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Foreword

At times when the IT manager’s best friend is systems consolidation (which is a euphemism
for centralisation), it may come somewhat as a surprise for you that this book investigates
decentralisation in the context of content management systems. It may seem quite obvious
that content will and should be managed by the party who creates and owns the content, and
hence should be held in a—somewhat—centralised and managed location. However, over the
past few years, we have been witnesses of some important trends and developments which
call for novel ways of thinking about content management and maybe even broader, about
computer systems in general.

First, ongoing business globalization creates natural distribution of information at a corpor-
ate level, as well as decentralization of control over business resources and business processes.
Changing alliances with partners require flexible architectures for content management that
can adapt to changing constellations, roles, and access rights. Second, the need for outsourcing
and resource efficiency has brought about concepts of virtualization, recently culminating in
the cloud computing buzzword. Virtualization of content management services requires ex-
tremely scalable and flexible underlying information and communication architectures. These
kinds of solutions are theoretically and practically impossible to implement based on cen-
tralised client-server architectures. Third, we are currently experiencing a dramatic shift in
the roles of consumers in the Internet. The times have gone when quality content was only
delivered by publishers and news agencies. Wikis and other Web 2.0 tools empower consumers
to produce and publish their personal content. Twitter and citizen journalism may serve as
two examples. To summarize, future content management solutions face challenges caused
by business globalization, outsourcing and virtualisation, and the shift from consumers to
prosumers.

Peer–to–peer computing is a key computing paradigm to tackle these challenges. Far from
being a new idea, the first generation of peer–to–peer networks date back to the origin of the
Internet. The principle of packet switching which is implemented in the Internet Protocol is
truly peer–to–peer: nodes in an IP network make routing decisions in a decentralized way,
based on local information. This peer–to–peer architecture guarantees the enormous resilience
and robustness of the Internet.

About ten years ago, the second generation of peer–to–peer networks emerged: Internet file
sharing. Decentrally organized systems and protocols like Napster and Gnutella were the basis
of a scalable infrastructure for file exchange with the ability to provide acceptable quality of
service for users looking for, e.g., mp3 files in the dynamic environment of the Internet. File
sharing was followed by peer–to–peer IP telephony (Skype) and peer–to–peer solutions for the
delivery of huge digital objects such as software updates (exemplified by BitTorrent).

The third generation of peer–to–peer networks and applications employs peer–to–peer con-
cepts in domains that are characterized by the necessity to manage, access, and exchange
structured and complex information resources, to support well-defined collaboration and syn-
chronization regimes, and to enact and monitor complex cross-organizational business pro-
cesses. We are currently witnessing the increasing use of peer–to–peer concepts in distributed,
global corporate environments and to support cross-enterprise collaboration and coordination.



vi Foreword

This book is at the forefront of this third generation of peer–to–peer networks and ap-
plications. It examines how decentralized peer–to–peer concepts can make today’s largely
centralized, client–server-based content management solutions evolve to meet the demands
of distributed enterprises, cross-organizational product development and, finally, to the enor-
mous scale and flexibility required by the applications of Web 2.0. Based on standard specifi-
cations of content repository technologies, the book describes the concepts and architecture of
a fully decentralized content repository. It further explains the flexible approach and result-
ing mechanisms to support distributed atomic operations and to guarantee consistency even
if the underlying network changes dynamically. Last but not least, the book identifies and
describes a set of innovative industrial application scenarios. All this is elaborated in careful,
unambiguous detail; the applicability of the software architecture, concepts and methods is
validated using both experimental and formal means of evaluation, enabling the transfer of
the technology developed in this book to other distributed resource management applications.
Peer–to–peer technologies have already had a large impact in numerous application domains.

This book provides a strong scientific approach towards engineering real-world peer–to–peer
solutions for business domains. It presents a real advance in application-oriented research on
peer–to–peer systems. I recommend it as essential reading for anyone wanting to understand
and apply this promising approach to distributed computing.

Prof. Dr. Jörg P. Müller
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Abstract

The operation of dedicated content repositories is a change in perspective of content lifecycle
management: their application largely promises both technical and financial benefits. Today,
centrally managed static client–server architectures are the prevailing design approach for
content repositories. However, systems built according to this paradigm inherently lack flexi-
bility regarding the support of different content models and functional properties (for example,
dynamic reconfiguration) as well as non-functional aspects (for instance, scalability).
A decentralised approach based on the peer–to–peer architecture paradigm is proposed in

this thesis to overcome these drawbacks. Peer–to–peer architectures promise a more flexible
architecture pattern migrating into more and more application domains. In spite of the fact
it has been nearly a decade that popular peer–to–peer systems appeared as an auspicious
paradigm for distributed computing, successful operation is still associated with basic file
sharing applications; most of these (monolithic) systems miss sophisticated data management
features for concurrent usage—as required by content repository systems.
In this thesis, the applicability of the peer–to–peer paradigm for the implementation of con-

tent repository functions is investigated, and an architecture and methods to enable flexible
content management in peer–to–peer systems are presented. Research challenges originate in
terms of (i) reflecting different characteristics and relationships of content, (ii) supporting an
adequate content repository model—both at functional and non-functional level, for exam-
ple, to ensure reliability and consistency properties, and (iii) coping with peculiarities of a
heterogeneous, dynamic peer–to–peer environment.
This thesis has created the following main research contributions:

• A generic and modular architecture for peer–to–peer based content repositories is pre-
sented: this thesis describes and analyses the logical view of a content repository to
benefit the provision of a modular system design. The introduced architecture is able to
abstract from specific data management details and to support local and remote storage
areas. A particularity concerns the definition of a persistent storage layer representing
the connection to integrate peer–to–peer based methods for enabling flexible content
repository functions.

• A concept is given to enable the generic mapping of (fragmented or distributed) content
to persistent storage: the concept supports the integration of flexible storage policies to
decide which degree of flexibility in content management is desired; it shows a way to
annotate (content) items and to map these to corresponding back-end storage entities
(resources).

• DhtFlex is introduced as a method to enable flexible, atomic data management for struc-
tured peer–to–peer overlays: it enables the implementation of flexible content repository
functions in such overlays. DhtFlex is developed as a modular component to ensure the
consistency of distributed replicated data resources in the face of concurrent updates.
It enables flexible and efficient data operations using its concept of annotated data re-
sources: on the one hand, DhtFlex provides atomic operations on replicated mutable
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data resources; on the other hand, DhtFlex is able to handle immutable data resources
in a special way in order to support more efficient processing for them.

• Reconfigurable group communication is shown as a method to support flexible replication
management for hybrid peer–to–peer overlays: it constitutes a major building block to
implement the concept of reconfigurable peer–to–peer service groups, which is suggested
to extend the approach to flexible content repository functions so that it can also be used
for hybrid peer–to–peer overlays. For example, peer–to–peer service groups may be used
as indexing peers to consistently administrate the replicated metadata of a repository.

• A generic method is stated to facilitate a decentralised and dynamic code loading of
services for peer–to–peer overlays: the approach benefits integration and maintenance of
a system being operated by many peers. The method represents a major building block
of peer–to–peer service groups. The definition of a generic peer architecture enables the
mechanisms to extend a peer’s abilities dynamically at runtime.

As a result, this thesis evaluates how the proposed architecture and the peer–to–peer based
methods enable flexible content management: on the one hand, the architecture is evaluated
using qualitative considerations, for example, considering its suitability in the context of both
a cross-enterprise business collaboration scenario, and an intra-enterprise knowledge manage-
ment scenario. On the other hand, the methods—on the basis of DhtFlex and peer–to–peer
service groups—are analysed by quantitative observations respecting reliability, consistency,
reconfigurability, scalability, and performance properties.
The introduced solutions narrow the tradeoff between requirements of content repositories

and inherent properties of peer–to–peer systems.



Zusammenfassung

Der Einsatz dedizierter Content Repository Systeme bedeutet einen Perspektivwechsel in dem
Gebiet des Content-Lifecycle Managements; eine Anwendung dieser Systeme verspricht sowohl
technische als auch finanzielle Vorteile. Heutige Ansätze für derartige Systeme basieren im
Wesentlichen auf zentralen und statischen Client–Server Architekturen. Allerdings zeigen sich
derartig konzipierte Systeme wenig flexibel bezüglich der Unterstützung verschiedener Content
Modelle und (nicht-)funktionaler Eigenschaften (wie Skalierbarkeit, oder dem Ermöglichen
einer dynamischer Rekonfiguration zur Laufzeit).
Um diese Nachteile zu kompensieren wird in dieser Arbeit ein dezentraler Ansatz basierend

auf dem Peer–to–Peer (P2P) Paradigma entwickelt. P2P Architekturen ermöglichen flexiblere
Kommunikations- und Interaktionsmuster und erschließen sich immer mehr Anwendungs-
domänen. Obwohl P2P Systeme das erste Mal vor rund einem Jahrzehnt als ein vielver-
sprechendes Paradigma für Verteilte Systeme populär in Erscheinung getreten sind, wird ihr
erfolgreicher Einsatz nach wie vor mit einfachen Filesharing Szenarien assoziiert; so fehlen den
meisten dieser (monolithischen) Systeme die von Content Repositorys benötigten (nebenläufi-
gen) Techniken zum Datenmanagement.
In dieser Arbeit wird die Anwendbarkeit des P2P Paradigmas im Hinblick der Funktio-

nen eines Content Repositorys untersucht und eine Architektur sowie Methoden präsentiert,
um ein flexibles Content Management für P2P Systeme zu ermöglichen. Entsprechende For-
schungsfragen resultieren aus (i) der Reflexion verschiedener Charakteristiken und Beziehung-
en von Content Daten, (ii) der Unterstützung eines adäquaten Content Repository Modells
und (iii) der Berücksichtigung der Eigenarten einer heterogenen, dynamischen P2P Umge-
bung.
Die Arbeit leistet die folgenden wissenschaftlichen Beiträge:

• Es wird eine generische und modulare Architektur für P2P-basierte Content Reposi-
tory Systeme eingeführt: In der Arbeit wird die logische Perspektive eines Content
Repositorys beschrieben und analysiert. Die resultierende Architektur ist in der Lage
von spezifischen Einzelheiten des Daten Managements zu abstrahieren und lokale, sowie
entfernte (verteilte) Speicherbereiche zu unterstützen. Eine Besonderheit liegt dabei
auf der Definition einer persistenten Speicherschicht. Diese ermöglicht eine Integration
entsprechender P2P-basierter Methoden zur Implementierung der flexiblen Funktionen
eines Content Repositorys.

• Es wird ein Konzept zur generischen Abbildung von (fragmentierten oder verteilten)
Content Daten auf persistenten Speicher gezeigt: Das Konzept ermöglicht die Integra-
tion flexibler Speicherungsstrategien um den gewünschten Grad an Flexibilität für das
Content Management festzulegen. Ferner wird ein generisches Konzept zur Annotation
und entsprechenden Abbildung von (Content) Entitäten auf die persistente Speicher-
schicht illustriert.

• Mit DhtFlex wird eine Methode zur Ermöglichung eines flexiblen, atomaren Daten
Managements in strukturierten P2P Overlaynetzwerken präsentiert: Für diese ermög-
licht DhtFlex die Implementierung flexibler Content Repository Funktionen. DhtFlex
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verkörpert einen modularen Ansatz, um die Konsistenz verteilt gespeicherter Replikate
einer Datenressource im Hinblick nebenläufiger Änderungen zu gewährleisten. Der An-
satz erlaubt flexible und gleichzeitig effiziente Datenoperationen durch das Konzept an-
notierter Datenressourcen. DhtFlex bietet einerseits atomare Operationen für modifizier-
bare Datenressourcen; andererseits ist DhtFlex in der Lage nichtveränderbare Datenres-
sourcen zu erkennen, um ein effizienteres Verarbeiten eben dieser zu erreichen.

• Es wird eine rekonfigurierbare Gruppenkommunikation zur Unterstützung eines flexiblen
Replikationsmanagements für hybride P2P Overlaynetzwerke vorgestellt: Diese Metho-
de ist ein wesentlicher Bestandteil zur Implementierung P2P-basierter Dienstgruppen;
dieses Konzept soll die Implementierung flexibler Content Repository Funktionen auf
hybride P2P Overlaynetzwerke erweitern. So können P2P Dienstgruppen dem Index-
ieren, das heißt der konsistenten Verwaltung replizierter Content Repository Metadaten
dienen.

• Es wird eine generische Methode zum Ermöglichen eines dezentralen und dynamischen
Codeladens von Diensten in P2P Overlaynetzwerken definiert: Der Ansatz begünstigt
die Integration und Wartung eines aus vielen Peers verkörperten Systems. Die Methode
ist ein wichtiger Bestandteil P2P-basierter Dienstgruppen. Die Definition einer gene-
rischen Architektur für einen einzelnen Peer bietet die Grundlage dessen Fähigkeiten
dynamisch zur Laufzeit zu modifizieren.

Als Ergebnis wird evaluiert, wie Architektur und Methoden ein flexibles Content Ma-
nagement ermöglichen. Einerseits wird die Architektur unter qualitativen Gesichtspunkten
evaluiert, wie im Hinblick auf deren Eignung im Kontext der Szenarien geschäftlichen Zusam-
menarbeitens über Unternehmensgrenzen hinweg und organisationalen Wissensmanagements.
Andererseits werden auf Basis von DhtFlex und P2P-basierter Dienstgruppen, die Metho-
den größtenteils bezüglich quantitativer Gesichtspunkte wie Ausfallsicherheit, Rekonfigurier-
barkeit, Skalierbarkeit und Leistung analysiert.
Die Lösungen zeigen das Potential, die Lücke zwischen den Anforderungen eines Content

Repositorys und den inhärenten Eigenheiten von P2P Systemen zu schließen.
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1 Introduction

The management of digital content1 has always been one of the major tasks of a data processing
system. Even today, it is, however, a common method to store content in an unstructured
way to local file systems and to retrieve it by explicit user interactions. If at all, users often
impose structure to content a posteriori—in terms of file to folder matching, for example.
However, in process of time, the types of content, its amount, and the way people want to
use it have changed dramatically demanding for methods to enable more flexible management
of content. For instance, the lack of such solutions promotes desktop search programmes like
Google Desktop [7] or Windows Search [11], which have emerged to provide capabilities to
search the contents of a user’s local computer files, rather than searching the Internet.
Gartner [78] among others have observed converging key trends that further drive the need

for distributed management of content. The increase of working over the Internet and dis-
tributed collaboration within and among enterprises requires sharing produced data. But
especially the explosion of unstructured content data complicates filtering, administration,
and controlled exchange. For instance, performance restrictions may demand storing such
data at its source and to preserve its native format—thus enabling remote access. Struc-
tured content data is traditionally maintained in data warehouses or application databases;
but unstructured content cannot be stored, for example, in relational databases without some
transformation; sometimes, however, accordingly predefined data schema do not yet even ex-
ist. As the amount of content data grows significantly, the need for its management gets more
and more critical. Manual management may lead to inefficiencies where urgently requested
content cannot be found.
Content management systems (CMSs) promise to be one general step towards more struc-

tured and controlled administration. Latest developments recommend CMSs to build on
specialized content repositories [66]. Content repositories shall enable the management of
both structured and unstructured content. Typically, they act as a meta layer on top of tra-
ditional persistent data stores, such as database management systems, providing additional
capabilities.
Over the past few years, content repository based solutions like Alfresco [2] or Commu-

niqué [6] have been widely deployed for industry usage. Thereby, the content repositories
themselves are developed as centralised client–server architectures. These architectures pro-
vide functions like content storage, retrieval, or access control on the basis of a single server,
which is intended to be accessible by many clients. As an illustration, Figure 1.1 depicts a
taxonomy of computer systems.
Usually, such flat client-server architectures are well suited for static networks and com-

puting infrastructures, where the need for hardware resources can be predetermined quite
well. Considering, however, availability of crucial content, if the single server fails, the whole
system service is no longer available, which is known as single point of failure. It is a more
and more important demand in the area of distributed systems to be able to deal with such

1Throughout this thesis, the terms content or content data are assumed to represent any type of digital
pieces of information. For instance, content may encompass textual, graphical, or multimedia documents:
possibly, anything that is suitable to be managed in an electronic format. Section 2.1.1 reflects this terms
in more detail.
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Figure 1.1: Taxonomy of Computer Systems

failures. Other problems refer to performance and scaling of a dedicated, single server if the
amount of users, data, and traffic increases significantly. Replication strategies promise to
improve overall system scalability and fault tolerance. Distributed database systems (DDB)
as an example for hierarchical client–server systems may split large content data sets to dif-
ferent physically distributed network nodes to establish more efficient data querying through
parallelism [70]. However, if replication strategies are applied in distributed systems, the con-
sistency of data needs to be ensured. Therefore, these techniques usually employ a point of
central coordination, as shown in Section 2.5.

In contrast to traditionally applied static client-server architectures, the peer–to–peer (P2P)
paradigm offers a more flexible communication pattern migrating into more and more appli-
cation domains.

The increase in storage capacities, processor power of commodity hardware, and technolog-
ical improvements to network bandwidth—accompanied by the reduction of its costs—foster
decentralised solutions by pushing computer power to the edge of networks. For instance,
today even commodity desktop machines are able to store huge amounts of content data and
to act as basis for building sophisticated computing infrastructures [81]. The large deployment
of wireless networks facilitates distributed communication and collaboration.

For instance, there has been significant increase of P2P-based systems regarding their pop-
ularity and their employment for content distribution in the Internet: P2P is often described
as computing at the edge of the Internet. As an indicator, observations of data traffic in
the Internet revealed that the traffic caused by P2P systems already exceeds that caused by
traditional applications of theWorld Wide Web (WWW) [151]. The P2P communication ap-
proach has proven to be practically successful in various domains of distributed applications,
ranging from file sharing [57] across Voice over Internet Protocol (VoIP) [24] to Internet
Protocol Television (IPTV) [93].

It is just a particular feature of P2P systems to aim at distributing data management
among the participating peers. It is a challenge in such systems to remove central components
as potential bottlenecks of a distributed system thus guaranteeing consistency of content.
However, the more data and system functions of a P2P system can be replicated among
different peers the higher gets overall system reliability and robustness.

In addition, in contrast to rigid and dedicated components that are usually employed by
client–server architectures, a P2P approach may provide opportunity to act as a method to
implement even more flexible requirements as demanded by the self-x properties of autonomic
computing systems [105]: P2P concepts may support building a system which uses self-
configuration, self-optimization, or self-healing functions. However, as a P2P approach avoids
the strict client–server node model, it may demand for more implementation effort regarding
organization and interaction of its participants. It is the question how such tasks may be
facilitated to implement this paradigm.
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The aim of this thesis is to investigate applicability and issues of the P2P paradigm in the
context of content repository functions. As already indicated, the latter being a prevalent
domain of client–server architectures. This thesis evaluates how P2P-based solutions may
enable flexible content management and may deal with subsequently raised research challenges
(see Section 1.2).
In the following section, challenges and benefits of a P2P-based content repository approach

are illustrated by a couple of scenarios. Then, Section 1.2 motivates the research of this thesis
and states the necessary research challenges. This is followed by an overview of this thesis’
research contributions in Section 1.3, and the list of related publications in Section 1.4. Section
1.5 gives an outline of the remainder of this thesis.

1.1 Sample Scenarios of a Peer–to–Peer-Based Content

Repository

The following scenarios show several characteristics regarding the provision of P2P-based
content repository functionality.2

The first scenario illustrates the promising role a P2P-based content repository may play in
the context of cross-enterprise business collaboration from a user’s point of view. The scenario
especially highlights ad hoc capabilities of such architecture to support dynamic exchange and
storage of business process content in a cross-enterprise context. The scenario identifies needs
for flexible repository functions to enable consistent administration and retrieval of different
business content.
The second scenario states challenges and benefits for a P2P-based content repository in the

context of intra-enterprise knowledge exchange or rather management—applying the concept
of so called wikis, as an incarnation of the Web 2.0. As it is common today that enterprises
are present at various globally distributed locations, the need for a common platform arises to
support collaborative knowledge management. The scenario raises requirements for such sys-
tem to enable implementing wikis as collaboration platforms for intra-enterprise employment.
It identifies that it is important for such a content repository system to be able to support
reliable and large-scale functions to ensure consistent and complex content-data handling with
respect to concurrent modifications and large amounts of content data.
Both of the scenarios indicate processes which are inherently distributed—moreover, even

decentralised. This encourages the approach of a P2P-based solution.

1.1.1 Cross-Enterprise Business Collaboration

This scenario exemplifies requirements and opportunities of a P2P-based content repository
to support collaborative working with business content. The context of the investigated sce-
nario is derived from former work as part of the ATHENA programme [1].3 The usage of
a P2P-based content repository is evaluated with respect to an electronic procurement pro-
cess scenario, which has originally been developed in scope of ATHENA IP Project A7 [18]
investigating business content for selected industry best practice. The scenario particularly
motivates the usage of a generic repository interface to facilitate its adoption in a cross-
organizational business context [23].

2A scenario is commonly regarded as an instance of some (more general) use case.
3ATHENA is an integrated project (ATHENA IP) funded by the European Commission aiming at business
interoperability.
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Description

The increasing business collaboration among enterprises during the whole product life cycle is
an indispensable procedure for corporate success. Here, the involved business partners need
to define and execute common business processes to seamlessly interoperate across organiza-
tional boundaries, specifying the steps to be performed by each partner and the data to be
exchanged. There has been done intense research on how to define these processes in a plat-
form independent way, for example, using Business Process Execution Language (BPEL) [13].
However, once the business process is defined, it must be guaranteed that all business partners
have access to the business contents being created, including business documents, protocols,
and their models—which may exist in various forms [16]. In order to successfully manage such
collaborations, it is critical to provide effective, goal-oriented, and in-time content access.4

P2P Workspace

Retailer 1

Retailer 2

Retailer N

...
Manufacturer

Request for Quotation

Order Confirmation

Order

Quotation

Request for Quotation

Order Confirmation

Order

Quotation

Supplier 1

Supplier 2

Supplier M

...

Process Execution Level

Content Management Level

Figure 1.2: Main Interactions of the ATHENA IP eProcurement Scenario

Figure 1.2 illustrates the industry scenario dealing with the event-driven procurement of raw
material and end products. At both levels, a content repository shall support business partners
to ensure reliable execution and collaboration facing different semantics and heterogeneity of
employed systems.

• At process execution level, the involved business partners are a product manufacturer,
N retailers, and M suppliers. Interaction events between the partners are marked with
the business content being exchanged, for example, business documents. Considering
the M suppliers, for example, the scenario assumes that different suppliers need to be
integrated to the business process dynamically at runtime.

• At content management level, the experience shows that each partner may need different
types of models depending on the used architectural level. For instance, on the supplier
side, business level experts are involved in defining the document models that are to

4For instance, it is still topical to rely on email to manage collaborations; but such unstructured content-
exchange may be too slow and just hard to coordinate [70].
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be used for interactions with the manufacturer. If technical level representations are
required, those documents must be transformed into different formats. Apparently, the
business content appears in a huge number of different formats, respecting domain-
specifics or rather various origins—varying from any propriety to several standardised
formats [16], for instance, XML represented respecting certain XSDs. The size of data
objects varies, as well as the applicability at different business levels.

In the following, the scenario is analysed regarding requirements at (i) content support,
(ii) content repository support, and (iii) P2P support.

Content Different business content demands for a generic content repository interface. Busi-
ness partners shall be able to typify their content and define content relationships. A
characteristic of this scenario is that involved partners want the possibility to keep their
own, possibly confidential business contents in supervised local storage areas.5 To sim-
plify integration of content, however, access functionality shall be supported in a uniform
way: the distribution of content shall be transparent, from a user’s point of view. For
example, only metadata of the concrete document instances may be shared in the P2P
workspace.

Content Repository Different content repository functions need to be supported. Regard-
ing content sharing and distribution, search functionality shall enable complex query
requests. The support of some kind of access control is crucial in the context of cross-
enterprise business collaborations. For instance, business partners may be both collabo-
rators and competitors in a complex business relationship. Accordingly, read and write
access may be restricted. To coordinate collaborative working between different part-
ners certain content may be locked to prevent concurrent modifications. Accordingly,
business partners shall be enabled to subscribe for being notified if certain content is
available.

A P2P-based content repository shall enable robust, consistent, reconfigurable, and scal-
able storage of business contents in the face of concurrent modifications; it shall facilitate
an easy exchange and thus collaborative work among the involved business partners. For
example, resilience to node failure shall enable continuation of the overall collaboration
process: even if a partner is temporarily unavailable, the others shall still be able to
continue working; the absent partner may even access the created content after recover-
ing [174].

Peer–to–Peer The P2P system shall support dynamic integration of business partners, for
instance, to equip them with necessary service functionality at runtime. Thus, it shall
be enabled to dynamically set up a P2P collaboration space in an ad hoc way.

5Certain content should reside on own local storage areas until released and made available for collaboration.
Such approach increases local autonomy as business partners are able to control their own content. Fur-
thermore, distribution of content may reflect organizational structure as parts of the P2P-based content
repository can be located at the sites they belong to. This may also support content availability, as it
is crucial to rely on foreign sites to exclusively offer critical content. Hence, it is essential for a content
repository to provide a way to describe how certain content is shared and with whom it is shared, or rather
distributed.
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Discussion

Regarding content management, a state of the art approach requires either each partner to
host some dedicated repository server, which offers relevant business content, or even a central
entity of control to be set up and store the business content of all involved partners:

• From a technical point of view, the first option usually implies partners to deal with dif-
ferent storage interfaces and philosophies demanding (huge) integration efforts. These
may be amplified by the heterogeneity of different network segments, by network changes,
or by the need for a certain degree of shared coordination, as searching for relevant
content must comprise all involved partners. In addition, spontaneously formed collab-
orations would become difficult. Furthermore, an employed single server would need to
be highly robust in order to ensure high content availability in collaboration processes.

• From an economic point of view, both cases demand integration costs and expensive new
infrastructure on which all partners must rely. However, especially small enterprises,
as the suppliers in the scenario, may not be able to afford operating high-end servers
and network connections. Regarding the centralised approach, additionally undesirable
questions of responsibility occur to operate and accordingly to pay for the central serving
entity. A further problem with such static architecture concerns its maintenance costs
regarding spontaneously or temporarily formed business collaboration; and finally, an
obsolescence of the collaboration would leave the expensive infrastructure wasted.

This thesis takes the position that the issues described above can be solved by using a
P2P-based content repository. Such repository shall be designed to run as a common overlay
layer on top of existing network and (commodity) hardware platforms. Thus, no additional
operation expenses are necessary when employing such system to implement the dynamic
collaboration environment. In addition, a P2P-based repository shall be self-organizing to
avoid manual management of a dedicated infrastructure, which in turn lowers administration
costs; for instance, it reduces overhead of manual configuration if a business partner needs to
be introduced or removed.

1.1.2 Intra-Enterprise Knowledge Management

Intra-enterprise knowledge management aims to facilitate and optimize the retrieval, transfer,
and storage of knowledge content. However, the sole exchange of such content is difficult:
inconsistencies between redundant content may lead to problems and additional efforts [163].
The common practice in enterprises to employ various storage locations, for instance, an em-
ployee’s local workstation, group storage devices, or intranet servers, demands for knowledge
content consolidation.
As it is common today, that enterprises are present at various globally distributed locations,

the need for a shared platform arises to support collaborative knowledge management. A
P2P-based content repository may be used to apply the concept of so called wikis6 to improve
intra-enterprise content management.

6A wiki [118] is a popular application of the so-called Web 2.0 [136]. For example, the WWW based
collaborative encyclopaedia Wikipedia [10] is based on such application. The Web 2.0 shows the trend to
enable more and more traditional desktop applications as browser integrated solutions over the Internet.
At its core, Web 2.0 aims to employ a user as a consumer but also as a producer of content. Key factors to
drive this development are the availability of web services, broadband communication as commodity, and
asynchronous JavaScript and XML (AJAX) technology.



1.1 Sample Scenarios of a P2P-Based Content Repository 7

Description

Corporations with their organization in many different units, show complex structures regard-
ing the number of domains or management of knowledge content. For example, each of the
participating departments may maintain its own view of the enterprise world. Usually, a unit
represents an organizational related or product related task, as accounting or marketing. In
different units, however, different content vocabulary may be used.7

The usage of a wiki promises to combine the sharing of inter-enterprise knowledge with low
administration efforts. From a technical perspective, a wiki basically represents a network-
based information collection. A content repository may provide functions to reduce a wiki’s
creation and maintenance costs: presentation of content shall be decoupled from its back-
ground organization and storage location to support construction of web page instances on
demand.8 The decoupling of design management, data structures, and content shall support
reuse of content.

Read
Functionality

Update
Functionality

Query
Functionality

Database
(Content)

Search
Index

Page Management
Centralised

Content
Management

Index Creation

Query
Requests

Update
Requests

Read
Requests

Peer-to-Peer
Content

Management

Figure 1.3: Towards a P2P-Based Wiki Architecture

Figure 1.3 illustrates the basic architecture of a centralised wiki system. It is the challenge
for a P2P-based content repository to distribute content management functions and storage
in the face of concurrent requests.
The scenario assumes that more and more projects require collaboration of geographically

distributed persons to exchange content data, or rather knowledge; these persons may belong

7One way to deal with this would be the use of a common ontology [71]. However, this scenario focuses more
on the benefits offered by the Web 2.0 approach of collaborative tagging [136].

8A wiki’s visual representation shall be designed using some template scheme, which defines place holders for
the actual content. The actual content shall be selected according to some rules on-demand and it shall be
integrated within the relevant part of a corresponding wiki page dynamically at runtime.
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to different departments, which demands for collaboration across hierarchical boundaries—a
drawback of centralised client–server based systems [163]. P2P content management shall
simplify knowledge cooperation by administrating content in one virtual place. This way, it
shall facilitate the dissemination of content to all interested parties. Thereby, the inherent
degree of distribution shall be transparent to users.
In the following, the scenario is analysed regarding requirements at (i) content support,

(ii) content repository support, and (iii) P2P support.

Content Administration of content shall support the dealing with huge amounts of wiki pages
and potentially large media files.9 In addition, it shall enable the usage of flexible storage
policies for coping with different types of content: for example, different methods may
be used to store small-sized, text-based content or large-sized, multimedia content.

Each wiki page shall have a unique identifier and may have cross-references to other
pages building some tree-like content structure to allow basic navigation. Hereby, a
single page may be divided into several sections to store its current content information
and links. A page may be even configured as kind of symbolic link to redirect all of
its read requests to another page. In addition, content may be decorated with meta
information like keywords or tags representing authors and other categories.10

Content Repository The life cycle of wiki pages is assumed to be characterised by continu-
ous modifications: new pages may be created, existing pages may be read or updated. The
corresponding tags may be dynamically created and may change over time. The scenario
assumes that users are required to see an ever-processing view of the shared content,
even if high-level conflicts occur: versioning shall be enabled to provide mechanisms to
detect such conflicts and to support their resolution. Hence, the update of a page shall
result in the creation of a new page succeeding the previous version. Once created, a
certain version never changes. For each page some history structure shall exist to link all
versions together to allow the tracking of changes. Change tracking shall support push-
based notifications, if changes apply to content of interest. The employment of an access
control mechanism shall allow for user authentication to support an enterprise-wide or
a department-wide modification of content. While a single version never changes, the
editing of shared content may result in concurrent modification requests: a locking prim-
itive shall enable the exclusively blocking of content against undesirable update access.
Query functionality shall support the passing of tags or keywords to search for pages.
Thereby, the query part of the architecture shall be separated: it shall use a separate
search index generated from the text of pages periodically.

The P2P-based content repository system shall enable building an enterprise-wide wiki
as a shared knowledge space and a shared structure of content organization. Therefore, it
needs to be scalable and be of good performance. However, as most important feature the
system shall support fault-tolerant and consistent content management: once content
is stored to the system, it shall not be lost. This raises the challenge to coordinate
concurrent activity and to protect the consistency of created artefacts to keep content
up-to-date across geographically distributed locations. The system shall be reconfigurable
to enable a policy-based approach for content management.

9A wiki page shall be composed in human-readable, simplified markup syntax. In addition to its textual
information, it shall be able to embed files, for example, static content like pictures or streaming multimedia.

10A tag as some freely chosen user-generated metadata refers to a certain aspect of a content object. Multiple
tags shall allow some content to belong to more than one category—which is a limitation of traditional
hierarchical organized content.
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Peer–to–Peer The P2P system shall be self-organizing to handle continuous arrivals and
departures of peers; for example, as a result of failures. It needs to provide a decentralised
method to determine the placement of content, as the physical location of content may
change regularly. In addition, it shall be enabled to dynamically integrate departments
to the system in an ad hoc way.

Discussion

From a social point of view, a wiki is formed by a community, which wants to share its knowl-
edge. The scenario claims that it is a great opportunity for an enterprise to employ the wiki
concept as a shared intra-enterprise method to exchange and to manage knowledge: the effec-
tive management of available knowledge is a deciding competitive factor for enterprises [163].
Access to relevant knowledge and its utilisation are especially desired with respect to shorter
product design and development cycles.
However, the scenario identifies the problem to provide access to distributedly stored con-

tent and to issue such content in a network of geographically distributed locations with even
mobile users. The usage of collaborative tagging may help to facilitate and to augment search-
ing for content; it may even increase the possibility of content discovery from the so called
long tail [14]. For example, different departments may tag the same content with different
keywords—suited for their own working domain. It is assumed that important content will be
usually more often cross-linked with the effect that it is easier to find.
In contrast, a state of the art strategy of intra-enterprise knowledge management may show

several drawbacks: the usage of separate knowledge management per department may result
in incomplete, inconsistent, and outdated content. Reorganization of department structures
may even complicate the conflation of content. From bad to worse, experts who leave the
enterprise may leave its often high-value content orphaned: for example, if content is only
locally available, it cannot be reused in an efficient way.
The scenario assumes that the amount of available knowledge content in an enterprise is

growing permanently. This growth complicates the management and maintenance of content.
A state of the art approach uses a centralised architecture to implement the application logic
of a wiki and to administrate its content.11 However, the centralised architecture raises both
technical and financial issues for its operator.

• From a technical point of view, a central wiki architecture shows modest scaling, because
of employed static, central components. This is especially the case in the face of large
media data or great amount of abrupt content requests, so called flash crowds [175].
Thus, employing a single site would be a bottleneck for the system.

• From an economic point of view, a complete replication of all content at each department
site is often neither practical nor cost-effective. However, centralised components would
typically constitute the majority of costs of such system. This raises the question to
spread infrastructure costs in a fair way among the departments. In addition, power
consumption may impose a restriction to how large the central location is able to grow
in size.

This thesis takes the position that the issues described above can be solved by using a
P2P-based content repository. Such a system shall remove central components to avoid single

11For example, the usage of geographically distributed cache servers for content distribution may benefit read
requests. However, update requests target the central database.
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points of failure. It shall use content replication strategies to be less vulnerable to failure of
individual network nodes and network connections.12 This demands for a flexible architecture
to implement the required functions in the distributed environment. The P2P system shall be
self organizing to reduce administration and ad hoc integration efforts; it shall enable content
exchange between departments for a more efficient use of network bandwidth, and shall reduce
operating central resources like dedicated server hardware. The P2P approach promises to
help distributing content and to reduce hosting costs at the same time: for example, by
employing and aggregating a department’s computing resources, it offers the potential to
spread infrastructure costs in a fair way among single departments.

This section illustrated benefits and indicated challenges for a P2P approach to enable
flexible content repository functionality. The following section outlines the problem statement
and research challenges that this thesis identifies in order to achieve the objectives.

1.2 Problem Statement and Research Challenges

Employing dedicated content repositories is a change in perspective of content lifecycle mana-
gement [65]. However, in spite of standardisation efforts, for example, by the Java Community
Process [65, 66] yet no generic definition of a content repository’s functions and architecture
exists. Regarding design and implementation, a state of the art approach of a content reposi-
tory is primarily based on a centralised architecture. Even with evolving efforts to facilitate
this shift of content management perspective, however, today’s content repositories are less
flexible regarding the support of different content models, offered functionality as dynamic
runtime reconfiguration, or distributed system models. For example, despite the cognition
to distinguish between different types of content, explicitly known semantic of content data
(as the degree of importance) is neglected. But semantics of such knowledge regarding cer-
tain content types may be exploited, for instance, to optimize overall system performance
supporting a policy-based approach.

This thesis aims at providing methods for building flexible content repository functionality
that is able to support fault-tolerance and consistency even in highly dynamic P2P systems.
There is state of the art to build basic P2P systems; however, there exists a gap between such
mostly proprietary and monolithic systems and generic methods to enable content repository
functions. In order to close the gaps, fitting techniques in the domain of P2P computing
and content management will be introduced and used in this thesis in order to enhance the
currently predominantly vision of content repositories and P2P limitations. As such, the work
focuses on generic building blocks that may be employed in several P2P overlays and thus
work efficiently in such dynamic settings.

Subsequently, a set of research challenges is defined in order to identify and define the scope
of this thesis. These challenges refer to system techniques and types of problems that should
be dealt with—Chapter 2 aims to delimit these considering current work. The challenges
are based on the scenarios in Section 1.1 and accordingly classified regarding (i) content
model, (ii) content repository model, and (iii) P2P model. As brief indication, content model
challenges aim at fostering a content-centric approach. Content repository model challenges
target at identifying the functional and non-functional limit of the techniques developed in this
thesis. The challenges for the P2P model describe the distributed context that the techniques
address.

12For example, is may be assumed that geographically distributed resources are not likely to fail at the same
time.
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1.2.1 Research Challenges Regarding the Content Model

Research challenges on flexible content management shall motivate the reflection of different
content characteristics and relationships.

A.1. Recognition of Content Types, Relationships, and Explicit Semantics
It is assumed that content exists in various types and relationships, where some content
may be more worth than other for a certain user. Thus, semantics of user knowledge
about certain content shall be supported in order enable content-focused adjustment of
management policies. It is essential for such content model to be able to relate content
and to uniquely identify type and instance of certain content items.

A.2. Degree of Content Access Transparency
It is one way to administrate a content item as a complete data block. Another one
is to split a content item up into several fragments. Especially, this strategy is often
desirable for large content items. From a user’s point of view, implicit fragmentation
of content shall be transparent; for example, regarding the allocation of such fragments
or the providing of uniform access. However, explicit fragmentation of content shall be
enabled and be manageable.

A.3. Degree of Content Distribution Transparency
It is assumed that limitations to specify physical storage locations for content items
are not always desirable. A flexible model shall be able to distinguish between content
items regarding explicit storage location constraints, but also to employ implicit storage
policies. However, from a user’s point of view, potential distributed storage of content
shall be transparent. Hence, using different storage devices shall be supported without
the need for changing logical content types or relationships.

1.2.2 Research Challenges Regarding the Content Repository
Model

This section identifies research challenges for methods to implement an adequate content
repository model. Therefore, it raises research issues divided into functional and non-functional
properties.

B.1. Functional Properties
The presented scenarios mark a basic scope to define functional requirements for a
content repository system. However, the pursue towards a generic solution needs clear
identification of essential functional building blocks and their relationships.

a. Generic Architecture
The system demands a generic and modular architecture—big, monolithic architec-
tures are generally difficult to manage and to modify. Such architecture shall em-
ploy specific functional modules to allow flexible extensibility. It shall be able to be
adopted to local as well as to distributed system environments.

b. Concurrent Access to Functionality
Users shall be enabled to gain admittance to system functionality concurrently. This
requires the system to be able to simultaneously interact with multiple users even in
distributed context.
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c. Identification of Functional Building Blocks
Regarding the scope of a general content repository architecture, it is necessary to
identify, describe, and analyse suited functional building blocks. As the system model
assumes a distributed context, the demanded functionality from each building block
needs to be defined and considered with respect to certain non-functional properties.
This shall lead to more flexibility in offered functionality.

d. Interaction of Functional Building Blocks
Regarding separation of concerns, clear roles and functions shall be defined for each
building block. This demands for functional modularity, encapsulation, and informa-
tion hiding. Relationships and interactions of functional building blocks need to be
analysed.

B.2. Non-Functional Properties
Methods to implement defined functional requirements of a content repository’s archi-
tecture need to regard non-functional properties. These may act as indicators to define
the quality of developed solutions.

a. Transparency of Functionality Distribution
The access to a repository’s functions shall be transparent with regard to the em-
ployed methods to implement them: that is, the distribution degree of the methods
shall not be visible to the outside of the system, by default. Hence, distribution of a
content repository shall be transparent to users. However, a flexible degree of content
distribution transparency demands flexible access to a system’s functionality.

For example, transparency of functional distribution shall be valid if the methods
provide a uniform interface.

b. Reliability
The administration of content shall require support for flexible policies regarding
fault-tolerance properties: service failures shall be handled in an appropriate manner.
For instance, if a failure situation occurs, a method needs to react accordingly in
order to minimise the disruption of system functionality. This may be even done
in a proactive manner to avoid such failures by taking proper actions to reduce
their probability of occurrence. Furthermore, observation of uptime behaviour may
play a role to allocate certain services in order to increase availability of system
functionality. The usage of replication mechanisms shall be considered to enhance
service and system availability.

For example, reliability shall be measured by the number of failed peers the system
is able to tolerate until availability of system functions is affected.

c. Consistency
The degree of system reliability affects availability of system functions and persistence
of content, for example, to tolerate power cycles of peers. It is assumed that replica-
tion is one appropriate way to deal with this. The degree of replication raises the need
for techniques to cope with tasks of consistency protection as concurrent modification
efforts are assumed. For example, if replicated content is concurrently modifiable by
multiple users, the problem of ensuring replica consistency occurs. However, different
consistency policies shall be supported, which require flexible coherence mechanisms
to support correct system functionality.

For example, considering content data management, consistency shall be valid if
methods support some kind of atomicity.
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d. Reconfigurability
The content repository system shall be capable to change its behaviour by reconfigu-
ration. For example, this shall support flexible adjustment according to dynamically
changing conditions of the system’s environment or to changing demands for content
availability.

For example, reconfigurability shall be valid if methods support the usage of policies
to change their behaviour dynamically at runtime.

e. Scalability
The methods to implement content repository functions shall be scalable to systems
of varying sizes. This shall especially apply to storage mechanisms to administrate
many content instances. Hence, methods shall work well as the number of system
peers and data instances increases. For example, methods shall enable distribution
of the amount of content data to the participating peers.

For example, considering content management, scalability shall be measured by the
distribution degree of content data items to involved peers.

f. Performance
Although high-performance shall not be the primary goal, achieving good perfor-
mance shall be important. Execution of methods to implement content repository
functions shall be efficient regarding operation latency and operation overhead. For
example, if the number of involved peers and the frequency of content data modi-
fications continuously grow, the costs of maintaining consistency may become high:
in the context of distributed systems, transmission delays and number of exchanged
messages are usually crucial.

For example, performance shall be measured (i) by the latency to execute a certain
operation, or (ii) by the throughput of a certain operation considering a certain
interval.

1.2.3 Research Challenges Regarding the Peer–to–Peer Model

The methods to implement a P2P-based content repository shall reflect the research challenges
of the previous two sections with those raised in this section. This section shall move these
methods in the context of P2P peculiarities.

C.1. Peer Heterogeneity
The general idea of the P2P paradigm considers all peers to offer symmetric functional-
ity. However, it is assumed that peers in a system usually vary regarding their resources:
network and hardware characteristics may differ considerably. Hence, the same type of
service might be offered by several peers with a different response time and with a differ-
ent level of reliability. Developed methods shall not only tolerate, but also shall benefit
from such heterogeneity to increase performance dynamically at runtime.

For example, some system relevant data shall be placed at strategic locations. A corres-
ponding model shall reflect classification of peer heterogeneity.

C.2. Peer Dynamism
It is assumed that the characteristics of peers and the P2P network as a whole are likely
to change over time; for instance, participating peers are not guaranteed to be perma-
nently available. Developed methods shall respect such dynamics to continue operating.
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Moreover, they shall take advantage of those by dynamically adapting execution to new
situations, raising the degree of self-organization.

Regarding peer dynamism, methods shall enable self-organization as peers may period-
ically enter and leave the network—influencing system growth and topology.

C.3. Peer Service Deployment
It is assumed that the idea of decentralisation as provided by the P2P approach promises
to support system properties like resiliency or scalability—the more peers participate.
The joining of peers may introduce new resources to a system fostering diversity and
richness of services.

A generic architecture shall be able to support the dynamic deployment of peer services.
Hence, peers shall be able to be dynamically equipped with tailored service functionality
to adapt to new system situations at runtime.

1.3 Main Research Contributions of this Thesis

Given the stated research challenges from the previous section and the aim of this thesis to
provide an architecture and methods to enable flexible content management in P2P systems,
the according support of data management for P2P-based content repository functions is
crucial. These methods should comply with imposed research challenges at (i) content level,
(ii) content repository level, and (iii) P2P level. However, comparatively little attention has
been given to address these issues in research literature. Subsequently, main research con-
tributions of this thesis are listed to illustrate the achieved progress regarding state of the
art:

RC.1. Generic Content Mapping
This thesis presents a generic concept to deal with content (items): it shows a method
to annotate items introducing item states and to map these states to different back-
end storage entities. Therefore, it introduces (i) a naming concept to support such
generic mapping and (ii) the integration of policies to decide which degree of flexibility
in content management is desired. The latter is supported by the concept of seman-
tic annotations for data resources to enable fine-grained content type policies. The
establishment of such content-centric view allows a system to benefit from user knowl-
edge and to employ flexible, internal mechanism dynamically at runtime: as result,
this leads to optimized overall system behaviour, as it enables tailoring the demanded
degree of flexibility regarding support of functions per data-resource instance. This
enables more flexibility in application design as system properties may be customised
for application-specific needs.

This research contribution especially concerns research challenges A.1 and A.2.

RC.2. Generic and Modular Architecture for P2P-based Content Repositories
This thesis presents a generic and modular architecture for P2P-based content repos-
itories. Functional building blocks of content repositories are identified and their rela-
tionships are analysed to allow flexible extensibility. Thereby, a multi-tier architecture
is introduced to abstract from specific data management details and to integrate local
and remote (distributed) storage areas. From an application point of view, the bound-
aries between transient storage and persistent storage are transparent. This allows
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a content repository to combine the flexibility offered by P2P computing with the
uniformity of provided application interfaces.

This research contribution especially concerns research challenges A.3, B.1.a, B.1.c,
and B.1.d.

RC.3. Atomic Data Management for Structured P2P Overlays
This thesis presents the DhtFlex algorithm as a method to enable flexible content re-
pository functions tailored for structured P2P overlays. The fault-tolerant distributed
algorithm is especially designed for the needs of a distributed hash table (DHT) and
optimized for consistent management of replicated data resources in highly concurrent
and fluctuating P2P environments. DhtFlex supports self-organization and can act
as a generic building block on top of underlying structured P2P overlays. It uses
the concept of semantic annotations for resources to classify replicated data: DhtFlex
enables efficient support for immutable as well as for optimized atomic operations on
mutable data resources: this provides flexible content repository functionality for P2P
systems at content item level.

This research contribution especially concerns research challenges B.1.b, B.2.a, B.2.b,
B.2.c, B.2.d, B.2.e, B.2.f, and C.2.

RC.4. Reconfigurable P2P-based Group Communication
This thesis presents a reconfigurable P2P-based group communication system as a
method to implement P2P service groups. P2P service groups enable flexible content
repository functions tailored for hybrid P2P overlays. Thereby, the group communi-
cation system uses distributed consensus algorithms to implement flexible replication
management. In addition, it uses the concept of semantic annotations for resources to
enable a policy-based customisation mechanism for dynamic and efficient reconfigura-
tion of P2P service groups at runtime—without service interruption. As result, the
system allows to be tailored to application-specific and environment-specific require-
ments. For example, the support for different failure models may be customised.

This research contribution especially concerns research challenges B.1.b, B.2.a, B.2.b,
B.2.c, B.2.d, B.2.e, B.2.f, and C.2.

RC.5. Generic Method for Decentralised Code Loading
This thesis presents a generic method for decentralised and dynamic code loading of
peer services in basic DHT-based systems—a crucial and often neglected part of state-
of-the-art distributed systems. The usage of such method may facilitate integration
and maintenance of a system being operated by many peers, for example, delivering
hot updates at runtime. The method’s defined working model assumes heterogeneous
peers, which may play different roles and may offer different services over time: the
method enables to provide suitable service code for a peer’s local-host environment
assuming increasing dynamics, complexity, and heterogeneity. Its introduced mecha-
nisms are able to work in decentralised manner and to provide, discover, select, load,
and integrate platform-specific code dynamically at runtime.

This research contribution especially concerns research challenges C.1 and C.3.

These contributions have led to a number of publications, which are listed in the following
section.
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cation Technologies and the Knowledge Economy, pages 814–821, Nieuwe Hemweg 6B,
1013 BG Amsterdam, The Netherlands, October 2007. IIM, IOS Press. Proceedings of
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• Fabian Stäber, Giorgio Sobrito, Jörg P. Müller, Udo Bartlang, and Thomas Friese. In-
teroperability Challenges and Solutions in Automotive Collaborative Product Develop-
ment. In Ricardo J. Gonçalves, Jörg P. Müller, Kai Mertins, and Martin Zelm, editors,
Enterprise Interoperability II New Challenges and Approaches, volume 2 of Enterprise
Interoperability, pages 709–720, London, UK, August 2007. Springer London. Proceed-
ings of the 3rd International Conference on Interoperability for Enterprise Software and
Applications (IESA’07).

• Rüdiger Kapitza, Holger Schmidt, Udo Bartlang, and Franz J. Hauck. A Generic In-
frastructure for Decentralised Dynamic Loading of Platform-Specific Code. In Jadwiga
Indulska and Kerry Raymond, editors, Distributed Applications and Interoperable Sys-
tems, volume 4531/2007 of Lecture Notes in Computer Science, pages 323–336. Springer
Berlin/Heidelberg, 2007. Proceedings of the 7th IFIPWG 6.1 International Conference
(DAIS 2007).
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Distributed Computing and Systems (PDCS 2005), pages 680–686. ACTA Press, 2005.
Proceedings of the 17th IASTED International Conference on Parallel and Distributed
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Parts of this thesis are covered by the following patents:

• Udo Bartlang and Sebnem Öztunali. Verfahren zum Betrieb eines dezentralen Kommu-
nikationsnetzes durch Kategorisierung von Ressourcen. EP000002051443A2. September
11, 2008. European patent.
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1.5 Outline

The remainder of this thesis is structured as follows:
In Chapter 2, the relevant background is presented. The given survey aims to show to which

extent the raised research challenges are already met by current work and where current work
needs further extension or improvement.
Subsequently, content repository requirements in the P2P case are analysed in Chapter 3.

The essential functional building blocks that constitute and distinguish a content repository
system are identified and defined. In addition to the scenarios presented in Section 1.1, the
Content Repository API for Java Technology (JCR) [65, 66] is used to define them considering
the P2P context; dependence relationships between the derived functional building blocks are
identified and analysed. In the light of content repository functions, it is shown which P2P
overlays are suitable for enabling a flexible and generic implementation. The chapter contains
results that have been published in [80].
Following this, a generic P2P content repository system architecture is presented in Chap-

ter 4. This modular architecture especially considers the analysed requirements of the previous
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chapter. In the chapter, it is indicated how flexibility is supported at different design levels: re-
garding repository functions, content treatment, and peer services. Thereby, a generic content
repository architecture that suits different communication or storage paradigms is illustrated:
it integrates transient as well as persistent storage and supports local, distributed client–
server, or decentralised P2P communication. In addition, a generic concept is presented to
annotate content items introducing item states and to map these states to corresponding back-
end storage entities. Therefore, a suitable naming concept is stated to deal with such generic
mapping and a concept is given to integrate flexible content data policies. Finally, a generic
peer architecture is developed to represent the ability of a peer to being able to run a part of
the content repository: it shows a peer’s internal service architecture and highlights a peer’s
ability of dynamic service integration. In this chapter research contributions RC.1 and RC.2
(in cooperation with Chapter 3) are described. The chapter collates results that have been
published in [23, 79, 80, 99, 101].
In Chapter 5, methods for flexible content repository functions in structured P2P overlays

are introduced: DhtFlex is suggested, a fault-tolerant distributed algorithm tailored for the
needs of a DHT and optimized for the consistent management of replicated data resources in
such environments. It is shown how DhtFlex works and how the annotated resource concept
may be used to typify replicated data: the algorithms of DhtFlex are presented, which enable
efficiently support of immutable as well as for optimized atomic operations on mutable data
resources. In the chapter, it is shown how DhtFlex may serve as a generic building block to
construct content repository functions. The chapter describes research contribution RC.3. It
presents results that have been published in [22, 80].
Then, methods for flexible content repository functions in hybrid P2P overlays are shown

in Chapter 6. Reconfigurable P2P groups are introduced to exploit peer diversity and break
symmetry in order to cope with several non-functional requirements. A new approach is
described how the lifecycle of such groups may be managed and how relevant peer services
may be dynamically deployed. In addition, a method is presented to enable consensus-based
intra-group communication. The chapter shows how P2P service groups may serve as a generic
building block to construct content repository functions—applying replicated state machines.
In the chapter, research contribution RC.4 and RC.5 are described. It contains results that
have been published in [79, 99, 101, 148, 149].
In Chapter 7, the given architecture and methods to enable flexible content management in

P2P systems are evaluated. The chapter contains results that have been published in [22, 80,
148, 149].
The thesis concludes in Chapter 8 with a summary of the research and an outlook on future

work. The chapter indicates further usage of results that have been published in [173].
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This chapter presents the wider scope of this thesis. It gives an outline of the problem domain,
as well as the state of the art regarding existing solutions to help the classification of this thesis’
approach. Detailed related work is discussed within each chapter respectively.
The title of this thesis—named Architecture and Methods for Flexible Content Management

in Peer–to–Peer Systems—may serve as an initial assistance to frame its scope.

Architecture The term architecture can be defined as “the organisational structure of a
system” [176].

Methods Informally, the term method refers to the systematic way or characteristic tech-
nique(s) to achieve a certain goal.

Flexibility The term flexibility can be defined as “the ease with which a system or component
can be modified for use in applications or environments other than those for which it was
specifically designed” [176]. The aim of this thesis is to provide functionalities1 obeying
this principle at different architectural levels and thereby supporting the issues that were
raised by the sample scenarios of Section 1.1.

Content Management Usually, content management refers to a set of processes to support
the network-based management of content. This thesis emphasises the use of a content
repository as a major component of a content management system. According to Field-
ing [74], a content repository can be described as a generic application data store that is
able to handle both small and large-scale data interactions and to deal with structured
and unstructured content.

P2P Systems Peer–to–Peer (P2P) systems are the starting point and foundation of this
thesis’ approach to investigate and implement content repository functions. The P2P
model is an alternative to the client–server model for distributed computing: in its
purest incarnation, the P2P model treats all of its participants as equal peers, and has
no concept of a dedicated server entity.

This chapter is structured as follows:
Section 2.1 illustrates the context of a content repository; it explains the term content, and

briefly describes content management and content management systems—as origin of content
repository efforts. The section illustrates how content repository functionality is similar to
mechanisms to enable processing of distributed data in the context of distributed file systems
or distributed database systems.

1Informally spoken, the term function refers to the sum of aspects, capabilities, or features of what a product—
such as a software application—can do for a user. Thereby, a function can be referred to as (i) “a defined
objective or characteristic action of a system or component”, or (ii) “a software module that performs a
specific action” [176]. “In the software world, a computer-based process is known as functionality” [34].
“Software functionality expressed in user requirements is a key element for the measurement and planning
of the software process” [121].
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Section 2.2 provides the relevant basics of distributed systems, algorithms, and methods.
It defines used models for nodes, communication, and failures. On the one hand, it presents
concrete consensus algorithms; on the other hand, it indicates methods of fault-tolerant state
machines, group communication, and dynamic code loading.
Next, Section 2.3 introduces fundamentals of P2P systems. It basically focuses on the

classification of different overlay architectures.
Section 2.4 shows relevant properties of distributed file systems for both the case of client–

server systems and P2P systems.
Then, Section 2.5 presents distributed database systems. Again, relevant mechanisms are

illustrated for both client–server systems and P2P systems.
Finally, Section 2.6 concludes and summarises this chapter.

2.1 Content Repositories

There exists no uniform definition of a content repository. Bernstein [29] refers to a repository
as “a shared database of information about engineered artefacts, such as software, documents,
maps, (. . . ) and discrete manufactured components and systems (. . . ). Designing such engi-
neered artefacts requires using software tools. The goal of a repository is to store models and
contents of these artefacts to support these tools.” Following Bernstein, a repository is similar
to an object-oriented database (OODB), as repository systems enable applications “to store,
access, and manipulate objects, rather than records, rows, or entities” [29].
An additional characteristic is that both repository systems and OODB systems have

evolved from the trend to drive application functions into the underlying storage system.
However, Bernstein identifies differences between the two systems [29]: one major one, is the
information model of a repository system. In database terms, the information model is com-
parable to a schema for the repository, as it defines a model of the structure and semantics of
the entities that are stored in the repository. The applications that use a repository utilises
its information model to interpret the repository’s contents.
This is a difference to database systems, where developers usually assume the information

model to be part of the application level. Thus, a repository would support higher level
semantics than OODB systems [29].2

Figure 2.1 illustrates the basic concept of a repository system as a layer between applications
and database storage. The information model offers services to access the repository itself and
the items it stores—it is implemented on top of a repository engine: “a layer of software on
top of the database system” [29]. Thus, a repository engine would add entity and relationship
functionality onto a relational database system.
Bernstein [29] defines the following main functions of a repository engine:

• Object management to enable the storage of an object’s state (that is, its properties)
and the access to an object’s methods. Thereby, every object is described by some type.

• Configuration management to enable the grouping of objects; for example, the grouping
into configurations of workspaces.

• Dynamic extensibility to enable the adding of type definitions to the repository’s infor-
mation model.

2The benefit of a common information model within some area of engineering would be, for example, the
support of standard types of entities and the support of standard ways to manipulate them. Thus, a repo-
sitory offers the potential to save application developer efforts and promote sharing between applications
by including an information model that comprises areas where there exists some industry-wide agreement.
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Figure 2.1: Repository as a Layer between Applications and a Database System

• Relationship management to support relationship semantics between objects.

• Notifications to enable the triggering of events if changes are applied to objects of inter-
est.

• Version management to enable the representation of an object’s lineage of changes over
time.

Now, a content repository can be described as a generic application data store that is
able to handle both small and large-scale data interactions and to deal with structured and
unstructured content [74], text and binary data. This way, a repository can be assumed as some
high-level information management system that is a superset of traditional data repositories.
Chapter 3 states the information model of a content repository that is used in the context

of this thesis.
Figure 2.2 illustrates the potential scope of a content repository. The basic task of a content

repository is the providing of content storage. Usually, a content repository combines basic
features of file systems and database systems [192]. For example, file systems typically sup-
port hierarchical file storage of binary data and several access control concepts. In contrast,
databases enable typically the storage of structured data, provide integrity control, querying
functions, and support transactions. In general, a content repository integrates, in addition
to basic storage capabilities, value-added services commonly required by content-centric ap-
plications like locking, versioning, or observation.
Chapter 3 states the functions of a content repository that are relevant in the context of

this thesis.
According to Boiko [34], such repository shall be the main piece of the management system

of a content management system (CMS). This management system is responsible for the
long-term storage of content and the repository is the place to actually store the content.
Usually, the repository consists of a set of databases and file directories that store the content
in the system and other data associated with the CMS. For instance, relational databases use
standard tables, rows and columns to represent content components. Thus, the repository
may store content both as files or database entities.
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Figure 2.2: Context of a Content Repository in Relation to File Systems and Database
Systems

In the following, the term content is investigated by Section 2.1.1 to clarify its meaning.
Then, Section 2.1.2 gives a short explanation about content management. Finally, Section 2.1.3
describes content management systems as an environment for content repositories.
However, regarding content repository functionality, as in all areas of system software, there

are differing views as to which functions should be part of which layer—so, these functions
tend to move around over time [28]. Therefore, Chapter 3 defines and analyses the scope
and semantics of the content repository functions that this thesis considers. Then, Chapter 4
shows a layered architecture for content repository functions.

