual bases to build technology that allows reusing and shar-
ing knowledge components. Ontologies and problem solving methods 
(PSMs) have been created to share and reuse knowledge and reasoning 
behavior across domains and tasks. In this evolution, the most important 
fact has been the emergence of the Semantic Web. According to [10], the 
Semantic Web is an extension of the current Web in which information is 
given well-defined meaning, better enabling computers and people to 
work in cooperation. This cooperation can be achieved by using shared 
knowledge components, and so ontologies and PSMs have become key in-
struments in developing the Semantic Web. 

Currently, ontologies are widely used in knowledge engineering, artifi-
cial intelligence and computer science, in applications related to knowl-
edge management, natural language processing, e-commerce, intelligent 
integration information, information retrieval, database design and integra-
tion, bio-informatics, education, etc. 

In this chapter, we present the basics about ontologies, and show what 
activities should be carried out during the ontology development process, 
what principles should be followed in ontology design, and what methods, 
methodologies, software tools and languages are available to give support 
to each one of these activities. First, in Sect. 1.2, we define the word ‘on-
tology’ and we briefly explaining its roots in philosophy. Section 1.3 is 
devoted to explain which are the main components that can be used to 
model ontologies. In Sect. 1.4, we present the main ontology design prin-
ciples. In Sect. 1.5, we describe the ontology development process in the 
context of the Semantic Web, where ontologies can be highly distributed 
and present many links among each other (hence the notion of networked 
ontologies). In Sect. 1.6, we describe the development of ontologies and 
the life cycle. In Sect. 1.7, we describe the methods, methodologies and 
tools commonly used for the whole ontology development process or only 
for specific activities. Among them we pay attention to those aimed at on-
tology learning, which reduce the effort needed during the knowledge ac-
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quisition process; at ontology merging, which generates a unique target 
ontology from several source ontologies; at ontology alignment, which es-
tablishes different types of mappings between ontologies (hence preserv-
ing the original ones); and at ontology evaluation, which evaluates ontol-
ogy content. In the implementation activity description, we present 
ontology languages that can be used to implement ontologies. Finally, 
conclusions and future lines of research are presented in Sect. 1.8.1

1.2 What Is an Ontology? Viewpoints from a Philosopher 
and from an Ontology Engineer 

The ancient Greeks were concerned with the question: “what is the es-
sence of things through the changes?” Many different answers to this 
question were proposed by Greek philosophers, from Parmenides of Elea 
(fifth and fourth centuries bc), the precursor of ontology, to Aristotle, au-
thor of the MetaPhysics (a work that might well have been called Ontol-
ogy).

In his study of the essence of things, Aristotle distinguished different 
modes of being to establish a system of categories (substance, quality,
quantity, relation, action, passion, place and time) to classify anything that 
may be predicated (said) about anything in the world. For example, when 
we say “this computer is on the table” we are assuming a different mode 
of being to when we say “this computer is gray”. The first statement is 
classified inside the category of place, while the second is inside the cate-
gory of quality. The categorization proposed by Aristotle was widely ac-
cepted until the eighteenth century. 

In the modern age, Emmanuel Kant (1724–1804) provoked a Coperni-
can turn. The essence of things is determined not only by the things them-
selves, but also by the contribution of whoever perceives and understands 
them. According to Kant, a key question is “what structures does our mind 
use to capture the reality?” The answer to this question leads to Kant’s 
categorization. Kant’s framework is organized into four classes, each of 
which presents a triadic pattern: quantity (unity, plurality, totality), quality
(reality, negation, limitation), relation (inherence, causality, community)
and modality (possibility, existence, necessity). Therefore, our mind classi-
fies the object John as unique, real, existing, etc.

                                                     
1 For a deep introduction to the ontological engineering field, we recommend 

Gómez-Pérez and colleages’ book [40]. 
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A classification of categories, such as the ones mentioned above, is 
known as an ontology by philosophers [47]. Most modern examples of on-
tologies (in the context of philosophy) are due to Chisholm [16], Johanson 
[59], and Hoffman and Rosenkrantz [110], among others. 

According to what we have said, it is very important to take into ac-
count that ‘an ontology’ is not the same as ‘ontology’.An ontology is a 
classification of categories, whereas ontology is a branch of philosophy. 

To answer our second question (“what is an ontology for an ontology 
engineer?”), we can assume that there is a parallelism between the reality 
perceived by people and by computers, and both can be structured in on-
tologies [44]. In accordance with this idea, if a computer is exclusively 
devoted to answering questions on travel, its reality could be structured by 
classifying travel as travel by train, travel by plane, etc. However, for this 
classification to be really an ontology for the computer, the computer must 
be able to reason with it. This leads to the first important difference be-
tween an ontology from a philosophical point of view and from a com-
puter science point of view. According to the latter, an ontology has to be 
codified in a machine interpretable language [106, 39]. In other words, 
when an ontology engineer defines what an ontology is, (s)he changes the 
perspective from the person to the computer. Thus, if the computer does 
not ‘understand’ the ontology, it cannot be its ontology. Moreover, from a 
computer science point of view, an ontology is usually (although not nec-
essarily) more specific than an ontology from a philosophical approach. 
Finally, due to the use of the term ‘ontology’, the features of reusability 
and shareability have become essential in the definition of this term for 
engineers. Nevertheless, such features are not essential in philosophical 
ontologies. 

In conclusion, for an ontology engineer ([106], p. 185, with our own 
emphasis):  

An ontology is a formal, explicit specification of a shared 
conceptualization. Conceptualization refers to an abstract 
model of some phenomenon in the world by having identified 
the relevant concepts of that phenomenon. Explicit means that 
the type of concepts used, and the constraints on their use, are 
explicitly defined. Formal refers to the fact that the ontology 
should be machine-readable. Shared reflects the notion that an 
ontology captures consensual knowledge, that is, it is not pri-
vate of some individual, but accepted by a group. 

Neches and colleagues ([88], p. 40, our emphasis) gave another defini-
tion, focused on the form of an ontology: 
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An ontology defines the basic terms and relations comprising 
the vocabulary of a topic area as well as the rules for combin-
ing terms and relations to define extensions to the vocabulary. 

1.3 What Are the Main Components of an Ontology? 

Different knowledge representation formalisms (and corresponding lan-
guages) exist for the fomalization (and implementation) of ontologies. 
Each of them provides different components that can be used for these 
tasks. However, they share the following minimal set of components.2

Classes represent concepts, which are taken in a broad sense. For in-
stance, in the traveling domain, concepts are: locations (cities, villages, 
etc.), lodgings (hotels, camping, etc.) and means of transport (planes, 
trains, cars, ferries, motorbikes and ships). Classes in the ontology are 
usually organized in taxonomies through which inheritance mechanisms 
can be applied. We can represent a taxonomy of entertainment places 
(theater, cinema, concert, etc.) or travel packages (economy travel, busi-
ness travel, etc.). In the frame-based knowledge representation paradigm, 
metaclasses can also be defined. Metaclasses are classes whose instances 
are classes. They usually allow for gradations of meaning, since they es-
tablish different layers of classes in the ontology where they are defined. 

Relations represent a type of association between concepts of the do-
main. They are formally defined as any subset of a product of n sets, that 
is: R  C1 × C2 × … × Cn. Ontologies usually contain binary relations. 
The first argument is known as the domain of the relation, and the second 
argument is the range. For instance, the binary relation arrivalPlace
has the concept Travel as its domain and the concept Location as its 
range. Relations can be instantiated with knowledge from the domain. For 
example, to express that the flight AA7462-Feb-08-2002 arrives in Seattle 
we must write: (arrivalPlace AA7462-Feb-08-2002 Seattle).

Binary relations are sometimes used to express concept attributes (aka 
slots). Attributes are usually distinguished from relations because their 
range is a datatype, such as string, number, etc., while the range of rela-
tions is a concept. The following code defines the attribute flightNum-

                                                     
2 Component names depend on the formalism. For example, classes are also 

known as concepts, entities and sets; relations are also known as roles and 
properties; etc. 
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ber, which is a string. We can also express relations of higher arity, such 
as “a road connects two different cities”. 

According to Gruber [44], formal axioms serve to model sentences that 
are always true. They are normally used to represent knowledge that can-
not be formally defined by the other components. In addition, formal axi-
oms are used to verify the consistency of the ontology itself or the consis-
tency of the knowledge stored in a knowledge base. Formal axioms are 
very useful for infering new knowledge. An axiom in the traveling domain 
would be that it is not possible to travel from North America to Europe by 
train.

Instances are used to represent elements or individuals in an ontology. 
An example of an instance of the concept AA7462 is the flight AA7462 
that arrives at Seattle on February 8, 2006 and costs 300 (US dollars, eu-
ros, or any other currency). 

1.4 Ontological Engineering 

The ontological engineering field has been subject to considerable study 
and research during the last decade. Ontological engineering refers to the 
set of activities that concern the ontology development process, the ontol-
ogy life cycle, the principles, methods and methodologies for building on-
tologies, and the tool suites and languages that support them [39]. The no-
tion of networked ontological engineering has come into play with the 
emergence of the Semantic Web, where one of the most relevant 
assumptions is that ontologies are distributed across different Web servers 
and ontology repositories and may have overlapping representations of the 
same or different domains. 

With regard to methods and methodologies, several proposals have 
been reported for developing ontologies. In 1990, Lenat and Guha [72] 
published the general steps and some interesting points about the Cyc de-
velopment. Some years later, in 1995, on the basis of the experience 
gained in developing the Enterprise Ontology [113] and the TOVE (TO-
ronto Virtual Enterprise) project ontology [46] (both in the domain of en-
terprise modeling), the first guidelines were proposed and later refined in 
[111, 112]. At the 12th European Conference for Artificial Intelligence 
(ECAI’96), Bernaras and colleagues [9] presented a method used to build 
an ontology in the domain of electrical networks as part of the Esprit 
KACTUS [100] project. The methodology METHONTOLOGY [40] ap-
peared at the same time and was extended in later papers [31, 32]. It was 
proposed for ontology construction by the Foundation for Intelligent 
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Physical Agents (FIPA),3 which promotes interoperability across agent-
based applications. In 1997, a new method was proposed for building on-
tologies based on the SENSUS ontology [109]. Some years later, the On-
To-Knowledge methodology appeared as a result of the project with the 
same name [102]. A comparative and detailed study of these methods and 
methodologies can be found in [29]. 

All the previous methods and methodologies were proposed for build-
ing ontologies. However, many other methods have been proposed for 
specific tasks in the ontology development process, such as ontology re-
engineering [42], ontology learning [3, 65], ontology evaluation [35, 40, 
36, 38, 60, 61, 114, 50, 48], ontology evolution [67, 68, 92, 96, 97, 93, 
104], ontology alignment  [8, 14, 76, 95, 80, 101, 25, 26, 98], and ontol-
ogy merging [103, 33, 107, 94], among others. 

Ontology tools appeared later, in the mid-1990s, and can be classified 
in the following two groups: 4

Tools whose knowledge model maps directly to an ontology language, 
hence developed as ontology editors for that specific language. This 
group includes: the Ontolingua Server [27], which supports ontology 
construction with Ontolingua and KIF; OntoSaurus [109] with Loom; 
WebOnto [24] with OCML; OilEd [7] with OIL first, later with 
DAML+OIL, and finally with OWL; and SWOOP [62] and KAON2 [56] 
with OWL.
Integrated tool suites whose main characteristic is that they have an 
extensible architecture, and whose knowledge model is usually 
independent of ontology languages. These tools provide a core set of 
ontology-related services and are easily extended with other modules to 
provide more functions. In this group we have included Protégé [91], 
WebODE [17, 1], OntoEdit [108], and KAON1 [77].  

Ontology languages started to be created at the beginning of the 1990s, 
normally as the evolution of existing knowledge representation (KR) lan-
guages. Basically, the KR paradigms underlying such ontology languages 
were based on first order-logic (e.g., KIF [34]), on frames combined with 
first-order logic (e.g., Ontolingua [27, 43], OCML [87] and FLogic [66]), 
and on description logics (e.g., Loom [75]). In 1997, OKBC [15] was cre-
ated as a unifying frame-based protocol to access ontologies implemented 

                                                     
3  http://www.fipa.org/specs/fipa00086/ (last accessed, August 9, 2005). 
4 In each group, we have followed a chronological order of appearance in the 

enumeration of the tool. 
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in different languages (Ontolingua, Loom and CycL, among others). How-
ever, it was only used in a small number of applications.  

The boom of the Internet led to the creation of ontology languages for 
exploiting the characteristics of the Web. Such languages are usually 
called Web-based ontology languages or ontology markup languages.
Their syntax is based on existing markup languages such as HTML [99] 
and XML [12], whose purpose is not ontology development but data pres-
entation and data exchange respectively. The most important examples of 
these markup languages are: SHOE [74], XOL [63], RDF [70], RDF
Schema [13], OIL [54], DAML+OIL [55] and OWL [20]. From all of them, 
the ones that are being actively supported now are RDF, RDF Schema and 
OWL.

1.5 Principles for the Design of Ontologies 

This section summarizes some design criteria and a set of principles that 
have been proven useful in the development of ontologies. According to 
[45], ontology design principles are objective criteria for guiding and 
evaluating ontology designs. He identified the following five principles: 

Clarity [45], which is defined in the following terms: An ontology 
should communicate effectively the intended meaning of defined terms. 
Definitions should be objective. Definitions can be stated on formal 
axioms, and a complete definition (defined by necessary and sufficient 
conditions) is preferred over a partial definition (defined by only 
necessary or sufficient conditions). All definitions should be 
documented with natural language. 
Minimal encoding bias [45], which means that: The conceptualization 
should be specified at the knowledge level without depending on a 
particular symbol-level encoding. 
Encoding bias should be minimized for knowledge sharing because 
agents that share knowledge may be implemented in different ways. 
Extendibility [45], which says that: One should be able to define new 
terms for special uses based on the existing vocabulary, in a way that 
does not require the revision of the existing definitions. 
Coherence [45], which is defined as follows: An ontology should be 
coherent: that is, it should sanction inferences that are consistent with 
the definitions. […] If a sentence that can be inferred from the axioms 
contradicts a definition or example given informally, then the ontology 
is incoherent.
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Minimal ontological commitments [45], which is described in this 
way: Since ontological commitment is based on the consistent use of the 
vocabulary, ontological commitment can be minimized by specifying the 
weakest theory and defining only those terms that are essential to the 
communication of knowledge consistent with the theory.

According to this last principle, we should not commit to a specific 
format for dates, for currencies, etc., when designing our ontologies, since 
such details could be different in different systems. 

Some other criteria have proven useful in ontology design, such as the 
standardization of names [2], which proposes to use the same of conven-
tions to name related terms, in order to ease the understanding of the on-
tology.

1.6 Ontology Development Process and Life Cycle 

In 1997, the ontology development process [31] was identified in the 
framework of the METHONTOLOGY methodology for ontology construc-
tion. Such a proposal was based on the IEEE standard for software devel-
opment [57]. The ontology development process refers to the activities 
that have to be performed when building ontologies. They can be classi-
fied in the three categories presented in Fig. 1.1. 

Ontology management activities include scheduling, control and qual-
ity assurance. The scheduling activity identifies the tasks to be performed, 
their arrangement, and the time and resources needed for their completion. 
This activity is essential for ontologies that use ontologies stored in ontol-
ogy libraries or for ontologies that require a high level of abstraction and 
generality. The control activity guarantees that scheduled tasks are com-
pleted in the manner intended to be performed. Finally, the quality assur-
ance activity assures that the quality of each and every product output (on-
tology, software and documentation) is satisfactory. 

Ontology development-oriented activities are grouped, as presented 
in Fig. 1.1, into pre-development, development and post-development ac-
tivities. During the pre-development, an environment study identifies the 
problem to be solved with the ontology, the applications where the ontol-
ogy will be integrated, etc. Also during the pre-development, the feasibil-
ity study answers questions like: “is it possible to build the ontology?”; “is 
it suitable to build the ontology?”; etc. 
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Fig. 1.1. Ontology development process (adapted from [31])   

Once in development, the specification activity5 states why the ontology 
is being built, what its intended uses are and who the end-users are. The 
conceptualization activity structures the domain knowledge as meaningful 
models at the knowledge level [89] either from scratch or by reusing exist-
ing models. In this last case, related activities are pruning branches of the 
existing taxonomies, extending the coverage of ontologies with the addi-
tion of new concepts in the higher levels of their taxonomies, or specializ-
ing branches that require more granularity. Given that the conceptualiza-
tion activity is implementation-language independent, it allows modeling 
ontologies according to the minimal encoding bias design criterion. The 
formalization activity transforms the conceptual model into a formal or 
semi-computable model. The implementation activity builds computable 
models in an ontology language. 

During post-development, the maintenance activity updates and cor-
rects the ontology if needed. Also during post-development, the ontology 

                                                     
5 In [28] specification is considered as a pre-development activity. However, fol-

lowing more strictly the IEEE standard for software development, the specifica-
tion activity was considered part of the proper development process. In fact, the 
result of this activity is an ontology description (usually in natural language) 
that will be transformed into a conceptual model by the conceptualization activ-
ity.
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is (re)used by other ontologies or applications. The evolution activity con-
sists of managing ontology changes and their effects by creating and main-
taining different variants of the ontology, taking into account that they can 
be used in different ontologies and applications [93]. 

Finally, ontology support activities include a series of activities that 
can be performed during the development-oriented activities, without 
which the ontology could not be built. They include knowledge acquisi-
tion, evaluation, integration, merging, alignment, documentation and con-
figuration management. The goal of the knowledge acquisition activity is 
to acquire knowledge from experts in a given domain or through some 
kind of (semi-)automatic process, which is called ontology learning [65]. 
The evaluation activity [35] makes a technical judgment of the ontologies, 
of their associated software environments, and of the documentation. This 
judgment is made with respect to a frame of reference during each stage 
and between stages of the ontology’s life cycle. The integration activity is 
required when building a new ontology by reusing other ontologies al-
ready available. Another support activity is merging [103, 33, 107, 94], 
which consists of obtaining a new ontology starting from several ontolo-
gies in the same domain. The resulting ontology is able to unify concepts, 
terminology, definitions, constraints, etc., from all the source ontologies. 
The merging of two or more ontologies can be carried out either in run-
time or design time. The alignment activity establishes different kinds of 
mappings (or links) between the involved ontologies. Hence this option 
preserves the original ontologies and does not merge them. The documen-
tation activity details, clearly and exhaustively, each and every one of the 
completed stages and products generated. The configuration management
activity records all the versions of the documentation and of the ontology 
code to control the changes. The multilingualism activity consists of map-
ping ontologies onto formal descriptions of linguistic knowledge [22]. It 
has not usually been considered as an ontology support activity, but has 
become more relevant in the context of networked ontologies available in 
the Semantic Web. 

As we can see, the ontology development process does not identify the 
order in which the activities should be performed [31] (see also [57]). This 
is the role of the ontology life cycle, which identifies when the activities 
should be carried out; that is, it identifies the set of stages through which 
the ontology moves during its lifetime, describes what activities are to be 
performed in each stage and how the stages are related (relation of prece-
dence, return, etc.). 

The initial version of the life cycle process model of 
METHONTOLOGY (see Fig. 1.2) proposes to start with a scheduling of 
the activities to be performed. Then, the specification activity begins, 
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showing why the ontology will be built, what its possible uses will be, and 
who are its users. When the specification finishes, the conceptualization 
begins. The objective of the conceptualization is to organize and structure 
the acquired knowledge in the knowledge acquisition activity, using a set 
of representations easy to manipulate for the experts in the domain. Once 
the conceptual model has been built, METHONTOLOGY proposes to 
automatically implement the ontologies using translators. More details can 
be found in [39]. 

Fig. 1.2. Ontology life cycle in METHONTOLOGY

As more ontologies become available in ontology libraries or spread 
over the Internet, their reuse by other ontologies and applications in-
creases. Domain ontologies can be reused to build others of more granu-
larity and coverage, or can be merged with others to create new ones. Fig-
ure 1.3 shows different ways or possibilities of construction. Using an 
analogy with an underground map, it can be noted that there exists a main 
line (in the middle of the figure), others that start from the main line or fin-
ish in it, or lines that run parallel and fork in a point. Thus, interdepend-
ence relationships [42] arise between the life cycles of several ontologies, 
and actions of evaluation, pruning and merging can be carried out on such 
ontologies. That is, the life cycles of the different ontologies intersect, 
producing different scenarios with different technological requirements. 
Now we will describe some of the most common scenarios that arise dur-
ing the ontology development process. 
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Fig. 1.3. The ontology development process of networked ontologies 

Scenario 1 Evaluate + import. The import of ontologies consists of 
incorporating an ontology available in a language or tool into another 
ontology tool. Often, several candidate ontologies implemented in 
different languages can be reused. In this case, it is necessary to inspect 
their content and granularity, compare them and select the best one(s). It 
is also necessary to analyze the expressiveness of the language in which 
each ontology is implemented, since important pieces of knowledge 
may be lost during the import if the knowledge model of the target 
ontology tool is less expressive than that of the language or tool where 
the ontology is implemented. 

Before importing an ontology, its content should be evaluated. Some 
ontology tools perform content evaluation before the import process, so 
as to avoid importing and reusing badly designed ontologies. 

Ontology import is not always successful. We can find problems due 
to lack of interoperability between tools, which are as follows [18]: 

Common interchange formats normally allow representation of the 
same knowledge in many different ways and many of them have ex-
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tensible knowledge models (by means of metaclasses). Hence, trans-
lations to and from interlinguas are usually written with regard to a 
specific format, making knowledge exchange difficult. Some of the 
interlinguas that have been used in the past are KIF and RDF.
Interoperability with interlinguas has been only proved with the same 
origin and target formats, but not between different source and target 
formats. 

However, with the standardization of the OWL language in the context of 
the Semantic Web the issue of importing ontologies has become less rele-
vant in the ontology development process, since the OWL specification 
clearly states which primitives are allowed in OWL ontologies and how 
they can be combined. The use of OWL Full, which provides more expres-
sivity possibilities, may again pose the same type of interoperability prob-
lems. 

Scenario 2. Conceptualize + integrate + evaluate conceptualization.
Once an ontology has been imported, the next step consists of 
integrating its conceptual model into the conceptual model of the 
ontology that is being developed. Consequently, activities of integration 
and evaluation of the conceptualization are in the main line of the life 
cycle process model. 
Scenario 3. Conceptualize + acquire knowledge. Once the ontology 
has been evaluated, imported and integrated into the conceptual model 
of the main ontology, the activity of conceptual evaluation can reveal, 
both in the integrated ontologies and in the main ontology that is being 
developed, what parts of the ontologies are in the requirement 
specification document. Therefore, the options are: 

To prune the branches of the taxonomy that are not considered neces-
sary because they do not appear in the ontology requirement specifi-
cation document. 
To specialize those branches that require more granularity, including 
more specialized domain concepts and relations. 
To extend the ontologies including (in width) new concepts and rela-
tions.
To search for new domain ontologies that complement the detected 
lacks.

If the ontology builder prunes, specializes or extends the ontologies, (s)he 
might need some knowledge that could be acquired using classical knowl-
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edge engineering methods and techniques, or semi-automatic methods for 
learning ontologies from texts or other sources. 

Scenario 4. Semi-automatic construction of ontologies. Despite one 
of the main objectives of ontologies being to decrease the knowledge 
acquisition bottleneck when building knowledge-intensive systems, the 
process of building an ontology and refining it consumes much time and 
resources. Ontology learning is the process that partially automates the 
construction of ontologies using some of the following methods, 
techniques and tools: natural language analysis, statistical methods, 
linguistic patterns, text mining, etc. This process uses texts, electronic 
dictionaries, linguistic ontologies (like WordNet), and structured and 
semi-structured information and data as knowledge sources. 
Scenario 5. Evaluate and import a set of ontologies, and align them.
Quite often there are several ontologies that model the same domain. 
There can be situations in which we want to compare ontologies in the 
same domain to determine what terms of an ontology map terms of 
another. The correspondences between ontologies obtained by means of 
this procedure are called mappings. In this case, the result of this 
scenario is a set of mappings that establish the relationships between the 
two domain ontologies. There are also situations where the relationships 
are established between ontologies of different categories, as in the case 
of joining a domain ontology with an upper level ontology. Every 
alignment requires the evaluation and possibly the import of the 
ontologies in specific tools, and the generation of the result in a 
language where the content of the alignment can be evaluated. 
Scenario 6. Evaluate and import a set of ontologies, and merge 
them. This scenario is an extension of scenario 5. Once the mappings 
between the ontologies are known, the ontology engineer can merge 
them in a new ontology. 
Scenario 7. Translate the ontology into another natural language 
(Spanish, English, French, etc.). Once the ontology has been 
conceptualized, it can require the translation of all its terms into another 
language using multilingual thesauri and electronic dictionaries (e.g., 
EuroWordNet).
Scenario 8. Manage the evolution of the ontology. Given that an 
essential feature of ontologies is that they must be agreed, the most 
natural way of developing ontologies is through a collaborative 
construction. Ontology engineers working in parallel on the same 
ontology need to maintain and compare different versions, to examine 
the changes that others have performed, and to accept or reject the 
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changes [93]. In a networked environment like the Semantic Web, we 
should keep control of the versions of each ontology and the 
relationships between them must be kept for several reasons. One of the 
reasons is that semantic markup annotations of Web resources are based 
on ontologies. If an ontology is changed, we should be able to deal with 
the effects of the change in the existing annotations. Another reason is 
that ontologies will be developed in different tools and languages. We 
must be able to keep control of their life cycle when they are exchanged 
back and forward between different ontology tools and when they are 
translated from and to different ontology languages. 
Scenario 9. Perform support activities. The activities of documen-
tation, evolution management, configuration management, and quality 
assurance and control are carried out during the whole development 
process.

1.7 Methods, Methodologies, Tools and Languages 

In this section, first of all we explain the methods, methodologies and 
tools used for the whole ontology development process. Then we focus on 
ontology learning, ontology merging, ontology alignment, ontology evolu-
tion and versioning, ontology evaluation and ontology implementation (in 
this last section we review existing ontology languages). 

1.7.1 Methods, Methodologies and Tools Used for the Whole 
Ontology Development Life Cycle 

This section presents the classical methodologies and methods used to 
build ontologies from scratch or by reusing other ontologies, and the new 
generation of ontology building platforms that support the ontology devel-
opment process.  

1.7.1.1 Methodologies and Methods 

Concerning methods and methodologies, the approaches dealt with are the 
Cyc method, the Uschold and King method, the Grüninger and Fox meth-
odology, the KACTUS approach, METHONTOLOGY, the SENSUS
method, and the On-To-Knowledge methodology. 

The method used to build the Cyc knowledge base [72] consists of three 
phases. The first phase consists of the manual coding of articles and pieces 
of knowledge, in which common sense knowledge that is implicit in dif-
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ferent sources is extracted by hand. The second and third phases consist of 
acquiring new common sense knowledge using natural language or ma-
chine learning tools. The difference between them is that in the second 
phase this common sense knowledge acquisition is aided by tools, but 
mainly performed by humans, while in the third phase the acquisition is 
mainly performed by tools. This approach is applicable, besides the main 
line of the life cycle model, also to scenario 4 (semi-automatic construc-
tion of ontologies). According to the Cyc method, the resulting ontology 
will be divided into microtheories (or contexts), bundles of assertions in 
the same domain, and is implemented in the CycL language. 

The Uschold and King method [113] proposes four phases: (1) to iden-
tify the purpose of the ontology, (2) to build it, (3) to evaluate it, and (4) to 
document it. During the building phase, the authors propose capturing 
knowledge, coding it and integrating other ontologies inside the current 
one. The authors also propose three strategies for identifying the main 
concepts in the ontology: a top-down approach, in which the most abstract 
concepts are identified first and then specialized into more specific con-
cepts; a bottom-up approach, in which the most specific concepts are iden-
tified first and then generalized into more abstract concepts; and a middle-
out approach, in which the most important concepts are identified first and 
then generalized and specialized into other concepts. This approach is ap-
plicable, besides the main line of the life cycle model, also to scenario 1 
(evaluate and import). 

Grüninger and Fox [46] propose a methodology that is inspired by the 
development of knowledge-based systems using first-order logic. They 
propose first to identify intuitively the main scenarios (possible applica-
tions in which the ontology will be used). Then, a set of natural language 
questions, called competency questions, are used to determine the scope of 
the ontology. These questions and their answers are used to extract the 
main concepts and their properties, relations and axioms of the ontology. 
Such ontology components are formally expressed in first-order logic. 
Therefore, this is a very formal methodology that takes advantage of the 
robustness of classical logic. It can be used as a guide to transform infor-
mal scenarios in computable models. This approach is applicable, besides 
the main line of the life cycle model, also to scenario 1 (evaluate + import) 
and scenario 2 (conceptualize + integrate + evaluate conceptualization). 

In the method proposed in the KACTUS project [9] the ontology is built 
on the basis of an application knowledge base (KB), by means of a process 
of abstraction (i.e., following a bottom-up strategy). The more the applica-
tions are built, the more general the ontology becomes; hence, the further 
the ontology moves away from a KB. In other words, the authors propose 
to start building a KB for a specific application. Later, when a new KB in a 
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similar domain is needed, they propose to generalize the first KB into an 
ontology and adapt it for both applications. Applying this method recur-
sively, the ontology would represent the consensual knowledge needed in 
all the applications. A way to apply this approach is to generate an ontol-
ogy by means of the generalization of several KBs that model the same 
domain. Therefore, the KACTUS method is applicable, besides the main 
line of the ontology life cycle model, also to scenario 6 (evaluate and im-
port N ontologies (or KBs to merge them). 

The method based on Sensus [109] is a top-down approach for deriving 
domain-specific ontologies from huge ontologies. The authors propose to 
identify a set of “seed” terms that are relevant to a particular domain. 
These terms are linked manually to a broad-coverage ontology (in this 
case, the Sensus ontology, which contains more than 50,000 concepts). 
Then, all the concepts in the path from the seed terms to the root of Sensus 
are included. If a term that could be relevant in the domain has not yet ap-
peared, it is added manually, and the previous step is performed again, un-
til no term is missing. Finally, for those nodes that have a large number of 
paths through them, the entire subtree under the node is sometimes added, 
based on the idea that if many of the nodes in a subtree have been found to 
be relevant, then the other nodes in the subtree are likely to be relevant as 
well. Consequently, this approach promotes the sharebility of knowledge, 
since the same base ontology is used to develop ontologies in particular 
domains. This method is especially useful in scenario 3 (conceptualize + 
acquire knowledge). 

METHONTOLOGY [32] is a methodology, created by the Ontological 
Engineering Group of the Technical University of Madrid (UPM), for 
building ontologies either from scratch, reusing other ontologies as they 
are, or by a process of reengineering them. The METHONTOLOGY
framework enables the construction of ontologies at the knowledge level. 
It includes: the identification of the ontology development process, a life 
cycle based on evolving prototypes (based in the one presented in Figs. 1.2 
and 1.3), and particular techniques to carry out each activity. The main 
phase in the ontology development process using the METHONTOLOGY
approach is the conceptualization phase. METHONTOLOGY considers all 
the scenarios presented in Sect. 1.6. In fact, such scenarios were born as a 
consequence of the methodological studies at UPM in the MKBEEM (IST-
1999-10589) and Esperonto (IST-2001-34373) projects. 

The On-To-Knowledge methodology [102] includes the identification 
of goals that should be achieved by knowledge management tools and is 
based on an analysis of usage scenarios. The steps proposed by the meth-
odology are: kick-off, where ontology requirements are captured and speci-
fied, competency questions are identified, potentially reusable ontologies 
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are studied and a first draft version of the ontology is built; refinement,
where a mature and application-oriented ontology is produced; evaluation,
where the requirements and competency questions are checked, and the 
ontology is tested in the application environment; and ontology mainte-
nance. With regards to the scenarios to which this methodology is appli-
cable, its authors are researching activities concerning all the scenarios; 
however, an ontology life cycle model that guides the order to carry out 
the different activities for the scenarios alternative to the main line has not 
been proposed. Besides, some scenarios are not integrally considered, e.g., 
scenario 8 (documentation + evolution management + configuration man-
agement + quality assurance and control). 

If we analyze the approaches according to the part of the ontology de-
velopment process that they describe, we can conclude that (see [29]): 

None of the approaches covers all the processes involved in ontology 
building. Most of the methods and methodologies for building 
ontologies are focused on the development activities, especially on  
ontology conceptualization and ontology implementation, and they do 
not pay too much attention to other important aspects related to 
management, learning, merging, integration, evolution and evaluation 
of ontologies. Therefore, such methods should be added to the 
methodologies for ontology construction from scratch (see an example 
in [30]). 
Most of the approaches are focused on development activities, 
especially ontology implementation, and they do not pay too much 
attention to other important aspects related to the management, 
evolution and evaluation of ontologies. This is due to the fact that the 
ontological engineering field is relatively new. However, a low 
compliance with the criteria formerly established does not mean a low 
quality of the methodology or method. As [53] states, a not very 
specified method can be very useful for an experienced group. 
Most of the approaches present some drawbacks in their use. Some of 
them have not been used by external groups and, in some cases, they 
have been used in a single domain. 
Most of the approaches do not have a specific tool that gives them 
technological support. Besides, none of the available tools covers all the 
activities necessary in ontology building. 

1.7.1.2 Ontology Tools 

Concerning the software platforms that give support to most of the activi-
ties of the ontology development life cycle, we will focus on the new gen-
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eration of ontology engineering environments, in particular, on Protégé, 
WebODE, OntoEdit and KAON1.6 They have been created to integrate on-
tology technology in actual information systems. As a matter of fact, they 
are built as robust integrated environments or suites that provide techno-
logical support to most of the ontology life cycle activities. They have ex-
tensible, component-based architectures, where new modules can easily be 
added to provide more functionality to the environment. Besides, the 
knowledge models underlying these environments are language independ-
ent.

Protégé [91] has been developed by Stanford Medical Informatics 
(SMI) at Stanford University. It is an open source, standalone application 
with an extensible architecture. The core of this environment is the ontol-
ogy editor, and it holds a library of plugins that add more functionality to 
the environment. Currently, plugins are available for ontology language 
import/export (FLogic, Jess, XML, Prolog), ontology language design 
[69], OKBC access, constraints creation and execution (PAL), ontology 
merge (Prompt [94]), etc. This platform provides support for the main line 
of the life cycle model, for scenario 1 (evaluate and import), scenario 2 
(conceptualize + integrate + evaluate conceptualization), scenario 3 (con-
ceptualize + acquire knowledge), scenario 5 (evaluate and import N on-
tologies to align them), scenario 6 (evaluate and import N ontologies to 
merge them) and scenario 8 (manage the evolution of the ontology). 

WebODE [17, 1] is the successor of ODE (Ontology Design Environ-
ment) [11], and has been developed at UPM. It is also an ontology engi-
neering suite created with an extensible architecture. WebODE is not used 
as a standalone application, but as a Web server with several frontends. 
The core of this environment is the ontology access service, which is used 
by all the services and applications plugged into the server, especially by 
the WebODE Ontology Editor. There are several services for ontology 
language import/export (XML, RDF(S), OWL, CARIN, FLogic, Jess, 
Prolog), axiom editing, ontology documentation, ontology evaluation and 
ontology merging. WebODE's ontologies are stored in a relational data-
base. Finally, WebODE covers and gives support to most of the activities 
involved in the ontology development process proposed by 
METHONTOLOGY, although this does not prevent it from being used 
with other methodologies or without following any methodology. This 
platform also provides support for the main line of the life cycle model 
and for scenarios 1, 2, 3, 6 and 7 (translate the ontology into another natu-
ral language). 
                                                     
6 Other tools (Ontolingua Server, OntoSaurus, WebOnto, etc.) are described in 

[40]. 
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OntoEdit [108] has been developed by AIFB at Karlsruhe University, 
and commercialized by Ontoprise. It is similar to the previous tools: it is 
an extensible and flexible environment, based on a plugin architecture, 
which provides functionality to browse and edit ontologies. It includes 
plugins that are in charge of inferring using Ontobroker, of exporting and 
importing ontologies in different formats (FLogic, XML, RDF(S) and 
OWL), etc. Two versions of OntoEdit are available: OntoEdit Free and 
OntoEdit Professional. This platform provides support for the main line of 
the life cycle model, for scenario 1 (evaluate and import) and scenario 2 
(conceptualize + integrate + evaluate conceptualization). 

The KAON1 tool suite [77] is an open source extensible ontology engi-
neering environment. The core of this tool suite is the ontology API, which 
defines its underlying knowledge model based on an extension of RDF(S). 
The OI modeler is the ontology editor of the tool suite that provides capa-
bilities for ontology evolution, ontology mapping, ontology generation 
from databases, etc. This platform provides support for the main line of 
the life cycle model, for scenario 1 (evaluate and import), scenario 2 (con-
ceptualize + integrate + evaluate conceptualization), scenario 3 (conceptu-
alize + acquire knowledge), scenario 4 (semi-automatic construction of 
ontologies), scenario 6 (evaluate and import N ontologies to merge them) 
and scenario 8 (evolve the ontology). 

An interesting aspect of tools is that only OntoEdit and WebODE give 
support to ontology building methodologies (On-To-Knowledge and 
METHONTOLOGY respectively), though this does not prevent them from 
being used with other methodologies or with no methodology at all. 

From the KR paradigm point of view, KAON is based on semantic 
networks plus frames, and the rest of the tools allow the representation of 
knowledge following a hybrid approach based on frames and first-order 
logic. Expressiveness of the underlying tool knowledge model is also 
important. All the tools allow the representation of classes, relations, at-
tributes and instances. Only KAON1, and Protégé provide flexible model-
ing components like metaclasses. Before selecting a tool for developing an 
ontology, it is also important to know the inference services attached to 
the tool, which include: constraint and consistency checking mechanisms, 
type of inheritance (single, multiple, monotonic, non-monotonic), auto-
matic classifications, exception handling and execution of procedures. 
KAON1 does not have an inference engine. OntoEdit uses FLogic [66] as 
its inference engine, WebODE uses Ciao Prolog [52], and Protégé uses an 
internal PAL engine. Further, Protégé and WebODE provide ontology 
evaluation facilities and also include a module that performs ontology 
evaluation according to the OntoClean method [114, 50]. Finally, Protégé 
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(with the OWL plugin) performs automatic classifications by means of 
connecting to a description logic reasoner. 

Another important aspect to take into account in ontology tools is the 
software architecture and tool evolution, which considers which hard-
ware and software platforms are necessary to use the tool, its architecture 
(standalone, client/server, n-tier application), extensibility, storage of on-
tologies (databases, ASCII files, etc.), failure tolerance, backup manage-
ment, stability and tool versioning policies. From that perspective, all 
these tools are based on Java platforms and provide database storage sup-
port. Backup management functionality is just provided by WebODE, and 
extensibility facilities are allowed in KAON, OntoEdit, Protégé and Web-
ODE.

Interoperability with other ontology tools, information systems and 
databases, as well as translations to and from some ontology languages, is 
another important feature in order to integrate ontologies into applications. 
Most of the tools export and import to ad hoc XML and other ontology 
markup languages. However, there is no comparative study on the quality 
of all these translators. Moreover, there are no empirical results about the 
possibility of exchanging ontologies between different tools and about the 
amount of knowledge that is lost in the translation processes. Some effort 
in this regard has been carried out in the EON 2004 workshop. 7

Related to the cooperative and collaborative construction of ontolo-
gies, Protégé incorporates some synchronization functionalities. In gen-
eral, more features are required in existing tools to ensure a successful col-
laborative building of ontologies. 

1.7.2 Ontology Learning 

Ontology learning is defined as the set of methods and techniques used for 
building an ontology from scratch, enriching or adapting an existing on-
tology in a semi-automatic fashion using distributed and heterogeneous 
knowledge and information sources, allowing a reduction in the time and 
effort needed in the ontology development process. Though the fully 
automatic acquisition of knowledge remains far off, the overall process is 
considered as semi-automatic, meaning that human intervention is neces-
sary in some parts of the learning process. Several approaches have ap-
peared during the last decade for the partial automization of the knowl-
edge acquisition process. To carry out this automization, natural language 
analysis and machine learning techniques can be used. This involves the 

                                                     
7 http://km.aifb.uni-karlsruhe.de/ws/eon2004/ 
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inclusion of a number of complementary disciplines that feed on different 
types of unstructured, semi-structured and fully structured data to support 
semi-automatic, cooperative ontology engineering [78].  

Regarding ontology learning methods, some of the best known ones are 
due to Maedche and colleagues [65], Aussenac-Gilles and colleagues [3, 
4] and Khan and Luo [64]. Maedche and colleagues’ method [65] pro-
poses to learn the ontology using as a base a core ontology (Sensus, 
WordNet, etc.), which is enriched with the learned concepts. New con-
cepts are identified using natural language analysis techniques over the re-
sources previously identified by the user. The resulting ontology is pruned 
and then focused on a specific domain by means of several approaches 
based on statistics. Finally, relations between concepts are established ap-
plying learning methods. Such relations are added to the resulting ontol-
ogy. 

Aussenac-Gilles and colleagues’ method [3, 4] is based on knowledge 
elicitation from technical documents. The method allows the creation of a 
domain model by analyzing a corpus with NLP tools. The method com-
bines knowledge acquisition tools based on linguistics with modeling 
techniques to keep links between models and texts. After selecting a cor-
pus, the method proposes to obtain linguistic knowledge (terms, lexical re-
lations and groups of synonyms) at the linguistic level. This linguistic 
knowledge is then transformed into a semantic network. The semantic 
network includes concepts, relationships between concepts and attributes 
for the concepts. 

Khan and Luo’s method [64] aims to build a domain ontology from 
text documents using clustering techniques and WordNet [83]. The user 
provides a selection of documents regarding the same domain. Using these 
documents, a set of clusters where each cluster may contain more than one 
document is created, and then put into the correct place in a hierarchy. 
Each node in this hierarchy is a cluster of documents. For this purpose, the 
method proposes to use a modified algorithm, called the SOAT algorithm 
[115]. After building a hierarchy of clusters, a concept is assigned to each 
cluster in the hierarchy in a bottom-up fashion. First, concepts associated 
with documents are assigned to leaf nodes in the hierarchy. For each clus-
ter of documents, these will be assigned a keyword-called topic that repre-
sents its content and uses predefined topic categories. For this purpose, a 
topic tracking algorithm [58] is used. Then, this topic is associated with an 
appropriate concept in WordNet. And finally, the interior node concepts is 
assigned according to the concepts in the descendant nodes and their hy-
pernyms in WordNet. The type of relation between concepts in the hierar-
chy is ignored; it is only possible to know that there is a relation between 
them. 
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As we can see in this review, most of the ontology learning approaches 
are based on using linguistic patterns for extracting linguistic relations 
which would reflect ontological relations (taxonomic and non-taxonomic 
relations as well as possible attributes or their values, depending on the 
pattern’s type). In the same sense, these kinds of patterns are also used for 
detecting attribute–value pairs. All the presented methods require the par-
ticipation of an ontologist to evaluate the final ontology and the accuracy 
of the learning process. There are no methods or techniques for evaluating 
the accuracy of the learning process either. 

With regard to ontology learning tools, we focus on Caméléon [5], 
LTG Text Processing Workbench [82], Prométhée [85, 86], SOAT tool 
[115] and Text-To-Onto [78]. Caméléon [5] assists in learning conceptual 
relations to enrich conceptual models. Caméléon relies on linguistic prin-
ciples for relation identification: lexico-syntactic patterns are good indica-
tors of semantic relations. Some patterns may be regular enough to indi-
cate the same kind of relation from one domain to another. Other patterns 
are domain specific and may reveal domain-specific relations. This tool 
gives technological support to some steps of the Aussenac-Gilles and col-
leagues’ method. 

LTG (Language Technology Group) Text Processing Workbench [82] 
is a set of computational tools for uncovering internal structure in natural 
language texts written in English. The main idea behind the workbench is 
the independence of the text representation and text analysis. In LTG, on-
tology learning is performed in two sequential steps: representation and 
analysis. At the representation step, the text is converted from a sequence 
of characters to features of interest by means of annotation tools. At the 
analysis step, those features are used by tools of statistics gathering and in-
ference to find significant correlations in the texts. The workbench is be-
ing used both for lexicographic purposes and for statistical language mod-
eling.

Prométhée [85, 86] is a machine learning-based tool for extracting and 
refining lexical–syntactic patterns related to conceptual specific relations 
from technical corpora. It uses pattern bases, which are enriched with the 
ones extracted in the learning. To refine patterns, the authors propose the 
Eagle [49] learning system. This system is based on the inductive para-
digm learning from examples, which consists of the extraction of inten-
tional descriptions of target concepts from their extensional descriptions, 
and previous knowledge of the given domain. This fact specifies general 
information, like the object characteristics and their relations. The tool ex-
tracts intentional descriptions of concepts from their extensional descrip-
tions. The learned definitions are later used in recognition and classifica-
tion tasks. 
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SOAT [115] allows semi-automatic domain ontology acquisition from a 
domain corpus. The main objective of the tool is to extract relationships 
from parsed sentences based on applying phraserules to identify keywords 
with strong semantic links like hypernyms or synonyms. The acquisition 
process integrates linguistic, common sense and domain knowledge. The 
restrictions of SOAT mean that the quality of the corpus must be very 
high, in the sense that the sentences must be accurate and sufficient to in-
clude most of the important relationships to be extracted. 

Text-To-Onto [78] integrates an environment for building domain on-
tologies from an initial core ontology. It also discovers conceptual struc-
tures from different German sources using knowledge acquisition and ma-
chine learning techniques. Text-To-Onto has implemented some 
techniques for ontology learning from free and semi-structured text. The 
result of the learning process is a domain ontology that contains domain-
specific and domain-independent concepts. Domain-independent concepts 
are withdrawn to better adjust the vocabulary of the domain ontology. The 
result of this process is a domain ontology that only contains domain con-
cepts learned from the input sources related before. The ontologist super-
vises the whole process. This is a cyclic process, in the sense that it is pos-
sible to refine and complete the ontology if we repeat the process. 

An important conclusion that we can obtain in the revision of ontology 
learning tools is that there is no fully automatic tool that carries out the 
learning process. Some tools are focused on helping in the acquisition of 
lexico-semantic knowledge, others help to elicit concepts or relations from 
a preprocessed corpus with the help of the user, etc. A deeper description 
of methods and tools can be found in [41]. 

1.7.3 Ontology Alignment and Merging 

Ontologies aim to capture the consensual knowledge of a given domain in 
a generic and formal way, to be reused and shared across applications and 
by groups of people. From this definition we could wrongly infer that 
there is only one ontology for modeling each domain (or even a single 
universal ontology). Though this can be the case in specific domains, 
commonly several ontologies model the same domain knowledge in dif-
ferent ways. For instance, in the e-commerce field there are several stan-
dards and joint initiatives for the classification of products and services 
(UNSPSC,8 e-cl@ss,9 RosettaNet,10 NAICS,11 SCTG,12 etc.). This hetero-

                                                     
8 http://www.unspsc.org/ 
9 http://www.eclass.de/ 



26 Oscar Corcho, Mariano Fernández-López, Asunción Goméz-Pérez 

geneity of ontologies also happens in many other domains (medicine, law, 
art, sciences, etc.). 

Noy and Musen [94] defined ontology alignment and merging as fol-
lows: (1) ontology alignment consists of establishing different kinds of 
mappings (or links) between two ontologies, hence preserving the original 
ontologies (see Fig. 1.4); and (2) ontology merging proposes to generate a 
unique ontology from the original ontologies. In this chapter we will as-
sume that a mapping between ontologies is a set of rewriting rules that as-
sociates terms and expressions defined in a source ontology with terms 
and expressions of a target ontology (inspired from [84]). Table 1.1 shows 
the mappings that can be established between the two ontologies of Fig. 
1.4. The symbol := means is transformed into, and  is the empty word. 
Therefore, date :=  means that the attribute date has no correspon-
dence with terms of the ontology 2. 

Fig. 1.4. Example of ontology alignment 

Given that a reusable and machine interpretable database schema can be 
considered as an ontology (see Sect. 1.2), the galaxy of ontology align-
ment methods is huge. Some examples of these methods are: S-Match 
[101], QOM [25], Pan and colleagues’ proposal [98], Artemis [8, 14], 
Cupid [76], AnchorPrompt [95], Similarity Flooding [80], etc. We will fo-

                                                                                                                        
10 http://www.rosettanet.org/ 
11 http://www.naics.com/ 
12 http://www.bts.gov/programs/cfs/sctg/welcome.htm 



 1. Ontological Engineering: Principles, Methods, Tools and Languages 27 

cus on the methods in bold because they show a complementary view of 
the problem of ontology alignment, although the three proposals share a 
lot of common ideas. Following Ehring and Staab’s paper [25], we will 
present a process that subsumes most of these methods, and that allows us 
to comment them inside an integrated framework. The activities of this 
process are as follows (Ehring and Staab [25], inspired from CRISP-CM,
the Cross Industry Standard Process for Data Mining)13:

Activity 1. Ontology adaptation. The source ontologies are 
transformed into a format that is interpretable by the software that will 
carry out the process of alignment. 

QOM identifies this activity, but it does not explain how to carry it 
out. However, S-Match provides details on ontology adaptation. Ac-
cording to this method, names are morphologically analyzed in order to 
find all their possible basic forms (e.g., travels would be identified as a 
variation of travel). 

S-Match assumes that ontologies can be translated before aligning 
them. Further, it proposes that prepositions, conjunctions, etc., are trans-
formed into logical connectives. For instance, travel by plane
could be translated into “C such as subclassOf(C, Travel) 
 C.transporMean = Plane”.
Concerning Pan and colleagues’ proposal, their method transforms the 

two ontologies into a Bayesian network. 
Activity 2. Selection of the search space. If the ontologies have a large 
number of terms, pruning is necessary to avoid checking all the possible 
pairs of concepts. 

QOM gives guidelines to select the search space. Some of the identi-
fied strategies are: 

Random. It limits the number of candidate mappings by selecting ei-
ther a fixed number or a percentage from all possible mappings. 
Label. It restricts candidate mappings to pairs of terms whose labels 
are near to each other in a sorted list. That is, each term could be pos-
sibly mapped with those that have a similar name. 
Proximity. If two concepts are mapped, then it is very likely that 
some of their descendants or immediatelyrelated terms are also 
mapped.
Combination of different heuristics. The above-mentioned strategies 
can be combined to prune the candidate mappings. 

S-Match and Pan and colleagues’ approach do not identify this activity. 

                                                     
13 http://www.crisp-dm.org/ 
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Activity 3. Similarity computation. To choose the exact mappings 
between the possible pairs of terms, similarity measures are used. They 
associate likeness values to pairs of terms. The similarity measures 
compare term names, documents annotated with the terms, etc. 
Activity 4. Similarity aggregation. In general, there may be several 
similarity values for a candidate pair of terms from two ontologies, e.g.,  
one for the similarity of their names and one for the similarity of their 
natural language descriptions. These different similarity values for one 
candidate pair must be aggregated into a single aggregated similarity 
value. A way to obtain the aggregated value is through the weighted 
means of the similarity values. This is basically QOM’s approach. 
Neither S-Match nor Pal and colleagues’ method combine similarities. 
Activity 5. Interpretation. Individual or aggregated similarity values 
are used to derive mappings between terms. 

QOM applies a threshold to discard spurious evidence of similarity, 
and considers as best mappings those with the highest aggregated simi-
larity scores. Pan and colleagues follow a probabilistic and statistical 
analysis. Thus, if p(C1 C2) is high, then C1 and C2 have a high overlap. 
If p(C1/C2) is high and p(C2/C1) is low, then it is very likely that C1 is 
subclass of C2. S-Math directly obtains the mappings trough the rules 
mentioned in activity 3.  
Activity 6. Iteration. Several methods perform an iteration over the 
whole process in order to take advantage of the knowledge already 
acquired in the first round. QOM iterates to find mappings based on 
lexical similarities first, and based on the structure of the ontologies 
later.

S-Match proposes that the mappings generated during the first round 
are used as a KB to deduce other mappings. Thus, for instance, if we al-
ready know that the concept C1 is equivalent to the concept C2, and the 
concept C2 is a subclass of the concept C3, then we should be able to 
deduce that C1 is a subclass of C3.

In the case of Pan and colleagues’ proposal, there are mappings that 
can be deduced using the network obtained in the first round as a prob-
abilistic KB. 

Concerning ontology alignment tools, the QOM toolset [25] gives sup-
port to the QOM method, presented in this section. It is implemented in 
Java using the KAON framework (see Sect. 1.7.1.2). It has been basically 
used to make experiments with the method and compare it with other 
methods.
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Table 1.1. Mappings for the two ontologies of Fig. 1.4 
Description of the mapping in natural language Rewriting rule 

The concept travel (in ontology 1) is equivalent to the con-
cept traveling (in ontology 2). Travel := Traveling 

The concept travel by plane (in ontology 1) is equiva-
lent to the concept such it is a subclass of traveling (in 
ontology 2) and its transport mean is a plane (in ontology 
2). 

TravelByPlane := C such as 
subclassOf(C, Traveling) 
C.hasTransporMean = Plane 

The concept such it is a subclass of travel (in ontology 1) 
and its transport mean is a bus (in ontology 2) is equivalent 
to the concept traveling by bus (in ontology 2). 

C such as 
subclassOf(C, Travel) 
C.hasTransporMean = Bus 
:= TravelingByBus 

The attribute origin (in ontology 1) is equivalent to the at-
tribute origin place (in ontology 2). Origin := OriginPlace 

The attribute destination (in ontology 1) is equivalent to 
the attribute destination place (in ontology 2). Destination := DestinationPlace 

The value New York of attributes origin and destina-
tion (in ontology 2) is equivalent to the value NY of ori-
gin place and destination place (in ontology 2). 

“New York” := “NY” 

The attribute date (in ontology 1) does not have correspon-
dence in ontology 2. Date := 

The attribute price (in ontology 1) is equivalent to a combi-
nation of the attributes price and tax in ontology 2. Price := Price * (1 + Tax/100) 

The attribute has transport mean (in ontology 1) is 
equivalent to the attribute has transport mean in ontol-
ogy 2. 

HasTransportMean := Has-
TransportMean

The S-Match tool translates and preprocesses the input ontologies. 
Then, it orders the transformation of prefixes, the expansions of abbrevia-
tions, etc. Later, using resources like WordNet, it generates a first map-
ping base. Finally, using the SAT solvers, new mappings are generated. 

Pan and colleagues [98] apply their method by combining the Google 
search engine and text classifiers (such as Rainbow14 or cbacl15) to calcu-
late the prior probabilities of the Bayesian network. Then, the subsequent 
probability is calculated using any Bayesian network tool. 

OLA16  [26] is an API for manipulating alignments between ontologies 
in OWL. It allows applying and combining different algorithms, and even 
adding newones. Currently, this API has been mainly used with mapping 
methods based on lexical similarity measures. OLA implements a format 
for expressing alignments in RDF.

With regard to ontology merging methods and methodologies, one of 
the most elaborated proposals for ontology merging is ONIONS [103, 33], 
                                                     
14 http://www-2-cs-cmu.edu/~mccallum/bow/rainbow 
15 http://www.lbreyer.com/ 
15 http://co4.inrialpes.fr/align 
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developed by the Conceptual Modeling Group of the CNR in Rome, Italy. 
With this method we can create a library of ontologies originating from 
different sources. The main underlying ideas of this method are: (1) to link 
the ontologies taking into account lexical relations between their terms 
(polysemy, synonymy, etc.); and (2) to use generic theories (part–whole or 
connectedness theories, for example) as common upper ontologies of the 
library ontologies; that is, to use generic theories as the glue to integrate 
the different ontologies. 

FCA-Merge [107] was developed at the AIFB Institute of the Univer-
sity of Karlsruhe, Germany. This approach is very different from the other 
approaches presented in this section. FCA-Merge takes as input the two 
ontologies to be merged and a set of documents on the domains of the on-
tologies. The appearances of instances of the concepts in the different 
documents guides the merging of such concepts. 

The PROMPT method [96] has been elaborated by the Stanford Medi-
cal Informatics Group at Stanford University. The main assumption of 
PROMPT is that the ontologies to be merged are formalized with a com-
mon knowledge model based on frames. This method proposes first to 
elaborate a list with the candidate operations to be performed to merge the 
two ontologies (e.g., merge two classes, merge two slots, etc.). After-
wards, a cyclic process starts. In each cycle the ontologist selects an opera-
tion of the list and executes it. 

PromptDiff is a component of Prompt [97] that allows maintaining on-
tology views or mappings between ontologies. PromptDiff provides an on-
tologycomparison API that other applications can use to determine, for 
example, the mapping needs to be updated when new versions of mapped 
ontologies appear [93]. 

Concerning merging tools, in the mid-1990s, research groups at the 
Universidad del País Vasco, MCC and the University of Georgia began to 
develop OBSERVER [81]. This tool automatically merged ontologies of 
the same domain to access heterogeneous information sources. However, 
the merge process was carried out by an internal module and, therefore, it 
was invisible to the user. Several years later, in the late 1990s, two groups 
at Stanford University developed two of the most relevant ontology merge 
tools: Chimaera and the Prompt plugin. 

Chimaera [79] was built by the Knowledge Systems Laboratory (KSL) 
to aid in the process of ontology merge, and the Prompt plugin [94], inte-
grated in Protégé, was built by the Stanford Medical Informatics (SMI) 
Group. The added value of the latter was that it provided support to the 
ontology merge method Prompt.  
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Approximately at the same time, the AIFB Institute of the University of 
Karlsruhe developed the FCA-Merge toolset [107] to support the FCA-
Merge method. 

Finally, in 2002, GLUE [23] was developed at the University of Wash-
ington. GLUE is a system that semi-automatically finds mappings between 
concepts from two different ontologies. 

The current ontology merging approaches have the following deficien-
cies: (1) mappings to perform the merging are usually established by hand; 
(2) all the tools need the participation of the user to obtain a definitive re-
sult in the merging process; and (3) no tool allows the merging of axioms 
and rules. The natural evolution of merging tools should lead to increased  
use of knowledge and to decreased participation of the people in the proc-
ess. This could improve the possibilities of the merging at run-time. 

In the context of the workshop on Evaluation of Ontology Tools 
EON2004, an experiment was performed on the quality of the mappings 
provided by different methods and tools. This will be continued in other 
efforts.

To learn more about ontology alignment and merging we recommend 
readers to access the Ontology Matching Web page.17

1.7.4 Ontology Evolution and Versioning 

Ontologies are often developed by several groups of people and may 
evolve over time. Therefore, they cannot be understood as static entities, 
but rather are dynamic ones. As a consequence, ontology versioning be-
comes necessary and essential. This support must enable users to compare 
versions of ontologies and analyze differences between them [93]. Ontol-
ogy engineers working in parallel on the same ontology need to maintain 
and compare different versions, to examine the changes that others have 
performed, and to accept or reject the changes. Ontology-based applica-
tion developers should easily see the changes between ontology versions, 
determine which definitions were added or deleted, and accept or reject 
the changes. Let us note that, for ontologies, we must compare the seman-
tics of the ontologies and not their serializations, since two ontologies that 
are exactly the same conceptually may have very different text representa-
tions when implemented in some ontology languages. 

The change management KAON plugin allows the effects of changes 
through evolution strategies to be stablished [104]. A particular evolution 
strategy allows us to establish, for example, what happens with its sub-

                                                     
17 http://www.ontologymatching.org/ 
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classes when a concept C is deleted: if they can also be deleted, or they 
can become subclasses of the superclasses of C. 

The PromptDiff algorithm compares ontologies producing an initial 
set of mappings between two versions of the same ontology [93]. For in-
stance, if a term t1 of the version v1 has the same type as the term t2 of the 
version v2 (both of them are concepts, both of them are properties, etc.) 
and t1 has a similar name to t2, it is assumed that the semantics of t1 and t2
are similar. Therefore, t1 and t2 are mapped as similar terms. This initial 
set of mappings is propagated using a fixed-point algorithm that combines 
the results of the previous step. Thus, for example, if all the siblings of the 
concept C1 of v1 are mapped with siblings of the concept C2 of v2, C1 and 
C2 are candidates to be mapped through a change operation (e.g., the addi-
tion of a new subclass). This algorithm is implemented by the PromtDiff
API (see Sect. 1.7.3). 

1.7.5 Ontology Evaluation 

Work on ontology content evaluation started in 1994 [35]. In the last few 
years, interest in this issue has grown and extended to the evaluation of 
technology used to build ontologies. A survey of evaluation methods and 
tools can be found in [39]. These evaluation efforts can be examined under 
the following four perspectives. 

From a content perspective, many libraries exist where ontologies are 
published and publicly available (DAML,18 KAON,19 Ontobroker,20 Onto-
lingua,21 Protégé,22 SemWebCentral,23 SHOE,24 WebODE,25 WebOnto,26

etc.). No documentation is available about how ontologies available in li-
braries or well-known and large ontologies (e.g., Cyc [72], or Sensus 
[109]) were evaluated. However they have been used to build many suc-
cessful applications. 

From a methodology perspective, the main efforts to evaluate ontology 
content were made by Gómez-Pérez [40, 36] in the framework of 

                                                     
18 http://www.daml.org/ontologies/ 
19 http://kaon.semanticweb.org/ 
20 http://ontobroker.semanticweb.org/ 
21 http://www-ksl-svc.stanford.edu:5915/ 
22 http://protege.stanford.edu/ 
23 http://semwebcentral.org/index.jsp/ 
24 www.cs.umd.edu/projects/plus/SHOE/onts/index.html 
25 http://webode.dia.fi.upm.es/ 
26 http://webonto.open.ac.uk/ 
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METHONTOLOGY, and by Guarino and colleagues [114] with the Onto-
Clean method. 

Gómez-Pérez has identified and classified different kinds of errors in 
taxonomies. Such identification can be used as a checklist for taxonomy 
evaluation. Such a list presents a set of possible errors that can be made by 
ontology engineers when modeling taxonomic knowledge in an ontology 
under a frame-based approach. Errors are classified as: inconsistency, in-
completeness and redundancy errors. The ontology engineer should not 
postpone the evaluation until the taxonomy is finished; the control mecha-
nisms should be performed during construction of the taxonomy. 

OntoClean is a method elaborated by the Ontology Group of the CNR
in Padova (Italy). Its goal is to remove wrong Subclass-Of relations in tax-
onomies according to some philosophical notions such as rigidity, identity
and unity. According to this method, the ontology engineer firs, assigns 
some meta-properties to each concept of the taxonomy (e.g., if each in-
stance of the concept is a whole, then it applies a set of rules that establish 
the possible incompatibilities of values in the taxonomy). Such rules allow 
pruning of the wrong subclass of links if the values assigned to a concept 
are incompatible with the values assigned to its children. 

