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Safety

xiii

This book discusses the operation, commissioning, and troubleshooting of control
systems. Operation of industrial controllers can produce hazards such as the 
generation of

• large amounts of heat,
• high voltage potentials,
• movement of objects or mechanisms that can cause harm,
• the flow of harmful chemicals,
• flames, and
• explosions or implosions.

Unsafe operation makes it more likely for accidents to occur. Accidents can cause
personal injury to you, your co-workers, and other people. Accidents can also damage
or destroy equipment. By operating control systems safely, you decrease the likelihood
that an accident will occur. Always operate control systems safely!

You can enhance the safety of control-system operation by taking the following
steps:

1. Allow only people trained in safety-related work practices and lock-out/
tag-out procedures to install, commission, or perform maintenance on control
systems.

2. Always follow manufacturer recommended procedures.
3. Always follow national, state, local, and professional safety code regula-

tions.
4. Always follow the safety guidelines instituted at the plant where the equipment

will be operated.



xiv � SAFETY

5. Always use appropriate safety equipment. Examples of safety equipment are
protective eyewear, hearing protection, safety shoes, and other protective 
clothing.

6. Never override safety devices such as limit switches, emergency stop switches,
light curtains, or physical barriers.

7. Always keep clear from machines or processes in operation.

Remember that any change of system parameters (for example, tuning gains or
observer parameters), components, wiring, or any other function of the control
system may cause unexpected results such as system instability or uncontrolled system
excitation.

Remember that controllers and other control-system components are subject to
failure. For example, a microprocessor in a controller may experience catastrophic
failure at any time. Leads to or within feedback devices may open or short closed 
at any time. Failure of a controller or any control-system component may cause 
unanticipated results such as system instability or uncontrolled system excitation.

The use of observers within control systems poses certain risks including that 
the observer may become unstable or may otherwise fail to observe signals to an 
accuracy necessary for the control system to behave properly. Ensure that, on control-
system equipment that implements an observer, the observer behaves properly in all
operating conditions; if any operating condition results in improper behavior of the
observer, ensure that the failure does not produce a safety hazard.

If you have any questions concerning the safe operation of equipment, contact the
equipment manufacturer, plant safety personnel, or local governmental officials such
as the Occupational Health and Safety Administration.

Always operate control systems safely!



I n this chapter . . .

• Introduction to observer operation and benefits
• Summary of this book

1.1 Overview
Control systems are used to regulate an enormous variety of machines, products, and
processes. They control quantities such as motion, temperature, heat flow, fluid flow,
fluid pressure, tension, voltage, and current. Most concepts in control theory are based
on having sensors to measure the quantity under control. In fact, control theory is
often taught assuming the availability of near-perfect feedback signals. Unfortunately,
such an assumption is often invalid. Physical sensors have shortcomings that can
degrade a control system.

There are at least four common problems caused by sensors. First, sensors 
are expensive. Sensor cost can substantially raise the total cost of a control system.
In many cases, the sensors and their associated cabling are among the most expensive
components in the system. Second, sensors and their associated wiring reduce the 
reliability of control systems. Third, some signals are impractical to measure. The
objects being measured may be inaccessible for such reasons as harsh environ-
ments and relative motion between the controller and the sensor (for example, when
trying to measure the temperature of a motor rotor). Fourth, sensors usually 
induce significant errors such as stochastic noise, cyclical errors, and limited 
responsiveness.

1

Chapter 1
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Observers can be used to augment or replace sensors in a control system.
Observers are algorithms that combine sensed signals with other knowledge of the
control system to produce observed signals. These observed signals can be more 
accurate, less expensive to produce, and more reliable than sensed signals. Observers
offer designers an inviting alternative to adding new sensors or upgrading existing
ones.

This book is written as a guide for the selection and installation of observers in
control systems. It will discuss practical aspects of observers such as how to tune an
observer and what conditions make a system likely to benefit from their use. Of course,
observers have practical shortcomings, many of which will be discussed here as well.
Many books on observers give little weight to practical aspects of their use. Books
on the subject often focus on mathematics to prove concepts that are rarely helpful
to the working engineer. Here the author has minimized the mathematics while 
concentrating on intuitive approaches.

The author assumes that the typical reader is familiar with the use of traditional
control systems, either from practical experience or from formal training. The nature
of observers recommends that users be familiar with traditional (nonobserver-based)
control systems in order to better recognize the benefits and shortcomings of
observers. Observers offer important advantages: they can remove sensors, which
reduces cost and improves reliability, and improve the quality of signals that come
from the sensors, allowing performance enhancement. However, observers have 
disadvantages: they can be complicated to implement and they expend computational
resources. Also, because observers form software control loops, they can become
unstable under certain conditions. A person familiar with the application of
control systems will be in a better position to evaluate where and how to use an
observer.

The issues addressed in this book fall into two broad categories: design and 
implementation. Design issues are those issues related to the selection of observer
techniques for a given product. How much will the observer improve performance?
How much cost will it add? What are the limitations of observers? These issues will
help the control-systems engineer in deciding whether an observer will be useful and
in estimating the required resources. On the other hand, implementation issues are
those issues related to the installation of observers. Examples include how to tune an
observer and how to recognize the effects of changing system parameters on observer
performance.

1.2 Preview of Observers
Observers work by combining knowledge of the plant, the power converter output,
and the feedback device to extract a feedback signal that is superior to that which can
be obtained by using a feedback device alone. An example from everyday life is when
an experienced driver brings a car to a rapid stop. The driver combines knowledge of
the applied stopping power (primarily measured through inertial forces acting on the



driver’s body) with prior knowledge of the car’s dynamic behavior during braking.
An experienced driver knows how a car should react to braking force and uses that
information to bring a car to a rapid but controlled stop.

The principle of an observer is that by combining a measured feedback signal with
knowledge of the control-system components (primarily the plant and feedback
system), the behavior of the plant can be known with greater precision than by using
the feedback signal alone. As shown in Figure 1-1, the observer augments the sensor
output and provides a feedback signal to the control laws.

In some cases, the observer can be used to enhance system performance. It can 
be more accurate than sensors or can reduce the phase lag inherent in the sensor.
Observers can also provide observed disturbance signals, which can be used to
improve disturbance response. In other cases, observers can reduce system cost by
augmenting the performance of a low-cost sensor so that the two together can provide
performance equivalent to a higher cost sensor. In the extreme case, observers can
eliminate a sensor altogether, reducing sensor cost and the associated wiring. For
example, in a method called acceleration feedback, which will be discussed in 
Chapter 8, acceleration is observed using a position sensor and thus eliminating the
need for a separate acceleration sensor.

Observer technology is not a panacea. Observers add complexity to the system 
and require computational resources. They may be less robust than physical sensors,
especially when plant parameters change substantially during operation. Still, an
observer applied with skill can bring substantial performance benefits and do so, in
many cases, while reducing cost or increasing reliability.
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Figure 1-1. Role of an observer in a control system.
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1.3 Summary of the Book
This book is organized assuming that the reader has some familiarity with controls
but understanding that working engineers and designers often benefit from review of
the basics before taking up a new topic. Thus, the next two chapters will review control
systems. Chapter 2 discusses practical aspects of control systems, seeking to build a
common vocabulary and purpose between author and reader. Chapter 3 reviews the
frequency domain and its application to control systems. The techniques here are 
discussed in detail assuming the reader has encountered them in the past but may 
not have practiced them recently.

Chapter 4 introduces the Luenberger observer structure, which will be the focus of
this book. This chapter will build up the structure relying on an intuitive approach 
to the workings and benefits of observers. The chapter will demonstrate the key
advantages of observers using numerous software experiments.

Chapters 5, 6, and 7 will discuss the behavior of observer-based systems in the 
presence of three common nonideal conditions. Chapter 5 deals with the effects of
imperfect knowledge of model parameters, Chapter 6 deals with the effects of dis-
turbances on observer-based systems, and Chapter 7 discusses the effects of noise,
especially sensor noise, on observer-based systems.

Chapter 8 discusses the application of observer techniques to motion-control
systems. Motion-control systems are unique among control systems, and the standard
Luenberger observer is normally modified for those applications. The details of the
necessary changes, and several applications, will be discussed.

Throughout this book, software experiments are used to demonstrate key points.
A simulation environment, Visual ModelQ, developed by the author to aid those
studying control systems, will be relied upon. More than two dozen models have 
been developed to demonstrate key points and all versions of Visual ModelQ can 
run them. Visit www.qxdesign.com to download a limited-capability version free 
of charge; detailed instructions on setting up and using Visual ModelQ are given in
Chapter 2.

Readers wishing to contact the author are invited to do so. Write 
gellis@qxdesign.com or visit the Web site www.qxdesign.com. Your comments are
most welcome. Also, visit www.qxdesign.com to review errata, which will be regularly
updated by the author.



I n this chapter . . .

• Common control-system structures
• Eight goals of control systems and implications of observer-based methods
• Instructions for downloading Visual ModelQ, a simulation environment that is

used throughout this book
• Introductory Visual ModelQ software experiments

2.1 Control-System Structures
The basic control loop includes four elements: a control law, a power converter, a
plant, and a feedback sensor. Figure 2-1 shows the typical interconnection of these
functions. The command is compared to the feedback signal to generate an error
signal. This error signal is fed into a control law such as a proportional-integral (PI)
control to generate an excitation command. The excitation command is processed 
by a power converter to produce an excitation. The excitation is corrupted by a dis-
turbance and then fed to a plant. The plant response is measured by a sensor, which
generates the feedback signal.

There are numerous variations on the control loop of Figure 2-1. For example, the
control-law is sometimes divided in two with some portion placed in the feedback
path. In addition, the command path may be filtered. The command path may be 
differentiated and added directly (that is, without passing through the control laws) to
the excitation command in a technique known as feed-forward. Still, the diagram of
Figure 2-1 is broadly used and will be considered the basic control loop in this book.

5
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6 � CHAPTER 2 CONTROL-SYSTEM BACKGROUND

2.1.1 Control Laws
Control laws are algorithms that determine the desired excitation based on the error
signal. Typically, control laws have two or three terms: one scaling the present value
of the error (the proportional term), another scaling the integral of the error (the 
integral term), and a third scaling the derivative of the error (the derivative term). In
most cases a proportional term is used; an integral term is added to drive the average
value of the error to zero. That combination is called a PI controller and is shown in
Figure 2-2.

When the derivative or D-term is added, the PI controller becomes PID. Deriva-
tives are added to stabilize the control loop at higher frequencies. This allows the value
of the proportional term to be increased, improving the responsiveness of the control
loop. Unfortunately, the process of differentiation is inherently noisy. The use of the
D-term usually requires low-noise feedback signals and low-pass filtering to be 
effective. Filtering reduces noise but also adds phase lag, which reduces the ultimate
effectiveness of the D-term. A compromise must be reached between stabilizing the
loop, which requires the phase advance of differentiation, and noise attenuation,
which retards phase. Usually such a compromise is application specific. Note that

+

+Control
law

Plant
Power 

converter

Feedback
sensor

Command

Feedback

Response

+ -

DisturbancePowerError
Commanded

Excitation

Excitation

Figure 2-1. Basic control loop.

Command

Feedback

+-

Error
Commanded
Excitation

Ú dt KI

KP

+

PI Control Law

Figure 2-2. PI control law.



when a derivative term is placed in series with a low-pass filter, it is sometimes referred
to as a lead network. A typical PID controller is shown in Figure 2-3.

Other terms may be included in the control law. For example, a term scaling the
second derivative can be used to provide more phase advance; this is equivalent 
to two lead terms in series. Such a structure is not often used because of the noise
that it generates. In other cases, a second integral is added to drive the integral of the
error to zero. Again, this structure is rarely used in industrial controls. First, few 
applications require driving the integral of error to zero; second, the additional 
integral term makes the loop more difficult to stabilize.

Filters are commonly used within control laws. The most common purpose is to
reduce noise. Filters may be placed in line with the feedback device or the control-law
output. Both positions provide similar benefits (reducing noise output) and similar
problems (adding phase lag and thus destabilizing the loop). As discussed above,
low-pass filters can be used to reduce noise in the differentiation process. Filters can
be used on the command signal, sometimes to reduce noise and other times to improve
step response. The improvement in step response comes about because, by removing
high-frequency components from the command input, overshoot in the response can
be reduced. Command filters do not destabilize a control system because they are
outside the loop. A typical PI control law is shown in Figure 2-4 with three common
filters.

While low-pass filters are the most common variety in control systems, other filter
types are used. Notch filters are sometimes employed to attenuate a narrow band of
frequencies. They may be used in the feedback or control-law filters to help stabilize
the control loop in the presence of a resonant frequency, or they may be used to
remove a narrow band of unwanted frequency content from the command. Also,
phase-advancing filters are sometimes employed to help stabilize the control loop
similar to the filtered derivative path in the PID controller.

Control laws can be based on numerous technologies. Digital control is common
and is implemented by programmable logic controllers (PLCs), personal computers

2.1 CONTROL-SYSTEM STRUCTURES � 7
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(PCs), and other computer-based controllers. Because the flexibility of digital 
controllers is almost required for observer implementation and because the control
law and observer are typically implemented in the same device, examples in this book
will assume control laws are implemented digitally.

2.1.2 Power Conversion
Power conversion is the process of delivering power to the plant as called for by the
control laws. Four common categories of power conversion are chemical heat, electric
voltage, evaporation/condensation, and fluid pressure. Note that all these methods 
can be actuated electronically and so are compatible with electronic control laws.

Electronically or electrically controlled voltage can be used as the power source for
power supplies, current controllers for motors, and heating. For systems with high
dynamic rates, power transistors can be used to apply voltage. For systems with low
dynamic rates, relays can be used to switch power on and off. A simple example of
such a system is an electric water heater.

Pressure-based flow-control power converters often use valves to vary pressure
applied to a fluid-flow system. Chemical power conversion uses chemical energy 
such as combustible fuel to heat a plant. A simple example of such a system is a
natural-gas water heater.

2.1.3 Plant
The plant is the final object under control. Most plants fall into one of six major 
categories: motion, navigation, fluid flow, heat flow, power supplies, and chemical
processes. Most plants have at least one stage of integration. That is, the input to 
the plant is integrated at least once to produce the system response. For example, the
temperature of an object is controlled by adding or taking away heat; that heat is 

Command

Feedback

+-

Error

Commanded
ExcitationÚ dt KI

KP

+

PI Control Law

Control-law
filter

Feedback
filter

Command
filter +

Figure 2-4. PI control law with several filters in place.



integrated through the thermal mass of the object to produce the object’s 
temperature. Table 2-1 shows the relationships in a variety of ideal plants.

The pattern of force, impedance, and flow is repeated for many physical elements.
In Table 2-1, the close parallels between the categories of linear and rotational force,
fluid mechanics, and heat flow are evident. In each case, a forcing function (voltage,
force, torque, pressure, or temperature difference) applied to an impedance produces
a flow (current, velocity, fluid flow, or thermal flow). The impedance takes three forms:
resistance to the integral of flow (capacitance or mass), resistance to the derivative of
flow (spring or inductance), and resistance to the flow rate (resistance or damping).

2.1 CONTROL-SYSTEM STRUCTURES � 9

TABLE 2-1 TRANSFER FUNCTIONS OF TYPICAL PLANT ELEMENTS

Electrical

Voltage (E ) and current (I )
Inductance (L) E(s)=Ls¥ I(s) e(t)=L¥di(t)/dt
Capacitance (C ) E(s)=1/C¥ I(s)/s e(t)=e0 +1/C Ú i(t)dt
Resistance (R) E(s)=R¥ I(s) e(t)=R¥ i(t)

Translational mechanics

Position (P), Velocity (V ), and Force (F )
Spring (K ) V(s)= s/K¥F(s) or v(t)=1/K¥df (t)/dt or

P(s)=1/K¥F (s) p(t)=p0 +1/K¥ f (t)
Mass (M ) V(s)=1/M¥F (s)/s v(t)=v0 +1/M Ú f (t)dt
Damper (c) V(s)=F (s)/c v(t)= f (t)/c

Rotational mechanics

Rotary position (q ), Rotary velocity (w), and Torque (T )
Spring (K ) w (s)= s/K¥T(s) or w (t)=1/K¥dT(t )/dt or

q(s)=1/K¥T (s) q (t)=q 0 +1/K¥T(t)
Inertia (J ) w (s)=1/J¥T (s)/s w (t)=w0 +1/J ÚT (t)dt
Damper (b) w (s)=T(s)/b w (t)=T(t)/b

Fluid mechanics

Pressure (P) and fluid flow (Q)
Inertia (I ) P(s)= sI¥Q(s) p(t)= I¥dq(t)/dt
Capacitance (C ) P(s)=1/C¥Q(s)/s p(t)=p0 +1/C Úq(t)dt
Resistance (R) P(s)=R¥Q(s) p(t)=R¥q(t)

Heat flow

Temperature difference (J ) and heat flow (Q)
Capacitance (C ) J (s)=1/C¥Q(s)/s j(t)= j0 +1/C Úq(t)dt
Resistance (R) J (s)=R¥Q(s) j(t )=R¥q(t)
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Table 2-1 reveals a central concept of controls. Controllers for these elements apply
a force to control a flow. When the flow must be controlled with accuracy, a feedback
sensor is often added to measure the flow; control laws are required to combine the
feedback and command signals to generate the force. This results in the structure
shown in Figure 2-1; it is this structure that sets control systems apart from other 
disciplines of engineering.

2.1.4 Feedback Sensors
Feedback sensors provide the control system with measurements of physical quantities
necessary to close control loops. The most common sensors are for motion states
(position, velocity, acceleration, and mechanical strain), temperature states (temper-
ature and heat flow), fluid states (pressure, flow, and level), and electromagnetic 
states (voltage, current, charge, light, and magnetic flux). The performance of most
traditional (nonobserver) control systems depends, in large part, on the quality of the
sensor. Control-system engineers often go to great effort to specify sensors that will
provide responsive, accurate, and low-noise feedback signals. While the plant and
power converter may include substantial imperfections (for example, distortion and
noise), such characteristics are difficult to tolerate in feedback devices.

2.1.4.1 Errors in Feedback Sensors
Feedback sensors measure signals imperfectly. The three most common imperfections,
as shown in Figure 2-5, are intrinsic filtering, noise, and cyclical error.

The intrinsic filtering of a sensor limits how quickly the feedback signal can follow
the signal being measured. The most common effect of this type is low-pass filtering.
For all sensors there is some frequency above which the sensor cannot fully respond.
This may be caused by the physical structure of the sensor. For example, many thermal
sensors have thermal mass; time is required for the object under measurements 

Plant

Ideal
sensor

Intrinsic
filter

Sensor cyclic
error

Power
conversion

Control
laws

Sensor noise

Practical sensor

Command Response

Feedback

+

_

+

+

+

+

Figure 2-5. A practical sensor is a combination of an ideal sensor and error sources.



to warm and cool the sensor’s thermal mass. Filtering may also be explicit as in the
case of electrical sensors where passive filters are connected to the sensor output to
attenuate noise.

Whatever the source of the filtering, its primary effect on the control system is to
add phase lag to the control loop. Phase lag reduces the stability margin of the control
loop and makes the loop more difficult to stabilize. The result is often that system
gains must be reduced to maintain stability in order to accommodate slow sensors.
Reducing gains is usually undesirable because both command and disturbance re-
sponse degrade.

Cyclical error is the repeatable error that is induced by sensor imperfections.
For example, a strain gauge measures strain by monitoring the change in electrical
parameters of the gauge material that is seen when the material is deformed. The
behavior of these parameters for ideal materials is well known. However, there are
slight differences between an ideal strain gauge and any sample. Those differences
result in small, repeatable errors in measuring strain. Since cyclical errors are 
deterministic, they can be compensated out in a process where individual samples of
sensors are characterized against a highly accurate sensor. However, in any practical
sensor some cyclical error will remain. Because control systems are designed to follow
the feedback signal as well as possible, in many cases the cyclical error will affect the
control-system response.

Stochastic or nondeterministic errors are those errors that cannot be predicted. The
most common example of stochastic error is high-frequency noise. High-frequency
noise can be generated by electronic amplification of low-level signals and by con-
ducted or transmitted electrical noise commonly known as electromagnetic interfer-
ence (EMI). High-frequency noise in sensors can be attenuated by the use of electrical
filters; however, such filters restrict the response rate of the sensor as discussed above.
Designers usually work hard to minimize the presence of electrical noise, but as with
cyclical error, some noise will always remain. Filtering is usually a practical cure for
such noise; it can have minimal negative effect on the control system if the frequency
content is high enough so that the filter affects only frequency ranges well above where
phase lag is a concern in the application.

The end effect of sensor error on the control system depends on the error type.
Limited responsiveness commonly introduces phase lag in the control system, reduc-
ing margins of stability. Noise makes the system unnecessarily active and may reduce
the perceived value of the system or keep the system from meeting a specification.
Deterministic errors corrupt the system output. Because control systems are designed
to follow the feedback signal (including its deterministic errors) as well as possible,
deterministic errors will carry through, at least in part, to the control-system response.

2.1.5 Disturbances
Disturbances are undesired inputs to the control system. Common examples include
load torque in a motion-control system, changes in ambient temperature for a 
temperature controller, and 50/60-Hz noise in a power supply. In each case, the

2.1 CONTROL-SYSTEM STRUCTURES � 11
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primary concern is that the control law generate plant excitation to reject (i.e., prevent
response to) these inputs. A correctly placed integrator will totally reject direct-current
(DC) disturbances. High tuning gains will help the system reject alternating-current
(AC) disturbance inputs, but will not reject those inputs entirely.

Disturbances can be either deterministic or stochastic. Deterministic disturbances
are those disturbances that repeat when conditions are duplicated. Such disturbances
are predictable. Stochastic disturbances are not predictable.

The primary way for control systems to reject disturbances is to use high gains in
the control law. High gains force the control-system response to follow the command
despite disturbances. Of course, there is an upper limit to gain values because high
gains reduce system stability margins and, when set high enough, will cause the system
to become unstable.

2.1.5.1 Measuring Disturbances
In the case where the control-system gains have been raised as high as is practical,
disturbance rejection can still be improved by using a signal representing the distur-
bance in a technique known as disturbance decoupling [11, Chap. 7; 26; 27]. Distur-
bance decoupling, as shown in Figure 2-6, is a cancellation technique where a signal
representing the disturbance is fed into the power converter in opposition to the effect
of the disturbance. For the case of ideal disturbance measurement and ideal power

Disturbance
measurement

Control
laws

Feedback
sensor

Plant
Command Error

Commanded
excitation Excitation

Feedback

Disturbance 
decoupling inverts the 
measured disturbances 

and adds it to the 
control law output.

Disturbance

+ _

_ +

++

Power
converter

Response

Figure 2-6. Typical use of disturbance decoupling.



conversion, disturbance decoupling eliminates the effects of the disturbance entirely.
However, for practical systems, the effect of disturbance decoupling is to improve, but
not eliminate, response to disturbances; this is especially true in the lower frequencies
where the disturbance sensor and the power converter are often close to ideal.

For most control systems, direct measurement of disturbances is impractical.
Disturbances are usually difficult to measure and physical sensors carry with them
numerous disadvantages, especially increasing system cost and reducing reliability.
One of the key benefits of observers is that disturbance signals can often be observed
with accuracy without requiring additional sensors. For many applications, only
modest computational resources must be added to implement such an observer. This
topic will be discussed in detail in Chapters 6 and 8.

2.2 Goals of Control Systems
Control systems must fulfill a complicated combination of requirements. A large set
of goals must be considered because no single measure can provide a satisfactory
assessment. In fact, no single set of goals can be defined for general use because of
the variation between applications. However, many common goals are broadly used
in combination. In this section, eight common goals for control systems will be 
discussed. In addition, the role of observers in helping or, in some cases, hindering
the realization of those goals will be discussed.

2.2.1 Competitively Priced
Control systems, like almost all products in the industrial market, must be delivered
at competitive prices. The virtues of a control system will be of little value if the 
application can be served equally well by a less expensive alternative. This is not to
say that a customer will not pay a premium for enhanced performance. However, the
manufacturer offering premium products must demonstrate that the premium will
improve the cost–value position of the final product.

Arguments for observer-based methods can be at either end of the cost–value 
spectrum. For example, if an observer is used to help replace an existing sensor with
one that is less expensive, the argument may be that for a modest investment in 
computational resources, sensor cost can be reduced. In other cases, it can be argued
that observers increase value; for example, value could be increased by providing a
more reliable feedback signal or a more accurate feedback signal that will lead to
improved performance.

Those readers who are leading their companies in the use of observers should
expect that they will have to demonstrate the practical advantages of observers if
they want the methods to be adopted. Bear in mind that observers often produce
undesirable characteristics, such as increased computational costs. At the very least,
they require time to develop and training for staff or customers to learn new methods.

2.2 GOALS OF CONTROL SYSTEMS � 13
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2.2.2 High Reliability
Control systems must be reliable. A proven way to enhance reliability is by reducing
component count, especially connectorized cables. Electrical contacts are among the
least reliable components in many systems. Observers can increase reliability when
they are used to eliminate sensors and their cables.

Observers are not the only alternative for removing sensors. There is a wide variety
of techniques to remove sensors, usually by measuring ancillary states; for example,
the hard-disk-drive industry long ago began employing sensorless technology, elimi-
nating commutation-position1 sensors in PC hard disks by measuring the electrical
parameters of the motor driving the disk. This points out that sensorless is actually
a misnomer; sensorless applications normally eliminate one sensor by relying on
another. Still, the results are effective. In the case of sensorless hard drives, the posi-
tion sensor and its cabling eliminated.

Observers offer a key enhancement for sensorless operation. The problem with
most sensorless schemes is that the signals being measured usually have poor 
signal-to-noise characteristics, at least in some operating conditions. Returning to 
the example of a hard-disk controller, direct (that is, nonobserver-based) voltage 
measurement works well in the disk-drive industry where motor speeds are high so
that the voltages created by the motor are relatively large. These same techniques work
poorly at low speeds so that they cannot be used in many applications.2 Because
observers combine the sensed signals (which may have high noise content) with the
model signals (which are nearly noise free), they can remove noise from the calculated
output, greatly extending the range of sensorless operation. So observers can be the
best alternative to allow the elimination of sensors in some applications, and thus,
they can be an effective way to simultaneously increase system reliability and reduce
cost.

2.2.3 Stability
Control systems should remain stable in all operating conditions. The results of
unstable operation are unpredictable; certainly, it is never desirable and in many cases,
people may be injured or equipment damaged. In addition to maintaining absolute
stability, systems must maintain reasonable margins of stability. For example, a 
temperature controller with low margins of stability may respond to a commanded

1 Note that this discussion relates to position sensing for commutation, the process of channeling current
to produce torque in a motor. Commutation requires only coarse sensing, often just a dozen or so 
positions around the disk. Hard-disk drives use an additional track on the disk itself for the fine position
sensing, which allows the much more accurate location of data on the disk surface.
2 This voltage, called the back-electro-motive force or back-EMF, is produced by motors in proportion to
the moving magnetic field of the motor. In most cases, the back-EMF is proportional to the speed of the
motor. Thus, at low speed, the back-EMF signal is low and noise has a greater effect.



temperature change of 5° by generating oscillatory changes of 5° or 10° that die 
out only after minutes of ringing. Such a system may meet an abstract definition of
stability, but it would be unacceptable in most industrial applications. Margins of
stability must be maintained so that performance can be predictable. Two common
measures of stability, phase margin and gain margin, will be discussed in Chapter 3.

Observers can improve stability by reducing the phase lag within the control loop.
For example, the process of converting a sensor signal often involves filtering or other
sources of phase lag. In the motion-control industry, it is common to use the simple
difference of two position samples to create a velocity signal. Such a process is well
known to inject a time delay of half the sample time. By using an observer this phase
delay can be removed. In applications requiring the highest performance, the removal
of this phase lag can be significant.

2.2.4 Rapid Command Response
Command response measures how well the response follows a rapidly changing
command. Most control systems follow slowly changing commands well but struggle
to follow more rapidly changing signals. In most cases, it is considered an advantage
for a control system to follow rapid commands accurately.

A key measure of system response is bandwidth. The bandwidth is defined as the
frequency where the small signal response falls to 70.7% of the DC response. To find
the bandwidth of a control system, create a sinusoidal command at a relatively low
frequency and measure the amplitude of the response. Increase the frequency until
the amplitude of the response falls to 70% of the low-frequency value; this frequency
is the bandwidth.

The most common way to improve command response is to raise the gains of the
control laws. Higher gains help the system follow dynamic commands but simulta-
neously reduce margins of stability. Tuning, the process of setting control-law gains,
is often a compromise between command response and margins of stability. As 
discussed above, observers can increase margins of stability and thus allow in-
crementally higher gains in the control law.

2.2.5 Disturbance Rejection
Disturbance rejection is a measure of how well a control system resists the effect 
of disturbances. As with command response, higher gains help the system reject 
disturbances, but they reduce margins of stability. Again, tuning control-law gains
requires a compromise of response and stability.

Observers can help disturbance rejection in two ways. As with command response,
disturbance response can be improved incrementally through higher control-law gains
when the observer allows the removal of phase lag. Second, as discussed in 
Section 2.1.5.1, observers can be used to observe disturbances, allowing the use of
disturbance decoupling where it otherwise might be impractical.
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2.2.6 Minimal Noise Response
Noise response is a measure of how much the control system responds to noise inputs.
The problem may be in the plant response where the concern is that the noise unduly
corrupts the system output. On the other hand, the concerns may be with noise 
generated by the power converter. Noise fed into the control law via the command,
feedback, and control-laws calculations is transferred to the power converter where 
it can create high-frequency perturbations in the power output. That noise can be
objectionable even if the plant filters the effect so much that it does not measurably
affect the system response. For example, noise in a power supply may generate high-
frequency current perturbations that cause audible noise. Such noise may make the
noise generation unacceptable, even if final filtering components on the power 
supply output remove the effect of the noise on the power supply’s output voltage.

The concern with noise response is usually focused on response to high-frequency
signals. High system gain is desirable at lower frequencies. A control system is
expected to be responsive to signals at and below the system bandwidth. Well above
the bandwidth, high gain becomes undesirable. The output does not respond to the
input in any useful way (because it is greatly attenuated), but it still passes high-
frequency noise, generating undesirable perturbations, audible noise, and unnecessary
power dissipation. Lower gain at frequencies well above the bandwidth is equivalent
to improved (reduced) noise response.

The first step to reducing noise response is reducing the amplitude of the noise
feeding the control system. This may come by improving system wiring, increasing
resolution of digital processes, or improving power supply quality to the sensors and
control laws. After this path has been exhausted, the next step is usually to filter noise
inputs. Filters are effective in reducing noise, but when filters are in the control loop,
they add phase lag, reducing margins of stability; control-law gains often must be
reduced to compensate. Since margins of stability must be maintained at an accept-
able level, the end effect is that filtering often forces control-law gains down.

Observers can exacerbate problems with sensor-generated noise. One reason is that
one of the primary benefits of observers is supporting increased control-law gains
through the reduction of phase lag. The increase of control-law gains will directly
increase the noise susceptibility of the typical control system. In addition, observers
often amplify sensor noise above the bandwidth of the sensor. The details of this effect
are complicated and will be explained in Chapter 7. For the present, readers should
be aware that observers often will not work well in systems where sensor noise is a
primary limitation.

2.2.7 Robustness
Robustness is a measure of how well a system maintains its performance when system
parameters vary. The most common variations occur in the plant. As examples, the
capacitance of a power supply storage capacitor may vary over time, the rotational



inertia of a mechanism may vary during different stages of machine operation, and
the amount of fluid in a fluid bath may vary and change the thermal mass of the bath.
The control system must remain stable and should maintain consistent performance
through these changes. One challenge of observer-based techniques is that robustness
can be reduced by their use. This is because observers rely on a model; when the 
plant changes substantially and the model is not changed accordingly, instability 
can result. Thus, robustness should be a significant concern any time observers are
employed.

2.2.8 Easy Setup
Control systems should be easy to set up. One of the realities of modern industry is
that the end users of control systems are often unfamiliar with the principles that
make those systems work. This can be hard for control-system designers to accept. It
limits the use of novel control methods because those people further down the
product-use chain (for example, technicians, salespeople, and end users) may not fully
understand why these methods are useful or how they should be configured. Certainly,
observers fit into this class of solutions. In many cases, after they have been imple-
mented, tested, and shown to be effective, they still must be clearly explained to be
ultimately successful. In addition, designers must strive to keep observers easy to set
up. Observers are software-based closed loops with control laws that must be tuned;
as will be discussed, this process can be simplified by careful design.

2.3 Visual ModelQ Simulation Environment
When learning control-system techniques, finding equipment to practice on is 
often difficult. As a result, designers must often rely on computer simulations. To this
end, the author developed Visual ModelQ, a stand-alone, graphical, PC-based 
simulation environment, as a companion to this book. The environment provides
time-domain and frequency-domain analysis of analog and digital control systems.
Visual ModelQ is an enhancement of the original ModelQ in that Visual ModelQ
allows readers to view and build models graphically. More than two dozen Visual
ModelQ models were developed for this book. These models are used extensively 
in the chapters that follow. Readers can run these experiments to verify results 
and then modify parameters and other conditions so they can begin to experiment
with observers.

Visual ModelQ is written to teach control theory. It makes convenient those 
activities that are necessary for studying controls. Control-law gains are easy to
change. Plots of frequency-domain response (Bode plots) are run with the press of a
button. The models in Visual ModelQ run continuously, similar to the way real-time
controllers run. The simulated measurement equipment runs independently so 
parameters can be changed and the effects seen immediately.

2.3 VISUAL MODELQ SIMULATION ENVIRONMENT � 17
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2.3.1 Installation of Visual ModelQ
Visual ModelQ is available at www.qxdesign.com. The unregistered version is 
available free of charge. While the unregistered version lacks several features, it can
execute all the models used in this book. Readers may elect to register their copies of
Visual ModelQ at any time; see www.qxdesign.com for details.

Visual ModelQ runs on PCs using Windows 95, Windows 98, Windows 2000,
or Windows NT. Download and run the executable file setup.exe for Visual ModelQ
V6.0 or later. Be aware that the original version of ModelQ is not compatible with
Visual ModelQ. Note that Visual ModelQ comes with an online help manual. After
installation, read this manual. Finally, check the Web site from time-to-time for
updated software.

2.4 Software Experiments: Introduction to Visual ModelQ
The following section will review a few models to introduce the reader to Visual
ModelQ.

2.4.1 Default Model
When Visual ModelQ is launched, the default model is automatically loaded. The
purpose of this model is to provide a simple system and to demonstrate a few 
functions. The default model and the control portion of the Visual ModelQ
environment are shown in Figure 2-7.

The model compilation and execution are controlled with the block of three
buttons at the upper left of the screen: compile (green circle), stop execution (black

Default model

Figure 2-7. Screen capture of Visual ModelQ environment showing the default model.



square), and start execution (black triangle). These blocks, with the current execution
time (here, 9.16051seconds), are shown in Figure 2-8. If a model must be compiled
before it can be run, the green circle will turn red. The circle will turn red at launch
and anytime either a block or a wire is added to or taken away from the model. Any
time a model is recompiled, the model timer will return to 0 seconds and all default
values of model blocks will be reloaded.

The default model is detailed in Figure 2-9. There are four blocks, two of which
are connected with a wire:

• Solver: The solver configures the differential-equation solver used to simulate
system components. Note: One and only one solver is required for every 
model.

• Scope: The main scope provides a display for up to eight channels of input.
The workings of the scope and its trigger mechanism are similar to those of a
physical oscilloscope. Note: At least one scope is required for every model.

• Waveform Generator: The waveform generator can be used to generate 
standard waveforms such as sine waves and triangle waves. Frequency, ampli-
tude, and phase are all adjustable while the model is running. The generator
here is set to produce a square wave at 10Hz.
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• Live Scope: The Live Scope displays its output on the block diagram. Live 
Scope variables automatically display on all main scope blocks as well. Notice
in Figure 2-7 that a short wire connects the output of the waveform generator
to the input of the scope; this connection specifies that the Live Scope should
plot the output of the waveform generator.

2.4.1.1 Viewing and Modifying Node Values
Blocks have nodes, which are used to configure and wire the elements into the model.
For example, the solver block, shown in Figure 2-10, has two nodes. There is a con-
figuration node (a green diamond) at the left named h. This node sets the sample time
of the differential-equation solver. The sample time is set to 10 ms by default.

The solver block includes a documentation node (a rectangle) at the right. The 
documentation node, which is provided on almost all Visual ModelQ blocks, allows
the user to enter notes about the block for reference. The name of the block, Solver
in this case, is shown immediately below the block. The user can change the 
name of any Visual ModelQ block by positioning the cursor within the name and
double-clicking.

There are several ways to read the values of nodes such as the h node of the sample
block. The easiest is to use fly-over help. After the model is compiled, position the
cursor over the node and the value will be displayed in a fly-over block for about a
second, as shown in Figure 2-11.

The value of configuration nodes can be set in two ways. One way is to place the
cursor over the node and double-click. The Change/View dialog box is then displayed
as shown at the top right of Figure 2-12. The value can be viewed and changed from
this dialog box.

The second way to set values is to use the Block set-up dialog box. Right-click in
the body of the block; this brings up a pop-up menu as is shown center left in 

h node Documentation node

Name

Figure 2-10. Detail of Solver node.

Figure 2-11. Visual ModelQ provides fly-over help for nodes.



Figure 2-12. Select the Properties item in that menu to bring up the Block set-up dialog
box. This box will show the value of all the nodes in the block. Click on the value to
bring into view the Change/View dialog box.

2.4.1.2 The WaveGen Block
The WaveGen block has ten nodes, as shown in Figure 2-13. The nodes are:

• Waveform: Select initial value from several available waveforms such as sine or
square waves.

• Frequency: Set initial frequency in Hertz.
• Amplitude: Set initial value of peak amplitude. For example, setting the 

amplitude to 1 produces an output of ±1.
• Enable: Allows automatic disabling of the waveform generator. When the value

is 1, the generator is enabled. When 0, the generator is disabled. For digital
inputs such as this node, Visual ModelQ considers any value greater than 0.5
to be equivalent to 1 (true); all values less than or equal to 0.5 are considered
equivalent to 0 (false). This function will be especially useful when taking Bode
plots since all waveform generators should be disabled in this case.

• Output: Output signal of waveform generator.
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Figure 2-12. Two ways to change the h parameter of the solver block.
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• Offset: Initial value by which the waveform generator output should be offset.
• Phase: Initial value of waveform phase, in degrees, of the waveform generator.

For example, if the output is a sine wave, the output will be:

• Duty cycle: Initial value of percentage duty cycle for pulse waveforms.
• Multiplier: Value by which to multiply waveform generator output. This is 

normally used for unit conversion. For example, most models are coded in
Systeme International (SI ) units. If the user finds RPM more convenient for
viewing than the SI radians/second, the multiplier can be set to 0.105 to convert
RPM (the user units) to radians/second (SI units). The multiplier node is
present in most instruments such as scopes and waveform generators to 
simplify conversion to and from user to SI units.

The Enable node of the WaveGen block is an input node, as the inward-pointing
triangle indicates. Input nodes can be changed while the model is running and they
can be wired in the model. Neither of these characteristics is true of configuration
nodes (those shaped like diamonds).

Using the block set-up dialog box can speed the setup of more complicated 
blocks such as the WaveGen. The WaveGen block set-up dialog is shown in 
Figure 2-14. The benefit of the block set-up dialog is that all of the parameters are 
identified by name and can be set one after the other. Notice that the first node in 
the dialog, Output, cannot be changed (the button at right allows only “View . . .”).
This is necessary because some nodes, such as output nodes, cannot be configured
manually.

Output Amplitude * sin Frequency 2 t Phase 180 Offset.= ¥ ¥ + ¥( ) +p p

Frequency

Waveform

Amplitude

Enable

Phase

Offset Multiplier

Duty Cycle

Output

Documentation

Figure 2-13. The waveform generator has 10 nodes.



The parameters of the waveform generator set in the nodes are only initial 
(precompiled) values. To change the configuration of the waveform generator when the
model is running, double-click anywhere inside the block and bring up the real-time
WaveGen control panel. This panel, shown in Figure 2-15, allows six parameters of
the waveform to be changed while the model is running. The buttons marked “<” and
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Figure 2-14. Block set-up dialog box for the waveform generator.

Figure 2-15. Waveform generator control panel which is displayed by double-clicking on the WaveGen
block after the model has been compiled.
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“>” move the value up and down by about 20% for each click. Changing these values
has no permanent affect on the model; each time the model is recompiled, these values
will be returned to the initial values as specified by the nodes.

2.4.1.3 The Scope Block
The Scope block, with a list of its nodes, is shown in Figure 2-16. Most of the nodes
set functions that are consistent with laboratory oscilloscopes and thus will be 
familiar to most readers. One node that should be discussed is the Trigger Source
node. This node sets the initial variable that will trigger the scope when the scope
mode is set to Auto or Normal. If this variable is not set prior to compiling the 
model, a warning will be generated. To eliminate this warning, simply double-click on
the node and select a variable from a drop-down list to trigger the scope. Choose from
any Variable or Live Scope, as shown in Figure 2-16.

The scope display is normally not visible. However, it can be made visible by
double-clicking inside the scope block after the model has been compiled. The block
can be made not visible by clicking the “X” icon at the top right of the scope window.

The scope display provides two tabs: Scale and Trigger. The Scale tab (shown in
Figure 2-17) provides control of the horizontal and vertical scaling. The Trigger tab
provides various trigger settings. At the bottom of the scope there are a few controls.
Starting at the bottom left of Figure 2-17:

Trigger Level

Trigger Source

Trigger Mode

Roll?

x vs. y?

Time/division

Horizontal Channel (for x vs. y)

Single Shot

Documentation

Trigger PositionTrigger Slope

OR

Figure 2-16. The Trigger Source of a Scope can be set to any variable (such as Variable6 ) or any 
Live Variable (such as LiveVariable3 ).



• the Trig button flashes green for each trigger event;
• the sunglasses button hides the control panel at left, maximizing the display

area of the plot;
• the single-shot check box enables single-shot mode;
• the scale-legend control button turns the scale legend (immediately below the

plot) on and off;
• the three cursor buttons select 0, 1, or 2 cursors.

Note that single-shot mode stops the model from running after the scope screen
has filled up. Restart the model using the Run (black triangle) button after each 
single-shot event.

2.4.1.4 The Live Scope Block
The default model also includes a Live Scope block, as shown in Figure 2-18. The
input comes in at top left, with the scale, offset, and time scale set in the nodes just
below that. The Show node determines whether the variable in the Live Scope is 
displayed in the main scopes after each compile (note that variables that display in a
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Figure 2-17. Output of main scope in default model.
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Live Scope also can be displayed in any main scope block). The Mult node specifies
a multiplier, which scales the variable before plotting.

The next five nodes are trigger nodes. The Trigger Source node specifies the signal
that triggers the Live Scope. If this variable is unwired, the Input (first) node will 
be used as the trigger. Most of the remaining nodes have equivalent functions on 
standard oscilloscopes except the last two nodes, Width and Height, which set the 
size of the Live Scope block in pixels.

Live Scopes provide simple display features compared to the main scope block, and
there are several limitations. No more than two channels can be displayed using a Live
Scope. There are fewer trigger options. Another limitation is that Live Scopes only
show input vs time; there is no option for Input1 vs Input2 (x vs y) as there is for the
main Scope blocks.

The Live Scope also has several advantages. First, the wiring to a Live Scope makes
it clear which variable is being plotted; this makes the display more intuitive, espe-
cially in larger models. Second, because the result is displayed on the model, it is often
easier to convey information to others using the Live Scope. It is this reason that
caused the author to prefer the Live Scope to the standard scope throughout this
book. Finally, almost all of the Live Scope parameters are input nodes, and all input
nodes can be wired into the circuit. This means that a model can be constructed to
automatically change those values as the model executes.

2.4.2 Experiment 2A: Simple Control System
The remainder of this chapter will discuss three experiments written to introduce 
the reader to control-system modeling in Visual ModelQ. Experiment 2A is a simple
control system. The model diagram is shown in Figure 2-19. The model is comprised
of several elements:

Input
Scale

OffsetTime/
DivShow

Mult

Size
(W,H)

Mode
Pos.

Slope
LevelSource

Trigger Nodes

Figure 2-18. Detail of the Live Scope nodes.



• A waveform generator, which produces the command.
• A summing junction, which compares the command and the feedback (output

from the feedback filter) and produces an error signal.
• A PI control law, which is configured with two Live Constants, a proportional

gain, KP, and an integral gain, KI. These blocks will be discussed shortly.
• A filter simulating the power converter. The power converter is a two-pole low-

pass filter set for a bandwidth of 800Hz and with a zeta (damping ratio) of 0.707.
• An integrating plant with an intrinsic gain of 500.
• A filter simulating the feedback conversion process. The feedback filter is a two-

pole low-pass filter set with a bandwidth of 350Hz and with a zeta of 0.707.
• A two-channel Live Scope that plots command (above) against actual plant

output (below).
• A solver and scope, both of which are required for a valid Visual ModelQ

model.

2.4.2.1 Visual ModelQ Constants: Many Ways to Change Parameters
Visual ModelQ provides numerous ways to change model parameters. Of course, any
unwired node can be changed by double-clicking on a node or right-clicking and
bringing up the Block set-up dialog box (see Figure 2-12). However, numerous blocks
are provided to simplify the task of changing node values.
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Figure 2-19. Experiment 2A: Visual ModelQ model of a simple control system.
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The Constants tab in the Visual ModelQ environment (top of Figure 2-7) currently
provides seven constant types: simple constants, standard and inverse Live Constants,
simple scaling constants, standard and inverse scaling Live Constants, and string con-
stants. The selection buttons for each of these constants are shown in Figure 2-20,
which is a screen capture of the top portion of the Visual ModelQ environment.