2.1.1 Content versus Data

This section investigates the relation between data and content.

Data

Data is usually seen as “a representation of facts, concepts, or instructions in a manner suitable
for communication, interpretation, or processing by humans or by automatic means” [176].
Data are the small parts of information that humans collect, join together in data records,
and store in databases [34]. Information itself is what humans transform their knowledge
into when they want to communicate it to others: it represents their knowledge in visible or
audible incarnation, for example, in written or printed words or in speech [137]. It is metadata
that shall state context and meaning of information explicitly enough to enable its automatic
processing [34].

Content

Similar to data, the term content represents also information, but it retains its human meaning
and context [34]: thus, content may be regarded as a kind of compromise between the useful-
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ness of data and the richness of information. It is rich information that is wrapped in simple
data. The metadata gives a simplified version of the context and meaning of such information.
Content is usually represented by respecting some (i) format and (ii) structure [34]: format
defines the way information is encoded so that it can be used in automatic processing. Struc-
ture shows how information is put together; it gives the parts and pieces of a base of content
and their relationships to each other. For example, access structures may consider hierarchies
to exhibit parent–child relationships between different segments of content. Cross-references
may link from one content segment to another; sequences may state the order of segments.
There exist several ways to map content to data [167]:

Relation-oriented Content data may be fragmented and stored in tables. Content meta
information may be stored in separate fields. It may be reassembled dynamically on
demand using logic expressions.

File-oriented A file system is used to store content as files. Content meta information may
be supported by a file, for example, some file meta tags. If not, separate files may be
used to store such meta data.

Object-oriented An OODB is used to store content encapsulated as individual objects. It
may be supported to attach metadata information directly to objects.

The next section illustrates the process of content management.

2.1.2 Content Management

In an informal way, content management can be described as the process to create, change,
publish, and maintain content online.
“From the user’s perspective, information is all content, whereas from the computer pro-

grammer’s perspective, it’s all data. The trick to content management, in an age when the
technology is still data-driven, is to use the data technologies to store and display content.”[34]
However, there exist several views for what the term content management stands for [34]:

(i) a business-goal’s view is that content management distributes business value—it covers the
processes and tools behind the distribution of business value. (ii) An analysis’s view considers
content management to balance organisational forces, for example, content types, authors,
workflow, or access structures. (iii) A professional’s view assumes content management to
combine content-related disciplines; it shall encompass the dynamic combination of informa-
tion architecture, business management, software and network engineering, and developments
for content creation and publication. (iv) A process point of view is that content management
represents the act to collect, manage, and publish information. For example, depending on
the source of information, it needs to be converted into some format and aggregated into the
system adding some metadata. After that, a repository may be used to manage the content
and corresponding administrative data. (v) A technical view refers to content management
as a technical infrastructure: the combination of hardware and software that comprises the
content management system.
A common way in content management is the usage of some CMS, as described in the

following section.

2.1.3 Content Management Systems

In an intuitive way, a CMS can be described as a technical solution to manage the entire life-
cycle of content: that is, from the creation of content, to its archival or destruction. Thereby,
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the integrity and the meaning of content should not be violated by the system. Usually, a
CMS has to deal with many different types and formats of content [34]. A CMS should sup-
port the creation of new content types and should support all the actions that are necessary
to manage them, in order to be able to be applied in multiple scenarios.
Hence, a CMS supports to collect, manage, and publish chunks of information: it deals with

content and its associated metadata. However, there exists no universally accepted standard
for what a CMS is or what its functions are. Boiko [34] identifies several basic processes
within a CMS:

• Acquiring is the process of gathering information for the content management: either
given by syndication or by other data sources; for example, non-digital sources.

• If the information does not have the system’s expected format or structure, it needs to
be converted: (i) unnecessary surrounding information is removed, (ii) the information’s
binary format may be adjusted, and (iii) the information’ structure may be changed.

• In addition to acquiring information, it is aggregated in order to relating disparate
information sources into one overall structure; for example, by dividing content into
convenient chunks.

According to Boiko [34], a CMS can be divided into three major parts:

• The collection system carries content from its source through the process of conversion
and aggregation. Conversion imposes the demanded format and structure of the content.
Aggregation puts it into the editorial cycles.

• The management system basically provides an administrative infrastructure. It includes
(i) a repository as back-end component to store content and system files, (ii) an ad-
ministration module to set up and maintain the CMS; for example, this module sets
parameters and structure of the CMS, as access right policies or content types. Finally,
(iii) the management system includes some workflow module to define some processes
for the coordination, scheduling, and enforcement of tasks; for example, for content
collection.

• The publishing system employs templates to extract relevant content from the repository
and prepare it for publication.

For example, CMSs are frequently used in the world wide web (WWW): a WWW CMS
may contain any or all of the components depicted in Figure 2.3. Referring to Boiko [34],
a CMS application is usually running behind a web server. The CMS application collects
content input from multiple contributors and manages the content’s workflow and adminis-
tration. It is the task of the repository to store all the content, administrative data, and any
resources to build the site (for example, graphic files). The CMS itself maintains a set of flat
HyperText Markup Language (HTML) pages to manage and deploy files to the static part
of the site. For instance, the data may be put into the static HTML pages using a set of
publication templates. Other data sources may be connected to the web site, but not to the
CMS. For example, a transaction database for conducting sales on the site.
To put it in a nutshell: a CMS must support some form of (standard) input mechanism

to support the contribution of content. Usually, such mechanism is coupled with some kind
of standard input template determining relevant fields. As content may occur in arbitrary
kind of formats, there is a need for a generic content repository as storage back-end. Content
might be annotated with metadata to put it in the right context. This may be some tagged
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attributes like keywords to enhance its specification or to annotate system relevant manage-
ment information, like the approval level. For example, a flexible workflow process may even
orchestrate the whole approval process of certain content. Once content is approved there may
be need to accumulate it; for instance, to synchronize interdependent updates or new pieces.
Finally, at presentation level some HTML output template is filled with actual content at
allocated places, usually indicated by special tags—understood by the page creation module
or by functional calls within the scripting language. More sophisticated demands require some
sort of version tracking, or roll back features to recreate data for a particular point in time.

Web Browser

Repository

Database

HTML Files

Collection
System

Publishing
System

Management
System

CMS Web Server

Connector
Code

Content 
Contributors

Figure 2.3: The Basic Context of a Content Management System in theWWW

2.2 Distributed Systems, Algorithms, and Methods

The field of distributed computing covers all aspects of computing and information access
across multiple processing elements connected by any form of communication network, whether
local or wide-area in the coverage [109]. For computing systems, the term distributed system
is described in several ways: according to Coulouris et al. [58], “distributed systems are
those in which components located at networked computers communicate and coordinate their
actions only by message passing”. Lamport [112] states, that a “distributed system is one in
which the failure of a computer you didn’t even know existed can render your own computer
unusable”. Tanenbaum and Van Steen [183] indicate “a distributed system is one that runs
on a collection of machines that do not have shared memory, yet looks to its users like a
single computer”. According to Goscinski [84], the term describes a wide range of computers,
from weakly coupled systems such as wide-area networks, to strongly coupled systems such as
multiprocessor systems. Kshemkalyani and Singhal [109] characterise a distributed system as
a collection of mostly autonomous processors communicating over a network and possessing
the following features:

• There exists no common physical clock, which implements the element of distribution in
the system.

• There exists no shared memory, which implies message-passing for communication.

• There exists geographical separation. However, the processors need not to be on a wide-
area network ; a network of workstations configuration connecting processors on a local-
area network is regarded as a small distributed system.
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• There exists autonomy and heterogeneity. Processors may run at different speeds and
a different operating system. Usually, processors cooperate with each other by offering
services or solving a problem jointly.

Distributed algorithms are designed to operate in distributed systems. Pieces of such algo-
rithm are concurrently and independently executed, each with only limited amount of global
execution information. Distributed algorithms are supposed to work correctly, in face of dif-
ferent speed of nodes and communication links, or even system component failure [123].

Ensuring safety disallows a distributed algorithm to produce false results; ensuring liveness
disallows a distributed algorithm to get stuck in a deadlock or livelock. A distributed algorithm
that respects safety is referred to as partial correct. If further liveness is guaranteed it is denoted
as total correct.

2.2.1 Node Model

To summarise, a distributed system is usually composed of several autonomous nodes that are
connected by a communication network, and each node has its own memory and may indepen-
dently breakdown. The terms node, computer, host, processor, or process are synonymously
used in the context of this thesis to represent single active instances interacting with other
instances through message passing. The global state of such distributed system at a certain
time spot may be logically represented as a vector s = s1, s2, ..., sn that is composed of all
states si of existing n nodes within the system and the communication channels [50]. The
state of a node depends on its context and is characterised by the state of its local memory.
The state of a communication channel is characterised by the set of messages in transit within
it. The execution of a node is made up by sequential execution of single actions or steps. A
single step means an atomic transition from one global state into its succeeding state. There
exists no shared memory and no single node knows the entire global state of the whole sys-
tem. This makes it difficult to observe global system properties. In order to distinguish a
distributed system from a pure computer network, the cooperation of the involved nodes has
to be considered as they should interact together in order to solve some task or to offer some
service to the outside.

2.2.2 Communication Models

Nodes are connected via a network in order to communicate with each other. In contrast
to parallel computers, such interaction is only enabled via message passing. Point-to-point
connections may be distinguished into (i) dependable and (ii) undependable communication
links.

Dependable links show properties of a perfect link. A perfect link enables dependable data
transmission. That is, if node Pi sends message m to node Pj, no node fails, then Pj receives
m in finite time. A message cannot be duplicated, that is, no message will be passed to a
listening process more than ones. In addition, no message fabrication may occur, that is, if
node Pj receives message m, m has formerly been sent by some node Pi.

An undependable communication link represents no arbitrary unreliability, but some more
realistic assumptions to enable a reasonable validation, that is, fair-loss communication links.
Fair-loss means that if node Pi sends a message m an infinite number of times to node Pj, Pj
receives m infinitely often. Finite duplication is allowed, that is, if Pi sends message m finite
times to Pj, node Pj receives m not infinitely often. Message fabrication is prohibited.
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However, neither dependable nor undependable communication links determine any message
ordering. For example, there may be supported first in, first out (FIFO) ordering, that is, if
node Pi sends some messages in a certain order to node Pj, Pj receives the messages in exactly
that order. Usually, such assurance cannot be given.

Asynchronous Communication

Loosely spoken, asynchronous communication represents communication independent of phys-
ical time constraints in context of distributed systems. As there exists no global bound for
transmission delays, it is not possible to distinguish a very slow working node from a failed
one. Kshemkalyani and Singhal [109] characterise such asynchronous execution with three
properties: (i) there exists no processor synchrony and there is no bound on the drift rate of
processor clocks, (ii) message transmission and propagation times are finite but unbounded,
and (iii) there exists no upper limit on the time taken by a process to execute a step. Fig-
ure 2.4 shows an example asynchronous execution with three processes P1, P2, and P3. An
arrow determines the send and the corresponding receive event for a message.

Figure 2.4: Timing Diagram of an Asynchronous Communication Example

Synchronous Communication

In contrast, synchronous communication imposes certain time bounds for all message delays,
enabling distributed algorithms to be executed within completed rounds. This enables safe
failure detection and a safe time based coordination. However, for most systems a synchronous
communication model is not feasible. Kshemkalyani and Singhal [109] characterise such syn-
chronous execution with three properties: (i) the processors are synchronised and the clock
drift rate among any pair of processors is bounded, (ii) message transmission and delivery
times occur in one logical step, and (iii) there exists a well-known upper limit on the time
each process needs to execute a step. Figure 2.5 shows an exemplary synchronous execution
with three processes P1, P2, and P3. An arrow determines the send and the corresponding
receive event for a message. As depicted, all messages sent in a certain round are received
within that round.

Figure 2.5: Timing Diagram of a Synchronous Communication Example
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Real world distributed systems usually support unreliable, asynchronous communication
connections with variable message transmission speed. The variable message transmission
speed cumbers the issue of some common global clock via time synchronisation mechanisms.
Therefore, physical clocks were rarely used to coordinate distributed actions.
A synchronous model allows the building of simpler algorithms, because of the coordinated

nature of the execution of all nodes [109]. However, regarding asynchronous communication
assumptions, the partial-synchronous model can step up. It says that a communication system
acts synchronous from a certain time spot t on.

2.2.3 Failure Models

Failure models determine the manner in which components of a distributed system may fail.
It is important to specify the failure model, because algorithms usable to solve a particular
problem vary depending on the assumed model. There already exists a set of well-known
failure models in the literature [129].

Benign Faults

For instance, crash, fail-stop, fail-silent, and crash recovery failure models belong to the cat-
egory of benign faults. (i) The crash property [115] describes a model in which a node works
correct until a certain time spot t. After t, the node fails forever. Unlike the fail-stop model,
other processes do not learn of such crash. (ii) Thus, in the fail-stop model [164] a failure
detection is enabled by some abstraction; that is, the exact mechanism may vary: for ex-
ample, each correct working node learns after a certain finite time that a certain node has
failed. (iii) In contrast, within a fail-silent model such perfect failure detection is not possible.
(iv) Crash recovery identifies the case of a correct working node being able to fail and recover
finite times; recovery is done using some restart mechanism. A node is only recognised as
failed if it fails permanently or if it fails and recovers infinitely often. Here, availability of
some persistent storage is crucial in order to preserve the state of correct nodes over failures
and to ensure durability.
A special case is an omission failure. Here, only messages can get lost if a node fails, but

its complete state is always preserved. In this context, a timing failure disallows a node to
lose messages or state information but the correct working of a node may be delayed.

Malicious Faults

In the Byzantine or malicious failure model with authentication [116], nodes may exhibit any
arbitrary behaviour and may be able to cooperate with each other. For example, messages
may be forged before relaying them. However, if any faulty node claims to have received a
specific message from a correct working node, that claim can be verified using authentication-
mechanisms based on unforgeable signatures. In contrast, in Byzantine or malicious failure
model (without authentication) a node may exhibit any arbitrary behaviour and cooperate
with each other, too—but no authentication mechanisms are applicable to verify any claims
made.
A system which consists of a set of distinct components is referred to being t fault-tolerant

if it satisfies its specification as long as no more than t of those components become faulty
during some interval of interest [165]. Another way is to specify fault-tolerance in terms of
mean-time between failures (MTBF), of probability of failure over a given interval, or of other
statistical measures [169].
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If only fail-stop failures are assumed a t fault-tolerant system can be implemented by t+ 1
components, as after t failures one non-faulty component will remain. If Byzantine failures
are assumed, a t fault-tolerant, asynchronous system can be implemented by at least 3t + 1
components, and the output of the system is the output produced by the majority of the
components (2t+ 1).

2.2.4 Consensus Algorithms

Consensus among the nodes of a distributed system is a fundamental requirement for a wide
range of applications [109]: nodes negotiate with each other and eventually reach a common
understanding, agreement, or consensus, before taking further application-specific actions.
Consensus algorithms ultimately rely on message passing, and the recipients take actions
according to the contents of the received messages [109].
The semantics of the term consensus and the term agreement vary slightly; formally, the

difference between the agreement problem and the consensus problem is that in the context of
agreement only one node possesses the initial value. Regarding the consensus problem, each
node may have an initial value and the aim is that all correct nodes must agree on a single
value [116, 144], with the following properties:

• If all correct nodes posses the same initial value, than that single value is agreed upon
(validity).

• All correct nodes must eventually decide on a value (termination).

However, the two problems are equivalent in that a solution to one can be used as solution for
the other [75]. In the following, the two terms are used equivalently, as well as in most of the
literature.
Considering a no-failure model in an asynchronous system, consensus is attainable [109].

However, consensus is not solvable in asynchronous systems with only one node that may fail
by crashing. This fundamental result was shown by Fischer et al. [76] and is popularly known
as the FLP impossibility result. Thus, weaker variants of the consensus model are defined
to circumvent this impossibility result. Different researchers have addressed the problem of
finding practical consensus algorithms that avoid this impossibility without making unrealistic
system assumptions. One of the first practical solutions in this category was Lamport’s Paxos
algorithm [113]—assuming a benign failure model: it relaxes the termination property, stated
before. Different approaches to distributed consensus exist in the literature. Chandra and
Toueg [49] introduced the idea of unreliable failure detectors to encapsulate the additional
assumptions that are necessary to solve consensus in asynchronous systems. This allows using
the same consensus algorithm with different, environment-specific implementations of the
failure detector. For instance, the Ben-Or algorithms [26] and the ABBA algorithm [43] work
in a completely asynchronous system assuming malicious failures by using randomisation.
Variants of the Paxos algorithm regarding several failure models are given in the following.

First, the basic Paxos algorithm is sketched; then, it is suggested how multiple Paxos instances
may be chained together in order to support multiple execution, called Multi-Paxos [48]. At
last, the BFT algorithm by Castro and Liskov [47] is shown, which extends Paxos into a
malicious environment.

Paxos

The aim of the Paxos consensus algorithm is to enable a set of nodes to agree on a single value in
presence of benign failures. Paxos ensures that if eventually a majority of nodes does not crash,
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and no failures occur, and the nodes run long enough, the nodes consistently agree on one of the
proposed values. Paxos basically represents a three-phase commit protocol and uses a quorum-
based approach to reach distributed consensus between participating nodes (replicas). In fact,
liveness—the termination property—of the algorithm relies on partial-synchrony assumptions,
whereas safety—the validity property—does not. The Paxos algorithm may be decomposed
into two basic parts [48]:

• Election of a replica to be a leader (coordinator).

• Quorum-based consensus process.

Considering the election process, different strategies may be used to implement it [113]:
however, it is important to notice that (i) Paxos assumes coordinator crashes, and (ii) Paxos
does not suppose that there exists only one coordinator at a time: that is, at any time,
multiple replicas may simultaneously act as coordinators initiating the consensus process.3

Considering quorum-based consensus, it is essential for Paxos to ensure that consensus is
reached on a single value, which may be proposed by any coordinator. Therefore, it uses two
additional techniques:

• A total ordering between the successive coordinators is established: this allows each
replica to distinguish between current and old coordinators and thus to dismiss (or
rather negatively acknowledge) messages from an old coordinator to prevent interruption
of the consensus process. Therefore, each coordinator is assigned an increasingly unique
sequence number 4, which is broadcasted to all replicas in a propose message. Each replica
keeps track of the latest (highest) received sequence number: a replica acknowledges such
message only if it has not received a higher sequence number as a promise to subsequently
dismiss messages from old coordinators. If a majority of replicas replies, the coordinator
has been elected in correspondence to phase one.

• The choice of a coordinator to propose a value is restricted: once consensus is reached
on a value, Paxos ensures consistent agreement by forcing following coordinators to
propose the same value. Therefore, each replica includes the latest accepted value and
the corresponding coordinator sequence number in a propose acknowledgement message.
Hence, if consensus has been achieved by a former coordinator at least one replica informs
a new coordinator about it. By induction, such value has the highest sequence number
of all received acknowledgements to be selected by a new coordinator. If a coordinator
receives a majority of acknowledgements but none of the messages include a former value
it is free to choose a new value.

Figure 2.6 sketches the basic order of interaction events between three nodes executing
Paxos: in the first phase, the so called read phase, a coordinator tries to collect information
about already existing proposal values—as made by an old coordinator, potentially.
In the second phase, the write phase, the coordinator propagates a consistent value. As

indicated before, this is either the learned value from the previous phase—if existing—or an
own proposal value.5

3However, coordinator turnovers may be restricted as they may delay successful agreement.
4For instance, assuming a set of n replicas, each replica r is assigned a unique id idr between nil and n − 1.
If a replica ρ wants to act as coordinator it selects the smallest sequence number s, which is larger than
any sequence number it has received so far but corresponding to formula s mod n = idρ.

5Again, a replica acknowledges such message only if it has not received a higher sequence number as a promise
to subsequently dismiss messages from old (other) coordinators.
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If a quorum of positive acknowledgements is achieved, consensus is finally reached and the
coordinator can announce the decision in phase three by broadcasting a commit message to
notify the replicas. The whole process roughly requires five communication steps or message
transmission delays. Paxos guarantees that if phase three is reached by multiple nodes, all
consistently commit on the same proposal value.

Figure 2.6: Message Exchange within the Three Phases of a Single Paxos Execution

For more formal descriptions the literature may be consulted [113, 114, 33]. For example,
Prisco et al. theoretically discussed the Paxos consensus algorithm [147].

Multi Paxos

Multi Paxos uses single executions of Paxos instances to achieve consensus on a sequence of
values [48]. The number of messages exchanged by multiple Paxos instances may be reduced
by several optimizations [114]. For example, in order to improve throughput a collection of
proposed values may be batched together into a single Paxos instance.

BFT

Castro [46] presented variants of a practical consensus algorithm, named BFT, for the mali-
cious failure model. Due to structural similarities with the Paxos algorithm, this algorithm is
also referred to as Byzantine Paxos.

2.2.5 Fault-Tolerant State Machines

“Distributed software is often structured in terms of clients and services” [165]. A service
is usually offered by one or multiple servers and exports operations, which clients invoke by
issuing requests. The simplest way would be to use a single, centralised server to implement
a service. However, regarding different levels of fault-tolerance, it is often desirable to use
multiple servers to act as replicas of the single server.
The state machine approach is a general method for implementing fault-tolerant services

in distributed systems by replicating servers and coordinating client interactions with server
replicas [165].6

Considering a fault-tolerant state machine, each replica being run by a non-faulty server
starts in the same initial state and executes the same requests in the same order, thus produc-

6A state machine consists of state variables, which represent its state, and commands, which transform its
state. Commands are triggered by client requests and their execution is atomic considering the modification
of state variables. A command is implemented by a deterministic program and may produce some output.
Regarding the semantic characterisation of a state machine, the outputs are completely determined by the
sequence of executed requests and independent of time [165].
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ing the same output. Schneider [165] gives the following definition for a fault-tolerant state
machine to ensure replica coordination.

Definition 1. A t fault tolerant state machine ensures replica coordination: all replicas receive
and execute the same sequence of requests. Thereby, replica coordination can be decomposed
into agreement and order properties:

• Regarding agreement, every non-faulty state machine replica receives every request:

1. All non-faulty replicas agree on the same value.

2. If the request’s sender is non-faulty, then all non-faulty replicas use its value as the
one on which they agree.

• Regarding order, every non-faulty state machine replica executes the received requests in
the same relative order.7

2.2.6 Group Communication

Group communication can be an essential building block for the development of fault-tolerant
distributed applications. Loosely spoken, a group is a set of processes that share a common
context and collaborate on a common task within an application domain. Group communica-
tion has been addressed by many researches for over two decades. The ISIS project initiated
basic work on the group communication paradigm [32, 162]. The survey of Défago et al. [68]
gives an extensive overview about around 60 known group-communication systems.
The term message broadcast describes the act of sending a message to all nodes in the

distributed system. The term multicast further restricts this notion wherein a message is sent
to a certain subset of the nodes in the system, identified as group [109]. In contrast, unicasting
represents the familiar point-to-point message communication.
In a closed group, the sender of a message is required to be part of the destination group.

In contrast, within an open group, the sender can be outside the destination group.
Multicast algorithms vary regarding the degree of strictness of assumptions on the order of

message delivery. Two popular orders in the context of group communication are the causal
order and the total order.

2.2.7 Dynamic Code Loading

It is a requirement to dynamically load additional code at runtime, if that code is not already
bound to the local execution environment. Dynamic loading of code is a crucial and often
neglected part of today’s distributed systems that face increasing dynamics, complexity and
heterogeneity of software and hardware. Prominent protagonists that emphasise this devel-
opment are ubiquitous computing [190], targeting distributed applications on small, mostly
embedded devices, and planetary-scale execution environments for globally available services
such as PlanetLab [145] or XenoServer [107]. Usually, dynamic code loading refers to some

7For example, state machines may show two properties regarding the order in which requests are executed—
however, assuming communication network delays, the two properties do not imply that a state machine
processes requests in the order made or in the order received:

1. A certain state machine processes requests of a single client in the order the requests were issued.

2. If request r was issued to a state machine s by client c and r could have caused a request r′ issued by
client c′ to s, then s processes r before r′.



mechanism, which enables a program to dynamically load a code portion, for example, a li-
brary, into memory at runtime. Once loaded into memory, addresses of functions and variables
contained in the code portion can be retrieved to execute those functions or access those vari-
ables. Thus, in contrast to static linking, such mechanism allows a program to start in the
absence of these code portions and to discover available code portions to potentially integrate
additional functionality.
For example, Java’s class loading process is designed to support the dynamic linking and

loading of class byte files [120]; it supports the locating, loading, and linking of class files
at runtime and the segregation and distribution of bytecode within the Java virtual machine
(JVM) [120]. This is the basis for more advanced techniques, which allow changes to a
program’s structure to be initiated and executed by distributed mechanisms, including the
possibility to integrate remote classes or objects.
Ryan et al. [158] categorise the discovery and utilisation of remotely accessed Java classes

into two types of techniques: remote objects and direct downloading.
A remote object as supported, for instance, by RMI [186], Jini [133], or CORBA [135],

usually resides on a server and is accessed by a client; typically, it involves the use of proxy
services to allow a client access to server side services. However, access to remote files does
influence program design as the specific standards of the distributed techniques need to be
obeyed. For example, the interface of a remote object needs to be known by both the client
and the server.
In contrast, direct downloading as used by Java applets [186] or Java Web Start [179] does

not involve remote objects but enables a client to load code that does not exist on its local
machine using an existing service—located on a well-known server; that is, to generate local
objects based on remote class byte code. However, a client needs to know the correct server
location to locate any class files, restricting dynamism and location unawareness.

2.3 Peer–to–Peer Systems

The P2P model is an alternative to the traditional centralised, client–server computing model:
in its purest incarnation, the P2P model treats all of its participants as equal peers, and has
no concept of a dedicated server entity. For instance, according to the client–server model,
a client may initiate requests, but may not serve requests like a server. Thus, this approach
decomposes a system into servers providing some service and clients consuming such service.
P2P systems enable peers to reciprocally provide services among each other. A peer acts as
a network node and is able to take the role of a client as well as of a server.
There exist several efforts to define the essential characteristics of P2P systems. Milojicic

et al. refer to the term P2P as a class of systems and applications that employ distributed
resources to perform a critical function in a decentralised manner [126]. These resources may
encompass computing power, data, network bandwidth, and presence. The critical function
may be distributed computing, data sharing, communication, or platform services. Decentral-
isation may apply to employed algorithms, data, metadata, or all of them. However, require-
ments may demand to retain centralisation in parts of the system or applications. Typical
P2P systems reside on the edge of the Internet or on ad hoc networks.
According to Dustdar et al. [70] the following properties characterise a P2P system and

suggest their inherent complexity, flexibility, and fault-tolerance: (i) there exists no central
point of coordination that controls the interactions among the participating peers. (ii) There
exists no central database, that is, a peer that stores the complete system data; each peer
stores and offers a part of the available data in the overall system. (iii) Each peer knows only
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a part of the participating peers, thus there exists no peer that possesses some global system
view. (iv) Peers act autonomously; the overall system behaviour develops as a combination of
local interactions among the peers. (v) Peers and peer connections are not necessarily reliable.
None the less, the available system data should be accessible by each peer.
In compliance with Kshemkalyani and Singhal, “P2P computing represents computing over

an application layer network wherein all interactions among the processors are at peer level,
without any hierarchy among the processors” [109]. Usually, a peer as basic system entity
is uniquely identifiable with some logical address abstracting from a peer’s location in the
physical network. Thereby, a peer is usually considered as a meta entity, which abstracts from
a certain physical host. For example, one physical host may be represented by multiple peers
in the system.
A core task for P2P systems is the support for searching of data, more precisely, to assign

and to locate data resources among peers. Such mechanism depends on two factors: (i) how
the data, and (ii) how the network are organized. The search mechanisms of P2P systems
are rather data-oriented, in contrast to the host-oriented ones for traditional networks [109].
P2P search employs P2P overlays, which are logical graphs among the peers. From a logical
view, the P2P overlay is situated above the physical network8, and the application overlay,
where communication between peers is point-to-point, is located on top [109]. Data within a
P2P system is identified by using indexing methods.
A cross section topic in P2P systems is the administration of distributed resources within

the P2P network. Essential service primitives basically comprise the sharing and the lookup
of these resources. Regarding the spanned graph topology, P2P network architectures can be
classified into different overlay categories: accordingly, the following sections delimit several
P2P overlays regarding their characteristic topology. Figure 2.7 depicts an example of the
three basic P2P overlays.

(a) Centralised Overlay (b) Unstructured Overlay (c) Structured Overlay

Figure 2.7: Examples of Different P2P Overlays

However, in the context of this thesis, hybrid P2P overlays are used as a special case: they
are characterised to combine centralised and structured P2P overlays.9 The structured overlay
represents the basic scope of all peers in the system. The central structure of such overlay is
represented by a well-defined group of tightly interconnected peers. Chapter 6 explains this
approach in more detail.

2.3.1 Centralised Peer–to–Peer Overlays

Centralised P2P overlays employ a central component or rather server as managed infrastruc-
ture, for example, to aggregate routing information about the network or references to data

8However, independence of physical network and overlay network may affect lookup latencies; for example,
if routing in the overlay uses poor peers.

9Another potential approach would be to combine unstructured and structured P2P overlays, for example.
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entities. A major benefit of the centralism is its concentrated global system view regarding
peers and their offered resources. For instance, regarding the approach to enable content re-
pository functionality, this eases the implementation of complex search queries. In addition,
a central component enables serialisation of operations, simplifying consistency issues.

However, the central component as single point of failure is a drawback. On failure, the
whole system is restricted in its available service functionality. In addition, the requirements
regarding hardware resources, as for instance, processing power or storage space, is growing
with the number of peers linearly. Thus, regarding fairness of load distribution a central
server is not suited. But, there exist scenarios which highly appreciate a central instance to
implement a business model.

For example, this overlay paradigm has gained broad attention with Napster’s support for
music file sharing over the Internet [72]. Napster enables file sharing of MP3-encoded files,
stored at user site. It uses a server-mediated central index architecture that administrates
indices of the files in the system to support keyword-based queries. For example, it hosts a
peer’s Internet Protocol (IP) address and port, its offered bandwidth, and metadata about the
shared files. Each peer maintains a connection to the central index. Meta-information is added
and removed from the index as peers enter or leave the network. As a short description about
the file exchange mechanism: (i) a peer contacts the central index passing metadata about
the desired content. (ii) The central index matches the request with its database to determine
suited peers and informs the requesting peer. (iii) The peer performs file exchange directly
with peers hosting the relevant files. Thus, Napster employs a client–server architecture for
content search and node presence management. The data transmission among participants
follows the P2P paradigm.

2.3.2 Unstructured Peer–to–Peer Overlays

The overlay graph of an unstructured topology does not enforce any particular controlled
structure, nor does it govern the placement for data objects. Thus, the peers arrange them-
selves into an arbitrary meshed overlay10. A system based on such topology uses typically
local indexing, which demands each peer to index only its local data objects. It occurs no
advertisement of these objects.

The benefits of unstructured overlays merely comprise the complete degree of functional
decentralisation and the resulting high degree of robustness against peer failures. The failure of
one peer does not affect the availability of the system, as peers are usually arbitrary connected
among each other and redundant communication paths are being used. Unstructured P2P
overlays provide arbitrary search queries, but they cannot provide success guarantees.

The prime example to implement such overlay is the Gnutella communication protocol,
which is used to search and share data files [56]. Gnutella peers communicate with each other
acting both as server and client, termed as servent. There exist several lookup mechanisms for
the Gnutella protocol, dividable into unguided or guided search. (i) In unguided search, there
exists no history about earlier searches; thus, each search effort is independently executed.
Two exemplary strategies are random walking or flooding [122]. For the latter, each query
is flooded or broadcasted to directly connected overlay peers, which recursively flood their
neighboured peers until the request is successful or some maximum predefined number of

10It is common for P2P systems, that a peer wanting to join the system for the first time learns about other
peers by employing some system wide bootstrapping mechanism. For instance, there usually exist some
well-known contact peers at start-up providing information to integrate joining peers to the connected peer
network topology.
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flooding steps is reached. (ii) In contrast, in guided search the history of past searches is
considered to help future searches [109].

As indicated, the performance regarding efficient routing of messages is a drawback: in
worst case, the lack of any structure would force the need to flood the whole network in order
to find a certain resource; this implies the benefit of supporting rich queries in small scale
environments.

Further improvements consider the establishment of a peer hierarchy composed of peers and
super peers [106] to increase lookup performance. That is, super peers act as communication
hubs in the overlay network [171] and aggregate knowledge about the data objects hosted by
its neighboured peers.

2.3.3 Structured Peer–to–Peer Overlays

A structured overlay topology enforces a decentralised indexing structure among the peers;
the aim is to enable a deterministic lookup to route messages between peers: structured P2P
networks route messages systematically until delivery to the target peer. Therefore, all peers
share the same namespace, especially, each peer’s physical address is mapped to some logical
identifier in the namespace using some consistent hash function [103]. Each peer is addressable
by such unique identifier and maintains a set of routing information about other peers, for
example, its neighbours. All peers apply the same overlay routing algorithm; accordingly, such
routing information imposes a graph structure on the participating peers assigning key-space
responsibilities per peer identifier: an according routing algorithm uses the applied hashing
function to map keys to nodes.11 Structured overlays provide key-based routing (KBR) to
incrementally route messages that are addressed to a certain key towards an overlay peer
being responsible for that key. At each routing step, the message gets closer to the responsible
peer until it is finally reached. Thereby, such messages are kind of high-level messages, that
are addressed by keys. For example, these keys are orthogonal to Internet datagrams using
IP numbers.

A popular application of such overlay is a distributed hash table (DHT). A DHT supports
a key-based placement of data objects offering a hash-table interface: in analogy to a hash
table’s buckets, each peer is responsible for a certain part of the key space—usually, a DHT
imposes a flat key space to associate the key-value mappings; the mapping of data objects
to the peers’ namespace is done applying the structured overlay’s hashing method. This
key-based placement of data objects is highly deterministic [109].

In the following, Chord [177] is described as a popular protocol to construct a structured P2P
overlay. Chord uses peer identifiers and keys of a certain bit length n:12 these keys share a one-
dimension circular namespace of size 2n. Chord uses the numeric difference between identifiers
as distance function modulo 2n. Thus, a data object with key k is assigned to the first peer,
which has an identifier equal than k or that follows k as successor in the common identifier
space. A peer uses two local data structures to maintain routing information about other peers,
a successor list and a finger table. (i) The successor list contains a fixed number of entries
storing information about peers immediately following the peer in the circular namespace.

11Consistent hashing employs a distance function δ(key1, key2), which defines an abstraction of the logical
distance between key1 and key2—not corresponding to the actual physical distance. A peer with identifier
id is allocated all the keys for which id is the closest—according to δ. Consistent hashing shows the
property that the addition or the removal of a peer affects only the set of keys that are allocated to peers
with adjacent identifiers—not affecting other peers in the overlay.

12Chord assumes the length of n-bit identifiers as sufficiently large, thus the probability of collisions during
the hash is negligible.
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(ii) The finger table stores at most O(log(N)) distinct entries, assuming N peers (log(N) ≤ n):
thereby, the i-th entry refers to the peer that is 2i−1 away in same namespace (1 ≤ i ≤ n).
Chord’s message routing algorithm works briefly in two phases: (i) the finger table is used
to try to advance exponentially closer to the peer that is responsible for some sought key;
and (ii) the successor list is used to linearly advance in the namespace until the responsible
peer is reached. Chord’s overall routing process is executed within O(log(N)) communication
steps. To maintain a peer’s local routing information up to date, each peer periodically sends
some message to its immediate successor and to each peer present in its finger table, called its
fingers. Figure 2.8 illustrates such fingers of some arbitrary peer p in Chord.
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s u c c e s s o r ( p + 2    )
i -2

s u c c e s s o r ( p + 2    )
i -1

s u c c e s s o r ( p + 2  )
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f i nge r  i +1

Figure 2.8: A Peer’s Fingers in a Chord Ring

However, a drawback of DHTs is their typical focus on immutable data resources when
using replication. Although there has been a lot of research, it lacks a generic building block
to support both, immutable as well as mutable data within a structured P2P overlay. The
work of Chapter 5 is intended to close this gap. Another inherent property of the key–value
based mapping is the support of a single characteristic per data object. Thus, such mapping
does not support directly arbitrary queries as range queries. In addition, the keyword-oriented
approach fosters hotspot issues for popular areas, and the tight coupling between the overlay
structure and the rigid mapping function may cause some overhead concerning the insertion
and deletion of data objects which may be non-trivial under churn [109]. To cope with such
issues, this thesis introduces relevant techniques for hybrid P2P overlays in Chapter 6.

2.4 Distributed File Systems

As illustrated in the previous section, P2P systems typically support flat namespaces. In
contrast, distributed file systems usually provide concepts to realise hierarchical name spaces.
A file system provides file services to clients, for instance, primitive file operations, such as

to create a file, to delete a file, to read from a file, and to write to a file [170]. The files are
usually stored on a set of local secondary-storage devices.
According to Silberschatz et al. [170], a distributed file system (DFS) “is a file system whose

clients, servers, and storage devices are dispersed among the machines of a distributed system.”
The service functions are offered across a network, and instead of a single centralised data
store, such system consists of multiple and independent storage devices. The configuration
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settings of aDFS may vary; for example, servers may run on dedicated machines, or a machine
may be both client and server. Regarding the implementation of a DFS, it can be build as
part of a distributed operating system, or by some software layer whose task is to manage
the communication between conventional operating systems and file systems. However, “the
distinctive features of a DFS are the multiplicity and autonomy of clients and servers in the
system” [170].
In ideal case, a DFS appears to its clients as a conventional, centralised file system. Hence,

a transparent DFS hides the multiplicity and dispersion of its components; a DFS’s client
interface should not distinguish between local and remote files [170]. In a conventional file
system, the transparency refers to naming mapping considering addresses on secondary storage
devices.
In addition, a DFS aims to provide location transparency, that is, a file’s name does not

reveal any hint of its physical storage location; and location independence, that is, a file’s
name does not need to be altered if its physical location is changed [170]. Hence, location
independence separates the naming hierarchy from the storage-devices hierarchy and from the
inter-computer structure.
Regarding performance evaluation of a DFS, the amount of time needed to satisfy a service

request is the most important measurement criteria [170]. In addition to disk-access time and
CPU-processing time, a DFS introduces overhead considering its distributed structure: the
network transmission time to send a request to a server and to send results back to clients.

2.4.1 Client–Server-Based Systems

In client–server systems the availability of system functionality is a server-side responsibility;
this is in contrast to P2P systems which aim to completely distribute such responsibility; that
is, it needs to be addressed by each peer in order to ensure availability. In comparison to P2P
systems, client–server systems employ an asymmetric working model as servers are commonly
assumed to be more powerful than clients.
Most of the current DFSs support a static, location-transparent mapping for user-level

names, but they do not provide automatically changing of a file’s location (file migration)
considering location independence [170]. As files are usually associated with a specific set
of disk blocks permanently, manual intervention is needed to execute file migration between
machines. Although static location transparency provides a convenient way to share remote
files by simply naming them as though the files were local, sharing of storage space is difficult;
the physical storage devices are still statically attached to the logical file names. For example,
the techniques in this thesis aim to support location independence that allows the sharing of
data objects and the storage space itself.
According to Silberschatz et al. [170], there exist three main approaches to naming schemes

in a conventionalDFS: (i) in the simplest way, for example, as used by Ibis [184], a file is named
by a combination of its host name and its local name. However, this approach offers neither
location transparency, nor location independence and decomposes a system into collections of
isolated components. (ii) The second way, for example, applied by Sun’s Network File System
(NFS), enables the attachment of remote file directories to local directories to build a coherent
directory tree. The mounting of remote directories can be done on demand and transparent
sharing is supported. However, the resulting structure is versatile and the integration is not
uniform and limited, as each machine may attach different remote directories to its tree.
Considering administrative complexity, the resulting hierarchy can be highly unstructured.
(iii) The third way achieves total integration by applying a single global name structure on
all files in the system.
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DFSs may employ caching techniques to reduce both network traffic and disk I/O: the idea
is to keep recently used data blocks in the local cache—using some replacement policy as, for
instance, least recently used to limit the cache size—to locally handle repeated access to the
same data.13 If the requested data is not locally available, a copy of such data is transferred
from the server to the client. If a cached copy is, however, altered, the changes need to be
reflected on the master copy of the server and the cached copies in different caches to ensure
consistency. The increasing of a caching unit—for example, transferring more data to the
local cache than needed to satisfy a certain request—increases the hit ratio but also increases
consistency issues [170].

A write-through policy [170] writes the modified data of the local cache back to the server’s
master copy as soon as the data is written on any cache. This policy increases reliability but
requires network access for each write operation. The delayed-write policy [170] applies write
operations to the local cache only and propagates updates to the master copy at a later time.
This policy reduces network access but also reduces reliability as untransferred data is lost in
case of a crash. The write-on-close policy [170] delays the transfer of modified data to the
server until a file is closed. This policy is suited for files that are open for long periods and
are altered frequently.

There exist two basic alternatives to verify the validity of cached data [170]: the client-
initiated approach and the server-initiated approach. The client-initiated approach requires
the client to initiate a validity check in which the server is contacted to check if the local data
is consistent with the master copy; the crux of this approach is the frequency of such check,
which determines the resulting consistency semantics. The server-initiated approach requires
a server to track, for each client, the files that are cached. For example, clients notify the server
if a file is opened for a read or write operations to enable the server to detect inconsistencies
resulting from simultaneously issued, conflicting operations.

The Andrew file system (AFS) [127, 95, 160] “is arguably the most feature-rich non-experi-
mental DFS” [170]. The system distinguishes between client machines and dedicated server
machines, both interconnected by a local-area network (LAN) or wide-area network (WAN).
Usually, such system is decomposed between single clusters—interconnected by aWAN; each
cluster is made up by a server and a collection of clients on a LAN. AFS uses a uniform
namespace, which is constituted by single component units (volumes), and supports location
independence mainly for administrative purposes. A client’s local namespace is its root file
system, from which the shared namespace descends. The shared namespace is collectively
managed by the servers in a replicated volume-location database. AFS enables client-side
caching and uses the write-on-close policy to propagate cache changes; AFS caches file in
64-KB sized chunks. AFS implements a stateful file service, which enables a server to track
each file accessed by each client and to keep a connection to the client during a session: thus,
a server notifies a client before allowing a modification to a file by another client by a callback
mechanism and removes this callback on the file for the former client. A client only uses a
cached copy if it has a valid callback. AFS supports server-side caching in the form of replicas;
it “is targeted to span over 5,000 machines [170]. AFS provides access lists to protect files
and directories.

Sun’s Network File System (NFS) [44] is both an implementation and a specification of
a software system for accessing remote files across LANs and WANs. NFS treats inter-
connected machines as hosts with independent file systems. It enables sharing of subtrees
of directories based on a client–server relationship; however, sharing is allowed between any

13The granularity of cached data can vary between single blocks of a file to complete files. For example, the
cached data can be stored on local disks or in main memory.
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pair of machines rather than with only dedicated server machines. Thereby, the sharing of a
remote file system affects only the client machine. The integration (mounting) of a remote
directory is done in a non-transparent manner as the remote location has to be provided.
NFS provides a set of remote file operations [170] to support (i) searching for a file within
a directory, (ii) reading of a set of directory entries, (iii) manipulating links and directories,
(iv) accessing file attributes, (v) and reading and writing files. NFS supports client-side
and server-side memory caching to increase performance. Thereby, it differentiates between
metadata as directory data, which are issued synchronously to the server to avoid directory-
structure disruption; and file data, which are scanned for modification at regular intervals and
if altered, passed to the server. NFS implements a stateless file service, which avoids a server
to keep state information about file accesses by making each client request self-contained: a
request identifies the file and the position in the file in full.

Coda [161] replicates data files to increase availability but at the expense of consistency.
Update conflicts are handled by specialized conflict resolution mechanisms. Coda executes
conflict resolution at system level guaranteeing eventual consistency.

The design of the distributed Google File System (GFS) [81] is driven by observations of
proprietary workload and technological environment. The focus of GFS is to support sequen-
tial read and write operations for large data files and fault tolerance regarding node, that is,
commodity hardware failures. GFS offers a proprietary API and hierarchically organizes files
in directory structures; it uses pathnames for identification. GFS is intended to operate within
a single computing cluster that consists of a single master and multiple storage nodes. Files
are divided into immutable, fixed-size data chunks, which are globally uniquely identifiable,
and replicated among several storage nodes. Caching of file content is not supported. The
master is responsible to administrate the distribution of chunks using global knowledge and
maintains all of the system’s metadata, for example, namespaces, access control, or current
storage locations of file chunks. The master coordinates all data operations by directing a
client to an appropriate storage node. This has implications regarding inconsistent operations
as, for example, clients are assumed to cache chunk locations and therefore may read from out-
dated storage nodes. GFS uses Chubby [40] to support distributed coordination and to store
small data files. Chubby itself is a service to enable distributed locking and is fault-tolerant
through replication. One chubby instance is deployed per cell formed of five replicas running
the same code—each running on a dedicated machine. Every Chubby object is administrated
by a local database, which is actually being replicated.

2.4.2 Peer–to–Peer-Based Systems

The following section gives an overview of proposed P2P-based file systems. Although several
of these systems exist, only few address the problem of providing strong consistency guarantees
for concurrent data modifications in a multi-user and large-scale environment.

The Cooperative File System (CFS) [62] provides a P2P infrastructure for wide-area storage
and focuses on efficiency, robustness, load balancing, and scalability properties. Its architec-
ture may be divided into three major layers: on top, CFS offers a file-system interface, which
interprets constituent blocks that may be stored at different peers as files. Therefore, the so
called DHash component is used to store the data blocks reliably. On bottom, CFS is based
on a Chord DHT routing scheme for lookup and query support for data blocks. It supports
masking of node failures by implementing a basic replication strategy. CFS basically offers a
read-only system from a user’s point of view where consistency is hardly a problem—only a
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single user, that is, the publisher, is able to modify its own data.14 Each block is addressed
by a generated content hash key; this implies that every content change would change the
key. The representation of a single file by many distributed data blocks may be a drawback
when considering the overhead to fetch each block. However, distributed storage may allow
for parallel retrieval of blocks. The distribution of single blocks representing a large file may
prevent hot spots.

IVY [131] is designed as a read-write file system on top of a Chord routing scheme. IVY
offers NFS-like semantics including the ability to modify data files by multiple users. There-
fore, IVY maintains one update log per peer, which are publicly offered using DHash. Each
file update is represented by a record, which is appended on the peer’s local log and annotated
with version information to track sequences; as records are assumed to be never removed from
a log, every peer has access to the complete file system history. But, a peer is not able to
fully decide when own changes are propagated to the network. If a peer wants to read a file
all logs need to be inspected in order to get a synchronised view. As IVY supposes that it
is undesirable for each peer to get a different version of a file, sets of peers share a common
view of the system and each file in such view has a consistent version. However, conflicting
log records are assumed to be generated; this forces the need for explicit conflict resolution15

mechanism at application level, which may limit the number of writers per data file.

Freenet [54] is designed as location-independent distributed file system. The system is
based on unstructured overlay networks using a probabilistic routing scheme. Freenet focuses
on supporting insertion, storage, and retrieval of files in an anonymous way. The constructed
file system supports no multi-user read-write access; files are completely stored as one data
unit in last recently used manner, which may lead to deletion of unpopular files by the system.

The Farsite project [35] aims to develop a decentralised read-write file system with the focus
on a malicious environment. Farsite provides a global namespace for files within a distributed
directory service. In order to enhance reliability, whole files are replicated using Byzantine
fault tolerant peer groups as routing scheme. Confidentiality is ensured by usage of encrypted
file replicas. Farsite uses a lazy update scheme as newly written file content resides on only
one peer. Hence, a crash of such peer corresponds to update lost.

Pangaea [159] maintains a graph of live replicas for object location, which is used to propa-
gate updates via a flooding-based mechanism called harbinger. Each peer that accesses a file
or directory creates a local replica. This approach may reduce read latency but inherently
causes traffic increase when updates are propagated.

Amazon’s Dynamo [67] is a multi-user key-value storage system designed for a single ad-
ministrative domain consisting of a couple of hundreds of nodes. Dynamo does not support
hierarchical namespaces or relationship schemas. The primary focus of Dynamo is to never re-
ject write operations due to failures or concurrent write operations. It uses consistent hashing
to partition and replicate data objects. Here, a zero-hop DHT is employed to avoid routing
requests, where each peer is able to directly route a request to the appropriate peer. Partition-
ing information is propagated via a gossip-based protocol. Dynamo employs object versioning
and relaxes consistency among replicas as it allows read and write operations to be performed
even during network partitions; each modification results in an immutable version. Dynamo
aims to ensure eventual consistency, where a read operation may deliver not the latest consis-

14This is especially in contrast to the approach in this thesis as it reduces collaboration possibilities. A system
that supports multiple writers for the same file needs to ensure consistency between replicas by considering
conflicting update efforts. However, even with a single writer consistency of replicated data may need to
be ensured.

15In addition, conflict resolution always raises questions about who is responsible to resolve a conflict and
when should it be resolved.
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tently written value and conflicting versions are possible. Dynamo employs conflict resolution
mechanisms. Its failure detection and membership protocol are built on gossip-based tech-
niques. The usage of Dynamo is intended to support objects that are relatively small (less
than 1-MB). Dynamo assumes that the joining and leaving of peers is explicitly configured by
an administrator.
OceanStore [110] is designed as an Internet-scale, persistent P2P data store for incremental

scalability, secure sharing, and long-term durability. Data objects are identified by global
unique identifiers, represented by ordered sequences of immutable versions, and located by
using Tapestry as routing scheme. Each version is composed of distributed, read-only data
blocks. OceanStore employs a two-tiered storage system. In order to support consistent
multi-user read-write operations, OceanStore divides an item’s replica peers into a small set of
primary replicas and secondary replicas: inner ring replicas agree, serialize, and apply updates
for each data item using the BFT algorithm; then, a dissemination tree is used to propagate an
update to secondary replicas maintaining arbitrarily cached item copies. Primary replicas are
assumed to be manually set up and maintained by some commercial service providers using
highly resilient nodes, which are connected by high-bandwidth network links. OceanStore al-
lows the usage of access control lists to enforce read and write permissions. However, published
measurements only suppose a single writer for each data block. In addition, OceanStore’s ap-
plications still have to utilise low-level mechanism for each consistency model [152].
P-Grid [64] uses a flooding-based mechanism in order to update data. However, P-Grid

does not assume conflicting write operations.
BitTorrent [57] is primarily a file-download protocol—rather than a file system—which relies

on global components as kind of routing scheme: for example, central websites are used to find
files. A single file is divided into fixed-size chunks for read-only storage. BitTorrent focuses on
minimizing download latencies by employing a tit-for-tat-like policy to benefit peers with high
uploading rates and prevent parasitic peer behaviour. A peer that has successfully finished a
download process automatically acts as seed for the file.
As described, pure P2P-based storage systems have already gained attention in research.

However, most systems use a monolithic approach if consistency of operations is considered at
all. In addition, the systems usually do not offer some degree of flexibility regarding certain
properties, as different replication demands: thus, applications are limited as such restrictions
usually need to be considered at design time. In contrast, Chapter 5 introduces DhtFlex, a
generic building block to enable atomic operations on top of structured P2P overlays. For
example, DhtFlex enables to adjust the degree of replication per data item.

2.5 Distributed Database Systems

Distributed database systems (DDBSs) have long been a topic of interest in the database
(DB) research community. A fundamental aim has been to support the principle of data
independence, that is, to make data distribution transparent to users and applications. Usually,
a DDBS encapsulates all the details of distribution behind standard query language semantics
with ACID guarantees. In general, some key functions of traditional DBs may be supported
like access control, automatic query optimization, transaction management, or data structures
for supporting complex data relationships; in addition, tasks of a DDBS concern the ensuring
of data availability, redundancy, or concurrency control.
DDBSs are designed for data management in distributed systems. Özsu et al. [140] define

a distributed database (DDB) as a collection of many, logically interrelated databases (DBs)
at single, independent nodes that are connected by some network. The local heterogeneity of
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a database is usually masked by some global schema. As illustration, a DDBS is responsible
to transform issued queries into local queries of the involved DBs and to subsequently aggre-
gate the results. A distributed database management system (DDBMS) is then defined as the
software system that enables the management of the DDBS and makes its distribution trans-
parent to users. Thus, a DDBS represents not just a collection of files, which are individually
stored at network nodes, but access to such collection shall be enabled via a common interface
and there should be some structure among the files. A DDBS aims at an environment, where
data is distributed among a number of sites (see Figure 2.9 [140]).

Figure 2.9: Environment of a Distributed Database System

As DDBS, data integration systems (also known as multi-database systems, federated
database systems, or mediator systems [188]) aim to solve the problem of providing integrated
access to heterogeneous data in existing DBs. As indicated, such integration process usually
involves the definition of a global schema to address existing data and thus of fitting mappings
to existing local DBs schemas. In the context of the Internet, for instance, mediator systems
use basic query languages to enable general access to data resources, for example, to content
files, in read-only mode [185]. Fault-tolerance using replication is usually not supported.

Parallel systems [187] enhance the approach taken by DDBS by exploiting DB partitioning
to increase system performance, for instance, to reduce query response time through paral-
lelism. Thereby, parallel systems usually relax the assumption of each site representing a log-
ically single and independent computer; such system may be implemented by tightly-coupled
multiprocessor systems or cluster systems. Hence, in contrast to DDBS, there is usually a
common operating system employed.

As indicated, traditional distributed database systems aim to support strong consistency
guarantees for replicated data. However, Gray et al. argue that these systems are limited in
scalability and availability [86]: usually,DDBS make strong assumptions about the network—
in comparison to P2P systems which support a more dynamic participating model. In general,
DDBS run on dedicated servers.

2.5.1 Client–Server-Based Systems

Client–server-based systems provide a two-level architecture for DBMS and distinguish be-
tween server functions and client functions [140]. A server does most of the data management
work, as query processing and optimization, transaction management, and storage manage-
ment. Clients offer a local application interface and manage locally cached data and perhaps
locally cached locks; in addition, consistency checking of user queries may be enabled at
client-site.

There exist different types of client–server architectures [140], ranging from one server being
accessed by multiple clients (multiple client–single server), to systems containing multiple
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server (multiple client–multiple server). From a data management perspective,multiple client–
single server architectures are similar to centralised databases; however, differences concern the
management of caches, for example. Considering multiple client–multiple server architectures,
(i) each client may communicate with only one home server, which communicates with other
servers on the client’s behalf, or (ii) each client may communicate with any appropriate server.
For instance, the first approach concentrates data management functionality at server-sites.
Figure 2.10 [140] illustrates such architecture for a relational system, where the client–server

communication happens at the level of SQL statements: SQL queries are issued from a client
to a server; the server processes such query, including further optimizations, and returns the
result back to the client. Therefore, some operating system and communication software runs
at both the client and the server site.

Figure 2.10: Client–Server Architecture for a Distributed Database Management System

From a data-logical view, client–server DBMSs may provide the same view to data as may
do P2P systems, which are discussed in the next section. Both approaches aim to provide
the transparent appearance of a logically single database, while data is actually distributed
at physical level. Hence, the difference is in the architectural paradigm, which is used to
implement this level of transparency [140].
DDBSs focus on distributed data management as many P2P systems. For instance,
DDBSs intersect with P2P systems in areas of distributed indexing structures. However, the
taken approach is different: DDBSs usually split large DBs onto several physically distributed
network nodes in order to establish more efficient data querying through parallelism [70]: a
DB is physically distributed across various nodes by fragmenting and replicating the admin-
istrated data. For example, the fragmentation of a relational database schema would divide
each relation into partitions based on some function applied to some tuples’ attributes. In
addition, each fragment may be replicated to improve availability and performance [188].
However, DDBSs aim to preserve ACID properties for such distributes setting. Therefore, a
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lot of research has been done to develop diverse update strategies (lazy or eager) or commit-
protocols. But these techniques usually employ a point of central coordination, which is a
contrary approach to most P2P systems.

2.5.2 Peer–to–Peer-Based Systems

Main problems to achieve effective P2P-based DDBSs concern data placement and data
coordination.

Data Placement The goal of P2P data placement [88] is to distribute data and processing
among peers so that queries can be executed with the smallest possible cost in terms
of some criteria, for example, response time. Data placement strategies may consider
(i) the level of shared (global) knowledge peers may rely on to make decisions, (ii) network
dynamics in terms of peer memberships, (iii) the level of data replication and granularity,
and (iv) freshness and consistency requirements.

For instance, P2P systems usually do not establish a predetermined (global) schema.
Queries are often based on keywords. In P2P systems, peers are commonly allowed
to join and to leave the network at any time. In contrast, in DDBS nodes are often
assumed to be added to and removed from the network in some controlled manner;
in addition, nodes are typically supposed to be stable and to have some knowledge of
a shared schema. Regarding the level of data granularity, an atomic granularity level
ensures data to be accessible as indivisible objects, for instance, as one complete file. At
such level, either an entire object may be stored at a peer, or not at all. A hierarchical
granularity level supports grouping of sets of objects to form hierarchies. At such level,
either single items or a set of items is located at a peer. A value-based granularity level
enables objects to be aggregated from many (atomic or hierarchical) values—for example,
as tuples in a relation: thus, data may be integrated before being stored. The degree
of data replication may improve reliability but complicates maintaining consistency and
updating: (i) in contrast to basic approaches in DDBS, updating in a dynamic P2P
environment should not rely on a single (static) master. (ii) Replicas need to be located
in the dynamic network. Thus, if data in a P2P system is only distributed uniformly,
leaving peers may prevent a reliable access to certain items. In contrast, locating all
data only on a set of static servers may influence flexibility and performance.

Data Coordination In contrast, the data coordination deals with managing data dependen-
cies and semantic mappings between peers [82]: this involves reconciling and integration
of different individual data schemas to associate related data which is administrated
using different names and formats.

In the following, approaches are described exemplarily for the three basic P2P overlays.

PeerDB [134] is a distributed data sharing system that supports content-based searching.
PeerDB basically represents a network of database-enabled nodes, that is, each peer manages
a local database system—thereby, PeerDB relies on a small set of (central) lookup servers
to track the current IP address and status of every peer in the network. PeerDB enables
data sharing without a shared global schema by using keywords as metadata to describe each
relation and their attributes of a peer’s local database. The system uses mobile agents to
support its two-phase query processing strategy, that is, to perform operations at remote
peers: (i) first, keywords are used to locate potential (matching) relations (that is, peers
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storing them) by searching on known16 peers. (ii) Second, the user selects relevant relations to
determine the peers to which the queries will finally be directed for getting results. However,
query results may be incomplete if peers are not active; PeerDB does not explicitly consider
fault-tolerance or consistency issues.