From an implementation perspective, we can find important connec-
tions and implications between the components we use to build ontologies 
(concepts, relations, properties and axioms); the KR paradigms (frames, 
description logics, first-order logic, and so on); and the languages we use 
to implement them. This is important because different KR paradigms of-
fer different reasoning mechanisms that we can use in content evaluation 
(e.g., description logic classifiers, or frame-based reasoning). 

From a technological perspective, ontology tool developers have gained 
experience evaluating tools working on the OntoWeb European thematic 
network SIG3 (Special Interest Group on Enterprise Standard Ontology 
Environments). Different ontology tool developers have also conducted 
comparison studies of different types of ontology tools, which can be 
found in the OntoWeb deliverable D1.3 [37]. According to these studies, 
evaluation functionalities of well-known ontology development tools (Pro-
tégé, WebODE, OntoEdit, etc.) allow the checking of taxonomies. How-
ever, such evaluation functionalities are still not enough for a deep ontol-
ogy evaluation. 

Recently, some researchers have published a synthesis of their experi-
ence in ontology evaluation [19, 38, 48, 90]. According to their conclu-
sions, although good ideas have been provided in this area, there are still 
important deficiencies. Other interesting works are those in [51] and the 
above-mentioned EON2004 experiment. 
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1.7.6 Ontology Implementation 

The implementation activity (proposed by all the methods and methodolo-
gies, and supported by all the development tools) consists of building 
computable models in an ontology language. As stated in the introduction, 
two groups of languages can be identified: classical and markup. We rec-
ommend [39] for detailed descriptions of each of them, where the same 
ontology is implemented in each language. Now, we briefly describe the 
most relevant ones. 

KIF [34] is a language based on first-order logic created as an inter-
change format for diverse KR systems. Ontolingua [43, 27], which builds 
on KIF, combines the KR paradigms of frames and first order predicate 
calculus (KIF). It is the most expressive of all the languages that have been 
used for representing ontologies, allowing the representation of concepts, 
taxonomies of concepts, n-ary relations, functions, axioms, instances and 
procedures. Its high expressiveness led to difficulties in building reasoning 
mechanisms for it. 

Loom [75] was not initially meant for implementing ontologies, but for 
general KBs. Loom is based on description logics (DL) and production 
rules, and provides automatic classifications of concepts. The following 
ontology components can be represented with this language: concepts, 
concept taxonomies, n-ary relations, functions, axioms and production 
rules. This language has nom been superseded by Powerloom. 

OCML [87] was created as a kind of operational Ontolingua. In fact, 
most of the definitions that can be expressed in OCML are similar to the 
corresponding definitions in Ontolingua, and some additional components 
can be defined: deductive and production rules, and operational definitions 
for functions. OCML was built for developing executable ontologies and 
models in PSM. 

FLogic [66] (Frame Logic) combines frames and first-order logic, al-
lowing the representation of concepts, concept taxonomies, binary rela-
tions, functions, instances, axioms and deductive rules. FLogic is the only 
one of the previous languages that do not have Lisp-like syntax. Any of its 
inference engines, OntoBroker [21] or FLORA [73], can be used for con-
straint checking and deducing new information. 

The OKBC (Open Knowledge Base Connectivity) protocol [15] (which 
is not properly a language) allows access to KBs stored in different knowl-
edge representation systems (KRSs). Of the systems presented above, On-
tolingua and LOOM are OKBC compliant. 

SHOE [74] was built first as an extension of HTML and later as a lan-
guage using the XML syntax. It uses different tags from those of the 
HTML specification, thus it allows the insertion of ontologies in HTML



 1. Ontological Engineering: Principles, Methods, Tools and Languages 35 

documents. SHOE combines frames and rules. SHOE just allows the repre-
sentation of concepts, their taxonomies, n-ary relations, instances and de-
duction rules, which are used by its inference engine to obtain new knowl-
edge.

XOL [63] was developed as a XMLization of a small subset of primi-
tives from the OKBC protocol, called OKBC-Lite. It is a very restricted 
language where only concepts, taxonomies and binary relations can be 
specified. No inference mechanisms are attached to it, as it was mainly de-
signed for the exchange of ontologies in the biomedical domain. 

RDF [70] was developed by the W3C (the World Wide Web Consor-
tium) as a semantic network- based language to describe Web resources. 
Finally, the RDF Schema [13] language was also built by the W3C as an 
extension to RDF with frame-based primitives. The combination of both 
RDF and RDF Schema is normally known as RDF(S). RDF(S) is much 
less expressive than the previous languages, just allowing the representa-
tion of concepts, taxonomies of concepts and binary relations. Some infer-
ence engines have been created for this language, mainly for constraint 
checking.

These languages have established the foundations of the Semantic Web. 
In this context, three more languages have been developed as extensions to 
RDF(S): OIL, DAML+OIL and OWL.

OIL [54] added frame-based KR primitives to RDF(S), and its formal 
semantics was based on description logics. DAML+OIL [55] allows the 
representation concepts, taxonomies, binary relations, functions and in-
stances. These two languages are currently no longer used. 

Finally, in 2001, the W3C formed a working group called the Web-
Ontology (WebOnt) Working Group.27 The aim of this group was to de-
vise a new ontology markup language for the Semantic Web, called OWL
(Ontology Web Language). This language was proposed as a W3C rec-
ommendation in February 2004. Figure 1.5 shows how these languages 
have evolved, and it also shows the relationships of these languages with 
other existing KR languages and systems. 

In the previous languages, only some of them are well equipped with 
primitives that allow exploitation of the concept of networked ontologies. 
These are Ontolingua, OCML, Flogic, RDF, RDF Schema and OWL (OIL
and DAML+OIL also supported this notion, but they are no longer active). 
Based on our experience and on the case studies available from the litera-
ture, we have identified some associations between the ontology languages 
and the different kinds of ontology-based applications where they are ap-
plied.
                                                     
27 http://www.w3.org/2001/sw/WebOnt/ 
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In e-commerce applications, ontologies are usually used for represent-
ing products and services that are offered on e-commerce platforms and 
are given to users in catalogues they can browse through [71]. Representa-
tional needs are not too complex: basically, we need concepts and attrib-
utes, and n-ary relations between concepts. However, reasoning needs are 
usually higher: if the number of products or services offered on the plat-
form is high, automatic classifications are very useful for organizing these 
products or services automatically (hence, languages based on description 
logics are extremely helpful), and an efficient query answering is also im-
portant in this environment (this is provided by most of the studied lan-
guages).

When using PSMs and domain ontologies together two languages are 
strongly recommended, as they provide explicit support for this integration 
as well as reusable libraries: namely OCML and FLogic. In fact, both of 
them are operational modeling languages and solve the issue of PSM pro-
totyping easily. A generic model of parametric design problem solving is 
provided in OCML [87], and KARL [28] (a customization of FLogic) has 
been used for PSM modeling, too. 

In the context of the Semantic Web, and for exchanging ontologies be-
tween applications, languages based on XML are easily read and managed 
since standard libraries for the treatment of XML are available free. How-
ever, it is not difficult to adapt traditional languages to XML syntax, which 
could make use of the same kinds of libraries. The main advantage of 
RDF(S) and OWL is the strong support they receive from other communi-
ties besides the ontology community, and this means that more tools are 
available for editing, handling and documenting the ontologies. 

 The creation of upper-level ontologies requires high expressiveness and 
mostly there are not great needs for reasoning support. Upper-level on-
tologies have been generally specified in DL languages such as LOOM or 
CLASSIC. The Cyc KB is specified in CycL [72], which is a language 
based on frames and first order logic.  

Some efforts are now being made now to migrate these ontologies to 
OWL.28 In general, languages based on DL have been widely used in ap-
plications that needed intelligent integration of heterogeneous information 
sources. For instance, CLASSIC has been used in OBSERVER [81], 
LOOM in Ariadne [6], and OIL has been used in an urban planning proc-
ess [105], among others. In addition, most of them have been used for in-
formation retrieval. For example, LOOM has been used in OntoSeek [49]. 
The main reason for this broad use is their inference support. 

                                                     
28 http://www.w3.org/TR/2004/REC-owl-ref-20040210/ 
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Fig. 1.5. Ontology language evolution
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1.8 Conclusions 

At the beginning of the 1990s ontology development was similar to an art: 
ontology developers did not have clear guidelines on how to build ontolo-
gies but only some design criteria to be followed. Work on principles, 
methods and methodologies, together with supporting technology, turned 
ontology development into engineering. This migration process was 
mainly due to the definition of the ontology development process and the 
ontology life cycle, which described the steps to be performed in order to 
build ontologies and the interdependencies among all those steps. 

Though ontologies were clearly oriented to be reused, it has not been 
until recently, with the emergence of the Semantic Web, that appropriate 
support at all levels (methodologically and technologically, including im-
plementation languages) has been provided. Many aspects of ontological 
engineering still need to be adapted to this situation. In this chapter we 
have reviewed existing ontology principles, methods and methodologies, 
tools, and languages, focusing especially on those that support the notion 
of networked ontologies, and on the new life cycle that appears as a con-
sequence of this new framework. The following is a summary of the 
chaper.

Ontology engineers have available methodologies that guide them 
through the ontology development process. METHONTOLOGY is the 
methodology that provides the most detailed descriptions of the processes 
to be performed; On-To-Knowledge is the one that covers most activities, 
although with very short descriptions of processes; and the Grüninger and 
Fox methodology is the most formal one. All of them consider the reuse of 
existing ontologies during the development process, but only 
METHONTOLOGY has recently adapted its proposal for a life cycle to the 
environment of networked ontologies. In any case, the development activi-
ties are the most detailed in all of them, mainly the specification, concep-
tualization and implementation. There is still a lack of proposals for ontol-
ogy management activities (scheduling, control and quality assurance), 
and for some pre-development (e.g., environment study) and post-
development activities (e.g., (re)use).  

Concerning support activities, some interesting contributions have been 
made in ontology learning, ontology merging and alignment, ontology 
evolution, and ontology evaluation, as described in Sect. 1.7. Neverthe-
less, important work has to be done in all of these activities. For example, 
the time when activities like ontology learning or ontology merging can be 
applied to heavyweight ontologies is still far away. 
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One of the problems that the ontology engineer can find when (s)he has 
to build an ontology is that (s)he has to use different methods that are not 
integrated. For example, ontology learning methods are not integrated in 
methodologies that cover the whole development process (e.g., in 
METHONTOLOGY or On-To-Knowledge). Some experience exists in the 
integration of methods in methodologies. For example, the OntoClean 
method has been integrated in METHONTOLOGY (see [30]). 

A similar problem appears in the use of ontology tools, given that there 
is a lack of integrated environments for ontology development. Tools are 
usually created as isolated modules that solve one type of problem, but 
neither are fully integrated, nor do they interoperate with other tools that 
implement other activities of the ontology life cycle.  

Finally, work on ontology languages has been constantly evolving since 
the first languages that were made available for ontology implementation, 
most of them based on existing KR languages. The existence of heteroge-
neous networked ontologies has been mainly considered in the recent lan-
guage developments created in the context of the Semantic Web (RDF,
RDF Schema and OWL), with the addition of namespaces that allow refer-
ring to ontology components that have been defined elsewhere and with 
the use of import primitives to include an existing model in an ontology. 
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2.1 Introduction 

In this chapter, the state of the art on the use of ontologies in software en-
gineering and technology (SET) is presented. The chapter is organized into 
four parts. In the second and third sections, serving as a supplement to 
Chap. 1,29 a wide review of the distinct kinds of ontologies and their pro-
posed uses is presented respectively.  In the fourth section, we offer a tax-
onomy for classifying ontologies in SET, in which two main categories are 
distinguished:  (1) SET domain ontologies, created to represent and com-
municate agreed knowledge within some subdomain of SET, and (2) on-
tologies as software artifacts, with proposals in which ontologies play the 
role of an additional type of artifact in software processes.  On the one 
hand, the former category is subdivided into those ontologies included in 
software engineering and those referring to other software technologies.  
                                                     
29 Readers can find a more detailed study on the ontology notion in the books 

“Ontological Engineering” by Gómez-Pérez et al. [38] and “Ontologies: A Sil-
ver Bullet for Knowledge Management and Electronic Commerce” by Fensel 
[30]. 
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On the other hand, the latter category is subdivided into development time 
and run time proposals according to the moment when ontologies are used. 
Then, in the last section, we analyze and classify (based on our taxonomy) 
a large number of recently published works. We also comment on and 
classify works which will be presented in later chapters of this book. 

2.2 Kinds of Ontologies 

Although the term “ontology” was introduced in the eighteenth century to 
refer to the general science of being (“onto” in ancient Greek), Ontology 
as a discipline has been practiced by philosophers since the dawn of his-
tory (previously a part of metaphysics).  Etymologists may define ontol-
ogy as the knowledge of beings, that is, all that relates to being.  Just as we 
call those who study “students”, we use the term “entity” to describe all 
things which “are”.  From this point of view, stones, animals or people are 
“entities”. Mathematical objects, even those that are merely imagined, are 
also considered beings (be they fictitious or unreal).  

All sciences and knowledges refer to or examine a type of entity:  some 
are physical, as in the physical sciences, others abstract or mental, as in 
mathematics and the vast majority of the computational sciences, and still 
others living, as in biology. 

In the scope of the computational sciences and technologies (computer 
science, software engineering, information systems, etc.), ontology has 
boomed as a field of research and application since the latter part of the 
twentieth century.  Perhaps the principal cause of this boom has been the key 
role that it plays in the new generation of the advanced Web (Semantic 
Web).

Focusing exclusively on the scope of this publication, that is, SET, the first 
known proposals were presented by Gruber [40, 41], whereby ontologies are 
“an explicit specification of a conceptualization”.  Conceptualization is un-
derstood to be an abstract and simplified version of the world to be repre-
sented:  a representation of knowledge based on objects, concepts and enti-
ties existing within the studied area, as well as the relationships existing 
among them.  By “explicit” we mean that the concepts used and the restric-
tions applied to them are clearly defined.  Later authors have considered it 
important to add to this definition two new requirements: that the said speci-
fication be (1) formalized and (2) shared.  By “formalized” it is meant that a 
machine can process it. By “shared” it is understood that the knowledge ac-
quired is the consensus of a community of experts [38]. In regards to this last 
requirement, common ontologies are used to describe ontological commit-
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ments for a set of agents (people or artificial systems) so that they can com-
municate and interact with a domain of discourse. Additionally, an agent 
commits to an ontology if its observable actions are consistent with the defi-
nitions of the ontology.  This idea of ontological commitments was proposed 
by Newell [68] from a knowledge-level point of view. 

Some SET researchers view ontologies as “a vocabulary” for a specific 
domain representing conceptual elements and the relationships existing be-
tween them. However, the ontology is not the vocabulary itself, but what the 
vocabulary represents, since the translation of this vocabulary into another 
language will not change the ontology [16]. 

Other researchers defend the need for ontologies to be viewed as a “the-
ory”, that is, a formal vocabulary with a set of defining axioms. These axi-
oms express new relationships between concepts and limit the possible inter-
pretations [75, 98].  However, many experts have concluded that ontologies 
of  the software systems application domain, or of its design and construction 
processes, are of great assistance in avoiding problems and errors at all stages 
of the software product life cycle: from the initial requirements analysis (fa-
cilitating the analyst–client interaction), through the development and con-
struction phase, and finaly with the maintenance stage (assuring greater un-
derstanding of the modification requests, better understanding of the 
maintained system, etc.). 

Additionally, numerous authors have viewed ontologies from distinct van-
tage points.  Therefore it is not surprising that in the literature we find diverse 
classifications of ontologies with different focuses. 

According to the generality level, Guarino considers that the following on-
tology types exist [43]: 

High–level ontologies:  Describe general concepts such as space, time, 
material, object.  They are independent of a specific domain or problem.  
Their purpose is to unify criteria between large communities of users. 
Domain ontologies:  Describe the vocabulary related to a generic 
domain (for example, information systems or medicine), by means of 
the specialization of the introduced concepts of high–level ontologies. 
Task ontologies:  Describe the vocabulary related to a generic task or 
activity (for example, development or sales), by means of specialization 
of the introduced concepts of high–level ontologies. 
Application ontologies:  Describe concepts belonging simultaneously to 
a domain and a task, by means of specialization of the concepts of 
domain ontologies and task ontologies. They generally correspond to 
roles played by the domain entities when executing an activity. 
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On the other hand, Fensel [30] established the following alternative classi-
fication: 

Generic or common-sense ontologies: Capture general knowledge of 
the world.  They provide basic notions and concepts for space, time, 
state, events, etc, and are valid for a variety of domains. 
Representational ontologies: Do not belong to any particular domain.  
They offer entities without establishing what they might represent.  
Therefore, they define concepts which express knowledge in an object- 
or framework- oriented approach. 
Domain ontologies: Capture the knowledge valid for a particular type of 
domain (for example, electronics, medicine, etc.). 
Method and task ontologies: The former offer terminology specific to 
problem resolution methods, while the latter provide terms for specific 
tasks.  Both offer a reasonable point of view as to the knowledge of the 
domain. 

In our opinion, the two previous authors’ classifications may be aligned 
according to the following model as shown in Fig. 2.1. 

Fig. 2.1. Kinds of ontologies according to the generality level

In accordance with the type of conceptualization structure, Van Heijst and 
colleagues established the following kinds [94]: 

Terminological ontologies:  Specify terms to be used to represent the 
knowledge of a studied domain. Then try to obtain a unified language 
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related to a specified field.  An example of this type would be the 
ULMS (Universal Medical Language System). 
Information ontologies:  Specify the structure of database records, 
determining a framework for the standardized storage of information.  
An example is the framework for modeling medical patient clinic 
records.
Knowledge representation ontologies: Specify knowledge concep-
tualizations with an internal structure that exceeds those of the previous 
ones. They tend to be focused on a description of a particular 
knowledge use. 

Another possible way of classifying ontologies is according to the nature 
of the real-world issue that is to be modeled. In this manner, Jurisica et al. 
have identified the following classes [55]: 

Static ontologies:  Describe things that exist, their attributes and the 
relationships existing between them. This classification assumes that the 
world is made up of entities which are gifted with a unique and 
unchangeable identity. In these, we use terms such as entity, attribute, 
or relationship. 
Dynamic ontologies: Describe the aspects of the modeled world which 
can change with time. To model these it may be necessary to use finite 
state machines, Petri nets, etc. Process, state, or state transition are 
examples of terminology commonly included in this category. 
Intentional ontologies: Describe the aspects of the world of motivations, 
intentions, goals, beliefs, alternatives and elections of the involved 
agents. Some typical terms in these types of ontologies are aspect, 
object, agent, or support.  
Social ontologies: Describe social aspects such as organizational 
structures, nets or interdependences. For this reason they include terms 
such as actor, position, role, authority, responsibility or commitment. 

Some authors believe that this linear way of classifying ontologies based 
on only a sole criterion does not allow for adequate reflection of the prob-
lem’s complexity. Along these lines, Gómez-Pérez et al. [38] suggest a bi-
dimensional classification, taking into account two criteria: the richness of 
the internal structure, and the subject of the conceptualization. The former 
criterion is based on a proposal of Lassila and McGuinness [59]. The latter 
proposes an extension of the Van Heijst et al. [94] classification previously 
described.   
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In this bi-dimensional proposal, every ontology belongs to one of the fol-
lowing categories, based on the level of richness of its internal structure:

Controlled vocabularies: Formed by a finite list of terms. 
Glossaries: Lists of terms with their definitions offered in natural 
language.
Thesauruses: Differentiated from the previous categories in that they 
offer semantic additions to the terms, including synonyms. 
Informal hierarchies: Hierarchies of terms which do not correspond to a 
strict subclass. For example, the terms “rental vehicle” and “hotel” 
could be modeled informally under the hierarchy “travel” as they are 
considered key parts of traveling. 
Formal hierarchies: In this case, a strict “is-a” relationship exists 
between instances of a class and of its corresponding superclass.  For 
example, a teacher “is-a” people. Its objective is to exploit the 
inheritance concept. 
Frames: Ontologies which include such classes as properties, which can 
be inherited by other classes in lower levels of a formal “is-a” 
taxonomy. 
Ontologies with value constraints: Include value constraints. The most 
typical case is that of constraints dependent on the data type of a 
property (for example, a day of the month must be lower than 32).  
Ontologies with generic logical constraints: These are the most 
expressive ontologies which permit specific constraints between the 
terms of the ontology using first-order logic. 

Simultaneously, depending on the subject of the conceptualization, an on-
tology falls into one of the following types: 

Knowledge representation ontologies: Capture representation primitives 
used to formalize knowledge under a concrete paradigm of knowledge 
representation. 
Common or generic ontologies:  Represent common-sense knowledge 
reusable in distinct domains, for example, vocabulary related to things, 
events, time, space, etc. 
High-level ontologies: Describe very general concepts and notions by 
which they can be related to root terms of all ontologies. An unresolved 
problem is that many of these high-level ontologies differ in their way 
of classifying general concepts. This makes it difficult to integrate and 
exchange ontologies. 
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Domain ontologies: Reusable ontologies of a particular domain (for 
example, medicine, engineering, etc.). They offer a vocabulary for 
concepts related to the domain and its relationships. 
Task ontologies: Describe the vocabulary related to some generic 
activity. They provide a systematic vocabulary of terms used to solve 
problems that may or may not belong to the same domain. 
Domain task ontologies: Unlike the previous ontologies, these are 
reusable in a given domain, but not among different domains. 
Method ontologies: Provide definitions of relevant concepts and their 
relationships. They are applicable to a reasoning process specifically 
designed to carry out a particular task. 
Application ontologies: Are dependent on the applications. Often, they 
extend and specialize the vocabulary of one domain ontology or task 
ontology for a particular application. 

In the bibliography of ontologies, the adjectives formal, informal and 
semi-formal are also used. In this case, the formality of the language used to 
represent the ontologies is being indicated. This way, the ontologies ex-
pressed using natural language are considered to be totally informal, whereas 
those represented using first-order logic are formal [92]. In an intermediate 
situation, there is the ontology represented using UML class diagrams, as 
UML is considered semi-formal. In this case, the level of formality may be 
raised using OCL to model constraints. In relation to languages and tech-
niques used to represent ontologies, SET experts may be interested in reading 
“Modeling ontologies with software engineering techniques” and “Modeling 
ontologies with database techniques”, both of which are sections included in 
the first chapter of the book by Gómez-Pérez et al. [38]. 

These numerous and varying ways of thinking about ontologies have been 
clarified by some researchers who have looked for an integral definition 
which would serve for the different fields of application (knowledge engi-
neering, databases, software engineering, etc.), and so as to be understood by 
non-experts. In this manner, Uschold and Jasper elaborated the following 
characterization (not definition) [92]: 

An ontology may take a variety of forms, but necessarily it 
will include a vocabulary of terms, and some specification of 
their meaning. This includes definitions and an indication of 
how concepts are interrelated which collectively impose a 
structure on the domain and constrain the possible interpre-
tations of terms. 
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With the same goal, Gómez-Pérez et al. [38] conclude that “ontologies 
aim to capture consensual knowledge in a generic way, and that they may be 
reused and shared across software applications and by groups of people”. 

2.2.1 Heavyweight Versus Lightweight Ontologies 

In the ontological engineering community it is common to hear of light- 
and heavyweight ontologies. This distinction is a simplification of the 
classification based on the level of richness of their internal structure (as 
previously commented), whereby lightweight ontologies will be princi-
pally taxonomies, while heavyweight ontologies are those which model a 
certain knowledge “in a deeper way and provide more restrictions on do-
main semantics” [38]. The former include concepts, concept taxonomies, 
relationships between concepts, and properties that describe these con-
cepts. The latter add axioms and constraints, in order to clarify the mean-
ing of the terms. 

In Fig. 2.2 we have represented linearly the continuum from lightweight to 
heavyweight ontologies. In the upper part of the line, we find the lightweight 
ontologies which include controlled vocabularies, glossaries, and thesau-
ruses; while at the bottom we find the heavyweight ontologies with value 
constraints and general logic constraints. In between are the informal hierar-
chies, formal hierarchies and frames. These intermediates have some of the 
characteristics of the heavyweight ontologies but not all authors consider 
them to fall within this general category. 

Fig. 2.2. A continuum from lightweight to heavyweight ontologies 
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This continuum from lightweight to heavyweight can be viewed as the 
two arms of a balance. The first has the advantage of being simple and the 
second, of being powerful. It is not possible to possess both advantages at the 
same time, and there is no way of determining which is better than the other, 
lightweight or heavyweight. It all depends on one’s goals and necessities 
based on the particular case at hand. For example, the lightweight ontologies 
are more useful when the objective is, simply, to share knowledge of one 
domain between people. On the other hand, if it is necessary to execute some 
sort of logical inference or automatic calculation, it will be necessary to util-
ize the heavyweight ontologies. In any case, the following advice might 
serve the SET stakeholders: “use the lightest ontologies possible which can 
serve the necessities of the project at hand”. 

2.3 A Review of the Uses in SET

Of the utilities of ontologies in any field of human activity, we recognize 
the following to be principal: 

Clarify the knowledge structure: During the ontological analysis the 
domain concepts and relationships between them are defined in such a 
way that the adequate execution of this step eases the clear specification 
of the nature of the concepts and terms being used, with respect to the 
body of knowledge that is to be constructed [15]. 
Reduce conceptual and terminological ambiguity: Ontological analysis 
provides a framework for the unification between people (and/or 
agents-systems) with differing necessities and/or points of view, 
depending on their particular context [91]. 
Allow the sharing of knowledge: By means of an appropriate 
ontological analysis, it is possible to achieve a set of conceptualizations 
of a specific domain, and the set of terms which support it. With an 
adequate syntax, these conceptualizations and the relationships between 
them are expressed and codified in an ontology, which can be shared 
with any agent (person or system) having similar needs for the same 
domain [59].  
Focusing exclusively on the scope of this book, many authors have studied 

and categorized the possible uses of ontologies in the software engineering 
and information systems disciplines. In these fields, it is possible to use on-
tologies of varying levels of generality. For example, the domain-level on-
tologies are especially useful for the development of reusable, high-quality 
software, as they provide a unambiguous terminology which can be shared 
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by all the development processes. Furthermore, thanks to ontologies, the elic-
iting and modeling of the requirements phase can be carried out in two steps 
[35]: in the first, general knowledge of the domain is elicited and specified in 
one or more ontologies. In the second step the obtained ontologies are used 
as inputs to develop the specified applications.  The constructed ontology 
also serves as the basic vocabulary to speak about the domain and is a base 
for the development of the specific conceptualizations for the applications 
that are to be constructed. 

Next we will summarize the results of some of the best known surveys. 
For Pisanelli et al. the most important characteristics that ontologies offer 

the field of software engineering are [75]: 

1) an explicit semantic and taxonomy; 
2) a clear link between concepts, their relationships, and generic 

theories;
3) lack of polysemy within a formal context; 
4) context modularization; 
5) minimal axiomatization to pinpoint differences between similar 

concepts;
6) a good politic of name choice; and 
7) a rich documentation. 

Uschold, Gruninger and Jasper identified the following functions [91, 92]: 

Communication: Ontologies allow for the reduction of conceptual and 
terminological ambiguity, as they provide us with a framework for unifica-
tion. They allow us to share knowledge and facilitate the communication be-
tween people and/or systems as even those having differing necessities and 
viewpoints, a function of their contexts and particular interests. Furthermore, 
in any organization, there is implicit knowledge (for example, the normative 
models and the network of relationships between people) that can be made 
explicit through ontological means. Ontologies also permit an increased con-
sistency, eliminating ambiguity and integrating distinct user viewpoints. For 
person-to-person communication, an informal, unambiguous ontology may 
be sufficient. 

Interoperability: When different users or systems need to exchange data or 
when different software tools are used, the concept of interoperability has 
some important repercussions. In this sense, the ontologies can act as an “in-
terlingua”, that is, they can be used to support the translation between differ-
ent languages and representations, as it is more efficient to have a translator 
for each part involved (with an exchange ontology) than to design a transla-
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tor for each pair of involved parts (languages or representations). A paradigm 
case would be the use of ontologies in the Semantic Web to look for irrele-
vant language factors, that is, to obtain the same results when using the term 
“author” or “autor” (in Spanish). 

System/software engineering: The application of ontologies to support the 
design and development of systems, specifically software, may have the fol-
lowing objectives: 

Specification: The role that ontologies play in specification depends on 
the level of formality and automization within the methodology of the 
system design. From an informal perspective, ontologies assist in the 
requirements identification process and in the understanding of the 
relationships between components. This is particularly important when 
there are different sets of designers working in different domains. From 
a formal perspective, an ontology offers a declarative specification of a 
system, allowing designers to argue over “why” the system is being 
designed instead of “how” to support its functionality. 
Confidence: The informal ontologies can improve the confidence of the 
system by serving as a basis for the manual checking of the design, 
while the formal ontologies allow for the semi-automized consistency 
check of a software system with respect to the declarative specification 
that the ontology presumes. 
Reusability: To increase its usefulness, an ontology should be able to 
support the import and export of modules (parts of the ontology).  By 
characterizing the domain classes and tasks within these subdomains, 
the ontologies can provide a framework to determine the aspects of the 
ontology that can be reused between different domains and tasks. The 
objective is, therefore, to achieve libraries of ontologies that are 
reusable and adaptable to different classes of problems and 
environments. 
Search: An ontology can be used as metadata, serving as an index for a 
repository of information. 
Reliability: The consistency checking may be (semi-)automatic if a 
formal representation of knowledge exists. 
Maintenance: One of the main efforts made during the software 
system’s maintenance phase is the studying of the system. For this 
reason, using ontologies allows an improvement of the documentation 
and a reduction in maintenance costs. Maintenance effort is also 
reduced if an ontology is used as a neutral authoring language because 
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it only has to be maintained in one site instead of in multiple places, one 
for each target language. 
Knowledge acquisition: In the process of building knowledge-based 
systems, speed and reliability may be increased when an existing 
ontology is used as the starting point and guide for the knowledge 
acquisition.

Several years after its publication, a study was re-performed by Gruninger 
and Lee. Greatly abbreviating, the results were the following [42]: 

Communication: 
Between computer systems, for example, in the exchange of data be-
tween distinct software tools. 
Between humans, for example, for the acquisition of a vocabulary that 
unifies concepts of a specific domain. 
Between humans and computer systems, for example, an ontology may 
be deployed in a window so that the user can use it to better and more 
easily understand the vocabulary used in the application. 
Computational inference: 
For the internal representation and management of plans and planning 
information. 
For analysis of internal structures, algorithms, system inputs and out-
puts, in conceptual and theoretic terms. 
Knowledge reuse and organization: 
For the structuring and organization of libraries or repositories of plans, 
and planning and domain information. 

In addition to these previous possible uses of ontologies, Uschold and Jas-
per [92] have described scenarios for applying ontologies. These scenarios 
are abstractions of specific applications of ontologies following the same 
idea of Jacobson’s use cases.  Each scenario includes an overview with the 
intended purpose of the ontology, the role of the ontology, the main actors 
and the supporting technologies. These authors have established four catego-
ries which include all of the identified scenarios:  

Neutral authoring: An information artifact is authored in a single 
language and is converted into a different form for use in multiple target 
systems. Knowledge reuse, improved maintainability and long-term 
knowledge retention are the main benefits of this scenario.
Specification: An ontology is created and/or used as a basis for 
specification and possibly also for the development of some software. 
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Benefits of this scenario include documentation, maintenance, 
reliability and knowledge reuse.
Common access to information: When information is required by one or 
more persons or systems, but is expressed using unfamiliar vocabulary 
or in an inaccessible format, an ontology can help to render the 
information intelligible by providing a shared understanding of the 
terms, or by mapping between sets of terms. Interoperability and more 
effective use and reuse of knowledge resources are the main benefits of 
this scenario.
Search: An ontology is used for searching an information repository for 
desired resources (for example, documents, Web pages, names of 
experts). The chief benefit of this scenario is faster access to needed 
information resources. The technology of the Semantic Web has this 
same goal, using the entire Web as a repository. Because of this, 
ontologies play a key role in this new technology.

Other authors have studied the impact of ontologies on information sys-
tems (ISs). For example, Guarino identified two dimensions that should be 
considered [43]: 

a temporal dimension, concerning whether an ontology is used at 
development or at run time (that is “for” an  information system or 
“within” an information system), and 
a structural dimension, concerning the particular way an ontology can 
affect the main IS components. 

With respect to the moment in which they are utilized, the use of the on-
tologies can take place during the development stage or during run time. On 
the one hand, when the ontology is used by the IS at run time, it is referred to 
as an “ontology-driven information system” proper. On the other hand, when 
it is used during development time, it is referred to as an “ontology-driven 
development of the information system”. 

By using ontologies at development time, two situations might occur: (1) 
that we have a set of reusable ontologies organized in libraries of domain or 
task ontologies; or (2) that we have a generic ontology (with less detailed dis-
tinctions at a domain level between the basic entities, and meta-level distinc-
tions as for class and relationships types), with a more limited reusability 
grade. In the first case, the semantic content of the ontologies can be con-
verted into a system component, reducing the cost of analysis and assuring 
the ontological system correctness (given that the ontology is correct).  In the 
second scenario, which is more realistic, the quantity of ontological knowl-
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edge available is more limited, but its quality may assist the designer in the 
conceptual analysis task. 

When using an ontology at run time, one must distinguish between an 
“ontology-aware information system” and an “ontology-driven information 
system”.  In the first case, a system component has knowledge of the exis-
tence of a potential ontology and may make use of it with a specific proposal, 
while in the second case, the ontology is an additional component (generally, 
local to the system) which cooperates at run time in order to achieve the sys-
tem’s goals and functionality. One reason why ontologies are used at run 
time is to ease the communication between software agents, which commu-
nicate by means of messages containing expressions elaborated in accor-
dance with the ontology. 

With respect to the structural dimension, the three principal component 
types analyzed by Guarino for their impact are [43]: 

Components of database: To use an ontology at development time for 
the database component seems to be the most obvious use, because, in 
practice, an ontology has a great likeness to a database schema. In fact, 
some authors have created proposals whereby the ontologies play a key 
role during the phases of analysis and conceptual modeling [94]. The 
resulting conceptual model can be represented in a format understood 
by a computer and from there be projected to a concrete platform. 
During run time, there are various ways in which ontologies and 
databases can work together.  For example, the explicit ontologies’ 
availability as an information resource is basic in the mediation-based 
focus of information integration. 
Components of user interface: In this type, the ontologies have been 
used successfully in order to generate interfaces based on forms that 
perform data control by means of type violation constraints. Another 
example of use, in this case during run time, consists of deploying an 
ontology in a help window so that the user may use it as part of the 
system, for example, to understand the given vocabulary. 
Components of application program: The application programs tend to 
have much implicit knowledge about the domain, for example, in the 
type or class declarations, in regards to business rules or policies, etc. 
At development time, it is possible to generate the static part of a 
program with the help of an ontology. Further, ontologies which are 
integrated with linguistic resources may be used to assist in the 
development of object-oriented software, as expressed with the 
databases. At run time, it is possible to represent in explicit form (with 
an ontology) the knowledge that the program holds implicitly, 



2. Using Ontologies in Software Engineering and Technology  63 

converting the program into a knowledge-based system. This could 
improve the maintenance, the extensibility and the flexibility of the 
system. 

In the following sections of this chapter, we present a state of the art re-
view in which the reader can find the most developed examples of these and 
other ways to use ontologies in SET.

2.3.1 Ontology Versus Conceptual Model 

In the SE and IS communities, perhaps due to the historical importance of 
conceptual modeling, there is frequent confusion between ontology and 
conceptual models. In some sense, an ontology has a similar function to a 
database schema because the first provides meta-information that de-
scribes the semantics of the terms or data, but there are several important 
differences between these concepts [44, 63]: 

Languages for defining and representing ontologies (OWL, etc.) are 
syntactically and semantically richer than common approaches for 
databases (SQL, etc.). 
The knowledge that is described by an ontology consists of semi-
structured information (that is, texts in natural language) as opposed to 
the very structured data of the database (tables, classes of objects, etc.). 
An ontology must be a shared and consensual conceptualization 
because it is used for information sharing and exchange. Identifiers in a 
database schema are used specifically for a concrete system and do not 
have the need to make an effort to reach the equivalent of ontological 
agreements. 
An ontology provides a domain theory and not the structure of a data 
container.

With didactic intention, Mylopoulos [67] explains with samples that an 
ontology is not a conceptual schema. This researcher uses the following 
sample situation. On one hand, there may be a university ontology defining 
and associating concepts such as student, course, lectures, etc. On the other 
hand, a conceptual schema, say, for the scholarship IS at the University of the 
World, may use these concepts but they are specialized in meaning.  For ex-
ample, the student concept may be meant to have as instances only 2005–
2006 University of the World students. An ontology is meant to be reusable, 
whereas a conceptual schema is less so. 
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Spyns et al. [86] establish that the main difference between the data mod-
els and ontologies is that while the former are task specific and implementa-
tion oriented, the latter should be as much generic and task independent as 
possible. In this manner, to the benefits of reusability and reliability men-
tioned by Ushold and King [93] when ontologies are used in software and 
system engineering, we can also add shareability, portability and interopera-
bility. These characteristics are identified as the common notion of “generic-
ity”. 

2.3.2 Ontology Versus Metamodel 

There also exists some confusion between ontologies and metamodels, 
which in our opinion is motivated principally because of the fact that both 
are frequently represented by the same languages, although their charac-
teristics and goals are different. 

Bertrand and Bezivin [7] have analyzed the relationship between low-level 
ontologies and metamodels, and have arrived at the conclusion that while 
metamodels look to improve the rigor of similar but different models, an on-
tology does the same but for knowledge models. Devedzic [24] noted an-
other difference: without an ontology, different knowledge representations of 
the same domain can be incompatible even when using the same metamodel 
for their implementation. 

The existing confusion is also generated due to the lack of agreement as to 
the definition of both terms. In the case of ontologies, we have already com-
mented sufficiently on this fact. Similarly, for metamodels there exists no 
other universal consensus than the mere etymological description that a 
metamodel is a “model of models”. 

In our opinion, if one uses the definition of ontology proposed by Gruber 
[40] and the Object Management Group definition of metamodel, proposed 
in the “Model-driven Architecture” [71], the clearest distinction between 
them is that of intention: while an ontology is descriptive and belongs to the 
domain of the problem, a metamodel is prescriptive and belongs to the do-
main of the solution. 

In Chap. 9 of this book, the reader is provided with a detailed proposal of 
the different roles played by ontologies and metamodels in the framework of 
a model-driven engineering paradigm. Also, a new idea, that of the mega-
model, is introduced. 
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2.3.3 Ontologies in Software Engineering Environments 

Other application fields for ontologies are the SEE (SEEs), which integrate 
diverse types of tools in order to assist the engineers in completing the 
software engineering processes. To begin with, in the SEE, knowledge is 
embedded in one or various tools or assistants but this makes it virtually 
impossible to be shared or reused. 

The exchange of knowledge between humans is one of the major prob-
lems in software engineering projects. It has been shown that this is due in 
great part to the fact that the project participants have distinct domains of  
problem knowledge and/or use different languages, both problems which 
could be mitigated by using ontologies. This is why some authors have pro-
posed the use of ontologies as the backbone of the tools and SEE [22]. For 
the same reason, there exist proposals of SEE architectures based on ontolo-
gies [28]. 

Two of these proposals will be commented on in the following sub-
sections. 

2.3.3.1 MANTIS Environment 

An MANTIS is “eXtended Software Engineering Environment” for the 
management of software maintenance projects. By using the nomenclature 
“extended SEE” the intention is to emphasize the idea of integrating and 
widen the concepts of methodology and SEE [79]. All the MANTIS com-
ponents are considered as tools of three different categories: conceptual, 
methodological and technical (CASE tools). A summary of the compo-
nents that make up the MANTIS environment is shown in Fig. 2.3. 

Conceptual tools are used in MANTIS to represent and to manage the in-
herent complexity of software maintenance projects. A level-based concep-
tual architecture is necessary to be able to work with different abstract levels. 
A software life cycle process framework is useful for knowing which are the 
other software processes related to the maintenance process. To make sure 
that all the concepts are correctly defined, used and represented, a set of on-
tologies was defined. The Maintenance Ontology represents the static as-
pects. They describe the concepts related to maintenance and consist of a 
subontology for products, another for activities, a third for processes and the 
fourth for describing the different agents involved in the maintenance process 
[79]. The intentional and social aspects are considered within the same 
subontology, Agents, since they are closely related. The dynamic part is rep-
resented by an ontology called Workflow Ontology, where three relevant as-
pects of the maintenance process are defined: decomposition of activities, 
temporal constraints between activities, and control of the execution of ac-
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tivities and projects during the process enactment. A third ontology called a 
Measure Ontology represents both static and dynamic aspects related to the 
software measurement. This ontology was included because of the impor-
tance of measurement within the software process. 

Fig. 2.3. Ontologies as conceptual tools in the MANTIS environment 

The uses of the ontologies proposed in the MANTIS environment are two 
of the three identified by Gruninger and Lee [42]: communication (especially 
between humans participating in maintenance projects, and between humans 
and the software system of the MANTIS environment), and knowledge reuse 
and organization. On the other hand, the computational inference has not 
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been included in this SEE. The importance of ontologies’ use as a support for 
maintenance activities (particularly for the sharing and reuse of knowledge 
about the product and its characteristics) has been recognized by other au-
thors as well [21]. 

In MANTIS the ontologies have been represented using an adaptation of 
the REFSENO method (see later section). 

2.3.3.2 TABA Workstation 

TABA Workstation is a meta-SEE, capable of generating, by means of in-
stancing, specific SEEs adequate for the particularities of a software proc-
ess, of an application domain or of a specific project [28]. Given that the 
meta-Environment, the created SEE instance and the tools in the TABA
Workstation need to handle knowledge of the software development proc-
ess, this system includes an ontology whose end is “to support the acquisi-
tion, organization, reuse, and sharing of Software Process knowledge”.  
This software development process ontology consists of various subon-
tologies: of activities, of procedures and of resources. 

For the graphic representation of these ontologies, GLEO (Graphical 
Language for Expressing Ontologies) is used along with a set of axioms 
defined in first-order logic. Also, for each ontology, the vocabulary used is 
defined in a table created by two columns, one with the concept name, the 
other with descriptions of its function and relationship with other con-
cepts.

2.3.4 Representing Ontologies Using Software Engineering 
Techniques

There are many languages, techniques and tools for the representation, de-
sign and construction of ontologies (see Chap. 1). But the great majority of 
these have been created for and by the knowledge engineering community. 
Because of this, the use of ontologies by SET professionals and research-
ers can be seen as an additional learning experience, and in some cases, of 
considerably great effort.   
To avoid this problem, UML has been proposed and analyzed as a lan-
guage of ontological representation in software engineering [97]. Further, 
the ontological fundamentals of this option have been studied by Guiz-
zardi et al. [45]. Other potential advantages of this choice is that the exten-
sion possibilities of UML can be used: descriptive or restrictive stereo-
types, and regular or restrictive extensions of the UML metamodel [82]. 
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For more detail regarding the use of UML as a representation language of 
ontologies, the reader may refer to “Modelling ontologies with software en-
gineering techniques” in Chapt. 1 of the book “Ontological Engineering” 
[38]. 

2.3.4.1 REFSENO 

Some SET researchers have made an effort to approximate previous pro-
posals in the area of artificial intelligence, to the software engineering 
community. A significant case of this type is that of REFSENO (Represen-
tation Formalism for Software Engineering Ontologies) [90], a proposal 
created by the Fraunhofer Institute for Experimental Software Engineering 
(IESE) in Germany, which includes a methodology in order to develop the 
ontologies, together with a guide for their representation, through tables 
and diagrams. 

REFSENO provides constructs (primitives) to describe concepts where 
each concept represents a class of experience items. Besides concepts, its 
properties (named terminal attributes) and relationships (non-terminal at-
tributes) are represented. One relevant feature of REFSENO is that it en-
ables us to describe similarity functions, which are used for similarity-
based retrieval. In this way, the implementation of retrieval components is 
facilitated. This similarity extends the formalism of Ostertag et al. [73] by 
additional integrity rules and by clearly separating the schema definition 
and characterization. On the other hand, REFSENO also incorporates in-
tegrity rules such as cardinalities and value ranges for attributes, assertions 
and preconditions. 

In the hope of better adapting the characteristics and interests of soft-
ware engineers, and in contrast with the usual codified knowledge in 
knowledge-based systems, REFSENO represents the knowledge in the 
form of documents having a set of templates of tables and diagrams. This 
election is based on the studies of Althoff et al. [1] in which an important 
reduction in learning effort is achieved by the storage of experiences in the 
form of documents. 

The methodology proposed by REFSENO is an improved adaptation of 
METHONTOLOGY [29, 37], which imitates the software life cycle proposed 
by the IEEE 1074 standard. Consequentially, the main steps are: 

1. Planning.
2. Specification of the ontology requirements.  
3. Conceptualization. This stage is similar to the phase of design in a 

software system, so it is not the ontology itself. 
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4. Implementation. This refers to the representation and storage of 
the previous conceptualization through use of computer tools. 

REFSENO has been used for the creation and representation of diverse 
ontologies. For example, in [80] an ontology for software maintenance 
projects management, developed by a group of software engineers and re-
searchers, is represented using REFSENO, changing specific diagrams for 
UML class diagrams and with other minor adjustments. According to the 
authors, they chose REFSENO for the following reasons: 

It allows for the modeling of software engineering knowledge in a 
precise and complete manner, by using alternate representations.  The 
ontologies specified using REFSENO are precise, since the semantic 
relationships are defined and are complete, in the sense that all 
conceptual knowledge necessary to instantiate an experience base are 
provided.
It has a clear terminology, differentiating between conceptual and 
context-specific knowledge, thus enabling the management of 
knowledge from different contexts. 
It guarantees a consistent ontology since consistency criteria must be 
fulfilled.

2.3.5 Experiences and Lessons Learned in Software 
Engineering Research 

In this section we present some lessons learned about the usefulness of the 
ontologies in software engineering research. In these, we have reflected on 
the experience of the Alarcos Research Group (University of Castilla-La 
Mancha, Spain), which has been achieved through the development of 
various research and development (R&D) projects. In our opinion, these 
conclusions and commentaries can be extended to ISs and database re-
search, and in part to the professional work of the software engineer. 

At the origin of the use of these conceptual tools were two challenges 
encountered in the research projects: the integration of knowledge and the 
automation-oriented approach by means of software tools. 

The first challenge arose from the common daily difficulties in human 
relationships (between memberships of our group, other groups and other 
stakeholders), causing a waste of time and energy, due to lack of explicit 
or tacit shared knowledge. The second challenge arose because the great 
majority of projects confronted involved the design of advanced support 
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tools for software engineering activities, which should offer the greater 
functionality that is possible at lower development cost.   

In facing these challenges, the following two questions arose: 

1. How can we achieve proposals, methods, or tools which offer more 
general solutions, that is, more useful for all, in research problems? 

2. How can we more easily share knowledge of the different partici-
pants (researchers, groups, clients, users, managers, etc.)? 

The conceptual architectures including meta-metamodels and ontologies 
have been the two conceptual tools best answering these questions. 

The second question had the best solution when using ontologies. Of the 
many applications of ontologies that are identified in the bibliography [42], 
and that have already been commented on, for our software engineering 
R&D project they have been especially useful in: 

1. Sharing problem domain knowledge and allowing the use of com-
mon terminology between all stakeholders (and not just the re-
searchers). 

2. The “filtering” of knowledge upon defining the models and meta-
models. 

This first use is evident, but its importance was considerable in the prob-
lems faced. This importance arose due to the need for communication as a 
main activity (in duration and importance) in R&D projects (as well as in any 
other type of work in software engineering or computer science) and because 
the ambiguity of the natural language implies errors, misunderstandings and 
unproductive efforts. It has been shown that this is due in great part to the 
project participants having differing knowledge of the domain of the prob-
lem, as well as the use of different languages, both problems which an ontol-
ogy can mitigate. 

The second more important use that we have found with ontologies is the 
filtering of knowledge (Fig. 2.4). The models and metamodels (models of 
models) are representations or images of reality that, by definition, only in-
clude a part of this reality. However, this is not a problem, but an assistance, 
as this precise factor allows for the filtering capability of undesired character-
istics. In this sense, an ontology is also of assistance in deciding what should 
be taken out of the real systems in order to construct the model(s) of a system 
(correspondents at the M1 level in a conceptual architecture such as that de-
fined in MDA-MOF [71]), or what should be taken into account in order to 
define metamodels (level M2 of MDA-MOF).
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Although a formal and implemented ontology in a computer-adapted 
format may serve for knowledge inference, the characteristics of our R&D
projects (with software engineering and not knowledge engineering goals) 
have led us to limit the use of ontologies to those of knowledge sharing 
and filtration. Therefore, the decision to use lightweight and non-formal 
(or semi-formal) ontologies has been due to the scope of projects which 
have been undertaken until today. 
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Fig. 2.4. Ontologies as filters of knowledge when defining models and metamod-
els

2.3.5.1 Examples 

In the Alarcos Research Group we have carried out several R&D projects 
for software maintenance. For example, several years ago, we developed, 
in collaboration with the international company Atos ODS (previously 
Sligos), the MANTEMA methodology [76], specifically for the mainte-
nance of software.  In these projects, it was very useful to define an ontol-
ogy for “managing project maintenance” [80] that solved previous misun-
derstanding and discussions due to, for example, not all participants 
(researchers, clients, maintainers) having equal understanding of the 
“modification request” concept. 

On the other hand, in 2003, various groups from Spain and diverse coun-
tries of America held a meeting in order to define a metamodel which would 
permit the representation and implementation or any type of software meas-
ure. After several days of debating, it was evident to all that there did not 
even exist any agreement on the concepts and terms that the different re-
searchers or groups used.  Without this prior step, it was very difficult to con-
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tinue advancing. For this reason, a work group was created in order to elabo-
rate a “Software Measurement Ontology” [34]. Thanks to this ontology, the 
diverse groups have available a conceptual “filtering” tool to help them to 
create specific metamodels and models for their research. Further, it has been 
possible to more easily debate and truly center oneself in the reasonable dif-
ferences due to distinct points of view or work philosophies.  As a continua-
tion of this work, a study was undertaken of the different standards and inter-
national norms, and it has been discovered that we are far from reaching this 
explicit and shared conceptualization (ontology).  Even for the core concepts 
of “metric”, “measure” and “indicator” there is no international consensus 
(aggravated by the inconsistencies and lack of the ISO and IEEE official 
standards) [33]. 

This absence of a prior ontology is a very common problem in software 
engineering and in computer science in general. Therefore, when trying to 
work with the new proposal of the SQL:2003 standard (14 parts and ap-
proximately 2000 pages), the Alarcos Group had major misunderstandings, 
because the metamodel indicated in part 11 “SQL/Schemata” [51], repre-
sented in the form of relational schemas, is illegible and has inconsistencies 
with other parts of the standard. These problems can be solved, or at least 
considerably reduced, if all the parts and thousands of pages of this standard 
are based on a previous ontology which makes clear the concepts and their 
relationships, independent of syntax and implementation aspects. 

With this goal, we have begun to construct an SQL:2003 ontology, al-
though due to this great challenge, we have opted to divide this task into 
various stages. Firstly, we have elaborated the ontology of the object-
relational features [14] that we have represented by means of UML 2.0 class 
diagrams and texts organized in the form of tables. Additionally, in order to 
increase the level of formality, we have used OCL well-formedness rules. 
The ontology has been checked by mean of instantiation of an example in 
which most of the new object-relational features of the SQL:2003 standard 
are presented. It is of interest to remark that during the development process 
of the ontology, some inconsistencies were detected in the SQL:2003 stan-
dard.

In addition to improving didactics and easing the understanding and learn-
ing that this ontology has provided, it also has allowed us to start exploring 
some new research tracks the first of these being the ontology-based formal-
ization of a set of complexity measures for object-relational schemas [5]. 

To conclude, in our experience with ontologies in reference to standards, 
we believe that ease of reading and understanding the standards would be 
greatly improved if the typical lists of terminology were substituted with an 
ontology containing the relationships between there terms (if possible, using 
some type of ontological diagram), its most significant properties and the 
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main semantic constraints. Furthermore, ontology would be a tool of great 
use for the verification and validation of standards. 

2.4 A Proposal of Taxonomy 

In previous parts of this chapter, we have examined distinct types of on-
tologies and the possible ways of employing them. In this section, we pre-
sent a taxonomy especially oriented to assist SET professionals and re-
searchers. Although we use the previously described classification ideas, 
we believe that SET community viewpoints and interests require a new 
and specific taxonomy. Concretely, we claim, without being experts in 
subjects such as ontological engineering, the Semantic Web, or knowledge 
engineering, that this taxonomy will assist in answering the following 
questions:

What ontologies exist to better understand the knowledge 
of a determined SET issue or subdomain? 

Why and how can we use ontologies in software develop-
ment or maintenance projects? 

What proposals of new methodologies or previous adapta-
tions exist for the construction of ontology-driven soft-
ware?

What types of software artifacts can be formed by or in-
clude ontologies? 

When attempting to establish a relationship between ontologies and SET,
the former are typically considered to be another technique or artifact to be 
applied in the software life cycle processes; however, although less typical, it 
is also possible to use this type of conceptual tool for the representation of 
SET domain knowledge. This should not be forgotten when establishing a 
taxonomy or classification of the possible combinations between both fields. 
Thus, at a basic level, we propose that the ontology taxonomy for SET be 
formed by the following two generic categories: 

Ontologies of domain: Describe knowledge of the SET domain. 
Ontologies as software artifacts: Used as artifacts of diverse types, in 
some software process. 
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Following a description of the fundamental characteristics of ontologies 
belonging to these categories, and also the subcategories that we propose in 
both cases, is presented. 

2.4.1 Ontologies of Domain 

This generic category refers to the ontologies whose main goal is to repre-
sent (at least partially) knowledge of a certain subdomain within SET mat-
ter. The existence of a universal ontology to fully conceptualize this do-
main of knowledge would assist in the resource annotation and 
localization, for example, in the Semantic Web, and would avoid the am-
biguities and inconsistencies which are commonly produced when com-
puter science academics, researchers and professionals use varying terms 
and concepts. 

As previously indicated, there are various forms of classifying the ontolo-
gies of a domain of knowledge; however, with SET ontologies, we believe 
that the classification should be based on norms, recommendations and stan-
dards published by prestigious organizations and associations (such as the 
IEEE or ACM), having been accepted and very well known by the interna-
tional community dedicated to this discipline. In order to establish the hierar-
chy of subcategories, we have adopted the following: 

Firstly, to distinguish software engineering from software technology, 
as established in the “Overview Report” of the Computing Curricula 
2005 [3]. 
Within software engineering, to distinguish between the generic 
proposals that include the complete scope of this discipline and the 
specifics focused on some part of it.  
For these last ontologies, to employ the classification in 10 knowledge 
areas defined in the 2004 version of the “Software Engineering Body of 
Knowledge” (SWEBOK) [49]. 
Within the field of software technology, to use the extended taxonomy 
of the “ACM Computing Classification System” [50] to identify the 
subcategories with two breakdown levels.  

The ACM taxonomy categories and subcategories that have been consid-
ered are those whose content refers to the field of software technology. That 
is to say, those identified by the letters D (software, but without software en-
gineering because this topic corresponds to the previous category), E (data in 
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general) and H (information technologies and systems, especially databases 
and Web systems). 

In this chapter and book, we do not consider “Artificial Intelligence” 
within the umbrella of “Software Engineering and Technology”. For this rea-
son, in our proposed taxonomy, ACM category “1.2 Artificial Intelligence” 
(under the generic category of “I. Computing Methodologies”) is not in-
cluded, despite the fact that it includes such topics as “Ontology Design” and 
“Ontology Languages” within subcategory “1.2.12 Intelligent Web Services 
and Semantic Web”. 

Taking these factors into consideration, the taxonomy of the “ontologies 
of domain” is as follows:  

Software Engineering (SE)
Generic (all-domain) 
Specific (sub-domain) 

Software Requirements 
Software Design 
Software Construction 
Software Testing 
Software Maintenance 
Software Configuration Management 
Software Quality 
Software Engineering Tools & Methods 
Software Engineering Process 
Software Engineering Management 

Software Technology (ST)
Software

Programming Techniques
Programming Languages
Operating Systems 

Data
Data Structures  
Data Storage Representations  
Data Encryption  
Coding and Information Theory  
Files

Information Technology and Systems  
Models and Principles  
Database Management  
Information Storage and Retrieval 
Information Technology and Systems Applications  
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Information Interfaces and Representation (HCI)

In order to simplify, in the SWEBOK-based discussion, only one level 
(knowledge areas) has been described, and in the ACM taxonomy section, 
we only detail two levels (generic categories and categories). 

“Software Engineering generic ontologies”, also denominated as “Soft-
ware Engineering all-domain ontologies”, has the ambitious objective of 
modeling the complete software engineering body of knowledge. Therefore, 
it can be based on three different source types: (1) glossaries (of the IEEE, for 
example), (2) body of knowledge guides (as SWEBOK), and (3)  books of 
reference in the matter (Pressman [77], etc.). On the other hand, “Software 
Engineering specific ontologies” only attempts to conceptualize one part 
(subdomain) of this discipline, of interest for a determined goal, collective, or 
moment. As might be expected, there are many more proposals in this cate-
gory than in the previous one. 

On the other hand, some ontologies of SET subdomains are elaborated, 
taking into account the possibility of their integration with others, in order to 
extend the knowledge that is represented in a common way. This can be a 
good idea, as it follows the well-known strategy of synthesis to design com-
plex systems. Taking this to the extreme, the combination of ontologies of all 
subdomains included in the proposed taxonomy would result in an ontology 
of the complete SET domain. Unfortunately, the reality is that this goal is ex-
tremely laborious, not only due to its size but also due to the numerous prob-
lems of ontology integration and merging (for example, overlapping of con-
cepts) and, as yet, satisfactory solutions do not exist for them. Although 
similarities are found with the problem of database views integration, the on-
tology literature states that the merging ontology process is more difficult, 
labor intensive and error prone [87]. In the literature, we find the experiences 
of SET community members, not being experts in knowledge engineering–
ontology, commenting on their problems in carrying out the merging of on-
tologies [96]. 

2.4.2 Ontologies as Software Artifacts 

In addition to the ontologies that conceptualize the knowledge of SET
(sub)domains, there are other types of proposals that use ontologies as arti-
facts, with varying characteristics and functionalities, during the construc-
tion or functioning of software systems. Many authors have researched the 
usefulness of using ontologies in this way, even basing the software de-
velopment process on this technology, and giving way to what Guarino 
[43] has termed “Ontology-driven Information System development”. Au-
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thors such as Pisanelli et al. [75] have assured that in the future, software 
will not be designed without using an ontological approach, given the 
shown effectiveness of this choice, particularly when adequate tools are 
available. And, as already presented in prior sections, there exists a great 
potential in the use of ontologies as knowledge’s artifacts, for facilitating 
communication among project stakeholders and for avoiding the ambigui-
ties of natural language, as well as for filtering knowledge when defining 
models and metamodels of systems to be developed [80, 96]. A pending 
task which may prove very interesting is the comparative study of the 
paradigm “Ontology-driven development” proposed by Guarino [43] and 
the new paradigm “Model-Driven Engineering” (MDE) [83]. 

Among these uses of ontologies, the World Wide Web Consortium 
(W3C), a main precursor in the use of ontology for the Semantic Web, also 
endorses the use of ontologies for software development, having recently 
created a work group to evaluate, among other possibilities, the potential for 
“Ontology Driven Software Engineering”, “Ontology Driven Architectures” 
(ODAs) and the crossover between ontology engineering and software engi-
neering [99]. 

When it comes to proposing a taxonomy or classification of the ontologies 
that have been used as software artifacts in recent years, it seems reasonable 
to do so as a function of the ontology’s use as an artifact (requirements speci-
fication, system conceptual modeling, etc.). Given that the software artifacts 
can be employed either at development or at run time, we have opted for the 
first-level classification proposed by Guarino [43], where analyzing the use-
fulness of ontologies in the IS field distinguished between those artifacts 
used at system development and those used during system execution. 

The first of these categories, that is, “Ontologies as software artifacts at 
development time”, has been divided based on function of the software life 
cycle processes in which it is principally used. The process groups that we 
have used are defined in the ISO/IEC 15504-2 [53] and ISO/IEC 12207 [52] 
standards. To simplify, we have covered only two breakdown levels (process 
groups and process categories), without achieving a bottom level of individ-
ual processes. Basically, the distinction consists of taking into account 
whether the ontologies are used as artifacts in the strictly engineering proc-
esses (software development and maintenance) or in other complementary 
processes: support activities, project management, knowledge reuse, etc. The 
reference model of these standards groups the processes into three life cycle 
groupings which contain five categories. Table 2.1 summarizes this informa-
tion. 

In the case of the category referred to as “Ontologies as software arti-
facts at run time”, following the same reasoning as Guarino [43], we have 
determined two different situations: 
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1. Ontologies as architectural artifacts: When ontologies are part of the 
system software architecture, as an additional component, 
,cooperating with the rest of the system at run time to attain the 
software objective (ontology-driven software).

2. Ontologies as (information) resources: Are used by the software 
during run time for a specific purpose, as an information resource, 
normally remote, upon which the software operates (ontology-aware 
software), carrying out, for example, specific queries.

Table 2.1. Groups and categories of processes in ISO/IEC 15504-2 [53] 
Group Category Description of included processes 

Customer–
Supplier 

Directly impacts the customer, support development and transi-
tion of the software to the customer, and provides for the correct 
operation and use of the software product and/or service. 

Primary 

Engineering 
Directly specifies, implements, or maintains the software prod-
uct, its relationship to the system and its customer documenta-
tion. 

Supporting Support May be employed by any of the other processes (including other 
supporting processes) at various points in the software life cycle. 

Management 
Contains practices of a generic nature which may be used by 
anyone who manages any type of project or process within a 
software life cycle. 

Organizational 

Organization 

Establishes the business goals of the organization and develop-
ment process, product, and resource assets which, when used by 
the projects in the organization, will help the organization 
achieve its business goals. 

Taking into account all of the prior considerations, the taxonomy of “On-
tologies as software artifacts” that we propose is the following: 

At Development Time 
For Engineering Processes 

Development process  
Maintenance process 

For Other Processes 
Customer-Supplier processes 
Support processes 
Management processes 
Organization processes 

At Run Time 
As Architectural Artifacts 
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As (Information) Resources 

At development time and for engineering processes, the ontologies may be 
used as artifacts for requirements specification, conceptual modeling, pro-
gramming, database design, or automatic generation of code. Use cases of 
ontological artifacts in other complementary processes are communication, 
software process management, configuration management, reuse, quality as-
surance, documentation, etc. 

