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Preface

In the late 1960s and early 1970s, I wrote a book on the numerical analysis of ordinary
differential equations ~ntitled Computational Methods in Ordinary Differential Equations.
published in 1973; to .ny considerabic surprise, it is still in print. That book was largely
based on a course of lectures I had given to M.Sc. students of numerical analysis in the
University of Dundee, a course which 1 have continued to give ever since. As the years
have passed, the role of Lambert (1973) has changed from being virtually the content
of that course, through a phase when patts of it were dropped and replaced by newer
material, to the current situation, where it is relegated to the status of a background
reference. There has never been a revised edition of Lambert (1973). I have always felt
lukewarm about the idea of revised editions; too often the end-product seems Lo resemble
the results of altering a house by chopping bits off and throwing up extensions —it
fulfils its new purpose, but it is not what you would have designed if you had had a
free hand. Theipresent book is intended as a replacement for Lambert (1973), and is by
no means a revision of it. Although the general topic remains the same, the overlap
between the two books has turned out to be very small indeed. The intended readership
is precisely the same as for Lambert (1973), namcly postgraduate and advanced
undergraduate students and users of numerical methods.

Emphasis in the subject of numerical methods for initial value problems in ordinary
differential systems has changed substantially since Lambert (1973) was written. At that
time, new methods were constantly being proposed (frequently with scant consideration
of the problems of efficient implementation), on the theoretical side, convergence was
of course well understood, but stability relied exclusively on a linear theory based on an
over-restrictive linear constant coefficient test equation. In contrast, the major codes in
use today are based on only a handful of methods (Adams- Bashforth-Moulton.
Runge-Kutta and the Backward Differentiation Formulae), but embedded in very
sophisticated and well-analysed implementations; morcover, there now exists a much
more satisfactory nonlinear stability theory. (It is a little ironic to note that all of the
names mentioned in the preceding sentence are from the ninetcenth century.)

In this book 1 have tried to reflect those changes. From the outset. systems ol differential
equations rather than scalar equations are considered, and the basic topics of consistency.
zero-stability and convergence are set in a context of a general class of methods. Lincar
multistep and predictor-corrector methods are studied, at first in general, but with
increasing emphasis on Adams methods. Problems of implementation are considered
in much more detail than in Lambert (1973). Many of the results on Runge-Kutta
methods in Lambert (1973) are valid only for the scalar problem, and 1 therefore felt it
necessary to include a non-rigorous account of the Butcher theory for Runge-Kutta
methods for systems. Of course, this theory existed when Lambert (1973) was written.
but 1 felt at that time that it was too demanding for a text at this level; I no longer
believe this, and have found that students can not only assimilate lhi§ material, but
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rather enjoy it (1 have also included a brief account of the alternative approach of
Albrecht, which appears not (o be as well known as one would expect.) There is much
more cmphasis on embedded  explicit Runge-Kutta methods and on implicit
Runge Kutta methods. The topic of stiffness is treated in much more detail than in
Lambert (1973). and includes an account of nonlinear stability theory. Numerical
experiments are interspersed with the text, and exercises are inserted at the ends of
appropriate sections. In the main, the latter are straightforward and are intended only
1o illustrate and, occasionally, to extend the text; those which are longer or more
demanding are marked *.

This change of cmphasis towards implementation has presented mg with two probiems.
Firstly, | had to decide to leave out a number of methods {such as cyclic methods)
which. though of intrinsic interest, do not appear to be competitive. The hardest decision
in this respect was to omit extrapolation methods, for which a case [or competitiveness
can be made; in theend, 1 concluded that the interests of the intended readership would
be betier served by not sacrificing any of the material on the major classes of methods
to make room for them. I have not included general linear methods on the grounds
that they are not yet compeltitive. The sccond problem is that studying a smaller number
of methods in greater depth tends to raise the level of difficulty. T believe that 1 have
managed to avoid this by giving non-rigorous accounts where appropriate; where rigour
is essential. | have quoted theorems, but supplied proofs only where these are constructive
(in a numerical analytical sense). My evidence for this belief is that most of the material
in this book has been tricd out on students at the same fevel as those 1 taught in 1973
gand 1 see no overwhelming indications that 1990 students are any brighter or better
prepared!). I do not helieve that the change of emphasis has produced a duller book
(but the reader will have to judge that for himself). One of the magical properties of
mathematics is its ability to keep producing fascinating ideas even when it is attempting
to answer practical and technical questions; there can be no better example of this than
the emergence of the clegant order star theory of Hairer, Wanner and Ngrsett, briefly
covered in Chapter 6. ‘

[ am grateful to my fricnd and colleague Des Higham for his careful reading of the
manuscript and for his many uscful suggestions.

J. D. LAMBERT
Dundee, Scotland
November 1990

»

(s

1 Background Material

1.1 INTROD!JCTION

The level of mathematicai background needed for this book is not particularly high; in
general, a knowledge of the calculus and of some aspects of numerical linear aige'qra
(vector and matrix norms, LU-decomposition) together with some familiarity with
complex numbers will suffice. Inevitably, there will be occasions when we need to employ
some additional concepts and techniques, not perhdps part of every reader’s experience.
In some situations, such as the development of Butcher's algebraic theory of
Runge-Kutta methods (Chapter 5), it seems appropriate to develop the necessary tools
in sitw, but in others, where the use of the tools is more incidental, such an approach
can be disruptive. Accordingly, in this chapter we collect together a number of these
additional concepts and techniques. No attempt is made to treat themin a comprehensive
manner, and we settle for taking them just as far as is necessary for an understanding
of their use in the remainder of the text.

This chapter is, of necessity, a bit of a rag-bag, and readers who are familiar with its
contents are urged to proceed at once Lo Chapter 2.

1.2 NOTATION

This book is concerned with the numerical so‘lulion of systems of ordinary differential
equations, which means that we shall regularly be dealing with vectors. S widespread
will be the use of vectors that any attempt to differentiate between scalars and vectors
by setting the latter in bold fount would result in rather an ugly text. For most of the
time it will be obvious from the context whether a particular symbol represents a scalar
or a vector, but when there issdoubt we shall insert statements such as xeR to indicate
that x is a real scalar and yeR™ to indicate that y is a real m-dimensional vector.
Alternatively, we may write statements such as

y =[xy, [RxBRToRT

to indicate that x is a scalar and y and [ are m-dimensional vectors. Similarly, (eC.
7eC™ will indicate that { is a complex scalar and z a complex m-dimensional vector.

.

The tth component of yeR™ will be denoted by 'y, so that we may write
y=0 2y
where the superscript T denotes transpose (vectors will always be column vectors). The
slightly unusual notation of labelling a component of a vector by a left superscript is

rather forced upon us; the more conventional positions for such labels are pre-booked
for other purposes.
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Any norm of a vector y or of a matrix A will be denoted by || v|| and || A || respectively
and thn vector and matrix norms appear in the same context it is assumed that tht;
mz\lrlx nerm is subordinate to the vector norm. When we need to use a specifi
it will usually be the L,-norm, {|-||,, defined by pectie o

T 12
fyll, = [ ,ZI \’ylz] , | All, = (maximum eigenvalue of ATA)"2,

where A is the conjugate of the matrix A.
We shall frequently usc the notation

F(h) = 0(h")

as h— 0,

whcrg (r is a scalar and F may be either a scalar or a vector. It means that there exists
a positive constant K such that || FUn |l < Kh* for h sufficiently close to zero Normail
we df)Anot'bmhcr to add the phrase ‘as h—0" and mercly write F(h)=0(‘h") but ;,s,
h—> 0 is still implicd. This is of some importance, since F(I%) =0(h?) is an as’ymptotic
statement concerning what happens for sufficiently smali I its interpretation must not
be debased into implying that F(h)is roughly the same size as h”, no matter the size of h!

We shall occasionally use the notations xe[a, b], xe(a, b), xe(a,b] and xe[a, b) mear.lin
that the ‘sczllz}r v satislies a < x<hja<x<ha<x<shand a<x<h respéctively WE
shali also write y(x)eC™[a, h] to mean that y(x) possesses m continuous derivative.s for
\f,[“'h]' The rth total derivative of y with respect to x will be denoted by
Y r = 0.1.2,..., where p@(x)=y(x) and y'"x)=y(x). We shall also use the
notations A:= B and B =4 to mean ‘A is defined to be B'. '

The use of the finite difference operators E,A and V will frequently prove helpful
These are defined as follows. Let {(x,, F,), x,eR, F,eR™"n=0,1,2,...} beaset of !Fall )
spaced data points in R™"'; that is, we have that x, = x, + 1h ’where'h is a conq‘anty
Then the forward shift operator E is defined by ’ o

EF,=F, ., E*F, = E(EF,)=F,,,, el

Note that if m.is a polynomial of de k i
: f grec k, n(r) = Y5 _ yrit .
N P Nexstin : '( )= ¥4 o¥yr), then we may write ThaoViFusy
n i 1 f/f exponents are also allowed so that, for example, E SF,=F,_,
¢ forward difference operator A is defined by A =E — {, and , difference
oporator ¥ by Vo 1 Fo0 50 that y , and the backward difference

AF,—F, ., F. A, =AF,,, —F)=Fn—2F, +F,
VE = b, F, . VF,=V(F,=F, \)=F,—=2F, +F,_,;, et

thn thc‘ ch'c‘\IIy spaced data arise from the evaluation of a continuous function that
is when F, = F(x,), then, provided F(x)eC*, we have the useful results that

A*F(x,) = B F%(x,) + 00 1), VEF(x,) = B F®(x,) + O+ 1),

1.3 MEAN VALUE THEOREMS

On several occasions later in this book we shall make use of the standard mean value
theorem. Although this result is very familiar in a scalar context, care must be taken

w.ebook300
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+
when applying it in a vector context. As far as our applications of the theorem will be
concerned, the difficulties introduced by the vector context are merely notational, and
virtually constitute only nuisance value. In this section we state mein value theorems
for the function F(z)eC', where each of F and z can be either scalar ot vector. and
introduce some simplifying notation which will be usclul in avoiding the nuisance factor

later. )

Case! F:R'-R' F(z}isa scalar function of the scalar argument 2 and the
mean value theorem takes the familiar form

F(z)— Fz*)=(z — 2"V, (1.1
where the mean value { lies in the open inlcrvull with end points z and =*.

Case 2 E:R'-R™ F(2)= ['F, IF, . ~"F} is a vector function of the scala
argument z. We can apply (1.1) to each component of I to get

’F(z)—'F(z“)z(z——z*)’F'(C,)‘ t=1.2,....m (1.2

but it is not in general true that the same mcan value will apply for cach component
hence the presence of the subscript in {,. A vector form of (1.2) would be much mot
convenient, so we force this by writing

Flz) - F(z%) =tz — )"0 (1.

where F' is the vector with components = 1,2,....m and the bar indicates that eac
component of F' is evaluated at a different mean valug; ¢ now merely symbolizes

typical mean value. That is, _
FQ)= [ FE e TG
where each of the mean values {,. t = 1,2,...,mlies in the open interval with end poin

z and z*.

Case3 F:R"->R! "F(z) is a scalar function of the vector argumc
z:=['2,2z,.:..,"2]", and the mean value theorem takes the form

oF

.l
'z

”

1] Lud
F(z)— F(z*)= Y, (z-'7%) -, (0 {1
' =1
where { is an internal point of the line segment in R™ joining z to o*
Cased F:R"—R" F()=['F, 2p. . mF]Tis a vector function of the veci
argument z:=['z, 2, ...,"z]". We can apply (1.4) to cach component of F to obtain

<

m F
* *F(z) — F(z*) = Z('z—'z“)(a' ). s=12...m ("
=1 Uz

where, as in Case 2, we do not have the same mean value { for cach component. Us:
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the notation
O°F
Fo(z)=—-(z
«(2) a,z( )

we can write (1.5) in the more convenient form

' F(z)  F(z*) =Tz — %), (1.6)

where J is the Jacobian matrix of F with respect to z, and the bar indicates that gach
row of J is evaluated at a different mean value: that is

Folly) Fol) o Fral)
T - f‘z,(cz) Faa(l) - Faulla)
le(gm) FmZ(Cm) me((m)

Each of the mean values {,, 1 = 1,2,...,m is an internal point of the line segment in R™
joining z to z*. |

There is another mean value theorem, the generalized mean value theorem for integrals,
which we shall have occasion to use. In its scalar form it states that if ¢(x) and g(x) are
scalar functions of the scalar variable x where, in «n interval [, d] of x, ¢(x) is continuous
and g{x}is integrable and of constant sign, then there exists a mean value £e(c, d) such that

d

J p(x)g(x)dx = w(é)J g(x)dx. ' (1.7)

<

In the situation we shall meet, (x) is a vector function of x bul ¢g(x) remains a scalar
function, and clearly (1.7) can be applied to each component of ¢ (provided, of course,
that the stated conditions on ¢ and ¢ hold), giving the result

d d
' f P(x)g(x)dx = @(é)j g(x)dx, (1'8)

where the notation @(¢) implies that'each component of ¢ is evaluated at a diflerent
mean value in the interval {¢,d).

1.4 FIRST-ORDER SYSTEMS OF ORDINARY
DIFFERENTIAL EQUATIONS

Throughout this book we shall be concerned with a first-order system of ordinary
differential equations of the form

y ='(x "y %y,...."0

2,0 _ 2 i,, 2
‘} If(x’ Yo Voo y) , (19)

"y ="y, L)

FIRST-ORDER SYSTEMS. OF ORDINARY DIFFERENTIAL EQUATIONS 5

where 'y’ = (d/dx)'y(x). We immediatcly abbreviate the phrase italicized above to
“first-order system’, or just ‘system’. The system (1.9) can be written in vector form as

',y' = f{x. ¥} (1.10)

where y=['y,2%y,...,"y]" and [ =['f, ,...,"17, so that [:R x R™"—R™

We note that each 'f depends on 'y, Zy,..‘. ,™y, that is, the system is coupled. Were it
the case that each f depended on 'y alone, the system would be uncoupled. and each
equation in it could be handled independently of the rest. It is this coupling that is the
essence of a system; an uncoupled system is not essentially different from a scalar
differential equation.

The general solution of a first-order system of dimension m contains, in general, m
arbitrary constants; thus, for example, it is easily checked by substitution that the
two-dimensional system

| IR 2
Y= y/x 4 Tyx } (.1

2y =x((y)? = 1/'y
is satisfied by

'y(x) = x[cos(C,x + C,)]/C,
y(x)= —sin(C,x + C,)

for any values (with the exception of C, =0} of the arbitrary constants Cy, C;. For the
general m-dimensional system, the m arbitrary constants can be fixed by imposing m side
conditions. If these m conditions take the form of demanding that the 'y, t = L2,.... m
all take given values at the same initial point, then the system together with the conditions
constitute an initial value problem. Writing the system in the vector form (1.10), the
general initial value probiem thus takes the form 4

y=f(x,3), ya)=n, [ RxR"—-R™ (1.12)
where
n=C'nn..m3

Once again, we abbreviate the nomenclature, and henceforth refer to (1.12) as a ‘problem’.
We regard (1.12) as the standard problem; this book is concerned entirely with numerical
processes for solving (1.12).

Not all problems possess a unique solution, or indeed any solution at all. The following
standard theorem lays down sufficient conditions for a unique solution to exist; we shall
always assume that the hypotheses of this theorem are satisfied:

Theorem 1.1  Let f(x,y), where {:R x R™ = R™, be defined and continuous for all (x,y)
in the region D defined by a<x<b, —w <'y< o0,t=1,2,....m, where a and b are
finite, and let there exist a constant L such that

N0y = Sy < Lily—y*i (1.13)

holds for every (x, y}, (x, y*)eD. Then for any neR™, there exists a unique solution y(x} of
the problem.(1.12), where y(x) is continuous and differentiable for all (x,y)eD.

WW.ebo
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The requirement {(1.13) is known as a Lipschitz condition, and the constant L as a
Lipschitz constant. Since

[(x.y) continuously differentiable wrt y for all (x, )eD
= f(x, y) satisfies a Lipschitz condition wrt y for all (x, y)eD
= [(x,v) continuous wrt v for all (x,y)eD,

the condition can be thought of as requiring a little more than continuity but a little
less than differentiability. If f(x,y) is differentiable wrt y, then from the mean value
thcorem (1.6) we have that

03] = [l y®) = TGOl = y*),
where the notation implies that cach row of the Jacobian J = #f(x,y)/ly is evaluated
at different mean values, all of which are internal points on the line segment in R"*!
from (x, ) to (x.v*). that is, all of which are points in D. It follows that the condition
{1.13) can be satished by choosing the Lipschitz constant to be

L= sup [|af (x, )yl (1.14)
(x.y)eD

Hin (1.12) £ is independent of x, the problem (and the system it involves) is said to
be awtonomous, and 1o be non-autonomous otherwise. It is always possible, at the cost
“of raising the dimension by 1, to write a non-autonomous problem in autonomous form.
All onc need do is add an extra scalar equation ™*!'y =1 with initial condition
™ y(a) = a, which implies that "*'y = x, so that the new (m + 1)-dimensional system
is clearly autonomous. For example, if we add to (1.11) the initial conditions 'y(1) = 1,
“y{1) =0, the resulting 2-dimensional non-autonomous problem can be rewritten as

Wo=lyy+ Yy p(ly=1
W= -1y (=0
My =1 =1,

a 3-dimenstonal autonomous problem, with solution

2 3

Y(x) = xcos{x — 1), p(x)= —sin(x—1), y=x

Since we regard the dimension of the problem as being arbitrary, there is clearly no
foss of generality in assuming that the general m-dimensional problem is autonomous.
(In fact, we will not generally make that assumption, although it will prove useful to
do so in the development of Runge-Kutta theory in Chapter 5.) However, there is a
loss of gencrality in assuming that a scalar problem is autonomous, since the conversion
to autonomous form would raise the dimension by 1, and the problem would no longer
be scalar; thus the general scalar problem remains as y' = f(x, 3), y(a) =n.

1.5 HIGHER-ORDER SYSTEMS

The gth-order m-dimensional system of ordinary differential cquations of the form

Ly (1.15)

.‘,(q) = ¢l(x, ylm‘ y”’,.

np—

e —
ATy T ppin S

1A
vww.ebook3400.conp
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where
PRxB" xR x - xR"->R"

{ ’ g-times

can be rewritten as a first-order system of dimension gm, by the following device:

Define Y,eR™, r=1,2,...,q by
. Y=y (=3
Y=Y, (="
)/J:: sz (E.‘.lll)
Yo=Y,  (Zyh)

The last g — | of the above equations together with (L.15) gives

Y, =Y
Y, =Y,
Yo =Y, )

Y; =o(x, Yy, YZ,....‘YQ),
which is a first-order system of dimension gm. It can be written in more compact form as
Y'=F (x*. Y),
where
Yi=[Y],Y]....
F=[YL Yl ...,

TqT m
Y, 1 eR™
Yo' Y, Yy Y1 eR™.

The initial value problem gonsisting of (1.15) together with the initial conditions
Y a) =944, r=0,1,...,9—1, can thus be writlen in the form

Y =F(x,Y), Y(a)=,

where x:= [, 12, .17 ,’ N '
When seeking numerical solutions of initial value problems, it is standard practice
first to reduce a gth-order system to a first-order system. The only exccptipn is when
the system is second order (and in particular, when such a system does not involve the
first derivatives), for which special numerical methods have been devised. Even then,
whether or not it is better to make the reduction is an unresolved question the
investigation of which leads us into the no man’s fand of {rying to compare norms over
different spaces. In any event, the availability of sophisticated software for the ngmencal
solution of first-order systems is a strong incentive always to make the reduction.
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1.6 LINEAR SYSTEMS WITH CONSTANT
COEFFICIENTS

The first-order system ¥ = f(x, ), [:R x R"—>R" is said to be linear if f{x, ) takes the
form f(x, 1) = A + @(x), where A(x) is an m x m matrix and @eR™ Further, if
Afx) = A. independent of x, the system is said to be linear with constant coefficients.
Associated with such a system

y=Ay+ o) (1.16)

is the homogeneous form

y = Ay. (1.17)

il #(x) is the gencral solution of (1.17) and ¥(x) is any particular solution of {1.16), then
¥(x) = F(x) + ¥{x) is the generai solution of (1.16). (§(x) is the complementary function of
(1.16). and ¥(x) is a particular integral.)