Live Constants, such as KP and KI in the PI controller of Figure 2-19, provide the
most control. The icons of blocks have a “<< >>” symbol. After the model has com-
piled, double-click anywhere inside the block and the adjustment box of Figure 2-21
will appear. Using the adjustment box, the value of the parameter can be changed
while the model runs. A new value can be typed in with the keyboard by clicking the
cursor in the value edit box. (Note that when using the keyboard, the new value does
not take effect until the enter key is hit.) In addition, there are six logarithmic adjust-
ment buttons in the adjustment box. The double less-than block (<<) reduces the value
to the next lowest value with the first digit being 1, 2, or 5. For example, if the value
of the variable is 1.75, clicking “<<” will change the value to 1, clicking again will
reduce it to 0.5, clicking again will reduce it to 0.2, and so on. Each click reduces 
the value approximately by half. The double greater-than (>>) performs a similar 
function except it moves to the next higher value: 1, 2, 5, 10, 20, and so on.

Simple constant

Live Constant
Inverse 

Live Constant

String 
Live Constant

Inverse scale-by
Live Constant

Scale-by 
Live ConstantSimple scale-by 

constant

Figure 2-20. Selecting from among the many constants available in Visual ModelQ.

Logarithmic
adjust buttons

Edit box with
current value
of constantChange sign

(disabled for
this constant)

Figure 2-21. Adjustment box appears when double-clicking a Live Constant any time after 
the model has been compiled.



The remaining adjust buttons are straightforward. The bold single less-than button
reduces the value of the variable by about 20% for each click; the nonbold single less-
than button reduces the value by about 4%. The bold and nonbold single greater-than
blocks perform a similar function, only raising the value. If the parameter can take
on values of both signs, the +/- button will be enabled, allowing a change in sign at
the click of a button.

The Live Constant model block and its nodes are shown in Figure 2-22. The initial
value node specifies the value that the constant is reset to after each compile. The
minimum and maximum nodes specify the range that the input can take on. The 
multiplier and documentation nodes are standard Visual ModelQ nodes. The output
makes available the value of the Live Constant so it can be wired in the model. The
value displayed in text inside the block is not scaled by the Mult node, while the value
in the output node is.

2.4.2.2 Inverse Live Constants
The inverse Live Constant works like the standard Live Constant except the output is
one divided by the parameter value and then multiplied by the value of the Mult node
(Figure 2-23). This constant is used when the model needs to scale by the inverse (1/x)
of the parameter value such as is usually the case for mass, moment of inertia, thermal
mass, capacitance, inductance, and many other physical parameters. The inverse Live
Constant is a space-saving alternative to combining a standard Live Constant and a
1/x block.
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Minimum value

Initial value

Maximum value

Mult

Output
Documentation

Constant name

Figure 2-22. Detail of a Live Constant.

1/K indicates 
“Inverse Live Constant.”

Figure 2-23. Inverse Live Constant generates divided output.
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2.4.2.3 Scale-by Live Constants
Scale-by Live Constants are similar to Live Constants except that the output 
node is the product of an input node and the value of the constant. In fact, if the
input node is set to one, scale-by Live Constants behave identically to standard 
Live Constants. The two scale-by Live Constants (standard and inverting) are shown
in Figure 2-24.

2.4.2.4 String Constants
String constants allow the model constants to be adjusted as strings. The user selects
a string from a list and the string Live Constant block outputs an integer value accord-
ing to the position in the list occupied by the selected string. For example, the string
Live Constant named Select XN in Figure 2-25 is configured to allow the user to select
one of four strings: X0, X1, X2, and X3. Depending on which constant the user selects,
the output node will be 0, 1, 2, or 3, according to the position of the string within the
list.

The string Live Constant node is configured with two input nodes on the left side
of the block. The Strings node should be filled first; double-click on this node and
type in a list of string constants. The Strings node dialog box for the block of
Figure 2-25 is shown in Figure 2-26. There is no specific limit on constant length or
on the number of strings that one string Live Constant can hold. Next, select the Live 
Constant’s initial string by double-clicking on the upper left node.

The string Live Constant is often used with an analog switch, as is the case in 
Figure 2-25. The switch has a control node at top center, the value of which deter-
mines which of the four inputs at left is routed to the output: moving from top to
bottom, 0 selects the first input, 1 the second, and so on. In the case of Figure 2-25,
Select XN is equal to X1, as is indicated inside the string Live Constant block. This
produces an output of 1, which is fed to the switch control node. That causes the 
Position-1 (second) input node to be connected to the output node of the switch block.
Figure 2-25 also has an Inspector block, which can display the value of any node.
Here, the inspector shows that output of Switch4 is 10.01, matching the value of the
Live Constant X1 which is connected to the Position-1 input node. Note that the
naming of the four Live Constants at left to match the list of strings in Select XN is
for clarity and has no effect on the operation of the model.

(a) (b) 

Input Node Input Node

Figure 2-24. Standard (a) and inverse (b) scale-by Live Constants.



2.4.2.5 Simple Constants
The last Visual ModelQ constants are the simple constants. These constants are similar
to the Live Constant. However, the simple constants do not support the adjustment
box of Figure 2-21; changes to the value are made via double-clicking on the input

2.4 SOFTWARE EXPERIMENTS: INTRODUCTION TO VISUAL MODELQ � 31

Double click 
anywhere in string Live 

Constant block for the string 
adjustment box

String
Live Constant
output node

(current 
value = 1)

Initial Value

Strings

Switch4 outputs 10.01,
the value of X1, because

X1 is selected by the
string Live Constant.

Figure 2-25. A string Live Constant outputs an integer based on user-selected character strings.

Since X1
occupies

Position 1
in the list,

selecting X1
causes “1”

to be output 
from the

output node

0

1

2

3

Position

Figure 2-26. The user types in a string list to configure the string Live Constant block.



32 � CHAPTER 2 CONTROL-SYSTEM BACKGROUND

node. (Note that changing a node value is permanent after the model is saved.) Also,
neither maximum nor minimum limits can be set. The simple constants take a little
less screen space than a Live Constant in the model diagram. Use the simple constant
for parameters that are changed only occasionally. The simple constant is shown in
Figure 2-27; the simple scale-by constant adds scaling.

2.4.2.6 Hot Connections on a Live Scope
The Live Scope supports a feature called hot connection. Anytime the model is run-
ning, double-click on the Live Scope and a Live Scope control panel will appear.
Click “Hot Connect” to close the dialog box; move the mouse over any wire or
input–output node in the model and click. The Live Scope will temporarily graph the
value of that node or wire; the scope outline will turn green to indicate that the scope
is in hot connect mode. (For two-channel Live Scopes, Channel 1 displays the hot con-
nection; Channel 2 is unaffected.) Click “Restore Scope” in the Live Scope control
panel or recompile the model to restore the scope to its original display. Note that the
scope scale and offset nodes may need to be adjusted to view the signal; any changes
to scaling and offset will be restored when the scope is restored. The operation of hot
connection is displayed in Figure 2-28. Hot connections are especially useful when
debugging a model, as wires and nodes can be viewed without adding a scope, which
forces recompilation.

2.4.3 Command Response and Control-Law Gains
Visual ModelQ is designed to simplify the process of evaluating the effects of para-
meter value variation. This is a common need when modeling control systems, for
example, in the tuning process. Tuning is the adjustment of control-loop gains to
achieve optimal performance. It is often carried out in working systems (and in
models) by observing the effect of numerous incremental changes of control-law
gains. For example, in Experiment 2A, KP might be adjusted up and down in small
steps while observing the effect on the step response. Experiment 2A is constructed
to make this process fast and simple.

The two components of Experiment 2A that simplify tuning are the Live Constant
and the Live Scope. After model compilation, double-clicking on the Live Constant
named KP brings up the KP adjustment box, which allows rapid changes of value,

Input node Output node

Mult node

Figure 2-27. The simple constant.



perhaps one per second. Compare this to standard modeling environments where the
model must be stopped, modified, and recompiled. A simple change can take on the
order of a minute. In addition, the Live Scope gives immediate feedback of the effect
of the new parameter, without the need for the user to issue a command to display a
plot. To experiment, launch Visual ModelQ. Click File, Open . . . to open the model
Experiment_2A.mqd. Click Run. Double-click on the KP block and use the << and >>
buttons to move the value up and down. The results should be equivalent to those
shown in Figure 2-29.

2.4.4 Frequency Domain Analysis of a Control System
Control systems often need to be analyzed in the frequency domain. The most 
intuitive method of frequency-domain analysis for most people is the Bode plot,
which graphs gain and phase across a range of frequencies. A gain plot displays the
amplitude of an output signal divided by the amplitude of the input signal at many
frequencies as if sine waves at many frequencies had been applied to the model. A
phase plot displays the time lag of the output compared to the input for many sine
waves. In the laboratory, the instrument that is commonly used to generate Bode plots
is called a dynamic signal analyzer (DSA). Visual ModelQ provides a DSA, which is
used regularly in Chapters 4 through 8. Experiment 2B, shown in Figure 2-30, is
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The Live Scope normally shows Command, 
but Hot Connect can temporarily display power converter output,

without recompiling or even stopping the model.

Scope outline turns green to
indicate Hot Connect mode.

Figure 2-28. Hot connect allows temporary reconfiguration of Live Scopes while the model executes.
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Experiment 2A modified to include a DSA, which is shown just right of the wave-
form generator.

2.4.4.1 The Visual ModelQ DSA
The DSA is wired in line with the excitation path. In most cases, the DSA is used to
analyze command response and so will normally be inserted in line with the command
as it is in Figure 2-30. All DSAs read all model variables, no matter how they are
wired. In Visual ModelQ, the term variables includes three types of signals:

a)  KP = 1 b)  KP = 2 b)  KP = 0.5

Command

Response

Figure 2-29. Results of varying KP in Experiment 2A.

Figure 2-30. Experiment 2B: Experiment 2A with a DSA.



• The input to 1-channel Live Scopes,
• The input to Channel 1 of 2-channel Live Scopes, such as Command in 

Figure 2-30, and
• ModelQ variables blocks such as Feedback in Figure 2-30.

The DSA here will be used to show the relationship between command and feedback.
Notice that Experiment 2B required the addition of the variable block Feedback at
top right. In Experiment 2A that node was not connected to a variable block as it was
only needed for display as Channel 2 of a Live Scope. In Experiment 2B, an explicit
variable block named Feedback is required to grant access of the signal to the DSA.

2.4.4.2 DSA Nodes
The complete details on configuring a DSA go beyond the scope of this chapter.
However, a few details should be mentioned to prepare the reader for the use of
DSAs in this book. The four most important nodes of a DSA block are shown in
Figure 2-31. At left is the input node. Normally, the DSA is inactive and the input
node passes directly to the output node. However, when the user wants a new Bode
plot, the DSA is commanded to excite the model. This temporarily disconnects the
input node and replaces it with a random signal excitation. The Excitation Amplitude
and DSA Inactive nodes will be discussed in Section 2.4.4.5.

2.4.4.3 The DSA Display
A Bode plot from a DSA is shown in Figure 2-32. This shows the relationship between
command and feedback, commonly called the closed-loop response, for Experiment
2B where KP =1 and KP =2; the gain plots are above and the phase plots below. Most
of the time, the closed-loop gain plot will be of primary interest. The two cases here
behave similarly at low frequency (shown at left) and the plots below about 100Hz
are nearly indistinguishable. However, above 100Hz, there are significant differences,
especially where the gain of the KP =2 case sharply rises before falling, displaying an
undesirable characteristic called peaking. The purpose of this section is to introduce
Visual ModelQ, so a detailed discussion of resulting waveforms is outside the scope
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Input Node

DSA Inactive Node

Output Node

Excitation Amplitude Node

Figure 2-31. Detail of DSA nodes.
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of this discussion. However, it may be interesting to readers to notice that the two
cases plotted in Figure 2-32 match the time-domain plots for Figures 2-29a and 
2-29b, where the less stable Figure 2-29b corresponds to the plot in Figure 2-32 with
peaking. Peaking and ringing are both indicators of inadequate margins of stability.
Stability issues will be discussed in Chapter 3.

Like the Scope display, the DSA display is normally not visible when a model starts
to run. The DSA display can be made visible by double-clicking inside the DSA block
after the model has been compiled.

2.4.4.4 DSA Controls
The user can request a new Bode plot when the model is running by clicking on the
GO button at bottom left of the DSA. This starts a new excitation period. For the
experiments in this book, this process will continue for roughly 1 s of simulation time.
After that, a new Bode plot will be displayed. Up to four plots can be saved. Right-
click in the graph area of the DSA to bring up a pop-up menu and select Save as to
save the most recent plot. Pressing the GO button a second time during the excitation
period cancels the command for a new Bode plot.

To the right of the GO button, the sunglasses button hides the control panel. The
gear button brings to view a dialog box for setting up the DSA excitation signal. The

Gain 

Phase 

Gain with KP = 2
(Figure 2-29b)

Gain with KP = 1 (Figure 2-29a)

Phase with KP = 2

Phase with KP = 1

2 Hz 10 Hz 100 Hz 1000 Hz

7 dB peaking in
gain at 200 Hz

Figure 2-32. Output of DSA for KP = 1 and KP = 2.



autofind button places a cursor according to the criteria in the adjoining combo box,
which is set to 3dB in Figure 2-32. The last three buttons control the number of
cursors visible, allowing no cursors, one cursor, or two cursors.

2.4.4.5 The DSA Excitation Signal
The DSA works by generating a random command for a short period of time. The
random signal is rich — it contains all the frequencies of the Bode plot. During 
the period of excitation, the DSA monitors all variables in the model. After the 
excitation, the DSA executes a fast Fourier transform (FFT) to convert the recorded
data to a frequency-domain plot. When the random signal is applied to the model,
the richness of the signal allows it to excite all frequencies at once. This is ideal for a
modeling environment because it minimizes the time the DSA must excite the system.
However, it also presents problems. First, the system must remain out of saturation —
the power converter must not be driven beyond its maximum during the excitation.
If a system is driven into saturation, the excitation amplitude can be reduced using
the Excitation Amplitude node at the top left of the DSA (see Figure 2-31). However,
if the amplitude is set too low, the signal-to-noise ratio of the system will be insuffi-
cient and the Bode plot will be distorted at high frequencies. Setting the amplitude 
of the excitation is sometimes a matter of experimentation. When doing so, always
monitor the power converter output to ensure the system remains out of saturation
for the entire excitation period. For all models in this book, the amplitude is set 
appropriately and users normally need not be concerned about this.

All commands except the DSA excitation must be shut off during the excitation
period. The DSA will automatically disconnect the input node so that any signals 
connected to the input are disabled during DSA excitation; this is the case with the
waveform generator in Figure 2-30. If there are waveform generators connected to
other parts of the model, the DSA Inactive node at the lower right of Figure 2-31 can
be wired to disable those generators. The DSA Inactive node is set to zero during 
the excitation period; when wired to a waveform generator Enable node, the desired
behavior is realized.

2.4.5 Modeling Digital Control Systems
Experiment 2C, the final model of this chapter, will demonstrate how to model a
simple digital control system in Visual ModelQ. This model, shown in Figure 2-33, is
similar to Experiment 2B except that three blocks have been added. First, the PI 
controller, just below KP and KI, is now digital. The border area of this block is 
yellow in the Visual ModelQ environment and prints gray in the monochrome 
Figure 2-33.

Digital PI controllers sample the error at regular periods of time. The sample
period for digital blocks is set via the controller node, the diamond at the bottom left
of the PI block. The controller can be selected from multiple digital controllers, which
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can be running simultaneously in a Visual ModelQ model. Fortunately, most models
are simple enough that one controller is sufficient. That controller is called Main in
Experiment 2C and is near the center-left of Figure 2-33. The sole input node of the
controller block is the sample time, which can be changed while the model is running.
In Experiment 2C, that parameter is connected to a Live Constant named TSample
to simplify changing the value.

Notice that the step response in Figure 2-33 overshoots and rings in Experiment
2C. All the parameters of Experiments 2B and 2C have identical defaults so one might
have expected them to have a similar step response. Obviously, something is signifi-
cantly different.

The difference between the two models is that Experiment 2C is the digital 
equivalent of Experiment 2B. The problem in Experiment 2C is that the sample time
is too long for the dynamics of the system. As a result, the system is nearly unstable.
Some experimentation can prove the point. Launch Visual ModelQ and load the file
Experiment_2C.mqd. Click Run. Now, double-click on the Live Constant named
TSample. Reduce the sample time by repeatedly clicking on the Live Constant “<<”
button. When the sample time falls below about 0.0002s, the response is equivalent
to the analog performance. This is shown in Figure 2-34.

2.4.6 Visual ModelQ and This Book
This section has introduced several functions of Visual ModelQ used in this 
book. All key points of this book are demonstrated in Visual ModelQ models. Readers
are encouraged to run these experiments and work the exercises at the end of each
chapter.

Figure 2-33. Experiment 2C: Experiment 2B with digital control.



2.5 Exercises
1. Open Experiment_2A.mqd and click the Run button.

A. Change the gain KP from 1 to 2, and then raise it to 5. Describe what
happens in the command response. What conclusion could you draw?

B. Set KP =2 and change waveform to triangle. Are signs of marginal stabil-
ity easier or harder to recognize? Repeat for sine wave and s-curve. What
conclusion could you draw?

C. Restore KP to 1. Set KI to 0. Describe what happens in the command
response. Set KI to a range of values from 10 to 1000. Describe what
happens in the command response. What conclusion could you draw?

2. Open Experiment_2B.mqd and click the Run button.
A. Run a Bode plot. Find the -3dB frequency (the frequency where the gain

falls to -3dB) using the autofind combo box at the bottom of the DSA
display window.

B. Reduce control-loop gains. Set KP to 0.5 and set KI to 50. What is the gain
at the frequency from 2A.

C. Compare 2A and 2B. What conclusion could you draw?
3. Open Experiment_2C.mqd and click the Run button.

A. Change TSample to several values spanning the range between 0.002 and 
1¥10-5 s. Over what range does the sample time significantly affect
command response as viewed in the Live Scope?

B. Does faster sampling make the system more stable or less stable?
C. Set the sample time to 0.0001s. Compare the step response of the digital

system in Experiment 2C to the analog system in Experiment 2B. Repeat
with KP =2. What conclusion could you draw?
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Command

Response

Figure 2-34. From Experiment 2C: Reducing sample time can stabilize a system. (a) TSample = 0.002s; 
(b) TSample = 0.0002s.





I n this chapter . . .

• Overview of the s-domain and the z-domain
• Detailed presentation of Mason’s signal flow graphs
• Bode plots
• Measuring command response and stability
• The open-loop method
• A zone-based tuning procedure

This chapter will review the frequency domain, which is the basis for most 
analysis performed on control systems. The principles reviewed in this chapter are
commonly taught in control-systems books, courses, and seminars so that many readers
will find much of it familiar. In addition to the review, the final section provides 
a process for consistent tuning of controller gains; this process will be necessary 
to measure performance objectively, for example, when comparing traditional and
observer-based systems. In addition, the same process will be applied to tuning
observers in later chapters. For reference, most of this discussion is taken from 
[11, Chaps. 2–5].

3.1 Overview of the s-Domain
The Laplace transform underpins classic control theory [17, 37] and is defined in
Equation 3.1 [7, p. 102] as
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(3.1)

where f (t) is a function of time, s is the Laplace operator, and F (s) is the transformed
function. The terms F (s) and f (t), commonly known as a transform pair, represent the
same function in the two domains. For example, if f(t)=sin(w t), then F(s)=w /(w2 +s2).
The Laplace transform moves functions between the time and the frequency domains.
The most important benefit of the Laplace transform is that it provides s, the Laplace
operator, and through that the frequency-domain transfer function.

3.1.1 Transfer Functions
Frequency-domain transfer functions describe the relationship between two signals 
as a function of s. For example, consider an integrator as a function of time. From
Table 3-1, the integrator has an s-domain transfer function of 1/s. So, it can be said
for a system that produced an output, VO, which was equal to the integral of the input,
VI, that:

(3.2)

The Laplace operator is a complex (as opposed to real or imaginary) variable. It
is defined as 

s ∫ s+ jw. (3.3)

The constant j is . The w term translates to a sinusoid in the time domain; s
translates to an exponential (est ) term. The primary concern here is with steady-state
sinusoidal signals, in which case s=0. So in this book, s will be ignored. To evaluate
the DC response of a transfer function, set s to zero.

3.1.2 Linearity and the Frequency Domain
A frequency-domain transfer function is limited to describing elements that are linear
and time invariant. These are severe restrictions and, in fact, virtually no real-world
system fully meets them. The three criteria that follow define these attributes, the first
two defining linearity and the third defining time invariance.

1. Homogeneity. Assume that an input to a system r(t ) generates an output c(t).
For an element to be homogeneous, an input k¥ r(t ) would have to generate an output
k¥c(t), for any value of k. An example of homogeneous behavior is an ideal resistor
where V= IR. An example of nonhomogeneous behavior is saturation where twice as
much input delivers less than twice as much output.
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2. Superposition. Assume that an element, when subjected to the input r1(t ) will 
generate the output c1(t ). Further, assume that this same element, when subjected 
to the input r2(t ) will generate the output c2(t ). Superposition requires that if
the element is subjected to the input, r1(t )+ r2(t ), it will produce the output,
c1(t )+c2(t ) [16, p. 93; 36].

3. Time invariance. Assume that an element has an input r(t ) that generates 
an output c(t ). Time invariance requires that r (t-t) will generate c (t-t) for all 
t > 0.

So the controls engineer faces a dilemma: transfer functions, the basis of classic
control theory, require linear, time invariant (LTI) systems, but no real-world system
is completely LTI. This is a complex problem that is dealt with in many ways. However,
for most control systems, the solution is simple: design components close enough to
being LTI that the non-LTI behavior can be ignored or avoided.

3.1.3 Examples of s-Domain Transfer Functions
Examples of transfer functions used in control laws are shown in Table 3-1. These
functions can all be derived from Equation 3.1.

Integration and differentiation are the simplest operations. The s-domain opera-
tion of integration is 1/s and of differentiation is s. Filters are commonly used 
by control-systems designers such as when low-pass filters are added to reduce noise.
Table 3-1 lists the s-domain representation for a few common examples. A compen-
sator is a specialized filter: one that is designed to provide a specific gain and phase
shift at one frequency. The effects on gain and phase either above or below that 
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TABLE 3-1 TRANSFER FUNCTIONS OF CONTROLLER ELEMENTS

Operation Transfer function

Integration 1/s
Differentiation s
Delay e-sT

Simple filters
Single-pole low-pass filter K/(s+K)
Double-pole low-pass filter w 2/(s2 +2zws+w 2)
Notch filter (s2 +w 2)/(s2 +2zws+w 2)
Bilinear-quadratic (bi-quad) filter (s2 +2zwNs+wN

2)/(s2 +2zwDs + wD
2)

Compensators
Lag K(tZs+1)/(tPs+1), tP >tZ

PI (KI/s+1)KP

PID (KI/s+1+KDs)KP

Lead 1+KDs/(tDs+1) or [(tD +KD)s + 1]/(tDs + 1)
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frequency are secondary. Table 3-1 shows a lag compensator, a proportional-integral
(PI) compensator, and a lead compensator.

Delays add time lag without changing amplitude. Since microprocessors have
inherent delays for sampling, the delay function is especially important when analyz-
ing digital controls. A delay of T seconds is defined in the time domain as

(3.4)

The corresponding function in the frequency domain is

(3.5)

3.1.4 Block Diagrams
Block diagrams are graphical representations developed to make control systems
easier to understand. Blocks are marked to indicate transfer functions. In North
America, transfer functions are usually indicated with their s-domain representation.
The convention in Europe is to use schematic representation of a step response;
Appendix C provides a listing of many North American and European block-diagram
symbols.

Block diagrams can be simplified by combining blocks. Two blocks in parallel can
be combined as their sum; two blocks in series can be represented as their product.
When blocks are arranged to form a loop, they can be reduced using the G/(1+GH )
rule. The forward path is G (s) and the feedback path is H(s). The transfer function
of the loop is G(s)/(1+G (s)H (s)) as shown in Figure 3-1.

The G/(1+GH ) rule can be derived by observing in Figure 3-1a that the error signal
(E(s)) is formed from the left as:

E(s) can also be formed from the right side (from C (s) back through G (s)) as 

E s C s G s( ) = ( ) ( ).

E s R s C s H s( ) = ( ) - ( ) ¥ ( ).

T s eDelay
sT( ) = - .

c t r t T( ) = -( ).

(a) (b)

R(s) C(s)G(s)

H(s)

+
_

E(s)

R(s) C(s)
G (s)

1 + G(s)H(s)

Figure 3-1. Simple feedback loop in equivalent forms.



So,

One or two steps of algebra produce:

(3.3b)

3.1.4.1 Mason’s Signal Flow Graphs
An alternative to the G/(1+GH ) rule developed by Mason [10, p. 69; 7, p. 162; 28; 29;
31] provides graphical means for reducing block diagrams with multiple loops. The
formal process begins by redrawing the block diagram as a signal flow graph.1 The
control system is redrawn as a collection of nodes and lines. Nodes define where three
lines meet; lines represent the s-domain transfer function of blocks. Lines must be
unidirectional; when drawn, they should have one and only one arrowhead. A typical
block diagram is shown in Figure 3-2, and its corresponding signal flow graph is
shown in Figure 3-3.

Step-by-step procedure. This section will present a step-by-step procedure to produce
the transfer function from the signal flow graph based on Mason’s signal flow graphs.
The signal flow graph of Figure 3-3 will be used for an example. This graph has two
independent inputs, R(s) and D(s). The example will find the transfer function from
these two inputs to DO(s).

C s
R s

G s
G s H s

( )
( )

=
( )

+ ( ) ( )1
.

R s C s H s C s G s( ) - ( ) ¥ ( ) = ( ) ( ).

3.1 OVERVIEW OF THE s-DOMAIN � 45

1 For convenience, this step will be omitted in most cases and the block diagram will be used directly.

GP(s) GS(s)

R(s)

Y(s)

GPEst (s) GSEst (s)

CO(s)

YO (s)

GCO(s)

C(s)

+

+

+

+

+

_

D(s)

DO(s)

Figure 3-2. An example control-loop block diagram.
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Step 1: Find the loops. Locate and list all loop paths. For the example of Figure 3-3,
there is one loop:

Step 2: Find the determinant of the control loop. Find the determinant, D, of the
control loop, which is defined by the loops:

Two loops are said to be touching if they share at least one node. For this example
there is only one loop:

Step 3: Find all the forward paths. The forward paths are all the different paths that
flow from the inputs to the output. For the example of Figure 3-3, there is one forward
path from D(s) to DO(s) and two from R(s):

P D s G s G s G s

P R s G s G s G s

P R s G s G s G s

P s CO

P s CO

PEst SEst CO

1

2

3 1

= ( ) ¥ ( ) ¥ ( ) ¥ ( )
= ( ) ¥ ( ) ¥ ( ) ¥ ( )
= ( ) ¥ ( ) ¥ ( ) ¥ - ¥ ( ).

D = + ( ) ¥ ( ) ¥ ( )1 G s G s G sPEst SEst CO .

D = - ( )
+ ( )
- ( )
+

1 sum of all loops

sum of products of all combinations of two nontouching loops

sum of products of all combinations of three nontouching loops

. . . .

L G s G s G sPEst SEst CO1 = - ( ) ¥ ( ) ¥ ( ).

R(s)

Y(s)

C(s)D(s)

DO (s)

GP(s) GS(s)

GCO(s)

GPEst (s) GSEst (s)

CO (s)

YO (s)

-1

Figure 3-3. Signal flow graph for Figure 3-2.



Step 4: Find the cofactors for each of the forward paths. The cofactor (DK) for a 
particular path (PK) is equal to the determinant (D) less loops that touch that path.
For the example of Figure 3-3, all cofactors are 1 because every forward path includes
GCO(s), which is in L1, the only loop.

D1 =D2 =D3 =1 

Step 5: Build the transfer function. The transfer function is formed as the sum of all
the paths multiplied by their cofactors, divided by the determinant:

(3.6)

For the example of Figure 3-3, the signal DO(s) is

Using a similar process, CO(s) can be formed as a function of C(s) and D(s):

As will be discussed in later chapters, a great deal of insight can be gained from
transfer functions of this sort. Using Mason’s signal flow graphs, transfer functions
of relatively complex block diagrams can be written by inspection. Using the
G/(1+GH ) rule to derive transfer functions from multiple-loop block diagrams will
work but is more tedious.

It may be of interest that Figure 3-2 is an observer. The two blocks above repre-
sent the plant (GP(s)) and the sensor (GS(s)); those below are the approximations of
those functions: the estimated plant, GPEst(s), and the estimated sensor, GSEst(s). The
error between the actual and the estimated functions is fed through the observer com-
pensator, GCO(s), which has high gains and will drive the output of the model (that
is, the estimated plant and sensor) toward the output of the actual system. This form
and its associated transfer functions will be the subject of the remaining chapters of
this book.

3.1.5 Phase and Gain
The sine wave is unique among repeating waveforms; it is the only waveform that does
not change shape when passing through LTI blocks. A sine-wave input generates a
sine-wave output at the same frequency; the only differences possible between input
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and output are the gain and the phase. In other words, the response of an LTI 
system to any one frequency can be characterized completely, knowing only phase
and gain.

Gain measures the difference in amplitude of input and output. Gain is often
expressed in decibels or dB, which is defined as 

(3.7)

where OUT and IN are the magnitudes of the output and input sine waves. This is
shown in Figure 3-4. Phase describes the time shift between input and output. This
lag can be expressed in degrees, where 360° is equivalent to one period of the input
sine wave. Usually the output is considered as lagging (to the right of ) the input. So,
phase is defined as 

Phase ∫ -360¥F¥ tDELTA°. (3.8)

Frequently, the gain and phase of a transfer function are shown as a phasor, using
the form gain dB–-Phase°; for example, -3dB–-45°.

Phase and gain can be calculated from the transfer function by setting s= j¥2pf,
where F is the excitation frequency in Hertz. The response of a transfer function can
be converted from a complex number to a phasor by using the magnitude of the
number in decibels and taking the arc-tangent of the imaginary portion over the real,
adding 180° if the real part is negative.

Gain 20 * Log OUT IN10∫ ( ),

IN

OUT

Gain = 20 Log10(OUT/IN) Phase = -360 x F x tdelta

time

tdelta

Voltage

Input(t) Output(t)

Figure 3-4. Gain and phase.



3.1.6 Bode Plots
Bode plots display phasors graphically; the gain in decibels and phase in degrees 
are plotted against the frequency in Hertz. The horizontal scale is logarithmic and 
the vertical scales are linear. Figure 3-5 shows a typical Bode plot. The frequency
spans from 2 to 500Hz (see legend just below the plot). The gain is shown in the 
top graph scaled at 20dB per division with 0dB at the solid center line. Phase is 
shown in the bottom graph scaled at 90° per division, again with 0° at the solid center
line.

3.1.7 Measuring Performance
Objective performance measures provide a path for problem identification and 
correction. This section will discuss the two most common performance measures:
command response and stability.

3.1.7.1 Experiment 3A: Measuring Performance
Experiment 3A (Figure 3-6) will be used to discuss performance issues. Experiment
3A is similar to Experiment 2B with two exceptions. First, the Live Scope has been
enlarged slightly to show more detail. The two nodes at the bottom left of the block
determine the size of the display. Second, a variable block Error has been added to
give the DSA access to this signal; the DSA needs access to the loop error to support
the open-loop method, which will be discussed later in this chapter.
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-3dB @ 10 Hz

10 Hz 100 Hz

-45 deg  @ 10 Hz

-40 dB

-20 dB

0 dB

20 dB

-180 deg 
-90 deg

 0 deg
90 deg 

Figure 3-5. Typical Bode plot.
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3.1.7.2 Command Response
Command response measures how quickly a system follows the command. In the time
domain, the most common measure of command response is probably settling time
to a step. True, few systems are subjected to step commands in normal operation. Still,
the step response is useful because responsiveness can be measured on a scope more
easily from a step than from most other waveforms.

Settling time is measured from the front edge of the step to the point where the
feedback is within a certain value (typically between 1 and 10%) of the commanded
value. If the response overshoots by more than the settling criterion, the system is
considered settled only after the feedback has returned to within the settling criterion.
For example, Figure 3-7a shows the step response of a control system to ±1 unit
command. The excursion is 2 units so the system will be settled when the command
is within 5% (0.1 units) of the final command or 1.0 ± 0.1 units. Since the feedback
overshoots by more than 0.1 units, the system is settled well after the peak of the 
overshoot, when the feedback falls to 1.1 units. That time, shown in Figure 3-7a, is
about 0.02s.

Figure 3-7b shows a comparatively sluggish system; it requires 0.075s to settle to
5%. To create a system with these characteristics, the control-law gains of Experiment
3A were reduced from their default values: KP was reduced from 1.0 to 0.25 and 
KI was reduced from 100 to 25. As expected, lower control-law gains produce less
responsive performance.

Figure 3-6. Experiment 3A, used to demonstrate performance measurement.



Response can also be measured in the frequency domain by inspecting the gain
plot. Most control systems demonstrate good command response at low frequencies
but become unresponsive at high frequencies. At low frequencies, the controller is fast
enough to govern the system. As the frequency increases, the controller cannot keep
up. Thinking of the transfer function, this means the gain at low frequencies will be
approximately unity (1) but will be much less than unity at high frequencies. Consider
a power supply that is advertised to produce sine-wave voltages up to 100Hz. Such a
power supply should be nearly perfect at low frequencies such as 1Hz, begin to struggle
as the frequency increases to its rated 100Hz, and produce very low amplitude 
sinusoids at high frequencies, say, above 10kHz. Translating this to a Bode plot, the
gain would be about unity (0dB) at low frequencies, start falling at mid-range 
frequencies, and continue falling to very low values at high frequencies. This is typical
for control-system Bode plots.

Figure 3-8a shows the Bode plot for the system evaluated in Figure 3-7a. The 
frequency range spans from 2 to 1000Hz. At low frequency, the gain is unity (0dB).
As the frequency increases, the gain rises a bit and then begins to fall. At the highest
frequency shown, the gain has fallen more than two divisions, or -40dB, which is
equivalent to a gain of less than 1%. As the frequency increases, the gain will con-
tinue to fall. Closed-loop responsiveness is commonly measured in the frequency
domain as the bandwidth, the frequency where the gain has fallen to -3dB, or to a
gain of about 70%. In Figure 3-8a, the bandwidth is about 180Hz.

Figure 3-8b shows the Bode plot for the system of Figure 3-7b. The Bode plot 
for the sluggish system shows the bandwidth has fallen to 27.2Hz. The bandwidth,
like the settling time, shows the system in Figures 3-7a and 3-8a to be much more
responsive.
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ª 0.02s

(a)

ª 0.075s

(b)

Signal returns to
5% after overshoot

Feedback

Command

Figure 3-7. Step response of (a) responsive (KP = 1, KI = 100) and (b) sluggish systems. 
(KP = 0.25, KI = 25).
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3.1.7.3 Stability
Stability describes how predictably a system follows a command. In the time domain,
stability is most commonly measured from the step response. The key characteristic
is overshoot: the ratio of the peak of the response to the commanded change. The
amount of overshoot that is acceptable in applications varies from 0 to perhaps 40%.
Figure 3-9 shows the step response of two controllers. In Figure 3-9a, which is 
identical to the system from Figure 3-7a, the overshoot is a modest 20%.

A system with lower margins of stability is created in Figure 3-9b by changing the
gains: KP is reduced to 0.25 and KI is increased to 250. In Figure 3-9b, the overshoot
is more than 50%; worse, the overshoot is followed by ringing. Both systems are 
stable, but the margin of stability for the system on the right is too small for most
applications.

Stability can also be measured from a system Bode plot; again the information is
in the gain plot. As discussed above, at low frequencies, the gain will be at 0dB for
most control systems and will fall off as the frequency increases. If the gain rises 
significantly before it starts falling, it indicates marginal stability. This phenomenon
is called peaking. The amount of peaking is a measure of stability. For practical
systems, allowable peaking ranges from 0 to perhaps 4dB. The two systems that were
measured in the time domain in Figure 3-9 are measured again in Figure 3-10 using
the frequency domain. Note Figure 3-10b with high peaking corresponds to the 
scope trace in Figure 3-9b with high overshoot.

The correlation between time and frequency domains can be seen by viewing the
systems shown in Figures 3-7 through 3-10. Settling time correlates to bandwidth and
overshoot correlates to peaking. For these simple systems, measures in either domain

Gain

Phase

Gain

Phase

-3dB at 27.2 Hz-3dB at 180 Hz

(a) (b)

Figure 3-8. Frequency response (Bode plot) of (a) responsive and (b) sluggish systems. 



work well. The natural question is why both measures are needed. The answer is that
in realistic systems the time domain is more difficult to interpret. Many phenomena
in control systems occur in combinations of frequencies; for example, there may 
simultaneously be a mild resonance at 400Hz and peaking at 60Hz. Also, feedback
resolution may limit the ability to interpret the response to small-amplitude steps.
In real-world control systems, gleaning precise quantitative data from a step response
is often impractical.
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Figure 3-9. Step response of (a) stable (KP = 1, KI = 100) and (b) marginally stable 
(KP = 0.25, KI = 250) systems.
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Figure 3-10. Frequency response (Bode plot) of (a) stable and (b) marginally stable systems. 
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Bode plots display effects at multiple frequencies with ease; correctly measured,
Bode plots are less sensitive to resolution limitations. Thus, Bode plots can be relied
upon to provide accurate measurements in real-world systems. However, time-domain
plots are still often the preferred measurement because the equipment to make these
measurements (chiefly, the oscilloscope) is readily available. Bode plots require a
dynamic-signal analyzer (DSA), a device rarely found in laboratories.

3.2 Overview of the z-Domain
The z-domain is used to analyze digital controllers. The key feature of the z-domain
is that it allows delays resulting from sampling to be accounted for easily. The s- and
z-domains are so closely related that it may be a misnomer to refer to them as being
in different domains. The basic principles — transfer functions, phase and gain, block
diagrams, and Bode plots — are the same for both.

Digital controllers process data in regular intervals. The length of the intervals 
is referred to as T, the cycle or sample time. The z-domain is an extension of the
s-domain [17]. It is based on the s-domain delay operation, which was shown in 
Equation 3.5 to be e-sT. If f (t) is delayed N¥T seconds, then its Laplace transform is
e-sNTF (s) or (e-sT )NF (s).

3.2.1 Definition of z
The term z is defined as e+sT [16, p. 127], which implies that 1/z is e-sT, the delay 
operation. Developing the z-domain based on this simple equality may appear to
require unwarranted effort. However, digital systems need to include the effects of
delays so frequently that the effort is justified.

In the strictest sense, the s-domain is for continuous (not analog) systems and z is
for sampled (not digital) systems. Sampled is synonymous with digital because digital
systems normally are sampled; computers, the core of most digital controllers, cannot
process data continuously. On the other hand, most analog systems are continuous.
Recognizing this, digital in this book will imply sampled and analog will imply 
continuous.

3.2.2 z-Domain Transfer Functions
Transfer functions in z are similar to those in s in that both are usually ratios of poly-
nomials. Several z-domain transfer functions are provided in Table 3-2. For example,
consider a single-pole low-pass filter with a break frequency of 100Hz (628rad/s) and
a sample time (T ) of 0.001s. From Table 3-2, the transfer function would be:

(3.9)
C z
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T z
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The filters in Table 3-2 are developed by replacing polynomials of s-domain 
functions with the equivalent z-domain polynomials. For example, the term (s-a) is
replaced by (z−e-aT ); this process is repeated until all terms of s are replaced by z.
Finally, a constant term is added so that the amplitude of the function at DC2(z=1)
is 1.
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TABLE 3-2 UNITY-DC-GAIN S-DOMAIN AND Z-DOMAIN FUNCTIONS

Operation s-Domain transfer z-Domain transfer function

Integration 1/s Tz/(z-1)
(accumulation)

Trapezoidal 1/s
integration

Differentiation s (z-1)/Tz
(simple
difference)

Inverse trapezoidal s
differentiation

Delay T seconds e-sT 1/z
Simple filters
(w = 2pF )

Single-pole w /(s+w) z(1-e-wT)/(z-e-wT)
low-pass

Two-pole wn
2/(s2 +2zwns+wn

2) Az2/(z2 +B1z+B2)
low-passa

B2 =e-2zwNT

A=1+B1 +B2

z=Damping

Two-pole (s2 +wn
2)/ K(z2 +A1z+A2)/(z2 +B1z+B2)

notcha (s2 +2zwns+wn
2)

B2 =e-2zwNT

A1 =-2cos(wNT )
A2 =1
K= (1+B1 +B2)/(1+A1 +A2)
z=Damping

Compensators
PI (KI /s+1)KP (KITz/(z-1)+1)KP

Lead 1+KDs ·w /(s+w) 1+KD(z-1)/Tz ·z(1-e-wT )/(z-e-wT )

a If z > 1, negate the term under the radical and substitute hyperbolic cosine for cosine.

B e TNT
N1

22 1= - -( )-Vw wcos z

B e TNT
N1

22 1= - -( )-Vw wcos z

1 1
0 1

+ -
+

Ê
Ë

ˆ
¯ < <

a
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z
z a

a,

T z
z2

1
1

+
-

Ê
Ë

ˆ
¯

2 The DC gain of a transfer function of z is evaluated by setting z to 1, which is equivalent to setting 
s to 0.
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3.2.3 Bilinear Transform
An alternative to Table 3-2 for determining the z-domain equivalent of an s-domain
transfer function is to approximate s as a function of z:

(3.10)

This is called the bilinear transformation and is developed in Appendix D. This 
text will rely on Table 3-2 because it is usually less tedious than use of the bilinear
transformation.

3.2.4 z Phasors
Phasors in z are similar to phasors in s. Again, the transfer function is evaluated with
complex (versus real) math to determine the phase and gain at one frequency. The
resulting complex number represents gain and phase as it did in the s-domain; the
only difference is that z must be evaluated instead of s.

Evaluating z requires the following identity:

Substituting z at steady state (s=-jw),

The magnitude of this equation is:

And the angle is 

This implies that the phasor representation for z is

z=e+sT | s = jw =1–+wT. (3.11) 

The results of the equivalent filters in the s- and z-domains are similar but not 
identical. Digital functions are never identical to their analog counterparts, but they can
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be designed to be equivalent in a single facet of operation. A key advantage of the
bilinear transformation is that it can be used to establish exact equivalence between
the s-domain and the z-domain functions at one frequency; this requires the use of
prewarping, a technique covered in Appendix D.

3.2.5 Bode Plots and Block Diagrams in z
Bode plots in the digital systems (that is, the z-domain) are the same as those in 
the s-domain. Block diagrams in the z- and s-domain are also the same. They can be
combined with the G/(1+GH ) rule or Mason’s signal flow graphs.

3.2.6 Sample-and-Hold
Digital controllers calculate the output once each cycle and hold it constant until the
next cycle. This sample-and-hold (S/H) is present in virtually all digital systems. The
effect of holding the output constant introduces phase lag because the output is aging
from the time it is stored. At the start of the cycle the data is fresh, but by the end of
the cycle, the output is a full cycle old. Since the stored data are, on average, one-half
cycle old, the S/H acts approximately like a delay of a half cycle

(3.12)

or, in degrees and Hz,

(3.13)

At higher frequencies, the S/H also begins attenuating the input. The more exact
transfer function for S/H is

(3.14)

which is digital differentiation in series with analog integration. This form is shown
as a zero-order hold in [7, p. 754], although the T is not included. Few textbooks
include the T, although it is required to reflect the sample-and-hold’s intrinsic unity
DC gain. Recognizing that z=esT, some algebra can provide Equation 3.14 in a simpler
form for sinusoidal excitation:
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To apply steady-state sinusoids, set s= jw,

(3.15)

So, the precise sample-and-hold (Equation 3.15) and the approximation 
(Equation 3.12) have the identical phase lag, but different gains. The gain term,
sin(wT/2)/(wT/2), also known as the sync function, is nearly unity for most frequen-
cies of interest. For example, at one fourth the sample frequency (w=2p/4T ), the sync
function evaluates to 0.9dB, which is a value so close to 0dB that it can usually be
ignored. And recognizing that usually the system bandwidth will be at much lower
frequencies, say one tenth the sample frequency, there is rarely much interest 
in the precise gain at so high a frequency. This is why the simpler Equation 3.12 is 
accurate enough to use in most control systems problems.

3.2.7 Quantization
Quantization is a nonlinear effect of digital control systems. It can come from 
resolution limitations of transducers or of internal calculations. One example is a 
12-bit analog-to-digital converter (ADC) that converts a continuous range of 10V 
to 4096 different values. Quantization also occurs in integer multiplications since the
resultant of a multiplication is usually rounded.

If the resolution of sensors and the control-system mathematics is fine enough,
quantization can be ignored. Otherwise it must be taken into account either in 
modeling or by use of statistical methods. Quantization is nonlinear and cannot be
represented in the z-domain. One effect of quantization is called limit cycles [2, p. 367;
16]. Limit cycles are low-level oscillations that occur because of quantization error in
digital mathematics. Limit cycles can produce sustained oscillations that are low in
frequency and many times larger than the quantization level.

An ADC converts a voltage to an integer, where the value of the integer is 
proportional to the amount of voltage. Similarly, digital-to-analog converters (DACs)
convert integers to voltages. A sample-and-hold is an implicit part of the output DAC.
That is, a DAC can be modeled with two sections: a constant in volts per bit and a
S/H. In general, the model for DACs and ADCs is the ratio of the integer range and
the voltage range. When studying the effects of phase lag on stability, the sample-and-
hold usually can be placed anywhere in the loop.
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3.3 The Open-Loop Method
The open-loop method is a technique that analyzes margins of stability. It simplifies
the complex task of evaluating the stability of a control system to calculations based
on the phase and gain at two key frequencies. Many competing methods of stability
analysis, such as the popular root locus method, rely on subjective measures of
stability margins such as evaluating graphical patterns within complex plots. Such
methods are often impractical in realistic systems because the graphs grow increas-
ingly difficult to interpret as system models are augmented to take into account more
detailed behavior of the system. The open-loop method allows any known LTI 
behavior to be accounted for, and it does so without significantly increasing the 
difficulty of executing the method.