Edutella [132] aims to implement a schema-based P2P infrastructure for the Semantic Web.
It relies on the Resource Description Framework (RDF) to describe distributed resources
and uses the P2P-platform JXTA [172] to construct a super-peer based overlay topology
for message routing and mediation of metadata. All resources in the system are uniquely
identifiable. Edutella provides distributed querying for resources and semantic mediation.
For the latter, it uses super-peers as mediators to provide coherent views across data sources
through semantic reconciliation. Super-peers maintain indices based on schema information
that refer to peers. Regarding mediation processing, a query is initially propagated between
super-peers, which act as network hubs translating a query and forwarding it to connected
peers on demand. However, Edutella does not explicitly consider fault-tolerance or consistency
issues.

PIER [96] is a P2P query engine on top of a DHT which is designed to scale up to thousands
of nodes on a wide-area network. The system adopts a relational data model in which data
values are fundamentally independent of their physical location on the network and provides
different query operators. Queries are defined in a native language. Every tuple in PIER
is self-describing, containing its table name, column names, and column types.17 Different
query operations require different indexing structures for their evaluation: (i) a multicast
index (based on a distribution tree) is maintained to allow a query that ranges over all the
data to find all the data, that is, to disseminate. (ii) A DHT index is maintained for equality
predicates, that is, the DHT directly supports to find the relevant node for a specific value.
(iii) A Prefix Hash Tree (PHT) is maintained to support predicates with ranges. Pier supports
best-effort data semantics, that is, it returns the matching set of data published by reachable
peers at the time a query is received, respectively. PIER strictly decouples the storage from
the query engine and does not support a reliable and persistent data storage, or consistent
update operations. In contrast to ACID storage, it offers relaxed semantics: the publisher of a
data object needs to ensure its persistence using soft state; that is, if a peer fails, any objects
stored at that peer are lost and are no longer available to the system.

As described, current P2P systems usually do not focus on providing fault-tolerant and
consistent operations considering concurrent data updates. Although updating data with mul-
tiple, distributed replicas has been studied in traditional distributed database research [139],
flexibility of P2P systems may cause traditional approaches to fail. For example, usually P2P
systems do not assume a central location where metadata can be stored or updates can be
synchronised. In addition, peers are usually considered to be able to enter or leave the system
dynamically.

2.6 Summary

This chapter introduced the background of this thesis, which aims to provide an architecture
and P2P-based methods to implement flexible content repository functions.

16A peer may dynamically adjust the set of peers that it can directly contact based on some criterion. For
example, most frequently accessed peers are directly communicable while peers that are less frequently
contacted may be reached through peers indirectly.

17For example, each relation has a corresponding namespace and the primary key of the relation’s base tuples
represents a resource identifier. Then, a DHT key is build concatenating namespace and resource identifier.
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As there exists no uniform definition of a content repository, the need of Chapter 3, that is,
to state the content repository model that is used in this thesis—considering particularities of
a P2P environment, and Chapter 4, that is, to design a generic P2P content repository system
architecture, becomes obvious.
The chapter identified (i) distributed file systems and (ii) distributed database systems

as related approaches towards distributed content repositories and accordingly presented and
discussed state of the art. However, existing P2P systems usually use monolithic designs and
basically focus on propriety use cases ignoring flexibility; thus, users or applications are limited
as such restrictions usually need to be considered at design time.
However, while client–server systems commonly provide strong consistency guarantees for

data operations, existing P2P systems usually focus on achieving scalability (and fault-tolerance)
but neglect consistency issues in respect of concurrent data updates: assumed dynamics in
P2P systems usually prevent applying traditional methods, for example, to assume a central,
static location where metadata can be stored or updates can be synchronised. Therefore, this
thesis presents generic methods to enable fault-tolerant and consistent data operations (i) for
structured P2P overlays and (ii) for hybrid P2P overlays:

• Chapter 5 introduces DhtFlex as a generic method to support atomic operations on
top of a structured P2P overlay. DhtFlex offers a flexible degree of fault tolerance and
supports flexible data semantics.

• Chapter 6 introduces reconfigurable P2P service groups as a generic method to imple-
ment fault-tolerant state machines in hybrid P2P overlays. The approach supports a
flexible degree of fault-tolerance and a flexible peer working model.

In addition, both chapters describe how demanded content repository functions can be
implemented by the presented methods, respectively.



3 Analysis of Content Repository
Requirements in a Peer–to–Peer
Case

The previous chapter presented in substance the wider scope of a content repository and the
peer–to–peer (P2P) computing paradigm. However, before turning towards the applicability
of P2P technology for content repository systems, their inherent peculiarity needs to be
analysed. The functions of the identified essential building blocks (or functional components)
that constitute and distinguish a content repository from a user’s point of view need to be
defined, on the one hand. On the other hand, functional and non-functional requirements
regarding the applicability of different P2P overlay approaches need to be investigated. The
methodology used in the analysis is explained in Section 3.1.
The scenarios in Chapter 1 provide in some sense an abstraction of the most important

functional and non-functional requirements in the context of this thesis. Using these, Sec-
tion 3.2 (i) identifies functional building blocks of a content repository and (ii) additionally
exploits the Content Repository API for Java Technology (JCR) to define them in a generic
manner.
Then, Section 3.3 identifies dependence relationships between the derived functional com-

ponents of a content repository. This process is crucial to describe how the building blocks
depend on each other to offer their major service, on the one hand. On the other hand, the
building blocks may mutually influence themselves regarding service results and service opera-
tion. The analysis of dependence relationships leads to a better understanding of functionality
interactions to benefit the provision of modular designs and implementations.
Section 3.4 discusses the presented knowledge of content repository functionality regarding

functional and non-functional requirements for a P2P-based solution—considering different
P2P overlays. Finally, Section 3.5 recapitulates the most important aspects of this chapter.

3.1 Methodology of Analysis

Major targets of this chapter are (i) to define the identified functional components of a content
repository in order to state a logical perspective of a content repository’s architecture, and (ii) to
map such logical view onto tasks of aP2P system, that is, to select suited P2P overlays as basis
for methods to implement the functional components achieving a process perspective. Thereby,
the logical view and the process view of the “4+1” view model for a software architecture [108]
is adopted, respectively.1

Logical View This view is primarily intended to illustrate functional requirements, that
is, what kind of services the system offers to its users: “a requirement that specifies a
function that a system or system component must be able to perform” [176]. On the one

1As further explained in Section 4.1, the “4+1” view model is a methodology to describe the organisation of
a software architecture using multiple, concurrent views—each one addressing a specific set of concerns.



50 Analysis of Content Repository Requirements in a P2P Case

hand, these requirements are given by the problem domains of the scenarios of Section 1;
that is, these represent in some sense an abstraction of important requirements. On
the other hand, JCR as an open standard provides a starting point to define content
repository functions in generic manner.2 The usage of JCR prevents a too narrow
approach to define and decompose such system: it avoids a too close focus on the
requirements of a proprietary use case.

However, this view is independent from implementation decisions and focuses on the
functional entities of the content repository problem domain, their relationships and
interactions. The decomposition supports the functional analysis, and the identification
of common mechanism and design elements across the logical architecture. Once a
functional building block is identified, its offered service and working scope are defined.
This modularisation of functional building blocks aims to reduce the complexity of an
overall system.

Process View The logical view considers only the functional aspects of a content repository.
However, the next step is to map the logical view to the P2P domain, which states
the so called process decomposition.3 The P2P approach offers different overlays as a
foundation for distributed content repository functions (see Section 2.3). However, these
vary regarding non-functional characteristics. The process view reflects especially non-
functional requirements regarding these overlays, for example, reliability, scalability, or
performance.

The next section identifies and defines the essential functional components of a content
repository in the context of this thesis.

3.2 Definition of Functional Building Blocks Using the

Content Repository API for Java Technology

The Content Repository API for Java (JCR) is defined as open standard by the corresponding
Java Specification Request (JSR)4 283 [66] extending former work of its predecessor JSR-
170 [65]: it basically standardises a programmatic interface to enable generic access to content
repositories.
The main intention of JCR is to improve application interoperability by providing a stan-

dardised and flexible way to manage arbitrary content without being tied to any particular
back-end architecture, data source, or transport protocol. Thus, JCR is suitable to act as a
starting point to define identified content repository functions on a logical level.
However, JCR does not address special requirements arising if content repository functions

should be provided using a distributed P2P approach. In addition, it focuses on Java particu-
larities rather than on a more generic concept of content repository functionality. In contrast,

2JCR defines a repository interface and a generic abstract repository model to manage arbitrary content;
hence, it is well suited to act as the groundwork for a functional analysis.

3For instance, to reflect which peers are affected by certain operations, or what semantics are guaranteed
considering the P2P-based implementation of functional components.

4In substance, a JSR is a document submitted within the Java Community Process (JCP) to propose the
development of a new specification or significant revision to an existing specification in the world of Java.
Since its introduction in 1998 as the open, participative process to develop and revise the Java technology
specifications, reference implementations, and test suites, the JCP program has fostered the evolution of
the Java platform in cooperation with the international Java developer community. There are currently
more than 90 Java technology specifications in development [182].
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the following couple of sections determine the abstraction of a content repository’s functional
components and define semantic characteristics applying the methodology of Section 3.1.

3.2.1 Content Repository Model

As indicated in Section 2.1, the repository model defines the meta model to identify and
structure content data within a repository, from a user’s point of view; it supports to express
functional operations on content data. It is the task of a concrete repository implementation
to translate these operations into actual corresponding actions—affecting its used storage
subsystems.

Workspaces and Items
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Figure 3.1: The Hierarchical Content Repository Model

Following JCR, this thesis assumes a repository model that offers a generic, hierarchical
content data model and several levels of functionality for content services on a logical level.
Subject to it, a repository consists of an unlimited set of named workspaces ; as illustrated in
Figure 3.1, each workspace establishes a single-rooted, virtually hierarchical, n-ary tree-based
view of content items.5

As depicted in Figure 3.2, content items are divided into nodes and properties. Nodes basi-
cally provide names and structure to content, which is actually stored in a node’s properties.
Regarding content classification, there is no explicit distinction made between real content or
meta content. A node may have zero or more child nodes, and perhaps zero or more associated
properties. Properties themselves cannot have children and are always leaves in the logical
tree of a workspace. Each workspace contains a single parentless node to act as root—the
main access point to workspace content. All other nodes must have one parent node. Apart
from the root node, every item within a workspace has a non-empty name to identify it.

5Nonetheless, such model is compatible with not primarily hierarchy-based addressing approaches as a very
shallow tree consisting of a root and a large set of children is a valid arrangement.
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Figure 3.2: Relationships of Items, Nodes, and Properties

Namespaces, Node Types, and Property Types

As indicated, the used repository model is generic to support different types of content items.
For their distinction, (i) a namespace concept and (ii) an item type concept are used—as
proposed by JCR.

Namespaces Adopting the concept used in Extensible Markup Language (XML) [38], names-
paces may prevent naming collisions between item-type names: the namespace of an item
is indicated by a delimited prefix within its name. Usually, such prefix refers to the actual
full namespace, represented by a Uniform Resource Identifier (URI) [27].6

Node Types Each node is typecasted using namespaced, potentially extensible, names. Node
types allow the establishment of standardised data-type constraints—for instance, which
child nodes and properties a node is allowed or required to have. A node is classified by
exactly one primary node type, annotated as special property. In addition, a node may
be equipped with multiple extra node types. An extra node type acts as a decorator to
add or enforce additional characteristics to those of a primary node type. Just as the
latter, an extra type is reflected by a special property.

Property Types A property must have a certain type to define its expected content format.
For example, this allows the explicit distinction of boolean, numerical, binary, or string
values.

To support the building of many orthogonal hierarchical views of the same underlying
workspace content, special property types of weak and strong references are used. (i) A
reference property points to a node and additionally provides the semantic feature of
maintaining and guaranteeing referential integrity. Hence, the removal of a node which
is the target of a reference property is prevented. (ii) A weakreference property behaves
just the same, but it does not enforce referential integrity. Their support shall abstract
from a single canonical hierarchy and shall benefit flexible content design strategies.

Variations on Item Access

The stated repository model offers two essential ways to access an item, either by direct or
traversal access. In order to uniquely identify each node and ease direct access, it is always
referenceable through a UUID, which is unique per workspace. Consequently, a node is
independently addressable from its position within the workspace hierarchy.

6It is assumed that some kind of namespace registry as part of a repository is responsible to map each prefix
to its corresponding URI.
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The traversal item access targets on walking through the content tree of a workspace, step by
step, using (relative) paths. A relative path is meant to be relative to another location within
the content tree hierarchy. Thus, the approach is flexible enough to be used for hierarchical
and non-hierarchical repository models.

Each workspace is independent regarding the impact of changes in another one. However,
as shown in Figure 3.1, correspondence relationships between nodes of different workspaces
may exist: this enables comparison and tracking of changes within other workspaces.7

Sessions

The repository model uses the JCR concept of a session to represent one-to-one bindings
between an application using the repository and the corresponding view of an actual content
repository workspace. A session is canvassed by an application as a result of the login process
to a repository—for example, using some authorisation mechanism.8

A session basically acts as a container to record content item modifications to transient,
in-memory storage. In contrast, a workspace represents the persistent storage layer. Multiple
session instances tied to the same workspace may exist, but each must have its own different
state. Modifications within one session are independent and invisible to others. They take
effect and made visible to other sessions when explicitly committed to persistent storage; that
is, to the corresponding workspace of the content repository. Hence, within a repository there
can occur situations of invalid states of content items. That is, an item may be altered within
a session but not yet committed, and its corresponding item in the workspace may have been
concurrently modified.9 10

The next section logically defines the functional components that constitute a content re-
pository.

3.2.2 Content Repository Functions

In addition to the basic repository model, a content repository is constituted by a set of
essential functional building blocks: these are identified reflecting the scenario requirements
of Chapter 1.

Figure 3.3 depicts these components and additionally arranges them into different function-
ality scopes: thereby, all details of each scope are explained in Section 3.3, which analyses the
relationships of each component. In contrast, this section focuses on the logical definition of
each component explaining the inner-view of a component.

In the following, each functional building block is exemplified using JCR as a starting point.
However, the focus lies on the pure functionality, abstracting from any semantic sugar of an
application interface.

7For example, a correspondence relationship between nodes exists if they share the same correspondence
identifier, that is, their UUID.

8In consequence, a session encapsulates authorisation settings to enable fine grained access control to admin-
istrated content items of a workspace.

9For example, this would be the case if an item should be persisted from a session to the workspace, but the
target parent node has been persistently removed.

10However, regarding concurrent access of a JCR-compliant content repository only thread safety on login
level has to be ensured; this effects only the acquisition of a session for a certain workspace. In contrast,
a P2P-based approach to content repository functions demands for more sophisticated solutions to deal
with a distributed process environment.
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Figure 3.3: Functional Components of a Content Repository

Access Control to Content Items

Authorization aims to provide controlled access to protected content items of a certain work-
space; it builds on identification and authentication mechanisms.11

In order to login to a certain named workspace of a content repository, the access control
functionality intends the passing of some credentials:12 if passed credentials are valid, a session
is started and access to the demanded workspace content is granted. However, access control
functionality does not prescribe a concrete credential peculiarity, nor its usage at all. The
enforcement of access control policies is entirely left to a concrete repository implementation.
This delimits its scope and allows the employment of external standard solutions, for example,
the Java Authentication and Authorization Service (JAAS) [178].
However, following the approach taken by JCR, access control functionality addresses fine-

granular permission checking on content item level or rather node level to determine whether
a particular session has access rights. For example, access control management may allow the
setting of the following access privileges, which may be aggregated or expanded:

• The privilege to read a node or a property, including contained content values.

• The privilege to create, update, and remove a node’s properties.

• The privilege to create or to remove child nodes.

• The privilege to read or to write the access control policy of a node.

Regarding the interaction of access control with the transient session layer, a change in
access control policy comes into effect once it is persisted to workspace storage. Hence, if the
copy-on-read model is used to write items such change may not be reflected to other sessions
until the affected items are reacquired. The copy-on-read model is explained in the following.

Typecast of Content Items

As indicated by the applied model, a content repository offers methods to discover and read
available node types and their definitions from some type registry. Such registry shall support

11Identification is the process to enable recognition of an entity by the repository, for example, of a user.
Authentication is the process to verify the identity of such entity, as a prerequisite to allowing access to
content items.

12Credentials shall allow an entity to be identified and to be authenticated, for instance, by the usage of a
username and password combination.
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some standardised syntax to define node types and namespace declarations. It is crucial to
respect constraints on items imposed by parent node types. Hence, type assignments may
be made automatically, based on the type definition of a parent item. For example, the
assignment of primary node types may be enforced upon node creation—extra node types
might be assigned to existing nodes dynamically at runtime—respecting conflicting situations.
From a semantic point of view, the assignment of a extra type takes effect immediately; at very
least, once upon a node is persisted from a session to its workspace. If imposed, a repository
may automatically assign extra types to a node upon creation. For example, a child node may
be marked as mandatory, or be specified as being auto-created at parent node creation.

Read Access to Content Items

After a successful login, content items may be accessed—of course, always respecting an avail-
able access control policy. Adopting JCR, an inherent distinction is made, whether (i) read
access targets a content item already present within the transient storage of a session, or (ii) it
targets the persistent storage of the associated workspace. If an item already exists in the
transient session storage this item is accessed by a read operation with priority.13

The actual reading of content items involves the accessing of nodes and properties, usually
either directly or via traversing the workspace item tree. As an optimal access way always
depends on the structure of the concrete content, the desired operations offer a degree of
flexibility. For instance, JCR differentiates between read access at session level and more
fine-granular on item level.

Session Level Read access may use an item’s UUID or absolute path to retrieve an item or
to determine its existence.

Item Level It is supported (i) to read the type(s) of an item, (ii) to determine the parent
node of an item, (iii) to determine the absolute path to an item within a workspace, and
(iv) to determine the numerical depth of an item below the root node, including itself.
(v) The (stringified) name of an item can be read. Two items can be compared if they
actually represent the same repository item. An item can be tested if it is actually new :
hence, if it exists only in transient session storage.14

Node Level It is enabled (i) to read the node definition that applies to a certain node. Hence,
it can be tested if a node is of a certain node type. (ii) The UUID of a node can be read.
(iii) It can be investigated if a node has properties or child nodes. (iv) All properties or
child nodes of a node can be read. (v) All reference properties linking to a specific node
can be determined.

Property Level On property level, (i) the node to which a reference property links can be
retrieved. (ii) The value(s) or size(s) of a (multi-valued) property can be read—respecting
its type using specific access methods.

13However, regarding a concurrently accessed P2P-based persistent storage, this priority may be relaxed.
14That is, it has not yet been saved to persistent workspace storage. In addition, it can be investigated if an
item has been modified by a session. Thus, such item has been saved to persistent workspace storage, but
has subsequently been altered through the active session and therefore the state of such item as recorded
in the session differs from the saved state.
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Write Access to Content Items

Write access may be either applied to content items in the transient storage of a session or
directly to the persistent storage of a workspace. A write operation itself may be triggered
very fine-grained per single item, or perhaps for a complete subtree rooted at a certain node—
if aggregated within a session scope. Usually, many item changes thus are aggregated in the
transient session storage, before trying to be committed to persistent workspace storage piece
by piece.
The target item for a write action is always determined using corresponding relationships,

that is, matching UUIDs or paths. However, before a write action is manifested to persistent
or transient storage, all caused item changes must be validated respecting some rules, first. If
such validation is successful, a pending item (state) change is persisted and thus made visible
to other sessions using the corresponding workspace.15

Investigating JCR, the following validation rules may be enforced, for example; some may
be applied on build-time or change-time of an item, while others can only be applied per write
effort on an item at save-time to persistent workspace storage:

• An item’s access control policy must not be violated.

• The restrictions of a node’s types must be respected.16

• The referential integrity must be ensured: a node, which is the target of a strong reference
property must not be removed.17

• No child node of a node not already existing in persistent workspace storage can be
written.

• A write effort to persistent workspace storage may be prevented by an intermediate done
conflicting persistent item change.18

If validation is successfully done, corresponding pending changes of a session are persisted
to workspace storage; hence, changes recorded by a session are cleared from its transient
storage.19

JCR recommends the usage of locking to avoid conflicts of transient and persistent states.
Locking is introduced in the following. If such conflict occurs, there exists a standard way to
cope with it at user level: (i) not persisted item changes are temporarily copied from session

15Usually, item changes remain recorded by the initiating session. That is, if a session aggregates several item
changes before committing them altogether, it is responsible to react in an appropriate way if an item write
effort fails; for instance, the session wants to reconcile the already made changes to persistent workspace
storage. In consequence, this behaviour would affect even those changes which did not cause a problem.
This approach follows a partial-save policy as a workspace is not responsible to deal with such reconciliation
in failure situations. This is in contrast to the approach taken by JCR, which does not support such policy.

16For example, a node cannot be added as child of a property, or a node of unknown type must not be
persisted.

17Thus, referential integrity must be maintained for a whole subtree of a node that contains a target of a
reference property.

18Such conflict is only detectable at save-time. For example, a write action which should be applied to a no
longer existing or altered target item. At this level, there is no merge functionality intended. A write effort
is only valid for an item that is not being altered concurrently in any way.

19However, from a user’s perspective, the observable item state does not change, since the session mediated
write changes are reflected. The benefit of transient storage targets complex session mediated changes to
content items without having them validated at every step—allowing the structures of nodes or properties
to be temporarily invalid while they are being built. Hence, the timing of validation can be left to a
concrete implementation and postponed until a save-time.
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storage. (ii) A session refreshes its storage and fetches current items from persistent workspace
storage—discarding session mediated changes. (iii) The recorded changes of the temporarily
item copies are merged with the up-to-date item states in the session.20

Using JCR, the following write access functionality is defined, differentiating between
workspace level and session level, or rather more fine-granular item level.

Workspace and Session Level (i) It is enabled to copy an entire node and its subtree from
one location within the logical workspace tree to another, or rather across workspaces.
Thereby, it may be necessary for the initiating session to name new copies of nodes with
new identifiers; in particular, copies need new UUIDs. (ii) It is supported to clone the
subtree of a node from one workspace to a location within another workspace. Here, no
new identifiers need to be assigned to cloned nodes. (iii) A node and its entire subtree
can be moved to a new location within a workspace: however, identifiers of items must
not be changed.

Item Level It is supported to remove an item (and its subtree).

Node Level (i) New child nodes and properties can be created. Thereby, the item type(s)
may be specified by the type of its parent node. (ii) An extra node type may be added
to a node. Semantically, the new node type may take effect immediately and must
take effect on persistence to workspace storage. However, the new node type must be
compatible with the node type of its parent node.

Property Level The value of a property can be set.

Query Access to Content Items

As described, the read component provides direct or traversal read access to content items.
In addition, a content repository should provide some query access to content items of a
workspace. For example, such search functionality enables content item retrieval by matching
specific metadata descriptions. Thereby, the scope of a search is the persistent workspace
storage—not pending changes within transient session storage.

Considering the evaluation semantics (as proposed by JCR), (i) each query basically targets
a set of node tuples; (ii) a query may specify type restrictions to select relevant nodes. In

20In order to support the transient storage of multiple sessions and to allow independent write manipulations,
two approaches are indicated by JCR. The only imposed requirement is the prohibition to acquire an item
from the same session which reflects conflicting state information:

• The copy-on-read strategy copies the persistent state of an item to transient session storage once it
is acquired. All session mediated item changes only affect such transient state copy. On save-time
the changes are copied back to persistent workspace storage and are removed from transient storage.
Hence, conflicts of transient item states and persistent item states are only detectable at save-time. Any
intermediate made changes to persistent storage are only visible to a session by an explicit refresh of
its transient storage forcing a reacquisition of content items from persistent workspace storage.

• The copy-on-write strategy does not immediately copy an item from persistent storage to transient
storage; hence, a read action reveals changes made in persistent storage without explicit refresh actions.
The item state is copied from persistent to transient storage not till a change should actually be
applied to an item state. Once copied, changes to its correspondence item in persistent storage are
not visible until an explicit triggered reacquisition. Compared with the copy-on-read approach, the
conflict situations may be decreased as the time a transient item copy exists is minimized.
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addition, (iii) a query may use the following (combination of) constraints to filter the selected
nodes:21

• Filter by an absolute or a relative path using children or successors relationships.

• Filter by the name of a node.

• Filter by the value, the size, or the existence of a property.

• Filter by full-text search of a property’s value.22

Finally, (iv) a query may state zero or multiple orderings to sort the filtered node tuples by
some property value.

Versioning of Content Items

Basically, the support of versioning functionality shall support the storage of a node’s state as
permanent record for possible future recovery. Thus, the versioning of a certain node associates
it with a version graph of past changes, its history.
A versionable node is indicated by a certain node type. Hence, a single workspace may

contain both versionable and non-versionable nodes. A version is a record of the versionable
state of a versionable node.23 Such versionable state typically consists of a subset of the
attached subtree state, containing nodes and properties. The subset’s scope is delimited by
the node type of each descendant node to govern how the creation of an item state is treated
once its parent node is versioned. The possible semantics proposed by JCR are listed in the
following:

• If the parent node is checked in, all child items and its descendent items down to the
leaves of the rooted subtree may be copied to version storage as part of the version
history of the parent node.

21For example, a query which selects n node types may automatically include n − 1 joins to transform the
sets of nodes selected by each type to a single set of node tuples. Thereby, each join may have a condition
to determine a node’s affiliation to the result tuples; for example, to test a node tuple whether the value
of a property—applying the first type—is equal to the value of a property applying the second type: for a
positive result both properties must have the same (stringified) name and type.

22However, it is an implementation issue to define which properties—if any—are full-text indexed. For
example—according to JCR—the following grammar must be supported to define a full-text search ex-
pression:
FullTextSearchExpression ::= [‘-’]term whitespace [or] whitespace [‘-’]term

term ::= word — “‘’ word whitespace word ‘”’

word ::= /* A string containing no whitespaces */

whitespace ::= /* A string containing only whitespaces */

A term which is preceded with ‘-’ is satisfied only if the value does not contain that term; a term which is
not preceded with ‘-’ is satisfied if the value contains such term. Terms separated by whitespaces implicitly
form a conjunction, such separated by or a disjunction. A conjunction has a higher precedence than a
disjunction.

23In order to create a new version in version history, that means, to add it as successor of one or many existing
versions, a versionable node must be checked-in. A versionable node is always treated as read-only. Hence,
every permissible property may not be added, removed, or have its value modified; just as, a child node
may not be added or removed. To alter its state, it needs to be checked out in order to release it and enable
regular write methods. A versionable subtree of a versionable node may be replaced, that is, restored with
a state recorded in version history. In order to create periodic intermediate versions during the evolution
of content structure, checkpointing may be used as a combination of check-in and check-out operations.
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• If a child node is versionable only a reference to its version history may be stored in the
version history of its parent node. In case of properties, the value is copied to version
history.

• No state information of a child item may be stored.

     Vers ion
R o o t

     Vers ion  1      Vers ion  2

     Ve rs ion  A

     Vers ion  3

     Ve rs ion  B

Figure 3.4: The Version History of a Node

In contrast to JCR, each versionable node shall possess a corresponding version history per
workspace, illustrated in Figure 3.4. A version history is a directed, acyclic, and connected
graph describing successor relationships among versions of a particular node. The relation-
ships represent the edges of such graph, the versions the vertices. A graph has exactly one
root version, but may consist of multiple versions.24 Apart from the root version, all other
versions have one or more predecessors—hence merges are allowed. Each version may have
one or multiple successors in order to allow branches. A version is not allowed to be its own
predecessor or successor.

Observations of Content Items

A component to support observation allows to register interest in events representing item
changes in a particular workspace and to monitor them.
Here, JCR’s observation mechanism is adopted to allow registering an asynchronous event

listener service: once such listener is registered, it monitors and responds to workspace changes
as they occur.25

In substance, an event is represented by an object of certain type and an associated content
item. Event types allow the distinguishing of different causes of a state change: any workspace
change can be described as a set of one or multiple events. For example, these comprise the
adding or the removing of an item, or the changing of a property value. Thereby, the UUID
of an affected node is always attached to an event to support identification.
An event listener may be registered for multiple event types. However, only events for a

certain UUID, an associated parent node, or its whole rooted subtree may be relevant. The
latter allows deep observation functionality. An event may be only valid for certain node types.

Locking of Content Items

Locking enables to temporarily lock nodes in order to prevent a concurrent altering. Thus,
there must exist at most one valid lock on any node at one particular time.26 Locking is

24A root version serves only to make semantics of subsequent versioning operations consistent.
25However, synchronous, vetoable observations are not considered. A synchronous service would trigger event
notification before an item change operations is actually executed in a workspace. This would allow
a registered event listener to veto operation execution. In contrast, the triggering of an asynchronous
notification does not wait for such response from a listener. The order in which asynchronous events are
delivered to registered listeners is not guaranteed to match the order in which corresponding operations
that cause them occurred.

26Hence, the modifying access to a node can be serialized and the lost write update problem circumvented.
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typically used to reserve access to a node, since conflicting updates may be prevented by the
concept of using independent but corresponding workspaces.
Adopting the approach taken by JCR, a particular node that is locked is called the holding

node of that lock. Only a node which is marked by a corresponding extra node type may
be used as holding node. Each lock has a certain owner and type. A lock owner is the
corresponding session through which a user locks a node. The lock owner is able to alter a
locked node or to remove a lock. Hence, the latter may be marked by some user identifier
which is bound to the session. As a certain session, and not a certain user, is in control of
a particular lock, a transfer of lock ownership must be done explicitly from one session to
another. A lock type may be either shallow or deep.
Where a shallow lock applies only to its holding node, a deep lock affects its holding node

and all of the subnodes in its rooted subtree. Hence, if a lock applies to a node it is called
locked node. A shallow lock can only be applied to a lockable node. A deep lock applies to
its holding node and all of its subtree nodes, whether they are lockable or not. However, it is
not possible to deep lock an already locked node.
A lock is uniquely identified by some lock token, which grants the lock’s ownership. A lock

token acts as kind of key to allow the altering of a locked node. Hence, in case of a deep lock,
the property of the correct lock token allows to remove a lock and to alter (sub)nodes under
that lock.27 28 An implementation may use time limits on locks to unlock any lock at any
time. This is especially important when dealing with open-scoped locks; here, a lock can be
handed over from one session to another and thus be explicitly unlocked. Further, a lock can
be only session-scoped. It is attached to and automatically expiring with a certain session.

Sharing of Content Items

The sharing of content items follows JCR’s introduced concept of shareable nodes to implement
multiple hierarchies: a shareable node is a type of node that shares its properties and child
nodes with multiple other nodes. The intention of shareable nodes aims at the support of
multi-filing.29

All nodes with which a node shares are recorded in its corresponding shared set. Each node
in a shared set has a unique name, but shares the same child nodes and properties, including
correspondent property values. As a consequence, the addition or removal of child nodes and
properties, and change of property values are immediately reflected in the state of each node
in the shared set. All nodes in a shared set share the same UUID per workspace.30

If a shared node should be removed, it may be determined if only the affected node or all
nodes in its shared set should be removed. If the latter applies, all parent nodes of each node
in a shared set need to be saved reflecting the change.31

27A lock which applies to a node prevents all non-lock token holders from adding or removing its properties,
child nodes, or extra node types. Moreover, no changes to attached property values are allowed. Nonethe-
less, locked nodes can always be read and copied. A locked node, and its rooted subtree, may be moved by
another session if its parent is not locked by the lock token holder. Such move operation is only possible,
if both source and destination parent node are not locked.

28In addition, a content repository may allow some super-user concept to facilitate the administrational clean-
up of orphaned locks.

29The concept of multi-filing supports to logically file the same node under more than one pathname within
a workspace.

30It is implementation issue to decide which node of the same shared set will be returned for the given UUID.
31As a descendant item of a shared set logically exposes multiple valid absolute paths, an implementation
must choose a deemed one per item. Here, it is an implementation issue how such deemed path is chosen
and what stability over time it has. If allowed, a shared set may contain a node and one of its ancestors.
In such case share cycles may occur. It is implementation issue to prevent or to allow share cycles.
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The next section captures the operational scope that each identified functional building
block comprises.

3.2.3 Operational Scope

The previous section introduced the identified major functional components that comprise a
content repository in the context of this thesis. It defined each component regarding exposed
service functionality. Every functional component exposes several related services. Thus, to
build a deeper understanding of common mechanisms, this section recapitulates these defini-
tions to classify each functionality regarding its covered operational scope.

The operational scope is divided into shallow scope of data operations and deep scope of
data operations. Their difference affects the number of workspace nodes that are concerned
by the execution of a functional component: (i) shallow operational scope typically targets
at one node (and its immediate child items); (ii) in contrast, deep operational scope concerns
multiple nodes (a subtree). This distinction is important regarding the implementation and
execution of each functional component.

Shallow Operational Scope Deep Operational Scope

Item Access Control
√

Item Typecast
√

Item Read Access
√

Item Write Access
√ √

Item Query Access
√

Item Versioning
√ √

Item Observation
√ √

Item Locking
√ √

Item Sharing
√

Table 3.1: The Operational Scope of Functional Components

Table 3.1 shows the operational scope of each functional component. As illustrated, some
components have just one operational scope, while offers can take both scopes, depending on
the concrete service. For example, (i) item access control targets a fine-granular level, offering
its services per item level. Also, (ii) item typecasting is intended to assign types per item.
(iii) Item read access provides the retrieval of a certain workspace item.32 (iv) In contrast,
item write access supports services that work fine-granular at item level, for example, creation
and writing of a single property, and services that may affect a node’s complete subtree, for
instance, copy, clone, or move operations. (v) Item querying is intended to produce results by
investigating thus affecting many nodes. (vi) Item versioning may consider only the affected
nodes state, or its complete rooted subtree. (vii) Item observation allows for notification of
shallow as well as deep change events. (viii) Also, item locking enables to place a shallow lock,
affecting one node, or to place a deep lock, affecting a whole rooted subtree of a workspace.
(ix) As major service, item sharing supports multi-filling; thereby, it always targets a certain
node to create a multiple hierarchy.

Having a repository’s functional components identified and defined, the following section
discusses dependence relationships among them.

32However, walking through the content tree using a path-based lookup may involve multiple nodes.
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3.3 Dependence Relationships between Functional

Building Blocks

The previous section introduced functional requirements of essential content repository build-
ing blocks. However, regarding the implementation of the specified building blocks, it is
necessary to analyse their dependence relationships in relation to pure service functionality
and reciprocative influence. The functional components and their dependencies require an
explicit modelling to cope with the complexity and to integrate all building blocks building a
logical view. Such approach leads to a clearer understanding of the building blocks and ben-
efits efficient implementation by avoiding duplicate functionality: it represents an essential
description to understand a system, the role of each component, and in particular the role of
interaction between components.

First, Section 3.3.1 discusses service functionality dependence relationships to characterise
how building blocks may use each other to implement the demanded service requirements.
The analysis uses the described knowledge of corresponding service functionality.

Then, Section 3.3.2 shows influence dependence to imply that the result (or successful
execution) of a building block’s offered service functionality is suggestible by others. The
analysis starts by investigation of implicit service functionality.

The analysis of both dependence relationships imposes two different dependence relationship
structures of the addressed functional building blocks.

3.3.1 Service Functionality Dependence

Item Access Control

Item Locking

Item Search Item Sharing

Item Write

Item Typecast
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Figure 3.5: Service Functionality Dependence Relationships between Content Repository
Building Blocks
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Regarding pure and essential service functionality, it is feasible to analyse how individual
functional components build upon each other. The derived dependency graph structure is
shown in Figure 3.5. The used notation of the diagram is derived from the Booch notation [36]:
it shows the relevant set of functional components and their logical usage relationships. Each
functional component is used respecting its described main operations and key characteristics.
They are classified regarding their functionality scope.
The direction of a directed edge shows how one building block, or scope of building blocks,

essentially rely on one another to implement its service functionality. A major distinction is
made between elementary functionality required at system level, that is, data level, and content
repository functionality situated at workspace level, that is, item level. For example, this thesis
presents methods to use P2P systems at system level. In addition, it shows how these methods
can be used to implement the identified content repository functions at workspace level.

System Level

Raw Data Processing The basis of all repository functionality shall be enabled by data-
oriented atomic operations offered at system level—as defined in Section 5.1. The sys-
tem level is located logically beneath the repository workspace level. It enables raw
data manipulations, or rather processing in order to read, write, delete, or test data for
existence. It is demanded that raw data objects are addressable by some system-wide
unique identifier—not to confuse with the concept of workspace UUIDs for content
items working at workspace level. All workspace level functionality is build indirectly or
directly upon raw data processing primitives offered at system level. At workspace level,
two major processing clusters are identified: content oriented processing and content
functionality processing.

Workspace Level

Content Oriented Processing The scope of content oriented processing covers all building
blocks affected and working directly with content items. From a top down view, content
oriented processing is further divided into scopes of content item dependent functionality
and content item functionality.

Content Item Functionality Content item functionality involves those functional compo-
nents manipulating and affecting content items directly. In contrast to raw data opera-
tions at system level, item read and item write functions work at item level; hence, these
functions need to be aware of type concepts and must respect them. As described, all
type definitions are provided by item typecast management.33

Content Item Dependent Functionality Content item dependent functionality involves
building blocks that use content item functionality, thus they are logically located one
meta layer above. Such building blocks implement services that offer more than pure
manipulations at content item level, but are always determined by existing content
items regarding their results. For example, item read functionality is elementary to
build search functionality for content items—in order to match content items against
certain query statements. Versioning uses typecast management to classify which nodes
are versionable and how they should be treated. It needs item read functionality to read

33For example, type definitions regulate the co-operation of certain node and property types, as what child
nodes and properties a node is expected to have, or what types such items must have. Also, properties
may expect certain value types.



64 Analysis of Content Repository Requirements in a P2P Case

item version states and item write functionality to write new version states. Observation
functionality builds on item read functionality to learn which items have been added or
changed at an absolute workspace path. The sharing of content items builds on essential
item read and write functionality but establishes a meta layer above content items to
support multi-filing in order to implement multiple item hierarchies.

Content Functionality Processing The scope of content functionality processing includes
those functional components, which work logically beyond content item level: the two
addressed building blocks manipulate at content functionality level, rather than at con-
tent item level. Conceptually, content functionality processing builds on basic primitives
of raw data processing and encapsulates content oriented processing building blocks. For
example, if item access control is available, it hides item read and item write functional-
ity for granted access only. Item locking uses typecast management to classify if a node
may be used as holding node. It capsules item write functionality to enforce locking
policy.

The next section discusses the functional components considering their influence relation-
ships.

3.3.2 Influence Dependence
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Figure 3.6: Influence Dependence Relationships between Content Repository Building
Blocks

On the one hand, the identified functional components may use another to implement
more advanced services. One the other hand, these building blocks are influenced among one
another. Such influence dependence manifests itself regarding the successful working or the
produced results of a component’s service functionality: usually, influence dependence is a
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kind of reversal to service functionality dependence.34 The influence dependence relationships
between functional building blocks are depicted in Figure 3.6. The direction of a directed
influence edge shows how one building block or functionality scope of building blocks influences
one another. Again, the used notation of the figure is derived from the Booch notation [36].
Each functional component is used respecting its main operations and key characteristics.
The focus of the influence relationship analysis is on functional building blocks at workspace

level. It is obvious, that all workspace functionality is influenced by successful data processing
at system level.

Content Item Functionality In the scope of content item functionality, item typecast ma-
nagement imposes type constraints and restrictions on content items.35Item read and
item write functionality enables the building of and working on the content workspace
tree, which represents an indexing structure. Hence, these building blocks play a central
role in the content repository. Regarding the influence of locking functionality on item
write functionality, an active lock for a node must be respected by item write efforts;
hence such operation may fail.36

Content Item Dependent Functionality The building blocks assigned to the scope of
content item dependent functionality are influenced by content item functionality. For
example, the results of an item search are dependent on the ability to read content items
and the items which have been written, or rather the written item states—that is, an
item write execution may change the results of a following item search. The results of an
observation are dependent on the ability to read content items and how or where they
have been modified. However, notification of observation events is usually triggered as
effect of item write functionality. Versioning uses typecast management to mark what
nodes are versioned and how they are versioned. The success of versioning is influenced
by basic item read and item write operations and may fail if such operation fails. Sharing
of content items likewise relies on the successful execution of item read and item write
functionality.

Content Functionality Processing Content functionality processing defines the scope of
building blocks that mainly manipulate or influence building blocks belonging to content
oriented processing. Access control influences them all, as it may prevent any execution
of services. In addition, access control influences locking as its execution needs to be
granted in advance. Locking is influenced by item typecasting as only items marked as
lockable are processable.

The next section investigates different P2P overlays considering their suitability to be used
at system level.

3.4 Suitability of Peer–to–Peer Overlays for Content

Repository Functionality

The previous sections built a logical view of content repository functionality. Regarding the
suitability of P2P overlays to construct a content repository’s functional components, two

34However, content functionality processing acts differently, as subsequently described.
35For example, to denote if items are mandatory.
36Hence, locking uses and influences item writing.
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major requirement sets are identified: functional and non-functional requirements to use a
P2P-based solution at system level (or data level). The aim of this section is to state which
P2P overlays are worth further investigation. Section 2.3 identified and explained the rele-
vant overlay architectures: (i) centralised overlays, (ii) unstructured overlays, (iii) structured
overlays, and (iv) hybrid overlays.
As described in Section 3.1, the analysis shows a process view : informally speaking, an

overlay’s peers represent the processes, which interact to accomplish functionality at system
level (or workspace level).37

Regarding process decomposition, it is the question how the major abstractions of the logical
view suit within an overlay architecture, as each architecture represents a certain philosophy
to employ its peers for certain operations—as illustrated by Section 2.3.38

The next section reflects the different P2P overlays in the face of imposed functional re-
quirements at system level.

3.4.1 Functional Content Repository Requirements for a
Peer–to–Peer Approach

Section 3.3 identified dependence relationships between the defined functional components of
a logical content repository architecture. Basically, it derived four elementary operations at
system level that concern raw data processing in P2P systems:

• Read the data at the location denoted by some identifier.

• Write the data to the location denoted by some identifier.

• Verify if the data at the location denoted by some identifier exists actually.

• Delete the data at the location denoted by some identifier.

As explained in Section 2.3, the different P2P-overlays are basically intended to support
the addressing (routing) to data items (peer locations). This implies, the support of the four
elementary operations for raw data processing is enabled in principle by all overlays, from a
logical point of view.39

However, things are different regarding the fulfilment of non-functional requirements. The
next section investigates this issue.

3.4.2 Non-Functional Content Repository Requirements for a
Peer–to–Peer Approach

In order to support raw data processing at system level, this section investigates the suit-
ability of different P2P overlays by relating overlay routing regarding selected non-functional
requirements of Section 1.2.2: (i) reliability, (ii) scalability, and (iii) performance.

37Such set of peers form a level of abstraction: it is distributed across underlying hardware resources, which
are connected by a physical network.

38Hence, peers represent the level at which the process architecture can be tactically controlled. For example,
a peer’s offered services may be started, stopped, recovered, or reconfigured. Thus, the whole system func-
tionality is partitioned among a set of independent working peers. As a peer’s services may be replicated,
this approach promises benefits regarding the distribution of system load and increased system availability.

39For example, the writing of a data object may be represented by a peer offering (publishing) it in the overlay.
The deletion of a data object may correspond to the writing of some null value for the corresponding
identifier. To verify if a data item exists for some identifier, the read operations using that identifier shall
not return a null value.
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Reliability On this level, reliability addresses an overlay’s inherent features to support lookup
operations considering failures of arbitrary peers—for example, if an overlay supports
several independent lookup paths.

Scalability On this level, scalability addresses an overlay’s ability to incrementally scale its
routing graph. This considers mechanism enabling to dynamically partition both data
objects and indexing structures over the system’s available peers.40 For example, if
an increasing of the number of peers (or data objects) in the system corresponds to
the amount of routing information (or routing state) that each peer needs to maintain,
locally.

Performance Regarding performance, the method used for data item location is one of the
most important design issues for a P2P system. As data items are distributed among
peers, the performance to locate these is very affected by the efficiency of the applied
approach. For instance, an overlay should enable efficient routing of messages between
peers.

The following investigation shows that these non-functional requirements motivate to focus
the support of P2P-based content repository functions on methods (i) for structured and (ii) for
hybrid overlays (see Table 3.2). These methods shall support consistent data management on
top of the used overlays.

Overlay Reliability Overlay Scalability Overlay Lookup Performance

Centralised single point of failure O(#peers) constant

Unstructured redundant lookup paths approx. 3–7 no guarantee

Structured redundant lookup paths O(log #peers) O(log #peers)

Hybrid redundant index groups O(#peers/#partitions) constant

Table 3.2: Reliability, Scalability, and Lookup Performance of Different P2P Overlay
Graphs

Centralised Overlays Centralised overlays bundle up indexing information about data ob-
ject locations on one index: they do not avoid scaling problems that arise in traditional
client–server systems. On request, the central index verifies a query against its local
storage to find matchings. If successful, the found matchings are returned to the re-
questing peer, which may directly contact the retrieved peer location(s). Data object
exchange itself is accordingly managed between requesting and offering peers. Regarding
scalability, the central index’s routing state needs to scale with the number of available
peers. Thus, if the number of peers increases, more and more index storage is necessary.
The performance measured in number of overlay hops to locate a data object is constant
O(1), as only the index needs to be asked. However, regarding reliability, the central
index is the single point of failure for the whole system.

Unstructured Overlays Considering scalability for unstructured overlays, peers usually con-
nect to the overlay network arbitrarily, and store routing information about their imme-
diate neighbours. Thus, each peer stores information for approximately three to seven
other peers [126]. Regarding overlay lookup performance, peers blindly issue requests to
many other peers—affecting them to search for the demanded data objects, accordingly.
However, this may cause the time to retrieve a certain data object to be unbounded. In

40The indexing structure is the basic schema an overlay uses to locate data objects.
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addition, if not every single peer is asked, data lookup may fail even if the demanded
data item exists. This makes the behaviour of such system non-deterministic. Hence, the
data exists primitive at system level is crucial for such approach. For example, analysis
of Gnutella’s network traffic revealed that this system shows bad behaviour regarding
bandwidth consumption of employed mechanisms to provide search or coordination-like
functionality [153]. To circumvent such issues, super peers have been introduced.41 This
leads to lower consumption of network bandwidth, but also to increased processing power
and storage demand for the super peers. However, as long as the overlay is not parti-
tioned, there may exist multiple paths to retrieve a certain data object. Another issue
arises related to supporting consistency; for example, what happens if two peers offer
different data objects for the same identifier?

Structured Overlays Structured overlays introduce a consistent mapping between a data
object’s identifier and the hosting peer. A data object can always be fetched as long as
the corresponding hosting peer can be contacted. Regarding a peer’s local routing state,
each peer maintains a comparable small amount of information about other peers. In
addition, data load can be distributed across the participating peers. The advantage of
such overlay is that each peer is responsible for a certain region in the overlay and that
a joining or leaving of peers only affects neighboured peers, immediately. The logical
topology of a structured overlay provides some guarantees on the overlay lookup costs
achieving high routing efficiency [126].42 As long as the overlay is not partitioned, there
exist multiple paths to retrieve a certain data object.

Hybrid Overlays One of the major drawbacks of centralised overlays is their reliance on
a single index. Hybrid overlays may overcome this limitation by distributing routing
functionality on groups of indexing peers residing in a structured overlay back-end.
Thus, if the lookup-schema can be partitioned among several index groups, the routing
state for each one shrinks. Regarding lookup performance, only the corresponding index
group needs to be addressed to obtain a data object’s location. Then, the data object’s
host can be contacted using the structured overlay.

3.5 Summary

Clements et al. [55] describe functionality as a system’s ability to do the work for which it is
intended. However, implementing a system’s functionality requires to define its major building
blocks and to analyse how these work together. This chapter introduced the used methodology
for analysing content repository requirements in P2P case.
Reflecting the system’s scenarios of Section 1.1, the chapter described the logical view of a

content repository, which illustrates functional requirements for a content repository on the
basis of the “4+1” view model for a software architecture: (i) on the one hand, functional
building blocks (or functional components) were identified and classified, (ii) on the other hand,
their offered services and working scopes were defined, respectively—basically exploiting JCR
to ensure a generic approach to service functions.
Then, the dependence relationships between the derived functional components were illus-

trated: the analysis of these relationships shall lead to a better understanding of functional
interactions to benefit the provision of modular designs and implementations.

41They form some kind of information hubs within the overlay to aggregate data location knowledge.
42However, as the routing graph of a structured P2P overlay may be decoupled from the underlying physical
network, actual query response time and lookup latencies may not be guaranteed.



3.5 Summary 69

Finally, the presented knowledge of content repository functions was discussed regarding
functional and non-functional requirements for aP2P-based solution: for instance, considering
the degree of distribution, scalability, or fault-tolerance. The discussion of these requirements
motivated the approach to investigate methods for flexible content repository function (i) in
structured P2P overlays (see Chapter 5), and (ii) in hybrid P2P overlays (see Chapter 6).
Thereby, the analysis was oriented following the process view of the “4+1” view model for
software architectures.
Using the results of this chapter, the next chapter describes a design of a generic P2P

content repository system architecture.



4 Design of a Generic Peer–to–Peer
Content Repository System
Architecture

The architecture of a software system may be regarded as its essential description to under-
stand it. For instance, such understanding refers to the role of the major system components
and, in particular, their coupling. A “software architecture shall define a simple model of
major components and their interactions; it may act as reusable, transferable abstraction of
a software system” [55].

An architecture acts as a method to organize and structure a system. An important aim is
to reduce the overall complexity to illustrate such system promoting the principles of decom-
position and transparency ; for example, as functionality is encapsulated within certain system
parts, the details should be hidden, turning the focus rather on each part’s characteristics.
Hence, architectural design has major impact on a system’s functionality, as it defines the
degree of modularity affecting maintenance and reliability.

In this chapter, the architecture illustrates the responsibilities each system part has and
how these parts interact to fulfil functional and non-functional requirements of peer–to–peer
(P2P) based content repository functions, as presented in Chapter 3. One key to meet the
imposed requirements is flexibility. This motivates a generic architecture, which is suitable
for different communication and storage paradigms. Thereby, the term generality refers to
“the degree to which a system or component performs a broad range of functions” [176]:
accordingly, the generic architecture needs to support, for example, the introduced concepts of
sessions and workspaces, and to integrate different storage back-ends; the latter may comprise
the integration of local systems, distributed client–server systems, or decentralised (structured
or hybrid) P2P systems.

This chapter is structured as follows: Section 4.1 introduces the applied methodology to
present the P2P-based content repository architecture.

Then, Section 4.2 describes the generic architecture for the overall content repository system.
It introduces a layer model to decompose the system into several parts of responsibility, and
illustrates the management to cope with persistent storage.

Next, Section 4.3 introduces a method for generic content mapping, which supports trans-
parency at different levels. It explains a concept to bundle items and introduces flexible
content data policies.

Subsequently, Section 4.4 shows a generic peer architecture explaining a peer’s basic services
and introducing a method to dynamically integrate additional peer services.

Section 4.5 discusses related work.

Finally, Section 4.6 concludes and summarises this chapter.
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4.1 Architectural Model

Overall, a software architecture deals with the design and implementation of a software’s high-
level structure [108]: it is basically the result of composing an amount of architectural elements
in some well-determined way to satisfy the major functional and non-functional requirements
of the system.

The methodology to present the P2P-based content repository architecture is oriented on
the “4+1” view model of software architectures [108]: the organisation of the architecture’s
description uses multiple, concurrent views—each one addressing a specific set of concerns.
This allows to cope separately with the functional and non-functional imposed requirements—
as introduced in Chapter 1.1 Figure 4.1 [108] illustrates the five main views.

Figure 4.1: The “4+1” View Model

In the following, it is shown how each view is used to illustrate the generic architecture of a
P2P-based content repository—the architecture uses abstractions, compositions, and decom-
positions. The views are, however, not fully orthogonal or independent: elements of one view
may be related to elements of another view.

4.1.1 Logical View

The primary aim of the logical view is to reflect the functions the system provides to its
users in terms of services. Therefore, the view decomposes a system’s functionality into a
set of key abstractions: this benefits its functional analysis, and the identification of common
mechanisms and design elements across the system’s parts.

Section 3.2 described the logical view of a P2P-based content repository in the context of this
thesis. That is, it defined the relevant functional building blocks in terms of user services. In
addition, Section 3.3 highlighted their logical relationships concerning (i) service functionality
dependence and (ii) influence dependence. It is the task of Section 4.2 to map these functional
building blocks to certain parts of the generic system architecture.

4.1.2 Process View

In contrast to the logical view, the process view considers non-functional requirements (for
example, reliability, scalability, or performance); in addition, it reflects issues of consistency

1Thereby, the original “4+1” view model is generic regarding the used notation.
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regarding the system’s integrity. The process view shows how the main abstractions of the
logical view suit to the system’s process architecture.2

Section 3.4 indicated part of the process view of a P2P-based content repository: it referred
to a peer as communicating program and investigated (i) how different P2P overlays—as
logical networks—may support raw data processing at system level regarding functional re-
quirements. (ii) It was described how each overlay suits selected non-functional requirements
of Section 1.2.2: reliability, scalability, and performance.
However, it is the task of Chapter 5 and Chapter 6 (i) to map certain parts of the generic

system architecture to different peers and (ii) to discuss consistency of data operations. Sec-
tion 4.4 introduces a generic peer model to enable such mapping.

4.1.3 Development View

The development view is related to the logical view but addresses different concerns: it ba-
sically shows the organisation of software components to subsystems. Usually, these are or-
ganized in a hierarchy of layers, and each layer reflects a well-defined responsibility. The
development view basically concerns (de)composition of subsystems, for example, regarding
partitioning, grouping, or visibility of software components. A design rule to benefit a system’s
implementation layer by layer prescribes that each subsystem may only depend on subsystems
of its own layer or of a layer below [108].
The development view of the P2P-based content repository is given in Section 4.2: the

section identifies the essential subsystems and shows their usage relationships. It especially
exemplifies the subsystem of the repository core and its connection to different back-end
systems. In addition, Section 4.4 illustrates the subsystem of a peer as major part of a P2P-
based back-end system.

4.1.4 Physical View

The aim of the physical view is to map the software architecture to the physical layer reflecting
the distributed aspect at physical level: that is, communication between networks of processing
nodes.
In the context of this thesis with its focus on P2P-based functions, the physical view refers

to the mapping of peer services—as introduced in Section 4.4: that is, the section reflects how
services of a generic peer model may be mapped onto specific processing nodes. However, it is
an aim of such mapping to be flexible and to minimise the impact on the software code itself.

4.1.5 Scenarios

Scenarios illustrate the description of the architecture and are, in some sense, an abstraction of
the most important requirements. However, this view is rather redundant with the others, but
offers two major contributions: (i) scenarios may be used to identify the major architectural
elements of the logical view. (ii) Scenarios may be applied to validate the architecture design.

2The process architecture can be described using multiple levels of abstraction—each level addressing dif-
ferent responsibilities. For instance, at the highest level, the process architecture is formed by a set of
independently executing logical networks of communicating programs. These are again distributed across
a set of hardware resources connected by a physical network. Thus, the communicating programs repre-
sent the level at which the process architecture can be tactically controlled (for instance, a program can
be started, stopped, recovered, or reconfigured). A program may be even replicated on several sites to
increase the distribution of load and to benefit reliability.
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Section 1.1 showed the sample scenarios of a P2P-based content repository. These were
recapitulated in Chapter 3 to identify and describe essential content repository functions. It is
the task of Chapter 7 to evaluate the achieved design in respect with the presented scenarios.
This way, this thesis uses a scenario-driven approach: the most critical functionality of the
system is captured to reflect its raison d’être.

4.2 Generic Content Repository Architecture

According to Bass et al. [25], a software architecture reflects the structure of a software system,
comprising well-defined functional components or modules, which exhibit their functionality
employing paradigms of information hiding [143] and data encapsulation. For instance, pe-
culiarities of underlying infrastructures should be encapsulated in modules to concentrate
modifications of the system to few parts. Hence, the architecture rather focuses on externally
visible behaviour of the modules and their relationships. Each module should show clearly
defined interfaces, which hide its modifiable parts to the outside. The separation of concerns
for each module should enable loose coupled working of single parts.
The software architecture of the section typifies substantial assignment of functional respon-

sibilities; that is, how its modules are organized. In order to illustrate this principle, modules
are grouped into scopes: modules within one scope are able to communicate with each other;
modules of different scopes or subsystems may only communicate with directly neighboured
ones.
The following sections show a development view of the overall system.3 First, Section 4.2.1

shows the modular decomposition of the system. Then, Section 4.2.2 discusses the major part
of persistent storage management in more detail.

4.2.1 Modular Decomposition

The modular content repository approach considers horizontal and vertical system decompo-
sition: for instance, horizontally, the distribution degree of content repository functionality
regarding the persistent storage support may vary—for example, the storage management for
local or distributed workspaces. Vertically, different modules, for instance, are responsible for
different management tasks (as common to horizontal repository functionality).
The notation of the development view on a generic content repository is oriented on the

Booch notation [36]—but limited to the entities that are architecturally relevant; it is de-
picted in Figure 4.2: the architecture shows (i) several functional modules, for example, the
persistent item state manager, which are (ii) bordered by the scopes of several subsystems, for
example, the workspace subsystem. (iii) Subsystems may contain other subsystems, for exam-
ple, the repository subsystem contains the workspace subsystem, and (iv) may be delimited
by highlighted interfaces, for example, the content repository API : these interfaces represent
the connection between two different layers, like between the content application layer and
the content repository layer. The arrows in Figure 4.2 describe some referential relationships
considering functional dependence of the modules. This relationships are transitive.
Each of the architecture’s layers is briefly introduced and discussed in the following; whereas,

the persistent storage layer as one major topic of this thesis is presented in more detail by
the subsequent section reflecting its interaction with transient storage particularly. Different
layers correspond to different major system tasks. This is a novel approach, as usually systems
do not distinguish between these layers [23].

3As already mentioned, the development architecture focuses on the actual software module organisation.
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Figure 4.2: Layered Architecture of the Modular Content Repository Decomposition

Content Application Layer Content applications shall interact through the content repo-
sitory API with the content repository system: they are basically intended to use the
system as kind of persistence layer. For example, content applications may use the
repository’s functionality for interaction—regardless of the concrete storage back-end.
That is, the layers below the content repository layer may be transparent for a content
application. Thus, such application does not need to deal with peculiarities of content
storage. Content applications need to be, however, aware of content item types, which
they may use to operate; in addition, content applications may define their own types.

Content Repository Layer The logical repository model of Section 3.2.1 offers various lev-
els of granularity with its workspaces, nodes and properties. Section 3.2.2 described the
functional building blocks of a content repository. It is the task of this layer to map
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these building blocks on corresponding system modules. Thus, these modules conceptu-
ally work at scope of a content repository’s functional components.

For instance, a handle to a workspace can be provided via a session, received from the
repository through login to some user credentials.4. To recapitulate, a session represents
a long term connection between a content application and the content repository system;
it is always tied to a certain uniquely named workspace.

The passed credentials typically consist of a username and a password to determine the
user’s access rights.5 Looking at the architecture of this layer, all implementation details
may be hidden from the user by the application interface. At its core, the repository
subsystem implements several registries and managers, which are further organized in
different subsystems:

• The nodetype registry is responsible for the storage and retrieval according to type-
casting of content items (Section 3.2.2).

• The namespace registry deals with the support for the namespace concept of Sec-
tion 3.2.1.