A sel of M solutions {y(x), 1= 1,2,... .M} of (1.17}is said to be linearly independent if

M
Y Cyp0=0=C,=0,

t=1,2,.... M.

A set of m linearly independent solutions {§,(x), t = 1,2,...,m} of (1.17) is said to form
a fundamental system of (1.17), and the general solution of (1.17) is then a linear
combination of the solutions which form the fundamental system. It is easily checked
by substitution that §,(x)=exp(4,x)c, where 4, is an eigenvalue of A and ¢, the
corresponding eigenvector, satisfies (1.17). In the case when 4 has distinct eigenvalues
(the only case we shall need) the set of eigenvectors ¢, t=1,2,...,m are indeed linearly
independent and thus the solutions {exp(Ax)c, t = 1,2,...,m} form a fundamental

system. We then have that the general solution of (1.17) is '

v

)_’(X) = Z My cxp(l,x)c,,

(1.18)
t=1
where the », are arbitrary constants, and that the general solution of (1.16) Is
vix)= Y wexp(hx)e,+ ¥(x), (1.19)
t=1

where (x) is a particular solution of (1.16).

The x, are of course uniquely specified if an initial condition y(a) =7 is added to
(1.16); note that {¢,.t=1.2,...,m} forms a basis of m-dimensional vector space.

The cigenvalucs and cigenvectors of A are, in general, complex, as will be the constants
»,. but, due to the presence of complex conjugates, the sotution (1.19) will be real—as
indeed it must be. For example, consider the 2-dimensional initial value problem

y(0)=n,

RN

y = Ay + ¢(x),
where

e T AP A e 1" T
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The eigenvalues of A are 1 t+iand 1 —i, and the corresponding eigenvectors are [l_.i]T
and [i, 1]7 respectively. Note that there is no need to normalize the cigenveetors, smee
they are going to be multiplied by the arhitrary constants #, and »,. By trymg ;:
particular integral of the form [ax + b, cx + d]". we cstablish that ¢ = {32, —(1 +x)2]

is a particular integral. The general solution is therefore

1 . i (2
p(x) = x expl(i + i);x][i:‘+ xpexpl(t - 1).\'][: ] + { .-(|\+ ,\')/’2]'
he in

nitial conditions are secn to be satisfied when 3, =1 — /2. », =12 -1 On

substituting these values into the general solution and simplifying. we find the solution
of the problem is given by

-4

1p(x) = (2cos x + sin x)exp(x) + x/2

2y(x) = (cos x — 2sin x)exp(x) — (1 + x)2.

Exercises

[3

1.6.1. Solve the initial value problem y = Ay, y0)=[1,0. - 1]7. where

=21 19 20
A= 19 -2 20
40 -—-40 —40

1.6.2. Write the scalar differential equation y* = ay? 4+ by ey plv) as @ first-order system
y = Ay + ®(x). Show that the eigenvalues of A are the rools of the polynomial £ —ar? —hr — ¢,
Show also that if Y(x) is a particular integrai of the given scalar differential equation. then
W= [Y(x), ¥ (%), v 3(x)]" is a particular integral of the equivalent first-order §yslcm

16.3. The differential equation ¥V +y= x? +exp(—2x) has a particutar integral
x? — [exp(~2x)]/7. Find the equivalent first-order system and, using the results of the preceding
exercise, find its general solution.

1.7 SYSTEMS OF LINEAR DIFFERENCE EQUATIONS
WITH CONSTANT COEFFICIENTS

Let {y,,,n =ng,no+ I,no + 2,...} be a sequence of vectors in R™. Theh the system of
difference equations - |

Il

k
Z V¥t = P n=ng, g+ g+ 20 (1.20)
j=0

where the y; are scalar constants (that is, are independent of ) and ¢, eR™, constitutes
a kth-order system of linear difference equations with constant cocfficients. Note that the
solution of such a difference system is a sequence {v,} of vectors. The technique for
establishing the gencral solution of (1.20) is a direct analogue of that for the system
(1.16) of linear differential equations with constant cocfficients. Let {¥,} be the general

MWw.ebookE
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solution of the homogeneous form '
“‘
,;, i, =0, m=ngmg+ g+, (1.21)

and fet {if,} be a particular solution of (1.20); then the general solution of (1.20}is ‘v, },
where v, = F, + .

Asetofl K solutions {{v, }.1 = 1,2,..., K} of (1.21) is said to be linearly independent if

n=ny, ng+lng+2. ... =C=0 t=12..K.

A set of k lincarly independent solutions {{§, },1=1,2,....k} of (1.21) is said to form
a fimdamental system of (1.21), and the general solution of (1.21) is then a linear combina-
tion of the solutions which form the fundamental system. Let us attempt to find a

solution of (1.21) of the form y,, =r". By substitution, we find that this is indeed a

solution provided that r, 1s a root of the characteristic polynomial
. , :
a(ry= 3y y;r’

Il 7(r) has k distinct roots then it can be shown that the set of solutions {7}, t =1,2,...k
forms a flundamental system of (1.21) and the general solution of (1.20) is then { y, } where

k
Ya= 2 1+ Y,
=1
where the d, are arbitrary vectors, which will be specified if k initial values or starting
ralues are given. If ry is a root of n(r) of multiplicity 4 and the remaining k — gt roots
arc distinct then the set of solutions {r1}, {nr}},...,{n""'r1} and {r}, t=p+1,
p+ 1.k form a fundamental system, and the general solution of (1.20) becomes {y,},
where

k

u N
Fa= oy WY i+,

j=1 t=p+1

where the d|; and the d, are arbitrary vectors. When the roots of n are complex then
the corresponding vectors d, are likewise complex; the presence of complex conjugates
ensures that the selution will be real. For example, consider the 2-dimensional 4th-order
difference system

Ynea - (’,\',..3 + M,V“ 27 16yn+l + 8yn= ["9 ]]T’ )’nERZ-

with starting values yo = [1,017, v, =[2 117, y; =[3.2]", y1= [4,3]". By trying a
particular solution of the form ¢, = na + b, a,b, eR?, we find that , = [n + 2, 177 is such
a solution. The characteristic polynomial is

) =rt—6r) + 14r* — 16r +8=(r —2)*(r* - 2r + 2),
which has roots 2,2, 1 +i, | —i. The general solution thus has the form

Vo= 2y A2, + (0 )dy (1 —i)'dy + [0+ 2, .

W

ITERATIVE METHODS FOR NONLINEAR SYSTEMS n

Using the given starting values, we obtain a set of four equations for the four arbitrary
vectors d,,d,,, 3, ds, whose solution gives

1

4 iy - [ }
d“:[—g] d”'u d“[u-si)/a] ""[uuwfi
whence
nj/4 — 1 -4 _n[ /4 ] l:n+2]
— " L] l‘— +
Ya 2[(,:;3)/2]“”') [(1—3»/4]” VL4 siya |

On writing 1 +i= \/E(cos n/4 i isinn/4) we oblain the solution in real form:

y..=2"! o +2(n—2)/2[ fi" '”T/4. | ]4}[n+2]'
(n—3)/2 cos nn/4 + 3sinnn/4 1

Exercises

1.7.1. For the example at the end of the above section, calculate vy, ve and v, directly from the
difference system and the given starting vatues and show that the values so found coincide with
those given by the general solution.

7.2 W yyeq— 2y ey Hpra=c,n=012,.., where y,. ceR™ pelk ¢ is constant and 0 <yt < 1.
show that y, = c/(1 — p) as n— co.
1.7.3. Let r, and r, be the roots, assumed distinct, of the quadratic r? — ar — b. Show that the

solution of the inhomogeneous linear constant coeflicient difference system v, ; = @1 — by, =T,
satisfying the initial conditions yo = do, }1 = 8, where y,, T,. 8o, 5,€R™, is given by
'

Yn=

'

"2
[(r’; -8, — ! — 3 by + St ! —r;"")"l'fJ n=0.1,....
j=o

ry—r;
where the summation term is taken to be zero when the upper limit of summation is negative.

1.7.4. The Fibonacci numbers are a sequence of integers {g n="0,1,...} such that cach member
of the sequence is the sum of the two preceding it, the first two being 0 and 1. Construct the first
eleven Fibonacci numbers and compute the ratio ¢, /¢, n =1, 2.....9. Do you see any signs of
this ratio converging as n increases? By solving the approptiate scalar difference equation, prove
that

lim @, x/‘/’n:%“ + \/5)~

neo

.

1.8 ITERATIVE METHODS FOR NONLINEAR SYSTEMS
OF ALGEBRAIC EQUATIONS

We shall frequently need to find numerical solutions of systems of nonlinear algebraic
$
equations of the form

y=o0y), @:R"-R" (1.22)
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T'his is done iteratively by one of two different methods. The first is fixed point iteration,
which consists of constructing a sequence {y*'} defined by

e = by, v=0,1,2,..., y' arbitrary. (1.23)

I'he following theorem states conditions under which (1.22) possesses a unique sofution
to which the iteration (1.23) will converge:

Theorem 1.2 Let @(y) satisfy a Lipschitz condition

lo(y) — eI <My —y*

for all v, p*, where the Lipschitz constant M satisfies 0 < M < |. Then there exists a unique
solution v =2 of (1.22). and if {y™) is defined by (1.23), then y"* — o as v— co.

Occasions will arisc where we are unable (o satisfy the hypotheses of Theorem 1.2,
and the iteration (1.23) diverges. In such circumstances we turn to another form of
iteration, Newton iteration, and usually just hope that a unique solution of (1.22) exists.
Newton iteration (or the Newton Raphson process) is most familiar when applied to
the scalar problem F(y) =40, F:R— R, when it takes the form

' P FGPYEGY), v=0,1,2,.. (1.24)
The interpretation of (1.24) in terms of drawing tangents to the curve z = F(y) and
determining where they cut the y-axis will be familiar (o most readers. Such an
interpretation is enough to indicate that Newton iteration, unlike fixed point iteration,
has only local and not global convergence; that is, it will not converge for arbitrary y*!
but only for '™ sufficiently close to the solution. There exist theorems telling us how
close to the solution 11 has to be, but these are scldom of value in applications, and
the usual practice is simply to guess y'°% if the iteration fails to converge, we abort it
and scek w better first guess. I convergence is achieved; then it is quadratic, that is, the
error in the current iterate is asymplotically proportional to the square of the error in
the previous itcrate.
Newton iteration applied to the system F(y) = 0, F: R™ — R™, takes the analogous form

b= M G, v=0,1,2,., (1.25)

where J(1) = (CF¢)(y). the Jacobian matrix of F with respect to y. Applied to (1.22)
(putting F(1)=y — (1)) we clearly get

] -1
R [l —‘(;f(y‘%} D= o™] v=012..

In practice, it is more cfficient not to invert the matrix but instead use LU decomposition
(sec. for cxample. Atkinson and Harley (1983)), to solve, at each step of the iteration,
the linear algebraic system .

. ‘
[’ - (f”u"")]ay"" = WM, v=0,12.., (1.26)
oy

¢

omsp
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where
liy"']:= y‘” R N

is the increment that must be added to the old iterate to obtain the new one. (We have
added the tilde to avoid later confusion with A, defined in §1.2 A operates on the
iteration superscript, whilst A operates on the subscripts in a set of discrete values {v,}.)
N« wton iteration is considerably more expensive on computing time than is fixed point
iteration. Each step of the latter costs just one function evaluation, whereas each step
of the former calls for the updating of the Jacobian and a new LU decomposition and
back substitution. In order to cut down on this computational cffort. one can decline

to update the Jacobian, so that (1.26) is replaced by

3

[, - %‘g(ytou]ayhl = WM. v=0.12.... (127)

This means that the same LU decomposition can be used for every step of the iteration.
and only new back substitutions need be performed. The iteration {1.27) is known as
modified Newton iteration {and sometimes as quasi-Newton or pseudo-Newton iteration),
Note that it is the analogue of drawing all tangents parallel to the first one in the
interpretation of Newton iteration for a scalar problem.

Exercises

1.8.1. Show that there exists a unique solution of the scalar equation v = ¢(v). where p(y} =cos v.
Fixed point iteration for this equation can be nicely demonstrated on a hand calculator. Set any
number on the calculator (set to compute in radians, of course) and repeatedly press the cosine
key. Hence demonstrate that the iteration converges to the solution, y = 0.739085..., no matter
what starting value is used. :

1.8.2. Using a microcomputer {or a programmable calculator) show that. for the problem in
Exercise 1.8.1, modified Newton iteration sometimes converges and sometimes diverges, depending
on the starting value. Show also that if the starting value is reasonably close to the solution, then
it converges considerably faster than does fixed-point iteration.

1.9 SCHUR POLYNOMIALS
)

We shall frequently be concerned with the question of whether the roots of a polynomial

with real coeflicients iie within the unit circle. There is a handy phrase for describing
such polynomials:

Definition A polynomial n(r) of degree k is said to be Schur if its roots r, satisfy |r,| < 1.
t=1,2,...,k ,

It is mildly surprising that the conditions for a polynomial to be Schur turn out not to
be particularly easy or natural. There exist several criteria each of which throws up a set
of inequalities that must be satisfied by the coefficients of the polynomial. In the author’s

\
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experience, the criterion which usually produces the most easily solved set of inequalities
is the Routh Hurwitz criterion. This is in fact a criterion for the roots of a polynomial

to lie in the left half-plane, so it is necessary first to make the transformation r— z,
r.ze(, where

r=(1+2)/(1 - z).

This transformation maps the boundary of the circle |r| =1 onto the imaginary axis
Rez =0, and the interior of the circle [r] = | onto the left half-plane Re z < 0. Define

Piy= (b= 2Pl (U+ 21 = 2)] = apz* + a,2* "' 4 - 4 q,, (1.28)

where we may assume, without loss of generality, that a, > 0. The necessary and sufTicient
conditions for the roots of P(z) to lie in the hall-plane Rez <0, that is, for n(r) to be

Schur, are that all icading principal minors of Q be positive, where Q is the k x k matrix
defined by

4y dz as an- |
oy dy Qg - Ay,
0 0 ay ay - ay_,
= A
0 do ay - ay-4
O 0 0 .. a,

(where a; is to be taken to be zero il j > k). It can be shown that these conditions imply
thata; >0, j=0.1,..., k, so that the positivity of the coefficients a; in (1.28) is a necessary
but not sufficient condition for n(r) to be Schur. For k =2,3,4, the Routh-Hurwitz
conditions turn out (o be:

k=2 «;>0,j=0,1,2
k=3 a;>0,j=01,23,a,a;—a;a,>0
k=4, a;>0,j=0,1,2,3,4, a,a,a; — aga} — azal > 0.
We illustrate by an example, which is itself a useful result. Consider the quadratic
nry=r’+ar+ . (1.29)
Applying (1.28), we have that

P)=(1+27 + ol ~ 22+ Bl —2)2 = ayz’ + a,z + a,,
where

ap=1—a+f, a, =200, ay=1+a+p. !

The necessary and sufficient conditions for the quadratic (1.29) to be Schur are therefore
that the point (a, ) lics in the interior of the triangle in the «, f§ plane bounded by the lines

f=1 f=a—-1 f=—a—1

(sec Figure 1.1).
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Exercises

1.9.1. Use the Routh—Hurwitz criterion to find the interval of a for which the polynomial
23 4 (20 — 1)r2 + (5a — 2)r + | — 3o is Schur. Check your result by finding a linear factor of the
polynomial and using Figure 1.1.

1.9.2% P?(z,w), z, weC, is a polynomial of exact degree p in z, whose cocflicients are themselves

. polynomials in w of degree at most g, where at least one of these polynomial coefficients has exact

degree g. Specifically,

» . 2 | .
Przw) = 3 p(wh 10 w= Y gl i=00p
i=0

i=0

where there exists at least one i*€{0,1,...,p} such that y., #0. N ’
We shall say that P?(z,w) is ultimately Schur if there exists a positive constant K such that
P?(z,w), regarded as a polynomial in z, is Schur for all w satisfying Rew < — K <0. Prove that
q
if P:(z, w) is ultimately Schur, then y,, # 0.

1.10 INTERPOLATION FORMULAE

Consistent with our policy for this chapter, as stated in §1.1, we shqll gather together
in this section only those results from interpolation theory which will be ne.edcd later
in this book. The reader who wishes to see a full account, including proofs, is referred
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to Isaacson and Kelier (1966). In most accounts of interpolation theory, the points to
be interpolated are taken 10 be {(x,, 4 Fry ) j=0,1,...,q, but for our purposes it will
be more natural to taken them as (x,.; Fy_ ) j =0,1,...,q9

There exists a unique vector polynomial (that is, a polynomial with scalar argument
and vector coefficients) of degree at most g which interpolates (that is, passes through)
the 4 + 1 distinct data points (x, . F,.;) j=0,1,...,q, where x,-€Rand F,_;eR™. We
shall denote this polynomial by I,(x), and we shall be particularly interested in
representations of [,(x) which cnable us readily to compute I+ (x) from [ (x).

The interpolant takes a particularly simple form in the case when the data points are
equally spaced, that is, when x,_;=x,--jh, j=0,1.....4, and h is a constant. In such
circumstances it is advantageous to make use of the backward dilference operator v,
defined in §1.2.

The Newton-Gregory backward interpolation formula

When the data are cvenly spaced, ,(x) may be wrilten in lerms of the backward
differences of F as

=P =3 (- 1)'( f’)v‘pn, (1.30)
1

i=0

where x = x, + rh, and <Ar) is the binomial coefficient. Illustrating in the case g =2
we have !
Pyr)=F,+ rVF, +r(r + YVF,

X=X, P r:O => Pz(r)=F,,

X=X,y < r=-1 = P,(nN=F,—VF,=F,_,

X=X,., <= r=-2 = Pz(r)=F,,—-2VF,,+V2F,,=F,,_Z.
Il the data points have arisen f{rom evaluating a function F(x)eC®*!, that is if
Fo, i=Fx,.j=01...4, then the error in the interpolation can be written in the form

Flx, + rh) — lq(x,,+rh)=(——1)"”( - >h"“13""'”(§) (1.31)
q+1

where, using the notation of §1.3, the bar indicates that each component PRt g
evaluated at different mean values &,, each of which is an interior point of the smallest
interval CONMainIng X,, X, 4 1+---+ Xp4q and x, +rh.

Note that from (1.30) it is straightforward to generate [, ,(x) in terms of I,(x).

The Lagrange interpolation formula

In the case when the data are unevenly spaced, the easiest interpolation formula is that
due to Lagrange. Define

R e
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X = Xp-j
Lof= ] = ="7F
(=0 Xy j = Xy
%]

It is obvious that L, ,(x} is a polynomial in x of degree g, and moreover that

Coifi=j)
L, (x,_¢)= , i=12...4q
e {o i #j} !
It follows that I (x) can be written in the form

I(x)= j‘;O‘L% SAOF, ;. (1.32)

1
Although the Lagrange formula is conceptually simple, it suffers a serious dis-
advantage. If we wish to add a further data point (x,_,_,.F, _ _,) then, using (1.32)
with g replaced by g + 1, we can obtain an expression for 1, ,(x), but there is no easy
way in which we can generate /., ;(x) directly from I (x). An alternative form overcomes
this difficulty.