The open-loop method simplifies any control loop to the diagram shown in 
Figure 3-11. All components in the forward path, including the control law, the power 
converter, and the plant, are combined to form G(s). H(s) includes all components in
the feedback path.

The closed-loop transfer function is the relationship between the command, R(s),
and plant output, C(s), which is equivalent to G/(1 +GH ). (For convenience, the
closed-loop function is often taken substituting F (s) for C(s) because C(s) cannot be
measured directly in physical systems.) The open-loop transfer function is defined 
as the loop gain, which is the path from E (s) to F (s). This is equivalent to GH.
Figure 3-12 shows a closed-loop (G/(1+GH )) and Figure 3-13 shows the open-loop
(GH ) transfer function for the model of Experiment 3A with default parameters.

The open-loop method provides two margins of stability, gain margin and phase
margin. Both are based on the understanding that instability occurs when the open-
loop gain is unity (0dB) and the phase is -180°. This can be seen with the G/(1 +GH )
rule which reduces to G/0 when GH=0dB –-180° since 0dB –-180° is equivalent to
-1. The open-loop method measures by how much of a margin the control system
avoids instability.

The Visual ModelQ DSA in Experiment 3A is configured to make convenient 
the display of both the open-loop and the closed-loop plots. The closed loop is the 
relationship between the command and feedback signals. Accordingly, the input and

3.3 THE OPEN-LOOP METHOD � 59

R(s) C(s)
+

E(s)
G(s)

_

H(s)
F(s)

G(s) includes all blocks 
in the forward path

H(s) includes all blocks 
in the feedback path

Figure 3-11. The open-loop method simplifies the control loop to two transfer functions.
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Phase starts at 0o, then falls.

Gain starts at 0dB, then falls.

Note that when 
phase is -270°, 
it shows as +90 

because it is 
offset by +360 °

Figure 3-12. Characteristics of closed-loop Bode plot on a stable system.

Phase starts at -180o,
rises and then falls

Gain starts high, 
then falls.

Figure 3-13. Characteristics of an open-loop Bode plot corresponding to Figure 3-12.



output channels of the DSA are selected as Command and Feedback in the upper 
left of Figure 3-12. The open loop describes the path around the loop. Referring to
Figure 3-6, this path starts at the variable block Error, which is just right of the
summing junction, and follows the loop back around to the Feedback variable block.
Thus, the DSA in Figure 3-13 shows the input channel for the open-loop plot as Error.
The DSA in Experiment 3A is configured to have two buttons, Closed and Open,
which select the appropriate input and output channels for the two plots. The DSA
buttons are configured with the button setup node at the top right of the DSA block.

Phase margin or PM [4, 36] is the margin of stability measured at the frequency
where the gain around the loop falls to 0dB. As shown in Figure 3-13, control systems
usually have a large open-loop gain (>>0dB) at low frequencies and a small loop gain
(<<0dB) at high frequencies. For at least one frequency, the gain will pass through 
0dB; that frequency is called the gain-crossover frequency. Were the phase equal to 
-180° at that frequency, the system would be unstable. The further the phase is from
-180°, the greater the margin of stability. The PM is defined as the difference of the
actual phase and -180°. Figure 3-14 shows the open-loop plot of Figure 3-13 with
the gain-crossover frequency and PM identified as 81Hz and 52°, respectively.

Gain margin or GM is the margin of stability measured at the frequency where the
phase around the loop falls to -180°. As shown in Figure 3-14, the loop phase will
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Figure 3-14. Open-loop Bode plot showing how to calculate phase and gain margins.
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usually be greater than -180° at the gain-crossover frequency and start falling at
higher frequencies. At one frequency, the gain will pass through -180°; that frequency
is called the phase-crossover frequency. Were the gain equal to 0dB at that frequency,
the system would be unstable. The further the gain is from 0dB, the greater the margin
of stability. The GM is defined as the negative of the actual gain at the phase
crossover. The system in Figure 3-14 identifies the GM as 10dB and the phase-
crossover frequency as 240Hz.

3.3.1 Specifying the Target GM and PM
Although the measurement of PM and GM is objective, determining the desired
values for these measures requires judgment. One reason is that applications vary 
in the amount of margin they require. For example, some applications must follow
commands like the step that will generate overshoot in all but the most stable systems.
These applications often require higher margins of stability than those systems 
that respond only to gentler commands. Also, some applications can tolerate more
overshoot than others. Finally, some control laws require more PM or GM than 
others for equivalent response. For example, a PI controller requires typically 
about 55° of PM to achieve 20% overshoot to a step, while a PID (proportional-
integral-differential) controller might be able to eliminate all overshoot with just 
40° PM.

In practice, the GM of a well-tuned system will fall between 6 and 20dB, depend-
ing on the application and the controller type; PM will fall between 35° and 80°. All
things being equal, more PM is better. This teaches one of the most basic rules in
controls: Eliminate unnecessary phase lag! Every noise filter, feedback device, and
power converter contributes to phase lag around the loop and each erodes the PM.
Unnecessary lags limit the ultimate performance of the control system.

3.4 A Zone-Based Tuning Procedure
One challenge of tuning is that multiple gains must be varied and each affects many
of the performance measures. The goal of the zone-based tuning process is to tune
the multiple tuning gains one at a time. This can be done by considering the effects
of each gain term as being dominant over a certain zone of frequency [25, 26]. A PI
controller has two zones, one for the proportional term and the other for the integral
term. Consider the PI control loop in Figure 3-15.

The frequency zones are easiest to see when the effects of the power converter and
feedback filter are ignored. So, setting those two blocks to 1 and using the G/(1 +GH )
rule with some algebra, the simplified closed-loop transfer function is

(3.16)
C s
R s
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To consider (3.16) in terms of frequency zones, focus on the denominator. At high
frequencies s is large and s2/G dominates the denominator. This is intuitive; at very
high frequencies, almost all control systems respond according to the plant gain
(inductance, capacitance, inertia, etc.); at those frequencies, the response is beyond
the reach of the controller.

As the frequency declines, the s¥KP term will become dominant. This is the middle-
frequency range. In the control law, the proportional gain dominates; the frequency is
still too high for the integral gain to have much effect. As the frequency declines
further, the integral term will dominate because a low value of the s terms will leave
only the constant KIKP term in the numerator and denominator of Equation 3.16.
This is the low-frequency zone.

Understanding the concept of frequency zones, a tuning procedure can be 
developed where one gain is tuned at a time. This eliminates the problems associated
with tuning multiple gains simultaneously. The method that follows assumes the user
has only time-domain measurements, as this is common in industry. The frequency-
domain plots are shown for reference.

3.4.1 Zone One: Proportional
To apply the zone-based approach to tuning, tune the highest frequency term 
first. Assuming the plant gain, G, cannot be changed, start by tuning KP. If the 
application can tolerate it, set KI to zero and set KP very low. Note that some 
applications cannot tolerate the lack of an integral such as in motion control, when
a velocity loop is applied to a vertical load (the load can fall). Apply a square 
wave and raise KP until significant overshoot is generated. How much overshoot is
significant depends on the application. Many applications can tolerate 10 or 15%,
while others can tolerate none at all. For applications that demand high responsive-
ness, it is important to raise KP as high as possible. In Figure 3-16, a very small amount
of overshoot is assumed to be tolerable and the result is KP =1.

By looking at the open-loop gain, the advantage of setting KI to 0 when tuning KP

is apparent. Notice that at low frequencies the open-loop phase is -90° compared to
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Figure 3-15. A simplified PI controller.
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the -180° seen in the PI controller of Figure 3-14. So, when KI =0, no matter how low
KP is set, the system will not become unstable. In the PI controller of Figure 3-14,
when the gain crossover frequency is well above or well below the phase “hump”
(about 50Hz), the PM falls so that the system is not sufficiently stable. One 
advantage of starting with a P controller is that the designer can start with KP very
low and have little risk of instability.

A natural question is what causes instability seen with high KP? As always, insta-
bility is caused by phase lag accumulating to -180° with 0dB gain. Phase from the
plant here is fixed at -90°, but phase lag from the power converter and feedback filter
increases as frequency rises; this accounts for decline in open-loop phase after the
gain-crossover frequency shown in Figure 3-16b. KP is raised to provide the maximum
responsiveness possible within a minimum margin of stability. If the maximized KP

is insufficient, the designer must look toward reducing phase lag in the components
of the loop, for example, by increasing the responsiveness of the power converter or
the feedback device.

3.4.2 Zone Two: Integral
After KP is maximized, attention should be turned to the next zone, which is 
served by the integral term. Integral gain is important because it removes the long-
term error. When tuning, the value of integral gain will have little bearing on the 
stability of the next higher frequency (KP) zone; the implication is that changing KI

will not require returning to change KP. Continuing from above, raise KI from zero

Phase ~ -900

Gain crossover
at 80 Hz

PM=630Feedback

Command

(a) (b)

Figure 3-16. From Experiment 3A: Tuning Zone 1 using (a) step response and (b) open-loop plot of 
P-controller for KP = 1, KI = 0.



until overshoot is excessive — usually between 10 and 30%. For example, the overshoot
is about 10% when KI =100 in Figure 3-17a; the open-loop Bode plot is shown in
Figure 3-17b.

Notice in Figure 3-17b that the gain crossover remained at 80Hz, but the PM
dropped 10°. Both are expected; the integral did not change the crossover frequency
because its frequency zone is well below 80Hz. So, KI has little effect on gain at the
gain-crossover frequency, but it still contributes 10° of phase lag at that frequency,
reducing the PM by that same amount. Notice that the PI controller has overshoot.
All PI controllers generate some overshoot in response to a square wave; it is one of
the weaknesses of the method.

The zone-based procedure shown here can be extended to more complicated con-
trollers. For example, if a double integral is added to the control law, it becomes a
third zone, which becomes the lowest frequency zone and is tuned after the first two
zones are tuned. The key is to divide the control laws into multiple zones and then
tune the terms, starting with the highest zone and moving to the lowest.

One exception to this rule is when a PID controller is used to regulate a single-
integrating plant. In this case, the proportional and derivative terms form a single
zone. When tuning such a controller, zero the integral and derivative gains and tune
the proportional term for lower-than-normal margins of stability, allowing perhaps
10 or 20% more overshoot than will be acceptable in the final tuning. Then add a
small amount of derivative gain to increase the stability margins. In this way, the 
derivative and proportional gains combine to form the highest frequency zone. The
integral zone, which is the next lower zone, is tuned the same way as it would be in
the PI controller.
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Figure 3-17. (a) Step response and (b) open-loop plot of PI controller with KI = 100, KP = 1.
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3.5 Exercises
1. Confirm that the zone-based method provides consistent margins of stability.

Open Experiment_3A.mqd and click the Run button.
A. Set the feedback filter frequency (FGfb) to 200 and retune the system using

the zone-based procedure of this chapter; do not allow any overshoot with
KP and allow only 10% overshoot with KI. Measure PM and GM.

B. Repeat for FGfb=350.
C. Repeat for FGfb=500.
D. Repeat for FGfb=1000.
E. Relate the time-domain data of parts A–D to GM and PM for the system

of Experiment_3A.mqd.
F. How could you modify the procedure to generate somewhat lower margins

of stability?
2. Closed-loop bandwidth.

A. Measure the closed-loop bandwidth (-3dB frequency) for each of the cases
in 1A–1D.

B. What is the relationship between low-pass filters in the loop and maximum
command response? 

3. Create a zone-based tuning procedure that produces tuning gains in Experi-
ment 3A so margins of stability are GM =10dB and PM =50°.
A. What tuning values (KP, KI) are produced for FGfb=200?
B. Repeat for FGfb=350.
C. Repeat for FGfb=500.
D. Repeat for FGfb=1000.

4. Closed-loop bandwidth.
A. Measure the closed-loop bandwidth (-3dB frequency) for each of the cases

in 3A–3D.
B. Compare bandwidths in 4A to those in 2A. What is the relationship

between more aggressive tuning (lower PM and GM) and maximum
command response?



I n this chapter . . .

• Development of the Luenberger observer
• Experiments demonstrating how observers enhance stability
• Practical aspects of designing and tuning observers

This chapter will introduce the Luenberger observer. It will focus on the predictor–
corrector structure where the observer uses a model to predict system operation and
then uses the feedback signal to correct deviations between the model and the actual
system. Also, a filter form of the observer will be discussed; this representation 
provides additional insight into the operation of observers. This chapter will conclude
with a step-by-step procedure for designing a Luenberger observer.

4.1 What Is a Luenberger Observer?
An observer is a mathematical structure that combines sensor output and plant 
excitation signals with models of the plant and sensor. An observer provides feedback
signals that are superior to the sensor output alone. The topic of this book is the
Luenberger observer, which combines five elements:

• a sensor output, Y(s),
• a power converter output (plant excitation), PC (s),
• a model (estimation) of the plant, GPEst(s),
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• a model of the sensor, GSEst(s), and
• a PI or PID observer compensator, GCO(s).

The general form of the Luenberger observer is shown in Figure 4-1.

4.1.1 Observer Terminology
The following naming conventions will be used. Estimated will describe components
of the system model. For example, the estimated plant is a model of the plant that is
run by the observer. Observed will apply to signals derived from an observer; thus, the
state (CO) and the sensor (YO) signals are observed in Figure 4-1. Observer models and
their parameters will be referred to as estimated. Transfer functions will normally be
named G(s) with identifying subscripts: GP(s) is the plant transfer function and GPEst(s)
is the estimated or modeled plant.

4.1.2 Building the Luenberger Observer
This section describes the construction of a Luenberger observer from a traditional
control system, adding components step by step. Start with the traditional control
system shown in Figure 4-2. Ideally, the control loop would use the actual state, C(s),
as feedback. However, access to the state comes through the sensor, which produces

GP(s) GS(s)
C(s)

CO(s)
GPEst (s)

PC(s)
Y(s)

GSEst(s)
YO(s)

EO(s) +

_
GCO(s)

+

+

Physical system

Modeled system

Plant Sensor

Plant Sensor

Observer 
compensator

Actual
sensor
output

Observed
sensor
output

Plant
excitation

Actual
state

Observed
state

Observer 
error

Figure 4-1. General form of the Luenberger observer.



Y(s), the feedback variable. The sensor transfer function, GS (s), often ignored in the
presentation of control systems, is the focus here. Typical problems caused by sensors
are phase lag, attenuation, and noise.

Phase lag and attenuation can be caused by the physical construction of the sensor
or by sensor filters, which are often introduced to attenuate noise. The key detriment
of phase lag is the reduction of loop stability. Noise can be generated by several 
forms of electromagnetic interference (EMI). Noise causes random behavior in the
control system, corrupting the output and wasting power. All of these undesirable
characteristics are represented by the term GS(s) in Figure 4-2. The ideal sensor can
be defined as GS-IDEAL(s)=1.

The first step in dealing with sensor problems is to select the best sensor for the
application. Compared to using an observer, selecting a faster or more accurate sensor
will provide benefits that are more predictable and more easily realized. However,
limitations such as cost, size, and reliability will usually force the designer to accept
sensors with undesirable characteristics, no matter how careful the selection process.
The assumption from here forward will be that the sensor in use is appropriate for 
a given machine or process; the goal of the observer is to make the best use of
that sensor. In other words, the first goal of the Luenberger observer will be to min-
imize the effects of GS(s)π1.

For the purposes of this development, only the plant and sensor, as shown in 
Figure 4-3, need to be considered. Note that the traditional control system ignores
the effect of GS(s)π1; Y(s), the sensor output, is used in place of the actual state 
under control, C(s). But Y(s) is not C(s); the temperature of a component is not the
temperature indicated by the sensor. Phase lag from sensors often is a primary 
contributor to loop instability; noise from sensors often demands correction by the
addition of filters in the control loop, again contributing phase lag and ultimately
reducing margins of stability.
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Figure 4-2. Traditional control system.
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PC(s) C(s) Y(s)

Figure 4-3. Plant and sensor.
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4.1.2.1 Two Ways to Avoid GS(s) π 1
So, how can the effects of GS (s) π 1 be removed? One alternative is to follow the sensed
signal with the inverse of the sensor transfer function: G-1

SEst(s). This is shown in 
Figure 4-4. On paper, such a solution appears workable. Unfortunately, the nature 
of GS (s) makes taking its inverse impractical. For example, if GS (s) were a low-pass
filter, as is common, its inverse would require a derivative as shown in Equation 4.1.
Derivatives are well known for being too noisy to be practical in most cases; high-
frequency noise, such as that from quantization and EMI, processed by a derivative
generates excessive high-frequency output noise.

(4.1)

Another alternative to avoid the effects of GS (s)π1 is to simulate a model of the
plant in software as the control loop is being executed. The signal from the power
converter output is applied to a plant model, GPEst(s), in parallel with the actual plant.
This is shown in Figure 4-5. Such a solution is subject to drift because most control-
system plants contain at least one integrator; even small differences between the 
physical plant and the model plant will cause the estimated state, CEst(s), to drift. As
a result, this solution is also impractical.

The solution of Figure 4-4, which depends wholly on the sensor, works well at 
low frequency but produces excessive noise at high frequency. The solution of
Figure 4-5, which depends wholly on the model and the power converter output signal,
works well at high frequency but drifts in the lower frequencies. The Luenberger
observer, as will be shown in the next section, can be viewed as combining the best
parts of these two solutions.
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Figure 4-4. An impractical way to estimate C(s): Adding the inverse sensor transfer function.

GP(s) GS(s)
C(s)
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GPEst (s)

PC(s)
Y(s)

Figure 4-5. Another impractical solution: Deriving the controlled state from a model of the plant.



4.1.2.2 Simulating the Plant and Sensor in Real Time
Continuing the construction of the Luenberger observer, augment the structure of
Figure 4-5 to run a model of the plant and sensor in parallel with the physical plant
and sensor. This configuration, shown in Figure 4-6, drives a signal representing the
power conversion output through the plant model and through the sensor model to
generate the observed sensor output, YO(s). Assume for the moment that the models
are exact replicas of the physical components. In this case, YO(s)=Y(s), or, equiva-
lently, EO(s)=0. In such a case, the observed state, CO(s), is an accurate representation
of the actual state. So CO(s) could be used to close the control loop; the phase lag of
GS(s) would have no effect on the system. This achieves the first goal of observers, the
elimination of the effects of GS(s) π 1, but only for the unrealistic case where the model
is a perfect representation of the actual plant.

4.1.2.3 Adding the Observer Compensator
In any realistic system EO(s) will not be zero because the models will not be perfect
representations of their physical counterparts and because of disturbances. The final
step in building the Luenberger observer is to route the error signal back to the model
to drive the error toward zero. This is shown in Figure 4-7. The observer compen-
sator, GCO(s), is usually a high-gain PI or PID control law.

The gains of GCO(s) are often set as high as possible so that even small errors drive
through the observer compensator to minimize the difference between Y(s) and YO(s).
If this error is small, the observed state, CO(s), becomes a reasonable representation
of the actual state, C(s); certainly, it can be much more accurate than the sensor
output, Y(s).

One application of the Luenberger observer is to use the observed state to close
the control loop; this is shown in Figure 4-8, which compares to the traditional control
system of Figure 4-2. The sensor output is no longer used to close the loop; its sole
function is to drive the observer to form an observed state. Typically, most of the
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Figure 4-6. Running models in parallel with the actual components.
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phase lag and attenuation of the sensor can be removed, at least in the frequency
range of interest for the control loop.

4.2 Experiments 4A–4C: Enhancing Stability with an Observer
Experiments 4A–4C are Visual ModelQ models that demonstrate one of the primary
benefits of Luenberger observers: the elimination of phase lag from the control loop
and the resulting increase in margins of stability. Experiment 4A represents the 
traditional system. Experiment 4B restructures the loop so the actual state is used as
the feedback variable. Of course, this is not practical in a working system (the actual
state is not accessible) and is only used here to demonstrate the negative effects of the
sensor. Experiment 4C adds a Luenberger observer to the control system. The result
will be that the system performance will be equal to that of Experiment 4B where the

GP(s) GS(s)
C(s)

CO(s)
GPEst (s)

PC(s)
Y(s)

GSEst(s)
YO(s)

+

_

EO(s)
GCO(s)
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Figure 4-7. The Luenberger observer.
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Figure 4-8. A Luenberger observer-based control loop.



actual state was used. In other words, the effects of the imperfect sensor will be 
eliminated by the observer.

The model of Experiment 4A is shown in Figure 4-9. The loop includes a PI com-
pensator, a 50-Hz bandwidth power converter, and a 20-Hz bandwidth sensor. The PI
compensator is tuned aggressively so that the margins of stability are too low. The
sensor is the primary contributor to phase lag in the control loop and thus the primary
cause of low margins of stability. Starting from the left, there are ten components in
this model:

Command A waveform generator used to excite the system with a 2-Hz square
wave at an amplitude of ±1.

R A variable block for R, the command. R is not used in this discussion;
it and several other variables are provided for readers who wish to
explore the model independently. To view these variables, run the model
and double-click on the main scope block to see the main scope display,
which will display all variables.

Subtraction A subtraction block to form the error, R-Y.
GC A digital PI control law operating on the error signal. The PI gains are

set high enough to cause overshoot and ringing: KI =30.0 and KP =1.5.
GPC The power converter modeled by a two-pole low-pass filter with a 

bandwidth of 50Hz and a z of 0.707.
K A scaling gain representing part of the plant transfer function. The gain

here is 50.
GP An integrator that, together with K, represents the plant.
GS A single-pole low-pass filter representing the sensor. The bandwidth 

of the filter is 20Hz. This bandwidth is so low that the sensor is the
predominant source of phase lag in the control loop.

Y A variable block for Y, the system output.
C A Live Scope for C, the actual state.

The model includes a Live Scope display of C, the actual state. This signal is the
system response to R, the square-wave command. The signal C shows considerable
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Figure 4-9. Experiment 4A: A traditional control system.
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overshoot and ringing, which indicates marginal stability. The gains of GC, the PI 
controller (KP =1.5 and KI =30), are set too aggressively for the phase lag of this 
loop.

The marginal stability of Figure 4-9 is caused in large part by the phase lag created
by GS. Were GS an ideal sensor (GS =1.0), the system would behave well with the gains
used in that model. This is demonstrated in Experiment 4B (see Figure 4-10), which
is identical in all respects to Figure 4-9 except that the loop feedback is the actual
state (C ), not the measured output (Y ). Of course, this structure is impractical; loops
must be closed on measured signals. In traditional control systems, the use of sensors
with significant phase lag1 usually requires reducing control-law gains, which implies
a reduction in system performance. In other words, the most common solution 
for the problems of Figure 4-9 is to reduce the PI gains and accept the lower level of
performance. An observer can offer a better alternative.

Experiment 4C (see Figure 4-11) is Experiment 4A with an observer added. Several
new blocks are used to construct the observer of Figure 4-7:

Subtraction A subtraction block is added on the right to take the difference of Y,
the actual feedback signal, and Yo, the observed feedback signal. This
forms the observer error signal.

GCO A PID control law is used as the observer compensator. GCO was tuned
experimentally using a process that will be described later in this
chapter. GCO samples at 1kHz, as do the other digital blocks (Delay,
GPEst, and GSEst).

Addition An addition block is added to combine the output of the observer 
compensator and the power converter output.

KEst An estimate of the gain portion of the plant. Here, the gain is set to
50, the gain of the actual plant (KEst =K ).

Figure 4-10. From Experiment 4B: An idealized system, which uses the actual state for feedback, 
has conservative margins of stability.

1 Significant in comparison to the other sources of phase lag in the loop such as internal filters and the
power converter.



GPEst A digital integrator, which is a summation scaled by 1/T. It is used to
estimate the second part of the plant, GP.

GSEst A digital filter used to model the sensor transfer function. This is 
a single-pole, low-pass filter with a bandwidth of 20Hz. This is an 
accurate representation of the sensor.

CO Variable block CO, the observed state.
Delay A delay of one sample time. This delay recognizes that there must be 

a sample–hold delay at some position in the digital-observer loop. In
this case, it is assumed that during each cycle of the observer, YO is 
calculated to be used in the succeeding cycle.

The other significant change in Experiment 4C is that the feedback for the control
loop is taken from the observed state, not the sensor output, as was the case in 
Experiment 4A. The results of these changes are dramatic. The actual state shown 
in Figure 4-11 shows none of the signs of marginal stability that were evident in 
Figure 4-9. This improvement is wholly due to reduction of phase lag from the sensor.
In fact, the response is so good, it is indistinguishable from the response of the system
closed using the actual state as shown in Figure 4-10 (the desirable, albeit impractical,
alternative).

Here, the Luenberger observer provided a practical way to eliminate the effects of
sensor phase lag in the loop. Further, these benefits could be realized with a modest
amount of computational resources: a handful of simple functions running at 1kHz.
Altogether, these calculations represent a few microseconds of computation on a
modern DSP and not much more on a traditional microprocessor. In many cases,
the calculations are fast enough that they can be run on existing hardware using
uncommitted computational resources.
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Figure 4-11. Model of observer-based control system, from Experiment 4C.
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4.2.1 Experiment 4D: Elimination of Phase Lag
A brief investigation can verify the elimination of phase lag demonstrated with 
Experiments 4A–4C. Experiment 4D (see Figure 4-12) displays three signals on Live
Scopes: C, the actual state, Y, the measured state, and CO, the observed state. At first
glance, all three signals appear similar. However, upon closer inspection, notice that
Y (rightmost) lags C (top) by about a division. For example, C crosses two vertical
divisions at two time divisions after the trigger time, which is indicated by a small 
triangle; Y requires three time divisions to cross the same level, about 10ms longer.
Note that the time scale has been reduced to 0.01s in Experiment 4D to show this
detail. Note also that all three Live Scopes are triggered from R, the command, and
so are synchronized.

Now compare the observed state, CO, to the actual state. These signals are virtually
identical. For example, CO crosses through two vertical divisions at the second time
division, just like the actual state. The phase lag from the sensor has been eliminated
by the observer. This explains why the margins of stability were the same whether 
the system used the actual state (Experiment 4B) or the observed state (Experiment 4C)
for feedback and why the margins were lower in the system using the measured state
(Experiment 4A).

It should be pointed out that this observer has several characteristics that will not
be wholly realized in a practical system: the plant and sensor models are near-perfect

The actual state takes
0.02 seconds to

cross 2 divisions.

The sensor output 
takes 0.03 seconds 
to cross 2 divisions.

The observed state 
takes 0.02 seconds 
to cross 2 divisions.

Figure 4-12. Experiment 4D: Three signals in an observer-based system.



representations of the actual plant and system, there are no disturbances, and the
sensor signal is noiseless. Certainly, these imperfections will limit the benefits of
observers in real-world control systems. Even so, the principle shown here is reliable
in working machines and processes: the Luenberger observer can produce substantial
benefits in the presence of sensor phase lag, and it can do so with modest 
computational resources.

4.3 Predictor–Corrector Form of the Luenberger Observer
Observers are often described as being in the class of predictor–corrector methods.
The Luenberger observer of Figure 4-8 is shown in Figure 4-13 in two sections. The
model of the plant, GPEst(s), predicts the state, CO(s), from the power converter output
signal, PC (s). Were the model of the plant a perfect representation of the physical
plant and the power conversion signal a perfect representation of the power converter
output, the prediction would be perfect. Of course, this is not realistic. The model 
is only an approximation to the plant. In addition, disturbances, which feed into 
the plant after the power conversion signal, usually are unknown to the controller.
Disturbances are shown as D(s) in Figure 4-13; note that disturbances are present in
most control systems. (The effect of disturbances on the Luenberger observer will be 
discussed in detail in Chapter 6.) All of these effects could cause the prediction of
CO(s) to deviate substantially from C (s). However, the observer compensator corrects
most of those deviations.

The corrector section processes CO(s) with the estimated sensor transfer function,
GSEst(s), to derive the observed sensor output, YO(s). When the observed sensor output
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Figure 4-13. Predictor–corrector form of the Luenberger observer.
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is compared to the actual sensor output, the observer error, EO(s), is formed. This
error is fed into the observer compensator, GCO(s), to create the signal DO(s). The gains
of GCO(s) are usually set high so that even small errors cause a substantial value of
DO(s). DO(s) is driven through the plant and sensor models; if the observer is applied
properly, the error signal will be held to near zero. Since the correction signal feeds
through the plant and the sensor models, it corrects the observed state, CO(s), as it
corrects the observed sensor output, YO(s).

4.4 Filter Form of the Luenberger Observer
The Luenberger observer can be analyzed by representing the structure as a transfer
function. This method will be used throughout this book to investigate system
response to nonideal conditions: disturbances, noise, and model inaccuracy. The form
is not normally used for implementation because of practical limitations, which will
be discussed. However, the filter form is useful because it provides insight into the
operation of observers.

The observer transfer function has two inputs, PC (s) and Y(s), and one output,
CO(s). In this analysis, the actual model and sensor are considered a black box. This
is shown in Figure 4-14. The focus is on understanding the relationship between the
inputs to the observer and its output. Signals internal to the observer, such as EO(s)
and YO(s), are ignored. In fact, they will become inaccessible as the block diagram is
reduced to a single function.

Using Mason’s signal flow graphs to build a transfer function from Figure 4-14
produces Equation 4.2. There is a single path, P1 (see Figure 4-14), from Y(s) to the
observed state, CO(s). Also, there is one path, P2, from PC (s) to the CO(s). Finally, there

GP(s) GS(s)
C(s)

CO(s)
GPEst (s)

PC(s)
Y(s)

GSEst(s)
YO(s)

EO(s)

_

+
GCO(s)

+

+

Treat physical system as a “black box”

D(s)

+

+

P2

P2

P2

P2

P2 P2 P1

P1

P1

P1P1

L1L1L1

L1

L1 L1 L1

P1

P1 P2

Figure 4-14. Luenberger observer as transfer function between Y(s), PC (s), and CO(s).



is a single loop, L1. The equations for P1, P2, and L1 can be read directly from 
Figure 4-14:

Using Mason’s signal flow graphs, Equation 4.2 can be written by inspection.

(4.2)

(4.3)

Equation 4.2 is the sum of two factors. These factors are separated in 
Equation 4.3. The first factor, dependent on the sensor output, Y(s), is shown in 
Equation 4.4; note the term GSEst (s) has been multiplied through the fractional term
and divided out of the scaling term, Y (s). Equation 4.4 can be viewed as the sensor
output, multiplied by the inverse estimated sensor transfer function, and then filtered
by the term on the far right; as will be shown, the term on the right is a low-pass filter.
So, Equation 4.4 is the form shown in Figure 4-4 followed by a low-pass filter.

(4.4)

The second factor of Equation 4.3, dependent on the power converter output, is
shown in Equation 4.5. Here the estimated plant transfer function, GPEst(s), has been
pulled out to scale the filter term. The scaling term is equivalent to the form shown
in Figure 4-5 used to calculate CEst (s). As will also be shown, the term on the right is
a high-pass filter. So, equation (4.5) is the form shown in Figure 4-5 followed by a
high-pass filter.

(4.5)

4.4.1 Low-Pass and High-Pass Filtering
The rightmost term in Equation 4.4 can be shown to be a low-pass filter. That term
is shown in Equation 4.6. To see this, first consider the individual terms of Equation
4.6. GPEst(s) is a model of the plant. Plants for control systems almost uniformly
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involve one or more integrals. At high frequencies, the magnitude of this term declines
to near zero. GSEst(s) is a model of the sensor. Sensor output nearly always declines at
high frequencies because most sensors include low-pass filters, either implicitly or
explicitly. The term GCO(s) is a little more difficult to predict. It is constructed so the
open-loop gain of the observer (GSEst(s)¥GPEst(s)¥GCO(s)) will have sufficient phase
margin at the observer crossover frequencies. Like a physical control loop, the com-
pensator has a high enough order of differentiation to avoid 180° of phase shift while
the open-loop gain is high. However, the maximum order of the derivative must be
low enough so that the gain at high frequency declines to zero. So, evaluating the
product of GPEst(s), GSEst(s), and GCO(s) at high frequency yields a small magnitude;
by inspection, this will force the magnitude of Equation 4.6 to a low value at high
frequency. This is seen because the “1” will dominate the denominator, reducing 
Equation 4.6 to its numerator.

(4.6)

Using similar reasoning, it can be seen that Equation 4.6 will converge to “1” at
low frequencies. As has been established, GPEst(s) will usually have one order of inte-
gral; at low frequencies, this term will have a large magnitude. GCO(s) will add one
order of integration or will at least have a proportional term. Typically, GSEst(s) 
will be a low-pass filter with a value of unity at low frequencies. Evaluating the
product of GPEst(s), GSEst(s), and GCO(s) at low frequency yields a large magnitude; by
inspection, this will force the magnitude of Equation 4.6 to 1. (This can be seen
because the “1” in the denominator will be insignificant, forcing Equation 4.6 to 1.)
These two characteristics, unity gain at low frequency and near-zero gain at high 
frequency, are indicative of a low-pass filter.

The right-hand term of Equation 4.5 can be investigated in a similar manner. This
term, shown in Equation 4.7, has the same denominator as Equation 4.6, but with 
a unity numerator. At high frequency, the denominator reduces to approximately 1,
forcing Equation 4.7 to 1. At low frequencies, the denominator becomes large, forcing
the term low. This behavior is indicative of a high-pass filter.

(4.7)

4.4.2 Block Diagram of the Filter Form
The filter form of the Luenberger observer is shown as a block diagram in 
Figure 4-15. This demonstrates how the observer combines the input from Y(s) and
PC (s). Both of these inputs are used to produce the observed state. The term from
Y(s) provides good low-frequency information but is sensitive to noise; thus, it is 
intuitive that this term should be followed by a low-pass filter. The term from PC (s)

1
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provides poor low-frequency information because it is subject to drift when integral
gains are even slightly inaccurate. On the other hand, this term is not as prone to gen-
erate high-frequency noise as was the Y(s) term. This is because the plant, which nor-
mally contains at least one integral term, acts as a filter, reducing the noise content
commonly present on the power converter output. It is intuitive to follow such a term
with a high-pass filter. The observed state is formed two different ways from the two
different sources and uses filtering to combine the best frequency ranges of each into
a single output.

One detail that bears discussion is that the two filters of Equations 4.6 and 4.7 sum
to unity. This leads to the more computationally efficient version of the filter form
that is shown in Figure 4-16. It is based on the understanding that 1 -Equation 4.6 =
Equation 4.7, which can be seen with a little algebra.
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Figure 4-15. Filter form of the Luenberger observer.

Y(s) GSEst
-1(s)

)()()(1

)()()(

sGsGsG

sGsGsG

SEstCOPEst

SEstCOPEst

¥¥+
¥¥

GPEst(s)PC(s)

CO(s)
+

+

+

_

Low-pass filter (Equation 4.6)

Figure 4-16. Computationally efficient filter form of the Luenberger observer.



82 � CHAPTER 4 THE LUENBERGER OBSERVER: CORRECTING SENSOR PROBLEMS

4.4.3 Comparing the Loop and Filter Forms
The filter form (Figures 4-15 and 4-16) of the Luenberger observer is presented to aid
understanding. The loop form (Figure 4-7) is more practical for several reasons. First,
in most cases, it is computationally more efficient. Also, the loop form observes not
only the plant state, but also the disturbance; the value of disturbance observation
will be discussed in Chapter 6. The filter form does offer at least one advantage 
over the traditional form: the process of tuning the observer is exchanged for a 
configuration of a filter; for some designers, this process might be more familiar.

The standard form of the Luenberger observer requires the tuning of the GCO(s)-
GPEst(s)-GSEst(s) loop. This process is like tuning a physical control loop. Like a 
physical control loop, the loop form of observers can become unstable. Assuming 
the low-pass filter of Figure 4-16 is implemented in the z-domain as a ratio of two
polynomials, this type of instability can be avoided entirely. However, this advantage
is small as the instability in the loop form is easily avoided. This book will focus on
the loop form but use the filter form for analysis.

4.5 Designing a Luenberger Observer
Section 4.2 provided experiments that demonstrated performance of the Luenberger
observer. In that section, a fully configured observer was provided as part of a control
system. Before the model for that system could be used, several steps were required
to design that observer. Those steps are the focus of this section. There are four major
components of observer design: modeling the sensor, modeling the plant, selecting
the observer compensator, and tuning that compensator. This section will provide
details on each of those components and then conclude with a step-by-step 
procedure.

The presentation of observers in this book is based on classical controls: block 
diagrams and transfer functions in the s-domain. Readers may have considered that
observers are commonly presented in the matrix-based state-space form. State space
is a useful means of representing observer-based systems, especially when the system
is complex, for example, when high-order plants are used. The weakness of the state-
space representation is that it hinders intuition. The abstract form simplifies mathe-
matical manipulation but leaves most designers puzzled: How can I implement this?
Under what conditions will I see benefit and in what quantity? How do I debug it?

This book presents observers in the classical form, even though the approach is
limited to lower order systems. This approach is well used in application-oriented
writing concerning observers [15; 33, p. 345; 35; 40; 41], even though it is generally
eschewed by authors of academic texts [16, p. 299; 18, p.70; 19, p. 400; 34, p. 653] in
favor of the more general state-space form. The classical approach is used here in the
belief that a great deal of benefit can be gained from the application of observers to
common control systems, but the dominance of the state-space representation has
limited its application by working engineers.



4.5.1 Designing the Sensor Estimator
The task of designing the sensor estimator is to derive the transfer function of the
sensor. The key parameters are filtering and scaling. For example, the model in 
Section 4.2 used a low-pass filter with unity gain to model the effects of the sensor.
One benefit of modeling the entire control system (as was done in Section 4.2 and
throughout this book) is that the transfer function of the sensor is known with 
complete certainty. In the system of Section 4.2, the sensor was selected as a low-pass
filter so that designing the sensor estimator was trivial (GSEst(s)=GS (s)). Of course 
in a practical system, the sensor transfer function is not known with such precision.
The designer must determine the sensor transfer function as part of designing the
observer.

4.5.1.1 Sensor Scaling Gain
The scaling gain of a sensor is of primary importance. Errors in sensor scaling will
be reflected directly in the observed state. Most sensor manufacturers will provide
nominal scaling gains. However, there may be variation in the scaling, either from one
unit to another or in a particular unit during operation. (If unit-to-unit variation is
excessive, the scaling of each unit can be individually measured.) Fortunately, sensors
are usually manufactured with minimum variation in scaling gains so that with modest
effort, these devices can often be modeled with accuracy.

Offset, the addition of an erroneous DC value to the sensor output, is another
problem in sensors. If the offset is known with precision, it can be added to the sensor
model; in that case, the offset will not be reflected in the observed state. Unfortunately,
offset commonly varies with operating conditions as well as from one unit to another.
Offset typically will not affect the dynamic operation of the observer; however, an
uncompensated offset in a sensor output will be reflected as the equivalent DC offset
in the observed state. The offset then will normally have the same effect, whether the
loop is closed on the sensor output or the observed state: the offset will be transferred
to the actual state; in that sense, the offset response of the observer-based system will
be the same as that of the traditional system.

4.5.2 Sensor Filtering
The filtering effects in a sensor model may include explicit filters, such as when elec-
trical components are used to attenuate noise. The filtering effects can also be implicit
in the sensor structure such as when the thermal inertia of a temperature sensor 
produces phase lag in sensor output. The source of these effects is normally of limited
concern at this stage; here, attention is focused on modeling the effects as accurately
as possible, whatever the source. The filtering effects can be thought of more broadly
as the dynamic performance: the transfer function of the sensor less the scaling gain.
As was the case with scaling gains, most manufacturers will provide nominal dynamic
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performance in data sheets, perhaps as a Bode plot or as an s-domain transfer 
function. Again, there can be variation between the manufacturer’s data and the parts.
If the variation is excessive, the designer must evaluate the effects of these variations
on system performance.

In some cases, varying parameters can be measured. Since gain and offset terms
can be measured at DC, the process to measure these parameters is usually straight-
forward. Measuring the dynamic performance of a sensor can be challenging. It
requires that the parameter under measurement be driven into the sensor input; the
sensor is then calibrated by comparing the sensor output to the output of a calibrat-
ing sensing device, which must be faster and more accurate than the sensor.
Fortunately, such a procedure is rarely needed. Small deviations between the filtering
parameters of the actual and model sensor have minimal effect on the operation of
the observer. The evaluation of errors in sensor estimation will be considered in detail
in the following chapter. For the purposes of this discussion, the assumption is that
sensor model is known with sufficient accuracy.

Since most observers are implemented digitally, filtering effects usually need to be
converted from the s-domain to the z-domain. This was the case in Experiment 4C;
note that GPEst(s) and GSEst(s) are digital equivalents to their analog counterparts. The
conversion can be accomplished using Table 3-2. This table gives the conversion for
one- and two-pole filters; higher order filters can be converted to a product of single-
and double-pole filters. The conversion to the z-domain is not exact; fortunately, the
z-domain filters in Table 3-2 provide a slight phase lead compared to their s-domain
equivalents, so that the digital form can be slightly phase advanced from the analog
form. However, when adding the delay introduced by sampling, which affects only the
digital form, the result is that both the digital and the analog forms have about the
same phase lag below half the sample frequency (the Nyquist frequency).

4.5.3 Designing the Plant Estimator
The task of designing the plant estimator is similar to that of designing the sensor
estimator: determine the transfer function of the plant. Also like the sensor, the plant
can be thought of as having DC gain and dynamic performance. The plant often 
provides more challenges than the sensor. Plants are usually not manufactured with
the precision of a sensor. The variation of dynamic performance and scaling is often
substantial. At the same time, variation in the plant is less of a concern because an
appropriately designed observer compensator will remove most of the effects of such
variations from the observed state. The following discussion will address the process
of estimating the plant in three steps: estimating the scaling gain, the order of
integration, and the remaining filtering effects. In other words, the plant will be
assumed to have the form

(4.8)G s K
s
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where GP(s) is the total plant transfer function, K is the scaling gain, N is the order
of integration, and GPF (s) is the plant filtering. The task of estimating the plant is to
determine these terms.

4.5.3.1 Plant Scaling Gain (K)
The scaling gain, K, is the overall plant gain. As with sensors, the nominal gain of
a plant is usually provided by the component manufacturer. For example, a current
controller using an inductor as a plant has a gain 1/Ls where L is the inductance so
that the plant gain, K, is 1/L; since inductor manufacturers provide inductance on the
data sheet, determining the gain here seems simple. However, there is usually more
variation in the gain of a plant than in that of a sensor. For example, inductance 
often is specified only to ±20% between one unit and another. In addition, the gain
of the plant during operation often varies considerably over operating conditions.
Saturation can cause the incremental inductance of an iron-core inductor to change
by a factor of five times or more when current is increased from zero to full current.
This magnitude of variation is not common for sensors.

Another factor that makes determination of K difficult is that it may depend on
multiple components of the machine or process; the contributions from some of those
components may be difficult to measure. For example, in a servo system, the plant
gain K is KT/J, where KT is the motor torque constant (the torque per amp) and J is
total inertia of the motor and the load. The KT is usually specified to an accuracy 
of about 10% and the motor inertia is typically known to within a few percentage
points; this accuracy is sufficient for most observers. However, the load inertia is 
sometimes difficult to calculate and even harder to measure. Since it may be many
times greater than the motor inertia, the total plant gain may be virtually unknown
when the observer is designed. Similarly, in a temperature-controlled liquid bath, the
gain K includes the thermal mass of the bath, which may be difficult to calculate 
and inconvenient to measure; it might also vary considerably during the course of
operation.

The problems of determining K, then, fall into two categories: determining
nominal gain and accounting for variation. For the cases when nominal gain is diffi-
cult to calculate, it can be measured using the observer with modest effort. A process
for this will be the subject of Section 4.5.3.4. The problems of in-operation variation
are another matter. Normally, if the variation of the plant is great, say, more than
20–50%, the benefits of the observer may be more difficult to realize. Of course, if the
variation of the gain is well known, and the conditions that cause variation are 
measured or can otherwise be determined, the estimated scaling gain can be adjusted
to follow the plant. For example, the variation of inductance is repeatable and 
relatively easy to measure. In addition, the primary cause of the variation, the current
in the inductor, is often measured in the control system; in such a case, the variation
of the gain can be coded in the observer’s estimated plant. However, in other cases,
accounting for such variation may be impractical.
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4.5.3.2 Order of Integration
Most control-system plants have one order of integration, as is the case with all the
plants of Table 2-1. In other cases, the plant may be of higher order because multiple
single-order plants are used such as when a capacitor and inductor are combined 
into a second-order “tank” circuit. Higher order plants are common in complex
systems. In any event, the order of the plant should be known before observer design
begins. This is a modest requirement for observers since even a traditional control
system cannot be designed without knowledge of the order of the plant. The 
assumption here is that the order of the plant (N in Equation 4.8) is known.

4.5.3.3 Filtering Effects
After the scaling gain and integration have been removed, what remains of the 
plant is referred to here as filtering effects. The plants considered in this book will
normally be simple single- and double-order integrators with scaling. These are the
predominant plant types in industry as demonstrated in Table 2-1. Other dynamic
effects are presumed to be secondary. As with sensors, filtering effects need to be 
converted to the z-domain.

Like sensors, the filtering effects of plants can generally be determined through
manufacturer’s data. In most cases, these effects are small or occur at high enough
frequencies that they have little influence on the operation of the control system. For
example, servomotors have two filtering effects which are generally ignored: viscous
damping and interwinding capacitance. Viscous damping contributes a slight 
stabilizing effect below a few Hertz. It has so little effect that it is normally ignored
(this should not be confused with Coulomb and static friction, both effects that are
significant but highly nonlinear around zero speed where they cause serious 
problems). Parasitic capacitance that connects windings is an important effect but
usually has little to do directly with the control system, because the frequency range
of the effect is so far above the servo controller bandwidth.