• The session subsystem basically uses a transient item state manager to cope with an
item’s transient state per session. The session subsystem depends on the nodetype
registry and the namespace registry to create consistent items in transient storage;
it further depends on the workspace subsystem to use the persistent state of sessions
concurrently working on the same workspace, and additional workspace functions.
Once a content item is read by a session, it is cached by its transient item state
manager. Thus, modified items are only visible to the same session, that is, in its
transient storage. In addition, such item state manager is responsible to interpret
and resolve a path to an item, or to automatically expand a namespace prefix and
store the full namespace in the repository.6

• The workspace subsystem uses several managers to deal with functional building
blocks of Section 3.2.2—Section 3.3 already analysed their dependence relation-
ships. The workspace subsystem depends on the nodetype registry and the names-
pace registry to create consistent items in persistent storage. It uses (i) a query
manager to support query access to content items, (ii) a version manager to sup-
port versioning of content items, (iii) an observation manager to support observa-
tions of content item changes, and (iv) a sharing manager to support sharing of
content items. All these managers use the persistent item state manager to actu-
ally obtain read and write access to a workspace’s content items—that is, to get
an actual content item view of persisted data; the persistent item state manager
plays a central role in this subsystem. It represents the connection between the
workspace scope and the used persistent storage back-end subsystem; it encapsu-
lates the logic to actually store and retrieve content-item data using path-bases or
UUID-based addressing—always using corresponding policy managers of the policy
layer. A persistent item state manager is statically configured per workspace; it is
able to distinguish between metadata and content data management. Section 4.2.2
discusses the latter relationship in more detail. A persistent item state manager

4This justifies the unit of a workspace to deal with local and remote storage issues—as already discussed by
Section 3.2.1.

5Switching between workspaces requires switching of sessions, hence a potential switching of credentials.
6This implies the support of some undo operation considering the read of an item to convert the full namespace
back to the prefix.
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shall trigger the observation mechanism, if interests in corresponding item changes
exist—usually, reflected by some access manager of the persistent storage layer.7 A
locking manager and an item access manager use a persistent item state manager
to enforce their functions, that is, the support of locking and of access control for
content items. Accordingly, the persistent item state manager needs to obey such
enforced restrictions.

If changes, made in a certain session, shall be persisted to a workspace, there may be
different storage access managers available; however, a policy layer may be installed
above the persistent storage layer to enable additional configuration management.

Policy Layer The policy layer comprises a subsystem to deal with local and distributed per-
sistent storage back-ends; such subsystem administrates the scope of different storage
policies that may be used by the content repository layer to actually access the persis-
tent storage layer. Therefore, it uses policy managers matching corresponding access
managers of the persistent storage layer. For example, the P2P policy manager defines
storage policies of the used P2P access manager. There exists a one-to-one relationship
for a policy manager and an access manager.

As illustration, the usage of a P2P policy manager enables the definition of poten-
tially fine-granular policies at P2P-data level—rather than on item level. This policy
requirements are investigated by Section 4.3 in more detail introducing an annotated
data resource concept. Thus, each type of content or rather content instance may have
its own policy; some examples of storage policies in P2P case may include (i) the life of
content, that is, if content shall be stored infinitely or temporarily; (ii) the actual storage
location of content, that is, if content shall be stored at a specific peer or if content shall
be dynamically moved to another peer if some dedicated peer has not enough storage
space left, and (iii) the replication factor of content data resources.

Persistent Storage Layer The persistent storage layer defines the subsystem to deal with
local or distributed persistent storage at data level. It is indirectly usable by the persis-
tent item state manager of the content repository layer by exposing a generic persistent
storage access management interface. Using this interface, several access managers for
persistent storage may be used, for example, the P2P access manager.

Such P2P access manager supports a mapping between a workspace view of content at
item level and a raw data view at back-end storage level; thus, it is necessary to use some
interpreter to recognise raw data as content items, that is, to retrieve item semantic from
raw data resources.

The next section focuses on the system modules which mainly interact with and are affected
by persistent storage management.

4.2.2 Persistent Storage Management

The modules of the workspace subsystem of the content repository layer interact with the
persistent storage layer by the usage of the generic persistent storage access management
interface—neglecting the policy layer for the moment. Together, the subsystems are able to
support lookup, search, and modification of persisted content items using some (distributed)

7This shall enable an observation manager to asynchronously subscribe for changes in a workspace.
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access structures. They represent a content repository’s major internal components to deal
with the persistent storage of content items.

In order to persist item changes of a certain session, there may be different storage ac-
cess managers available, for example, to cope with a local file system or a P2P network.
The generic interface of the persistent storage layer shall enable the system the exploiting of
network capability of various storage devices.8

Regarding persistent storage management, an important goal is the support of flexible fault
tolerance strategies (recapitulate Section 1.2.2). Accordingly, suited modules of the policy layer
may be added on top of storage access managers to support various levels of data replication,
for example.

In addition, the defined workspace concept enables support for private (local) and for shared
(remote) storage sections. Thereby, each workspace contains its own n-ary tree of items.
Different storage access managers may be used to support some kind of synchronisation of
corresponding local and remote workspaces.

StateItem load ( UUIDItem )

void store ( StateItem1, StateItem1,.. StateItemn )

boolean exists ( UUIDItem )

void delete ( UUIDItem1, UUIDItem2,.. UUIDItemn )

StateItem1, StateItem1,.. StateItemn query+ ( language, statement )

void registerObserver+ ( Listener, PathItem, TypeEvent, Scope )

Table 4.1: Workspace-Supporting Operations of the Persistent Storage Access Management
Interface

Considering the functional scope of the persistent storage layer, Table 4.1 states the major
operations of the persistent storage access management interface regarding the linking of the
workspace subsystem—neglecting the policy layer ;9 The operations basically reflect raw data
processing at system level, as introduced in Section 3.3.1. However, the support of two ad-
ditional operations is defined as optional: (i) query and (ii) registerObserver. Supporting
these two optional operations shall enable to increase overall system performance by pulling
functionality down to tailored methods potentially offered by certain persistent back-end sys-
tems.10

The interface relies on the concept of an item state (StateItem), as explained in more detail
in Section 4.3: that is, workspace modules use such states to persist essential information of
its functionality as metadata.11

Considering the persistent item state manager, an item state shall reflect the item’s workspace
name (path) and its UUID:

• As every item is addressable by a UUID, the load operation is responsible to read an
item’s state from persistent storage.

8For example, this may include the usage of some network transport protocol. However, as the architecture
is modular and generic adding and removing of such protocols may be facilitated.

9However, it is assumed that each persistent storage layer’s access manager is instantiated with a corres-
ponding policy manager.

10For example, Chapter 5 and Chapter 6 indicate such support for P2P systems.
11For example, (i) a query manager is able to annotate certain keywords to support full-text search; (ii) a

version manager is able to annotate version information; (iii) an sharing manager shall mark nodes as
shareable; (iv) a locking manager shall annotate locking information, for example, the existence of a valid
lock, and (v) an access manager denotes access rights.
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• Accordingly, the store operation is responsible to persist a set of one or multiple item
states. Such item states may reflect corresponding item-lock or rather item-unlock ef-
forts; in addition, it shall be assumed, that (i) during the processing of an item’s state
corresponding observation events may be triggered asynchronously; and (ii) item states
may be analysed and be indexed for query purposes according to their type.

• The exists operation basically verifies the existence of a certain item in persistent
storage.

• The delete operation is responsible to remove a certain set of items from persistent
storage.12

• The optional query operation enables a more sophisticated access to persistent storage
and provides a generic search interface: it expects the denoting of the used query lan-
guage and the actual query statement. If successful, the operation shall deliver all item
states that match a query.

• The optional registerObserver operation supports a workspace’s observation manager
and allows to register a certain listener for a certain path—being notified if a certain
event occurs in shallow or deep workspace scope.

Usually, an access manager of the persistent storage layer conceptually consists of two
functional modules: a metadata manager and a data manager, as depicted in Figure 4.3.13

The responsibilities of both modules are explained in the following.

Figure 4.3: Decomposition of an Access Manager of the Persistent Storage Layer

Metadata Management Ametadata manager represents the logical level to deal with meta-
data information. It is responsible to administrate all of an item’s meta information that
is relevant for workspace functionality, like lookup support, query support, observation
support, or locking support. For example, it shall store a path to UUID and a UUID
to path two-directional mapping to support the lookup of items, or some kind of index
data structure [194] to support rich queries.14 Thus, such metadata reflects the system’s
item structure, but potentially excludes actual data (or the item contents), which are
administrated by a data manager, respectively.

12Thereby, type dependencies like requirements imposed by some node type are conceptually checked at
workspace scope—not at the scope of the persistent storage layer ; nonetheless, such requirements may
force these layers to be tightly coupled.

13Nonetheless, the functions of both modules may be summarised and implemented by a single access manger
instance.

14For example, a support of some inverted index to support full-text search is anticipated, as described in
Chapter 6.
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As an illustration, a metadata manager’s logical item structure is kind of similar to a log-
ical file system (see Section 2.4): it may maintain item structures via item control blocks
(item resources); a control block may contain the named information about the item
and may include location(s) of the item content(s). However, this concept is discussed
by Section 4.3 in more detail.

Orthogonal to such metadata manager is a data manager.

Data Management A data manager shall persist content data (blocks) for given addresses:
as an illustration, it basically controls I/O operations for a given data store. Thus, a
data manager may be used to implement some raw content data (blob) storage. Such
manager operates at a very low level and does not need to understand all the complexities
of the repository’s operations, but essentially just needs to be able persist and retrieve
a given datum based on its identifier.

For example, the following implementations are possible:

• A file system access manager would simply implement a mapping between workspaces,
nodes, and properties to directories and files.

• Chapter 5 presents such management tailored for structuredP2P overlays: the metadata
management and the data management are implemented on top of such overlay network.

• Chapter 6 presents such management tailored for hybrid P2P overlays: whereas data
management is implemented on top of a structured P2P overlay, metadata management
is implemented using P2P groups.

P2P-based access managers may implement a quite sophisticated solution to spawn up a
P2P collaboration network. Whereas, an access manager for a local files system may serve
as both, a private repository section and some local resource store for the distributed P2P
section. A concrete workspace instance needs to be, however, configured at design time, but
can be created dynamically at repository runtime.

4.3 Generic Content Mapping

The previous section indicated the problem to store content items to persistent workspace
storage. Accordingly, this section introduces a generic concept to annotate items introduc-
ing item states and to map these states to corresponding back-end storage entities. First,
Section 4.3.1 introduces the item-naming concept to deal with such generic mapping. Then,
Section 4.3.2 introduces how and which flexible content-data policies may be used with this
concept.

4.3.1 Item Naming Concept

Naming [170] represents a mapping between logical and physical objects. The aim of this
section is to introduce a multilevel mapping which establishes an abstraction of an item. Such
mapping hides the details of how and where in the storage layer the item is actually stored.
This treating of an item as abstraction shall lead to the possibility of data resource replication,
for example. Such concept facilitates the existence of multiple copies but may hide their actual
physical locations.
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Figure 4.4 illustrates the naming concept regarding the transformation process of a repo-
sitory item: (i) the content application layer actually deals with item instances or objects—
namely, nodes and properties existing in transient storage. (ii) The content repository layer has
a more sophisticated view on items: the layer knows the internal state of an item—considering
their lock status, for example; as it is responsible to manage core repository functionality.
However, at content repository level, an item and its represented content forms one logical
unit. (iii) An item which shall be persisted needs to be transformed from its item state to an
actual item resource at low data level. Such transformation process involves the policy layer
to specify a policy for the corresponding access manager at persistent storage level. Such item
resource shall reflect all necessary information to represent and reconstruct its item state. In
addition, it contains policy information. An item resource deals with all the low-level details
of actual data storage—which is transparent to the content repository layer.

The reverse transformation process is used to distil an item object from an item resource.

Figure 4.4: Transformation Process of a Repository Item

An item resource denotes a content item’s most significant attributes, and optionally its
concrete storage location. Such a resource may be regarded as logical data containers that
are not attached to a specific storage location. Figure 4.5 visualises the concept of an item
resource using the Unified Modeling Language (UML).
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Figure 4.5: Item Resources Visualized with UML
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An item resource’s data structure is similar to those used in the common Unix file system
(UFS) [125]. For example, each item is represented by an inode-like resource that stores the
item’s metadata, as an inode represents a file. However, not all item resources are equal, as
different types of items must be considered.

Item Resource At the lowest level, an item resource shall be identifiable by some globally
unique identifier (UUID). Such identifier may be generated per item-resource instance.
For example, SHA-1 hashes may be used as UUIDs per workspace.15 In addition, an
item resource contains a parent id attribute to link to its parent item; the name of an
item is also indicated as its part of the item’s absolute path; a version attribute states the
items actual version; an owner attribute reflects the item’s owner; an access control list
attribute supports access restrictions—such attachment shall foster dynamic allocation
of access rights.16 A lock attribute states the actual lock status of the item. A policy
attribute enables fine-granular storage policies at item level.

Node Resource A node resource additionally contains attributes to reflect a node’s primary
type and optionally extra types.17 It has a strong reference attribute to store information
about the existence of strong references pointing at that node.

The implementation of a transparent naming concept demands for the provision of a
mapping from an item’s name to its actual storage location. To keep this mapping
manageable, the concept supports sets of related nodes and properties to be aggregated
as units; thus, the naming can provide the mapping on a unit basis rather than on a
single-item basis: for example, a node resource can encapsulate a node together with
its child nodes or properties. This is enabled by the child node and property attributes,
which specify the actual location as abstraction—that is, to be resolved by the according
storage access manager. For example, the attributes may act as external resource links
or as inner-resource links. The corresponding policy manager may determine the re-
spective behaviour. Figure 4.6 illustrates this item bundle concept: one the one hand, a
node resource may link to another external node resource but may have inner property
resources, for example. On the other hand, a node resource may link to an external
property resource.

Property Resource The generic item concept needs to support different actual content data,
for example, binary data. In addition, it should be easy to access content by supporting
a flexible degree of transparency.

As already mentioned, a property resource may be stored as part of a node resource or
not. Thereby, it has attributes to denote its actual type and value; such value represents

15Previous work [52] has shown such approach to implement a content addressing scheme as HTTP extension.
For example, the following statement shows a possible schema for the implementation of item UUIDs—
assuming a ’.’ (dot) is forbidden in namespace strings:
(Namespace of Workspace) . (Namespace of UUID Node) . (Namespace ofProperty Name)
Thus, structured names can be used to address items. The names are, for example, bit strings that may
have multiple parts: the first part identifies a workspace, the second part identifies a node, and the third
part identifies a concrete property of that node. The invariant of structured names, however, is that
individual first parts of the name are unique at all times—the second parts are only unique within the
context of the first parts.

16An access list may contain information about those users allowed to access an item, as well as information
about those users who are not allowed to access it. For example, common access rights are given in
Section 3.2.1.

17The attachment of this type information may facilitate the verification of type dependencies and requirements
at resource level.
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a logical indirection, the value’s data may be stored as part of the property resource, or
a (remote) location to the value’s data may be stated—transparent to the caller, thus
automatically resolved by the storage access manager. Therefore, such value location
typically specifies both protocol and concrete data address(es). For example, this enables
to store a value within several data chunks as a value location may contain a list of
pointers to other data blocks, in which the actual contents are stored. The benefit
is, for example, to associate the same (large) binary file with different metadata—if
dereferenced.
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Figure 4.6: Item Bundle Concept

4.3.2 Flexible Content Item Policies

The content repository system is intended to support different content storage policies in a
flexible way. For example, such policies may reflect how content may be actually persisted
and accessed. Regarding the storing of property values, the previous section introduced a
concept that supports different levels of data granularity: on atomic granularity level, content
data is represented by individual objects—being kind of a storage unit. Different granularity
level hierarchies can be built by grouping aggregations of objects to represent larger objects
(collections); regarding the granularity level, data objects may be restructured and build from
atomic values on demand. Thus, content data must adhere to some global uniform semantics
to deal with and ease content integration—specified by storage policies.
Therefore, the item type concept of Section 3.2.1 is used to formulate content item policies

in a flexible way. More precisely, a workspace’s policy manager may interpret a node’s extra
types to select and apply the suited policy per back-end storage. The policy is accordingly
annotated to the item’s resource. An extra type allows an item to be marked as being some
kind of special—for example, to mark it as being versionable or more precious—at content
application layer. However, the applied policy may be transparent, as it is applied at policy
layer. Thus, the node types may be used to annotate contents with type information and
to enable their individual storage. Such policy support enables the flexible adjustment of its
parameters to implement different design goals.
In the following, some examples of semantics that may be settled by a policy are given:

• A node resource enables to actually embed property resources—thus, their values, too.
This facilitates flexible policies which may actually embed property resources containing
small values, but place external links for property resources containing large values. The
policy may state a certain threshold value per corresponding storage access manager.
This may even allow a storage access manager to split up such item unit, if the limit is
exceeded dynamically at runtime.
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• Considering the actual storage of item values, extra types may define if an item should be
stored in local storage only (extra:local), or completely in the P2P network (extra:p2p).

• Replication control allows for the determination of the degree of replication and of the
placement of replicas. Regarding the level of fault-tolerance per item resource, the
according policy may determine the number of replicas per storage back-end. Under
certain circumstances it can be desirable to expose these details to the content application
layer ; for example, to allow administrators to control such replication scheme.

To be able to build distributed P2P workspaces, mappings need to be found by using P2P
resources per persisted item. Chapter 5 introduces such mapping tailored for a structured
P2P overlay. Chapter 6 defines such mapping for a hybrid P2P overlay.

4.4 Generic Peer Architecture

Section 3.4 explained that is likely that different P2P overlays may be superior concerning
several content repository requirements: different functional building blocks may demand
for different trade-offs regarding imposed non-functional requirements. Most current P2P
applications share fundamental concepts, for example the search for information or the transfer
of data. However, these applications usually implement things differently and thus they are
incompatible to each other—resulting in a set of isolated solutions. This section presents a
generic P2P architecture, which is designed to be network-independent to allow the integration
of different P2P overlays. For example, this architecture serves as a basis for the presented
techniques—tailored for structured P2P overlays—of Chapter 5 and the techniques—tailored
for hybrid P2P overlays—of Chapter 6.
Regarding the architectural model, Section 4.4.1 presents a peer’s internal structure compris-

ing major services; in Section 4.4.2 the basis of a generic method to deploy services dynamically
at runtime is established.

4.4.1 Internal Peer Structure

This section describes the internal structure of a peer. It is represented by a generic peer
service architecture—as depicted in Figure 4.7.
A peer’s service architecture basically consists of two major components, a local host ab-

straction and a local service container. Hence, a peer is made up by hardware and software
resources.

Local Host Abstraction

The local host abstraction serves as design element to represent the local system view of a
peer. However, a general classification of a peer is difficult, as there exist a wide variety
of resources that may be aggregated across peers. For instance, one approach to classify
these, is in terms of resources offered by some physical peer device, as CPU processing power,
bandwidth constrained network connections (with variable upload–download bandwidth and
network link latency), energy consumption, or primary and secondary storage. In addition,
each peer usually shows a certain probability to be on-line and available to the system; for
example, loosely spoken, such probability may be high for peers running on dedicated server
hardware and low for peers running on mobile devices. Each peer, however, provides a limited
number of local hardware resources; and in contrast to software services, these resources cannot
be copied or transferred over a network.
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Figure 4.7: Peer Service Architecture

Local Service Container

The local service container follows a service-oriented system design approach to support dy-
namic service deployment. Every peer is modelled as a service providing access to the different
computational resources of its host. Similarly, each peer provides a container to host other
services. This motivates a flexible service model optimized for the dynamic domain of P2P
systems. In the respective literature the term service is often used ambiguously and hence
requires clarification. In this case, a service shall simply refer to a self-contained computer
program that exports its functionality through a well-defined interface [79]. Services can be
parametrised with a task and executed thereby producing a result in a predefined format.
A service is determined by some service description and may be dynamically integrated into
a peer’s local service container. This includes mechanism for dynamic service integration—
described in Section 4.4.2: each peer provides a limited number of local services as software
resources ; however, in contrast to hardware resources, such software services or content can
be copied and transferred over a network. The services can be divided into three different
layers—according to their functional scope: a local service layer, a P2P service layer, and a
P2P application layer.

A brief description of the different layers and some of its exemplified services is given in the
following.
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Local Service Layer This layer provides services with some kind of local functional scope. A
local storage access service offers access to a peer’s local storage (devices); for example,
some key-based storage. A local network access service provides messaging on top of
a peer’s local connections to physical networks; for example, the support of message-
communication using TCP/IP or UPD/IP. The dynamic code loading service is a facility
to integrate additional services to a peer’s local container dynamically at runtime.

P2P Service Layer This layer provides services with some kind of distributed functional
scope—the services shall enable to build a P2P-based communication network. In order
to interact with each other, a peer needs to offer a set of such essential P2P service func-
tionality and common interfaces. For example, a peer ID service assigns some unique
identifier per peer instance. Such service is required by a peer membership service which
manages the joining and leaving of peers, or the transparent updating of its physical
network address. Both of these services are used by a peer overlay routing service, which
implements a certain P2P overlay routing algorithm to create a distributed overlay rout-
ing structure using the assigned peer identifiers. The peer communication service uses
such routing service to enable peer messaging independent from an underlying physical
network—with the help of the assigned peer identifiers. A peer group communication
service enables peers to syndicate into groups, and to send and receive group messages—
similar to group communication. The aim of syndicating peers into groups is to enable
services that are collectively provided by such groups as a whole (group services), rather
than provided by individual peers (peer services). Peers may join or leave a group con-
sidering some access policies. However, the internal group management should not be
visible to the outside, as well as the internal of services. For instance, the implementation
of fault-tolerant group services may enable to tolerate crashes of group members.

P2P Application Layer This layer contains the various P2P applications that may be im-
plemented op top of the other layers. The peer architecture enables choices of multiple
service implementations for each layer, and P2P applications may be combined with
various P2P overlays without any modification.

On the one hand, this enables application developers to select service implementations
according to their requirements; on the other hand, different implementations of a service
can be compared more easily.

For example, a DHT service provides a key-value storage over a P2P network. Thereby,
it may use a structured P2P overlay, as presented in Section 2.3. Chapter 5 introduces
such service to implement a storage access manager for a content repository—tailored
for structured P2P overlays.

A replicated indexing service enables the fault-tolerant storage of an index data structure;
Chapter 6 introduces such service to implement a storage access manager for a content
repository—tailored for hybrid P2P overlays.

Thus, each peer offers certain services (as they show different abilities). Accordingly, peer
services may represent some mapping to a peer’s abilities: for example, a local storage access
service exposes a peer’s local storage devices. Thus, specific content may be provided by a
single peer or by a set of peers.18

18This approach supports role models, for example, similar to Piazza’s model [87], which differentiates be-
tween (i) original content providers, which supply original content to the system and form its authoritative
source; (ii) content storage providers, which supply memory to store materialised views of content; (iii) con-
tent processing providers, which supply processing resources to execute query requests; and (iv) content
requesters acting as clients in the system.
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4.4.2 Dynamic Service Integration

This section introduces a generic approach for decentralised dynamic code loading of service
functionality to implement a dynamic code loading service. The whole process of publication,
look-up, implementation selection, and the final loading of platform-specific code is decen-
tralised and requires only basic P2P functionality. In contrast to previous work, this approach
allows any peer participating in the network to offer and to obtain platform-specific code in a
dynamic and heterogeneous environment.

For example, challenges to dynamic code loading arise if rarely used code has to be loaded on
demand, or if code to load is not even known in advance. This is a common problem, as peers
may have numerous independently running service parts, which results in some code modules
not being known at compile or even at start-up time [101]. However, it is desirable that newly
developed code can be used by already running execution environments. In addition, for some
P2P application services, it is not feasible to install and load all code modules at every peer
of the system. For example, some code modules might only be used by a few of the peers, and
these peers may not be known in advance or may have resource restrictions.

As every service may be available in various implementations with different requirements
and properties, a generic and decentralised selection process is responsible for identifying the
best-fitting one for a certain host environment.

Required Interface
Functional & Non-Functional 

Properties

Implementation
Code

Compatibility Requirements

Figure 4.8: Towards a Generic Service Code Classification

Figure 4.8 [101] identifies three categories of properties and requirements that have to be
fulfilled or at least be taken into account during the selection process:

• As an interface determines how the service deals with implemented functionality at the
programming layer, new and locally unavailable functionality is identified by its required
interface. Thereby, the interface has to be defined in a generic interface description
language, for example, using the Web Service Definition Language (WSDL) or the
CORBA Interface Definition Language.

• Functional properties express additional functional aspects beyond the bare provision of
an interface, for example, the supported version. In general, it is hard to standardise all
kinds of functional properties. However, this is a requirement for a generic selection pro-
cess. Thus, one approach is to propose that an infrastructure for dynamic loading should
specify well-known functional properties and delegate the evaluation of other ones to the
concrete P2P application. Implementations providing the same functionality might also
possess non-functional properties that specify in general quality-of-service properties,
for example, timing behaviour or resource consumption of a certain implementation. In
the same way as functional properties, these are hard to be standardised in general and
therefore might have to be handled by the concrete P2P application.
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• Specific compatibility requirements for a certain implementation have to be considered
as well; for example, the required programming language and execution environment.
Such approach considers the fact that exactly the same functionality can be implemented
in various programming languages, for example, using Java or C++, or for specific lo-
cal runtime environments; for example, Linux or Windows. Compatibility requirements
may be automatically evaluated as there usually exists a limited set of properties—as
compiler, processor type, or operating system—that determine whether an implemen-
tation is executable in the context of a requesting P2P application; for example, such
properties are outlined in more detail by Kapitza and Hauck [100].

Considering the dynamic code loading service itself, three major components may be differ-
entiated [101]: (i) a dynamic loader offers an interface to the P2P application for requesting
locally unavailable functionality. This component shall be able to discover, to select, and
to integrate an appropriate service implementation into the address space of the requesting
application. (ii) Thereby, the searching process is supported by some decentralised code stor-
age that maintains information about available code implementations. The interface of such
storage basically is assumed to provide support for keyword-based lookup. (iii) Adopting the
sketched role model of the previous section, the decentralised code storage itself is updated
by multiple code providers—that is, peers that provide implementation code, and publish
metadata descriptions specifying requirements and properties.

Regarding the basic data structures maintained by a decentralised code storage, the usage of
the introduced set of properties and requirements enables the selection of the best-fitting imple-
mentation code. Therefore, all data about available implementations is published as metadata
descriptions in scope of the decentralised code storage. For omitting duplicated information
and improving extensibility, these descriptions may be decomposed into four different kinds
of metadata resources, which may be published separately [101]:

• An interface description contains the fully-qualified name of the interface and the in-
terface itself; for example, using WSDL. Within the description, other interfaces and
complex data types may also be referenced by their fully-qualified names, which enables
a dynamic lookup of unknown interfaces and data types.

• For covering all interfaces and complex data types of a module, these are combined and
published in a module description: interfaces are only referenced by their name. The
combination of module and interface descriptions allows a complete representation of
the interface description and can be used for providing a decentralised code storage.

• An extended functional description specifies all functional and non-functional implemen-
tation independent properties. These are properties provided by various implementations
and therefore are used for selecting equal implementations providing the same interface.
As mentioned earlier, it is hard to identify a generic set of functional and non-functional
properties that apply to a major number of applications. Therefore, a decentralised code
storage and associated dynamic loaders should provide a flexible interface that enables
applications to introduce code for custom evaluation.

• An implementation description describes a concrete service implementation and its com-
patibility requirements. It includes a reference to the location of the actual code and a
description of the initially accessed implementation element. For example, in the context
of Java this would in general be a class name of a factory.
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Finally, the dynamic code loading service is characterised considering (i) basic workflow of
publication, (ii) selection, and (iii) loading of code [101].

Before publishing an implementation, a code provider has to generate appropriate metadata
documents—the interface description, the extended functional description (referencing the
interface description), and the implementation description (referencing the extended functional
description and the concrete implementation). Then, these metadata documents are published
via the decentralised code storage.

Once a P2P application requires locally unavailable service functionality, it passes the
fully-qualified name of the required interface and an optional handler for custom evaluation
of extended functional requirements to a dynamic loader entity.

This dynamic loader queries the decentralised code storage to look up the interface descrip-
tion and—if not available—passes an exception to the calling application. If successful, the
storage is queried for extended functional descriptions supporting the requested interface. If
provided, the results are passed to the optional handler, which has to return an ordered list
of appropriate extended functional descriptions starting with the best-fitting one.

On the basis of this list, the dynamic loader queries the storage for implementation de-
scriptions. These may be evaluated depending on some policy; for example, the first fulfilled
implementation description is selected or all are considered and the best-fitting one is selected.

Finally, after having selected an appropriate implementation description, the code can be
loaded from the corresponding location.

4.5 Related Work

The following discussion of related work focuses on the generic content repository architecture
and the generic peer architecture.

Generic Content Repository Architecture

Considering selected related work for the presented generic content repository architecture
of Section 4.2, Cranor et al. introduced the design and implementation of the Spectrum
content management architecture [60] to implement a personal video recording system (PVR).
The Spectrum system aims to deal with rich media content. It allows storage policies to be
applied to such content to facilitate efficient storage. The approach especially focuses on
content management for continuous media objects. Spectrum allows combination of different
storage policies to be applied on the same content; in particular, time based retention policies.
However, the modular approach of Spectrum’s design is narrower than the generic design
presented in this thesis. Essentially, Spectrum’s modules are dedicated to local or client–
server read–write functionality to handle content data. This differs to the richness of functional
building blocks as analysed in this thesis. Regarding maintenance, Spectrum offers no self-
organizing features or transparency, and requires manual intervention. The usable policies for
content in Spectrum are not expected to dynamically change at runtime.

Hausheer et al. presented the design of a distributed P2P-based content management mid-
dleware architecture [91]. The presented approach focuses, however, on the higher level of a
content management system (CMS), rather than on a content repository and its functional-
ity. For example, much attention is paid to lifecycle support of content. In particular, access
control and accounting were investigated. The proposed architecture is based on a service-
oriented P2P platform, assuming (i) the availability of solutions for building an authentication
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infrastructure, (ii) a shared P2P space to support building content indexing and management,
and (iii) suitable mechanisms for content rating and reputation in place.
OGSA-DAI [102] is a middleware that supports heterogeneous data resources—for exam-

ple, administrated by relational or XML databases—to be queried, updated, transformed,
compressed, and delivered via web services within a Grid environment. Regarding security,
OGSA-DAI establishes a role-based model to grant data access permissions, mapping cre-
dentials to corresponding underlying database roles. In contrast to this work, OGSA-DAI
targets on concepts of a more generic middleware layer, especially integrating client–server
solutions. This thesis focuses on P2P-based techniques with the aim of eliminating central
entities in the network. None the less, the repository solution of this thesis may be integrated
in OGSA-DAI as data storage.
Apache Jackrabbit [4] is an implementation of the Content Repository API for Java on the

basis of JSR-170 [65]; the Jackrabbit system provides local or distributed client–server based
content access at application level—the Jackrabbit implementation itself focuses on supporting
local persistent storage management. This is in contrast to the approach of this thesis, which
addresses the integration of flexible, distributed (P2P-based decentralised) access managers at
persistent storage layer. In addition, it was shown in Section 4.2.1 how the proposed system
architecture highlights a modular content repository approach which considers horizontal and
vertical system decomposition. Finally, the proposed system architecture emphasizes the
definition of a policy layer to support flexible storage policies—such procedure is not regarded
by Jackrabbit.

Generic Peer Architecture

Regarding selected related work for the presented generic peer architecture of Section 4.4,
the approach in this thesis is similar to the key-based routing (KBR) abstraction by Dabek
et al. [63], but is not just focussed on the structured P2P overlay aspect. Their abstraction
basically defines three layers: layer 1 providesKBR for structured P2P overlays—KBR differs
from traditional routing mechanism, for example, as used in IP routing, as the destination
peer is usually not known by the sending peer; a key is used rather than an explicit destination
address. The KBR layer forwards a message, identified by some key, towards the root peer
of this key; that is, the peer possessing the numerically closest matching identifier to the key.
Layer 2 offers additional services like the support of DHTs, group multicast or unicast, and
decentralised object location and routing. Layer 3 contains the actual applications.
Overlay Weaver [168] follows theKBR abstraction by introducing a runtime design forP2P

computing that decouples the overlay routing layer from higher-level services like DHTs: the
routing layer consists of a routing driver and subcontractors like the actual routing algorithm
and a messaging service. The generic routing process itself is factored out from the routing
layer by designing a programming interface between the common routing process and actual
routing algorithms. Thus, an algorithm developer does not need to implement it. Nonetheless,
the routing layer is monolithic even with the layered abstractions.
The JXTA project [172] was initiated by Sun Microsystems as a similar effort to provide a

generic and open infrastructure for P2P computing. For establishing a generic basis for P2P
applications, JXTA standardises several functions by introducing six asynchronous query–
response protocols. The architecture of JXTA is composed of three layers: (i) the core layer
offers basic functionality for P2P communication: in particular, primitives for the manage-
ment of peers and inter-peer communication. (ii) The service layer is responsible for generic
services that may be required in common P2P situations, like file sharing or indexing. On top,
(iii) the application layer is reserved for any applications developed by the JXTA commu-
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nity. For structuring and dynamically extending JXTA-based applications, the infrastructure
offers a generic module framework. Modules are managed by the framework and represent
distributable units of functionality within a specific peer group that can be initialised, started,
and stopped by a peer. Thus, modules enable loading and integrating new services into the
JXTA platform [191].

4.6 Summary

This chapter stated the methodology of using different views to present the P2P-based content
repository architecture: it was explained how different views are used to emphasise different
architectural aspects.
In the chapter, a layered architecture for a P2P-based content repository was introduced.

Thereby, the approach considered horizontal and vertical system decomposition: (i) main
system modules were defined and mapped to essential content repository functions. (ii) The
system modules were arranged in subsystems and delimited by interfaces. A special particu-
larity concerned the definition of a persistent storage layer, which represents the connection
to integrate the P2P-based methods for enabling flexible content repository functions (see
Chapter 5 and Chapter 6): for example, the differentiation between metadata managers and
data managers was highlighted.
Then, the chapter presented a generic concept to annotate items—introducing item states—

and to map these states to corresponding back-end storage entities (resources). Therefore,
(i) an item-naming concept was showed to deal with such multilevel mapping, and (ii) it was
explained how and which flexible content data policies may be used with this concept.
Finally, a generic peer architecture was described, which is designed to be network-independent

to allow the integration of different P2P overlays: (i) it was given a peer’s internal structure
comprising major services, which were divided into different layers—according to their func-
tional scope. (ii) The basis of a generic method to deploy services dynamically at runtime
was established: for example, as every service may be available in various implementations
with different requirements and properties, a generic and decentralised selection process shall
be responsible for identifying the best-fitting one for a certain host environment. Considering
the dynamic code loading service itself, major components were identified.
To conclude, every peer may run a part of a content repository, on the one hand. On

the other hand, every peer may use the main services jointly offered by the whole content
repository system. Thereby, flexibility is supported at different architectural design levels:
(i) in terms of overall content repository functionality, (ii) in terms of content (functionality),
and (iii) in terms of peer functionality.



5 Methods for Flexible Content
Repository Functions in Structured
Peer–to–Peer Overlays

Structured peer–to–peer (P2P) overlays provide the support to route messages on top of phys-
ical networks in coordinated manner. In addition, these overlays enable strategies to partition
a system’s data load among available peers using the concept of consistent hashing. How-
ever, to benefit the implementation of flexible content repository functions (see Chapter 3 and
Chapter 4) a generic method to enable reliable but consistent data management in structured
P2P overlays is required. Chapter 2 determined this gap in P2P research.
To close this gap, this chapter introduces the DhtFlex method. However, DhtFlex repre-

sents a flexible approach to allow P2P applications the control of desired system properties:
for instance, to configure the desired level of consistency or the degree of reliability.1 This
shall enable applications to choose their own trade-off between certain functionality and per-
formance.
This chapter is structured as follows:
Section 5.1 introduces and motivates DhtFlex—a distributed algorithm for flexible atomic

data management in structured P2P overlay networks.
Section 5.2 states the system context of the DhtFlex algorithm: (i) it describes the applied

system model, (ii) the basic system architecture, and (iii) the general system interface.
Then, Section 5.3 explains the major functions of DhtFlex: (i) annotated data resources to

support efficient and flexible operating, and mechanisms to enable (ii) consistent adjustment
of a data resource’s replication group (recasting), (iii) consistent put operations, and (iv) con-
sistent get operations. In addition, (v) it indicates an approach to deal with the worst case
scenario of structured P2P overlays, that is, so called overlay breakups.
In Section 5.4, it is illustrated how the presented methods enable the construction of flexible

content repository functions. Therefore, (i) a suited content mapping, and (ii) an approach to
implement persistent content storage are presented.
Section 5.5 discusses related work. Finally, Section 5.6 concludes this chapter.

5.1 DhtFlex: A Distributed Algorithm for Flexible

Atomic Data Management

Chapter 3 derived requirements for content repository functionality in the context of P2P
systems. Thereby, Section 3.4 has analysed structured P2P overlays as a foundation to ap-
proach the raised requirements. Structured P2P overlays show the potential to close the gap

1For example, the usage of DhtFlex enables a P2P system—using a structured overlay—to protect an appli-
cation from transient or persistent failures in subsets of participating nodes. This may be highly desired
as, in contrast to traditional distributed systems, P2P systems usually assume an individual peer to be
of worse availability: peers may be supposed to run on less-reliable commodity hardware, which may be
switched on and off the system at any time showing intermittent connectivity behaviour.
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by providing a basis to build distributed hash tables (DHTs). DHTs adopt such overlays
because of their inherent high scalability and resilience against peer failures. Combined with
additional replication strategies such systems promise high availability for published data re-
sources. A common approach to enhance fault tolerance in P2P systems is to store a certain
data resource instance replicated at different physically located peers, called its replication
group. However, regarding the support for atomic data operations replication comes at the
cost of maintaining data consistency: an atomic data operation on a certain resource has to
be consistently applied to all of its replicas. In this case, the existence of several replicas is
crucial and raises the challenge if a data resource could be modified concurrently.
The common understanding of an atomic operation applies to a set of sub-operations that

are combined to appear as single operation with only two possible outcomes to a user: success
or fail. Without such atomicity support, there exists the possibility that a system is able to
enter an invalid state. Thus, an atomic operation is executed completely, or it has no effects.
Atomic operations target the atomicity level and the isolation level considering the ACID
properties of the database world.
In order to suffice this requirement, both of the following conditions are crucial:

1. No other peer is able to recognize the changes being made by an atomic operation until
the entire set of bundled sub-operations completes successfully.

2. If any of the bundled sub-operations within an atomic operation fails, then the complete
atomic operation fails, and the state of the system is exposed as it was in before the
atomic operation started.

This informal notion of atomic operations is represented by Lynch’s atomic objects [123] in a
more formal way: an atomic object can be accessed concurrently by several peers, but ensures
that the peers receive responses that make it “look like the accesses occur one at a time, in
some sequential order that is consistent with the order of invocations and responses” [123].
Hence, an atomic object’s set of operations may run in parallel, but does always appear to
occur one after the other; no inconsistencies may emerge.
Most DHT-like systems either avoid the difficulty and typically focus on immutable data

resources when using replication strategies [156, 62], or rather limit concurrent data resource
modifications allowing only one dedicated modifier, the resource’s owner [157]. Those rareP2P
systems that allow concurrent atomic data operations [31] are usually monolithic reinventing
the wheel for their storage needs with a focus on their specific application domain, overlay,
and strictly on mutable data resources. On the one hand, this hampers the adoption by other
applications; on the other, applications may support both explicit immutable and mutable
data resources. For instance, the analysis of Chapter 3 has exposed such general demand for
content repositories, the starting point of this work. It is typical for such system environment
to deal with mutable, as well as immutable data, for example, once a certain version of a
content item is defined, it remains forever unchanged within the corresponding version chain.
Summed up, given the vantages of a structured P2P overlay and the requirements of aDHT

reveals potential worth profiting. Although there has been a lot of research in the domain
of DHTs, what lacks is a generic but efficient solution to enable flexible consistent data
operations for replicated data that is trimmed for such a highly concurrent and fluctuating
environment.
DhtFlex is a full-blown fault-tolerant distributed algorithm tweaked for the needs of aDHT

and optimized for the consistent management of replicated data resources. It serves as a generic
building block for underlying structured P2P overlays to cope with replicated data items. The
query model of DhtFlex supports simple read and write operations for data items that are
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uniquely identified by some key (UUID). It uses techniques that extend a DHT in order to
deal with the requirements emerging of supporting content repository functionality. Hereby,
DhtFlex supports both immutable as well as mutable data resources for structured P2P over-
lays and offers flexible consistency strategies for atomic data operations. An emphasis of this
approach is the enabling of such operations for replicated data resources of dynamic P2P sys-
tems, where peers may fail with high rate, so called churn [98]. DhtFlex imposes an annotated
data resource concept to typify replicated data. This allows the differentiation between data
items and the efficient dealing with both immutable, as well as mutable data resources. Espe-
cially for the latter, DhtFlex is able to provide strong consistency guarantees enabling atomic
DHT put and get operations. Therefore, it exploits techniques of Leslie Lamport’s famous
Paxos algorithm to coordinate the recast process of a data resource’s replication group.2 As
peers within a replication group may come and go, it is necessary to preserve the consistent
formation of a single replication group. DhtFlex serializes concurrent put and get requests
over the master of a replication group in order to accelerate these operations. Hence, DhtFlex
is optimized for get, put, and recast operations on mutable data resources, in that sequence.
These operations are even more efficiently supported for immutable data resources, increasing
the overall performance in an employed system. Hence, DhtFlex is optimized by explicitly
differentiating data resource types and presents an efficient and generic building block to cope
with replicated data in DHT-based P2P systems. It allows system grows to large scales and
updates to be made from anywhere in the system.

5.2 System Context of DhtFlex

The system context of DhtFlex represents major properties of the assumed system environ-
ment. Section 5.2.1 indicates the applied system model. Then, Section 5.2.2 gives the overall
system architecture elaborating the approach on the technical level. Eventually, Section 5.2.3
states the basic application interface of the system.

5.2.1 System Model

This section describes the basic system model of the approach: the next section shows the
assumed peer properties; then, the assumed link properties are indicated; finally, the assumed
method to enable detection of peer failures is given.

Peer Properties

DhtFlex assumes a system composed of a dynamic set of non-malicious peers {p1, p2, .., pn}
which follow a benign failure model. Peers are similar regarding hardware and software char-
acteristics. Each peer is uniquely identified by a UUID, its peer identifier (ID). Peers are
able to continuously enter or leave the system at any time. At any given time, a peer is either
up or down. A running peer correctly works at its own speed obeying its specification. No
assumption is made considering the relative speed of peers. While running, any peer might
fail by crashing; that is, it stops executing according to the crash-stop failure model. A peer
may recover with its original peer ID by executing some recovery procedure, according to
the crash-recovery failure model. Hence, a crash or a recovery event causes a peer to move
from up to down or down to up state. Recovery requires essential resource information to be

2As pointed out by De Prisco et al. [147], Paxos is, however, rather tricky and it is difficult to factor out the
abstractions that comprise the algorithm.
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recorded to stable storage (for example, to redundant disks). Therefore, a peer is equipped
with volatile memory and stable storage, locally. In contrast to volatile memory, the latter is
assumed not to be affected by a crash and can always be recovered. An unstable peer might
crash and recover infinitely often. A peer that never crashes is called always-up. A peer that
is correct is considered to be permanently up after some time3. A peer that is not correct is
called faulty, that is, either unstable or eventually always-down.

Link Properties

DhtFlex assumes peers to exchange information and synchronize by sending and receiving
messages through bidirectional channels between every pair of peers. Every message msg
contains as fields the identity of its sending, its destination peer, and some local identification
number msgid. These fields ensure the uniqueness of every message throughout the whole life
of a peer. Thus, a message cannot show the same msgid even after a peer recovery. A channel
may lose or drop messages and there exists no upper bound on message transmission delays.
A channel assures the following couple of properties between every pair of peers pi and pj,
independent of any peer failure pattern occurring during execution:

• No creation: If pi receives a message msg from pj at time spot t, then pj has sent msg
to pi before t [33].

• Weak loss: If pi sends a message msg to pj an infinite number of times and pj works
correctly, then pj receives msg from pi an infinite number of times.

The latter property allows a message to be lost, either because the channel may not attempt to
deliver the message or because the destination peer may be down when the channel attempts
to deliver the message to it. In both cases, the channel commits an omission failure. Without
the weak loss property, any interesting distributed problem would be trivially impossible to
solve [123]. The delivery of a message requires the receiving peer to be up at the time the
channel attempts to deliver it; therefore it depends on the failure pattern during peer execution.
DhtFlex makes some partial synchrony assumptions, as otherwise, fault-tolerant agreement

and total order are impossible [76]. Message communication times shall be bound by an
unknown duration but hold after some global stabilisation time. However, these assumptions
are used only to ensure liveness ; peers cannot access any global clock. Finally, a stable period
of a replication group is defined when (i) all the peers of a replication group consider the
same master, (ii) there is a majority of peers in that remains up, and (iii) no peer crashes or
recovers. Otherwise, the replication group is in an unstable period.

Failure Detection

Failure detection aims to avoid failed efforts to communicate with down peers. DhtFlex
assumes a local concept of failure detection. That is, a peer regards another peer as failed
if the latter does not answer requests. However, this does not necessarily imply that such
peer might not respond to a request issued by another peer. In order to use some time-out
mechanisms, a peer has access to some local clock.

5.2.2 System Architecture

The approach taken by DhtFlex is supposed to bridge the gap between the mentioned require-
ments of a DHT service and the benefits offered by a structured key-based routing overlay.

3However, it is impossible to specify the term long enough in asynchronous systems [33].
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Figure 5.1: Interactions of the Major Building Blocks of DhtFlex’s System Environment

Therefore, DhtFlex is designed bundling up its functionality to act as a generic building block
in a modular environment, as illustrated in Figure 5.1 [22]. DhtFlex is responsible for the
complete data management, including replication handling. It offers basically a DHT put-get
interface to a calling application. In order to fulfil its tasks, it communicates with the other
components over clearly defined interface functions (Table 5.1 [22]). This design simplifies the
adoption and implementation of the algorithm.

Interface Functions of the Communication System

send Sends a message from peer pi to peer pj

receive Receives a message from peer pj

Interface Function of the P2P Key-based Routing Overlay

replicaSet(key, N) Performs a key-based distributed lookup in the P2P overlay. It
returns a set of N peers being closest to a certain key in the
structured overlay in an ascending order—for simplicity reasons,
it is assumed that the number of available system peers always
exceeds the desired N peers. As an illustration, applied on Chord
replicaSet(key, 1) returns the immediate successor of a certain
identifier on the overlay ring. Multiple successors can be obtained
by varying the value of N

Interface Functions of DhtFlex

put(key, value) Triggers the storage of a value for a certain key in the P2P network

get(key) Triggers the retrieval of a certain value for the given key from the
P2P network

Table 5.1: Interface Functions Provided by the Several Components of DhtFlex’s Environ-
ment

As the key-based routing overlay, DhtFlex assumes an underlying communication system
which offers basic primitives to send and to receive messages. All internal functionality of
the communication system is encapsulated and transparent for DhtFlex; for example, which
communications protocols are being used.

DhtFlex works on top of a component that forms the structured P2P overlay. In order to
guarantee interoperability with various overlay protocols, the architecture adopts the general
key-based routing API, defined by Dabek et al. [63]. In fact, the design of DhtFlex enables
to further simplify this interface. An underlying key-based routing overlay protocol only has
to support one method replicaSet(), which uses the overlay to determine a set of peers that
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is responsible for a certain key4. DhtFlex uses the routing overlay to perform the peer lookup
processing. As already mentioned, all data and replica management is controlled by DhtFlex
separating responsibilities. DhtFlex primarily uses the replicaSet() method to build the
replication group for a certain resource, that is, to obtain information about appropriate
peers. However, it does not rely on the received set of peers regarding consistency issues,
as such configuration can rapidly change regarding churn. Hence, a call of replicaSet()
on peer pi may return a different result set, than a simultaneously made call at peer pj.
However, DhtFlex is able to deal with such inconsistency that is typical for an asynchronous
communication environment in order to allow the eventually correct adjustment of replication
groups per data resources. The next section explains how DhtFlex uses the key-based overlay
component for the partitioning of administrated data resources.

Partitioning Strategy

Section 2.3.3 has introduced the working model and functionality of structured P2P overlays,
which are often used to implement DHTs. DhtFlex employs the overlay policies of DHTs for
data resource placement. The content item view of the DhtFlex approach is to regard data
resources as uniquely addressable, single uniform objects. It is easy to see, that this model
naturally maps to the used key-based routing overlays.

Thereby, DhtFlex offers a DHT abstraction similar to the KBR approach, but further
simplifies it, as mentioned in the previous section. KBR provides an abstraction from the
routing of messages between peers: a peer that sends a message using KBR usually does not
know the destination peer a priori; a key is used to identify the target peer, rather than an
explicit destination address. This is a great difference in comparison with traditional routing
mechanisms, for instance, as used in IP routing. The KBR layer is responsible to forward a
message msg that carries key towards to the corresponding root peer of this key in the P2P
overlay. For common overlay protocols, the root is that peer, which possesses the numerically
closest matching identifier in comparison to the key.

However, as a dynamic peer environment is assumed, network conditions can change over
time. As a result, a key’s corresponding root may vary. Peers that enter or leave the network
demand the used overlay protocol to adjust responsibilities for affected key ranges; for instance,
gaps in the overlay resulting from down peers need to be closed. As DhtFlex does support
crash-recovery, as well as crash-stop failure models, it is able to exploit positive dynamics
of a structured P2P overlay, where peers may take over the key range of a failed one. The
worst case scenario of such maintenance operations occurs if the overlay cannot be repaired
resulting in overlay breakup. For example, network partitioning may lead to such islanding
problem, where an overlay splits into independent sub-overlays not interlinked with each other.
Section 5.3.5 indicates how DhtFlex may be able to detect such failure situations in order to
thus support consistency of affected data operations.

The next section discusses the issues resulting from data replication using structured P2P
overlays as partitioning algorithm in more details.

4For example, the usage of a set of multiple hash functions is a generic way to achieve the assignment or
mapping of multiple peers being responsible for a certain key. Here, the size of employed hash functions
may be adjusted. As an illustration, such approach demands for each DHT put or get operation to apply
any hash functions of the relevant set.
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Replication Strategy

As shown in the previous section, the exposed DHT abstraction basically maps keys to values;
thereby, a value may be an arbitrary object or item represented as data resource, which may
be replicated and persistently stored. An object is retrieved by using the key under which
it was published. DhtFlex uses replication in order to ensure high availability and durability
of administrated data resources. Thereby, it supports a flexible degree of replication5, that
allows an adjustment per data resource type. This is achieved with the annotated data resource
concept, which is introduced in Section 5.3.1.

However, if a peer leaves the system, for example, by crashing, its administrated data re-
sources become unavailable. A replication mechanism increases data availability by storing
data at several peers. But, in the face of concurrent modifications mutual consistency of repli-
cated data resources may be violated, some replicas may not be up to date. The requirements
of content repository functionality demand from DhtFlex to be able to get the current valid
replica.

A replicated data item is independent of the peer on which it resides and may be regarded
as virtual. This applied virtualization enables DhtFlex to employ structured overlay routing
as partitioning strategy. Thereby, DhtFlex manages all replication functions; the overlay is
accessed using a replicaSet() call only to conduct necessary information to construct a
replication group. A replication group configuration is a set of peers that are responsible to
administrate a certain replicated data resource. The size of such set is defined by the resource’s
replication degree. A replication group of size n consists of one master and n− 1 replicas.

Regarding the replication model, DhtFlex implements a primary-copy replication pattern [86]
per replication group: a replication group’s master is used to serialize and apply all updates
to a mutable data object.

In order benefit the partitioning strategy, DhtFlex uses the unique key of a data resource
to configure the corresponding root in the overlay as master. Accordingly, DhtFlex targets to
fill the replication group set with the available n − 1 peers succeeding a root in the overlay,
the n− 1 root successors. Hence, a replication group of size n shall contain those n− 1 peers
that are relevant to become a root for the key after network conditions change. Regarding
fault-tolerance aspects, these n− 1 peers are ideal candidates to place the replicas of a given
data object.

The master of a replication group is responsible to ensure the replication factor for the data
resources that fall within its key range. This means, in addition to their conservation in local
storage, the master needs to replicate the resources to the remaining replicas. This implies,
that changes on resources have to be propagated to all replicas in order to ensure consistency.

The replication strategy in combination with the used partitioning strategy is exemplified in
Figure 5.2. It shows a replication group consisting of one master peer p3 and three additional
replica peers: the master p3 replicates the data object for key x at peer p4, p5, and p6. Hence,
p6 stores values that fall into the ranges (p2, p3], (p3, p4], (p4, p5], (p5,p6]. As explained,
the employed structured P2P overlay allows each peer to determine which peers should be
contained in the replication group for a certain key.

5Commonly, replication copes with the disappearance of peers. Because peers of real world systems tend to
be user machines, rather than dedicated servers, there is no guarantee that a peer is disconnected from the
network at random.
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Figure 5.2: Combination of Replication Strategy and Partitioning Strategy

5.2.3 System Interface

The DhtFlex algorithm associates each data item with a unique key or id; it offers the common
two operations to a calling application which are basically demanded by a DHT interface:
put(id, value) and get(id), refer Table 5.1. The put(id, value) tries to commit a value
for a certain id to the system: DhtFlex locates the peer that is responsible to host the id
and publishes the value, if successful. Considering the underlying structured P2P overlay,
a hash function is applied on the id to generate a fixed size identifier; this identifier is used
to determine the peers that should be responsible for serving the id. The get(id) operation
tries to determine the id ’s responsible peer in the P2P overlay and returns the corresponding
current valid value, if successful.

5.3 Functionality of DhtFlex

In this section, the functionality of the distributed DhtFlex algorithm is explained. The ap-
proach is tweaked using the possibilities of a structured overlay and supports flexible data
operations. The algorithm is fault-tolerant offering high data availability and efficient regard-
ing concurrent operations on mutable or immutable data resources.

The consistency of a data resource’s replication group is identified as crucial for the taken
approach. DhtFlex builds on the Paxos principle to establish a total-ordering of a replication
group’s castings for a certain mutable data resource. However, for ordinary put and get
operations this overhead is not necessary, resulting in a faster execution. Operations on
immutable data resources can be processed even faster by DhtFlex.

The unit of synchronization in DhtFlex is always in single data object. Hence, although
distributed modification efforts for a certain object need to be coordinated in order to ensure
consistent data operations, multiple changes to different data objects are independent from
another, which fosters scalability by exploited object parallelism. Thus, the adding of more
physical peers allows the system to support the storage of more data objects.

Subsequently, the major building blocks of DhtFlex are presented. Section 5.3.1 introduces
the concept to annotate data resources to support flexible data operations. Then, the three
basic cases of the DhtFlex algorithm are presented: Section 5.3.2 shows the recast case to adjust
replication groups, Section 5.3.3 gives the put case to publish data objects, and Section 5.3.4
describes the get case to support data object retrieval. Finally, Section 5.3.5 illustrates how
DhtFlex can detect inconsistencies resulting from breakup situations in the overlay network.
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5.3.1 Annotated Data Resources

A key idea of DhtFlex in order to support efficient and flexible put, get, and recast operations
is the utilization of P2P overlay peculiarities by the concept of annotated data resources. For
example, DhtFlex serializes atomic operations on mutable data resources over a certain peer
of its replication group, in contrast to its behaviour on immutable data resources. In fact,
this kind of replication knowledge is persistently attached to each data resource to allow fine-
grained policies at resource level. Hence, a data resource for a certain key or id, as illustrated
in Table 5.2, does not only represent the pure value, as the usual key–value matching DHT
approach suggests. In addition, essential procedure information of DhtFlex is annotated to a
resource allowing flexible operations per data resource instance.
As indicated by Table 5.2, DhtFlex uses a simple type concept for data resources, determined

by the field typeid. Thus, DhtFlex is able to distinguish mutable from immutable data resources
and to apply corresponding mechanisms for each case. Once defined by an application, the type
of an immutable data resource may not be changed to a mutable data resource as immutable
data may be cached arbitrarily in the P2P network. However, this behoves the application
domain. Summed up, the differentiation of the typeid provides the foundation to employ the
flexible data operations of DhtFlex.
The entries for the pair seqNrid and valueid state a consistently replicated data resource.

6

The latest successfully written valueid is identified by an incremented seqNrid. Of course, an
immutable data resource always preserves its initial value.
In order to avoid data loss tolerating peer failures, a resource is replicated at different peers,

determined by its replication factor replicaSizeid. Thus, very flexible replication strategies
can be defined individually per resource instance. All peers belonging to the replication group
of the resource, thus being responsible for it, are captured in the set replicasid, as well as
the special peer replicaMasterid enforcing operation serialization for mutable data. Relying
on a structured P2P overlay, the peer responsible for the administration of the key id in the
overlay should be its replicaMasterid. This is optimal for the overall system performance,
since all requests for this id are being routed to it anyway. DhtFlex uses this knowledge when
maintaining a resource’s replication group configuration. As replicas may fail, new nodes need
to be canvassed to buoy the replication factor.
For the safety of the algorithm treating mutable data, it is crucial to keep the replicasid set

consistent. For this reason, each replicasid set is uniquely identified by a certain replicasNrid,
incremented in a total-order style for each new composition. DhtFlex uses more lax procedures
for immutable data resources.
Subsequently, the mechanisms to adjust a replication group for a data resource are presented.

5.3.2 Recast Case

The initial step for a new data object to be handled by DhtFlex is always the establishment
of a valid replication group for it. Regarding the assumed dynamics of the underlying P2P
system, peers of a certain replication group’s configuration may come and go, may be up or
down. DhtFlex tries to reflect the current overlay situation in the current configuration of a
replication group. Thus, DhtFlex needs to recast such configuration in process of time.
DhtFlex aims to assign a new peer that joins the P2P system the data objects for its taken

key range in the structured overlay. In addition, for every item that falls into its range, there
may exist a number of peers, less or equal the respective replication factor, that are currently

6However, it is important to notice that consistency of a replicated data resource is reflected considering the
pair (replicasNrid, seqNrid), as illustrated in Section 7.3.2.
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id The key under which the data resource is published and uniquely identified in the
P2P overlay network, initially ⊥. E.g., the UUID of an item regarding the content
repository model

typeid Flag variable to determine the type and the currently allowed operations on the data
resource. Allowed values are immutable to represent read-only resources, mutable to
represent modifiable resources allowing atomic put and get operations, or freezed to
indicate an ongoing recast process, during which essential information is preserved

seqNrid Counter variable ∈ N0 to mark the sequence number for the latest successfully
executed put operation, initially 0. In this context, the term successfully stands for
accepted by a quorum of replicas, i.e., consistently committed

seqNr�
id Counter variable ∈ N0 marking the sequence number for the latest atomic put

effort of a certain replicaMasterid, i.e., modify effort; initially 0. Only relevant for
a mutable data resource

valueid The current valid value of the data resource—always corresponding to a certain
seqNrid; initially ⊥

replicaSizeid Determines the replication factor ∈ N of the data resource, i.e., the size of its
replication group; e.g., initially 4. Regarding the repository functionality, it is
assumed that the replication factor is bound to some item type

replicasNrid Counter variable ∈ N0 to label the current replication group configuration of the
data resource, initially 0. Hence, it marks the epoch of a replication group configu-
ration. All replication group configurations of the data resource are totally-ordered
regarding their replicasNrid

replicaMasterid ID of the current responsible peer of the data resource, i.e., the master of
replicasid. DhtFlex aims to adopt the data resource’s root in the P2P overlay
as replicaMasterid, e.g., the immediate successor of id on a Chord ring. Regarding
an implementation, this entry is usually a link to the first member of replicasid—
always corresponding to a certain replicasNrid, initially ⊥

replicasid Ordered set of peers forming the current replication group configuration of the
data resource—always corresponding to a certain replicasNrid; initially �. Per
convenience, the first peer is the corresponding replicaMasterid. The size of the
set aims to conform to replicaSizeid; i.e., the number of participating system peers
must be equal or must exceed replicaSizeid

replicasNr�
id Backup counter variable ∈ N0 to identify a replication group that needs to be ad-

justed, i.e., recasted; only relevant for the potentially master of the new replication
group of a mutable resource. As an illustration, this variable corresponds to a
certain execution of the Paxos-inspired recast process

replicas�
id Set of peers corresponding to a certain replicasNr�

id forming a replication group
configuration for a mutable resource; only relevant for the potentially new master
of such configuration

recastNrid A sequence number ∈ N0 to mark the proposal of an ongoing recast operation. This
would correspond to a proposal number within Paxos and therefore has to be unique
per execution effort, as the Paxos algorithm requires this guarantee of uniqueness
to work correctly. It is initialized with the numerical unique peer id of the local
peer. Only relevant for a mutable data resource

replicas��
id Set of peers building a potentially new replication group configuration in a recast

process for mutable resources. Corresponds to a certain recastNrid representing
the proposal value within Paxos. Only relevant for a mutable data resource

recastNrα
id The highest received recastNr of a RECAST message in a recast process. This entry

would be the latest accepted proposal number in the read phase of Paxos. Only
relevant for a mutable data resource (variable ∈ Z, initially −1)

recastNrβ
id The highest received recastNr of a RECAST-PROCEEDmessage in a recast process.