The Newton divided difference interpolation formula

Given the g + 1 (unequally spaced) data points (x,_, F,_;), j=0.1,..., ¢, we define the
divided differences F{n,n—1,...,n—il,i=0,1,...,q recursively by

F[n}.=F,
Flnn—1,...on—i+1}—Fn—1tn—-2,...,n—i]

Flnon—1,....n—i}= (1.33)
) Xp = Xpo
The interpolating polynomial I (x) can be written in the form
L(x)y=F[n]+(x—x)Fn,n—1]+ -
+(x = x)x =X, y) (X=X, )F[n =1, .n—q} (1.34)

Illustrating this in the case g = 2, we have

I,(x) = F[n] + (x — x,}F[n,n — 1]+ (x — x,{x — x,_ ) F[m,n — ,n = 2],
whence (‘
I (x,)=F[n] =F,
Iyx,-1)=Fn] —(F[s] = F[n—1})=Fln—1]=F,_,
Iy(%p-2) = F[N] + (Xy- 3 = X)F M0 — 1] = (X, = X JF[nn = 1] = F[n — 1,n = 2])
=Fn]+(x,.y —x)Fn,n =11+ (x,_; —x,_)F[n—1,n—-2}
=F[n] —(F[n] - F{n—1}) ~(F[n—1],- F[n - 2])
=F[n-2]=F,_,.
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Now (1.34) and (1.32) are different representations of the unique polynomial of degree
1t most ¢ interpolating the data (x,_; F,-;). We can therefore equate the coefficients
of x9 in the two polynomials (o get

il
Finon—1,.... n—-gql=Y l F,,,,,/ [i] (x,,_,—x,,,i)} g =0,1,....
j=ol. =0 ,
i%]
It follows that the value of F[mn—1,...,n—q] is independent of the order of the
mtegers mon - Looooon g Mare precisely,

Finon 1, n—ql=F{po.pi,- i Pgls g=0,1,..., (1.35)

where (poapee o pe) is any permutation of the integers {non—1,...,n—q}

Now let us suppose that we wish to add an extra point (x,_,. F,_,-1) to the data
«t. Then it follows from (1.34) that the unique polynomial I, ,(x) of degree at most
¢ + 1 interpolating the data (x,. ., F, ), j=01,...,q+ 1 is given by

I )= 1)+ (x - Y =, ) (x = x, o JF{nn — l,....,n—qg—1] (1.36)

and. in contrast with the Lagrange form, we have an easy way of generating 1,44(x)
from I ,(x).

What would happen il we wished to add to the original data sct an extra point
(X2 1o by at the ‘other end™ The answer is that nothing new happens at all, since
there is no such thing as the “other end’! The data, being unevenly spaced, can be
distributed in any manner, and we certainly have not assumed that x, > x,_y > -+ > X, _g.
There is nothing to stop us labelling the extra point (x,4 . Foyy) rather than
(%y 4 «Fu.q )and noting that x,_,—, does not appear in (1.36), we can rewrite that
equation in the form

It =100+ (x - Y HX =X, ) x=x, JF[mn~ 1. n—qn+ 1].
In view of (1.35), this can be rewritten as .

Too ) = 1004 (x--xx,)x — x, e dx—x,_JF[n+ t,n,....n—q) (.37

a representation of the polynomial interpolating (x,_;, F,_ ;) j= —10.1,....q in terms
of the polynomial interpolating (x,. . F, ) j=0,1,....q, which we shall need later in
this hook. We illustrate this result in the case g = 1, when (1.37) reads

L) =100+ (x = x,x = x,_)F[n+ Lnn— 1],
where
I:l(x) = Fn) 4 (x — x,)F{n,n —1].

Since [, (x) interpolates (x,, F,) and (x, . F,_,) then so does [,(x), since the added term
is zero at x=x,, x,_ . Further,

Iy ) =Fn) +{x,00 — x [ — 1]+ (X0 = X HF[n + 1,n] — F(n,n—1])
=F[n]+(x,,, ~ x)F[n+ 1,n]= Fln+1]=F,¢y

o
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Note that when the data become equally spaced, then the divided differences do not
revert to backward differences. It is easily seen that when x, ;= x, — jh '

b

1 .
F{non—1,... ,n—i}=--.V'F, i=12,....q—1 (1.38)

i
However, it is readily checked that on putting x, _; = X, — jlrand using (1.38), the Newton
divided difference interpolation formula (1.34) reverts o the Newton- Gregory backward
interpolation formula (1.30) for equally spaced data.

Exercisas

1.10.1. Find the quadratic polynonqial 1,(x) which interpolates the data potnts (x. 1/x) for x = 1.0,
0.9, 0.8 using (i) the Newton-Gregory backward interpolation formula and (ii} the Lagrange
interpolation formula.

1.10.2. Find the cubic polynomial I,(x) which intcrpolates the data points (x,1/x) for
x=10,09,0.8,0.75 using (i) the Lagrange interpolation formula and (i) the result found in
Exercise 1.10.1 together with equation (1.36). You should be persuaded of the advantage of the
divided difference approach. .

1.11 THE DIRECT PRODUCT OF MATRICES

. .
Suppose we were dealing with a scalar differential equation y' = f(x,y), 1R x R-R;
there arise occasions when we need to consider an s x s matrix whose elements are values
of 3f /dy. However, in this book we shall be dealing exclusively with the system of
differential equations y' = f(x,y), f: R x R™—R", the corresponding matrices will have
dimension ms x ms, the scalar element df/dy being replaced by the ni x m Jacobian
matrix 8f/dy. This leads to somewhat heavy notation, which tends to obscure what is
going on. A useful notation which helps overcome this problem is that of the direct
product of two matrices. In this scction we define the direct product and list only those
properties which we shail need. A fuller treatment can be found in Lancaster (1969).

Definition Let A = [a;] be an s x s matrix and let B he an m x m matrix. Then the
direct product of A and B, denoted by A® B, is an ms x ms matrix defined by

a,B a,B ' - a.B
ayB apB - 4B
A®B= : :
a B a,B - - a,B
» 1 .
Properties

L}
() (A® BY(C® D)= AC® BD, where A and C are s x s, Band D are m x m.
() (A®B)'=A"'®B""
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(3) If the cigenvalues of A are p,.i=1,2,...,s, and those of Bare q;.j=1,2,....m, then

A® B has eigenvalues pq; i=1,2,...,5j=12,..

[

Exercises

1.11.1. Prove Property (1) and deduce Property (2).
1.11.2. Verify that Property (3) holds for the case

o /Yy
A= , B=
(l 2) (—l

.,m.

7
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2 Introduction to
Numerical Methods

+

2.1 THE ROLE OF NUMERICAL METHODS FOR
INITIAL VALUE PROBLEMS

The mathematical modelling of .many problems in physics, engineering. chemistry.
biology etc. gives rise to systems of ordinary differential equations (henceforth shortened
to ‘systems’). Yet, the number of instances where an exact solution can be found by
analytical means is very limited. Indeed, the only general class of systems for which
exact solutions can always be found (subject to being able to find a particular integral)
consists of linear constant coefficient systems of the form

y=Ay+F(x), (2.

where A is a constant matrix. There are of course many cxamples of particular linear
variable coefficient or nonlirear systems for which exact solutions are known, but, in
general, for such systems we must resort to either an approximate or a numerical
method.

In this context, by ‘approximate methods’ we mean techniques such as solution in
series, solutions which hold only asymptotically for large x, etc. Somgfimes the view is
taken (wrongly in the author’s opinion) that since powerful and well“tested numerical
procedures are now commonly available, such approximate methods are obsolete. Such
a view ignores the fact that approximate methods frequently (as in the case of linear
variable coeflicient systems) produce approximate general solutions, whereas numerical
methods produce particular solutions satisfying given initial or boundary conditions:
specifically, numerical methods solve initial or boundary value problems, not systems.
Situations can arise where a low accuracy approximate gencral solution of the system
is more revealing than high accuracy numerical solutions of a range of initial or boundary
value problems. Further, even when the task in hand is the solution of a specific initial
or boundary value probiem, the system may contain a number of unspecified parameters;
approximate methods can sometimes cast more light on the influence of these parameters
than can repeated applications of a numerical method for ranges of the parameters, a
procedure which is not only time-consuming but often hard to interpret.

Conversely, some mathematical modellers seem loath to turn to numerical
procedures, even in circumstances where they are entircly appropriate, and do so only
when all else fails. Just because an approximate —or even an exact —method exists is
no reason always to use it, rather than a numerical method, to produce a numerical
solution. For example, calculation of the complementary function in the exact solution
of the simple system (2.1) involves, as we have seen in §1.6, the computation of all of
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the eigenvalues and cigenvectors of the matrix A; it is not difficult to construct examples
where a numerical solution of an initial value problem involving (2.1) computed via the
cigensystem will be considcrably less accurate and cfficient than one computed by an
appropriate numerical method applied directly to the problem. Modern numerical
methads, packaged in highly-tuned automatic algorithms are powerful and well-tested
procedures which, together with other techniques, should surely find a place in the
toolkit of any mathematical modeller.

2.2 NUMERICAL METHODS; NOMENCLATURE
] AND EXAMPLES

This book is concerned with numerical methods for initial value problems only. As we
have seen in § 1.5, a higher-order differential equation or system of equations can always
be rewritten as a first-order system, and we shall always assume that this has been done,
so that the standard problem we attempt to solve numerically is

Y= (xy), ylay=n, 2.2)

where v = {"v.2v ™V =3 " Tand g = [, B, .. "] are m-dimensional
(column) vectors, and x and «a are scalars. A solution is sought on the interval [a,b] of
x. where ¢ and b are finite. [t is assumed that the hypotheses of Theorem 1.1 (see §1.4)
hold, so that there exists a unique solution y(x) of (2.2).

All of the numerical methods we shall discuss in this book involve the idea of
discretization; that is, the continuous interval [a.b] of x is replaced by the discrete point
set ix,} defined by x,=a+nh, n=0,1,2,...,N = (b — a)/h. The parameter h is called
the steplength: for the time being (in fact for quite some time) we shall regard it as being
@ constant, though we remark in passing that much of the power of modern algorithms
derives from their ability to change h automatically as the computation proceeds. We
lct y, denote an approximation to the solution y(x,) of (2.2) at x,,

Ya = yix,), (2.3)

and our aim 1s to find a means of producing a sequence of values { y,} which approximates
the solution of (2.2} on the discrete point set {x,}; such a sequence constitutes a numerical
solution of the problem (2.2).

A numerical method (henceforth shortened to ‘method’) is a difference equation
involving a number of consecutive approximations y,,;,j=0,1,...,k, from which it will
be possible to compute sequentially the sequenge {y,/n=0,1,2,..., N}; naturally, this
difference equation will also involve the function f. The integer k is called the stepnumber
of the method; if k = 1, the method is called a one-step method, while if k > 1, the 1ethod
is valled a multistep or k-step method. :

An algorithm or package is a computer code which implements a method. In addition
to computing the sequence {v,} it may perform other tasks, such as estimating the error
in the approximation (2.3), monitoring and updating the value of the steplength h and
deciding which of a family of methods to employ at a particular stage in the solution.

Numecrical methods can take many forms.
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Example 1
h A )
Yue2 + Yosr ™ 2y, = 4[f(xn+z~_\'n+2) + 8/ (Xpa s ¥ou )+ 300030 ]
Example 2
h .
Yns2— Yas1 = i [3j(xn+ 1 Vns l) - 2/(":(‘ ‘n)]

Example 3

h .
yn+3 + %yn# 27 %yn+l - %yn = é [19/(-‘("4 2-,“n+ Z) + 5/"‘“"‘_“»1)]'

Example 4
;n+2 - yn = h[f(xn+ 2!.":4 2) + f(xnv }n)]
where
‘ } ‘
V= e+ 2y, = ;[f(-“ﬁ e Ynet) = 3503 )
4
Example 5
h
Vit =~ Y= = (kg + 3k5)
4
where
' ky = f(xp y4)
I(2=f(4\’"+%h,.\’"+%hk‘) 1
ky= f(x,+ 3y, + ghkf).
Example 6
h
Va1 — ¥a=z(ky k),
2
where

kl =f(xmyn)
ky = f(x,+ Iy, + Shk, +$hk;).

Clearly, Examples 5 and 6 ate one-step methods, and on putting v, = the sequence
{y.} can be computed sequentially by setting n=0,1,2,... in the difference cquation.
Examples 1,2 and 4, however, are 2-step methods, and it will be necessary to provide
an additional starting value y, before the sequence {y,} can be computed; in the case
of Example 3, a 3-step method, it will be necessary to provide two additional starting
values, y, and y,. Finding such additional starting values presents no serious difficulty.

.
+
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One can always employ a separate one-step method to do this, but in practice all modern
algorithms based on multistep methods have a self-starting facility; this will be discussed
in Chapter 4,

If the method is such that, given v,,;,j=0,1,... .k — 1, 'the difference equation yields
v, ., explicitly, it is said to be explicit; this is clearly the case for Examples 2,3,4 and
S_1If the value v, ., cannot be computed without solving an implicit system of equations,
as is the case for Examples 1 and 6 (note that in the latter k is defined implicitly) then
the method is said to be implicit. Since the function f is in general nonlinear in y, implicit
methods involve the solution of a nonlinear system of equalions at every step of the
computation. and arc thus going to be much more computationally costly than explicit
methods. Note that in the casc of explicit methods the provision of the necessary starting
values essentially converts the method into an algorithm, albeit a rather rudimentary
one. In contrast, an implicit method is some way from being an algorithm, since we
would have to incorporate in the tatter a subroutine which numerically solves the implicit
system of equations at cach step.

xamples 1,2 and 3 are examples of linear multistep methods, a class in which the
difference cquation involives only linear combinations Of Yuu o S (Xs o Yas i =0, 1,004 k.
Fxample 4 is a predictor corrector method, in which an explicit linear multistep method
{the predictor) is combined with an implicit one (the corrector): note that the resulting
method is explicit. Examples § and 6 fall in the class of Runge-Kutta method, a clags
with a much more complicated structure. ‘

All of the above cxamples, and indeed (almost) all of the mecthods covered in this
book can be written in the general form :

k
Z Otj,\'nu:hd’f()’..us Yntx- lv'“vymxn;h)! (24)
j=o

where the subscript f on the right-hand side indicates that the dependence of ¢ on y, 44,
Vick 1oeeen ¥ X, 15 through the function f(x,y). We impose two conditions on (2.4),
namely

‘/)fEO(yan yn+k—l"";ymxn;h‘)507

I (/)f‘,\',. I S LI hy— d’j'(y:u’ )’:+k_ 1y ‘}’:, X, M (2.5)

k
SM Y v — vl
j=0

where M is a constant. These conditions are not at all restrictive; for all methods of the
form (2.4) considered in this book, the first is satisfied, while the second is a consequence
of the fact that the initial value problem (2.2) is assumed to satisfy a Lipschitz condition
(Theorem 1.1 of §1.4). Thus, Example 4 can be re-cast in the form

Var2 = ¥n= hd)f(yn# 1y Y Xns h)a

where '

/ 3h
d>f z.’.(xn*l' 3.‘.n&l - 2_}',,+ ;f(xnd 12 ¥n+ l)“ 7f(xm yn))+f(xmyn)

IN

i
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and it is clear that the first of the conditions (2.5) is satisfied. By repeatedly jdpplying
the Lipschitz condition '

N y) = fley) < Lity —y*1l

it is straightforward to show that
L]

"d’f(yn+l!ym X,,;h)— ¢f(y:+|vy:vxn; h)”

//’)uhl\'

. 3h
< \_, + ib}bl‘l}'nﬂ - }':U i+ (3 + 5 L} Liy, b
whence the second of (2.5) is satisfied with

M=(3+3hL)L.

Each of the major classes of methods will be studied in detail in separate chapters
later in this book, but certain fundamental properties, common to all these classes, can
be devcloped for the general class (2.4), and this will be done in the following sections.

: ’

Exercise

2.2.1. Show that the conditions (2.5) are satisficd for all of the six examples given in this section.

2.3 CONVERGENCE

Let us consider the numerical solution of the initial value problem (2.2) é‘ivcn by the
general method (2.4) with appropriate starting values, that is the solution given by

k
2 0g¥nay=hby(nindnin i .yn.x":h)l
J (2.6)

J
V= u=0,1,.. . k-1~

In the limit as the steplength h —0, the discrete pointset {x |x,=a+nhn=01,... . N=

« (b — a)/h} becomes the continuous interval [a.b]. An obvious property to require of any

numerical method is that, in this limit, the numerical solution {y,.n=0.1,...,N =
(b — a)/h}, where {y,} is defined by (2.6), becomes the exact solution y{x), xe[a,b]. This,
in loose terms, is what is meant by convergence; the concept is straightforward, but there
ai : notational difficulties to be considered.

Consider a sequence of numerical solutions given by (2.6) obtaincd by repeatedly
halving the steplength, that is by taking h =thg, ht,, h,..... where h; = ho/2', and let us
temporarily adopt the notation y,(h;) to denote the valuc y, given by (2.6) when the
steplength is ;. *

Figure 2.1 typifies the sort of behaviour we envisage for a convergent method: here
the solid line represents the exact solution for a component 'y(x) of ¥(x), and the points
marked [, O, + represent the numerical solutions {'y, (o)}, {'v.(h)}, {'y.(hy)}
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° Yy, h,)

Figure 2.1

!

respectively. 1t would be guite inappropriate to consider the convergence of the sequence
e et L Tt for fixed n; for any fixed n such a sequence would clearly tend
Lo the initial value 7. What is appropriate is to consider a fixed value, say ® = a + 3h,,
of v and. noting that

t=a+3y=a+6h,=a+ 12h,=...,

consider the convergence of the sequence "vylho) 'yelly). '¥yalhy).... to "y(X)
moreover. weé clearly want this to happen for all xe[a,b] and for t=1,2,....m. Of
course. we need to consider not only the case where the steplength is repeatedly halved,
hut more general sequences of steplengths tending to zero. We are thus led to the idea
of a limiting process in which #—0 and n— oo simultaneously in such a way that
v = u + nh remains fixed. Such a limit is denoted by

lim  F(h.n)
h-=0 !
x=a+nh
and is called # fived station limit. 1t is nothing more than an ordinary limit in which
we must substitute (x — a)/h for nin F(h, n) before ietting h — 0 (or, aiternatively, substitute
(x — a)a for Iin I'(h,n) belore letting n— oo). For example,

dim (L+hy= lim explnin(l + k)] = lim exp[f—l"ln(l +h)}=exp(x—a)‘
1, .:) . f .:) Y h—0Q h

Alternatively.

lim cxp[nin(l + )] = lim cxp[rtln(l + )i:f'>] = exp(x — a).

h=0 n—e+m n
xTatnh

There remain two other points to be considered before we attempt to frame a definition
of convergence. Firstly, it is clear that we have to impose some restrictions on the
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starting values #,(h), p=0, 1,...,k—1; referring to Figurc 2.1 again, the obvious
restriction is that as h -0, g, (M —n, u=0,1,... k-1 Secondiy, if convergence is to be
a property of the method, then convergence must take place for all initial value problems.

Definition The method defined by (2.6) is said to be convergent if. Jor all initial value
problems satisfying the hypotheses of Theorem 1.1, we have that

im y, = y(x)
)
x=ath
holds for all xe{a. b] and for all solutians { y,} of the difference equation in (2.6) satisfying
starting conditions y, = n,(h) for which limy,(h) =1, @ =0 ...,k = 1. A method which
is not convergent is said to be divergent.

. !
An alternative cquivalent definition is possible:

%
Alternative Definition The method defined by (2.6) is said to he convergent if. for all
initial value problems satisfying the hypotheses of Theorent 1.1, we have that

max || y(x,)— r, 1 =0 as h—0.

0<ns<N

Note that the starting values in (2.6) as well as the solution {y,[n=kk+ 1. ... N} are
thus required to converge. Although this definition is much simpler, it does not alert
us to the notational difficulties that will be encountered when we attempt to use the
definition in any analysis.

2.4 CONSISTENCY

We now turn to the question of what conditions a numerical method must satisfy if it
is 1o be convergent. We would expect that one such condition would be that it has to
be a sufficiently accurate representation of the differential system. 11 would be an infinitely
accurate representation if the difference equation (2.4) were satisfied exactly when we
replaced the numerical solution y,,; at x,. by the cxact solution y{x,, ;). for
j=0,1,2,...,k. We therelore take as a measure of accuracy the valuc of the residual
R, ., which resuits on making this substitution. We thus define R, ., by

K .
Ryiii= Z Otjy(x"“-) - "d’/"(}’(-“nu)v M Xako b X h) (2.7)
/=0 :

R, .« is essentially the local truncation error, which we shall discuss in detail for the
various classes of methods later in this book. There are, however, several variants of
the definition of local truncation error; sometimes it is taken to be R, /b, and sometimes
it is further scaled by a gonstant multiplier independent of h.

A first thought on the appropriate level of accuracy that might be needed for
convergence is that we should ask that R,,,—0 as I — 0. Further thought shows that
this is not going to be enough. If we let h—0in (2.7) then {assuming that ¢ does not
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tend to 7 as h—0, as is certainly always the case) we have that

k
R,k Z a}y(x,,”)
j<o ,

and the condition R, ,, =0 as h—0 can put a constraint only on the coefficients «, ifi
the method (2.4). 1t does not constrain the function ¢, in any way, and we cannot
betieve that convergence can be obtained with arbitfary ¢, since that would be
cquivalent to choosing the function f arbitrarily; in short, the method would not even
know which differential system it was dealing with. As we shall see presently, the
appropriate level of accuracy is to demand that R,./h—0as h->0.