Examples of scenarios in which ontologies at run time can be used as ar-
chitectural artifacts are ontology-driven software architecture, software agent 
architecture, Web service architecture, Web server architecture. On the other 
hand, ontologies as information resources at run time could be used in sce-
narios such as ontology-aware systems, ontology databases, software agents 
communication, Web services use, search engines or workflow execution. 

2.5 Review and Classification of Proposals in the 
Literature 

In this last section of the chapter, we present a summary of a large collec-
tion of SET ontology proposals. Each reference is briefly commented upon 
and situated within the taxonomy previously presented. 

When classifying each analyzed work, its main contribution was taken 
into account. For instance, for the proposals using ontologies at run time of 
an application, it is evident that this ontology could have been created at de-
velopment time. However, it has been just considered and classified in the 
first category, due to its great interest. 

In a few cases, the proposal’s characteristics have led us to make the deci-
sion to include it in more than one taxonomy category. The most typical 
cases of this type, although not the only ones, are proposals included both in 
the general category of ontologies of domain and in the ontologies as soft-
ware artifacts. This happens when, for example, in Ruiz et al. [80], the same 
proposal includes an ontology as artifact as well as an ontology of software 
engineering or software technology domain, which complements the first. 

2.5.1 Proposals of Ontologies of Domain 

Since the late 1990s, different proposals have been published in order to 
elaborate ontologies of a part or of a complete knowledge domain of SET.
In Tables 2.2 and 2.3 below, some of the most well known of these are 
presented along with their authors and taxonomy category (and subcate-
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gory) classification, according to the conceptualized knowledge domain of 
the ontology. 

The majority of the ontologies included in this subsection have not been 
developed with the sole objective of representing a conceptualization of a 
SET domain, but, rather, they have been created by their authors to obtain or 
to be part of systems based on semantic technology. 

2.5.1.1 Software Engineering Ontologies 

Based on the SWEBOK guide, prototypes of ontologies for the representa-
tion of the complete software engineering domain have been created [49]. 
This includes those of Mendes and Abran [64], consisting of an almost lit-
eral transcription of the SWEBOK text, with over 4000 concepts. Another 
proposal included is that of Sicilia et al. [85], which established an ontol-
ogy structure based on a description part, to characterize artifacts and ac-
tivities as created and enacted by current software engineering practice, as 
well as a prescriptive part, dealing with a different aspect of reality, which 
comprises the approaches or rules to concrete practical activities that are 
“commonly accepted” as considered in the SWEBOK. In Chap. 3 of this 
book, the authors of both works summarize the different approaches to de-
velop an ontology of the SWEBOK.

Another less ambitious ontology, but one that also conceptualizes the en-
tire software engineering domain, is OntoGLOSE, created and based on the 
“Glossary of Software Engineering Terminology” published by the IEEE
[48].  It basically deals with a terminological ontology including over 1500 
concepts, corresponding to 1300 glossary terms with their differing meanings 
[47].  

The remaining ontologies presented in Table 2.2 are partial representa-
tions of the software engineering domain. Falbo et al. [28] and Larburu et 
al.[58], for example, have proposed ontologies to model the knowledge re-
lated to the software process, including concepts such as Life Cycle 
Model, Software Process, Activity, Procedure, Task, Role, or Artifact,
among others.  

In the second case, the ontology referred to as SPOnt and its authors 
have reused concepts included in other ontologies related to decision sup-
port systems, establishing links to concepts such as Problem (of the MCDA
ontology) or Guideline (from the GLIF ontology).  
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Table 2.2. Proposals of ontologies of domain (software engineering subdomain) 
Category / 
subcategory Proposal Author(s) and refer-

ence
Issues in the development of an ontology for an 
emerging engineering discipline Mendes and Abran [64] 

The evaluation of ontological representation of the 
SWEBOK as a revision tool Sicilia et al. [85] Generic

OntoGLOSE: a light weight software engineering 
Ontology Hilera et al. [47] 

Conceptual design model-based requirements 
analysis in the Win–Win framework for concurrent 
requirements engineering 

Bose [9] 

A generic ontology for the specification of domain 
models  Girardi and Faria [35] 

An ontology about ontologies and models: a con-
ceptual discussion Sánchez et al. [81] 

Specific / 
Software Re-
quirements 

OpenCyc.org: formalized common knowledge Cyc [19] 
An ontology about ontologies and models: a con-
ceptual discussion Sánchez et al. [81] 

OpenCyc.org: formalized common knowledge Cyc [19] 
Specific / 
Software De-
sign

XCM: a component ontology Tansalarak and Clay-
pool [89] 

A concept-oriented approach to support software 
maintenance and reuse activities Deridder [21] 

Organizing the knowledge used in software Main-
tenance Dias et al. [25] 

An ontology for the management of software main-
tenance projects Ruiz et al. [80] 

Merging software maintenance ontologies: our ex-
perience Vizcaino et al. [96] 

Specific / 
Software 
Maintenance

Towards an ontology of software maintenance Kitchenham et al. [56] 

Identifying quality requirements conflicts Boehm and In [8] Specific / 
Software Qual-
ity An ontological approach to domain engineering Falbo et al. [27] 

Using ontologies to improve knowledge integration 
in software engineering environments Falbo et al. [28] 

Towards the implementation of a tool for support-
ing the software development process (in Spanish) Larburu et al. [58] 

An ontology for software development methodolo-
gies and endeavours 

González-Pérez and 
Henderson-Sellers [39] 

Specific / SE 
Process

Building a knowledge base of IEEE/EAI 12207 
and CMMI with ontology Lin et al. [60] 

Towards a consistent terminology for software 
measurement García et al. [33] 

Specific / SE 
Management REFSENO: a representation formalism for soft-

ware engineering ontologies Tautz and Greese [90] 

In Chap. 4 of this book, a software development methodology ontology is 
described, as proposed by González-Pérez and Henderson-sellers [39], which 
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includes a comprehensive metamodel plus a three-domain architecture that 
can be used to specify methodologies and then apply them to real endeavors. 

Related to the knowledge domain of software process, Lin et al. [60] have 
realized initiatives for the creation of ontologies for the IEEE 12207 standard 
[76] that provides a guide for software life cycle processes, and CMMI [84] 
that can be applied in an organization to inspect and improve the capability 
of software process maturity.  The goal of these authors is to combine these 
two ontologies in order to integrate the two knowledges (in the case of 
CMMI, only that relative to the maturity level 3) into a knowledge base ca-
pable of being applied by an organization in order to develop software more 
efficiently and correctly.  

Ontologies of knowledge associated with the software maintenance
process, having different focuses, such as the proposal by Deridder [21] or 
Dias et al. [25], have also been developed. In the latter case, the authors or-
ganized the ontology into five subontologies, in order to represent the knowl-
edge related with the software systems in general, with the necessary skills 
required for software maintainers, with the activities of the maintenance 
process, with the organizational issues of the maintenance, and with the con-
cepts and tasks that constitute any application domain. In Chap. 5 of this 
book there is a detailed description of the latest version of this ontology. 

The ontology created by Ruiz et al. [80] is also structured in sub-
ontologies, although in this case, there are four: subontology of the products, 
of the activities, of the process organization, and of the agents. There is also 
an ontology created by Vizcaíno et al. [96] based on a combination of the 
previous ones. All these ontologies are based on the earlier work of Kitchen-
ham et al. [56]. 

As for software quality, one of the first known ontologies was that used 
by Boehm and In [8] which included concepts related to the quality attributes 
of software systems, and information about the influence of software archi-
tectures and the development processes on these attributes. For example, the 
ontology includes relationships among the concepts of portability, layered 
system architecture and prototyping, in order to represent the following 
knowledge: “the portability quality attribute can be achieved when using a 
layered system architecture and a prototyping-based development”. Falbo et 
al. [27] also proposed an ontology for the quality linked to concepts related 
to the software process, which were previously modeled in the form of a dif-
ferent, previously mentioned ontology [28]. 

Regarding the domain of software measurement, García et al. [33, 34] 
have created an ontology which attempts to establish a well-defined termi-
nology for this field, with 21 interrelated terms that are based on four funda-
mental concepts: measurement approach, measurement, measure and meas-
urement results. In Chap. 6, the principal characteristics and elements of this 
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ontology are presented. Similarly, Tautz and Wangenheim [90] have devel-
oped a highly detailed ontology of the GQM paradigm (Goal Question Met-
ric), exemplifying the use of the REFSENO notation to represent SET on-
tologies (to model the knowledge of the software measurement planning 
domain). In Table 2.2, these ontologies appear classified within the sub-
category of “Software Engineering Management”, as the SWEBOK break-
down of this area suggests. 

Related to the domain of requirements engineering, there have also been 
proposed ontologies, such as that of Win–Win [9], carried out by Bose in or-
der to represent the knowledge gained from the model of the same name (es-
tablished by Boehm in order to manage the necessary collaboration and ne-
gotiation produced by those involved in this software life cycle stage). 

There also exist ontologies which attempt to conceptualize knowledge 
with respect to system modeling, from a software engineering point of view. 
Sánchez et al. [81] created an ontology to reflect upon the different meanings 
of the term model, through the incorporation of different concepts related 
with this term, in their ontology, such as: model as concept and model as 
original. In Table 2.2 this proposal is found within the subcategory of “Soft-
ware Requirements”, as based on the SWEBOK breakdown which includes 
in this knowledge area the topic “Requirements Analysis” and within this, 
the subtopic “Conceptual Modeling”. 

The subontology of UML, integrated in the upper ontology OpenCyc [19], 
is more thorough than the previous ones, as it includes over 100 concepts and 
their definitions, and over 50 relationships, as well as some 30 instances, in 
order to represent the knowledge associated with this modeling technique. 
Some of the concepts included in OpenCyc are: UMLModelElement,
UMLClassifier, UMLClass and UMLStateMachine. In Table 2.2 this ontol-
ogy appears classified within the subcategory “Software Requirements”, for 
the same reason as mentioned previously. But it also falls under the subcate-
gory of “Software Design” as the SWEBOK breakdown includes the knowl-
edge area topic “Software Design Notations”. 

Another proposal related to the domain of software requirements is 
ONTODM, an ontology created by Girari and Faria [35] for the construction 
of domain models to be reused in the development of multi-agent applica-
tions. ONTODM represents the knowledge of techniques for the specification 
of the requirements of a family of multi-agent systems in an application do-
main. It is being used as a CASE tool to assist in the elicitation and specifica-
tion of domain models. 

With respect to component-based software engineering, there exists an 
ontology known as XCM, created by Tansalarak and Claypool [89], with its 
purpose being “to provide a standard for the definition of components that 
crosscuts the different component models and unifies the variances between 
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the different models”. This ontology includes concepts such as Component,
Method, Even, UndelayingComponent or Aggregation-basedComposition. In 
Table 2.2, this proposal appears classified in the sub-category “Software De-
sign” according to the SWEBOK breakdown, as this knowledge area includes 
the topic “Software Design Strategies and Methods” and, within this, the 
subtopic “Component-based Design”. 

2.5.1.2 Software Technology Ontologies 

Among the software technologies that have been conceptualized through 
ontologies, we find the technologies related to the programming lan-
guages. For example, as part of the SIMILE project (Semantic Interopera-
bility of Metadata and Information in unLike Environments) of MIT, for 
the creation of a collection of public ontologies [66], we find a very sim-
plistic ontology of the Java language, which represents structural depend-
encies between the concepts of Class and Package of this language. Also 
related to Java is the proposal of Liu and Lo [61] who created an ontology 
based on the software architecture on which the J2EE technology is im-
plemented. 

Other interesting work linking ontologies and programming languages is 
that of Zimmer and Rauschmayer [101], who used a generic ontology of 
source code, with concepts such as Code, Identifier or CodeAssociation, in 
order to create programs as instances of these concepts (for example, a Java 
class would be an instance of the Code concept). 

In the scope of Web engineering, very detailed ontologies have been de-
veloped for Web technologies, such as Web services, of which the OWL-S
ontology stands out, being created in order to describe the properties and ca-
pabilities of Web services in an unambiguous, computer-interpretable form 
[62]. More recently, there is the WSMO ontology (Web Service Modeling 
Ontology), expressed in a more specialized language than the OWL, and re-
ferred to as WSML [78]. These two, previously mentioned, are characterized 
by their high level of detail; however, there are other ontology-oriented pro-
posals about Web services that are more limited, such as that of Pahl [74], 
focused on the representation of conceptual elements necessary in order to 
consider Web services as a type of software component. 

Also there are software agents technology ontologies, such as that of 
Brandão et al. [10], denominated as MAS (Multi-Agent System), that define 
the concepts and properties that can be used to represent dynamic models of 
applications based on software agents. 

Other computer application types that have been the object of conceptuali-
zation are the ubiquitous and pervasive applications, which seamlessly in-
tegrate into the life of everyday users, providing them with services and in-
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formation in an “anywhere, anytime” fashion. In this knowledge domain, 
Chen et al. [17] have proposed SOUPA (Standard Ontology for Ubiquitous 
and Pervasive Applications), which offers developers a shared ontology that 
combines many useful vocabularies from different consensus ontologies.  
Their objective is to assist the ubiquitous and pervasive applications devel-
opers who are inexperienced in knowledge representation, to quickly begin 
to building ontology-driven applications. SOUPA includes concepts such as 
Agent (to represent human users, with properties such as Believes, Desires, or 
Intends), Action, Time, Device, or Location.

All of the previous ontologies appear in Table 2.3 classified, according to 
the established taxonomy, in the category of “Software”; the first are under 
the subcategory “Programming Languages” and those related to Web tech-
nology and ubiquitous computing are found in the “Programming Tech-
niques” category. 

Table 2.3. Proposals of ontologies of domain (software technology subdomain) 

Category /  
subcategory Proposal Author(s) and 

reference 

OWL-based Web service ontology Martin [62] 

Web Service Modeling Ontology (WSMO) Roman et al. 
[78] 

Ontology-based description and reasoning for com-
ponent-based development on the Web Pahl [74] 

Ontologies as specifications for the verification of 
multi-agent systems design 

Brandão et al. 
[10] 

Software / Programming 
Techniques 

SOUPA: Standard Ontology for Ubiquitous and 
Pervasive Applications Chen et al. [17] 

RDF ontology collection. SIMILE project MIT [66] 
The study on ontology integrating and applying the 
ontologies of IEEE/EIA 12207, CMMI, Workflow 
and J2EE to Web service development environment 

Liu and Lo 
[61] Software / Programming 

Languages 
Tuna: ontology-based source code navigation and 
annotation

Zimmer and 
Rauschmayer 
[101] 

Data / Data Encryption Security mechanisms ontology Denker [20] 

Information Technology 
and Systems / Database 
Management 

An ontological approach to the SQL:2003 Calero and 
Piattini [13] 

An ontology based method for universal design of 
user interfaces 

Furtado et al. 
[31] Information Technology 

and Systems / Informa-
tion Interfaces (HCI) 

A proposal of a knowledge model aimed at the use 
of questionnaires in the usability evaluation (in 
Spanish)

García [32] 
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Among the proposals that are found in the “Data” category of the taxon-
omy are those related to the data encryption techniques, such as the ontol-
ogy of Denker [20], whose objective is to provide notations that will allow 
interfacing among the various standards for security and trust. This ontology 
includes concepts such as SecurityMechanism, KeyFormat, Encryption, Sig-
nature, Protocol, or KeyProtocol. 

In the category “Information Technology and Systems”, there are, among 
others, the proposals of different database technologies, such as those pre-
sented in detail in Chap. 7 of this book, related to the object-relational fea-
tures of the SQL:2003 standard [13]. 

Within this category, but forming part of the subcategory “Information In-
terfaces and Representation”, are the ontology proposals about technology 
related to Human Computer Interaction (HCI) and, particularly, within the 
domain of user interface. The proposal of Furtado et al. [31] of an ontology-
driven interface design, includes the definition of ontologies at three levels: 
conceptual, logical and physical. On the other hand, García [32] has devel-
oped a detailed ontology of this domain which, in addition to the representa-
tion of general concepts of user interface design, also incorporates others re-
lated to the usability of the interfaces and their evaluation. 

2.5.2 Proposals of Ontologies as Software Artifacts 

The proposals for ontology use as software artifacts that can be found in 
the literature are more abundant than those oriented towards the conceptu-
alization of the SET knowledge domain previously described. The impor-
tance of this new approach in software development shows how, recently, 
special events were being established in order to present such proposals, as 
in the case of the Workshop on Ontologies as Software Engineering Arti-
facts, hosted in 2004 as a specific event within the International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA). The majority of the works presented at this event are 
described in this section. 

In Tables 2.4 and 2.5 we present the analyzed proposals, organizeda and 
based on the taxonomy presented in Sect. 2.2.4, that is, as a function of on-
tologies as artifacts used: (1) at software development time (for the realiza-
tion of the stated engineering processes or for other auxiliary processes); or 
(2) at software run time, as architectural artifacts (ontology-driven software) 
or as information resources (ontology-aware software). 
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Table 2.4. Proposals of ontologies as software artifacts at development time 
Category / 
subcategory Detail Proposal Author(s) and 

reference

All phases 
Ontology-driven software development 
in the context of the semantic web: an 
example scenario with Protegé/OWL 

Knublauch [57] 

Analysis, design, 
coding

The role of ontologies in schema-based 
program synthesis. Bures et al. [12] 

Analysis, design, 
coding

Building ontologies in a domain ori-
ented software engineering environ-
ment 

Mian and Falbo 
[65] 

Analysis, design, 
coding

Use of ontologies in software develop-
ment environments 

Oliveira et al. 
[72] 

Analysis, design, 
coding

An ontology based method for univer-
sal design of user interfaces 

Furtado et al. 
[31] 

Analysis, design Data modelling versus ontology engi-
neering Spyns et al. [86] 

Analysis, design 
Ontology-based description and reason-
ing for component-based development 
on the Web 

Pahl [74] 

Analysis The use of ontologies as a backbone for 
use case management 

Wouters et al. 
[100] 

Analysis
Simplifying the software development 
value chain through ontology-driven 
software artifact generation 

Jenz [54] 

Analysis

Conceptual design model based re-
quirements analysis in the Win–Win 
framework for concurrent requirements 
engineering 

Bose [9] 

Analysis Ontologies, metamodels and model-
driven paradigm 

Assmann et al. 
[2] 

Analysis Improving analysis patterns reuse: an 
ontological approach Hamza [46] 

Design, coding Ontology-oriented programming: static 
typing for the inconsistent programmer Goldman [36] 

Engineering / 
Development 
process 

Coding Tuna: ontology-based source code 
navigation and annotation 

Zimmer and 
Rauschmayer 
[101] 

Engineering / 
Maintenance
process 

An ontology for the management of 
software maintenance projects Ruiz et al. [80] 

Quality assurance ODE: Ontology-based software Devel-
opment Environment Falbo et al. [26] 

Verification, 
validation

The use of ontologies as a backbone for 
software engineering tools 

Deridder and 
Wouters [22] 

Non-
engineering / 
Support proc-
esses

Documentation 
The use of an ontology to support a 
coupling between software models and 
implementation 

Deridder et al. 
[23] 
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Table 2.4. (continued)
Category / 
subcategory Detail Proposal Author(s) and 

reference
Ontology-based retrieval of software 
process experiences Nour et al. [69] 

Toward the implementation of a tool 
for supporting the software devel-
opment process (in Spanish) 

Larburu et al. 
[58] 

Non-
engineering / 
Management 
processes

ODE: Ontology-based software De-
velopment Environment Falbo et al. [26] 

2.5.2.1 Ontologies as Software Artifacts at Development Time 

For Engineering Processes

Among the proposals found in this category is that of Knublauch [57], 
who defined a complete ontology-driven software development methodol-
ogy oriented to Semantic Web applications, in which ontologies are used 
throughout the life cycle of an application, from development through 
execution.

The rest of the proposals for using ontologies at development time do not 
establish their use throughout the development process, but, rather, are lim-
ited to certain phases such as requirements analysis, design, or coding.  The 
majority of the proposed works apply a domain-oriented software develop-
ment to the software projects, based on the use of application domain knowl-
edge to guide software developers across the several phases of the software 
process, facilitating the understanding of the problem during development. 
Authors such as Bures et al. [12], Mian and Falbo [65] and Oliveira et al. 
[72] propose to carry out the domain analysis through the creation of an on-
tology which, shortly, will be mapped in design models to be ultimately used 
to generate code in a determined programming language. This approach as-
sumes the integration of ontology editors in the Domain-Oriented Software 
Development Environments (DOSDEs).

Bures et al. [12] proposed the automatic generation of code directly 
through a high-level specification, formed by models constructed from con-
cepts of a given ontology that help to assure the consistency of the generated 
code. 

On the other hand, Furtado et al. [31] established a design method for a 
user interface at three levels of abstraction, beginning with the creation of an 
ontology of the domain of discourse (conceptual level), and the subsequent 
elaboration of models (logical level) that capture instantiations of concepts 
identified in this ontology for producing multiple user interfaces for one de-
sign situation, and that exhibit different presentation styles, dialogues and 
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structure. These models are subsequently transformed into code for their 
execution in a determined technological platform (physical level). 

Spyns et al. [86] used ontologies as an alternative to traditional data mod-
eling for database design, defining a method called “DOGMA ontology en-
gineering” (and using the DogmaModeler tool), which adopts a classical da-
tabase model-theoretic view, in which conceptual relations are separated 
from domain rules; but in this case, through an ontological approach, by 
means of an “ontology base”, which contains multiple intuitive conceptuali-
zations of a domain, and “ontological commitments”, where each commit-
ment contains a set of domain rules. 

Other authors have established analysis and design methods, based on on-
tologies, for the development of component-oriented software. In this way, 
Pahl’s proposal [74] established the convenience of using ontologies not only 
for modeling the domain knowledge that corresponds to the components, but 
also for modeling the software-related knowledge, referred to the behavior of 
operations or services offered by the components to be developed. In this last 
case, the ontological concepts would represent descriptions of service proper-
ties, while the properties or roles would be the services themselves. WSMO
[78] is another ontology thought for suitable this type of development, but 
oriented towards components implemented in the form of Semantic Web 
services. 

The following group of proposals shown in Table 2.4 is formed by those 
which refer to the use of ontologies only during requirements analysis. In 
this way, Wouters et al. [100] established a method of requirements specifi-
cation based on case models represented in UML, but complemented by an 
annotation mechanism based on an ontology of the application domain, in 
order to facilitate the management of large sets of use case, improving its 
browseability, maintainability and scalability. Jenz [54] suggested the crea-
tion of a business process ontology with concepts such as BusinessActivity,
BusinessRule, or BusinessDocument, having two principal goals: to allow the 
sharing of knowledge between domain experts and people engaged in soft-
ware development, and to serve as a requirements specification from which a 
number of software artifacts can be automatically generated, for example, 
UML class diagrams. 

Another proposal is that of Bose [9], using an ontology of the Win–Win 
technique domain (previously commented), and with the objective of facili-
tating the semi-automatic transition of the system requirements, according to 
the mentioned technique, to the corresponding abstract design model. The 
author proposes the expansion of this ontology by including the conceptuali-
zation of the elements that constitute these high-level design models, creating 
a mapping between these and the elements used in the Win–Win require-
ments model. 



90 Francisco Ruiz, José R. Hilera 

Also within this group we find the proposal of Assmann et al. [2] for using 
ontologies in the case of model-driven development, to describe the domain 
of a system (see Chap. 9 of this publication). And that of Hamza [46], who 
affirms that ontologies can assist in the reuse of high-level generic solutions 
in determined problems (that is, analysis patterns, in analogy with the known 
design patterns), that avoid facing the analysis phase of a project from 
scratch. The proposed method has four phases: (1) Knowledge extraction, 
where a collection of existing patterns of another knowledge source are ana-
lyzed. (2) Ontology development, where an ontology that captures the ex-
tracted knowledge is developed. (3) Knowledge reuse, where the knowledge 
included in the ontology is converted into a knowledge asset that can be re-
used to construct analysis models. (4) Knowledge augmentation, whose ob-
jective is to discover new knowledge, upon developing an application, in or-
der to incorporate it into the ontology. 

The rest of the proposals of ontologies as software artifacts at develop-
ment time for the development process included in Table 2.4 refer to the use 
in activities at a lower level: design and coding. For instance, Goldman [36] 
proposes a development method called “ontology oriented programming” in 
which the specification of a problem’s solution is expressed in the form of an 
ontology, with its annotations, that is compiled to produce an ontology-
specific library, which is linked with other libraries and code to produce an 
application. Annotations allow for trade-offs between the flexibility of the 
generated library and its performance. This is a programming paradigm of a 
higher abstraction level than object-oriented programming (“concepts” ver-
sus “objects”), but which finally, through the indicated compiler, makes it 
possible to generate object-oriented code. 

Related to programming, Zimmer and Rauschmayer [101], with the goal 
of enriching the source code of applications constructed by applying the 
well-known agile methodology “Extreme Programming” (when “the code is 
the model”), propose a generic ontology for the source code and a tool with 
which they write annotations that can be added externally without changing 
the source code, and that offers the possibility of making queries or navigat-
ing through the (semantic) content of the programs created. 

All of these described proposals have referred to the use of ontologies in 
the process of software development; however, works have also been pub-
lished in relation to their use in the maintenance process, included in the 
taxonomy, along with development, in the engineering processes category.  
In the work of Ruiz et al. [80], an ontology to assist in the management of 
software maintenance projects is presented. Also, it includes some elements 
such as product, activity, process, agent, measure and some dynamic aspects 
such as workflow. This ontology has been the basis of the development of an 
“extended software engineering environment” to manage maintenance pro-
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jects (called the MANTIS environment), previously presented in this chapter, 
and also has been used for the construction of a knowledge management sys-
tem (KM-MANTIS) for improving and supporting the management mainte-
nance projects. 

For Non-engineering Processes

There have been some proposals for the use of ontologies in other proc-
esses than pure software engineering, development and maintenance, al-
though fewer than those previously described. These include ontologies 
for the processes of management, quality assurance, verification, valida-
tion or documentation. 

In the case of management processes, Nour et al. [69] developed ontol-
ogy-based techniques and tools that allow  recovery of the acquired experi-
ence in previous software projects to be applied to new projects. In order to 
achieve this, three different ontologies for annotating knowledge stored in an 
“experience base” were created: (1) Skill Ontology, that describes skills and 
qualifications required for performing specific task types (ex. Java program-
ming). (2) Process Ontology, that allows the definition of process structures. 
(3) Project Ontology, allowing the representation of information of a project 
context.  The objective is, for a project manager, to be able to query this ex-
perience base in order to obtain the information needed to plan the current 
project.

On the other hand, Larburu et al. [58] created a prototype of a decision 
support system to assist in the deployment of software development proc-
esses, which permit the modeling and execution of software processes previ-
ously defined based on a set of four linked ontologies. This prototype has a 
descriptive capability sufficient for defining roles, tasks, artifacts and deci-
sion problems as class instances (concepts) defined by the mentioned ontolo-
gies. The four ontologies used are SPont (of the domain of software process), 
GLIF (of the Guidelines Interchange Format), MCDA (of the domain of 
multi-criteria decision analysis) and PROAFTN (of a fuzzy classification 
methodology). 

The proposal by Falbo et al. [26] is related to the subcategory of manage-
ment processes, but also to the quality assurance process, which belongs to 
the subcategory of support processes. These authors present a process-
centered SET, called ODE (Ontology-based software Development Envi-
ronment), whose goal is to facilitate the partial automation of the software 
process. This environment is made up of several integrated tools, oriented 
towards the process definition, software projects monitoring and software 
quality control. A main element of the environment is an ontology, resulting 
from the combination of others created by the same authors, related to the 
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knowledge domains of software process, quality and software metrics [27]. 
The use of ODE to define processes in real-world projects assumes the in-
stantiation of the elements previewed, including, for example: Activity, Arti-
fact, or Resource. 

In the scope of support processes, Deridder and Wouters [22] propose the 
use of ontologies to improve the creation, verification and validation of soft-
ware artifacts created during the software development life cycle, through the 
integration of ontological engines into CASE tools. These authors classify the 
ontological engines into two kinds according to how they use the ontological 
data: (1) “ontology-driven engines” that retrieve data from the ontology 
within a given context, and use them to guide to software engineers in the 
performance of their tasks (for example, transforming ontological data into 
UML diagrams); and (2) “ontology-based engines” that utilize the ontology 
as a passive component, only needing to verify and look up data. The authors 
have created ontological engines of both kinds and have integrated them into 
the Rational Rose CASE tool. 

The final work included in Table 2.4 refers to a proposal of Deridder et al. 
[23] for utilizing ontologies in the documentation process. It involves apply-
ing a structured approach to document a system by linking artifacts from the 
documentation and the implementation, using an ontology and obtaining 
what is referred to as “meta-documentation”, which provides a coupling be-
tween the results of the analysis and design phases to the results of the im-
plementation. The goal is to facilitate the software maintenance activities, 
avoiding wasted time in searching for “missing links” among artifacts it dif-
ferent levels of abstraction. For this, the ontology is a necessary element to 
establish the implicit links between related artifacts or between artifacts that 
represent the same concept in different languages. 

2.5.2.2 Ontologies as Software Artifacts at Run Time 

As Architectural Artifacts (Ontology-Driven Software)

In the proposals that were included in this taxonomy category (see Table 
2.5), the software architecture is characterized by the use of one or more 
ontologies as central elements of the proposed system. The knowledge-
based system (KBS) has an architecture that consists mainly of a knowl-
edge repository that is formed by an ontology and an inference engine act-
ing on this repository. There are numerous proposals of this type of system 
that could be referred to in this section. However, it is not necessary to de-
scribe all of them, as they share, in most cases, similar architecture, vary-
ing in each case just the application domain of the system. Therefore, we 
only refer to three proposals. 
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The first is that of Vieira and Casanova [95], who proposed the develop-
ment of a Workflow Management System to integrate an ontology for rep-
resenting the semantic relationships among elements such as Workflow, Re-
source, or User. This ontology indicates which resources and users are 
required to execute each workflow, and guides the discovery of possible al-
ternatives when the execution of a workflow instance fails to proceed.  This 
ontology is complemented by semantic rules dictating the way that alterna-
tives can be found to allow workflow execution to continue. 

Table 2.5. Proposals of ontologies as software artifacts at run time 

Category Proposal Author(s) and ref-
erence

Flexible workflow execution through an ontology-
based approach 

Vieira and Casanova 
[95] 

An ontology-based context management and rea-
soning process for UbiComp applications 

Chistopoulou et al. 
[18] 

Architectural Arti-
facts  
(Ontology-driven 
software) Developing and managing software components in 

an ontology-based application server Oberle et al. [70] 

Swoogle: Semantic Web search UMBC [88] 

Upgrade and publication of legacy data Barrasa [6] 

Information Re-
sources  
(Ontology-aware 
software) Using ontologies as artifacts to enable databases 

interoperability Brauner et al. [11] 

Another example is the work of Cristopoulou et al. [18], who present an 
architecture for ubiquitous computing applications. These applications op-
erate within an extremely dynamic and heterogeneous environment, and have 
to dynamically adapt to changes in their environment as a result of users’ or 
other actors’ activities. Therefore, context definition, representation, man-
agement and use are important factors affecting their operation. The authors 
propose the integration in the architecture of these context-aware systems, an 
ontology and an inference engine. The basic goal of the ontology is to sup-
port a context management process based on a set of rules which determine 
how a decision should be made and how it must be applied on existing 
knowledge represented by this ontology. 

The third proposal of ontology-driven software included in Table 2.5 is 
that of Oberle et al. [70], who presented an ontology-based application 
server; this server, in addition to the habitual installed software components, 
includes an inference engine in which an ontology is loaded, with which an 
explicit and executable conceptual model for the administering the applica-
tion server is represented. The server is implemented with J2EE technology, 
and the ontology conceptualizes key elements related to this technological 
platform, such as Realm, User, Group or Roles. It also includes concepts on 
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security mechanisms such as Resource, Method, ResourceGroup, Acces-
Right, Invocation or RequestContext; from these, the elements utilized are in-
stantiated in order to control the server security. At run time, the server man-
ages information in the form of semantic metadata (generated from 
configuration files), which are processed by the inference engine along with 
the content of the ontology. 

The specification of the described systems and, in general, of any ontol-
ogy-driven software, requires modeling techniques that can be used for the 
specification of the ontology integrated into the system, or for the inference 
engine, or for the rest of the system components. UML is an adequate nota-
tion for this purpose, having UML extension proposals such as that of Ba-
clawski et al. [4], in order to model ontologies that can later be implemented 
into a language such as OWL. We must emphasize the Object Management 
Group (OMG) initiative to create a standard “Ontology Development Meta-
model” (ODM) using the OMG’s Meta Object Facility (MOF), to ease the 
development of ontologies with an engineering approach, more than ade-
quate in the development of ontology-driven software. This initiative is com-
prehensively described in Chap. 8 of this book. 

As Information Resources (Ontology-Aware Software)

Within this category are those proposals which deal with software systems 
that use one or more ontologies at run time in order to, for example, use 
their content in operations of information searching. Such is the case of 
Web searchers for the Semantic Web, such as Swoogle [88], which ac-
cess over 10,000 ontologies to execute semantic searches. 

Other applications framed inside this category are those that use ontolo-
gies as database substitutes, for information storage. Proposals exist to 
convert pre-existing databases into ontologies, assuming that the applica-
tions which previously accessed the original database now should access 
the ontology, constituting what has been named by us, following Guarino 
[43], ontology-aware software. 

Among the proposals for transforming databases into ontologies is that of 
Barrasa [6], described in detail in Chap. 11 of this book, who has defined a 
language known as R2O for mapping relational databases into ontologies, us-
ing a mapping processor called ODEMapster, both for generating the ontol-
ogy (also called the “semantic repository of data”) as well as for the execu-
tion of queries on the ontology. This facilitates the transformation of the 
applications that use a relational database to allow semantic access to the 
content available in the database. 

Other work similar to that previously discussed is that of Brauner et al. 
[11], who have gone further, applying a mechanism of transformation to sev-
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eral databases, in order to create an ontology-based catalogue which serves 
as a mediator to federated databases, and which offers centralized access to 
the data. 

Although no proposal of this sort has been presented in Table 2.5, to con-
clude we will mention the applications that are being developed for the Se-
mantic Web, considered in the category of “ontology-aware software”, as 
the use of ontologies is and will be common place in the future development 
of these application types. And if we have “Service-oriented Architectures” 
(SOAs), with the use of Semantic Web services in the form of uncoupled, 
self-contained, self-described and semantically annotated software compo-
nents, the ontologies will be used to describe not only the domain knowledge 
of these services, but also the interaction process of applications with these 
services, in such a way that eases the discovery, composition and execution 
of these services, thereby offering more complex functionality. For all this, it 
is fundamental that ontologies are used for Web services modeling, such as 
WSMO [78], not only by the creators of such services, in order to semanti-
cally annotate them, but also by the consumers, for discovery and use of the 
services. 
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3.1 Introduction 

Auyang [2] described engineering as “the science of production”. This and 
many other definitions of engineering put an emphasis on disciplined arti-
fact creation as the essence of any engineering discipline. However, the 
material object produced by every engineering discipline is not necessarily 
of a similar nature. The case of software engineering is particularly rele-
vant in the illustration of such differences, since software as an artifact is 
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acknowledged as a very special piece of human work. The special nature 
of software was attributed by Brooks [7] to “complexity” as an essential 
characteristic. The following quote from Brook’s paper illustrates the pre-
supposed impact of complexity in the activities of engineering: 

Many of the classic problems of developing software products derive 
from this essential complexity and its nonlinear increases with size. 
From the complexity comes the difficulty of communication among 
team members, which leads to product flaws, cost overruns, and 
schedule delays. From the complexity comes the difficulty of enumer-
ating, much less understanding, all the possible states of the program, 
and from that comes the unreliability. From complexity of function 
comes the difficulty of invoking function, which makes programs hard 
to use. From complexity of structure comes the difficulty of extending 
programs to new functions without creating side effects. From com-
plexity of structure come the unvisualized states that constitute secu-
rity trapdoors.

The term “essential” (as opposed to “accidental”) is a well-known tool 
for ontology engineers [17], which helps in determining the properties of 
concepts that objects possess “always and in every possible world”. The 
position of Brooks on the essentials of the object of the discipline leads to 
a particular conception of software engineering as a human endeavour that 
attempts to tackle an inherently complex problem, since it takes as a point 
of departure the fact that complexity is a feature that cannot be removed 
from the engineering process. Consequently, it is difficult to consider 
methods that are definitive for the production of software, and the field is 
expected to change as methodologies are introduced and applied in an at-
tempt to manage, to the extent possible, the complexity of the activities. 
This has a consequence on research and enquiry, since the qualities of a 
tool or method to tackle software complexity are difficult to assess, and 
this in turn leads to a plurality of approaches. Such diversity leads to diffi-
culties in contrasting the appropriateness of techniques in terms of rational 
enquiry methods such as those established by Popper [12] in his method 
for scientific discovery.     

Empirical research on proposed software methods, processes, tools and 
techniques are of course fundamental to the discipline. In addition, ontol-
ogy engineering is also important from our viewpoint for the evolution of 
the discipline of software engineering, at least in two dimensions. On the 
one hand, ontology may help in the organization and meta-analysis of em-
pirical data and empirical approaches [6], facilitating an adequate com-
parison and evaluation of methods, techniques or tools. On the other hand, 
ontologies translated into machine-understandable representations may 
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help in the development of computerized tools that, to some extent, take 
into account the purpose and consequences of the diverse software engi-
neering activities. Even though we do not see ontologies as the “silver bul-
let” of every software production problem, they are promising tools to 
help in the work of researchers and practitioners, and they would also 
serve as an element of analysis and discussion for engineers and for learn-
ing about the discipline.   

Consensus-reaching approaches to ontology engineering are deemed as 
appropriate for the crafting of representations of the concepts of some 
concrete domains. Nonetheless, in some domains the engineer can find 
pre-existing processes of consensus-reaching on conceptual frameworks. 
This is the case of software engineering, in which the SWEBOK project [1, 
8] is the result of a considerable effort on the collaborative production of a 
subset of the knowledge of the discipline that is as of today subject to little 
controversy in the community of researchers. In addition to the collabora-
tive effort, which will be briefly described next, the project adopts a litera-
ture-based approach [14] in selecting some relevant articles. Thus, the 
SWEBOK guide provides a ground of rationality and consensus that con-
stitutes a valuable input for ontology engineering.    

The chapter by Ruiz and Hilera in this volume provides an overview of 
current approaches to the ontology of software engineering, some of them 
based on the SWEBOK. This chapter now concentrates on the specifics of 
two approaches to SWEBOK-based ontological enquiry that are comple-
mentary in their objectives and methods.   

The rest of this chapter is structured as follows. Section 3.2 provides an 
account of the SWEBOK as a project, its main principles and its method 
from creation to revision. Then, Sect. 3.3 describes some results of a proc-
ess of enquiry on SWEBOK-based ontology from the viewpoint of the ex-
perimental study of the process of rational argument and consensus-
reaching by software engineers. Later on, Sect. 3.4 provides the comple-
mentary view of producing ontological representations linked to common-
sense knowledge bases, analysing the benefits of reuse of existing onto-
logical engineering and of being prepared for the construction of ontology-
based tools. On the basis of the experiences described in Sects. 3.3 and 
3.4, Sect. 3.5 sketches the main ontological elements distilled. 

3.2 History and Principles of the SWEBOK Project 

The Guide to the SWEBOK should not be confused with the Body of 
Knowledge itself, which already exists in the published literature. The 
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purpose of the Guide is to describe what portion of the Body of Knowl-
edge is generally accepted, to organize that portion, and to provide a topi-
cal access to it. The Guide to the SWEBOK was established with the fol-
lowing five objectives: 

1. To promote a consistent view of software engineering worldwide. 
2. To clarify the place – and set the boundary – of software engi-

neering with respect to other disciplines such as computer sci-
ence, project management, computer engineering and mathemat-
ics.

3. To characterize the contents of the software engineering disci-
pline.

4. To provide topical access to the software engineering Body of 
Knowledge.

5. To provide a foundation for curriculum development and for in-
dividual certification and licensing material. 

The first of these objectives, a consistent worldwide view of software 
engineering, was supported by a development process which engaged ap-
proximately 500 reviewers from 42 countries in the Stoneman phase 
(1998–2001) leading to the Trial version, and over 120 reviewers from 21 
countries in the Ironman phase (2003) leading to the 2004 version. More 
information regarding the development process can be found in the Pref-
ace and on the Web site (www.swebok.org). Professional and learned so-
cieties and public agencies involved in software engineering were offi-
cially contacted, made aware of this project, and invited to participate in 
the review process. Associate editors were recruited from North America, 
the Pacific Rim and Europe. Presentations on the project were made at 
various international venues and more are scheduled for the upcoming 
year. 

The second of the objectives, the desire to set a boundary for software 
engineering, motivates the fundamental organization of the Guide. The 
material that is recognized as being within this discipline is organized into 
the first t10 Knowledge Areas (KAs) listed in Table 3.1. Each of these 
KAs is treated as a chapter in this Guide.  

In establishing a boundary, it is also important to identify what disci-
plines share that boundary – and often a common intersection – with soft-
ware engineering. To this end, the Guide also recognizes eight related dis-
ciplines, listed in Table 3.2. Software engineers should, of course, have 
knowledge of material from these fields (and the KA descriptions may 
make reference to them). It is not, however, an objective of the SWEBOK
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Guide to characterize the knowledge of the related disciplines, but rather 
what knowledge is viewed as specific to software engineering. 

Table 3.1. The SWEBOK Knowledge Areas (KAs)   

Software requirements 

 Software design 

 Software construction 

 Software testing 

 Software maintenance 

 Software configuration management 

 Software engineering management 

 Software engineering process 

 Software engineering tools and methods 

 Software quality  

Table 3.2. Related disciplines 

Computer engineering  Project management 
Computer science   Quality management 
Management   Software ergonomics 
Mathematics   Systems engineering 

3.2.1 Hierarchical Organization 

The organization of the KA descriptions or chapters supports the third of 
the project’s objectives – a characterization of the contents of software en-
gineering. The Guide uses a hierarchical organization to decompose each 
KA into a set of topics with recognizable labels. A two- or three-level 
breakdown provides a reasonable way to find topics of interest. The Guide 
treats the selected topics in a manner compatible with major schools of 
thought and with breakdowns generally found in industry and in the soft-
ware engineering literature and standards. The breakdowns of topics do 
not presume particular application domains, business uses, management 
philosophies, development methods, and so forth. The extent of each 
topic’s description is only that needed to understand the generally ac-
cepted nature of the topics and for the reader to successfully find reference 
material. After all, the Body of Knowledge is found in the reference mate-
rials themselves, and not in the Guide. 
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3.2.2 Reference Material and Matrix 

To provide a topical access to the knowledge – the fourth of the project’s 
objectives – the Guide identifies reference material for each KA, including 
book chapters, refereed papers, or other recognized sources of authorita-
tive information. Each KA description also includes a matrix relating the 
reference material to the listed topics. The total volume of cited literature 
is intended to be suitable for mastery through the completion of an under-
graduate education plus four years of experience. 

In the 2004 edition of the Guide, all KAs were allocated around 500 
pages of reference material, and this was the specification the associate 
editors were invited to apply. It may be argued that some KAs, such as 
software design for instance, deserve more pages of reference material 
than others. Such modulation may be applied in future editions of the 
Guide.

It should be noted that the Guide does not attempt to be comprehensive 
in its citations. Much material that is both suitable and excellent is not ref-
erenced. Material was selected in part because – taken as a collection – it 
provides coverage of the topics described. 

3.2.3 Depth of Treatment 

From the outset, the question arose as to the depth of treatment the Guide 
should provide. The project team adopted an approach which supports the 
fifth of the project’s objectives – providing a foundation for curriculum 
development, certification and licensing. The editorial team (see Fig. 3.1) 
applied the criterion of generally accepted knowledge, to be distinguished 
from advanced and research knowledge (on the grounds of maturity) and 
from specialized knowledge (on the grounds of generality of application). 
The definition comes from the Project Management Institute: “The gener-
ally accepted knowledge applies to most projects most of the time, and 
widespread consensus validates its value and effectiveness.”30

However, the term “generally accepted” does not imply that the desig-
nated knowledge should be uniformly applied to all software engineering 
endeavours – each project’s needs determine that – but it does imply that 
competent, capable software engineers should be equipped with this 
knowledge for potential application. More precisely, generally accepted 
knowledge should be included in the study material for the software engi-

                                                     
30 A Guide to the Project Management Body of Knowledge, 2000 Edition, Project 

Management Institute, Newport Square, PA (www.pmi.org).  
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neering licensing examination that graduates would take after gaining four 
years of work experience. Although this criterion is specific to the US 
style of education and does not necessarily apply to other countries, it was 
deemed useful. However, the two definitions of generally accepted knowl-
edge should be seen as complementary. 

Generally Accepted 
Established traditional practices recommended 

by many organizations 
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Advanced and Research 
Innovative practices tested and used only by 
some organizations and concepts still being 

developed and tested in research organizations 

Fig. 3.1. Categories of knowledge   

3.3 The Ontology of the SWEBOK from a Conceptual and 
Consensus-Reaching Perspective 

This Body of Knowledge is currently organized as a taxonomy subdivided 
into 10 KAs designed to discriminate among the various important con-
cepts only at the top level. Of course, the software engineering knowledge 
is much richer than this high-level taxonomy and currently resides in the 
textual descriptions of each KA. Such textual descriptions vary widely in 
style and content. The conceptual ontology approach is therefore used to 
analyse the richness of this body of knowledge, to improve its structuring, 
and to develop consensus on its detailed terminology.  

The development of the software engineering domain ontology requires 
three phases (see Fig. 3.2): (1) Proto-ontology construction. (2) Internal 
validations cycle. (3) External validation (and possibly extension) cycle. 

Proto-ontology construction: analysis and extraction (one SWEBOK
KA at a time) of the concepts, relations between concepts and axioms (as-
serted necessary or necessary and sufficient conditions), terms and defini-
tions existing in the SWEBOK Guide and related IEEE and ISO standards.  
Automatic term extraction tools having as input a corpus of text in natural 
language have been used to complete the list of concepts and relationships, 
identified through the analysis of the documents already mentioned. 
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Fig. 3.2. The SWEBOK ontology project phases 
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Internal validation cycle:  a series of validation (and possibly exten-
sion) cycles, at various instances levels (internal: ETS – UQAM – SPIN,
etc.), aiming to build a progressively larger consensus, concerning the 
elements in the software engineering proto-ontology.  

External validation cycle: a series of external validation cycles will be 
required, aided by internationally reputed software engineering domain 
experts, to build progressively a consensus concerning the concepts, at-
tributes and relations between concepts that should be present in the final 
ontology.   

The proto-ontology development phase has identified in the SWEBOK
Guide over 4000 concepts, 400 relationships, 1200 facts as well as 15 
principles. Table 3.3 presents a breakdown by KAs.

Table 3.3. Overview of quantity of elements currently in the SWEBOK proto-
ontology 

Relationships Concepts Facts Principles 
SWEBOK main
structure 

4 48 55 0 

Ch 01 Introduction 0* 0* 0* 0*
Ch 02 Software  
Requirements

24 240 72 0 

Ch 03 Software Design 44 307 211 2 
Ch 04 Software  
Construction

21 214 63 0 

Ch 05 Software Testing 96 1001 165 7 
Ch 06 Software  
Maintenance 

44 706 140 0 

Ch 07 Software  
Configuration Management 

31* 85* 46* 0*

Ch 08 Software  
Engineering Management 

33* 72* 46* 0*

Ch 09 Software  
Engineering Process 

45 587 134 1 

Ch 10 Software Engineering 
Tools and Methods 

19 263 62 0 

Ch 11Software Quality 34 447 61 5 
Ch 12 Related Disciplines of 
Software Engineering 

12 171 32 0 

TOTAL 407 4141 1087 15

*: partial counting (to be finalized in the future) 

The testing maintenance and process KAs include the largest number of 
concepts and relationships, while the testing and quality include most of 
the principles identified.
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The major contributions expected from this approach are: (1) Identifica-
tion of the main inputs, outputs and activities to be performed in order to 
develop the aimed ontology. (2) Identification of the main software engi-
neering concepts, terms, definitions, relations between classes/concepts 
(IsA, Part–hole, and other specific relationships) and axioms describing 
the concepts. (3) Validation (and possibly extension) of the software engi-
neering ontology. (4) Progressive building of a consensus concerning the 
concepts in the ontology aided by international software engineering do-
main experts.

Besides the benefits already mentioned in Sect. 3.1, the use of the 
“software engineering ontology” which is a result of this project may also 
contribute to the development of additional content validation by auto-
matic cross-correlation validation (in addition to the continuous effort 
done by the SWEBOK review team) across the 10 KAs integrated in the 
SWEBOK Guide.  This would ensure that all the concepts and definitions 
are used in a consistent manner throughout all of the SWEBOK’s areas of 
knowledge.

3.4 The Ontology of the SWEBOK as a Formal Artifact 

The SWEBOK Guide provides a foundation for the development of an on-
tology for software engineering, since it is the result of a process of do-
main expert review and validation, and provides references to other rele-
vant sources. Nonetheless, the process of analysing the Guide to come up 
with a logically coherent ontology is by no means a simple process. Many 
of the entities described in the Guide to the SWEBOK are complex activi-
ties that produce interrelated artifacts. These entities have temporal, mate-
rial and conceptual facets that should be clearly defined, and which are 
well known in existing upper ontologies and large commonsense bases. If 
the emphasis of ontology is in providing computational semantics to the 
representation, formal approaches are required beyond the elaboration of 
consensual meanings as described above. This change in focus can be con-
sidered as operational, in the sense that it is a medium towards the end of 
providing automation or delegating tasks to agents or software modules. 
This leads to a very different notion of the ontology development process 
in which the criterion for inclusion is usefulness for computer-based appli-
cations. Such a notion is aligned with the current view of the Semantic 
Web [4], which emphasizes the development of a technology based on 
formal description logics [3].  
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In practice, the formal approach entails that many of the aspects and de-
scriptions in the SWEBOK that may be considered relevant in conceptual 
approaches are not appropriate for operational scenarios. For example, a 
statement such as the following, “Numerous models have been created to 
develop software, some of which emphasize construction more than oth-
ers” (page 4-3 of the SWEBOK Guide), may be considered appropriate for 
the narrative of the Guide, but need not have a formal representation, since 
it is simply stating a vague narrative about a vague aspect of models. Even 
in the case where vagueness could be handled somewhat, it is not clear 
that this provides significant knowledge but instead an anecdotal statement 
useful for human readers only. In consequence, a formal approach for the 
ontology of the SWEBOK cannot be expected to cover every paragraph, 
but to extract only relevant, well-defined or well-definable sentences.

 There exist proposals for the standardization of upper ontologies [11] 
that could be used as a basis for such formal semantics. In fact, the IEEE
P1600.1 Standard Upper Ontology Working Group (SUO WG) is working 
towards that end. Given the past activity of the IEEE and other organiza-
tions in producing standards regarding the vocabulary and concepts of 
software engineering, there exists an opportunity to exercise and analyse 
the discipline from the perspective of upper ontologies as a principal case 
study. 

A technique for validating the semantic precision of conceptual sche-
mas is that of providing explicit links to concepts and relations that are al-
ready described in larger upper ontologies. Concretely, we make use here 
of the OpenCyc 0.9 knowledge base. This may be considered as an alter-
native or a complement to other analysis techniques such as the Bunge–
Wand–Weber [16], whose aim is fostering the reuse of existing open 
knowledge engineering. In addition, the mapping to modern Web-enabled 
ontology languages such as OWL becomes a straightforward step.  

OpenCyc is the open source version of the Cyc Knowledge Base [10], 
which contains over 200,000 atomic terms, and is provided with an asso-
ciated efficient inference engine. Cyc attempts to provide a comprehensive 
upper ontology of “commonsense" knowledge, using as its underlying 
definition language a variant of predicate calculus called CycL. In what 
follows, some of the main issues in modelling the SWEBOK by linking 
definitions to OpenCyc are provided. The method used for such a process 
can be roughly described in the following steps: 

1. Find one or several terms that subsume the category under consid-
eration.

2. Check carefully that the mapping is consistent with the rest of the 
subsumers inside OpenCyc. 
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3. Provide the appropriate predicates to characterize the new cate-
gory. 

4. Edit it in Protégé or another editor to come up with the final for-
mal version. 

This process has the advantage of being possible for the individual work 
of an expert. The outcomes of the process can then be contrasted with the 
work of others. In any case, the process results in much more efficient and 
structured ontology engineering work, since the argumentation against or 
in favour of a given concept or predicate is put in the formal context of 
OpenCyc, which eases the process of decision making and avoids the dis-
cussion on subjective or personal opinions that are not yet put in formal 
terms.   

3.5 Fundamental Elements of the Ontology of the 
SWEBOK

This section summarizes the main conceptual elements identified during 
the course of the research work of the authors of this chapter. The ele-
ments covered are cross-cutting many KA of the Guide and, as such, they 
may be considered as a “high-level” conceptual subset that gives coher-
ence to the specifics of each KA. Here, only the more pervasive and rele-
vant will be discussed. The exposition goes from the material elements of 
everyday engineering activities to the representation of prescriptive 
knowledge, which is by its own nature much more challenging to capture. 

3.5.1 Activities, Artifacts and Agents 

Engineering is basically an artifact-producing activity carried out by engi-
neers. At this level, engineering can be seen as a flow of activities, and in 
an ideal world, every activity, its doer and the artifacts used, changed or 
created should be represented. This consideration does not care about the 
ways of doing the activities (the methods) but only of the representation of 
the activities as actually enacted. In fact, this is the recording of the actual, 
real empirical experience of engineering as a human activity. That objec-
tivity makes this a somewhat easier level to be represented. First, the engi-
neers that do the actual work can be characterized as a subset of the class 
oc_IntelligentAgent, defined in OpenCyc in the following manner: 
“An agent is an IntelligentAgent if and only if it is capable of knowing and 
acting, and capable of employing its knowledge in its actions.” From an 
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ontological viewpoint, the term SoftwareEngineer is not a rigid prop-
erty [17], since being a software engineer is contingent to a work position, 
and it is not an essential property of the individuals. This leads to the first 
proposition for the general mapping. 

Proposition #1 SoftwareEngineers are a class of 
oc_IntelligentAgents (excluding collectives). Software engineer-
ing activities will require individuals of this class. 

It is important to separate the individual workers from collectives (e.g. 
organizations or teams). This entails that SoftwareEngineer is disjoint 
with oc_MultiIndividualAgent-Intelligent, which concretely 
addresses collectives with the capability of acting purposefully. Teams of 
software engineers might be considered relevant since productivity is con-
nected to team dynamics as recognized in software estimation models [5]. 
However, individuals are the unit of responsibility and they possess spe-
cific competencies or skills that provide them with a unique meaning.  

Activities are the fabric of engineering work. Activities in OpenCyc can 
be represented as oc_Action instances. These actions are defined as 
“The collection of oc_Events that are carried out by some ‘doer’ (see 
oc_doneBy). Instances of oc_Action include any event in which one or 
more actors effect some change in the (tangible or intangible) state of the 
world, typically by an expenditure of effort or energy.” An oc_Event is 
in turn “a dynamic situation in which the state of the world changes; each 
instance is something one would say ‘happens’”. Going a step further, en-
gineering activities are in fact oc_Purposeful-Actions, as “each in-
stance of PurposefulAction is an action consciously, volitionally, and pur-
posefully done by at least one actor”.  

Proposition #2 Actual software engineering activities, as enacted in 
software projects, are a specific class of PurposefulAction situated 
in the context of a project that has as its final outcome the creation or 
modification of a software program.  

The term “software program” as a generic intellectual product can be 
mapped to oc_ComputerProgram-CW that is “distinct from computer 
code and from both running and installed programs.” The oc_-
purposeOfEvent predicate can be used to explicitly declare the soft-
ware-creating purpose. This provides a necessary and sufficient definition 
to classify SoftwareEngineeringActivity(ies). From this defini-
tion of activities, the wide array of activities that are commonly identified 
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in software processes can be characterized. Nevertheless, the definition of 
each kind of activity requires the specification of different aspects, includ-
ing the kind of engineer, the outcomes, and the usual sequence with other 
kinds of activities. For example, according to the SWEBOK Guide “re-
quirements elicitation” is the “first stage” and it is mainly concerned with 
“getting human stakeholders to articulate their requirements”. 

The third class of basic elements of actual engineering practice is the ar-
tifacts used, created or changed. An oc_Artifact is “an at least par-
tially tangible thing which was intentionally created by an oc_Agent (or 
a group of Agents working together) to serve some purpose or perform 
some function”. 

Proposition #3 The elements used, created and modified in software 
engineering activities are specific kinds of Artifacts.

An important ontological differentiation for artifacts in software engi-
neering is that of Documents and their “propositional” content, i.e. the in-
formation they contain. This is clear in OpenCyc with the categories of 
oc_InformationBearingThings and oc_Propositional-
InformationThings. This allows a clarification of the difference of 
the propositional content and the thing that conveys it. For example, a re-
quirements document can be broken into several documents, but the pro-
positional content is unique irrespective of its digital or hardcopy form. 
When speaking about the software process, the important part is the pro-
positional content, while the concrete things have some degree of arbi-
trariness in formatting, and they are only important for cataloguing proc-
esses specific to each project.

The basic definitions so far provide room for the classification of most 
of the elements present in the SWEBOK Guide in the form of a description 
of activities. However, there are specific elements that should be ad-
dressed since they have a special signification in engineering.  

3.5.2 Models, Specifications and Methods 

The word “model” has 297 occurrences in the SWEBOK Guide. Model-
Artifact provides the appropriate semantics for the concept: “a collec-
tion of artifacts; a subset of oc_VisualInformationBearing-
Thing. Each element of Model-Artifact is a tangible object designed 
to resemble and/or represent some other object, which may or may not ex-
ist tangibly.” The ModelFn function designates all the models of a given 
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thing, e.g. ModelFn(SoftwareComponent). This is a concrete charac-
terization of models that seems to match all the uses of model in the 
SWEBOK. As information-bearing objects, the models are information-
bearing things (oc_IBT) as well, so that their contents can be represented 
in a propositional form, through the predicate oc_contains-
InfoPropositional-IBT (IBT PIT) that links to a propositional in-
formation thing (PIT). PITs are in themselves microtheories, thus al-
lowing the definition in logical terms of the actual contents of the model. 
This could be applied, for example, to develop systems that represent 
UML diagrams through logics, which will enable a degree of increased 
automation.

The Guide to the SWEBOK somewhat differentiates models and arti-
facts, as in the software design KA “The output of this process is a set of 
models and artifacts that record the major decisions that have been 
taken”, but ontologically this distinction is irrelevant. 

The word “Specification” appears 138 times in the Guide. For example, 
“Requirements specification typically refers to the production of a docu-
ment, or its electronic equivalent, that can be systematically reviewed, 
evaluated, and approved.” The production of a document is an 
oc_PurposefulAction. But the oc_Specification itself is an 
oc_PropositionalConceptualWork, which enables a representation 
of the contents of the specification in logics (different from the “specifica-
tion document” that is an oc_InformationBearing-Thing).

An ontologically different concept related to activities in software engi-
neering is that of “methods” for activities, i.e. the normative specification 
of “blueprints” for potential courses of activity. These specifications have 
an intrinsic prescriptive character, so they should not be specified as ac-
tions, but rather as specifications.  

3.5.3 Theoretical Standpoints and Guidelines 

There is not currently a uniform or standard form to represent theoretical 
positions or standpoints in ontological engineering. Further, the discipline 
of software engineering has not produced a relevant body of theories or 
laws that explain the discipline, and most of the knowledge is in the form 
of guidelines or generic hypotheses. In fact, the SWEBOK Guide does not 
provide a classification of theories and frameworks according to conven-
tional scientific terms, so this is an area that is relevant for future revi-
sions. However, some elements backed by empirical evidence are yet to be 
referenced in the SWEBOK, and this calls for specific representation tech-
niques. For example, the well-known “laws of software evolution” [9] re-
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quire a careful consideration. For the sake of illustration, we will take here 
the following statement from these laws: “An E-type program that is used 
must be continually adapted else it becomes progressively less satisfac-
tory.” This requires the following elements to be addressed: 

First, a characterization of E-TypeProgram is required. Computer 
programs as conceptual works (different from their copies or physical 
representation) are captured by the generic oc_ComputerProgramCW
term. Consequently, types of programs could be defined from such 
abstraction. E-type programs as “software that implements an 
application or addresses a problem in the real world” could be 
characterized by linking them to representations of the problem 
addressed.
The representation of the evolution of the program. For this, OpenCyc 
provides the oc_programCode predicate connecting the programs as 
conceptual entities to oc_ComputerCode instances. In turn, these can 
be subject to a modelling of time-stamped revisions or versions that 
could be used to assess if a program is being subject to evolution or not. 
This enables the quantification of the adaptations (and even of the 
extent in terms of modifications) in the time scale. But the term 
“continually adapted” is by its nature vague, and some measure or 
statistical model would be required to assess it from a computational 
viewpoint.
The representation of the “use” of a program. This would require a 
tracking of the lifecycle of the program that in some cases might be 
difficult, but for reasons outside the representation itself.
A representation of what “satisfactory” means. This is probably the 
most controversial issue, since there is not a single universally accepted 
standard of “satisfactoriness”. Satisfaction is usually mentioned as one 
of the aspects of usability [15], but other elements of the “software 
quality” concepts could also be considered. In addition, satisfaction is 
often measured through questionnaires or interviews with users, 
although there is not a standard measuring instrument for it. 

If characterizations for the above could be clearly defined, a software 
agent might be in a position to examine representations of actual software 
projects and trigger an alert when a program is requiring an evolution. An 
inference rule for the state of “Software-RequiringAdaptation” could be 
formulated. Further, the provision of ontology-based tools to represent ac-
tual software projects could automatically find evidence against the state-
ment.
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However, as can be appreciated in the example, this requires the opera-
tionalization of a number of elements that are only vaguely defined in the 
original statement. This constitutes a research direction in itself, and is be-
yond the scope of a simple representation of the SWEBOK Guide. An al-
ternative may be that of codifying such kinds of statements in a form that 
is useful for cataloguing a human query, but that does not entail any kind 
of delegation of tasks or decisions to software. This could be useful but it 
is not a true representation of knowledge in the area in the sense of having 
computational semantics. In consequence, this level of theory inside the 
ontology could be seen as the ultimate goal, but requiring substantial work 
beyond the formulation of the SWEBOK in ontology languages. 

An important element introduced by the disparity of theoretical or 
methodological standpoints in software engineering is that of conflicting 
knowledge. This is prominent in the diversity of approaches to the soft-
ware process, but it may also arise in more specific situations. Following 
the example above, it might be the case that different positions on what 
“continuous adaptation” is in term of frequency (or on the definition for 
“satisfactoriness”) lead to incompatible views. This would require either 
the provision of separate ontologies or the use of a representational 
mechanism that allows such a kind of potential inconsistency or diver-
gence. The concept of microtheory in OpenCyc provides a such represen-
tational mechanism, intended to organize assertions that depend on a 
“shared set of assumptions on which the truth of the assertions depends”.  
Definitions inside the same microtheory need to be consistent, but this is 
not required across microtheories. 