This entry would represent the latest accepted proposal number in the write phase
of Paxos. Only relevant for a mutable data resource (variable ∈ Z, initially −1)

recastReplicasid Corresponds to the latest accepted recastNrβ
id in a recast process. This entry would

represent the accepted proposal value within a Paxos execution, i.e., the potentially
new replication group configuration of a mutable data resource

Table 5.2: Essential Fields of an Annotated Data Resource for a Certain ID per Peer State
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in charge to administrate them. Because of the new allocation of the joining peer’s key range,
some members of a replication group are no longer necessary: responsibilities for some data
resources need to be transferred to the joining peer.

Figure 5.3: Need for Adjustment of Replication Groups

For example, the simple scenario of Figure 5.3 shows that if a peer p3 is added in the P2P
overlay between peer p2 and peer p4, several replication groups are affected. As a consequence,
the concerned configurations of these replication groups should be adapted to integrate p3.

Of course, if a peer leaves the system, the reallocation of key responsibilities should occur
in a reverse process.

Algorithm 1 Trigger Recast Operation for peer pi
Require: ∃ data resource for id
1: procedure checkReplicas(id)
2: nextReplicas ← replicaSet(id, replicaSizeid)
3: if replicasid �= nextReplicas then
4: if typeid = immutable then
5: ∀ peers ∈ nextReplicas\replicasid do
6: send [PUT, id, valueid, nextReplicas]

7: else if typeid = mutable then
8: send [RECAST-REQ, id, replicasNrid, replicasid, nextReplicas] to nextReplicas.replicaMaster

In order to preserve the replication factor replicaSizeid for a certain locally stored—already
existing—data resource, each replica periodically invokes checkReplicas(), as depicted in Al-
gorithm 1. This procedure checks the locally valid replication group’s relevance to the current
situation in the P2P overlay. As mentioned, this is necessary in potentially high churn envi-
ronments, as peers may join, leave, or crash at arbitrary time. DhtFlex adopts the replication
group of a resource to cover those peers being closest to the resource’s id in the P2P overlay
using the interface function replicaSet (Line 2). If a peer detects that a change in the overlay
has happened and the current valid replication group configuration needs to be adjusted, it
tries to trigger a recast process (Line 3).

The force of a recast operation is simple for an immutable data resource, as only a PUT
operation is required to transfer a copy to new members of the corresponding replication group
(Line 4). This is consistent as DhtFlex assumes that an immutable data resource is never
modified or a different value is tried to be committed for the same id. Hence, a peer that is
no longer needed as replica for an immutable resource may simply delete or may be informed
to remove its copy after the transfer was successful. In addition, some more sophisticated
mechanism may be deployed in order to optimize the exchange of replica information; for
example, such exchange may be coordinated among the members of a replication group to
prevent redundant data traffic initiated by multiple replicas.
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For a mutable data resource, it is essential for DhtFlex to assure consistent replication
group configurations by establishing a total-ordering among them. For such resource types
(Line 7), DhtFlex builds on the basic principle of the already addressed Paxos distributed
consensus protocol to consistently determine the next replication group composition. To
trigger a recast process, a current replica informs the master of a potentially new replication
group configuration to initiate it (Line 8). Peer nextReplicas.replicaMaster is typically the
root peer for the id of the affected resource in the overlay network. As such peer may be new,
a RECAST-REQ message contains all necessary information to start a recast process, the
locally valid replication group knowledge in particular.

The recast process for the replication group of a mutable data resource is typified in Algo-
rithm 2. It is supposed that each code block is executed indivisibly. A suspected master of a
new replication group configuration gets informed with all necessary information about cur-
rent (old) and new replicas by receiving a RECAST-REQ message (Line 1). In short, if the
process is started, the potentially master backs these information up and initiates the recast
with a unique proposal number, recastNrid. Hence, the Paxos inspired procedure would be
applied on the old replication group configuration, but only if its epoch is not already expired
(Line 2). The flag variable recasting is set to mark an ongoing recast process to avoid unnec-
essary parallel execution, preventing operating resource waste and unnecessary network traffic
(Line 5). It is typically reset after expiration of some timer, so that a master can retry with
a higher proposal number to support liveness of the recast process. For instance, it is possible
that a prospective master fails during the recast process, but eventually recovers and proceeds
with its efforts while another peer tries to start the process in the meantime. Therefore, it is
necessary for a peer to persistently store and not forget its recastNrid. The used formula to
generate a recastNr, in interaction with the numerical representation of the unique local peer
ID as its initial value, ensures a total ordering of it (Line 8). The proposal value of a recast
operation is the next replication group cast, stored by replicas��id (Line 9).

The aim of the whole recast process is that the current (old) replicas agree on a new
composition and at least the latest consistently, that is, to a quorum of replicas written
value for the resource is preserved. For instance, a quorum might be represented by a simple
majority, as in this case. A consensus technique is used to consistently agree on the next
replication group configuration. A RECAST message launches the read phase of the Paxos-
oriented principle, a RECAST-PROCEED message the write phase, and a RECAST-RES
message the commit phase. In the read phase a prospective master wants to get informed
about a previously accepted replication group set. For example, it is possible that another
peer acts concurrently as prospective master. The replicasNr indicates a single consensus
instance.

A replica receiving a RECAST message (Line 12) checks if the request actually targets
its current replication group configuration (Line 13) and additionally does not conflict with
concurrent recast efforts (Line 14); if valid, the replica sets the typeid of the resource to freezed
preventing put and get operations for it, till the recast process is finished (Line 15). It accepts
the proposal request (Line 16) and informs the master sending a RECAST-ACK message
about both, its acknowledgement and a previously proposed replication group configuration,
if available (Line 17).

For reasons of simplicity, Algorithm 2 omits any NACK messages being sent by a replica
if a master tries to force a recast with an old replicasNr or a recastNr less than recastNrαid
or recastNrβid. If a NACK would be received by a wannabe master, it is assumed that such
peer either stops executing its recast procedure, or may try a higher recastNr after a certain
time. The latter benefits liveness regarding peer failures during recast operations.
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Algorithm 2 Recast Protocol for Mutable Data of Peer pi
1: task wait until receive [RECAST-REQ, id, replicasNr, replicas, nextReplicas] from peer pj { pi may be pj }
2: if replicasNrid ≤ replicasNr then
3: if recasting = false then
4: typeid ← freezed

5: recasting ← true

6: replicasNr�
id ← replicasNr

7: replicas�
id ← replicas

8: recastNrid ← recastNrid + replicaSizeid

9: replicas��
id ← nextReplicas

10: ∀ peers ∈ replicas do
11: send [RECAST, id, replicasNr, recastNrid]

12: task wait until receive [RECAST, id, replicasNr, recastNr] from pj

13: if replicasNrid = replicasNr then

14: if recastNrα
id < recastNr && recastNrβ

id < recastNr then
15: typeid ← freezed

16: recastNrα
id ← recastNr

17: send [RECAST-ACK, id, replicasNr, recastNr, recastNrβ
id, recastReplicasid] to pj

18: task wait until receive [RECAST-ACK, id, replicasNr, recastNr, recastNrβ , recastReplicas] from pj

19: if replicasNr�
id = replicasNr then

20: if recastNrid = recastNr then

21: if received [RECAST-ACK, id, replicasNr�
id, recastNrid, ∗, ∗] from

⌈ |replicasid|+1
2

⌉
peers then

22: select [RECAST-ACK, id, replicasNr�
id, recastNrid, recastNr

β , recastReplicas] with highest recastNrβ

23: if recastReplicas �= ⊥ then
24: replicas��

id ← recastReplicas

25: ∀ peers ∈ replicas�
id do

26: send [RECAST-PROCEED, id, replicasNr�
id, recastNrid, replicas

��
id , seqNrid]

27: task wait until receive [RECAST-PROCEED, id, replicasNr, recastNr, replicas, seqNr] from pj

28: if replicasNrid = replicasNr then

29: if recastNrα
id ≤ recastNr && recastNrβ

id < recastNr then
30: typeid ← freezed

31: recastNrβ
id ← recastNr

32: recastReplicasid ← replicas
33: if seqNrid < seqNr then
34: send [RECAST-PROCEED-ACK, id, replicasNr, recastNr, seqNrid, ⊥] to pj

35: else
36: send [RECAST-PROCEED-ACK, id, replicasNr, recastNr, seqNrid, valueid] to pj

37: task wait until receive [RECAST-PROCEED-ACK, id, replicasNr, recastNr, seqNr, value] from pj

38: if replicasNr�
id = replicasNr then

39: if recastNrid = recastNr then
40: if seqNrid < seqNr then
41: seqNrid ← seqNr
42: valueid ← value

43: if received [RECAST-PROCEED-ACK, id, replicasNr�
id, recastNrid, ∗, ∗] from

⌈ |replicasid|+1
2

⌉
peers then

44: ∀ peers ∈ replicas�
id ∪ replicas��

id do
45: send [RECAST-RES, id, replicasNr�

id + 1, replicas��
id , seqNrid, valueid]

46: recasting ← false

47: task wait until receive [RECAST-RES, id, replicasNr, replicas, seqNr, value] from peer pj

48: if replicasNrid < replicasNr then
49: if pi ∈ replicas then
50: seqNrid ← seqNr
51: valueid ← value
52: replicasNrid ← replicasNr
53: replicasid ← repicas
54: replicaMasterid ← replicas.replicaMaster
55: replicaSizeid ← |replicas|
56: typeid ← mutable

57: else delete data resource for id
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A master receiving a RECAST-ACK checks if the message addresses the right replication
group epoch replicasNr�id (Line 19) and proposal number recastNrid (Line 20). If a master
is able to establish a quorum of positive feedback (Line 21) it continuous and is allowed to
enter the write phase where it tries to propagate the next replication group configuration. In
order to establish a quorum, already made proposal values can be neglected. Then, the master
selects a consistent replication group configuration (Line 22) and tries to promote it as the next
cast. The underlying quorum approach ensures that if such replication group configuration
was accepted by a majority of replicas it can be consistently propagated by a master. If no
such value was accepted by a quorum of replicas a master is free to propose its own replication
group cast (Line 23). By sending a RECAST-PROCEED message, a master also requests
at least the latest consistently written resource value and its corresponding seqNr in order to
preserve it for the next replication group composition.

Again, a replica receiving a RECAST-PROCEED message (Line 27) checks if the re-
quest actually targets its current replication group configuration (Line 28) and additionally
does not conflict with concurrent recast efforts but allows the proceeding of existing ones
(Line 29); if valid, the replica sets the typeid of the resource to freezed preventing put and
get operations for it, till the recast process is finished (Line 30). If a RECAST-PROCEED
request is accepted by a replica it promises to not accept old recast efforts (Line 31) and
subsequently compares the passed seqNr with its stored one (Line 33). To save bandwidth,
a replica only sends a real value of its latest consistently written resource value within a
RECAST-PROCEED-ACK if it is relevant; that is, it has a later value locally stored than
the requesting master.

If the master receives enough RECAST-PROCEED-ACK messages to achieve a quorum
within the write phase (Line 43) it selects (at least) the latest consistently written value
(Line 40) and may propagate the results, so that the new replication group can take effect
(Line 56). Therefore, it increments the old replicasNr to label the new epoch (Line 45). Here,
the adoption of the Paxos principle guarantees that the new replication group is always chosen
consistently reaching total-ordering.

Recast, as well as get or put operations, which are shown in the following, may involve all k
healthy peers of a replication group; of course, peers which are temporarily not accessible or
either crashed are skipped over. However, some more sophisticated mechanisms to choose a
peer as master or even to integrate it into the P2P overlay are possible to put DhtFlex into the
position to deal with fast oscillations of root peers. It is usually assumed that peers entering
and leaving the system rapidly may have a negative impact on overall system performance as
they may demand for often recast efforts.

Regarding a further improvement of the costs of a recast operation, data transfer may be
considered. As shown, the recast process is necessary to adopt the replication group of a
certain replica to new overlay situations as peers enter and leave the network. For example,
the integration of a new peer to existing replication groups requires the transfer and the
creation of all necessary replicated resources at the time the peer joins. This implies costs
regarding transfer delay and network bandwidth. One way to deal with this problem is to
initially store only pointers to the replicas at the moment a new peer arrives to a replication
group in order to ensure correct request handling. Afterwards, all necessary replica data may
be lazily transferred in the background [41]. The next section illustrates how DhtFlex copes
with put operations on mutable and immutable data resources.
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5.3.3 Put Case

As already indicated by Algorithm 2 of the previous section, each operation of DhtFlex can be
divided into single phases. Regarding the put operations, which are shown in this section, and
the get operations that are given in the subsequent section, the first phase usually consists of
the overlay lookup process for a given key or id to determine the current root peer. Hence,
the underlying structured overlay is used to obtain the necessary routing information for the
corresponding read or write request. Then, the root, as supposed master, is contacted in the
second phase to issue the put or get operations. If a DhtFlex client contacts a peer or replica
that is not the active master, a replica replies with the master’s address. Otherwise, as recast
operations may be in process, so a client may wait some time to contact the peer either again,
or to try another overlay lookup.
The basic protocol to process a DHT put operation by DhtFlex is given in Algorithm 3. It

is worth mentioning that the case is differentiated if a data resource is already locally stored
(Line 25), or not (Line 0). The algorithm is able to deal with multiple values to be submitted
concurrently by different, the same, or multiple peers.
First, some associated auxiliary functions are elucidated in Figure 5.3. Function max() is

able to compare a couple of given values. Function δ() can be used to compute the digest or
hash of a given value.

max(v1, v2) Returns the maximum of two values v1, v2

δ(v) Computes the digest of a value v; SHA1 or MD5 hashing can be
used to accomplish this task, e.g., in order to ensure that contents
of multi-sourced data files are identical

Table 5.3: Auxiliary Functions of a Peer pi

Algorithm 3 supposes that a writer peer pj has already obtained the contact information of
the assumed root peer pi by an overlay lookup, calculated by replicaSet(id, 1). Then, pj passes
together with a PUT-REQ message the value it wants to publish and an optional policy to
the responsible peer pi. It must be pointed out that no actual value is transferred during
such pure overlay lookup procedure, reducing bandwidth. A stated policy defines at least
the writing peer policy.writer, the data resource’s replication factor policy.replicaSize, and
its type policy.type. The latter ones might be specified statically or dynamically at runtime;
that is, if no policy is given, default values are supposed, for instance, the resource being of
type mutable. A peer that is supposed to act as master ensures its legitimation consulting
the overlay (Line 2). In case of an ongoing recast process the typeid would be set to freezed
in order to prevent put operations for ensuring consistency. Hence, a request may either be
locally queued and processed if the recast process is over, or the writer peer pj restarts its
request after some time.
The put case of DhtFlex is rather simple for an immutable data resource of a certain id. Re-

member, it is assumed that an immutable data resource is never modified or a different value
is tried to be committed for the same id. This is a requirement that needs to be ensured at ap-
plication level. For a not locally stored resource, the assumed master calculates its replication
group (Line 2) and distributes copies sending along relevant replication information (Line 8).
Then, each replica that receives such PUT message can simply store an immutable resource
(Line 19). After that, the observation of the replication group configuration begins. Once the
propagation of the PUT message is successfully done, the writer peer pj gets informed about
which value has successfully been published by sending back its digest (Line 9).
However, the locally initial put of a mutable data resource needs special treatment to sat-

isfy consistency (Line 10); that is, a total-ordering of value updates regarding the replication
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Algorithm 3 Put Protocol of Peer pi
Require: � local data resource for id
1: task wait until receive [PUT-REQ, id, value, policy] from peer pj

2: replicas ← replicaSet(id, policy.replicaSize)
3: if policy.type = immutable then
4: typeid ← immutable

5: replicasid ← replicas
6: valueid ← value
7: ∀ peers ∈ replicasid\{pi} do
8: send [PUT, id, value, replicasid]

9: send [PUT-RES, id, δ(value)] to pj

10: if policy.type = mutable then
11: if pi = replicas.replicaMaster then
12: typeid ← freezed

13: send [RECAST-REQ, id, 1, replicas, replicas] to pi

14: wait until recast successfully done { data resource successfully initialized }
15: if valueid �= value then
16: send [PUT-REQ, id, value, policy] to replicaMasterid

17: else
18: send [PUT-RES, id, δ(value] to pj

19: task wait until receive [PUT, id, value, replicas] from pj

20: typeid ← immutable

21: valueid ← value
22: replicasid ← replicas
23: replicaMasterid ← replicas.replicaMaster
24: replicaSizeid ← |replicas|
Require: ∃ local data resource for id
25: task wait until receive [PUT-REQ, id, value, policy] from peer pj

26: if typeid = mutable then
27: if pi = replicaMasterid then
28: if valueid �= value then
29: seqNr�

id ← max(seqNrid, seqNr
�
id) + 1

30: valueseqNr�

id ← value { the value for a certain seqNr�
id }

31: ∀ peers ∈ replicasid\{pi} do
32: send [PUT, id, replicasNrid, seqNr

�
id, value, policy.writer]

33: else
34: send [PUT-RES, id, δ(value] to pj

35: task wait until receive [PUT, id, replicasNr, seqNr, value, writer] from pj

36: if typeid = mutable then
37: if pi �= replicaMasterid then
38: if replicasNrid = replicasNr then
39: if seqNrid < seqNr then
40: seqNrid ← seqNr
41: valueid ← value
42: send [PUT-ACK, id, replicasNr, seqNr, δ(value), writer] to pj

43: task wait until receive [PUT-ACK, id, replicasNr, seqNr, δ(value), writer] from pj

44: if typeid = mutable then
45: if pi = replicaMasterid then
46: if replicasNrid = replicasNr then

47: if received [PUT-ACK, id, replicasNr, seqNr, δ(value), writer] from
⌊ |replicasid|

2

⌋
peers then

48: if seqNrid < seqNr then
49: seqNrid ← seqNr

50: valueid ← valueseqNr
id

51: send [PUT-RES, id, δ(valueseqNr
id )] to writer
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group of a certain id. The potentially master checks its right regarding the received infor-
mation about the overlay situation (Line 11); then, the state of the data resource is blankly
freezed. Subsequently, the potential master initiates a recast process to consistently set up the
resource’s replication group (Line 13). If the recast has been successful, either a value was
adopted or not; if that would be the value demanded by the writer peer, it can be informed
(Line 18). If the value of the writer was not committed, the now initialized peer retries the
put using its updated knowledge (Line 16). This approach prevents a collision of a locally
initial put for an already existing replication group. For further optimization, the PUT-REQ
of Line 16 can be piggybacked with a RECAST-RES message (Algorithm 2, Line 45) to
reduce communication steps—if peer pi stays the master in the recast phase.
For a regular put operation affecting a locally available mutable data resource (Line 25), the

peer in charge rechecks if the data resource is in fact mutable (Line 26) and it is the master
of the corresponding replication group (Line 27). If not, the put request might be forwarded
accordingly, for example, by inspecting replicaMasterid. To prevent unnecessary updates,
for instance, resulting from concurrently submitted redundant requests, the master verifies
that the new value is not equal with the latest consistently written value (Line 28). If so, a
master can simply inform the requesting peer (Line 34). If not, a master tries to propagate
the new value for the next valid increased sequence number (Line 29) to the remaining replicas
(Line 32). All put requests for a certain data resource are serialized over the corresponding
master of its valid replication group.
A peer receiving a PUT message (Line 35) verifies that the resource for the given id is

mutable (Line 36) and the epoch of the requesting master is still valid (Line 37). As for each
replicasNrid there exists a unique master, the replication group configuration is also verified
(Line 38). Ultimately, a replica only accepts the passed value if it is newer than its locally
stored one (Line 39) in order to forbid old updates. Here again, NACK messages might be
used to stop an old master, for example, after having received a message carrying an old
replicasNr. If a replica adopts a passed value, it informs the requesting master (Line 42).
Thereby, the digest of the updated value is passed in order to allow the differentiation of
several put requests from the same writer peer.
A master that receives a PUT-ACK message (Line 43) verifies if the data resource is of

mutable type (Line 44), if it actually still is the master for the given id (Line 45), and if
the epoch of the addressed replication group configuration is still valid (Line 46), first. If
successful, a master only updates its local valueid if a quorum of all replicas for a certain
seqNr (Line 47) is acquired. Again, an update for an old value is prevented (Line 48). Once a
new value was successfully adopted, the put is done and the responsible writer peer is informed
by the master (Line 51). The next section deals with the retrieval of published resources.

5.3.4 Get Case

The behaviour of DhtFlex to deal with a DHT get operation is depicted in Algorithm 4.
Again, the first phase is to consult the overlay using a replicaSet() call to determine the
root for the given id. Thereby, Algorithm 4 illustrates—for mutable resources—only the case
if the contacted root equals the master of the corresponding data resource’s replication group
and actually stores the data object (Line 0). If a peer receives a get request for which it is
not responsible, DhtFlex assumes that such peer will forward the message in an appropriate
way using the overlay or explicit knowledge of the current valid replicaMasterid. In case of
immutable data resources, each peer that stores such resource is a valid contact.
First, a reader peer pj propagates its get request GET-REQ to the assumed responsible

peer given by replicaSet(id, 1). A peer pi that receives such request determines the type
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Algorithm 4 Get Protocol of Peer pi
Require: ∃ local data resource for id
1: task wait until receive [GET-REQ, id] from peer pj

2: if typeid = immutable then
3: send [GET-RES, id, valueid] to pj

4: else if typeid = mutable then
5: if pi = replicaMasterid then
6: ∀ peers ∈ replicasid do
7: send [GET, id, replicasNrid, pj ]

8: task wait until receive [GET, id, replicasNr, reader] from pj

9: if typeid = mutable then
10: if replicasNrid = replicasNr then
11: send [GET-ACK, id, replicasNr, reader] to pj

12: task wait until receive [GET-ACK, id, replicasNr, reader] from pj

13: if typeid = mutable then
14: if replicasNrid = replicasNr then
15: if pi = replicaMasterid then

16: if received [GET-ACK, id, replicasNr, reader] from
⌈ |replicasid|+1

2

⌉
peers then

17: send [GET-RES, id, seqNrid, valueid] to reader

of the demanded resource. If the data resource is an immutable one, the request can be
immediately answered, as no consistency scrupulosity exists (Line 2). In that case, each
immutable data resource might even be cached arbitrarily often at reader side for even more
optimized get operations—requiring no additional remote lookups in the future. Hence, the
peer replies with the desired value (Line 3).

In case of an ongoing recast process, the typeid would be set to freezed in order to prevent
get operations for ensuring consistency. Hence, a request may either be locally queued and
processed if the recast process is over, or the reader peer pj may restart its request after some
time.

For the case of a mutable data resource (Line 4), the target master verifies its authority
(Line 5) and sends a GET message to all replicas to investigate that the known replication
group it is responsible for is still valid; that is, no missed recast has happened, for example
(Line 7). The epoch of the replication group is still valid if a quorum of members acknowledge
such verification request; else the locally known replicaNr is outdated.

A replica that receives such GET request needs to check if no recast process is active
(Line 9) and acknowledges the request if it is in the same replication group configuration epoch
(Line 10). Again, after receiving a GET message a replica might send a NACK message to
stop an old master. Remarkably, no value transmission within a GET-ACK message from a
replica to the master is necessary, as a valid master always knows the latest value.

A master that receives a GET-ACK message (Line 12) verifies if the affected data resource
has not been freezed in the meantime, that is, a recast process is active (Line 13), and if
the right epoch of its reign is addressed (Line 14 and Line 15). If that is successful and the
master achieves a quorum of positive responses (Line 16) the freshness of its replication group
is proved so the reader peer can be served by sending a response with the latest consistently
committed value (Line 17).

As a remark, a get operation for a mutable data resource can be further optimized regarding
the transfer of requested values. For example, a requesting reader peer pj may pass within a
GET-REQ message additionally a digest of its locally cached latest value for the id, δ(value).
Though the addressed corresponding master needs to verify its epoch, the transfer of a value
to pj can be omitted, if the passed digest δ(value) equals the digest calculated from the latest
consistently written value. Of course, this mechanism is especially useful for large values,
where the time to transmit such value exceeds the processing time to calculate value digests.
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5.3.5 Overlay Breakup Detection

In Section 5.2.2, the worst case scenario of using a structured P2P overlay as partitioning
strategy for DhtFlex was mentioned. For example, if a breakup of the overlay occurs, it
may be possible that conflicting initial put requests for mutable data objects are successfully
committed for different overlay segments.
An approach to deal with overlay partitioning is to relax consistency requirements and

provide eventual consistency guarantees. Here, conflicting updates are allowed but need to be
recognized and explicitly resolved, for example, at application level.
One method of resolution provide vector clocks [111]. Vector clocks can be used to reflect

causality relationships between concurrently updated value versions of the same data resource
object; that is, such data resources share the same id. Such a vector clock is basically a list
of [peer, counter] pairs that is assigned to every version of a data resource. Now, for
each master that causes a modification of a certain data resource, the associated counter of
its vector clock entry is incremented per successful operation. This procedure enables the
comparison of vector clocks to determine whether certain versions of the same data resource
are in causal order and thus are consistent; or, the versions lie on parallel version branches,
for example, because they have been propagated in different overlay partitions. For example,
such approach is similar to mechanisms employed by Dynamo [67].
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Figure 5.4: Vector Clock Modifications for a Certain Data Resource over Time

Figure 5.4 illustrates a simple scenario for such situation. Master peer p1 has been requested
to process an initial put operation for some data resource. Therefore, p1 creates the resource’s
vector clock, increases its counter entry, and propagates it to the corresponding replication
group. The system stores the data resource with its vector clock [p1, 1]. Now, we assume an
overlay break up, separating the original replication group from the other peers. An update
to the same data resource in the segment of the original replication group shall be directed
to master p1. Again, peer p1 increments its counter entry in the corresponding clock and
manages to successfully propagate the change to the replication group. Now, the system can
determine that this is a later version because of the causal order.
However, in a separated segment there may be another peer p13 that is assigned to act as

master for a mutable data resource for the same id. Hence, after p13 successfully established
a replication group, it attaches a clock to the data resource with its incremented own counter
entry, and propagates it.
If it is supposed that the overlay breakup eventually disappears, thus the overlay finally

converges, data resources shall be reassigned accordingly to key-range responsibilities. As in
the shown example no causal relationship exists between the data resources that are published
for the same id in different overlay partitions a conflict can be detected by a peer that is aware
of both resources. For example, if the counter values of one data resource’s clock are less
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than or equal to all of the counter values of another data resource’s clock, the latter is a later
version. Else, such data resources are regarded to stay in conflict and may require (semantic)
reconciliation. It is up to an appropriate mechanism to resolve such inconsistency, as there
exist made changes that are not reflected in both versions.
A drawback by the usage of vector clocks may be their size, if many peers coordinate put

operations. Each master in the history demands for a counter entry of a data resource’s vector
clock. However, the DhtFlex approach minimizes this threat by using its master-coordination
mechanism. In practise, the change of a master in a system of steady state may be assumed to
vary seldom. If the size of vector clocks turns out to be a problem, checkpointing7 mechanisms
based on timestamps may offer a convenient way to clear out old entries. However, this is not
a topic of this thesis.

5.4 Flexible Content Repository Functions

This section shows how the DhtFlex approach can be used to implement flexible content
data functionality, as designed in Section 4.2. Therefore, Section 5.4.1 indicates an according
content mapping. Then, Section 5.4.2 shows how the functionality of the content repository
layer can be implemented using a structured P2P overlay at policy layer and persistent storage
layer. As DhtFlex enables to construct some kind of shared-memory abstraction on top of a
structured P2P network, it simplifies the task of mapping the primitives for raw data processing
at system level as no message communication primitives are involved.

5.4.1 Content Mapping

Section 4.3 introduced a generic concept to annotate items using item states and accordingly
to map these states to corresponding back-end storage entities. It is the task of a content
repository’s policy layer and the persistent storage layer to support such mapping. This section
shows how this mapping can be done using DhtFlex. As explained, such mapping hides the
details of how and where in the storage layer the item is actually stored. This treating of an
item as abstraction enables to use DhtFlex to coordinate data resource replication based on
some policy.
Accordingly, a corresponding manager of the policy layer is able to use the annotated re-

source concept of Section 5.3.1 to attach such information as policy entry to a data resource—
for example, to determine the size of the replication group. To keep the system functionality
robust in the case of peer breakdowns, this replication feature can be used allocating identi-
cal data resources at several different peers. This policy information can then be used by a
DhtFlex access manager at persistent storage level to process such resources accordingly.
The item bundle concept was introduced to keep such mapping manageable—that is, to

define which data resources may be bundled together and be effectively published by a DhtFlex
put operation as one value using one key. Regarding node resources and property resources—
as illustrated by Figure 4.5 in Section 4.3.1—the DhtFlex approach to support flexible content
data functionality recommends to store all property resources within the corresponding parent
node resource as bundle unit, as DhtFlex focuses on ensuring consistency at resource level:
each node resource is stored in the P2P space using its id entry as key—a combination between
a node’s UUID and its workspace name is sufficient to guarantee unique addressing in the
P2P space; as each property’s name is unique per node, the combination of the parent node’s

7Checkpointing usually involves periodically recording the current state on secondary storage. Thus, in case
of a failure, the entire computation is not lost but can be recovered from one of the taken checkpoints.
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id and the property’s name allows a non-ambiguous addressing of each property resource; for
example, is shall be possible to extract the node id of such property resource id to enable (i) an
addressing of the parent node resource and then (ii) a relative addressing of the embedded
property resource. This approach facilitates common retrieval mechanisms as each get request
for a node is usually followed by a get request for its properties—to finally build the entity at
item level. The data resources themselves may be stored by DhtFlex as XML data resources
to facilitate a platform-independent processing support [23].
In addition, the DhtFlex approach introduces several other data resources to benefit mech-

anisms for persistent storage management.
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Figure 5.5: Link Resource and Index Resource Visualized with UML

The logical tree structure of a distributed workspace is decomposed according to the con-
tained items and is distributed among the participating peers. To benefit the path-based
lookup, link resources [23] may be used to serve as short-cut between a node’s absolute path
and its resource (see Figure 5.5). The storage of an item resource using an absolute path allows
its efficient retrieval if the path is known in advance. Therefore, a link resource is published
using the absolute path as keyword linking to the UUID of the corresponding node or property
resource, allowing a transparent retrieval. In addition, index resources may be used to match
a certain keyword to a set of relevant items. For example, such index resource may use an
inverted index to implement full-text searching for properties. However, these resources add
an overhead regarding consistency of resource relations: for instance, as an item’s name within
an absolute path changes, all link resources of the affected subtree would need to be updated.
An item resource usually is not aware its absolute path, too; this complicates the process to
actually update such resources. As a compromise assuming a more relaxed consistency model,
such link resources may be published with a certain lease policy; thus, after a certain time such
link resource is dumped. Then, such link resource may be treated as immutable, in contrast
to an index resource which may be stored as mutable.
Figure 5.6 illustrates some data resources to deal with the versioning requirements of Sec-

tion 3.2.2. The DhtFlex approach supposes that each version resource is part of its corres-
ponding version history resource to form an aggregated bundle. Such bundle is than referenced
by a versionable node’s resource. The actual versionable state of an item is represented by
a version resource’s frozen item entry, but stored as separate and immutable item (bundle)
resource. As corresponding nodes of different workspaces may share the same version history,
a node resource uses a combination of a node’s UUID and a well-known keyword to address
the version history resource in a non-ambiguous way. A version resource location shall serve
as a way to transparently reference a corresponding resource. Each version history can address
the individual versions using the version root entry, which serves as kind of a node’s version
index. Such resources are accordingly stored as mutable.
Figure 5.7 shows data resources to support observation and locking mechanisms. An obser-

vation resource that is valid for a certain path or id as key is published as kind of a special
resource using DhtFlex. As soon as an observation according to the given filter happens
the registered listeners are notified using the given listener location—for example, some peer
ID–port combination. Such special resource [23] is subscribed at the relevant peer(s) in the
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Figure 5.6: Versioning Resources Visualized with UML
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Figure 5.7: Observation Resource and Lock Resource Visualized with UML

overlay and accordingly processed. Again, such observation resource may be attached to a
corresponding node resource using the id entry. The type of such resource may be shallow or
deep. A lock resource is attached to a corresponding node resource: a lock may be of shallow
or deep scope.
Considering the support of shareable nodes: each shareable node shares its parents and

child items; therefore, each shareable node is published as one separate and modifiable data
resource using the well-known workspace name and UUID combination as key for DhtFlex.
Then, each parent simply references such data resource within its child node entry.

5.4.2 Persistent Content Storage

Section 4.2.2 introduced a generic interface to support persistent storage access. This interface
supports the handing over of item states to choose content functionality actions according to
annotated state information. Accordingly, a persistent storage manager uses this information
to utilize corresponding mechanism based on DhtFlex.
The imposed functional requirements on the DhtFlex building block essentially require to

deal with the storage of key–value pairs and to support operations like store, load, exist, delete,
query, and register some listener (see Table 4.1 of Section 4.2.2). If these operations need to be
atomic, DhtFlex can support this by submitting such operations as single value. DhtFlex can
support a consistency model that is similar to the relaxed so called close-to-open consistency
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model [95, 119], which is used by distributed file systems like AFS or NFS (see Section 2.4). The
model aims to support scenarios where multiple users may modify a single item in concurrent
manner. As suggested by the name of this model, the open and close primitives determine
the moment when a content item is read from and written to the network and hence the
synchronization points in which consistency is guaranteed. The benefits that this approach
provides is that temporarily made changes on local items need not to be committed to the
network until the modifying operation is done and write access is closed. This implies, that
once an item has been locally accessed or opened, a peer needs not to remotely check with
the network if that item has been modified in the meantime by another peer. It is consistent
to locally cache an item as long as it is opened and until it is closed.

The DhtFlex approach can be used to support the close-to-open model by retrieving the
latest item resource via a read (get) operation, once the item should be locally opened, and
keep it as a cached copy by the content repository layer, until access is closed. All succeeding
requests to an item’s potential properties or child nodes are satisfied using information from
the cached copy. If the item should be modified, the locally cached copy is updated to reflect
the changes; hence, write (put) efforts and corresponding changes are locally buffered by a
session before stored to the network in order to minimize local write latencies. Finally, once
item access is closed, all cached changes are flushed to the P2P network and tried to be
committed. This scheme works especially well when using versioning, as immutable item
resources that store corresponding contents are never removed from the network; hence, links
to certain versions of item resources could not be invalid as they cannot be removed from the
system. An alternative way would be to use a garbage collection mechanism to safely delete
orphaned item resources—for example, applying the lease-based approach.

Regarding the support of content repository functions, Section 3.2.3 explained the two
major operational scopes: shallow operational scope and deep operational scope. Both of
these scopes need to be followed.

The reading or loading of an item can be enabled using a recursive or an iterative lookup
scheme based on DhtFlex. An iterative lookup scheme requires from the reader peer to keep
track of the relevant position when walking through the content tree using item resources. In
contrast, a recursive lookup scheme delegates a reader request to the peers that are involved
in the lookup process—that is, peers that store relevant item resources. As indicated, link
resources may be used to accelerate the loading process using an item’s absolute path. In
addition, DhtFlex’s get operation can be used to verify if an item exists for a given UUID.

Considering the support of write or store operations, valid type restrictions need to be
respected. Such restriction, however, assumes the availability of a certain item rather than
the prohibition to write a certain item: for example, a certain node type may require the
availability of certain properties to support the concept at item level. Usually, all actions
that may modify an item’s state are expected to load the according item resource, first.
Then, the item can be constructed and thus type consistency checks are enabled at content
repository level—at item state level.8 Generally, a writer peer is assumed not to fail during
its writing process to complete corresponding actions. However, if things go wrong, garbage
collection may be applied to collect orphaned data resources. The storing in shallow scope
usually affects the parent node resource in addition to the actual item resource. The storing in
deep operational scope may affect even the whole rooted workspace subtree; for example, the
aggregated commitment of a new item subtree. Thus, the following procedure may be applied
to minimise lost-update issues: (i) load the rooted parent node by a DhtFlex get operation.
(ii) Apply changes respecting—now locally available—type restrictions; (iii) use DhtFlex’s put

8However, without locking the writer needs to be aware of lost-update issues.
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operation to store the item resources from the subtree’s leaves to the root (excluding)—only
if all child items are successfully committed (step-by-step), the corresponding parent item is
stored accordingly (refer to Phase 2 of Figure 5.8 as illustration). (iv) If all items of the subtree
are stored, use DhtFlex’s put operation to store the modified rooted parent node resource.
Once the rooted node resource is submitted, all relevant changes are already and successfully
done. If the process fails, however, submitted data resources may be garbage collected—this
may be even triggered by a writer peer, which may monitor the whole process. In addition,
DhtFlex’s put operation can be used to delete an item applying some special null value—node
type restrictions, however, may prevent a child item to be deleted because of its parent. Thus,
it may be necessary to load the immediate parent node to verify if it is allowed to delete
some child item resource. In addition, it may be required to delete such parent item first to
respect type restrictions; for example, the parent node may require the availability of a certain
property. In order to minimise lost-update issues, a delete operation with deep scope deletes
such affected resources from the parent node resource to the child item resources step-by-step.

A more sophisticated approach may use DhtFlex to store changes to resources rather than
to persist resources as a whole. For example, considering property values which are stored
using data blocks, only the actually changed data blocks need to be committed to reflect
the modification. This method may be extended by combining immutable and mutable data
resources; for example, while data block may always be stored as immutable, their block index
may be stored as mutable.

The support of a query operation requires to basically rely on item resources to resolve a
query statement by investigating a workspaces distributed content tree in an iterative or in a
recursive way. In addition, path resources or index resources may be used—however, regarding
functional requirements, especially the usage of the first resource type is not necessary. The
usage of such resources is interesting considering non-functional requirements.

The support of observations at shallow operational scope relies on the usage of observation
resources. Using a subscribe-like feature [23], the basic eventing-notification mechanism can be
implemented, which allows the triggering of a notification if a suited node resource for a certain
path in the virtual tree of a workspace is stored. This is achieved by placing an observation
resource as subscription at the corresponding peers, which perform matching tests reacting
on the adding, removing, and modifying of affected item resources. The support of deep
operational scope requires such observation resource to be attached to every item resource of
the rooted subtree. As items are always added as the leaves of such tree, this method enables
to pass and apply such deep observation pattern to the whole subtree.

Versioning is highly recommended as, if used, own store operations can always be retrieved
and are not affected by modifications by others. The support of versioning is kind of straight-
forward, using suited versioning resources and the explained load and store primitives.

P h a s e  1 P h a s e  2

Figure 5.8: Phases of a Distributed Echo-Wave Mechanism
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To recapitulate, the locking of a node requires the locking of its properties, it may require
the locking of its child nodes (rooted item subtree) if a deep operational scope is assumed.
The following method assumes deep operational scope (supporting shallow operational scope
is actually its subset). The support of item locking combines the usage of lock resources with
a method based on the echo-wave approach [51]—as illustrated in Figure 5.8: (i) first, such
wave runs from the originating node to the leave items, step-by-step walking down the content
tree using successor relationships—thereby, the wave can be communicated to child items in
parallel way, of course; such wave prepares the item resources as being tentatively locked to
prevent concurrent lock efforts.9 (ii) If a leave item is reached, it is marked as being locked ;
then the echo-wave is propagated walking up the content tree to the originating node; such
echo wave is gradually passed up by nodes if all child items reply and lock each tentatively
locked item until the originating node is reached. Once this node is reached, all child items
have been locked successfully; hence, the node can be locked to validate the lock. Such waves
may be coordinated in an iterative way by some peer or in a recursive way employing respective
peers.10

5.5 Related Work

In part, DhtFlex revisits a problem approached by Etna [130]. Etna claims to support atomic
mutable data within a Chord-based DHT [177]. As the solution of this thesis, it builds on
Paxos to ensure the consistency of a data resource’s replication group. Although its basic
ideas are sketched, however, no results of Etna have been published yet. In addition, Etna is
not practicable in real world P2P systems because of its relying on a crash-stop failure model;
in practice, it is highly preferable that peers which temporarily crash are allowed to recover
with its peer identifier. Etna’s approach shows, however, some serious shortcoming treating
an initial put operation, resulting in concurrency inconsistencies. This way, DhtFlex can be
seen as a consequent advancement to build a practical solution allowing crash-recovery and
a consistent handling of put operations. DhtFlex even outperforms Etna’s recast handling
by reducing the communication steps, or message transmission delays, from seven to five or
rather three, in ideal situations (Section 7.3.5). Because of DhtFlex’s annotated resource
concept, its mechanisms are actually more high-performance for immutable data resources.
In contrast to Etna’s attempt of a system-wide replication factor, DhtFlex is able to define
the size of a resource’s replication group dynamically at runtime allowing even more flexible
storage policies. This allows to adjust the degree of replication per data resource. In addition,
DhtFlex is designed as a generic building block on top of structured P2P overlays, not just
supporting Chord.

Lynch et al. present an atomic data access extension for DHTs using a state machine
replication approach to enforce replica consistency [124]. The focus is more on providing
atomicity in the case of peers joining or leaving the system. In contrast to DhtFlex, the
approach heavily interferes in the working of the underlying structured overlay, drawing no
clear interface. Moreover, peers are expected not to fail, which is not feasible on real distributed
systems—for example, the Internet—where churn, that is, the dynamics of peer membership

9Some policy may be used to tailor such tentative lock: for example, to state a timer value after which such
tentative lock should be aborted, or to determine some lock-scheduling policy.

10Although the support of transactions is out of the scope of this thesis, the following method sketches how
locking may enable distributed transactions: (i) first, all items that are affected by the transaction need to
be determined. Then, (ii) all these items are locked; if successful, (iii) the transaction is executed ; if done,
(iv), the locks are released.
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participation, can occur. Regarding performance no evaluation is given, but implementing a
DHT node as fully replicated state machine is likely to be worse than the solution of this
thesis. It even may undermine the overall performance of a DHT regarding scalability: this
is opposed to DhtFlex which has its focus on the exploitation of the benefits offered by a P2P
overlay boosting atomic DHT operations.
The Piazza system [87] focuses at the problem of dynamic data placement in a P2P envi-

ronment. Its goal is scalability regarding large numbers of peers and moderately frequent data
update operations. Peers are only able to update own data resources provided to the system.
Regarding data freshness, Piazza does not achieve strong semantics of traditional databases
as it employs expiration times of data resources, rather then a coherence protocol.
The Atlas Peer–to–Peer Architecture (APPA) [12] data management system is build using

the JXTA framework [172] and aims to support applications that need to deal with seman-
tically rich data, like XML documents. Similar to the presented approach, APPA defines
a network-independent architecture to support various P2P overlays. APPA utilizes mul-
tiple hash functions to replicate data items among multiple peers; current data replicas are
retrieved based on a logical timestamping mechanism. Each data modification concerning a
peer’s locally stored replicated data item is immediately reflected; hence, APPA allows that
concurrent updates may cause replica divergence and conflicts. In order to resolve conflicting
updates and to achieve eventual consistency among replicas, a distributed semantic-based al-
gorithm is used for reconciliation on demand. This is in contrast to the mechanism of DhtFlex
which does ensure immediate replica consistency regarding the sequence of concurrent data
manipulations.
The Juxtaposed Memory (JUXMEM) system [15] defines a hierarchical architecture for

managing mutable data within a grid that is composed of a federation of clusters. It employs
a data sharing service to provide transparent access especially with regard to processing large
amounts of numerical data. Therefore each data block is identified by a unique ID and
replicated on a number of nodes. Basically, JUXMEM allows an application to allocate
storage space in the system, by specifying the size of the space and the degree of redundancy.
For each cluster, it employs a certain peer, to be responsible for managing the offered storage
space of the participating nodes. In order to achieve consistency in the face of concurrent
replica updates, the data sharing service uses some multicast mechanism within a group. In
contrast, DhtFlex is supposed to act as generic building block tailored for structured P2P
overlays and aims to minimize the dependency on certain peers.
Pastis is described as a multi-user read-write P2P file system [41]. It uses the Past
DHT [156] in order to store data; thereby, each data file or directory is represented by a
modifiable Unix File System inode like structure, which stores its metadata as a list of ad-
dresses to immutable data blocks containing a file’s or directory’s content. Old immutable
data blocks are expected to be never removed from the network. All data blocks are repli-
cated to increase availability and stored using immutable content-hash blocks to enable the
verifying of their integrity. Conflict detection is supported by the usage of version vectors
and by keeping old data versions stored, as Pastis expects concurrent modification efforts to
cause inconsistencies. Thereby, the conflict-resolution scheme is based on a last-writer-wins
rule for file conflicts. New versions are marked by timestamps using local peer clocks to allow
the detection of old update efforts. However, neither is the relying on synchronized clocks a
realistic requirement for P2P systems, nor can consistency conflicts be automatically solved
by Pastis.
In contrast to existing systems, the DhtFlex approach offers different degrees of consistency

to a using application. This enables an application to further increase performance by relaxing
consistency.
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5.6 Summary

This chapter introduced DhtFlex as a method to implement flexible content repository func-
tions in structured P2P overlays. If replication shall be used to increase fault tolerance (avail-
ability) of data resources, DhtFlex represents a modular component to ensure the consistency
of distributed replicas in the face of concurrent updates.
The chapter defined the system context of DhtFlex and described its major functions:

• A key idea of DhtFlex to enable flexible and efficient data operations is its used concept
of annotated data resources: for example, on the one hand, DhtFlex provides atomic
operations on replicated mutable data resources; on the other hand, DhtFlex is able to
distinguish immutable data resource to support more efficient data processing for them.

• DhtFlex allows the definition of fine-grained policies per data resource and supports
consistent adjustment of a data resource’s replication group (recasting).

• DhtFlex supports consistent put operations and consistent get operations: it offers flex-
ible atomic operations.

It was further shown how DhtFlex enables the construction of flexible content repository
functions by giving (i) a suited content mapping, and (ii) a way to implement persistent
content storage.
Finally, DhtFlex was discussed considering selected related work.



6 Methods for Flexible Content
Repository Functions in Hybrid
Peer–to–Peer Overlays

The previous chapter introduced methods to implement flexible content repository functions
tailored for structured peer–to–peer (P2P) overlay networks. Thereby, the presented methods
assume a rather homogeneous peer model. As the used terminology peer implies, the peers
are treated as equals, such that the whole system looks decentralised and symmetric from a
functional point of view. The chapter showed how structured overlays basically establish a
flat key-value based lookup method—supporting distributed hash tables (DHTs)—in which
each peer is indistinguishable from one another, in the sense that all peers apply the same
procedures for determining the routes for message requests. Thus, it aimed to fully decentralise
content repository functions.
However, every system is usually determined by certain constraints, network nodes may

provide heterogeneous abilities. Considering the sample scenarios of Section 1.1, for exam-
ple, there may exist peers which are equipped with different hardware resources or network
connection. Hence, it may be advisable to shift the approach towards a more asynchronous
working model: certain data or functions may be located at strategic locations within the
system to increase lookup and query latency, for example.
This chapter introduces methods to implement flexible content repository functions tailored

for hybrid P2P overlays. It encourages an asymmetric approach, where certain peers, for
instance more powerful peers, should work harder than others to increase the overall system
performance regarding certain non-functional requirements. Therefore, this chapter shows
a hybrid P2P overlay architecture that uses two major tiers. As a first tier, the layered
architecture integrates a structured overlay as essential back-end infrastructure. On top of
that, the second tier enables peers to be organized into P2P service groups.1 The first tier
establishes the basic message routing and lookup scheme providing inter-group communication.
Whereas at second tier, each group may have its autonomous intra-group communication
method for its members.
Regarding the implementation of content repository functions, the approach supports con-

centrating certain system functions to a selected set of peers; for example, to benefit the
construction of a replicated query index per workspace—offering self-x properties—to foster
rich queries considering non-functional requirements, as the reduce of overall query latency:
the first tier allows to determine the P2P service group responsible for a certain workspace;
the corresponding group of the second tier represents its administrative authority accordingly
and may be contacted for further operations.
This chapter is structured as follows:
Section 6.1 introduces and motivates the concept of reconfigurable P2P service groups.

1For instance, such hybrid approach enables the implementation of a hierarchical system environment to
benefit the scenarios of Section 1.1, where the construct of a peer group provides administrative autonomy
to participating organizations. As illustration, each organisation may be represented by its own group and
enforce individual access policies.
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Section 6.2 states the system context of P2P service groups: (i) it defines the applied system
model, (ii) the basic system architecture, and (iii) the general system interface.
Then, Section 6.3 introduces the major functions of P2P service groups: (i) lifecycle manage-

ment to deal with to whole process of group creation till group destruction, (ii) decentralised
code loading to integrate service functionality dynamically at runtime, and (iii) consensus-
based P2P group communication to implement their intra-group communication method.
Section 6.4 illustrates how the presented methods enable the construction of flexible content

repository functions. Therefore, it presents (i) a suited content mapping, and (ii) an approach
to implement persistent content storage.
Section 6.5 presents related work. Finally, Section 6.6 concludes this chapter.

6.1 Reconfigurable Peer–to–Peer Service Groups

Chapter 3 defined the used requirements for content repository functions in the context of P2P
systems. Especially, Section 3.4 analysed hybrid P2P overlays as a basis to approach these
requirements. The hypothesis of this chapter is, that hybrid P2P overlays show the potential
to close the gap by combining centralised and structured P2P overlays, thus concentrating
certain content repository functions at strategic locations in the overlay network to bene-
fit selected non-functional requirements: such approach, however, looses the pursuit of total
decentralism—as investigated by the previous Chapter 5; for example, the used DHT-based
approach to enable content repository functions assumed a rather symmetric peer model indi-
cating implications regarding some non-functional requirements in the case of deep operations.
The hybrid approach of this chapter introduces the concept of P2P service groups as a way to

break the symmetry of peers and to exploit their diversity. Intuitively, a peer group represents
some kind of central component in the P2P overlay by concentrating a certain service to a
certain set of selected peers. Hence, it basically represents a group of peers dedicated to execute
a common group service (see Section 4.4.1). A P2P service group may be constructed ad hoc, as
soon as a group service is ready to be deployed in the system. Thereby, such P2P service group
is reconfigurable: (i) peer group memberships can change dynamically at runtime;2 the offered
service can be (ii) deployed and (iii) reconfigured dynamically at runtime applying some policy.
In addition, the lifecycle management of these groups may include the discovery of suitable
peers: such discovery mechanism may be highly centralised, highly distributed, or somewhere
in between. Hence, a P2P service group represents some kind of partitioning scheme of the
world of peers; for example, to foster performance, communication, or logical locality. In
addition, the cooperation of peers may provide reliability of service execution. However,
peers of a service group may take certain roles identifying their responsibility regarding group
formation and execution.
As a hybrid-overlay aspect, P2P service groups are designed to run on top of a structured

P2P overlay.3 As this thesis focuses on content repository functions, this chapter especially
introduces P2P service groups as a method to implement a distributed, replicated, and fault-
tolerant repository index applying the fault-tolerant state machine pattern of Section 2.2.5. An
important aspect of the concept is the establishment of a consistent intra-group communication
mechanism—referring to Section 2.2.6. Therefore, such service group uses a generic consensus
module as intra-group communication component to support the building of replicated state
machines. This module serves as fundamental part to implement the P2P group communi-
cation mechanism and to construct the fault-tolerant index. The special aim of replicated

2A single peer may be a member of several P2P service groups.
3The concept of P2P service groups is, however, rather generic thus usable for different scenarios.
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P2P state machines is to benefit repository functions working at deep operational scope of a
workspace’s distributed content tree: the replication of relevant content item metadata on dif-
ferent peers is a useful redundancy for improving availability. But such multi-peer replication
has the potential to foster performance, too; on the one hand, the selecting of a nearby group
peer to serve a query request may result in shorter service time. On the other hand, fewer
peers and communication messages may be involved in such query process within a group; for
example, no overlay lookup costs may be required to send messages between replicas. Overall,
replicated P2P state machines support the consistent aggregation of content-data relationship
information.
This chapter introduces a consensus-based approach to implement a totally-ordered multi-

cast mechanism. The challenges for such P2P group communication system comprise: (i) the
consistent adapting of a group to dynamically changing members, (ii) the support of service-
specific ordering semantics on the order of delivery of messages, and (iii) the providing of
several fault-tolerance semantics applying some policy. The usage of distributed consensus
algorithms (see Section 2.2.4) is an established way to implement a common group com-
munication system, which supports total-message ordering. This chapter, however, presents
mechanisms which focus on (re-)configurability of such systems. Unlike other systems, a P2P
service group communication instance can be configured to work with different failure models
and low-level communication protocols without changing the service part. In addition, differ-
ent failure models, protocols, and their run-time parameters (for example, time-out limits) can
even be reconfigured dynamically at run-time without loosing consistency, especially in case
of failures. Reconfiguration at run-time promises for a service to adapt to access patterns and
environment conditions for gaining optimal performance and fault tolerance at the same time.
As the reconfiguration method is transparent to the service logic, it may be even initiated
automatically by the underlying system.
For the implementation of an infrastructure for fault tolerance, this has two important im-

pacts: first, best service quality will only be obtained if the infrastructure is flexible to allow
service- and environment-specific tailoring—depending on the requirements of a certain ser-
vice and the properties of the environment. Second, the infrastructure has to support flexible
run-time adaptation, as both the needs of the service and the properties of the environment
may change dynamically at runtime.4 Faced with the need of an adequate support for tailoring
and run-time adaptation at the P2P group-communication level, existing systems for group
communication could not meet the requirements regarding these issues. Active replication
requires totally-ordered multicast semantics within various models of fault (for example, fail-
stop, crash-recovery, or malicious), which are optimized for the specific service requirements
and environment properties. The proposed P2P group communication system uses an encap-
sulated consensus module to obtain total order. Many specialisations of this generic module
exist and thus provide an ideal basis for application-specific tailoring. These specialisations
include the seminal Paxos algorithm [113] and existing variants for low latency as well as for
fail-stop, crash-recovery, and malicious failure models. Group members may transparently de-

4For example, considering the supported failure model: a fail-stop model assumes peers which either work
correctly or have failed permanently. This model, however, shows the advantage of less complexity and
small implementation overhead. Thus, such model might have been chosen for a system initially. However,
a failed peer cannot recover and continue operating in this model. Because of this disadvantage, the
system’s failure model may be adjusted to support crash-recovery at some point in time. Typically, this
would require the local availability of some stable storage to preserve critical state information across
fails. Hence, it increases the operational overhead, but peers are able to continue operating after recovery.
Finally, the system might be faced with changed security considerations leading to the demand for intrusion
tolerance. Such demand would be satisfied by reconfiguring the system to support a Byzantine failure model
tolerating even malicious intrusions.
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cide to replace the instantiation of the consensus module with another one to tolerate different
kind of faults or to adjust parameters that influence performance. In addition, the low-level
communication mechanisms may also be dynamically configured, for example, applying TCP,
SOAP, or TLS.
The next section describes the system context of P2P service groups in more detail.

6.2 System Context of Peer–to–Peer Service Groups

The system context of P2P service groups states the major properties of the system environ-
ment. Section 6.2.1 indicates the applied system model. Then, Section 6.2.2 gives the overall
system architecture elaborating the approach on the technical level. Eventually, Section 6.2.3
states the basic interface of a P2P service group.

6.2.1 System Model

This section describes the basic system model of the approach. In substance, the subsequent
section shows the assumed peer properties; then, the assumed link properties are indicated;
finally, the assumed method to enable detection of peer failures is given.

Peer Properties

Generally, this chapter assumes a system composed of a dynamic set of non-malicious peers
{p1, p2, .., pn} which follow a benign failure model.5 Peers may show different hardware, net-
work, and software characteristics. Each peer is uniquely identified by a UUID, its peer iden-
tifier (ID). Peers are able to continuously enter or leave the system at any time—at any given
time, a peer is either up or down. A running peer correctly works at its own speed obeying its
specification. No assumption is made considering the relative speed of peers. While running,
any peer might fail by crashing; that is, it stops executing according to the fail-stop failure
model. A peer may recover with its original peer ID by executing some recovery procedure,
analogue to the crash-recovery failure model. Hence, a fail or a recovery event causes a peer
to move from up to down state or from down to up state. Recovery requires essential resource
information to be recorded to stable storage (for example, to redundant disks). Therefore, a
peer is equipped with volatile memory and with stable storage locally. In contrast to volatile
memory, the latter is assumed not to be affected by a crash and can always be recovered. An
unstable peer might crash and recover infinitely many times. A peer that never crashes is
called always-up. A peer that is correct is considered to be permanently up after some time.6

A peer that is not correct is called faulty, that is, either unstable or eventually always-down.
Peers may organize into P2P service groups. These groups may or may not be composed of

peers that are topologically close to each other, depending on the service needs. Each group
can be identified by a UUID, its group identifier (ID). Considering P2P service groups, their
model basically differentiates between two different classes of peers:

• Group members are peers that are actually part of a certain group. They are responsible
for determining total-order of a group-message exchange and thus automatically learn
all intra-group messages.

5However, Section 6.3.3 presents a generic consensus module that is even able to assume a malicious envi-
ronment.

6However, it is impossible to specify the term long enough in asynchronous systems [33].
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• External senders are not part of a certain group. They may, however, send messages to
a group; in reaction, they may also receive reply messages from that group via the P2P
group communication interface.

Following this terminology, the term peer group refers to the actual group members ex-
clusively. The additional support for peers acting as external senders enables the flexible
open-group model [68].7

Link Properties

This chapter assumes peers to exchange information and synchronize by sending and receiving
messages through bidirectional channels between every pair of peers. Every message msg
contains as fields the identity of its sending, its destination peer, and some local identification
number msgid. These fields ensure the uniqueness of every message throughout the whole life
of a peer. Thus, a message cannot show the same msgid even after a peer recovery. A channel
may loose or drop messages and there exists no upper bound on message transmission delays.
In general, an asynchronous communication model is assumed (see Section 2.2.2).

Failure Detection

This chapter assumes a local concept of failure detection. That is, a peer regards another
peer as failed if the latter does not answer requests. However, this does not necessarily imply
that such peer might not respond to a request issued by another peer. In order to use some
time-out mechanisms, a peer has access to some local clock.