Definition  The method (2.4) is said to be consistent if, for all ihitial value problems
satisfying the hypotheses of Theorem 1.1, the residual R,y defined by (2.7) satisfies

|
lim -R,, . =0. (2.8)
n-o h
x=a+nh

{The word ‘consistent’ is shorthand for the phrase ‘consistent with the differential systein’)

We now establish the conditions which (2.4) must satisly if it is to be consistent. From
Theorem 1.1 of §1.4 we can assume the existence of y'(x) in [a,b], but not necessarily
that of higher derivatives. This means that, in investigating the limit (2.8), we must use
the mean value theorem rather than any expansion in powers of h. Referring to §1.3,
Case .2, we may write

}'(.\'"4/-)—}’(X,‘)Zjh_}—”(éj), j:()v 1,....k
where

.W(:j) = [ly,(éu)» zy/(éz/)» cevy "'y'(C,..,-)]T,

and &;e(x, X, ) (= 1,2,...,m. It then follows from (2.7) that

1 1 & ‘ .
R 1= Z ’Xj[y(-“n) +jh)7'(€ﬂ] - d’f(}’(xnu)» JIE S DY L P, X5 1)
h hj:() .
1/ * K
= ( Y. a,’)."(-“n) + ), jajy_’(éj)—d)f(y(xn+k)vy(xn+k—l)ﬂ"'vy(xn)yxn;h)' ;
h j=0 j=0 :

In the limit as h—0, x, =a + nh,
FE)=yx), =01k
and

¢j'(_V(X,, +k)s )’(X,. +k-1 )7 s y(-’f,.), Xny h) = d)f(y(xn)’ )’(Xn)v e ,V(X,.), Xy 0)

since, as 10, x,, ;= x, + jh > x,.j=0,1,..., k Tt follows that (2.8) holds, for ali initial

Y
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value problems, if

k
Y ;=0 (2.91)
' j=0
and
ok
( Y ja;)y’(xn) = B (X V(%o ¥ 1,5 0L
j=0
whence, since y(x) is a solution of the differential system " = f{x, v},
[{ Xk -
D ((xa), p0xa)sw - ¥xa), X0 0) / \ LT ) =[x, ¥(X,)) (2.9ii)
=0

The method (2.4) is thus consistent if it satisfies the two conditions (2.9).

The role of each of these conditions can be illustrated as follows. Assume that the
sequence {y,} converges, in the sense of the preceding section. to some function
z(x)eC'[a,b], where z(x) £0. Then

Yoy 2(x,) ash—0, x,=a-+nh, J=0.1,...k

and rom (2.4) we obtain in the limit

( ‘Z aj):(x,,‘) =,
j=o

whence the condition (2.9i) must hold. Thus convergence of {y,} to any non-trivial
function, not necessarily related to the solution of the initial value problem. is enough
to imply (2.9i). This is in agreement with our earlicr remark that requiring that R, —0
as h—0 cannot be enough. Now assume that (2.9i) holds. Then, since

k k . k k ’
PICT VYRS IEDY “j)'nﬂ‘_( ) a,)_r,,z PUETIPUR

j=0 j=0 j=0 j=0

we may write (2.4) in the form !

(2.10)

L

In the limit as h =0, x, =a + nh,

(yn +ji yn)/jh = 2’(-\-71)
and
¢f(yn+kxyn+k— | IE ,y,,,x,,;h) = d)f(z(xn)v :(Xn)\ ey :('\.n)* -\'n:O)

so that (2.10) gives ‘

. .
, ( % ja,)z'(x,) = bzl 2. 2(3,),%,:0).
j=o

Thus, if z(x) satisfies the differential system 2’ = _[(i\‘. z), then the second of the consistency

N .
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conditions (2.9ii) is satislicd. We have thus shown thatif { y,} converges to any non-trivial
function then (2.9i) is satisfied, and il that function is a selution of the given differential
system, then (2.91i) is satisficd.

Note that if the method {2.4) satisfics (2.91) but, instead of satisfying (2.91i) it satisfics

k
B UTE) ) (X X4:0) / ( > ja,) = K f (¥,
_ 2z

where K is a constant, then it will attempt to solve the initial value problem for the
differential system " = K f(x, y} '
It is appropriate at this stage to introduce the first characteristic polynomial p
associated with the general method (2.4), defined by
k
p({)= Z osz’, 2.1
j=o
where (eC is a dummy variable. 1t is then possible to write the necessary and sufficient
conditions (2.9 for the method (2.4) o be consistent in the following alternative form:

p(1)=0 (2.12i)
(2.12i1)

Y X3 0)/p (1) = [(x,, ¥(x0)):
1
We conclude this section by applying the conditions (2.12) to cach of the Examples
I 6 of §2.2. 1t is casily scen that (2.12i) is satisficd for all six cxampies, and it is
straightforward to see that (2.12ii) holds for Examples | and 3. For Example 2,
plry=r? ——r, whenee p'(1) =1 and

T RRYCA N

B () VX,  3 (), X 0)p (1) = 3 (e (X))

and the method is inconsistent: if it is applied to the initial value problem (2.2) it will
attempt to solve instead the problem ' = if(x.y), vl@=n For Example 4,
plry=r - 1 p'(1) =2 and .

h 3h
Vs X )= (xﬁ 2 Mt = ot S aa i ¥nid) = S X yn)> + S (Xus Y,

%

whencee
B %) 1), X3 0) = 2f (X, ¥(x,))

and (2.12ii) is clearly satisfied. For Examples 5 and 6, it is clear that when h =0 and y,
is replaced by y(x,). each of the k; reduces to f(x,, y(x,)) and (2.12ii) is satisfied. Thus,
all of the Examples except Example 2 are consistent.

Exercises

2.4.1. Apply the method

h
Yos2 = Va1 = n[“f("nnv}’noz) +8f(Xps 1y Yura) — S (X ya)]

. ZERO-STABILITY kil

to the scalar initial value problem y' = x, ¥(0) = 0 to get a one-step difference equation of the form
Yns2— Yns1 = @(n h). By trying a particular solution of the form y, = An? 4+ Bn, find the exact
solution of this difference equation satisfying the initial congdition v, = th? (which coincides with
the exact solution of the problem at x = h). Hence show thatas h—0.n-+ x. v = nh. the sequence
{y,} so obtained does converge, but not to the solution of the initial value problem. Why is this?

2.4.2. Use the method of Exercise 2.4.1 to compute numerical solutions of the scalar initial value
problem y' = 4xy/2, y(0) = 1 for 0 < x < 2, using the steplengths h = 0.1, 0.05 and 0.025. Compare
the results with the exact solution y(x) = (I + x?)? and deduce that the numerical solutions are
not converging to the exact solution as h—0.

2.5 ZERO-LTABILITY
1)
Although, as we have seen in the preceding section, convergence implies consistency,
the converse is not true. It can happen that the difference system produced by applying
a numerical method to a given initial value problem suffers an in-built instability which
persists even in the limit as h—0 and prevents convergence. Various forms of stability
will be discussed later in this book; the form to be considered here is called zero-stability,
since it is concerned with the stability of the difference system in the limit as i tends to
7¢r0. ) ’

We start by considering a stability property of the initial value problem (2.2). Suppose
that in the problem (2.2) we perturb both the function f and the initial value  and ask
how sensitive the solution is to such perturbations. The perturbation (5(x),d) and the
perturbed solution z(x) are defined by the perturbed initial value problem

Z = f(x,2) + 3(x), z(a)=n+34, xela.b].
Definition (Hahn, 1967, Stetter, 1971)  Let (8(x), ) and (8*(x).6*) be any two perturbations
of (2.2) and let z(x) and z*(x) be the resulting perturbed solutions. Then if there exists a

positive constant S such that, for all xe[u,b], '

llz{x) — z2*()l < Sz
whenever (2.13)

18(x) — d*(x)| <& and {d—0*[<e,

then the initial value problem (2,2) is said to be totally stable.

To ask that an initial value problem be totally stable (or. equivalently, properly-posed)
is not asking for much; note that § can be as large as we please as long as it is a (finite)
constant. Indeed, it is straightforward to show that the hypotheses of Theorem 1.1 of
§1.4 are sufficient for the initial valué problem (2.2) to be totally stable (see, for example,
Gear (1971a)). .

Any numerical method applied 1o (2.2) will introduce errors due to discretization and
round-off, and these could be ifiterpreted as'being equivalent to perturbing the problem:
if (2.13) is not satisfied, then no numerical method has any hope of producing an
acceptable solutibn. The same will be true if the difference equation produced by the
method is itself over-sensitive to perturbations. We therefore consider the effects of
perturbations of the function 4)f and the starting values n,(h) in (2.6). The perturbation
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=001, N} and the perturbed solution {z,,n =0,1,..., N} of (2.6) are delined by
the perturbed difference system
k
z 1j:ncj:h[(ll)j":nok»zn+k—l """ 2y X M) + 3,40 ]
i-o ) . (2.14)
z, =+ 0, pu=0,1,.... k-1
Definition  Let 10, n=0.1,.... N} and {5¥,.n=0,1,...,N} he any two perturbations of
26y, and let 1z, n=01... ., Vand {2X.n=0,1,... N} be the resulting perturbed

solutions. Then if there exist constants S and hq such that, for all he(0,hy],

iz, — 221l <S¢, ogsn<gN
whenever (2.15)
1o, —orl <e, o<n<g N,

we say that the method (2.4) is zero-stable.
Several comments can be made about this definition:

(1) Zcro-stability requires that (2.15) holds for all he(0,h]; it is therefore concerned
with what happens in the limit as h—0.

Zero-stability is a property of the method, not of the system. Qur assumption that
{2.2) satisfics a Lipschitz condition ensures that the problem is totally stable and
therefore insensitive to perturbations; zero-stability is simply a requirement that the
difference system which the method generates be likewise insensitive to perturbations.
It is equivalent to saying that the difference system is praperly posed.

A very practical interpretation can be put on the definition. No computer can
calculate to infinite precision, so that inevitably round-ofl errors arise whenever d’f
is computed; in (2.14), {3,,n = k. k + 1,..., N} could be interpreted as these round-off
crrors. Likewise, the starting values cannot always be represented on the computer
to infinite precision, and {3,,n=0,1,...,k — 1} could be interpreted as round-off
errors in the starting values. 1f(2.15}) is not satisfied, then the solutions of the difference
system gencrated by the method, using two different rounding procedures—for
example, using two different computers—-could result in two numerical solutions
of the same differcnce system being infinitely far apart, no matter how fine the
precision. In other words, if the method is zero-unstable, then the sequence {Va} is
essentially uncomputable,

{b

(c

Before stating the necessary and suflicient conditions for the method (2.4) to be
zero-stable, let us consider an example. We shall consider the solution of the scalar
initial value problem

vi=—y yO=1
whosc exact solution is y(x) = exp( — x), by the consistent implicit two-step method

Y2 (‘ I)yrl&l +a."nzlzh[.f(xnklayn+2)+(l _-a)f(xn+lv)’n#l)—af(xmyn)] (216)

N
-
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(where a is a free parameter) satislying the initial conditions

yo=1, ¥y ="L
On substituting — y for f(x,y) in (2.16) we obtain the difference equation

(L A/2DYmss = [+ a— (1 =205,y +all = W2y, =0 o=y =1

We consider the simple perturbation in which é, = d, a constant, for n =0,1,...,N. The

perturbed difference equation is thus
(04 122,05 — Lt +a—(1 = )/2]z,. + 2l —itf2)z, = td {2.i7)
zo=1+4, zy=1+4 (2.18)
Following §1.7, the characteristic polynomial of (2.17) is
A+ /2 [ +a—(4—a)h/2}r + (1 — 1/2)

with roots @ and (} — h/2)/(1 + /2). A particular solution is found to be 3/(1 —a) il a # |
and né if & = 1. Thus the general solution of (2.17) can be written in the form

/(1 ifo# 1

2,19
10 ifo=1 ( )

z,=Pa" + Q[(1 — h/2)/(1 + h/2)]" +{
where P and Q are arbitrary constants.

Casex # 1 After some manipulation, we find that the solution of (2.17)
satisfying the starting conditions {2.18) is

1 1/2 é
A(d)a” al —--
2 C[ @)a +B($)< m)}}ﬁ

A(8) = h[ad/(1 — @) — 1] . (2.20)
B()=(1 —a— ad)(1 + h/2)
y C=1eoa—h(l+a)2

where

If we replace the constant perturbation § by another constant perturbation §*, then the

resulting perturbed solution {z}} is obviously given by (2.20) with & replaced by §*. On
subtracting we obtain

. { 1 ohe |
Zy—Z, =4
Cit—a .

Now, for all he(0,hy], ae[ —1,1),

1 —h/2\" 1 .
-1+ - 0*).
1+ l/2)ot<l +h/2> J+ | va}“ §*) 2.210

/./z‘

Tha"* YKL — o)l S ho/(l — ), (1 + W < 1+ ho/2, | W2
)

and

l I |1—<1—’1o(1+a)/2l
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provided that we choose fi, such that 0 < hg <2(1 —a)/(1 + a). It foliows that (2.15)
holds with

. hoi(l — ) + V4 ho/2

S = - L = a).
0 bl + o2 Al =e)

I'his will not be the case, however, if |a| > 1. Consider the term ha” on the right-hand
side of (2.21). Since

him ha' = x im o"/n= o0

h 0 n—
, v nh

this term becomes unbounded as b >0, and (2.15) cannot hold.

Case +— 7 Using (2.19), the solution of (2.17) satislying the starting conditions
(2.18) turns oul to be

he2 h+2 [1=h2Y
R S S+ - 0 ) .
2h 2 ‘(1 +h/2> e (222)

and on replacing z, by z*, 0 by d*, and subtracting, we obtain

) J_[h—2+h+2 1 — /2 "+ 6 5*
oA o L) 000

As =0 nh = x, the term within the square bracket becomes unbounded, and (2.15)
cannot hold.

Thus. for this example, the condition (2.15) is satisfied if and only il — I <a< 1.

[0 is casily checked that the method used above is consistent, and we can see as follow
that we have convergence if -1 < a < 1, but divergence otherwisc (thus demonstrating
that consistency is not sufficient for convergence). Let h—0, nh = x and § -0 in (2.20),
noting that the latter ensurces that the conditions p,—n as h—0, u=0,... k-1,
appearing in the definition of convergence, are satisfied. Then

BS)/C — 1, A(ﬁ)q"/(-»{o T-l<a<l : .
o0 ifal > 1
and therefore
I —h/2\" .
- il —1<a<l
i b+ h/2
o0 iffoe| > 1.

On comparing expansions in powers of h, it is easily scen that

1 —hj2
= exp(—h) + 0(hY),
L2 p(—hy+0(h7)
whenee z, - expl( —nh) = exp(— x), the exact solution of the initial value problem. We s

, \’ ¢’
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thus have convergence il — | <a <1, and divergence il |af > 1. On applying the same
limiting process to (2.22), it is easy to establish that divergence also occurs when x = 1

The above exarpple shows that zero-stability is concerned with the roots of the
characteristic polynomial of the difference equation (2.17). Of course, had we applied
the method to a nontinear problem, then the resulting difference equation would have
been nontinear and there would have been no such thing as a characteristic polynomial
Nevertheless, for general problems, as I — 0, the method (2.4) tends Lo the lincar constant
coeflicient difference system

]
3 2,100, =0
j=0

whose characteristic polynomial is p({), the first characteristic polynomial of the method,
defined by (2.11); it is no surprise that it is the location of the roots of p({) that controls
the zero-stability of the method.

Let the roots of p({) be {;, i=1,2,.... k. Il we assume the method is consistent, then
by (2.12i), one of the réots must be + 1. We call this root principal root, and always
label it {, (= + 1). The remaining roots (i =23, k. arc the spurious roots, and arise
because we choose to represent a first-order differential system by a kth-order difference
system. Obviously, for a one-step method there arc no spurious roots. (Note that in our
example, it is the root (1 — /2)A1 + 1/2) of the characteristic polynomial of (2.17) which
produces an approximation to the desired solution, and it is this root which tends to
the principal root of p as i —0; the other root tends to the spurious root « of p (it so
happens that it coincides with a) and this is the root which has the capability of invoking
zero-instability.) It turns out that zero-stability is ensured if the roots of p satisfy the
following condition:

Definition  The method (2.4) is said to satisfy the root condition if all of the roots of the
first characteristic polynomial have modulus less than or equal o unity, and those of
modulus unity are simple. !

The roots of a polynomial being complex, an alternative statement af the root condition
is that all of the roots of the first characteristic polynomial must fic in or on the unit
circle, and there must be no multiple roots on the unit circle. Note that all consistent
one-step methods satisfy the root condition. Example | of §2.2 clearly fails to satisfy
the root condition, since p has a spurious root at —2; the remaining five Examples all
satisfy the root condition.

Theorem 2.1 The necessary and sufficient condition for the method giren by (2.4) and
(2.5) to be zero-stable is that it satisfies the root condition.

For a proof of this lheoren;, see, for example, Isaacson and Keller (1966). We note
that our example corroborates this result, since both roots 1 and 2 of p lic in or on the
unit circle when —1 <a < 1, there is a root outside the circle when 2] > 1, and there
is a multiple root on the circle when o = 1.

Some authors (for example, Lambert (1973)) adopt the following alternative definition
of zero-stability: ,

’
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Alternative Definition  The method (2.4) is said to be gero-stable if it satisfies the root
condition.

In view of Theorem 2.1 the two definitions are clearly equivalent, but there are two
disadvantages in adopting the alternative form. Firstly, it _does not have the flavour of
4 stability definition in the way that our first definition has. Secondly, it does not draw
attention to the fact that zcro-stability, being nothing more than a requirement that the
difference system be properly posed, is a minimal demand.

We are now in a position to state the necessary and sufficient conditions for

convergence.

Theorem 2.2 The necessary and sufficient conditions for the method (2.4) to be convergent
are that it be both consistent and zero-stable.

Theorem 2.2 is the Tundamental thcorem of this subject. 1t was first proved for linear
multistep methods by Dahiquist (1956)-—sce also Henrici (1962). A proof for the class
{2.4) can be found in Isaacson and Keller (1966). Proofs for yet wider classes of methods
can be found in Gear (1965), Butcher (1966), Spijker (1966), Chartres and Stepleman
(1972) and Miikela, Nevanlinna and Sipilii (1974),

Exercises 1

2.5.1. Find the range of « for which the method

Ve Hlx =Ny, —ay, ::’[(a +3)f(Xps2 Yar2) (3a + 1) f€x, ya)]

is zero-stable. Apply the method, with « = —1 to the scalar initial value problem y' =y, y(0)= 1,
and solve exactly the resulting difference equation, taking the starting values to be yo=y, =1
Hence show that the numerical solution diverges as h—0, n— co.

2.5.2. Quade s method is given by \

8 6h )
Ynva— l()()'no,\ = Vns |)*)'n='i'9'(fn4+4.’u+3 +4f, 0+ L)

where f,, ;= f{x, v J=0010 .4. Show that the method is convergent.

2.53. A method is given by

Yarz = Fava = 0alynay — )+ ah(fors =4 as32 + s +2f)
h )
Frr2= 2 — V¥ i(4fn+3/2— Masr = Lo

wheee fo, = f0x0 0 Yk i= 0002 frian = f{Xps 3720 Yns 3y2) A0 Yoy 3 iS given by a formula
of the form ’

Vaszz HEVann +&OY!|=h(ﬁlfn+l +ﬁ0fn)'

Show that the method satisfies the conditions (2.5) of §2.2 and is consistent. Find the range of «

for which it is zero-stable. 1/ £ 4
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'

2.54. Demonstrate the effect of zero-instability by using the method
h ) )
Yorz = (L4020, +ay, = i[(3 =) (X Yae ) = L+ 20 fx,01,)]
)

with (i) =0, (ii) 2 = — 5 to compute numerical sofutions of the scalar initial value problem
y =4xy"? y(0) =1 for 0 < x < 2, using the steplengths I = 0.1, 0.05, 0.025.