4.5.3.4 Experiment 4E: Determining the Gain Experimentally
As discussed in Section 4.5.3.1, the plant scaling gain often must be determined 
experimentally. The process to do this is simple and can be executed with an ordinary
Luenberger observer assuming the observer error signal (the input to the observer
compensator) is available and that there are no significant disturbances to the control
loop during this process. The system should be configured as follows:

1. Configure the observer estimated sensor and plant. Use the best guess avail-
able for the estimated plant scaling gain.

2. Configure the system to close the control loop on the sensor feedback.



3. Set the observer gains to very low values.
4. Minimize disturbances or operate the product–process in regions where 

disturbances are not significant. (Disturbances reduce the accuracy of this 
procedure.)

5. Excite the system with fast changing commands.
6. Monitor EO(s), the observer error.
7. Adjust the estimated plant scaling gain until the observer error is minimized.

Experiment 4E modifies the model of Experiment 4C for this procedure. The 
estimated sensor is accurate; the estimated plant less the scaling gain is also configured
accurately. Only the scaling gain is in error (20 here, instead of 50). The observer error,
EO(s), has large excursions owing to the erroneous value of KEst. The result is shown
in Figure 4-17.

The effect of changing the estimated scaling gain is shown in Figure 4-18. If KEst

is either too large (a) or too small (c), the error signal grows. The center (b) shows
KEst adjusted correctly (KEst =50). Only when KEst is adjusted correctly is EO

minimized.
The process to find KEst is demonstrated here with a near-perfect sensor estimator

(GS(s)=GSEst(s)). However, it is still effective with reasonable errors in the estimated
sensor filtering effects. The reader is invited to run Experiment 4E and to introduce
error in the estimated sensor and to repeat the process. Set the bandwidth of the 
estimated sensor to 30Hz, a value 50% high (double-click on the node at the top 
center of GSEst and set the value to 30). Notice that the correct value of KEst still 
minimizes error, though not to the near-zero value that was attained with an accurate
estimated sensor in Figure 4-18.
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Notice in Figure 4-18 that the signal is triggered by the rising edge of the command
signal, which correlates to the rising edge of plant response. Notice that in 
Figure 4-18a, where KEst is low, the initial error (synchronized with a positive-going
plant) is positive; that is, when the gain is low, the action from the actual plant is
greater than that of the observer model. This is intuitive; if the model gain is low, it
will react to the excitation less than the actual plant. On the other hand, when KEst 

is high, as in Figure 4-18c, the gain will be in the opposite direction of plant action
indicating that the model reacts more than the actual plant. This can lead to a more
automated process where the sign of the error (in comparison to plant action) 
indicates the direction to adjust KEst.

The procedure that started this section stated that low gains should be placed 
in the compensator. Experiment 4E used KIO =0, KDO =0, and KPO =0.1, low values
indeed. The only purpose here is to drive the DC error to zero. Otherwise,
the fully integrating plant would allow a large offset in EO even if KEst were correct.

Another requirement of compensator gains is that they provide a stable loop. A
single integrator in the combined estimated plant and sensor can be stabilized with a
proportional gain. This explains why Experiment 4E has KPO as its only nonzero gain.
A double integration in that path requires some derivative term. In all cases, the gains
should be low; the low gains allow the designer to see the observer error. High gains
in a well-tuned compensator drive the observer error to zero too rapidly for this
process.

4.5.4 Designing the Observer Compensator
Observer-compensator design is the process of selecting which gains will be used in
the compensator; here, this amounts to selecting which combination of P, I, and D
gains will be required. The derivative gain is used for stabilization. The order of

Error is minimized
with correct gain.

(a) (b) (c)

Figure 4-18. Effect of changing KEst on EO(s) for three settings of KEst : (a) KEst =30; (b) KEst =50; (c) KEst =85.



integration in the GPEst-GSEst path determines the need for a derivative gain in 
GCO. If the order is two, a derivative gain in GCO will normally be necessary;
without it, the fixed 180° phase lag of double integration makes the loop difficult 
to stabilize. In addition, the phase lag of the GPEst-GSEst path at and around the 
desired bandwidth of the observer must be considered. If the phase lag is about 180°
in that frequency range, a derivative term will normally be required to stabilize the
loop.

The need for a derivative term and its dependence on the behavior of GPEst-GSEst

is demonstrated by comparing the compensators of Experiments 4C and 4E. In
Experiment 4E, the derivative gain is zeroed because the single-integrating plant did
not require a derivative term. In Experiment 4C, a derivative term was required. The
reason for the difference is the change in observer bandwidth. In Experiment 4E, the
observer bandwidth is purposely set very low, well under the sensor bandwidth. In
Experiment 4C, the observer is configured to be operational and its bandwidth is 
well above the 20-Hz bandwidth of the sensor; well above the sensor bandwidth, the
single-pole low-pass filter of the sensor has a 90° phase lag like an integrator. That,
combined with the 90° phase lag of a single-integrating plant, generates 180° in the
GPEst-GSEst path and so must be compensated; the derivative gain of GCO(s) is a simple
way to do so.

Beyond the cases where a derivative gain is required in the compensator, derivative
gains can be used to enhance stability of the loop (this is generally the case in control
systems). However, derivative gains amplify noise. As will be discussed in Chapter 7,
observers are particularly sensitive to noise and the derivative gains can needlessly
increase that sensitivity.

The goal of the observer compensator is to drive observer error to zero. A fully
integrating plant will normally require an integral gain for this purpose. Without 
the integral gain, disturbances will cause DC errors in the observed state. Because 
disturbances are present in most control systems and because most applications will
not tolerate an unnecessary DC error in the observed state, an integral gain is required
in most observer-based systems. If an integral gain is used, a proportional gain is 
virtually required to stabilize the loop. Thus, most systems will require a PID or, at
least, a PI compensator.

The PI–PID compensator is perhaps the simplest compensator available. However,
other compensators can be used. The goal is to drive the observer error to zero and
to do so with adequate margins of stability. Any method used to stabilize traditional
control loops is appropriate for consideration in an observer loop. This book focuses
on relatively simple plants and sensors so the PID compensator will be adequate for
the task.

One final subject to consider in the design of GCO is saturation. Traditional control-
loop compensators must be designed to control the magnitude of the integral when
the power converter is heavily saturated. This is because the command commonly
changes faster than the plant can respond and large-scale differences in command and
response can cause the integrator to grow to very large values, a phenomenon 
commonly called wind-up. If wind-up is not controlled, it can lead to large overshoot
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when the saturation of the power converter ends. This is not normally a concern with
observers. Since they follow the actual plant, they are usually not subjected to the
conditions that require wind-up control. For these reasons, PID observer compen-
sators normally do not need wind-up control. When working in Visual ModelQ be
aware that all of the standard Visual ModelQ compensators have wind-up control. Be
sure to set the integral saturation levels in the compensator very high so they do not
inadvertently interfere with the operation of the observer.

4.6 Introduction to Tuning an Observer Compensator
Tuning an observer compensator is much like tuning a traditional control system.
Higher gains give faster response but greater noise susceptibility and, often, lower
margins of stability. A major difference is that the observer plant and sensor 
parameters are set in software; thus, they are known accurately and they do not vary
during operation. This allows the designer to tune observers aggressively, setting
margins of stability lower than might be acceptable in traditional control loops.

In many cases the gains of the observer compensator are set as high as margins of
stability will allow. As observers are almost universally implemented digitally, the
main cause of instability in the observer is delay from the sample time of the observer
loop. Typically, the observer should operate at a bandwidth much higher than the
control loop for which it provides feedback. For this reason, the observer will 
sometimes need to sample faster than the control loop.

Other issues in observer tuning that must be taken into consideration include noise,
disturbances, and model inaccuracy. These are discussed briefly here and will be 
discussed in detail in the following three chapters. Noise considerations must be 
considered when tuning an observer. Like any control system, higher gains cause
increased noise susceptibility. Further, because of the structure of Luenberger
observers, they are often more susceptible to sensor noise than are most control
systems. In many cases, sensor noise, not stability concerns, will be the primary upper
limit to observer gains.

As with any control system, higher gains provide faster response. The primary
advantage to tuning the observer loop with high gains is fast response to disturbances
and model inaccuracy, reducing the effects of those problems on the observed state.
These subjects will be discussed in detail in Chapters 5 and 6. For the purposes 
of this discussion, the assumed goal is to tune the observer for maximum gains 
attainable with adequate margins of stability.

In order to provide intuition to the process of tuning, the Luenberger observer of
Figure 4-14 can be drawn as a traditional control loop, as shown in Figure 4-19. Here,
the sensor output, Y(s), is seen as the command to the observer loop. The loop is
closed on the observed sensor output, YO(s); the power converter output, PC (s),
appears in the position of feed-forward term. (Just to be clear, this diagram shows the
observer and no other components of the control system.) Accordingly, the process



of tuning the observer loop is similar to tuning a traditional control system with 
feed-forward.

The procedure here is:

1. Temporarily configure the observer for tuning.
2. Adjust the observer compensator for stability.
3. Restore the observer to the normal Luenberger configuration.

4.6.1 Step 1: Temporarily Configure the Observer for Tuning
The observer should be temporarily configured with a square-wave command in place
of Y and without the feed-forward (PC) path. This is done in Experiment 4F and is
shown in Figure 4-20. The command square-wave generator, R, has been connected
in the normal position for Y. The estimated sensor output, YO, is the primary output
for this procedure.

The square-wave generator is used because it excites the observer with a broader
range of frequencies than the physical plant and sensor normally can. The rate of
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Figure 4-19. Luenberger observer drawn as a traditional control loop.

Figure 4-20. Experiment 4F: Tuning an observer compensator.
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change of a sensor is limited by physics: inertia makes instantaneous changes un-
attainable. There is no such limitation on command generators. The use of the 
square-wave command to excite the observer allows the designer to more clearly see
its response to high frequencies. The sharper edges of a square wave reveal more about
the observer’s margins of stability than do the gentler output signals of a physical
sensor.

4.6.2 Step 2: Adjust the Observer Compensator for Stability
As with physical loops, the observer compensator can be tuned experimentally with
a zone-based tuning procedure (see Section 3.4). For a PID observer compensator,
this implies that the proportional and integral terms are zeroed while the derivative
gain is tuned. The proportional gain is tuned and then, finally, the integral term 
it tuned. For a PI observer compensator, zero the I-term and tune the P-term; then
tune the I-term. The results of applying this method to the PID compensator in
Experiment 4F are shown in Figure 4-21. Note that in many cases, a DC offset will
appear in the feedback signal when KPO is zero; if the offset is large, it can move 
the error signal off screen. If this occurs, temporarily set KPO to a low value until the
offset is eliminated; in Experiment 4F, use KPO =0.1 for this effect.

During the process of tuning, the term driven by PC should be zeroed. This is
because the PC term acts like a feed-forward to the observer loop, as shown in 
Figure 4-19. Zone-based tuning recommends that all feed-forward paths be 
temporarily eliminated because they mask the performance of the loop gains. After
the loop is tuned, the path from PC can be restored.

(a) (b) (c)

KDO = 0.1
KPO = 0.0
KIO = 0.0

KDO = 0.1
KPO = 60.0
KIO = 0.0

KDO = 0.1
KPO = 60.0

KIO = 10,000.0

1. Raise KDO for no or 
minimal overshoot

2. Raise KPO for up 
to 25% overshoot

3. Raise KIO for no or 
minimal ringing

Figure 4-21. Tuning the observer of Experiment 4F in zones. Start with zero gains. (a) Raise KDO, but avoid
overshoot. (b) Raise KPO for about 25% overshoot. (c) Raise KIO until ringing just starts.



4.6.2.1 Modifying the Tuning Process for Nonconfigurable Observers
If it is not possible to reconfigure the observer to the form shown in Figure 4-20,
the observer can still be tuned by selecting the gain margin. First the system must be
configured so the control loop is closed on the sensed signal since this method will
temporarily generate instability in the observer. The low-frequency gains are zeroed
and the high-frequency gain (typically KDO) is raised until the observer becomes unstable,
indicating 0dB gain margin. The gain is then lowered to attain the desired gain
margin. For example, raise KDO in steps of 20% until the observer oscillates, and 
then reduce it by, say, 12dB (a factor of 4) to yield 12dB of gain margin for the
observer.

The interested reader may wish to verify this with Experiment 4F. Configure the
waveform generator Command (right-click on the waveform generator block to adjust
its properties) for gentler excitation, similar to what might come from a physical plant
and sensor: set Waveform to “s-curve” and set Frequency to 20Hz. Zero KPO and KIO.
(Temporarily set KPO to 0.1 to eliminate DC offset if necessary.) Raise KDO in small
steps until the observer becomes unstable — this occurs at KDO �0.32. Notice that 
there are no signs of instability with the s-curve command until the system becomes
self-oscillatory. Reduce KDO by 12dB or a factor of 4 to 0.08 to get 12dB of gain
margin; this is essentially the same value that was found with the tuning procedure
above (KDO =0.1). Repeat for the remaining gains.

4.6.2.2 Tuning the Observer Compensator Analytically
Observers can be tuned analytically; this is generally easier than tuning a physical
system analytically because the transfer function of the observer is known precisely.
After the transfer function is found, the gains can be set to modify the poles of the
transfer function. Pole placement methods are presented in [16, p. 308].

4.6.2.3 Frequency Response of Experiment 4G
This section will investigate the frequency response of the observer. Experiment 
4G is reconfigured to include a dynamic signal analyzer or DSA (see Figure 4-22).
The DSA is placed in the command path; this means the DSA will inject random 
excitation into the command and measure the response of certain signals. The closed-
loop response is shown by the DSA as the relationship of YO to R. A variable block
has been added for EO, the observer error, so the open-loop response of the observer
can be displayed. The relationship of YO to EO in the DSA is the open-loop gain of
the observer.

The closed-loop Bode plot taken from Experiment 4G is shown in Figure 4-23.
The plot shows the closed-loop response as having high bandwidth compared to the
sample rate. The observer is sampled at 1000Hz as defined by the digital controller
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(not shown in Figure 4-22). However, the response is still 0dB at 250Hz, one-fourth
of the sample rate. (The performance above 250Hz is difficult to determine here since
the FFT also samples at 1000Hz and does not provide reliable data above one-fourth
of its sample frequency.) There is about 4dB of peaking at 100Hz, a substantial
amount for a physical control system but reasonable for an observer. Recall that

Figure 4-22. Experiment 4G, adding a DSA to Experiment 4F.

The observer 
has good 
response up to 
and beyond 
250 Hz, 1/4 of 
the sample 
frequency,  
demonstrating 
that the 
observer is 
tuned 
aggressively.

Figure 4-23. Frequency response of the Luenberger observer of Experiment 4G.



observers do not need robustness for dealing with parameter changes as do 
ordinary control systems and so stability margins can be lower than physical control
systems.

Experiment 4G confirms that the observer gains are set quite high for the sample
rate. In fact, the only limitation is the sample rate itself. Were the observer sampled
faster, the gains could be raised. The reader may wish to experiment here. The sample
time (TSample) can be reduced to 0.00025. Using the same procedure as above, the
gains can be raised to approximately KDO =0.6, KPO =500, and KIO =500,000. In 
this case the observer bandwidth is about 1000Hz, still one-fourth of the sample 
frequency.

One point that needs to be reinforced is that it is often not appropriate to 
maximize the bandwidth of the observer. High observer bandwidth maximizes the
response to sensor noise. (None of the experiments in this chapter have noise sources.)
One strength of observers is that they can be used to filter sensor noise while using
the power converter signal to make up for any phase lag. So, sensor noise will often
be the dominant limitation on observer bandwidth, in which case the observer band-
width may be intentionally set lower than is possible to achieve based on stability
margins. So this procedure reaches the upper limit of observer loop response; be pre-
pared to return and lower the response, for example by lowering KDO and reducing
the other gains according to Figure 4-21.

4.6.3 Step 3: Restore the Observer to the Normal Luenberger Configuration
Restore the observer to the normal Luenberger configuration as shown in 
Figure 4-8. Remove the connection to the waveform generator and reconnect YO(s).
Reconnect the path from PC (s). The observer should be ready to operate.

4.7 Exercises
1. Compare the rise time of observer- and nonobserver-based systems to a step

command.
A. Open Experiment 4A and retune the system for reasonable margins of

stability (e.g., find maximum KP without overshoot and maximum KI for
30% overshoot to step).

B. What is the settling time?
C. Repeat A and B using the observer-based system of Experiment 4C.
D. Why is there a large difference in settling times? How does that difference

relate to the observer?
2. Retune an observer for a lower bandwidth.

A. Open Experiment 4G and retune the system starting with KDO =0.05,
KPO =0, and KIO =0. For limits allow 15% overshoot with KPO and slight
ringing with KIO.
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B. What is the bandwidth of the observer?
C. Using Experiment 4C, place the values of part A in the observer and see

the effect on command response. Evaluate settling time and compare to
results with original observer gains (see Problem 1C). Explain the differ-
ence (or lack of difference).

3. Using hot connection on the Live Scope in Experiment 4C, compare the plant
output (C ) to the sensor output (Y ).
A. Are they similar?
B. If so, does this imply sensor phase lag is not a significant factor in closed-

loop performance?
4. Show that having the correct value for estimated sensor bandwidth does not

affect the experimental process to find KEst discussed in Section 4.5.3.4.
Corrupt the value of the sensor bandwidth by changing it from 20 to 30Hz
(top node of GSEst block); be careful to restore the value to 20 before saving
the file as changing the value of a node permanently modifies the mqd file.
A. Adjust KEst to minimize error signal, EO.
B. What conclusion could you draw?



I n this chapter . . .

• Common sources of model inaccuracy
• Effects of model inaccuracy on observer-based systems
• Several software experiments demonstrating results of inaccuracy

This chapter continues the discussion of Chapter 4, analyzing and experimenting
with the Luenberger observer. Several important aspects of observer performance are
presented, especially how observers behave in the presence of errors in the observer
model. Key points are developed analytically and demonstrated in software 
experiments.

In the previous chapter, the observer structure was developed largely assuming
ideal conditions. Of course, in practical systems, conditions are not ideal. The control-
system designer needs to understand the effects of nonideal conditions on the observer
and on the control system as a whole. The main sources of nonideal conditions 
are model inaccuracy, disturbances, and noise. This chapter will discuss problems of
model inaccuracy, Chapter 6 will discuss disturbances, and Chapter 7 will deal with
the effects of noise.

5.1 Model Inaccuracy
Model inaccuracy describes the different types of error that can be present in plant
and sensor models; these models form the observer’s model system as shown in 
Figure 5-1. Observers produce the observed state, CO, by driving two signals, the power
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converter output and sensor output, through the plant and sensor models. Of course,
the accuracy of the estimated state is directly linked to the accuracy of those models.

5.1.1 Sources of Model Inaccuracy
There are many sources of model inaccuracy. Acquiring data from manufacturers and
making independent measurements of control-system components can minimize that
inaccuracy. Fine-tuning observer parameters will further reduce inaccuracy. However,
in practical systems, some inaccuracy in plant and sensor models will be present. The
following sections will address some of the effects of those inaccuracies. The good
news, as will be shown in the remainder of this chapter, is that observer-based systems
are often no more sensitive to parametric variation than are traditional control
systems.

The most common source of model error is probably that the complexity of
implementing an accurate model in real time is too great for most systems. Nonlinear
effects can be difficult to model in terms of both design effort and requirements 
for computational resources. For example, friction in motion systems can be modeled
as simple viscous damping, which is represented as a force proportional to velocity.
A term for Coulomb or sliding friction can be added, which is usually represented 
as a fixed-magnitude force in opposition to the velocity. For greater accuracy at 
low speeds, the Stribeck effect, which is the cause of stiction, can be modeled.
Unfortunately, the Stribeck effect requires considerable computational resources 
to model [3, 25]. Given the complexity of modeling friction accurately, many 
motion-system observers rely simply on viscous damping or ignore friction altogether.

GP(s) GS(s)
C(s)

CO(s)
GPEst (s)

PC(s)

GSEst(s) YO(s)

EO(s) +

_
GCO(s)

+

+

Physical system

Modeled system

Plant Sensor

Plant Sensor

Observer 
compensator

Actual
sensor
output

Observed
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Actual
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Observed
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Observer 
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DO(s)

Y(s)

Figure 5-1. The Luenberger observer.



Another source of model inaccuracy is the reliance on lumped-parameter models,
which reduce model complexity by combining states. For example, the temperature 
of an object varies across the volume of that object. Modeling only the average 
temperature lumps the various regions of the object into a single thermal mass, which
can be represented by one state. The model’s accuracy can be improved by modeling
the mass in many discrete regions where each region requires an independent 
state. However, coarse lumped-parameter models are commonly used because the 
disadvantage of reduced accuracy is usually offset by the advantages of reduced 
computational resources and reduced effort to code and configure the observer.

Manufacturers often provide scant detail on the dynamic operation of their 
products. The responsiveness of a sensor may be given simply as phase lag at a certain
frequency or as bandwidth (the -3dB frequency), both of which are inadequate 
representations for an observer model. Observer models require knowledge of
component behavior across a broad range of frequencies. Ideally, this would be 
provided as an s-domain equation or, perhaps, as a Bode plot. However, many 
manufacturers do not invest the resources to produce such detailed information for
their customers.

When characterizing a manufacturer’s components, consider contacting the com-
pany. Manufacturers may be willing to provide data beyond what they normally
publish. In most cases, only a fraction of a manufacturer’s customers will require the
detailed information needed by someone implementing an observer. If the manu-
facturer is unable to provide the necessary information on their components, consider
making independent measurements. With proper equipment, the dynamic perfor-
mance of a component can be thoroughly measured. Of course, one disadvantage of
making independent measurements is that manufacturers will not stand behind the
results. Should the process or materials used to manufacture the components change,
the performance of the component may change, possibly rendering the independent
measurements inaccurate.

Parametric errors produce errors in the observed state, even when model struc-
tures are accurate. This is especially true in complex models because the comple-
xity of measuring or calculating multiple parameters increases with the complexity 
of the model. Unit-to-unit variation causes parametric inaccuracy. In practical
systems, virtually every parameter of a component will vary due to manufacturing
tolerances. For example, the torque constant (the relationship between current and
torque) of a servomotor will typically vary ±10% from one motor to the next. The
values of passive electronic components, such as capacitors and inductors, often vary
±20%. The loss of accuracy in observer models due to unit-to-unit tolerances can be
significant.

The variation of sensors is usually more closely controlled than that of plants.
Most sensor manufacturers control the variation of key parameters such as DC gain
and offset. However, variation in dynamic performance is more difficult to control
and generally less important for most control-system applications. As a result, the
dynamic behavior of a sensor product line may vary significantly from one unit to
another.
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One way to compensate for unit-to-unit variation is to fine-tune or “tweak in” the
model. However, implementing a process to manually tune every system is usually
practical only for low-volume, high-value control systems. It might make sense for 
a rolling mill, but it probably will not for a power supply. Even when fine-tuning is
practical, it adds complications. The process may have to be repeated in the field 
when components are replaced as part of system maintenance or repair. If the control
system is being built for resale, the requirement of field adjustment should be 
considered carefully as the ability of a company to reliably implement a fine-tuning
procedure outside its factory is often limited.

Although the problems of manual fine-tuning make it impractical for many
systems, it should be noted that some facets of fine-tuning can be carried out auto-
matically. For example, a method based on zeroing the product of observer error and
sensor output (EO ¥Y ) can be executed by the controller to fine-tune the scaling 
constant of the plant model. The use of automated procedures can make fine-tuning
practical on high-volume products and for in-field procedures. The EO ¥Y method is
demonstrated in Experiment 5B.

Another source of model inaccuracy is component variation during operation.
For example, temperature changes the resistance of conductive materials, and the
capacitance of electrolytic capacitors varies as the components age. So, the 
operation of a plant or sensor may change over years of service or just over the time
it takes the temperature to change. If these changes are large enough, the accuracy 
of the observer will be affected, no matter how well the manufacturer’s data 
describe the component or how accurately the model parameters were originally 
fine-tuned.

While the changes in component behavior with temperature and aging are often
small, some operation-dependent system changes are dramatic. For example, the
inertia of a reel from which material is unwound may vary by a factor of ten or more
over the course of just a few minutes. The liquid level, and thus the thermal mass, of
a temperature bath can vary rapidly. These changes can result in variation large
enough to cause instability in the control system. In such a case, the condition that
causes the change usually must be monitored and the control system adjusted for its
effect. Of course, when a parameter varies by an order of magnitude, attempting to
characterize it to a few percentage points over the entire operating range is normally
impractical.

5.2 Effects of Model Inaccuracy
The effects of model inaccuracy will be evaluated both analytically and experimen-
tally. The strength of analysis is that it allows broad predictions. Unfortunately,
analysis is often limited to straightforward effects. The experimental approach offers
the ability to investigate a broader combination of effects. The weakness of an 
experimental approach is that it does not directly yield principles; the ability to predict
effects relies on performing experiments under sufficiently broad conditions. The



approach in this chapter will be to start with analysis and then experiment with Visual
ModelQ models.

5.2.1 Analytical Evaluation
The analytical evaluation will be divided into two parts. The first section will discuss
the effects of plant-model inaccuracy; the next will look at sensor-model inaccuracy.
The focus in this section will be inaccuracy in the scaling gain, here called KEst. This
term is often difficult to characterize in the plant model.

5.2.1.1 Plant Inaccuracy
The effect of estimated-plant inaccuracy on the observed state, CO, can be seen 
by considering Equation 5.1. (Equation 5.1 was developed in Section 4.4 as 
Equation 4.3.) The sensor (first) term is followed with a low-pass filter; that filter has
a bandwidth equal to that of the observer. Thus, it would be expected that errors 
in the sensor model would be most significant at frequencies below the observer 
bandwidth. On the other hand, the power converter (second) term, which relies
directly on the plant model, is followed with a high-pass filter. Thus, it would be
expected that errors in the plant model would be most significant at frequencies above
the observer bandwidth. That is, in fact, the case.

(5.1)

5.2.1.2 Corruption of Observed-State Gain Caused by Plant Gain Errors
The power converter (second) term in Equation 5.1 is the product of the power con-
verter output and the plant model, processed by a high-pass filter. Well above the
observer bandwidth, the filter gain approaches unity because the denominator term
of GPEst(s)¥GCO(s)¥GSEst(s) diminishes; this leaves the power converter term as
approximately PC (s)¥GPEst(s). Here, errors in the plant model, GPEst(s), are translated
directly to the observed state. By this reasoning, errors in KEst will translate directly
to the output well above the observer bandwidth.

5.2.1.3 Corruption of Observed-State Phase Caused by Plant Gain Errors
A second effect of inaccurate estimated-plant gain is in the phase of the observed
state. This effect can also be seen in Equation 5.1. First, consider the actual plant.
As discussed in Section 4.1.2, in the absence of inaccuracy, C(s) is equal to both 
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PC (s)¥GP(s) and Y(s)¥GS
-1(s), so that PC (s)¥GP(s)=Y(s)¥GS

-1(s). Accordingly, in the
ideal observer, PC (s)¥GPEst(s)=Y(s)¥G-1

SEst(s).
Now consider the filtering terms in Equation 5.1. They are low- and high-pass

filters with identical bandwidths. Thus, the phase from the filter terms will be 
equal in magnitude and opposite in sign at all frequencies. In the ideal case, where
PC (s)¥GPEst(s)=Y(s)¥G -1

SEst(s), the phase from the two filtering terms will cancel;
thus, the phase from the filters will not affect the observed state. However, when 
KEst is inaccurate, it forces PC (s)¥GPEst(s) high or low; PC (s)¥GPEst(s) is no longer equal
to Y(s)¥G -1

SEst(s), and the phase terms from the two filters no longer cancel. The net
effect is that errors in KEst cause phase distortion in the observed state around the
observer bandwidth. Scaling errors do not cause phase errors well above the observer 
bandwidth because the magnitude of the low-pass filter term is so low it has little
effect on the observed state; also, KEst does not affect the phase of the high-frequency
term.

5.2.2 Effects of Inaccuracy in the Sensor Model on CO

The effects of sensor-model inaccuracy can also be understood by considering 
Equation 5.1. The sensor model appears mainly in the sensor (first) term, which is the
dominant term at low frequency. Thus, the frequency range where inaccuracy in the
sensor model dominates is below the observer bandwidth. Consider from Figure 4-4
that C(s)=Y(s)¥GS

-1(s); from the discussion above, at frequencies below the observer
bandwidth, the observed state, CO(s) � Y(s)¥G -1

SEst(s). Combining this equation and
approximation, the observed state at low frequencies compared to the actual state 
is CO(s)/C(s) � GS(s)/GSEst(s). Inaccuracy in GSEst(s), which is in the denominator,
causes the inverse effect in the observed state, CO(s), which is in the numerator. For
example, phase lag in the estimated sensor model will cause phase advance in observer
output.

5.3 Experimental Evaluation
Studying inaccuracy requires differentiating between two separate problems: inaccu-
rate modeling and the effects of variation. The difference is whether the error appears
before or after the system is configured. If an observer model is incorrect from 
the start, the error is present before the observer is tuned. The second type of error,
variation, appears after the observer is configured. Here, the observer is tuned with
accurate models, but through time, operating parameters, or unit-to-unit variation,
the dynamics change. The investigation of variation will rely on varying the actual
plant and sensor parameters after the observer is configured. The investigation of
inaccurate modeling will be performed by varying observer-model parameters before
the observer is configured.



5.3.1 Precise Tuning Procedure
Before experiments can be run, a precise observer-tuning process must be developed.
The process that will be used in this section is similar to that developed in 
Chapter 4, but measures of performance will be evaluated more accurately. This 
effort is not normally required for observers in products—small differences in tuning
parameters have minimal effect on system performance. However, in this case, the goal
will be to demonstrate general principles using experimental data. Observer dynamic
performance should be held as constant as possible to ensure that the data show effects 
genuinely caused by the error sources under study and not because of unintentional
changes in observer tuning.

The procedure that will be used in these sections is:

1. Configure the observer for tuning, similar to that shown in Figure 4-22
(Experiment 4G). Add the ability to adjust the actual sensor bandwidth. The model
for this procedure is Experiment 5A and is shown in Figure 5-2. (Note that this 
model has an observer sample time of 0.0001s, much faster than the observers of
Chapter 4. The change was made to minimize the effects of the sample time so this
and the following experiments can focus on model inaccuracy.)

2. As before, start tuning KDO after zeroing KPO and KIO. Tune KDO for 120-Hz 
bandwidth. The value of bandwidth is somewhat arbitrary. In a physical system 
it would often be set based on noise considerations, which will be discussed 
in Chapter 7. For now, 120Hz will be assumed as a system requirement and all
observer tuning will conform to that measure within a few percentage points. Be aware
that the bandwidth is not simply the frequency where the observer gain falls to 3dB,
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Figure 5-2. Experiment 5A: Observer configured for tuning.
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but where it falls 3dB below the DC gain. That distinction is important when KDO

is adjusted with other gains zeroed because the DC gain is less than zero by a few
decibels.

3. Raise KPO until there is 15% overshoot in response to a step function. As it
turns out, this will raise the bandwidth by approximately 30%.

4. Raise KIO until there is 25% overshoot in response to a step function. This
will not substantially affect the bandwidth.

5. Configure a second model to adjust KEst. The system is similar to Figure 4-17
(Experiment 4E) except an RMS meter has been added to monitor EO ¥Y and so 
allow more accurate adjustment of KEst through minimizing the meter output. This
technique is based on the discussion in Section 4.5.3.4. Using this technique under
nominal conditions, KEst will adjust to K with accuracy. The model to adjust KEst is
Experiment 5B and is shown in Figure 5-3.

This procedure was applied to the model system of Experiment 5A. The resulting
observer gains were KDO =0.1, KPO =45, and KIO =6400, values similar to those derived
in Chapter 4. The resulting Bode plots of the observer, less the power converter path,
are shown in Figure 5-4.

5.3.2 Simulating Parameter Variation
The effects of plant gain error will be demonstrated by varying the value of K, and
the effect of sensor dynamic variation will be simulated by changing the sensor band-
width. The effects will be considered in two stages. First, observer inaccuracy will be
considered. In this case, the control loop will be closed based on sensor feedback. The

Figure 5-3. Experiment 5B: Adjusting KEst using an RMS meter on EO ¥ Y.



primary concern will be the comparison of the actual and observed states. Second,
the effect on the stability of the overall control loop will be studied. Here, the loop
feedback will be taken from the observed state. The primary concern will be the
response of the actual state to the command.

5.3.2.1 Effects on the Observed State
The effect of variation on the observed state will be demonstrated using Experiment
5C, which is shown in Figure 5-5. This is a control system with an observer, but still
using the sensed signal for feedback; this allows variation in the observed state without
affecting control-loop operation. The observed and actual states are shown in Live
Scopes. Live Constants are provided for K (plant gain) and FGS (sensor bandwidth).
While these displays are helpful, time-domain plots of the observed and actual states
are not reliable measures of observer performance because many of the effects 
occur at high frequency. Thus, these experiments will rely mostly on the output of the
DSA, which can be brought to view by double-clicking on the DSA icon after the
model is compiled. Note also that the gains of the PI control law, GC, have been
reduced (KP =0.6, KI =12) so the system will have reasonable margins of stability under
nominal conditions. This is done to avoid the distraction caused by the control system
ringing.

The effects of varying K are shown in Figure 5-6. Three plots are run for the cases
of K=25, 50 (nominal), and 100. The observer accuracy with nominal values is nearly
perfect, as is shown with the center plots, which have 0dB gain and 0° phase lag. When
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KDO-only gives a 
bandwidth of 120 Hz.

KDO-only yields less than 
0 dB gain at low frequency.

Non-zero KPO observer yields 0 dB at low 
frequency and raises bandwidth to 155 Hz.

Figure 5-4. From Experiment 5A, gain (above) and phase of frequency response of observer less power
converter path for two conditions: KDO =0.1, KPO =KIO =0 and KDO =0.1, KPO =45, KIO =6400.
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Figure 5-5. Experiment 5C: Investigating the effects of variation on observer performance.

Low K (or high KEst)
causes phase advance.

High K (or low KEst)
causes phase lag.

High K (or low KEst)
translates to lower gain.

Low K (or high KEst)
translates to higher gain.

Observer bandwidth
(150 Hz)

Nominal K produces
ideal gain and phase.

Figure 5-6. From Experiment 5C, the effects on observer accuracy of varying K high (100) and 
low (25) from nominal (50).



K is raised above KEst, the observer gain is low (that is, KEst is lower than K ) and phase
lag is injected near the observer bandwidth. When K it lowered, the opposite effects
occur. This is consistent with the analytical results above.

The effects of varying the sensor bandwidth, FGS, on observer accuracy are shown
in the Bode plot of Figure 5-7. These results are also from Experiment 5C. Three 
plots are run for the cases of FGS =10, 20 (nominal), and 40. When FGS is nominal,
the results are essentially ideal. When FGS is low (10Hz), it causes phase lag 
below the observer bandwidth. This is consistent with the analytical prediction since,
below the bandwidth, the CO(s)/C(s)�GS(s)/GSEst(s) (see Section 5.2.2). Thus, phase
lag in GS(s) should be (and is) translated to phase lag in CO(s). However, at higher 
frequencies, the effect of the filtering terms reverses this trend so that low FGS causes
phase advance. Given that lowering FGS both advances phase and attenuates gain 
at higher frequencies, one might predict that the overall effect of this error on control-
loop stability would be positive. With similar reasoning, raising FGS should harm
control-loop stability. In fact, that is the case when the control-system dynamics 
are near the observer dynamics. However, that effect will not be demonstrated 
in these experiments since the observer dynamics are well above the control-loop
dynamics.
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High FGS

Observer bandwidth
(150 Hz)

Nominal FGS. produces
ideal gain and phase.

Low FGS causes 
phase lag at low 

frequency.

Low FGS causes 
gain attenuation
at low frequency.

High FGS

Figure 5-7. From Experiment 5C, the effects on observer accuracy of varying FGS high (40) and 
low (10) from nominal (20).
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5.3.2.2 Effects on Control-System Response and Stability
The effect of variation on the observed state will be demonstrated using Experiment
5D, which is shown in Figure 5-8. This is similar to Experiment 5C except for two
changes. First, the control law (GC) uses the observed state for feedback. Second, the
gains of the PI control law GC have been raised to KP =1.5 and KI =30, the gains used
in Chapter 4. The higher control-law gains will make the effects of variation easier to
recognize.

The effects on control-loop stability of varying K are shown in Figure 5-9. The
bandwidth of the controller varies approximately in proportion to the variation of K.
K set to 25, 50 (nominal), and 100 produces about 12-, 25-, and 50-Hz bandwidth,
respectively. This variation is neither greater nor less than would be expected in a 
traditional (nonobserver-based) system. The interested reader can use Experiment 5C
to verify this; the bandwidth of that system is 5, 10, and 20Hz for the cases of
K=25, 50, and 100, respectively, which is about 40% of the observer-based system
bandwidth in all cases. Also, notice that peaking did not increase substantially for any
of the three cases in Figure 5-9. Thus the observer-based system has about 2.5 times 
the bandwidth of the traditional system and, in this case, is no more sensitive to 
variation in plant gain.

The effects on control-loop stability of sensor variation are shown in Figure 5-10.
System bandwidth remains about constant, but peaking in the closed loop increases
considerably, ranging up to 7.5dB peaking (about 4dB over the nominal value of
3.2dB). This is not the result of observer dynamics in and around the observer 
bandwidth, but rather the simple loss of phase margin at low frequencies as could
have been predicted from Figure 5-7.

Figure 5-8. Experiment 5D, designed to investigate the effects of variation on control-loop stability.
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K=25 (Low),
BW=12 Hz

K=100 (High),
BW=50 Hz

K=50 (Nominal),
BW=25 Hz

Figure 5-9. From Experiment 5D, effects of varying K on control-loop dynamics.

FGS = 40 ( high )reduces
peaking slightly.

FGS=10 ( low ) causes 7.5 dB of peaking,
about 4 dB over nominal.

Figure 5-10. From Experiment 5D, effects on control-loop dynamics of setting FGS to 10, 20 (nominal), and 40Hz.
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5.3.3 Simulating Inaccurate Sensor Modeling
The problem of inaccurate modeling is fundamentally different than that of
variation. Variation is a problem of the actual plant and sensor that occurs after the
observer has been tuned; inaccurate modeling is a problem of the observer plant and
sensor that occurs before the observer is tuned. When studying variation, it is appro-
priate to vary the actual plant and sensor parameters (such as K and FGS) while the
model is running. When studying inaccurate modeling, it is appropriate to vary the
observer parameters. With inaccurate modeling, retuning the observer will mitigate
the effects of the inaccuracy. Retuning after introducing error represents the processes
that would occur in the application. Failing to retune in the simulation causes the
inaccuracy to corrupt the dynamics of the observer loop in a way that would 
normally not occur and so is unrealistically negative.

Given that the system will be retuned after error is introduced into the observer
models, there is little need to investigate the inaccuracy of KEst. The reason is that KEst

can usually be determined experimentally at the time of tuning so that modeling 
inaccuracy is not an issue. On the other hand, when FGSEst does not accurately 
represent FGS, problems will result. In the following sections, FGSEst will be set to 
10, 20 (nominal), and 40 to investigate the effects of modeling inaccuracy.

5.3.3.1 Tuning with Different Values of FGSEst

The tuning procedure of Section 5.3.1 yields the values shown in Table 5-1. The values
of observer-compensation gains vary considerably to adjust for the changes in FGSEst.
The key point is that for all values of FGSEst, these gains produce observer dynamics
that are about the same. Finally, notice that the setting for KEst is accurate even when
the value of FGSEst is off by 2 :1. This is further evidence that, for this structure at
least, the experimental method can be a reliable way of determining KEst, even in non-
ideal conditions.

5.3.3.2 Effects on the Observed State
The effect of the sensor model on the accuracy of the observer is studied using Exper-
iment 5C, which is shown in Figure 5-5. The effects of the changes in FGSEst are shown
in Figure 5-11 where FGSEst is adjusted to 10, 20, and 40Hz. The effects are similar

TABLE 5-1 TUNING VALUES FROM THE PROCEDURE OF SECTION 5.3.1 FOR 
THREE VALUES OF FGSEst

FGSEst = 10 FGSEst = 20 FGSEst = 40

KDO 0.2 0.1 0.042
KPO 70 45 35
KIO 9100 6400 3780
KEst 50 50 50



to what was found from changing FGS except in the opposite directions. Raising FGSEst

(and retuning the observer) is approximately the same as lowering FGS. From the 
analytical discussion in Section 5.2.2, this is as expected since the key issue is the ratio
of GS(s) and GSEst(s); lowering one has much the same effect as raising the other.
Note that, in Figure 5-11, for each value of FGSEst, the tuning gains were adjusted
according to Table 5-1.

5.3.3.3 Effects on Control-System Response and Stability
Experiment 5D, as shown in Figure 5-8, is used to study the effect on control-loop
stability of erroneous values of FGSEst. The results are shown in Figure 5-12. Again,
for each value of FGSEst, the tuning gains were adjusted according to Table 5-1. The
effects are similar to changing FGS (refer to Figure 5-10) except again the directions
of the two parameters are opposite. Also, because lowering FGEst causes the gain of
the feedback signal to peak at and around 30Hz (see Figure 5-11), it induced sig-
nificant peaking in the closed-loop system, forcing reduction of KP to 1.2. Without this
reduction, the change in FGEst with the higher loop gains (KP =1.5, KI =30) induced
clear signs of marginal stability. The interested reader can confirm by reviewing the
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Low FGSEst

Observer bandwidth
(150 Hz)

Nominal FGS

produces
ideal gain 
and phase.

High FGS causes 
phase lag at low 

frequency.

High FGS causes 
gain attenuation
at low frequency.

Low FGS

Figure 5-11. From Experiment 5C, effect of FGSEst, including retuning the observer according to Table 5-1.
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step response in Experiment 5D with the following parameters: FGEst =10, KP =1.5,
KI =30, (from Table 5-1) KDO =0.2, KPO =70, KIO =9100.

5.3.3.4 Detecting Errors in Sensor Dynamics with the Observer
The observer can be used to indicate many parameter errors in the models. Recall that
Experiment 5B was used to set the value of KEst based on the RMS value of the term
EO ¥Y with the observer gains set low. This same model can be used to evaluate the
accuracy of FGSEst. The output of this model is shown in Figure 5-13 where FGSEst,
the estimated sensor bandwidth, is 10Hz (recall that the actual sensor, FGS, was 20,
the nominal value). The error, EO, is visably larger than when FGSEst was correct, as
shown in Figure 5-3. The error here can come from only two sources: KEst and FGSEst.
However, it did not come from KEst because that value was adjusted to minimize the
RMS meter. Therefore, it must be FGSEst.

In Experiment 5B, FGSEst can be set empirically by adjusting it until the error signal
is minimized. (The interested reader can return to Experiment 5B, set FGSEst to 10,
and see that the only way to minimize EO is for both KEst and FGSEst to be set accu-
rately.) This provides a process for configuring observers: Ensure that EO is nearly zero
when observer-compensator gains are low to verify the model is correct. There are

Low GFSEst reduces low-
frequency peaking slightly...

High GFSEst causes 5 dB of peaking,
about 2 dB over nominal.

…but also creates peaking in the 
feedback, which created system 

peaking around 30 Hz.

Figure 5-12. From Experiment 5D, effect of varying FGSEst.



errors this process will not detect. It indicates only that GP ¥GS �GPEst ¥GSEst, as
opposed to either GP �GPEst or GS �GSEst. Also, it does not provide reliable 
results in the presence of strong disturbances. Still it can be a useful means of veri-
fying models as it will reveal many types of errors that will be present in practical
systems.

5.3.4 Caution About the Experimental Evaluation
The purpose of Section 5.3 was to demonstrate an experimental approach.
Experimentation allows designers to evaluate complex effects without mathematics.
Designers must be cautious to design experiments that are valid for their machines 
or processes. Accurate representation of control-system performance and the 
observer dynamics that will be used on the machine or process are necessary to
produce useful results.

This set of experiments has demonstrated at once the strength and weakness of
experimental analysis. On the one hand, experiments allow the designer to investigate
the effects of nearly any combination of factors. On the other hand, the results may
apply only to a narrow set of circumstances. For example, these experiments revealed
a system relatively insensitive to variation. However, had the observer bandwidth 
been closer to the control-system bandwidth, the results would have been different.
The designer must be cautious to avoid the overly broad application of experimental
results.
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Figure 5-13. From Experiment 5B, the signal EO clearly indicates model errors. FGSEst is 10 here, but the actual
sensor has a bandwidth of 20Hz; KEst is 50, which is equal to K (compare to Figure 5-3).
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5.4 Exercises
1. Tune an observer according to the procedure of Section 5.3.1.

A. Tune the observer of Experiment 5A for 80-Hz bandwidth.
B. Repeat for 60-Hz bandwidth.

2. Adjust KEst to match K as well as possible using the RMS meter in 
Experiment 5B.
A. Using all the default parameter values, adjust KEst.
B. Intentionally corrupt estimated sensor bandwidth by changing the actual

sensor bandwidth to 25. Repeat A.
3. Describe the change in observer performance for a system with varying sensor

dynamics using Experiment 5D.
A. Execute a Bode plot using DSA. Click the DSA button Obs C’Loop to

display observer closed-loop performance. When the plot is displayed,
right-click in the display area of the DSA and click “Save as . . .” and Red.
Using the Live Constant FGs, change the actual sensor frequency to 30Hz.
Run a second Bode plot. Compare the two Bode plots.

B. Repeat for FGs=14Hz.
C. Which error in FGs will likely induce stability problems in the control loop?

4. Evaluate robustness of observer-based system to traditional system.
A. Measure the nominal margins of stability for the observer-based control

loop of Experiment 5D.
B. Build a table showing gain crossover frequency, PM, phase crossover 

frequency, and GM for the following values of K: 20, 50 (nominal), and
100. All other parameters should be at their nominal values.