Summing up, the logical tools are prepared for the representation of 
theory or assumptions, but these require more elaboration. Arguably, this 
could be considered a future requirement for the revision and evolution of 
the SWEBOK.

3.6 Conclusions 

The SWEBOK represents the outcome of a significant collaborative effort 
in shaping the scope of software engineering as a discipline. The elabora-
tion of knowledge representations about the contents and structure of the 
Guide represents a further step in the clarification of such knowledge, and 
may also serve as a revision tool for the Guide itself [13]. Nonetheless, 
there are different perspectives that can be taken when developing an on-
tology of the SWEBOK. These range from conceptual representations that 
attempt to unveil some conceptual links between parts of the Guide to 
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formal approaches oriented to develop software that automates some tasks. 
While the former may take the form of topic maps and can be used, for 
example, to provide more graphical parts of the Guide, the latter are only 
oriented to machine consumption. Both views and others, intermediate or 
similar, serve different purposes, but all of them are important tools for 
enquiry on the contents of the discipline.  
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4.1 Introduction 

Software development is a complex activity that usually involves people, 
organisations and technologies with very diverse characteristics. People’s 
expectations and skills vary greatly; organisations’ capability and financial 
constraints are diverse; and technologies keep changing and breaking 
through at an increasing pace. In such a context, the successful construc-
tion of a piece of software that adds value to all involved stakeholders 
proves difficult. As in any other complex enterprise, lack of a common 
vocabulary and, more generally, a common worldview, are major causes 
of misunderstanding and cross-talking, which, in turn, easily lead to unful-
filled expectations and stakeholder disappointment. Nowadays, software 
controls life-critical as well as mundane devices, from lifts to aeroplanes 
to telephone exchanges. In this regard, unfulfilled expectations in a piece 
of software usually mean faulty functionality, decreased robustness or re-
liability, or some other manifestation of weakened quality. 

For this reason, utilising a common set of concepts, as well as a com-
mon set of terms to refer to these concepts, is crucial for the development 
of high-quality software. It can be argued that fewer misunderstandings 
and misinterpretations will arise in any communication process when the 
involved parties use an agreed-upon, well-defined conceptual base. For the 
sake of common sense, this common conceptual base, or ontology, must 
have the following properties: 
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It must be complete, so that no area of software development lacks 
coverage.
It must be unambiguous, so that misinterpretations are avoided. 
It must be taken from the appropriate domain, so that concepts are fa-
miliar and intuitive to their users. 
It must be as generic as possible, so that different usages in different 
contexts are possible. 
It must be extensible, so that new concepts can be added to it without 
breaking the existing ones. 

Completeness can be achieved by looking at the different activities per-
formed within software development enterprises, and by ensuring that the 
ontology covers all of them. Ambiguity can be avoided by providing sim-
ple and concise definitions for each concept, as well as a semi-formal 
model of the complete ontology. This semi-formal model is, in our case, 
an object-oriented class model that shows the structure of the ontology. In-
tuitiveness can be obtained by looking at the different communities that 
participate in software development enterprises and by providing a con-
ceptual subset particularly adapted for each of them. For example, a com-
puter programmer does not use the same concepts as a project manager. 
Genericity can be attained by keeping the ontology as small and as simple 
as possible, and by trying to remove from it, rather than add to it, as many 
concepts as possible. The aim is to achieve maximum expressiveness by 
being minimal. Finally, the ontology can be made extensible by providing 
the appropriate mechanisms and anchor points from which to add new 
concepts. In our case, the mechanism is strongly based in standard object-
oriented mechanisms such as subtyping. 

Many authors and efforts have proposed metamodels or frameworks 
that partially define ontologies for software development. For example, 
the popular UML [21, 22] defines the concepts that a software developer 
may use in order to describe a system (such as Class, Attribute and Opera-
tion). Standards such as ISO/IEC 12207 [14] and 15288 [15] describe the 
process that software developers may follow in order to design and build a 
system and, in doing so, make use of an implicitly defined set of concepts 
(such as Process and Outcome). OPEN [6] and SPEM [23] specify the 
relevant concepts that may be used in order to describe a process to be fol-
lowed by software developers (such as Activity and Iteration). ISO/IEC
15504 [16] and CMMI [27] define the relevant concepts to perform capa-
bility or maturity assessment (such as Process and Task). Each of these 
approaches defines a cohesive set of concepts that, although useful in its 



4. An Ontology for Software Development Methodologies and Endeavours 125 

local domain, is not complete, unambiguous, intuitive, generic and exten-
sible enough as to qualify as an ontology for software development. 

This chapter introduces an ontology for software development that ex-
hibits all the above-mentioned properties, and which has been constructed 
by taking the best bits of the above-mentioned standards and organising 
them into a completely new architecture. This ontology contains a meta-
model plus the necessary architectural infrastructure to enable method en-
gineers and software developers to successfully interact with a common 
conceptual framework. 

4.2 Ontology Architecture 

4.2.1 The Communities Involved 

The ontology presented in this chapter is intended to be understood and 
used by people directly involved in software development enterprises. 
Those people belong to two major communities: 

Software developers, who perform software development activities in 
order to construct software products by applying a certain methodology. 
Method engineers, who define the methodology to be used by software 
developers in order to develop software products. 

The terms “software developer” and “method engineer” refer to roles 
that individuals or organisations may play. In some enterprises, the same 
individuals can play both, while in others different people will play differ-
ent roles. Also, we need to clarify the term “method” used in “method en-
gineer”: as far as our work is concerned, “method” is a synonym of 
“methodology” [17, 24]. Furthermore, we must say that the usage of the 
term “method” or “methodology” does not imply formal, explicitly de-
fined rules; it simply means the specification of the process followed plus 
the modelling approach undertaken in order to develop some software. 

Given the two above-described communities, the following observa-
tions can be made. First of all, method engineers construct methodologies 
for software developers. Secondly, software developers use methodologies 
in order to construct software products. In this sense, software developers 
are the users of what method engineers produce, namely methodologies. 
This is important because, in this context, a methodology can be seen as a 
product developed by one community for the other, and all the usual user-
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oriented and quality assurance techniques that are often utilised in other 
engineering enterprises can also be used here. We can, therefore, assume 
that a methodology will have a set of requirements that method engineers 
will need to specify [25]; similarly, we can talk about the correctness, ro-
bustness, usability and extensibility of a methodology. Our ontology, be-
ing a framework within which methodologies will be constrained, must 
contemplate these quality factors appropriately. 

When faced with the task of constructing a methodology, method engi-
neers often use a given set of concepts in order to specify the process to 
follow and the modelling approach to be undertaken. Similarly, when 
software developers apply a methodology in order to construct a software 
product, they also employ a given set of concepts, given by the same on-
tology and potentially refined by the methodology being used. For exam-
ple, our ontology defines the concept of Task and establishes that tasks 
can be performed by developers for a given purpose. This means that 
software developers, from the perspective of this ontology, will perform 
tasks. When defining a particular methodology, method engineers can re-
fine the concept of Task into more concrete and specialized concepts, such 
as Capture Requirements Task or Write Source Code Task; software de-
velopers, therefore, will be able to perform tasks of either of these types. 
Notice how the specific task types are defined by the particular methodol-
ogy being used, whereas the general concept of a Task, present at both the 
methodology definition and software development levels, is defined by the 
common ontology. 

From the previous paragraphs, we can see how a concept defined by the 
ontology (e.g. Task) is refined by method engineers into more specific 
concepts and delivered as a readily usable product to software developers. 
The concept of Task (or, for that matter, most of the concepts in the ontol-
ogy) must be understandable by both method engineers and software de-
velopers, since both communities will closely interact with it. At the same 
time, each of the two communities does not necessarily interact with the 
concept in the same fashion; for example, software developers are typi-
cally concerned with the duration of a task, while method engineers do not 
care about the duration of tasks, focusing instead on establishing the spe-
cific purpose of each kind of task (e.g. capturing requirements or writing 
code). We can say that many concepts in the ontology, such as Task, have 
two facets, each targeting one specific community. Although the overall 
concept of what a task is must be shared by both communities, the detailed 
location of the concept in its semantic network, as well as its particular at-
tributes, are community-specific. Interestingly enough, some concepts in 
the ontology are only relevant for one of the communities. For example, 
the concept of a Person is only relevant for software developers, since 
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method engineers do not consider specific, individual persons (but, rather, 
kinds of Roles, Teams or, more generically, Producers) when designing a 
methodology. Similarly, the concept of a Conglomerate (i.e. a collection 
of closely related method elements) is important for method engineers for 
organising methodology elements but not significant for software devel-
opers, who just apply the methodology. 

4.2.2 Usage and Ontology Domains 

The ontology presented here is an organised collection of concepts that 
have three major properties: 

Each concept is an intensional definition of a set of potential entities. 
For example, the Task concept stands for all possible tasks that may ex-
ist or be relevant. In this sense, a concept is very much like a type or a 
class [19]. 
Each concept may be related to other concepts by associations. An as-
sociation is a formalisation of potential relationships between entities of 
the corresponding concepts. 
Each concept is intended to be used. Since the ontology itself is just a 
collection of concepts, concept usage must happen through their defini-
tions.

But, how are concepts in an ontology used? We can identify three major 
mechanisms of usage, two of which correspond to two major mechanisms 
in the object-oriented paradigm: subtyping and instantiation. The third 
mechanism is called resource usage. 

Subtyping a particular concept (called the supertype) means creating a 
new concept (called the subtype) that intensionally specifies a subset of 
the entities that are specified by the supertype. For example, the concept 
Task can be subtyped into the concept Write Code Task. This means that 
the definition of Write Code Task must specify a subset of the entities 
specified by the definition of Task; in this example, Write Code Task 
specifies all those tasks that happen to focus on writing code. 

Instantiating a particular concept (called the type) means creating or 
identifying an entity (called the instance) that conforms to the definition of 
the type. For example, the Write Code Task concept can be instantiated 
into an actual writing code task by a software developer. By actually writ-
ing some code, a software developer is creating an instance of the Write 
Code Task concept. 
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We must emphasise that a strong object-oriented approach is being 
taken here and, therefore, all the well-known object-oriented implications 
of subtyping and instantiation are relevant. For example, subtypes inherit 
attributes and associations from their supertypes, type conformance auto-
matically propagates up the subtyping hierarchy and the Liskov Substitu-
tion Principle [18] applies. 

The third way of using the ontology is by resource usage, i.e. by under-
standing and assimilating the information comprised by entities. For ex-
ample, consider a Language concept, which represents any natural or for-
mal language. This concept can be instantiated into specific languages, 
such as C# or Free-Form English. These instances are entities that can be 
used by reading the information contained in them and applying it. No fur-
ther instantiation or subtyping is involved. 

Given that subtyping and instantiation of the concepts in the ontology 
will be supposedly carried out by its users, namely method engineers and 
software developers, we can assume that, at any point in time during the 
life of this ontology, a complex network of concepts and entities will exist. 
For the sake of clarity, concepts and entities are partitioned into three dif-
ferent domains (Fig. 4.1): 

The metamodel domain, which contains a predefined, fixed collection 
of interrelated concepts. 
The method domain, which contains the concepts and instances derived 
from concepts in the ontology by method engineers. 
The endeavour domain, which contains the instances derived from con-
cepts in the method domain by software developers. 

Notice that the three domains have been defined around the communi-
ties that interact with the ontology. The metamodel domain is basically a 
“read-only” repository of information, which contains a predefined collec-
tion of concepts that is not intended to be changed. This collection of con-
cepts, usually called a metamodel, acts as a common standard on which 
the other domains are based. The standardised concepts in this metamodel 
are fully described in following sections. 

The metamodel domain is intended to be used as a starting point by 
method engineers so they can develop methodologies. Method engineers 
will typically use the concepts in the metamodel domain by subtyping and 
instantiation, hence creating new concepts (subtypes of existing ones) and 
entities (instances of concepts). 
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Fig. 4.1. Architecture of the ontology. The three separate domains are depicted as 
horizontal layers. The communities that interact with each domain are indicated 
by dashed ellipses. Concepts and entities are depicted, respectively, by appropri-
ately labelled rectangles and rounded rectangles. Associations are shown as solid 
non-directed lines. Subtyping relationships are shown as solid arrows with a tri-
angular arrowhead. Instantiation relationships are shown as dashed arrows with a 
simple arrowhead. Resource usages are shown as solid arrows with a simple ar-
rowhead and a small circle at its origin 

All these new concepts and entities created by method engineers are 
said to form the method domain. The method domain, in turn, is “read-
only” for software developers, which may refer to it as the “method” or 
“methodology”, since it actually defines what they are expected to do, 
how and why. Software developers will use it by creating instances of 
concepts in it and, as well, by following the guidance explained by enti-
ties. The instances thus created by software developers are said to form the 
endeavour domain. 
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We must emphasise that the placement of a concept or entity in one 
domain or another depends exclusively on its semantics (as defined earlier 
in this section), and not on any predefined structural convention. Ap-
proaches such as UML, SPEM or other OMG-centric frameworks make 
use of the so-called strict metamodelling paradigm [1], which determines 
in which domain (called layers) a concept belongs to based exclusively on 
its structural relationships to other concepts. This approach has been dem-
onstrated to be inappropriate for the representation of complete and com-
prehensive methodological frameworks [8, 12]. In our ontology, concepts 
and entities are placed in the domain where they make most sense to the 
people involved (Fig. 4.2). 

Fig. 4.2. Some sample concepts and entities in the ontology architecture. In this 
example, method engineers have created the Create Class Model concept as a sub-
type of the Task entity in the metamodel, as well as the Class Modelling Lan-
guage entity as an instance of the Language entity in the metamodel. Software de-
velopers have instantiated Create Class Model into a specific instance in the 
endeavour domain, and are using the Class Modelling Language as a resource 

For example, consider the concept of Task. Since this concept is rele-
vant to both method engineers and software developers, and since it is 
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deemed to be generic and common enough to be necessary in most meth-
odologies, Task is placed in the metamodel domain. Different methodolo-
gies, perhaps pertaining to different styles to software development, may 
use different kinds of tasks; for example, an object-oriented methodology 
for information systems development may include a Create Class Model 
Task concept, whereas Extreme Programming [4] does not involve such a 
concept. Create Class Model Task is a subtype of Task, but it is not ge-
neric enough as to belong to the metamodel domain, and therefore it is 
placed in the method domain. When a software developer creates a class 
model, he/she is actually instantiating the Create Class Model Task con-
cept and, since that particular instance is relevant only to that particular 
endeavour (the project he/she is working on), the instance is placed into 
the endeavour domain. 

4.2.3 Product and Process 

In previous sections we have said that a software development methodol-
ogy is the specification of the process to be followed plus the modelling 
approach undertaken in order to develop some software. Although these 
two aspects are different, they are closely related and, more importantly, 
highly dependent on each other. A linguistic simile can be used: the speci-
fication of the process to follow consists of actions to be performed, such 
as create a model, verify a design or determine some requirements. Proc-
ess can be therefore described in terms of verbs. These verbs denote ac-
tions that are to be performed on some objects, which are nouns. As in any 
natural language, the meaning of verbs cannot be specified without 
knowledge of the nouns to which they can be applied. For example, con-
sider a methodology that contains a concept named Create Class Model 
Task. The meaning of such a concept cannot be established unless we 
agree on what a class model actually is. In turn, this implies agreeing on 
what a class is, and perhaps what attributes and associations are. When 
more detailed task descriptions are introduced, this need becomes even 
more patent; for example, the concept Add Operations to Classes Task is 
only meaningful in a context in which operation and class are well-known 
concepts and the relationship between them is agreed upon. 

It is possible, however, to describe the semantics of nouns with no ref-
erence whatsoever to the verbs that may act upon them. Although a behav-
ioural (i.e. verb-based) definition may be possible in some circumstances, 
a structural definition of nouns is always possible. This has been called the 
Principle of the Pre-existing Structure [7] and used a key foundation of the 
Structure–Process–Outcome model [13], in the context of which it was 



132 César González-Pérez, Brian Henderson-Sellers  

said that “structure must always come first” and that “without structure 
there can be no process” (p. 28). Although some process-centric ap-
proaches such as OPEN or Catalysis [5] try to define a set of actions with-
out specifying the structure of concepts to which they apply, a significant 
number of assumptions are implicitly or explicitly made. For example, the 
OPEN literature explicitly says that an object-oriented approach to soft-
ware development is encouraged if the process defined in the OPEN re-
pository is to be used. 

The degree to which a structure is necessary before a meaningful func-
tion can be laid on top is often underestimated. Process-centric approaches 
such as OPEN include product-related concepts such as Work Product or 
Document. These concepts are definitely useful as bridges between the 
process and product sides of the metamodel, but they need to be refined 
into more detailed concepts for the sake of referential integrity: the speci-
fication of the process makes explicit reference to countless nouns (such 
as class, attribute, operation and role) which are not defined at all. Without 
an understanding of these nouns, we cannot understand the process com-
pletely. 

Despite the evidence that structure comes first, most approaches related 
to the description of software development concepts are either modelling-
centric or process-centric, each neglecting the other side of the whole. 
UML is absolutely process-less, whereas SPEM and many ISO standards 
(12207, 15288, 15504) completely lack a modelling side. The myth that 
modelling and process issues can be separately determined and later 
plugged in together is repeated by the literature, although nobody has 
demonstrated that it can be successfully done, and the theoretical evidence 
cited earlier in this section is discouraging. Therefore, a radically new ap-
proach has been taken for the ontology presented here aimed at rectifying  
this dislocation, in which an integral approach has been adopted by look-
ing at modelling and process issues simultaneously and developing them 
in parallel, thus guaranteeing interoperability. This does not mean that ex-
isting approaches such as UML or SPEM are automatically excluded if this 
ontology is adopted; they can still be used as long as they are expressed in 
terms of the metamodel described here. As we will see in forthcoming sec-
tions, UML is easily expressible as an instance of a small number of con-
cepts in this new metamodel, which makes it a candidate modelling lan-
guage to be used in the context of our ontology. 

The following sections describe the metamodel domain of our ontology 
in detail, which is strongly based in the Australian Standard AS 4651 [26]. 
Endeavour-related concepts are described first, followed by method-
related concepts. Concepts are formalised as object-oriented classes, with 
additional constructs such as attributes and associations that are used to 
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convey the appropriate semantics. UML class diagrams are used as a nota-
tional means. In this regard, and given the problems inherent to UML’s 
conception of whole/part relationships [3], white diamonds will be used in 
UML class diagrams to depict generic whole/part relationships, without 
any reference whatsoever to their secondary characteristics. 

4.3 Endeavour-Related Concepts 

The endeavour domain contains all the entities that are created by software 
developers when they apply a certain methodology. These entities are cre-
ated by instantiating concepts from the method domain. In addition to cre-
ating entities in the endeavour domain, software developers often use enti-
ties in the method domain as resources. It is possible to determine the 
major types of concepts and entities involved in the endeavour layer, al-
though it must be taken into account that the particular concepts and enti-
ties will depend on the actual methodology being used. For example, it can 
be argued that software developers always perform tasks in order to obtain 
work products, perhaps with the usage of some tools. This statement is ab-
stract enough as to be universally valid as far as our ontology is con-
cerned. At the same time, it shows that there exist different types of con-
cepts in the ontology, tasks and work products being good examples. It is 
possible, therefore, for the metamodel domain to contain an abstract speci-
fication of the Task and Work Product concepts, for example, such that a 
double objective is attained: 

The specifications are generic enough as to be universal, i.e. any meth-
odology obtained from the metamodel can be expressed in terms of 
them. 
The specifications are concrete enough as to be useful, i.e. their pres-
ence shapes the methodologies that can be constructed from the meta-
model. 

This does not mean that any methodology created from a metamodel 
containing the Task and Work Product concepts, for example, must use 
them. Method engineers are free to choose which concepts in the meta-
model to use and which to discard for a given methodology. 

The remainder of this section describes the concepts in the metamodel 
domain that represent entities in the endeavour domain. These concepts, 
by their very nature, are intended to be instantiated by software develop-
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ers, so they must represent entities that make complete sense from a soft-
ware developer’s perspective. 

4.3.1 High-Level View 

From a high-level point of view, only five major types of entities exist in 
the endeavour domain (Fig. 4.3): 

Work Units, or jobs performed, or intended to be performed, within an 
endeavour.
Stages, or managed time frames within an endeavour. 
Work Products, or artifacts of interest for the endeavour. 
Model Units, or atomic components of a model, which represent a co-
hesive fragment of information in the subject being modelled. 
Producers, or agents that have the responsibility to execute work units. 

Fig. 4.3. High-level view of endeavour-related concepts in the metamodel domain 

These five basic concepts can be generalised into a common, abstract 
concept named Endeavour Element, which represents anything in the en-
deavour domain. Work units are the tasks or activities that software devel-
opers perform, and have a start and end time as well as a duration. Stages 
are the major time frames in an endeavour, which help give work units 
some temporal structure. Work products, such as documents or software, 
are the tangible results of performing work units and have creation and last 
change times as well as a status. The status of a work product is always 
one of the enumerated list {Initial, Complete, Accepted, Approved}. 
Model units are the individual elements that comprise models, such as the 
various classes and attributes that make up a class model. Finally, produc-
ers are the people and teams that actually perform the work units in order 
to create work products. 
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Work Unit and Stage are concepts related to the process side of meth-
odologies, while Work Product and Model Unit are concepts related to the 
modelling (or product) side. Producer is a people-related concept. 

4.3.2 The Process Side 

On the process side, there exist several subtypes of work units (Fig. 4.4): 

Tasks, which are small-grained work units that focus on what must be 
done in order to achieve a given purpose. 
Techniques, which are small-grained work units that focus on how the 
given purpose may be achieved. 
Work Flows, which are large-grained work units that operate within a 
given area of expertise. These can be further classified into: 

Activities, which represent a continuous responsibility. 
Processes, which represent a discrete piece of work. 

Fig. 4.4. Work unit subtypes   

Tasks are simple, purpose-oriented chunks of work, usually having a 
name that describes the job being done, such as writing code for a class or 
documenting the requirements. The purpose of a task can usually be 
achieved in multiple ways, and techniques may be used to specify each of 
these. Techniques usually have a name that also describes the job being 
done, but suggests their “implementation” rather than the expected result, 
such as refactoring (one way to obtain enhanced code) or analysing text 
(one way to identify classes in a problem domain). Work flows, on the 
other hand, are large-grained chunks of work that are characterised by a 
given area of expertise. These, therefore, have names related to that area, 
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such as engineering requirements or managing assets. Activities are con-
tinuous, often ongoing responsibilities, while processes are one-off jobs 
that can be seen as atomic from an execution perspective, i.e. they can be 
considered as fully done or not done at all, which is crucial for process as-
sessment [10]. A sample activity could be managing the assets of a com-
pany (this will keep going indefinitely), and a sample process could be en-
gineering the requirements for a given system (this will be finished at 
some point so that the project can proceed forward). 

Sometimes, work units are too complex to be tackled directly, and for 
this reason they are decomposed into other, smaller work units. For exam-
ple, a task breakdown structure is a good example of how larger tasks are 
decomposed into “smaller” tasks. Also, activities and processes tend to be 
implemented as a collection of tasks. This means that many work units, in 
fact, may be expressed as a collection of tasks, as depicted in Fig. 4.4.  

Work units are often organised into stages. Different types of stages ex-
ist (Fig. 4.5): 

Instantaneous Stages, which are managed points in time within an en-
deavour. There is a single subtype of instantaneous stage: 

Milestones, which mark some significant event in the endeavour. 
Stages with Duration, which are managed intervals of time within an 
endeavour. These can be further classified into: 

Builds, for which the major objective is the delivery of an incre-
mented version of an already existing set of work products. 
Phases, for which the objective is the transition between levels of ab-
straction.
Time Cycles, for which the objective is the delivery of a final product 
or service. 

Instantaneous stages allow the developers to manage specific points in 
time as especially relevant. Milestones are the best example. Stages with 
duration, on the other hand, are not points in time but time spans, and 
therefore have a duration. There are three types of them. Builds are usually 
small and are repeated iteratively, having the objective of incrementing an 
existing set of work products with some additional value. They form the 
basis of many incremental and iterative methodologies. Phases are usually 
larger than builds and not iterative in nature, focusing on the transition be-
tween abstraction levels. For example, the implementation phase in a tra-
ditional waterfall approach helps the transition from a collection of de-
tailed designs into a working piece of software. Phases are sometimes 
composed of a series of builds. Finally, time cycles are again “larger” in 



4. An Ontology for Software Development Methodologies and Endeavours 137 

time than phases, and focus on the delivery of added value to some stake-
holders. For example, a complete project, as well as any subprojects, can 
be each modelled as a time cycle. 

Fig. 4.5. Stage subtypes 

The connection between work units and stages occurs between Work 
Flow and Stage with Duration (Fig. 4.6). This means that stages with dura-
tion act as temporal “containers” for work flows. 

Fig. 4.6. Connection between work units and stages 

4.3.3 The Product Side 

On the product (or modelling) side, there are several subtypes of work 
products (Fig. 4.7). Four are “simple” types: 

Software Items, which are pieces of software of interest to the endeav-
our.
Hardware Items, which are pieces of hardware of interest to the en-
deavour.
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Models, which are formal representations of some subject that act as its 
surrogate for some well-defined purpose. 
Documents, which are durable depictions of a fragment of reality. 

A fifth subtype allows for heterogeneous work products: 

Composite Work Products, which are composed of other work products. 

Fig. 4.7. Work product subtypes 

Although the name “work product” may seem to indicate that they are 
always produced by the endeavour, this is not the case; actually, work 
products are any artifacts of interest to the endeavour, either produced by 
it or used for some purpose. Software items are any piece of software that 
is produced or used by the endeavour. Hardware items, similarly, are any 
piece of hardware produced or used by the endeavour. Models are formal 
representations of other things, and are often used as surrogates in place of 
the subject they represent. For example, a class model or an architectural 
model of a system are models. Since models are purely abstract constructs, 
some means of depicting them in a durable, perceivable fashion is needed; 
Documents are used for this purpose. Documents can also depict other 
things that are not models, such as policies, contracts, guidelines, etc. 
Documents may also be composed of subdocuments to an arbitrary depth. 
For example, a class diagram or a requirements specification document are 
documents. Notice the difference between a class diagram (a document) 
and the underlying model that it represents (a class model). Finally, com-
posite work products are heterogeneous work products that may be com-
posed of different kinds of sub-work products. For example, the final 
product of an endeavour is often a composite work product, since it typi-
cally contains a software item (the final software system), perhaps some 
hardware items, and some documents (such as the user’s manual). 
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Although work product concepts can describe the product side of an en-
deavour, they are very large-grained; for example, it is possible to use our 
ontology to say that a software developer has created a Class Model or a 
Requirements Specification Document. However, in the absence of 
smaller grained concepts, we cannot specify what these work products 
contain. In consequence, tasks operating on these work products, such as 
Validate the Requirements or Add Operations to Classes, cannot be satis-
factorily described. As we have discussed elsewhere, tasks operate at a 
very detailed level, which work products cannot match. Continuing with 
our example, and in order to fully account for the above-mentioned sample 
tasks, the modelling concepts of Requirement, Class and Operation need 
to be introduced. Of course, different methodologies will almost certainly 
use different modelling concepts. For example, a UML-based method 
would use the concepts of Class and Operation, while an agent-oriented 
methodology would use concepts such as Agent and Message. Therefore, 
the small-grained modelling concepts to be used by a method cannot be 
frozen in the metamodel, in the same way that specific activities and tasks 
to be performed cannot be frozen either. 

What we can do, however, is to specify an abstract concept from which 
these detailed ones can be derived by subtyping by method engineers, in 
the same fashion that specific task concepts can be derived by subtyping 
from the concept Task. The concept Model Unit plays precisely this role. 
A model unit is an atomic component of a model, which represents a co-
hesive fragment of information in the subject being modelled. For exam-
ple, in a method using an object-oriented approach, each class, attribute, 
operation and association is a model unit. In other words, model units are 
the basic building blocks from which models are built. This means that 
some kind of relationship exists between Model and Model Unit; in fact, a 
model can be described as a collection of model units, and any model unit 
can be part of multiple models (Fig. 4.8). 

Fig. 4.8. Model and Model Unit  

We have described work products as being either produced or used by 
the endeavour. This statement must be formalised in some way. In fact, 
work products can be seen as the “nouns” upon which “verbs” act, the 
“verbs” being tasks. From this, we can see work products as passive 
chunks of information and tasks as little processes that operate on them, 
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reading, creating, modifying or even deleting them. Each time a task acts 
upon a work product in this fashion, that event is called an Action. An ac-
tion, therefore, can be defined as a usage event performed by a task upon a 
work product. The concept Action, in fact, acts as a bridge between the 
process and the product side of the metamodel (Fig. 4.9). 

Fig. 4.9. Action connects the process (Task) and the product (Work Product) sides 
of the metamodel   

4.3.4 The Producer Side 

There is a third side to methodologies, along with process and product, 
which is sometimes neglected, and that is the people side. We have de-
scribed how the ontology metamodel represents tasks being performed on 
work products, but the ultimate driving force of any endeavour is, of 
course, the persons that execute the tasks. Since these persons focus on 
producing something, they are included in what is generically referred to 
as Producers. There are different subtypes of producers (Fig. 4.10): 

Roles, which are collections of responsibilities that a producer can take. 
Persons, who are the individual human beings involved in an endeav-
our.
Tools, which are instruments that help other producers to execute their 
responsibilities in an automated way. 
Teams, which are organised sets of producers that collectively focus on 
common work units. 

Fig. 4.10. Producer subtypes  
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Roles are the abstract definitions of responsibilities that form the back-
bone of an organisation. Some typical roles are Programmer, Software Ar-
chitect and Project Manager. Each role can be played, at any time, by any 
producer, be it a person, a team or even a tool, allowing for maximum 
flexibility. Persons are the actual persons involves in the endeavour. Tools 
are the automated aids that producers utilise in order to make their job eas-
ier, such as compilers, integrated development environments, project 
tracking packages, etc. Finally, teams are groups of producers that focus 
on achieving the same goal, namely, performing the same work units. No-
tice that teams are defined as collections of any kind of producers, so it is 
possible to have teams within teams, and tools or roles (as well as persons) 
inside teams. Such a model again allows for maximum flexibility. 

Since producers, by definition, perform work units, the Producer con-
cept is connected to the process side of the metamodel (Fig. 4.11): 

Fig. 4.11. Connection between the process (Work Unit) and people (Producer) 
sides of the metamodel  

4.3.5 Endeavour-Related Concepts: Conclusion 

This section has described the concepts in the metamodel that relate di-
rectly to the endeavour domain. As we have said, the endeavour domain is 
not brought into being by software developers directly from the meta-
model, but rather by applying a methodology, which in turn is derived 
from the metamodel. This means that endeavour-related concepts in the 
metamodel must stay simple and generic enough so that method engineers 
can subtype them into more detailed, method-specific concepts when cre-
ating a methodology. Because of the subtyping and instantiation semantics 
of the object-oriented paradigm, this allows for the metamodel to control 
the endeavour layer at the optimal level. For example, the metamodel dic-
tates, as described in the previous subsections, that every document has a 
title and a version number. This is considered a universal property of all 
documents in any methodology, and therefore is frozen into the meta-
model. Any document in any endeavour will, therefore, have a title and a 
version number. At the same time, and since any particular endeavour 
would be using a particular methodology, each document will be an in-
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stance of a method-specific concept subtyped from Document, rather than 
Document itself. These method-specific concepts can add attributes and 
associations to the ones predefined by the metamodel; for example, a 
method engineer could decide to incorporate in his/her methodology a 
subtype of Document called ContractualDocument, which inherits the Ti-
tle and Version Number attributes from Document, and introduces a new 
SignedOff attribute. Using this mechanism, endeavour-related concepts in 
the metamodel can stay simple and generic while, at the same time, estab-
lish the overall structure and “shape” of any software development en-
deavour.

4.4 Method-Related Concepts 

The architecture of our ontology (Fig. 4.1) establishes that methodologies 
are to be defined by method engineers by subtyping and instantiating con-
cepts in the metamodel. We have seen, in the previous section, that a 
number of concepts in the metamodel are endeavour-related, i.e. they rep-
resent entities that belong to the endeavour domain. This means that these 
concepts need to be subtyped by method engineers into method-specific 
ones. For example, Write Code Task could be subtyped from Task in order 
to represent tasks that focus on writing code. Also, and as we have seen, 
the semantics of subtyping imply that, in doing this, method engineers can 
incorporate new attributes and associations to the refined concepts. Using 
this approach, the method domain can be populated with concepts that 
subtype existing concepts in the metamodel. These concepts will be in-
stantiated by software developers when they apply the methodology. 

Although this approach works, it is not enough. Two aspects of meth-
odology development are not solved: 

Some elements in the methodology domain are intended to be used as 
resources rather than instantiated. 
Concepts in the methodology domain need to be described for the 
method engineers themselves. 

The next two subsections treat these issues in full detail. 

4.4.1 Templates and Resources 

So far, we have described how concepts in the metamodel can be subtyped 
into new concepts in the method domain, which will be instantiated by 
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software developers when they apply the methodology. However, some 
components of methodologies are not intended to be instantiated but to be 
used as information resources (see Sect. 4.2.2). For example, a methodol-
ogy can contain a guideline on when to use certain techniques; this guide-
line is part of the methodology, and is intended to be read and understood 
by software developers, but it is not a class to be instantiated. Similarly, 
the Class Modelling Language entity in Fig. 4.2 is not a class to be instan-
tiated. It is clear, from this situation, that a methodology must contain not 
only concepts that will be instantiated by software developers, but also en-
tities that carry information to be directly used as resources. These entities 
can be modelled as objects in the method domain, and, therefore, they 
need a class in the metamodel domain from which they can be instanti-
ated. The conclusion is that the metamodel domain contains two kinds of 
concepts [9]: 

Templates, which are concepts intended to be subtyped into refined 
concepts in the method domain, which are then instantiated into entities 
in the endeavour domain. 
Resources, which are concepts intended to be instantiated into entities 
in the method domain, which are then used as information resources 
from the endeavour domain. 

The differentiation between templates and resources is practical and has 
clear semantics. However, both template and resource concepts are im-
plemented in the metamodel equally, as regular classes. It is their usage 
that is different. In addition, we must emphasise that the instances of re-
sources reside in the method domain, whereas the instances of templates 
reside in the endeavour domain. For this reason, we can say that resource 
concepts represent method entities, whereas template concepts represent 
endeavour entities. All the classes detailed in Sect. 4.3, therefore, corre-
spond to template concepts. Classes that represent resource concepts in the 
metamodel are beyond the scope of this chapter; a full description can be 
found in [26]. 

4.4.2 Duality in the Method Domain 

We can say that the discourse in the methodology domain is double: on 
the one hand, for example, method engineers need to specify what writing 
code tasks are, as opposed to requirements validation tasks; on the other 
hand, method engineers need to describe how the Write Code Task con-
cept is different from the Validate Requirements Task concept. These two 
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things may look very similar but they are not. The former refers to the en-
tities that the Write Code Task concept stands for (i.e. the actual writing 
code tasks in the endeavour domain), whereas the latter describes the 
Write Code Task concept (in the method domain) itself. Since a concept is 
often used as a surrogate for the entities it represents, the difference may 
not be easy to grasp [12]. Table 4.1 summarises the major disparities be-
tween the two levels of discourse. 

Table 4.1. Differences between the two levels of discourse in the method domain  

Aspect Solved So Far Unsolved 
Representation refer-
ent

Entities that the con-
cept represents 

Concept itself 

Main audience Software developers Method engineers 
Physical representation Class Object
Usage Instantiation Resource 

The column labelled “Solved” describes the already solved part of the 
problem, i.e. how method-related concepts must describe what they stand 
for; for example, the Write Code Task concept must represent every code 
writing task that may exist in any conceivable endeavour domain that uses 
the method being defined. As we have seen, the community most inter-
ested in this are software developers (“Main audience” in the table), since 
they will instantiate the Write Code Task concept into actual code writing 
tasks. In order to achieve this, code writing tasks are represented in the 
method domain as a class named Write Code Task, which will be instanti-
ated, as we have said, when the methodology is applied. 

The column labelled “So Far Unsolved” describes the second level of 
discourse that occurs within the method domain. From this perspective, 
each concept in the method domain must itself be described; using our ex-
ample from above, it is the Write Code Task concept that must be de-
scribed, rather than the code writing tasks it stands for. For example, we 
could say that the Write Code Task concept has as a property the purpose 
of obtaining some code that implements a given design. This purpose is 
not a property of individual code writing tasks, but of the overall concept 
of a Write Code Task. Since this kind of information characterises con-
cepts in the method domain themselves, which have been created (and are 
managed) by method engineers, the major audience of this information is, 
in fact, method engineers. At the same time, we must realise that each in-
dividual concept in the method domain will have its own values for a 
given set of individual characteristics; for example, the Write Code Task 
has the purpose of writing some code, while the Validate Requirements 
Task has the purpose of making sure that the requirements are correct and 
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valid. Each concept has a different purpose, although both concepts have a
purpose. This advocates the usage of objects to physically implement con-
cepts, which will have values for their given attributes. In our example, 
both Write Code Task and Validate Requirements Task would be objects 
of some class, each one with its own value for the Purpose attribute. Fi-
nally, and since concepts are now implemented as objects (rather than 
classes), method engineers would use them as resources rather than by in-
stantiation.

We have established the need to represent concepts in the method do-
main in two apparently contradictory ways: one asks for classes, the other 
for objects. Choosing one approach over the other would always detract 
from the ontology, and therefore we have decided to use both approaches 
simultaneously. This means that, for each concept to be introduced in the 
method domain, a class and an object are necessary. Both class and object 
represent the same concept, as described in Table 4.1: the class serves as a 
template for the entities that the concept represents and is intended to be 
instantiated by software developers whenever they apply the methodology, 
whereas the object serves as an information resource about the concept it-
self for method engineers. Since class and object both represent the same 
concept, it is convenient to formalise the conceptual link between them; 
the term “clabject” [2] has been introduced to describe an entity that is, 
simultaneously, a class and an object or, in other words, has a class facet 
plus an object facet. We can, therefore, think of entities in the method do-
main as clabjects, each composed of a class plus an object that represent 
the same concept. 

Only one issue is still to be resolved with regard to the duality of the 
method domain. We know that class facets are obtained by subtyping 
classes from the metamodel domain. But how are object facets obtained? 
The usual mechanism of instantiation is valid here, if and only if appropri-
ate classes can be determined. Following our example, and using a con-
ventional classification technique, we can ask ourselves: what kinds of 
things are Write Code Task and Validate Requirements Task? Each of 
these describes the particularities of a whole family of tasks, namely code 
writing tasks and requirement validation tasks, respectively. We can say 
that these objects are kinds of tasks, or, for short, task kinds. Consider an 
alternative example: the metamodel concept Document can be subtyped 
into new concepts in the method domain: for example, Requirements 
Specification Document and Class Diagram. Each of these two new con-
cepts will be represented, as we have said, by a clabject. The class facets 
of these clabjects will be subtypes of Document, whereas the object facets 
will be instances of some class that can be called Document Kind. In fact, 
it is correct to say that Requirements Specification Document is a kind of 
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Document (much like Granny Smith is a kind of Apple). The concept 
Document Kind, therefore, is the type for the object facets of the clabjects 
(Fig. 4.12). 

Fig. 4.12. Clabjects in the method domain. Grey ellipses are used to tie together 
the class/object pairs that comprise a clabject, since the UML notation does not 
support this concept  

The situation exemplified in Fig. 4.12 can be generalised to all the 
classes in the metamodel that represent template concepts, since, by defi-
nition, template concepts are subtyped into new concepts in the method 
domain. We can now define the Rule of Duality of the method domain: for 
each template concept in the metamodel, a pair of classes exists, one rep-
resenting the endeavour domain entities and the other representing the 
method domain concepts. In Fig. 4.12, Document represents endeavour 
domain entities (i.e. actual documents) and Document Kind represents 
method domain concepts (such as Class Diagram and Requirements Speci-
fication Document). Very much like each class/object pair in the method 
domain that is amalgamated together into a clabject, it is convenient to 
formalise the conceptual relationship between each class pair in the meta-
model. In our example, it is evident that Document and Document Kind 
are closely related classes, although no conventional object-oriented rela-
tionship is suitable to appropriately capture this. A simple association 
could be used, but it would not offer the detailed level of description nec-
essary for this case. A better solution is to utilise the concept of powertype 
[20]. A powertype has been defined as a type the instances of which are 
subtypes of another type, called the partitioned type (Fig. 4.13). This is so 
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because, following the semantics of subtyping, instances of the powertype 
represent partitions of the set of instances of the partitioned type. 

Fig. 4.13. Structure of powertypes  

On the other hand, what kind of a construct is Entity in Fig. 4.13? Since 
it is an instance of a type, it must be an object, but since it is a subtype of 
another type, it must be a type as well. An answer to this question can be 
easily found by comparing the overall shape and structure of Fig. 4.12 and 
Fig. 4.13. We can tentatively say that Document Kind is a powertype of 
Document, and, consequently, Entity in Fig. 4.13 is a clabject. In fact, the 
semantic relationship between Document and Document Kind does corre-
spond to a partitioning, and Document Kind is a powertype of Document, 
since its instances partition the set of instances of Document. Understand-
ing Entity in Fig. 4.13 as a clabject also fits in the scheme, since it must be 
dual by definition, given that it is both a subtype and an instance. We can, 
therefore, adopt the usage of powertypes in the metamodel and, further-
more, define a powertype pattern as the combination of a powertype, its 
partitioned type and the relationship between both [11]. We can depict this 
relationship using a special notation, since it conveys very specific seman-
tics (Fig. 4.14). 

According to the Rule of Duality, a powertype class must exist in the 
metamodel domain for each template concept. Since we have already de-
scribed in detail all the classes corresponding to template concepts (see 
Sect. 4.3), we will not describe their powertypes. A full description of 
them can be found in [26]. 
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Fig. 4.14. Using powertype patterns in the metamodel domain. The dashed line 
with a black dot end denotes a powertype pattern relationship. The powertype is 
the class indicated by the black dot  

4.4.3 Applying the Methodology 

Previous sections have established that the method domain is composed of 
clabjects (for template concepts) and object entities (for resource con-
cepts). Software developers are most concerned with applying a given 
methodology to particular endeavours, so the architecture of the method 
domain must provide a mechanism for this. In addition, the method do-
main must be easily accessible to method engineers themselves, who, 
probably assisted by automated tools, need to augment, customise and, in 
summary, maintain the methodology itself. From a very abstract point of 
view, we have seen (see Fig. 4.1 and Fig. 4.2) that software developers in-
stantiate concepts from the method domain, as well as use entities in the 
method domain as resources. Instantiable concepts in the method domain, 
as we have seen, are always one facet of clabjects. Object entities from re-
sources, however, are not part of clabjects (Fig. 4.15). 

4.5 Conclusion 

This chapter has described an ontology for software development method-
ologies and endeavours, including a comprehensive metamodel plus a 
three-domain architecture that can be used in order to specify methodolo-
gies and then apply them to real endeavours. This ontology involves both 
process and product aspects, being more complete than other approaches 
that focus only on one of these two aspects. Also, the ontology takes into 
account the two communities involved in software development enter-
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prises, namely method engineers and software developers, and organises 
its architecture and usage mechanisms around them. Innovations such as 
the pervasive use of powertype patterns to model template concepts, asso-
ciated with the adoption of clabjects to represent the same concept at dual 
levels, make this possible. 

Fig. 4.15. Using elements in the method domain. Class facets from clabjects (such 
as Class Diagram) are instantiated into the endeavour domain, while instances of 
resource classes (such as Guideline) are used as information resources  
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5.1 Introduction 

One of the most practiced activities in software engineering is software 
maintenance (see for example [22]). After the initial development phase, 
software systems typically spend years in the maintenance phase where er-
rors are corrected, functionalities are adapted to changes in the business 
rules, and new functionalities are added to better suit users’ needs. As in 
many other activities in software engineering, maintenance is a knowl-
edge-intensive activity. One needs knowledge of the application domain of 
the software, the problem solved, the requirements for this problem, the 
architecture of the system and how the different parts fit together, how the 
system interacts with its environment, etc. In software maintenance, the 
need for knowledge is all the more important because it is no longer ac-
ceptable to repeatedly ask users to explain detailed aspects of the applica-
tion domain, and the documentation created during the initial development 
effort is lacking, outdated, incomplete or lost [23]. 

Tools are needed to help people communicate their understanding of an 
application to each other, through either documentation or direct commu-
nication. One may also think of creating categories so as to classify infor-
mation gathered, evaluate knowledge needs, and decide where to find the 
necessary information to help maintainers perform their activity. 
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An important step toward this is the construction of an ontology of the 
knowledge useful in software maintenance. The ontology may serve dif-
ferent purposes: 

Organization and formalization of the knowledge needed when 
performing maintenance to serve as a common basis for information 
exchange.
Identification of the scope of the knowledge needed to allow checking 
of the completeness and coverage of some information source. 
Definition of concepts that may be used as an indexing scheme to 
access relevant sources of information. 
Identification of the knowledge needs to ground a search for more 
information, to identify the most pressing needs, and to categorize 
possible sources of information according to the needs they may fulfill.  

For example, we used an ontology in defining a knowledge elicitation 
method to gather, record and classify new information on a software sys-
tem under maintenance. The ontology served as a guide to identify what 
information we should be looking for. 

In this chapter, we present an ontology of the knowledge used in soft-
ware maintenance. First, in Sect. 5.2, we state some basic facts about 
software maintenance that show the necessity of dealing better with 
knowledge in maintenance. We also highlight some important information 
needs typically encountered in maintenance projects. We present the on-
tology on the knowledge used in software maintenance in Sect. 5.3. We 
will offer an overview of the ontology and of the construction process that 
leads to it. The ontology is divided in five sub-ontologies that will be ex-
plained successively. In Sect. 5.4 we explain how the ontology was vali-
dated according to different criteria (quality and relevance). Then, in Sect. 
5.5, we summarize an experiment in extracting knowledge from a main-
tained software system. This experiment gives an example of a possible 
use of the ontology in practice. Finally, in Sect. 5.6 we present our conclu-
sion.

5.2 Software Maintenance 

Software maintenance consists of modifying an existing system to adapt it 
to new needs (about 50% of maintenance projects [22]), adapt it to an 
ever-changing environment (about 25% of maintenance projects [22]), or 
to correct errors in it (20% of maintenance projects [22]). Software main-
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tenance is not a problem in the sense that one cannot and should not try to 
eliminate it; it is instead the natural solution to the fact that software sys-
tems need to keep in sync with their environment and the needs of their 
users. Lehman [18] established in his first law of software evolution that 
“a program that is used, undergoes continual change or becomes progres-
sively less useful”. 

Software maintenance offers significant differences over software de-
velopment. For example, a software maintainer usually works in more re-
strictive technical conditions, and usually cannot choose his/her working 
environment, the programming language, the database management sys-
tem, the data model, the system architecture, etc. Also, whereas develop-
ment is typically driven by requirements, maintenance is driven by events 
[20], often external to the organization owning the software (e.g., a new 
law or a competitor proposing a new business model). In development, 
one specifies the requirements and then plans their orderly implementa-
tion. In maintenance, events require the modification of the software and 
there is much less opportunity for planning. Maintenance is by nature a 
more chaotic activity. In many cases, it can be neither avoided nor delayed 
by much. Organizations must keep pace with an ever-changing world, and 
this usually means modifying the software that supports their business ac-
tivities. Software maintenance is a fact and a necessity. 

These differences, in and of themselves, already turn software mainte-
nance into an activity more difficult to perform than software develop-
ment. We argue that apart from these differences, maintenance suffers 
from another fundamental problem: the loss (and resulting lack) of knowl-
edge. A good part of the development activity consists of understanding 
the users’ needs and their world (application domain, business rules) and 
to convert this into running code by applying a series of design decisions 
[27]. Whereas the knowledge needs are roughly the same in both activi-
ties, they are more difficult to fulfill during maintenance than during de-
velopment. In a proper software development project, all the knowledge is 
available to the participating software engineers, either through some 
documentation (specifications, models) or through some other member of 
the project. In maintenance, on the contrary, much of this knowledge is, 
typically, either lacking, or only encountered in the source code: the busi-
ness model and requirements specification may have been lost, or never 
properly documented; the software engineers who participated in the ini-
tial development (often years ago) are long gone; and the users already 
have a running system and cannot be bothered with explaining all over 
again how it works. Therefore, to maintain a software system, one must 
usually rely solely on the knowledge embodied and embedded in the 
source code. Business rules may be expressed in the source code or in da-
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tabase integrity rules. In the best cases they will also be documented in the 
comments. Application domain concepts may be referred to (often inci-
dentally) in the comments, in file names, or in  identifiers of variables. De-
sign decisions will usually not be documented and may only be available 
through their result, i.e., how the code is organized. 

As a result of this lack of knowledge, 40% to 60% of the maintenance 
activity involves trying to understand the system [21, p. 475], [22, p. 35]. 
Maintainers need knowledge of the system they work on, of its application 
domain, the organization using it, past and present software engineering 
practices, different programming languages (in their different versions), 
programming skills, etc. Among these different knowledge needs, knowl-
edge about the maintained system emerges as a prominent necessity. For 
example, Jørgensen and Sjøberg [15] showed that sheer maintenance ex-
perience is not enough to reduce the frequency of major unexpected prob-
lems after maintenance, whereas application experience does. Other types 
of knowledge have also been highlighted by past research: in [2], Bigger-
staff insists on the necessity of application domain knowledge; in [1], An-
quetil et al. highlight the need for computer science knowledge (algo-
rithmic, design or programming patterns, etc.); Van Mayrhauser and Vans 
[27], already cited, focus on the design decisions (i.e. knowledge about 
software development applied to the transformation of knowledge on the 
application domain to produce the source code). 

To try to help software maintainers in their task, we started a long-term 
project to adapt and apply knowledge management techniques and tools to 
the needs of software maintenance. A central part of this approach is the 
definition of an ontology of the knowledge needed in software mainte-
nance. This ontology serves as a structuring framework to our approach: it 
bounds the context of our research, provides a list of concepts and rela-
tions we need to consider, and serves as a classification structure. 

5.3 An Ontology for Software Maintenance 

From the various methodologies to design an ontology (e.g., [13]), all con-
sider basically the following steps: definition of the ontology purpose, 
conceptualization, validation, and finally coding. 

We defined our ontology using theses steps. The purpose is to define an 
ontology describing the knowledge relevant to the practice of software 
maintenance. The conceptualization is the longest step and requires the 
definition of the scope of the ontology, definition of its concepts, and a de-
scription of each one (through a glossary, specification of attributes, do-
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main values, and constraints). It represents the knowledge modeling itself. 
This step was based on a study of the literature and the experience of the 
authors. We identified motivating scenarios and competency questions 
(i.e., requirements in the form of questions that the ontology must answer 
[13]). The result is a set of all the concepts that will be presented in this 
section. The validation will be discussed in Sect 5.4 and 5.5. Finally for 
the coding, there are various editing tools available to describe an ontol-
ogy (see for example [8, 11, 24]), each one using a specific language and 
having particular features. We chose to focus on the identification of the 
knowledge itself, and did not study any of these tools. We opted for a 
manual representation of the ontology with a formalization using first-
order logic. 

5.3.1 Overview of the Ontology 

We started the ontology construction by looking for motivating scenarios 
where the knowledge captured would be useful. Some of those scenarios 
are: deciding who is the best maintainer to allocate to a modification re-
quest, based on his/her experience of the technology and the system con-
sidered; learning about a system the maintainer will modify (what its 
documents and components are and where to find them); defining the 
software maintenance; activities to be followed in a specific software 
maintenance, and also the resources necessary to perform those activities. 
These and other situations induced us to organize the knowledge around 
five different aspects (Fig. 5.1 illustrates how the sub-ontologies combine 
in the general ontology): knowledge about the Software System itself; 
knowledge about the Maintainer’s Skills; knowledge about the Mainte-
nance Process; knowledge about the Organizational Structure; and knowl-
edge about the Application Domain. Each of these aspects was described 
in a sub-ontology. For each one of the sub-ontologies we defined compe-
tency questions, captured the necessary concepts to answer these ques-
tions, established relationships among the concepts, described the concepts 
in a glossary, and validated them with experts. 

 To express the constraints over the concepts and relations, we defined 
53 axioms in first-order logic. These do not include axioms formalizing 
the specialization and composition relationships (i.e., axioms for the 
“is_a” and “has_a” relations). Some examples of axioms will be presented 
in the description of each sub-ontology.Building such an ontology is a sig-
nificant task. Our first difficulty was to define clearly what was to be the 
focus of the ontology. This was solved by defining scenarios for the use of 
the knowledge. A second difficulty was to review the relevant literature in 
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search of definitions and validation of the concepts. In this phase, we 
deemed it important to base each and every concept on independent 
sources from the literature. This literature review is summarized in the 
concept glossary, which will not be presented here for lack of space. 

Fig. 5.1. Ontology overview 

In the following subsections, we present each sub-ontology and its con-
cepts and relations. To ease the understanding of the explanations, ontol-
ogy CONCEPTS are written in capitals and relations are underlined. 

5.3.2 The System Sub-ontology 

Intuitively, knowledge about the system is fundamental to software main-
tenance. The sub-ontology is depicted in Fig. 5.2. 

The competency questions for the System sub-ontology are: What are 
the artifacts of a software system? How do they relate to each other? 
Which technologies are used by a software system? Where is the system 
installed? Who are the software system users? Which functionalities from 
the application domain are considered by the software system?  

Answering these questions led to a decomposition of the software sys-
tem into ARTIFACTS, a taxonomy of those artifacts and the identification 
of the HARDWARE where the SYSTEM is installed on, its USERS and the 
TECHNOLOGIES that were used in its development. 

The ARTIFACTS of a SYSTEM can generally be decomposed into 
DOCUMENTATION and software COMPONENTS. Briand et al.[4] con-
sider three kinds of documentation: PRODUCT related, describing the sys-
tem itself (i.e., SOFTWARE REQUIREMENT SPECIFICATION,
SOFTWARE DESIGN SPECIFICATION, and SOFTWARE PRODUCT 
SPECIFICATION); PROCESS related, used to conduct software develop-
ment and maintenance (i.e., SOFTWARE DEVELOPMENT PLAN,
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QUALITY ASSURANCE PLAN, TEST PLAN, and CONFIGURATION 
MANAGEMENT PLAN); and SUPPORT related, helping to operate the 
system (i.e., USER MANUAL, OPERATOR MANUAL, SOFTWARE 
MAINTENANCE MANUAL, FIRMWARE SUPPORT MANUAL). Con-
sidering that the SOFTWARE DESIGN SPECIFICATION proposed by 
Briand et al. should represent the behavior and structure of the system and 
that we can have different abstraction models, we refined the SOFTWARE 
DESIGN SPECIFICATION into LOGICAL MODEL and PHYSICAL 
MODEL.

Fig. 5.2. System sub-ontology  

Software COMPONENTS represent all the coded artifacts that compose 
the software program itself. Booch et al. [3] classify them into: 
EXECUTION COMPONENTS, generated for the software execution; 
DEPLOYMENT COMPONENTS, composing the executable program; and 
WORK PRODUCT COMPONENTS, which are the source code, the data, 
and anything from which the DEPLOYMENT COMPONENTS are gener-
ated.

All those ARTIFACTS are, in some way, interrelated. For example, a 
REQUIREMENT SPECIFICATION is related to DESIGN 
SPECIFICATIONS, which are related to DEPLOYMENT COMPONENTS.
We call this first kind of relation realization, relating two artifacts of dif-
ferent abstraction levels. Another relation between artifacts is a correlation
between artifacts at the same abstraction level. And finally, artifacts may 
be composed of other artifacts (e.g., one document may be composed of 
several parts). 
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Other relations in this sub-ontology are: the software SYSTEM is in-
stalled on some HARDWARE, it may interact with other SYSTEMS and 
with USERS, it implements some domain TASKS to be automated (the 
functionalities of the system), and, finally, the SOFTWARE 
REQUIREMENT SPECIFICATIONS describe these domain TASKS. To 
express the constraints over the relations (e.g., realization or correlation)
we defined axioms like trequiremenaancorrelatioaa 2,1(2,1 -

)21 atspecrequiremenaspec  and 2,1(2,1 aanrealizatioaa
)21 atspecrequiremenatspecrequiremen . The fist one speci-

fies that if a1 is a REQUIREMENT SPECIFICATION and a1 is correlated 
to a2, then a2 must also be a REQUIREMENT SPECIFICATION (i.e., the 
correlation relation stands between ARTIFACTS of the same type). Simi-
larly, the second axiom specifies that realization may only stand between 
two ARTIFACTS of a different kind. 

5.3.3 The Computer Science Skills Sub-ontology 

Figure 5.3 shows the sub-ontology on the skills needed by software main-
tainers in computer science. A scenario of use would be to be able to se-
lect the best participants for a given type of maintenance. Some compe-
tency questions we identified are: What kinds of CASE (Computer-Aided 
Software Engineering) tools does the software maintainer know? What 
kinds of procedures (methods, techniques and norms) does he/she know? 
What programming and modeling languages does he/she know?  

There are several things a MAINTAINER must know or understand to 
perform his/her task adequately: he/she must know (be trained in) the spe-
cific MAINTENANCE ACTIVITY he/she will have to perform (e.g., team 
management, problem analysis and code modification), the HARDWARE
the system runs on, and various COMPUTER SCIENCE TECHNOLOGIES
(detailed below). Apart from that, the MAINTAINER must also understand
the CONCEPTS of the application domain and the TASKS performed in it. 
To express those relations, we defined axioms like: 

tmknowCCTtytechnotmainermam ,logint  and 
knowsaityainerActivmaamainermam intint( -

), amActivity  (any MAINTAINER knows at least one TECHNOLOGY
and one ACTIVITY).
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 Fig. 5.3. Computer science skills sub-ontology  
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There are four COMPUTER SCIENCE TECHNOLOGIES of interest: 
possible PROCEDURES to be followed, MODELING LANGUAGE used 
(e.g., the UML), CASE TOOLS used (e.g., for modeling or programming), 
and finally the PROGRAMMING LANGUAGE used in the system. Ac-
cording to [16], PROCEDURES are all structured descriptions used in a 
software development activity such as METHODS (kinds of systematic 
procedures with semantic and syntactic definitions to be followed), 
TECHNIQUES (systematic procedures less formal and rigorous than a 
method), and DIRECTIVES (standards like GUIDELINES or NORMS in 
an organization). Based on [5, 17, 23], we classified the TECHNIQUES
into: (a) REQUIREMENT ELICITATION, procedures to assist in the iden-
tification of the requirements (e.g., interviews, brainstorming, etc.); (b) 
MODELING PROCEDURES, adopting specific MODELING
LANGUAGES, to assist in the definition of a systematic solution for the 
problem; (c) PROGRAMMING PROCEDURES (e.g., structured or object-
oriented programming); (d) TESTING PROCEDURES (e.g., white or black 
box testing techniques); and (e) MAINTENANCE SUPPORT, procedures 
to assist in the MAINTENANCE of a program (classified in REVERSE 
ENGINEERING, RE-ENGINEERING, IMPACT ANALYSIS and 
PROGRAM COMPREHENSION techniques [22]). 

Pressman [23] gives a very complete list of CASE TOOLS, with tools 
for MODELING, used for the design model definition according to a spe-
cific MODELING LANGUAGE; TESTING, used to define and control 
tests for a system; developing the IDE (Integrated Development Environ-
ment – with COMPILER, DEBUGGER and EDITOR, which are also CASE
TOOLS on their own), and SUPPORTING the EXECUTION,
DOCUMENTATION or CONFIGURATION MANAGEMENT. The 
EXECUTION SUPPORTING CASE TOOLS represent any tool that can be 
used in some way during the system’s execution, like DATABASE 
MANAGEMENT SYSTEMS, UTILITIES and SYSTEM SOFTWARE 
(COMPUTER NETWORK, OPERATIONAL SYSTEM and all 
MIDDLEWARE).

5.3.4 The Maintenance Process Sub-ontology 

Fig 5.4 shows the concepts of the Maintenance Process sub-ontology. 
Here, we are interested in organizing concepts from the modification re-
quest (and its causes) to the maintenance activities. Possible competency 
questions are: What are the types of modification requests? Who can sub-
mit them? What are their possible sources? What are the activities per-
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formed during maintenance? What does one need to perform them? Who 
performs them? What do they produce? 

According to [22], a MAINTENANCE PROJECT originates from a 
MODIFICATION REQUEST submitted by a CLIENT (Fig. 5.4). The 
REQUESTS are classified as either PROBLEM REPORT, describing the 
problem detected by the USER, or ENHANCEMENT REQUEST, describ-
ing a new requirement. Pigoski also lists the different origins of a 
MODIFICATION REQUEST (where the problem was detected or the new 
requirement originates): ON-LINE DOCUMENTATION (like help and tool 
tips), EXECUTION (features about the execution of the system itself, like 
performance or instability), ARCHITECTURAL DESIGN (like dynamic li-
brary reuse), REQUIREMENT (change in a requirement or a specification 
of a new one), SECURITY (like access not allowed), 
INTEROPERABILITY (features related to the communication with other 
systems) and DATA STRUCTURE (like structure of data files or data-
bases). One or more MODIFICATION REQUESTS GENERATE a 
MAINTENANCE PROJECT that will ADOPT a specific PROCESS com-
posed of different software MAINTENANCE ACTIVITIES.

Based on [4, 16, 22] we classified the MAINTENANCE ACTIVITIES
into the following types: (a) INVESTIGATION ACTIVITY, assessing the 
impact of undertaking a modification; (b) MANAGEMENT ACTIVITY,
relating to the management of the maintenance process or to the configu-
ration control of the products; (c) QUALITY ASSURANCE ACTIVITY,
aiming at ensuring that the modification does not damage the integrity of 
the product; and (d) MODIFICATION ACTIVITY, which may be 
CORRECTIVE MAINTENANCE or ENHANCEMENT MAINTENANCE
(ADAPTATIVE, PREVENTIVE or PERFECTIVE MAINTENANCE). A 
MAINTENANCE ACTIVITY uses one or more input ARTIFACTS and af-
fects one or more output ARTIFACTS, it precedes some other ACTIVITY
(in the PROCESS it is part of), it addresses some MAINTENANCE 
ORIGIN (already detailed), uses HARDWARE RESOURCES, and uses
some COMPUTER SCIENCE TECHNOLOGIES.