2.5.5*. The family of methdds (2.16) is a sub-family of the two-parameter family of methods
Vo= (b4 oy, oy +av.=h[(V+ NSy —la+ B+, +afif,]. m

where f,, ;= f(X,4} ¥as ) j =012 The family (1) is a useful one for illustrative purposes since
it has the property that when it is applied to the scalar initial value problem 3" =y, y{(0) =1 the
resulting difference equation can be solved exactly. Show that this solution, with starting values
Yo =no L=noM], y1 =n, {[=n{h)] is

[l e
Po=t A" - - C.
-+ Mh

A=(=1+Phno+ 11 —(L+AIn, B=[1=(1+Mhlanp —m) C=2—t—(x—f+2fh

where

.

Show further lhat

( 1 ~_/n_n_>" B {exp(x,,)[l +UH A h+00Y £ - '}
11+ /) lexpte)[t + x 2 +000Y] . iff=— ! ‘
13

12°n

(Hint: Consider the expansion of the logarithm of the left side.) We assume that the starting
values satisfy

limy;(h) =1, i=01.

h=0

4 (2)
(1) Demonstrate that when [« < 1 the method converges, for all starting values satisfying (2).

(i) Demonstrate that when |a| > 1 the method diverges for yeneral starting values sitislying (2),
but that it converges for the specific starting values 5o =1, n, (M = (1 — fih)/[1 — (1 + K]
(which satisfy (2)). Why would we not be able to demonstrate this numerically ? Try doing so.

(iif) Demonstrate that when a = 1, there exist some starting values satisfying (2) for which the
method converges, and some for which it diverges (sometimes in the sense that { v,} converges
to the wrong solution, and sometimes in the sense that y, —» o as h— 0, n— ),

a

2.6 THE SYNTAX OF A STABILITY DEFINITION

Zero-stability is not the only form of stability pertinent to the numerical solution of
initial value problems, and several other stability definitions will appear later in this
book. In this section we shall discuss a general framework for such definitions and
introduce a ‘syntax diagram’, which the reader may (or may not) find helpful.

A stability definition can be broken down into the following components:

1. We impose certdin conditions C, on the problem (2.2) which force the exact solu** -
y(x), xe[a,b], to display a certain stability property.
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p)

> We apply the method (2.4) to the problem, assumed tc satisfy C,,.

3. We ask what conditions C,, must be imposed on the method in order that the
numerical solution fy,.n=0,1,..., N} displays a stability property analogous to that
displayed by the exact solution.

.

This ‘syntax’ can be represented by the diagram below.

Problem - y(,\) possesses "
stability property
(2.23)
{ .} possesses
- analogous stability
property

The syntax diagram for zero-stability can therefore be written as shown below.

Lipschitz condition

- | Problem =

Gy = fleymiE< Lily = y*|

Problem

totally stable

Method

zero-stable

The syntax dingram is not a replacement for a stability definition; thus in the above
example, it is still necessary to refer to the formal definitions of total stability and
sero-stability. 1t is more a device for putling stability concepts into context. In the
general syntax-diagram (2.23), the rightmost lower box normally defines the stability
property of the method. and the box to its left defines the conditions for that property
to hold: but it can also be the case that the middle box defines the stability property
in which case the rightmost box is interpreted as a consequence of the property.
Thus. if we adopt the alternative definition of zero-stability given in §2.5, the syntax

diagram - now appropriate 1o convergence rather than zero-stability—becomes as
shown below.

{) satisfies
Mcthod p({) satisfies

root condition

[

Lipschitz condition Problem

Problem =

Nfayy — flg vy <Ly —y*l totally stable

Mecthod consistent
,| Method =

and zero-stable to y(x)

{v.} converges

Again, we find the alternative definition of zero-stability less satisfactory than the first
definition.

In certain circumstances (which will arise in Chapter 7), it will be appropriate to
replace ‘problem’ by ‘system’ in the top line of the syntax diagram.
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2.7 SOME NUMERICAL EXPERIMENTS

The experiments described in this section consist of applying cach of the six Examples
of methods given in §2.2 to the same initial value problem, using a range of steplengths.
The purpose is two-fold: firstly to demonstrate the cffects of the propertics defined in
the preceding sections, and sccondly to persuade the reader that it is by no means
guaranteed that a convergent method will always produce acceptable numerical
solutions.

The initial value problem to be solved is

Vo= £y 0= vel[0, 1]
where :

v=[ur], (2.24)
and

Sy =Loe@ =yl n=[172-3)"

It is easily checkéd that (2.24) satisfies the hypotheses of Theorem 1.1 and is therefore
totally stable. The unique exact solution is'

cu(x)=[1+3exp(—8x)1}/8, ix)= ~3expl—8x).

and we note that the solution decays in the scnse that both {uix} and [r(x)} decrease
monotonically as x increascs from 0 to 1. When additional starting values arc needed
these are taken to coincide with the exact solution. It is impracticable to reproduce the
numerical solution at every discretization poinl, and we present only tables of the error
E, defined by

E,i=hv(x,) — vl

at intervals of 0.2 of x, for a range of values of i

Example 1
h . .
Var2 F Vner — 2¥n= 4[,[("“2»,\‘"4 2 8 (N Yy ) 3 ) )

This method is consistent but zero-unstable and thercfore divergent. See Table 2.1 for
numerical results.

Tabie 2.1
X h=101 h=0.05 h=10025 h=0012%
0.2 0.02653 - 0.008 23 0.008 9% 0.154058
0.4 0.13504 0.208 52 4.0807 18273
0.6 0.902 51 58904 - 1877.3 2.2 % o'
0.8 6.1568 166.69 863679 oFr
1.0 42.040 47169 40 % 10'°

O/F indicates overfllow.

3
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The divergence is clear. For each fixed h, the error increases rapidly as x increases.
For v =02 the error initially decreases as h decreases, but soon starts to increase; for
all other fixed values of x, the error increases as h decreases.

Example 2

Yna2 = Vas

/
= 1301 ¥e )= 2 (o )]

'
‘i'is method is zero-stabic but inconsistent and therefore divergent. See Tabie 2.2 for
numerical results.

Table 2.2
, X h=101 h=10.01 h=0.001 h=0.0001
0.2 12737 1.1104 11576 11627
0.4 11019 0.907 84 091616 091715
0.6 0.79501 0.59294 0.586 18 0.58559
0.8 0.553 84 0.36517 0.35422 0.353 18
1.0 0.384 25 0.22080 0.21018 0.209 17

Divergence due to zero-instability led to an explosion of error in Example 1. Here
divergence is caused by inconsistency, and leads to no such explosion, but manifests
itsell in a persistent crror which refuscs to decay to zero as h is reduced (even to the
excessively small value of 107%); indeed, for x =0.2,0.4, the error eventually increases
slowly as i is decreased. The scquence { v, } is converging as # — 0, but not to the solution
of 12.24). This is cxactly what we would expect, since the method satisfies the first of
the consistency conditions (2.12) but not the second. Following the discussion towards
the end of §2.4, we would expect it to attempt to solve a dilferent initial value problem,
namely

7=f(xz2), 20)=n  xe[0 1]
where
z =[],
and ‘
fx 2y =000 — 1yal",  n=[3 —31",
whose exact solution is
200 = [(1 + Yexp( — 8x/3))/8, — 3exp(— 8x/3)T".

The errors EX where EX:= | z(x,) — z,||, are given in Table 2.3.
One is persuaded that the method is indeed attempting to solve the above initial
vatue problem.

v

I

-
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Table 2.3
x h=101 h=001, h=0.001 h=0.0001
0.2 0.301 95 0.036 13 0.00377 0.000 38
04 0.396 51 0.04390 0.004 44 0.00044
0.6 0.389 50 0.03937 0.00391 0.000 19
08 v 033972 0.03125 0.003 06 0.000 31
1.0 0.27775 0.023 22 0.002 25 0.000 22
Example 3

h , .
yn+3 +%yn+2 - %yn+ l'_%yn ='8‘[l9./(xn+2vyn+2) + 5_’(-\}1-“.")]'

This method is consistent and zero-stable and therefore convergent. See Table 2.4 jor
numerical results.

’ Table 2.4
x h=101 h=005 b= 0.025 h=00125
02 C— T 000837 93x10 % 11x10 *
04 025776 0.04105 24% 104 45x (0 *
0.6 1.4975 0.11969 H6x10 4 14x10°°
0.8 8.0876 0.33012 21 x10°° I8 x10°°
1.0 43.507 0.90507 68x10°°  96x10 7 &

The last two columns demonstrate that the method docs indecd converge. However,
there appears to exist some value h* of & between 0.025 and 0.05, such that for fixed
h> h*, the error increases as x increases, while for fixed 't < i*_ the error decreases as
x increases. We shall examine this phenomenon in detail later in this book, but for the
moment we note that for h > h* the numerical solulion‘gcncralcd by the method is not
acceptable. Thus convergent methods do not always give acceptable answers; one has

‘to choose h to be sufficiently small.

Example 4

4

Ynr2 = Vn= h[f(er 2vy:+ 2) + .f(“.n‘.“n)]‘
where

h '
y:+2 = 3Yasy + 2y, =i[f(xn+l‘y"+ )= 3 (v ]

. . . 4
This methqd 1s consistent and zero-stable and therefore convergent. See Table 2.5 for
numerical results,
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Table 2.6

X h=01 h =001 h=10.00 h=0.0001
0.2 0.896 42 0.00665 27 x10°° 1.7x 1077
0d 39745 (.089 24 15%10°¢ 47 x10°¢
0.6 22955 17131 34 x 1073 12x10°*
0.8 135.02 33.193 0.08209 29 %1077
1.0 794.75 64323 1.9633 . 007147
1.2 1.7489
14 42.794

The results here are somewhat unexpected. and appear to be demonstrating divergence
rather than convergence. However, on comparing them with those for the divergent
Fxample |, a significant difference emerges. In Example 1, as h is decreased, the value
of v at which the numericil solution parts company with the exact solution—to put it
in broad terms: moves closer to the initial point x = 0; in Example 4, it moves further
aveay from the initial point. (In the case of h = 0.0001 we have extended the interval of
integration to show this.) If we were to keep on reducing h, the sime pattern would
emerge: the numerical solution would be a reasonable approximation to the exact
solution for tonger and longer intervals of x, but would always blow up for sufficiently

large x. Thus, in the hmit as h— 0, the point at which the numerical solution detaches |

itsell from the exact solution tends to infinity, and so the method is convergent; for
I'xample 1, that point tends to the initial point, and the method is divergent. Thus, this
example provides a salutary lesson  there exist convergent methods which, no matter
how small the steplength, will produce numerical solutions which will blow up for
sufficiently fong intervals of integration.

Example 5

where
ki =[x y)
ky= f(x,+3h y, +3hk))
ky= f(x,+ 3y, + 3hk,).

I

This method is consistent and zero-stable and therefore convergent. See Table 2.6 for
numerical results.

The comments made on Example 3 apply equalily to this example, cxcept that the
value of h* is considerably larger, lying between 0.2 and 0.4. We conclude that the
maximum value of it which gives a solution which does not blow-up depends on the
method (and presumably on the problem too).
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Table 2.6
P h=104 h=102 h=01 h =005
0.2 0.61847 0.039 19 0,003 59
0.4 7.8066 0.12322 001532 0.001 44
0.6 — 0.024 88 0.004 44 0.000 44
0.8 19.521 0.00502 0001 17 000012
1.0 — 0.001 01 0.000 29 0.00003
1.2 49.622
) )
Example 6

h
Yarr = Va™ é(kn + k)

where
kl = f(xn\ )'n)
ky = f{x,+ Iy, + $hk + hk,)

This method is consistent and zero-stable and thercfore convergent. Sce Table 2.7 for

numeygical results. .
Table 2.7

X h=08 h=04 h=02 h=01
0.2 — — 0.274 48 005509
0.4 — 0.82093 0.08591 0.02124
0.6 — — 0.02073 000615
08 1.5887 0.15598 ,0.004 56 (.001 58
1.0 — — 0.00096 0.000 38
1.6 0.82953 0.008 57 0.00001 0

24 0.434 52 0.00046

Convergence is again dei onstrated. This time, the errors decay as x increases for all

the values of h used; indeed this would be the case no matter how large h.

The above examples were chosen to demonstrate various stability phenomena which
will be studied in detail later in this book; in particular they illustrate that zero-stability
is not the onty form of stability that will have to be considered. Such stability phenomena
are not related to any particular class of methods, and it would therefore be quite wrong
to draw any conclusion, on the basis of these'results, about which class of methods

performs best.
1
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+

3.1 NOTATION AND NOMENCLATURE

In §2.2, we mentioned the class of lincar multistep methods, in which the function
¢f(y,,+,(, Yathotr---s Ym X0 ) defined by (2.4) takes the form of a lincar combination of

the values of the function f evaluated at (x,, ;. ¥,, ). j=0.1.....k Using the shortened
notation

Jory= g ok J=01
we define a linear multistep method ot lincar k-step method in standard form by

k

-
Y e =h Y Bl (3.0
§=0

Vim0

where ) and f; are constants subject to the conditions
3

a=1, |agl +1fo) #0, (3.2)

The first of these conditions removes, in a convenient manner. the arbilrariness that
arises from the fact that we could multiply both sides of (3.1) by the same constant
without altering the method. (Other means of removing this arbitrariness atre of course
possible; thus some authors divide both sides of (3.1) by 4. o B3 The seeohd condition
prevents both a, and i, being zero, and thus precludes methods such as

Y2 = Va1 =hfiy,

which is essentially a I-step and not a 2-step method. and is in practice indistinguishable
from the l-step method

Yar1=Ya=MI/, (3.3

Method (3.3) is Euler's Rule, the simplest of all numerical methods.

There is an alternative notation for lincar multistep methods. In (2.11) we introduced
the first characteristic polynomial p associated with the general method (2.4). p being
the polynomial of degree k whose cocflicients arc a;. In the case of lincar multistep
methods it is natural to define a similar polynomial whose cocllicicnts are fi;. We thus
define the first and second characteristic polynomials of (3.1) by

k

) k
pQ= 3 all ()= Z it (3.4)

i=0

where {eC is a dummy variable. Using the notation of §1.2, the lincar multistep method



a6 LINEAR MULTISTEP METHODS

(30 van now be written in the form

p(E)y, = ho(E) [, (3.5)

where s the Torward shift operator. The conditions (3.2) imply that p is a monic
polynomial of degree k and that p and o do not have a common factor {. Both notations
have advantages, and we shall use whichever is the more convenicnt for the analysis in
hand.

The method (3.1) is clearly explicit if fi, =0, and implicit if §, # 0. Equivalently, we
can say that (2.5) is implicit 1f o has degree k and explicit if it has degree less than k.
For an explicit method, the sequence {y,} can be computed directly, provided the
neeessary additional starting values have been obtained, whereas for an implicit method
it 1s necessary to solve at cach step the nonlinear (in general) system of equations

Yook = WS (X e Ve ld H o, (3.6)

where ¢ is a known function of previously computed values of y, ., ;. By Theorem 1.2 of
LR, this system of cquations possesses a unique solution for y,,,, which can be
approached arbitrarily closely by the iteration

W = o ) g, v=0,1,..., yi arbitrary (3.7)

provided that 0 < A < 1. where M is the Lipschitz constant with respect to y, ., of the
right-hand side of £3.6). If the Lipschitz constant of f with respect to y is L, then we
can luke M to have the value hifi,|L and the iteration (3.7) converges to the unique
solution of (3.6} provided

h <1AIBIL). ' (3-8)

Fxcept in the case of stff systems. which will be studied later in this book, condition
(3.8) does not present any problems; we find that considerations of accuracy impose
restrictions on the steplength  which are far more severe than (3.8). (The situation is
very different for stff systems, for which L > 1 and the restriction imposed by (3.8) is
so severe that an alternative to the iteration (3.7) must be sought)

Within the generad class (3.1) of lincar multistep mcthods, there are several well-known
sub-classes. The sub-class of methods of Adams type arc characterized by

Py ==t

Since the spurious roots of p arc all situated at the origin of the complex plane, methods
of Adams type arc clearly zero-stable for all values of k. Methods of Adams type which
have the maximum possible accuracy arc known as Adams methods; if they are explicit
they are known as Adams  Bashforth methods, and if implicit as Adams—Moulton methods.
The I-step Adams Bashforth method is Euler’s Rule (3.3), while the I-step Adams-
Moutton method is the Trapezoidal Rule,

I
VYat1 = ¥n= 21(.[“ 1+ L) (3.9)

Adims methods are among the oldest of lincar multistep methods, dating back to the
nincteenth century: nevertheless, as we shall see later, they continue to play a key role
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in efficient modern algorithms. Other sub-classes are characterized by

and are clearly also zero-stable for all k. Explicit members of this sub-class are known
as Nystrom methods, and implicit members as Generalized Milne-Simpson methods. A
well-known example of a Nystrom method is the Mid-point Rule

Yur2 = Va=20 i1, (3.10)

and of a Generalized Milne-Simpson method is Simpson’s Rule
Yav2 — (/ruz +'4fn+|+/) . (3“)

A sub-class that is important in dealing with stiffness consists of the Backward
Differentiation Formulae or BDF, which are implicit methods with a(¢) = i, as we
shall see later, they are zero-stable only for a restricted range of k.

Finally, we observe that although the method (3.1) is lincar, in the sense that it
equates linear combinations of y,,; and of f,, ;. the resulting difference system for )
is (in general) nonlinear, since f is (in general) a nonlincar function of y. The analytical
study of nonlinear difference systems is much harder than that of the corresponding
nonlinear differential systems, and since the major motivation for contemplating
numerical methods in the first place is our inability to get very far with the latter study.
we cannot be optimistic ‘about our chances of obtaining powerful analvtical results about
the solution of the difference system. Thus, numecrical methods involve a trade-off: the
price we pay for being able to compute a numerical solution is increased difficulty in
analysing that solution.

3.2 THE ASSOCIATED DIFFERENCE OPERATOR.; ORDER
AND ERROR CONSTANT ‘

In §2.4 we introduced the idea of using the residual, defined by (2.7), as a measure of
the accuracy of a method. To be a little more precise, by forming a Taylor expansion
about some suitable value of x, we could express the residual as a power series in i
the power of h in the first non-vanishing term is then an indication of accuracy. For
example, let us carry out this procedure for Euler's Rule (3.3) and the Tmpczonddl Rule
(3.9), taking x,, as the origin of thc expansions. Using the fact that v/ = f{x. v), ). we obtain

2

Rovy = y(x,pu ) — ¥lx,) — Iy'tx,) = , ,“‘2)("n) + 0,

[}

and ‘ ’ (3.12)

l I
Royvi =y 1) = ylx,) - Z'[J"(-Y.. p HY() ) = - llz ¥+ 00,

respectively, from which we conclude that the Trapezoidal Rule is the more accurate by
one power of h.
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However. there are some difficultics with this approach. Firstly, Theorem I.1 of §1.4
implics only that v{x)eC'[a.h], so that the higher derivatives of y(x) used in the Taylor
expiansions may not cxist. Secondly, it is not immediately clear whether, il we use a
differcnt origin for the Taylor expansions, the leading term in the expansion of the
residual will have the same power of it and the same numerical coefficient.

The first difficulty is ecasily overcome. Once we have substituted y'(x,,;) for
flx, . av(x,, ) i the expression defining the residual, subscquent manipulations
involving Taylor expansions make no further use of the fact that y(x} is the exact solution
of the initial value problem. The same result would be obtained if we replaced y(x) and
3(x)in (3.12) by z(x) and Z'(x) respectively, where z(x) is an arbitrary differentiabie
function. In other words. the important thing in (3.12) is the difference operation that
takes place, not the particular function operated on.

Definition  The linear difference operator & associated with the linear multistep method
(3.1} is defined by

k
Lletayh)i= Y [zt 4+ jh) = hfz 0+ jin ], (3.13)

j-o

where z(x)eC'a. b} is an arbitrary function.

We now choose the function z(x) to be differentiable as often as we need, expand
z(x + jhy and Z'(x + jh) about x, and collect terms in (3.13) to obtain

LLztxkh]) = Coz(x) + Cyhz'(x) + - + C %2 0(x) + - (3.14)

where the , are constants.

Definition

defined by (3.13) are said to be of order pif, in (3.14), Co=C, = =C, = 0,C,i #0.