6.2.2 System Architecture

This section elaborates the approach on the technical level. First the general system archi-
tecture to implement persistent content storage management (see Section 4.2.2) is introduced
and a brief description of major components is given. Then, the architecture of the generic
group communication module is shown.

Hybrid System Structure

Figure 6.1 shows the layered architecture of the hybrid approach offering a two-tier hierarchy8:
(i) generally, each computer node is represented by a peer in the DHT layer of the system,
the latter being the structured aspect of the system’s overlay. (ii) The P2P service group layer
enables different peers to syndicate into groups, which form the central aspects of the system’s
overlay.
This basic concept of a hybrid overlay is the basis to use P2P service groups as building

block to implement a persistent content storage back-end using the decoupling of metadata
management and data management (refer Section 4.2.2); as already mentioned, P2P service
groups are introduced as concept to support implementing a replicated index to administrate
the metadata of a content repository’s workspace.

7As an indication, the model of P2P service groups may be extended to contain members that actually do
not participate in the first-tier overlay. Members that additionally participate in the first-tier overlay may
act as kind of gateways to send and receive messages of the first-tier. Hence, such method may be used to
implement inter-group communication of nodes that actually do not participate in the first-tier overlay.

8The basic architecture may be extended to a general-tier hierarchy in a straightforward manner. This is,
however, out of the scope of this thesis.
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Figure 6.1: Hybrid Overlay Architecture

Regarding this implementation, there exist two different roles of system peers: indexing
peers and storage peers.9 As already indicated, the reason lies in the nature of DHTs: DHTs
provide a simplified put–get interface to efficiently store and retrieve content resources by
keywords, for instance, UUIDs; unfortunately, their support for more sophisticated queries,
such as range queries and semantic queries over large data sets, for example, a workspace’s
distributed item tree, is difficult concerning certain non-functional requirements [79].

Storage peers enable the key–value based storage of a workspace’s content resources. Ba-
sically, every system peer not acting as an indexing peer is considered as a storage peer 10.
Therefore, each storage peer offers local storage capacity to store the actual content data of
the repository; that is, the data management part is delegated to the DHT layer. Each peer
hosts a service container with a set of standard services to manage service execution and to
integrate services dynamically at run-time (refer Section 4.4); this mechanism enables equip-
ping regular storage peers with indexing service capabilities to act as indexing peers or to
remove these capabilities again.

The metadata of each workspace is, however, concentrated by corresponding indexing peers,
which are implemented by a P2P service group.11 Indexing peers may provide an advanced
querying interface for sophisticated queries, as required by the support of the persistent stor-
age access management interface of Section 4.2.2. To enhance their internal communication
latencies, indexing peers use the mentioned group communication module to maintain a sepa-
rate pool of connections to other indexing peers—in addition to normal DHT connections. In
the following, the set of indexing peers is referred to as indexing group. A workspace’s meta-
data may be injected at an arbitrary peer of the indexing group. Afterwards, it is internally
disseminated through a (group) communication protocol [79]. Thus, an indexing group acts
as kind of an island within the DHT layer to support certain operations more efficiently: a
workspace index may be distributed or shared among those peers and does involve all system
peers—a policy may be used to determine the size of such indexing group. Using such policy,
an indexing group is able to adapt its size and to integrate new peers to support resilience
and load sharing, as explained by Section 6.4. However, the integration of new peers may

9However, a system peer may work as both as indexing peer and as storage peer at the same time.
10An indexing peer acts usually as storage peer, too.
11In addition, indexing peers may aggregate status information of all peers in the system [79]. Such approach
enables the system to determine current suitable peers for indexing service execution; for example, peers
with certain capabilities or idle hardware resources. Each system peer may advertise its local resources,
for instance.
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require the assistance of consistent migration decisions of a workspace index; that is, which
information should be transferred to a new member.
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Figure 6.2: Two Dimensions of a Fault-Tolerant Workspace Index

Figure 6.2 shows the two dimensions of a fault-tolerant workspace index: (i) a local dimen-
sion and (ii) a network dimension.

Locally, each indexing peer maintains a view of the fault-tolerant index itself, and the data
structures to actually create it. For the latter, an indexing peer is intended to administrate
different types of metadata; for example, the item namespaces, the mapping from paths to
UUIDs, or relevant inverted indices. All such data structures are kept in an indexing peer’s
transient local memory and persistent local storage.12 The usage of such replicated index
enables a reliable update of an indexing peer’s state without the risking of inconsistencies in
case of peer failures: therefore, the generic consensus module is used—accessed by the P2P
group communication system.

An indexing peer’s local data structures of the fault-tolerant index shall reflect a historical
record of critical metadata changes. Modifications of the data structures need to be made
persistently, however, before exposed to external peer requests. In order to increase availability
and fault tolerance, such workspace index is replicated among multiple indexing peers and a
client’s request is served only after flushing the corresponding record to disk, both locally and
remotely—using the consensus protocol instance. In order to increase system throughput,
several operations may be batched together, as indicated by Section 6.3.3. An indexing peer
is able to restore its state by replaying the relevant data structures. In order to keep their
history small a checkpointing13 mechanism may be used, if the size reaches a certain limit.
Thus, restoring the latest checkpoint from local disk may only require a limited number of
index records. Outdated peers may access up-to-date information by using some file transfer
protocol for checkpoint exchange.

To sum things up, the described architecture is quite flexible as different overlay protocols
may be used at first tier as well as at second tier. Especially at intra-group level, P2P service

12The storage of data structures in memory promises fast indexing peer operations.
13Usually, checkpoints are a method to achieve persistent conservation of a state at regular intervals. In this
sense, checkpoints are synchronization points at which the current service state is persistently stored. The
intervals of checkpoints may be defined in fixed lengths or be defined by special marks within a service’s
program logic.
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groups may use different ways to establish group communication. For example, if the size of
a group is quite small (less than 20 members), each member could track all other group peers
and may use group communication mechanisms to implement intra-group communication. If
the group would be larger (about 100 members), selected group members may be used to
track all other group members. Finally, if a group is large (about 1000 members), structured
overlays may be used to implement tracking and intra-group communication. In the context
of this thesis, however, only quite small groups are assumed.

The next section discusses the architecture of the P2P-based group communication system
in more detail.

Modular Group Communication Structure

The modular design of the internal architecture of the consensus-based reconfigurable group
communication system is outlined in Figure 6.3 [149]. The Group component represents the
core of any P2P service group. It implements the external interface that is visible to a service
application and internally uses the Consensus component to obtain total order of all group
messages between its members. The generic design of the Consensus component supports a
variety of implementations, each with different quality-of-service (QoS) properties. Both the
Group and the Consensus component use an instance of the Communication System, which
provides low-level messaging between participating peers. The configuration of all three main
components is described by a given Group Policy. This policy, internally represented as a
list of key-value pairs, is defined at group creation time and may be changed at runtime by
a dynamic reconfiguration process. For example, a policy may define which peers are allowed
to interact with a certain P2P service group.
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Figure 6.3: Modular Structure of the Reconfigurable Consensus-Based Group Communi-
cation System
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The Communication System component encapsulates the specific low-level mechanisms that
are used for communication: it provides network-independent addressing between group mem-
bers using peer IDs without requiring an actual P2P lookup, handles message queueing, and
re-establishes connections after failures.14 This component represents a communication ab-
straction and fully supports reconfigurability; depending on available network abilities, dif-
ferent variants like plain TCP/IP or UDP/IP connections, tunnelling via SOAP/HTML,
encrypted TLS channels, or the use of existing hardware multicast mechanisms can be sup-
ported [149]. The Communication System offers an asynchronous (non-blocking) sending
primitive to the using components: each message is tagged with a message type to allow a di-
rect delivery to the appropriate entity. The Group Policy defines the instantiation to be used
as well as corresponding parameters, like time-outs for connection re-establishment. Changing
the Group Policy invokes the reconfiguration process, which will be discussed in more detail
in Section 6.3.3.

6.2.3 System Interface

First, this section briefly describes the offered interface of the hybrid system considering
the support for content repository functions. Then, the upper-level service interface of the
consensus-based group communication system is introduced.
Considering persistent storage management as presented by Section 4.2.2, the relevant

workspace-supporting operations of the persistent storage access management interface are
enabled by the system, as explained in Section 6.4. These are the operations (i) to store
item-data resources, (ii) to verify if certain item-data resources actually exist, (iii) to delete
item-data resources, (iv) to query certain item-data resources, and (v) to support observation
of certain item-data resources.
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Figure 6.4: Service Interface of the Group Component

The Group component is the principal module of an instance of the P2P group communica-
tion system. Figure 6.4 visualises the exposed interface of this component [149] using UML
notation: it shows the interface that is visible to a (peer) service. The interface offers (i) a con-
structor to equip the component with an initial functional set. Further, it exposes operations
for (re-)configuring a peer group, (ii) to join a certain P2P service group, (iii) to leave a P2P
service group as a certain peer, and (iv) to reconfigure a P2P service group by adjusting group
policies. Regarding the join process, a new group member first instantiates a Communication

14The Communication System component supports a crash-recovery model by supporting peer ID based
addressing, as a recovered peer may, for instance, use a different dynamically assigned IP address or a
different TCP port number.
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System and a Group component; the join operation then sends a join request as an external
sender to one of the group members. As soon as the new group member receives a positive
answer, it instantiates a properly configured Consensus component—applying the policy that
is contained in the answer message from the group. Considering the leave process, a peer may
demand for its own removal from a group, or rather it may request the removal of another
group member, for instance, a permanently failed peer. Concerning policy changes, all recon-
figuration actions are subject to the group’s consensus and are delivered to all group members
in total-order. To support the communication between group members, the component offers
methods (v) to send messages to the whole group or (vi) to individual members, and finally
(vii) to receive group messages. The latter operation enables to implement a message-based
interface to access offered group service. For example, an external sender is able to send a
message request to a certain P2P service group.

6.3 Functions of Peer–to–Peer Service Groups

Considering the distribution-degree of functionality, this section deals with group services
especially—as already introduced in Section 4.4.1. To briefly recapitulate, such service is
offered by a P2P service group as a whole; thereby, such service shall simply refer to a
self-contained computer program that exports its functionality through a well-defined in-
terface [79]. However, considering the invocation of a group service—especially in context of
the replicated state machine pattern, which is applied in this chapter to implement metadata
management of a content repository’s workspaces—two major components can be classified:

1. The static component of a group service is mainly given by exactly one corresponding
service logic unit; that is, the concrete program code instance.

2. The static component may be invoked during service runtime multiple times—producing
the dynamic component of a group service: such service instances may be both stateful
or stateless; on the one side, their execution may require some input; on the other
side, some output may be produced. In contrast to the static component, however, the
dynamic component may change during service processing; for example, assuming the
same static component, a stateful service applying the replicated state machine pattern
may produce different output for the same input, because its actual service state may
vary in process of time.

Assuming this intuitive idea of a group service, Section 6.3.1 shows the lifecycle manage-
ment of a P2P service group; as the concept of P2P service groups was introduced to enable
reliable service execution, mechanisms are required to consistently set up service groups and
to maintain their inherent structure in order to ensure QoS throughout of the operation [79],
for instance. Then, Section 6.3.2 presents a mechanism for decentralised dynamic code load-
ing of service functionality. This mechanism enables peers to be equipped with necessary
service functionality—when joining a P2P service group—dynamically at runtime. Finally,
Section 6.3.3 states a concrete instance of a group service to implement consensus-based P2P
group communication.

6.3.1 Lifecycle Management

This section briefly describes lifecycle management of P2P service groups. The main goal of
lifecycle management for P2P service groups is to provide methods to cope with the entire
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lifecycle of a P2P group, from its creation, to its service execution, and finally its breakup.
Although P2P service groups may differ in their offered group services or functions, they
possess a common basic lifecycle process.
First, the major states of the lifecycle process are given. Then, the applied methods of the

lifecycle process are presented.

States of the Lifecycle Process
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Figure 6.5: Lifecycle of P2P Service Groups

Figure 6.5 visualizes the overall lifecycle process using the notion of an UML state diagram.
As depicted, the lifecycle shows (i) different states and (ii) influencing transition conditions to
indicate when the process enters a following state. In some way, these transition conditions
determine the character of a P2P service group’s abilities. Each of the identified states is
briefly introduced in the following.
The creation state initiates a P2P service group—including the process of group registration

and initial member allocation.
The execution state represents the actual processing of the group service. Usually, this

involves the monitoring of the group service’s status to apply appropriate actions. Before a
P2P service group may, however, start executing, the corresponding preconditions need to be
satisfied. The execution of a group service may demand certain non-functional requirements
to act as constraint for its performance, for example, a minimal amount of group members
offering certain non-functional abilities as processing power, persistent storage space, or net-
work bandwidth. It is assumed that such service can specify the criteria of non-functional
quality it requires in a non-ambiguous way. It is important to notice that preconditions need
to be satisfied before service execution begins; that is, mechanisms may be used as part of the
creation state to select according peers or allocate required resources. In order to keep the
preconditions satisfied during the whole execution state, monitoring to ensure compliance with
the imposed requirements may be necessary in the face of peer failures or changing hardware
environments, for example. That is, group peers check their availability reciprocally.
The reconfiguration state is involved if a P2P service group needs to apply appropriate

actions to keep up its service or to adjust its service according to some policies. If during
execution state some conditions are fulfilled reconfiguration of a group service is started. Such
conditions may be divided into two categories: reactive conditions and proactive conditions.
Considering reactive conditions, peer or network failure may cause the abruptly stopping of
a service group’s execution, for example. Using monitoring such failures may be detected
and analysed to react as a group in a suited manner; for instance, to withdraw memberships
and integrate new peers.15 Regarding proactive conditions, either reconfiguration may be

15A deep knowledge of the system environment may be necessary to enable efficient mechanisms to detect
and to analyse failures. For instance, it is usually difficult to detect if a peer has failed or if there exists a
problem with the network. Here, system properties may enable to determine the reason of a failure. For
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triggered at user level, or at peer level without manual interaction. For example, at user level,
these conditions may be represented by policies to vary the non-functional requirements of a
group service, as its execution throughput. This may require to integrate additional group
members offering certain hardware resources. At peer level, for instance, some threshold level
may be defined to indicate if a peer reaches an overloaded state, which may cause it to quit
group membership or may induce it to propose to the group the reconfiguring of according
load-balancing techniques. Such threshold may be defined regarding several local hardware
characteristics of a peer, for example, processor or memory usage. Thus, in contrast to failures
inducing group reaction, proactive conditions can be anticipated to take suited actions, for
instance, to save the local state of a stateful group service.
The breakup state controls the actions to stop a P2P service group. It is determined by

postconditions, whether a group service is regarded as completed or not. Thus, if an executing
service meets these conditions, according mechanisms are invoked to breakup the group, release
its members, and to release the acquired resources.
The subsequent section presents methods to implement the presented behaviour.

Methods of the Lifecycle Process

The previous section introduced the several states of a P2P service group’s lifecycle. To be
able to support this, the lifecycle management needs to deal with several related functions,
the most important ones are illustrated in the following—correlating them with the identified
states.

Creation of a P2P service group As already indicated, not every peer in the system needs
to participate in a P2P service group. Peers which do syndicate into groups represent
central units within the underlying structured overlay topology. Overall, it may be
differentiated between three types of peers from a group’s point of view: (i) a group
is initiated by a peer, which acts as kind of initial leader for a P2P service group.
Such leader may select the initial group set-up and peer memberships. However, using
reconfiguration the role of a group leader may be delegated to another group member.
Here, consensus algorithms as described in Section 2.2.4 may be used. (ii) Once the initial
configuration for a group is done, regular group members are responsible to execute the
actual group service; from then on, peers may be assigned the membership by a group as
a whole. However, peers may participate in several groups at the same time. (iii) Peers
which do not participate in a P2P service group are regarded as candidates. They work
in the system and may be requested to join a group. In order to be considered as member
of a P2P service group, a peer may need to share information about its current condition:
for example, both static values like its offered CPU power, its memory size, storage space,
or network bandwidth—and dynamic values, like its current CPU, memory, or storage
usage; the uptime behaviour of a peer may be considered as some kind of reputation
value, too. In addition, social features may be considered when selecting a peer as
group member. However, it is the task of the application level to exactly define these. To
support a proactive selection process of group peers, a peer may publish this information
as data resource either to a well-known P2P service group in the system, or to the DHT
using the structured overlay part and applying the approach of Chapter 5. The following
algorithm depicts the major steps of an initial creation process, from the perspective of
a group leader—thereby, it exploits the hybrid overlay architecture:

example, the calculation of the probability of a network failure may serve as indicator to analyse the actual
reason of a detected failure.
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1. Create the actual group service code module(s) and formulate an initial service
group advertisement depicting the group’s preconditions.16

2. Use the employed system service to determine suited peers as members for the
initial group configuration. This triggers some kind of selection process for possible
service group candidates. Such selection process may apply preconditions on a
peer’s properties to filter the peers that are capable of executing the group service.
As already indicated, best candidates can be determined by their static capabilities,
their current status, and other criteria provided by additional information [79].

3. The next step is to set up an initial service group configuration. Therefore, the
selected peers need to be contacted to invite them to join the group. This triggers
some kind of initiation process passing the selected peers the preconditions.

4. If a peer, which is selected for group service execution, does not provide the required
service code or other data as requested by the preconditions, it can be loaded from
other system peers and dynamically deployed in its local service container (Sec-
tion 4.4.1). Section 6.3.2 illustrates the whole process of publication, look-up, imple-
mentation selection, and the final loading of platform-specific code: as each service
function might be available in various implementations with different requirements
and properties, a generic and decentralised selection process allows identification of
the best-fitting service code bundle for a certain host environment [79]. First, the
leader contacts the peer and asks it to become a member—alternatively, a peer may
apply for membership in a proactive kind of way. In both ways, an actual member
needs to be contacted first. Then, the peer joins the group using the regular join
mechanism of the underlying intra-group communication service; in addition, the
new member notifies the group about its offered resources.

5. The last step before starting execution—if the preconditions are satisfied—is to
publish a group advertisement to the first-tier overlay, representing contact infor-
mation and group service information. Here, it is convenient to promote the most
stable group members as contact peers and to rapidly update a corresponding ad-
vertisement if failures or departures of contact peers occur.

Execution of a P2P service group As already indicated, before starting service execu-
tion, the P2P service group has to be initialised and the preconditions have to be satis-
fied. If successful, the group begins service processing and monitoring for failure detec-
tion to maintain service execution. Therefore, group members may use some heartbeat
messages, which are sent to each other to perform monitoring, reciprocally. Here, the
omission of a heartbeat message may result in the condition to start a reconfiguration
process.17 However, the frequency of heartbeats depends on the nature of the group
service. If a peer is recognized as failed, the group may decide to take according actions,
as indicated in Section 6.3.3.

16Each P2P service group uses a service group advertisement—a data resource—to publish especially contact
information and conditions about itself, for example, required service code, in the P2P network. Such
group advertisement supports the discovery process for a certain P2P service group; it encapsulates relevant
metadata information about an existing P2P service group. For example, how a group can be actually
accessed. Without such publication, a group cannot be discovered by other peers. Accordingly, search
methods can enable the finding of P2P service groups for given query statements.

17Usually, a heartbeat is a comparatively small message, which is only sent for the purpose of notifying other
members that the sending peer is still active. It may be convenient to send such message piggybacked with
common service group messages to reduce the overall communication overhead.
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If executing, the following algorithm depicts the major steps to use a group service from
the perspective of an external sender—thereby, the method exploits the hybrid overlay
architecture:

1. Using the DHT-based backend system of the first tier, the external sender finds the
group that offers the demanded service by its published service group advertisement.

2. If available, the analysis of the group advertisement reflects all necessary informa-
tion to contact the P2P service group in an appropriate way.

3. Using the gained information the P2P service group can be requested.

Reconfiguration of a P2P service group The reconfiguration process represents the abil-
ity to implement adaptive behaviour by a P2P service group. For example, Section 6.3.3
explains how the consensus-based group communication method may be applied to im-
plement membership management and maintenance for a running P2P service group.
This method supports to consistently expand or to shrink a group’s size dynamically
at runtime. Reconfiguration is crucial regarding the implementation of a fault-tolerant
workspace index by a group service. For example, a t fault-tolerant state machine
consisting of a set of replicas is able to tolerate more than t faults if it is possible to
remove faulty replicas from the set and add replicas running on repaired or working
machines [165].

Breakup of a P2P service group The fulfilment of a group service’s postconditions de-
termines its completion and induces the mechanisms to terminate a P2P service group.
This involves (i) the notification of all group members to stop service execution—usually,
initiated by the group’s leader; (ii) the releasing of local resources and the possibly dele-
tion of no longer necessary local service code components. In addition, (iii) the service
group’s advertisement is removed.

As already said, joining a P2P service group might require to equip a new member with
certain software services. The next section describes a method to enable decentralised dynamic
code loading of service functions.

6.3.2 Decentralised Dynamic Code Loading of Service Functions

This section introduces the mechanisms [99, 101] to implement the dynamic code loading
service of Section 4.4.2. The aim is to enable peers joining a P2P service group to dynamically
load locally not available but required service functionality.
Section 4.4.2 already identified the major elements of the approach: it identifies three basic

components for dynamic decentralised loading of code: (i) a dynamic loader to provide an in-
terface for a service application for requesting locally unavailable functionality. This dynamic
loader component is able to discover, to select, and to integrate an appropriate implementation
into the address space of the requesting peer. (ii) Thereby, the searching process is supported
by a P2P-based decentralised code storage that administrates information about available code
implementations. (iii) The code storage itself is updated by multiple code providers ; for in-
stance, peers that provide certain service code and publish metadata descriptions specifying
requirements and properties. As every functionality might be available in various implementa-
tions with different requirements and properties, a generic and decentralised selection process
is responsible for identifying the best-fitting one for a certain environment.
Following the presented approach in Section 4.4.2, this section shows how code advertise-

ments can be used to implement the pursuit of generic service code classification. Then, the
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three major components of the decentralised dynamic code loading architecture are presented:
first, the implementation of the decentralised code storage is indicated. Then, the implemen-
tation of a code provider is presented. Finally, the implementation of the dynamic loader is
shown.

Code Advertisements

To enable loading and integrating of new services and to allow their structuring, the system
uses a generic service module framework. These modules are managed by the system and
represent distributable units of functionality that can be initialised, started, and stopped by
a peer.
For efficiently discovering such modules, the definition of a module is divided into three

types of advertisements [99, 101]: an advertisement itself is a data resource containing a set
of key–value pairs to represent some service-code metadata. As the system shall be both
language-neutral and platform-neutral, a module implementation advertisement enables the
differentiation of multiple module implementations; for instance, a module could be imple-
mented in Java or C++. In addition, such advertisement specifies implementation-specific
details as the actual code location. For handling different versions of a module, module specifi-
cation advertisements are used—which reference corresponding module implementation adver-
tisements accordingly. In addition, a module class advertisement announces the pure existence
of a unique module class. This provides an abstraction for referring to a module that provides
a particular class of functionality—independent from a certain specification or implementa-
tion. As multiple module specification advertisements can relate to a certain module class
advertisement, corresponding references are embedded into the module class advertisement.

Module Class
Advertisement

Module Specification
Advertisement

Module Implementation
Advertisement

Module Implementation
Advertisement

Module Implementation
Advertisement

Figure 6.6: Relationships of Module Advertisements

The presented advertisements are designed to conform the specified requirements of Sec-
tion 4.4.2. Figure 6.6 [101] illustrates required advertisement types and their relations.
From a more technical point of view, a module class advertisement represents the imple-

mentation interface of a service module. Such advertisement contains a name field to specify
the fully-qualified name of the described functionality’s most-derived interface. In addition,
it contains a description field to represent the interface description. For example, the Web
Services Description Language (WSDL) may be used as a model for describing service mod-
ules. The name field of a class advertisement may be indexed in the DHT layer of the system
network to enable key–value based searching of an interface by its name.
A module specification advertisement is mapped to an extended functional description con-

sidering non-functional properties as well, for instance, versioning of code. Such advertisement
contains a protocol specification field as a functional property that declares if and how a
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certain function is network-dependent. Additional functional and non-functional requirements
are encoded into a description field. For example, if the specified functionality is already
offered by a group service, there may be embedded some contact information for addressing
this service instance, as a P2P service group address ; otherwise such field is left open.

<?xml version=”1.0” encoding=”UTF−8”?>
<compatibility>

<language name=”java” format=”bytecode”>
<version value=”1.6” />

</language>
<mach name=”x86” byteorder=”little” address=”32”>

<processors value=”2” />
<processoridentifier value=”x86 Family 15 Model 4 Stepping 3, GenuineIntel” />

</mach>
<os name=”Linux”>

<version value=”2.6.27.5” />
</os>

</compatibility>

Figure 6.7: Example of a Compatibility Description

Finally, a module implementation advertisement reflects different standardised compatibility
requirements [100]; for example, system parameters as the used run-time environment. These
requirements are stored in the comp field of such advertisements. In addition to previous
work [100], the system adds platform-dependent interfaces to the compatibility requirements
to support different hardware environments. This explicitly allows specifying an integration
of certain functionality at platform level. Figure 6.7 depicts an extract of an example of such
compatibility description using XML notation. Further, such advertisements contain a puri
field to support extended facilities to reference and to transfer an actual code archive from
an arbitrary code provider. Therefore, a module specification advertisement is embedded in
the puri element enabling the specification of necessary functionality to communicate with a
certain code provider. This enables the flexible integration of arbitrary services for the dynamic
code transfer as there may exist no predetermined transfer protocol. A requesting peer is able
to dynamically fetch a code transfer service over the P2P network. For instantiating the
service, the main class is specified within an advertisement’s code element. For example, such
code transfer handler should be offered via the support of a HTTP-based code transfer. Thus,
in general at most one level of indirection is assumed.

Decentralised Code Storage

Section 6.1 introduced P2P service groups as a mechanism for grouping peers with similar
interest. Considering the hybrid overlay of the system, two methods are possible for imple-
menting the decentralised code storage component: (i) to use a dedicated P2P service group
as well-known (code peer group) for publishing and discovering implementations [99, 101]; or
(ii) to use the underlying DHT layer. In the latter case, the DhtFlex approach of Section 5.1
may be used to support atomic data management of published resources. In both cases, a
code provider, which is described in the following section, publishes advertisements related to
offered service implementations within the employed method.
Considering the case of a dedicated code peer group, corresponding module specification ad-

vertisements usually would address a certain P2P service group. The consequence is that
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such group is also used as the group to contact already executing group services. If this is not
feasible, the dependent module specification advertisements have to be discovered, modified
by providing a group-specific contact-address information, and finally republished in scope of
the affected code peer group. Then, during the lookup process, the dynamic loader compo-
nent knows the peer group of the requesting service application and selects an appropriate
advertisement. Both approaches can be, however, executed concurrently.

Code Provider

A code provider service represents the component to enable code sharing and transfer via the
P2P network [99, 101].
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Figure 6.8: Code Sharing Process

Before publishing an implementation and its dependent code archive, associated adver-
tisements have to be generated, if not already available. Thus, a local CodeShareService
object offers the core functionality to publish and to share implementations. Thereby, a code
archive—together with the three advertisements—is passed to the CodeShareService via its
shareFile() method. Then, the service contacts two other objects as shown in the UML
sequence chart of Figure 6.8 [101]. First, the CodeShareService adds its contact-address
information for code transfer to the module specification advertisement—as it wants to act as
code provider; then, it passes the archive to the CodeBase object. This object administrates
the locally offered code archives. Subsequently, an instance of the autonomously working class
CodeServer is created, which provides a multi-threaded server that is responsible for the ac-
tual file transfer, for example, via a HTTP-based protocol. In the last step, advertisements
are published to the corresponding decentralised code storage using a DiscoveryService. This
service encapsulates the method to actually access the used decentralised code storage.
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Dynamic Loader

The dynamic loader builds the core of the code-loading architecture. Figure 6.9 [101] illus-
trates the collaboration between its important objects. The CodeHandler object is the central
entity during the whole dynamic loading process. It is responsible for coordination and finally
initiates the code transfer.
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Figure 6.9: Collaboration of Major Dynamic Loader Components

The dynamic loader expects only a module class ID to determine the basic interface and
additionally the information of a module specification advertisement to determine appropri-
ate service functionality. For instance, the module class ID can be determined by a service
application using the fully-qualified name of the most derived interface of the required func-
tionality. (1) The method getCode() of the CodeHandler enables searching for a certain
module specification advertisement. Therefore, it allows key identifiers as a module class ID,
name, version or a generic description within the desc element. The latter is achieved by
passing an object that implements a DescriptionChecker interface that is able to perform
a validity test for the concrete use case. (2) Assuming a code peer group, the dynamic loader
uses the module class ID for discovering corresponding module specification advertisements
within the group for selecting a specific implementation code instance. (3) Based on the mod-
ule specification advertisement and the generic DescriptionChecker object, the discovered
specification advertisements can be filtered for a suitable one. Here, it might be necessary
to start multiple requests if no suited specification advertisement is available yet. (4) Based
on the extracted module specification ID, a search for corresponding module implementation
advertisements can start. (5) The dynamic loader compares received module implementa-
tion advertisements to requirements of the local execution environment: an advertisement
is chosen by using an object that implements a CompatibilityChecker interface, which is
able to validate the suitability for the current execution environment. (6) If a suited module
implementation advertisement is found, the CodeHandler object is able to initiate the code
transfer, if an appropriate transfer handler is locally available;—otherwise, a suited transfer
handler has to be fetched recursively. (7) This operation is transparently processed by the
CodeTransferHandler. Thereby, the CodeTransferHandler encapsulates the whole transfer
process by offering a method getFile() that only takes a module implementation advertise-
ment as parameter. If the code transfer to specific provider fails, another code provider could
be chosen, if available. For example, a code transfer service supporting file transfer using
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HTTP is realised within the implementation. (8) If the code transfer succeeded, the code can
be offered by the requesting peer for supporting the scaling of the whole system. In addition,
persistent caching of the code avoids further remote transfers of identical code resulting from
future requests. (9) As a last step, an object-specific factory is used to dynamically integrate
the fetched service code bundle into the running system.

As kind of a delimitation, even though the presented system supports the precise selection of
platform-specific code, it is currently assumed that a concrete service implementation is more
or less self-contained. This means, that either necessary libraries are deployed at the target
platform, as described by the compatibility requirements, or included in the dynamically
loaded code archive. A more sophisticated approach would require providing support for
implementations that reference other interfaces or implementations, that should be loaded
dynamically.

As well, security issues are beyond the scope of this work. Dynamic loading of code always
involves security considerations, and it is assumed that standard security mechanisms such as
code signing and a public-key infrastructure can be used for securing the taken approach.

The next section describes consensus-based group communication as a method to implement
the intra-group messaging of a P2P service group.

6.3.3 Consensus-Based Peer–to–Peer Group Communication

This section presents a reconfigurable totally-ordered P2P group communication method based
on distributed consensus algorithms [148, 149]: the approach uses a policy-based mechanism
for dynamical reconfiguration of the system at runtime without service interruption. For
instance, such reconfigurations may optimize the method for most efficient best-case operations
or for minimal delays in failure situations, or may select different failure models (refer to
Section 2.2.3) like the fail-stop model, the crash-recovery model, or the malicious model.
In addition, a reconfiguration process may adjust internal system parameters; for example,
time-out values for failure detection. As already indicated, the major parts of the method
concern (i) the group management, (ii) the consensus management, and (iii) the low-level
communication management.

Considering the internal group management, it is differentiated between external senders
and group members—as indicated in Section 6.2.1: the Group component of each group mem-
ber uses a Consensus component to basically pass all service requests—for example, messages
to be sent, or all kind of reconfiguration requests—as consensus proposals to it, directly. In
contrast, an external sender does not have a Consensus module. Instead, it forwards all of
its group requests as simple direct messages to a known group peer. Then, such group peer
propagates the request to the corresponding P2P group. In addition, another group policy
may influence the behaviour of an external sender. With the default send-to-one messaging
policy, such a peer sends its requests to only one of the group members; if available, a primary
or group leader is selected as recipient. For low-latency consensus algorithms which are based
on the idea of “consensus in one communication step” [37], however, all peers participating in
the consensus protocol need to know the initial value. Thus, the sender has to broadcast its
message to the whole group, which can be specified by a send-to-all policy. A third policy,
called send-to-one-retry-all, first tries to send the message to one group peer. Then, if message
reception is not acknowledged by the group within a specified time, the message is re-sent to
the whole group. This procedure may, for instance, be used with Castro’s BFT algorithm [46]
for tolerating malicious failures: this would be an optimistic approach that uses a minimal
number of messages in the good case—that is, the selected group peer does not behave faultily.
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If it is faulty, re-sending the message to all group members would ensure that it will eventually
be delivered to all.
Further, it should be able to change the size of the set of replicas dynamically at runtime.

This problem is referred to as group membership problem [61]. The literature does not explain
how this can be achieved, for example, using Multi-Paxos: these gaps are closed by this work.
Concerning consensus management, each fault-tolerant algorithm is usually tailored for

a selected fault set. However, this section presents a flexible protocol instance to support
adaptive behaviour: if certain failure situations are recognized, a suited consensus variant
may be selected dynamically at runtime. For example, the Paxos [113] algorithm provides a
very powerful way to implement a highly-available deterministic service by replicating it over
a system of non-malicious peers communicating through message passing. Replicas follow the
state-machine pattern (active replication) [166]; each correct replica computes every request
and returns the result to the corresponding client which selects the first returned result. By
using Paxos the mechanism is able to maintain replica consistency by ensuring total order
delivery of requests. It does so even during unstable periods of the system, for example, even
if messages are delayed or lost and peers fail and recover. During stable periods, Paxos rapidly
achieves progress. As pointed out by Lampson [117], however, Paxos is rather tricky and it is
difficult to factor out the abstractions that comprise the algorithm.
The next section introduces the method to achieve consensus-based total ordering. Then,

the generic component to enable Paxos-based consensus is presented. This is followed by the
description of several Paxos speed variants. After that, the dimensions of configurability of
P2P group communication are shown. Subsequently, a method is given to perform consistent
reconfigurations, and a method to handle outdated group members. Then, it is stated how
reconfigurations can be executed in the face of parallel consensus instances. A method to
enable garbage collection is sketched. Finally, it is discussed how dynamic membership changes
can be supported.

Consensus-Based Total Ordering

This section introduces the approach to use a fault-tolerant consensus algorithm instance to
define a total-order on all messages sent within a P2P service group. Basically, this implies
that each message to be delivered is subject to a consensus decision.
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Figure 6.10: Interface of the Consensus Component

The generic Consensus component supports executing multiple instances of a distributed
consensus algorithm; it has to implement the generic interface shown in Figure 6.10 [149]:
it is viewable to the Group component and usually transparent for a service application.
The propose() operation passes a proposal—for example, a collection of group messages or
reconfiguration requests—as input value to the concrete Consensus instance, and returns an
instance identifier tid. The getValue() method blocks until the next Consensus instance
finally decides and returns a corresponding tid and the decided proposal as reply value. The
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two additional methods are used for initialisation and clean shut-down of a consensus instance.
Considering semantic issues, the Consensus component is requested to eventually decide upon
the proposal as long as the initiating peer does not fail.

The Group component interacts with its Consensus component using the following basic
algorithm [149]:

1. The Group method send() queues the message msg and returns immediately.

2. A Group-internal thread passes any application service message to be sent—or group of
several messages, as explained in the following—as proposal to the Consensus compo-
nent.

3. Consensus assigns an instance number tid to the proposal, which is returned to the
Group component.

4. Group waits for a successful consensus decision for tid. If the decision value for tid does
not match the own proposal, the corresponding messages are re-proposed starting with
Step 2.

5. Messages are delivered to the Group component ordered by ascending tid values.

The assignment of tid numbers to proposals is subject to the consensus implementation.
The Consensus component may execute several instances in parallel to minimise the delay
between decisions. Using one consensus decision for each group message, however, can be a
bottleneck [149]. For this reason, messages to be sent may be collected during a configurable
period of time. One consensus proposal for all accumulated messages is then created in
Step 2. This may significantly reduce the overhead caused by the consensus algorithm; but,
it increases the message latency by the period of time in which the system waits to collect
messages. External senders, which do not dispose of an instance of the Consensus component,
use a different method for sending group messages. They forward all application requests as
simple direct messages to the core group. A core group member in turn propagates the message
to the group. Both a send-to-one and send-to-all strategy for interacting with the core group
is available—selected by a group policy. In fail-free executions, the send-to-one strategy is
generally assumed to be cheaper in terms of communication cost; it may however require a
message retransmission to the core group if the contacted peer fails. The send-to-all strategy
avoids this additional delay after peer failures.

Generic Paxos-Based Consensus

As the design of the consensus component is generic, the architecture of P2P-based group
communication can be used with any distributed consensus algorithms; this allows using the
most appropriate algorithm in terms of system model and performance characteristics. The
method itself implements several variants of the Paxos algorithm (refer to Section 2.2.4) that
differ in fault model and interaction pattern. This allows tailoring the system to application
service requirements and environment properties on a broad range. Several variants—for
instance, for a fail-stop model as well as for a crash-recovery model without stable storage—
are obtained from the modularisation approach by Boichat et al. [33]. The idea of Brasileiro
et al. [37] leads to a fast (low-latency) Paxos variant. A malicious fault model is supported by
Castro’s algorithm [46]. In addition, variants with less communication steps are possible [193].
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Regarding total-ordered group communication, multiple instances of a consensus are ne-
cessary—these are numbered by instance numbers18 consecutively. Thereby, each consensus
instance corresponds to deciding the delivery of one message or one batch of messages.
Multiple consensus attempts may be executed, however, for one consensus instance. Such

attempts are referred to as rounds19. A total order is established among all of these round
numbers. For example, the Paxos algorithm [113] ensures that a decision in round i is never
inconsistent with a previous decision of the same consensus instance in some older round j < i.
To recapitulate Section 2.2.4, Lamport’s classic Paxos algorithm assumes benign crash-

recovery faults and works in three phases. Each instance for a single decision may be considered
as a three-phase commit protocol, where the value to be committed is not yet known in the
first phase. Thus, Phase 1 merely collects information about values that may have potentially
been committed in previous rounds. Phase 2 sends a proposal to the group. This is either
the value learned in the first phase, or—if no such value exists—an externally provided value.
If sufficiently many group members acknowledge the reception of the proposal, it may be
committed in Phase 3.

P r o p o s e A C K A c c e p t A C K C o m m i t

p
1

p
2

p
3

p  i s  c o o r d i n a t o r

P h a s e  1 P h a s e  2 P h a s e  3

1

e x t e r n a l
s e n d e r

Figure 6.11: Generic Paxos Implementation

Typically, the first phase is only executed when starting a new consensus attempt (for ex-
ample, after a leader change). As shown in Section 2.2.4, after the first phase, this algorithm
requires three message delays for each consensus decision. Embedded in P2P group com-
munication, usually one additional message delay arises from the necessity to actually send
the proposal to the leader peer. Such a proposal may be sent either from a non-leader peer
participating in the consensus or from an external sender. The latter case is illustrated in
Figure 6.11 [149]—thereby, the set of peers {p1, p2, p3} represent a P2P service group.

Paxos Speed Variants

Figure 6.12 [149] shows the interaction patterns of two fast variants for the non-malicious
model. Phase 1 is identical in both cases. Considering Variant 1 [33], the acknowledgement
and the commit messages are combined by broadcasting the acknowledgement to all group
peers, which in turn may decide autonomously if sufficient acknowledgements are received.
This variant reduces latency at the cost of an increased number of messages to be sent.

18Unfortunately, authors that write about the Paxos algorithm tend to use different terminology. The term
instance number is consistent with De Prisco et al. [147]; they are called decrees in Lamport’s original
work [113]. In Castro’s algorithm [46], they correspond to sequence numbers.

19The term round number is again consistent with De Prisco et al. [147]. Lamport [113] calls it ballot ;
Castro [46] uses the term view.
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Figure 6.12: Speed Variants of the Generic Paxos Implementation

In Variant 2 the idea of one communication step consensus [37] is used: a proposal value
is initially not only sent to the group leader, but to all members, allowing all group peers to
have the same initial proposal value and to eliminate the accept messages of Phase 2. If suffi-
ciently many group peers send an acknowledgement for the same proposal, they may commit
immediately with only one communication step. If not—which may happen, for example, if
external senders propose several different values concurrently—a conflict is detected, and the
algorithm reverts to classic Paxos. This variant improves latency even further in optimistic
cases. However, conflicts caused by concurrent access lead to reduced performance.
All variants can be used both in a fail-stop and a crash-recovery model. In the fail-stop

model, only less than the majority of all group peers may fail. In contrast, in the crash-
recovery model, arbitrary many group peers may temporarily fail as long as sufficiently many
eventually recover and continue participating in the consensus protocol. However, recovery
requires essential state information to be recorded to stable storage. The implementation needs
to ensure, that a crash during write operations to stable storage does not result in inconsistent
state.20 For instance, such stable storage may be implemented using flash memory, single or
redundant hard disks—depending on available hardware and on the degree of tolerable physical
faults.
Paxos is extended to handle malicious peer failures by Castro’s BFT algorithm [46]. The

implementation, however, only supports the public-key based authentication. Castro’s variant

20For example, Phase 1 of the Paxos algorithm requires each group peer to send information about any proposal
value previously accepted by an acknowledgement—even if that acknowledgement precedes a crash-recovery
cycle; hence, prior to sending such acknowledgement, the received proposal needs to be written to some
kind of stable storage. Hence, if a peer should be able to recover from a fail by reconstructing the state
prior to crashing, it is required to persist its state before sending a message.
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without public-key cryptography in normal-case operation allows increasing the performance
for small numbers of participating peers. It is furthermore possible to reduce the latency for
malicious consensus to two communication steps [193].

Environmental Conditions

Paxos Low-capacity network availability, but no hardware
multicast available (e.g., WAN, mobile peers)

Paxos Speed Variant 1 High-speed network availability or availability of hard-
ware multicast (e.g., LAN with many peers)

Paxos Speed Variant 2 High-speed network availability and little concurrency
of proposals (e.g., LAN with only few peers)

Table 6.1: Comparison of Applicability of Paxos Variants

The presented variants of Paxos yield two dimensions of configurability [149]: fault model
and speed. The fault model is mainly subject to the service application’s requirements; dy-
namic reconfiguration is only necessary if the service application’s administrating entity ex-
plicitly requests a change. Different speed variants exist for all fault models. None of the
variants is optimal in all situations; for example, Table 6.1 [149] gives a rough comparison
for the discussed non-malicious variants: the optimal selection is primarily subject to net-
work properties and service-application interaction patterns. As these conditions may change
at run-time, a dynamic reconfiguration is necessary; such an reconfiguration may either be
triggered manually, or it can be performed automatically using predefined action rules.

Dimensions of Configurability

As already indicated, P2P group communication allows to configure all of its major compo-
nents in several dimensions:

• Group enables to configure access policy and delays for grouping messages in consensus
proposals.

• Consensus enables to configure used algorithms (subsumes fault models and speed vari-
ants), quorum models (for example, majority, weighted majority, or grid quorums),
number of parallel consensus instances, and timing parameters.

• Communication System enables to configure the low-level communication protocol (TCP,
TLS, SOAP, hardware multicast) and timing parameters.

The complete configuration of the group communication method is controlled by the Group
Policy. This policy is represented by a key–value map; for example, Table 6.2 [148] depicts
some typical entries.
All members of a group have the same policy—which is initially defined at group-creation

time. A joining peer is automatically informed about the currently valid policy.
However, it is necessary to distinguish between soft and hard reconfiguration requests. All

requests are passed to the group via the group’s total-order protocol. A change of a soft policy
may simply be applied to all internal components of the local group communication system
at some peer—as soon as the new policy is received. For example, such changes may affect
timing parameters of a failure detector. In contrast, a change of a hard policy needs additional
coordination to ensure a safe transition to the new configuration. One example for this case
is the complete replacement of the Consensus module.
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CommunicationSystem:Type hard TCP/IP

CommunicationSystem:Reconnect soft 60s

CommunicationSystem:Encryption hard no

CommunicationSystem:Multicast soft no

Consensus:Type hard Paxos

Consensus:Mode hard TransientStorage

Consensus:Timeout soft 10s

Consensus:ParallelInstances soft 5

Consensus:BatchDelay soft 100ms

Table 6.2: Sample Policy for Configuring Group Communication

A policy may further restrict acceptable operations by imposing limitations on valid policies,
for example, permitted senders. If an operation is not accepted, the Consensus component
will decide the rejection of that operation. More details of the policy-based reconfiguration
process are discussed later on.
First, the following sections explain how various policy elements can be reconfigured dy-

namically at runtime, and what support is therefore needed in the implementations of the
Group component and the Consensus component.

Performing Consistent Reconfiguration

All reconfigurations need to be performed consistently by the whole group. For this purpose,
each reconfiguration is sent to the group as consensus proposal [149]. The consensus decision
does not only define the new policy to be adopted by the group, but also determines exactly
at which instance number such change is to be made.
Some policy parameters which were classified as soft may be changed fully asynchronously

in the system; in these cases, no consistency problem arises if two group members temporarily
use inconsistent values. This applies, for example, to most timing parameters. Such changes
are transparent to the service application and may be simply passed to all system components
as soon as the group decides upon the change. The only run-time cost is the execution of
one consensus instance to decide for the new policy. In contrast, all other reconfigurations
are strictly synchronized by consensus instance identifiers (tids). A reconfiguration decision
is assigned to an activation tid t. All operations belonging to instances less than t use the
old configuration; all operations belonging to instance t and higher use the new configuration.
This avoids inconsistent reconfigurations that, for example, change the consensus algorithm
while the consensus decision for some tid t is being executed.

Handling Outdated Peers

Due to the asynchrony of the system model and the ability to tolerate faults—that is, to
decide the order of message delivery without the participation of all group peers—some group
members might already have finished executing the consensus instance i—and maybe even
subsequent instances i′ > i—while others have not. This is a particular problem for reconfigu-
rations like exchanging the consensus instance. But delaying the reconfiguration until all group
peers have finished the concerned consensus instances is not a viable option, as this would
severely hinder reconfiguration if just one group member is unavailable. Thus, a mechanism
is needed to allow outdated peers to catch up with leading group members.
Two solutions are possible: (i) either old consensus instances have to be kept active until

all group peers know the decision value, or (ii) successful decision results have to be managed
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by a component that is always available in the system. In this case, the second option is used,
as it simplifies internal management and usually consumes less resources. Thus, as soon as
consensus is reached in one instance, the result is managed by the Group component, and the
consensus instance may be discarded. Now, if a group member lacks the decision result of a
certain instance number and the corresponding consensus instance is no longer available, the
Group component can directly respond with an update message containing the final decision
result. Furthermore, the Group component may contain a garbage collection mechanism:
decision results may be kept in a log only until each group peer either has acknowledged the
reception of that decision or has crashed permanently. Further garbage collection strategies
are indicated in the following.

Reconfigurations and Parallel Instances

The usage of consensus to implement group communication involves the processing of a se-
quence of consensus instances; thereby, each instance is uniquely labelled by a successive
instance number. As the instances are usually independent from one another, they may be
executed in parallel [149]. As benefit, such parallelism can lead to a reduced delay between suc-
cessive decisions. Furthermore, it enables to batch low-level communication messages together;
for instance, an accept message of one consensus instance can be transmitted in combination
with a commit message of the previous instance.
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Figure 6.13: Parallel Execution of Consensus Instances

However, dynamic reconfiguration issues imply some restrictions considering parallelism.
As an illustration, a consensus instance t+ i, with i > 0, may start to execute before instance
t is finally decided. The consistent reconfiguration process assumes that an activation tid k
can be assigned to a reconfiguration before the execution of tid k starts. Inconsistencies arise
if a decision of tid t is able to modify the configuration of an instance k = t + i after tid k
has started. This makes it necessary to limit the number of parallel instances and to schedule
reconfigurations sufficiently far in the future: a reconfiguration that is decided at instance t is
scheduled for being activated starting with tid t+N—were N is defined by the group policy.
Accordingly, the consensus instances from t to t+N − 1 may all be executed in parallel. But
instance t+N is delayed until tid t is finally decided. Figure 6.13 [149] illustrates this strategy
for N = 5. However, a drawback of this strategy is that a reconfiguration may be delayed
for N consensus execution. To avoid such potentially long delay of a reconfiguration, if no
application service messages to be sent are available, a sequence of N − 1 special no-operation
(NOOP) proposals can be proposed for consensus after deciding tid t [149].21

Thus, in order to perform a clean, hard reconfiguration change at a determined instance
number k, the Group component waits for completion of all consensus instances less than k;
then, it initialises the new Consensus component implementation, transfers all relevant state
information of the old implementation, and finally activates the new component.

21Lamport [113] also indicated this sort of strategy, briefly.
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Garbage Collection

As soon as a reconfiguration with activation tid t is decided, consensus instances with old
and new configuration, for example, Communication System or Consensus instantiation, will
usually operate in parallel. Even if a group member has locally decided all instances less than
t, it may still not yet discard the old instances, because other peers may still be executing these
instances. Thus, some sort of clean-up operation may only happen, if all decisions less than t
have been made on all group peers. To implement such clean-up operation, a simple garbage
collection mechanism is introduced [149]: all group peers periodically send information to the
group about the highest tid, up to which they have all consensus instances finally decided.22

As soon as all group members confirm the decision of a tid t, all policies and component
instantiations that are not needed in instances newer than t will be cleaned up.

Without such garbage collection, the repeated execution of consensus algorithms will usu-
ally lead to an unbounded growing and consumption of memory and storage space, or rather
in unbounded recovery delays since a group peer may need to catch up with a long sequence
of changes. Here, the processed sequence of operations can be stored representing the current
data structures. Such data structures may be persisted at certain time by snapshots—avoiding
to keep the history of processed operations. For example, data structures in memory may be
serialized and persisted to stable storage. If a snapshot is triggered, it will truncate its log by
deleting log entries preceding the snapshot. But, such snapshots are not synchronized among
group peers—each peer may individually decide when to take a snapshot. Though this ap-
proach is briefly indicated in literature [114], additional complexity is put to the implementing
system as both data structures have to be maintained in consistent manner. A snapshot con-
tains the consensus instance number that corresponds to it and the group membership and
policy information at that time. Thereby, such snapshot process may be is split into different
phases: (i) the triggering of the snapshot; (ii) the processing of the snapshot—this might block
the execution of consensus processing, while the snapshot is taken; and (iii) the truncating of
the snapshot to snapshot-storage history. Here, the catch-up mechanism enables an outdated
group peer to request snapshots from other replicas even if some peer may fail. Thus, snapshot
information, for instance, about storage locations, might be exchanged between group peers.

Membership Changes

Group membership changes by join or leave operations may be considered as soft or as hard
reconfigurations:

• If treated as soft reconfiguration, it is essential that the Consensus implementation is
able to allow to change group members internally—for example, as supported by the
Paxos algorithm [149]. In this case, the reconfiguration is handled by the Consensus
component, and no actions by the Group component are necessary. In cases like this, a
soft reconfiguration strategy is to be preferred.

• If treated as hard reconfiguration, it is necessary to completely replace the affected
Consensus component with a new instance having the same type, but a different peer
group set. Not all algorithms, for example, Castro’s BFT algorithms [46], does support
changing group members internally but assume a static number of nodes.

22For example, this information can be sent infrequently using piggybacking on other group messages, which
minimises the overhead.
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Both variants are supported to obtain the best efficiency for hard reconfiguration steps,
without limiting possible implementations of the Consensus component.
The next section presents how the shown methods to implement a hybrid P2P overlay enable

construction of flexible content repository functions.

6.4 Flexible Content Repository Functions

This section illustrates how the hybrid architecture with its P2P service group approach can
be used to implement flexible content data functions, as designed in Section 4.2. Therefore,
Section 6.4.1 indicates an according content mapping. Then, Section 6.4.2 shows how the
functionality of the content repository layer can be implemented using a hybrid P2P overlay
at policy layer and persistent storage layer.

6.4.1 Content Mapping

Section 4.3 presented a generic concept to annotate items using item states and accordingly
to map these states to corresponding storage entities. It is task of a content repository’s
policy layer and persistent storage layer to support such mapping. This section shows how
this mapping can be done using P2P service groups within the hybrid overlay system. As
explained, such mapping is flexible to benefit the separation between metadata management
and data management—following the decomposition of an access manager, as explained in
Section 4.2.2. Thereby, the mapping enables to use the P2P service group layer to implement
a metadata manager for persistent workspace storage, and the DHT layer to implement a data
manager. In addition, the approach supports fine-grained data resource replication based on
some policy for both layers.
As already indicated, the P2P service group method enables to implement an indexing

group to administrate the metadata structures (index) of a workspace applying the concept
of replicated state machines. Accordingly, a corresponding manager of the policy layer is able
to use the configurability feature of the group communication system (refer Section 6.3.3) to
enforce policy requirements for an indexing group—for instance, to determine the amount of
replicas for a replicated workspace index, or the size of a property values’s replication group
in the structured overlay back-end (compare Section 5.1). To ensure robust execution of the
system functions in the case of peer failures, replication is used to allocate identical data
resources or data structures at different peers. Accordingly, policy information can be used
by an access manager at persistent storage level to process such resources.
The item bundle concept was presented to keep content mapping manageable—that is, to

define which data resources may be bundled together to be effectively administrated by the
hybrid system. Considering node resources and property resources—as depicted in Figure 4.5
of Section 4.3.1—the hybrid approach to support flexible content data functions recommends
the following scheme:

• The node resources and the property resources—representing the metadata information
of a workspace—are administrated as kind of local bundle unit by each replica of the
workspace’s corresponding indexing group.

• The actual property value, however, is usually stored as remote data value administrated
by the structured overlay back-end. Therefore, such value is referenced via a remote
storage location in a property resource. That is, the location links to the affected peer(s)
in the DHT layer.
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A peer of the DHT layer needs to provide a local key–value based persistent storage as data
structure to support data management. This structures represent the mapping of a remote
storage location to an actual data value.
A replica of an indexing group uses several additional local data structures—based on re-

verse indexes—to benefit mechanisms for persistent metadata management, as depicted in
Figure 6.14.
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Figure 6.14: Data Structures of an Indexing Peer

For example, each replica locally indexes a node resource by its id entry—as a node’s UUID
is sufficient to guarantee a unique addressing in workspace context; as each property’s name
is unique per node, the combination of the parent node’s id and the property’s name allows
a non-ambiguous indexing of each property resource.
Thus, the logical tree structure of a workspace can be locally represented according to the

administrated content items in metadata storage, which is replicated among the participating
indexing peers. To benefit a query-based lookup, an inverted index may be used to serve as a
short-cut between indexing information and item resources (see Figure 6.14). As illustration,
an inverted index can provide a basis to match a certain keyword to a set of relevant items. For
example, such data structure can benefit the implementation of full-text searching for certain
property values. These data structures need to be kept, however, consistently to reflect the
current logical tree structure. For example, as child nodes or properties of a node may change,
all affected entries of the inverted index would need to be updated.
Section 5.4.1 introduced several additional data resources to support versioning, observa-

tions, and locking. The generic content mapping enables to use these resources in the context
of an indexing group.
For instance, Figure 5.6 of Section 5.4.1 depicts data resources to deal with the versioning

requirements of Section 3.2.2. As all corresponding nodes in a repository may share the
same version history, a well-known indexing group may be used to administrate this data
structure. Consequently, a node resource may use a combination of a node’s UUID and the
well-known P2P service group identifier to address the version history resource in a non-
ambiguous way. The hybrid approach supposes that version resources and corresponding
version history resources are locally replicated by each affected indexing peer. These resources
are accordingly referenced by the resources of versionable nodes—for instance, such resources
may be administrated by different indexing groups. The actual versionable state of an item is
thereby represented by a version resource’s frozen item entry, but may be stored as separate
and immutable item resource using the structure overlay part of the system in a non-ambiguous
way. Here, the resource’s entry specifying a version resource location shall serve as a way
to transparently reference a corresponding resource. Each version history can address the
individual versions using the version root entry, which serves as kind of a node’s version
index.
Figure 5.7 of Section 5.4.1 states data resources to support observation and locking mech-

anisms. As observations are valid for a certain path or id, local data structures can be im-
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plemented by each replica to reflect a received observation request in a straightforward way.
For instance, the concept of database triggers may be applied on local representations of a
workspace’s logical tree of items. Considering locking, a lock resource is attached to a corres-
ponding node resource preventing unauthorized changes, for example.

Considering the support of shareable nodes, each shareable node shares its parents and child
items; therefore, each shareable node is represented as one data resource. Each parent may
simply reference such data resource within its child node entry.

In addition, the usage of dynamic code loading may enable a peer to be equipped of suited
service functions, for example, to process unknown item types.

6.4.2 Persistent Content Storage

Section 4.2.2 introduced a generic interface to support persistent storage access. The inter-
face supports the handing over of item states to choose actions according to annotated state
information. Accordingly, a persistent storage access manager uses such information to utilize
suited mechanisms based on the hybrid overlay. As already mentioned, the ability to decom-
pose the access manager is used to implement metadata management based on P2P service
groups and data management based on the structured overlay back-end.

The imposed functional requirements on the system interface essentially require to deal with
the storage of item resources to support operations like store, load, exist, delete, query, and
register some listener (see Table 4.1 of Section 4.2.2).

The hybrid system supports these operations for indexing groups using the message-based
interface of the P2P service group layer as depicted in Figure 6.4 of Section 6.2.3. In addition,
the DHT layer provides a basic put–get interface for key–value pairs.

Regarding the basic architecture of an indexing peer, at the bottom of its stack each replica
maintains a local copy of the replicated index data structures (see Section 6.2.2). On top, the
next layer represents the fault-tolerant replicated index. To establish such replicated index,
replicas communicate with each other using the concrete consensus protocol instance of the
P2P group communication system. A consensus instance is used to ensure consistency at
resource level; that is, the modifications at data resource level are propagated as proposal
values to establish a total-ordering of such operations—thus, these are exchanged between the
members of such P2P service group in consistent manner. The protocol instance ensures that
each replica’s local data structures consist of identical sequences of entries. The possibility
of using an indexing peer’s local data structures facilitates the task to implement metadata
management considering persistent storage operations.

If these operations need to be atomic, the consensus-based group communication system of
an indexing group is able to support this by submitting such operations as a single value.23 24

23The DhtFlex algorithm of Chapter 5 may be used to ensure consistency for the DHT layer; Section 5.4.2
explains such approach.