C. Using Experiment 5C, build a table similar to that of problem 4B for a 
traditional control loop.

D. Compare the two tables and discuss.



I n this chapter . . .

• Common sources of disturbance to control systems
• Effects of disturbances on traditional and observer-based systems
• Observed disturbance signals and disturbance decoupling
• Software experiments demonstrating effects of disturbance

This chapter will discuss the sources and effects of system disturbances. Similar 
to Chapter 5, the presentation will analyze the Luenberger observer using transfer
functions and confirm results through experimenting with models. In addition, the
principle of disturbance decoupling will be presented. This technique is not unique
to observer-based systems; however, it will be interesting for many readers in this
context because observers serve the method so well.

6.1 Disturbances
Disturbances enter a system between the power converter and the plant, as shown in
Figure 6-1 by the input D(s). Disturbances affect almost every type of control system.
In a furnace, heat disturbances from the atmosphere or from neighboring furnaces
make temperature more difficult to control. Torque disturbances in a motion system
generate velocity and position errors. Load currents can act like a disturbance to 
a power supply, pulling the output voltage away from the target. In each case, an 
undesired source of power is added to the power converter output and fed to the
plant; the result is that the plant state is disturbed.
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For observers, disturbances corrupt the observed state, CO(s). Recall from 
Chapter 4 that the command signal fed to an observer through two paths: (1) the
command, through a control law, driving the power converter feeds one path of the
observer, and (2) the power converter also drives the plant, which then drives 
the sensor to feed the other path. This combination of prediction and correction gives
the observer many of its qualities because the two paths complement each other.
Unfortunately, disturbances affect only the sensor (correction) path; they do not
benefit from the power converter (prediction) path.

Disturbances cannot be included in the predictor portion of the observer because
they are generally unknown. With few exceptions, disturbances are not measured
other than indirectly, through their effect on the sensed output. There is normally no
way to create the equivalent of a prediction path for them. As a result, disturbances
corrupt CO(s) primarily in frequencies above the bandwidth of the observer, where 
the correction path of the observer is not effective. Below the observer bandwidth,
disturbances have less effect on the accuracy of the observed state because the
observer compensator removes their effect.

6.1.1 The Observed Disturbance Signal
The Luenberger observer shown in Figure 6-1 defines the signal exiting the observer
compensator as the observed disturbance, DO(s) [26, 27]. The signal occupies the same
position in the observer as the actual disturbance occupies in the actual system, both
being added immediately after the power converter output. For the case where the

GP(s) GS(s)
C(s)

CO(s)
GPEst (s)

PC(s)

GSEst(s) YO(s)

EO(s) +

_
GCO(s)

+

+

Physical system

Modeled system

Plant Sensor

Plant Sensor

Observer 
compensator

Actual
sensor
output

Observed
sensor
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Plant
excitation

Actual
state

Observed
state

Observer 
error

D(s)

DO(s)

+

+
Disturbance

Observed
disturbance

Y(s)

Figure 6-1. The Luenberger observer in a system with disturbances.



plant and sensor models are exact duplicates of their physical counterparts, the only
errors in the observed state are those due to disturbances.

The observer compensator must observe the disturbance accurately to keep the
observed state accurate. The observer compensator can perform this function well
from DC up to the observer bandwidth. At frequencies above the observer bandwidth,
the output of GCO(s) no longer follows the actual disturbance well, and the observed
disturbance becomes inaccurate; frequency content in the disturbance well above the
observer bandwidth translates directly to error in the observed state.

The transfer function from the power converter and actual disturbance to the
observed disturbance, DO(s), can be formed. This construction considers the sensor
as being dependent on the disturbance and the power converter; those two signals are
the independent inputs in this construction. The observer, shown in Figure 6-2, is
redrawn from Figure 6-1 to show the loop and paths for Mason’s signal flow graphs.

There is one loop in this system:

There are three forward paths, two from the power converter and one from the 
disturbance:

All paths “touch” the single loop so the transfer function is (P1 +P2 +P3)/(1 -L1).

(6.1)
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Figure 6-2. Luenberger observer drawn for Mason’s signal flow graphs.
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For the ideal case where the plant and sensor models are accurate:

(6.2)

(6.3)

Then, Equation 6.1 reduces to:

(6.4)

The right side of Equation 6.4 can be viewed as the actual disturbance followed
by a low-pass filter with a bandwidth equal to the observer bandwidth (refer to 
Equation 4.6 for discussion on the filter term). So, if the models of the sensor and
plant are accurate, the observed disturbance approximates the actual disturbance
below the observer-compensator bandwidth.

6.1.1.1 Experiment 6A: Investigating Observed Disturbance
The observed-disturbance signal can be investigated using Experiment 6A, which is
shown in Figure 6-3. This system is similar to the system used in Chapters 4 and 5
with a few exceptions:

• The command is set to zero. This experiment is designed to investigate dis-
turbances so that there is little need for a time-varying command signal.

• The waveform generator Disturbance has been connected to the disturbance
input. This generator is configured to output a square-wave disturbance. This 
disturbance is used to trigger the scope.

• A DSA is connected through the disturbance input. The Bode plots generated
in this experiment will be related to the dynamics of disturbance observation.

• The loop is closed on the actual feedback signal. The gains for the control law
(KP =0.6, KI =12) are taken from Section 5.3.2.1.

• The observed disturbance, DO, is shown in a Live Scope.

As with earlier experiments, Live Constants are provided to simplify variation of
the plant gain and sensor low-pass filter. The observer-compensator gains are taken
from Chapter 5, producing an observer bandwidth of 154Hz.

The Live Scope display of Experiment 6A shows the observed disturbance, DO.
The actual disturbance, D, is a step and DO looks very much like the step response 
of a low-pass filter. This confirms Equation 6.4. To investigate the subject further,
Experiment 6A provides a Bode plot of the observed vs actual disturbance. The DSA
can be brought into view by double-clicking on the DSA block; then, click the GO
button on the lower left of the DSA display. The result, as shown in Figure 6-4,
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Figure 6-3. Experiment 6A showing observed disturbance signal in ideal conditions.

Observed disturbance
is accurate below

the observer bandwidth.

Observer
bandwidth
(154 Hz)

-3 dB

Figure 6-4. Bode plot of observed vs actual disturbance.
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demonstrates a near-equal (�0dB) relationship between the two signals up to the
observer bandwidth (154Hz), which is consistent with Equation 6.4.

The close relationship between actual and observed disturbance follows 
Equation 6.4 only when the plant and sensor models are accurate. Large inaccuracies
in the models corrupt the observed disturbance, as is indicated by Equation 6.1.
For example, Figure 6-5 shows the effects of K varying from nominal (50) to 
both high (100) and low (25) values. The effect on the accuracy of the observed 
disturbance is evident, causing as much as 9dB (almost 3 times) error in the middle 
frequencies.

6.1.2 Disturbances and the Integral Term in the Observer Compensator
An integral term in the observer compensator is required to eliminate the effects 
of steady-state disturbances on the accuracy of the observed-sensor output, YO(s).
Without the integral term, an offset will appear in the observed state in proportion
to the DC disturbance. Most control systems are adversely affected by such an offset.
This is why the integral term in the observer compensator is required for most 
applications.

The effects of DC disturbances can be seen analytically. The goal is to remove DC
(s=0) error from the observed state (CO(s)) and, thus, from the observed-sensor output

Ideal result:
D0 /D with K nominal

D0 /D with K raised (100)

D0 /D with K
lowered (25)

D0 /D with K raised (100) Ideal result:
D0 /D with 
K nominal

D0 /D with K lowered (25)

Figure 6-5. Effect of varying K on the accuracy of the observed disturbance.



(YO(s)) in the presence of DC disturbances. DC errors normally generate 
undesirable offsets in the observer output, which will be transferred to the actual 
state when the observed state is used as the feedback signal to the main loop. From
Figure 6-1, the observed state is:

(6.5)

Similarly, the actual state is:

(6.6)

Assuming that the plant model is accurate so that GPEst(s)�GP(s), the error induced
by a disturbance is:

(6.7)

From Equation 6.7, the only way to eliminate all the DC error in the observed 
state is for D(0)=DO(0)=GCO(0)¥EO(0). (This assumes that GP(s) is nonzero at zero
frequency, certainly a reasonable assumption for most practical control systems.)
Figure 6-6 shows the observer evaluated at zero frequency (s=0). From that figure, if
the disturbance, D(s), has a DC component (D(0) π0), then in order to eliminate 

C s C s G s E s D s G sO CO O P( ) - ( ) @ ( ) ¥ ( ) - ( )( ) ( ).

C s P s D s G sC P( ) = ( ) + ( )( ) ( ).

C s P s D s G s

P s G s E s G s
O C O PEst

C CO O PEst

( ) = ( ) + ( )( ) ( )
= ( ) + ( ) ¥ ( )( ) ( )
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GP(0) π 0 GS(0) π 0
C(0)

CO(0)
GPEst (0) π 0

PC(0)

GSEst(0) π 0 YO(0)

EO(0) =0 +

_
GCO(s)

+

+

D(0)π 0

DO (0)=D(0)π 0

+

+
Y(0)

…an integral term is required for GCO(0) to 
generate a non-zero DO when EO (0) = 0.

At DC, DO should equal D to drive the observer model so EO = 0.  But...

Figure 6-6. Evaluating the ideal observer at DC with a disturbance shows why an integral term is needed in the
observer compensator.
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Figure 6-7. Experiment 6B: Investigating the need for integral gain in the observer compensator.

all DC error, GCO(s)¥EO(s) must have an equal DC component. Thus, in order to
remove all DC error from the observed state, GCO(0) ¥EO(0) π0; however, removing 
all error from the observed-sensor output (EO(0) =YO(0) -Y(0) =0) implies EO(0) can
have no DC component. Thus, GCO(s) must have an integral term; this is the only
means for GCO(0)¥EO(0)π0 while EO(0) =0. This is diagrammed in Figure 6-6.

The argument presented in Figure 6-6 can be extended to the case where the plant
and sensor models are not ideal. If there exists scaling error in one or both of those
models, the amount of DO(s) required to cancel a nonzero D(s) will be proportional
to the scaling error(s); in any case, DO(s) will be nonzero if D(s) is nonzero. In the
absence of an integral term in GCO(s), any nonzero output of GCO(0) will require a
nonzero EO(0). Again, the integral gain is required to remove DC inaccuracy in the
observed state.

Experiment 6B, shown in Figure 6-7, demonstrates the need for an integral term
in the observer compensator in the presence of DC error. This experiment is similar
to Experiment 6A with a few exceptions. The observer error, EO, is shown on the
design. The scale on this display is small, 0.02 units per division, because the amount
of DC error induced by the disturbance is small. The disturbance is a low-frequency
square wave; each half-period of the wave is long enough that the DC response of the
observer can be seen. The default settings of the observer compensator include an
integral gain (KIO =6400). As can be seen in the model, there is no DC component in
the observer error signal, EO. This is the desired behavior.



The results of Experiment 6B with nonzero and zero integral gain in the observer
compensator are shown in Figure 6-8. In Figure 6-8a, where KIO =6400 (the value used
throughout most of the previous chapter), the effect of a disturbance pulse on
observer error is transient; after about two divisions (20ms), the error returns to zero.
In Figure 6-8b, the integral gain, KIO, has been zeroed. The observer error remains
nonzero indefinitely when in the presence of a DC disturbance. This translates to the
equivalent DC error in the observed state in this case because the sensor has unity
gain. Were a system implemented using this observed state for feedback, the 
behavior would be to generate drift when DC disturbances were applied. Such drift,
even in small amounts, is normally undesirable.

The reader may have noticed the use of a sample–hold block in Experiment 6B,
immediately to the right of the observer compensator. This is a detail more of
modeling than of observer operation. It was done to improve the display quality of EO

and has no effect on the operation of the observer. The signal displayed without the
sample–hold showed as the comparison of a continuous (Y ) and a sampled (YO) signal.
During the sample period, the continuous signal continued to vary while the sampled
signal was fixed. This caused the introduction of a high-frequency component in 
the error signal. The high frequency aliased down to distort the scope output. The
sample–hold here remedied this by synchronizing the error signal to the main digital
controller sample time. This has no effect on the operation of the observer because the
observer compensator has an implicit sample–hold that performs this same function.

6.2 Disturbance Response
Disturbance response describes to what extent the plant state is perturbed by 
disturbances. The transfer function of disturbance response is the ratio of the plant
perturbation to the disturbance that caused that perturbation: C(s)/D(s). The ideal 
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DC
Error

(a) (b)

Figure 6-8. Results of Experiment 6B, showing that integral gain is required in the observer compensator to
eliminate the effects of DC disturbances from the observer error, (a) KIO = 6400, DC error is not tolerated in EO.

(b) KIO = 0, DC error is tolerated in EO.
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disturbance response is 0, an unbounded negative number when expressed in 
decibels. So, control systems are usually structured to minimize the disturbance
response. At any given frequency except DC, disturbances will cause some 
perturbation of the plant state. The goal for most control systems is for that effect to
be as small as possible; expressed in decibels, the more negative the disturbance
response, the better.

Disturbance response is sometimes described indirectly through the term stiffness.
Stiffness is the ratio of disturbance to plant perturbation: D(s)/C(s). It is the inverse
of disturbance response; accordingly, the higher the stiffness, the better. The terms
disturbance response and stiffness are, of course, equally able to describe the reaction
of a system to a disturbance. The former will normally be used in this book.

The primary way observers allow improved disturbance response is by supporting
higher control-law gains. As discussed in Chapter 4, the reduced phase lag brought
about by using the observed state as the feedback signal increases margins of stabil-
ity so that control-law gains can be raised. Higher gains improve both command and
disturbance response. Disturbance response can also be improved through the use of
disturbance decoupling, a technique that is served particularly well by observer-based
methods. Disturbance decoupling will be covered in Section 6.3.

6.2.1 Transfer Function of Disturbance Response for Traditional Systems
Disturbance response of a control system both with sensor feedback and with
observed-state feedback can be evaluated using transfer functions. The transfer func-
tion of the disturbance response of the traditional system shown in Figure 6-9 is easily
calculated since there is only one loop.

There is a single path from D(s) to C(s): GP(s). The transfer function is then:

(6.8)
C s
D s

G s
G s G s G s G sP

C PC P S

( )
( )

= ( )
+ ( ) ¥ ( ) ¥ ( ) ¥ ( )

1
1

.

L G s G s G s G sC PC P S1 = - ( ) ¥ ( ) ¥ ( ) ¥ ( )

++

R(s)=0

GC (s) GPC (s) GP (s)

D(s)

Y(s)
+

GS (s)
_

C(s)

Figure 6-9. Traditional control system.



An algebraic manipulation yields

(6.9)

Equation 6.9 can be rewritten in terms of the control-law closed-loop transfer 
function, GCL(s)=Y(s)/R(s):

(6.10)

Understanding that the ideal disturbance response is 0, the closer that GCL(s), the
closed-loop response, is to unity, the better the disturbance response. The closed-loop
response will be closest to one at low frequency and, correspondingly, the disturbance
response will be the best. Raising the control-system bandwidth improves disturbance
by keeping GCL(s) approximately unity for a wider range of frequencies; the dis-
turbance response of Equation 6.10 will be lower over a wider frequency range,
rejecting more of the disturbance input.

Well above the control-loop bandwidth, the closed-loop response will be near zero
and the disturbance response will be GP(s); that is, the disturbances will be limited
only by the plant gain. At high frequencies, disturbance response is passive as, for
example, when a large capacitor in a power supply prevents high-frequency voltage
ripple or when a large inertia prevents high-frequency velocity ripple.

6.2.2 Transfer Function of Disturbance Response when Using 
Observed-State Feedback

The transfer function of the system with observed-state feedback is similar to 
Equation 6.10, although the evaluation is more tedious. Here there are three loops,
as shown in Figure 6-10:

All loops touch: L1 and L2 through GPEst(s), L2 and L3 through GCO(s), and L1 and L3

through GC (s). So,

D=1-L1 -L2 -L3.

There is a single path from the disturbance to the actual state:
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The path P1 touches only loop L3 (through GP(s)), so

D1 =1-L1 -L2.

Assuming accurate observer models (GP(s)�GPEst(s) and GS(s)�GSEst(s)), then

L3 �-L1 ¥L2.

This leaves:

(6.11)

Two algebraic manipulations provide:

(6.12)

(6.13)

The term -L1/(1-L1) is the closed-loop transfer function of the control system.1

Similarly, the term -L2/(1-L2) is the closed-loop transfer function of the observer.
Substituting these equations into Equation 6.13 provides a result similar in form to
Equation 6.10.
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Figure 6-10. System with observed-state feedback.

1 Note that unlike the traditional system, the closed-loop transfer function of the observer-based system
does not include the sensor transfer function. That is because the effect of the sensor is removed when the
observer models are accurate.



(6.14)

The disturbance response of the observed-state feedback depends on the 
control-loop transfer function just as it did in the traditional system as shown in 
Equation 6.10. As discussed in Chapter 4, the observer allows the control gains (GC (s))
to be raised by virtue of reducing phase lag in the loop. This is the primary way in
which observers improve disturbance response.

Equation 6.14 also shows that the observer bandwidth can degrade disturbance
response. Notice that the form of Equation 6.14 is such that even if the control-loop
bandwidth is high (so that GC (s) remains near unity for a wider frequency span), the
observer bandwidth can reduce the disturbance response. This is not a concern if the
observer bandwidth is substantially higher than the control-loop bandwidth, as it 
normally is.

One misconception about observers is that the observer bandwidth can be set 
arbitrarily low. This technique is sometimes suggested to reduce noise susceptibility
(as will be discussed in Chapter 7, noise susceptibility is indeed reduced by reducing
observer bandwidth). The reasoning comes from the correct notion that the phase 
lag caused by the sensor can be removed independently of the observer bandwidth.
In that sense, control-law gains can be raised, even if the observer bandwidth is low.
In fact, it is possible to lower the observer bandwidth below the control-loop band-
width. However, the disturbance response is limited by the lower of the observer band-
width and the control-loop bandwidth, as demonstrated in Equation 6.14. When the
control-loop bandwidth is substantially higher than the observer bandwidth, raising
control-law gains higher will not benefit the disturbance response. In such cases,
higher gains benefit only the command response. This is of questionable benefit in
realistic systems, since during the time before the observer loop settles, the command
response will only be accurate in the absence of disturbances or model errors.

6.2.3 Improved Disturbance Response Through Control-Law Gains
The primary benefit of Luenberger observers in improving disturbance response is
indirect; through the elimination of phase lag from the sensor, the stability margins
of the loop are improved. Those improved margins of stability allow increased gains
in the main control law, increasing control-system bandwidth. That higher bandwidth
improves disturbance response as shown in Equation 6.14.

The benefit of higher control-law gains in improving disturbance response is
demonstrated in Experiment 6C, which is shown in Figure 6-11. This model is similar
to Experiment 6B, except the actual state is shown in a Live Scope. Also, the observed
state is used to close the feedback loop. This allows the control-law gains to be raised
from (KP =0.6, KI =12) to (KP =1.5, KI =30) as was discussed in Chapter 4.

The results of Experiment 6C are shown in Figure 6-12. The improvement in 
disturbance response is evident. The magnitude of the perturbation is increased about
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2.5 times when the gains are reduced by that same factor. In addition, the recovery
time increases from 0.1 s (1 division) by a factor of, again, 2.5 when the lower gains
are used. This behavior is not specific to observers. Most techniques that allow for a
substantial increase of control-law gains without compromising stability margins
would produce the equivalent enhancement in disturbance response.

Figure 6-11. Experiment 6C: Investigating disturbance response and control-law gains.

(a) (b)

Figure 6-12. Results of Experiment 6C: (a) the observer supports high gains (KP = 1.5, KI = 30) that provide
superior disturbance response compared to (b) the lower gains of (KP = 0.6, KI = 12) the tradition system.



6.3 Disturbance Decoupling
Disturbance decoupling [11, 26, 27, 39] is a method of improving disturbance response.
As discussed above, raising control-law gains is effective at improving disturbance
response. However, those gains can be raised only so high because of stability 
constraints. With disturbance decoupling, disturbance response can often be improved
beyond what is possible by raising loop gains.

Disturbance decoupling starts by determining the approximate disturbance. The
disturbance signals can be derived from measurement or from model-based methods
such as an observer. The disturbance is then decoupled from the system by subtract-
ing from the power converter command an amount equal to the disturbance. The 
disturbance is then reacted to as quickly as the measurement (or observation) 
allows, within the ability of the power converter. With decoupling, the system reaction
to disturbances can be considerably faster than relying wholly on the control law.

Figure 6-13 shows the general form of disturbance decoupling. The actual distur-
bance is summed with the output of the power converter. Simultaneously, the distur-
bance is measured or observed. In practical systems, the disturbance can be measured
only imperfectly. The imperfection is represented in Figure 6-13 as being measured 
to a specified accuracy and with a limited bandwidth, as indicated by GD(s). (For an
ideal measurement, GD(s)=1.) In traditional (nonobserver) systems, the accuracy and
speed of the measurement depends on the quality of the sensor. The disturbance-
decoupling path is scaled by a gain, KDD. This allows, among other things, the 
decoupling to be turned on (KDD =1) and off (KDD =0).

Direct measurement of disturbances is impractical for most control systems
because of the increased cost and reduced reliability brought about by the addition
of a sensor. As an alternative to direct measurement, disturbances can be observed
[20, 23, 26, 32, 38] as shown in Figure 6-14. The observed signal, DO(s), can be 
accurate and fast if the observer bandwidth is high and the sensor and plant models
are accurate, as indicated by Equations 6.2–6.4.

If the observer models are accurate, the observer provides the observed disturbance
as a filtered version of the actual disturbance, DO(s)=D(s)¥GDLPF (s), where GDLPF (s)
is defined as the filtering term in Equation 6.4. In other words, the transfer function
of TOBSERVER(s) in Figure 6-14 is assumed to simply be GDLPF (s).
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Figure 6-13. Disturbance decoupling.
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The transfer function of the disturbance response of the system of Figure 6-14 can
be derived using Mason’s signal flow graphs and is shown in Equation 6.15. Upon
inspection of Equation 6.15, if the disturbance measurement and power converter are
ideal (unity), the response to the disturbance would be perfect: zero. This can be seen
by assuming GDLPF (s) and GPC (s) were both unity and noticing that the numerator
becomes zero, the ideal response to a disturbance.

(6.15)

Of course, the assumption of an unlimited bandwidth observer and power con-
verter is unrealistic. However, Equation 6.15 does demonstrate that for the frequency
range below both the power converter and the observer bandwidths, where those
transfer functions are approximately unity, disturbance decoupling provides near ideal
disturbance response.

6.3.1 Experiment 6D: A Disturbance-Decoupled System
Experiment 6D, shown in Figure 6-15, is a disturbance-decoupled system. This model
is almost identical to Experiment 6C, the sole exception being the subtraction of the
KDD-scaled observed disturbance, DO, from the power converter input. Note that the
two Visual ModelQ extenders named DO are used to connect the observed disturbance
from the observer compensator to the scaling gain, KDD, avoiding confusion that might
be caused by crossing lines in the block diagram.

The results of Experiment 6D, as shown in Figure 6-16, demonstrate the improve-
ment available from disturbance decoupling. Figure 6-16a shows the system with KDD

set to zero to disable disturbance decoupling; Figure 6-16b shows the results with dis-
turbances decoupled, which is done by setting KDD to unity and zeroing the control-
law integrator (the zeroing of the integral will be discussed shortly). The improvement
in disturbance response is dramatic: the maximum excursion is cut by more than a
factor of two, and the duration of the perturbation is cut by a factor of four. Note
that both figures depict the system with the same control-law proportional gain,
KP =1.5.
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Figure 6-14. Observer-based disturbance decoupling, assuming KDD = 1.



The disturbance response with and without decoupling can be compared using
Bode plots. Using Experiment 6D, the Bode plots of disturbance response (C(s)/D(s))
are shown with and without disturbance decoupling (see Figure 6-17). At low 
frequencies, the improvement is 20dB or a factor of 10. Such an improvement could
not be achieved by simply increasing the control-law gains.
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Figure 6-15. Experiment 6D: An observer-based disturbance-decoupled system.

(a) (b)

Figure 6-16. From Experiment 6D: Disturbance response (a) with a traditional control law (KDD = 0, KI = 30, 
Kp = 1.5) and (b) with disturbance decoupling (KDD = 1, KI = 0, Kp = 1.5).
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6.3.2 Disturbance Decoupling Removes Need for Control-Law Integrator
The control law that produced Figure 6-16b is shown in Figure 6-18. Notice that 
the control-law integrator has been removed (the control law is simply KP). With 
disturbance decoupling, the control-law integrator is no longer necessary to provide
complete rejection of DC disturbances. This can be seen in the transfer function from
R(s) to C(s), which can be derived using Mason’s signal flow graphs.

The development that will be performed in this section is somewhat tedious, even
when using Mason’s signal flow graphs (it can be much more tedious when using 
competing methods). Readers are encouraged to follow this development as it demon-
strates one way to derive and manipulate transfer functions from the block diagrams
typical of observer-based systems.

Recall from Section 3.1.4.1 the procedure for Mason’s signal flow graphs:

6.3.2.1 Step 1: Find the Loops
The first step is to locate the loops. Figure 6-19 shows Figure 6-18 marked with three
loops: L1, L2, and L4. There are two other loops which are not shown in Figure 6-19:
L3 and L5. Loop L3 is a figure-eight curve that flows through the power converter,

Disturbance decoupling provides significant 
improvement in disturbance response below

the observer and power converter bandwidths.

Power converter
bandwidth (50 Hz)

Observer
bandwidth (150 Hz)

With decoupling

Without decoupling

Figure 6-17. From Experiment 6D: Bode plot showing dramatic improvement in disturbance response offered
by disturbance decoupling. Plots for two cases: without (KDD = 0, KI = 30) and with (KDD = 1, KI = 0) decoupling; 

KP = 1.5 in both cases.



drops to flow through the observer loop, and then returns through KDD. Loop L5 starts
at the control law, flows through the power converter, plant, and sensor, drops into
the observer compensator, then flows through the estimated plant, and returns to the
control law. Note that all loops are negative except loop L3, which is positive since it
passes through two subtractions.

The five loops are:

L1 -GPEst(s)¥GSEst(s)¥GCO(s)
L2 -GPC (s)¥GP(s)¥GS(s)¥GCO(s)¥KDD

L3 +GPC (s)¥GPEst(s)¥GSEst(s)¥GCO(s)¥KDD
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Figure 6-18. When disturbance decoupling is used (KDD = 1), the control-law integral is no longer necessary.

GP(s) GS(s)
C(s)

CO(s)
GPEst (s)

PC(s)

GSEst(s) YO(s)

EO(s)

+

_
GCO(s)

+

+

D(s)

DO(s)

+

+
Z(s)GPC(s)_

+
KP

R(s)

_

+

KDD

L2

L1L4

P2P1

+

Y(s)

+

N(s)

Figure 6-19. Figure 6-18 marked for Mason’s signal flow graphs.
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L4 -KP ¥GPC (s)¥GPEst(s)
L5 -KP ¥GPC (s)¥GP(s)¥GS(s)¥GCO(s)¥GPEst(s).

6.3.2.2 Step 2: Find the Determinant of the Control Loop
All loops share at least one node. L1 shares at least one node with L2, L3, and L5

because all pass through GCO(s); L1 shares at least one node with L4 because both
share GPEst(s). Since L2 through L5 all share GPC (s), they must all share at least one
node. Thus, the determinant is made of only single loops:

D=1-L1 -L2 -L3 -L4 -L5.

6.3.2.3 Step 3: Find All the Forward Paths
There are two paths of concern: P1 from the command, R(s), and P2 from the 
disturbance, D(s):

6.3.2.4 Step 4: Find the Cofactors for Each of the Forward Paths
The cofactor for each forward path is the determinant less the loops that share at least
one node with that path. P1 flows through GPC (s) and so shares at least one node with
all loops except L1. P2 flows through GP(s) and so shares at least one node with loops
L2 and L5.

D1 =1-L1

D2 =1-L1 -L3 -L4

6.3.2.5 Step 5: Build the Transfer Function
The transfer function is then:

A few assumptions simplify the transfer function considerably. First consider 
that the need for an integrator is best demonstrated at zero frequency. A control-law
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integrator would not normally be needed if a proportional control law forced C(s) to
follow R(s) perfectly at zero frequency, even in the presence of a DC disturbance.
At DC, it can be assumed that the power converter is nearly ideal (GPC (s) � 1) as are
the sensor and sensor model (GS (s) � GSEst(s) � 1). Finally, assume the system is con-
figured for disturbance decoupling, so that KDD =1. So, at zero frequency, L1 cancels
L3 in D and D2:

D=1-L2 -L4 -L5

D2 =1-L4.

Filling in the terms for C(s) from above,

(6.16)

Now, assume the observer compensator has an integral term. Also, assume the
plant and its model are either integrating or nearly integrating, as is the most common
case in control systems. So, the functions GCO(s), GP(s), and GPEst(s) all become very
large as s approaches zero. Divide every term in Equation 6.16 by GCO(s)¥GP(s)¥
GPEst(s). Now, to approximate the behavior of Equation 6.16 at s=0, remove 
every term in Equation 6.16 that has one or more of these three functions in the
denominator since those terms will become vanishingly small as s approaches 0. The
disturbance term will be cancelled in this process. This yields C(s)=R(s) at DC,
the ideal result, showing that an integral in the control law is not necessary.

If the process is repeated for non-integrating plants, those systems where 
neither GP(s) nor GPEst(s) becomes large without bound as s approaches 0, it leaves
Equation 6.17 at zero frequency:

(6.17)

So, at DC, the system follows the command, independent of the disturbance and very
accurately as long as KP ¥GPEst(0)>>1. If GPEst(s) is a fully integrating model, the 
DC response of C(s) will be exactly C(s). Notice that there is no requirement that the
plant model be particularly accurate as is evidenced by the fact that nowhere in this
development was it required for GP(s)�GPEst(s); in fact, the actual plant itself need
not even be a true integrator to attain total DC accuracy, so long as the model plant
is an integrator. In many cases, plants are not true integrators at very low frequencies
because of losses. For example, capacitors have small leakage terms and temperature
baths have thermal losses. Both cases are examples of plants that integrate only above
some low frequency. However, an integrating model can often be used to simulate such
a plant. As long as an integrating model provides a reasonable representation of the
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plant, it can be used with disturbance decoupling to eliminate the need for an 
integrator in the control law.

The key step to take note of was where L1 cancelled L3 in D2. Without this 
cancellation, the disturbance term in Equation 6.16 would have a GCO(s) term so it
would not have been overwhelmed by the command term at zero frequency.

The reader is encouraged to return to the development and disable disturbance
decoupling by setting KDD =0. In this case, the DC response for the nondecoupled
system without an integral in the control law is:

(6.18)

Without disturbances, the system will follow a DC command perfectly, even
without an integrator in the control law. However, the disturbance corrupts the output
as is shown in Equation 6.18. A larger proportional gain reduces, but does not elim-
inate, the error. The most common way to remove all error in the nondisturbance-
decoupled system is for the proportional control law, KP in Equation 6.18, to be
replaced with an integrating control law, KP +KI /s, as shown in Equation 6.19.
The magnitude of such a control law will grow without bound at zero frequency,
forcing the disturbance term to vanish from the output. This is the primary reason
integrating control laws are so popular in traditional control systems.

(6.19)

6.3.3 Dynamic Improvement of Disturbance Response
A system employing disturbance decoupling rejects disturbances largely independent
of the control law. This is because the primary path to reject disturbances, which is
through KDD, does not pass through the control law; it proceeds directly from the
observer to the power converter. Here, the bandwidths of the observer and power 
converters are the primary dynamic limit to disturbance response, as indicated in
Equation 6.15. In traditional control systems, the control law is the primary source
of disturbance rejection and the control-loop bandwidth, which is usually much 
lower than the observer or power converter bandwidths.

Experiment 6E, shown in Figure 6-20, will be used to demonstrate how the power
converter bandwidth limits disturbance response in disturbance-decoupled systems.
This experiment is similar to Experiment 6D, except the bandwidth of the power 
converter (GPC) is adjusted with the Live Constant FPC, both of which are above and
left of the center of the figure.

The results of Experiment 6E are shown in Figure 6-21. When the power converter
bandwidth is raised from 50 (Figure 6-21a) to 100Hz (Figure 6-21b), disturbance
response improves dramatically. This is consistent with Equation 6.15. Note that the
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Figure 6-20. Experiment 6E: Investigate the effect of power converter frequency on disturbance response in a
disturbance-decoupled system.

(a) (b) (c)

Figure 6-21. From Experiment 6E: Disturbance response with observer-based disturbance decoupling using 
(a) low (50Hz), (b) high (100Hz), and (c) very high (200Hz) bandwidth power converters.
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observer bandwidth is about 160Hz (from Section 5.3.1), so the power converter, in
both cases, is the lower of the two and thus the primary barrier. Accordingly, raising
this limit improves disturbance response significantly. Note that in the case where dis-
turbance decoupling is not used, increasing the power converter bandwidth does not
directly improve disturbance response to a significant extent. (It can reduce phase lag
in the loop, thus allowing higher servo gains, which do improve disturbance response.)
The interested reader is invited to confirm this with Experiment 6E using these 
steps:

• Run Experiment 6E
• Turn disturbance decoupling off (set KDD =0, KI =30)
• Adjust FPC up from 50Hz and observe that disturbance response does not

improve significantly. Adjusting it down will affect response because the addi-
tional phase lag will cause instability in the control loop.

When the power converter bandwidth is raised further, the disturbance response
improves again. The power converter bandwidth of 200Hz (Figure 6-21c) provides
the best decoupling of the three cases in Figure 6-21. However, the benefits of raising
the bandwidth are diminishing because the observer bandwidth, which is about 
160Hz, is now the primary limitation on disturbance response. Accordingly, raising
the power converter bandwidth from 200 to 500Hz produces almost no benefit, as the
reader will observe by executing Experiment 6E. At this point, the observer band-
width is the primary limit in Equation 6.15 and substantial improvement in 
disturbance response can only be achieved by raising that barrier.

6.4 Exercises
1. Compare bandwidth of observed disturbance (DO /D) and bandwidth of

observer. Measure the bandwidth of the observer using Experiment 5A. Use
default values for all parameters.
A. What is the bandwidth of the observed disturbance? (Hint: Use the DSA

in Experiment 6A.)
B. What is the bandwidth of the observer itself ? (Hint: Use the DSA in 

Experiment 5A.)
C. Repeat A and B for the observer tuning values KDO =0.06, KPO =25, and 

KIO =1400.
D. Repeat A and B for the observer tuning values KDO =0.04, KPO =14, and 

KIO =700.
E. Compare the observer bandwidth to the observed-disturbance bandwidth.

Discuss the implications of Equations 6.4 and 4.6.
F. Repeat problem 1D with K set to 20 (leave KEst set to 50). Compare and

comment.



2. Find the relationship between the DC error of disturbance in the absence 
of an integral term in the compensator and the gain KPO. Use Experiment 
6B. Set KIO =0.0. Note that while the Live Scope gives approximate read-
ings, a more accurate measure of error can be obtained with the main scope
display, which will come into view after compiling the model, double-clicking
on the main scope block (left), and turning on a single cursor (bottom of
scope).
A. Measure the error with the default value of KPO (45).
B. Repeat with KPO =20, 50, and 100.
C. What is the relationship between the amount of error and KPO?

3. Evaluate disturbance response in the frequency and time domains for 
three cases: the low gains of the traditional system, the high gains of the
observer-based system, and the disturbance-decoupled system. Use Experi-
ment 6D.
A. Run a Bode plot for the traditional system (KP =0.6, KI =12, and KDD =0.0).

Save this plot as black. Repeat for the higher gains possible with an
observer-based system (KP =1.5, KI =30, and KDD =0.0). Save this plot as
red. Finally, repeat for the disturbance-decoupled system (KP =1.5, KI =0,
and KDD =1.0).

B. Measure the disturbance response (gain) for all three cases at 3Hz. (Use
the single cursor with the cursor set at 3Hz; use radio buttons in the cursor
display box to set which waveform is measured in the DSA cursor window.)

C. How much does the disturbance response improve due to increased 
loop gains allowed by the observer, according to the first two measure-
ments in part A?

D. How much does the disturbance response improve due to disturbance 
decoupling, according to second two measurements in part A?

E. Make similar measurements to part B using the time domain. Set the 
waveform generator to sine wave (double-click on WaveGen block after
compiling) and set the frequency to 3Hz. Repeat for all three gain sets used
in part A. Use the main scope block for the most accurate measurements.

F. Repeat part C using measurements from part E.
G. Repeat part D using measurements from part E.
H. Compare measurements made in C and D to those made in F and G.

4. Evaluate the improvement of disturbance response when the power converter
bandwidth is increased.
A. Modify Experiment 6E to view command response. Open Experiment 6E;

to avoid permanent changes to the file Experiment_6E.mqd, save as
Temp.mqd. Disconnect the disturbance source from the disturbance input
summing junction; disconnect the Live Constant R from the command
input. Connect the disturbance generator to the command input as shown
in Figure 6-22. Tune the nondecoupled system (KDD =0) for three power
converter bandwidths (FPC): 50, 100, and 200Hz. Tuning criteria: no over-
shoot to step for KP and 25% overshoot with KI.
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B. Reopen Experiment 6E. What is the peak excursion of the disturbance
response for the three power–converter frequencies without disturbance
decoupling, using the tuning gains from part A.

C. Repeat part B with disturbance decoupling (KDD =1, KI =0).
D. For the 200-Hz power converter, does raising KP from the values in part A

significantly affect the disturbance response in the disturbance-decoupled
system? Explain.

Figure 6-22. Temporarily modified section of Experiment 6E for Exercise 4A.



I n this chapter . . .

• Common sources of noise in control systems
• Effects of noise on observers and observer-based systems
• Effects of noise on disturbance-decoupled systems
• Reducing noise in observer-based systems
• The modified Luenberger observer

This chapter will discuss noise in control systems, especially for systems that use
the observed state as a feedback signal. The effect of noise on systems using observer-
based disturbance decoupling will also be discussed. In addition, three common
methods used to reduce noise sensitivity will be presented: reducing observer band-
width, filtering the observed disturbance, and modifying the observer-compensator
structure. As in earlier chapters, key points will be demonstrated with simulation
experiments.

7.1 Noise in Control Systems
Noise sensitivity is an important consideration for most control-systems. Noise from
sensors and other sources can distort the control-system output, introducing
unwanted perturbations on the control variable and generating unacceptable levels of
acoustic noise. An understanding of noise is desirable for designers who use observers
because observer-based control systems are often more sensitive to sensor noise than
are traditional control systems. This section will provide background on noise,
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including different types and sources of noise and how noise enters the control 
system. This background will aid the analytical development that follows in the later
sections.

7.1.1 White vs Colored Noise
Random noise is composed of harmonics from across the frequency spectrum.
Random noise is often referred to as white because, like the color white, it contains
all frequency harmonics in approximately equal magnitude. Noise can be filtered, a
condition where one or more bands of frequency have been attenuated; this is referred
to as colored noise. For example, if white noise feeds a low-pass filter, frequency 
components at and above the filter bandwidth will be attenuated; the output of
such a filter will be colored noise.

In this chapter, all analytical and experimental development assumes that the noise
is white. The experiments use the unfiltered output of a pseudo-random number 
generator to produce near-white noise. Bear in mind that noise above the Nyquist 
frequency (half the sample frequency) aliases to lower frequencies. For those readers
studying the effects of colored noise, the results of the treatment of white noise are
easily modified to show the effects of colored noise. For analytical treatment, the
transfer function of the coloring filter can be cascaded with that of the white noise.
For experimental treatment, a coloring filter can be cascaded with the pseudo-random
number generator.

7.1.2 Quantization and Noise
Quantization is a common source of noise in digital control systems. Quantization is
the undesirable process of limiting resolution of a continuous signal. For example,
a 12-bit analog-to-digital converter (ADC) allows only 212 (4096) discrete values to
represent a voltage. Even though the voltage input to the ADC almost always falls
between these values, it will be assigned one of these discrete values. For the ideal
case, the value will be the closest discrete value to the actual value. Assuming that the
input (nonquantized) signal can take on any value, quantization is sometimes repre-
sented as a random noise added to the actual signal. The magnitude of the random
noise is half the resolution of the quantization process. For example, if the ADC 
were quantized to 0.005V, the output of the ADC could be modeled as the actual
magnitude of the input signal summed with a random noise signal that had a 
min/max of ±0.0025V.

Quantization comes from two primary sources. First, in digital control systems,
sensor output must be represented digitally. Since sensors usually monitor analog
processes, this implies that the sensor output must be quantized. This may occur
through standard analog-to-digital converters or through any of the myriad of
digital converters for specialized sensors. The second source for quantization is
through digital calculations. Many digital calculations generate quantized output



when the result is truncated. Practical limitations usually require that results of
arithmetic operations be truncated. Careful design of calculations can minimize 
the effects of quantization in calculations, but in most cases, the effects cannot be
eliminated.

7.1.3 Noise Entry Points
Noise can be injected into a control system at many points. As shown in Figure 7-1,
three key entry points are through the command, through calculations (typically 
in the control law), and through the sensor. This section will briefly discuss the 
differences between these sources. The balance of this chapter will focus on noise 
from the sensor, as it is probably the most common source of noise and often has the
greatest effect on observer-based systems.

7.1.3.1 Command Noise
Command noise is noise that is added to the command en route to the control-system
input or through noise generation in the command-input circuitry. In analog control
systems, command noise is a common problem. Noise can be radiated or conducted
from noise generators. For example, high-frequency pulse-modulated power con-
verters, often present in control systems, can radiate noise to neighboring equipment.
Ground loops and other forms of ground noise can conduct noise to command inputs.
Digital systems often eliminate command noise by digitally encoding the command
before transmitting it. Digital encoding is well known to greatly reduce or even 
eliminate noise sensitivity. However, many digital systems such as programmable logic
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controllers (PLCs) and motor controllers accept commands in analog form and dig-
itally encode them after the transmission. Such systems are as sensitive to command
noise as their analog counterparts.

The system sensitivity to command noise is identical to the closed-loop command
response. Since the noise enters with the command, the system will respond to the
noise as it does to the command.

7.1.3.2 Calculation Noise
Calculation noise is caused by quantization in digital calculations. Most calculation
noise comes from the control law. Calculation noise generates a pseudo-random noise
with a magnitude of ±1/2 the resolution of the calculations. When control laws are
constructed carefully, calculation noise usually has minimal effect on the control
system.

7.1.3.3 Sensor Noise
Sensor noise is generated in a variety of ways. Quantization noise can be injected when
analog sensor signals are converted to a digital format. The sensor hardware can 
generate noise, especially when sensors include analog electronics to amplify low-level
signals. Like command signals, sensor signals are sensitive to electromagnetic inter-
ference (EMI) such as ground loops, ground noise, and radiated emissions. Because
sensor noise is of particular interest to designers of observer-based systems, the
remainder of this chapter will focus on this source.

7.1.3.4 Analysis of Sensor Noise in This Chapter
Two methods of analysis will be applied in this chapter. First, an analytical 
approach will be taken by constructing and evaluating transfer functions. Then an
experimental approach will be used to confirm and expand upon the findings of the
analytical approach. The experiments will use both the time and the frequency
domains.

First, the observer-based feedback structure will be examined. The sensitivity of
the observed state, CO(s), will be considered. Those results will then be extended to
explain the effects of noise on the actual state, C(s). Readers should bear in mind that
the observed state is an internal state; while understanding its behavior provides 
intuition about the operation of observer-based systems, the behavior of the actual
state is usually the measure of control-system performance.

After the observer-based feedback structure is discussed, systems using an
observer-based disturbance-decoupled structure will be examined. The effects of noise
on the observed disturbance, DO(s), will be evaluated first. The effects of the actual
state, C(s), will be considered after that.



7.2 Sensor Noise and the Luenberger Observer
Noise is an important consideration when developing observer-based products. One
of the unfortunate characteristics of observers is that they often respond to sensor
noise more than nonobserver systems do. This is because, below the observer band-
width, the observer amplifies noise by effectively placing the inverse-estimated-sensor
transfer function (G -1

SEst(s)) in line with the sensor (see Figure 4-15). Accordingly, the
observer amplifies high-frequency components of sensor noise, often greatly. This
effect is magnified in systems that use disturbance decoupling.

7.2.1 Transfer Function Analysis of Co(s)/N(s)
The analytical approach begins with a heuristic discussion of the noise sensitivity 
of the observed state. Refer to Figure 7-2, which is the Luenberger observer in the
presence of sensor noise, N(s). For this discussion, consider the frequencies below 
the observer bandwidth.

1. From Figure 7-2, YO(s)=CO(s)¥GSEst(s) and Y(s)=C(s)¥GS (s).
2. Assume that, in the range of frequencies below the observer bandwidth, the

observer compensator is able to drive the error, EO(s), nearly to zero.
3. Driving EO(s)�0 implies that YO(s)�Z(s), so YO(s)�Y(s)+N(s).
4. Combine 1 and 3: CO(s)¥GSEst(s)�C(s)¥GS(s)+N(s).
5. Assume that the observer sensor model is ideal: GSEst(s)�GS(s).
6. Combine 4 and 5: CO(s)¥GSEst(s)�C(s)¥GSEst(s)+N(s).
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7. Dividing both sides of step 6 by GSEst(s) reveals the problem: CO(s)�C(s)+N(s)
¥G -1

SEst(s).