The following formulae for the constants C, are easily established:
k
Co= Y 2= pll)
j=0

k
Cr= ¥ (2= B)=p 1) -all) (3.15)

j=0

il

Ll |
c - A————j""/f'] g=23....
) jzn[q! Ty : .
The definition of order will be useless unless we can satisfy ourselves that we get the
same result if we choose to expand about a different origin; this is the second difliculty
referred to above. Suppose we expand z(x + jh) and z'(x + jh) about x + th rather than
about x, where 1 need nol necessarily be an integer. In place of (3.14) we obtain

PL2xkh] = Doz(x + th) + D hz' V(x4 th) + - + Dz x + th) + - (3.16)

i f
The linear multistep method (3.1) and the associated difference operator &

Vo
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’
The funztions z'9(x +th), ¢ =0,1,2,... (where z'(x) = z(x)) can now each be Taylor

expanded about x, thus:

shS

t*
20(x 4 () = 290 + (he'"* ) 4+
st

29+ - g=0.12....

Substituting these expansions into (3.16) yieids an expression identical in form with the
right-hand sidé of (3.14). Equating the result term by term with (3.14) yields,

Co =Dy P
C, =D, +1D,

IZ
Cz =D2+1D|+'2|D()

I!’
Cp =DpttDy_ 4+ 'Do
p!
(pHt
CorysDysy +1D,+ W+(p+ Iy D,
rt?
C,,”—l‘),,erle,, +. +“;+2)!1)0.

It follows that C,=0,49=0,1,...,p, il and only if'D, =0, ¢ =0.1..... p. Thus we could
equally define the method and the associated difference operator to have order p if the
first p + 1 coeflicients in the expansion (3.16) vanish, and this definition is independent
of t; thit Is, the definition of order given above is indeed independent of the origin of
the Taylor expansions.

Moreover, if"Cq =0,9=0,1,...,p, C,,, #0, then
Dysy=Cpiy, Dpyy=0C,iy4+10C,,

etc. Thus the first non-vanishing coefficient in the expansion (3.16) is independent of 1,
but subsequent coefficients do depend on r. Clearty, the first non-vanishing coefficient,
Cp+1, is'the only one to have any significance.

Definition A linear multistep method of order p is said to have error constant C,,, , giten
by (3.15).

We can obviously use the formulae (3.15) to establish the order and error constant
of any given linear multistep melhod but we can also use them to construct linear
multistep methods of given structure. For example, consider the two-parameter family
of linear two-step methods given by
=+ f+af) ey +aBf),

yn+2_(‘+a)yn+l+ayn=h[“+ﬂ)[n+2 (3‘7)
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where x( # O)and fare free pjdrumctcrs(scc Exercise 2.5.5* 0[§2.5). Using (3.15) we have
Co=t-(I4+nta=0
Co=2 (L2 [L+ff (x4 fi+af)+aff]j=0
Co=did =t 4] - [20+ ) - (x+f+aff=@— DF+})

Co= 8=t +0] - Y40 +/f)~(a+/¢+aﬂ)]={l_(ﬁ+%) ?fa:
Hla—1) if=—14
Co= 016 (4] -H8+ M-+ f+af])= -4 fa=1f= -1}
Hence, .

fxst ff#  Loorder p=1, crror constant €, = (x - )(f + )

i £ L= L order p=2, error constant Cy= (e — 1) .

ifx=1,ff# -} order p=2, crror constant Cy= —(f + 1)

ifa=1, =~} order p=3, error constant C, = — 5.

(Note, however. that the method is zcro-unstable for a = 1)

Although the above approach is the standard one for deriving linear multistep
methods, it can happen that for methods with large stepnumber it is casicr to abandon
formulae (151 and perform the Taylor expansions ab initio about some point other
than v, in the hope of utitizing symmetry: see Exercisg 3.2.2.

Fially, we observe that (2.7), which defines the residual R, 4. for the general class
ol methods (2.4 gives i the case of lincar multistep methods

Rn*k = l[’[_\'(.\'"); h]q [}

where pin) is the exact solution of the initial value problem. It follows from (3.P) and
the discusston in §2.4, that a lincar multistep method is consistent if it has order p 2 1.
1t then foltows from (3.15) that for a consistent lincar multistep method, we have

i k k
Lou=00 ) juy=3% p,
o j=0 j=0
or, equivatently
p(1)=0, p'(h=oa(l)

Note that il a(h) =0, we would have p(1) = p'(1) = 0; p would then have a doubie root
at + 1 and the method would fail to satisly the root condition. Thus, for all consistent
zero-stable lineir multistep methods, a(1) # 0. (This is why some authors normalize linear
multistep methods by dividing through by a(1); see §3.1))

Exercises

2.1 Construct a one-parameter family of implicit linear two-step methods of grcalcs.l possible
order. and find the order and error constant. For which values of the parameter is the method
convergent?

i
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13.2.2. Find the order and error constant of Quade’s method, given in Exercise 2.5.2. What is the
most eflicient point about which to take Taylor expansions?

3.2.3. Let & be the linear difference operator associated with a lincar multistep method. Show
that the method has order p il and only if
' .

LI £0 r=01. .p aud L7 )0
and the error constant C, satisfies
Wt p4 DG, =237 h])

3.2.4. A linear multistep method is defined by its first and second characteristic polynomials p(Q).

o({). Sequences of polynomials {p,(()]j = 120 e j=1.2...§ are constructed as follows:
Pl = plo) () =a(l)
(8= Cpitd) oy (0= {aill) p=120
Prove that the lincar multistep method has order p if and only if
p, (=0, p“,(l)=jn,-(l), j=1.2.... pand p, o) #(p4 Ha, . ()

Use this result to verily your answer to Exercise 3.2.2.

3.2.5*, A hybrid method is an extension of a lincar multistep method which involves f(x,v)
evaluated at an off-step point (X, ,, Yus ) 0 <r<korg HUR IO K1 (The value y,,, is given by a
separate formula; but that need not concern us here) An explicit zero-stable 2-step method of
this type has the form

» '

yn'l—.“+a)ynl|+a.“n:h[/‘|,’n'! '/‘u/n'ﬂ,’no,L ey h

The associated lincar difference operator, the order and the error constant can be defined in
obvious extensions of the corresponding definitions for a linear multistep method.

(i) Show that for any « satisfying — 1 <a <1 there exists a vilue of r for which the method (1)
has order 4. and find the relation between r and 2 which must then hold. Why do we exclude

the case a = — |7
(ii) Show that there exists a unigue valuc for r and for « such that the method (1) has order S.

3.2.6*. There exists in the literature a family of one-step methods for the numerical solution of
our standard problem; these methods are applicable to the general system. but we shall assume
here (in order to keep things simple) that the problem is scatar. The methods arc given by

e ' [ Y AT 3TY A N l
hi,=hf,+ o™, th
vn*|=UUH+h(fn*l>>‘fnh. ‘

§
where f, = f(x,.y,), U is an r x r upper triangular matrix, K is a scalar and e. r,. ¢, ceR". The
vectors e and ¢ are given by :

c=U 1] b= 1]

and K, ¢ and U are all constant and can be regarded as the parameters of the family. Itis assumed
that starting values y, and v, are available.
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'
(il By considering the lincar combination 2767 ns e with a suitable choice of coeflicients
SR R <how that the method (1) is equivalent to a linear multistep method (LMM)
with stepnumber 1+ 1. and show how the coclicients in the equivalent LMM can be calculated
in terms of the parameters appearing in (1). [Hints: First find v, in terms of v, ¢, fn

fovefy, and the matrix M = U —cp’. The Cayley- Hamilton- theorem might come in
handy. ]
(iy Mustrate your answer to (i) by finding the LMM equivalent to (1) in the case when

L 3—| .:[ﬂ K free. ‘ ()

Henee find the order of the one-parameter family of methods defined by (1) and (2). Find also
the values of K Tor which (1) the method has maximum order, and (ii) the equivalent LMM
1 2-step method: identify the cyuivalent LMMs in both (i) and (ii).

(it Ulsing the results of (i), find, in terms of the eigenvalues of the matrix M=U—c¢", the
condition for the general method (1) 1o be sero-stable for all values of K. )

3.3 THE LINK WITH POLYNOMIAL INTERPOLATION

{.incar multistep methods are closely linked with the process of polynomial interpolation.
Two distinet such links can be cstablished, the first involving interpolation of the f
values. the sccond involving that of the y values. We shall illustrate by using both
approaches to derive Simpson’s Rule (3.1 1).

The method we seck thus has the form

Vorz = Yn=NhBofusa+ Bifasi + Bou) (3.18)

Starting from the identity

Xn+2

Y o) = ylx,) = j y(x)dx, (3.19)

Xn

v\./c replace v'(x) by f(x. y(x)) and, having an eye to the data we wish to involve on the
rlght«hund side of (3.18), approximate f by the unique vector interpolant of degree 2
in x passing through the three points (X e 20 fot 20 (X to fs 1) (X fi) in R™*!. Referring

1o §1.10, the appropriate interpolant is given by the Newton- Gregory backward
interpolation formula

i) = 1%, 00 + rhy=:Py(r)=[1 4V +3r(r + W1 a2 (3.20)

enabling us to approximate the right-hand side of (3.19) by

Xn 2 0 .
J. I(x)dx= J Uiz + Vg + 30+ DV Jhdr.

X -2

On evaluating the definite integral and expanding Vf,., and V%f,,, in terms of

’ |
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fn+2‘fn+t‘fm (319) yICIdS

I
y(xn*l) - y(xn) = ;(fn# 2 + 4.{n* i + /n) (]2l)

We can now define y, ., and y, 1o be approximations (o y(x,, ;) and vix,) respectively.
such that the approximate equality in (3.21) becomes an exact equality, thus obtaining
Simpson’'s Rule. )

The reader will have noted that the above derivation of Simpson’'s Rulc is virtually
identical with that of Simpson's Rule for quadrature, that is, for the numerical
approximation of the definite integral j:" ¢ f(x)dx;indeed aii Newion Cotes quadrature
formulae can be interpreted as linear multistep methods. However, there is an important
distinction in the way in which quadrature rules and linear multistep methods are
applied. If Simpson’s Rule is used to evaluate the definite integral j: fix)dx, then itis
successively applied, to the sub-intervals [xq, 2], [¥2 Xa) Exa.x6] ctc. which sub-
intervals do not overlap; the error in integration over the whole interval is simply the
sum of the errors over cach sub-interval. In contrast, il Simpson's Rule is used to integrate
an initial value problem, then it is successively applied to the sub-intervals [xq, X1
[x1, 33, [x2, x4, €te., which sub-intervals do overlap. The accumulation of error is now
much more complicated, and it should not be totally unexpected that Simpson'’s
Rule, an excellent method for quadrature, turns out (as we shall sce later) to be a bad
method for integrating initial valuc problems.

The above procedure can be used to derive only lincar multistep methods for which
o) = — £ for some integer g, 05 ¢q < k. Note that this class contains more than
the linear multistep equivalents of the standard Newton Cotes quadratute formulae.
For example, the 2-step Adams—Moulton method could be derived by replacing (3.19) by

Xn+2

v Pxpsd =V )= J‘ y(xdx, :

AR

but retaining the approximation (3.20 for f. Likewise, the 2-step Adams Bashforth
method could be derived by reducing the degree of the interpolant P to one and avoiding
the involvement of f,, . .

The second approach is somewhat more dircct, in that it interpolates the data (x,. ¥,)
rather than (x,, f,). but in a Hermite or osculatory sense; this means that the interpolant
is required not only to take prescribed values at the interpolation points, but to have
prescribed slopes at such points as well. Over the span { x,. x,,, ;] of the method, let 1{x)
be such a Hermite interpolant (with vector coeflicients). That is, we require I{x) to satisfly

i

I(X..+1)=)’..+j- ll(xywj):f,”jy j=0,1v2~

There are six (vector) conditions in all; if we allowed I{x) to have six frée (vector)
parameters, then all that would happen would be that the six conditions would specily
1(x) uniquely. Instead, we choose I(x) to have Tive free paramelers, use any five of the
six conditions to specify I{x), and substitute the result in the sixth condition; in other
words, we find the eliminant of the five free parameters between the six conditions.
Choosing I(x) to be a polynomial, then in order to achieve five [rec vector parameters,
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we must choose the degree to be four, that is choose
Ix)=x*a+ b+ e+ xd+e, (3.22)

where a b, c.d.e are m-dimensional vector parameters. A straightforward calculation
shows that the eliminant is indeed Simpson's Rule. Note that if the solution of the initial
value problem happens to be a polynomial of degree < 4, then [(x) and y(x) become
wdentical, and Simpson’s Rule would be exact. This is consistent with the readily
cstablished fact that Simpson’s Rule has order 4, and error constant ——%, so that the
dilference operator associated with Simpson’s Rule expands to give

. Slzxnh]= =&t

a0

If z{v) s replaced by v(v) a polynomial of degree €4, then clearly y9(x) =0 for all
T 2= Soso that v h] =0, implying that the method is exact.

The link between lincar multistep methods and polynomial interpolation is a revealing
one. We can anticipate that lincar multistep methods will perform badly in situations
where polynomial interpolation would perform badly—a point we shall return to in
Chapter 6 where we discuss stiffness. Howcever, useful though the correspondence
hetween lincar multistep methods and polynomial interpolation is, that correspondence
is not one-to-one. 11, in the above derivation, the reader cares to replace the quadratic
polynomial T{x) given by (3.22) by the cubic spline S(x) défined by ‘

Hxefy,, x4 4]

S0 - { a4+ vithdxe+d
ifxelx, e, X2l

Vad bt xe+d F(x - x,, ) e

which also has the requisite number (five) of free vector parameters o, b, ¢, d, e, then again
Simpson’s Rule emerges.

Exercises

331 Starting from the identity
Xnt2
WX, ) = ¥ ) = J ¥ dx
Xwov g

derive the 2-step Adams Bashforth and Adams- Moulton methods.

3.3.2. At the end of the above section, we indicate that a single application of Simpson’s Rule is
equivadent 1o Tocat Hermite interpolation by a cubic spline. Let S,(x) indicale such a cubic spline
applicd in the interval [y, v, ., ] By considering the relationships between §,(x) and S, ((x) at
the overlapping points. show that integrating an initial vatue problem from x =a to x =h by
rc‘pculcd applications of Simpson’s Rule is equivalent to global Hermite interpolation by a (global)
cubic spline (that is, a function which is cubic in each of the sub-intervals [x,, x,4,] in"1,b] and
has continuous first and sccond derivatives in [a,b]). ‘

3.3.3, There is an alternative way of establishing the relationship between Simpson's Rule and
Hermite interpolation hy a cubic spline. Consiter the interpolant /,(x) = PoX + @ xt + ay X + g
Impose the conditions 1,(x, ) = Vs j D (Xes ) = fasp =01, and eliminate .z, aar, ano from the
tesulting four conditions to get a formula which will involve y,. Write down this formula again,

¥

pr
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with n replaced by n + 1 and add, to get a two-step method involving the parameter 3, + 7,4
Choosing the value of this parameter in order that I} {x,.)=17,,{x,. ) should again produce
Simpson's Rule.

3.34. (i) Let the exact solution of the initial value problem be locadly represented in the interval
[ X X,+,] by the cubic interpolant I(x) = ay<® + a,x? + ayx +a,. Find the eliminant of the four
coeflicients a,, i =0, 1,2, 3, between the five condilions

Hxas =Yoo =00 I00=/F " g=123 (1
¢

to obtain an explicit method (the Taylor algorithm of order three).

(it} Repeat (i) but with I(x) replaced by the rational function R(x) = {ayx 4+ ayx + ap){x + ay).
applying the same conditi s (1). The result will be a new explicit method. Why is the method
derived in (i) applicable to an m-dimensional problem, while that derived in (i) is applicable only
to a scalar problem?

(iii) Suggest circumstances in which the method found in (i) might be expected to perform
better than that found in (i). Hlustrate by applying both methods to the scalar problem, v = 1 + v
W0) =1, 0 < x £0.75. (The exact solution is y(x) = tan(x + n/4))

3.4 THE FIRST DAHLQUIST BARRIER

A natural question to ask is what is the highest order that can be achicved by a convergent
linear k-step method. in secking high order, the consistency condition is automatically
satisficd, but we meet a very real barrier in attempting to satisfy the root condition.
This barrier has become known as the first Dahlquist barrier, since it was originally
investigated in the seminal paper of Germund Dahlquist {1956); this paper was the first
to bring strict mathematical analysis to the problem of the convergence of numerical
solutions to initial value problems, and ushered in a new era in the subject.

The linear k-step method (3,1) has 2k + 2 free coellicients a fii=0.1. .k of which
one, a, is specificd by (3.2) to be |. There arc thus 2k + 1 free parameters (2k, if the
method is constrained to be explicit). From (3.14) and (3.15). it follows that if the method
is to have order p, then p + | linear cquations in a;, f3;,j =0, 1.....k. must be satisfied.
Thus the highest order we can expect from a lincar k-step method is 2k il the method
is implicit, and 2k — 1 if it is explicit. Linear k-step methods achieving such orders are
called maximal. However, maximal methods, in general, fail to satisfy the root condition
and are thus zero-unstable. The first Dahiquist barrier is encapsulated in the following
theorem (Dahlquist (1956); see also Henrici (1962)):

Theorem 3.1 No zero-stable linear k-step method can have order exceeding k + 1 when
k is odd and k'+ 2 when k is even.

A zero-stable linear k-step method of order k + 2 is called an optinal method: naturally
k must be even and the method implicit. It can be shown that all of the spurious roots
of the first characteristic polynomial of an optimal mecthod lie on the unit circle, a
situation that gives rise to some stability difficulties which we shall investigate in §3.8.
The result is that optimal methods do not perform well, and so it would be incorrect
to deduce from Theorem 3.1 that zero-stable k-stcp methods of order k + 1. where k is
odd, are overshadowed by the optimal methods that can be achieved when k is even.
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Simpson's Rule occupics a unique position in this hierarchy. It has stepnumber 2 and
order 4, and is thus both maximal and optimal.

3.5 LOCAL TRUNCATION ERROR AND GLOBAL
TRUNCATION ERROR

I §3.2 we used the power of h in the first non-vanishing term in the Taylor expansion
of the residual R, .
s natural o use the residual itseifl as a finer measure of accuracy, giving rise io ihe
following definition:

Definition The local truncation error or LTE of the method (3.1) at x,,,, denoted by
T, ., is defined by

T, =L Ly(x,)hl, (3.23)

where ¢ is the associated difference operator defined by (3.13) and y(x) is the exact solution
of the initial ralue problem (2.2).

"

I, is thus scen to be identical with R, ,. The local nature of T, ,, can be seen if we
make the following somewhat artificial dsqumpllon known as the localizing gssumption.
We assume that v, , ;= v(x,, ) j=0,1,....k— 1, that is, that all of the back values are
exact; let us denote by 7, the value at x,,, , gencrated by the method when the focalizing
assumption is in force. It follows from (3.13) that

K x
Yoy, + i =h Y By (x, +jh) + L y(x,)h]

jio0 j=0

k
=0 Y B+l plx, + I+ T, 4,

j=0

since v(x) satisfics the differential system y' = f(x, ¥). The value §_,, given by the method
satisfies
k-1 !

Yoot }_, LNy 71’/‘ /(("+kv‘"+k)+ll Z ﬁl

j-o

n#] -)n+j)

and on subtracting and using the localizing assumption we obtain

= LS (3.24)

},(("‘k) - fni k —\‘,.”,)'(X,.H))—f(-‘”,(,f’,,v,,k)] + Tn+k

We now apply the mean value theorem to the right side of (3.24). Using the notation
of §1.3. Case 4, we have that

TG o VX D) = (X Fasl) = (xn+k‘"n+k)[y(xn+';)~}.;n+k]’

where J is the Jacobian matrix of f with respect to y, and the notation implies that
cach row of J is evaluated at different mean values 1, , ,, €ach lying in the internal part

defined by (2.7), to define the order of a linear multistep melhod.“
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of the line segment joining y(x"“) to §,,, in R™. Equation (3.24) now yields

[' - hﬂkj(x,.uu"n+h)][y(xn+i) -

Thus if the method is explicit (f; = 0) then the LTE at x_,, is simply the diflerence
between the exact and the numerical solutions at x,, , , (subject, of course, to the localizing
assumption). If the method is implicit, then to a {irst approximation (that is, ignoring
the O(h) term on the left side) the same is true.