24As an indication, the bundling of operation may lead to the establishment of a transactional context.
Transactions are, however, out of the scope of this thesis. If operations are actually aggregated into a single
consensus proposal for execution they are represented by a list of sequential operations—each affecting a
certain item in the index. If decided, a replica needs to check consistency of all operations regarding their
effect on the local data structures. Thus, the individual operations in the list are sequentially processed
on these data structures. Two different operations in the list may affect, however, the same or different
entries in the data store. To improve performance, the order property of fault-tolerant state machines may
be relaxed (see Definition 1 of Section 2.2.5) for requests that commute [165]: two requests req1 and req2
commute considering the sequence of outputs and the final state of the state machine if executing req1
before req2 would have the same effect as executing req2 before req1. This approach may also be used to
apply parallel execution of consensus instances at group communication level (compare Section 6.3.3).
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Thereby, the approach supports a consistency model similar to the relaxed so called close-
to-open consistency model [95, 119], as explained in Section 5.4.2. The major benefits that
such approach provides, is that temporarily made modifications on local items need not to be
passed to the network, until the changing operation is done and write access is closed: hence,
once an item has been locally opened, no remote check with the network is necessary—until
it is closed.
The indexing group approach supports the close-to-open model by retrieving the latest item

resource via a retrieval operation—once the item should be locally opened; then, such item
resource is kept as a cached copy by the content repository layer until access is closed. All
succeeding requests to an item’s potential properties or child nodes can be satisfied using
information from the cached copy.
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Figure 6.15: Content Data Retrieval in Case of a Hybrid Overlay

Considering the reading or loading of an item, Figure 6.15 illustrates such retrieval process
using the hybrid architecture. (1) First, an access manager uses its local peer instance to pass
a query or path statement for one or multiple items to the corresponding indexing group25—
that is, to one member. If valid, this member promotes the request as consensus proposal
to the group’s communication system. Thus, the group is able to operate as control instance
regulating access policy; for example, to control which peer is allowed to pass a request.
(2) If the indexing peers eventually decide on the query statement, the contacted member
processes it against its local workspace structure and its local keyword–item mapping—always
respecting the total ordering of consensus decisions. The result of the processed query—that
is, the matching item resources—is returned to the requesting peer.26 (3) In case of property
resources being returned, they may contain links to data which is actually stored by some peers
in the DHT layer. Thus, such remote storage locations may be contacted. (4) The actual data
transfer is handled by the requesting peer and the corresponding storage peer(s) of the DHT
layer. It is worth mentioning, that only the last step involves transmitting of a larger data
message. The previous steps require only the exchange of smaller control messages. Thus,
the actual data transfer is decoupled.
If an item—at service application level—should be modified, a peer’s locally cached copy

is updated—at content repository level—to reflect the changes; hence, write efforts and cor-
responding changes are locally buffered by a session before stored to the network in order

25Such P2P service group is able to publish a group service advertisement in the DHT layer to announce its
responsibility for a certain workspace.

26To increase performance, the agreement property of fault-tolerant state machines may be relaxed (refer to
Definition 1 of Section 2.2.5) for read-only requests if fail-stop replicas are assumed [165]: as a read request
does not modify state variables just an arbitrary replica needs to be contacted.
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to minimize local write latencies. Finally, once item access is closed, all cached changes are
flushed to the hybrid network and tried to be committed. Considering the support of write
or store operations, valid type restrictions need to be respected. Usually, all actions that may
modify an item’s state are expected to load the according item resource, first. Then, the
item can be constructed and thus type consistency checks are enabled at content repository
level—at item state level.27 In general, a writer peer is assumed not to fail during its writing
process to complete corresponding actions.
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Figure 6.16: Content Data Storing in Case of a Hybrid Overlay

Figure 6.16 shows the inner process of an access manager, if an item should be stored.
(1) First, the item resources are constructed and passed to a member of the workspace’s
indexing group. Large property values are not transferred but kept at local storage.28 (2) The
indexing group tries to process the storage request. If successful, an acknowledgement is
returned.
As additional step, that is, if large property values are involved, for example, an access

manager may either store such values using a specified remote storage location, or it may
use DhtFlex—utilising the structured back-end as some kind of decoupled address space for
target-oriented lookup of data values; that is, the retrieval of such values is based on UUIDs
(metadata) rather than on concrete physical addresses.
Regarding the support of content repository functions, Section 3.2.3 explained the two

major operational scopes: shallow operational scope and deep operational scope. Both of
these scopes need to be followed. An indexing peer can use its local data structures, however,
to process shallow as well as deep operations.
For example, the support of a query operation and a locking operation requires to basically

rely on a replicas local workspace structure and local item mapping—always respecting the
established total-ordering among operation requests. In addition, DhtFlex may be used to
place shallow locks for data resources in the DHT layer (compare Section 5.4.2).
Accordingly, observations can be implemented by performing matching tests to react on

the adding, removing, and modifying of affected item resources. This supports basic eventing-

27However, without locking the writer needs to be aware of lost-update issues.
28It is task of the access manager to specify a suitable remote storage location concerning the DHT layer and
to apply policies, for example, demanding the replication of property values at DHT layer.
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notification mechanisms that allow the triggering of a notification if a suited node resource for
a certain path in the virtual tree of a workspace is stored. The subscriber of an observation
event may be known by every replica; however, only the contacted indexing peer may actually
inform the subscriber to prevent unnecessary network traffic. Of course, if that replica fails,
some kind of handover mechanism is needed.
The support of versioning is kind of straightforward, using an indexing group and the

explained load and store primitives.

6.5 Related Work

This section discusses selected related work considering the three major functions of P2P
service groups.

Lifecycle Management

Inspired by hierarchical routing in the Internet, Garcés et al. [77] proposed hierarchical DHTs
as overlay-routing architecture for P2P networks. Hierarchical DHTs organize peers in disjoint
groups. Each group maintains its own overlay network using its own intra-group lookup service.
In addition, a modified version of the Chord algorithm is used for inter-group communication—
defining a top-level overlay among the groups; each node in the top-level overlay is actually
a group of peers. Each group defines special members to participate in the top-level overlay
forwarding and receiving inter-group messages. Regarding the whole lookup process, lookup
messages are first routed to the destination group using the inter-group overlay; then, the
messages are routed to the destination peer using the applied intra-group overlay.
As already mentioned in Section 4.5, JXTA provides different protocols for P2P computing.

Each JXTA network consists of a set of peers, which syndicate to peer groups [181]. Peer groups
permit the segmentation of a JXTA overlay and usually provide a set of services. As centres
of interest, a peer group provides a way to control the propagation of communication traffic
in a JXTA network; in addition, it is possible to create private peer groups that are accessible
to trustworthy peers only. JXTA introduces the abstraction of pipes, that is, unidirectional,
asynchronous, unreliable, and virtual communication channels for intra-group communication:
the transmitting and the receiving peer of a message does not have to possess a direct physical
connection, nor does a pipe need to be bound to a special physical location. The endpoints
of a pipe are dynamically bound at runtime, even to different peers. JXTA introduces two
different kinds of pipes: a point-to-point pipe for unicast communication and a propagate pipe
for multicast communication.
However, the approaches lack the support of reconfigurability, which is a major charac-

teristic of P2P service groups. In addition, P2P service groups introduce a flexible group
communication method.

Decentralised Dynamic Code Loading of Service Functions

Considering decentralised dynamic code loading of service functionality, the implementation
uses existing concepts of the JXTA programming environment [83]; namely, the advertise-
ment29 concept to support dynamically selection and loading of code by metadata descriptions.
In more detail, JXTA enables the implementation of some decentralised module taxonomy

29In JXTA, the availability of any network resource, for instance, peers and services is represented through
advertisements—external programming-language-independent metadata structures, which are described by
XML documents. These are published within a certain peer group for a special lifetime. Such advertise-
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to support the discovery and loading of services. But, its introduced class advertisements
only announce the availability of a general category of functionality. This gives developers
an idea of a certain service module specification and supports the selection process at a very
high level—but for an automated module selection process at service application level, addi-
tional conventions have to be established. Therefore, the Java-based reference implementation
of JXTA makes the implicit assumptions that a module implementation provides a certain
interface for starting and stopping it; but this is neither specified by the JXTA protocol speci-
fication nor declared by advertisements. In addition, JXTA offers no support for determining
and specifying the interface of a service module offered to higher layers like an application.
This makes it hard to provide multiple implementations supporting the same protocol for the
same platform but providing different properties. Furthermore, JXTA’s introduced module
implementation advertisements should enable the providing of compatibility information but
are not standardised so far. This results in (JXTA) implementations specifying their own for-
mat and parameters, which prevents the use of service module implementations in the context
of different (JXTA) implementations. Altogether, the JXTA support for dynamic loading and
integration of services leads to platform-specific implementations and does not support dy-
namic loading of arbitrary code. However, the approach of this thesis extends these concepts
to provide a truly platform-independent support for the dynamic loading of platform-specific
code [101].

Previous work [100] introduced the Dynamic Loading Service (DLS) as a CORBA service
for dynamic code loading. Similarly to the illustrated loading service of this work, the DLS
permits to load remote code with consideration of the current run-time environment and other
requirements. However, the DLS follows the client-server paradigm and uses dedicated servers
to host the program code and to offer specific information about available code. In contrast,
the approach of this thesis is to implement a P2P-based architecture.

Another interesting system is Java Web Start [180]. This software deployment system uses
the Java Network Launching Protocol and describes the code and the requirements of a Java
application in a special XML format. This results in applications that can be installed over
a network via a special Java Web Start client—even system-dependent native libraries can
be selected and installed. However, (i) the used format is highly Java-specific, (ii) the system
aims at installing and updating software, and (iii) the investigated release lacks the support
for dependent resources and for locally executed compatibility tests.

The OSGi service platform [138] defines an open run-time environment, enabling dynamic
service integration. For the bundled representation of a service’s functionality, the concept
of an OSGi bundle is defined. A special characteristic of such a bundle is the possibility to
be dynamically added and removed from the host’s run-time environment. Compared to this
work, a bundle offers extended possibilities, in order to specify dependencies of other services.
However, the OSGi approach misses sophisticated mechanisms for describing, remotely dis-
covering, and selecting code portions as outlined in this work. Furthermore, OSGi primarily
targets at code loading and sharing for the Java programming language, whereas the approach
by this thesis is generic and can be applied to other programming languages as well.

P2Pcomp [73] is an OSGi-conform P2P framework targeting resource-weak mobile devices.
With the requirement to facilitate the development of distributed applications, P2Pcomp
uses a P2P approach for communication and the model of component-based programming for
reusing code. P2Pcomp uses theOSGi concept of a container, in order to administrate the life-
cycle of local components. For supporting a transparent communication between components

ments are equipped with a unique identifier of the entity they represent and optionally with additional
information, like human-readable names and descriptions.
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of different peers, the concept of a port is introduced, which permits the use of any mechanism
for communication between container instances. In contrast to this work’s approach, P2Pcomp
focuses on Java interfaces for describing services that are provided by certain components.
Gridkit [85] is an approach of a deep middleware for supporting future heterogeneous Grid

applications. Gridkit has the goal to establish an infrastructure for the generic integration
of different technologies, both on network level as well as on middleware level. Therefore,
a two-layered architecture is specified. The interaction framework enables an integration of
interaction paradigms as the remote procedure call in a plug-in kind of way. In contrast,
the underlying overlay framework permits a plug-in integration of virtual network layers, for
example, Chord. Thus, compared to this work, Gridkit addresses only a limited set of services
for dynamic deployment and focuses on communication, integrating P2P mechanisms at a
lower layer.
Paal et al. [141] propose a distributed code loading infrastructure based on multiple applica-

tion repositories that can be dynamically queried by a custom application loader. In contrast
to this thesis’s approach, such system offers fine-grained code loading based on class collec-
tions, which are represented by class subsets of a Java archive. However, the system is limited
to the Java programming language and application repositories have to be preconfigured at
initial deployment time for enabling code loading.
Parker and Clearly [142] describe a P2P-based architecture for remote loading of Java

classes. The approach shows an alternative way to the standard Java class loader mecha-
nism and is exemplarily implemented using JXTA [172]. Compared to the solution of this
work, it lacks flexibility to describe and to search for suitable service code. Thus, the archi-
tecture neither permits a representation of loadable code with the JXTA concepts of module
advertisements nor it offers support for a custom transfer protocol.

Consensus-Based Peer–to–Peer Group Communication

Regarding consensus-based P2P group communication, current systems usually do not focus
on issues of flexible fault-tolerance at P2P group-communication level. If run-time adoption is
supported at all, it is typically limited to changing group memberships or to dynamically ad-
justing timing parameters of failure detector modules, in some cases. Often, the focus is rather
on the provision of various communication semantics. Some work exists, however, on config-
urability at the level of distributed consensus algorithms and the generalization of consensus
for offering configurable variants with a generic interface. The General Agreement Framework
(GAF) [97] is based on the algorithm of Chandra and Toueg [49] and allows parametrisation at
instantiation time. GAF mainly enables to select predicates for considering nodes as crashed
or as alive, to judge proposed values as acceptable, and to allow early decisions. The Generic
Consensus Service (GCS) [89] of Guerraoui and Schiper aims at providing a reusable service
that allows solving various problems, including atomic commit, group membership, and group
communication. Some work exists that addresses the question of adoption at failure-detector
level. DisCusS [45], a distributed consensus service, is based on self-adapting failure detec-
tors, which allows for optimizing the performance of consensus by reducing false suspicions
of the failure detector. Bertier et al. [30] use autonomous system monitoring to dynamic-
ally adjust the frequency of periodic alive-messages and the timeout period of the failure
detector; corresponding measurements show that this would improve the QoS of a consensus
service. However, all these systems use a fixed crash-stop (or crash-recovery) model and, in
general, limit configuration to timing parameters and fault-detection predicates. In contrast,
this chapter presents a solution that addresses a broader scope of configurability including the
fault model and algorithmic variants for different optimization goals: it shows an encapsu-
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lated, generic consensus module to obtain total-order, which allows for many specializations
providing a basis for service-specific tailoring: these specializations include the classic Paxos
algorithm and variants for low latency, as well as for fail-stop, crash-recovery, and malicious
failure models. In addition, the proposed system provides the possibility for dynamic recon-
figuration at run-time, and handles reconfiguration not only at consensus level, but on a wider
scope, including group management and low-level communication.

In general, using distributed consensus algorithms for totally ordering group messages was
first proposed by Chandra and Toueg [49] and subsequently used by several existing systems.
For example, Rodrigues and Raynal [154] apply the Chandra and Toueg approach–which
assumes a fail-stop fault model–to the crash-recovery model. Mostefaoui and Raynal [128]
show an optimization that restricts the use of the consensus algorithm to situations where
asynchrony and crashes prevent nodes from obtaining a simple agreement on message order.
Usually, these systems assume one specific fault model and a single distributed consensus
algorithm. At group communication level, Ensemble [92] is a system that stresses modularity
and flexibility. In terms of configurability and efficiency in spite of modularisation, its goals
are similar to the approach presented in this chapter. Furthermore, Ensemble supports other
communication properties like causal ordering. JGroups [20] is a popular and efficient Java
implementation of a group communication system with similar properties. Aqua [150], which is
built upon Ensemble, provides communication resource management and supports adaptivity.
As one major difference, this chapter’s approach considers a malicious fault model for P2P
group communication. Furthermore, the presented P2P group communication focuses on a
total-order semantic, and studies variants within this semantics, as well as transparent and
efficient dynamic reconfiguration between these variants. In general, this chapter’s approach
specifically addresses reliable multicast with total message ordering semantics. In contrast to
other work, the emphasis lies on providing a broader scope of configurability in terms of fault
model, consensus algorithm, and algorithm-specific parameters: optimal QoS properties can
be obtained by service- and environment-specific tailoring. Furthermore, dynamic services are
served with an integrated support for flexible and transparent run-time reconfiguration.

6.6 Summary

This chapter introduced reconfigurable P2P service groups as a method to implement flexible
content repository functions in hybrid P2P overlays: that is, such groups represent some kind
of clusters in the structured overlay back-end.

The system context of P2P service groups and their major functions were described:

• Lifecycle management of P2P service groups provides methods to cope with all states
of their lifecycle process: (i) creation of a P2P service group, (ii) execution of a P2P
service group, (iii) reconfiguration of a P2P service group, and (iv) breakup of a P2P
service group.

• Decentralised dynamic code loading enables a service group member to dynamically
load locally not available but required service functionality. Thereby, the mechanisms
implement the concept for dynamic service integration of Section 4.4.2.

• A reconfigurable group communication component based on fault-tolerant consensus
algorithms enables a totally ordered intra-group messaging: (i) the component supports
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to be tailored to application-specific and environment-specific requirements.30 (ii) The
component efficiently enables dynamic (policy-based) runtime reconfiguration of all these
customising without service interruption or weakening of consistency guarantees—trans-
parent to the application level.

It was further shown how P2P service groups may enable the construction of flexible content
repository functions by giving (i) a suited content mapping, and (ii) a way to implement
persistent content storage; especially, how P2P service groups may be used as indexing peers
to consistently administrate replicated metadata of a repository’s workspace.
Finally, the P2P service group approach was discussed considering selected related work.

30The range of customising includes, for example, (i) the fault model (fail-stop, crash-recovery, and malicious),
(ii) algorithmic variants influencing performance, (iii) low-level communication, and (iv) timing properties.



7 Evaluation

This chapter evaluates the architecture and methods to enable flexible content management
in peer–to–peer (P2P) systems presented in this thesis. It is structured as follows:

First, Section 7.1 gives the methodology to evaluate (i) the architecture of Chapter 4 and
(ii) the methods of Chapter 5 and Chapter 6. Subsequently, Section 7.2 evaluates the P2P
content repository system architecture. Then, Section 7.3 evaluates the methods for flexible
content repository functions in structured P2P overlays. Next, Section 7.4 evaluates the
methods for flexible content repository functions in hybrid P2P overlays. Finally, Section 7.5
summarises this chapter.

7.1 Methodology

This section states the applied methodology for evaluation. First, Section 7.1.1 gives the
methodology for evaluating the P2P content repository system architecture. Then, Sec-
tion 7.1.2 shows the methodology for evaluating methods for flexible content repository func-
tions in P2P overlays.

7.1.1 Architecture Evaluation

The architecture of a software system represents the system’s structure(s) which reflect (i) soft-
ware components, for example, modules or subsystems, (ii) the components’ externally visible
properties, for example, provided services or resource usage, and (iii) their relationships [55].
However, a software architecture is more than just the result of a system’s technical require-
ments [25].

The evaluation of a software architecture shall indicate some kind of suitability [55]. How-
ever, an architecture is not inherently good or bad as it is usually fit for some stated pur-
pose [25]. The goals of the evaluation of the P2P content repository system architecture are
threefold:

1. The architecture shall be evaluated considering the architectural styles (or system pat-
terns) it uses. This shall facilitate its overall architectural classification.

2. The architecture shall be evaluated considering standardised quality attributes. This
shall facilitate its comparison (considering different solutions) and check whether appro-
priate architectural decisions have been made.

3. The architecture shall be evaluated considering the sample scenarios of Section 1.1. This
shall serve the validation of the presented architecture design.

The following three sections describe the applied strategies.
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Architectural Styles

Architectural styles can be used to describe architectural aspects of software quality [25]. An
architectural style represents the abstraction of a—usually ambiguous—class of architectures,
a set of design decisions that has already been made and can be reused; it is composed of key
features and rules for combining them to preserve architectural integrity. The applied strategy
to determine an architectural style considers [25]:

• The set of system components responsible for executing some function at runtime.

• The topology among the components indicating their relationships.

• A set of valid semantic constraints.

• The communication, coordination, or cooperation among the components.

Quality Attributes

A major issue in the development of software systems is achieving some kind of quality. Soft-
ware quality can be expressed by a combination of quality attributes, which are generally
divided in two categories:

1. Quality attributes that are observable at system runtime. That is, these attributes
express themselves in the system’s behaviour.

2. Quality attributes that are not observable at system runtime. That is, these attributes
express themselves in the system’s static structures.

Quality attributes at runtime are evaluated considering the methods for enabling P2P con-
tent repository functions in structured and hybrid P2P systems. The applied methodology is
explained in Section 7.1.2.
The evaluation of the P2P content repository system architecture uses a set of quality

attributes which are not observable via execution: Table 7.1 defines these quality attributes
by extending standardised definitions in [25, 55] with the new attribute of flexibility.

Quality Attribute Description

Flexibility The ease with which a system or component can be modified for
usage in applications or an environment other than those for which
it was specifically designed.

Modifiability The ability to make changes to the system quickly and cost-
effectively—as a function of the locality of any change.

Portability The ability of the system to run under different computing envi-
ronments: hardware, software, or a combination of the two.

Reusability The ability to reuse the system’s structure or some of its compo-
nents again in future applications.

Integrability The ability to make the separately developed components of the
system work correctly together.

Testability The ease with which software can be made to demonstrate its faults
through testing.

Table 7.1: Quality Attributes not Observable via Execution

Architectural choices affect quality attributes. One the one hand, these attributes provide
general goals for a system. On the other hand, the attributes by themselves, however, may
be too vague to enable a classification of the architecture’s suitability. Thus, the system
architecture is additionally reflected considering the introduced scenarios.
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Scenarios

Section 1.1 described sample scenarios of a P2P-based content repository. Recapitulating
the approach of Section 4.1.5, these may be used to validate the architecture design. This
approach shall enable to verify the system architecture considering the raised requirements at
(i) content level, (ii) content repository level, and (iii) P2P level.

7.1.2 Method Evaluation

Considering the evaluation of methods to enable content repository functions, the goal is to
analyse the suitability of their major parts concerning some criteria for persistent storage
management (which is crucial for the overall system, see Section 4.2.2): that is, to evalu-
ate (i) the DhtFlex algorithm of Chapter 5 and (ii) the P2P service groups of Chapter 6—
especially the group communication component—regarding selected non-functional properties
(see Section 1.2.2): (i) reliability, (ii) consistency, (iii) reconfigurability, (iv) scalability, and
(v) performance.1

The applied methodology for evaluation differentiates between theoretical evaluation and
practical evaluation.

Theoretical Evaluation According to Banks et al. [21], the behaviour of a system may be
studied by developing a corresponding model: theoretical evaluation is appropriate if
such model can be developed which is simple enough to be solved by mathematical (an-
alytical) methods—for example, using probability theory or computational complexity
theory.

However, real-word systems may be too complex to be completely modelled and math-
ematically solved.

Practical Evaluation Practical evaluation may complement, verify, or substitute theoretical
evaluation. The applied methodology differentiates between simulation experiments and
direct experiments. However, on a methodology level, there does not seem to exist a
common understanding regarding the requirements and the characteristic of experiments
with P2P systems [39].

For example, as part of this thesis, Overlay Weaver 2 was enhanced and used to conduct
experiments—facilitating comparability with other approaches, on the one hand. On
the other hand, such an experimental setup as the basis for evaluation enables to use
an implementation both for (large-scale) simulation experiments and for direct experi-
ments.3

Simulation Experiments Simulation means imitation of the operation of a real-world
system over time to analyse its behaviour. It is one of the most widely used and ac-
cepted methods for studying internal interactions of a complex system [21]. Discrete

1However, there naturally exist conflicts of interests between certain properties: for example, replication of
data resources increases reliability—but raises consistency issues.

2Overlay Weaver [168] is a basic toolkit to construct and simulate P2P protocols. Regarding evaluation of
peer communication, a simulation run may either use TCP or UDP to execute a protocol on a physical
network, or use discrete event messaging within a JVM abstracting the underlying network. The latter
models messaging between peers at overlay layer, rather than at (simulated) physical layer.

3Experiments shall be repeatable to assess the effect of changing property values or employed functions. The
toolkit supports using scenarios—defined in configuration files—to reproduce the same initial state of a
P2P overlay to be able to repeat simulation runs (that is, the same sequence of operations) and to ensure
reproduceable results. For example, this may include the assignment of an overlay’s key space or initial
peer contacts.
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event simulation is a form of simulation to observe the behaviour of an (approxi-
mated system) model [19]. The state of a model is described by model variables,
which determine the future behaviour: the triggering of discrete events change the
model state at discrete points in time—in contrast to continuous state changes.

Considering P2P-based methods, simulation experiments may enable the establish-
ment of some kind of global view, which is difficult to achieve in real-world as P2P
systems are assumed to be inherently distributed (and decentralised). Thus, sim-
ulation results may be used to estimate the measures of performance of a system,
for example.

However, both simulations and theoretical analysis may become too complex, or a
system’s behaviour cannot be described appropriately; for example, as the number
of parameters may exceed several dozens, it may be quite difficult to predict which
ones are more or less important.

Direct Experiments Simulation shall not be used if it is easier to execute direct ex-
periments (measurements) [21], that is, operating peers using physical network
connections rather than simulated network connections, for example. However,
considering a system composed of thousands of peers, a real-world deployment is
quite difficult to establish—due to the lack of such testbed. Therefore, large-scale
experiments are based on simulations in the context of this thesis.4

For example, Kshemkalyani and Singhal [109] propose the following complementing
approach to investigate performance using direct measurements:

1. Use complexity measures as appropriate metrics for describing the performance
of theoretical distributed algorithms.

2. Implement appropriate tools for the direct measuring of performance metrics.

7.2 Peer–to–Peer Content Repository System

Architecture

This section uses the methodology of Section 7.1.1 to evaluate the system architecture: first,
Section 7.2.1 analyses its architectural styles. Then, Section 7.2.2 discusses its quality at-
tributes. Finally, Section 7.2.3 reflects the introduced scenarios.

7.2.1 Architectural Styles

Bass et al. [25] introduce several styles to classify an architecture.
Applying the stated methodology of Section 7.1.1, the P2P content repository system is

designed using different styles (see Chapter 4): its architecture is hierarchically heterogeneous,
that is, if one style is decomposed, one of its components may be structured according to
another style—as illustrated in Figure 7.1. (1) Its data-centred style uses (2) a layered style for
its components. (3) In addition, certain components may be independent using communicating
processes. In the following, each identified style is briefly described:

1. With its content-repository central issue, the system architecture is data-centred : (i) the
system concentrates on the access and update of shared data; (ii) it offers a structural

4PlanetLab [145] may provide a global platform for deploying distributed services. However, it is the question
how achieved results are reproducible or representative of reality [155].
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Figure 7.1: Hierarchically Heterogeneous Style of the P2P Content Repository System Ar-
chitecture

solution to achieve the quality of data integrability. By the system’s support of read–
write access to storage and of observation of storage changes, it incorporates both a
passive and an active repository.

2. The system architecture is layered (see Figure 4.2 of Section 4.2.1): its components are
assigned to layers to control their interaction. These layers are (i) the content application
layer, (ii) the content repository layer, (iii) the policy layer, and (iv) the persistent storage
layer. As explained in Section 4.2.1, the practise of layer bridging may be used among
the content repository layer and the persistent storage layer. The layered architecture
benefits the qualities of modifiability and portability.

3. By supporting P2P communication, the system uses an independent component archi-
tecture, more precisely, it shows a communicating processes style. As described in Sec-
tion 4.2.1, the architecture contains a P2P policy manager and a P2P access manager.
For example, regarding a P2P access manager, the usage of message passing as interac-
tion mechanism among peers is sufficient; in addition, peers are loosely coupled, that is,
a peer is (to some degree) able to continue making progress independently of the state
of another peer.

7.2.2 Quality Attributes

This section evaluates the P2P content repository system architecture applying the quality
attributes that were defined in Section 7.1.1. These quality attributes cannot be discerned at
system runtime [25].

Flexibility The scenarios of Section 1.1 stated several application requirements at content
level : as described in Section 3.2.1, the system uses a generic content repository model to
support the flexible integration of different content types and relationships. In addition,
Section 4.3 introduced its generic concept for content mapping: this enables a uniform
access to content, even considering future employment of different storage devices or
different content distribution.

At content repository level, Section 3.2.2 defines a set of key abstractions or functional
components that compose a content repository. By its usage of the Content Repository
API for Java Technology (JCR) to identify them, the designed system aims to simplify
its adoption by different content-related applications.

As presented in Section 4.2.1, the layered architecture of the modular content repository
decomposition increases flexibility at policy layer and persistent storage layer. (i) At
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policy layer, the system enables applications to tailor employed storage access manager
to support different non-functional requirements; for example, the support of different
degrees of data replication or data consistency. (ii) At persistent storage layer, the
architecture supports integration of different storage systems. For example, it enables
integration of local or distributed systems. Accordingly, Section 5.4 and Section 6.4
illustrated the integration of different P2P systems.

Modifiability This quality attribute is probably most closely aligned to a system’s architec-
ture. As described in Section 4.2.1, the modular decomposition of the architecture lowers
the costs of changes by defining (i) functional components and (ii) functional responsi-
bilities of each component. Thereby, the dependence relationships between individual
functional building blocks are analysed in Section 3.3. However, at workspace scope of
the content repository layer, the persistent item state manager plays a central role and
needs special attention.

For example, at content repository layer, the support for a certain query language may
be implemented by modifying the query manager : if the new query language can be
mapped to the already supported query mechanism, such change does not affect access
managers at persistent storage layer.

At persistent storage layer, the modular design benefits modifiability, too. For example,
the modular design of the group communication system (see Section 6.2.2) enables the
integration of different consensus algorithms to change its capabilities5—as the support
of different failure models.

Portability The generic peer architecture—as explained in Section 4.4—defines a local host
abstraction to represent an abstract interface to a peer’s local hardware environment as
a set of software services: this kind of portability layer benefits the support of different
host hardware, that is, peer heterogeneity. A peer’s local service container which runs
on top of the host abstraction complements this approach.

For example, a peer’s local storage access service enables the integration of different
storage systems, as a Berkeley DB [8] or an in-memory buffer with persistent back-end
storage. This enables to port the system considering a certain object-size distribution.

In addition, the message-based approach to enable inter-peer communication supports
the integration of peers which operate different hardware, operating systems, or are
implemented using different programming languages.

Reusability Section 4.4.2 explained the system’s approach to define peer services as units of
reusable implementation code for dynamic deployment. Thereby, the approach assumes
that a concrete service implementation is more or less self-contained. In addition, each
implementation is committed to state a clean interface to improve its reusability.

For example, Chapter 5 introduced the DhtFlex algorithm as a generic service which
may be reused to provide atomic data management for different structured P2P over-

5The identification of structural similarities of the presented consensus algorithms (see Section 6.3.3) enabled
a generic implementation strategy for the consensus module of the group communication system. Usually,
applying such strategy is less error-prone and facilitates implementation efforts in comparison to imple-
menting each consensus variant from the scratch [148]. For example, the prototype defines an abstract
base class to represent general consensus logic, as the handling of coordinator changes. Integration of
specialisations was achieved by adding all code parts that are unique to either the fail-stop or the malicious
variant. In addition, support for stable storage or the fast variant only required minimal additional logic
in the implementation.
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lays. Chapter 6 presents reconfigurable P2P service groups which may be reused to
implement different data management functions, for instance, a replicated index, apply-
ing the replicated state machine pattern. Again, both chapters defined the architectures
of its methods with a special regard to clean interfaces of used components.

Integrability The P2P approach may increase integrability efforts as its distributed context
demands each hardware node to execute and to manage a dedicated piece of software
as part of the system. However, this obstacle may be reduced if interfaces are clearly
defined (if possible, standardised).

To isolate the complexity of each of the content repository’s building blocks, Section 3.2.2
clearly partitioned responsibilities. In addition, Section 3.3 analysed dependence rela-
tionships between individual functional building blocks. Considering the integration of
P2P-based methods to implement content repository functions, Section 4.2.2 defined the
interface of a persistent storage access manager.

For example, Section 5.4 illustrated how the DhtFlex algorithm may be used as a method
to implement content repository functions in structured P2P systems. Accordingly,
Section 6.4 showed how P2P service groups may be used as a method to implement
content repository functions in hybrid P2P systems.

Testability As shown in Section 4.2.1, the P2P content repository system architecture en-
forces separation of concerns. It defines several layers and components which may be
tested separately. However, several components depend on each other, as analysed in
Section 3.3; thus, they may need to be tested together.

For example, the methods for content repository functions in P2P systems—as presented
in Chapter 5 and Chapter 6—may be tested separately; that is, restricted to their
offered interfaces (see Section 5.2.2 and Section 6.2.2). Considering their integration to
the content repository system, the interface of a persistent storage access manager (see
Section 4.2.2) delimits their functional scope.

7.2.3 Scenarios

As part of this thesis, an implementation of the approach of a generic P2P content repository
(as described in Chapter 4) has been contributed to the ATHENA integrated project (IP) [1,
17]: this prototypical implementation has been successfully deployed in the ATHENA IP
eProcurement use case [18]—which is the basis of the scenario in Section 1.1.1—to show the
feasibility of the approach. Thereby, the use case was jointly set up by Siemens Corporate
Technology6, SAP Research7, IBM Research8, DFKI9, and SINTEF10; it integrates the P2P
content repository as an essential collaboration platform.

The following two sections evaluate the approach of this thesis regarding the scenarios of
Section 1.1.

6http://www.ct.siemens.com/
7http://www.sap.com/research/
8http://www.research.ibm.com/
9http://www.dfki.de/

10http://www.sintef.no/
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Cross-Enterprise Business Collaboration Scenario

In the following, the architecture is analysed regarding requirements at (i) content support,
(ii) content repository support, and (iii) P2P support.

Content The major building blocks of a content repository in the context of this thesis are
presented in Section 3.2. In interaction with its chosen content repository model (see
Section 3.2.1), the system provides a generic interface and enables business partners to
typify their content and define content relationships (for example, to benefit application
interoperability). The concept of generic content mapping (refer Section 4.3) and the
ability to decompose the persistent storage layer (compare Section 4.2.2) support busi-
ness partners to have private (local) and shared (remote) storage sections—applying the
workspace concept. That is, to commit only a document’s metadata to a P2P access
manager, for example. None the less, the retrieval of a concrete document—respecting
the metadata resource as additional step of indirection—may be transparent for a col-
laborator, if granted by the owner. A data resource may be equipped with an access
control list (ACL) to define several levels of collaboration. Each P2P workspace may be
created by a certain business partner being its initial owner: this allows the building of
separate collaboration units, for example.

Content Repository Section 5.4 described how flexible content repository functions may be
implemented in a structured P2P overlay. In addition, Section 6.4 showed how flexible
content repository functions can be implemented in a hybrid P2P overlay.

Peer–to–Peer The modular design of a peer’s architecture (Section 4.4) with its integrated
local host abstraction and its local service container enables dynamic integration of busi-
ness partners. For example, using dynamic service integration (Section 4.4.2) supports
to equip them with necessary service functionality at runtime.

Intra-Enterprise Knowledge Management Scenario

As in the previous section, the architecture is evaluated regarding requirements at (i) content
support, (ii) content repository support, and (iii) P2P support.

Content The item naming concept (refer Section 4.3.1) enables (i) mapping wiki pages to
the item concept, and (ii) different bundling of a page’s data resources (as illustrated
in Figure 7.2): for example, (small-sized) textual content may be attached to a wiki
page’s representing node resource as property resource, on the one hand. On the other
hand, different pages may share common (large-sized) multimedia contents, and different
transport protocols may be used to retrieve them on demand.

The repository model of Section 3.2.1 supports UUID-based addressing of wiki pages,
basic navigation is supported by the workspace tree. References support cross-linking to
other pages and symbolic linking for redirecting read requests. Tags may be modelled
by extra node types to allow the multiple classification of wiki pages.

Content Repository Section 5.4 described how flexible content repository functions may
be implemented in a structured P2P overlay: for example, DhtFlex enables to represent
a wiki page as mutable data resource, but to keep a single version of it as immutable
resource (compare Section 5.3.1). It shows how locking can be supported to prevent
undesirable update access.
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Figure 7.2: Mapping a Wiki Page to the Item Bundle Concept

In addition, Section 6.4 explained how flexible content repository functions can be imple-
mented in a hybrid P2P overlay. For example, indexing peers may enable change tracking
by supporting (deep) push-based notifications. As each indexing peer keeps a replica of
its corresponding workspace’s metadata, querying for content can be supported, too.

To indicate the feasibility of the involved methods, Section 7.3 and Section 7.4 analyse
their major parts considering different criteria.

Peer–to–Peer Both Chapter 5 and Chapter 6 presented methods to support self-organizing
of peers at persistent storage layer, for example, executing consistent movement of data
resources as a result of failures. In addition, Section 6.3.2 showed a method to enable a
dynamic integration of (heterogeneous) peers to the system.

7.3 Methods for Flexible Content Repository Functions

in Structured Peer–to–Peer Overlays

This section evaluates the major parts of the methods to enable flexible content repository
functions in structured P2P overlays, as described in Chapter 5: that is, DhtFlex. First,
Section 7.3.1 describes reliability. Then, Section 7.3.2 proofs consistency. Section 7.3.3 briefly
indicates reconfigurability. Next, Section 7.3.4 analyses scalability. Finally, Section 7.3.5
investigates performance properties.

7.3.1 Reliability

The DhtFlex algorithm ensures reliability using replication as redundancy scheme: that is,
a certain number of identical copies are stored at different peers. Its reliability analysis dif-
ferentiates between DhtFlex’s operations for (i) immutable and (ii) mutable data resources.
In both cases a resource’s replication factor ρ (see Section 5.3.1) influences its availability, as
described in the following—thus, the value of ρ should be set appropriately depending on the
demanded degree of availability.
The analysis assumes the worst case, that is, no reconfiguration actions occur intermedi-

ately.11 In addition, it is assumed that a peer’s availability is independent—that is, peers fail
independently—and that all peers show an identical (average) availability αpeer.

11In general, it can be supposed that successful reconfiguration actions increase availability.
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Immutable Data Resources Recapitulating Section 5.3, DhtFlex requires a single copy of
the ρ replicated (immutable) data resources to be available to progress successfully.
Thus, the probability Pfail—the failure of a data resource’s whole replication group—is
given by the following equation:

Pfail = P (all ρ replica peers fail) = P (one replica peer fails)
ρ = (1− αpeer)ρ (7.1)

A resource’s replication factor ρ can be adjusted depending on the desired availabil-

ity aim, as stated by the following formula: ρ =
log(Pfail)

log(1−αpeer)
. Figure 7.3 depicts the

probability Pfail to actually loose an immutable data resource—depending on different
values for αpeer and ρ: one observation is that comparatively small values for the size
of a replication group suffice to reduce the probability loosing a certain data resource
significantly—usually, reaching a certain limit, an additional increase of ρ does not sig-
nificantly reduce Pfail. Considering the scenarios, for example, if αpeer = 0.7 is assumed,
good availability may be achieved by using four replicas (Pfail < 0.01).
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Figure 7.3: Worst Case Probability an Immutable Data Resource is Lost

Mutable Data Resources As presented in Section 5.3, DhtFlex uses a (majority) quorum
mechanism to ensure consistency for operations on mutable data resources. That is,
DhtFlex can progress an operation for a certain resource successfully as long as at most⌈
ρ
2

− 1
⌉
peers of its replication group fail.12 However, as DhtFlex supports (i) crash-

recovery of failed replicas and (ii) recasting of replication groups reliability may addi-
tionally be increased.

12Note the difference between operation availability and data availability. For example, although DhtFlex
stops operation for a certain mutable resource because of too many replica peer crashes, there may still
exist a latest resource copy, which may be rescued by some administrator.



7.3 Methods for Flexible Content Repository Functions in Structured P2P Overlays 169

Section 7.4.1 evaluates the approach—of using a quorum mechanism to achieve benign
fault-tolerance—regarding the worst case probability that operations on a mutable data
resource are disabled.

Another method to achieve reliability (durability) of data is erasure coding.13 Weather-
spoon and Kubiatowicz [189] quantitatively compared systems based on complete replication
to systems based on erasure codes. They showed that the usage of erasure codes consuming
the same amount of storage and bandwidth increases availability significantly. But, erasure
coding introduces additional overhead to encode and decode data. In addition, each client in
an erasure-resilient system needs to send messages to a larger number of distinct servers than
in a replicated system. Thus, on the one hand, durability is increased. On the other hand,
performance (time overhead) may be changed for the worse, as multiple servers need to be
contacted to read a single fragment.
However, Section 8.2 indicates how DhtFlex may integrate erasure coding.

7.3.2 Consistency

The problem of ensuring safety and liveness for atomic operations occurs in the case where
mutable data resources are considered. Informally spoken, DhtFlex ensures for such data
resources that at least the latest consistently written value via a put operation is the one
returned by a following get operation. As an illustration, DhtFlex implements atomic put
and get operations by serializing all such requests through one master of a replication group
achieving total-ordering. Informally spoken, this is save, as a master is unique per replication
group composition and only one composition is valid at certain point of time by relying
on the used quorum concept. Further, the adoption of principles of the Paxos algorithm
(Section 2.2.4) for recast operations ensures a total-ordering of the configurations of a data
resource’s replication group and thus a total-ordering of replication groups’ masters and the
preservation of at least the latest consistently written resource value: that is, the valueid with
the highest corresponding seqNrid, for the succeeding configuration, respectively. The failure of
a master is compensated by the execution of a recast operation. As indicated in Section 5.3.2,
regarding the progress of a recast operation, DhtFlex may use some timer mechanism to force
a master of a potential new replication group composition to retry its effort with a higher
recastNrid.
The aim is to show that safety holds in even high churn environments. The only exception

applies for the case of an intermittent P2P overlay break-up, where initial put operations for
the same id may be propagated in different physically separated segments. For all normal,
not initial, put operations, even such partitioning of an already set up replication group
can be tolerated guaranteeing safety. Therefore, DhtFlex might (temporarily) block put and
get operations if the current valid replication group is affected in a way no quorum can be
achieved, but continues once the partitioning is over and the majority of peers in the affected
replication group configuration is again available. However, no overlay break-up is assumed
for the remainder of this section.14

For the remainder of this section, overlay lookup consistency for the operations is assumed;
that is, messages that trigger operations, or are issued by operations, must never be delivered

13Erasure codes divide a data object into m fragments and encode them into n fragments (m < n), such that
the original object can be recovered (decoded) from any m fragments.

14As indicated, DhtFlex may support a crash-recovery model. Therefore, it is able to tolerate the failure of
arbitrary many peers within the currently valid replication group configuration of a certain data resource
and to ensure the progress of put and get operations (liveness). At least, as long as sufficiently many
replicas eventually recover to form a quorum.
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to the wrong peer by the P2P overlay. For example, the neglecting of lookup consistency may
result in peers, which may by mistake process such operations delivering old data. Thus, a
peer that wants to retrieve a data resource for a certain id sends a suited request; the overlay
ensures that such request will always reach one of the peers of the resource’s replication group
as long as not all peers of the replication group have failed simultaneously. In addition, joining
peers are well integrated by triggering the recast operation.
In the following, it is shown that DhtFlex correctly implements an atomic object regarding

operations on mutable data resources thus guarantees atomic consistency. The proof considers
only a single replicated mutable data resource—for only one certain id. This is sufficient, as
the composition of atomic objects is also an atomic object [123].15

Lynch [123] introduced the following lemma, which can be used for showing atomicity:
that is, to satisfy the atomicity property for read–write objects, it considers a sequence β of
actions on operations of a read–write object’s external interface. The lemma basically states
four properties involving a partial order on the operations in β. That is, atomicity is shown if
an ordering exists, which satisfies these properties.

Lemma 1. Let β be a (finite) sequence of actions of a read–write atomic object’s external
interface. Suppose that β is well-formed and contains no incomplete operations. Let Π be the
set of all operations in β.
Suppose that ≺ is an irreflexive partial ordering of all the operations in Π, satisfying the

following properties:

1. For any operation π ∈ Π, there are only finitely many operations φ such that φ ≺ π.
That is, no operation in β has infinitely many other operations ordered before it.

2. If the response event for π precedes the invocation event for φ in β, than it cannot be
the case that φ ≺ π.

3. If π is a WRITE operation in Π and φ is any operation in Π, then either π ≺ φ or
φ ≺ π. That is, all WRITE operations are totally ordered and any READ operation is
ordered with respect to them.

4. The value returned by each READ operation is the value written by the last preceding
WRITE operation according to ≺ (or default value v0, if there is no such WRITE). That
is, the result of a READ is consistent with ≺.

Then β satisfies the atomicity property.

Theorem 2. The DhtFlex algorithm satisfies the atomicity property, that is, correctly imple-
ments an atomic read–write object for mutable data resources, if it ensures Lemma 1.

Let β be a (finite) sequence of put and get operations of the DhtFlex algorithm for a certain
mutable data resource. The execution of a put operation in DhtFlex (Algorithm 3) corresponds
to a WRITE in Lemma 1 and the execution of a get operation in DhtFlex (Algorithm 4)
corresponds to a READ in Lemma 1. A put operation is initiated by a PUT-REQ message,
distinguishing the case if it is an initial put (Algorithm 3, Line 1) or not (Algorithm 3, Line 25),
and returns with a PUT-RES message (Algorithm 3, Line 51). A get operation is initiated by a
GET-REQ message (Algorithm 4, Line 1) and returns with a GET-RES message (Algorithm 4,
Line 17).

15For example, Muthitacharoen et al. [130] sketched such approach.
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In the scope of the proof, it is assumed that every put and every get operations complete in
β. However, this assumption is sufficient according to a proven statement from Lynch [123],
given in the following lemma.

Lemma 3. Suppose that a combined system Σ guarantees well-formedness and failure-free
termination. In addition, suppose that every (finite) execution α of Σ containing no incom-
plete operations satisfies the atomicity property. The same is true for every executions of Σ,
including those with incomplete operations.

To show that DhtFlex provides atomic consistency, three steps are necessary:

1. The first step is to prove Theorem 5, that is, to show that the recast operations of DhtFlex
ensure a total order of replication group configurations—by following the round-based
consensus principle.

2. The second step is to prove Theorem 15, that is, to use the total order which is imposed
in step one to define a partial order on the put and get operations in β.

3. The last step is to prove Theorem 2 by verifying the defined partial order of step two
considering the properties required by Lemma 1.

Round-Based Consensus

The round-based consensus abstraction was introduced by Boichat et al. [33] to capture the
sub-protocol used in Paxos to ensure a total order, as illustrated in Section 2.2.4. It is repre-
sented by Lemma 4 and subsequently used to show that DhtFlex ensures a total order when
recasting a replication group configuration for an epoch replicasNr.

Lemma 4. The round-based consensus abstraction represents the sub-protocol used in Paxos
to agree on a total order. This consensus notion corresponds to a single instance of total order,
that is, one batch of messages. To differentiate between consensus instances these are indexed
with a number ∈ N0. The consensus notion is presented in the form of a shared object with
one operation propose(k, v), where k ∈ N0 represents a round number and v is an initial value
in a domain V (proposition for the consensus). The operation propose() returns a status
∈ {commit, abort} and a value in V.16

Round-based consensus has the following three properties:

• Validity: If a peer decides a value v, then v was proposed by some peer.

• Agreement: No two peers decide differently.

• Termination: If a propose(k, �) aborts, then some operation propose(k′, �) was invoked
with k′ ≥ k; if propose(k, �) commits, then no operation propose(k′, �) can subsequently
commit with round k′ ≤ k.

Theorem 5. The DhtFlex algorithm ensures a total order of replication group configurations,
that is, implements a wait-free round-based consensus (Algorithm 2) if it ensures Lemma 4.

16Thus peer pi proposes a value initi for round k when pi invokes function propose(k, initi). If pi decides v
in round k (or commits round k), pi returns from the function propose(k, initi) with commit and v. If the
invocation of propose(k, v) returns abort at pi, pi aborts round k.



172 Evaluation

If the three properties of Lemma 4 are satisfied by DhtFlex, it achieves a total-order of its
recast operations (Algorithm 2). The basic idea of the algorithm is the following. For a peer
pi to propose a value (new replication group configuration replicas��) for a round k (recastNr)
within a certain replication group epoch replicasNr, pi first tries to pass the first phase and
issues a RECAST message for recastNr ; if it is successful, pi tries to pass the second phase and
issues a RECAST-PROCEED message communicating either its initial proposal replicas�� or
an old proposal—if already existing; if pi is again successful, the recast process commits and
the result can be propagated (Algorithm 2, Line 45).

However, in order to get to the proof of the three properties some preliminary work needs
to be done.

Lemma 6. If the first phase of a recast process issued by a [RECAST, id, replicasNr, recastNr]
message fails for some recastNr, then some [RECAST, id, replicasNr, recastNr′] message or
[RECAST-PROCEED, id, replicasNr, recastNr′, ∗, ∗] message was issued with recastNr′ ≥
recastNr.

Proof Assume that some peer pj issues a [RECAST, id, replicasNr, recastNr] that fails. By
(Algorithm 2), this can only happen if some peer pi has a value
recastNrα

id ≥ recastNr ∨ recastNrβ
id ≥ recastNr (Line 14), which means that some peer has is-

sued a [RECAST, id, replicasNr, recastNr′] or [RECAST-PROCEED, id, replicasNr, recastNr′,
∗, ∗] with recastNr ′ ≥ recastNr.

Lemma 7. If the second phase of a recast process issued by a message [RECAST-PROCEED,
id, replicasNr, recastNr, ∗, ∗] fails for some recastNr, then some message [RECAST, id,
replicasNr, recastNr′] or message [RECAST-PROCEED, id, replicasNr, recastNr′, ∗, ∗] was
issued with recastNr′ > recastNr.

Proof Assume that some peer pj issues a message [RECAST-PROCEED, id, replicasNr,
recastNr, ∗, ∗] that fails. By (Algorithm 2), this can only happen if some peer pi has a
value recastNrα

id > recastNr ∨ recastNrβ
id ≥ recastNr (Line 29), which means that some peer

has issued a [RECAST, id, replicasNr, recastNr′] or [RECAST-PROCEED, id, replicasNr,
recastNr′, ∗, ∗] with recastNr ′ > recastNr.

Lemma 8. If the first phase of a recast process issued by a message [RECAST, id, replicasNr,
recastNr] or the second phase issued by a message [RECAST-PROCEED, id, replicasNr, re-
castNr, ∗, ∗] is successful, then no subsequent message [RECAST, id, replicasNr, recastNr′]
can be successful with recastNr′ ≤ recastNr and no subsequent message [RECAST-PROCEED,
id, replicasNr, recastNr′′, ∗, ∗] can be successful with recastNr′′ < recastNr.

Proof Let peer pi be any peer that successfully passes the first phase (respectively the second
phase). This means that a quorum of the replica peers has accepted a message [RECAST, id,
replicasNr, recastNr] (respectively a message [RECAST-PROCEED, id, replicasNr, recastNr,
∗, ∗]). For a peer pj to successfully pass the first phase for a message [RECAST, id, replicasNr,
recastNr′] with recastNr ′ ≤ recastNr (respectively for a messsage [RECAST-PROCEED, id,
replicasNr, recastNr′′, ∗, ∗] with recastNr ′′ < recastNr), a quorum of the replicas must ac-
cept [RECAST, id, replicasNr, recastNr′] (respectively [RECAST-PROCEED, id, replicasNr,
recastNr′′, ∗, ∗]). Thus, at least one peer must accept [RECAST, id, replicasNr, recastNr]
(respectively [RECAST-PROCEED, id, replicasNr, recastNr, ∗, ∗]) and then a [RECAST, id,
replicasNr, recastNr′] message with recastNr ′ ≤ recastNr ([RECAST-PROCEED, id, repli-
casNr, recastNr′′, ∗, ∗] with recastNr ′′ < recastNr), which is impossible by Algorithm 2: a
contradiction.
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Lemma 9. If the first phase of a recast process issued by a [RECAST, id, replicasNr, recastNr]
is successfully and recastReplicas �= ⊥ (Algorithm 2, Line 23), then some message [RECAST-
PROCEED, id, replicasNr, recastNr′, ∗, ∗] was issued with recastNr′ < recastNr.

Proof By Algorithm 2, if some peer pj passes phase one successfully for a [RECAST, id,
replicasNr, recastNr] with recastReplicas �= ⊥, then (i) some peer pi must have sent to pj
a message [RECAST-ACK, id, replicasNr, recastNr, recastNrβ, recastReplicas] and (ii) some
peer pk must have issued a message [RECAST-PROCEED, id, replicasNr, recastNr

′, replicas��,
∗] with recastNr′ < recastNr. Otherwise pi would have sent to pj a NACK message or
[RECAST-ACK, id, replicasNr, recastNr, -1, ⊥]

Lemma 10. If the second phase of a recast process issued by a message [RECAST-PROCEED,
id, replicasNr, recastNr, replicas, ∗] is successful and no subsequent message [RECAST-
PROCEED, id, replicasNr, recastNr′, replicas′, ∗] is issued with recastNr′ > recastNr and
replicas′ �= replicas, then any first phase issued by a message [RECAST, id, replicasNr,
recastNr′′] that is successful, sets replicas�� to replicas accordingly, if recastNr′′ > recastNr.

Proof Assume that some peer pi passes the second phase successfully with message [RECAST-
PROCEED, id, replicasNr, recastNr, replicas, ∗], and assume that no subsequent [RECAST-
PROCEED, id, replicasNr, recastNr′, replicas′, ∗] has been issued with recastNr′ > recastNr
and replicas′ �= replicas, and that for some recastNr′′ > recastNr some peer pj successfully
passes the first phase with a message [RECAST, id, replicasNr, recastNr′′] and receives a value
replicas′. Assume by contradiction that replicas′ �= replicas. Since the first phase is success-
fully passed with message [RECAST, id, replicasNr, recastNr′′] and delivers value replicas′,
by Lemma 9, some message [RECAST-PROCEED, id, replicasNr, recastNr′, replicas′, ∗] was
invoked before round recastNr′′. However, this is impossible since it is assumed that no
[RECAST-PROCEED, id, replicasNr, recastNr′, replicas′, ∗] with recastNr′ > recastNr and
replicas′ �= replicas has been issued. Thus the value of recastNr′ = recastNr: a contradic-
tion.

Lemma 11. With a majority of correct replica peers, the implementation of the DhtFlex recast
process is wait-free.

Proof The only wait statements of the algorithm are the guard lines that depict the waiting
for a majority of replies (Algorithm 2, Line 21 and Line 43). However, these are actually non-
blocking since a majority of correct replica peers is assumed. Indeed, a majority of correct
replica peers always either send a message to the requesting peer of type RECAST-ACK,
RECAST-PROCEED-ACK, or corresponding NACKS.

Now that the preliminary work is done, the proof of the three properties of a round-based
consensus is given (compare Lemma 4).

Lemma 12. Validity: If a peer decides a value replicas�� before sending a RECAST-RES
message, then replicas�� was proposed by some peer.

Proof Let pi be a peer that sends a RECAST-RES message (Algorithm 2, Line 45). By
Algorithm 2, either (i) replicas�� is the value proposed by pi (Algorithm 2, Line 9), in which
case validity is satisfied, or (ii) replicas�� has been adopted by pi by some received RECAST-
ACK message from some replica peer. By Lemma 9, some peer pj must have issued some
RECAST-PROCEED message. Let pj be the first peer that isuess [RECAST-PROCEED, id,
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replicasNr, recastNr0, ∗, ∗] with recastNr0 equal to the smallest recastNr ever used for a
[RECAST-PROCEED, id, replicasNr, recastNr, replicas, ∗] message. By Algorithm 2, there
are two different cases to consider: either (i) value replicas is the value proposed by pj, in which
case validity is ensured, or (ii) replicas has been set by pj in the second phase considering
some RECAST-ACK message. For case (ii), Lemma 9 states that for pj to consider value
replicas, some process pk must have issued a [RECAST-PROCEED, id, replicasNr, recastNr

′,
replicas, ∗] with recastNr′ < recastNr0: a contradiction. Therefore, replicas is the value
proposed by pj ensuring validity.

Lemma 13. Agreement: No two peers decide differently.

Proof Assume by contradiction that two peers pi and pj decide two different values replicas
and replicas′ before sending a RECAST-RES message (Algorithm 2, Line 43). Let pi decide
on replicas successfully passing the second phase initiated by [RECAST-PROCEED, id, repli-
casNr, recastNr, replicas, ∗] and pj decide on replicas′ after successfully passing the second
phase initiated by a [RECAST-PROCEED, id, replicasNr, recastNr′, replicas′, ∗]. Assuming
without loss of generality that recastNr′ ≥ recastNr. By Algorithm 2, pj must have issued
a [RECAST , id, replicasNr, recastNr′] before issuing a [RECAST-PROCEED, id, replicasNr,
recastNr′, replicas′, ∗]. By Lemma 6 applies recastNr′ > recastNr and by Lemma 10 ap-
plies pj passes the first phase receiving enough RECAST-ACKs and value replicas and then
issues [RECAST-PROCEED, id, replicasNr, recastNr′, replicas, ∗]. Thus, even if the propa-
gating of [RECAST-PROCEED, id, replicasNr, recastNr′, replicas, ∗] fails, pj tries to promote
replicas and not replicas′ �= replicas. Hence, the next time pj successfully passes the sec-
ond phase for a [RECAST-PROCEED, id, replicasNr, recastNr′, replicas′, ∗], then applies
replicas′ = replicas: a contradiction.

Lemma 14. Termination: If a recast effort fails for some recastNr, then some other effort
was issued for some recastNr′ with recastNr′ ≥ recastNr; if a recast effort is successful for
some recastNr, then no other recast effort for some recastNr′ can subsequently be successful
with recastNr′ ≤ recastNr.

Proof For the first part, assume that some recast effort for recastNr issued by pi fails. By
Algorithm 2, this implies that pi aborts the first phase—issued by a [RECAST, id, replicasNr,
recastNr]—or the second phase—issued by a [RECAST-PROCEED, id, replicasNr, recastNr,
∗, ∗]. Lemma 6 states that some peer must have proposed with some recastNr′ ≥ recastNr.
For the second part, assume that some recast effort for recastNr issued by pi is successful. By
Algorithm 2 and Lemma 8, no peer can subsequently pass the first phase for any [RECAST,
id, replicasNr, recastNr′] with recastNr′ ≤ recastNr. Thus, no peer can be successful with a
recast effort for some recastNr′ ≤ recastNr.

Now that all preliminary work is done Theorem 5 can be proven.

Proof The required validity property, agreement property, and termination property by
Lemma 4 follow directly from Lemma 12, Lemma 13, and Lemma 14. The implementa-
tion of round-based consensus is wait-free since Algorithm 2 follows Lemma 11 and does not
introduce any further blocking statements.
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Partial Order

Now that it is shown that the recast operation of DhtFlex follows the round-based consensus
principle, that is, ensures a total order, the next step is to define a partial order on the put
and get operations in β.
Within the scope of the proof, the term tagpair is used as abbreviation for the pair (replicas-

Nr, seqNr), compare with Figure 5.2 in Chapter 5. The tagpairs are ordered lexicograph-
ically17. The partial order ≺ on the put and get operations in β is defined in terms of the
operations’ tagpair. Thereby, the tagpair of any put or get operation π ∈ β, which is ini-
tiated by peer pi is defined as the pair (replicasNr, seqNr) with the values of replicasNr
and seqNr immediately before pi returns the results of the operation—as stated above (Algo-
rithm 3, Line 51 and Algorithm 4, Line 17).
Namely, the put operations are totally ordered in order of their tagpairs, and each get

operation is ordered with respect to all put operations as follows: a get operation with tagpair
τ is ordered after all put operations with tagpairs ≤ τ and before all put operations with
tagpairs > τ .

Theorem 15. DhtFlex uses an ordering ≺ that is well defined if it ensures a partial order of
its put and get operations.

Before tackling the proof for the ordering, some preliminary work needs to be done. It needs
to be shown, that no values are lost if a new replication group configuration is installed by a
recast process, namely at least the latest consistently written value by a put operation and the
corresponding seqNr. That is, recast processes preserve a non-decreasing history of tagpairs.
Assume that replicas0 is the initial configuration (tied to replicasNr0) and replicasi+1

(tied to the corresponding replicasNri+1) the decision of the next configuration after the i-
th successful run of a recast process. Theorem 5 ensures that replicasi+1 is unique as the
outcome for a certain replicasNr in a recast process. As indicated above, a total order is
imposed among the different replication group configurations based on their replicasNr.

Lemma 16. Let replicasi and replicasi+1 be replication group configurations installed by
subsequent successfully executed recast processes considering β. Then the respective recast
process that delivers replicasi+1 preserves a tagpairi+1 ≥ tagpairi of the recast process that
delivers replicasi.

Proof No replica peer in replication group configuration replicasi, which is involved in the
recast process, is able to serve a put or get operation until it has received a RECAST-RES
message, which causes the replica peer to set its typeid to mutable (Algorithm 2, Line 56).
Thus, the quorum of replies of RECAST-PROCEED-ACK messages, that follow a certain
RECAST-PROCEED message which proposes a configuration for replicasNri+1 during the
recast process, must include at least one seqNri+1 no smaller than the latest consistently
written seqNri (Algorithm 2, Line 40 and Line 43). Then applies, tagpairi ≤ tagpairi+1.