Axioms are used, for example, to specify that the MAINTENANCE 
ACTIVITIES are ordered: preactiaaypreactivitaa 2,1(2,1 -

)1,2 aavity  and ,2(2,1(3,2,1 aypreactivitaaypreactivitaaa
)3,1)3 aaypreactivita  (expressing the asymmetry and transitivity 

of the ordering of activities).  
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Fig. 5.4. Modification process sub-ontology 
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Finally, different people (HUMAN RESOURCE) can participate in these 
ACTIVITIES (from [4, 14, 16, 22]): SOFTWARE ENGINEERS 
(SUPPLIER or MAINTAINER, respectively, who developed and maintain 
the system), MAINTENANCE MANAGER and CLIENT’S HUMAN 
RESOURCES (CLIENT who pays for the modification, and USER who 
uses the system). 

5.3.5 The Organizational Structure Sub-ontology 

The fourth sub-ontology, on the organizational structure, is depicted in 
Fig. 5.5. We considered a definition of an organization (see for example 
[9]) composed of units where different functions are performed by human 
resources. We also included the fact that an organization defines directives 
to be followed in the execution of the tasks. Our goal here was not to de-
fine all possible aspects of an organization, but only to define that the 
maintenance is an activity performed by people in some organizational 
unit that composes the whole organization with its own rules. 

Fig. 5.5. Organizational structure sub-ontology   

In order to define the scope of this sub-ontology we set the following 
competency questions: What organizational units compose the organiza-
tion? What positions exist and who occupies each position? What direc-
tives does the organization adopt? How do the organizations relate to one 
another?

Based on [9, 26] we defined that any ORGANIZATION adopts its own 
DIRECTIVES and defines the POSITIONS to be filled in by a HUMAN 
RESOURCE. Also, ORGANIZATIONS can collaborate with each other 
and each one is composed of ORGANIZATIONAL UNITS. Those 
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ORGANIZATIONAL UNITS are organized in a hierarchical structure 
where one unit is composed of other units. 

5.3.6 The Application Domain Sub-ontology 

Finally, the last sub-ontology (Fig. 5.6) organizes the concepts of the ap-
plication domain. The competency questions are: What concepts and tasks 
compose an application domain? What are the properties of each concept? 
How do the concepts relate to one another?  What concepts are used in 
each task? What restrictions apply to the application domain?  

Fig. 5.6. Application domain sub-ontology   

Instead of an actual application domain, which depends on each specific 
software system maintained, we had to define a meta-ontology specifying 
that a domain is composed of DOMAIN CONCEPTS, related to each other 
and having PROPERTIES and RESTRICTIONS. We also considered that 
the CONCEPTS in an application domain are associated with the TASKS
performed in that domain and those TASKS are regulated by some 
RESTRICTIONS.

This meta-ontology should be instantiated for each specific application 
domain with a domain ontology as exemplified in [7] (see also Chap. 10). 

5.4. Validating the Ontology 

After the ontology conceptualization (see Sect. 5.3), the next step is to 
validate it. We did this in two ways: validation of the quality of the ontol-
ogy itself (how clear it is, how complete, concise, etc.), and validation of 
the usefulness of the concepts for maintenance (which was the ontology’s 
purpose). This validation will be presented here and in Sect. 5.5. 
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5.4.1 Quality Validation 

To validate the quality of the ontology we considered the following six de-
sirable criteria (see for example [10, 12]): (a) consistency, referring to the 
absence (or not) of contradictory information in the ontology; (b) com-
pleteness, referring to how well the ontology covers the real world (soft-
ware maintenance for us); (c) conciseness, referring to the presence (or 
not) of needless information or details; (d) clarity, referring to how effec-
tively the intended meaning is communicated; (e) generality, referring to 
the possibility of using the ontology for various purposes inside the fixed 
domain (software maintenance); and (f) robustness, referring to the ability 
of the ontology to support changes. 

To evaluate these criteria, we asked four experts to study the ontology 
and fill out a quality assessment report composed of several questions for 
each criterion. These people were chosen for their extensive experience in 
software maintenance or for their academic background in ontology defi-
nition. The evaluations were good; on a scale of 0 to 4, no sub-ontology 
received a mark below 3 for any criterion. 

This evaluation was useful in pointing out specific problems. For exam-
ple, we had not included a relation to specify that software systems may 
interact amongst each other, the CASE taxonomy (skills sub-ontology) did 
not contemplate utility tools for execution, some definitions were not clear 
(this was the cause of a generally lower score of the maintenance process 
sub-ontology), and some restrictions were not expressed. 

Besides the expert assessments experiment, we also validated the ontol-
ogy by instantiating its concepts for real software systems. One instantia-
tion was performed, for pure validation purposes, on the existing docu-
mentation of a system. It resulted in the instantiation of 73 concepts out of 
98. Another validation was performed when we used the ontology in a 
knowledge management experiment (with another system in another or-
ganization). This second experiment instantiated 39 concepts out of 62 
(the computer science skill sub-ontology was not considered in this exam-
ple).

Not all concepts were instantiated for either of the two systems because 
of the particularities of these systems or the organizations that were main-
taining them:  

Some skills may not be mastered by all software organizations (e.g., 
reverse engineering technique). 
Not all software organizations use a well-defined maintenance process 
with clear activities. 
Not all CASE tools are used by all organizations (e.g., testing tool). 
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Specific examples of concepts may not have appeared when we 
performed the validation (e.g., possible causes for a maintenance 
operation as security, or on-line documentation, etc.). 
Documentation is, in many cases, a missing item in the maintenance of 
legacy software systems (e.g., configuration plan, quality plans, etc.).  

5.4.2 Relevance Validation 

The purpose of the ontology is (Sect. 5.3) to describe the knowledge rele-
vant to the practice of software maintenance. Therefore, we also needed to 
validate the relevance of the concepts for maintenance. To do so, we con-
ducted two types of experiments: observing maintainers while they were 
maintaining a system, and presenting the instantiated knowledge to the 
software engineers and asking them what concepts they used. 

For the first experiment we used a protocol called think-aloud (see for 
example [19]) where the maintainers were asked to say everything they 
did and why they did it. These sessions were recorded and later tran-
scribed on paper to be analyzed. During the analysis, we tried to identify 
the kind of knowledge that the software engineers were using at each mo-
ment based on the defined ontology. Two maintainers participated in this 
experiment, doing five sessions for a total of 132 minutes (26 minutes per 
session on average). 

In the second experiment, the ontology was presented and explained to 
the software maintainers and they were asked to fill in, every day, a ques-
tionnaire on the concepts they used. This form consisted of all the con-
cepts we had instantiated previously (preceding section) and the list of 
their instances (as we identified them from the system’s documentation in 
the quality validation). The maintainers were asked to tick the instances 
they had used during their work (they could not add new instances). The 
experiment was performed with three maintainers and one manager. They 
filled in 17 forms on 11 different days over a period of 10 weeks. 

The first experiment (think-aloud sessions) instantiated 43 of the 98 
concepts. One reason for this low number is the small number of sessions 
in this experiment which were mostly on short punctual maintenance. The 
second experiment (tick used instances of a concept) instantiated 67 out of 
the 73 that we could instantiate for that particular system. Since the main-
tainers in this experiment had to tick the instances of concepts we had 
identified from the system’s documentation, they could not use more con-
cepts than we had instantiated previously (see previous section). 

We feel that these experiments adequately validated the usefulness and 
quality of the ontology for the particular purpose for which it was de-
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signed. In the next section, we will propose a practical example of how 
this ontology may be used. 

5.5 Putting the Maintenance Ontology to Work 

We identified in Sect. 5.2 that a significant problem of software mainte-
nance is the lack of knowledge on the systems maintained. To propose a 
solution to this problem, we decided to use knowledge discovery tech-
niques to try to extract knowledge on the systems after each maintenance 
and record it. For this, we used a technique, well known in software engi-
neering, called project review, postmortem analysis or project retrospec-
tive.

Project review simply consists of “[gather] all the participants from a 
project that is ongoing or just finished and ask them to identify which as-
pects of the project worked well and should be repeated, which worked 
badly and should be avoided, and what was merely ‘OK’ but leaves room 
for improvement” [25]. The term postmortem implies that the analysis is 
done after the end of a project, although, as recognized by Stålhane in the 
preceding quote, it may also be performed during a project, after a signifi-
cant mark has been reached. 

There are many different ways of performing a project review; for ex-
ample, [7] differentiate their proposal, a “lightweight postmortem review”, 
from more heavy processes as used in large companies such as Microsoft 
or Apple Computer. A project review may also be more or less structured, 
and focused or “catch all”. One of the great advantages of the technique is 
that it may be applied on a small scale with little resources (e.g., a 2 hour 
meeting with all the members of a small project team, plus 1 hour from the 
project manager to formalize the results). Depending on the number of 
persons participating in the project review, it may require different levels 
of structuring, from a relatively informal meeting where people simply 
gather and discuss the project, to a more formal process as proposed in [6]. 

Project review has long been used in software engineering as a success-
ful technique for discovering lessons learned from the execution of a proc-
ess and thereby improving its next execution. However, in this case, we 
are mainly interested in discovering new knowledge learned about the sys-
tem, its application domain, or other issues not specifically related to the 
maintenance process. To identify what information we could hope to dis-
cover in the project reviews, we used the concepts defined in our ontology. 

We conducted two types of project reviews:  
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We interviewed the members of four short maintenance projects. Each 
project involved than three maintainers fever. 
We also conducted a brainstorming meeting for two large maintenance 
projects with more maintainers involved (more than 10 in these cases). 

We felt that interviews would be the best tool in the case of the small 
maintenance projects because the size of the maintenance team allows the 
interviewer to easily merge the discoveries, whereas individual interviews 
avoid having to find a time slot when the entire team (however small) can 
conveniently meet. The interviews where structured according to a ques-
tionnaire that would allow us to discover if the maintainers had encoun-
tered any new interesting knowledge. Each concept of the ontology was 
reviewed to discover if the maintainer could instantiate any of them. 

The duration of the interviews was about 20 to 25 minutes. It is roughly 
consistent and does not seem to depend on the duration of the maintenance 
project (although the number of interviews does depend on the size of the 
team). 

We felt that this way of performing project reviews gave complete satis-
faction with results as expected (i.e., knowledge gained on the system as 
well as lessons learned on the process). The interviews were found to be 
flexible, easily applied, and at little cost. However, we feel that the method 
would not scale up well and that larger teams need group meetings to fa-
cilitate the convergence of ideas. In this case, the (structured) brainstorm-
ing session seemed best fitted because all the team members get a chance 
to share what they learned. When the team gets bigger, it is important to 
have this kind of meeting so that all opinions may be expressed and com-
pared. A clear problem with the method is that it is more costly and diffi-
cult to organize. 

The brainstorming sessions were prepared by the distribution of ques-
tionnaires (the same as used in the interviews) intended to revive the im-
portant points of the projects in the minds of the participants and focus 
them on topics of interest. For each project, the project review was divided 
into two sessions. In the first session, positive and negative points were 
raised; these were then summarized and organized by the facilitator of the 
review to prepare the second session where corrective actions were pro-
posed for the negative points. The duration of the review was 6 hours in 
one case and 8 in the other. 

The results were not as satisfying as those for the short maintenance 
projects, because the points that came out dealt mainly with the mainte-
nance process (one of the sub-ontologies) and not with the system or its 
application domain (other sub-ontologies). A possible explanation is that 
because of the difficulty of scheduling the meetings and the urgency of the 
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projects, we could not organize intermediate reviews after specific marks 
in the maintenance process (e.g., after the initial maintenance request 
analysis). Instead we only had an after-project review, with a broader 
scope and where the knowledge gained on the system may already have 
been lost again (the projects lasted 60 and 90 days respectively). In addi-
tion, the organization had recently undergone a redefinition of its proc-
esses and therefore the topic was still a “hot” one at the time. 

Examples of knowledge gained during a maintenance project and un-
covered by the project reviews are:  

Re-engineering opportunity: the re-engineering was not actually 
performed but was recorded for future analysis. 
Detailed understanding of how a particular module works.  
Description of requirements that were not documented.  
Identification of a requirement that had repeatedly changed.  

5.6 Conclusion 

Software maintenance is a knowledge-intensive activity. Software main-
tainers need knowledge of the application domain of legacy software, the 
problem it solves, the requirements for this problem, the architecture of 
the system, how it interacts with its environment, etc. All this knowledge 
may come from diverse sources: experience of the maintainer, from some 
colleagues, knowledge of the user, documentation, or source code. Studies 
suggest that 40% to 60% of the cost of maintenance is spent on recreating 
this knowledge [22, p. 35]. 

In this chapter, we looked at an ontology of the knowledge used in 
software maintenance. We detailed the process by which we came to cre-
ate this ontology, always using references from the literature to guide our 
efforts. The ontology we presented was divided into five sub-ontologies 
(system, computer science skills, maintenance process, organization, and 
application domain). We also briefly discussed its validation according to 
different criteria (mainly quality and relevance) and concluded that it was 
adequate for its intended purpose. 

This ontology may serve as a structuring framework for other methods 
trying to deal with the knowledge deficiencies in the maintenance of leg-
acy software systems. It may be seen as a reference, listing all the con-
cepts one needs to worry about; or it may be seen as a classification 
scheme to categorize pieces of information that one may gather; it could 
also be used as a common description of maintenance for various tools try-
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ing to exchange information. We described an experiment we conducted 
to extract knowledge on maintained systems using an adaptation of project 
review.
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6.1 Introduction 

Software measurement has evolved in such a way that it is no longer a 
marginal or atypical activity within the software development process and 
has become a key activity for software project managers. All successful 
software organizations use measurement as part of their day-to-day man-
agement and technical activities. Measurement provides organizations 
with the objective information they need to make informed decisions that 
positively impact their business and engineering performance [17]. As a 
matter of fact, CMMI (Capability Maturity Model Integration) includes 
software measurement as one of its requisites for reaching higher maturity 
levels and it helps organizations to institutionalize their measurement and 
analysis activities, rather than addressing measurement as a secondary 
function. Other initiatives such as ISO/IEC 15504 [11], SW-CMM (Capa-
bility Maturity Model for Software) and the ISO/IEC 90003:2004 standard 
[12] also consider measurement to be an important element in the man-
agement and quality of software. In all these initiatives measurement plays 
a fundamental role as a means for assessing and institutionalizing software 
process improvement programs. 
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However, as with any relatively young discipline, software measure-
ment has some problems. When we approach software measurement and 
compare diverse proposals or international standards, it becomes apparent 
that the terminology used is not always the same or the same term may re-
fer to different concepts. Terms such as “metrics”, “attribute”, or “meas-
ure” need to have a single definition accepted by all the researchers and 
practitioners who work in software measurement. The most serious point 
is when inconsistencies appear between different measurement proposals 
or standards. 

Standards provide organizations with agreed and well-recognized prac-
tices and technologies, which assist them to interoperate and to work using 
engineering methods, reinforcing software engineering as an “engineer-
ing” discipline, instead of a “craft”. Furthermore, the Internet is changing 
how business is done nowadays, promoting cooperation and interoperation 
among individual organizations, which need to compete in a global market 
and economy, and share information and resources. Standardization is one 
of the driving forces to achieve this interoperability, with the provision of 
agreed domain conventions, terminologies and practices. However, there 
is no single standard which embraces the whole area of software meas-
urement in its totality, but rather there are diverse standards orientated to-
wards specific areas such as the measurement process or function points. 
Without an overall reference framework managing these standards, incon-
sistencies arise in the measurement terminology. This issue has been rec-
ognized by ISO/IEC, which has created a work group for the harmoniza-
tion of systems engineering standards within its Joint Technical 
Committee 1 (JTC1: “Information Technology”, www.jtc1.org), and is try-
ing to explicitly include in its directives the procedures which guarantee 
consistency and coherency among its standards.  Furthermore, there has 
been an agreement in place since the year 2002 between the IEEE Com-
puter Society and ISOJTC1-SC7 to harmonize their standards, which in-
cludes the terminology on measurement. 

In spite of these efforts, the problem of terminology harmonization still 
needs to be resolved in our opinion. The objective of this chapter is to pre-
sent a coherent software measurement terminology which has been agreed 
upon by consensus, i.e., without contradictions or disparities in the defini-
tions, and a terminology which is widely accepted. The terminology pre-
sented in this chapter has been obtained as a result of an exhaustive analy-
sis of the concepts and terms used in the field of software measurement. 
First of all, similarities, discrepancies, shortcomings and weaknesses in the 
terminology used in the main standards and proposals have been identi-
fied, including ISO International Vocabulary of Basic and General Terms 
in Metrology (VIM) [13] in the comparison [5]. The result has been a 
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software measurement ontology that provides a set of coherent concepts, 
with the relations between these concepts well defined, and which we 
hope helps to create a unified framework of software measurement termi-
nology. 

This chapter is organized as follows. After this introduction, Sect. 6.2 
guies a brief analysis of the current situation. Section 6.3 presents the 
Software Measurement Ontology proposal; the concepts of the ontology 
and relationships among them are presented in detail grouped according to 
the sub-ontology to which they belong. A running example based on a real 
case study is used to illustrate the ontology. Finally, Sect. 6.4 draws some 
conclusions, proposes some suggestions for harmonization, and identifies 
future research work. 

6.2 Previous Analysis  

We selected sources from the existing international standards and research 
proposals that deal with software measurement concepts and terminology. 
From IEEE we took IEEE Std. 610.12: “Standard Glossary of Software 
Engineering Terminology” [7] and IEEE Std. 1061-1998: “IEEE Standard 
for a Software Quality Metrics Methodology” [8]. From ISO and IEC we 
selected the ISO/IEC 14598 series “Software engineering – Product 
evaluation” [9], the ISO VIM: “International Vocabulary of Basic and 
General Terms in Metrology” [13] and the International Standard ISO/IEC
15939: “Software engineering – Software measurement process” [10]. We 
also included other relevant research proposals related to software meas-
urement, such as the ones by Lionel Briand et al. [3] and by Barbara 
Kitchenham et al. [16]. The general enterprise ontology proposed by 
Henry Kim [15] was also considered in the analysis, since it contains a 
sub-ontology for measurement concepts and terms. Other proposals that 
make use of measurement terminology (sometimes adapted to their par-
ticular domains) were also analyzed, although they were not included in 
the comparative study because they were either too specific, or clearly in-
fluenced by other major proposals already considered.  

Once the sources were identified the next step was to collect from them 
all the definitions of terms related to software measurement. As a result of 
this, the first thing we realized was that the different standards and pro-
posals could be basically organized around three main groups, depending 
on the particular measurement topics they focused on: software measures, 
measurement processes, and targets-and-goals. The first group of con-
cepts, software measures, deals with the main elements involved in the 
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definition of software measures, including terms such as measure, scale, 
unit of measurement, etc. The second group, processes, is related with the 
actions of measuring software products and processes, including the defi-
nition of terms like measurement, measurement result, measurement 
method, etc. Finally, the third group, target-and-goals, gathers the con-
cepts required to establish the scope and objectives of the software meas-
urement process, e.g., quality model, measurable entity, attribute, informa-
tion need, etc. It is worth noting that no single proposal from the set of 
analyzed sources covers all three groups. Moreover, the set of concepts 
covered by each source is not homogeneous, even for those sources focus-
ing on the same group. There is a tendency in the sources, however, to 
converge around these three topic groups as they evolve over time.  

However, once the ontology was created we discovered that it was not 
fully aligned with the VIM and with the new harmonization efforts taking 
place at ISO. Therefore, it was decided to adapt it in order to make it con-
verge with these efforts, and the ontology presented here was subsequently 
created. The resulting software measurement ontology is therefore based 
mainly on the ISO VIM and ISO/IEC 15939 standards. It also includes 
some terms which are missing from these two documents (e.g., “quality 
model”) that we think are essential in software measurement, and presents 
some discrepancies with ISO/IEC 15939, e.g., the treatment of indicators.   

6.3 A Running Example 

To illustrate the ontology, let us use an example based on a real case of 
software measurement which uses all of the concepts and terms of the on-
tology. It occurs in the context of a component-based development process 
of an industrial application, which needs to select a set of commercial off-
the-shelf (COTS) software components to be integrated into the system. 

More precisely, the software architect has decided not to develop a 
software component to provide the “print and preview” facilities of the 
application, but to obtain it from an external source, i.e., go to a software 
component repository (e.g., ComponentSource) and buy or license a 
commercial product. There seem to be some candidate components in the 
repository that provide similar functionality, from different vendors, and 
that could be used. Of course, the software architect wants to select the 
“best” component, i.e., the one that best suits the requirements and prefer-
ences. Therefore, he/she needs to evaluate the candidate components, i.e., 
measure them in order to rank them according to such requirements. To 
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simplify the example, let us suppose that the software architect is only in-
terested in evaluating the Usability of the candidate components.  

In this example we will also suppose that the organization counts on a 
set of analysis tools to facilitate the selection of COTS software. The ma-
jor problem encountered when COTS software is assessed is the lack of 
source code. COTS components are developed and licensed by a third 
company, so their evaluation must be done without access to their code 
and internals. The organization has developed some tools to asses the 
component from two standpoints: its documentation (manuals, demos, 
marketing information, etc.), and its design. For the first, the organization 
uses an analysis tool for manuals in electronic format (as they are com-
monly provided). The software design is assessed by a tool that uses re-
flection techniques to interrogate and evaluate the COTS software. Thus, 
the tool can load a Java .jar file and then count the number of classes, 
methods, arguments, fields, etc., and also get their names and types.  

This is the setting that we will use to illustrate the concepts of the on-
tology presented here. 

6.4 The Proposal of Software Measurement Ontology  

In this section we present the Software Measurement Ontology (SMO)
proposal which we have developed to facilitate harmonization efforts in 
software measurement terminology. This ontology is based on an initial 
proposal [4], which had been created to address the lack of consensus on 
Spanish software measurement terms, based on the most representative 
measurement standards and proposals. Once the Spanish ontology was de-
fined, it was translated into English. Finding the correct translation of each 
Spanish term became a rather difficult task and was done by comparing 
the different proposals again, and selecting the most appropriate terms in 
each case. 

6.4.1 The SMO

With our comparison analysis we pursued the following goals: to locate 
and identify synonyms, homonyms, gaps and conflicts; to generalize the 
different approaches to measuring attributes; and to provide a smooth in-
tegration of the concepts from the three groups, so that measurement proc-
esses can be built using clearly defined measures, while quality models 
identify the targets and goals of the measurement processes. 
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A natural approach to achieving these goals was to use a common soft-
ware measurement ontology, able to identify all concepts, provide precise 
definitions for all the terms, and clarify the relationships between them. 
Such an ontology also served as the basis for comparing the different stan-
dards and proposals, thus helping to achieve the required harmonization 
and convergence process for all of them. Another important requirement 
for the SMO was that its terms should try to conform to general terminol-
ogy accepted in other fields, including measurement—which is a quite 
mature field with a very rich set of terms.  

The SMO was developed with these goals in mind. The main features 
and characteristics of the SMO (shown in Fig. 6.1) are the following:  

It uses the term “measure" instead of “metric". This issue is one of the 
most controversial ones amongst software measurement experts 
nowadays. Although the term metric is widely used and accepted by 
many practitioners and researchers, this term has many detractors who 
argue the following reasons against its use. First, formally speaking a 
metric is a function that measures the distance between two entities—
and therefore it is defined with the precise mathematical properties of a 
distance. Secondly, the definition of metric provided by both general 
and technical dictionaries does not reflect the meaning with which it is 
informally used in software measurement. Furthermore, metric is a term 
that is not present in the measurement terminology of any other 
engineering disciplines, at least with the meaning commonly used in 
software measurement. Therefore, the use of the term “software metric” 
seem to be imprecise, while the term “software measure” seems to be 
more appropriate to represent this concept. As a matter of fact, all new 
harmonization efforts at ISO/IEC and IEEE are trying to avoid the use of 
the term metric in order to fall into line with the other measurement 
disciplines, which normally use the vocabulary defined in metrology. In 
our proposal we finally decided to avoid the use of the term metric, 
using the term “measure” instead.  
It differentiates between “measure”, “measurement” and “measurement 
result”. These terms are used with different meanings in the different 
proposals (one of the reasons is that “measure” can be used as both a 
noun and a verb, and therefore it can be used to name both an action (to 
measure) and the result of the action). In our proposal the action is 
called “measurement”; the result is called “measurement result”; while 
the term “measure” defines the measurement approach that needs to be 
used to perform the measurement, and the scale in which the result is 
expressed.
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It distinguishes between base measures, derived measures and 
indicators, but considers them all as measures, generalizing their 
respective measurement approaches (measurement method, 
measurement function and analysis model). 
It integrates the software measures with the quality model that defines 
the information needs that drive the measurement process. 
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Fig. 6.1. The SMO

Figure 6.1 shows the terms of the SMO and their relationships, using the 
UML (Unified Modeling Language) notation. As can seen, the SMO has 
been organized around four main sub-ontologies: Software Measurement 
Characterization and Objectives, to establish the context and goals of 
the measurement; Software Measures, to clarify the terminology in-
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volved in the measures definition; Measurement Approaches, to describe 
the different ways of obtaining the measurement results for the measures; 
and Measurement, which includes the concepts related to performing the 
measurement process. These four sub-ontologies are closely related to the 
three main groups of concepts identified above. Thus, the first sub-
ontology corresponds to the target-and-goals group. The software meas-
ures sub-ontology corresponds to the measures group. The last two sub-
ontologies together cover the measurement process group. 

To represent the SMO we have chosen REFSENO (Representation For-
malism for Software Engineering Ontologies) [18]. REFSENO provides 
constructs to describe concepts (each concept represents a class of experi-
ence items), their attributes and relationships. Three tables are used to rep-
resent these elements: one with the glossary of concepts, one table of at-
tributes, and one table with the relationships. REFSENO also allows the 
description of similarity-based retrievals, and incorporates integrity rules 
such as cardinalities and value ranges for attributes, and assertions and 
preconditions on the elements’ instances. Several main reasons moved us 
to use REFSENO for defining our ontology. First, REFSENO was specifi-
cally designed for software engineering, and allows several representa-
tions for software engineering knowledge whilst other approaches, e.g. [6, 
19, 20], only allow representations which are less intuitive for people not 
familiar with first-order predicate (or similar) logics. In addition, 
REFSENO has a clear terminology, differentiating between conceptual and 
context-specific knowledge, and thus enabling the management of knowl-
edge from different contexts. REFSENO also helps the building of consis-
tent ontologies thanks to the use of consistency criteria. Unlike other ap-
proaches, REFSENO uses constructs known from case-based reasoning 
(CBR). Finally, REFSENO stores experience in the form of documents, 
and not as codified knowledge. This results in an important reduction of 
the learning effort required, something typically associated with knowl-
edge-based systems [1].  

The SMO was defined following the process suggested by REFSENO.
More precisely, we used the following steps: 

1. Define the concept glossary from the knowledge sources mentioned 
above.

2. Define the semantic relationships among the concepts by represent-
ing them in the UML notation, and create the relationship class ta-
bles.

3. Analyze the concepts which have some kind of relationship in order 
to identify the commonalities among two or more concepts. Then, we 
need to decide whether these commonalities are concepts (inserted 
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for modeling reasons) and, if so, to include them in the glossary of 
concepts.

4. Identify the terminal attributes of all the concepts and include them in 
the UML diagrams. Each time a new attribute type is identified, it 
must be included in the table of types.    

5. Complete the attributes concept tables by including the non-terminal 
attributes.

6. Check the completeness of all the attribute tables.  

The REFSENO representation of the SMO is presented in the following 
subsections. For simplicity, we describe only the terms and relationships 
for each sub-ontology.  

6.4.1.1 “Software Measurement Characterization and Objectives” 
Subontology 

The “Software Measurement Characterization and Objectives” sub-
ontology includes the concepts required to establish the scope and objec-
tives of the software measurement process. The main goal of a software 
measurement process is to satisfy certain information needs by identifying 
the entities (which belong to entity classes) and the attributes of these enti-
ties (which are the focus of the measurement process). Attributes and in-
formation needs are related through measurable concepts (which belong to 
a quality model). Figure 6.2 shows the concepts and relationships of the 
sub-ontology “Software Measurement Characterization and Objectives” 
expressed in a UML diagram. The terms of this sub-ontology are given in 
Table 6.1. The first two columns show the term being described and its 
super-concept in the ontology, respectively. The third column contains the 
definition of the term in the SMO. The final column shows the source 
(standard or proposal) where the term has been adopted from. Possible 
values in the fifth column can be: 

a reference to a source (e.g., 15939, VIM, 14598), meaning that the term 
and its definition have been adopted from that source without any 
changes;
“Adapted from (source)”, if the term has been borrowed from a source, 
but its definition has been slightly changed for completeness or 
consistency reasons; 
“Adapted from (source) (other term)”, if the definition of the term has 
been borrowed from a source, but that term is known differently in the 
source; or 
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new, if the term has been coined for the SMO, or has a new meaning in 
this proposal. 

Fig. 6.2. “Software Measurement Characterization and Objectives” Sub-Ontology  

Table 6.1. Concepts table of the sub-ontology characterization and objectives  

Term Super-
concept 

Definition Source 

Information
Need

Concept Insight necessary to manage objectives, 
goals, risks and problems 

15939

Measurable  
Concept

Concept Abstract relationship between attributes of 
entities and information needs 

15939

Entity Concept Object that is to be characterized by measur-
ing its attributes 

15939

Entity Class Concept The collection of all entities that satisfy a 
given predicate 

New

Attribute Concept A measurable physical or abstract property 
of an entity that is shared by all the entities 
of an entity class 

Adapted
from
14598

Quality Model Concept The set of measurable concepts and the rela-
tionships between them which provide the 
basis for specifying quality requirements and 
evaluating the quality of the entities of a 
given entity class 

Adapted
from
14598
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Table 6.2 describes the relationships defined in the sub-ontology. 

Table 6.2. Relationships table of the sub-ontology characterization and objectives  

Name Concepts Description 
Includes  Entity Class –Entity 

Class 
An entity class may include several other en-
tity classes 
An entity class may be included in several 
other entity classes 

Defined for Quality Model– 
Entity Class 

A quality model is defined for a certain entity 
class. An entity class may have several quality 
models associated 

Evaluates Quality Model–
Measurable Concept 

A quality model evaluates one or more meas-
urable concepts. A measurable concept is 
evaluated by one or more quality models 

Belongs to Entity–Entity Class An entity belongs to one or more entity classes. 
An entity class may characterize several enti-
ties

Relates Measurable 
Concept–Attribute 

A measurable concept relates one or more at-
tributes

Is associated 
with

Measurable  
Concept–
Information Need 

A measurable concept is associated with one 
or more information needs. An information 
need is related to one measurable concept 

Includes Measurable  
Concept–
Measurable Concept 

A measurable concept may include several 
measurable concepts. A measurable concept 
may be included in several other measurable 
concepts 

Composed of Entity–Entity An entity may be composed of several other 
entities 

Has Entity Class– 
Attribute

An entity class has one or more attributes. An 
attribute can only belong to one entity class 

6.4.1.2 Examples 

In our example, the Entity Class is the “COTS components which provide 
services of print and preview”, and an Entity is the component “C005 Ele-
gantJ Printer V1.1 developed by Elegant MicroWeb”. We use a Quality 
Model which is the one proposed in the norm ISO/IEC 9126 or we can 
adapt this generic model to the DSBC context and use our own quality 
model (for instance, we could use one specific quality model defined for 
software components, such as the COTS-QM quality model [2]).  

Quality software is a complex and broad topic so we focus on only one 
quality characteristic, the Usability. We will try to assess COTS Usability 
measuring three sub-characteristics: Understandability, Learnability and 
Operability. Our goal will be to look for indicators for them. 

Therefore, our Information Need is “to evaluate the Usability of a set of 
‘print and preview’ COTS components that are candidates to be integrated 
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into a software application, in order to select the best among them”. These 
sub-characteristics which we wish to measure are related, to a greater or 
lesser degree, to two Measurable Concepts: “Quality of Documentation” 
and “Complexity of Design”. 

Each measurable concept is related to one or more Attributes, so the 
Quality of Documentation is related to the attribute “Manual Size” and the 
Complexity of the Design is related to the “Customizability” among other 
attributes

6.4.1.3 “Software Measures” Sub-ontology 

This sub-ontology aims at establishing and clarifying the key elements in 
the definition of a software measure. A measure relates a defined meas-
urement approach and a measurement scale (which belongs to a type of 
scale). Most measures may or may not be expressed in a unit of measure-
ment (e.g., nominal measures cannot be expressed in units of measure-
ment), and can be defined for more than one attribute. Three kinds of 
measures are distinguished: base measures, derived measures and indica-
tors. Figure 6.3 shows the concepts and relationships of the “Software 
Measures” sub-ontology. 

Fig. 6.3. “Software Measures” sub-ontology   

Tables 6.3 and 6.4 show the terms and relationships of this sub-
ontology, respectively. 
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Table 6.3. Concepts table of the sub-ontology software measures  

Term Super-
concept

Definition Source 

Measure Concept The defined measurement approach and the 
measurement scale. (A measurement approach 
is a measurement method, a measurement func-
tion or an analysis model) 

Adapted
from 
14598 
“metric” 

Scale Concept A set of values with defined properties 14598 
Type of Scale Concept The nature of the relationship between values 

on the scale 
Unit of Measure-
ment 

Concept Particular quantity, defined and adopted by 
convention, with which other quantities of the 
same kind are compared in order to express 
their magnitude relative to that quantity 

VIM

Base Measure  Measure A measure of an attribute that does not depend 
upon any other measure, and whose measure-
ment approach is a measurement method 

Adapted
from 
14598 
“direct 
metric” 

Derived Measure Measure A measure that is derived from other base or 
derived measures, using a measurement func-
tion as measurement approach 

Adapted
from 14598 
“indirect 
metric” 

Indicator Measure A measure that is derived from other measures 
using an analysis model as measurement ap-
proach 

New

Table 6.4. Relationships table of the sub-ontology software measures  

Name Concepts Description 
Belongs to Scale–Type of Scale Every scale belongs to a type of scale. A type of scale 

may characterize several scales 
Defined for Measure–Attribute A measure is defined for one or more attributes. An 

attribute may have several associated measures 
Transformation Measure–Measure Two measures can be related by a transformation 

function; the kind of function will depend on the scale 
types of the scales 

Expressed in Measure–Unit of 
Measurement 

A measure can be expressed in one unit of measure-
ment (only for measures whose type is interval or ra-
tio). A unit of measurement is used to express one or 
more measures of interval or ratio types 

Has Measure–Scale Every measure has a scale. A scale may serve to 
define more than one measure 

6.4.1.4 Examples 

Let us define measures to measure each attribute. These measures are 
more complex at each step. The first step is to define a set of Base Meas-
ures, then Derived Measures and, if possible, Indicators. Each Measure,
according to its type, has its corresponding Measuring Approach and
Scale.
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Thus, a Base Measure could be the “Number of Words of Manuals” (re-
lated to quality of documentation) or the “Number of Public Methods” 
provided by the component (related to complexity of design). For the first 
measure, its scale is “integers between 0 and + ”, its type of scale is “Ra-
tio” and its units are “Kilo-words”. The scale of the second measure is “in-
tegers between 1 and + ”, its type of scale is “Ratio” and its units are 
“Methods”. Other base measures that we need to use to calculate the indi-
cator presented below are “Number of Classes”, “Number of Configurable 
Parameters” and “Number of Methods without Arguments”. 

We obtain derived measures using one or more base measures. Now, 
we want to calculate the Derived Measures “Ratio of Words per Func-
tional Element”. We have designated functional element (FE) to the ag-
gregation of Classes, Methods and Configurable Parameters. Therefore, to 
calculate this derived measure we must know and calculate the base meas-
ures “Number of Words of Manuals”, “Number of Classes”, “Number of 
Methods” and “Number of Configurable Parameters”. Its Scale is “real 
numbers from 0 to + ” and its units are “Kilo-words/FE” with a ratio type
of scale.

We wish to calculate the “percentage of methods without arguments” 
which is another example of a Derived Measure. We need to know the 
“Number of Methods without Arguments” and the “Number of Methods”. 
In this case, the scale is “real numbers between 0 and 1” without units be-
ing a relative value (percentage) and with a “Ratio” type of scale.

Now, we could define an Indicator using some derived (or base) meas-
ures and defining an analysis model. For instance, we want to asseshs the 
Understandability inside the proposed quality model. We have an indica-
tor named C_UND whose analysis model uses the ratio of words per FE
(WpFE) and the percentage of methods without arguments (MwoA), by 
aggregating these two derived measures. After using its analysis model 
(i.e., its aggregation function) to calculate the indicator, the result can be 
given as a numerical value (e.g., 1.5) or a category value (e.g., Accept-
able). In this example, the understandability indicator (C_UND) type of 
scale is “Ordinal” and it takes the values Acceptable, Marginal or Unac-
ceptable, where Acceptable is better than Marginal and this is better than 
Unacceptable. 

6.4.1.5 “Measurement Approaches” Sub-ontology 

The “Measurement Approaches” sub-ontology introduces the concept of 
measurement approach to generalize the different “approaches" used by 
the three kinds of measures for obtaining their respective measurement re-
sults. A base measure applies a measurement method. A derived measure 
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uses a measurement function (which rests upon other base and/or derived 
measures). Finally, an indicator uses an analysis model (based on a deci-
sion criterion) to obtain a measurement result that satisfies an information 
need. Figure 6.4 shows the concepts and relationships of this sub-
ontology, and Tables 6.5 and 6.6 show the terms and relationships of this 
sub-ontology. 

Fig. 6.4. “Measurement Approaches” sub-ontology  
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Table 6.5. Concepts table of the sub-ontology measurement approaches 

Term Super-
concept

Definition Source 

Measurement 
Method 

Measurement 
Approach 

Logical sequence of operations, described gen-
erically, used in quantifying an attribute with re-
spect to a specified scale. (A measurement 
method is the measurement approach that defines 
a base measure) 

Adapted
from 
ISO
15939 

Measurement 
Function

Measurement 
Approach 

An algorithm or calculation performed to com-
bine two or more base or derived measures. (A 
measurement function is the measurement ap-
proach that defines a derived measure) 

Adapted
from 
ISO
15939 

Analysis Model Measurement 
Approach 

Algorithm or calculation combining one or more 
measures with associated decision criteria. (An 
analysis model is the measurement approach that 
defines an indicator) 

Adapted
from 
ISO
15939 

Decision Crite-
ria

Concept Thresholds, targets or patterns used to determine 
the need for action or further investigation, or to 
describe the level of confidence in a given result 

15939 

Table 6.6. Relationships table of the sub-ontology measurement approaches 

Name Concepts Description 
Uses Base Measure–

Measurement 
Method  

Every base measure uses one measurement method 
Every measurement method defines one or more base 
measures 

Calculated With Indicator–Analysis 
Model 

Every indicator is calculated with one analysis 
model. 
Every analysis model may define one or more indica-
tors

Calculated With Derived Measure–
Measurement Func-
tion

Every derived measure is calculated with one meas-
urement function. Every measurement function may 
define one or more derived measures 

Satisfies Indicator–
Information Need 

An indicator may satisfy several information needs. 
Every information need is satisfied by one or more 
indicators 

Uses Measurement Func-
tion–Base Measure 

A measurement function may use several base meas-
ures. A base measure may be used in several meas-
urement functions 

Uses Measurement Func-
tion–Derived Meas-
ure 

A measurement function may use several derived 
measures. A derived measure may be used in several 
measurement functions 

Uses Analysis Model–
Measure

An analysis model uses one or more measures. A 
measure may be used in several analysis models 

Uses Analysis Model–
Decision Criteria 

An analysis model uses one or more decision criteria. 
Every decision criterion is used in one or more analy-
sis models 

6.4.1.6 Examples 

Let us look at some examples of measurement approaches for the meas-
ures proposed in previous sections. We have base measures, derived 
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measures and indicators. All of them have their own measurement ap-
proach but, depending on the type of measure, they have a measurement 
method, measurement function or analysis model, respectively. 

“Number of Words of Manuals” is a base measure and, therefore, its 
measurement approach is a Measurement Method. In this case, it is com-
posed of the following steps: 

1. Run the software application for automatic evaluation of electronic 
manuals.

2. Load the executable component files (e.g., C005.jar). 
3. Load the files of the component manuals  

a. If it is a HTML manual, indicating the path of the index file 
(index.htm). 

b. If it is a “.chm” file, selecting the file or files which com-
pose the manual. 

4. Select the function which counts words from the manual (e.g., se-
lect the “manual” drop-down flap and click on the “manual info” 
button). 

5. Finally, read the obtained result from the screen or save it in a text 
file for later use. 

The rest of the base measures have a similar measurement method de-
scribing the steps for calculating them using other options or different 
software tools if available. 

The derived measure “Ratio of words per FE (WpFE)” has a measure-
ment approach which is a Measurement Function. This Measurement 
Function uses some (previously calculated) base measure and its formula 
is the following: 

nfigParamNumberOfCothodsNumberOfMeassesNumberOfCl
rdsNumberOfWo 1000

The other derived measure “Percentage of Methods without Arguments 
(MwoA)” has the following Measurement Function:

100*
thodsNumberOfMe

sutArgumentthodsWithoNumberOfMe

We use these two derived measures to evaluate the understandability 
indicator C_UND. We have a small Analysis Model that gives us a nu-
merical value using a formula. Using this numerical value, we have Deci-
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sion Criteria to obtain a final result. Therefore, its Analysis Model in-
cludes the following formula: 

6.14.12.0_ MwoAWpFEUNDC

Subsequently, we analyze the resulting values using the following Deci-
sion Criteria:

If 2.1_UNDC  then the component is ACCEPTABLE;
 If 8.0_UNDC  then the component is UNACCEPTABLE;
 Otherwise, the component is MARGINAL

6.4.1.7 Sub-ontology “Measurement” 

This sub-ontology establishes the terminology related to the act of measur-
ing software. A measurement (which is an action) is a set of operations 
having the object of determining the value of a measurement result, for a 
given attribute of an entity, using a measurement approach. Measurement 
results are obtained as the result of performing measurements (actions). 
Figure 6.5 shows the concepts and relationships of the sub-ontology. 

Tables 6.7 and 6.8 show the terms and relationships of this sub-
ontology. 

Fig. 6.5. “Measurement” sub-ontology  
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Table 6.7. Concepts table of the sub-ontology measurement 

Term Super-
concept.

Definition Source 

Measurement 
Approach 

Concept Sequence of operations aimed at determining 
the value of a measurement result. (A meas-
urement approach is a measurement method, a 
measurement function or an analysis model) 

New

Measurement Concept A set of operations having the object of deter-
mining the value of a measurement result, for a 
given attribute of an entity, using a measure-
ment approach 

Adapted
from VIM 

Measurement Re-
sult

Concept The number or category assigned to an attrib-
ute of an entity by making a measurement 

Adapted
from  
ISO 14598 
“Measure” 

Table 6.8. Relationships table of the sub-ontology measurement 

Name Concepts Description 
Performs Measurement–

Measurement Ap-
proach 

A measurement is the action of performing a meas-
urement approach (the kind of measurement approach 
will be dictated by the kind of measure used for per-
forming the measurement). A measurement approach 
may be used for performing several measurements 

Produces Measurement–
Measurement Result 

Every measurement produces one measurement result. 
Every measurement result is the result of one measure-
ment 

Is Performed 
on

Measurement–
Attribute

Every measurement is performed on one attribute of an 
entity (the attribute should be defined for the entity 
class of the entity) 

Is Performed 
on

Measurement–Entity Every measurement is performed on an entity, through 
one of its attributes (the attribute should be defined for 
the entity class of the entity) 

Uses  Measurement–
Measure

Every measurement uses one measure. One measure 
may be used in several measurements 

6.4.1.8 Examples 

A Measurement of the component understandability incorporates all the 
operations mentioned in previous points, using software tools and calculat-
ing base and derived measures and indicators. In the end, we obtain as a 
Measurement Result that the understandability of the component is “Ac-
ceptable” since its C_UND value is 1.5. Another Measurement for the 
component C012 could give us “Unacceptable” as a measurement result 
because C_UND has a value of 0.6. 

Examples of Measurement Results are the following: “135,423 words”, 
“243 methods”, “34 classes”, “22 Configurable Parameters”, “0.41 kilo-
words/FE”, “73%”, or “Acceptable”. 
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6.5 Conclusions 

In the current (and not mature enough) software measurement field, the 
lack of a common terminology and inconsistencies between the different 
standards may seriously jeopardize the usefulness and potential benefits of 
these standardization efforts. Measurement terms have often been defined 
in unique and inconsistent ways from organization to organization. This 
has led to confusion and difficulty in widespread measurement implemen-
tation. In many cases, decision makers were unsure of what the measure-
ment results actually represented [14].  

In this chapter, a software measurement ontology has been presented, 
which aims to contribute to the harmonization of the different software 
measurement proposals and standards, by providing a coherent set of 
common concepts used in software measurement. The ontology is aligned 
with the most representative standards and proposals in the references and 
also with the metrology vocabulary used in other more mature measure-
ment engineering disciplines. The common vocabulary provided by this 
common ontology has been used to resolve the problems of completeness 
and consistency identified in several international standards and research 
proposals and the ontology has been used as the basis for a comparative 
analysis of the terminology related to measurement [5].  

The definition of the measurement terms to an adequate level of detail 
provides everyone with a common understanding of what is being meas-
ured, and how this relates to the measurement goals or information needs. 
Most of the problems in collecting data on a measurement process are 
mainly due to a poor definition of the software measures being applied. 
Therefore, it is important not only to gather the values pertaining to the 
measurement process, but also to appropriately represent the metadata as-
sociated to this data [16]. In this sense, the ontology provides the compa-
nies with the necessary conceptual basis for carrying out the measurement 
process and storing their results in an integrated and consistent way based 
on a rigorously defined set of measurement concepts and their relation-
ships. Based on the ontology, companies can develop metamodels and 
languages to define their models for process and product measurement in a 
homogeneous and consistent way which can facilitate the integration and 
communication of their measurement process-related data and metadata. 
Consequently, a consistent software measurement terminology may also 
provide an important communication vehicle to companies when inter-   
operating with others.

On the other hand, the proposed ontology can serve as a basis for dis-
cussion from where the software measurement community can start pav-
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ing the way to future agreements. Without these agreements, all the stan-
dardization and research efforts may be wasted, and the potential benefits 
that they may bring to all users (software developers, ICT suppliers, tools 
vendors, etc.) may never materialize.  

As a result, this proposal tries to address the needs of two main audi-
ences: first, software measurement practitioners, who may be confused by 
the terminology differences and conflicts in the existing standards and 
proposals; and, second, software measurement researchers and standards 
developers (e.g., international standardization bodies and committees), 
who do not currently have at their disposal a cohesive core set of concepts 
and terms over which their existing standards could be integrated, or new 
ones built. 

Our future plans include the extension of the ontology to account for 
most of the concepts in the forthcoming version of the VIM, in order to 
provide a complete ontology for software measurement, and fully aligned 
with the VIM beyond the core concepts contemplated in this proposal. 
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7.1 Introduction 

Databases nowadays are a crucial component of most information sys-
tems, playing a strategic role in the support of organizational decisions. 
Among the different query languages present in the earliest database man-
agement systems (DBMSs), SQL has imposed itself as both a de jure and 
de facto standard. It has been the focus of an intense process of standardi-
zation over the years [4–10], where the most important stakeholders, such 
as DBMS manufacturers, have been actively involved. SQL support can be 
found today in the vast majority of DBMSs, sometimes with some slight 
variations.

Although the merit of standards is unquestionable, sometimes their 
relevance may fade away  an audience beyond their creators, due either to 
the lack of understandability, or to the presence of inconsistencies.  

This last aspect is especially crucial  regarding voluminous standards of 
thousands of pages, for example, the SQL:2003 standard. In a standard 
like the SQL:2003, there are a considerable number of interweaved con-
cepts, where the semantics of the interrelationships are often very rich.  

When this happens, an ontology is the best option to complement the 
standard. An ontology representation language should have rich and for-
mal abstractions for specifying the meaning of terms. UML class dia-
grams, enriched with OCL (Object Constraint Language) [13], fulfill this 
purpose. So, an ontology for complementing a standard should represent 
its relevant concepts and  its interrelationships.  
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In this chapter, we will present the ontology we have defined for the last 
version of the SQL standard, the SQL:2003.The next section will show the 
historical evolution of the standard, and Sect. 7.3 will present the ontol-
ogy. After that, we will present an example of ontology instantiation 
through an object-relational schema defined by means of the standard. 
Conclusions will appear in the last section. 

7.2 SQL Evolution 

The relational model resulted from E. Codd’s research at IBM during the 
1960’s. SQL, originally named SEQUEL (Structured English QUEry Lan-
guage), was implemented into an IBM prototype (SEQUEL-XRM), during 
1974–1975. Some years later, a subset of this language was implemented 
into IBM’s System-R.

In 1979, ORACLE appeared as the first commercial DBMS based on 
SQL, followed by several other products (SQL/DS, DB2, DG/SQL,
SYBASE, INTERBASE, INFORMIX, UNIFY, etc.). Even other products 
that had not originally implemented SQL as the base query language of-
fered SQL interfaces (INGRES, ADABAS, SUPRA, IDMS/R). So, SQL be-
came a de facto standard, although with various dialects. 

In 1982, the database committee X3H2 of ANSI presented a “Standard 
Relational Language” based on SQL, and in 1986 this standardization 
body approved the SQL/ANSI standard. This standard was also approved 
by the ISO the following year [4].  

In 1989, the first version of the SQL standard was revised and an ad-
dendum [5], which improved mainly referential integrity issues, was pub-
lished. Meanwhile, ANSI published a standard for embedded SQL [1]. 

Several commercial proposals based on SQL standards, such as Apple’s 
DAL (Database Access Language), IBM’s DRDA (Distributed Relational 
Database Access), Microsoft’s ODBC (Open Database Connectivity), Bor-
land’s IDAPI (Integrated Database Application Programming Interface), 
were disclosed during the following years. 

In 1992, a new version was published, known as SQL2 or SQL-92 [6]. 
Both the semantic capabilities of the language and error management were 
then considerably improved. That standard was complemented a few years 
later with the approval of SQL/CLI (Call-Level Interface) [7] and 
SQL/PSM (Persistent Stored Modules) [8]. With the latter SQL a complete 
computational language was created, with provisions such as control struc-
ture and exception handling. 
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During the last half of the 1990’s, very difficult work for extending 
SQL with object-oriented capabilities was undertaken. The resulting stan-
dard was voluminous and, as such, was divided into several parts. This 
version, early on known as SQL3 and finally named SQL:1999, includes 
new features such as new basic data types (e.g., very large objects), user-
defined data types, triggers, query recursive operators, sensitive cursors, 
generalization of tables and user roles. 

Recently, another version of the standard has been published, SQL:2003 
[10], which makes revisions to all parts of SQL:1999. This last version in-
cludes, among other things, SQL/XML (XML-related specifications) and 
additional features such as new basic data types (e.g., bigint, multiset and 
XML), enhancements to SQL-invoked routines, extensions to the CREATE
TABLE statement, a new MERGE statement, a new schema object (the se-
quence generator) and two new sorts of columns (identity and generated). 
Table 7.1 summarizes the evolution of SQL.

Table 7.1. Evolution of SQL

1970s Relational Model 
DBMS prototypes (SEQUEL XRM)
First relational DBMS

1980s ANSI SQL-86 Standard
ISO SQL-87 Standard
SQL-89 Addendum 
ANSI Embedded SQL

1990s SQL 92 
SQL/CLI
SQL/PSM
SQL: 1999

2003 SQL: 2003 

As represented in Table 7.2, SQL:2003, like its predecessor SQL:1999 
(SQL3), has a multipart structure composed of nine parts, which are 
briefly reviewed in the table. As we can see, the enumeration of the parts 
is not contiguous. This is due to historical reasons: some parts have disap-
peared (for instance, all content of SQL:1999’s part 5 – SQL/Bindings – 
has been included in part 2) and other parts are new, either because a pre-
vious part has been split (this is the case of part 11 which was previously 
included  in SQL:1999’s part 2) or because a fully new part has been cre-
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ated in order to fulfill new requirements (part 14 regarding handling of 
XML data). 

Table 7.2. Structure and summary of the SQL:2003 standard  
Part Name Description

1 Framework (SQL/Framework) 

Overview of the standard. It describes the conceptual 
framework used in other parts of the standard to specify 
the grammar of SQL and the result of processing state-
ments in that language by an SQL-implementation. It 
also defines terms and notation used in the other parts 

2 Foundation (SQL/Foundation) 

This part defines the data structures and basic opera-
tions on SQL-data. It provides functional capabilities 
for creating, accessing, maintaining, controlling, and 
protecting SQL-data. This part also specifies the syntax 
and semantics of a database language and it provides a 
vehicle for portability of data definitions and compila-
tion units between SQL-implementations and a vehicle 
for interconnection of SQL-implementations 

3 Call-Level Interface 
(SQL/CLI) 

This defines the structures and procedures that may be 
used to execute SQL statements from within an applica-
tion written in a standard programming language, such 
that procedures used are independent of the SQL state-
ments to be executed 

4 Persistent Stored Modules 
(SQL/PSM) 

This part specifies the syntax and semantics of a data-
base language for declaring and maintaining persistent 
database language routines in SQL-server modules 

9 Management of External Data 
(SQL/MED) 

Here extensions to Database Language SQL in order to 
support management of external data through the use of 
foreign-data wrappers and datalink types are defined 

10 Object Language Bindings 
(SQL/OLB) 

This defines extensions to support embedding of SQL 
statements into programs written in the Java program-
ming language, commonly known as “SQLJ”. This part 
specifies the syntax and semantics of SQLJ, as well as 
mechanisms to ensure binary portability of resulting 
SQLJ applications. In addition, it specifies a number of 
Java packages and their classes 

11 Information and Definition 
Schema (SQL/Schemata) 

This part specifies an Information Schema and a Defini-
tion Schema that describe the SQL object identifier, the 
structure and integrity constraints of SQL-data, the se-
curity and authorization specifications relating to SQL-
data, the features, sub-features and packages of this 
standard, and the support that each of these has in an 
SQL implementation. It also includes SQL-
implementation information and sizing items 

13
Routines and Types Using the 
Java Programming Language 

(SQL/JRT) 

This specifies the ability to invoke static methods writ-
ten in  the Java programming language as SQL-invoked 
routines and to use classes defined in the Java pro-
gramming language as SQL structured user-defined 
types

14 XML-Related Specifications 
(SQL/XML) 

This last part defines ways in which Database Language 
SQL can be used in conjunction with XML 
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7.3 The Ontology for SQL:2003

On the one hand, we developed the ontology using the information of  part 
1 (Framework) but basically that of part 2 (Foundation) of the standard. 
On the other hand, we also reengineered Part 11 (Information and Defini-
tion Schema) considering those schemata as metamodels of SQL:2003 
which implement into their tables all the concepts of the language. Also, in 
order to clarify some concepts, trying to decide the elements of the ontol-
ogy and the associations between them, we have used, when possible, the 
books by Melton [11] and Melton and Simon [12].  Complete information 
about the construction of the ontology can be found in [3]. 

The ontology only considers the object-relational aspects of the standard. 
Due to legibility restrictions, we decided to split the ontology into two sub-
ontologies: the data types sub-ontology and the schema object sub-ontology.  

The first one contains the aspects related to data types and the other in-
cludes information about the SQL schema objects (which has also been split 
into three views). The sub-ontologies have been represented as ontological 
diagrams (using UML class diagrams) where a class represents a concept 
(with its properties represented as class attributes) and relationships among 
classes represent the existing links between the corresponding concepts (the 
semantic relationship c is established by the UML relationship type, generali-
zation, aggregation, association, etc.).  

The graphical abstractions of UML class diagrams do not allow us to con-
vey several types of restrictions that occur in the modeled domain, such as 
well-formedness rules for the ontological concepts. Those rules have been 
expressed as OCL invariants (constraints which must be satisfied at all 
times), and can be found in [3]. 

Now, we present the sub-ontologies. For each one, we will present two 
kinds of information: 

The UML diagram representing the elements with their relationships.  
A set of tables constructed following the methodology REFSENO (Rep-
resentation Formalism for Software Engineering Ontologies) [14] for 
presenting the information. REFSENO provides us with constructs to 
describe concepts (each concept represents a class of experience items), 
their attributes and relationships. So, for each sub-ontology two tables 
are used to represent these elements: one with the glossary of concepts 
and another with the relationships. The table with the attributes has not 
been included but the definitions of each one can be found in the 
SQL:2003 standard. The definitions included in the attributes and rela-
tionship tables have been extracted from the standard.  
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7.3.1 The Data Types Sub-ontology 

Within the data types sub-ontology, all elements related to SQL:2003 data 
types are included. In Fig. 7.1, the sub-ontology is shown. The tinted 
classes (in this figure and in the rest of them) represent abstract classes. 
Looking at this figure we can see that there are three different kinds of 
data types: Predefined, Constructed Types and UDTs. The Constructed 
types can be Composite Types or Reference Types.  

The Composite Types can be either Collection Types (Arrays or Multiset,
a new type of the SQL:2003 standard) composed of elements, or Row Types
composed  of Fields.

Each field has a Data Type. The UDTs can be either Distinct Types (which 
are defined over a predefined data type) or Structured Types. These Struc-
tured Types are composed of one or more Attributes and optionally Methods.
Each attribute has one data type.  

There is a direct inheritance between two structured types, two row types 
or two reference types. 

In Tables 7.3 and 7.4, the attributes and relationships for this sub-ontology 
are described. 

Fig. 7.1. Data types sub-ontology 
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Table 7.3. Attributes of the data types sub-ontology  
Term Super-

concept
Description

DataType Concept A data type is a set of representable values. Every representable 
value belongs to at least one data type and some belong to sev-
eral data types 

Constructed 
Type 

DataType A constructed type is specified using one of SQL’s data type 
constructors, ARRAY, MULTISET, REF and ROW 

UserDefined 
Type 

DataType A user-defined type is a schema object, identified by a user-
defined type name. The definition of a user-defined type speci-
fies a representation for values of that type 

Predefined DataType SQL defines predefined data types named by the following key-
words: CHARACTER, CHARACTER VARYING, 
CHARACTER LARGE OBJECT, BINARY LARGE OBJECT, 
NUMERIC, DECIMAL, SMALLINT, INTEGER, BIGINT, 
FLOAT, REAL, DOUBLE PRECISION, BOOLEAN, DATE, 
TIME, TIMESTAMP and INTERVAL. Every predefined data 
type is a subtype of itself and of no other data types. It follows 
that every predefined data type is a supertype of itself and of no 
other data types 

Composite 
Type 

Constructed 
Type 

A composite type is a data type each of whose values is com-
posed of zero or more values, each of a declared data type 

Reference 
Type 

Constructed 
Type 

A reference type is a constructed data type, a value of which ref-
erences (or points to) some site holding a value of the referenced 
type. The only sites that may be so referenced are the rows of 
typed tables. It follows that every referenced type is a structured 
type

Structured
Type 

UserDefined 
Type 

A structured type is a named, user-defined data type. A value of 
a structured type comprises a number of attribute values. Each 
attribute of a structured type has a data type, specified by an at-
tribute type that is included in the descriptor of the structured 
type

Distinct
Type 

UserDefined 
Type 

A distinct type is a user-defined data type that is based on some 
predefined type. The values of a distinct type are represented by 
the values of the type on which it is based 

Collection
Type 

Composite A collection comprises zero or more elements of a specified data 
type known as the element type

Element Concept This is part of a collection type and has a type 
RowType Composite A row type is a sequence of one or more (field name, data type) 

pairs, known as fields. A value of a row type consists of one 
value for each of its fields 

Multiset Collection A multiset is an unordered collection of not necessarily distinct 
values. A multiset type is specified by a multiset type constructor 

Array Collection An array is an ordered collection of not necessarily distinct val-
ues, whose elements are referenced by their ordinal position in 
the array. An array type is specified by an array type constructor 

Field Concept A field is a (field name, data type) pair. A value of a field is a 
value of its data type. 

Attribute Concept An attribute is a named component of a structured type. It has a 
data type and a default value 

Method 
Specification 

Concept A method specification includes all the information about the 
method (method name, SQL parameter declaration list, returns 
data type, etc.) 
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Table 7.4. Relationships of the data type sub-ontology 
Concepts Description 
ReferenceType–ReferenceType A reference type can inherit from another reference type 
StructuredType–StructuredType A structured type can inherit from another structured type 
ReferenceType–StructuredType A reference type references a structured type 
Distinct–Predefined A distinct type has as a source a predefined type 
Collection Type–Element A collection type is composed of one or more elements. An 

element belongs to a collection type 
RowType–Field A row type is composed of one or more fields. A field belongs 

to a row type 
RowType–RowType A row type can inherit from one or more row types 
StructuredType–Attribute A structured type is composed of one or more attributes. An 

attribute belongs to a structured type 
StructuredType– 
Method Specification 

A structured type can have method specifications. A method 
specification belongs to a structured type 

DataType–Method Specification A method specification result is cast to a data type 
DataType–Method Specification A method specification return has a type of data type 
DataType–Attribute An attribute has a type of data type 
DataType–Field A field has a type of data type 
DataType–CollectionType A collection type has a type of data type 

7.3.2 The Schema Objects Sub-ontology 

For the sake of simplicity, this sub-ontology (Fig. 7.2), has been split into 
three views: tables view (Fig. 7.3), constraints view (Fig. 7.4) and columns 
view (Fig. 7.5). In Fig. 7.2 we can note that, regarding object-relational as-
pects, there are four different SQL schema objects: Constraints, Domains,
UDTs and Tables. Each Domain is defined in one Data Type. Tables are 
composed of Columns which are defined in one Domain or one Data Type.

In Tables 7.5 and 7.6, the attributes and relationships for the general view 
of this sub-ontology are described. 

Fig. 7.2. Schema objects sub-ontology (general view) 
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Table 7.5. Attributes of the schema objects ontology (general view)  
Term Super-concept Description 
Catalog Concept A catalog is a named collection of SQL schemas, foreign 

server descriptors, and foreign data wrapper descriptors in 
an SQL environment 

SQLSchema Concept An SQL schema, often referred to simply as a schema, is a 
persistent, named collection of descriptors. 

SchemaObject Concept Any object whose descriptor is in some SQL schema is 
known as an SQL-schema object. Every schema object has 
a name that is unique within the schema among objects of 
the name class to which it belongs. 