We note that the definition.(3.23) of LTE demands only that y(x)eC'[a, h], and this
is guaranteed by Theorem 1.1 of §1.4. If, however, we are prepared o assume that
y(x)eC?*'{a,b], where p is the order of the method, then by (3.14) we have

Farrd=T,,, 13.25)

\

: T,

ntk

=C,, YT () + O ) (3.26)

and it follows from (3.25) that for both explicit and implicit methods
Y )= P = C,,“h"* xytru Y(x,)+ 0! 7).

The term C,, h?*'y'"* (x,) is referred to as the principal local truncation error
or ’LTE.
If no localizing assumption is made, then the difference between the exact and the

numerical solution is the accumulated or global error.

Definition The global truncation error or GTE of the method (3.1) at x,, . denoted by
E,,, is defined by 4

E, = yun”‘)’,.u-

The LTE and the starting errors accumulate to produce the GTE, but this accumulation
process is very complicated, and we cannot hope to obtain any usable gencral expression
for the GTE. However, some insight mlo the accumulation process can be gleaned by
looking at an example.

Consider the Mid-point Rule

1

Var2 = Ya=2hf 1y 3.27

applied to the scalar problem

V=y y0)=1 (3.28)

whose exact solution is y(x) = exp(x). Since we wish to sec the cffect of starting errors,
we choose as starting values 0(h?%) perturbations of the exact starting values, and take

Yo=1+woh?, y,=exp()+wh® g21. (3.29)

The method (3.27) has order 2 and grror constant §, and it follows from (3.26) that the
LTE at x, is

=Lihdexp(x,_,) + O(h“) =Y exp(x,) + 0(r). (3.30)
To get an expression for the GTE, we must first attempt to solve the differerice equation

3
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obtained when (3.27) is applicd to (3.28), namely

Vusz = 2hy, . =y =0 (3.31)

it is easily checked that the solution of (3.31) which satisfies the initial conditions (3.29)
is given by ‘
e L

—r (3.32)

where . J
O(r) = exp(h) — r + {0, — rwg)h?

and r,.ry are the roots of r2 = 2hr — 1 =0. Now,

ry=ha JO R =1+ h+ /2 +0(h*) = exp([1 — h3/6 + 0(h*)] 133
ry=h -~ J(1+hY) =~ 1+ h— 02+ 0(h*) = —exp(=I)[1 + h3/6 + 0(h*)]. (339

Using the fact that nh = x,. we obtain

= exp(a) [l = hix, /6 + 0] }
= (— 1)exp(— x,)[1 + h?x,/6 + 0(h)].

',3;

(3.34)

Further, since ry — ry, = 2 + 0(h?), we find from (3.32) and (3.33) that

Qry) = (i = 0g)h* + O(h%) + 0(h*™ 1) .
=(r, —ry)l(w, — w2 + 0(h) + 0(h** Y]
and
Qiry)=ry =1y + (@ + @o)h? +0() +0(h* ")
=(r, —r){1 +(w, + w)h/2 + 0(h®) + O(hT* 1)1,

‘

Thus, (3.32) gives

v, = explx )1 = Lh?x, + 2w, + wo)h?]

~ (=1 exp(— xMw, — wo)h® + O(h®) + O(h* ).

Since y(x,) = exp{x,). we have that the global truncation error at x, is

E,=y(x) =y,

= Lhix,explx,) = Shl(w, + wg) explx,) — (= 1w, — wo) exp(—X,)]

+0(hY) +0(he* 1), (3.35)

Two points of importance emerge from this cxample. On comparing (3.30) with (3.35)
{and ignoring for thc moment (h) terms in the latter), we see that while the local
truncation error is O(h’), the global truncation error is O(h?); that is, one power of h has
been lost owing to the process of accumuiation. We can see exactly where this Joss
occurred, namely, on going from (3.33) to (3.34). Secondly, on comparing (3 9) with
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(3.35) we see that there is no loss of order in the starting errors due to accumulation.
Further, if we were to mimic what we would do in practice and choose ¢ 2 3, so that
the starting errors were at least of the same order as the LTE, then the starting errors
would not influence the leading term in E,; indeed we could afford to take ¢ =2 and

still not alter the order of E,.
. \

Exercises

3.5.1. Using (i) Euler’s Rute and (ii) the Trapezoidal Rule, verify the validity of (3.25) for the scalar
initial vatue problem y' = Ay, y(0)=1, for a general steplength h. (Use the exact solution of the
problem to impose the localizing assumption.)

3.5.2. Consider the application of the method (3.17) of §3.2 to the scalar initial value problem
y =y, y0)=1. Using the results of Exercise 2.5.5% of §2.5 show that the relationships between
the GTE, the LTE and the starting errors, established in this section for the Mid-point Rule, also
hold for (3.17).

3.6 ERROR BOUNDS

It is possible—at the cost of some quite heavy analysis—to establish bounds for both
the local and the global truncation errors. However, as we shall show presently, these
bounds are of no ‘practical value, and so we shall only summarize the results here, giving
references where full derivations may be found.

Referring to equation (3.26), it is tempting to conjecture that, by analogy with the
Lagrange form of remainder for a Taylor series, the local truncation error can be
expressed (with the notation of §1.3) in the form

Tn#l= Cp*lh"*l)-](r‘”)(én)v éne(\‘n"\.ntl)\ (3.‘())
whence we would have the bOUl'ld
I Tyarl SIC,pa fH7HY (3.37
where
Y = max ||y (), (3.38)

xefa b}

»

the bound holding over the range of integration [a, b]}. However, it turns out that (3.36)
holds for some linear multistep methods but not for others. The influence function or
Peano kernel, G(s), of the method is defined by

k J
Gis)= Y [oaj— 9% —pBi—97"]
j=0

where p is the order of the method and the function z, is defined by

z ifz=0
Zy = ,
0 ifz<O.
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If and only if G(s) is of constant sign in the interval [0,k] of s does (3.36) hold; this is
the case for all Adams methods. However, whether or not G(s) changes sign in {0,k],
a bound akin to (3.37) holds, namely

i

I T, nll S GHP*1Y (3:39)
where Y is given by (3.38) and
B { (Cpiyl if G(s) does not change sign in [0, k]
[j;lG(s)!ds]/p! if G(s) changes sign in [0, k].

(Full details can be found in, for example, Lambert (1973).)

The global error bound we are about to quote can take account of the effect of local
round-off error. Let us denote by {f} the sequence generated by the method when a
local round-olT error is committed at each step, that round-off error being bounded by
Khe*' that is, {9,} is given by

k

k
Y o =h ZO Bif s p Pus )+ O KK, 161< 1. (3.40)
i

j=0

We similarly adapt the definition of global error by defining EM,‘:: Y(Xp sk} = Puar We
introduce the notation

k k N
=Yyl B=Y Ifl 6= max |E,|
i=0 i=0

2=0,1,..k=1

r:[ sup w}/u —HIBIL)
s=0,1,...

O+ {4+ aol)=vo + 1l + 7,00+

where

and L is the Lipschitz constant of the differential system in the problem being solved.
We note that § is a bound on the starting errors, and that for all Adams methods
[ =11 ~h|f)L).

Then, provided that

hpiL <! (3.41)
the global error (including round-off) is bounded as follows:
E, | < U{AkS + (x, — a)(h*GY + h'K)} exp{T LB(x, — a)} (3.42)

for all x,e[a,h]. For a derivation of this bound, see Henrici (1962, 1963).
Several comments can be made about the bound given by (3.42). U

(a) The condition (3.41) is clearly satisfied for all explicit methods; for implicit methods,
it coincides with (3.8) of §3.1, which was the condition for the implicit difference
equation to have a unique solution.

. {b) The effect of the three sources of error, LTE, starting error and round-off error are

104
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clearly seen. We note from (3.39) that, if the LTE is bounded by Gi¥' 'Y, then the -
corresponding term in the global bound is bounded by Gh"Y. This mirrors exactly
the behaviour we observed in the example of §3.5. That example showed that the
actual global truncation error, for a particular example, was 0(h"), and (3.42) shows
that for all linear multistep methods applied to a general problem, it cannot be
worse than O(h"); it follows that, in general, the globdl truncation error of a pth- order
linear multistep method is O(h”).
If the bound & is O(h"* ') (the natural choice) then the starting errors have a second-
order effect on the error bound; one can afford to take § = O(h") without aitering
the order of the bound. These conclusions again reflect those drawn from the example
of §3.5.
Just as for the LTE, if round-offl errors are locally bounded by Kh?*!  then they
are globally bounded by Kh?. However, this is not a realistic model lor what happens
in practice. We know of no computers where the user can ask for arbitrarily small
levels of round-off; we choose to work in single-, double- or triple-length arithmetic,
and have no further control over the level of local round-ofl. A more realistic
assumption would thus be to replace Kh**" in (3.40) by ¢, a fixed bound on local
round-off error. This clearly has the eflect of replacing the term Kh?in (3.42) by ¢/h,
which leads to an interesting conclusion: as ki — 0, the bound initially decreases due
to the term in h”, but eventually increases (to infinity) due to the term &/h, thus
corroborating what common sense tells us, that, in general, convergence to the exact
solution can never be achieved in practice with a computer that works in finite
arithmetic. '

(e} Let us ignore round-off by setting K =0 (or &£ =0). Then if, in accordance with the
definition of convergence, we assume § — 0 as h — 0, we have that } E, | +0 as h—0
if p 2 1; that is, the method is convergent if it is consistent. But what has happened
to the condition of zero-stability, which we know to be necessary for convergence?
The answer is that if the method is zero-unstable, then it can be shown that the {y,}
u<ed to define I' become unbounded, so that I' = oo and convergence is lost.

(f) Can the bound be used in practice to give the user a helpful guarantee on how
accurate the computed solution is? The answer is no! All of the terms in (3.42) except
Land Y are functions of the coeflicients of the method only, and arc readily computed.
L can be taken to be the maximum value that ||df/dy || takes in {a, b], and this could
be estimated a posteriori by evaluating df/dy on the numerical solution {y,} rather
then on the (unknown) exact solution y(x). Y could similarly be estimated a posteriori
by the (error-prone) process of numerically differentiating the solution {y,} p+ 1
times. However, the real reason why the bound is of no practical value lies in the
fact that it is nearly always excessively conservative. For example, we note from
(3.42) that the bound grows exponentially with x, and this applies even if the solution
decays, in which case we would expect the actual global error also to decay (see the
‘examples of §2.7).

(c

—

d

~

We conclude by illustrating comment (f) above by applying the bound (3.42) to
Example 3 of §2.7 where the method

yn+3+%yn+2 2yn+l “91‘"&24_5.["
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was applied in the interval [0, 1] to the problem
!yr — Z‘V ly(o) — %
=Nty =1y 3(0)= -3

whose exact solution is 'y{x) = [1 + Jexp( —8x)]/8, 2v(x) = — Jexp(— 8x). We ignore
round-off crror, and since cxact starting values were used in §2.7 we set 6 =0. The
bound given by (3.42) now rcads

JE, Il < Tx,h"G Y exp(I'LBx,), (3.43)

where, to be consistent with the results of §2.7, we take |-} = }} -}, throughout. The
method has order 3 and error constant 17/48; a tedious calculation establishes that G(s)
does not change sign for se[0.3], so that G =17/48. By constructing and solving a
difference equation for 1y | we find that I' = 1. Using the exact solution, we have that

Y = exp(— 8x)[ 1536, 12228],

Cand [y, takes its maximum value of 12384 at x =0. The maximum value of
Kef 0yl alsq occurs at x =0 and is 50.001. B takes the value 3, so that (3.43) gives

I E, 1 < 4386x,h% exp(150.003x,) (3.44)

and we see at once that this bound is hopclc;sly pessimistic. From §2.7, when h = 0.0125,
the actual global errors at x =0.2 and x = 1.0 were 1.1 x 107* and 9.6 x 1077 respect-
tvely: the bounds on the global error given by (3.44) at these points are 1.8 x 10'° and
1.2 x 10"* respectively. A customer is unlikely to be impressed by being told that there

is a cast-iron guarantce that the errors in the numerical solution are everywhere less
than 1.2 x 1H0°%,

Despite its inability to give useful practical results, the bound (3.42) is none the less
helpful in our understanding of how local errors propagate.

Exercise

3.6.1. Construct the influence function G(s) for the method

Vacrs 0y bay = h[Q—a)fy, —(1+2f,]),  a# 5.

Find the range of x for which G(s) does not change sign for se€[0,2] and demonstrate that for
in that range,

] 2
,J IGGNds =1Cpuil.
I

0

3.7 LOCAL ERROR

The LTE, as défined in §3.5, is useful in analysing local errors, but the localizing
assumption, necessary for an interpretation in terms of the difference between exact and

™y
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numerical solutions, is highly artificial, and there is no way that it can be implemented
in practice. Some authors propose, as an alternative measure of local accuracy, the local
error or LE defined as follows:

)
Definition. Let u(x) be the solution of the initial value problem
W= fxu), u(Xpyno1)=Ynsi-1-

Then the local error, LE,,, at x,,, is defined by
1

LE, = “(-"‘nu) — Pk

:

The nomenclature in the litcrature is a little confused in this arca and some authors usc
‘local error’ to have oth . meanings (e.g. Hairer, Ngrsett and Wanner (1980)). ITLE, ,,
is expanded in powers of h, then the leading term in this expansion is called the principal
local error or PLE. Note that no localizing assumption arises in this definition; y, .y,
and y, ,, are the actual computed values, in which truncation error will have accumulated.
The situation is perhaps clarified by Figure 3.1, which illustrates the situation in the
case k = 3; for a typical component 'y, the points marked x denote the numerical solution
{'y,}, those marked [J the back values 'y, ;, j =0, 1,2 under the localizing assumption.
and the point marked + the value ', (in the notation of §3.5). It is sometimes claimed
that, because of the absence of any localizing ‘assumptions, the LE is a more natural
measure of local accuracy than is the LTE. We shall chalienge this view later in this
section.

By (3.26), for a method of order p the LTE is O(h?*'). Intuition suggests that the LE
is also O(h?*1), since it is free of accumulation of error. An interesting question arises:
is the PLTE the same as the PLE? We approach this question by first considering what
happens for an example. The convergent method

I ! .
Yne2 _(l +a)yn41 +ayn=i][(3 _a)jn+1 “(l +1)/n]‘ (345)

where a, -1 <a<l,isa parameter,'has order 2 and error constant C,={5+ a)/12. if

“ix) + LTE

fix)

x/( LE

X
X
X
L 1 L 1 1 L e
Xn Xn+1 Xn*a X/HES

Figure 3.1
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we apply it to the scalar problem
| Y=y y0)=1, ‘ (3.46)
whose exact solution is y(x) = exp{x), then the local truncation error at X4 1S
LTE,, , =5(5 + a)hexp(x,) + 0(’14}. (3|.47)

Applying (3.45) to (3.46) generates the dillerence equation

—
w
-
%

——

1
v Jn M

\',2~[|+a 21 a):} i+{~¢ (14 d)}y»—n

We are interested in secing whether local error is affected by starting errors, so we take
the initial conditions for (3.48) to be 0(h) perturbations of the exact conditions:

Yo= 1+ wmoh?, vy, =exp(h) + w,h?, g=1l. (3.49)

As for the example of §3.5, we find that the solution of (3.48) satislying (3.49) may be
wrilten
_ Q(r,)r) iQ{r,l{;

rv—r (3.50)

where
Q(r)=exp(h) — r + (w, — rawg)h?

and ry,r, are now the roots of

—[1 +a+"(3—a)]r+a+'«’(|+a)—
. 2 2 -

By expanding the discriminant of this quadratic in powers of h, or by using sums and
products of roots(or preferably by both ) we find the following expansions for r, and r,:

| 11
N LR +0(h*),
2 41 -«

(3.51)

l
r‘Z:a+2(l—a)h—2h +41 * g +()(h“).I

The function u in the definition of local error satisfies «' = u, u(x,4,) = y,+,, and is
therefore u{x) =y, exp(x ~ x,,,). It loltows that

LE,,;=ulxy,2) = Yns2 = Yur 1 €Xp{H) — yps s

On substituting for v, |, ¥, , from (3.50) and using the expansions (3.51), we find after
some manipulation that

' 15
LE,,,= - +ozh’cxp(x,,)~[—I~§—tgh3+(wl wo)h“J rat 4+ 0(h*) + O(h?* 1),

121 -« 21—
(3.52)
where ry, = a + 0(h).
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Comparing (3.52) with (3.47), we sée that for general ae[ — 1,1), the LE and the LTE
are very different. In parucular note that when a= —1 the factor r}*! in the second
term of (3.52) does not decay as n— co. We conclude that for gcneral linear multistep
methods PLE # PLTE.

Does the abové example persuade us that LE is to be preferred to LTE as a meagure
of local accuracy? Whilst the definition of LE does appear to indicate thal it is the more
natural measure of local accuracy, the results of the above example can be interpreted
as being a little disturbing. Global error arises through three factors, (i) the starting
errors, (ii) the ‘local’ errors committed at each step, and (iii) the manner in which these
two errors are propagated; here we are searching for the most acceptable definition of
(ii). From (3.47) and (3.52) we first note that the LE, unlike the LTE, is influenced by
the starting errors (and the PLE is so influenced if we make the natural choice g = 3).
But any measure of {ocal accuracy should not be concerned with what happened in the
starting phase; LE is straying [rom factor (ii) to factor (i). Secondly, in the example we
demanded that —1 <a <1, in order to ensure that the method was zero-stable; the
analysis would certainly need modification in the case a = 1, but it holds good for a > I.
If we take o > | then the method is zero-unstable and the global error will be unbounded.
From (3.52) we see from the term in }*! that the LE will also become unbounded as
nincreases. One could argue that the LE is rightly warning us that the numerical solution
is bad. However, & measure of local accuracy need not, indeed should not reflect zero-
instability, which as we have seen in §2.5 is precisely to do with the adverse accumulation
of local errors and not with the size of those local errors themselves; so LE also strays
from factor (ii) to factor (iii). One could say that LE pokes its nosc into what is not its
business!

Having made some possibly controversial remarks, let us now make some conciliatory
ones by noting that LE is usually defined in the context of codes which almost invariably
use Adams methods. We observe from (3. 47) and (3.52) that if @ = 0, when the method
becomes the 2-step Adams-Bashforth method, a remarkable snmphrcauon takes place.
Firstly,

S+a=5=(5+a)/l — ),
and secondly, from (3.51),
=3h— 3R> + 10 + 0(h*) = Lh{exp(—h) + O(h) ]

whence r3* ! = (h/2)"* + O(h"*2), and provided q > 3, we have

LE, ;= 5hexp(x,. )+ O(h?) L Shiexp(x,) + 0(h*)

and PLE,,,=PLTE,,,.

We are tempted to conjecture that for all methods of Adams type, PLTE = PLE; we
can prove as follows that this conjecture is indeed true, under natural conditions on
the starting errors.

Consider the general linear k-step method of Adams type of order p> 1,

k
Yntk = Ynsk-1=h z Bifosj (3.53)
j=o

+
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applicd to the problem v = f(x.y), v(a) =y, with starting valucs which are in crror by
O 'Yy The method is convergent and from comment (b) in §3.6, we know that the
global error satisfics I, = Oth™), n =k, k+ 1,...; it follows from our assumption on the
starting errors that

E,=0(h"), n=0,1,.... (3.59)

Assuming that the exact solution y(x) is sufficiently diflerentiable, then, if Cp.y is the
crror constant, we have that

x
YO = Y0 ) =R Y B (X ) Cp (B D) + O+ ?)
ji=o
and on subtracting (3.53) and using the mean value theorem with the notation of §1.3,
we obtinn
Faoi Erii <0 S /f (\w»m,) Ecy b 00" ), n=01,.., (359

. j=0

where the bay indicates that each row of the Jacobian 8f/dy is evaluated at possibly
different values of », , j» all of which lie in the line segment in R™ from Y(Xa 5 ) 10 You s
It follows from (3.54) and (3.55) that

Lo —Eyyioy =0 Y, n=0,1,...,
and in view of our hypothesis that the starting errors are 0(h"*!) we may write
— E, =0ty n=0.1,.... (3.56)
Let uix) be the solution of the initial value problem \
W= o), (X, )= Ve (3.5

Then, by definition of the LTE of the method
k
WX, ) — X, o )= h Z Bif (O julx, N+ oy A7 D(x ) 4+ 0(h?+ )
j=0

and on subtracting (3.53) and again using the mean value theorem we have

WX, ) = Ve =h Z ﬂ f n#]vCﬂ*J [“(‘nu) yn+j]

/,ﬂ*' (0 (x,) +0(TY), n=0,1,...