Further, it then follows immediately be induction:

Lemma 17. Let replicasi and replicasj be replication group configurations installed by suc-
cessfully executed recast processes considering β. If i < j, then the respective recast processes
for epochs replicasNri and replicasNrj preserve tagpairi ≤ tagpairj.

17For example, (ξ1, υ1) is lexicographically less than (ξ2, υ2), if either ξ1 < ξ2, or ξ1 = ξ2 and υ1 < υ2.
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The next step is to investigate put and get operations that occur in replication group
configuration for epoch replicasNri (i ≥ 0). The aim is to show that if π is a put or get oper-
ation that completes in replicasNri, then the operation corresponds to a tagpair ≥ tagpairi,
that was preserved by the corresponding recast process that established epoch replicasNri.
Thereby, for such put or get operation π, the tagpair (replicasNr, seqNr) is the one before
replicaMaster sends its respective answer (Algorithm 3, Line 18 and Line 51, Algorithm 4,
Line 17).

Lemma 18. Let π be a put or get operation in β, and let its tagpair be (replicasNr, seqNr);
then, it applies for the preserved tagpair (replicasNr, seqNr′) of the corresponding recast
process that established epoch replicasNr that (replicasNr, seqNr′) ≤ (replicasNr, seqNr).
If π is a put operation, it applies that (replicasNr, seqNr′) < (replicasNr, seqNr).

Proof The replication group configuration for epoch replicasNr is started if a peer pi suc-
cessfully passes the corresponding recast process and sends a message [RECAST −RES, id,
replicasNr, replicas, seqNr′, value] to the replica peers (Algorithm 3, Line 45). Lemma 17
states that the propagated tagpair replicasNr and seqNr′ of the RECAST-RES message pre-
serves the consistent order. Thus, a replica peer pj that receives such message and adopts it
has a tagpair < (replicasNr, seqNr′) (Algorithm 3, Line 48). Theorem 5 ensures that for each
epoch replicasNr a unique replication group configuration replicas is chosen with a unique
replicaMaster. By Algorithm 4 only the master of an epoch replicasNr can successfully pass
a get operation. Since, it has adopted its RECAST-RES message it is obvious that for each
get operation applies (replicasNr, seqNr′) ≤ (replicasNr, seqNr). By Algorithm 3 only the
master of an epoch replicasNr can successfully pass a put operation. Since the replicaMaster
always increments the seqNr entry in tagpair for each put operation (Algorithm 3, Line 29),
it applies that (replicasNr, seqNr′) < (replicasNr, seqNr).

The next step is to relate the order of put and get operations to the subsequent replication
group configuration epoch. It is to show that, if a put or get operation completes in one epoch,
they are ordered before operations in the subsequent epoch.

Lemma 19. Assume π is a put or get operation in β and assume that it finishes in epoch
replicasNr. If the subsequent replication group configuration is installed by a successfully
passed recast process starting epoch replicasNr′, then
tagpairπ ≤ tagpairreplicasNr′ holds.

Proof By Algorithm 3, the value of the current replicaMaster always reflects a put operation,
which has updated a majority of peers in its replication group configuration replicas (Line 47).
Thus, if π is a get operation, there exists a put operation φ, which updated the tagpair and
value returned by π to a quorum of replicas.
As operation φ completes in epoch replicasNr, there exists at least a quorum ω of replica

peers in epoch replicasNr, which sent an answer for φ to the replicaMaster (ω =
⌈
|replicas|+1

2

⌉
).

As the new configuration for epoch replicasNr′ is installed in β, there exists at least a
quorum ρ of replica peers in epoch replicasNr that answer a RECAST-PROCEED message

during the recast process (ρ =
⌈
|replicas|+1

2

⌉
).

As a replication group configuration consists of |replicas| peers, and both sets ω and ρ
contain at least

⌈
|replicas|+1

2

⌉
peers, there exists at least one peer pi that is present in both

sets. Thus, peer pi sends an answer for both operation φ and for the successful recast process
forcing the new epoch replicasNr′.
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The claim is that pi sends an answer for a PUT message in operation φ before sending a
reply for a RECAST-PROCEEDmessage in the successful recast process forcing the new epoch
replicasNr′. If pi sends a reply for a RECAST-PROCEED message its typeid is set to freezed
thus it does not respond to PUT or GET messages. However, as pi sends an answer to a
received PUT message, it must have send this answer prior to receiving a RECAST-PROCEED
message. Thus, the replicaMaster sends its PUT message to pi prior to pi sending its reply
to a RECAST-PROCEED message. Hence, it applies tagpairφ ≤ tagpairreplicasNr′ .

The next step is to show that the epochs used by put and get operations are non-decreasing.
That is, if operation π successfully finishes in epoch replicasNr, than a later issued operation
φ cannot successfully finish for an earlier epoch replicasNr′ < replicasNr.

Lemma 20. Assume two put or get operations π and φ in β and assume that π successfully
finishes before φ starts, then applies recastNrπ ≤ recastNrφ.

Proof If π successfully finishes in epoch replicasNrπ, then some recast process was success-
fully passed for epoch replicasNrπ prior to starting π (As illustration, Algorithm 3, Line 14).
Thus, during this recast process, a quorum of replica peers for epoch replicasNrπ−1 were
informed by a RECAST or RECAST-PROCEED message to set typeid to freezed denying
PUT and GET requests. By induction, a quorum of replica peers from all earlier epochs
received such messages. Thus, φ cannot successfully finish after π using an earlier epoch.

Now, put and get operations are related.

Lemma 21. Assume two put and get operations π and φ in β and assume that π successfully
finishes before φ starts, then applies tagpairπ ≤ tagpairφ. If φ is a put operation applies
tagpairπ < tagpairφ.

Proof Assume, either (i) π and φ successfully finish in the same epoch recastNr, or (ii) π
successfully finishes in an earlier epoch recastNrπ than φ—recastNrφ. Lemma 20 states that
π cannot successfully finish in a later epoch than φ.

Assuming the first case (i), both operations finish in the same epoch recastNr. Than, there
exists a unique replicaMaster that processes both operations. Thus, once φ is started by
replicaMaster its tagpairφ is at least as large as tagpairπ. If φ is a put operation applies
tagpairφ > tagpairπ.

Assuming the second case (ii), π successfully finishes in an earlier epoch than φ, thus applies
recastNrπ < recastNrφ. Lemma 19 states that tagpairπ ≤ tagpairrecastNrπ . Lemma 17 states
that tagpairrecastNrπ ≤ tagpairrecastNrφ

.

Lemma 18 states that tagpairrecastNrφ
≤ tagpairφ and if φ is a put operation applies

tagpairrecastNrφ
< tagpairφ. Then, does apply tagpairπ ≤ tagpairφ and if φ is a put op-

eration applies tagpairπ < tagpairφ.

In total, this shows that Theorem 15 is valid.

Proof The key is to show that no two successful put operations get assigned the same tagpair.
This is obviously true according to Lemma 21.
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Atomicity

Now that a partial order on the put and get operations in β is defined, the last step is to prove
that the defined order has the properties required by Lemma 1 to finally prove Theorem 2.

Proof This proof shows that the DhtFlex algorithm satisfies the four properties of Lemma 1.
It considers an arbitrary execution β in which every put and get operation successfully finishes
to demonstrate that the defined partial order ≺ satisfies the four properties. It starts with
Property 2, which is usual in such proofs.
Regarding Property 2, Lemma 21 states that if operation π successfully finishes before

operation φ starts, then applies tagpairπ ≤ tagpairφ. Thus, φ �≺ π.
Regarding Property 1, Property 2 must hold. Property 1 immediately follows from Prop-

erty 2.
Regarding Property 3, if π and φ are two put operations, then applies tagpairπ �= tagpairφ

as the tagpairs are defined to be unique. If π is a put operation and φ is a get operation and
tagpairπ = tagpairφ then applies π ≺ φ. If tagpairπ �= tagpairφ, then applies either π ≺ φ or
φ ≺ π depending on tagpairπ < tagpairφ or tagpairπ > tagpairφ.
Regarding Property 4, the definition of the partial order is used. If φ is a get operation,

then tagpairφ equals to the tagpairπ that is associated to the corresponding put operation
π that wrotes the value returned by φ. Thus, π is the last preceding WRITE operation
(tagpairφ = tagpairπ).

18

Liveness

As indicated above, liveness of the DhtFlex algorithm relies on two things:

1. As with all quorum-based algorithms, DhtFlex depends on enough peers of a valid repli-
cation group configuration to stay up and be available. Assuming peer failures, the
remaining replica peers need to execute quickly enough a recast process to adopt the
replication group configuration in order to maintain a live quorum.

2. As the recast process adopts a consensus-based mechanism, it cannot be guaranteed that
a certain peer wins the election to be the next replicationMaster. However, it can be
assumed that eventually one peer wins and guaranteed that only one peer wins.

7.3.3 Reconfigurability

As shown in Section 5.3.1, the DhtFlex approach supports flexible put, get, and recast op-
erations by the concept of annotated data resources : (i) the concept enables the distinction
between immutable and mutable data resources. In addition, (ii) the concept supports poli-
cies to define a flexible degree of replication allowing an adjustment per data resource type.
Thus, flexible replication strategies can be defined individually per resource instance (or item
bundle).

7.3.4 Scalability

Replication of Content Data

As indicated in Section 7.3.1, DhtFlex uses a replication strategy to support reliability of
operations and data: each data resource with replication factor ρ is replicated at ρ different

18Or some default value v0 may be used if yet there exists no such WRITE and thus no mutable resource.
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peers. In this context, the term storage redundancy is a measure to represent the amount of
storage space that some replication strategy uses in a system, for example, considering the
number of replicas of a certain data resource. As Equation 7.2 states, the storage redundancy
for a certain data resource shows linear growth.

OverheadStorage Redundancy = (ρ− 1) · SizeData Resource (7.2)

Distribution of Content Data

The total data load of a P2P system is defined as the sum of the data loads of all participating
peers. The data load of each peer refers to the amount of data resources a peer is responsible
to store locally. This section evaluates the distribution of content data using a theoretical and
a practical approach.

Theoretical Evaluation The theoretical evaluation assumes a system of n peers and a total
number of m data resources (including data replicas). As shown in Section 5.1, DhtFlex
assumes that each data resource is uniquely identifiable. In addition, DhtFlex relies
on a structured P2P overlay as imposed by the Chord protocol (see Section 2.3.3), as
discussed in Section 5.2.2.

By this approach, the ideal assumption that all peers are responsible for equal-sized
intervals in the overlay can be made: hence, if a data resource is published to the system
each peer is responsible for it with probability phit =

1
n
. Regarding one peer, the data-

load distribution may be modelled as repeatedly performing independent but identical
limited number of Bernoulli trials. Thus, its data load follows the binomial distribution,
see Formula 7.3. Accordingly, Formula 7.4 states its expected value μ and the standard
deviation σ as a measure of the data-load dispersion.19

B(m;n; k) =

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
with k = 0, 1, . . . ,m (7.3)

μ =
m

n
, σ =

√
m
1

n

(
1− 1

n

)
(7.4)

For example, Figure 7.4 shows μ and σ for 106 data resources and different numbers
of peers. As depicted, if ideal assumption are made, the data load distribution scales
with the number of peers (subsequently, practical evaluation analyses the data load
distribution considering a more realistic model).

In addition, the usage of a structured overlay as data-partitioning strategy influences
the overhead of key management if peers join or leave the system: assuming the joining
of a new peer to a system consisting of n peers, O(μ) data resources need to be moved
from one location to another.

19For a normal distribution (n → ∞) almost all data-load values shall lie within three standard deviations of
μ:

• 68.3% of the values lie within μ ± σ

• 95.5% of the values lie within μ ± 2σ

• 99.7% of the values lie within μ ± 3σ
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Figure 7.4: Ideal Distribution of 106 Data Resources

Practical Evaluation To substantiate the theoretical results, the practical evaluation in-
vestigates the distribution of 1000 data resources with varying replication factor ρ to
a simulated network of 1000 peers—using Chord as overlay protocol. According to the
scenario in Section 1.1.2, the data resources represent the 1000 most viewed articles of
the English version of Wikipedia [10] in August 2008 to indicate if DhtFlex’s partitioning
strategy is suited :

• SHA-1 is used as hash function to create both peer identifiers and data resource
identifiers.

• Each peer is responsible for a certain (key) segment of the overlay: thereby, although
the hash function is used to achieve good distribution of peers in the overlay, the
size of segments may vary.20

• The following schema is applied to create the unique name for an item resource
representing a certain Wikipedia page: en.wikipedia.org/wiki/︸ ︷︷ ︸

namespace

.namearticle

Figure 7.5 shows the results of the experiments: in all cases, the theoretically expected
value μ is achieved as kind of centre of distribution: (i) μ = 1 in case of ρ = 1 (1000
data resources), (ii) μ = 5 in case of ρ = 5 (5000 data resources), and (iii) μ = 10 in
case of ρ = 10 (10000 data resources).21 In general, the data load on each peer scales
well with the number data resources and varying values of ρ: no hotspots are detected.
On the one hand, increasing the value of ρ seems to level data distribution; on the other
hand, the number of peers not storing a resource may be decreased.

20Peer identifiers are generated randomly.
21Replication factor ρ determines the size of a resource’s replication group in DhtFlex.
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DhtFlex may ensure load balancing by a uniform distribution of peer identifiers and data
resource identifiers, where the number of data resources stored at each peer is roughly balanced.
To deal with large data files, special storage peers may be used and only metadata may be
committed to the system (see Section 4.3).

Access to Content Data

Stoica et al. [177] stated that a structured overlay shows good precision considering the retrieval
of data resources. Precision P denotes a measure for the quality of a retrieved query set:
P = |relevant data∩retrieved data|

|retrieved data| . For example, at content level, relevant data usually reflects
those items that match a certain query statement considering the system’s data set.
In the following, different ways to access items are discussed—assuming a distributed

workspace tree (see Section 5.4). Basically, there exist two ways to access items: (i) direct item
access using UUIDs, or (ii) traversal item access using the workspace tree.22 A complexity
analysis of both ways may act as indicator to state scalability qualities. The analysis assumes
a system of n peers and m workspace items.

Direct Access The usage of a structured overlay enables to retrieve the data resource of an
item by its UUID in O(log(n)) overlay hops.23

22Query-based item access relies on the two basic mechanisms and is not investigated.
23For example, Stoica et al. [177] stated that Chord requires O(log(n)) overlay hops to locate a certain data
resource with high probability : an intuitive proof considers that each overlay hop halves the distance between
the originator peer pi and the target peer pj (see Section 2.3.3). Thereby, the size of the identifier space
implies an upper limit.
However, Section 7.3.5 discusses the costs of DhtFlex’s operations in more detail.
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Traversal Access The costs to retrieve an item using its corresponding workspace depend
on the characteristic of the workspace tree structure (compare Figure 7.6).

D e g e n e r a t e d
T r e e

B a l a n c e d
T r e e

Figure 7.6: Models of a Content Repository’s Workspace Tree

Here, the height of a workspace tree may act as an indicator to state the costs to
retrieve a certain item. For example, assuming the same amount of items, the height
of a balanced tree (optimal case) is smaller than the height of a degenerated tree (worst
case).24 Equation 7.5 estimates the complexity costs to retrieve a certain workspace item
considering best and worst case of its corresponding tree structure. It is important to
notice, that each retrieval step in the logical workspace tree requires O(log(n)) overlay
hops.

O(log(m)) ≤ O(heightworkspace tree) ≤ O(m) (7.5)

However, the workspace root item needs special attention: if it is assumed that traversal
access always starts at workspace root, the peer(s) administrating such data resources
would be heavily loaded considering the number of access requests (message traffic).

7.3.5 Performance

This section analyses the DhtFlex approach regarding performance: (i) it shows its complexity
regarding the measures of communication steps, and (ii) of communication costs. To measure
complexity accurately enough so constant factors matters, it is always stated which operations
should be counted.25 In addition, (iii) performance is analysed using practical evaluation, that
is, the latency of operations is measured.

Communication Steps

Theoretical Evaluation The measure of communication steps shall act as indicator for the
latency of each operation.26 Therefore, the analysis assesses each single communication
step—distinguishing a simple message transmission latency t from such one where the
transmission of a value is involved tv, the latter being usually more expensive. The
transmission latency variance of parallel send messages is neglected.

Subsequently, it is analysed what internal communication overhead χ is introduced by
DhtFlex’s support of atomic operations for replicated data. That is to say, the overhead
additional to the necessary P2P overlay lookups and interactions with a client.

24As kind of delimitation, considering the special case of a very shallow tree consisting of a root and a large
set of children, direct access may be applied (rather than traversal access).

25The quality attributes scalability and performance are somehow related.
26For example, the number of average communication costs may indicate how fast a request may be processed,
or how goal-oriented the used mechanism works.
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Immutable Data Resources The possibility to differentiate between mutable and im-
mutable data resources allows DhtFlex to treat the latter ones with the communi-
cation costs of an ordinary DHT. (i) A get request can be immediately responded
by a replica (χ = 0). (ii) A put requires forwarding the value to the remaining
replicas (χ = tv); though this overhead could be avoided if a put request is initially
propagated to all replicas. (iii) The costs of a recast operation are comparable
(χ = tv).

Mutable Data Resources DhtFlex for mutable data resources is optimized for get,
put, and recast operations, in that order.

(i) Once a get request arrives at the master of a certain resource only two com-
munication steps are necessary to verify its qualification (χ = 2t). The exchanged
messages are rather small, as the master holds the data and no value has to be
transmitted.

(ii) A usual put operation requires just as many steps, though the transmitted data
is larger due to the need for replication (χ = tv + t).

(iii) An initial put usually requires as well as a recast five communication steps
starting from a master—representing all phases of Paxos (χ = 3t+ 2tv). But even
these expensive recast operations can be optimized by the assumption that it is not
likely that concurrent initial puts or recasts occur. This is supported by the working
of the recast algorithm as not every replica arbitrarily conducts such operations:
that is, all such requests are usually sent to the responsible peer appointed by the
current P2P overlay situation. Hence, the circle of candidates is naturally kept
small. This optimized variant of the recast operation encourages a master to start
with a RECAST-PROCEED message, reducing the communication steps from
five to three (χ = t+ 2tv). But, a replica may only acknowledge such an effort if it
has not previously received a RECAST or RECAST-PROCEED message from
another peer for the same replicasNr. Otherwise, the master is informed about
another concurrently operating master peer and reverts to the original, full recast
process. Hence, in the worst case of the optimized variant seven communication
steps are needful (χ = 5t+ 2tv).

Table 7.2 summarises the results considering the overall communication steps; that
is, the P2P overlay routing (assuming n peers) and the client interaction, in addi-
tion.27

Data Resource Get Operation Put Operation Recast Operation

Immutable O(log(n)) · t+ tv (O(log(n)) + 1) · t+ 2tv tv

Mutable (O(log(n)) + 2) · t+ tv (O(log(n)) + 2) · t+ 2tv 3t+ 2tv

Table 7.2: Communication Steps of DhtFlex’s Operations

Practical Evaluation Practical evaluation uses simulation to measure the latency of the
operations of DhtFlex to verify and to illustrate the stated theoretical results.

27In get case, O(log(n)) · t communication steps are necessary for a client to contact the master of a certain
data resource; and one step tv for a master to reply to the client.
In put case, O(log(n)) · t communication steps are necessary for a client to resolve the master of a certain
data resource and one additional step tv to transmit a value, on the one hand. On the other hand, amaster
replies to the client in one step t.
Further, it is assumed that method replicaSet(key,N) requires no additional communication costs. For
example, a Chord peer may use its local successor list (see Section 2.3.3).
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Considering the experimental setup, a King28 data set [90] is integrated to the simulation
environment to weight communication links between simulated peers.29 This approach
enables to gain estimations of DhtFlex’s communication costs based on real measure-
ment data of thousands of Internet hosts. Hence, the overhead introduced by atomic
operations on mutable data resources will be evaluated from a more real-life point of
view.

The simulation results neglect messages of different size. All shown latencies represent
the average value of ten measurements per operation using random keys for put and get
operations. Each data resource is allocated to a replication group of six (different) peers.
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Figure 7.7: Latency of DhtFlex for Immutable Data Resources

Figure 7.7 depicts the latency of DhtFlex for operations on immutable data resources.
As expected, the latency of put operations is greater than that of get operations. Both
operations are strongly affected by the costs to perform P2P overlay routing, which
increase with the number of peers—the operations introduce, however, rather constant
overhead by themselves. As the recast operation does not require overlay routing, its
latency is comparatively small.

However, immutable data resources may be arbitrarily cached at client-site to avoid
overlay lookup latencies and thus to reduce the latency of get operations—the latter
ones are supposed as the most requested kind of operation for such resources.

Figure 7.8 gives the latency of DhtFlex for operations on mutable data resources. Again,
the latency of put operations is greater than that of get operations, and both operations
are strongly influenced by the costs to perform P2P overlay routing. However, both
put and get operations add rather constant overhead by themselves. On the one hand,
both operations require higher latencies in comparison to operations on immutable data

28King [90] is a tool to estimate the latency between arbitrary Internet hosts based on direct (online) measure-
ments. King uses recursive DNS queries exploiting existing DNS infrastructures. The estimated latency is
basically build upon two assumptions: (i) most Internet (end) hosts are located close to their authoritative
DNS name servers, and (ii) it is possible to issue recursive DNS queries to measure the latency between
pairs of DNS servers. Hence, King approximates the latency between two end points by measuring the
latency between nearby authoritative DNS name servers applying carefully constructed recursive queries.

29Regarding message latencies, large scale simulation of P2P systems need to apply a certain data set: this
data set enables analysis of average message delays per operation.
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Figure 7.8: Latency of DhtFlex for Mutable Data Resources

resources.30 On the other hand, the latencies for put and get operations do not differ
this significantly in both cases. In contrast, recast operations are more expensive for
mutable data resources—the case is evident comparing the latency for recursive overlay
routing (see Figure 7.8(a)), for example.
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Figure 7.9: Comparison of Different Recast Operations

30Note that only regular put operations for mutable data resources are considered. In contrast, initial put
operations formutable data resources are more expensive as they require to consistently set up the resource’s
replication group (see Section 5.3.3).
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Figure 7.9 highlights the different latency costs for recast operations on mutable and im-
mutable data resources. In addition, it is differentiated between using a quorum-based
approach in mutable case, or not.31 Interestingly, Figure 7.9 states an increase of latency
values from 50 to 1000 peers—although, recast operations depend on the value of the
corresponding replication factor, and not on the number of peers. This phenomenon
may be explained considering the used data set: regarding network latencies, real-world
physical networks like the Internet often show characteristics of power-law networks,
where few nodes act as hub with a large number of network links. In addition, with
an increasing number of peers the probability increases to target peers with low (bidi-
rectional) link latency. Thus, in contrast to comparing operation latencies for 50 and
1000 involved peers, the latencies for 1000 and 1500 peers are quite similar. The same
observation applies to using a quorum-based approach or not: a quorum-based approach
does not need to respect the slowest master–replica connection for all communication
steps.

Communication Costs

The measure of communication costs shall act as an indicator for the amount of data each
of DhtFlex’s operations sends across the network.32 Therefore, the analysis assesses each
exchanged message—distinguishing a simple message of data size c from a message containing
some value (data size cv), as the latter one is usually more expensive.

The previous section presented the evaluation of DhtFlex’s communication steps. The
evaluation of its communication costs uses the presented results but additionally considers the
number of exchanged messages for a data resource being replicated by k replica peers.

Table 7.3 estimates the results of DhtFlex’s communication cost.33

Data Get Operation Put Operation Recast Operation

Immutable O(log(n)) · c+ cv (O(log(n)) + 1) · c+ k · cv (k − 1) · cv
Mutable (O(log(n)) + 2(k − 1)) · c+ cv (O(log(n)) + k) · c+ k · cv 3(k − 1) · c+ 2(k − 1) · cv

Table 7.3: Communication Costs of DhtFlex’s Operations

For small data values, the communication costs of put and get operations are dominated by
n (and k). For large data values, however, the costs of put operations are dominated by k · cv,
the replication factor and the actual value size. Recapitulating Section 5.4.1, this confirms the
DhtFlex approach to support flexible content data functions by the recommendation to store
all property resources within the corresponding parent node resource as bundle unit (as one
data resource).

31If no quorum is used, the master of a replication group needs to wait for every replica to respond.
32For example, communication costs may indicate how many messages have to be exchanged between peers
until a request is successfully processed.

33For example, considering the case of a regular put operation for a mutable data resource: (i) O(log(n))
messages of cost c are necessary for a client to track the responsible master and additionally one message
(cv) to transmit a value (PUT-REQ). (ii) Then, the master sends a PUT message (cv) to each of the
k − 1 replicas. (iii) If successful, each of the k − 1 replicas sends a PUT-ACK message (c) to the master.
(iv) Finally, the master sends a PUT-RES message to the client (c).
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7.4 Methods for Flexible Content Repository Functions

in Hybrid Peer–to–Peer Overlays

This section evaluates the major parts of the methods to enable flexible content repository
functions in hybrid P2P overlays as described in Chapter 6: that is, P2P service groups.
First, Section 7.4.1 describes reliability. Then, Section 7.4.2 states consistency. Section 7.4.3
indicates reconfigurability. Next, Section 7.4.4 discusses scalability. Finally, Section 7.4.5
analysis performance properties.

7.4.1 Reliability

A basic requirement of replication schemes is that different replicas of the same data resource
reside on failure-independent peers [170]. That is, the availability of one peer is not affected by
the availability of the other replicas. This implies, that replication management is inherently a
location-opaque activity. Therefore, this section adopts the approach of Section 7.3.1: (i) the
analysis assumes the worst case, that is, no reconfiguration actions may occur intermediately,
and (ii) it is assumed that a peer’s availability is statistically independent and that all peers
show a statistically identical (average) availability αpeer: thus, investigating their status can
be modelled by a sequence of Bernoulli trials.
As described in Section 6.4, the P2P group communication approach of Section 6.3.3 can be

used to implement a replicated workspace index: the approach ensures reliable operating using
replication as redundancy scheme—that is, ρ replica peers are used to maintain an identical
copy of an index. The reliability analysis differentiates between the group communication
approach working (i) with benign failure model, and (ii) with malicious failure model.

Benign Failure Model In benign case, operational progress is guaranteed as long a majority
of the ρ replica peers is available. In relation to ρ, θ represents the minimal number
of failed peers preventing to obtain a majority: (i) if ρ is even, θ = ρ

2
, and (ii) if ρ is

odd, θ = ρ+1
2
. Equation 7.6 states a replication group’s corresponding operational failure

probability Pfail.

Pfail =

ρ∑
i=θ

(
ρ

i

)
(1− αpeer)iαρ−ipeer (7.6)

Malicious Failure Model In malicious case, operational progress is guaranteed as long as
ρ ≥ 3θ + 1 (θ represents the number of potentially malicious replicas). It is assumed
that always the maximum θ should be tolerated, that is, θ =

⌊
ρ−1
3

⌋
. Equation 7.7 states

a replication group’s corresponding operational failure probability Pfail.
34

Pfail =

ρ∑
i=θ+1

(
ρ

i

)
(1− αpeer)iαρ−ipeer (7.7)

Figure 7.10 illustrates the derived reliability of operations for both cases. The jagged lines of
the two figures result from different relative quorum-size dependencies of different replication-
group sizes: that is, for certain replication-group sizes it is more advantageous to achieve a
quorum. The size of a quorum in benign case varies between θ1 =

ρ
2
and θ2 =

ρ+1
2
, for instance.

34In malicious case, it is assumed that a quorum is formed by 2θ+1 replicas (that is, to include the majority
of non-malicious replicas.)
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Figure 7.10: Reliability of Operations for Different Failure Environments

In general, in both cases it is evident that the replication group of a workspace index should
be composed of peers that show good availability to achieve good reliability of operations—that
is, to keep Pfail small. In malicious environments the case is even more drastic. However, if
replicas show good availability, increasing a replication group’s size further reduces Pfail. This
is not the case if replicas show bad availability.35

7.4.2 Consistency

This section informally discusses consistency if the P2P group communication method is used
to implement a replicated workspace index (see Section 6.4). The main problem associated
with replicas are update issues [170]: from a client’s point of view, replicas of a data resource
denote the same logical entity, and thus an update to any replica needs to be reflected on all
other replicas. Or rather, the relevant consistency semantics need to be preserved. Therefore,
in the following it is analysed if the approach implements a fault-tolerant state machine as
defined in Section 2.2.5. As stated by Definition 1, both (i) agreement property and (ii) order
property of a fault-tolerant state machine need to be ensured.

• As described in Section 6.3.3, P2P group communication uses essentially a generic con-
sensus module—for example, implementing Paxos (see Section 2.2.4). This method is
able to establish the agreement property and thus is able to achieve mutually consistence
of replicas: the repetitive usage of such consensus algorithm on a sequence of input val-
ues or operations allows for the construction of equal data stores on each replica. For
instance, if the same sequence of operations is executed regarding each replica’s local
data store, the same content is accumulated, assuming the same initial content storage
state.

• The order property can be satisfied by assigning unique identifiers to requests and having
replicas execute requests according to a total-ordering relation on these unique identi-
fiers [165].

35To increase reliability of operations, chapter 6 described mechanisms to support the dynamic integration of
additional replicas.
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7.4.3 Reconfigurability

As indicated in Section 6.1, reconfiguration targets a P2P service group’s ability to implement
adaptive behaviour. Mechanisms supporting reconfigurability are available at three different
levels.

Lifecycle Management Considering lifecycle management, Section 6.3.1 introduced the re-
configuration activity, which is involved if a P2P service group needs to apply appropri-
ate actions to preserve its service execution or to adapt its offered service according to
some policies. The conditions to trigger this activity are either (i) reactive conditions or
(ii) proactive conditions.

Consensus-Based Group Communication Section 6.3.3 presented a reconfigurable P2P
group communication component based on distributed consensus algorithms. The ap-
proach supports a policy-based mechanism for a dynamical reconfiguration of the compo-
nent at runtime—without service interruption. Reconfigurations may concern (i) group
management, (ii) consensus management, and (iii) low-level communication manage-
ment.

Reconfigurations enable to optimize the component (i) for best-case operations, (ii) for
minimal delays in failure situations (for example, by adjusting time-out values for failure
detection), or (iii) for selection of different failure models (refer to Section 2.2.3); that is,
to support a fail-stop model, a crash-recovery model, or a malicious model. In addition,
the size of a group may be reconfigured dynamically at runtime (to add or remove
members).

Dynamic Code Loading Section 6.3.2 showed a mechanism to support the adjustment of
a peer’s local services based on some policy: that is, to deploy, load, and integrate
(tailored) service code—dynamically at system runtime. For example, this enables to
equip group members with locally not available but demanded service functionality.

The support of reconfigurability may benefit the reliability of a P2P group’s offered group
service. For example, a group is able to compensate peer failures (or peers just leaving the
system) by enabling dynamic peer memberships. In addition, a policy-based strategy may
be to (dynamically) integrate peers as group members which show good availability and to
exclude peers showing bad availability.
Thereby, all reconfiguration actions of inner-group mechanisms may be transparent for an

external service consumer.

7.4.4 Scalability

This section discusses scalability for P2P service groups (being used as kind of clusters in the
structured back-end overlay) considering (i) data storage distribution and (ii) data querying
strategy.

Data Storage Distribution Data storage distribution considers how metadata and data
resources are balanced across available peers:

• Regarding P2P service groups, each workspace may be represented by a group
of indexing peers which usually administrate only its metadata (resources). This
partitioning strategy avoids the single point of failure if one peer would exclusively
administrate all this metadata as one big node resource (compare Section 4.3). A
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rough estimation for the distribution of a repository’s metadata storage costs relates
the overall amount of metadata resources to the number of used indexing groups:
#metadata resourcesrepository

#indexing groupsworkspaces

• The usage of the concept for generic content mapping (see Section 4.3) enables to
store actual data (resources) at certain peers in the structured overlay back-end.
Section 7.3.4 already discussed data storage distribution applying DhtFlex for the
structured back-end.

Data Querying Strategy Indexing peers support the querying for data resources by their
materialised view of workspace items: that is, each indexing peer may use its local view
of the workspace tree to process query requests.

On the one hand, this may increase lookup performance in comparison to using the
structured overlay back-end, exclusively (refer Section 7.3.4)—especially, if the addressed
search space (for example, a workspace subtree) is large: for instance, the structured
overlay back-end is only used to retrieve actual content data (the query results); that is,
data transfer may be decoupled from metadata management.

One the other hand, indexing peers are affected by more request load than usual peers (in
the structured overlay back-end) and need to ensure consistency of their local workspace
view. For the latter case, Section 7.4.5 analysis the (traffic) costs for maintaining con-
sistency.

Regarding scalability, the discussion emphasises indexing groups as critical parts in the
hybrid overlay: as these usually play a major role, it is recommended to select only peers
showing good properties as group members. For example, considering such peer’s hardware
resources, high processor throughput, and large primary and secondary storage space is de-
manded. In addition, group members should communicate at high network connection speed
to reduce message latencies (for example, by being located in physically close distance). The
next section investigates performance properties of indexing peers, which is closely related to
the scalability of the hybrid approach.

7.4.5 Performance

This section analyses performance properties for P2P service groups considering (i) local op-
erations of a peer and (ii) distributed operations between multiple peers.

Local Case

Practical evaluation applying direct experiments is used to indicate an indexing peer’s local
performance: that is, to state the latency (i) to index (store) and (ii) to query workspace items.
The evaluation considers the processing of multiple item–property bundles representing wiki
pages with 3141 mean bytes per article [9].
The experiments are executed on an AMD Athlon XP 3000+ (2.09 GHz) machine with

1 GB main memory running Windows XP Professional. The local access manager at persistent
storage layer uses a combination of Java-based Lucene [5], and Apache Derby [3] for indexing
and searching content items.
The results of the experiments are given in the following:

• Figure 7.11 depicts the aggregated latency to locally store and index 1000 item bundles:
it is obvious, that the overall latency grows linearly with the number of processed item
bundles.
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Figure 7.11: Latency of 1000 Local Indexing–Storage Operations

• Using the inserted items, the average query latency (considering 100 executed queries)
to search one item is in the range of ˜2 ms.

Distributed Case

Practical evaluation applying direct experiments is used to indicate the performance of intra
group communication as crucial part of the hybrid approach (without considering the protocol
for the structured overlay back-end). Adopting the recommendations of the previous section,
it is assumed that the group members are topologically close in the physical network.
Two aspects are important in a reconfigurable group communication system [149]: (i) the

efficiency of sending plain intra-group messages and (ii) the costs of reconfiguration operations.
For example, the processing of normal group messages is the dominant operation in an indexing
group, while reconfiguration actions will typically occur far less frequently. Therefore, the
measurements focus on the normal-case efficiency of the reconfigurable component applying
different configurations.
The current implementation uses variants of the Paxos algorithm for the consensus module,

which support different failure models and different parametrisations (to optimize latency and
message overhead). The analysis examines throughput and latency characteristics of different
configurations to illustrate their feasibility.
In the following, all described direct experiments were executed on up to 15 Intel Pentium 4

(3.0 GHz) machines running Linux (kernel 2.4), connected via a switched 100 Base-T network;
the system is implemented in Java (J2SE 1.4).

Performance using Different Consensus Modules Regarding performance, the most im-
portant factor of the consensus-based group communication system is the efficiency of
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Figure 7.12: Performance of Different Consensus Algorithms

consensus decisions. Figure 7.12 [149] depicts the number of consensus decisions per sec-
ond that the system achieves in relation to the number of core group peers—for different
consensus modules: the crash-recovery variants use synchronous writes to the local hard-
disk drive as stable storage; for all variants, the parallelism of consensus decision was
limited to five parallel instances. TCP channels were used for low-level communication
between peers.

For all depicted algorithms, the system scales quite well with an increasing number
of group members. The limiting factor in the stable-storage based variants are the
synchronous write operations—all writes have to be flushed to disk immediately before
a peer may proceed; that is, as the peers are close in network proximity delays for disk
flushes may influence (even dominate) overall latency. Thus, in these cases there is only
little difference between the classic Paxos and the fast Paxos variant. The malicious
fault tolerant consensus instance is, as it might be expected, the most costly variant—it
requires the most messages per consensus decision and introduces encryption overhead.
Thereby, the current prototype implementation uses public-key based signatures, that
is, asymmetric message encryption; it does not support the more efficient variant of
Castro’s BFT algorithm [46], which is based on symmetric message authenticators.

Performance using Different Degrees of Parallelism As explained in Section 6.3.3, Par-
allelism of consensus operations makes reconfiguration a more complicated task. Hence,
another experiment examines the general benefits of such approach. Figure 7.13 [148]
combines the number of consensus decisions per second with different amounts of group
members for several degrees of parallelism.

For rather small sets of group peers, parallelism increases the performance. Somewhat
unexpected, however, performance decreases if the number of group peers is increased:
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Figure 7.13: Performance of the Paxos Algorithms Considering Parallelism

this effect is probably caused due to the increased overhead of internal synchronisation
mechanisms. In general, the results state that a dynamic configuration of the parallelism
depending on the number of group peers is necessary to achieve optimal performance.
As a last remark, small difference exists between five and ten parallel decision rounds,
which kind of coincides with the assumption that a small number of parallel rounds may
be sufficient.

Message Latency using Different Consensus Modules From a persistent storage man-
ager’s point of view, an essential efficiency criterion is message latency: for example,
the caused overhead to ensure consistency by synchronisation efforts or to include a new
group member.

Figure 7.14 [149] shows this latency for three different consensus variants—depending
on an indexing group’s size. In the process, all times for the depicted message latencies
are averaged over 100 messages sent to the group to acquire a consensus decision; the
latencies are measured at persistent storage layer, that is, directly using the Group

component’s interface (see Section 6.2.3). In addition, each measurement uses the same
group configuration as the previous measurement.

As anticipated, the classic Paxos variant not using stable storage shows the best response-
behaviour, whereas the malicious variant shows the worst. With each variant, the mes-
sage latency increases with a growing number of participating group peers.

The current prototype implementation, however, has not yet been heavily optimized, so it
is still anticipated further improvements of the presented measurements. Additional measure-
ments using a wide-area infrastructure, for instance, PlanetLab, would contribute to the eval-
uation of the component in the context of a large-scale network. Adding additional variants of
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Figure 7.14: Overall P2P Group Message Latency with Different Consensus Algorithms

the Consensus component, for example, the mentioned BFT algorithm [46] using symmetric
message authenticators, may further improve comparability of different failure models.

7.5 Summary

In this chapter, an evaluation of the architecture and methods for content management in P2P
systems—that are described in this thesis—was presented. On the one hand, the architecture
was evaluated using qualitative considerations. One the other hand, the methods were mostly
described by quantitative observations.
The P2P content repository system architecture was evaluated considering (i) used archi-

tectural styles, (ii) selected quality attributes, and (iii) the scenarios of Chapter 1:

• The architecture uses different styles, that is, it is hierarchically heterogeneous.

• The architecture shows flexibility properties at different levels. Its modular decomposi-
tion benefits modifiability. Portability is supported by its used generic peer architecture
and the message-based approach to enable inter-peer communication. Reusability is
supported by the architecture’s service-based approach, for example, at P2P (persistent
storage) level. The architecture increases integrability by using clearly defined inter-
faces; it benefits testability by using several layers and components which may be tested
separately.

• The architecture is suited for being deployed in both the cross-enterprise business col-
laboration scenario, and the intra-enterprise knowledge management scenario; that is,
it satisfies their requirements at content support, content repository support, and P2P
support.
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The methods for flexible content repository functions in structured P2P overlays were
evaluated—on the basis of DhtFlex—regarding (i) reliability, (ii) consistency, (iii) reconfig-
urability, (iv) scalability , and (v) performance.

• Reliability is ensured using replication as redundancy scheme. In case of immutable data
resources, DhtFlex needs a single available replica to progress successfully. In case of
mutable data resources, at most

⌈
ρ
2

− 1
⌉
of a resource’s replicas may fail at the same

time. However, DhtFlex supports crash-recovery and recasting to additionally increase
reliability.

• DhtFlex ensures consistency, that is, it is proven that DhtFlex implements atomic put
and get operations for mutable data resources.

• DhtFlex supports reconfigurability by its concept of annotated data resources, that is,
flexible put, get, and recast operations, for example, flexible replication strategies.

• Regarding scalability, DhtFlex’s introduced storage redundancy for data resources shows
linear growth; data load distribution scales with the number of peers. Considering access
to content data, for example, the costs for traversal retrieval depend on the characteristic
of a workspace’s tree structure.

• Evaluation of performance properties considered communication steps and communica-
tion costs. DhtFlex is optimized for get, put, and recast operations on mutable data
resources. These operations are even more efficiently supported for immutable resources,
increasing the overall performance in an employed system. DhtFlex introduces overhead
that is independent of the size of the P2P network. As a result, the communication costs
of DhtFlex are comparable with that of non-atomic DHTs, in most of the cases.

The methods for flexible content repository functions in hybrid P2P overlays were evaluated—
on the basis of P2P service groups—respecting (i) reliability, (ii) consistency, (iii) reconfigura-
bility, (iv) scalability , and (v) performance.

• Reliability of P2P service groups is discussed for benign and malicious failure models.
In both cases, it is evident that groups shall be composed of peers that show good
availability to achieve good reliability of operations.

• P2P service groups can ensure consistency by implementing a fault-tolerant state ma-
chine.

• P2P service groups support reconfigurability at three different levels: (i) lifecycle mana-
gement, (ii) consensus-based group communication, and (iii) dynamic code loading.

• Considering scalability, it is emphasised that only good peers shall be selected to act
as indexing peers. It is highlighted that indexing groups represent critical parts in the
hybrid P2P overlay.

• Regarding performance in local case, a service group peer’s overall operation latency
grows linearly with the number of processed items. In distributed case, performance
properties scale quite well with an increasing number of group members. In addition,
applying parallelism for rather small sets of members may increase operational perfor-
mance.
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8.1 Conclusion

This thesis presented an architecture and methods to enable flexible content management
in peer–to–peer (P2P) systems. The approach of this thesis was motivated by a couple of
scenarios, showing the employment of a P2P-based content repository (i) in context of cross-
enterprise business collaboration, and (ii) in context of intra-enterprise knowledge manage-
ment.

Reflecting these scenarios, the thesis described the logical view of a content repository—to
benefit the provision of a modular system design—by illustrating its functional requirements
on the basis of the “4+1” view model for a software architecture: (i) on the one hand, func-
tional building blocks (or functional components) were identified and classified. (ii) On the
other hand, their offered services and working scopes were defined, respectively—basically ex-
ploiting the Content Repository API for Java Technology (JCR) to ensure a generic approach
to service functions. To increase the understanding of functional interactions, dependence
relationships of functional components were analysed. In addition, content repository func-
tions were reflected regarding functional and non-functional requirements for a P2P-based
solution: this motivated the further approach to investigate methods for flexible content re-
pository functions (i) in structured P2P overlays, and (ii) in hybrid P2P overlays.

Using these results, this thesis introduced a generic design of a layered P2P content repo-
sitory system architecture. It considered both horizontal and vertical system decomposition:
(i) main system modules were defined and mapped to essential content repository functions.
(ii) The system modules were arranged in subsystems and delimited by interfaces. A spe-
cial particularity concerned the definition of a persistent storage layer, which represents the
connection to integrate the P2P-based methods for enabling flexible content repository func-
tions. The thesis presented a generic concept to annotate items—introducing item states—and
to map these states to corresponding back-end storage entities (resources). Therefore, (i) it
showed an item-naming concept to deal with such multilevel mapping, and (ii) it explained
how and which flexible content data policies may be used with this concept. A generic peer ar-
chitecture was presented as being designed to be network-independent to allow the integration
of different P2P overlays: (i) it described a peer’s internal structure comprising major services
which were divided into different layers—according to their functional scope. (ii) It indicated
a generic concept to deploy services dynamically at runtime: for example, as every service
may be available in various implementations with different requirements and properties, a
generic and decentralised selection process shall be responsible for identifying the best-fitting
one for a certain host environment. Considering the dynamic code loading service itself, major
components were identified. As overall result, the presented approach supports flexibility at
different architectural design levels: (i) in terms of overall content repository functionality,
(ii) in terms of content (functionality), and (iii) in terms of peer functionality.

This thesis introduced DhtFlex as a method to implement flexible content repository func-
tions in structured P2P overlays. It showed how DhtFlex enables their construction by giving
(i) a suited content mapping, and (ii) a way to implement persistent content storage. DhtFlex
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represents a modular component to ensure the consistency of distributed, replicated data
resources in the face of concurrent updates. A key idea of DhtFlex to enable flexible and
efficient data operations is its stated concept of annotated data resources : for example, one
the one hand, DhtFlex provides atomic operations on replicated mutable data resources; on
the other hand, DhtFlex is able to distinguish immutable data resource to support more effi-
cient data processing for them. DhtFlex allows the definition of fine-grained policies per data
resource and supports consistent adjustment of a data resource’s replication group (recasting).
It supports consistent put operations and consistent get operations.
This thesis introduced reconfigurable P2P service groups as a method to implement flexible

content repository functions in hybrid P2P overlays. That is, such groups represent some kind
of clusters in a structured overlay back-end. It was shown how P2P service groups enable
the construction of content repository functions by giving (i) a suited content mapping, and
(ii) a way to implement persistent content storage; especially, how P2P service groups may be
used as indexing peers to consistently administrate replicated metadata of a repository. The
described lifecycle management of P2P service groups provides methods to cope with all states
of their lifecycle process: (i) creation, (ii) execution, (iii) reconfiguration, and (iv) breakup. It
was explained how decentralised dynamic code loading may enable a service group member to
dynamically load locally not available but required service functionality—implementing the
concept for dynamic service integration. In addition, a reconfigurable group communication
component based on fault-tolerant consensus algorithms was presented: (i) the component
supports to be tailored to application-specific and environment-specific requirements. (ii) The
component efficiently enables dynamic (policy-based) runtime reconfiguration of all these cus-
tomising without service interruption or weakening of consistency guarantees—transparent to
the application level.
This thesis evaluated its presented architecture and methods for content management in P2P

systems. On the one hand, the architecture was evaluated using qualitative considerations—
for example, analysing properties which are not observable at system runtime. One the other
hand, the methods were mostly described by quantitative observations. The P2P content repo-
sitory system architecture was evaluated considering (i) used architectural styles, (ii) selected
quality attributes, and (iii) introduced scenarios. As result, the architecture is suited for being
deployed in both the cross-enterprise business collaboration scenario, and the intra-enterprise
knowledge management scenario. The introduced methods for flexible content repository func-
tions in structured P2P overlays were evaluated—on the basis of DhtFlex—regarding (i) reli-
ability, (ii) consistency, (iii) reconfigurability, (iv) scalability , and (v) performance. Similarly,
the methods for flexible content repository functions in hybrid P2P overlays were evaluated—
on the basis of P2P service groups—respecting (i) reliability, (ii) consistency, (iii) reconfigura-
bility, (iv) scalability , and (v) performance. The architecture is able to support both local
and remote storage at persistent storage layer and to integrate both overlay approaches. As
result, in dependence of the favoured non-functional requirements, for example, performance
properties, evaluation findings especially recommend the usage of methods for structured P2P
overlays for operations with shallow operational scope. In contrast, methods for hybrid P2P
overlays are recommended for operations with deep scope.
In consequence, the approach has led to the statement of several research challenges (com-

pare Section 1.2), which are briefly reflected in the following.

Content Model Research challenges on flexible content management motivated the reflec-
tion of different content characteristics and relationships.

Research challenges A.1. and A.2. are basically addressed by the introduced content
repository model (Section 3.2) and the generic content mapping concept (Section 4.3).
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For example, UUIDs may be used to identify item instances; item typecasting may enable
to define content policies (as degree of fragmentation, distribution, or replication). The
used naming scheme enables to hide the details of fragmentation.

Research challenge A.3. is supported by the generic content repository architecture (Sec-
tion 4.2). It provides location transparency by providing unified access to (distributed)
content and by separating the naming hierarchy from the hierarchy of storage devices.
For example, an item’s name does not reveal any hint of its physical storage location. It
is enabled to store content data in local storage and to share only metadata resources
in the P2P network. Such resources may be de-referenced on demand.

Content Repository Model Research challenges motivated methods to implement an ade-
quate content repository model. Therefore, they raised both issues regarding functional
and non-functional properties.

Research challenges B.1.a, B.1.c, and B.1.d are reflected by the content repository ar-
chitecture. The architecture was developed with special attention on defining generic
and modular components (see Section 3.1). Scope and functions of its building blocks
were described and their relationships analysed (see Section 3.2 and Section 3.3).

Research challenges B.1.b, B.2.a, B.2.b, B.2.c, B.2.d, B.2.e, and B.2.f are addressed by
the methods for enabling flexible content repository functions in structured and hybrid
P2P overlays. Both methods support concurrent operation of content repository func-
tions without restricting the number of concurrent users. They meet imposed require-
ments on non-functional properties (compare Section 7.3 and Section 7.4) by providing
transparent execution at the same time. For example, reconfigurations of intra-group
mechanisms are transparent for external service consumers (see Section 6.3.3).

P2P Model Research challenges involved the reflection of a P2P environment’s peculiarities.

Research challenge C.1 is supported by P2P service groups. On the one hand, service
groups are intended as a concept to exploit peer heterogeneity by employing certain
peers to work harder. On the other hand, decentralised dynamic code loading of ser-
vice functions enables to equip peers with customised code for increasing performance
(compare Section 6.3.2).

Research challenge C.2 is obeyed by DhtFlex and P2P service groups. For example,
both methods support adaptive behaviour to react to failed peers. DhtFlex may recast
a resource’s replication group. Regarding P2P service groups, their used consensus-
based group communication component supports the changing of peer memberships (see
Section 6.3.3), for instance.

Research challenge C.3 is answered by the introduced generic peer architecture (see
Section 4.4). The approach defines an internal peer structure which is able to support
the dynamic integration of services.

The introduced solutions narrow the tradeoff between the identified requirements of content
repositories and inherent properties of P2P systems. In general, the application of the P2P
paradigm promises scalability benefits. However, the accomplished work of this thesis revealed
that it is difficult to achieve some kind of universally valid balance between non-functional
system properties like reliability, consistency, and performance.
In addition, as respective requirements may change over time and as P2P systems are usually

supposed to be deployed at large-scale, it is even more important to support their modification
by methods for dynamic reconfigurability at runtime.
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Finally, findings of this work recommend to focus on a data-centric approach for content
management in P2P systems and to emphasize the usage of shallow operations if performance
properties are prior-ranking. As an illustration, the resolution of complex data relationships
may induce increasing communication latencies in such decentralised environments.

8.2 Future Work

There are several areas for future work based on the architecture and methods for flexible
content management in P2P systems, as presented in the previous chapters. First of all, the
execution of advanced implementation and stabilisation efforts of the different parts would
be a reasonable step to achieve a competitive overall system. Concrete extensions and future
research directions for individual system parts will be presented in the following.

Import and Export of Content

Future work may consider the development of different methods to support importing and
exporting of different types of content; that is, to support appropriate mappings to the logical
repository model. Thus, a content repository may enable a complete serialization or rather
export of workspace content items: for example, textual items may be exported to an XML
document. Such serialization may affect only a single node and its properties, or even a
whole workspace subtree. The import of content items may act contrariwise to the export of
content items. For instance, a valid XML document may be deserialized, or rather imported
into a workspace of a content repository as an item subtree of some already existing node.
In addition, filters may be implemented enabling the indexing of different content types to
support full-text searching.

Transactions

DhtFlex’s approach is to focus on decentralised consistency issues of single operations per
item resource. However, future work may investigate decentralised execution of multiple
operations—targeting different item resources—in transactional context. As an outlook, lock-
ing functionality may act as a starting point to implement transactional capabilities for a
distributed content repository. The aim of transactions would be to provide a single and
consistent view of shared workspaces to concurrently executed operations. Corresponding
operations may be encapsulated into the context of a transaction, which represents a single
logical operation and is executed as if there exists some global, serial order of transaction
processing. In general, transaction execution should guarantee the four ACID properties:
atomicity, consistency, isolation, and durability.

Content Transfer and Proactive Resources

Section 4.3 introduced the item naming concept which enables flexible, policy-based content
distribution, for example, to separately store large binary data at certain host locations.
Future work may standardise flexible content data policies and may integrate sophisticated
data transfer protocols like BitTorrent [57] to be used on demand. In addition, (continuous)
content streams may be supported. As especially media content usually varies in quality
aspects, the support of content distribution should respect different network bandwidths to
deliver different quality of service.
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This thesis considers raw (data) resources. Future work may support some kind of proactive
data resources which fetch their content dynamically at runtime; for example, either on de-
mand or at some periods of time. This may benefit (future) industry scenarios, for instance,
considering the support of sensor networks.

Data Retrieval

This thesis showed the enabling of query access to content items by using the presented
methods for distributed content management. On the one hand, the indicated support, for
example, of complex queries targeted basically the content repository model; thus, additional
work may consider adding support of query languages like SQL by defining corresponding
mappings. On the other hand, the presented methods for distributed content management
provide rather strong semantics for content retrieval, for example, regarding the ensuring of
replica consistency at persistent storage level. However, some applications may profit from the
support of weaker semantic models. For example, queries may be annotated to retrieve any
version of an item resource instead of the latest consistently written one. This would require
developing adequate policies.

P2P Overlay Construction

The thesis motivated the approach to focus on structured and hybrid P2P overlays. One the
one hand, alternative solutions may be further investigated. One the other hand, the over-
lay approach may be specified regarding performance properties like the efficiency of message
routing and data transmission. For example, structured overlays provide good lookup charac-
teristics considering overlay hops. However, as peers are usually geographically distributed,
some overlay hops may be more expensive than others regarding the physical end-to-end path
latency. In addition, real-world physical networks like the Internet often show characteris-
tics of power-law networks, where few nodes act as hubs—showing large numbers of physical
network links—but most nodes have only few physical connection links. It would be inter-
esting to integrate techniques to reflect these characteristics at overlay layer, for example,
using Vivaldi [59].1 Then, some analysis may reveal if such approach would cause side effects
considering reliability, as it may be more probable that peers fail because of network failures
simultaneously.

Data Partitioning and Replication Strategy

Reliability demands usually depend on the selected degree of used redundancy. DhtFlex basi-
cally focuses on providing item-oriented replication for the persistent storage layer; this follows
the item-oriented repository model. Future work may investigate and integrate additional
replication strategies: for instance, block-level replication strategies basically divide an item
object into a sequence of fixed-size data blocks. Thus, block-level replication may enable par-
allel data retrieval to reduce overall transfer latencies and distribution of large objects among
peers to increase overall load balancing. As all blocks need to be available to reconstruct
an object, erasure coding as Tornado codes [42] may be used—this would especially benefit
dealing with large item resources as using erasure coding may be cheaper than applying full
resource replication. However, erasure coding requires actions to maintain encoded blocks
despite peer failures, otherwise, all such blocks may be lost. [189]. For example, usually some

1Vivaldi is a decentralised method that assigns synthetic coordinates to Internet nodes, so that the Euclidean
distance between two nodes’ coordinates predicts the network latency between them.
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kind of global sweep and repair process is used that sequentially scans the whole system to
reconstruct all data on some periodic basis—consuming many resources. In contrast, DhtFlex
may integrate such block-level replication strategy but may be used to trigger corresponding
actions on demand, that is, once peer failures are detected: for instance, repair actions for
different data resources may be executed in parallel.
In addition, if item objects are partitioned to blocks, DhtFlex may force data to be cached at

client site to increase performance properties. For instance, only dirty or locally not available
data blocks may be exchanged between communicating peers; regarding put operations only
differences between old and new content would need to be transferred.

Load Balancing

The presented P2P-based methods may achieve good data resource distribution among peers.
However, some content may be more often remotely accessed than other content: this could
cause (massive) asymmetric loads in the system and force the need for using more sophisti-
cated load balancing strategies as disproportionately high loads for certain peers should be
prevented. For example, anomalies might be resolved with the help of exploiting usage pat-
terns; in addition, distribution of data resources might even more respect a peer’s availability
and capability properties of peer resources, for instance, applying concepts like replica diver-
sion2. Finally, content caching strategies may be investigated to minimise access latencies,
to maximise (query) throughput, and to balance the system’s workload; for example, by the
development of more sophisticated replication techniques. One idea would be the usage of
certain P2P service groups to act as kind of cooperative workspace caches, for instance, to
place data replicas in near areas within the physical network.

Adaptive Fault Tolerance

The evaluation of used replication strategies supposed that peer failures are independent and
uniformly distributed. However, the underlying physical network may influence the availability
of certain peer subsets. Adaptive placement of replicas according to measured or estimated
failure distributions may increase overall system availability. For example, a peer’s physical
location might be respected to benefit robustness of replication groups. That is, in worst case,
replication—even with high degree—may be futile if all peers of the same replication group
reside in the same building and are using the same power access. Thus, a power fault would
lead to the fail of the whole group.
In addition, and similar to concepts used by P2P service groups, DhtFlex might be directed

towards an even more adaptive direction. For instance, DhtFlex might be put in a position to
decide which variant of a recast is used by observing the dynamism of the P2P environment.
Observation strategies might be used to trigger suited reconfiguration actions dynamically at
runtime. Another approach would be to investigate malicious fault scenarios.

Social Computing

The term social computing [53] describes a growing trend in the research disciplines of human-
computer interaction or computer supported collaborative work. It merely comprises systems
that collect, store, process, represent, or disseminate social information that is distributed
within social structures like communities or organisations [104]. The social computing research

2Replica diversion [156] intercepts the allocation of data resources to peers. Instead of storing complete data
resources on certain peers, pointers may be used to address diverted resource locations.
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aims to develop technical infrastructures that utilise social relationships or interactions as
essential system components. This way, social computing may reflect an intersection between
social networks and computer networks. Following this approach, further work may adopt and
extend mechanism provided by the social computing community to increase overall system
performance. For example, the Tribler system [146] employs a recommendation mechanism
to advertise contents for peers with similar taste. This could provide a building block to
construct, for example, social caches and to reduce the problem of hot spots considering
content access: a potential solution would be to enable a peer to read popular content from
other taste buddies.

Security

The thesis does not focus on security issues, so there are several related areas uncovered.
However, the presented P2P-based methods may be used in Internet-scale deployment using
commodity hardware for content storage locations. Section 4.3.1 indicated how access control
lists may be encapsulated in a special area of a resource to support a generic way of access
right management. A minimum security guarantee would be the providing of integrity of
item resources. However, the geographically distributed storage of data in untrusted hosts
may allow unauthorised access; for example, malicious users may use off-line (brute force)
attacks on P2P data resources that have been assigned to their local system. Thus, more
sophisticated security may be ensured by signing data resources before sharing them in the P2P
network using cryptographic techniques as digital signatures. For example, an authentication
infrastructure as X.509 [94] may be integrated to enable building of trust relationships between
peers, that is, for authentication or encryption of content.
The Sybil Attack [69] may harm the robust formation of a replication group or indexing

group: this assumes a scenario where a single attacker is able to convince a P2P system to
represent a large number of individual peers. Beyond the fact that the attacker poses a threat
to the allocation of data resources, the attacker represents a single point of failure concerning
the fail of a single group.
Regarding censorship there may occur the need for securing anonymity at different levels:

(i) anonymity of content producers to prevent identification of authors. (ii) Anonymity of
consumers to hide identification of readers. (iii) Anonymity of storage to mask a peer’s local
content knowledge and to hide the matching of content to certain peers. Here, a meaningful
extension would be to integrate a developed onion routing method [173].
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[162] André Schiper, Kenneth Birman, and Pat Stephenson. Lightweight causal and atomic
group multicast. ACM Trans. Comput. Syst., 9(3):272–314, 1991.
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