This demonstrates that, for frequencies below the observer bandwidth, noise is
scaled approximately by G -1

SEst(s) and then added to the observed state. Since GSEst(s)
typically has the form of a low-pass filter, attenuating frequency components above
the sensor bandwidth, G -1

SEst(s), will amplify components above the sensor bandwidth.
Another way to see noise amplification in observers is to consider the operation of

the observer loop in the presence of noise. Below the observer bandwidth, the observer
compensator drives the plant hard enough to remove almost all observer error. Again,
GSEst(s) acts like a low-pass filter in practical systems. This means that the noise
content above the bandwidth of GSEst(s) must be amplified in order to produce an
observed-sensor output (YO(s)) that will drive the observer error to zero. For example,
suppose at 100Hz, GSEst(s) provides -20dB (1/10th) gain. Suppose also that Z(s) has
a 100-Hz noise component with a magnitude of 0.1V. Then, the observer compen-
sator would have to drive the estimated plant hard enough that a 100-Hz signal 
with 1.0-V magnitude appeared at CO(s). This is required for 0.1V to exit from 
GSEst(s) and cancel the 100-Hz noise component in Z(s). So, at 100Hz, the observed
feedback would contain the sensor noise amplified by a factor of ten. Again, the
observer compensator effectively amplifies the noise by the 1/GSEst(s) or, equivalently,
G -1

SEst(s).
The noise susceptibility of an observer can be examined more carefully by 

analyzing the transfer function first discussed in Section 4.3. Recall from Equation 4.4
that the observer output is a combination of the high-pass filtered power converter
signal and the low-pass filtered sensor signal. Rewritten with the noisy sensor output,
Z(s), Equation 4.4 becomes:

(7.1)

The fraction that appears in the first term of the right side of Equation 7.1 is the
closed-loop response of the observer. It behaves like a low-pass filter with a band-
width equal to that of the observer loop. The fractional portion of the second term
on the right side is the high-pass filter first discussed in Section 4.3. Recognizing the
low-pass and high-pass filtering terms of Equation 7.1 as
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Eq. (7.1) can be rewritten as:

(7.4)

If the noise content of the power converter, PC (s), and the nonnoise components
of the sensor output are ignored (Z(s)=N(s)), noise sensitivity is:

(7.5)

Below the observer bandwidth, the term GOPLF (s) is approximately 1. Below the sensor
bandwidth, GSEst(s) is approximately 1; above that frequency, GSEst(s) declines. Thus,
between the sensor bandwidth and the observer bandwidth, the sensor noise will be
amplified.

7.2.1.1 Transfer Function Analysis of C(s)/N(s)
This section will analyze the noise sensitivity of the actual state, C(s). In the end, the
sensitivity of the actual state is of more concern than that of the observed state;
the observed state is an internal signal while the actual state describes the response of
the machine or process.

This analysis begins by considering Figure 7-3, a block diagram of the control
system with observed feedback. The observer is represented in the filter form, which
was introduced in Section 4.3, using the definitions of Equations 7.2 and 7.3.
Evaluation of the noise sensitivity can be carried out by assuming zero command
(R(s)=0) and then evaluating the transfer function from the noise, N(s), to the actual
state, C(s).

Mason’s signal flow graphs can be used to develop the transfer function from N(s)
to C(s). In Figure 7-3, there is a single forward path from N(s) to C(s), and there are
two loops, which are both in contact with the forward path:
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This yields the transfer function of Equation 7.6 or, equivalently, Equation 7.7.

(7.6)

(7.7)

Equation 7.7 can be simplified by assuming the observer plant and sensor models
are nearly ideal and by recognizing that the two filter terms from Equations 7.2 and
7.3 sum to 1:

These assumptions simplify Equation 7.7 to:

` (7.8)

The result of Equation 7.8 is consistent with Equation 7.5, which demonstrated that
the noise sensitivity of the observed state was G-1

SEst(s)¥GOLPF(s). That term also 
appears in the right side of Equation 7.8. Further, notice that the remaining term on
the right side of Equation 7.8 is in the form GOL(s)/(1+GOL(s)), where GOL(s) is the open-
loop transfer function excluding the effects of the observer and sensor. Finally, recog-
nizing that the system closed-loop transfer function is GOL(s)/(1+GOL(s)), it becomes
apparent that the noise sensitivity of the actual state is simply the noise sensitivity of
the observed state cascaded with the control-law closed-loop transfer function.

(7.9)

7.2.1.2 Comparison to Traditional (Nonobserver) Systems
The noise sensitivity of the traditional and observer-based control systems can be
compared by analyzing the differences of their respective transfer functions. The 
traditional control system with a noisy sensor is shown in Figure 7-4.
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The noise sensitivity of the actual state, C(s), is written out from Mason’s signal
flow graphs:

(7.10)

Rearranging Equation 7.10 to isolate the closed-loop transfer function1 yields:

(7.11)

At frequencies well below the control-law bandwidth, the open-loop gain will 
dominate the “1” in the denominator and the noise susceptibility will be:

(7.12)

A similar result occurs when the observer-based transfer function of
Equation 7.8 is evaluated below the observer bandwidth (where GOLPF (s)�1) and 
the control-law bandwidth (where the closed-loop control-law response �1).
Equation 7.8 reduces to:
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Figure 7-4. Block diagram of traditional (nonobserver) system.

1 The reader should notice that the forms of the open-loop transfer functions differed between the 
traditional and observer-based feedback systems. The open loop of the traditional system includes the
sensor transfer function while the observer-based system does not. The reason for the difference is that 
the observer removes the effects of the sensor transfer function when properly configured and thus its 
elimination accurately reflects the operation of the control loop.
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So, at low frequencies, the noise susceptibility of the two systems is about the same.
However, there is a significant difference when the transfer functions are evaluated at
higher frequencies. In the traditional system, at frequencies higher than the control-
law bandwidth, the “1” in the denominator of Equation 7.11 dominates and the noise
sensitivity reduces to:

(7.14)

However, the observer-based control system produces a different result. Above the
control-law bandwidth, where “1” dominates the denominator of Equation 7.8, that
equation reduces to:

(7.15)

Comparing the noise susceptibility indicated by Equations 7.14 and 7.15, the
primary difference is the appearance of the term G -1

SEst(s) in the observer-based 
system. Since GSEst(s) is normally a term that attenuates at high frequency, G -1

SEst(s) 
will normally amplify at high frequency. Above the sensor bandwidth and below 
the observer bandwidth, the observer-based system will be noisier by an amount
approximately equal to the attenuation provided by the sensor.

7.2.2 Experiment 7A: The Effects of Sensor Noise on the Observed State
This section and the next will use simulations to confirm the previous analytical 
development. The simulations will start with Visual ModelQ Experiment 7A, shown
in Figure 7-5. This model is similar to the models of previous chapters. The key points
are:

• The control system is a PI loop with the feedback taken from the sensor. Similar
to Experiments 5C and 6A, the sensor is modeled as a single-pole low-pass
filter with a bandwidth of 20Hz, and the power converter is a double-pole low-
pass filter with a bandwidth of 50Hz. The PI gains are also the same as in those
experiments.

• There is an observer that is tuned to a bandwidth of about 155Hz (see 
Section 5.3.1). The model parameters of the observer are accurate: KEst =50 and 
FGsEst =20Hz.

• The model includes a noise source named “Sensor Noise” near the top center.
This is a pseudorandom number generator with an amplitude of ±1. The sum
of the noiseless sensor output and the noise source form Z, the sensor output.

• There is a DSA configured to inject the noise input of the control loop. This
instrument is used to measure the noise response of various signals in the
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system. Note that the DSA disables the command waveform generator (at left)
through the Visual ModelQ Extender “DSA On.” This is done because the DSA
must zero other control-system inputs during its excitation to allow accurate
measurements. As usual, when the DSA is not exciting the system (the normal
case), it passes the output of the random generator Sensor Noise to the
summing junction that adds Y and N to form Z.

• There are three Live Scopes: the actual state (C ), the measured state after noise
is injected (Z ), and the observed state (CO).

The results of Experiment 7A can be viewed in the time domain and in the fre-
quency domain. The time domain aids intuitive understanding of the observer behav-
ior in the presence of noise; the frequency domain provides quantitative comparisons.

The result in the time domain can be seen in the Live Scopes of Figure 7-5. The
actual state, C, at top right, is almost unaffected by noise in this system. That is
because the control-law gains are relatively low and the integrating plant provides
enough filtering to remove visible effects of the noise source. The effects of the noise
on the sensor output, Z, at bottom right, are apparent. Without the noise, Z would
be nearly identical to C, except for the phase lag of the sensor, GS(s).

The observed state, CO, at left, is much more affected than is the sensor output,
Z. In the absence of noise, CO is almost identical to C (reference Figure 5-5 from
Experiment 5C). Of course, these signals are not the same in the presence of noise.
The noise, fed in through Z, has been amplified by the observer. The result is that the
observed state is corrupted by the noise to such an extent that the signal actual state
is difficult to see through the high-frequency noise. This is the expected result from
Equation 7.5.
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Figure 7-5. Experiment 7A: Evaluating the effects of noise on the observed state.
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A Bode plot of observed state vs noise, as shown in Figure 7-6, provides a quan-
titative evaluation of the effects of noise. In the middle frequencies (approximately
between the sensor bandwidth and the observer bandwidth) the gain is steadily rising.
This can be seen in Equation 7.5 because the amplification of G -1

SEst(s) increases above
the sensor bandwidth. The level of amplification stabilizes around the observer band-
width. This can also be seen in Equation 7.5 because, above the observer bandwidth,
the observer (represented at GOLPF (s)) provides attenuation.

The reader may notice an unexpected amplification of a few decibels below the
sensor bandwidth. This is not predicted by Equation 7.5. In fact, this results because
of peaking in the control loop; the cause of this effect is that the control system has
some peaking in this range so that noise signals, as well as commands, are modestly
amplified in this frequency range.

7.2.3 Experiment 7B: The Effects of Sensor Noise on the Actual State
Experiment 7B extends 7A to allow the evaluation of the effects of noise on the actual
state (see Figure 7.7). There are just a few differences:

• The feedback path is fed with a switch (at bottom left) that can be configured 
to connect either sensor output or the observed state. The connection is the

Note:  The modest gain at low 
frequency is also caused by 
peaking in the control law 
and is unrelated to the 
observer.

Key point:  The amplification at 
medium and high frequencies is 
caused by the observer, consistent 
with Equation 7.5.

15 dB
Sensor BW Observer BW

Figure 7-6. From Experiment 7A: Bode plot of observed state vs noise.



controller with the Live Constant “Feedback,” which can take on the values of
“Sensor” or “Observer.”

• The amplitude of the noise is controlled with a Live Constant named “Noise
Amplitude” at top right.

• The power converter output, PC, is shown in a Live Scope at top center. The
power converter output is an indicator of noise susceptibility.

The effects of noise in the time domain are most easily seen by viewing the power
converter output. This is because an integrating plant smoothes the noise, making
evaluation based on the actual state difficult. Also, many noise issues are driven by
the power converter output rather than by the actual state. For example, some noise
in a hydraulic positioning system will be caused by the flow of hydraulic fluid rather
than by the position of the cylinder. Acoustic noise from a voltage supply will often
be caused by current that vibrates inductor winding, not by the output voltage.

The comparison of the power converter output of Experiment 7B is given in 
Figure 7-8. In Figure 7-8a, where the sensor output is used for feedback, the effects
of noise are modest. In Figure 7-8b, where the observed state is used for feedback,
the effects are considerably greater. Note that the noise amplitude and control gains
(KP, KI) are identical in these plots; the increase in noise sensitivity is due solely to
the use of the observed state.

The noise sensitivity of the actual state also can be viewed by comparing the actual
state with the loop configured for (1) observed-state feedback and (2) sensor output.
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Figure 7-7. Experiment 7B: Evaluating the effects of noise on the actual state.



154 � CHAPTER 7 NOISE IN THE LUENBERGER OBSERVER

A comparison is shown in Figure 7-9. Again, the result is that the sensitivity of the
system with observer feedback (Figure 7-9a) is greater than that of the system with
sensor feedback (Figure 7-9b). The integrating plant smoothes noise, making it 
difficult to discern in these plots. In fact, the amplitude of the noise source had to 
be increased from 1 to 5 to show the effects even this much. The plots of Figure 7-9
are consistent with Equations 7.14 and 7.15; the effect of the term G -1

SESt(s)¥GOLPF (s)
in Equation 7.15 will normally amplify high-frequency noise.

A quantitative measurement of noise sensitivity of the actual state can be seen 
in a Bode plot generated by Experiment 7B and shown in Figure 7-10. The noise 
sensitivity of the sensor-based system (Equation 7.14) and the observed-state-based

          
(a) (b)

Figure 7-8. From Experiment 7B: Effects of noise on the power converter output (a) with sensor output as
feedback and (b) with observed state for feedback.

        
(a) (b)

Figure 7-9. From Experiment 7B: Effects of noise on the actual state (a) with sensor output as feedback and
(b) with observed state for feedback. Note that the noise amplitude has been increased to 5 for both cases.



system (Equation 7.15) is plotted in this figure. The difference between the two 
configurations is due to the term G -1

SEst(s)¥GOLPF (s), which is the difference between
Equations 7.14 and 7.15. That term is the noise sensitivity of the observed state; it is
equal to Equation 7.5 and is plotted approximately in Figure 7-6. As expected, the
observed-state-based system is equivalent to the sensor-based system at frequencies
below the sensor bandwidth, but is more sensitive above that. The maximum 
difference of about 15dB is present at and above the observer bandwidth, consistent
with Figure 7-6.

7.2.4 The Effects of Control-Law Gains on Noise Sensitivity
Equation 7.15 predicts that noise sensitivity of the observer-based system will increase
with increased control-law gains (GC). The comparisons of the previous sections
assumed the control-law gains were the same with and without the observer. However,
observers are often employed to allow increased control-law gains. Since the control-
law gains will often be higher in observer-based systems, noise sensitivity will increase
further.

The effect of raising control-law gains is shown in Figure 7-11. In Figure 7-11a,
the sensitivity with the original control-law gains (KP =0.6, KI =12) is shown; this is
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Noise sensitivity of system 
with observer feedback.

Noise sensitivity of system 
with sensor feedback.

Difference caused by 
GSEst

-1(s) x GOLPF(s) 
in Equation 7.15.

Figure 7-10. From Experiment 7B: Bode plot of noise sensitivity of actual state with observer feedback and
sensor feedback.
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identical to Figure 7-9b. In Figure 7-11b, taking advantage of the reduction in phase
lag provided by the observer, the gains are raised to (KP =1.5, KI =30), which are 
the higher gains used in Chapter 5. The increase in sensitivity is apparent. This is 
consistent with Equation 7.15, which shows noise sensitivity increasing with 
control-law gains, as well as with other factors including the observer and power 
converter bandwidths.

7.3 Noise Sensitivity when Using Disturbance Decoupling
Disturbance decoupling can greatly increase the noise sensitivity of a control system
for at least two reasons. First, as demonstrated in Section 6.3, disturbance-decoupled
systems can respond at higher frequencies than the control law. The structure of the
disturbance-decoupled system routes the observed disturbance directly to the power
converter; the primary limits on response are the observer bandwidth, the power 
converter bandwidth, and the plant. This structure gives disturbance decoupling 
its superior disturbance-rejection properties. Unfortunately, it brings with it higher,
often much higher, noise sensitivity.

The second reason for higher noise sensitivity is that, where observer-feedback
systems rely on the observed state, disturbance decoupling relies on the observed dis-
turbance. The observed disturbance is more sensitive to noise than the observed state.
In this context, the main difference between the two signals is that the observed state
passes through the model plant (reference Figure 7-2). In practical systems, the model
plant usually will be a combination of integrators and low-pass filters, both of which
will attenuate noise. For disturbance-decoupled systems, the unattenuated output of
the observer compensator is routed directly to the power converter, often increasing
the noise sensitivity by many times.

           
(a) (b)

Figure 7-11. From Experiment 7B, the effects of control law gains on sensitivity of actual state in 
observer-based system: (a) with low gains (KP = 0.6, KI = 12), and (b) with high gains (KP = 1.5, KI = 30).



As was the case in Section 7.2, this section will start with an analytical discussion
of noise sensitivity based on transfer functions. First, the noise sensitivity of the
observed disturbance will be presented; a discussion of noise sensitivity of the actual
state will follow that. Finally, the key concepts from this section will be demonstrated
in Visual ModelQ experiments.

7.3.1.1 Transfer Function Analysis of DO/N
The noise sensitivity of the observed disturbance can be derived from Figure 7-2 using
Mason’s signal flow graphs in a manner similar to how Equation 7.1 was derived. The
result is

(7.16)

The Z(s) term is multiplied by GPEst(s)¥G -1
PEst(s) and by GSEst(s)¥G -1

SEst(s) in order to
produce a factor of GOLPF (s) (see Equation 7.2). Then, Equation 7.16 can be in a form
similar to Equation 7.4:

(7.17)

The noise sensitivity of the observer can be written in a form similar to 
Equation 7.5:

(7.18)

Comparing the noise sensitivity of the observed state (Equation 7.5) and of the
observed disturbance, the difference is that the observed disturbance adds the term
G -1

PEst(s). If the plant is an integrator, as it commonly is, the inverse is a differentiator,
a function well known to be noise sensitive. The more that the simulated plant 
attenuates noise, the greater the noise sensitivity of the observed disturbance.

7.3.1.2 Transfer-Function Analysis of C/N with Disturbance Decoupling
The sensitivity of the actual state to noise is the final measure on the control system.
The next step will be to investigate this by building the transfer function of C(s)/N(s).
To simplify transfer-function analysis, the disturbance-decoupled system is drawn in
Figure 7-12 by substituting Equation 7.17 in place of the common implementation
of the Luenberger observer. Just to be clear, the two implementations differ, but the
analysis is valid because transfer functions are the same.
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The transfer function from N(s) to C(s) can be written using Mason’s signal flow
graphs. There are two paths from N(s) to C(s), one through the observer (P1) and the
other through the control law (P2). There are three loops: one through the control law
(L1) and two passing through the observer (L2 and L3).

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

Since all loops touch (via GPC (s)), the denominator of the transfer function 
contains no combinations of loops. Since all forward paths touch all loops (again, via
GPC (s)), the cofactors, which appear in the numerator, are all 1. Thus, the transfer
function is simply:

(7.24)

Two assumptions simplify the transfer-function analysis. Assuming that the esti-
mated plant and estimated sensor are accurate, (GP(s)�GPEst(s) and GS(s)�GSEst(s)),
L2 and L3 cancel in the denominator. Also, Equation 7.19 simplifies to:
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Figure 7-12. Noise in an observer-based disturbance-decoupled system redrawn according to Equation 7.17.



The transfer function of noise sensitivity is then:

(7.26)

Equation 7.26 indicates that the disturbance-decoupled system has much greater
noise sensitivity than does the system with observer feedback (Equation 7.8).
The denominators of Equations 7.8 and 7.26 are similar, but the first term in the
numerator of Equation 7.26, which represents the decoupling path from noise to 
the actual state, bypasses the control law.2 The amplifying factor (G -1

SEst(s)) lacks the
attenuating term GPEst(s). In practice, the noise passing through the disturbance-
decoupling path, P1, will normally be much larger than the noise passing through the
control-law path, P2. (In fact, in many cases, P2 can be ignored.) This accounts for
the disturbance-decoupled system’s greatly increased noise sensitivity.

7.3.2 Experiment 7C: Noise Susceptibility and Disturbance Decoupling
This section will use Experiment 7C, shown in Figure 7-13, to demonstrate the 
noise sensitivity of observer-based disturbance decoupling. This experiment is the
same as Experiment 7B with two exceptions. First, disturbance decoupling has 
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Figure 7-13. Experiment 7C: Noise in an observer-based disturbance-decoupled system.

2 The second term in the numerator represents the disturbance response of the control law based on 
measured feedback.
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been added using the extenders named DO to connect the output of the observer 
compensator to the decoupling gain, KDD. The extender is preferred to a direct 
connection because it makes the diagram clearer by avoiding crossing wires. Second,
the Live Scope display of CO has been removed; a variable block, CO, has been added
so the observed state can be plotted in the DSA and main scope. The greatly increased
noise sensitivity of the decoupled system is made readily apparent by the graph of
PC, the power converter output, which is much noisier than it was in any of the 
nondecoupled systems in earlier models (for example, in Figure 7-8).

The Bode plot of Experiment 7C shown in Figure 7-14 provides a measure of
the decoupled system’s noise sensitivity. This figure shows three configurations.
The traditional (nonobserver) configuration has the lowest sensitivity. The system 
with observer feedback is more sensitive, as was demonstrated in Figure 7-10.
However, the disturbance decoupled system is the most sensitive. For example, at 
100Hz, the decoupled system is 25dB (about 20 times) more sensitive than the
observer-based system and more than 40dB (100 times) more sensitive than the tra-
ditional system. Clearly, any consideration of observer-based disturbance decoupling
should include a thorough evaluation of noise sensitivity.

Traditional
system

System using
observed-state
for feedback

System using
observer-based
disturbance
decoupling

>40 dB

100 Hz

Figure 7-14. From Experiment 7C, noise sensitivity of the actual state for three configurations: traditional, the
observed-state feedback, and the observer-based disturbance-decoupled system.



7.4 Reducing Noise Susceptibility in Observer-Based Systems
This section will review several techniques used to reduce noise susceptibility in
observer-based systems.

7.4.1 Lowering Observer Bandwidth
One technique to reduce noise sensitivity is to lower the observer bandwidth. While
the tuning procedures covered in earlier chapters focused on helping the designer tune
the compensator to get the maximum bandwidth available from the observer, in prac-
tical systems the observer’s target bandwidth may be reduced to attenuate noise.

Reducing the observer bandwidth will result in a direct benefit for noise suscepti-
bility. This is apparent upon inspection for systems using observed-state feedback
from Equation 7.9, understanding that reducing observer bandwidth is equivalent to
reducing the bandwidth of the equivalent filter GOLPF (s). It is also true for disturbance-
decoupled systems according to Equation 7.26, assuming the first term in the 
numerator of the right-hand side is dominant, as it normally will be.

The effect of lowering observer bandwidth is shown in Figure 7-15. This Bode plot
shows the noise susceptibility of the observer-based system (without disturbance
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Observer system,
90 Hz observer bandwidth

Traditional system
(for reference)

Observer system,
150 Hz observer bandwidth

Figure 7-15. From Experiment 7B: Comparing the noise susceptibility of the observer-based system with 
high- and low-observer bandwidth.
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decoupling) of Experiment 7C. There are three plots: (1) the 155-Hz observer loop
used through most of this chapter, (2) that same system with the observer loop tuned
down to 90Hz, and (3) the traditional system for reference. The observer-based system
compensated for 155Hz (KDO =0.1, KPO =45, KIO =6400) has the highest noise sus-
ceptibility. The observer was tuned down to 90Hz (KDO =0.05, KPO =20, KIO =1400)
using the procedure from Section 5.3.1, with KDO set to 0.05 to reduce noise. Tuning
down the observer provided a modest reduction of 5dB (the ratio of the two observer
bandwidths, 90/155) as is predicted by Equation 7.9.

The problem with reducing observer bandwidth is the system disturbance response
may worsen. For systems using the observed state for feedback, this is a concern 
when the observer is near or below the control-loop bandwidth, as discussed in
Section 6.2.2. The reason is that the disturbance enters the control law only after
passing through the observer. Low-observer bandwidth will delay the perturbations
caused by the disturbance entering the observed state, which is the information the
control law has concerning the disturbance.

7.4.2 Reducing Noise in Disturbance-Decoupled Systems
Lowering the observer bandwidth will produce a similar benefit for systems with dis-
turbance decoupling, as is predicted by Equation 7.26. However, lowering the observer
bandwidth will degrade the disturbance response in the case where the observer 
bandwidth is lower than the power converter bandwidth, as shown in Equation 6.15.
The primary limits on the disturbance response are the observer bandwidth, which
delays the disturbance signal, and the power converter, which delays the decoupling
signal entering the control system. The slower of the two will be the primary limit.
Lowering the primary limit will degrade the disturbance response.

An alternative means for reducing noise sensitivity when using disturbance de-
coupling is to add a low-pass filter in line with KDD, as in Experiment 7D as shown
in Figure 7-16. The low-pass filter bandwidth is set with the Live Constant DD LPF.
The improvement of noise susceptibility from the low-pass filter is demonstrated in
Figure 7-17. When the filter is reduced from 250 to 50Hz, the noise is attenuated
accordingly.

The degradation of disturbance response from the low-pass filter is shown in
Figure 7-18. The response to disturbances worsens (grows) with lower bandwidth 
filtering on the observed disturbance. However, as long as the filter bandwidth is 
more than about four times the power converter bandwidth, lowering the filter band-
width will have a negligible effect on disturbance response.

Adding a low-pass filter in line with the observed disturbance provides an observed
disturbance signal similar to that which would have been produced by lowering 
the observer bandwidth. The primary benefit to the additional filter compared to
reducing observer bandwidth is that the filter can be used to lower the bandwidth 
for decoupling, where noise susceptibility is so great, without reducing the observer 
bandwidth. If observed-state feedback is used for other purposes, the benefits of
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Figure 7-16. Experiment 7D: Adding a low-pass filter in line with the observed disturbance in a 
disturbance-decoupled system.

Noise susceptibility
with the low-pass
filter set at 250 Hz.

Noise susceptibility
with the low-pass
filter set at 50 Hz.

Figure 7-17. Noise susceptibility with the disturbance-decoupling filter set at 50 and 250Hz.
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high-observer bandwidth for that signal can be maintained. Since the noise sensitivity
of the observed-state feedback is so much less than that of the observed disturbance,
having the extra degree of design freedom brought by the decoupling filter will be of
benefit in some of the applications where both signals from the observer are used
simultaneously.

7.4.3 Modifying the Observer Compensator
Noise sensitivity can be reduced by modifying the observer compensator. This method
divides the observer compensator into two paths: high frequency and low frequency.
The high-frequency path is routed so that it does not contribute noise to the observed
disturbance or, optionally, to the observed state. (This is equivalent to the velocity
observer of [38, Figure 9].) This method provides similar benefits to reducing observer
bandwidth and to filtering the observed disturbance. The modified observer compen-
sator uses fewer computational resources than explicitly filtering the observed distur-
bance as shown in Figure 7-16. Like Figure 7-16, the restructured compensator has
the benefit of allowing the observed disturbance signal to be more heavily filtered than
the observed state.

Disturbance response
with the low-pass
filter set at 50 Hz.

Disturbance response
with the low-pass
filter set at 250 Hz.

Figure 7-18. Disturbance response with the disturbance-decoupling filter set at 50 and 250Hz.



7.4.3.1 Modified Structure
Modifying the observer compensator requires the following steps:

1. Divide GCO(s) into two components, a low-frequency component, GCOL(s), and a
high-frequency component, GCOH (s). Construct GCOH (s) so that when multiplied
by the simulated plant the product is a simple function such as a constant. The
two paths must sum to the original compensator:

For example, for an integrating plant, the D-path of the observer compen-
sator could form GCOH(s) while the I-path and P-path would form GCOL(s). Here,
when GCOH(s) (KDO ¥ s) is multiplied by the plant (KEst /s), the result is the constant 
KDO ¥KEst, which certainly qualifies as a simple function.

2. Form the observed disturbance with the GCOL(s) path.
3. Form the observed state with the GCOL(s) path. An alternative is to form the

observed state with both paths of the observer compensator. Using this alterna-
tive will allow the equivalent of filtering the observed disturbance without affect-
ing the observed state.

The modified observer is shown in Figure 7-19. The compensator is divided in two
and each path proceeds through an independent simulated plant. As stated above, the

G s G s G sCO COL COH( ) = ( ) + ( ).
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Figure 7-19. Luenberger observer with modified observer compensator.
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product of GCOH (s) and GPEst (s) should be a simple function such as a constant. In 
the actual implementation, only the product of the two is evaluated to reduce com-
putations. A common case is where the estimated plant is fully integrating (KEst /s),
and GCOH(s) is the D-path (KDO ¥ s) of the observer compensator. Here, the path
through GCOH(s) and GPEst(s) is evaluated in one step as KEst ¥KDO.

Note that there are two choices for the observed state. The modified observed state,
COMod (s), is derived using only GOL(s). The standard observed state, CO(s), is con-
structed using the sum of GOH (s) and GOL(s). It is a straightforward matter to show
that CO(s) in Figure 7-19 is equivalent to CO(s) in the traditional Luenberger observer
used throughout this book.

7.4.3.2 Modifying the Compensator for Nonintegrating Plants
If the plant is something other than a pure integration, this method can still be
applied. For example, suppose the plant is a leaky integrator such as a temperature
bath that leaks heat to the atmosphere or a motion system with viscous damping.
Such a form is equivalent to a scaled low-pass filter as shown in Equation 7.27. Here
KLeak is one over the time constant of the leakage:

(7.27)

Since the plant is not a pure integration, modifying the observer compensator with
GCOH(s)=KDO ¥ s fails to meet the criterion where GCOH (s)¥GPEst(s) is to be a simple
function such as a constant. However, if a portion of the compensator’s proportional
gain is placed into GCOH(s), then the criterion is met: GCOH (s)= (1+KLeak/s)¥KDO ¥ s.
Since GCOH(s) now contains a portion of the proportional gain (KLeak ¥KDO), the pro-
portional gain in GCOH (s) must be reduced by that same amount. So,

(7.28)

(7.29)

(7.30)

(7.31)

In this case, the two compensator paths still sum to the original GCO(s) as indicated
by Equation 7.31. In addition, the evaluation of the high-frequency path observer is
still computationally efficient owing to Equation 7.29. The only complexity intro-
duced by the nonintegrating plant is that the proportional gain of the compensator
must be reduced as indicated in Equation 7.30.
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7.4.4 Transfer-Function Analysis
The transfer-function analysis provides an analytical understanding of modifying 
the observer compensator. The observed state and observed disturbance can be 
evaluated separately. Using Mason’s signal flow graphs, the observed state can be
written as:

(7.32)

Making use of Equation 7.31, Equation 7.32 simplifies to:

(7.33)

Using some algebra, Equation 7.33 can be written as:

(7.34)

Recalling the formula for GOLPF (s) as shown in Equation 7.2, Equation 7.34 
reduces to

(7.35)

Comparing Equation 7.35 to the standard sensitivity as shown in Equation 7.5,
the effect of modifying the observer amounts to cascading the transfer func-
tion GCOL(s)/GCO(s). Since GCOL(s) is the low-frequency path of GCO(s), the term
GCOL(s)/GCO(s) attenuates higher frequencies. In other words, the modified compen-
sator is effectively a low-pass filter. The same effect can be seen when evaluating 
the observed disturbance. Using a similar technique to that above, it can be shown
that

(7.36)

Comparing Equation 7.36 to the standard observer compensator of Equation 7.18,
the same filtering term (GCOL(s)/GCO(s)) appears with the modified compensator.
So, for both outputs of the observer, the difference between the standard and the 
modified compensator is the introduction of a filtering term.
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7.4.5 Experiment 7E: Evaluating the Modified Observer Compensator
Experiment 7E, shown in Figure 7-20, is a system with an observer that can be con-
figured to feed back the standard or modified observed state. The modified observer
has a GCOH (s) path using KDO and a KEst block and a GCOH(s) path using GCO and a
second KEst block. The control loop can be configured for one of three feedback
signals: (1) the sensor, (2) the standard observed state, and (3) the modified observed
state; the configuration is selected with the Live Constant “Feedback” which can take
on the values of “Sensor,” “Observer,” and “Mod. Obs.” The selected feedback signal
connects to the variable “F.”

Results of Experiment 7E are shown in Figure 7-21. The noise susceptibility of
the standard and modified observed states is plotted. As expected, the modified
observed state is similar to the standard observed state at low frequencies but is attenu-
ated above a frequency (about 70Hz). This is consistent with the modified observed
state being a filtered version of the standard observed state, as shown in Equation 7.35.

Incidentally, the disturbance response does not suffer measurably from the use of
the modified observed state, because 70Hz is still much greater than the control-loop
bandwidth (about 25Hz, from Figure 5-9). As demonstrated in Equation 6.14, in the
event of a wide separation of the control-loop bandwidth and the observer band-
width, the disturbance response of nondisturbance-decoupled systems will be limited
by the lesser of the two.

Figure 7-20. Experiment 7E: Modified observer compensator.



7.4.6 Using the Modified Observer Solely for DO

One feature of the modified observer is that it can be applied solely to the observed
disturbance. Referring to Figure 7-19, if the standard observed state, CO(s), is used
for feedback, only the observed disturbance will be affected by the modified com-
pensator. The benefit of this structure is that the observed disturbance is more heavily
filtered than the observed state. As demonstrated in the analysis and simulations
throughout this chapter, the observed disturbance is much more sensitive to noise than
is the observed state. Thus by taking the observed disturbance from the right side of
the summing junction, the implicit filtering offered by the modified compensator is
applied where it is most needed: to the observed disturbance. This will, in some cases,
eliminate the need to provide an explicit filter on the observed disturbance as shown
in Figure 7-16. For a system simultaneously using the observed disturbance and 
the observed state, reducing the observer bandwidth still can be used to reduce the
sensitivity of both signals simultaneously. In this case, the observer-compensator 
gains could be reduced until the sensitivity of the actual state is acceptable; then the
modified compensator could be applied to reduce the sensitivity of the observed 
disturbance.
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Figure 7-21. From Experiment 7E: Noise susceptibility of feedback signal, with system configured for standard
and modified observed state feedback.
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7.4.7 Modifying the Observer Compensator Gradually
This choice of using the modified observer at first appears to lack the option of partial
implementation. The designer can use the standard or the modified structure, but
nothing in between. However, the modified observer structure of Figure 7-19 can be
implemented gradually by routing only a portion of GCOH (s) through the modified
path. The remainder of GCOH (s) is added to GCOH (s). This is shown in Figure 7-22
where the constant Mod controls the amount that the compensator is modified.
When Mod=0, the observer is configured as a standard Luenberger observer; when
Mod=1, the observer is equivalent to the modified structure of Figure 7-19. Any value
of Mod between 0 and 1 will be a combination of the two, having some portion of
the benefits and disadvantages of each. This technique can be used when some 
filtering is needed but not so much filtering as is provided by the modified observer.

7.5 Exercises
1. Investigate the effects of observer bandwidth on the noise susceptibility of the

observed state to sensor noise. Use three sets of tuning gains for the following
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exercise: high frequency (KDO =0.1, KPO =45, KIO =6400), medium frequency 
(KDO =0.05, KPO =17, KIO =2000), and low frequency (KDO =0.02, KPO =8.5,
KIO =200).
A. Use Experiment 5A to measure the observer bandwidth of all three sets of

gains.
B. Use the DSA in Experiment 7A to measure the noise susceptibility of the

observed state to sensor noise with all three sets of gains.
C. Monitor the noise as shown by the Live Scope for CO in Experiment 7A.

Set the gains to the low-frequency set. Now, change the gains to the
medium-frequency set, one-by-one, monitoring the Live Scope display.
Repeat for high-frequency gain set. Can you determine the change in noise
sensitivity when changing the gains by watching the Live Scope? If so,
which of the three observer tuning gains has the predominant effect on
noise susceptibility?

2. Evaluate noise sensitivity of the power converter output. Recall from 
Section 7.2.3 that the noise on the power converter output is often a good 
indicator of audible noise coming from the controller. Use Experiment 
7B.
A. Using the PC Live Scope display for an approximate measurement, what 

are the peak-to-peak excursions of the power converter due to noise of the
traditional (sensor-feedback) system?

B. Change the feedback Live Constant (lower left) to Observer to convert 
the feedback to observer based. Repeat part A with default (high frequency
from Exercise 7-1) observer gains.

C. Repeat part A after raising control-loop gains as would normally be done
to take advantage of the reduced phase lag of the observer-based system
(KP =1.5, KI =30).

D. Using the DSA of Experiment 7B, run Bode plots and evaluate the high-
frequency sensitivity of the PC Output for all three cases. Compare the
results to parts A–C.

3. Compare observer-based disturbance-decoupled and nondecoupled systems
using Experiment 7D. Open the file Experiment_7D.mqd and save as Temp.mqd
to avoid permanent changes to the file. Disconnect the WaveGen block from
the command input and connect it to the unswitched input node of the dis-
turbance DSA (right column, bottom node). At this point, the waveform gen-
erator will inject a disturbance into the system. This allows you to monitor the
time-domain disturbance response in the Live Scopes.
A. Using the Live Scope, what is the peak-to-peak excursion of the 

non-decoupled system when observer feedback is used and control-
loop gains are raised accordingly (KP =1.5, KI =30, KDD =0, Feedback=
Observer)?

B. Use disturbance decoupling (set KDD =1 and KI =0). What is the excursion?
C. Can you see signs of greater noise susceptibility when disturbance decou-

pling is enabled?
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D. Reduce the disturbance-decoupling low-pass filter (DD LPF) until the 
excursion is equivalent to the nondecoupled system of part A. What is the
value of the filter?

E. Based on the noise and disturbance DSAs, compare the two systems and
comment.



I n this chapter . . .

• Overview of motion-control and motion-feedback sensors
• Applying observers to improve velocity sensing in encoder and resolver systems
• Applying observers to improve disturbance response in motion systems
• Implementing acceleration feedback based on observed signals

This chapter will discuss several applications of the Luenberger observer in
motion-control systems. First, an overview of the operation of motion-control
systems is provided. Applications that are likely to benefit from observer technology
are presented. The chapter then presents the use of the observer to improve two areas
of performance: command response and disturbance response. Command and 
disturbance response are improved because observed feedback, with its lower phase
lag, allows higher loop gains. Disturbance response is further improved through the
use of two methods: disturbance decoupling and acceleration feedback. As with
earlier chapters, key points will be demonstrated with software experiments.

8.1 The Luenberger Observers in Motion Systems
Motion-control systems are used in a wide range of applications. These applications
fall into two broad categories: discrete and continuous operations. In discrete 
operations, a part is being cut, processed, moved, assembled, or otherwise manufactured.
For example, a machine tool may cut metal away from a cast part or a form-fill-and-
seal machine might produce a bag of potato chips. Continuous operations run without
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a definitive end. One example is a machine that produces masking tape, which pulls
a roll of paper through a process where adhesive and other coatings are applied.

Motion-control systems are implemented with a number of motor technologies.
The lowest cost applications are run open loop and do not rely on feedback control
loops. For example, stepper motors are usually controlled open loop; they provide 
an inexpensive way to make discrete moves while controlling position. Variable-speed
drives for induction motors, often referred to as variable frequency AC or VFAC drives,
can control motor speed to within a few percentage points without requiring a feed-
back device. This technology is often used in applications where position control is
not needed, such as when controlling pumps and fans.

The motion-control applications that demand the highest performance are usually
implemented with closed-loop servo systems. The term servo here implies closing
velocity and position loops based on physical sensors. Servo systems are among the
most complicated motion-control systems to specify and install, and they are usually
the most expensive. Engineers select servo systems when the performance of the 
application demands it. This chapter will focus wholly on servo systems.

8.1.1 Performance Measures
The main measures of performance in servo systems are noise generation, disturbance
response, command response, and stability. Servo systems excel in command and 
disturbance response. Servomotors are often the technology of choice in discrete 
operations, where the moves must be rapid, and in continuous operations, where the
system must hold constant speed in the presence of disturbances.

Noise susceptibility and stability are often problems for servo systems. The high
gains needed to respond to rapidly changing commands or high-frequency distur-
bances also respond to noise on the sensor and command inputs, often generating
considerable noise to the system output. Stability is a problem because designers often
push the loop gains as high as possible to maximize response and, in doing so, press
the limits of stability margins. As has been discussed in earlier chapters, Luenberger
observers are a practical way to deal with stability limitations and so indirectly allow
servo gains to be increased. On the other hand, as was the focus of Chapter 7,
observers can exacerbate problems with sensor noise.

8.1.2 Servo Control
This section will provide a brief overview of servo control. This material is covered
in detail in [11, Chapters 14 and 16]. Servo control here is defined as closed-loop
control of velocity or position. In this context, servo control does not include 
the functions associated with generating torque such as current loops or electronic
commutation, the process of channeling current in multiple-winding motors. The
assumption here is that the servo loops generate the torque command and other 
sections of the system control current in order to generate that torque.



Figure 8-1 shows a cascaded servo loop. The position loop is in series or cascaded
with the velocity loop. In most servo applications the position command, PC, is 
generated by a profile or trajectory generator. The position command is compared 
to the feedback to generate a position or following error. That error is scaled by a 
position-loop proportional gain, KP, to create a velocity command, VC. The velocity
loop compares this command to the velocity feedback to create a velocity error. The
velocity feedback is commonly created by differentiating the position feedback signal.
The velocity control law, which is shown as a PI controller, generates the torque
command. For most servomotors, the magnitude of current is approximately pro-
portional to torque and so this signal is commonly used as a current command.

The current signal is fed to the motor control algorithms — current loops and com-
mutation algorithms for brushless motors — which produce motor current in order to
generate the torque that will satisfy the loops. The model of the motor here is a simple
motor torque constant, which converts current to torque, and a single rotational
inertia, JT.

There are variations of cascaded loops, for example, where the position loop uses
a PI law and the velocity loop uses a proportional law. The defining characteristic of
the cascaded structure is the use of position error to generate velocity command and
the use of velocity error to generate current command. The different variants provide
similar performance in similar applications, although the tuning procedures vary 
considerably.

8.1.2.1 Feed-Forward
Feed-forward is commonly used to improve command response. The command or,
more accurately, derivatives of the command are fed ahead of the position loop. This
is shown in Figure 8-2 where commanded velocity (VPC) and acceleration (APC) are
fed ahead to the velocity and current loops, respectively. The profile generator can
usually provide commanded acceleration and velocity easily since these signals are
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required to calculate the position command. These signals are fed ahead of the loops
so that the inner control loops can respond immediately to the command rather than
having to wait for an error signal to percolate through the relatively slow position
loop.

Feed-forward is a well-proven technique for improving command response. It does
so without increasing the servo gains and thus does not aggravate stability problems
or problems from sensor noise. However, the technique is largely unrelated to the most
common uses of observers in servo systems and so will not be discussed in detail here.

8.1.2.2 Position vs Velocity Control
Position control is needed for almost all discrete processes. The execution of a dis-
crete process usually requires a mechanism to start and end in known positions. Such
motions might be needed to move a silicon wafer, wrap a candy bar, or sew a sequence
of stitches. In each case, position control is required to ensure that the sequence begins
at the correct position. However, for continuous processes, position control may not
be needed. A machine that coats photographic paper usually need not be synchro-
nized to the position of the roll from which the paper comes. Here the servo system
need only maintain a constant tension in the coating process, a function that often
requires only velocity control. In such cases, the position-loop portion of the cascaded
loops shown in Figure 8-1 can be eliminated.

Whether or not a position loop is present, most of the performance issues of a
servo system occur in the velocity loop. The velocity loop determines the maximum
bandwidth of the control system, even when a position loop is used. This is because
the velocity-loop bandwidth is the upper limit of the position-loop gain. High-gain
velocity loops are required for high-gain position loops to be stable. So, improving
the velocity loop is the primary challenge to those seeking to improve servo-system
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performance. Recognizing this, the discussion and examples of this chapter will focus
on the velocity loop.

8.1.2.3 PID Position Loop
A common alternative to the cascaded velocity control loop is the PID position loop.
Here there is no explicit velocity loop. Instead, the position error is operated on by a
single PID control law. This is shown in Figure 8-3, which includes feed-forward terms.

The PID position loop is quite similar in operation to the cascaded position–
velocity loop. For example, the gain KPD in Figure 8-3 operates on velocity error much
as the gain KVP does in Figure 8-2. In fact, the high-frequency operation of both loops
is almost identical when the two are tuned equivalently. The PID position loop will
not be discussed here in detail since its operation is so similar to the cascaded loop.
The focus here is the PI velocity loop of Figure 8-2, which is roughly equivalent to
the gains KPD and KPP in Figure 8-3.

8.1.3 Common Motion-System Sensors
This section will discuss the most common sensors used to close servo loops. This
material is covered in detail in [11, Chapter 13].

8.1.3.1 Tachometer
A tachometer is an electromagnetic device that produces an analog voltage that is 
proportional to motor speed. Tachometers or tachs provide highly resolved, low-
phase-lag velocity signals that are ideal for closing velocity loops. In the past, most
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servo systems relied on tachs for velocity feedback. Unfortunately, the tachometer has
numerous shortcomings that have eliminated it from most high-performance motion-
control systems.

The primary shortcoming of a tachometer is cost. Since most servo systems must
have a position sensor, using a tachometer implies the need for two sensors. The cost
of the tachometer itself is substantial, as is the cost of mounting the unit and cabling
to it. A second problem with tachometers is brush wear. Tachometers are essentially
DC generators, which require carbon brushes to carry voltage between the stator and
the rotor. Over time these brushes wear and must be replaced.

Analog tachs are commonly used in low-cost analog servo systems. Their cost is
offset by allowing the use of simple, low-cost analog controllers. A small brush motor
and a simple analog drive based on tach feedback often cost much less than a 
digitally controlled brushless-DC servo system.

Tachs are also occasionally used for high-performance servo systems, especially for
very low-speed applications. Because a tach is an analog device, it has no explicit 
resolution limitations in the way that a digital feedback device does. When tachs are
wound for high sensitivity (i.e., high-voltage output at relatively low speeds), they can
provide high-quality speed signals for low-speed systems.

Tachs are applied at both ends of the servo-performance spectrum—in the lowest
cost analog servo systems and high-end systems where precision tachs are used to
provide high-resolution velocity feed back. However, most applications rely on a single
position sensor from which velocity is derived. Here, the position sensor has domi-
nated as it can feed back a position signal and, indirectly, a velocity signal. The most
popular position sensors are encoders and resolvers.

8.1.3.2 Encoders
The optical incremental encoder is probably the most popular position feedback
device in modern servo systems. Optical encoders affix an opaque mask to the motor
rotor; as the rotor changes position, the pattern of light passing through the mask
changes. The encoder produces electronic pulses as the light intensity varies up and
down through a certain set point. The optical mask is designed to produce a cyclic
pattern of variation that repeats hundreds or thousands of times for each revolution
of the motor. The result is that the incremental encoder produces typically between
250 and 5000 counts of position information for each motor revolution. These pulses
are produced in proportion to the distance traveled by the encoder. The pulses are
counted in the control system to determine how far the encoder rotor has moved.