Table SchemaObject A table has an ordered collection of one or more columns 
and an unordered collection of zero or more rows 

Constraint SchemaObject A constraint defines the valid states of SQL data by con-
straining the values in the base tables. A constraint is de-
scribed by a constraint descriptor. A constraint is a table 
constraint, a domain constraint, or an assertion and is de-
scribed by, respectively, a table constraint descriptor, a 
domain constraint descriptor, or an assertion descriptor 

Domain SchemaObject A domain is a named user-defined object that can be 
specified as an alternative to a data type in certain places 
where a data type can be specified. A domain consists of a 
data type, possibly a default option, and zero or more 
(domain) constraints 

UserDefined 
Type 

SchemaObject A user-defined type is a schema object, identified by a 
user-defined type name. The definition of a user-defined 
type specifies a representation for values of that type 

DataType Concept A data type is a set of representable values. Every repre-
sentable value belongs to at least one data type and some 
belong to several data types 

Column Concept A column is a named component of a table. It has a data 
type, a default and a nullability characteristic 

Table 7.6. Relationships of the schema object sub-ontology (general view)  
Concepts Description 
Catalog–SQLSchema A catalog has one or more SQL schemas. A SQL schema be-

longs to a catalog 
SQLSchema–SQLObject A SQL schema has one or more SQL objects. A SQL object be-

longs to a SQL schema 
Table–Column A table is composed of one or more columns. A column belongs 

to a table 
Column–Domain A column is defined over a domain. 
DataType–Column A column has a type of data type 
DataType–Domain A domain has a type of data type 

As can be seen in Fig. 7.3 there are three kinds of tables: Derived (in-
cluding Views), Transient and Base.

A Typed Table is a Base Table or a View whose rows are instances of 
one associated Structured Type.  

All Typed Tables have a Self-Referencing Column which is the way to 
implement the object identify characteristic typical of object-oriented en-
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vironments. Base Tables can be part of an inheritance hierarchy playing 
supertable and/or subtable roles.  

In Tables 7.7 and 7.8, the attributes and relationships for the tables view 
of this sub-ontology are described. 

Fig. 7.3. Schema objects sub-ontology (tables view) 

Table 7.7. Attributes of the schema objects sub-ontology (tables view)  
Term Super-

concept
Description

Table Concept A table has an ordered collection of one or more columns and an 
unordered collection of zero or more rows 

TransientTable Table A transient table is a named table that may come into existence 
implicitly during the evaluation of a query expression or the exe-
cution of a trigger 

DerivedTable Table The result of a query is called a derived table
BaseTable Table SQL data consists entirely of table variables, called base tables.
View Derived-

Table 
A view (strictly, a view definition) is a named query, that may for 
many purposes be used in the same way as a base table. Its value 
is the result of evaluating the query 

TypedTable View A table that is declared to be based on some structured type is 
called a “typed table”; its columns correspond in name and de-
clared type to the attributes of the structured type. Typed tables 
have one additional column, called the “self-referencing column” 
whose type is a reference type associated with the structured type 
of the table 

Structured-
Type 

Concept A structured type is a named, user-defined data type. A value of a 
structured type comprises a number of attribute values. Each at-
tribute of a structured type has a data type, specified by an attrib-
ute type that is included in the descriptor of the structured type 
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Table 7.8. Relationships of the schema object sub-ontology (tables view)  
Concepts Description 
BaseTable–BaseTable A base table can inherit from another base table 
TypedTable–StructuredType A typed table uses a structured type 

On the other hand, Constraints can be Assertions, Table Constraints or 
Domain Constraints (see Fig. 7.4). A Table Constraint affects one Base Ta-
ble and there are three kinds of table constraints: Unique Constraints (includ-
ing here Primary Keys), Table Check Constraints and Referential Con-
straints (for representing foreign keys). A Unique Constraint is defined in a 
set of Columns while a Referential Constraint refers to one Unique Con-
straint and has two associated sets of columns: the referencing columns 
and the referenced columns which are the corresponding columns for the 
Unique Constraint. A Domain Constraint affects one Domain. Lastly, a 
Base Table has one or more Candidate Keys and each one of those corre-
sponds to a Unique Constraint.

In Tables 7.9 and 7.10, the attributes and relationships for the constraint 
view of this sub-ontology are described. 

Fig. 7.4. Schema objects sub-ontology (constraints view)  
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Table 7.9. Attributes of the schema objects sub-ontology (constraints view)  

Term Super-concept Description 
Constraint Concept There are three kinds of schema object that describe 

constraints: assertions and table constraints, and domain 
constraints, and they are checked in the same way 

Assertion Constraint An assertion is a check constraint. The constraint is vio-
lated if the result of the search condition is false (but not 
if it is unknown) 

TableConstraint Constraint A table constraint is an integrity constraint associated 
with a single base table. 

Domain 
Constraint 

Constraint A domain constraint applies to every column that is 
based on that domain, by operating as a table constraint 
for each such column. Domain constraints apply only to 
columns based on the associated domain 

Domain Concept A domain is a named user-defined object that can be 
specified as an alternative to a data type in certain places 
where a data type can be specified. A domain consists of 
a data type, possibly a default option, and zero or more 
(domain) constraints 

BaseTable Concept SQL data consists entirely of table variables, called base 
tables

TableCheck
Constraint 

TableConstraint A table check constraint specifies a search condition.
The constraint is violated if the result of the search con-
dition is false for any row of the table (but not if it is 
unknown) 

Unique
Constraint 

TableConstraint A unique constraint is satisfied if and only if no two 
rows in a table have the same non-null values in the 
unique columns 

Referential
Constraint 

TableConstraint A referential constraint specifies one or more columns 
as referencing columns and corresponding referenced
columns in some (not necessarily distinct) base table, re-
ferred to as the referenced table

Candidate
Key

Concept A candidate key constraint is a unique constraint that is 
satisfied if and only if no two rows in a table have the 
same non-null values in the unique columns and none of 
the values in the specified column or columns are the 
null value. 

PrimaryKey UniqueConstraint A primary key constraint is a unique constraint that 
specifies PRIMARY KEY. A primary key constraint is 
satisfied if and only if no two rows in a table have the 
same non-null values in the unique columns and none of 
the values in the specified column or columns are the 
null value 

Table 7.10. Relationships of the schema objects sub-ontology (constraints view)  
Concepts Description 

Domain–DomainConstraint A domain constraint constrains a domain 
BaseTable–TableConstraint A table constraint constrains a base table 
BaseTable–CandidateKey A  base table has one or more candidate keys 
CandidateKey–UniqueConstraint A candidate key references a unique constraint 
ReferentialConstraint–UniqueConstraint A referential constraint references a unique constraint 
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Details regarding Columns are showed in Fig. 7.5. Three special kinds 
of Columns are identified:

1. Unique Column if it is included in any Unique Constraint.
2. Identify Column if it is used for implementing the object identifying 

characteristic. 
3. Generated Column if its values are derived from other columns.  

In Tables 7.11 and 7.12, the attributes and relationships for the columns 
view are described. 

Fig. 7.5. Schema objects sub-ontology (columns view) 

7.4 Example 

In this section, we will present an example of a database schema defined 
using the SQL:2003 standard. The example includes all the elements that 
have been considered in the ontology. 

The SQL code is shown in Table 7.13 and the representation of the 
schema using the elements of the ontology can be found in Fig. 7.6. 
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Table 7.11. Attributes of the schema objects sub-ontology (columns view)  
Term Super-

concept
Description

Table Concept A table has an ordered collection of one or more col-
umns and an unordered collection of zero or more 
rows 

Column Concept A column is a named component of a table. It has a 
data type, a default and a nullability characteristic 

TypedTable Concept A table that is declared to be based on some struc-
tured type is called a “typed table”; its columns corre-
spond in name and declared type to the attributes of 
the structured type 

ReferentialConstraint Concept A referential constraint specifies one or more col-
umns as referencing columns and corresponding ref-
erenced columns in some (not necessarily distinct) 
base table, referred to as the referenced table

UniqueConstraint Concept A unique constraint specifies one or more columns of 
the table as unique columns. A unique constraint is 
satisfied if and only if no two rows in a table have the 
same non-null values in the unique columns 

IdentityColumn Column An identity column has a start value, an increment, a 
maximum value, a minimum value and a cycle option.
An identity column is associated with an internal se-
quence generator 

GeneratedColumn Column A generated column is one whose values are deter-
mined by evaluation of a generation expression, a 
value expression whose declared type is by implica-
tion that of the column. 

UniqueColumn Column A unique constraint specifies one or more columns of 
the table as unique columns

Table 7.12. Relationships of the schema objects sub-ontology (columns view)  

Concepts Description 

Table–Column A table has one or more columns 

TypedTable–Column A typed table self-references one column 

ReferentialConstraint–Column A referential constraint references one or more columns 

UniqueColumn–UniqueConstraint A unique constraint specifies one or more unique columns 

Column–GeneratedColumn A column can generate a generated column. A generated 
column is generated by one or more columns 
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Table 7.13. An SQL:2003 example  

CREATE SCHEMA video_and_music 
AUTHORIZATION m_s_enterprises 
DEFAULT CHARACTER SET “Latin_1” 

CREATE DOMAIN price DECIMAL (7,2) 
CHECK (VALUE IS NOT 0); 

CREATE DISTINCT TYPE money AS 
DECIMAL (9,2); 

CREATE TYPE movie AS( 
movie_id INTEGER, 
title CHARACTER VARYING (100), 
languages MULTISET [‘English’, ‘French’, 
‘Spanish’, ‘Portuguese’, ‘Italian’], 
genre  CHARACTER VARYING (20) ARRAY 
[10], 
run_time INTEGER 
)
INSTANTIABLE 
NOT FINAL 
METHOD length_interval () 
RETURNS INTERVAL HOUR (2) TO MINUTE 

CREATE INSTANCE METHOD 
length_interval () 
RETURNS INTERVAL HOUR (2) TO MINUTE 
FOR MOVIE 
RETURN CAST (CAST (SELF.run_time AS 
INTERVAL (4) )  
AS INTERVAL HOUR (2) TO MINUTE ); 

CREATE TABLE movies ( 
stock_number   CHARACTER(10) 
CONSTRAINT mov-
ies_stock_number_not_null NOT NULL, 
movie   movie, 
our_tape_cost  price, 
tapes_in_stock INTEGER 
CONSTRAINT movies_primary_key 
PRIMARY KEY (stock_number) 
);

CREATE TABLE movies_stars ( 
movie_title CHARACTER (30) 
   CONSTRAINTmov-
ies_stars_movie_title_not_null NOT NULL, 
movie_year_released DATE, 
movie_number CHARACTER (10), 
actor_last_name CHARACTER (35) 
   CONSTRAINT mov-
ies_stars_actor_last_name_not _null NOT 
NULL, 
actor_first_name CHARACTER (25) 
   CONSTRAINT mov-
ies_stars_actor_first_name_not _null NOT 
NULL, 

CREATE TABLE music_distributors OF mu-
sic_distributors ( 

REF IS dist_ref SYSTEM GENERATED, 
distributor_id WITH OPTIONS 
CONSTRAINT mu-
sic_distributors_distributor_id_not_null  

NOT NULL, 
distributor_name WITH OPTIONS 
CONSTRAINT mu-
sic_distributors_distributor_name_not_null 
NOT NULL, 

);

CREATE TYPE address AS( 
street CHARACTER VARYING (35), 
city     CHARACTER VARYING (40), 
country character (3) 
);

CREATE TYPE US_address UNDER ad-
dress AS( 

state CHARACTER (2), 
zip ROW ( 
  Basic INTEGER, 
  Plus4 SMALLINT) 
)
METHOD zipcode () 
RETURNS CHARACTER VARYING (10); 

CREATE INSTANCE METHOD zipcode () 
RETURNS CHARACTER VARYING (10) 
FOR US_address 
BEGIN 
IF SELF.zip.plus4 IS NULL 
THEN RETURN CAST (SELF.zip.basic AS     
    CHARACTER VARYING (5)); 
          ELSE RETURN CAST (SELF.zip.basic 
AS                      

              CHARACTER VARYING (5)) 
     || ‘-‘  || CAST (SELF.zip.basic AS    
     CHARACTER VARYING (4)) 
ENDIF;
END;

CREATE TABLE customers( 
nr_of_customer INTEGER GENERATED 
ALWAYS AS IDENTITY (START WITH 1 
INCREMENTED BY 1MINVALUE 1), 

cust_last_name CHARACTER (35) 
CONSTRAINT custom-
ers_cust_last_name_not_null  

NOT NULL, 
cust_first_name CHARACTER (35) 
CONSTRAINT custom-
ers_cust_first_name_not_null  

NOT NULL, 
cust_complete_name GENERATED 
ALWAYS AS (cust_first_name || 
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actor_middle_name CHARACTER (25), 
   CONSTRAINT movies_stars_unique 
     UNIQUE (movie_title, actor_last_name, ac-
tor_first_name, actor_middle_name)  
     NOT DEFERRABLE, 
   CONSTRAINT movies_stars_fk_movie 
     FOREIGN KEY (movie_number) 
       REFERENCES movies (stock_number) 
       ON DELETE CASCADE 
        ON UPDATE CASCADE 
);

CREATE TYPE music_distributors AS ( 
distributor_id  CHARACTER 
(15), 
distributor_name CHARACTER (25) 
);

cust_last_name), 
cust_address US_address, 
cust_current_charges money, 
number_of_problems SMALLINT ); 

CREATE VIEW problem_customers ( last, 
first) 

AS
     SELECT cust_last_name, cust_first_name 
     FROM  customers 
     WHERE number_of_problems > 
      0.8 * (SELECT 
MAX(number_of_problems) 

               FROM customers); 

CREATE ASSERTION 
limit_total_movie_stock_value 

  CHECK (( SELECT COUNT(*) 
                 FROM customers 
                 WHERE number_of_problems > 5    
                 AND cust_current_charges > 
150,00   

                 AND cust_current_charges < 
1000,00) 

       <10 );   

7.5 Conclusions 

In this chapter we have presented the ontology developed for the object-
relational aspects of the SQL:2003 standard. With this ontology we have 
the aim of increasing the understandability of the standard.  

The ontology also helped us detect some inconsistencies, such as the fol-
lowing:  

The definition of distinct and structured types as specializations of user-
defined types (UDTs) is proposed but not strictly followed in all parts of 
the standard.
There is an inconsistency in the definition of inheritance among data 
types. The suggestion that all data types can be specialized is contra-
dicted by the fact that predefined types cannot be specialized. Our in-
terpretation was that inheritance is only possible in structured types, 
reference types or row types but it does not make any sense in others, 
such as distinct and collection types (see Fig. 7.1).  
Similar problems appeared regarding inheritance among tables, since 
not all of them can be specialized. Our interpretation was to limit inheri-
tance to the base tables (see Fig. 7.3). 
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Fig. 7.6. Ontology instantiation example 
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Another example which is ill-explained in some parts of the standard is 
that the concept of a method specification should be associated with a 
UDT. In our opinion it is better to link the method specification to a 
structured type (see Fig. 7.1). 

For carrying out the ontology we have used the SQL:2003 Schemata (part 
11 of the standard) in a mapping exercise against the proposed ontology, as a 
means for validating and refining it.  

The full coverage of the standard is now being made. As a result of this 
work we will have the ontology of the complete standard 

The final goal of the definition of the SQL:2003 ontology is to use it, for 
example, in the formalization of metrics for object-relational database sche-
mas defined with SQL:2003. In that case, metrics can be formalized using 
OCL and calculated over a schema represented using the UML representation 
for the ontology. These metrics can be used, for example, for the reengineer-
ing of the databases [2].  
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8.1 Introduction 

The Object Management Group (OMG) is a consortium which develops 
standards for various aspects of software engineering which are widely 
used in industry, including UML (Unified Modeling Language). With the 
advent of the Semantic Web movement [1] and the consequent develop-
ment of ontology modeling languages like OWL by the World-Wide Web 
Consortium (W3C), the development of ontologies has become main-
stream. Consequently, in 2003 the OMG issued a Request for Proposal for 
an Ontology Development Metamodel, for a Meta-Object Facility (MOF-
2) metamodel intended to support: 

Development of ontologies using UML modeling tools. 
Implementation of ontologies in the W3C Web Ontology language 
OWL.
Forward and reverse engineering for ontologies. 

The four organizations which the authors represent (DSTC, Gentle-
ware/AT&T, IBM, Sandpiper Software) made preliminary submissions in 
August, 2003. They have since joined together to develop a Final Submis-
sion, presently scheduled for completion in mid-2006. A preliminary dis-
tribution of work in progress was made in August, 2004 [7]. Several revi-
sions have been published within the OMG community since, and 
comments solicited not only from the OMG but from the W3C and ISO
communities as well.  The latest revision of the specification is available 
at http://www.omg.org/cgi-bin/doc?ad/05-09-08. 

This chapter first argues for a MOF-based metamodel, and why UML is 
not a universally suitable metamodel for ontology development. It then 
describes the main features of the ODM, which supports several different 
ontology representation systems: RDFS/OWL, Common Logic, Topic 
Maps, as well as UML. These different metamodels are tied together by 
UML profiles and mapping, some aspects of which are described. Finally, 
there are many more specific requirements for ontology modeling facili-
ties for particular broad classes of application. The MOF has a modular 
structure which makes it a straightforward process for third parties to de-
velop and publish plugins which extend and enhance the standard. A few 
examples illustrate the possibilities. 
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8.2 Why a MOF Ontology Metamodel? 

There are actually three questions packed into this one: 

Why have a metamodel at all? 
Why have a MOF metamodel? 
Why a MOF metamodel other than UML?

8.2.1 Why a Metamodel? 

In order for an ontology to be used in a computing application, it must be 
represented as some sort of computer-readable data structure. In OMG
terminology an ontology is an example of a data model. The syntactic 
rules for representing this data structure are called a metamodel. So in or-
der to develop an ontology at all, there needs to be a metamodel for it. 

A programming language is a sort of metamodel. In the early days of 
programming languages, each programming language was developed in 
idiosyncratic fashion (eg FORTRAN and COBOL), but it soon became 
clear that it was better to develop programming languages with uniform 
types of formation rules. Backus–Naur Form (BNF) was developed for this 
purpose, and most programming languages today are developed in BNF or 
one of its derivatives. BNF is an example of a metametamodel, that is a 
metamodel for developing metamodels. 

An important distinction in this space is that between abstract and con-
crete syntax. Originally, metamodels were used to specify the syntax of 
programming languages. A BNF specification of Pascal could be used to 
develop a compiler which could be used to parse all and only Pascal pro-
grams. However, it turns out to be useful for some languages to have sev-
eral quite different but formally equivalent representations, sometimes 
called syntactic sugar. SQL is a good example, with formally equivalent 
relational algebra, tuple relational calculus, QBE, structured natural lan-
guage and embedded syntaxes. So it has become common for a language 
designer to choose one representation for publication of the language 
specification, but to recognize that an implementation might have a very 
different representation. The formal structure is called abstract syntax and 
the representations concrete syntaxes.

Standard metametamodels are an advantage because every metamodel 
exists in a software environment tailored to fit it. A programming lan-
guage needs a compiler, for example. If the programming language 
(metamodel) is expressed in a standard metametamodel, much of the effort 
needed to develop the software environment can be reused. If a program-
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ming language is represented in BNF, a compiler can be created easily us-
ing a compiler–compiler like YACC.

So a computer realization of an ontology requires a metamodel, and if 
the metamodel is expressed in a widely–used metametamodel there is 
scope for its supporting software to be created by configuring a standard 
set of tools based on that metametamodel.  

Note, by the way, that a metametamodel is itself a metamodel (for ex-
pressing metamodels). So it is quite common for the formation rules of the 
metametamodel to be expressed in itself. The formation rules for BNF are 
themselves expressed in BNF. There is typically not an infinite regress of 
meta…models. 

8.2.2 Why MOF? 

The OMG has developed many metamodels for various purposes, includ-
ing CORBA for interoperating systems and the UML for the design of 
computer systems. All OMG metamodels are developed in the metameta-
model MOF, which is a subset of the UML class metamodel. MOF is ex-
pressed in itself. A fragment of the MOF is shown in the MOF diagram of 
Fig. 8.1. The diagram has five instances of the MOF class Class (Class,
association, type, classifier and property), five instances of the MOF class 
Association (ownedAttribute, type, memberEnd, ownedEnd and generali-
zation), and three instances of the MOF association generalization (Type is 
a generalization of Classifier, Classifier is a generalization of Class and 
Association), and so on. 

MOF is a metametamodel with roughly the expressive power of BNF.
More expressive constraints can be expressed with the textual constraint 
language Object Constraint Language (OCL, which is itself modeled in the 
MOF) [13]. There are many software tools based on the MOF, including 
Rational Rose, a tool for editing and visualizing models in UML and hence 
MOF; an XML serialization called XML Metadata Interchange (XMI); and 
a variety of tools based on the integrated development environment 
Eclipse,31 including facilities to generate Java application program inter-
faces. 

What differentiates MOF from other metametamodels, though, is the 
visual syntax used as a concrete syntax in representing the abstract syntax 
of the system to be modeled. Part of the specification of the MOF is a set 
of rendering conventions, so that instances of the MOF class Class are 
rendered as rectangles, instances of the MOF class Association are ren-

                                                     
31 eclipse.org 
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dered as lines connecting the ownedEnd and memberEnd, and instances of 
the MOF association generalization are rendered with arrows, all as shown 
in Fig. 8.1. 

So a MOF-based metamodel has not only the advantages of a meta-
model based on any standard metametamodeling system with a well-
developed suite of software tools, but also the advantage of a standard 
visualization. The visualization is a concrete syntax used to edit and render 
the abstract structure of the system modeled, while the software tools use a 
different concrete syntax, namely the repository schemas. Models are in-
terchanged as XML serializations using a different concrete syntax, 
namely XMI. And an implementer is free to represent the syntax in any 
way they like, so long as the resulting concrete syntax is formally equiva-
lent to the abstract syntax. In other words, any concrete syntax must be 
formally equivalent to the concrete syntax in which the system is speci-
fied.

*

 ownedEnd 
{subsets memberEnd} 

memberEnd
2..*0..1

  Class 

Property

Association

 ownedAttribute 
 * 

0..1

0..1 

0..1

 Abstracted from UML Infrastructure [UML2I] Figure 73, Section 11.3 page 111 
Note that the MOF does not support n-ary associations (upper multiplicity of 
memberEnd is limited to 2, rather than 2..*) 

 Type Classifier
generalization

type

Fig. 8.1. Fragment of the MOF (and UML) expressed in the MOF

8.2.3 Why Not UML? 

An ontology is a kind of data model. The UML Class Diagram is a rich 
representation system, widely used, and well supported with software 
tools. Why not use UML for representing ontologies? 
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One reason is that a UML Class Diagram is a specification for a system. 
It shows schemas, but does not necessarily fully specify instances. Even if 
instances are fully specified, it is not common to represent a large popula-
tion of concrete instances. We know that the shared worlds modeled with 
ontologies contain instances as well as schemas, for example the periodic 
table of the elements includes classes like rare earths and noble gases, but 
also individuals like hydrogen and helium. UML is intended to be used 
with some sort of implementation, like an SQL database manager, which 
completes the specification of the instances, and represents and stores the 
concrete populations. 

Further, a UML Class Diagram is generally used by the software engi-
neers building a system as part of the design specification. It can be a 
component of a computer-aided software engineering tool which can 
automatically generate implementations. But class diagrams are not in-
tended for public use, to be combined as components in larger ontologies, 
or to be used at run-time. It is of course possible to adapt UML to these 
purposes, but they are not part of its design. 

Finally, and perhaps most importantly, an ontology by definition is in-
tended to be reused, or to have multiple implementations across applica-
tions. While reuse is also an important aspect of the OMG’s Model-Driven 
Architecture methodology, in the case of an ontology, the ability to unam-
biguously interpret the definitions and axioms expressed is essential to 
enabling automated reasoning. There must be some way of verifying that 
two implementations committed to a single ontology are logically consis-
tent with one another. Common Logic and OWL enable this by having a 
formal semantics expressed as a model theory. Two implementations 
which generate the same objects by definition agree. UML does not at pre-
sent have a published model theory or proof theory that would enable such 
automated validation or reasoning processes.  

So this is why the OMG called for development of an ontology devel-
opment metamodel distinct from UML.

8.3 The Ontology Development Metamodel 

A trigger for the call for development of an ODM was the development by 
the World-Wide Web Consortium of the Web Ontology Language OWL.
OWL has a number of features which emphasize weaknesses in UML for 
ontology development, including: 
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The ability to fully specify individuals apart from classes, and for 
individuals to have properties independently of any class they might be 
an instance of. 
The OWL property is much more flexible than the UML association. In 
particular it can be used to model complex mereotopological 
relationships and hence complex objects. (Mereotopological 
relationships are whole-part relationships, including those involving 
spatial parts and their geometric and topological relationships.) 
OWL Full allows classes to have instances which are themselves 
classes. 

But there are other language development efforts in the ontology space, 
including in particular the International Organization for Standardization 
(ISO) projects Topic Maps and Common Logic (CL). Topic Maps is a 
metalanguage designed to express the “aboutness” of an information struc-
ture with key model elements topic and association. Common Logic is a 
syntax for the first-order predicate calculus, seen as a successor to KIF
(Knowledge Interchange Format). 

Furthermore, organizations developing ontologies will often build on 
legacy data models represented in UML or one of the dialects of Entity–
Relationship (ER) Modeling, even if the development is carried on in one 
of the newer metamodels. 

Since there are so many metamodels which a developer might need to 
take into account in an ontology project, the ODM Group decided that it 
would not be sufficient to develop a metamodel for OWL only, but instead 
to develop a suite of MOF metamodels, for RDFS/OWL, Topic Maps and 
CL. UML of course already has a MOF metamodel. 

The different metamodels express a concept quite differently. To show 
this difference, we will use a simple running example, illustrated in Fig. 
8.2 as a UML model, of a simple model which might be a fragment of a 
university teaching ontology, namely that students enroll in courses. 

enrolled
Course 

 code 
 description 
NumEnrolled

Student 
 ID 
 name

Fig. 8.2. Fragment of a university teaching ontology, expressed in UML

One of the advantages of UML, and hence the MOF, is that there is a 
well-established relationship between UML Class Diagrams and database 
schemas, implemented by many more or less automatic tools. This rela-
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tionship allows a first cut at a repository for any of the metamodels in the 
ODM. We will use the example in Fig. 8.2 represented as repository table 
populations to show how the various metamodels work. 

A class in UML is a set of instances. The set of instances associated at a 
particular time with a class is called the class’s extent. An instance con-
sists of a set of slots each of which contains a value drawn from the type 
of the property of the slot. A type is a computer-representable set which is 
the value set for an attribute function (ownedAttribute). The instance is as-
sociated with one or more classifiers. Sample instances of the classes and 
associations (classifiers) of Fig. 8.2 are shown in Table 8.1. The properties 
in the model are code, title and NumEnrolled owned by Course and ID,
name owned by Student.

Table 8.1. Sample instances of classifiers of Fig. 8.2  

a. Course 
Classifier code Title NumEnrolled 

Course INFS3101 Ontology and the Semantic Web 0

b. Student 
Classifier ID Name 

Student 02468135 Robert Colomb 

c. Enrolled 
Classifier ID code 

enrolled 02468135 INFS3101 

But the implementation of a classifier is not fully constrained. For ex-
ample, an equally valid instance of Course would be the name INFS3101,
if it were decided that that name would identify an instance of the class. 
The remainder of the slots could be filled dynamically from other proper-
ties of the class. 

8.3.1 RDF/OWL Metamodel 

OWL is developed by the W3C as a specialization of RDFS, which is an 
extension to RDF. The OWL metamodel therefore includes concepts from 
RDFS and RDF. A fragment of the OWL metamodel is illustrated in Fig. 
8.3. OWL classes are RDFS classes, and OWL properties are RDF proper-
ties. The subclass and subproperty relationships in OWL are inherited 
from RDFS.
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Note that in Fig. 8.3 Individual is shown as a subclass of RDFSRe-
source, so that the extent of Individual is a set of instances of RDFSRe-
source. OWLClass is also a subclass of RDFSResource. An instance of 
OWLClass is a single class, so classes are also resources. This way of 
modeling makes it easy for example to distinguish OWL DL from OWL
Full by constraining Individual to be disjoint from Property and OWL-
Class. Note also that the two kinds of property are modeled by subclass-
ing, and that EnumeratedClass and OWLRestriction are subclasses of 
OWLClass. There are of course other restrictions in OWL besides the car-
dinality restriction shown, and other kinds of classes. 

Comparing the fragment of RDFS/OWL in Fig. 8.3 with Fig. 8.1 inter-
preted as a fragment of UML, we see that each has an element Class. The 
two model very similar concepts. But in OWL, the subclass and subprop-
erty associations are defined separately (in the W3C standard, they are in 
fact defined identically but separately), whereas in UML, both subclass 
and subassociation are inherited from the generalization meta-association 
with their common meta-superclass Classifier.

The comparison also shows that OWL has one relationship between 
classes, namely Property, while UML has two, namely Association and 
ownedAttribute. (In Fig. 8.1, a Class is a Type, and a Property is a repre-
sentation associated with a Type via the meta-association type. So an As-
sociation is a relationship between two instances of Type, and ownedAt-
tribute is a relationship between an instance of Class, hence one instance 
of Type, and another.) Note that the concept of Property in UML is not at 
all the same as the concept of Property in OWL.

This shows an advantage of MOF metamodels – the MOF visualization 
provides a dense notation which leverages the common metametamodel 
(ie MOF) and makes moderate scale comparisons easier.  

Our university teaching ontology fragment of Fig. 8.2 is represented in 
tables from the default repository for OWL in Table 8.2. 

Note that unlike UML, OWL does not distinguish between a class and 
its representation, so what are classes in OWL are properties in UML, not 
directly classes. (Recall that a property in UML is a computer-
representable type, the target of ownedAttribute, ownedEnd and member-
End meta-associations, a very different kind of thing from an OWL prop-
erty. See Fig. 8.1.) All the instances in the ontology are shown in Table 
8.2 as the domain of a property or the range of an objectProperty.
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Fig. 8.3. Fragment of the MOF metamodel for RDFS and OWL: class and property  

Table 8.2. OWL repository representation of university teaching ontology  

Classes: CourseCode, Title, StudentID, Name 
Datatype: integer 

Properties:

PropertyName Type Domain Domain 
Instance Range Range

Instance

hasTitle Object CourseCode INFS3101 Title Ontology and the 
Semantic Web 

numEnrolled Data CourseID INFS3101 integer 0 

name Object StudentID 02468135 Student
Names Robert Colomb 

enrolled Object StudentID 02468135 CourseCode INFS3101 

There is a significant impedance mismatch between the MOF and 
RDFS/OWL. For example, the diagram in Fig. 8.3 does not show that the 
metaclass Individual is itself an instance of OWLClass (called owl:Thing), 
and further that every instance of OWLClass participates in the RDFSsub-
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classOf association with the instance owl:Thing. In the MOF there is a 
strict separation of metalevels, so that the MOF Class model shows only 
the metaclasses and meta-associations, but no instances. RDFS is its own 
metamodel and the metamodel for OWL, so the metalevels are mixed. 

For example, RDFS includes built-in resources rdfs:Class and 
rdf:Property, together with a built-in property rdf:type. The characteristics 
of Individual are specified using the following RDF triples: 

owl:Thing rdf:type rdfs:Class (1) 
rdfs:subClassOf rdf:type rdf:Property (2) 
rdfs:domain rdf:type rdf:Property (3) 
rdfs:range rdf:type rdf:Property (4) 
rdfs:subClassOf rdfs:domain rdfs:Class (5) 
rdfs:subClassOf rdfs:range rdfs:Class (6) 

That owl:Thing is a universal superclass is specified by applying a re-
striction class owl:hasValue owl:Thing on property rdfs:subClassOf. Even 
a restriction class has its structure represented as a collection of RDF tri-
ples:

owl:Restriction rdfs:subClassOf rdfs:Class (7) 
owl:hasValue rdfs:subClassOf owl:Restriction (8) 
owl:onProperty rdf:type rdf:Property (9) 
owl:value rdf:type rdf:Property (10) 

And the restriction class in question by: 
res rdf:type owl:hasValue (11) 
res owl:onProperty rdfs:subClassOf (12) 
res value owl:Thing (13) 
RestrictedClass rdfs:subClassOf res (14) 

Of course the semantics of the built-in resources of RDF, RDFS and 
OWL are defined. But they are defined outside RDF, by textual means in 
[11]. The textual means in many cases includes a formal model theory de-
fined using the predicate calculus. 

The impedance mismatch problem can be overcome to a large degree 
by adding to the MOF Class model constraints expressed in the UML con-
straint language OCL asserting the existence of particular instances of par-
ticular metaclasses along with their structural constraints. 

The MOF metamodel expressed in Class models with constraints goes 
much of the way towards specifying the detailed structure of RDFS and 
OWL, but is incomplete in a key way. In the MOF there is no way to for-
mally state that for example the instance “RDFS:Resource” is the same 
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thing as the metaclass RDFSResource. These are specified in the text ac-
companying the formal metamodels. 

8.3.2 Topic Maps 

Topic Maps are under development as an ISO standard designed to ex-
press the “aboutness” of information resources. It is conceptually based on 
the metaphor of the index in the back of a book. Fragments of the ODM 
MOF metamodel for Topic Maps are shown in Figs. 8.4 and 8.5. At pre-
sent, the ODM Topic Maps metamodel follows closely the UML diagrams 
in the ISO Topic Maps Data Model (TMDM) [12]. 

The central concept in Topic Maps is the Topic, which is a textual 
statement of what some subject is about, analogous to an index entry in a 
book. The subject can be a computer-accessible thing, accessed by a Loca-
tor (a URI), or something outside the computing environment, like “Aus-
tralia” or “the idea of topic maps”. Topics can be linked together in n-ary 
Associations via AssociationRoles. An occurrence of a topic is some re-
source which that topic is about, either the resource itself or a URI. A 
Google search on the topic “Australia” generates 63,500,000 references, 
most of which are occurrences of the topic (taking into account limited 
precision in search engine results).

Name, Variant, occurrence and association roles are subordinate con-
structs. Larger scale organization is given by the grouping of Topic and 
Association into a Topic Map. Any construct other than Topic can itself be 
the subject of a topic (reification).

Associations, association roles and occurrences are all individual-level 
constructs. They are organized into something like OWL properties by the 
requirement that each of them be associated with a topic as its type (Fig. 
8.5). A structure analogous to a database view is given by the concept of 
scope, also named by a topic. 

But topics themselves are not necessarily organized into class/instance 
relationships, even to the loose extent of OWL, where owl: Thing is a class 
whose extent is all individuals. There is a mechanism for representing 
class/instance relationships using a specific instance of Association, as 
shown in the MOF instances diagram of Fig. 8.6, where some topics can 
be regarded as types having other topics as instances. There is another 
specific instance of Association specifying a subtype/supertype relation-
ship, as shown in Fig. 8.7.  
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Fig. 8.4. Main model elements of Topic Maps  

Association

TopicName

ScopeAble

Topic
+scope

0..*

TypeAble

+type
1

AssociationRole

Occurrence

Variant

+scope
1..*

Fig. 8.5. Intermediate structural mechanisms of Topic Maps  
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Figure 8.4 illustrates a feature of the MOF, that it can model a complex 
object with parts, shown by associations with a solid lozenge at the whole 
end of a whole–part relationship. So a Topic Map consists of a set of top-
ics and associations, an Association consists of a set of roles, and a Topic
consists of TopicNames.

Compared with OWL, Topic Maps have a much richer structure of 
classes and a correspondingly poorer structure of properties. A model ex-
pressed as a Topic Map would have instances of Topic, the various kinds 
of subordinate constructs, and Association, all of which would be most 
naturally expressed in OWL as instances of Class. But a Class in OWL is a 
simple construct, while a Topic is a complex construct with parts (see Fig. 
8.4). So the meta-associations in the Topic Maps metamodel would be 
represented in OWL as properties.

Our university teaching ontology fragment of Fig. 8.2 would be repre-
sented in a default repository for Topic Maps as in Table 8.3. Topic and 
association instances are identified by OIDs. Notice that the structure of 
the ontology is given almost entirely by links among topics. Notice also 
that Association Role and Parent in the Topics table do not contain enough 
information to know which student is enrolled on which course. The Asso-
ciations table is needed for that purpose. 

8.3.3 Common Logic 

Common Logic (CL) is a syntax for the first-order predicate calculus. A 
fragment of a MOF metamodel for CL is shown in Fig. 8.8. The native 
metamodel for CL is EBNF, so the representation in the MOF is fairly 
straightforward.

The basic construct in CL is a term. Terms can be AtomicSentences
which have a predicate and zero or more arguments, FunctionalTerms,
also with arguments, or LogicalNames. A term can be commented.  

On a macro scale, an instance of a CL model is a Text, which consists of 
a collection of Phrases. A Phrase is generally a Sentence (there are com-
ments and imports not shown on the fragment). A sentence is built from 
Atoms according to structural principles similar to those shown, involving 
connectors and quantifiers. 

CL is a very rich system. A model instance represented in one of the 
other metamodels can also be represented in CL (including all the nomi-
nally second-order facilities of OWL Full). But the metamodel constructs 
are different. A class in UML or OWL is represented as a (unary) Atom-
icSentence in CL, a property in OWL also by a (binary) AtomicSentence.
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The class constructors of OWL are represented in CL as logical connectors 
in a predicate definition. 

Table 8.3. Topic Map repository population for University teaching ontology 
fragment 

a. Repository of Topics 

Topic Name Type Ass.Role
Type Parent Type 

1 02468135 StudentID student enrolled 

2 Robert Colomb Student Name  

3 INFS3101 Course Code course enrolled 

4 Ontology and the 
Semantic Web Course Name  

5 StudentID    

6 Student Name    

7 Course Code    

8 Course Name    

9 student    

10 course    

11 enrolled    

b. Repository of Associations 
Association Type roles roles Type player 

1 Enrolled 1 student 1 

1 Enrolled 2 course 3 

Our university teaching ontology fragment is represented in the default 
repository for CL in Table 8.4. Notice that there is only one metamodel 
construct, the AtomicSentence. The representation does not show the unary 
type predicates, which would in practice often be omitted.  

Sentences of course can have more than one atom, together with quanti-
fications, negation and so on. The repository for more complex sentences 
would look very similar to Table 8.4, with additional columns for sentence 
ID and so on. Atoms would be identified relatively within a sentence 
rather than absolutely as in Table 8.4. But atomic sentences are very 
common, so there is a case for implementing them specially. 

The subclass relationship in UML or OWL would be represented in CL
as a two-atom sentence with a connector implication. But not all binary 
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implications, even if both atoms have the same arity, represent subclass re-
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Fig. 8.8. Fragment of MOF metamodel for CL

8.3.4 General Structure of Metamodels 

We have looked at the detailed structure of the metamodels, but have not 
discussed their larger scale structure. If we think about a model instance 
stored in a repository, the metamodel must do two things: supply identifi-
ers to distinguish instances of the various metaclasses, and collect the 
various parts of a model instance into a single whole. 

MOF metamodels often supply an identifier from a single (or possibly a 
few) most general classes. For example, the diagram in Fig. 8.4 has a most 
general class TopicMapConstruct, which supplies an identifier which can 
be used in a repository to distinguish the various objects in a Topic Map 
instance. The OWL metamodel has a similar construct. In Fig. 8.3, the 
most general class is RDFSResource, which supplies the identifier URI.
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Table 8.4. Representation of university teaching ontology fragment in CL

Atomic 
Sentence Predicate Arguments Value 

1 Student.name 1 02468135 

1 Student.name 2 Robert Colomb 

2 Course.description 1 INFS3101 

2 Course.description 2 Ontology and the Semantic Web 

2 NumEnrolled 1 INFS3101 

 NumEnrolled 2 0 

3 enrolled 1 02468135 

3 enrolled 2 INFS3101 

In contrast, UML and CL do not specify identifiers in their metamodels. 
Instead, they get their object identifiers from the MOF, which specifies an 
object identifier for instances of MOF metaclasses. An instance of one of 
the ODM metamodels gets its object identifiers from the metaclasses in the 
MOF instances model. To show these structures takes us too far afield 
from the present chapter. 

The ODM metamodels all collect the parts of a model instance into a 
single whole using similar mechanisms. UML has a construct Package,
which has a one-to-many association with a general metaclass Package-
ableElement. All the metaclasses are subclasses of PackageableElement,
so inherit the link to an instance of Package. Topic Maps have a similar 
system, as shown in Fig. 8.4. The packaging construct is TopicMap, hav-
ing a one-to-many association with both Topic and Association. The other 
Topic Map constructs are all linked to either a topic or association by a 
many-to-one association, so a link to the packaging construct can be de-
rived. CL also has a similar structure, Module in Fig. 8.8. 

In OWL, the packaging construct is the metaclass OWLOntology. Al-
though the metaclass OWLOntology supports the OWL ontology proper-
ties like owl:imports, it is not limited to the semantics of owl:Ontology, 
but is the packaging construct “Ontology” as described in [8]. 

If the packaging worked like the other metamodels, there would be a 
meta-association includes from OWLOntology to RDFSResource, so that 
one could navigate from an ontology instance to the objects contained in 
it, and from an object to the ontology containing it. This is not possible in 
the OWL metamodel, since the objects metaclass RDFSResource is inter-
preted as being things in the world that an ontology could represent. So al-
though it would be possible to navigate from OWLOntology to RDFSRe-
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source, the opposite is not navigable. Given an instance of RDFSRe-
source, it is in principle not possible to link to the instances of Ontology
that might include it. This is in much the same spirit that a web site knows 
which sites it links to but not the sites linking to it. 

This is actually an artifact of modeling OWL as a specialization of 
RDFS. Even though a resource is not attached to an ontology, an instance 
of one of the OWL metaclasses is. A resource can be an instance of Indi-
vidual in one ontology, OWLClass in another and Property in a third. In 
OWL DL, these three metaclasses are pairwise disjoint. OWL metaclass is 
not an essential property of a resource, but depends on the ontology refer-
ring to it.  

So taking advantage of the fact that in OWL Full, OWLClass and Prop-
erty are subclasses of Individual, we can introduce an abstract superclass 
Universe and a meta-association UniverseForOntology with Ontology
which is navigable in both directions. This structure functions like Pack-
age in UML.

8.4 Profiles and Mappings 

8.4.1 The Need for Translation 

The various metamodels in the ODM are all treated equally, in that they all 
have free-standing metamodels. It is not necessary to know about any of 
the others to understand any one. 

However, in an ontology development project it might be necessary to 
use several of the metamodels, and to represent a given fragment of the 
ontology in more than one. For example, consider a large e-commerce ex-
change project. The developers might choose to represent the ontology 
specifying the shared world governing the exchange in OWL. But the ex-
change might have evolved from a single large company’s electronic pro-
curement system (as was the case for example with the General Electric 
Global Exchange Service [9]). The original procurement system might 
have been designed using UML, so that it would be a significant saving in 
development cost to be able to translate the UML specification to OWL as 
a base for development of the ontology. 

Once the exchange is operating, it will have possibly thousands of 
members, each of which will have its own information system performing 
a variety of tasks in addition to interoperating through the exchange. These 
systems are all autonomous, and the exchange has no interest in how they 



236 Robert Colom et al. 

generate and interpret the messages they use to interoperate so long as 
they commit to the ontology.  Let us assume that the various members 
have systems with data models in UML or dialects of the ER model. 

A given member will need to subscribe to at least a fragment of the on-
tology and make sure its internal data model conforms to the fragment. It 
would therefore be an advantage to be able to translate a fragment of the 
ontology to UML or ER to facilitate the member making any changes to its 
internal operations necessary for it to commit to the ontology. 

The ODM therefore needs to provide facilities for translating data 
model instances from one of the metamodels to another. There are two 
ways to do this: UML profiles and mappings. 

8.4.2 UML Profiles 

UML has a facility called profile which does not translate from UML to 
another metamodel, but allows at least some of the features of the target 
metamodel to be represented as specializations, called stereotypes, of 
UML constructs. We can think of a profile as a sort of view. The main use 
of profiles is to allow a MOF metamodel of a system other than UML to 
make use of UML visualization conventions, and of the software used to 
visualize UML models. 

OWL is similar to UML in that both are based largely on the mathe-
matical theory of sets and relations, so that the metaclass OWLClass and 
its subclasses OWLRestriction etc. as shown in the OWL metamodel of 
Fig. 8.3 are semantically similar to the metaclass Class in the UML meta-
model of Fig. 8.1. The profile mechanism allows the OWL metamodel 
class-like constructs to be treated as specializations of Class. Further, the 
metaclasses OWLObjectProperty and OWLDatatypeProperty of Fig. 8.3 
are semantically similar respectively to the metaclasses Association and 
Property of Fig. 8.1.  

For example, suppose we have an OWL model of a fragment of an air-
line ontology, including the classes Flight and City. Flight and City are the 
domains respectively of the datatype properties flightID and cityName,
both of which are of type xsd:string, and Flight is the domain of a datatype 
property departs, of type xsd:time. There are two object properties from
and to, both with domain Flight and range City. We can use the UML pro-
file for OWL to visualize our fragment using UML conventions, as shown 
in Fig. 8.9. The stereotypes are represented as the OWL metaclass names 
enclosed in <<…>>. 
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<<OWLObjectProperty>> from

<<OWLObjectProperty>> to 

<<OWLClass>> 
Flight 

<<OWLDatatypeProperty> flightID : xsd:string 
<<OWLDatatypeProperty> departs : xsd:time 

<<EnumeratedClass>> 
City 

<<OWLDatatypeProperty> cityName : xsd:string 

Fig. 8.9. UML profile of OWL ontology 

However, the UML profile mechanism applies only to UML model ele-
ments which are represented as instances of the MOF model element class
(called metaclasses). If we see Fig. 8.1 as a MOF model of UML, the 
metaclasses are Class, Property, Association, Classifier and Type. Only 
these UML model elements can be profiled. The model elements ownedAt-
tribute and generalization are modeled as instances of the MOF Class As-
sociation, hence are meta-associations, hence cannot be stereotyped.  

OWL and UML are semantically similar, so there are not too many con-
structs that cannot be adequately profiled. But Topic Maps are quite dif-
ferent. In particular, the metaclass Topic of Fig. 8.5 has some instances 
which are interpreted as sets, others which are interpreted as members of 
sets, and still others which are neither, depending on whether or not they 
participate in the associations of Figs. 8.6 and 8.7. Only those instances of 
Topic which are linked to instances of AssociationRole of type a Topic
with name “tmcore:type”, “tmcore:subtype” or “tmcore:supertype” have 
the semantics of UML Class. Therefore, in the ODM UML profile of Topic 
Maps, the stereotype <<Topic>> of Class can be used to model only a 
subset of instances of Topic.

More radically, the metaclass Association in Topic Maps has as in-
stances atomic objects. Relationships among topics are modeled not by in-
stances of Association alone, but by complexes of instances of Association
and instances of AssociationRole. So it does not make sense to model As-
sociation in the UML profile for Topic Maps by stereotyping the UML
construct Association. Rather, every instance of the Topic Map construct 
Association is linked to an instance of Topic which is its type. So the ODM 
UML profile of Topic Maps includes a stereotype <<Association>> of 
Class which models instances of Topic which are types of instances of As-
sociation in Topic Maps.  

Instances of AssociationRole are similarly instance-level constructs, 
linking an instance of Topic with an instance of Association. But every in-
stance of AssociationRole is linked to an instance of Topic which is its 
type. So the ODM UML profile of Topic Maps includes a stereotype 
<<AssociationRole>> of the UML construct Association, which models 
instances of Topic which are types of instances of AssociationRole.

In this way a model instance of Topic Map can be represented more or 
less adequately by a population of the UML profile for Topic Maps, but 
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the structure of the profiled model is quite different from that of the Topic 
Map original. In particular, if a Topic Map model instance is created to 
represent something like a book index, where the topics do not have a 
type/instance structure, a UML profile may not be a suitable representa-
tion.

Besides UML visualization tools like Rational Rose [10], other tools 
producing XML serializations or Java APIs support profiles, so can be 
made use of. 

8.4.3 Mappings 

Working with multiple metamodels will often require a model element by 
model element translation of model instances from one metamodel to an-
other. We have seen that UML profiling is not exactly a mapping, al-
though one could map aspects of, say, an OWL model to a UML profile 
for OWL.

Mappings are of much broader interest in the OMG than just the ODM,
so much so that there is a parallel RFP in the OMG called QVT
(Query/View/Transform) which promises to provide a standardized MOF-
based platform for mapping instances of MOF metamodels  from one 
metamodel to another [6]. The mappings in the ODM will be specified in 
QVT.

The ODM RFP calls for normative mappings (if a mapping is norma-
tive, then any implementation to be compliant must follow these map-
pings). However, in developing the mappings for the various ODM lan-
guages, our team concluded that the mappings we specify cannot in 
practice be normative.  

For example, there are two different ways to map N-ary associations 
from UML to OWL, depending on whether we take OWL Full or OWL DL
as target. OWL has a mandatory universal superclass (owl:Thing) which 
can map to a universal superclass in UML, but this is contrary to normal 
practice in UML modeling. A particular project might analyze the uses of 
universal properties in the OWL source model and choose to declare a 
number of more general but not universal superclasses in the UML target.  

In the W3C Semantic Web Best Practices working report on Topic Map 
mappings [14], the point is made several times that there are different 
ways to map particular structures, and that each way has its advantages 
and disadvantages. In any particular project, design decisions will be taken 
in favor of advantages and against disadvantages so different projects will 
map in different ways. 
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There are several kinds of problems. One we can call structure confla-
tion, where two constructs in one system map to a single construct in the 
other. In this case, a general-purpose mapping does not round trip. UML
binary associations and class-valued attributes map to OWL properties, for 
example. In topic maps, three different kinds of identifier map to one kind 
in OWL.

But there is nothing to stop a particular project from specifying naming 
conventions so there is a record in the target of what construct the source 
was, and from maintaining that convention in subsequent development. 

A second kind of problem we will call structure loss. Here a complex 
construct is mapped to a collection of simpler constructs. There is insuffi-
cient information in the target metamodel for a general mapping to map 
collections of simple constructs to complex constructs in the source meta-
model. Examples here are UML N-ary associations and association 
classes, which get mapped to a class and a collection of properties in OWL 
DL. In Topic Maps, the Association construct is typed itself and has N
typed roles. The association maps to a class and the typed roles to proper-
ties. It is in general impossible to reliably map the reverse. 

But again, there is nothing to stop a particular project from using nam-
ing conventions or annotations to retain a memory of the structure, and 
maintaining those conventions in subsequent development so as to be able 
to reverse-map. 

Alternatively, a Topic Map project could decide to limit itself to binary 
associations, making possible mapping associations directly to properties 
in that particular case. 

The third kind of problem we will call trapdoor mappings, where a kind 
of construct in the source is mapped to a very specific arrangement of a 
general structure in the target. The analogy is with cryptography, where 
the encryption function takes any plaintext into an encrypted text, but al-
most no encrypted texts map back to plaintexts.  

In Topic Maps, this occurs with the mapping of scope and variant 
names to specific properties in OWL identified with Topic Map URIs.
OWL properties map to Topic Map associations with specific roles named 
with OWL URIs. Unless the source for a reverse mapping happened to 
maintain these conventions, it would be impossible to reverse in a sensible 
way. 

A fourth kind of problem stems from what we will call feature lack, that 
is the target metamodel lacks a feature present in the source. In this case 
there is no apparent general way to map the feature from the source. But in 
a particular project the feature may for example be used in a particular 
way leading to a mapping to target features particularized by naming con-
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ventions. OWL restriction classes relative to UML or Topic Map (TM) are 
of this kind. 

The fifth kind of problem is what we will call incompatible structural 
principles. The different metamodels are organized very differently. UML
is organized around classes, with instances as subordinate objects. OWL
has both classes and individuals typed only by a universal superclass. In 
TM, a Topic instance can be either typed or not. But a particular project 
might use a particular discipline in its use of these structures leading to 
mappings not otherwise feasible. 

In practice, the mappings provided in the ODM can be useful, though.  
First, they show feasibility of one set of design choices for the mappings, 
providing a baseline from which a particular project can vary. Second, 
they bring clearly to the fore the detailed relationships among the meta-
models. These relationships can help those who understand one of the tar-
get languages to come to an understanding of the others. UML,
RDFS/OWL and TM are quite different from each other, while CL has far 
greater functionality than any of the others. 

So although normative mappings are not feasible, we argue that the 
mappings presented have strong informative value. 

The mapping strategy in the ODM is illustrated in Fig. 8.10. Note that 
there will be mappings from each metamodel to and from OWL Full, ex-
cept for CL for which there is only a mapping from OWL Full. 

TM

CL

UML

OWL

RDFS

Fig. 8.10. Mapping relationships in the ODM

8.4.4 Mapping CL 

CL is much more expressive than the other metamodels. It is therefore 
much more difficult to map a model instance from CL into one of the other 
metamodels. The ODM intends CL to be used to implement predicates 
which cannot be expressed in the other less expressive metamodels. It is 
intended that a predicate be specified in a primary metamodel, in particu-
lar OWL, and implemented in CL.
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One way to do this is for the relevant elements of the model instance 
expressed in the primary metamodel to be mapped into CL. So only a uni-
directional mapping from OWL to CL will be included. It is possible to 
specify a subclass of property in OWL which is a predicate (a functional 
property whose range is the enumerated set {true, false}, for example). In-
stances of predicate can be implemented in CL.

When an instance of predicate is encountered by an OWL reasoner, the 
reasoner could execute the associated OWL to CL mapping, then call a CL
engine to evaluate the predicate. This would be a fairly straightforward 
way to extend the functionality of OWL using the ODM.

8.4.5 Interaction of Profiles and Mappings 

Profiles and mappings are related. Consider these cases: 

We use a MOF tool to develop an OWL ontology, which is then 
serialized using the XML markup XMI defined for the MOF. In this case 
we use the ODM OWL MOF model alone, and do not need mapping or 
profile.
We have a native UML model which we want to serialize as OWL XMI
(using OWL-derived markups). In this case we use both the MOF UML 
and MOF OWL metamodels, together with the UML -> OWL mapping, 
but no profile. 
We have an OWL-profiled UML model to be serialized as OWL XMI.
Here we use the ODM OWL MOF model and the UML2 MOF model 
with the UML2 -> OWL mapping and information from the ODM OWL
profile for UML.

These three are all useful and plausible scenarios. The third would be a 
more complete OWL model using UML notation than the second, while 
the first does not care about UML at all. 

Further, if profiles are being used the modeler might want to use UML
notation to create and visualize an ontology (say in OWL). This implies 
that two MOF models are required, one for UML and the other for OWL.
The mapping UML -> OWL is required, because without application of a 
mapping the final result would be UML XMI rather than OWL XMI.
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8.5 Extendibility 

There is an enormous variety of kinds of application for ontologies. An 
analysis was made in an early phase of the ODM project, which has been 
published in detail elsewhere [5]. They can be used at design time only or 
at both design and run-time. They can be schemas only or involve both 
schemas and instances. Their structure can be imposed from outside their 
domain or can emerge from the activities of interoperating parties. And so 
on.

Many of these kinds of application have special requirements which are 
common to many application instances but which are not at all universal. 
The ODM project has limited its efforts to the most general structural is-
sues.

However, in practice one can envisage particular extensions to the gen-
eral structures which support significant numbers of application instances, 
which would be published by third parties outside the OMG ODM process 
but which would be consistent with the ODM, in much the same way as 
the Dublin Core metadata standard is published as an RDFS namespace. 

MOF models have a structural unit called a package which is used to 
divide them into modules so that one model can import packages from 
others, then perhaps specialize them. Figure 8.1 is an example of this, 
showing a fragment of a package from the UML2.0 Infrastructure which is 
imported into the MOF2.0 metamodel and then specialized. So anyone 
wishing to develop specific facilities for specific applications can publish 
them as packages which reuse model elements from the ODM, but provide 
additional elements. 

We will illustrate this facility with three examples, all of which use 
model elements from OWL packages so are seen as extending OWL. The 
examples are respectively of metaclass taxonomies, semantic domain in-
stance models, and n-ary associations. 

8.5.1 Metaclass Taxonomy 

The first example, shown in Fig. 8.11, that of a metaclass taxonomy, ex-
tends OWLClass with the distinction between countable and bulk classes 
as advocated by Guarino and Welty [3]. A countable class has an extent 
consisting of identifiable individuals while a bulk class is a sort of amor-
phous mass like length measured in meters or value measured in euros. In 
a model instance, classes would be instances of one of the specialized sub-
classes rather than of the more general OWLClass.
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OWLClass (from OWL) 

CountableClass BulkClass 

Fig. 8.11. Countable/bulk package extending OWL  

This same approach can be used with other taxonomies of metaclasses, 
for example the taxonomy of endurants and perdurants proposed in the 
DOLCE system [2].  

It is possible to develop these packages as extensions to one of the 
metamodels, in this case OWL, then use the ODM mapping facilities to 
migrate it to any of the other metamodels. Note that all of the metamodels 
supported by the ODM permit multiple inheritance, so that several such 
extensions can be used simultaneously. 

8.5.2 Semantic Domain Models 

A feature of OWL is that properties are by default defined globally, with 
range and domain both Thing. This makes it possible to represent 
mereological relationships as instances of property. Instances of meta-
classes can be modeled using semantic domain models, a facility of MOF
2.0. For example, Fig. 8.12 defines a version of isPartOf which is transi-
tive, every part belongs to at least one whole (and by transitivity to all the 
wholes up the chain), and a part cannot exist without its corresponding 
whole. This kind of part-of relation could be suitable for modeling say the 
Olympic family. An athlete is part of an event (if a competitor), an event is 
part of a sporting program, a sporting program is part of the Olympics of a 
given Olympiad, and anyone who competes in any event in any program 
in any Olympics is a part of the Olympic family. But an Olympics cannot 
exist without at least one program, a program must have at least one event, 
and an event at least one competitor. 

There are a large number of varieties of mereotopological relationships 
[15]. They could be catalogued and published as a package, perhaps with 
specialized software. 



244 Robert Colom et al. 

OWLminCardinality 

OWLminCardinality 

OWLonProperty 

:OWLRestriction

OWLinverseOf 

:OWLTransitiveProperty

OWLonProperty 

:OWLRestriction 

: OWLTransitiveProperty 
uri = ex:isPartOf 

:RDFSLiteral 
lexicalForm = 1 

:RDFSLiteral 
lexicalForm = 1 

Fig. 8.12. Semantic domain model for kind of isPartOf property  

8.5.3 n-ary associations 

A key aspect of the OntoClean methodology [4] is the concept of a 
metaproperty. For example, a property has the metaproperty essential with 
respect to a class if being an instance of that class determines the value of 
the property. Besides essential, the metaproperties include rigid, identity
and unity. A property with respect to a class can necessarily, necessarily 
not or not necessarily have a given metaproperty. A natural way to model 
metaproperties is as quaternary associations. 

Most of the metamodels in the ODM permit n-ary associations, except 
RDFS/OWL. But an n-ary association can be represented as a class with n
binary properties. To be consistent with the previous examples, a possible 
package to model metaproperties in Fig. 8.13 extends the OWL meta-
model. Note that the metaproperty is modeled as a subclass of OWLClass. 
This can facilitate mapping from OWL to an n-ary association or equiva-
lent in another metamodel. Note also the enumerations, which are in-
stances of the MOF element type.

8.6 Discussion 

In this chapter we have argued for a MOF-based metamodel for ontology 
developments, but that not one but several different systems needed to be 
included: RDFS/OWL, Topic Maps, Common Logic, as well as UML.
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These metamodels are tied together with UML profiles and metamodel-to-
metamodel mappings. Finally, the package structure of the MOF makes it 
simple for third parties to publish extensions to the ODM for specialized 
purposes.

on 

withStatus takesValue 

withRespectTo 

OWLClass (from OWL)

Metaproperty

<<enumeration>>
MetaPropertyKind

essential 
rigid 
identity 
unity

necessarily 
necessarily not 
not necessarily

<<enumeration>>
StatusKind 

Property (from OWL)

Fig. 8.13. Metaproperty package for OWL   

Lessons learned from the exercise include: 
Representation of multiple models in the same metalanguage makes 
detailed comparisons easier. 
The different systems modeled are not formally equivalent. In fact, in 
some cases they are quite incompatible, making normative mappings 
not practical. 
UML profiles can be used to give a more or less adequate representation 
of the other systems, so can leverage the UML toolset for the other 
languages.
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9.1 Introduction

Refinement-based software development centres around the production of 
several models, going from abstract to concrete (Fig. 9.1), cumulating in 
the implementation as the most refined model [45]. Step by step, con-
structs in abstract models are refined to more concrete model elements. 
Roughly speaking, development can be divided into two phases. The 
analysis phase constructs a requirement specification describing all fea-
tures the user would like to have, building on a domain model, a business 
model, and a context model. Later on, the design phase produces an archi-
tectural design specification and a detailed design specification. In a last 
phase, the implementation phase, the design specifications are filled out to 
an implementation of the software system. 
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Fig. 9.1. Models in a typical object-oriented software development process 

Model-driven engineering (MDE) is a variant of this refinement-based 
software development in which models are no longer loosely coupled, but 
connected in a systematic way [9, 10]. On the one hand, MDE improves on 
the software refinement method of the 1970s in the sense that more con-
crete phases are distinguished. On the other hand, every phase derives a 
more concrete model not only by manual refinement, but also by semi-
automatic or automatic transformation. To this end, models must be con-
nected; that is, model elements must be traceable from a more abstract 
model to a more concrete model and vice versa. This is achieved through 
meta-modelling: meta-models define sets of valid models, facilitating their 
transformation, serialization, and exchange.  

In recent years, model-driven engineering has been popularized by a 
specific incarnation, model-driven architecture (MDA). In this process, 
one specific type of model information, the platform information, plays an 
important role. In MDA, models differ in how much platform information 
they contain (Fig. 9.2). For instance, one platform can be the programming 
language of the system, another can be the employed libraries or frame-
works, a third can be the binary component model. The designer begins 
with a high-level model that abstracts from all kinds of platform issues, 
and iteratively transforms the model to more concrete models, introducing 
more and more platform-specific information. Hence, all information that 
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relates to programming language, frameworks, or component model are 
added to the platform-independent model by platform-specific extensions.  

Fig. 9.2. Models in model-driven architecture (MDA)

Essentially, in MDA three types of viewpoints on models are distin-
guished [30]. The computationally independent (CI) viewpoint  sees the 
system from the customer’s point of view, and manifests it in a computa-
tion-independent model (CIM). This model is a typical analysis model, 
since it is expressed in terms of the problem domain: 

The computation-independent viewpoint focuses on the envi-
ronment of the system, and the requirements for the system; 
the details of the structure and processing of the system are 
hidden or as yet undetermined. [30]  

The CIM contains a domain model, describing the concepts of a domain 
and their interrelations, a business model, describing a company’s rules of 
business, and, finally, the requirements. The platform-independent (PI)
viewpoint sees the system from the designer’s point of view, abstracts 
from all platforms a system may run on, and results in a platform-
independent model (PIM). Roughly speaking, a PIM contains an architec-
tural model, adorned with sufficient detail of platform-generic implemen-
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tation issues. Finally, the platform-specific viewpoint adds platform-
specific extensions and results in a platform-specific model (PSM). Either 
this model can be executed directly, or it is used to generate code.  