8.1.3.3 Resolver
Resolvers are electromagnetic devices that are used to sense position. Resolvers, as
shown in Figure 8-4, are multiwinding transformers in which the transformation ratio
varies with the position of the rotor. A reference winding, REF, transmits power on



a carrier wave of typically about 5kHz to the resolver rotor. The two return 
windings, SIN and COS, are coupled to the rotor winding where the magnitude 
of coupling varies with the position of the rotor. The coupling between rotor and 
SIN winding varies according to the sine of the resolver position; the coupling to the
COS winding varies with the cosine. The SIN and COS windings are then amplitude-
modulated (AM) signals encoding the position of the rotor on the reference 
carrier.

The conversion of resolver feedback windings to a position signal is more com-
plex than the conversion of incremental encoders. Incremental encoders require only
that pulses be counted over time. Resolvers require a scheme that can remove the
carrier and provide the necessary trigonometry to produce a measured position. The
most common scheme used today is probably the tracking or double-integrating con-
verter, shown in Figure 8-5. This is a depiction of a typical single integrated-chip (IC)
resolver-to-digital (R-D) converter where the conversion process is accomplished with
digital and analog components [1, 8].

The double-integrating converter is a closed-loop control system in itself. First,
the SIN and COS signals are demodulated to remove the carrier. Simultaneously, an
up–down counter keeps track of the converted position, PRD. The demodulated SIN
and COS signals represent the sine and cosine of the actual position, PRES. These
signals are multiplied by the cosine and sine, respectively, of the converted position
(PRD) to form cos(PRES)¥ sin(PRD)- sin(PRES)¥cos(PRD). By the trigonometry 
identity sin(A-B)=cos(B)¥ sin(A)- sin(B)¥cos(A), this can be seen to equal 
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sin(PRES -PRD). Assuming the converter error, PRES -PRD, is relatively small,
sin(PRES -PRD)�PRES -PRD and thus represents the converter error.

After the error signal is derived, it is compensated with a PI control law, shown in
Figure 8-5 as KIRD/s+KPRD. That error is fed to a voltage-controlled oscillator or VCO,
which converts the error to a pulse train. VCOs produce pulses at a frequency in pro-
portion to the magnitude of an analog input. The pulses are counted in the up–down
counter, which stores the converted position, PRD.

The dynamic response of the R-D converter can be derived from Figure 8-6, which
is a simplified diagram of Figure 8-5. Here, the demodulation, trigonometry, VCO,
and up–down counter have been reduced to their equivalent transfer functions.
The VCO and up–down counter behave like an integrator. The demodulation and
trigonometry act together to produce the error signal, PRES -PRD, with few other
effects on the dynamic response.

Using the G/(1+GH ) rule in Figure 8-6, the transfer function of the R-D converter
is:
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Upon inspection, this is a low-pass filter. For example, when the frequency is low, the
s2 term, which is in the denominator, is diminished and the transfer function is nearly
unity. Also, when the frequency is high, the s2 term dominates, attenuating the signal
and injecting phase lag. The equivalent bandwidth of the process is determined by
the gains of the PI control law; these gains are set with passive, discrete components
that are connected to the R-D converter as part of a printed circuit board.

The selection of tuning constants generally results in conversion bandwidths of
between 300 and 1000Hz. Processes in the converter induce phase lags in the con-
version loop that form the upper bandwidth limit, which is usually 1000 or 1200Hz,
depending on the converter chip. However, in practical systems, noise considerations
often force the conversion bandwidth well below that upper limit.

A question often asked about resolvers is why not use an inverse tangent or its
equivalent for the conversion to position? This would avoid the complexity of tuning
the loop and would remove the phase lag induced by Equation 8.1. There are two key
reasons. First, taking an inverse tangent on an integrated circuit such as those used
for R-D conversion is more complicated than the approach of Figure 8-5. Second,
the noise present on the analog SIN and COS signals is often substantial; eliminat-
ing the double-integrating loop would pass that noise immediately to the position
signal. The benefit of the transfer function of Equation 8.1 is that it attenuates high
frequencies, albeit at the cost of inducing phase lag.

While the process discussed here is based on hardware R-D converters, a similar
process can be carried out in software [22]. Generally, the demodulation remains in
hardware, but the other functions are implemented in algorithms executed by a micro-
processor or digital signal processor (DSP). The digital converter has important 
benefits such as reducing parts cost and simplifying adjustment of R-D converter
bandwidth. However, the basic principles are the same and the operation of the 
converters is nearly identical.

8.1.3.4 Sine Encoders
The sine encoder has been gaining popularity in servo applications over the past
several years. This sensor is a variation on the incremental encoder. Where the 
incremental encoder transmits digital (two-valued) pulses as position changes, the sine
encoder transmits sinusoidal signals that vary continuously as the motor rotates. A
typical sine encoder in a servo system produces sine waves with between 512 and 2048
cycles for each motor revolution. Those cycles can be interpolated with a typical 
resolution of 256 to 1024 positions per sinusoid. So, while an incremental encoder
may feed back a few thousand discrete positions per motor revolution, a sine encoder
may feed back millions. Sine encoders greatly reduce resolution noise. For reference,
a typical resolver has finer resolution than a typical incremental encoder (perhaps 2
to 10 times finer), but both are much coarser than a sine encoder.

One interesting facet of sine encoders is that the signals are often processed in a
manner similar to how resolver signals are processed. Because the sine encoder feeds
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back analog signals that are similar in form to demodulated resolver signals, a track-
ing loop is often applied to process those signals. As was the case with the resolver,
the tracking loop can inject phase lag in the sine encoder signals [6].

8.1.3.5 Deriving Velocity from Position
Most modern servo systems derive velocity information from the position sensor. As
stated earlier, this eliminates the need for a separate velocity sensor. The most common
method is simple differences: dividing the difference of the two most recently sampled
positions by the sample time. Unfortunately, compared to ideal differentiation, using
simple differences injects delay equal to half the sample time. This can be seen by eval-
uating the z-domain transfer function of simple differences ((z-1)/Tz, from Table 3-2)
and comparing the resulting phase to the ideal 90° advance of true differentiation.

8.1.3.6 Torque Transducers and Tension Control
A minority of servo applications use torque transducers to close servo loops. An
example application is high-performance coating machines where the control of
the tension of a web line is the most important measure of performance. The term
web indicates a band of material that is stretched across rollers to be processed. For
example, masking tape is produced on web-handling machines. A roll of paper is
unrolled onto the web where various coatings are applied; the paper is rewound onto
take-up rolls.

It is often critical to maintain a constant tension on the web when applying a
coating. Variation in web tension implies a variation in the thickness of the applied
coatings. For many processes, such variation lowers the quality of the end product.
For example, if the amount of photo emulsion on photographic film varies enough,
it can distort the image.

For coating applications, where the variation in coating thickness must be mini-
mized, a torque transducer is sometimes placed on the web. Servomotors control
numerous web rolls across which the web is stretched. Because the web is usually con-
structed of compliant material such as plastics or thin metal foil, tension in the web
causes the web material to stretch. For many materials, the stretching approximately
obeys Hooke’s law, which states that the amount of stretch is proportional to the
tension. In that sense, the torque transducer behaves very much like a position sensor.
The tension loop, as shown in Figure 8-7 is built as an outer loop to the velocity loop,
replacing the position loop of Figure 8-2.

8.1.4 Identifying Applications Most Likely to Benefit from Observers
This section will discuss how to identify motion systems that are most likely to benefit
from a Luenberger observer.



8.1.4.1 Performance Requirements
The first area to consider is the performance requirements of the application.
Machines that demand rapid response to command changes, stiff response to distur-
bances, or both will likely benefit from an observer. The observer can reduce phase
lag in the servo loop, allowing higher gains, which improve command and disturbance
response. Of course, for machines where responsiveness is not an issue, there may be
little reason to use an observer.

8.1.4.2 Available Computational Resources
The second factor to consider is the availability of computational resources to imple-
ment the observer. Observers almost universally rely on digital control. If the actual
or planned control system is executed on a high-speed processor such as a DSP, where
computational resources sufficient to execute the observer are likely to be available,
an observer can be added without significant cost burden. In addition, if digital con-
trol techniques are already employed, the additional design effort to implement an
observer is relatively small. However, if the system uses a simple analog controller,
putting in place a hardware structure that can support an observer will require a large
effort.

8.1.4.3 Controls Expertise in the User Base
Another factor to consider is the user base — the engineers and technicians who pur-
chase, install, and maintain the equipment. Observers require some level of controls
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expertise for installation and configuration. The user base must be capable of under-
standing the features of an observer if it is to provide benefit.

8.1.4.4 Sensor Noise
Luenberger observers are most effective when the position sensor produces limited
noise. Sensor noise is often a problem in motion-control systems. Noise in servo
systems comes from two major sources: EMI generated by power converters and
transmitted to the control section of the servo system, and resolution limitations in
sensors, especially in the feedback sensor. EMI can be reduced through appropriate
wiring practices [30] and through the selection of components that limit noise 
generation such as those that comply with European CE regulations.

Noise from sensors is difficult to deal with. As was discussed in Chapter 7,
Luenberger observers often exacerbate sensor-noise problems. While some authors
have described uses of observers to reduce noise, in many cases the observer will 
have the opposite effect. As discussed in Chapter 7, lowering observer bandwidth 
will reduce noise susceptibility, but it also reduces the ability of the observer to 
improve the system. For example, reducing observer bandwidth reduces the accuracy 
of the observed disturbance signal. The availability of high-resolution feedback
sensors raises the likelihood that an observer will substantially improve system 
performance.

8.1.4.5 Phase Lag in Motion-Control Sensors
The two predominant sensors in motion-control systems are incremental encoders and
resolvers. Incremental encoders respond to position change without substantial phase
lag. On the other hand, resolver signals are commonly processed with a tracking loop,
which generates substantial phase lag in the position signal. Because resolvers produce
more phase lag, their presence makes it more likely that an observer will substantially
improve system performance. The sine encoder is often processed in a manner similar
to the way resolver signals are processed. As was the case with the resolver, the track-
ing loop can inject substantial phase lag in the sine encoder signals.

Independent of the feedback sensor, most motion-control systems generate phase
lag in the control loop when they derive velocity from position. Velocity is commonly
derived from position using simple differences. It is well known to inject a phase 
lag of half the sample time. This phase lag also provides an opportunity for the 
Luenberger observer to improve system performance.

Five key guidelines for using the Luenberger observer in a motion system are:

• The need for high performance in the application.
• The availability of computational resources in the controller.
• The ability of the average user to install and configure the system.



• The availability of a highly resolved position feedback signal.
• The presence of phase lag in the position or velocity feedback signals.

The first two guidelines are critical — without the need for an observer or a practical
way to execute observer algorithms, the observer would not be chosen. The remain-
ing guidelines are important. The more of these guidelines that an application meets,
the more likely the observer can substantially improve system performance.

8.2 Observing Velocity to Reduce Phase Lag
The remainder of this chapter will cover ways to use Luenberger observers in motion
systems. This section discusses the use of observers to reduce phase lag within the
servo loop; as has been discussed throughout this book, removing phase lag allows
higher control-law gains, improving command and disturbance response. A common
source of phase lag in digital velocity controllers is the use of simple differences to
derive velocity from position, as will be discussed in Section 8.2.1. In a resolver-based
system, additional phase lag often comes from the method employed to retrieve 
position information from the resolver, as will be discussed in Section 8.2.2.

8.2.1 Eliminate Phase Lag from Simple Differences
The use of simple differences to derive velocity from position is common in digital
motor controllers that rely on a position sensor for feedback. The phase lag induced
by the simple differences can be quantified with its transfer function.

(8.2)

In the z-domain, this becomes

(8.3)

or

(8.4)

Equation 8.4 is a z-domain equivalent of differentiation. Ideal differentiation has
a phase lead of 90° at all frequencies. Equation 8.4 does produce phase lead, but less
than the ideal 90°. The difference between the ideal 90° and simple differences at any
given frequency is equivalent to half the sample time, as was discussed in Section 3.2.6.
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At any given frequency, f, phase=T¥ f¥360° so that this difference can be expressed
as:

(8.5)

Equation 8.5 can be confirmed several ways, including by evaluating Equation 
8.4 at several frequencies. For example, evaluate Equation 8.4 at T=0.001 and f=100
Hz. Recall that z=1–(T¥ f¥360°), or here, z=1–36°. Equation 8.4 becomes:

(8.6)

Notice that Equation 8.6 lags the ideal 90° by 18°, which is, as predicted by 
Equation 8.5, equal to half the sample time at 100Hz (18° =1000/2ms¥100Hz¥360°).
This evaluation can be made at any frequency and will produce the same result.

Incidentally, the magnitude of ideal differentiation is |s | or 2pf. For f=100Hz, that
is equivalent to 628.32rad/s. Equation 8.6 gives a magnitude of 618.03, which is accu-
rate to within 2%. The magnitude of the simple difference is reasonably accurate, but
the phase error is substantial. In fact, for most controls problems, the magnitude 
of the simple differences is close enough to that of true differentiation that errors in
magnitude can be ignored. The phase error between simple differences and ideal 
differentiation, on the other hand, is substantial at half a sample period and usually
must be considered.

8.2.1.1 Form of Observer
The observer structure that eliminates the phase lag generated by simple differences
is shown in Figure 8-8. The feedback current, IF, is scaled by KT to produce electro-
magnetic torque, TE, in the physical system, and by KTEst to produce estimated 
electromagnetic torque, TEEst. The term electromagnetic torque describes the torque
generated from the windings of the motor. In the actual system, the electromagnetic
torque is summed with the disturbance torque, TD(s), to form the total torque. Total
torque is divided by inertia to produce motor acceleration; acceleration is integrated
twice to produce velocity and position. The model system is similar except integra-
tion, 1/s, is replaced by its digital equivalent, Tz/(z-1), and the observed disturbance
is used in the calculation of observed torque.

The second integration of both the model and the actual system is considered 
part of the sensor rather than the motor. Because the state of concern is velocity,
the assumption in this observer is that the velocity is the plant output, and the 
integration stage that creates position is an artifact of the measuring system. This 
observer assumes that the position sensor provides feedback without substantial
phase lag. This is a reasonable assumption for an incremental encoder. As has been
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discussed throughout this book, phase lag incurred when measuring the actual 
state can be reduced using an observer. In this case, the goal of the observer is to
remove the phase lag of simple differences, which would otherwise be used to measure
velocity.

8.2.1.2 Experiment 8A: Removal of Phase Lag from Simple Differences
The benefits of the removal of phase lag from simple differences are demonstrated in
Experiment 8A. The block diagram of that model is shown in Figure 8-9.1 This model
will be reviewed in detail. The velocity command (Vc) comes from a command gen-
erator (Command ) through a dynamic signal analyzer (Command Dsa). The command
velocity is compared to the feedback velocity and fed to a PI controller (Digital PI ),
which is configured with two Live Constants, KVP and KVI. These parameters are set
high (KVP =4.2, KVI =850), yielding a bandwidth of about 660Hz and a 25% overshoot
to a step command; this is responsive performance for the modest 4-kHz sample rate
used in this model. As will be shown, the observer is necessary to attain such a high
performance level.

The output of the velocity controller is a current command, which feeds the current
controller (Current Loop). The current controller is modeled as a two-pole low-pass
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1 Occasionally, Experiment 8A and some of the other models in Chapter 8 will become unstable. This
usually occurs when changing a control-loop gain. In some cases, restoring the model to its original 
settings will not restore stability. If this happens, click File, Zero All Stored Outputs.
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filter with a bandwidth of 1200Hz, set by the constant (Current Loop BW ), and a
fixed damping of 0.7. This is consistent with current-loop controllers used in the
motion-control industry.

The output of the current loop is torque-producing current. It feeds the motor
through the torque constant (KT) to create electromagnetic torque. Simultaneously,
a disturbance generator (Disturbance) feeds a second DSA (Dist Dsa) to create dis-
turbance torque (TD). The two torque signals are summed to create total torque. The
total torque is divided by the total inertia (JT) to produce motor acceleration. (Note
that the JT block is an Inverse Live Constant, indicating the output is the input divided
by the constant value.) This signal is integrated once to create motor velocity (VM)
and again to create motor position.

There is an optional resolution, which defaults to not-used. To enable resolution,
double click on Use Res? and select Yes. This model assumes an instantaneous feed-
back signal from the position sensor, which is consistent with the operation of encoder
systems. Accordingly, the units of resolution are encoder lines, where each line 
translates into four counts via ¥4 quadrature, a common method used with optical
encoders. The scaling to convert encoder lines to radians (SI units of angle) is imple-
mented with the Mult node of the Live Constant named Encoder Lines being set to
4/2p or 0.6366, where the 4 accounts for quadrature and the 2p converts revolutions
to radians.

Figure 8-9. Experiment 8A: Investigating the effects of reducing phase lag from simple differences.



The position signal feeds the observer loop, which uses a PID control law (Digital
PID (2)) configured with two Live Constants (KPO and KIO). In the ideal case, the
output of the PID controller is equal to acceleration caused by the disturbance torque.
The PID output is summed with the power-converter path of the observer, which is
the output current scaled by the estimated torque constant (KTEst) and divided by the
estimated total inertia (JTEst). The result is summed twice, approximating the two inte-
grals of the physical motor. The derivative gain is configured with KDO in this observer,
which is configured as a modified Luenberger observer. The observer produces two
output signals: the modified observed velocity, taken just after the first digital inte-
gration (the leftmost Sum) and the standard observed velocity output, taken just
before the second digital integration (the rightmost Sum). As in earlier chapters, the
delay of one step is added to allow the observer to be constructed since the loop must
have some starting point.

One difference between the block diagram of Figure 8-8 and the model of
Figure 8-9 is that the observer has been reconfigured to remove the effects of inertia
from the observer loop. Notice that JTEst is directly after KTEst and outside the observer
loop. This implies that the units of the observer PID output are acceleration, not
torque as in Figure 8-8. This will be convenient because changing estimated inertia
will not change the tuning of the observer loop; without this change, each time 
estimated inertia is varied, the observer must be retuned. This observer structure will
be used in experiments throughout this chapter.

The model for Experiment 8A includes four Live Scopes. At center left is a dis-
play of the step response: the command (above) is plotted against the actual motor
velocity. Along the bottom are three scopes, from left to right,

(1) the actual motor velocity, VM, vs the sensed velocity, VS,
(2) VM vs the modified observed velocity, VOMod, and
(3) VM vs the observed velocity, VO.

The sensed velocity, VS, lags the motor velocity just a bit because of the phase lag
injected by simple differences. As expected, the two observed velocities show no signs
of phase lag.

One of the features of the model in Experiment 8A is that it allows the selection
of any of the three velocity signals as the feedback signal for the control loop. The
switch Switch4 is controlled with the Live Constant named Feedback, which can be 
set to VS, VOMod, and VO. Double-click on Feedback any time to change the feedback
signal. This feature will be used to show the benefit of using the observer to measure
velocity.

The key variables used in this and other experiments in this chapter are detailed in
Table 8-1. Most are similar to variables in earlier chapters except the general-purpose
variables (such as C and R) have been replaced by motion-specific variables (such 
as V for velocity). Note that all velocity variables display in RPM although all 
calculations are in radians/second (SI ) units; the scaling is accomplished with Visual
ModelQ multiplication nodes.
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The results of Experiment 8A are shown in Figure 8-10. There are three plots, one
for the system configured using each of VS, VO, and VOMod as velocity-loop feedback.
The sensed feedback signal has substantial phase lag, which produces ringing in 
the step response. The two observed velocities produce nearly equivalent results, both
having conservative margins of stability. The difference in stability between sensed
and observed feedback is due wholly to the phase lag induced by simple differences
(Equation 8.5). The two observed feedback signals produce equivalent results as
expected; the command responses of the standard and of the modified observers are

TABLE 8-1 KEY VARIABLES OF EXPERIMENTS 8A–8F

Variable Description

AO Observed motor acceleration

ADO Observed disturbance, in units of acceleration

Current Loop BW Bandwidth of current loop which is modeled as a two-pole low-pass 

filter with a damping ratio of 0.7

IC, IF Command and feedback (actual) current. Input and output of
power converter

JT, JTEst Actual and estimated total inertia of motor and load. This model 
assumes a rigid coupling between motor and load

KPO, KIO, KDO Proportional, integral, and derivative gains of observer

KT, KTEst Actual and estimated torque constant of motor. The torque output 
of the motor windings is the actual current (IF) multiplied by the 
torque constant

KVP, KVI Proportional and integral gains of velocity loop

PM Actual motor position

PF Feedback motor position

PO Observed motor position

POE Observed motor position error

TD Disturbance torque

VC Command velocity

VE Velocity error, VC–VF

VF Feedback velocity, the velocity signal used to close the velocity loop,
which can be set to VS, VO, or VOMod at any time through the 
constant Feedback

VM Actual motor velocity

VO Observed motor velocity using the standard Luenberger observer

VOMod Observed motor velocity using the modified Luenberger observer

VS Sensed velocity, the velocity derived from the feedback position 
using simple differences



normally equivalent, excepting response to noise and disturbances, neither of which
are simulated here. Note that the velocity-loop gains (KVP =4.2, KVI =850) were
adjusted to maximize their values when observed velocity is used for feedback; the
same values are used in all three cases of Figure 8-10.

The improvement in stability margins can also be seen in Bode plots from 
Experiment 8A, as seen in Figure 8-11. Here, the use of observed signals (either VO
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Figure 8-10. Results of Experiment 8A. Square-wave command (above) and response with feedback as 
(a) sensed velocity (VS), (b) standard (VO), and (c) modified (VOMod) Luenberger observer output. Gains are 

KVP =4.2 and KVI =850 in all cases.

with sensor feedback
(15 dB peaking)
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(660 Hz b/w, < 3 dB peaking)

Figure 8-11. Results of Experiment 8A. Bode plot of command response with sensed feedback and observed
(VO) feedback. Gains are KVP =4.2 and KVI =850 in both cases.
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or VOMod) reduces peaking by more than 10dB, allowing much higher command
response than can be supported by sensed feedback. Note that these Bode plots are
generated using the Command Dsa.

The disturbance response is degraded when using the modified Luenberger
observer, as was discussed in Chapter 7. This is demonstrated with the Dist Dsa as
shown in Figure 8-12. While the command response of both signals is about the same,
the disturbance response of the standard form is lower (better) than the modified form
below the observer bandwidth. As discussed in Chapter 7, the primary disadvantage
of the standard form is increased noise susceptibility, compared to the modified form.

8.2.1.3 Experiment 8B: Tuning the Observer
Experiment 8B isolates the observer to focus on tuning the observer loop. The model
is shown in Figure 8-12. The motor and the velocity controller have been removed.
The velocity command is summed (i.e., digitally integrated) to produce position
command. That command is fed into the observer loop. The observer feed-forward
path has been removed so that only the observer loop remains. The model includes a
DSA that can show the frequency-domain response of the observer loop. Two Live
Scopes show the step velocity response of the standard and modified observed veloc-
ity. Finally, the variables VOE and VO2 are used to display the open-loop response of
the observer; these variables will be discussed later in this section.

with modified Luenberger observer

with standard
Luenberger observer

Figure 8-12. Results of Experiment 8A. Disturbance response is degraded for the modified Luenberger
observer. Gains are KVP =4.2 and KVI =850 in both cases.



The Live Scopes in Figure 8-13 show slight ringing for the selected tuning values
(KPO =5¥106, KIO =5¥109, KDO =3500). These values were determined experimentally,
tuning one observer gain at a time. The step response of the standard observer 
(VO) for each of the three gains is shown in Figure 8-14. KDO is set just below where
overshoot occurs. KPO is set for about 25% overshoot and KIO is set for a small amount
of ringing.

The frequency response of the standard observer velocity (VO) is shown in the Bode
plot of Figure 8-15. The bandwidth of the observer is greater than 1000Hz. In fact,
the bandwidth is too great to be measured by the DSA, which samples at 4kHz. There
is 4dB of peaking, verifying that the observer tuning gains are modestly aggressive.
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Figure 8-13. Experiment 8B: Observer used in Experiments 8A, 8E, and 8F.
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Figure 8-14. Step response of VO in the tuning of the observer of Experiment 8B and viewing the standard
observer output. (a) KDO =3500, (b) add KPO =5¥106, (c) add KIO =5¥109.
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The frequency response of the modified observer velocity is shown in the Bode plot
of Figure 8-16. The bandwidth of the signal is just 500Hz, well under that of the 
standard observer. This is consistent with the expected behavior of the modified
observer: lower response to both command and noise.

Plotting the open-loop response of the observer loop brings up some inter-
esting modeling issues. First, the loop command, as generated by the waveform 
generator and DSA, is summed to create the position command to the observer. A
detail of this feature, found in Figure 8-13, is shown in Figure 8-17. The implication
is that the command is a commanded velocity, which is then integrated to create 
commanded position. This is required to keep the position command continuous 
over time. Large step changes in position create enormous swings in velocity and 
thus can cause saturation in the observer. The integrator is intended to avoid this
problem.

A second feature of this model is the use of velocity signals (as opposed to 
position signals) to provide a Bode plot of the open-loop transfer function of the
observer. This is done because the method used to create Bode plots in Visual ModelQ,
the fast-Fourier transform or FFT, requires the start and end values of each signal
being measured to be identical. The position generated from integration of the DSA
random number generator does not necessarily meet this requirement. However, the
model is configured to start and stop the Bode plot excitation at zero speed, so that
the velocities, which are the derivatives of the position signals, always start and stop

4 dB
peaking

Bandwidth
>1000 Hz

Figure 8-15. Bode plot of observed velocity (VO) in Experiment 8B.



at zero. Velocity signals can be used in place of position signals because the transfer
function of two position signals is the same as the transfer function of their respec-
tive velocities. For example, PM (s)/PC (s)=VM (s)/VC (s). In the s-domain this would be
equivalent to multiplying the numerator and denominator by s (s being differentia-
tion), which would produce no net effect. So the open-loop transfer function of the
observer, shown in a dashed line in Figure 8-18, is observer position error to observed
position; however, that is identical to the derivative of both those signals (shown by
the blocks “Derivative”), which produce VOE and VO2. The DSA is preset to show the
open loop as VO2/VOE.

The open-loop Bode plot of the observer is shown in Figure 8-19. The gain
crossover is at about 700Hz and the phase margin is about 42°. There are two phase-
crossover frequencies, one at about 200Hz and the other at about 2000Hz. The gain
margin is 12dB at 200Hz, but only 6dB at 200Hz. The crossover at 200Hz generates
the peaking in Figures 8-15 and 8-16 and the slight ringing in Figure 8-14c.
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Figure 8-16. Bode plot of modified observed velocity (VOMod) in Experiment 8B.

Commanded position

Digital integration

Commanded velocity

Figure 8-17. Detail of observer command for Experiment 8B (taken from Figure 8-13).
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The crossover at 200Hz results because the low-frequency open-loop phase is 
-270°, -90° from each of the two integrators in the observer loop (marked Sum) and
another -90° from the integral gain in the PID controller, which dominates that block
at low frequency. The gain margin at 200Hz is set almost entirely by the integral gain,
KIO. The interested reader can verify this using Experiment 8B (see Exercise 8-1).

Observer position
 error Differentiate to produce

velocity error (VOE)

Observer position feedback Differentiate to produce
velocity feedback (VO2)

Open loop

Sensor position

Figure 8-18. Detail of signals for Bode plot from Experiment 8B (taken from Figure 8-13).

12.5 dB gain 
margin

Gain
crossover
(~700 Hz)

1ST phase
crossover
(~200 Hz)

6 dB gain 
margin

2ND phase
crossover

(~2000 Hz)

41∞ 
phase 
margin

Figure 8-19. Bode plot of observer open-loop gain and phase showing margins of stability.



8.2.2 Eliminate Phase Lag from Conversion
The observer of Figure 8-8 is designed with the assumption that there is not signifi-
cant phase lag induced in the measurement of position. This is valid for incremental
(A-quad-B) encoders, but not for most resolver and sine-encoder conversion methods.
Unlike incremental encoders, the conversion of resolver and sine-encoder inputs nor-
mally injects significant phase lag. For these sensors, the model needs to be augmented
to include the phase lag induced by the conversion of feedback signals. Such an
observer is shown in Figure 8-20. Here, the model system sensor includes the R-D
converter transfer function of Equation 8.1 as GRDEst(z). Of course, the model of the
physical system has also been modified to show the effects of the actual R-D con-
verter on the actual position, PM(s), using GRD(s).

The observer of Figure 8-20 assumes the presence of a hardware R-D converter.
Here, the process of creating the measured position takes place outside of the digital
control system. When the process of R-D conversion is done in the digital controller
[22], the observer can be incorporated into the R-D converter as is discussed in [14],
which is copied in Appendix A.

8.2.2.1 Experiment 8C: Verifying the Reduction of Conversion Delay
The effect of conversion delay is evaluated using Experiment 8C, as shown in 
Figure 8-21. This experiment uses a two-pole filter as a model of R-D conversion both
in the physical system (the block R-D at the upper right of the figure) and in the
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Figure 8-20. Using a Luenberger observer to observe velocity with resolver feedback.



198 � CHAPTER 8 USING THE LUENBERGER OBSERVER IN MOTION CONTROL

observer model (the block R-D Est at the center right of the figure). The filter used
to simulate the R-D converter is a low-pass filter with the form:

This is an LPF2A block in Visual ModelQ. This filter has the same form as 
Equation 8.1. The filter used in the observer, R-DEst(z), is the z-domain equivalent
of R-D(s).

The observer compensator must change from PID to PID-D2, where the D2 indi-
cates a second-derivative term. This second-derivative term is necessary because the
R-D Est block, being a low-pass filter, adds substantial phase lag. The phase lead
added by the derivative term improves stability margins allowing higher observer
gains. Without the second derivative, the observer gains are limited to low values as
can be verified using Experiment 8D, which will be discussed shortly. In Figure 8-21,
the scaling of the second derivative is named KDDO. Note that the Visual ModelQ block
is a single derivative, but KDDO has the same effect as a second derivative in the observer
control law because it is fed in after the first Sum block.

R D s
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N N

N N

- ( ) =
+

+ +
2
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2

2 2

zw w
zw w

.

Figure 8-21. Experiment 8C: Reducing phase lag from the R-D converter.



As with Experiment 8A (Figure 8-9), Experiment 8C includes four Live Scopes.
At center left is a display of the step response: the command (above) is plotted 
against the actual motor velocity. Along the bottom are three scopes, from left to
right,

(1) the actual motor velocity, VM, vs the sensed velocity, VS,
(2) VM vs the modified observed velocity, VOMod, and
(3) VM vs the observed velocity, VO.

The sensed velocity, VS, lags the motor velocity by about one-third of a division, much
more than the lag seen in Experiment 8A. The phase lag here comes from two sources:
simple differences, which Experiment 8A also displayed, and the phase lag from R-D
conversion, which is the dominant source of phase lag in this model. As with 
Experiment 8A, the two observed velocities show virtually no signs of phase lag.
Also as with Experiment 8A, Experiment 8C allows the selection of any of the three
measured velocities as feedback. Double-click on Feedback any time to change the
feedback signal.

The benefits of using observed velocity feedback are readily seen by changing 
the control-loop feedback source via the Live Constant named Feedback. By default,
the source is the modified observed velocity, VOMod. By double-clicking on Feedback, the
feedback source can be set as the observed velocity, VO, or as the sensed velocity,
VS, which is the simple difference of the output of the R-D converter. The step
response of the system with these three feedback signals is shown in Figure 8-22; in
all three cases, the control-loop PI gains are the same: KVP =2, KVI =420. These values
are similar to those used in Experiment 8A except that KVP was reduced to increase
stability margins. The results are that the system using VS is unstable but that the 
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VC

VF

(a) (b) (c)

Figure 8-22. From Experiment 8C: Step response with three feedback signals. Both observer feedback 
types give a similar response, but phase lag in the sensed feedback results in complete instability. 
For all cases, KVP =2 and KVI =420. (a) Sensed feedback (VF =VS); (b) modified observer (VF =VOMod); 

(c) standard observer (VF =VO).
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two observed signals produce about the same command response; both have reason-
able margins of stability. As has been discussed, the differences between using the
standard and modified observed feedback are that the system using standard observed
velocity will be more responsive to disturbances and more sensitive to sensor 
noise.

The Bode plot of command response for the gains KVP =2 and KVI =420 is shown
in Figure 8-23. It confirms the results of Figure 8-22. The system based on sensed
velocity feedback has over 20dB of peaking. In fact, the value KVP had to be reduced
slightly (from 2.0 to 1.85) to provide sufficient stability margins so that a Bode plot
could be calculated (Bode plots cannot be generated from unstable systems). The 
two cases using observed feedback have a modest 2–3dB peaking. The dramatic 
difference in these plots is caused by the ability of the observer to provide a feedback
signal that does not include the delays of R-D conversion. In fact, for the observed
feedback, the value of KVP can be increased well above 2 while maintaining 
reasonable margins of stability.

For reference, the R-D converter filters are set for about a 400-Hz bandwidth,
which is a typical bandwidth of R-D conversion in industrial systems. Notice that,
for the systems based on observed feedback, the closed-loop bandwidth is about 
250Hz. Attaining such high bandwidth with a 400-Hz R-D conversion is very 
difficult without using observer techniques.

Systems with standard and 
modified observer feedback
are almost identical

Sensed feedback
(>20 dB peaking)
Note:  KVP =1.85

Bandwidth of 
observer-based
systems: ~250 Hz

Figure 8-23. From Experiment 8C: Command response with three feedback types 
(KVP =2, KVI =420 except KVP was reduced to 1.85 for sensed feedback).



8.2.2.2 Tuning the Observer in the R-D-Based System
The R-D converter for Experiment 8C is tuned to about 400Hz. In industry, R-D
converters are commonly tuned to between 300 and 1000Hz. The lower the band-
width, the less susceptible the converter will be to noise; on the other hand, higher
bandwidth tuning gains induce less phase lag in the velocity signal. The bandwidth
of 400Hz was chosen as being representative of conversion bandwidths in industry.
The response of the model R-D converter is shown in Figure 8-24. The configuration
parameters of the filters R-D and R-D Est were determined by experimentation to
achieve 400-Hz bandwidth with modest peaking: Frequency=190 and Damping =0.7.

The process to tune the observer is similar to the process used in Experiment 8B,
with the exception that a second-derivative term, KDDO, is added. Experiment 8D,
shown in Figure 8-25, isolates the observer from Experiment 8C, much as was done
in Experiment 8B.

The process to tune this observer is similar to that used to tune other observers.
First, zero all the observer gains except the highest frequency gain, KDDO. Raise that
gain until a small amount of overshoot to a square-wave command is visible. In this
case, KDDO is raised to 1, and the step response that results has a small overshoot as
shown in Figure 8-26a. Now, raise the next highest frequency gain, KDO, until signs
of low stability appear. In this case, KDO was raised a bit higher than 3000 and then
backed down to 3000 to remove overshoot. The step response is shown in Figure 8-26b.
Next, KPO is raised to 1¥106; the step response, shown in Figure 8-26c, displays 
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400 Hz Bandwidth

Figure 8-24. From Experiment 8D: Bode plot of R-D converter response showing 400Hz bandwidth.
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some overshoot. Finally, KIO is raised to 2¥108, which generates a slight amount of
ringing as shown in the Live Scope of Figure 8-25. The Bode plot of the response of
the observer gains is shown in Figure 8-27. The bandwidth of the observer is approx-
imately 880Hz.

8.3 Using Observers to Improve Disturbance Response
Observers in motion systems provide two distinct ways to improve disturbance
response. First, as discussed in Chapter 6, disturbance decoupling can be used to
reduce the perturbations caused by disturbances. Second, acceleration feedback can

Figure 8-25. Experiment 8D: Tuning the R-D converter.

 6

VC

VO

(a) (b) (c)

Figure 8-26. From Experiment 8D: Step response in the tuning of the observer. (a) KDDO =1, 
(b) add KDO =3000, (c) add KPO =1¥106.



be used for the same purpose. As will be discussed, while the two methods at first
seem unrelated, the structures are similar, as are the benefits.

8.3.1 Disturbance Decoupling in Motion Systems
From Chapter 5, observed disturbance can be used to support disturbance decoupling
[25–27, 35, 39]. A configuration that supports disturbance decoupling in motion
systems is shown in Figure 8-28. This system is based on a very low phase-lag posi-
tion sensor, such as an encoder; this can be seen by noticing that the sensor model is
the ideal 1/s (between VM and PM, at upper right). This structure can be adapted for
a sensor with significant lag, such as a resolver, by adding the appropriate filter blocks
as was discussed in the previous section.

The observer in Figure 8-28 is a standard Luenberger observer in that all three
observer-compensation terms are used to form a single signal (the modified observer
typically has one path for the derivative term and another for the integral and pro-
portional terms). The output of the observer, ADO in Figure 8-28, is the disturbance
torque, but in units of acceleration. This can be seen by noticing that the output flows
to two integrators to form position (PO); a signal that integrates twice to form 
position must have units of acceleration. Accordingly, the feedback current, IF, is
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Bandwidth
= 880 Hz

Figure 8-27. From Experiment 8D: Bode plot of response of R-D-based observer tuned for 880Hz bandwidth
(KDDO =1, KDO =3000, KPO =1¥106, KIO =2¥108).
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scaled first by the estimated torque constant, KTEst, to create units of torque and then
divided by the total (motor and load) estimated inertia, JTEst, to form units of accel-
eration. These steps are consistent with the motion-based observers used throughout
this chapter.

The unique section of Figure 8-28 is the decoupling path from the observed dis-
turbance, ADO, to the current command. This signal must be converted from units of
acceleration to current. This is done by first multiplying by total inertia, JTEst, to create
observed torque and then dividing by the motor-estimated torque constant, KTEst, to
create current. This signal must also be scaled by the disturbance-decoupling para-
meter, KDD. If KDD is set to 0, disturbance decoupling is turned off; if it is set to 1,
disturbances will be fully decoupled, within the ability of the system.

Recall the stability problems of observer-based disturbance decoupling from
Chapter 5. If the observer-loop gain, here affected by JTEst and KTEst, is significantly
in error, instability can result. On most servo systems, the value of KT is known with
reasonable precision. However, in many applications, the actual inertia varies con-
siderably during normal operation. Disturbance decoupling is normally difficult to
use in applications with varying inertia; however, if the value of JTEst can be regularly
updated to follow the changes in actual inertia, the method can still be applied. This
normally requires that the changes in inertia are not too rapid and that they can be
accurately predicted.
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Figure 8-28. Observer-based disturbance decoupling in motion systems.



8.3.1.1 Experiment 8E: Using Disturbance Decoupling in Motion Systems
Experiment 8E models the observer structure of Figure 8-28. To simplify the model,
a single term KTEst /JTEst is formed at the bottom center of the model (note that the
JTEst block is an Inverse Live Constant, indicating the output is the input divided by
the constant value). This term multiplies the current-loop output to convert that signal
from current to acceleration units. The term also divides the observed disturbance 
to convert its units from acceleration to current. Also, notice that in Figure 8-28 an
explicit clamp has been added to the input of the current loop. The clamp function
is normally provided implicitly through the PI controller; however, since the PI output
is added to the disturbance signal, the output must be clamped again to ensure that
the maximum commanded current is always within the ability of the power stage.
Another difference between Experiment 8E and the idealized block diagram of
Figure 8-28 is that the experiment uses the observed velocity feedback to close 
the loop in order to get maximum benefit from the observer. The Live Scope in 
Figure 8-29 shows the system response to a torque disturbance (the command source
defaults to zero in this model).

The benefits of using disturbance decoupling can be seen by adjusting the para-
meter KDD to 1 (to fully enable decoupling) as compared to 0 (to disable decoupling).
Recall also from Chapter 5 that when KDD is set to 1, the control-loop integral gain
needs to be zeroed to avoid ringing in the command step response. The step response
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Figure 8-29. Experiment 8E: Disturbance decoupling in a motion system.
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to a disturbance torque is shown with KDD set to 0 and 1 (with KI zeroed when 
KDD =1) in Figure 8-30. Disturbance decoupling reduces the excursion in velocity by
more than half. Note that the ideal response would be no variation in velocity.

The Bode plot of the disturbance response is shown in Figure 8-31. There are two
gain plots, the one above for the system without decoupling and the one below for

TD

VF

(a) (b)

Figure 8-30. Response to a 5-nm step torque disturbance without and with disturbance decoupling. 
(a) Disabled decoupling (KDD =0, KI =850). (b) Full decoupling (KDD =1, KI =0).

Disturbance response
without disturbance

decoupling (KDD = 0, KI = 850)

Disturbance response
with full disturbance

decoupling (KDD = 1 , KI = 0)

Decoupling provides
more than 10 dB

improvement at 2 Hz

Figure 8-31. Bode plot of disturbance response with and without disturbance decoupling.



the system with full decoupling. These plots are obtained using the Dist Dsa, which
is at the top center of the model, and setting KDD to both 0 and 1 (and zeroing KI

when KDD =1). Notice that the system with disturbance decoupling provides more than
10dB (10¥) enhancement at 2Hz. This is a substantial improvement, especially taking
into account that the velocity-loop gains were already tuned to high values 
(KP =4.2 and KI =850) in Section 8.2.1.2.

8.3.2 Observer-Based Acceleration Feedback
Acceleration feedback works by slowing the motor in response to measured acceler-
ation [9, 12–14, 21, 25, 27, 32, 38]. The acceleration of the motor is measured, scaled
by KAFB, and then used to reduce the acceleration (current) command. The larger the
actual acceleration, the more the current command is reduced. KAFB has a similar effect
to increasing inertia; this is why acceleration feedback is sometimes called electronic
inertia or electronic flywheel [25, 26]. The idealized structure is shown in Figure 8-32
[12].

The effect of acceleration feedback is easily seen by calculating the transfer func-
tion of Figure 8-32. Start by assuming current loop dynamics are ideal: GPC (s)=1.
Applying the G/(1+GH ) rule to Figure 8-32 produces the transfer function

(8.7)

which reduces to

(8.8)

It is clear upon inspection of Equation 8.8 that any value of KAFB > 0 will have the
same effect as increasing the total inertia, JT, by the factor of 1 +KAFB. Hence, KAFB

can be thought of as electronic inertia.
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Figure 8-32. Idealized acceleration feedback.
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The primary effect of feeding back acceleration is to increase the effective inertia.
However, this alone produces little benefit. The increase in effective inertia actually
reduces loop gain, reducing system response rates. The benefits of acceleration feed-
back are realized when control-loop gains are scaled up by the amount that the inertia
increases, that is, by the ratio of 1 +KAFB. This is shown in Figure 8-33. Here, as 
KAFB increases, the effective inertia increases, and the loop gain is fixed so that the 
stability margins and command response are unchanged.

Using the G/(1+GH ) rule and allowing the 1+KAFB terms to cancel, the command
response for the system of Figure 8-33 is

(8.9)

or

(8.10)

Notice that the command response is unaffected by the value of KAFB. This is because
the loop gain increases in proportion to the inertia, producing no net effect.

The disturbance response of Figure 8-33, unlike the command response, is
improved by acceleration feedback. Again, using the G/(1+GH ) rule, the disturbance
response is:

(8.11)

For the idealized case of Equation 8.11, the disturbance response is improved through
the entire frequency range in proportion to the term 1 +KAFB. For example, if KAFB is
set to 10, the disturbance response improves by a factor of 11 across the frequency
range. Unfortunately, such a result is impractical. First, the improvement cannot be
realized significantly above the bandwidth of the power converter (current loop). This
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is clear upon inspection as the acceleration feedback signal cannot improve the system
at frequencies where the current loop cannot inject current. The second limitation on
acceleration feedback is the difficulty in measuring acceleration. While there are accel-
eration sensors that are used in industry, few applications can afford either the increase
in cost or the reduction in reliability brought by an addition sensor and its associated
wiring. One solution to this problem is to use observed acceleration rather than 
measured. Of course, the acceleration can be observed only within the capabilities of
the observer configuration; this limits the frequency range over which the ideal results
of Equation 8.11 can be realized.

8.3.2.1 Using Observed Acceleration
Observed acceleration is a suitable alternative for acceleration feedback in many
systems where using a separate acceleration sensor is impractical. Such a system is
shown in Figure 8-34. The observed acceleration, AO, is scaled to current units and
deducted from the current command. The term 1+KAFB scales the control-law output
as it did in Figure 8-33.

8.3.2.2 Experiment 8F: Using Observed Acceleration Feedback
Experiment 8F models the acceleration-feedback system of Figure 8-34 (see 
Figure 8-35); the structure is quite similar to the disturbance-decoupling system 
of Figure 8-29. The velocity loop uses the observed velocity feedback to close the
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loop. Again, a single term, KTEst /JTEst, is formed at the bottom center of the model 
to convert the current-loop output to acceleration units and to convert the 
observed acceleration to current units. Unlike Figure 8-29, the term 1 +KAFB is 
formed using a summing block (at bottom center) and used to scale the control-law
output, consistent with Figure 8-33. As in Figure 8-29, an explicit clamp is used 
to ensure that the maximum commanded current is always within the ability of the
power stage. The Live Scope in Figure 8-29 shows the system response to a torque
disturbance.

The improvement of acceleration feedback is evident in the step response, as 
shown in Figure 8-36. As was the case with disturbance decoupling, recall that 
without acceleration feedback, the control-law gains were set as high as was practi-
cal; the non-acceleration-feedback system took full advantage of the reduced phase
lag of the observed velocity signal. Still, acceleration feedback produces a substantial
benefit.

The Bode plot of the system with and without acceleration feedback is shown in
Figure 8-37. The acceleration feedback system provides benefits at all frequencies
below about 400Hz. Figure 8-37 shows two levels of acceleration feedback:
KAFB =1.0 and KAFB =10.0. This demonstrates that as the KAFB increases, disturbance
response improves, especially in the lower frequencies where the idealized model of
Figure 8-32 is accurate. Note that acceleration feedback tests the stability limits of
the observer. Using the observer as configured in Experiment 8F, KAFB cannot be
raised above 1.2 without generating instability in the observer. The problem is cured
by reducing the sample time of the observer through changing the Live Constant

Figure 8-35. Experiment 8F: Using observed acceleration feedback.



named TSAMPLE to 0.0001. This allows KAFB to be raised to at least 20 without 
generating instability. It should be pointed out that changing the sample time of a
model is easy but may be quite difficult in a working system. See Exercise 8-5 for 
more discussion of this topic.
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Figure 8-36. Response to a 5-nm step disturbance without and with acceleration feedback. 
(a) Without acceleration feedback (KAFB =0.0), (b) with minimal acceleration feedback (KAFB =1.0), 

(c) with more acceleration feedback (KAFB =10.0).
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Figure 8-37. Bode plot of velocity loop disturbance response without (KAFB =0) and with (KAFB =1.0, 10.0)
acceleration feedback.
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8.4 Exercises
1. Verify that at the first phase crossover (200Hz), the gain margin of the observer

in Experiment 8B is set almost entirely by the value of the integral gain, KIO.
Hint: Take the open-loop plot gain with KIO =0 and compare to open-loop plot
with default KIO at and around 200Hz.

2. Use Experiment 8A to compare the disturbance response of observer- and non-
observer-based systems with identical control-law gains. Compile and run the
model. Change the input from command to disturbance as follows. Double-
click on Command Wave Gen and set the amplitude to 0.0001 (this is set low
enough to be insignificant but high enough to continue to trigger the Live
Scopes). Similarly, set the amplitude of the Disturbance Wave Gen to 2.0. The
Live Scopes are now showing the velocity signals in response to a disturbance.
A. Compare the three velocity signals. Notice that the three Live Scopes at the

bottom compare the three velocity signals to the actual motor velocity.
B. Predict which signals will give the best disturbance response with the

default set of control-loop gains.
C. Using Dist DSA, measure and compare the disturbance response based on

each of the three signals.
3. Using the Live Scope displays at the bottom of Experiment 8A, compare the

noise sensitivity of the three velocity signals. Enable resolution by double click-
ing on the Live Constant Use Res? at top right and select Yes. Compare the
results here to Exercise 8-2.

4. Use Experiments 8A and 8C to evaluate the robustness of an observer-based
system in the presence of fluctuations of total inertia (JT).
A. Find the PM of the encoder system of Experiment 8A with nominal para-

meters, using VO and VOMod as feedback.
B. Repeat with the total inertia reduced from 0.002 to 0.0014.
C. Which system appears more robust, the one dependent on VO or the one

dependent on VOMod?
D. Repeat part A for the resolver-based system of Experiment 8C.
E. Repeat part B for the resolver-based system of Experiment 8C.
F. Repeat part C for the resolver-based system of Experiment 8C.

5. Use Experiment 8F to study the relationship between acceleration feedback
and system sample time. Use the Live Scope display to see instability caused
by excessive values of KAFB.
A. Make a table that shows the relationship between the maximum allowable

KAFB with the system–observer sample time (TSAMPLE) set at 0.00025,
0.0002, and 0.00015.

B. Compare the improvement in low-frequency disturbance response (say,
10Hz) for each of the three settings to the baseline system (KAFB =0). (Set
TSample to 0.0001s for this part; this improves the readings from the DSA
without requiring you to change the FFT sample time.)

C. Compare the results in part B to the ideal improvement gained by using
acceleration feedback.
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Appendix A
Observer-Based Resolver
Conversion in Industrial
Servo Systems1

George Ellis
Kollmorgen, A Danaher Motion Company

Jens Ohno Krah
Kollmorgen Seidel, Germany

Resolvers are commonly used in industrial servo systems. The conversion of resolver
signals to measure position is usually accomplished using a tracking loop which causes
phase lag between the actual and the measured positions. This phase lag causes insta-
bility in the control loop and ultimately reduces performance of the servo system.
Observers are well known to reduce phase lag caused by sensors. Observers in servo
systems use a combination of the position signal and the torque producing current
to observe the motor speed. Resolver-to-digital converters (RDCs) have a structure
similar to observers so that RDCs can be modified to behave like observers. This 
provides several advantages including providing position and velocity feedback with
little or no phase lag and providing estimations of motor acceleration and torque 
disturbance. Acceleration feedback can be used to reduce problems with mechanical
resonance. Torque disturbance feedback can be used to improve the dynamic stiffness
of the control system.

1 Presented at PCIM 2001 Conference, Nuremberg, Germany, June 19–21, 2001.
Copyright ZM Communications. Reprinted by permission.



Appendix B
Cures for Mechanical
Resonance in Industrial
Servo Systems1

George Ellis
Kollmorgen, A Danaher Motion Company

Mechanical resonance is a pervasive problem in servo systems. Most problems of res-
onance are caused by the compliance of power transmission components. Standard
servo control laws are structured for rigidly coupled loads. However, in practical
machines some compliance is always present; this compliance often reduces stability
margins, forcing servo gains down and reducing machine performance.

Mechanical resonance falls into two categories: low frequency and high frequency.
High-frequency resonance causes instability at the natural frequency of the mechan-
ical system, typically between 500 and 1200Hz. Low-frequency resonance occurs at
the first phase crossover, typically 200 to 400Hz. Low-frequency resonance occurs
more often in general industrial machines. This distinction, rarely made in the litera-
ture, is crucial in determining the most effective means of correction. This paper will
present several methods for dealing with low-frequency resonance, all of which are
compared with laboratory data.

Introduction
It is well known that servo performance is enhanced when control-law gains are high.
However, instability results when a high-gain control law is applied to a compliantly
coupled motor and load. Machine designers specify transmission components, such
as couplings and gearboxes, to be rigid in an effort to minimize mechanical compli-
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1 Presented at PCIM 2001 Conference, Nuremberg, Germany, June 19–21, 2001.
Copyright ZM Communications. Reprinted by permission.
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ance. However, some compliance is unavoidable. In addition, marketplace limitations,
such as cost and weight, force designers to choose lighter weight components than
would otherwise be desirable. Often, the resulting rigidity of the transmission is so
low that instability results when servo gains are raised to levels necessary to achieve
desired performance.

The well-known lumped-parameter model for a compliantly coupled motor and
load is shown in Figure 1 and a block diagram is shown in Figure 2 [1]. The load 
and motor are two independent inertias connected by nonrigid components. The
equivalent spring constant of the entire transmission is KS; also, a viscous damping
term, bS, is shown in Figure 2, which produces torque in proportion to the velocity
difference of motor and load.

Two-Part Transfer Function
The transfer function from drive current, IF, to motor velocity, VM, is

(1)

Equation (1) has two terms. The term on the left is a rigidly coupled motor and 
load and the term on the right is the effect of the compliant coupling. Note that 
Equation (1) represents the plant in the case where the feedback sensor is on the 
motor (as oppose to the load), as is common in industry.
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The ideal plant for traditional control laws is a scaled integrator. The term on the
left of Equation (1) is such a plant. However, that ideal plant is corrupted by the 
compliance term (right side of Equation (1)). Figure 3 shows a Bode plot of Equation (1)
where the load has about five times more inertia than the motor. The compliance term
has a gain peak at the resonant frequency, FR, and a gain minimum at the antireso-
nant frequency, FAR, as shown in (2). The corrupting effect of compliance can be seen
in Figure 3. Were the load rigidly coupled, the plant would be the ideal integrator (the
left side of Equation (1)) which is shown as a dashed line. However, compliance causes
attenuation at and around FAR and amplification at, around, and above FR.

(2)

Low-Frequency Resonance
The key problem in low-frequency resonance is the increase in gain at frequencies
above FR [1]. As shown in Figure 3, below FAR the transfer function acts like a simple
integrator. The gain falls at 20dB/decade and the phase is approximately -90°. It also
behaves like an integrator above FR, but with a gain substantially increased compared
to the gain well below FAR. Above FR, the load is effectively disconnected from the
motor so that the gain of the plant is the inertia of the motor. In Figure 3, which has
a 5 :1 load-to-inertia ratio, the effective inertia falls by a factor of 6dB. This raises
the loop gain by 16dB at high frequencies, reducing margins of stability.
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Velocity Control Law
Figure 4 shows a velocity control system. The velocity error (VE) is processed by a
control law and filters. The current command, IC, is connected to the current con-
troller, which produces current, IF, in the motor. The motor–load plant is connected
to an encoder. An observer, fed by the feedback current and position, produces an
observed acceleration, AMO. The observer will be discussed in detail later. With excep-
tion to the observer, Figure 4 represents a velocity control loop as is commonly used
in industry.

The problem caused by the compliant (right) term in Equation (1) is seen in the
open-loop Bode plot of the velocity controller of Figure 4. The open-loop transfer
function, VF (s)/VE (s), is well known to predict stability problems using two measures:
phase margin (PM) and gain margin (GM). PM is the difference of -180° and the
phase of the open loop at the frequency where the gain is 0dB. GM is the negative
of the gain of the open loop at the frequency where the phase crosses through -180°.

The open-loop plot for a rigidly coupled load demonstrating low-frequency 
resonance is shown in Figure 5. The harmful effects of compliance are seen in the
GM. As marked in Figure 5, when the resonant frequency is well below the first phase
crossover (270Hz) the effect of the compliant load is to reduce the GM approximately
by the amount (JM +JL)/JM. If JL /JM (the inertia mismatch) is 5, the reduction of GM
will be 6 or about 16dB. Assuming no other remedy were available, the gain of the
compliantly coupled system would have to be reduced by 16dB, compared to the 
rigid system, assuming both would maintain the same GM. Such a large reduction 
in gain would translate to a system with much poorer command and disturbance
response.

High-frequency resonance is different; it occurs in lightly damped mechanisms
when the natural frequency of the mechanical system (FR) is well above the first phase
crossover. Here, the gain near FR forms a strong peak. The gain caused by a lightly
damped right-hand term in Equation (1) can exceed 40dB. While both types of
resonance are caused by compliance, the relationship of the FR and the first phase
crossover changes the remedy substantially; cures of high-frequency resonance can
exacerbate problems with low-frequency resonance. The mechanical structures that
cause high-frequency resonance (stiff transmission components and low damping) are
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typical of high-end servo machines such as machine tools. Smaller and more cost-
sensitive general-purpose machines in such industries as packaging, textiles, plotting,
and medical typically have less rigid transmissions and higher damping so that low-
frequency resonance is more common.

Methods of Correction Applied to Low-Frequency Resonance
Numerous methods have been used to remedy resonance [1–5]. The most common in
industry is the low-pass filter. Another method suggested by numerous authors is
acceleration feedback, where the acceleration is provided by an observer. This paper
will not discuss the notch filter, which is effective with high-frequency resonance, but
not with low-frequency resonance, a problem that appears over a broad frequency
range.

Test Unit
The test unit, shown in Figure 6, is a motor and load connected by plastic tubing that
has been slit to increase compliance. The motor inertia is 1.8¥10-5 kg–m2 and the load
is 6.3¥10-5 kg–m2 (both include the coupling to the tubing). The coupling has a com-
pliance of 30Nm/rad. This ratio produced a resonant frequency of about 230Hz and
an antiresonant frequency of about 110Hz. These figures are consistent with
machines used in industry. The drive used was a 3 Amp Kollmorgen ServoStar 600
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amplifier executing the velocity loop at 16kHz. This drive is equipped with low-pass
and biquadratic filters, an observer, and acceleration feedback.

Baseline System
The baseline system had no filters and did not use acceleration feedback. The PI con-
troller was tuned to maximize performance. The proportional gain was raised as high
as possible without generating large oscillations (GV =2.5). The integral gain was 
then raised until a step command generated 25% overshoot (GVTN =10ms). The step
response is shown in Figure 7. Settling time was about 60ms. The -3-dB bandwidth
was measured as 23Hz.

Low-Pass Filter
A single-pole low-pass filter was used. The frequency was adjusted to 50Hz. Servo
gains could be raised to GV =5 and GVTN =17ms. The settling time improved to 
35ms. The bandwidth was 35Hz.

Other couplings used in testing

MT1502 Motor
J=1.8x10-5 kg-m2

(includes coupling)
Coupling

KS=30 Nm/rad

Load
J=6.3x10-5 kg-m2

Figure 6. Test-unit mechanism is a scaled model of machines commonly used in industry.

VC

VF

Figure 7. Step response of baseline system.



Biquadratic Filter
A biquadradic filter was applied to the system. A biquad filter has two poles and two
zeros; it can be thought of as a high-pass filter in series with a low-pass filter. For
these tests, the best case adjustment found experimentally was to set the high-pass
filter at 250Hz and the low-pass filter at 100Hz. The gains were raised again, this time
to GV =8 and GVTN =10ms. Performance improved further. Settling time was reduced
to 22ms. The bandwidth was measured as 56Hz.

Acceleration Feedback
Acceleration feedback was applied [6–15]. Acceleration was observed using a Luen-
berger observer, as shown in Figure 8. The observer takes input from the motor
current and the encoder. It adds the two and feeds the sum to a model of the motor.
That model produces the observed position, which is compared to the actual posi-
tion. The PID observer compensator drives out most error up to the observer band-
width, which is usually between 200 and 500Hz. One by-product of the observer 
is an acceleration signal, which represents acceleration much better than double-
differentiating the position feedback signal. A more complete discussion of the
observer can be found in [6,9–11].

Acceleration feedback was applied to the biquad system. The gain GVD was set to
15, which is approximately 2.5 in the SI units shown in Figure 8. This reduced the
effects of resonance and the PI gains were raised (GV =22 and GVTN =12). The results
were a dramatic improvement over the other systems. Settling time was reduced to
just 12ms and the bandwidth was measured as 77Hz. The step response is shown in
Figure 9.

Comparison of All Methods
All three methods (low pass, biquad, and acceleration feedback–biquad) are 
compared in the frequency domain with the closed-loop Bode plot (VF (s)/VC (s)) of
Figure 10. This plot is generated by the ServoStar 600 Drive on the test mechanism

METHODS OF CORRECTION APPLIED TO LOW-FREQUENCY RESONANCE � 233

GVD x J

KT

PID Observer compensator

KT

Js2

Motor/Load PF
From

PI

+ + +

_

_

+
Enc.

AMEst Observer

Current
Loops

IFIC Physical system

Model motor

Figure 8. Luenberger observer provides observed acceleration (AMEst).



234 � APPENDIX B CURES FOR MECHANICAL RESONANCE IN INDUSTRIAL SERVO SYSTEMS

of Figure 6. The results show the dramatic improvement offered by acceleration 
feedback. Notice that the bandwidth (the frequency where the gain falls to -3dB) is
greatly increased. In addition, stability margins are maintained. Peaking, the unde-
sirable phenomenon where gain rises above 0dB at high frequency in the closed-loop
response, is a reliable measure of stability. As shown in Figure 10, the peaking of all
four configurations is about the same, with the baseline system displaying the most
peaking. This indicates that the cures for resonance allow higher gain while main-
taining equivalent margins of stability.

VC

VF

Figure 9. Step response of system with acceleration feedback.
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equivalent.

-3dB
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-180∞
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peaking: 8 dB

Figure 10. Comparison of closed-loop responses of baseline and when using three antiresonance methods.



Conclusion
Low-frequency resonance is common in industry. It differs from the less common, but
more often studied problem of high-frequency resonance. Low-frequency resonance
causes oscillations at the first phase crossover of the open-loop system; high-frequency
resonance causes oscillations at the natural mechanical frequency of the mechanism.
Low-frequency resonance can be addressed by several methods including low pass,
biquadratic filters, and acceleration feedback. Acceleration feedback is a practical
method for curing low-frequency resonance. It has been implemented in an industrial
motor controller.

Acceleration feedback in combination with the biquad filter provides dramatic
improvement for systems suffering from low-frequency resonance. This was demon-
strated on laboratory hardware. Compared to the traditional solution of a single-pole
low-pass filter, the combination of acceleration feedback and the biquad filter allow
the settling time to be cut by a factor of three (from 35 to 12ms) and the bandwidth
to be raised by that same factor (23 to 77Hz). At the same time, acceleration feed-
back maintained stability margins, indicating that the increased gain of the servo
system will be useful in practical applications.
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Appendix C
European Symbols for
Block Diagrams

This appendix lists the symbols for the most common function blocks in formats typ-
ically used in North America and in Europe. Block diagram symbols in most North
American papers, articles, and product documentation rely on text. Most linear func-
tions are described by their s-domain or z-domain transfer functions; nonlinear func-
tions are described by their names ( friction and sin). On the other hand, block diagram
symbols in European literature are generally based on graphical symbols. Linear func-
tions are represented by the step response. There are exceptions in both cases. In North
American documentation, saturation and hysteresis are typically shown symbolically,
whereas European literature uses text for transcendental functions.

Part I: Linear Functions
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Part II: Nonlinear Functions
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Appendix D
Development of the
Bilinear Transformation

Bilinear Transformation
The bilinear transformation is so named because it approximates z with a ratio of two
linear functions in s. Begin with the definition of z:

(D.1)

The Taylor series for esT is

(D.2)

Using the first two terms of the Taylor series for both the numerator and denomina-
tor of Equation D.1 produces

(D.3)

Some algebra rearranges the equation to

(D.4)

As an alternative to Table 3-2, Equation D.4 can be used to provide a transfer 
function in z that approximates any function of s.

z
T

z
z

@
-
+

Ê
Ë

ˆ
¯

2 1
1

z
sT
sT

@
+
-

1 2
1 2

z sT
sT sT

= + +
( )

+
( )

+ ◊ ◊ ◊1
2 3

2 3

! !

z e
e
e

sT
sT

sT∫ = -

2

2

241



242 � APPENDIX D DEVELOPMENT OF THE BILINEAR TRANSFORMATION

Prewarping
Prewarping the bilinear transformation causes the phase and gain of the s-domain
and z-domain functions to be identical at the prewarping frequency. This is useful
where exact equivalence is desired at a particular frequency, such as when using a
notch filter. Prewarping modifies the approximation of Equation D.4 to:

(D.5)

where w 0 is the prewarping frequency, the frequency at which exact equivalence is
desired. Recalling Euler’s formulas for sine and cosine:

(D.6)

and recalling that tan(x)= sin(x)/cos(x), Equation D.5 can be rewritten as

(D.7)

Our interest here is in steady-state response so that s= jw:

(D.8)

Now, if e jwT/2 is divided out of both the numerator and the denominator (on the right
side), the result is

(D.9)

So when w =w 0, most of the factors cancel out, leaving the exact value for s:

s= jw

which means that when the transfer function is evaluated at the prewarping frequency,
the approximation is exactly correct.

s j
e e
e e

e e
e e

j T j T

j T j T

j T j T

j T j T=
+
-

Ê
Ë

ˆ
¯

-
+

Ê
Ë

ˆ
¯

-

-

-

-w
w w

w w

w w

w w0

2 2

2 2

2 2

2 2

0 0

0 0

s j
e e
e e

e
e

j T j T

j T j T

sT

sT=
+
-

Ê
Ë

ˆ
¯

-
+

Ê
Ë

ˆ
¯

-

-w
w w

w w0

2 2

2 2

0 0

0 0

1
1

s
j

e e
e e z

z

j
e e
e e

z
z

j
e e
e e

j T j T

j T j T

j T j T

j T j T

j T j T

j T

= ◊
-

◊
+ -

+
Ê
Ë

ˆ
¯

= ◊
+
-

-
+

Ê
Ë

ˆ
¯

=
+
-

-

-

-

-

-

-

w

w

w

w w

w w

w w

w w

w w

w

0 2 2

2 2

0

2 2

2 2

0

2 2

2

2
2

1
1

1
1

0 0

0 0

0 0

0 0

0 0

0 jj T

sT

sT

e
ew 0 2

1
1

Ê
Ë

ˆ
¯

-
+

Ê
Ë

ˆ
¯

cos , sinx
e e

x
e e

j

jx jx jx jx

( ) =
+ ( ) =

-- -

2 2

s
T

z
z

ª
( )

-
+

Ê
Ë

ˆ
¯

w
w

0

0 2
1
1tan



Factoring Polynomials
Most methods of approximating functions of s with functions of z require that 
the polynomials, at least the denominator, be factored. The bilinear transformation
does not have this requirement, though the factored form usually requires less algebra,
as this example shows. Compare this function factored (D.10) and unfactored 
(D.11):

(D.10)

(D.11)

The factored form can be converted to z almost directly:

(D.12)

However, the unfactored form would require a considerable amount of algebra to
convert.

Phase Advancing
The approximation, z+1�2–wT/2, can be used to advance the phase of the z func-
tion when the s function has fewer zeros than poles.

To begin:

z+1=e jwT +1 (D.13)

Dividing e jwT/2 out of the right side yields

(D.14)

Recalling Euler’s formula, 2cos(x)=e jx +e-jx, produces

(D.15)

Finally, when wT/2 is small, cos (wT/2)�1 so that
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(D.16)

This approximation is accurate enough for most applications since it is usually not
important that the gain of the s and z functions match at high frequencies.
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Appendix E
Solutions to Exercises

Chapter 2
2-1A. Compile, click run, and double-click on the block KP to bring into view an

adjustment box. Click on bold >> button to raise value. KP =2 induces ringing
and overshoot; KP =5 causes instability. Conclusion: Higher control-loop
gains reduce stability margins.

2-1B. Double-click on Wave Gen block to bring the Wave Gen control panel into
view. Use combo box at left to change waveform type. Conclusion: Gentler
excitation makes marginal stability more difficult to recognize.

2-1C. Overshoot is gone with zero integral gain; overshoot increases with greater KI.
Conclusion: Higher integral gain causes overshoot and instability.

2-2A. 176Hz.
2-2B. -11.4dB.
2-2C. Lower control-loop gains reduce command response at higher frequencies.

2-3A. 0.002 to 0.0002s.
2-3B. More stable, but only over a range. Below 0.0002s, little improvement can be

seen. This is because the phase lag of the power converter and feedback filter
are large enough to make insignificant the phase lag associated with sampling.

2-3C. The two are almost the same (notice all model parameters are identical).
Conclusion: A digital PI system with sufficiently fast sample time behaves
approximately like an analog PI system.

Chapter 3
3-1A. KP �0.5, KI �42. GM=13dB, PM=60°.
3-1B. KP �0.85, KI �70. GM=12dB, PM=58°.
3-1C. KP �1.0, KI �85. GM=12.5dB, PM=59°.
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3-1D. KP �1.4, KI �120. GM=12.8dB, PM=59.5°
3-1E. No overshoot with KP and 10% with KI gives 12–13dB GM and 58°–60° PM.
3-1F. Allow some overshoot with KP and/or more than 10% with KI.

3-2A. 76, 140, 157, and 214Hz.
3-2B. If tuning criteria are held constant, more phase lag from filters will reduce the

ultimate responsiveness of a control system.

3-3A. Procedure (determined by trial-and-error): Allow about 5% overshoot with KP

and about 25% overshoot with KI.
KP �0.7, KI �70. GM=10.3dB, PM=49°.

3-3B. KP �1.0, KI �120. GM=10.3dB, PM=49°.
3-3C. KP �1.4, KI �140. GM=9.5dB, PM=48°.
3-3D. KP �2.0, KI �200. GM=9.5dB, PM=49°

3-4A. 124, 180, 255, and 363Hz.
3-4B. The bandwidths in 3-4A are about 50% higher than those in 3-2A. More

aggressive tuning leads to higher frequency command response.

Chapter 4
4-1A. KP =0.6, KI =10.0.
4-1B. Approximately 0.25s.
4-1C. KP =1.7, KI =30.0. Settles in approximately 0.1 s.
4-1D. Luenberger observer removes phase lag. This allows higher control-law gains

which provide faster settling time.

4-2A. KDO =0.05, KPO =17, KIO =2000.
4-2B. 108Hz.
4-2C. No significant difference. Tuning values do not depend on observer band-

width, at least when the observer models are very accurate.

4-3A. Yes, nearly identical.
4-3B. No. Phase lag can cause instability in the loop, even when the amount lag is

so small it is difficult to see comparing signals by eye.

4-4A. 50.
4-4B. That the procedure finds the correct KEst if the estimated sensor dynamics are

just reasonably close to representing the actual sensor.

Chapter 5
5-1A. KDO =0.06, KPO =25, KIO =1400.
5-1B. KDO =0.04, KPO =14, KIO =700.



5-2A. 50.
5-2B. 50.

5-3A. Increased phase lead at and around 50Hz.
5-3B. Increased phase lag at and around 50Hz.
5-3C. When FGs is lower than nominal, this condition causes phase lag. This 

can be verified by monitoring the step response shown in the Live Scope of
Experiment 5D when changing sensor bandwidth.

5-4A. 49° PM and 14dB GM.

5-4B. K Gain C/O PM Phase C/O GM
(Hz) (deg) (Hz) (dB)

20 6.4 42 89 30
50 12 49 46 14

100 24 36 43.5 5.8

5-4C. K Gain C/O PM Phase C/O GM
(Hz) (deg) (Hz) (dB)

20 2.5 41 21 24
50 5 47 21 17

100 9 39 21 11

5-4D. Nominal margins of stability are approximately the same for both the tradi-
tional and the observer-based systems. The observer system is more sensitive
to increase in plant gain (K ) as shown by the loss of 13° PM and 8dB of GM
for K high; compare this to the traditional system, whith a loss of only 6° PM
and 6dB GM. Increased loss of stability in the observer-based system is easily
seen in the step response for high K.

Chapter 6
6-1A. 154Hz.
6-1B. 144Hz.
6-1C. 103 (for observed disturbance) and 102Hz.
6-1D. 72 (for observed disturbance) and 71Hz.
6-1E. They are nearly the same when the estimated plant and sensor are accurate

representations of the actual plant and sensor. Under these conditions, Equa-
tions 6.4 and 4.6 are identical. Note: The small difference between 6-1A and 
6-1B is caused by variation in the setup of the DSAs (via the “gear” buttons)
in Experiments 5A and 6A.

6-1F. The response of observed disturbance is different from the observer response;
Equation 6.4 is not a good approximation when the sensor and plant models
vary substantially from the actual sensor and plant.
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6-2A. 0.022.
6-2B. 0.05, 0.02, 0.01.
6-2C. It is inversely proportional.

6-3A. Should be similar to Figure 6-17 for the second two cases.
6-3B. 4.5, -8.3, and -25dB.
6-3C. 12.8dB or 4.4 times.
6-3D. 16.7dB or 6.8 times.
6-3E. 1.76, 0.404, and 0.06.
6-3F. 1.76/0.404 or 4.35
6-3G. 0.404/0.06 or 6.3.
6-3H. Both measures produce essentially the same measurements.

6-4A. KP =1.5, KI =25 (50Hz);
KP =3.0, KI =50 (100Hz);
KP =6.0, KI =100 (200Hz).

6-4B. 1.2 (50Hz), 0.6 (100Hz), and 0.4 (200Hz).
6-4C. 0.5 (50Hz), 0.3 (100Hz), and 0.2 (200Hz).
6-4D. No. The majority of disturbance response comes from the decoupling path

and the control-law gains have little effect.

Chapter 7
7-1A. 144, 80, 52Hz.
7-1B. 14 (high), 8 (medium), 0dB (low).
7-1C. Yes. KDO.

7-2A. About 0.2 divisions or 0.04.
7-2B. About 1 division or 0.2.
7-2C. About 2 divisions or 0.4.
7-2D. At 200Hz, part A (default parameters) -28dB; part B, -14dB; part C,

-8dB. Comparison: Part A is 14dB (5 times) lower than part B, which is 
6dB (2 times) lower than part C. This is consistent with the time-domain 
measurements.

7-3A. About 1.2.
7-3B. About 0.5.
7-3C. Yes, both in the Live Scope C and in the Noise DSA.
7-3D. 8.5Hz.
7-3E. Both the noise response and the disturbance response of the systems of parts

A and D are equivalent.



Chapter 8
8-1. First phase crossover disappears when KIO =0; without the additional 90°

phase lag contributed by KIO, there is no crossover at (or near) 200Hz.

8-2A. VOMod is highly inaccurate. The other two signals are accurate.
8-2B. VOMod disturbance response will probably be poor because the velocity per-

turbations caused by the disturbance are so poorly represented by the signal.
8-2C. VO provides the best response. VS provides similar response except for strong

peaking at 400Hz caused by the too high control-law gains for the phase lag of
the sensed signal. VOMod provides the poorest response as discussed in Part B.

8-3. The noise sensitivities VO and VS are similar. The noise sensitivity VOMod is
lower, due to the filtering effect of the modified Luenberger observer (see
Section 7.5). Compare to Exercise 8-2: The implicit filtering of the modified
observer provides advantages (lower noise sensitivity) and disadvan-
tages (poorer disturbance response) equivalent to an observer with a lower
bandwidth.

8-4A. 48° in both cases.
8-4B. 24° for VO and 28° for VOMod.
8-4C. The one using VOMod.
8-4D. 51° in both cases.
8-4E. 40° for VO and 36° for VOMod.
8-4F. The one using VO.

8-5A. TSAMPLE Maximum KAFB

0.00025 1.2
0.0002 2.5
0.00015 6.0

8-5B. KDD Disturbance response Improvement offered by
at 10 Hz acceleration feedback
(dB) (dB)

0 -15 (reference)
1 -21 6 (2¥)
2.5 -26 10 (3.1¥)
6 -32 17 (7¥)

8-5C. Ideal result is 1 +KAFB improvement.
Case 1: 1+1=2.
Case 2: 1+2.5=3.5.
Case 3: 1+6=7.

The results in part B are similar to the ideal results.
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Block diagrams, 44
European symbols, 233–235

Bode plot
bandwidth, 51
closed-loop, 60f
disturbance, actual vs. observed,

119f
disturbance decoupling, 132f
and frequency domain, 33
graphical phasor display, 49
measuring response, 51
open-loop, 69f
open-loop plot of PI controller,

65f
peaking, 52f
position vs. velocity, 194f
saturation, 37
vs. scope, 53f
signal-to-noise, 37
and unstable systems, 200
Visual ModelQ analysis, 35
z-domain, 57

Brushless motors, 175

Note: Page numbers followed by f or t refer to the figure or table on that page,
respectively.
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A
Acceleration

feed forward, 175
observed, 220

Acceleration feedback, 207, 229
and gain reduction, 208

Accelerometer, 209, 219
Accumulation, 55
Aliasing, 142
Analog control systems, 54
Analog-to-digital converter (ADC), 58,

142
Analysis vs. experimentation, 100, 113

B
Bandwidth

and closed-loop responsiveness, 51
definition, 15
observer, 103
resolver-to-digital converter, 181
velocity loop, 176

Bilinear transform, 56, 237
prewarping, 57, 238



Coupling, mechanical, 224
Crossover frequency, 61
Cyclic error, 10, 11

D
Decoupling, 129
Delay, 43
Derivative gain (D-gain), 89
Design process

for Luenberger observer, 82–86
for observers, 2

Differences, 55
Differentiation, digital, 55
Digital control, 7
Digital control system

data processing, 54
modeling with VisualQ, 37–38
and phase lag, 38

Digital filters, 84
Digital signal processor, 75
Digital-to-analog converter (DAC), 58
Disturbance

and control laws, 6
in Luenberger observer, 115–116
measuring, 12–13
and model error detection, 113
observed, 203
observer, 116–117
and observer compensator design, 89
and observers, 77–78
observing, 13, 129
rejection, 12, 15
response and power-converter

bandwidth, 162
sensing, 129
types, 11–12

Disturbance decoupling, 12, 129, 221
and integral gain, 132
motion systems, 203
and noise, 156
and observer bandwidth, 136

Disturbance response, 3, 123–124, 185,
192

and gains, 127

C
Calculation noise, 144
Capacitance variation, 100
Characterizing components, 99
Classical vs. state space, 82
Closed loop, 59

Bode plot, 60f
Coasting, 182
Colored noise, 142
Coloring filter, 142
Command, 6
Command filtering, 7
Command noise, 143
Command response, 15, 50–51, 176,

185
Commutation, 175
Compensators, digital, 55
Compliance, mechanical, 223
Compliant load, transfer function, 224
Computational resources, 183
Continuous systems, 54
Control law, 6
Control law gains and noise, 156
Control loop, 6f
Control systems

command response, 15
cost, 13
disturbance rejection, 15–16
ease of use, 17
frequency domain analysis, 33–37
goals, 13–17
modeling with VisualQ, 26–32
noise response, 16
observer-based vs. traditional, 2
reliability, 14
robustness, 16–17
stability, 14–15
structures, 5–13
traditional. see Traditional control

system
Cost

of control systems, 13
reduction, 3

Coulomb friction, 98
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improving, 124, 129
and integral gain, 136
and low observer bandwidth, 127
in observer-based systems, 125
and observers, 202
and power converter bandwidth, 138
transfer functions, 124–125

Disturbance torque, 186
Drift, 70
Dynamic signal analyzer (DSA), 34–37

E
Ease of use, 17
Electrical plants, 9
Electromagnetic interference. see EMI
Electromagnetic torque, 186
Electronic flywheel, 207
Electronic inertia, 207
EMI, 70, 144, 184
Encoder, 178, 184
Encoder resolution, 188
Encoder system observer, 193
Errata, 4
Error

cyclical, 11
feedback signal, 10
plant gain, 101
sensor model, 102, 110

Error signal, 6
Estimated parameters, 68
Excitation, 6
Experimentation vs. analysis, 100, 113
Experiments, 4

acceleration feedback in motion
systems, 210

control system with DSA, 34–37
digital control system, 37–38
disturbance decoupling in motion

systems, 205
disturbance response and gain, 128
filtering observed disturbance, 163
I-gain in observer compensator, 122–

123
idealized feedback, 74

improved measurement of plant gain,
104f

measuring performance, 49, 50f
measuring plant gain, 86–88
modified observer compensator, 168
noise and disturbance decoupling,

159–160
observed disturbance, 118–120
observer-based control, 75
observer-based disturbance

decoupling, 131
observer-based reduction of phase

lag, 76–77
observer for encoder systems, 193
observer for resolver systems, 202
phase lag and simple differences,

188
phase lag from resolver systems,

198
power converter and disturbance

response, 137
sensor noise and actual state, 152–

155
sensor noise and observed state,

150–152
simple control system, 26–32
tuning an observer, 91f, 103f
tuning observer with DSA, 94f
variation and observer performance,

105–107
variation and system stability, 108–

109

F
Fast Fourier transform (FFT), 37, 194
Feed-forward, 175
Feedback filtering

intrinsic, 10
and stability, 11

Feedback sensors, 10–11
Filter-form observer, 78–82, 101, 118,

146
disadvantages, 82

Filtering, and stability, 11
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Inaccuracy
effects, 100–102
sources, 98
vs. variation, 102

Inductance variation, 85
Inertia mismatch, 226
Inertia, variation, 204
Instability, in observers, 90
Integral gain (I-gain), 89, 122–123

zeroing, 63
Integrating plants, 8, 10, 135, 153, 166
Integration, digital, 55

L
Laplace operator, 42
Laplace transform, 42
Lead compensator, 43
Lead networks, 7
Limit cycles, 58
Linear, time invariant (LTI) systems, 43
Linearity, 42
Load disturbance, 115
Luenberger observer, 72f

construction, 68–72
definition, 67–68
design process, 82–90
with disturbances, 116f
filter form, 78–81
modified, 189
in motion systems, 173–174, 184–185
noise, 141–142
predictor-corrector form, 77–78
and sensor noise, 145
using disturbance decoupling, 221f

Lumped-parameter models, 99, 224

M
Marginal stability, 15, 52
Margins of stability, 16, 62

analysis by open-loop method, 59–62
Mason’s signal flow graphs

Luenberger observer, 117f
s-domain, 45–47
z-domain, 57

Filtering derivative signals, 6
Filtering effects, 86
Filtering noise, 16
Filtering observed disturbance, 169
Filters

biquadratic, 229
command, 7
digital, 55
notch, 7
phase-advancing, 7
transfer functions, 43
types, 7
z-domain, 55

Flow and force, 10
Fluid dynamics, 9t
Fluid mechanics, 9t
Following error, 175
Force, and flow, 10
Frequency, and responsiveness, 51
Frequency domain, 42. see also s-

domain; z-domain
Frequency domain analysis, 33–37
Friction, 98

G
G/(1 + GH) rule, 44, 57
Gain, 47–48

determining experimentally, 86–88
and noise, 156
reduction with acceleration feedback,

208–209
Gain crossover frequency, 61
Gain margin, 59, 62

calculation, 61f
Gear box, 224
Ground loops, 144

H
Heat flow, 9t
Homogeneity, 42

I
Idealized control system, 74f
Implementing observers, 2
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Measures of performance, 62
Measuring performance, 49, 50f
Measuring sensor parameters, 84
Mechanical compliance, 223
Mechanical resonance, 223
Mechanics, 9t
Microprocessor, 75
Model inaccuracy

effects, 100–102
sources, 98

ModelQ, 4
simulation environment, 17

Models, lumped-parameter, 99
Modified Luenberger observer, 189
Modified observed state, 165
Modified observer compensator, 164–

166
experimental evaluation, 168
gradual implementation, 170
and observed disturbance, 169

Motion-control systems
applications, 173–174
disturbance decoupling, 203–204

Motion sensors, 177

N
Noise

and the actual state, 152–153
analysis of observers, 146
calculation, 144
command, 143
and control law gains, 156
and derivative control, 6
from feedback sensors, 10
and observed disturbance, 157
and the observed state, 151
observer, 89, 95
and observer bandwidth, 161
and observer model, 156
and the power converter, 153, 160
reduction with filters, 7
in resolver-to-digital conversion,

181
response of control system, 16

sensor, 11, 144
and sensor attenuation, 150
in traditional and observer systems,

148–150
white vs. colored, 142

Noise analysis, 144
Noise entry, 143
Noise sensitivity, 145
Noise susceptibility and observer

bandwidth, 146
Non-linear effects, 98
Notch filters, 7
Nyquist frequency, 142

O
Observed acceleration, 209, 220, 229
Observed disturbance, 82, 116–117, 203,

221
DC error, 120
filtering, 169
and integral gain, 122–123
and model inaccuracy, 120
and modified observer compensator,

169
noise analysis, 157
transfer function, 117

Observed RD conversion, 218
Observed signals, 68
Observed state

modified, 165
and noise, 150–152

Observed torque disturbance, 221
Observer bandwidth, and noise, 161
Observer compensator

D-gain, 89
design, 88–90
I-gain, 89
modified, 164–166
need for I-gain, 219
saturation, 89
second D-gain, 198
tuning, 90–95

Observer computational resources,
75
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P
Parameter variation, 104–105
Peaking, 36, 52

in observer, 94
Performance enhancement, 3, 183
Performance measures, 62

experiment 3A, 49, 50f
Phase, 47–48
Phase-crossover frequency, 62

multiple, 196
Phase lag, 124, 156

and control loop stability, 11
and digital systems, 38
elimination, 62, 75, 76–77
experiments, 72–75
in motion control sensors, 184
in motion control systems, 184
and performance, 74
RD conversion, 217
reduction with observers, 15,

185–187
from resolvers, 197
and sensor noise, 16
from sensors, 69
from sine encoders, 197
and stability, 127
z-domain, 57
and zone tuning, 64

Phase margin, 59, 62
calculation, 61f

Phasors
s-domain, 48
z-domain, 56–57

PID control, 6, 6f, 43
observer compensator, 88–90
specifying gain margin and phase

margin, 62
tuning, 65

PID position loop, 177
Plant, 6, 8–10

gain errors, 101
integrating, 10
order of integration, 86
transfer functions, 9t

Observer tuning, 103–104, 192–195
analytically, 93
configuration, 91
in R-D-based system, 201–202
and resolver-to-digital converter, 201

Observers. see also Luenberger observer
advantages, 13
bandwidth, 103, 116
bandwidth and noise susceptibility,

146
bandwidth, low, 127
closed-loop response, 93
computationally efficient filter form,

81
and control system reliability, 14
design process, 82–86
and digital control, 7–8
and disturbance response, 202
feed-forward path, 92
filter-form, 78–82, 101, 118, 146
including RD conversion, 197
instability, 90
low gains for scaling measurement, 88
noise sensitivity, 145–150
noise susceptibility, 90, 95
overview, 2–3
peaking, 94
predictor-corrector form, 77–78
role in control system, 3f
sample-hold, 123
sample time, 103
saturation, 194
shortcomings, 2, 3
stability, 89
state-space and classical form, 82

Offset, 83
Open loop, 174

multiple phase crossover, 196
Open-loop method, 59–62

Bode plot, 60f
Operation-dependent variation, 100
Optical encoder, 178
Overshoot, 52, 62, 65
Overshoot and settling, 50
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Plant dynamic parameter, 86
Plant estimator, 84
Plant scaling, 85

experimental determination, 86–
88

Plant variation, 85, 102
Position loop, 174
Position sensor, 178

high resolution, 184
phase lag, 184

Power, 6
Power conversion, 8
Power converter, 6, 64

bandwidth and disturbance response,
162

and noise, 153, 160
Predictor-corrector, 67, 77–78

structure, 116
Prewarping, 238
Profile generator, 175
Proportional-integral-differential (PI)

control. see PID control
Proportional-integral (PI) control, 6, 8f,

43
digital, 55
specifying gain margin and phase

margin, 62
tuning, 32, 64

Proportional (P) control, 6

Q
Quadrature encoder, 188
Quantization, 58, 70

and analog sensors, 142
Quantization noise, 142
Qxdesign, 4, 18

R
Random excitation, 37
Random noise, 142
Reliability, 14
Resolution, 16, 58
Resolver, 178–179

phase lag, 197

Resolver-to-digital converter (RDC),
179

bandwidth vs. system, 200
signal processing, 215
transfer function, 180, 198

Resolvers, 184, 214
frameless, 214

Resonance, 7, 223
high-frequency, 226
low-frequency, 225

Response, 6, 50–51
and control-law gains, 50

Ringing, 36, 52
Robustness, 16–17
Root locus method, 59
Rotational mechanics, 9t

S
s-domain, 42

block diagrams, 44–47
Bode plots, 49
linearity and frequency domain,

42–43
measuring performance, 49–54
phase and gain, 47–48
transfer function, 43–44
transfer functions, 43–44

s, Laplace operator, 42
Sample-and-hold (S/H), 57–58
Sample-data systems, 54
Sample time, 38
Sampling, in digital systems, 54
Saturation, 37, 42, 85

observer, 194
observer compensator, 89

Scope, vs. Bode plot, 53f
Sensor model errors, 110
Sensor error, detecting, 112–113
Sensor estimator, 83
Sensor filtering, 83
Sensor gain error, 99
Sensor model

errors, 102
variation, 102
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Stribeck effect, 98
Superposition, 43
Sync function, 58

T
Tachometer, 177–178
Temperature variation, 100
Tension control, 182
Thermal disturbance, 115
Time invariance, 43
Torque, 186
Torque disturbance, 115, 221
Torque transducer, 182
Tracking converter, 179
Traditional control system, 68, 69f, 73f
Trajectory generator, 175
Transfer function

analysis and modified observer
compensator, 167

of controller elements, 43t
DC response, 42
of disturbance response, 124–125
position vs. velocity, 195
s-domain, 42, 43–44
z-domain, 54–55

Transfer functions of plant elements, 9t
Transform pair, 42
Translational mechanics, 9t
Transmission components, 224
Tuning, 32

observer, 103–104, 192
observer compensator, 90–95
observers, varying sensor model,

110
observers with RD converter, 201
proportional-integral-differential

(PID) controller, 65
proportional-integral (PI) controller,

64
zone-based method, 62–65, 92

U
Unit-to-unit variation, 99–100

Sensor noise, 10, 11, 144
analysis, 144
and disturbance observation, 13
effect on actual state, 152–155

Sensor offset, 83
Sensor offset error, 99
Sensor problems, 1, 69
Sensor scaling, 83
Sensors

alternative options, 14
bandwidth variation, 107
dynamic characteristics, 83
ideal, 69
measuring parameters, 84
motion, 177
types, 10

Servo systems, 174
Settling time, 50
Signals, sensed and observed, 2
Simple difference process, 15, 182, 185
Sine encoder, 181–182, 184

phase lag, 197
Sliding friction, 98
Software experiments, 4, 17. see also

experiments
default model, 18–26

Software, resolver-to-digital converter,
181

Stability, 52–54, 69
analysis by open-loop method, 59–

62
enhancing with observer, 72–77
and filtering, 11
of observers, 89, 92
and variation, 108

Stability margins, 16
State-space, 82
Step response, 50

of sluggish and responsive systems,
53f

Stepper motors, 174
Stiction, 98
Stiffness, 124
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V
Variable frequency AC (VFAC), 174
Variation, 100

vs. inaccuracy, 102
sensor bandwidth, 107
and system stability, 108

Velocity
feed forward, 175
sensing, 182

Velocity control system, 226
Velocity loop, 174, 176
Viscous damping, 86, 98
Visual ModelQ, 4

analog switch, 30
Bode plot, 35
constants, 27–28
default model, 18–26
digital models, 37
digital values, 21
documentation nodes, 20
DSA, 34–37
DSA autofind, 37
DSA controls, 36–37
DSA excitation, 37
fly-over help, 20
hot connection, 32
inspector, 30
installation, 18
inverse live constants, 29
live constants, 28

live scope, 20, 25–26, 32
multipliers, 22, 29
phase lag experiments, 72–77
scale-by live constants, 30
scope, 19, 24–25
simple constants, 31–32
simulation environment, 17
solver, 19, 20
string constants, 30
variables, 34
waveform generation, 37
waveform generator, 19, 21–22

Voltage-controlled oscillator (VCO), 180

W
Web-handling, 182
Web site, qxdesign, 4
White noise, 142
Wind-up, 89
Wiring, 16

Z
z-domain

bilinear transform, 56
Bode plot, 57
definition, 54
phasors, 56–57
sample-and-hold (S/H), 57–58
transfer functions, 54–55

Zone-based tuning, 62–65
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