To arrive at a PSM, the PIM must be extended with platform-specific in-
formation, for which it is merged with several platform-specific extensions 
(Fig. 9.3).  

Fig. 9.3. The MDA pattern: weaving a platform-specific extension as an aspect 
into a PIM as a base 

Because the platform-specific extension (PSE) can be regarded as an 
aspect that cross-cuts the platform-independent information [24], one can 
speak of model weaving. This MDA pattern, weaving PSMs from PIMs
and PSE, can be repeated over several levels. Often, different kinds of 
platforms are involved and one would like to vary the system over all 
combinations of these platform instantiations; for example, by having a 
system with C# and Java, both on the web and GUI-client platforms. The 
idea of multi-level MDA is to repeat the model weaving process over sev-
eral levels (Fig. 9.3), so that on every level, a PSM is reinterpreted as a 
new PIM for the next platform.  

A heretical spectator could remark that MDA (and hence MDE) is not a 
new technology, but just refinement-based software development. How-
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ever, since MDA discerns platform-specific information as the main crite-
rion for refinement, the entire process is much more structured than the 
“free-style” refinement of the 1970s. Also, in MDA, all models are graph-
based, while standard refinement worked mainly for syntax trees.  

Recently, the Semantic Web has popularized another notion of model: 
ontologies. Ontologies are formal explicit specifications of a shared con-
ceptualization [18]. They describe the concepts of a domain, similar to the 
domain model of a CIM. While they are currently used mainly in the Se-
mantic Web, they could be useful also in general software develop-
ment [1, 8]. But then, the question arises how ontologies should be inte-
grated into MDE, and more specifically, into the process architecture of 
MDA. And this is what the rest of the chapter is about. In Sect. 9.2, on-
tologies are compared to general models, resulting in the insight that on-
tologies describe reality while models specify artifacts. Section 9.3 inves-
tigates these relationships in more detail and explains how the 
specification relationship instance-of can be used to build up a stack of 
models, the so-called IRDS meta-pyramid. Section 9.4 extends the meta-
pyramid with ontologies, distinguishing a descriptive dimension. A com-
parison to related work concludes the chapter.  

9.2 Models and Ontologies

In this section, we discuss the fundamental terms ‘model’ and ‘ontology’ 
and investigate their primary commonalities and differences. We begin by 
looking at definitions of ‘model’ and ‘ontology’, go on to discuss a fun-
damental property of models—namely, whether they are descriptive or 
prescriptive—and finish by showing how this distinction can be applied to 
distinguish between ontologies and other software models.  

9.2.1 What’s in a Model?

Models are representations, descriptions, and specifications of things. Pidd 
defines:

A model is a representation of reality intended for some defi-
nite purpose. [34]  

Hence, models represent reality (in the following denoted by the is-
represented-by relation).  
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Models have a causal connection to the modelled part of reality: they 
must form true or faithful representations so that queries of the model give 
reliable statements about reality, or manipulations of the model result in 
reliable adaptations of reality. Pidd characterizes this as follows:  

A model is an external and explicit representation of a part of 
reality as seen by the people who wish to use that model to 
understand, change, manage, and control that part of reality. 
[34]  

Secondly, while models represent reality faithfully, they may abstract
from irrelevant details. For instance, while models are finite descriptions, 
they may well describe an infinite language—that is, an infinite set of 
things or systems. Usually, then, abstractions are involved—for example, 
about the number of elements in the language.  

A model can represent many different kinds of realities, e.g. domains, 
languages, or, in particular, systems. Hence, we can distinguish domain
models from system models, models that describe or control a set of sys-
tems:  

A model of a system is a description or specification of that 
system and its environment for some certain purpose. [31]  

where the environment of a system is described by a domain model.  
Models can describe structure or behaviour. In the former case, models 

describe the concepts of a reality and their interrelation, the static seman-
tics of a domain, its context-free or context-sensitive structure. Well-
formedness rules (integrity constraints) describe valid configurations of 
reality.  

Example 1. UML class diagrams are frequently used together with an 
Object Constraint Language [31]. The OCL integrity constraints describe 
valid configurations and interrelationships of classes and objects in a UML
class model. 

Secondly, while a structural model contains abstractions and their inter-
relationships, a behavioural model also specifies their behaviour, their dy-
namic semantics. In this case, a model may state assertions on the behav-
iour of things in a domain or of some systems. Models can express such 
assertions either in a conceptual or in a transitional way. In the former 
case, dynamic features of a system are expressed as concepts and their in-
terrelationships are explained by constraints. In the latter case, dynamic 
features and their relationships are expressed in terms of transitions on 
state spaces [23] or as modifications of a denotational semantics [42]. 
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Sometimes, such transitions or modifications can in turn be expressed in 
logic. However, as the following example shows, this need not be appro-
priate. If the state space of the dynamic semantics is continuous, the se-
mantics is better expressed by numerical means—for example, through 
differential equations.

Example 2. Modelica is a multi-domain modelling language for simula-
tion, visualization, and controlling technical systems. Hence, it is a pre-
scriptive modelling language for the dynamic semantics of technical sys-
tems [13]. 

9.2.2 What’s in an Ontology?  

Recently, the Semantic Web has popularized another notion of model—
ontologies. One of the most-cited definitions is:  

Ontologies are “formal explicit specifications of a shared 
conceptualization”. [18]  

Since concepts are abstractions and play an important role in models, an 
ontology is certainly a special kind of model. But what is the exact differ-
ence? To answer this question, we have to introduce some other qualities 
of models.  

Following the above definition, an ontology is a model shared by a 
group of people in a certain domain. This includes ontologies that have 
been standardized by international organizations (such as the Dublin Core 
ontology [27]), ontologies that are shared by large user groups (such as the 
gene ontology [3]), and ontologies that are shared between companies and 
their customers (such as the wine ontology [28]). In general, models need 
not be shared. For instance, the design model of a product, if it is shared 
only between the few developers of a small company, should not be re-
garded as an ontology, but rather as a plain artifact model. Of course, 
sharedness is a relative notion: it is often a matter of taste to consider a 
user group of a model large enough so that the model can be called an on-
tology of the user group.  

An important property of ontologies is the so-called open-world as-
sumption [20]. It states, intuitively, that anything not explicitly expressed 
by an ontology is unknown. Hence, ontologies use a form of partial de-
scription or under-specification as an important means of abstraction. In 
contrast, most system models underlie the assumption that what has not 
been specified is either implicitly disallowed or implicitly allowed 
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(closed-world assumption), to restrict arbitrary extensions of the system, 
which could introduce inconsistencies.  

It is important to distinguish whether models describe or control reality. 
If they describe, they monitor reality and form true, or faithful, abstrac-
tions. If they control, they prescribe reality; that is, they specify well-
formedness conditions what reality should be like, once it has been con-
structed. It can also be said that such models are templates or schemas of 
reality. Hence, a most fundamental feature of a model is that it can be de-
scriptive or prescriptive [38]. In the former case, the model describes real-
ity, but reality is not constructed from it. In the latter case, the model pre-
scribes the structure or behaviour of reality and reality is constructed 
according to the model; that is, the model is a specification of reality. 
Favre [11] observes that in a descriptive model truth lies in reality, 
whereas in a prescriptive model, truth lies in the model itself. Descriptive 
models are, of course, used in analysis and re-engineering, specifications 
in design and forward engineering. Since most specifications model sys-
tems, a prescriptive system model is also called a system specification.

Models are abstractions from reality for some purpose [34]. Ontologies 
are special models. Most of the models used in software development and 
design are of a prescriptive nature in that they form the templates from 
which the system is later implemented. In contrast, because of their open-
world assumption, ontologies should be regarded as descriptive models. 
This is so, because the open-world assumption does not allow for a com-
plete and final description: Anything that has not been said explicitly is 
unknown. Two very different systems may satisfy an ontology, if they dif-
fer in areas not explicitly mentioned in the ontology.  

On the other hand, we concede that ontologies can also be—and often 
are—used in a prescriptive manner. We argue, however, that then they 
should better not be called ontologies, but specification models. When a 
model is used as a prescription for systems, it should confine their legal 
structure, for which the closed-world assumption is required. At least, at a 
certain point in development, the world must be closed; that is, the addi-
tional assumption has to be introduced that everything that has not yet 
been specified or cannot be derived is wrong. Such a world closure is not 
only hard to comprehend because it changes the semantics of the underly-
ing logic, but may also require the insertion of additional facts in the data-
base or a change in the logic reasoner.  

Taking this discussion into account, we define the following:  

An ontology is a shared, descriptive, structural model, repre-
senting reality by a set of concepts, their interrelations, and 
constraints under the open-world assumption.
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A specification model is a prescriptive model, representing a 
set of artifacts by a set of concepts, their interrelations, and 
constraints under the closed-world assumption.

These definitions deserve some elucidating remarks. When comparing 
hallmark papers, such as [18] and [38], specification models and ontolo-
gies look very similar. Both provide vocabulary for a language and define 
validity rules for the elements of the language. Both specification models 
and ontologies use integrity constraints to limit the valid instances of the 
domain.32

However, there are also differences. Ontologies are shared knowledge; 
that is, they must be standardized in a certain group of people. Ontologies 
are not specification models, but descriptive models in Seidewitz’s sense. 
Ontologies do not describe systems, only domains. Hence, in a software 
engineering process, they should play the role of an analysis model, not of 
a design or implementation model. With this view we contradict Devedzic, 
“Generally, an ontology is a meta-model describing how to build models” 
[8], and Gruber, because he maintains that ontologies are specifica-
tions [18]. However, this conceptual distinction creates a natural place for 
ontologies in model-driven engineering, as will be seen in Sect. 9.4.  

To summarize, we will assume the following: Specification models fo-
cus on the specification, control, and generation of systems, ontologies on 
description and conceptualization (structural modelling) of things. Both 
kinds of models have in common the qualities of abstraction and causal 
connection. So, under these circumstances, how can ontologies and speci-
fication models cohabit in model-driven engineering?  

9.3 Similarity Relations and Meta-modelling  

The previous arguments make it possible to distinguish two basic notions 
of the is-represented-by relation between a model and the corresponding 
part of reality (Fig. 9.4). In a descriptive model—for example, an ontol-
ogy—the model describes the world; that is, the world’s objects are in re-
lation is-described-by with concepts of the descriptive model. In a specifi-
cation model, the system’s objects are created from the model; that is, an 
object is an instance-of a model element. Both relationships are represen-
tation relations: one is descriptive, the other is prescriptive. Their generali-
zation is-represented-by is a similarity relation, in which a causal connec-
                                                     
32 Both are structural models in the sense that while they can contain concepts that 

model behaviour, they usually do not model dynamic semantics.  
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tion—delivering true and faithful statements—is defined between the rep-
resented things and the representing model. Beyond that, more similarity 
relations can be defined; for example, two things may share features (often 
expressed as is-a, i.e., structural or behavioural inheritance), or they may 
be included in a hierarchy of sets (set inclusion, subset-of). In Fig. 9.4, is-a 
is defined as a sub-relationship of subset-of, because inheritance usually 
has a set-based semantics; namely, that all objects in a subclass are also 
members of the superclass. Additionally, is-a is a sub-relationship of is-
described-by, because a superclass also describes all objects in a subclass. 
In contrast, is-a cannot be a sub-relationship of instance-of, because a su-
perclass cannot necessarily be regarded as a template, schema, or specifi-
cation for a subclass.

Fig. 9.4. A classification of similarity relations 

9.3.1 Meta-models

In MDE, the specification relationship instance-of plays a special role. 
When the specification principle is applied repeatedly, models are re-
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garded as the reality or system under study, so that models specifying 
models can be defined: namely, meta-models. Meta-models represent and 
specify models; that is, they describe about what are the valid ingredients 
of a model. More precisely:  

A meta-model makes statements about what can be expressed 
in the valid models of a certain modelling language. [38]  

Hence, a meta-model is a prescriptive model of a modelling lan-
guage [38]. In general, meta-models are language specifications, not only 
of modelling, but also of arbitrary languages. In the current stage of MDE,
they are mainly concerned with the static semantics—that is, with context-
sensitive syntax of models, integrity, and well-formedness constraints. 
However, modelling languages for dynamic semantics could also be ap-
plied to construct meta-models [42].  

A language concept or construct in a meta-model is captured by a meta-
class. While its structure and embedding describe the static semantics of 
the language constructs, its methods describe the dynamic behaviour of 
the language construct. Usually, meta-classes are assembled in a behav-
ioural meta-model, the meta-object protocol (MOP) [25], a reflective 
meta-model that describes an interpreter for the language.  

A big incentive for meta-modelling has been the need of CASE (Com-
puter-Aided Software Engineering) tool vendors to exchange models [32]. 
Since a meta-model describes, rather specifies, valid instances of a model-
ling language—models—it enables control over the structure and validity 
of models. If two CASE tools agree on the same meta-model, they impose 
the same structure on their models, so that they can easily exchange them.  

A language, described by a meta-model, can have a specific purpose or 
domain in which it is applied. Such purposes or modelling domains are 
called the subject areas of meta-models [12].  

Example 3.  For instance, the common warehouse meta-model 
(CWM) [29] defines a data specification language, a meta-model for data 
and information system applications. Work-flow systems are another spe-
cial subject area whose data, functions, and tasks can also be described 
with meta-models [36]. Software processes, being specific work flows, 
can be meta-modelled [14] and used to construct software environ-
ments [5]. 

Subject areas can be organized in hierarchies or partial orders. Then, 
meta-models in a certain subject area can build on others from lower-level 
subject areas, so that complex languages can reuse simpler languages [12].  

Example 4. The CASE Data Interchange Format (CDIF) has structured 
its meta-model into several subject areas (Fig. 9.5). The Foundation
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module contains information about names and relations; the Common
module defines name aliasing for objects; and the Data module describes 
access paths to data and roles of objects. Based on these, data flow can be 
defined (Data Flow module). Another module specifies facilities for the 
presentation of objects. Finally, the full integrated meta-model uses all 
other modules and provides their concepts in an integrated way to the us-
ers.

Fig. 9.5. The subject areas of CDIF and their meta-models in a use relationship 

9.3.2 Metameta-models

The specification principle can be applied repeatedly. Metameta-models 
represent and specify meta-models; that is, they describe what are the 
valid ingredients of a meta-model. They specify languages, and are thus a 
form of language specification languages (meta-languages).

In order to model anything useful, such a minimal meta-language 
should contain the following concepts [12]:  

Foundation
- names

- relations

Common
- aliases

Data Model
- roles

- access paths

Data Flow Model
- processes

- agents

Presentation

Integrated MM
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classes (concepts); 
attributes (or properties) of classes, contained in the classes; 
binary relations between classes. 

Thus, the Entity–Relationship Diagram (ERD) language [6] can be used 
as a very simple meta-language. It defines modelling concepts, their at-
tributes, and their relationships. Other meta-languages exist that describe 
other forms of languages, or describe specific aspects:  

1. Grammar specification languages—for example, EBNF—specify 
the concrete or abstract syntax of a text-based language [17].  

2. Attribute grammars describe context-sensitive syntax in the form 
of attribution rules of syntax trees [7].  

3. Natural semantics can be employed for type systems, but are also 
able to specify dynamic semantics of systems [23].  

4. In SGML [16], mark up languages can be defined. XML [44] is a 
variant of SGML, allowing for defining context-free mark up 
languages.

5. EXPRESS [37], a modelling language in the spirit of UML, is 
frequently used in mechanical engineering.  

9.3.3 The Meta-pyramid, the Modelling Architecture of MDE 

Based on the meta-principle, a so-called meta-pyramid can be defined, 
which displays systematically the mentioned stack of models and meta-
models [22]. In essence, a meta-pyramid is a specification hierarchy linked 
by the instance-of relation, in which upper-level meta-models in some way 
specify other sets of lower-level models. Since sets of models can be re-
garded as languages, the meta-pyramid is a hierarchy of language specifi-
cations.

In this chapter, we focus on the standard meta-pyramid of OMG, origi-
nally presented in the ISO Information Resource Dictionary System 
(IRDS) standard [22] (Fig. 9.6), which contains four levels: M0 level (ob-
jects), M1 level (models), M2 level (meta-model or language level), M3
level (metameta-model or language description level). There are alterna-
tives and a debate is going on whether the IRDS meta-pyramid is precise 
enough, because it is one-dimensional, while multi-dimensional model 
pyramids exist [2]. However, at the moment, this is the mainstream meta-
pyramid of MDE.
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On level M3, the IRDS/OMG meta-pyramid employs the meta-object
facility (MOF) as metameta-model. Essentially, its concepts are similar to 
those of the ERD. The stereotypical models of MDA, CIM, PIM, and PSM
live on level M1. All of them are specified on level M2 by meta-models 
(CIM-MM, PIM-MM, PSM-MM), dialects of UML, enriching the UML
core by profiles containing markup for model elements (stereotypes and 
tagged values).

Fig. 9.6. The meta-pyramid with the MDA-related model types CIM, PIM, PSM

Each of these meta-models covers different subject areas of a PSM: the 
CIM-MM covers the requirements, the PIM-MM covers the platform-
independent concepts, while the PSM-MM adds the platform issues. While 
all of these models are prescriptive—that is, using the instance-of re-
lationship—the question remains how ontologies, being models relying on 
described-by, can be integrated into the meta-pyramid. This is the 
topic of the next section.  

9.4 MDE and Ontologies

This section discusses the role of descriptive and structural models, in par-
ticular ontologies, in the model-driven process. First, the different role of 
domain and upper-level ontologies is discussed. We postulate that upper-
level ontologies can also be used as language descriptions. Secondly, we 
propose an embedding of parts of the CIM as ontologies into the MDA
meta-pyramid (ontology-aware meta-pyramid). In fact, this delivers a first 
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ontology-aware mega-model of MDE [10], and we discuss its conceptual 
advantages. On the one hand, the mega-model suggests an extended, on-
tology-aware software process. On the other hand, the technologies for 
tool construction in the MDA and MOF world can be transferred to the on-
tology world.

9.4.1 Domain and Upper-Level Ontologies

The basic idea of the ontology-aware meta-pyramid is that most models in 
MDE are specifications, but can integrate ontologies on different meta-
levels as descriptive analysis models. Since ontologies differ from specifi-
cations due to their descriptive nature, the standard M0–M3 meta-pyramid 
can be refined from using pure specification models to also using ontolo-
gies.

Depending on the meta-level, an ontology may serve different purposes. 
In fact, there are different qualities of ontologies in the literature. First of 
all, the word ontology stems from philosophy, where it characterizes Exis-
tence:

Ontology is a systematic account of Existence. [18]  

We call such a systematic account of existence a World ontology, a 
conceptualization of the world, that is all existing concepts. Usually, a 
World ontology is split into an upper-level ontology (concept ontology,
frame ontology), providing basic concepts for classification and descrip-
tion, and several lower-level ontologies, domain ontologies describing 
domains of the world [19, 41]. Sowa characterizes domain ontologies as 
follows:

The subject of ontology is the study of the categories of things 
that exist or may exist in some domain. The product of such a 
study, called an ontology, is a catalogue of the types of things 
that are assumed to exist in a domain of interest D from the 
perspective of a person who uses a language L for the pur-
pose of talking about D. The types in the ontology represent 
the predicates, word senses, or concept and relation types of 
the language L when used to discuss topics in the domain D.
[40]  

In contrast, upper-level ontologies can be defined as follows:  
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An upper ontology is limited to concepts that are meta, ge-
neric, abstract and philosophical, and therefore are general 
enough to address (at a high level) a broad range of domain 
areas. Concepts specific to given domains will not be in-
cluded; however, this standard will provide a structure and a 
set of general concepts upon which domain ontologies (e.g.,
medical, financial, engineering, etc.) could be constructed.
[21]  

Usually, concepts of the domain ontology inherit from concepts in the 
upper-level ontology. For better interoperability and understanding, some 
researchers try to create a normalized upper-level ontology, from which all 
possible domain ontologies may inherit [33]. If a standardized upper-level 
ontology with modelling concepts existed, all domain ontologies could 
rely on a standardized concept vocabulary.  

9.4.2 Relationship of Ontologies and System Models on 
Different Meta-levels

With this terminological distinction, we can relate the different forms of 
ontologies to meta-levels in the meta-pyramid. Domain ontologies live on 
level M1; they correspond to models. An upper-level ontology, also a 
standardized one, should live on level M2, because it provides a language 
for ontologies. Figure 9.7 summarizes this insight, showing both dimen-
sions and descriptive and prescriptive models, on different meta-layers.  

Interestingly, on the ontology side, inheritance is used as the connecting 
relation of M1 and M2, and not instance-of. We believe that this his-
toric choice, which might have been made unconsciously, has a deep se-
mantic reason in the difference between descriptiveness and prescriptive-
ness. A concept in a domain ontology on M1 needs to express its 
similarity to a modelling concept of an upper-level ontology (on M2).
For this, the is-a relationship is sufficiently precise (cf. Fig. 9.4), and 
therefore it has been selected in the ontology world to connect the meta-
levels. A concept in a specification model, however, has to express that it 
has been made from a specification model, which is clearly a more spe-
cific relationship than is-a. And this is the reason why in the IRDS world 
the instance-of relationship has been employed.  

We argue that on level M3 of the descriptive side of the ontology-aware 
meta-pyramid, also a specification meta-language should be employed 
(Fig. 9.7). The language that describes or specifies an ontology language 
cannot be descriptive, because ontology languages are not something 
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given, but artificial languages. Hence, a model to represent them should be 
prescriptive. We argue that the same meta-language can be used on the on-
tology as well as on the system model side.  

Fig. 9.7. The ontology-aware meta-pyramid 

In fact, inheritance is not required in Fig. 9.7. While, usually, concepts 
in a domain ontology inherit from a concept in an upper-level frame on-
tology, we suggest that to distinguish them better from concepts in specifi-
cation models, ontology modelling should causally connect ontological 
concepts by the described-by relationship. This would introduce a 
parallelism to using instance-of on the specification side and retain 
the basic ontological modelling principle of descriptiveness. Because of 
the parallel structure to the specification dimension, the advantage of such 
a meta-pyramid is that connections from ontologies to specifications can 
easily be made. In particular, this holds for the application of the meta-
pyramid in the MDE.

9.4.3 Employing Domain Ontologies in the MDA  

This version of an ontology-aware meta-pyramid permits us to group the 
MDA-based models around ontologies. In particular, the CIM plays a spe-
cial role.
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A CIM contains information about the system from the perspective of 
the system user. It is an analysis model. As such, it may contain a domain 
model, a business model, and requirements (Fig. 9.1) [30]. The gap be-
tween descriptive and prescriptive models concerns the CIM in particular. 
The domain model of a CIM can be selected to be a domain ontology 
(CIM-DO in Fig. 9.8). A business model, capturing business rules for a 
company that should prevail in all software products, can also be regarded 
as a domain ontology, namely that of the rules of the company (i.e. a do-
main ontology for a company, CIM-BO in Fig. 9.8). However, the parts of 
the CIM that deal with requirements cannot be grasped by ontologies, be-
cause they specify requirements of a system to-be-made. Hence, this speci-
fication is grouped in CIM-RM in Fig. 9.8 as a specification model. This 
difference is also the reason why only for CIM-RM, the specification part 
of the CIM, is a meta-model needed. Concepts of CIM-DO or CIM-BO de-
scribe existing things, and may inherit from concepts on the language or 
concept ontological level. Concepts in CIM-RM, on the other hand, are in-
stances of a CIM meta-model, because they specify parts of functions of a 
system.  

Fig. 9.8. A proposal for the role of ontologies in meta-pyramid of MDE and the 
MDA

Usually, a CIM is extended towards a PIM by hand, by enriching it with 
operational model elements. Hence, at least CIM-DO and CIM-BO play 
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the role of standardized analysis models, whose elements can be traced 
back from the PIM [1]:  

In an MDA specification of a system, CIM requirements 
should be traceable to the PIM and PSM constructs that im-
plement them, and vice versa. [30]  

Hence, surprisingly, the MDA can benefit from ontologies, because via 
the standardized domain and business ontologies, once parts of a CIM,
connection to PIM specifications can be made in a clear and systematic 
way.  

9.4.4 Conceptual Benefits of an Ontology-Aware Meta-pyramid  

The ontology-aware meta-pyramid offers several other benefits. First of 
all, it suggests a more concrete model-driven software development proc-
ess. The designer starts from standardized analysis models, ontologies, 
which may have been defined long before project start. These domain and 
business models are refined towards design models. First, the require-
ments are added to yield a complete CIM. This is refined to a PIM and, 
then, conventionally, via several PSMs towards an implementation. Em-
ploying ontologies as analysis models should increase the reliability of 
software products, because these models are well engineered, often used, 
and hence trustworthy. This avoids the risks of a self-made domain analy-
sis.

Secondly, ontologies as analysis models offer a more common vocabu-
lary for the software architect, customer, and domain expert. This should 
improve the understanding of the parties that order and construct software. 
Then, the standardization of the ontologies improves the interoperability 
of applications, because applications that use the ontology contain a com-
mon core of common vocabulary. Finally, domain and business ontologies 
can be reused in many software products. In particular, they may form the 
core of a software product line [1], around which many products are 
grouped, and from which they reuse domain terminology. Overall, this 
improves reuse in the software process.  

It is also beneficial to make an explicit distinction between descriptive 
and prescriptive models in the MDA. Modelling becomes easier, because 
designers and domain experts can always answer the question: where does 
the truth lie? In the model or in reality? Specification models have to con-
fine themselves to the modelling of artificial things, things that are made, 
while ontologies can focus on the description of real things, things that ex-
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ist. (In particular, this can be seen from the example of the CIM, which in 
fact contains descriptive and prescriptive models.)  

Finally, the ontology-aware meta-pyramid distinguishes conceptual 
from behavioural models. It seems to be convenient to centre software 
modelling around the concepts of a domain, or structure of a domain, 
while adding behaviour to it step by step. In essence, this supports one of 
the central ideas of MDA: refinement.  

9.4.5 Tools Based on an Ontology-Aware Meta-pyramid  

Ontology-aware meta-pyramids not only deliver a conceptual integration 
of the Semantic Web and MDE, but also enable us to compare engineering 
practices of both paradigms to derive common tools.

In MDE, type systems are mediated by an interface definition language 
(IDL) [39]. Based on the meta-models for two type systems (on level M2),
automatic conversion code (on level M1) between objects typed in type 
system 1 and objects typed in type system 2 can be generated. This is the 
task of an IDL compiler and facilitates interoperability between compo-
nents and services, because data can easily be serialized and de-serialized 
in appropriate forms. At the moment, interoperability between ontology-
based applications is an unsolved problem, but it might be possible to 
transfer the IDL tools to ontology languages.

The division of M1 models into platform-aware subject areas (CIM,
PIM, PSM) is a structuring principle that can be applied to the ontology 
world. Because the principle has been invented for the reuse of models in 
product families (CIM and PIM are reused in many PIMs and PSMs, re-
spectively), it could enable reuse of abstract ontologies in ontology fami-
lies. Domains are not always disjoint, but often overlap. This suggests that 
abstract ontologies should be developed that can be shared between do-
mains and are refined towards concrete ontologies by adding the differ-
ences of domains. Whether the notion of platform is the right criterion for 
abstraction remains to be seen; however, MDE tools, such as MDE code 
generators, could easily be transferred to such ontology families.  

The success of ontologies and ontology languages suggests the use of 
logic in specification models. This is often the reason why, in practice, on-
tologies are abused in a prescriptive way. However, it would be more 
beneficial to reflect the role of open- and closed-world assumptions in on-
tology and specification languages. For a given modelling language, when 
is it possible to change the assumption? And how far can tools be reused if 
the assumption is orthogonal to the modelling language?  
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In the MDE world, the exchange of meta-data has been simplified by 
the XMI standard [32]. Essentially, XMI defines meta-model mappings on 
level M2 between the UML meta-model, XML schema definitions, and a 
programming language—for example, Java. Based on these mappings, se-
rialization of graph-like UML models to tree-shaped XML models can be 
automated. Also, Java class models, which use a restricted form of inheri-
tance, can be generated automatically. XMI lays the foundation for meta-
data repositories such as MDR [43] or Eclipse-MDR [15], which seem to 
be the basis for future CASE tools and integrated software–development 
environments. Based on the ontology-aware meta-pyramid, the XMI tech-
nology could be transferred to ontology repositories.  

Figure 9.8 suggests a common meta-language for the ontology and 
specification world. It should be clear by now that such a meta-language 
should be based on an expressive logic. If this logic is decidable (as in the 
case of OWL-DL), decidable tool technology can be built. If the logic is 
undecidable, it is more expressive, which might be more useful. Perhaps it 
is possible to define a hierarchy of compatible logic languages that com-
bines expressive power with flexibility of use. Such a language hierarchy 
would certainly be of great help to build tools in both the descriptive on-
tology as well as the prescriptive specification world.  

9.4.6 The mega-Model of Ontology-Aware MDE  

The above-presented ontology-aware meta-pyramid can be called a mega-
model of ontology-aware MDE:

A mega-model is a model that describes a meta-pyramid. [11]  

A mega-model stands outside of the meta-pyramid and describes all its 
levels. It has a global influence on all levels of the meta-pyramid. As such, 
the presented mega-model sheds new light on the relation of ontologies 
and meta-models in MDE. Systematically, ontologies can be related to 
specification models and meta-models in the meta-pyramid. It is important 
to distinguish the representation relations is-described-by and in-
stance-of, because then ontologies can be differentiated from specifi-
cation models on all levels. As a whole, we propose that: 

1. An ontology-aware MDA should employ domain and business 
ontologies as parts of the CIM.

2. An ontology-aware MDE should additionally incorporate a second 
dimension of ontologies as descriptive models in the meta-
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pyramid, and maintain interrelations between the descriptive and 
prescriptive models on all levels.  

9.5 Related Work

One of the works integrating meta-models and ontologies is [35], which 
extends software process and measurement ontologies to meta-models 
from which software can be built. The work demonstrates the usefulness 
of ontologies in a meta-modelling scenario.  

The standard aforementioned meta-pyramid is not undebated in the lit-
erature. Other pyramids can be described, in particular if some design 
principles for meta-pyramids found in the literature are varied. A central 
role is played by the similarity relations: since different notions can be de-
fined, different model hierarchies result.  

Favre dissects the instanceOf relation into representationOf
and member-of [9]. A model represents a language, and a system is an 
element of that language. This leads to a relative model hierarchy which is 
not restricted to four levels, but in which certain composite patterns denote 
more complex similarity relations, such as instance-of or de-
scribed-by.

If every element on level n+1 is an instance of exactly one element on 
level n, a meta-pyramid is called strict [2]. With strict similarity, meta-
pyramids must be lists or trees and are essentially one-dimensional. Based 
on this distinction, [2] defines a non-strict meta-pyramid consisting of two 
dimensions arranged in a matrix. One dimension of the matrix is charac-
terized by physical (technical, linguistic) instantiation. The linguistic simi-
larity describes the specification language aspect of modelling: which 
language construct is an instance of which language concept. Linguistic 
similarity is distinguished from logical (ontological) similarity, which 
spans the other dimension, the matrix-like meta-pyramid. Ontological 
similarity describes the similarity of real-world concepts, e.g. that a dog is 
a mammal, and Fido is a dog. Clearly, this dimension corresponds to our 
descriptive, ontological dimension. However, [2] does not distinguish pre-
scriptive vs. descriptive models, nor further different forms of similarity 
relations. Future work will combine both approaches; at this time, it seems 
unclear whether a two-dimensional matrix-like approach or the presented 
approach of parallel descriptive and prescriptive dimensions will prevail.  
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9.6 Conclusions

Ontologies are no silver bullet. They can be employed in the software 
process as descriptive standardized domain models, domain-specific lan-
guages, and modelling (description) languages. However, they should not 
be mingled with specifications of software systems. In MDE, both forms 
of models are needed and complement each other. It is time to develop ap-
propriate mega-models that clarify the role of ontologies in MDE. This 
chapter has presented one approach; however, this can be only an interme-
diate step, because we restricted ourselves to the standard IRDS meta-
pyramid. Other, more sophisticated meta-pyramids exist and must be ex-
tended to be ontology-aware.  
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10.1 Introduction 

Software development is a knowledge-intensive business. Different kinds 
of knowledge are important for software practitioners to support their ac-
tivities in software organizations, such as that knowledge about the do-
main for which software is being developed, new technologies, local prac-
tices and policies, who knows what in the organization, guidelines, best 
practices, and previous experiences with techniques, methods and the 
software process [43]. 

We have observed this while developing software within different or-
ganizations for different domains such as cardiology [32, 33], acoustic 
propagation [31] and telecommunications [25]. These experiences had 
shown that a risky situation for the software systems development was the 
lack of domain knowledge by the software developers. Users usually con-
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sider the process of knowledge acquisition and requirements elicitation to 
be boring and stressful because they need to explain the same basic do-
main concepts to the computer science personnel for each new software 
project development. When a software developer starts to work on a soft-
ware project under development, s-he must understand not only the soft-
ware products already built, but also, and prior to this, the domain itself. 
While learning about the domain, the software developers usually have to 
understand the tasks or activities that are implicitly associated with the 
concepts of that domain. Those tasks are directly related to the problem 
that the software system being developed intends to solve. It can get worse 
when there is a high turnover of software developers in the software pro-
ject.

This basic development scenario, which describes a concrete reality 
concerned with the building of software projects lacking domain and task 
knowledge, motivated the investigation of feasible approaches to support 
the use of such knowledge throughout the software development process.  

A software development environment (SDE) [1, 15] has already been 
built for each of the software projects previously mentioned. However, 
these environments, despite the fact that they were supporting the software 
development activities by providing integrated case tools, guidance to the 
software process and common repositories to the development teams, had 
not provided any kind of knowledge regarding the domain and related 
tasks. To address this problem we decided to extend this traditional notion 
of the SDE by introducing into it domain and task knowledge to guide the 
software developers through the several software development phases 
[33], which gave rise to the concept of: the Domain – Oriented Software 
Development Environment (DOSDE).

After the definition, building and use of DOSDEs within different do-
mains [31, 35, 34, 32] it become possible to observe that besides domain 
and task knowledge, other kinds of knowledge are also necessary and can 
be useful during a software project. They include knowledge about the or-
ganization itself, and data and experience obtained on previous software 
development projects within the organization. Another aspect observed 
was the importance of identifying key personnel in the organization who 
have the specific knowledge for an activity to be carried out during a 
software project, as latter highlighted by [43].  Using the DOSDE perspec-
tive, having an organizational model, looking at its structure, its processes, 
and the distribution of knowledge and skills throughout this structure and 
these processes, could help support such issues. Then, going one step fur-
ther, the idea of DOSDE was broadened to include an Enterprise-Oriented 
Software Development Environment (EOSDE).
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Ontologies represent one of the basic building blocks for DOSDE’s and 
EOSDE’s infrastructure. To support the definition and to build the envi-
ronment’s infrastructure, different kinds of ontologies have been used. Al-
though there are different definitions for ontology, that being used in this 
context is the traditional one proposed by Gruber [19]: “ontology is an ex-
plicit specification of a conceptualization”. Basically, ontology consists of 
concepts and relations, their definitions, properties and constraints ex-
pressed by axioms [7]. 

This chapter describes our experience of building SDEs supported by 
the use of ontologies. So far, the information presented in this chapter in-
tends to build a concise compilation of some research results that have 
been individually presented in [33, 31, 35, 34, 32, 60, 44, 53, 52, 54]. The 
intention is to group all these results to give the whole perspective regard-
ing the use of ontologies in the context of real SDEs, which are currently 
being used by several software organizations in Brazil to support their 
software development processes. 

In the following sections we first briefly present SDEs and introduce 
DOSDE as an extension of them (Sect. 10.2).  Then, in Sect. 10.3, we pre-
sent the features of a DOSDE showing examples from DOSDEs developed 
for cardiology and acoustic propagation domains. In Sect. 10.4, we present 
the evolution from DOSDE to EOSDE. Sect. 10.5 describes the EOSDE in-
frastructure. In Sect. 10.6, we briefly describe the implementation of tools 
in DOSDE and EOSDE built using the defined ontology. Finally, in Sect. 
10.7, we present our conclusions and ongoing work. 

10.2 From SDE to DOSDE

An SDE is a computational system that provides support for the construc-
tion, management and maintenance of a software product [5]. An SDE
consists of a repository that stores all the information related to the soft-
ware project throughout its life cycle, and tools (Computer-Aided Soft-
ware Engineering tools) that support the technical and managerial activi-
ties involved. SDEs differ from one another depending on their database 
nature, scope of provided tools or adopted technology.  

Research in SDEs has explored different aspects concerning the sup-
porting tools: intelligent assistants to support the project planning [48], 
quality assurance [23] and so on. Other SDEs deal with object-oriented 
development and reuse [57], cooperation and collaboration [3], software 
architecture styles [11, 42] and, mainly, software process modeling, with 
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the Process-Centered Software Engineering Environments that support 
modeling and continued improvement of a software process [1].  

All these works were looking for general solutions applicable to any 
domain. In reaction to this, other researchers emphasized the importance 
of building solutions for specific domain applications. Some of the most 
related projects in this context are the Domain-Oriented Design Environ-
ment (DODE) [15], Knowledge-Based Software Engineering (KBSE) [17], 
the Domain-Specific Software Architecture (DSSA) [50], ARPA Knowl-
edge Sharing Initiative [29] and Kactus projects [46].  

DODEs [15] support design activities within predefined domains. 
DODEs have been used for domains such as kitchen, network, voice dia-
log and user interface designs. Their main aspects are the evolution of 
knowledge when using the environment together with a human-centered 
approach. DODE supports problem understanding by offering tools to as-
sist the designers in their activities. These tools offer all the concepts of 
the domain in a palette and the system assists the designer by giving some 
design rules (e.g., you cannot put a stove next to a fridge). However, 
DODEs have been successfully developed for domains whose main feature 
is the visual design [47]. Further, software is not particularly visual and 
usually requires specific support.  

The KBSE [17] and DSSA [50] projects aim at reusing software re-
quirements and architectures. Both use the description of a domain model. 
They follow the idea of domain analysis [2] and define a domain model 
for a family of systems. The idea of using a domain model in the construc-
tion of different software applications is very interesting. However, these 
two projects focused on how to build a solution for a problem in a specific 
domain by composing artifacts (objects, part of code, and so on) previ-
ously defined. They do not strive to help the software engineer understand 
the application domain and problem, but focus on reuse of design compo-
nents or architectural styles. KBSE only deals with the design and design 
models’ part reuse. DSSA is centered on the definition and implementation 
of architectural styles for a specific family of systems, that is, about their 
implementation details. Some similarities can be found in the works re-
garding Model-Driven Architecture (MDA), Software Factories and do-
main-specific languages (DSLs) [18, 36]. 

Two important efforts in the definition of domain knowledge for soft-
ware development are the ARPA Knowledge Sharing Initiative [29] and 
the Kactus project [46]. In these projects, the emphasis is on the knowl-
edge-based organization that can be shared and reused by different knowl-
edge-based systems. They use ontologies to organize this knowledge re-
gardless of the software application that will be developed. The aim is to 
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assist knowledge engineers to develop knowledge-based systems by reus-
ing and composing ontologies from a predefined library.  

All of these approaches looked for design and implementation solu-
tions. However, to properly design and implement a software system, one 
must first understand its application domain. Therefore, to integrate the 
domain knowledge into an SDE seemed to be a feasible target. Doing so 
has given rise to the idea of a Domain-Oriented Software Development 
Environment [35] that would help those developers designing software 
systems in domains not familiar to them.  

10.3 Domain-Oriented Software Development 
Environment

A DOSDE, like any other SDE, should have a repository storing all the in-
formation related to the software project and a set of tools to support the 
software process activities. On the other hand, this new class of SDE re-
quires two additional features: representation of the domain knowledge 
and use of this knowledge during software development. These features 
generate some important questions: What knowledge should be available 
in the environment? How should this knowledge be organized and repre-
sented? When and how can we use this knowledge in the software devel-
opment?  

To define what knowledge should be introduced in an SDE (to make a 
DOSDE), we must consider the domain in general as it could be used in 
several applications and not for some specific application. To organize this 
knowledge we use two kinds of ontologies to describe and organize it, ac-
cording to Guarino’s [20] classification: domain ontologies that describe 
the vocabulary related to a generic domain (such as medicine, or automo-
biles); and task ontologies that describe generic tasks or activities (like di-
agnosis or selling). To use this knowledge we took into account the well-
known activities of a software development process. We will now show 
how both ontologies are used in the DOSDE infrastructure (Sects. 10.3.1 
to 10.3.3) and when and how we use these ontologies to support software 
development activities (Sect. 10.3.4). 

10.3.1 Domain Ontology in DOSDE 

To help in the software development process, our ontology should cover 
the main concepts of the domain, it should help understanding of this do-
main, and it should be useful for software development. Since an applica-
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tion domain can be very broad, we need to facilitate the ontology defini-
tion. Therefore, we defined that the domain ontology should be divided 
into subontologies. Each subontology is a group of domain concepts that 
share the same semantic context, i.e., same subject, and relationships 
among them. Concepts from one of the subontologies are related to other 
concepts from a second subontology. A relationship between two subon-
tologies actually relates two concepts from each one of the subontologies. 
All relations can be restricted by axioms that are part of the ontology. 

The particular methodology we used for the construction of the domain 
ontology is based on [24]. This methodology basically considers the fol-
lowing phases: definition of the purpose of the ontology, conceptualiza-
tion, formalization (or coding) and, finally, validation. We have already 
defined the purpose: to assist software development. The conceptualiza-
tion is the longest phase and requires the identification of the concepts of 
the domain along with a good description of each one. It requires also 
identifying the attributes that minimally characterize each concept, possi-
ble domain values for these attributes, relationships between the concepts 
and constraints on these relationships. This work is performed individually 
for each subontology.

For example, in the domain ontology defined for a DOSDE in cardiol-
ogy [32], we identified five subontologies (partially shown in Fig. 10.1): 
(i) heart anatomy (concepts about the heart’s structure and physiology), 
(ii) findings (concepts that are used in the physician’s investigation proc-
ess), (iii) therapy (general kinds of therapies and their features), (iv) diag-
nosis (concepts and characteristics that identify syndrome and etiology di-
agnoses); and (v) pathologies (representing different situations of the 
heart’s components). The domain ontology for cardiology contains 70 
concepts with 80 properties. We also formalized the definition, properties 
and instance examples of each one of those concepts, as well as a set of 
axioms related to those concepts, as exemplified in Table 10.1.  

After the definition and validation of the domain ontology, we imple-
mented a knowledge base in Prolog with all the concepts, their relations 
and axioms. 

10.3.2 Task Ontology in DOSDE 

The Artificial Intelligence community has long been interested in describ-
ing complex tasks and their resolution (see for example [6, 12, 58]). A task 
can be defined as “a sequence of necessary steps for the solution of a prob-
lem” [28]. As briefly explained above, task ontology provides us with a 
specification of which objects and relationships among these objects are 
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necessary to perform the task. Mizoguchi et al. [27, 28] state that task on-
tology is composed of three levels. The first is the lexical level, which lists 
the syntactic aspects of the problem solving description, using generic 
nouns (i.e., concepts), generic verbs (i.e., activities) and generic adjectives 
which modify the objects. The second level is called conceptual and it 
contains activities, objects and status that correspond to the generic verbs, 
nouns and adjectives respectively of the lexical level. Finally, the third 
level, called symbolic, represents concepts and constraints in a formal lan-
guage.

Fig 10.1. Concepts and subontologie for cardiology 

A task ontology is thus limited to describing the task conceptually: it 
does not detail how it can be solved; it does not describe the task’s con-
trols. The detailed resolution of a task is described by a Problem Solving 
Method (PSM). To solve a task, a PSM restricts the size of the problem by 
decomposing it into smaller parts. A PSM determines how a task can be 
decomposed into subtasks, how to control the order of execution of these 
subtasks and what requirements are necessary from the domain knowledge 
[4]. Each task may have one or more PSMs associated to it. According to 
its complexity, a task can be considered elementary or composite (decom-
posed into subtasks). A task is elementary when a PSM describes the nec-
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essary inferences to perform it. A task is composite when a PSM decom-
poses it into subtasks and describes the order in which the subtasks should 
be performed and how they interact [49]. A given task may be solved di-
rectly through inferences by one PSM, and decomposed into subtasks by 
another. The method that will be applied to each of these subtasks is what 
defines whether they will be solved directly or decomposed further. The 
choice of decomposing a task or not is a subjective one, the only rule be-
ing that the developer of the PSM must strive to describe it as clearly as 
possible. The subtasks resulting from the decomposition are also tasks, 
and therefore have PSMs associated to them. This decomposition offers 
better potential for (sub)task reuse. 

Table 10.1. Axiom examples for cardiology  

Axiom description Axiom formalization 

If there is a pathology then we 
can define the syndromic diag-

nosis

(  p)  pathology(p)  (  d) syndromic_diag(d) 
identify(d, p) 

All pulses are arrhyth-mic, 
rhythmic or bisfe-rious 

( p) pulse(p)  (type(p, arrhythmic)  type(p, 
rhythmic)  type (p, bisferious ))  ( type (p, 

arrhythmic)   type (p, rhythmic)  type (p, bis-
ferious ))  ( type (p, arrhythmic)  type (p, 

rhythmic)    type (p, bisferious )) 

As already mentioned in DOSDE, our objective is to organize the task 
descriptions so that they can support software engineers in understanding 
the domain from an understanding of the tasks it contains. Therefore, to de-
scribe a task in a DOSDE we combine task ontology and PSMs in a single 
model that we call the Problem Solving Theory (PST) [60]. The PST follows 
the structure of the task ontology description in the three levels proposed by 
Mizoguchi et al. [28] as described in the following sections. To exemplify 
the PST we will use the Configuration task solved by the Propose & Revise 
PSM (P&R).

10.3.2.1 Lexical Level: Verbal Description  

This is a first view on what the task is. This description needs to be made 
with a view on the actions to perform, which means that we must be able 
to identify, from the description, the necessary actions to solve the prob-
lem. Initially, the textual description is written in natural language, as can 
be seen in Fig. 10.2. Then, we apply the chosen PSM to the task being de-
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scribed to decompose the task into simpler subtasks and describe the order 
in which the subtasks must be performed and how they interact. To solve 
the Configuration task, we selected, for example, the Propose and Revise 
method (P&R) [26, 9]. This decomposition includes four subtasks: 

Selection chooses, from all the parameters of a system, one which does 
not yet have a value, but for which all the parameters it depends on have 
already been given a value. 
Proposition assigns a value to the parameter computed from a formula 
that is part of the task ontology. The computation of this value is based 
on the values of the parameters it depends on. 
Verification analyzes whether a constraint was violated after the value 
of the parameter has been computed. 
Review repairs the violated constraint and recomputes a new value for 
the parameter. 

The Configuration task aims at determining how the parameters 
of a system should be organized to satisfy some constraints 
applying to them. The parameters’ constraints have the 
objective of limiting the space of solutions for the task, 
once they restrict the number of possible valid 
configurations. The Configuration task provides values to 
parameters of a system always verifying whether the 
constraints are being satisfied, and if a parameter violates 
one of its constraints, it establishes a new value for it, so 
that the violated constraints can be satisfied. The task ends 
when all the values of all the parameters are computed. 

Fig. 10.2. Textual description of the PST for the Configuration task [35] 

According to the P&R method, the first step to solve the Configuration 
task is to give an initial value to one parameter of the system. The subtask 
Selection chooses a parameter to compute its value. Then, the subtask 
Proposition suggests an initial value for this parameter. This is only an at-
tempt and can be changed if a constraint is violated. The subtask Verifica-
tion is responsible for testing if the value satisfies the constraints of the 
system. If there are violated constraints, they need to be analyzed so that a 
new value can be generated for the parameter. This operation is performed 
by the subtask Review, which repairs the value of the parameters in order 
to satisfy all the constraints. These steps are repeated until all the parame-
ters have a value and no constraint is violated.  

Note that the P&R method decomposes the solution of the Configura-
tion task into four subtasks. Therefore, PSMs for each of these subtasks 
should be included in the PST. If the PSM considers a task elementary, it 
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will simply describe its solution with inference rules showing how we can 
solve the task from the interaction among its concepts. If the PSM does not 
consider a task elementary, it will decompose it into subtasks and will 
show how they should be called. For the Configuration task, the P&R
method decomposed it into the subtasks Selection, Proposition, Revision 
and Verification as described above. The first three will be solved as ele-
mentary tasks by their respective PSMs. For the fourth subtask (Verifica-
tion), a decomposition method will be applied to aid its resolution; it will 
be decomposed into two new subtasks: Examination, which identifies 
whether the parameters involved in the constraint have values; and Valida-
tion, which evaluates whether the constraint is being violated. The Verifi-
cation task is then described, considering a control flow that first performs 
the Examination task and then Validation. Thus, the subtasks Examination 
and Validation are solved as elementary tasks. Figure 10.3 illustrates the 
complete resolution of the Configuration task by application of a decom-
posing PSM.

Fig. 10.3. Task and method structure [35] 

10.3.2.2 Conceptual Level: Conceptual Description  

The conceptual level of the PST is an intermediary level to pass from the 
natural language description of the verbal level to the formal description 
of the formal level. While the verbal level allows a series of ambiguities 
because it does not have a well-defined structure, the descriptions in the 
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formal level will demand a detailed, logical description. The intermediary 
conceptual description possesses enough structure to avoid many interpre-
tation errors and, at the same time, it is informal enough to be easily un-
derstood. A conceptual description is composed of (i) a list of the concepts 
involved in the problem and their relations, and (ii) an algorithm to repre-
sent the necessary control to solve the task. 

The task’s concepts (item (i)) are, in fact, the roles that will be filled by 
domain concepts when we apply the task in a specific application. Identi-
fying these concepts is nothing more than identifying the objects defined 
in the lexical description of the task. As a task is characterized by its input 
and output concepts, it is important that, when defining the concepts in-
volved in the problem, we identify their respective roles. For the Configu-
ration task, we can identify a concept with an input role: the Parameter, 
which represents all the parameters of the system. As a parameter’s value 
may depend on other parameters, we identify two other concepts: Parame-
ter Association, defining the dependence relationships among the parame-
ters; and Parameter Formula, specifying the formula to compute the value 
of a parameter. We also have as input concepts the Constraint, which 
specifies how to test the value of the related parameters, and the Depend-
ence Constraint, which defines the parameters involved in a constraint. 
When a constraint is violated, the parameters’ values are repaired so as to 
satisfy the constraints again. This introduces two new input concepts: Re-
pair, which determines how the parameter values can be altered to repair 
the constraint; and Dependence Repair, which defines the necessary pa-
rameters to repair a constraint. Finally, the last concept, Valued Parameter, 
represents any parameter of the system with a given value. This last con-
cept has both the roles of input and output of the task, since for some pa-
rameters, the value is already provided even before the task is performed 
(input concepts), while for others, the value has yet to be computed (out-
put concepts).

The second part (item (ii)) of the conceptual description is the algorithm 
controlling the task execution. To allow this control to be easily formal-
ized and at the same time easily understood by software engineers, irre-
spective of their knowledge of the formal language used, we decided to 
use structured natural language. Fig. 10.4 presents the control for the Con-
figuration task. 
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While there exists a parameter without computed value 
or a constraint is violated do

Select a parameter 
       Propose a value for  the parameter 

For each constraint do
             Verify constraint 

End-For-Each
For each violated constraint do

             Revise constraint 
    End-For-Each 
End-While

Fig.10.4. Control (algoritm) for the Configuration task [35] 

10.3.2.3 Symbolic Level: Formal Description  

The symbolic level of the PST does not introduce any new knowledge that 
has not yet been described in the conceptual description. Its responsibility 
is only to further formalize the conceptual description, that is, to formalize 
the defined concepts and relations and the necessary inferences to solve 
the task. We opted to formalize this knowledge with first-order logic, us-
ing the Prolog language, which describes knowledge through facts and 
rules.

As we are working with task ontologies, it is necessary that the concepts 
and their constraints be expressed through axioms that formally define 
their meaning. For example, we show the Parameter Association concept, 
which represents the dependence relation among Parameters. This de-
pendence is formalized in first order logic by the following axiom: 

( p1,p2)(parameter_association(p1,p2) parameter(p1) parameter(p2)) 

coded in Prolog as: 

parameter(P1):- association-parameter(P1,_).
parameter(P2):- association-parameter(_,P2).

All the dependencies among the concepts are formalized similarly. 
These axioms are used to represent the relationships among the concepts 
of the Configuration task. The inferences to solve the problem also need to 
be described formally. This can be done by translating into Prolog the al-
gorithm in structured natural language of the conceptual level.  
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10.3.3 Mapping Domain and Task 

The task ontology and the PSMs describe the tasks using domain-
independent concepts that may be filled by concepts from the application 
domain (concepts which are listed in the domain ontology). However, it 
would be extremely difficult to identify all possible mappings between the 
task concepts and the domain concepts. There are many possible applica-
tions of a given task in a given domain. Therefore, we considered that, 
while learning about the concepts of a domain, it would be useful to know 
in which tasks those concepts can be used. Also, while understanding a 
specific problem for developing a software system, it is important to know 
which concepts from the domain we should learn about. Consequently, we 
decided to map the domain ontology and the PSTs at a more abstract level 
than the concepts: we map the subontologies of the domain ontology to the 
tasks of the PST. The mapping indicates those concepts more closely re-
lated to the task and to which the software developers should pay particu-
lar attention. We called the final result (i.e., the domain ontology mapped 
to the PST) a domain theory. 

It can be difficult to identify all possible tasks of a domain, but we con-
sider it important to identify, at least, the most typical ones. Each identi-
fied task is mapped with the subontologies that contain important concepts 
related to that task. Furthermore, it is easier to understand the concepts 
knowing in which tasks they can be used and how they can be used.  

In our example for cardiology we identified the following task: diagno-
sis, planning (e.g., therapeutic planning), simulation and monitoring. We 
mapped the Diagnosis task with the Findings, Pathology and Diagnosis 
subontologies, since to do a diagnosis one needs to know about findings, 
kinds of pathologies and kinds of diagnosis. Similarly, for Therapeutic 
Planning, the important subontologies are Therapy and Pathology; for the 
Monitoring task, the subontologies are Heart Anatomy and Findings; and 
for the Simulation task, only the Heart Anatomy subontology. If we 
needed to develop a system for diagnosis in cardiology, we would know 
that it is important to study first the kinds of pathology we can diagnose, 
their diagnosis and the associated findings. In the same way, when study-
ing signs (concept from Findings) we can see in which tasks or activities 
they are used (in this case they are used for Diagnosis and Monitoring). 
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10.3.4 Using Knowledge Throughout the Software 
Development

To develop software according to the best practices of software engineer-
ing we should use a software process establishing a sequence of develop-
ment activities [21]. In general, the basic activities in software develop-
ment are system definition (or context modeling), planning, software 
requirements analysis, design, coding and testing. We will now analyze 
how we are using the domain and task knowledge to support these activi-
ties.

In one way or another, all the software development activities depend 
on domain knowledge. This can be observed in the system definition ac-
tivity, when one needs to understand the domain and the tasks to be auto-
mated; to undertake the software development planning, one needs to ana-
lyze the domain complexity; and for software system coding and testing, 
one uses the domain knowledge again to help understanding of the con-
cepts and modeling their information. However, we observe a stronger in-
fluence of domain knowledge for those activities closer to the application 
domain, such as software requirements analysis and design of the software 
system, rather than those closer to the solution domain, such as coding or 
even testing. The next sections describe how one can use the domain 
knowledge in those activities. 

10.3.4.1 Assisting Domain Understanding in Requirements Elicitation 

In the software requirements analysis, domain orientation is very impor-
tant. The main subactivity in the software requirements analysis is re-
quirements elicitation (or knowledge acquisition for knowledge-based sys-
tems). During this subactivity, the domain theory works as a starting point 
for the software developers. They can identify what knowledge is relevant 
to the future application. The domain theory by itself represents knowl-
edge for any possible software application in this domain. By exploring 
the mapping between the tasks and subontologies (see Sect. 10.3.3) or just 
identifying some data used for those tasks (e.g., collecting documents used 
for a task in the client organization) developers can find out what concepts 
of the domain theory they need to study and understand. These concepts 
represent a source of information (features and descriptions) supporting 
the understanding of the entire domain of the future application, the elici-
tation of requirements. To assist in this process, we built a tool allowing 
the software developers to browse the domain theory (see Sect. 10.6.1).  
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10.3.4.2 Assisting in Requirement Documentation 

When the software developers understand the domain and the require-
ments elicitation with the users is complete, they should describe those re-
quirements. This can be done, for example, with use cases [37]. Use cases 
describe the operations that the system needs to perform; they are develop-
ing into a standard for describing requirements. One use case needs to be 
defined for each of the functionalities that the system must carry out. In 
summary, a use case is composed of: (i) a name and description, which 
states the functionality of the system; (ii) actors, who are users, other sys-
tems, or any external agent that interacts with the system; (iii) a flow of 
events, which defines the sequence of steps that the use case must per-
form; and (iv) when a use case refers to another use case, the latter is said 
to be included in the former, or to extend the former.  

We experimented using a task description to help defining a use case 
with a DOSDE for the acoustic propagation domain [31] that involves 
concepts about sonar, its types and components; emitted and received 
sound; all the surrounding liquid, like the ocean layers, zones, ducts, and 
so on; boundaries, in the ocean surface, etc. In this domain, one of the 
problems to be automated is the configuration of the sonar. The objective 
of a sonar is to detect distant targets. Sonar configuration is a difficult 
task: among its numerous parameters (e.g., sensitivity, acoustic axis, direc-
tion index, terminal voltage, acoustic intensity, frequency) some already 
have a predetermined value (direction index = 30 dB, frequency = 10 Hz), 
while others need to be computed from the value of the rest (e.g., sensitiv-
ity = 20 log(terminal voltage) – 10 log(acoustic intensity)). After being 
computed, the parameters of the sonar may affect some of its constraints, 
related to another parameter or to its own minimum/maximum limits (e.g., 
0 dB  sensitivity  200 dB). If this happens, the values of the parameters 
are readjusted so that the constraint can be repaired. 

Consulting the PST for the Configuration task (defined in Sect. 10.3.2) 
helps the developer understand the task (see Fig. 10.2 and Fig. 10.4) and, 
from the information obtained, identify the concepts needed to perform 
this task (input and output concepts). These concepts must be searched in 
the domain theory itself (they can be represented as concepts or sometimes 
as concept properties) or identified at the moment of requirements elicita-
tion.

Besides supporting the understanding of the problem and what should 
be taken into consideration, the PST may also help in documenting the use 



290 Káthia M. de Oliveira et al. 

cases. With the exception of the participating actor(s), we can use the PST
to help in the description of the use case,33 as presented below: 

Name and description: The use case can be defined using a description 
of the problem in natural language (verbal level of the PST). The 
software developers can always modify the proposed description to 
better adapt it to the system functionality. The name of the use case 
must be related to the functionality of the system being described, but it 
should also be based on the name of the task. Figure 10.5 gives a possi-
ble description for the use case Sonar Configuration (compare the tex-
tual description of the Configuration task in Fig. 10.2).

The Sonar Configuration must provide values to the 
attributes of a sonar, always verifying if the constraints 
are satisfied. If some attribute of the sonar violates one 
of its constraints, it is necessary to assign a new value 
to it, so that the violated constraint can be satisfied. 
The function ends when all the values of all the attributes 
are computed.

Fig. 10.5. Description of the use case Sonar Configuration [35] 

Main flow of events: The flow of events of a use case can be obtained 
from the order in which the subtasks are called, in the task control. 
Among the three levels of the PST, the best one to help with the defini-
tion of the flow of events is the conceptual level, since it presents a 
well-defined structure and is, at the same time, independent of any for-
mal language. Clearly, the software engineers can always alter any 
information obtained through the task control, or even add events that 
were not given by the PST, and reject others that have been presented. 
After all, the PST aims at supporting the software engineers in the 
software development, not to substitute them. Figure 10.6 shows the 
main flow of events for the use case Sonar Configuration, defined from 
the control of Configuration (Fig. 10.4). 
Included use cases: The software engineer may identify included use 
cases, using the subtask identification defined in the PST. The software 
engineer identifies, among the specified subtasks, the ones for which   
s-he needs to model a use case. For example, to configure a sonar, it 
would be interesting for the sonar technician to be able to call, at any 
moment, the functionality that verifies whether the values of the sonar 
attributes are satisfying all the existing constraints or not. This would 
mean defining a use case for this functionality. The definition of this 

                                                     
33 We present the use case here according to the structure defined by [45]. 
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use case, which we will call Verify Sonar, can be helped by the 
Verification PST in the same way that the Configuration task helped in 
defining the Sonar Configuration use case. To identify that Verify Sonar 
is a use case included in the use case Sonar Configuration, the software 
engineer can use a textual description of subtasks at the verbal level of 
the PST. We could find no general rule indicating if a subtask should 
yield an included use case or not. This must be decided by the software 
engineer.

1. Sonar technician asks for the beginning of the sonar 
configuration. 
2. While there is an attribute of the sonar without a computed 
value, or a constraint that has been violated: 
    2.1-The system selects an attribute of the sonar. 
    2.2-The system proposes a value for the attribute.   
    2.3-For each constraint of the sonar:  
           The system verifies if the constraint has been 
violated. 
        End-for-each 
    2.4-For each  violated constraint of the   sonar: 
           The system revises the constraint 
        End-for-each 
    End-while 
3. The system informs the values of the attributes and the use 
case ends. 

Fig. 10.6. Flow of events for the use case Configuration Sonar [35] 

Figure 10.7 shows the use case diagram for the configure sonar task. 
This function, however, is part of a group of other functions in the sound 
propagation system. 

Configure 
Sonar

Verify  
Sonar

<<extends>>  Sonar 
 Technician

Fig. 10.7. Use case Diagram

Note that this method for deducing use cases from the PST has a poten-
tial problem in that the software engineer will be tempted to follow the 
particular PSM documented in the PST. However, we saw that every task 
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may have different PSMs (Sect. 10.3.2). It may be that, for a particular ap-
plication, the PSM documented in the PST is not the best one to apply. We 
found no easy way out of this difficulty and can only suggest that, when 
possible, more than one PST be created for a given task, each one making 
use of a different PSM.

It may be possible to further use the ontology to help realize use cases 
in the analysis activity [22]. It might also be possible to relate the PST
with structured analysis since this is another approach for requirement 
documentation. However, we did not explore these research paths [59]. 

10.3.4.3 Assisting in Design 

DOSDEs may also assist during the design activity, particularly in data 
modeling. Software developers can use the organization of the domain on-
tology as a suggestion for the first draft of the design. Considering the 
work from [55, 56, 38] that highlights the links between ontological struc-
tures and data entity relationship and object-oriented design, we investi-
gated how we could generate a first draft of a conceptual data model based 
on the domain ontology. To do this, we defined a mapping between onto-
logical constructs and entity–relationship constructs (see Table 10.2). With 
this mapping, and all the information presented in the domain ontology, 
we can support the software developers in the conceptual data modeling. 
After the conceptual data modeling we can still use the domain ontology 
to define the integrity rules of the data design, based on the axioms de-
fined. The most common integrity rules are [10]: primary key integrity, 
referential key integrity, and domain integrity for attributes and semantic 
integrity. The first two are usually guaranteed by the database manage-
ment system (DBMS) when one defines the key attributes. The other two 
can be defined using the axioms of the domain theory. We can consider, 
for example, the second axiom listed in Table 10.1, as information to de-
fine domain integrity for the attribute “type of pulse”. The semantic integ-
rity represents some domain restrictions for the entity instances.  

10.4 From DOSDE to EOSDE

In developing DOSDE for different domains we were able to see the im-
portance of the knowledge in an organization supporting their activities. 
Further we were able to verify that as well as domain knowledge, other 
kinds of knowledge are of interest to increase software productivity and 
quality. This includes knowledge about the organization itself, specialized 
knowledge about software development and maintenance obtained on pre-
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vious software projects within the organization, and also knowledge about 
its clients. To deal with these different kinds of knowledge, there is a 
complete discipline named knowledge management. 

Table 10.2. Mapping between ontological constructs and entity – relationship 
constructs [35] 

Ontological constructs  Entity–relationship constructs 
Simple and composed concept (object) Entity 
Intrinsic property Attribute of entity 
Mutual property Binary or n-ary relationship  
Composition  Part-of relationship 
Relation between instances (roles) Roles 
Specialization Specialization 
Cardinality Cardinality 

Knowledge management can be defined as a systematic and active 
management of organizational knowledge assets, using appropriate tech-
nology and aiming at generating strategic benefits to the organization. 
This can involve promoting satisfactory communication and sharing 
knowledge among individuals, obtaining relevant knowledge from internal 
and/or external sources, making available and distributing the obtained 
knowledge appropriately to satisfy the user’s needs, generating new 
knowledge and eliminating outdated knowledge. 

Generally, there are two types of software developing companies: soft-
ware companies, in which the business activity consists of the develop-
ment of software solutions for several clients; and non-software compa-
nies, in which the software development activity aims at supporting 
business activities. The introduction of knowledge management in the 
practice of software development is critical to both types of companies, 
since, for the first type, knowledge about software development accumu-
lated throughout time is the basis for creativity and innovation in terms of 
software products and services, and, for the second type, software applica-
tions are on the critical path of almost all organizational activities. 

In knowledge management systems, ontologies can be used to [30]:  

define the scope of discussion groups, making it possible to distinguish 
what different groups discuss; 
supply keywords or concepts that capture the nature of the desired 
knowledge to provide filtering capabilities; 
categorize all artifacts in knowledge bases to facilitate their reusability; 
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provide an appropriate level of precision in search mechanisms to 
unambiguously determine which topic can be found in each knowledge 
base; and 
support contact between experts and people in search of their expertise, 
assisting in the choice of collaborative partners and preventing 
confusion in collaboration.  

Knowledge management could, therefore, be incorporated in SDEs in 
order to develop and capture organizational knowledge relevant to the 
software engineering activity and to improve the flow of knowledge 
among software developers and project managers. 

Taking into account this potentiality, we have decided to extend 
DOSDE to incorporate not only the knowledge of domain and task, but 
also organizational knowledge. Moreover, the resulting environments 
should support knowledge identification, organization, storage, usage and 
evolution, that is, support knowledge management. Therefore, we have de-
fined Enterprise-Oriented Software Development Environments [52, 53, 
54] to support the activity of software engineering, making it possible to 
manage knowledge that can be useful to software engineers when accom-
plishing an organization’s software projects. 

10.5 Enterprise-Oriented Software Development 
Environments

EOSDEs have the following goals: (i) to provide software developers with 
all relevant knowledge for software development held by the company, 
and (ii) to support organizational learning about software development. 
EOSDEs are strongly based on ontologies.  

Figure 10.8 gives an overview of the components of an EOSDE. The 
Knowledge Management Infrastructure is composed of the Organizational 
Memory and the Knowledge Management Services/Tools. Knowledge 
Management Services/Tools support the storage of data, knowledge and 
experiences in the Organizational Memory, promoting the dissemination 
and evolution of its contents. Software Engineering Services/Tools sup-
port the activities of software development and maintenance as well as the 
management of these activities. These services/tools must be able to pro-
vide software engineers with all the knowledge held by the organization 
which is relevant for the activity being carried out, using the Knowledge 
Management Infrastructure. A project repository stores all data related to 
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the software project. The organizational memory is composed of the fol-
lowing components: 

Fig. 10.8. Overview of the EOSDE components [53] 

The Domain Theory and Description of Tasks components that 
organize, respectively, the domain theory and PST knowledge as 
defined in previous sections.  
The Software Engineering (SE) Theory component that guides the 
registration and dissemination of organizational knowledge about 
software engineering, such as historical data, lessons learned and best 
practices.
The Enterprise Description component that contains a description of the 
organization, identifying the generic tasks that are performed and the 
software engineering knowledge necessary in the context of the 
organizational structure and processes. If the organization develops and 
maintains software for its own use (non-software company), this 
component also sets which domain knowledge is required throughout 
the organizational structure and processes. The organizational process 
models allow the specification of the context in which a knowledge 
item was created and the application context for it. The organization’s 
knowledge map is also part of this component and defines the 
competencies each employee has and to which degree these 
competencies are held.  
The Description of Clients component that is specific to EOSDE created 
for software companies, which develop and/or maintain software for 
clients. It is similar to the Enterprise Description component, but it 
describes the client organizations. Possessing knowledge, even if only 
limited, about clients and their domains can give a strategic advantage 
to holders of this knowledge in competition for new projects. In this 
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context, an Enterprise Ontology is fundamental to define a common 
vocabulary to guide the description of any organization. 

The Knowledge/Databases component stores the knowledge and data 
relevant to the organization, acquired and updated over the course of many 
software projects. Each knowledge item stored in the environment is asso-
ciated to one or more concepts and instances of these concepts obtained 
from the EOSDE ontologies. This enables subsequent retrieval of different 
types of knowledge items based on the selection of concepts and instances, 
regardless of the specific tools used to record and read the knowledge 
items. 

From this description of the EOSDE components, it can be seen that the 
use of ontologies is critical to make both the retrieval of knowledge stored 
in the environment as well as communication among multiple users and 
tools more straightforward. When retrieving knowledge items, the purpose 
of ontologies is to supply vocabulary whose terms are used as indexes to 
access the knowledge items and also as links among multiple knowl-
edge/database contents. Furthermore, when defining synonyms and acro-
nyms for concepts, ontologies provide linguistic equivalents that may oc-
cur in text documents and can be used to access knowledge. As regards 
communication, the defined ontologies have the purpose of reducing ter-
minological and conceptual mismatches by providing shared vocabularies. 
A common class model can be created based on an ontology and used by 
various tools, and matches among classes from different models can be 
made through their association to the ontology terms. 

10.5.1 Enterprise Ontology 

As mentioned previously, the Enterprise Ontology aims at supplying a 
common vocabulary that can be used to represent useful knowledge on the 
organizations involved in a software project for the software developers. It 
can be useful for: 

supplying a structure to organize knowledge and guide knowledge 
acquisition in one or more organizations; 
allowing the development of generic tools based on its structure; 
promoting the integration among tools that manipulate knowledge 
related to the ontology; 
facilitating the development of systems that manipulate knowledge on 
the organization (e.g., a system that supports an organizational process); 
and
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assisting the identification of professionals with the appropriate 
competencies for discussing ideas about a subject, for guiding the 
execution of a task or for putting together a team to suit the 
characteristics of the project. 

Figure 10.9 shows the subontologies of the Enterprise Ontology, which 
were defined to answer the questions on: how the organization is per-
ceived in its environment; how the organization is structured and how the 
distribution of authority and responsibility is accomplished; who works in 
the organization and how the desired and possessed competencies have 
been distributed within it; how the organization behaves and the objectives 
it has. 

Fig. 10.9. Subontologies of the Enterprise Ontology [44]   

The Enterprise Ontology was developed by combining new concepts 
with others defined by Fox et al. [16] and the TOVE project (TOronto Vir-
tual Enterprise) [51].  

The Intellectual Capital subontology deals with aspects such as: taxon-
omy of competence, interaction between experience and knowledge, 
availability of competencies and breakdown of knowledge domain. People 
are the basic components of an organization, executing the necessary ac-
tivities for the fulfillment of the organization’s mission. The competencies 
existing among the organization’s professionals are of great importance to 
both them and the organization because these competencies are used to es-
tablish their role and value inside the organization, while for the organiza-
tion they represent its intellectual capital. Competencies are characteristics 
that make people capable of carrying out activities that involve some de-
gree of difficulty. They can be classified according to their nature into 
knowledge, skill and experience. Knowledge is the understanding of a 
subject obtained by thinking, using definitions, perception, analysis, com-
prehension or other ways of understanding. Skills are personal characteris-
tics or acquired abilities not associated with specific activities or knowl-
edge domains: for example, the ability to negotiate and leadership. 
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Experiences are acquired through practice; in other words, the carrying out 
of activities. Examples are experience in defining client–server architec-
tures and airport administration. Experiences usually involve the use of 
knowledge in practice. Finally, a knowledge domain organizes knowledge 
items according to content similarity. 

The Structure subontology deals with the organization of organizations, 
distribution of authority and responsibilities among organizational units, 
how they are broken down into organizational units, distribution of author-
ity and responsibilities among positions, specification of functions and po-
sitions, staff allocation, definition of teams and definition of objectives. 
An Organization can be defined as an organized group of people working 
together for the fulfillment of a mission. There are several ways to break 
down an organization, but the main components normally used are func-
tions, organizational units and committees. A Function specifies the set of 
activities to be executed by the people who occupy it, their responsibilities 
and the required competencies as well as working conditions. An Organ-
izational Unit is a grouping of organizational components (e.g., activities 
and people) which enables the Organization to be economical and effi-
cient. An Organizational Unit is related to other ones through cooperation 
or subordination relationships and it is structured in positions. A Position 
specifies activities, responsibilities and competencies in line with the pur-
pose of the specific Organizational Unit and also determines the location 
of a person in the organizational structure. Each position relates to other 
positions through subordination relationships. An Agent represents a pro-
file that allows the Organization to accomplish its mission throughout the 
execution of activities and it can represent a function or position. Staff al-
location involves selecting people for positions, taking into consideration 
people’s functions and competencies and the functions and competencies 
required by the positions. People also take part in committees inside the 
organization. A Committee is a group of people with a specific goal that 
usually work together for a period of time until that specific goal is 
achieved: for example, a committee for planning a new product or a com-
mittee for guaranteeing security at work. Finally, Objectives are state-
ments about the results to be reached in a fixed period of time and may be 
applied to the organization, organizational units or positions. 

The Artifacts subontology groups the concepts and relationships that de-
fine artifacts in terms of their nature and composition. An Artifact is any-
thing produced by humans and not by natural causes that is able to exert 
different roles in an organization, such as the product of an activity. Arti-
facts can be composed by other artifacts and are classified according to 
their nature into goods, documents and components. Goods can be classi-
fied into goods for use and goods for production. Goods for production 
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can in turn be classified into hardware, software and device. A component 
can be a hardware component, a software component or a spare part.  

The aspects covered by the Behavior subontology include: activity as an 
action of transformation, taxonomy of activity, process and activity break-
down, adoption of procedures, taxonomy of procedures, method as sys-
tematic procedure, automation of procedures, organizational processes and 
related norms as well as organizational projects. An Activity is the action 
of transforming raw material and/or input artifacts into output artifacts, 
which may require competencies and the use of goods for production. An 
Activity can be classified as an operational activity, managerial activity or 
quality control activity according to its nature and into a main activity or a 
support activity according to its role in the fulfillment of the organiza-
tion’s mission. An Activity can also be made up of a set of other activities. 
A Process is a set of structured activities which produce artifacts or ser-
vices of value to the organization itself, for a client or for a business mar-
ket. Procedures are instructions for executing activities and are classified 
into methods, techniques and guidelines. Methods as well as techniques 
can be classified according to the type of activities they can support. 
Guidelines are further classified into templates and norms. A procedure 
may be supported by software tools. An organization has its behavior de-
fined by the set of processes executed within it and they may comply with 
norms. Projects are undertakings initiated by the organization which entail 
processes to guide their activities and have project teams allocated to 
them. 

The General Strategy subontology establishes the vocabulary to de-
scribe how the organization interacts with its environment: that is, its do-
main of performance, the artifacts/services it offers and the relationships 
with client organizations. An organization works in a knowledge domain, 
which means it possesses intellectual capital related to the domain and 
executes activities which require knowledge from this domain. A Service 
is an abstract notion, an intangible product offered by an organization to 
satisfy the need or desire of a client or market, as opposed to an Artifact
which is a tangible product. Artifacts and services are negotiated among 
organizations which assume the roles of either supplier or client. 

We also implemented the axioms defined for the Enterprise Ontology in 
Prolog.



300 Káthia M. de Oliveira et al. 

10.6 Tools in DOSDE and EOSDE

To build a DOSDE and EOSDE, we use the framework provided by a 
meta-environment (named TABA) that aims at creating SDEs in different 
application domains [40] according to the specific requirements of each 
application domain and the technology chosen. Creating an SDE involves 
defining a software development process, and selecting CASE tools to be 
provided in the SDE. The resulting SDE may then be used by software de-
velopers in the development of specific software products. TABA has sev-
eral components addressing the various aspects of building SDEs and 
CASE tools [14]. One of these components, the knowledge component, is 
responsible for the integration of knowledge in the generated SDEs [13]. It 
provides a convenient interface, accessible from the generated SDEs, to 
populate and use knowledge bases in the form of Prolog facts and rules. A 
more detailed description of TABA and its components falls outside of the 
scope of this chapter. 

To generate an SDE with TABA the user must define a software process 
to be used in the environment and select the CASE tools. To generate a 
DOSDE the user needs also to include the domain theory for the specific 
domain and the software process defined should have subactivities named 
domain investigation, specifically targeted to take advantage of the avail-
able knowledge. Domain investigation is the study of the domain concepts 
or tasks for some purpose during the execution of a specific software 
process activity.  

TABA has two editors to allow inclusion of the domain theory and the 
PST to be used in the defined environments [35]. The domain theory editor 
allows into define domain concept, property, relationship, etc., and also al-
lows as to enter axioms in Prolog that specify the constraints among the 
domain concepts. When TABA generates a DOSDE, each concept (such as 
“symptom”) becomes a class in the DOSDE. The PST editor allows as to 
create a task, entering its verbal description, its control including the task 
concepts definition, and the formalization description (in Prolog). To sup-
port the domain investigation in a DOSDE we defined a Domain Theory 
Browser briefly presented in Sect. 10.6.1.  

Using the Enterprise Ontology, three tools were developed to support 
software development activities: (i) a tool to allow the description and 
visualization of processes executed by an organization, (ii) a “yellow 
pages” software tool, and (iii) a software tool to support the planning of 
human resources for software projects based on organizational knowledge. 
In the first tool, the organization’s process models are able to provide the 
context in which certain knowledge is used, making it easier to understand 
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both the activity and the knowledge required to implement it. Sections 
10.6.2 and 10.6.3 briefly present the other two tools. 

10.6.1 Domain Theory Browser 

The Domain Theory Browser [35] allows the software developers to 
browse the domain theory, looking for the definition of concepts, related 
concepts, their properties, any other application in which they were used, 
possible synonyms, and some suggestions for literature where more details 
may be found.  

Figure 10.10 (background window) shows the main screen of a DOSDE
where the left side lists all the software development activities and the 
right side the tools that support each one of those activities. This process 
was defined to make it possible for the TABA to generate the DOSDE. In 
the software process we can see the domain investigation as a subactivity 
of the Initial Requirements Definition activity.  

Fig. 10.10. DOSDE (main screen and Domain Theory Browser) 
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The foreground window shows the main screen of this Domain Theory 
browser. On the left side we can see all the concepts from the subontolo-
gies organized in a tree view. On the right side we can see information on 
the selected concept: its description, attributes, related tasks, references to 
project where the concept was used, and so on. 

10.6.2 Sapiens: A Yellow Page’s Software Tool 

Sapiens [44] is a software tool for the representation of the organizational 
structure along with the competencies required. Besides supporting staff 
allocation, including the competencies of each professional, it also con-
tains search and navigation mechanisms. This way, it is possible to create 
a culture of identification, acquisition and dissemination of the existing 
knowledge that can be used by the organization to know itself better and 
take greater advantage of its potential. Sapiens is based on the infrastruc-
ture defined for EOSDE, making use of the Enterprise Ontology to de-
scribe the organizations that develop and maintain software for other com-
panies or for their own use. Software developers can use it to find the most 
appropriate person to help in the solution of a problem inside the organiza-
tion.

The organizational structure can be viewed through an organizational 
chart that shows the subordination relationships between Organizational 
Units and allows the visualization of each item’s details. A hyperbolic tree 
structure [39] (as shown in Fig. 10.11), which indicates the visualization 
of large amounts of organized data into a hierarchical form, is used to 
browse through the contents of the organizational database by exploring 
the relations between the items that comprise this database. The initial root 
node is the organization itself. From this point of view the user can browse 
its relations with other items in the database. It is possible to search the 
organization’s database for things like: Who has a specific competence? 
Who occupies a specific position? In which positions is a certain compe-
tence required? 

The Enterprise Ontology described in Sect. 10.5.1 provides the knowl-
edge on the structure of a generic organization. The concepts and relations 
described by the ontology have been used during the construction of the 
class model used by all tool modules. Each class of this class model keeps 
a reference to the ontological concepts that originated it. This fact is ex-
ploited in the search module, considering that ontologies are particularly 
useful for recovering and accessing knowledge [30]. When carrying out a 
search the original relations described in the ontology become important 
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and allow the identification of the related concepts to the class of the class 
model. 

Fig. 10.11. Visualization of the organizational structure through the hyperbolic 
tree [44] 

The Sapiens search form shows some previously defined consults created 
on the basis of the existing relations between the concepts that comprise the 
Enterprise Ontology; thus the user is able to carry out searches even without 
knowing the ontology structure or posing a very specific question. Each pre-
defined search contains a description, an item to be looked for (generally 
an ontology concept) and a related item to this (possibly another ontology 
concept related to the first one). In case the user does not wish to carry out 
one of the listed searches, the existing concepts in the Enterprise Ontology 
are shown. So, when the user chooses one of these concepts, the relations 
involving it are listed.  

When the knowledge map is being recorded or updated, the knowledge 
about software engineering that a certain employee possesses is defined 
based on the concepts of the Software Engineering Ontology. The soft-
ware engineering knowledge stored in the environment is also associated 
to the Software Engineering Ontology concepts. Each knowledge item is 
associated to one or more concepts, which enables subsequent retrieval of 
different types of knowledge items based on the Software Engineering On-
tology concepts. 
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10.6.3 RHPlan: A Software Tool for Human Resource Planning 

The goal of RHPlan [44] is to help human resource allocation in a soft-
ware development project. It also has mechanisms to help with the con-
tract or qualification of professionals when the necessary human resources 
cannot be found inside the organization. It is based on a definition of the 
necessary competence profiles for accomplishing of project activities, and 
a posterior search for the organization’s professionals who possess similar 
profiles to the desired one. The project manager can search for the knowl-
edge on the existing competence inside the organization and find who pos-
sesses it for well as being able to use the lessons learned. The database of 
the professional’s capabilities is provided by the Sapiens tool, as described 
in the previous section. 
Figure 10.12 presents a screenshot of the RHPlan tool, showing an exam-
ple of human resource allocation in project activities. On the right it is 
possible to see all the activities for creating the staff allocation plan: the 
definition of profiles needed in the execution of each process activity, se-
lection of professionals, request for hiring or training other professionals 
when the available professionals in the organization do not fit the desired 
profile, and visualization of the human resource allocation plan.  

Fig. 10.12. Professionals selection in the RHPlan tool [44] 
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During the project its manager can monitor the human resource alloca-
tion by checking the development of activities and carrying out the alloca-
tion or reallocation of each selected professional who participates in the 
project.

As well as Sapiens, RHPlan uses the Enterprise Ontology for its class 
model definition. However, although in Sapiens classes are related to staff 
allocation in the organizational structure, in RHPlan the allocation is car-
ried out through specific software development process activities. Both of 
these manipulate the same database of the organization’s members’ com-
petencies; thus they also benefit from the same mapping infrastructure of 
ontology concepts to physical model classes. RHPlan also uses the con-
cepts defined in the subontology of Behavior to describe projects, software 
processes, activities, resources and distribution of the necessary compe-
tencies to accomplish the activities. 

10.7 Conclusion 

Software engineering is a knowledge-intensive activity and knowledge is 
thought to be the most important asset in an organization. This chapter 
presented our efforts in defining ontologies and implementing ontology-
based supporting tools for software development environments. 

We began by exploring domain and task knowledge with Domain-
Oriented Software Development Environments (DOSDEs), and then 
moved on to the definition of organizational knowledge and support for 
knowledge management activities with Enterprise-Oriented Software De-
velopment Environment (EOSDEs). These families of environments are 
based strongly on the ontologies described in this chapter. 

Since the end of 2003, the EOSDE and its tools have been used in Bra-
zilian software companies. An experimental study was planned and exe-
cuted in 2004 to evaluate the use of the EOSDE and the processes de-
ployed in it [41]. More than 90% of the participants in this study 
recognized that the EOSDE reduced the effort required to execute most of 
the process activities. The participants also stated that the EOSDE facili-
tated the dissemination of best practices and supported decision making. 
The initial results are promising: three companies obtained ISO 9000:2000 
certification and three other companies have just achieved CMMI (Capa-
bility Maturity Model Integration) level 2 [8].  
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11.1 Introduction and Motivation 

Nowadays an enormous quantity of data can be found on web pages gen-
erated from relational databases. This information is often referred to as 
the Deep Web [7] as opposed to the surface web comprising static web 
pages. The same can be said about almost every organization’s legacy data 
which usually hides behind all kinds of applications, and publishing sys-
tems like intranets, web portals, blogs, etc.  

For these large amounts of data the challenge is no longer to head for 
better performances, i.e., to store more and more information in less space 
and to answer queries faster; the database community has realized that 
now it is all about the provision of “smart information”, information which 
can easily be interchanged, combined, integrated among systems and 
processes or automatically reasoned about. In other words, we face the 
challenge of “upgrading” this large amount of existing content into Se-
mantic Web content. But this challenge clashes with a huge problem: that 
of the absence of explicit data semantics. These two ideas are summarized 
in the following quotation appearing in [10]: 

The three most important research problems in Databases 
used to be ‘Performance’, ‘Performance’ and ‘Performance’; 
in years to come, the three most important and challenging 
problems will be ‘Semantics’, ‘Semantics’ and ‘Semantics’.
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If we face this problem from the perspective of the Semantic Web, we 
see that one of its biggest barriers is the generation of semantic content [6] 
out of the existing one. The question of how to add semantics to the large 
amount of existing content on legacy databases and the Deep Web has 
been answered in several ways: annotation of web pages, migration of 
content stored in different sources, translation, etc. [10]. In every case, this 
task takes as input existing content, either structured, semi-structured or 
unstructured, and provides as output instances of ontologies. The seman-
tics is contained in the ontologies and that is why such content can be seen 
as the “smart” version of the existing one, by describing it in terms of 
these ontologies. The key point in this task is how to link the existing con-
tent to ontologies to profit from the knowledge they contain. This is de-
scribed further in this chapter. 

Semantic content generation can be performed in many different ways, 
ranging from completely manual to fully automatic. In our particular case, 
the existing content is stored in relational databases, which can be consid-
ered a high level of structure. Our approach is based on the processing of a 
mapping specification where correspondences between the elements of the 
database and those of the ontology are defined formally and declaratively. 

Let’s set the following scenario: we have a legacy database and we 
want to generate Semantic Web content from it. Until now, the following 
approaches have been reported in the literature: The first approach, de-
scribed in [21, 20], is based on the semi-automatic generation of an ontol-
ogy from the database’s relational model by applying reverse engineering 
techniques supervised by the designer. Then mappings are defined be-
tween the database and the generated ontology. Because the level of simi-
larity between both models is very high, mappings will be quite direct and 
complex mapping situations do not usually appear. A second approach, 
described in [16], proposes the manual annotation of dynamic web pages 
which publish database content, with information about the underlying da-
tabase and about how each content item in a page is extracted from the da-
tabase. This approach does not deal with complex mapping situations and 
assumes we want to make our database schema public, which is not al-
ways the case. A third approach, the one described in [9] and extended in 
[4], proposes a language to define correspondences between ontology con-
cepts and database schema views with a processor that takes such descrip-
tions and extracts massively the content of the database to generate a set of 
ontology instances out of it. This last approach is richer than the preceding 
ones but its expressiveness is limited to the definition of mappings be-
tween database views and ontology concepts and direct mappings between 
attributes/relations of the ontology and attributes of the database views. 
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Conditions and transformations which are often needed to describe com-
plex mapping situations cannot be defined with this language.  

From a more general point of view, related approaches to this work can 
also be found in the intelligent information integration area, in which data 
from existing heterogeneous databases is extracted and integrated accord-
ing to ontologies. The main difference between such approaches and ours 
is that in information integration systems the ontologies used as global 
schemas (mediator views) are generally created by integrating and/or 
merging the schemas of each of the data source,s which leads again to 
simple mapping situations. Another difference is the fact that mappings 
are described with views (normally SQL) but not with specific purpose 
languages for the definition of mappings. Examples of such systems are 
Observer [19], MOMIS [8] and Picsel [15], among others.  

Our proposal tries to be more generic in the sense that it will map exist-
ing and independently developed and maintained databases and ontolo-
gies. One important aspect of our approach is that we will use the database 
and the ontology “as they are” and we will just define a declarative speci-
fication of the mappings between their modeling components. That is why 
the R2O (Relational to Ontology) language, which is the base of our ap-
proach, has been conceived as expressive enough to cope with complex 
mapping situations arising from low similarity between the ontology and 
the database model (one of them is richer, more generic or specific, better 
structured, etc., than the other).

From the point of view of the expressive power, the approach presented 
in this chapter is intended to extend and enhance the mapping description 
capabilities of the ones described previously. 

This chapter is organized as follows. Section 11.2 describes the global 
approach to database-to-ontology mapping proposed by our framework. 
Section 11.3 enumerates a set of significant mapping situations covered by 
the R2O language. Section 11.4 provides an informal description of R2O,
its BNF grammar, and some representative examples of mappings ex-
pressed in this language. Section 11.5 describes the ODEMapster proces-
sor in charge of exploiting the mapping definitions in R2O. Section 11.6 
gives an outline of the fund finder application where the ideas presented in 
this chapter have been implemented. Finally, Sect. 11.7 draws some con-
clusions and gives a glimpse of future trends. 
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11.2 Global Approach to Database-to-Ontology Mapping 

Any modeling scenario contains three main components according to [10]: 

A set of queries QS about a specific domain S that we want to be 
answered by a model 
The model itself, M, a data source capable of answering certain queries 
QM described in terms of its elements. 
A correspondence enabling the transformation of QS queries into QM
queries and an inverse correspondence enabling the translation of the 
answers provided by M into answers of S. 

Figure 11.1 shows a high-level description of this situation following 
the R2O approach. An ontology and a database schema with some seman-
tic overlap in the domains they cover are to be related.  Thus, the database 
schema can be queried in terms of the ontology elements in a transparent 
way. 

RDBRDB Relational
Model

Relational
Model

StaffStaff
OrganizationOrganization

Question: Name of all Professors
at the UPM      University
Question: Name of all Professors
at the UPM      University

Professor =       Staff whose
type=“Teaching”

University =       Organization
typo = “University”

Professor =       Staff whose
type=“Teaching”

University =       Organization
typo = “University”

ProfessorProfessor
StudentStudent

UniversityUniversity

OntologyOntology

PHDStudentPHDStudent

PersonPerson

Question: Name of Staff  of type
“Teaching” and who are related to an

Organization of type “University”
named “UPM”.

Question: Name of Staff  of type
“Teaching” and who are related to an

Organization of type “University”
named “UPM”.

ODEMapsterODEMapster
Declarative description

of Ontology-DB
correspondences

Declarative description
of Ontology-DB

correspondences

RDBRDB Relational
Model

Relational
Model

StaffStaff
OrganizationOrganization

Question: Name of all Professors
at the UPM      University
Question: Name of all Professors
at the UPM      University

Professor =       Staff whose
type=“Teaching”

University =       Organization
typo = “University”

Professor =       Staff whose
type=“Teaching”

University =       Organization
typo = “University”

ProfessorProfessor
StudentStudent

UniversityUniversity

OntologyOntology

PHDStudentPHDStudent

PersonPerson

Question: Name of Staff  of type
“Teaching” and who are related to an

Organization of type “University”
named “UPM”.

Question: Name of Staff  of type
“Teaching” and who are related to an

Organization of type “University”
named “UPM”.

ODEMapsterODEMapster
Declarative description

of Ontology-DB
correspondences

Declarative description
of Ontology-DB

correspondences

Fig. 11.1. Global description of the database-to-ontology mapping approach  

As can be seen in Fig. 11.1, an ontology (S in the description above) de-
fines terms in a particular domain (Professor, University, PHDStudent,
etc.) and a database (M in the description above) does the same in another 
(Organization, Person). The level of overlap of these two domains allows 
the definition of correspondences between the terms of one and the other 
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even if these terms model the intersection domain differently from a se-
mantic point of view.34

A query QS like the one described in Fig. 11.1, ”Give me the names of 
all professors in UPM university”, would have its corresponding QM
(probably SQL) over the database and, similarly, the tuples returned by the 
database would have their equivalent in a set of instances of the ontology 
answering the initial question.  

In this chapter we propose the definition of these correspondences using 
a declarative and formal mapping description language (R2O) which will 
be described further below. These mapping definitions will allow a proc-
essor (ODEMapster) to translate (on demand or as a batch process) queries 
defined in terms of the ontology concepts into other queries defined in 
terms of specific database concepts.  

11.3 Mapping Situations between Databases and 
Ontologies 

Because the domains covered by the ontology and the database do not al-
ways coincide and because the design modeling criteria used for building 
the database are different from those used for ontology creation, the corre-
spondences between their elements will be sometimes straightforward, 
sometimes tricky. This section presents different mapping situations aris-
ing from database-to-ontology mapping scenarios which are intended to be 
covered by the R2O language which will be described in Sect. 11.4.  

If we have a look at how components of the database schema map on-
tology concepts, we can distinguish, as shown graphically in Fig. 11.2, the 
following cases: 

Case 1. One database table or view maps to one concept in the 
ontology. In this case the columns of the table map the attributes and/or 
relations of the concept, and with each database table record we 
generate an instance of the concept. With the data of the record we fill 
in the attribute values of the instance. 

                                                     
34 Different authors have categorized the dissimilarities (heterogeneity) between 

models at different levels by generally grouping them in two main categories: 
non-semantic and semantic dissimilarities. The first contains all differences 
relative to the language and representation formalism used and the second con-
tains all terminological and conceptual mismatches (granularity, perspective, 
etc.). For a deeper description see [19], [13] and [14]. 
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Fig. 11.2. Mapping cases classification for concepts   

Case 2. One database table or view is used to instantiate more than one 
concept in the ontology, but only one instance per concept. In this case 
each column of the table maps to the attributes and/or relations of the 
same or different concepts, and with each database table record we 
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generate an instance of each concept. With the data of the record we fill 
in the attribute values in each instance. 
Case 3. One database table or view is used to instantiate more than one 
concept in the ontology, but multiple instances of the ontology can be 
generated. In this case each column of the table maps to the attributes 
and/or relations of the same or different concepts, and with each 
database table record we generate one or more instances of each 
concept. With the data of the record we fill in the attribute values of the 
instances.

It is important to mention that sometimes all the columns in a table map 
properties of the concepts, though sometimes only a few of them are 
needed. The same happens for records. In both cases, before generating 
ontology instances, some standard relational algebra operations (projec-
tion, selection, etc.) should be executed. We distinguish the cases pre-
sented in Fig. 11.3. 

Direct Mapping. A database table directly maps to a concept in the 
ontology. Every record of the table will correspond to an instance of an 
ontology concept. 
Join/Union. A set of database tables maps to a concept in the ontology 
when the tables are joined. Every join record of the joined tables 
corresponds to an instance of an ontology concept. 
Projection. This appears when a subset of the columns of a database 
table is needed to map a concept in the ontology. 
Selection. A subset of the rows of a database table maps to a concept in 
the ontology. 
Any combination of them is also possible. 

The values of the attributes and relations can be filled in directly from 
the values of the fields in a database record or after applying a transforma-
tion function. The function can affect more than one data field. Figure 
11.4 shows these ideas. 

Although SQL relational algebra operations cover many cases, there are 
situations in which some additional transformations might be needed. 
Some examples of these situations are more complex operations, such as 
natural language processing techniques over text data fields, regular ex-
pression matching for dates, URL or email extractions, etc. The R2O lan-
guage provides the means for specifying declaratively such selections and 
transformations. 
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Fig. 11.3. Mapping cases for concepts   
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Fig. 11.4. Mapping cases for attributes and relations   

11.4. The R2O Language 

R2O is an extensible and fully declarative language to describe mappings 
between relational database schemas and ontologies. R2O is intended to be 
expressive enough to describe the semantics of these mappings and not 
just a degree of similarity between entities. R2O is proposed as a database 
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management system (DBMS) independent high-level language that can 
work with any DBMS implementing the SQL standard. R2O’s main fea-
tures are: 

1. A R2O mapping defines how to create instances in the ontology in 
terms of the data stored in the database. A R2O mapping definition 
can be used either to automatically populate an ontology with 
instances extracted from the database (as a batch process of massive 
instance extraction) or to answer (on demand) queries defined in 
terms of an ontology with data from a relational database. The 
intended flow of data is from the database to the ontology and the 
approach followed in the definition of mappings is Global As View 
(GAV) [18].  

2. R2O can be used to express mappings generated by automatic 
mapping discovery tools. 

3. R2O mapping definitions can be verified against the ontology. Due to 
its fully declarative nature, inconsistencies and ambiguities in the 
definition of a mapping can be automatically detected. 

4. A R2O mapping definition might also be used to verify the integrity 
of parts of a database according to the ontology by applying the 
ontology’s axioms to the database’s elements.  

This section gives an informal description of the R2O language. To im-
prove readability we use a compact pseudo XML syntax where opening 
tags are indicated with bold characters, grouping of sub-content is indi-
cated by indentation and closing tags are omitted.  A mapping description 
in R2O is a structure made up of several components, some of which may 
themselves be structures, some are optional, and some may be repeated. 
We will write component? if it is an optional component, component+ if 
it is a component that may be repeated one or more times (i.e., that must 
occur at least once), and component* if it is a component that may appear 
zero or n times (i.e., that may be completely omitted). We also provide the 
BNF grammar of the language with examples of usage (Table 11.1).  

11.4.1 A Mapping Description Specified in R2O

A mapping description in R2O consists of the following components: a set 
of URI instances to be added to the instance set extracted from the data 
base (import?), a description of the database schema (dbschema-
description*), one or more URI ontologies for which instances will be 
generated when executing the R2O mapping (ontology+), and the list of 
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mapping definitions (conceptmapping-definition+) between the compo-
nents of the database schema and the ontology. 

Table 11.1. BNF and examples of  usage of a R2O mapping description

BNF for R2O mapping descriptions Example of mapping description 
r2o::= import? dschema-
description+ conceptmapping-
definition+ ontology+ 
import::= import literal 
ontology::= ontology literal 
literal::= '<string literal>' 

import http://www.instancesets.net/instance1
import http://www.instancesets.net/instance2
dbschema-desc <dbschema-description>  
dbschema-desc <dbschema-description>
ontology http://www.ontologies.net/onto1# 
ontology http://www.ontologies.net/onto2# 

11.4.2 Description of Database Schemas 

A database schema description (dbschema-desc) provides a copy of the 
main structural elements in the SQL schema of the database. It will gener-
ally be extracted automatically from the source database. The database 
schema definition is a “sort of internal” representation of a database and 
will be needed to restrict the domain and range of the components of a 
mapping definition as will be seen later. Some technical information about 
the database (url, port, user/pwd, etc.) necessary for implementation is 
omitted for the sake of clarity. Table 11.2 presents the BNF and an exam-
ple of how a database (DB) schema description is used. 

A dbschema-desc consists of the name of the database (name), a natu-
ral language description of the schema (documentation?), and one or 
more table descriptions (hasTable+) where each database table is de-
scribed by means of (table-desc).

A table description (table-desc) provides a description of a database ta-
ble. A table-desc  consists of a name of the table (name), the type of the 
table (tableType) – which can be either a system table, a user table or a  
view –, its natural language description (documentation?), and a set of 
column descriptions (column-description+).

A column description (column-description) can be a key column (key-
col-desc), a foreign key column (forkeycol-desc), or a non-key column 
(nonkeycol-desc). Any of them consists of a name for the column (name), 
a type for the data it contains (ColumnType), its natural language descrip-
tion (documentation?), and the key column referred (refers-to?) if it is a 
foreign key forkeycol-desc. These language elements can be used to make 
explicit referential integrity constraints that exist and are verified by the 
data but are not declared explicitly as such in the database schema. The
database schema definition elements in the R2O language also provide a 
workaround for badly designed database schemas. 
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Table 11.2. BNF and an example of usage of a DB schema description 

BNF for R2O DB schema descriptions Example of a DB schema description 
dschema-description::= dbschema-
desc name documentation? (has-table
table-desc)+ 
name::= name literal 
documentation::= documentation lite-
ral
table-desc::= name tabletype documen-
tation? (column-description)+ 
tabletype::= tableType literal 
column-description::= (keycol-desc | 
forkeycol-desc | nonkeycol-desc)
name columnType documentation? 
col-reference? implicit-col-reference? 
columnType::= columnType datatype 
col-reference::= refers-to literal 
implicit-col-reference ::= implicitlyre-
fers-to literal 
datatype::= string | boolean | decimal | 
float | double | date | integer ... (XML 
Schema Datatypes) 

dbschema-desc 
   name FISUB
   has-table 
      name FundingOpps

 documentation “Stores funding info” 
 keycol-desc  
     name FundingOpps.FundId 
     columnType integer
     documentation “Identifies a f.o.”
 nonkeycol-desc  
      name FundingOpps.FundTitle
      columnType string
 forkeycol-desc  
      name FundingOpps.FundSector 
      columnType integer
      refers-to Sector.Id
      documentation “Points at Sector” 

   has-table 
      name Sector 

 documentation “Productive sectors.” 
 keycol-desc  
      name Sector. Id 

           columnType integer

11.4.3 Definition of Concept Mappings 

This section shows how to define the concepts of the ontology in terms of 
the database elements using R2O. A concept mapping definition (con-
ceptmap-def) is equivalent to a basic mapping expression as defined in 
[19]. A concept mapping definition associates the name of a class in the 
ontology with a description of how to obtain it from the database. A con-
ceptmap-def, as presented in Table 11.3, consists of the following com-
ponents:

The identifier of a concept (URI of the class)  in the target ontology 
(name).
Natural language description of the rationale behind the concept 
mapping (documentation?).
One or more column names that identify (unique-att+) the instance 
(tuple) uniquely in the database. Each column is described with the 
column-desc element previously defined.
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A pattern expressed in terms of transformations (see transformation
elements in Sect. 11.4.5) describing how URIs (uri-as+) will be 
generated for the new instances extracted from the database. URIs will 
normally be obtained from the key columns after applying some 
transformations. The absence of this element will generate anonymous 
instances.
A concept in the ontology is described (described-by*) by a set of 
attributes and relations. As we will see in Sect. 11.4.6, a property 
mapping definition (propertymap-def) associates the name of an 
attribute and/or relation in the ontology with a description of how to 
obtain them from the database columns with the transformations 
(transformation) needed. The URI extraction described in the 
preceding point is actually a particular case of this. 
A mapping will only be applied under certain conditions. The element 
applies-if? contains a conditional expression (see cond-expr in Sect. 
11.4.4) describing these conditions. In other words, it specifies the 
subset of values from the database that will be transformed to populate 
this concept.
Sometimes more than one table will be implied in the definition of a 
concept mapping, and join operations will be needed. The optional 
(joins-via?) element describes how these tables are joined. The content 
of such element will have the structure of a condition which will be 
described in the next section. 

Table 11.3. BNF and an example of usage of a concept mapping definition. The 
concept mapping is identified by a single database column (transformation and 
cond-expr are described later) 

BNF for concept mapping definitions in R2O Example of concept mapping definition 
conceptmapping-definition::= conceptmap-
def name documentation? unique-atts+ (uri-as
transformation)? (described-by propertymap-
def)* (applies-if cond-expr)? (joins-via join-
list)? 
unique-atts::= unique-atts literal 
join-list::= documentation? (join joindesc)+ 
(overwrites literal)? 
joindesc::= (hasCol literal)2 

conceptmap-def 
   name Customer
   unique-atts Users.userID 
   uri-as

<transformation>
   applies-if  

<cond-expr>
   documentation Select all rows from
table Users... 
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11.4.4 Describing Conditions and Conditional Expressions 

As described above not all the records in a table generate instances of the 
concepts in the ontology, so we will need to describe under which condi-
tions the mapping takes place. A conditional expression (cond-expr) can 
be either a single condition (condition), or a boolean combination of mul-
tiple ones using the operators AND, OR and NOT as presented in Table 
11.4.

Table 11.4. BNF and an example of usage of a condition expression. The condi-
tion is true if the value of column period is “Modern” or if the date is after 
“01/01/1999” 

BNF for condition expressions in R2O R2O condition expression example 
cond-expr::= orcond-expr | AND andcond-expr 
orcond-expr
orcond-expr::= notcond-expr | OR orcond-expr 
notcond-expr
notcond-expr::= condition | NOT condition
condition::= primitive-condition (arg-restriction
arg-restriction)* 
primitive-condition::= lo_than | loorequal_than |
lo_than_str | loorequal_than_str | hi_than | hio-
requal_than | hi_than_str | hiorequal_than_str |
equals | equals_str | in_keyword | in_set |
in_set_str | between | between_str | date_before 
| date_after | date_equal
arg-restriction::= parameter-selector restriction 
parameter-selector::= on-param literal 
restriction::= has-value constant-value | has-
column literal | has-transform transformation 
constant-value::= datatype literal 

OR
   equals 
      arg-restriction 
         on-param value1 
         has-column Paintings.period 
      arg-restriction 
         on-param value2
         has-value string “Modern”
   date-after 
      arg-restriction 
         on-param date1 
         has-column Paintings.date
      arg-restriction 
         on-param date2 
         has-value date “01/01/1999” 

A condition (condition) describes an invocation to a single conditional 
operation defined with the primitives (primitive-condition) provided by 
R2O and assigns argument values (arg-restriction*) to each of the pa-
rameters required by the particular conditional operation. The core list of 
R2O primitive conditional functions is: numerical and string equality 
(equals, equals_str), numerically and alphanumerically lower than 
(lo_than, lo_than_str), numerically and alphanumerically higher than 
(hi_than, hi_than_str), the keyword is contained in the string 
(in_keyword), numerically and alphanumerically contained in a range 
(between, between_str), a date precedes, succeeds or is equal to another 
one (date_before, date_after, date_equal). For each condition, R2O de-
fines: its parameters and their domain types indicating whether they are 
needed or optional and two descriptions of their use. The complete list of 
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primitive conditional functions is available at the web site 
http://www.esperonto.net/r2o. An excerpt of this information appears in 
Table 11.5. 

Table 11.5. Excerpt of the R2O condition set 

Condition Params Domain Needed Condition description 
value1 float U decimal U double Yes Lo_than
value2 float U decimal U double default=0

Compares two values 
numerically. Returns 
value1<value2 

As we mentioned earlier, arg-restriction* is used for assigning values 
and their types to arguments. Values can be taken typically from a data-
base table column, issued by a transformation, or, in the simplest case, 
they can be constant. So, an arg-restriction element is defined by means 
of a parameter name (on-param) and the type of argument we want to as-
sign to the parameter. R2O distinguishes the following types: constants 
(has-value?), a database table column (has-column?), and a transforma-
tion (has-transform?). So has-value? contains a constant value for the 
parameter,  whose type are XML Schema Datatypes; has-column? con-
tains a column (previously described as column-desc) indicating that val-
ues for this formal parameter will be taken dynamically for each row from 
this database table column; has-transform? contains a transformation
(see Sect. 11.4.5) to allow composing  transformations and using their re-
sults as an input to conditions.

11.4.5 Describing Transformations 

As mentioned in Sect. 11.3, the mapping between database field values 
and ontology properties and relations is not always straightforward. So we 
will need to specify the necessary transformations to be applied to them. A 
transformation (transformation) describes an invocation to a single 
primitive transformation defined with the primitive (primitive-
transformation) provided by R2O and assigns argument values (arg-
restriction*) to each of the parameters required by the particular trans-
formation.  Table 11.6 presents the BNF grammar and an example of us-
age of a transformation. Note that the arg-restriction* element is already 
defined in the previous section. 

The core list of the R2O primitive transformation (primitive-
transformation) is: get character at position n (get_nth_char), get the 
string delimited by a particular character (get_delimited), get the sub-
string between an upper and a lower limit (get_substring), concatenate 
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strings (concat), add, subtract, multiply or divide numbers 
(add,subtract,multiply,divide), a constant value (constant). In Table 
11.7 we define a list of parameters and their domain types for a R2O trans-
formation by giving the type returned, indicating whether the parameters 
are needed or optional, as well as a description of their use. A complete 
list can be found at http://www.esperonto.net/r2o. 

Arbitrarily complex expressions can be formed through the composition 
of multiple transformations. This is done by using the transformations as 
arguments inside other transformations. For instance, the expression con-
cat(get_delimited(‘#’,t1.c1), concat(‘ -> ’, get_nth_word(‘3’,t2.c3)))
gets for each row of table t1 the substring delimited by ‘#’ and ‘#’ in col-
umn c1, then it gets the third word in column c3 of the same table and then 
links both results through the string ‘ -> ’. 

Table 11.6. BNF and example of usage of a transformation. The transformation 
concatenates a constant string with the content of two columns (name and IATA)

BNF for transformations in R2O R2O transformation example 
transformation::= primitive-
transformation (arg-restriction
arg-restriction)* 
primitive-transformation::= 
get_nth_char | get _delimited | 
get_substring | concat | 
add_type | Subtract_type | 
Multiply_type | divide_type | 
constant

concat    
   arg-restriction 
      on-param string1 
      has-value string “Coordinates of airport “ 
   arg-restriction 
      on-param string2 
      has-transform
         concat 
            arg-restriction 
               on-param string1 
               has-column Airports.name
            arg-restriction 
               on-param string2 
               has-column Airports.IATA 

Table 11.7. Excerpt of the R2O transformation set

Transf. Return Params Domain Needed Condition description 
string Str string Yes 
 lo_limit string 

get_substring

 hi_limit string 
At least 
one

Extracts the substring be-
tween upper and lower 
limits 

11.4.6 Attribute and Relation Mappings 

A property mapping description (understanding properties as attributes 
and relations) associates an attribute or a relation belonging to a concept in 
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the target ontology with an expression describing how to obtain such an 
attribute or relation from the database. Depending on the type of property 
we deal with and on how we get its values from the database, these types 
of mappings can be described either with attributemap-def, with relfro-
matt-def or with relationmap-def (Table 11.8). The first one describes at-
tribute mappings, the others describe relation mappings.  

We will also add a new level of complexity by adding conditions at the 
property level. With this, we allow properties to have multiple values and 
we enhance the language expressivity. This idea is shown in Fig. 11.5 and 
will be explained in detail later. 
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Fig. 11.5. Mapping cases classification for concepts  

An attributemap-def contains an identifier (name) of the property in 
the target ontology (its URI). To generate its value, we will use zero or 
more database columns (previously described with a column-desc ele-
ment), so we declare them with a use-dbcol? element. After that, a set of 
“rule” elements are listed ([condition1  action1; condi-
tion2 action2…]). Depending on what condition applies, different trans-
formations are performed. This idea is represented by a Selector? element
which will contain zero or more applies-if - aftertransform pairs (condi-
tion-action).
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Table 11.8. BNF and an example of usage of a property (attribute and relation) 
mappings 

BNF for property mappings in R2O Using dbrelationmap-def 
propertymap-def::= attributemap-def | relfromatt-def | relationmap-def 
attributemap-def::= attributemap-def name use-dbcol* selector* docu-
mentation 
relfromatt-def::= relfromatt-def name use-dbcol* selector* newobj-type? 
documentation?
Relationmap-def::= relationmap-def name db-rel-def 
use-dbcol::= use-dbcol literal 
selector::= selector (applies-if cond-expr)? (aftertransform transforma-
tion)? 
newobj-type::= newobject-type literal 
db-rel-def::= schema-defined-rel | direct-rel | defined-rel 
schema-defined-rel::= schema-defined name 
direct-rel::= direct
defined-rel::= defined join-list 

dbrelationmap-def
  name hasSector 
  db-defined sector-fk 

dbrelationmap-def
  name hasAddress 
  direct

dbrelationmap-def
  name hasRelFunding 
  joins-via 
    equals 
      arg-restriction 
        on-param value1 
        has-column t1.c1 
      arg-restriction 
        on-param value2 
        has-column t2.c2

Example of usage  of attributemap-def Example of usage of relfromatt-def
attributemap-def
   name paperRating 
   selector
      applies-if 
         AND  
            in_keyword 
               arg-restriction 
                  on-param string 
                  has-column Papers.keywords 
               arg-restriction 
                  on-param keyword 
                  has-value string “ontologies“
            in_keyword 
               arg-restriction 
                  on-param string 
                  has-column Papers.keywords 
               arg-restriction 
                  on-param keyword 
                  has-value string “DB“ 
      aftertransform 
         constant
            arg-restriction 
               on-param const_val 
               has-value string “Interesting” 

relfromatt-def
   name officiallyAnnounced 
   newobject-type OfficialPublication 
   selector
      aftertransform 
         concat
            arg-restriction 
               on-param string1 
               has-value string 
              “http://officialPubs.com/num-“ 
            arg-restriction 
               on-param string2 
               has-transform  
                  get-delimited 
                     arg-restriction 
                        on-param string 
                        has-column  
                 FundingOpportunity.legalRef 
                     arg-restriction
                        on-param start-delim 
                        has-value string “[“ 
                     arg-restriction
                        on-param end-delim 
                        has-value string “]“ 

If the applies-if element is missing, it will be considered as true and the 
transformation will be performed. If the aftertransform element is miss-
ing, a direct mapping will be applied. This situation and some other nota-
tional particularities of R2O are explained in detail in the web site 
http://www.esperonto.net/r2o. In the applies-if?, a cond-expr element de-
scribes under which conditions the attribute mapping is applicable or, in 
other words, which is the subset of values from the database schema that 
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will be mapped according to the concept matching being defined. Note 
that the columns appearing in this cond-expr can belong to different ta-
bles from those stated in the unique-atts element of the concept mapping 
definition to which this property definition belongs. In this case two situa-
tions may arise: 

1. If no extra information is provided and the tables containing the 
columns that are used to describe the condition are reachable without 
ambiguities from those tables specified in the unique-atts of the 
concept mapping description, the join is made automatically. This 
means that there is a single foreign key from one table to the other. 

2. If a table restriction is provided, it will be considered local to a 
property mapping definition as opposed to the restrictions defined 
inside a concept mapping definition which are global. 

The aftertransform+ element contains the (transformation) on the da-
tabase columns that participate in obtaining the value of the property being 
defined. The structure of a transformation is that described in the previ-
ous section. 

The cases in which a data field after applying a transformation gener-
ates a resource would lead to the creation of a relation rather than of an at-
tribute. These cases are represented with the relfromatt-def element, the 
structure of which is identical to that of the attributemap-def element, 
and the extra element newObject-type? containing the type of the new re-
source generated with the transformation (if any). 

A relation mapping definition (dbrelationmap-def) describes how to 
obtain the target resource of a relation from its corresponding implementa-
tion in the database. A dbrelationmap-def then consists of an identifier 
(name) of the relation in the target ontology (its URI) and a conditional 
element (condition) describing how the join is to be performed between 
the source and target concepts.

The following examples show a property mapping of each type. The 
first example uses the dbrelationmap-def to define a relation mapping 
that links a funding opportunity to its productive sector. A link between 
table FundingOpps and Sectors exists because a foreign key has been de-
fined in column FundingOpps.sector pointing at the sectorId primary key 
in column Sectors. The second example uses the attributemap-def ele-
ment to rate a chapter as “Interesting” if it is about ontologies and data-
bases. This condition is based on a keyword search on the values of rows 
of the Papers table in keywords field. The last example uses the relfro-
matt-def to create instances of relation officiallyAnnounced. This relation 
links a funding opportunity with the official publication where it appears. 
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An official publication instance is created for each property instance and 
its URI is obtained from the legalRef column in table FundingOpportunity
after a simple transformation.  

11.5 The ODEMapster Processor 

Once mappings are defined in a R2O mapping document, they are proc-
essed automatically by the ODEMapster mapping processor to generate a 
semantic repository of data (populate an ontology) or to answer queries 
defined in terms of the ontology. The first one is a batch process that car-
ries out a complete dump of the mapped database content and the second 
one extracts “on the fly” just the necessary information to answer the que-
ries asked by the user. The two diagrams in Fig. 11.6 show the two differ-
ent modes of operation of the ODEMapster processor. 

Both (batch and on-demand) processes are based on three main steps: 
(1) R2O processing, (2) query unfolding and execution, and (3) ontology 
instance generation:

1. R2O document parsing to check lexical and syntactical correction and 
basic integrity validations on the document like data type verifica-
tion, rule compatibility checking, etc. 

2. SQL expression generation from the R2O document (based on query 
unfolding) and execution on source DBMS.

3. Generation of Semantic Web individuals (ontology instances) out of 
the content retrieved from the database in a quite straightforward 
way: one record generates one instance. 

11.6 Experimentation: The Fund Finder Application 

There are several portals containing information related to funding in the 
European Union, such as the Community Research and Development In-
formation Service search page (CORDIS, http://ica.cordis.lu/search/) or the 
EU’s Grants and Loans site (http://europa.eu.int/grants/index_en.htm). 

In Spain, the Centre for Innovation and Business Development 
(CIDEM, www.cidem.com) is an organization based in the region of Cata-
lonia whose objective is to improve the region’s industrial community and 
increase its competitiveness. One of the services it provides is the update 
and maintenance of a section in its public web site [3] with information 
about European funding opportunities gathered from different sources. 
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These funding opportunities are compiled manually from several official 
publications by the CIDEM staff on a daily basis and stored in a database.  
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Fig. 11.6. Two modes of operation of the ODEMapster processor 
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Access to this content is provided by standard form-based web pages; 
these pages allow users to set some basic search criteria such as the pro-
ductive sector (Agriculture, Industry, Services, Tourism, Non-profit Or-
ganizations, etc.) to which the funding applies, the funding objective 
(Technical and Financial Consultancy, Business cooperation, Culture, En-
ergy, Tax incentives, Environment, R&D, Training, etc.), the date of last 
update (to get the latest  funding opportunities) and a traditional full text 
search engine. 

These kinds of search interfaces can be helpful for basic information re-
trieval “Give me all the funding opportunities in the agriculture sector” or 
“Give me all the funding opportunities containing the words ‘sustainable
development’”, but when complex queries involving relations between 
concepts appear, those techniques fall short. For instance, it would be hard 
for a form and keyword-based search engine to answer a question like: 
“Give me all the fundings that can provide a supplement to those aiming 
at company creation” or “Give me all the fundings that are incompatible 
with funding 651” because the key point for answering this question lies in 
understanding the meaning of relations “provide-a-supplement” and “be-
incompatible-with”.

In this section we describe the construction of the Fund Finder applica-
tion (http://www.esperonto.net/fundfinder) whose objectives are to allow 
semantic access to the content available in the backbone database of the 
portal of the CIDEM and to integrate this content with others from differ-
ent sources. We understand “semantics” in this context as meaning related 
to the domain of Funding. In other words, we wanted to upgrade the portal 
of the CIDEM to the Semantic Web. This work has been developed in the 
context of the ESPERONTO35 project. 

11.6.1 Ontologies in the Funding Domain 

The ontologies used by the Fund Finder application have been structured 
in a two-level architecture. The higher level contains general-purpose on-
tologies (Person, Location, Organization, Official Publication), while the 
lower level contains specific ontologies related to funding (Funding Op-
portunity, Funding Body, Applicant). Figure 11.7 contains an interontol-
ogy relation diagram. 

Each of the seven ontologies in Fig. 11.7 is fully described in [3, 5] by 
the intermediate representations proposed in the METHONTOLOGY

                                                     
35 Esperonto Project IST-2001-34373. http://www.esperonto.net 
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methodology [14]. The knowledge modeled by each of them and some sta-
tistics about their content are briefly described in Table 11.9. 

All ontologies have been implemented with the help of experts in the 
domain of funding in the European Union, using the WebODE [2] work-
bench for ontological engineering, and have been evaluated using ODEval 
[12]. The ontologies are available at http://webode.dia.fi.upm.es/. 
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Fig. 11.7. Interontology relationships between the different Fund Finder ontolo-
gies   
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Table 11.9. Brief description of the ontologies used by the Fund Finder applica-
tion 

Ontology Description Statistics 
Official Pub-
lication  

European, national and regional regulations and 
their corresponding official publications such as 
the European Official Journal, The Spanish Bo-
letín Oficial del Estado, and others 

Concepts: 9 
Instance attributes: 6 
Subclass-of: 7 
Ad-hoc relations: 1 

Person General-purpose personal information, mainly 
focused on postal information 

Concepts: 5 
Instance attributes: 9 
Ad-hoc relations: 4 

Location Locations, countries and country subdivisions 
used to define the geographical scope of a par-
ticular funding opportunity 

Concepts: 4 
Instance attributes: 2 
Subclass-of: 3 
Ad-hoc relations: 3 

Organization High-level knowledge about organizations 
(name, set up year, web site, postal address, etc.) 
used to define a candidate’s profile 

Concepts: 6 
Instance attributes: 10 
Ad-hoc relations: 6 

Funding Op-
portunity 

The central ontology. It covers general features 
of a funding opportunity such as description, 
deadlines, types, relations and other funding op-
portunities, restrictions, etc. The main concept 
splits into a taxonomy of different types of fund-
ings (i.e., credits, discounts, awards, etc.) 

Concepts: 32 
Instance attributes: 12 
Subclass-of: 25 
Ad-hoc relations: 8 

Funding Body Organizations providing funding opportunities Concepts: 7 
Subclass-of: 5 
Ad-hoc relations: 2 

Applicant Potential beneficiaries of the funding opportuni-
ties: persons and organizations 

Concepts: 22 
Instance attributes: 4 
Subclass-of: 18 
Ad-hoc relations: 4 

11.6.2 The Presentation Part: Semantic Publishing and 
Navigation

Two approaches to present the content extracted from databases have been 
tested with the Fund Finder application. The first one, mainly intended for 
massive batch semantic content generation, is based on a three-step proc-
ess: First, the content is extracted from the database by the ODEMapster 
processor. Such content is represented in RDF(S). Second, this semantic 
content is imported into the WebODE36 environment using WebODE im-

                                                     
36 WebODE [7] is a workbench for ontological engineering that allows the col-

laborative editing of ontologies at the knowledge level. One of its main func-
tionalities is the import/export service from/to different ontology languages. 
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port services. Finally, the content is presented to the user using the ODE-
SeW37 portal.

The second approach, focused more on semantic query processing, is 
intended to process on-demand queries and provides a lightweight presen-
tation layer on top of a simple semantic query engine. 

The Semantic Query Engine that has been developed for the Fund 
Finder application intends to provide “smart” access to database-stored 
legacy data. A semantic query engine returns instances of an ontology that 
constitute answers to queries instead of documents containing keywords, 
as traditional keyword-based engines would. Semantic query engines 
profit from the meaning of the terms in the query. The meaning of these 
terms is defined in the corresponding ontology. 

A user can ask for a list of instances of a selected concept by setting 
constraints on its attribute values. For example, if the user wants to know 
all awards for the current month, he or she would type “December 2004”.
Traditional engines would return all documents containing that very string, 
including those having it as date of last update, deadline, or even date of 
official publication of the funding in the relevant official journal, and 
those occurrences written differently “dec.2004”, or “12/04”, would not 
be retrieved. A semantic query engine will return instead all instances of 
the concept “Award” (which is a subconcept of “Funding opportunity”)
whose deadline occurs after December 2004. The user can also make a 
compound query by nesting concepts via their attributes: for example, 
“Give me all subventions incompatible with funding opportunity number 
11”.

The interface for the search engine is based on forms representing do-
main concepts and existing relations. The user chooses a concept and con-
structs a complex query by putting values for attributes and/or nesting 
more concepts through relations. 

11.7 Conclusions and Future Work 

In this chapter we have presented R2O, a database-to-ontology mapping 
language, whose strength lies in its expressivity, its declarative nature and 

                                                                                                                        
Currently, available services exist in WebODE for the exportation and importa-
tion of OWL, RDFS, DAML+OIL, among others.  

37 ODESeW [8] is an ontology-based application (designed on top of WebODE) 
that automatically generates and manages a knowledge portal for intranets and 
extranets. Figure 11.8 shows the look and feel of the portals generated with the 
two approaches. 



336 Jesús Barrasa 

its DBMS and ontology language independence. With R2O we facilitate 
the “upgrade” of database content into instances of an ontology under the 
assumption that database and ontology models are different and that both 
are already existing and have not been created specifically for this pur-
pose. The ODEMapster processor presented in [1] has been enhanced to 
process R2O documents.  

Fig. 11.8. Two screenshots of the semantic portals. On the left, the one generated 
by ODESeW and, on the right, the web interfaces that use the semantic query en-
gine  

R2O and ODEMapster have been used in the context of the 
ESPERONTO project, in particular for the Fund Finder application 
(http://www.esperonto.net/fundfinder) as described in Sect. 11.6 but also 
to upgrade the ONTOROADMAP38 database. 

                                                     
38 http://webode.dia.fi.upm.es/ontoweb/wp1/OntoRoadMap/index.html 
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Regarding the future trends of our work, the extension of the framework 
to include a semi-automatic mapping discovery tool is under development. 
In addition, intensive testing with other databases as well as the develop-
ment of tools, middleware, APIs, etc., to generate and exploit R2O map-
ping descriptions are carried out.  A graphical user interface for both visu-
alizing and writing R2O mapping documents has recently been developed. 
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