From the definition of LE, ,,, t(x,.4-{) = Vssx-, and it follows that

f n+1a n+;)[u n+j) n+1]

[I——h/f e M)JLEMJ' z ¥

i=

+C,,,,h"“u"’*"(x,,)+0(h"‘2), n=0,1,.... (3.58)

w9
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Now, for j=0,1,..., k=2,

' k1 .
ueps ) = uxpnr )+ 5 U F Wiy ome
s=1 s!
Po(j—k+ 1) _ +
= VYark-1 1 Z Lf"_)"h‘f“ Mkt Vs i)+ OO "),

=1 S

where ¢~ U(x,y) = [d* Ydx* "] f{x,y), s=1,2,....p. Also,

j—k+ 1) '
WXy s )= 00— + i [!W'v;fm’) TG Y (X DA O,
o= s!

On subtracting and applying the mcan value ttcorem we obtain, using (3.54)

W)~ Fxg ;) = = [T+ O Eyg oy + 007" ) = — ey + 00 )

Hence, for j=0,1,..., k-2, n=0,1,..,

(X s )) = Vau g =Xy )) =YX a5} + Y(X01 ) = Vs
= By 4 B O

=—E.  tEga—Epioa oo

=0(h"*"), f

—Epejir + E #0007

by (3.56). Hence from (3.58) we obtain that

. LE, .\, = CPHh”“u‘.””’(.\'”) + 0" ),
whereas

LTE,,, = C,y h?* 1y Vi, ) +0(h"*2),

Since y(x) — u(x) = 0(h"), it follows that PLE,,,=PLTE, ., , n=0,1.. ..
the conjecture.

The above result can be extended a little. Assume that a linear multistep method
satisfies the root condition and, in addition, { = 1 is the only root of p({}) on the unit
circle; such methods are sometimes said to satisly the strong root condition. Then it can
be shown (Lambert, 1990) that if the solution of the problem satisfies 1(x)e C"*'[a,h].
where p > 1 is the order of the method, and the starting values are in crror by 0(h"),
then PLTE = PLE if and only if Z;:Oﬁj = 1. Clearly, Adams methods satisf{y this last
condition and the strong root condition. -

We have said nothing sofar on how we would. in practice, estimate the LTE (or the
LE). From (3.26) we have that the PLTE is given by

. thus proving

3

PLTE,., = Cpy 7117 (5,

It would be possible to replace the exact solution y{x} by the numerical solution {y,}
and hence estimate y'7* V(x,) by the process of numerical differentiation-—an inaccurate
process, especially when high derivatives are sought. However, linear multistep methods
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are normally tmplemented in the form of predictor—corrector pairs, and it turns out
that in this form a much more satisfactory estimate of the PLTE is available at virtually
no computational cost. We thercfore defer the question of estimating the PLTE to
Chapter 4.

Exercise

3.7.t*. Repeat the analysis performed in the above section for the method (3.45) applied to the

,,,,,

h
Yoz =+ 2y, +ay,= ii[(s"‘a)fn»z‘*g(l =@ oy~ (1= 30/f,] 1

Show that the PLTE and PLE coincide if and only if & =0, when the method becomes the 2-step
Adams Moulton method.

3.8 LINEAR STABILITY THEORY

let us refer back to Example 3 of §2.7, where a convergent linear multistep method
was applicd to the test problem (2.24). The numerical results showed that there appeared
to exist some value h* of the steplength such that for fixed h > h* the error increased
as x increased, whereas for fixed h < h* it decreased. Further, it can happen (as in
IExample 4, which is not, however, a linear multistep method) that for alkfixed positive
values of h, the errors produced by a convergent linear multistep method increase as
¥ increases. In such situations, clearly the local errors are accumulating in an adverse
fashion; in other words, we are dealing with a stability phenomenon. The only form of
stability we have considered so far is zero-stability, which controls the manner in which
errors accumulate, but only in the limit as h~0. What is needed is a stability theory
which applics when h takes a fixed non-zero value.

In attempting to set up such a theory, we follow the spirit of §2.6, where we discussed
the syntax of a stability definition, and seek some simple test system, all of whose
solutions tend to zero as x tends to infinity. We then attempt to find conditions for the
numerical solutions to behave similarly. The simplest such test system is the linear
constant coefficicnt homogeneous system

y = Ay ' (3.59)

where the eigenvalues 4, t = 1,2,...,m of the constant m x m matrix A (assumed distinct)
satisfy

Rel, <0, t=12...m ' (3.60)

The general solution of (3.59) takes the form

W= 3 mexpldxc, | (361)

t=0

o
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(see §1.6) and it follows from (3.60) that all solutions y(x) of (3.59) satisfy
fy( -0 as x — .

We now ask what conditions must be imposed in order that the numerical solutions
. L} . . . .
{y.} generated when a linear multistep method is applied to (3.59) satisfy

ly. i =0 as n— o (3.62)

Let the linear multistep method

X P
Z AYay ;=N Z Bifasi 3.63)
j=0 i=0

be applied to (3.59). The resulting dilference system for {y,} is

\

K ,
¢ Y (ol = Ay, =0, (3.64)
j=0

where I is the m x m unit matrix. Since the eigenvalues of A are assumed distinct, there
exists a non-singular matrix Q such that

Q1 AQ = A= diggl Ay Ayv. o 2]
We now define z, by
=0z, (3.65)

and on pre-multiplying (3.64) by ¢!, we obtain

t

k .
Z (a0 =Nz, ;=0 i
J=0 ‘

Since I and A are both diagonal matrices, this system is uncoupled, that is we may write
it as .

. .
Z (a;=hp;A)2,.,=0, t=1.2,....m, (3.66)
j=0 !

where z, = ['z,,2z,,...,"z,]". Since the eigenvalues of A are in general complex, we note
that each equation in (3.66) is a complex linear constant cocflicient homogeneous
difference equation. By (3.65), ||y, || =0 as n— oo, if and only if || 2,11 = 0 as n— x, and
hence (3.62) is satisfied if and only il all solutions {'z,} of (3.66) satisfy

|'z, =0 asn—oo, t=12,.... m. (2.67)

Now, from §1.7 we know that the general solution of each of the difference equations
in (3.66) takes the form ’

m
= Y o, t=1,2,....m, {2.08)
s=1
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where the x, arc arbitrary complex constants and r, s = 1,2,...
distinet, of the characteristic polynomial

.mare the roots, assumed

x
Y (o= hp A0
j=o

This polynomial can conveniently be written in terms of the first and second characteristic
polynomials p, o of the method (sec equation (3.4)) as

. ar, ir):= plr)— iro(r)
where . (3.69
h=hi

¥

and A, a complex parameter, represents any of the cigenvalues 4, 1=1,2,...,m of A.

The polynomial ntr ) is called the stability polynomial of the mcthod (‘le'lrly (3.67)
and conscquently (3.62) are satisfied if all the roots ry (=r, (), s=1,2,... .k of n(r, h)
satisly |r | < 1, and we are motivated to make the followmg delinition.

Definition The linear nudtistep method (3.63) is said to be absolutely stable for given t
if for that Iuall the roots of the stability polynomial (3.69) satisfy {r.l <1, s=1,2,... .k,
and 1o he ahsolutely unstable for that h otherwise.

Clearly we arc interested in knowing for what products of h and A the method is
absolutely stable, whenee the following definition:

Definition  The linear multistep method (3.63) is said to have region of absolute stability
# . where A is a region of the complex h-plane, if it is absolutely stable for all he#,.
The intersection of A, with the real axis is called the interval of absolute stability.

Note that the interval of absolute stability is relevant to the case of the scalar test
equation y' = Ay, 4 real. ’

We construct below the syntax diagram for absolute stability.

, v = Ay, A has distinct Re i, <0 Iy(x)}f—0
=>
eigenvalues 4, t=12,...,m asx — o
Linear multistep hieR, fy.l =0
| =
method t=1,2,....m as$n— oo

The region of absolute stability, # . is a function of the method and the complex
parameter i only. so that for cach lincar multistep method we are able to plot the region
# 5 in the complex Ji-plane. 1T the eigenvalues of A are known it is then possible to
choose h sufficiently small for hi, e #, to hold for 1 =1,2,.

We note from (3.69) that when h =0 the stability polynomnal n(r, h) reduces to the
first characteristic polynomial p. Recall from §2.5 that for a consistent linear multistep
method p({) always has a root {; = 1, and this we called the principal root; if the method
is zero-stable, this root must be simple. Now the roots of a polynomial are continuous
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functions of the coeffcients of. the polynomhl and it follows that there must exist a
root r, of m which has the property that ry —»{; =1 as h—0. The following argument
tells us how r, approaches | as h—0.

Let the linear multistep method satisfy the root condition, have associated difference
operator % and have order p> 1. Then LLzxy h] =0ht* "y for any sufficiently
differentiable function z{(x); exp{4 x) where AeC. is sud\ a function, and we may write

k
.Y’[exp().x); =3 {a’,.exp[l(x +j‘h)] — hfdexp[Ax + j]} =0(h"" 1),
j=0
On dividing by oxp().x) we obtain

K . . .
Z a;[exp( () —hp;Llexp(in)iy =00 1)

which may be written

n(exp(h), ) = O(hr* ). (3.70)
The polynomial n{r, h) can be reconstructed in terms of its roots rps=12...., k as
n(r, fl): | — ilﬂ,‘) r—ryr =1y r = (370

(Note that, by the following argument, the f.\ctor | — iif3, can never be zero: fet 1(A4) be
the spectral radius of A. The Lipschitz constant L of the function f = Ayis L={All =
1(A) = | A| (where 4 is any eigenvalue of A). Hence the condition (3.8), I < 1| B L, implies
that h < 1/|B,])

On setting r -—hxp(h) in (3.71) and using (3.70), we obtain

[exp(h) — ro1[exp(t) —r,] ~Lexphy-r, =00 ).

Since, as h—0, cxp(h)—» 1,and r,—={,, s = 1,2,..., k, the first factor on the left side tends
to zero as h—0, and no other factor can do so since, by the roots condition. {; is the
only roots of p({) located at + 1. It follows that

“r = explh)y+ 0" ). (3.72)

It immediately follows that for small iwithRe /i > 0.}r,| > 1. and the method is absolutely
unstable. In other words, the region of absolute stability of any convergent linear multistep
method cannot contain the positive real axis in the neighbourhood of the origin. Note that
since the above argument is asymptotic (as fr = 0), we cannot conclude that the region
of absolute stability dees not contain part of the positive real axis for large |t} or that
the boundary of the region does not intrude into the positive hall-plane away from the
origin.

The most convenient method for finding regions of absolute stability is the boundary
locus techmque The region #, of the complcx h-plane is defined by the requirement
that for all he@?,, all of the roots of n(r, h) havé modulus less than 1. Let the contour
OR 4 in the complex h- -plane be defined by the requirement that for all hiec.#, one of
the roots of n(r, 1) has modulus 1, that is, is of the form r = exp(if)). Since the roots of
a polynomial are continuous functions of its coeflicients it follows that the boundary
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of #, must consist of 2.4, (or of part of &4 ,; some parts of d# , could, for example,
correspond to n(r, i) having one root of modulus 1, some of the remaining roots having
modulus less than 1 and some having modulus greater than 1). Thus, for all hed%,,,
the wdentity

7(explit), i) = plexplif) — halexp(i0)) = 0 ' (3.73)

must hold. This cquation is readily solved for h, and we have that the locus of OR 4 is
given by

i = i) = pexp(i0))/olexp(id)). (3.74)
For the Adams Moulton method with k = | {the Trapezoidal Rule), the contour % , is
particular geometrical shape, but in most cases we simply use (3.74) to plot h(0) lor a
range of Ne[0,2n], and link consecutive plotted points by straight lines to get a

representation of A4 4. The contours 4 , so obtained for the Adams—Moulton methods
of stepnumbers | to 4 arc shown in Figure 3.2 and those for the Adams—Bashforth

-3

2l

Figure 3.2 Regions of absolute stability for k-step Adams—Moulton methods.

Iy
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Figure 3.3 Regions of absolute stability for k-step Adams-Bashforth methods.

]
methods of stepnumbers 1 to 4 in Figure 3.3. Having found &4, we lmve to deduce
what # , is. For the Adams-Moulton methods with k = 2, 3,4 and (he Adams- Bashforth
methods with k = 1,2, 3, % , is a simplc closed contour: to see that the shaded regions
in Figures 3.2 and 3 3, that is the interiors of tht regions bounded by 4, arc indeed
the regions of absolute stability, all we need do is obscrve that, from (3.72). all tincar
multistep methods are necessarily absolutely unstable for small positive valucs of Re(h).
For the Adams—Moulton method with k = [ (the Trapezoidal Rulc), the contour 02, is
simple but no longer closed; it is indeed the whole of the imaginary axis. The same
argument shows that the region ofabsolule stability is the whole of the negative half-plane
Rc(h) <0.

Things are not quite $o simple for the Adams-Bashforth method with k = 4, where
the contour 94, is closed but no longer simple, since it crosses itsell at two points
(which are just to the right of the imaginary axis). The argument we have used above
establishes that the region of absolute stability contains the shaded region, but it is not
clear whether it also contains the two loops lying it the positive half-plane. The point
marked A in Figure 3.3 lying on the loop of 0% , in the first quadrant corresponds (o
takmg 6 = n/2, which, by (3.74), implies that h = 0.272 + 0.578i at A. With this value for

h, n(r, h) turns out to have roots

i, 1.076 +0.744i, 0357 4+ 0.0511, 0.190 — 0.470i.

3
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{Note that since 7 is a polynomial with complex coefficients, its complex roots no longer
appear as complex conjugate pairs.) The first root has modulus 1 (justifying A as a point
on ¢4 ,) but the sccond root has modulus greater than 1. By continuity, the interior of
the loop cannot be a region of absolute stability. By symmetry, the same holds for the
loop in the fourth quadrant, and we conclude that the shaded region in Figure 3.3
constitutes the entire region of absolute stability.

We note in passing that Figures 3.2 and 3.3 prompt two conjeclures: that implicit
methods have larger regions of absolute stability than explicit methods and that, as
order increases, the regions of absolute stability shrink. The first is, in a general sense,
truc of all numerical methods; the second is not (cf. explicit Runge-Kutta methods, o
be discussed in Chapter S).

1t is of some interest to apply the boundary locus method to one further example,
namely Simpson’s Rule, given by

pry = 1, a(r)= 402 4 4r 4 1),
Applying (3.74), we find afller a little manipulation that the locus of a# , is given by

R Jisin0 !
)= -~ - = :
24 cosl

and therefore lies wholly on the imaginary axis. For all 0, the function 3s5in 6/(2 + cos )
lies between - /3 and v/l, and it follows that d# , is that part of the imaginary axis
running from \/}i to \/3i. We know that for l‘xeﬁ.@?vm a(r, ) has a root of modulus 1
(in this instance, both roots have modulus 1) and we conclude that Simpson’s Rule has
an empty region of absolute stability. All optimal methods have regions of absolute
stabtlity which are either empty or essentially useless in that they do not contain the
negative real axis in the neighbourhood of the origin (see Stetter (1973), page 268 for
fuller details). In essence, by squeezing out the maximum possible order (subject to
sevo-stability) from a lincar multistep method of given stepnumber, the absolute stability
region gets squeezed flat. This is why optimal methods are not favoured. *

The interval of absolute stability can, of course, be deduced directly from the region,
bul sometimes we want to find only the interval, in which case quicker methods are
available. 1t is then appropriate 10 take heR, in which case n(r,h) becomes a real
polynomial. The criterion for absolute stability is then that n{r, i) be a Schur polynomial,
and the Routh Hurwitz criterion, discussed in §1.9, can be applied. Consider, for
cxample, the 3-step Adams Moulton method given by

pr)y=r =1 a(r)=(9r + 1972 — 5r + 1)/24
whenee,s setting Hi= }/24 for convenience, we oblain |

mr )y =01 —9H)> = (1 + 19H)r* + SHr— H. '
On applying the transformation r = (1 + 2)/(1 — z) we obtain

(1~ 2)*n((1 + 21 — 20, h) = apz® + a,2% + a,z + as,
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i
where

( ay=—24H>0ilH <0,
a;=2-48H >0,if H <
ay=4-16H>0ilH <!,
Ap=2+16H>0ilH> -1

8

The conditions a; >0, j=0,1,2,3, are thus satisfied iff fHe( ~3.0). The remaining
condition a,a, > agay is satisfied iff
]

144H2 —22H + 1 >0,

which condition (the discriminant of the left side being ncgative) is easily seen to be
satisfied for all H. It follows that =(r, 5) is Schur iff f{e(— £.0), or equivalently fze( -3,0)
The interval of absolute stability is thus (— 3,0), a result corroborated by Figure 3.2.

Linear stability theory supports a further crop of definitions concerning relative
stability, a topic nowadays considered less significant than hitherto. The rationale for
this development is as follows. Recall the resutt (3.72) that

ry=exp(h) +0(rt Y. (3.72)

. .
A consequence of this is that when we use a linear multistep method to solve numerically
the test system (3.59) in the case when A has some eigenvalues with positive real parts
then, for sufficiently small h, the numerical solution {y,} will have the property that
I yal = co0 as n— oo, This is as it should be, since from (3.61) we know that || y(x)| - oo
as x — oo when any of the 4, have positive real part; the situation is acceptable, provided
that || y(x) i and ||y, )| tend 1o oo at approximately the same rate. Let A* be the eigenvalue
of A with greatest (positive) real part. It follows from (3.61) that the growth of §j y(x}||
will be dominated by the term exp[(Re A*)x]. Now, from (3.72),

r(hA*Y =[exp(hA*)]" 4+ O(h") = exp[A*(x, — a)] + O(I"). 3.79)

Relative stability is concerned with whether r,(hA*)" or r (hA*)" (for some se{2,3,..., kJ)
dominates the numerical solution. If the former holds then, in view of (3.75). that is

. acceptable. The concept also has some relevance to the case of decaying solutions, since

one might not be happy with a numerical solution which decayed, but not as fast as
did the theoretical solution. Among many criteria that have been proposed to encapsulate
this notion are the following:

" criterion A: |r,['<|r,|, s=23,... .k
cri wrion B fr | < lexp(iv)l, s=23.... .k
, criterion C: jrgd < lexp(ii)l, s=1,2....,k

We can clearly define regions and intervals of relative stability bascd on cach of these
criteria. A is probably the most sensible criterion, but is hard to apply. In view of (3.72).
B is not very different from A, at least for small |1}, and is a little easier to apply. C is
much easier to apply, since a change of argument in the stability polynomial from r to
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R. where r = Rlexp(h)| implics that C Will be satisfied if n(Rjexp(h)|, h) is a Schur
polynomial in R. Unfortunately, C can give bizarre results, reflecting the fact that, for
substantial regions of . |r,| may be greater than lexp(h)|, aithough close to it. For
example. the intervals of relative stability for the 2-step Adams-Moulton hethod, using
cach of these critena, are:

A: (—1.50, o)
B: (-1.39, )
C: (4282, m)

Confusion over definitions may have been a minor factor in the decline of interest in
relative stability, but the major reason is probably the fact that it is absolute stability,
not relative stability, that is relevant to the problem of stiflness, to be discussed later in
this book.

It will not have escaped the reader’s notice that the theory propounded al?ove is
highly restrictive, in that it applies only to the test system y' = Ay, whereas in practice
we usually find oursclves dealing with the general system'y = f(x, y). Attempts can be
made to extend the applicability of linear stability theory to general systems by construct-
ing an approximate system of difference equations for the global error E,:= y(x,} — y,.
As we shall sce presently, such attempts can give rise to very mislcading results. One
starts by noting that the definition of the local truncation error T, ,, implies that

k 3
Z ajy(xn +J,l)=h z ﬁjf('xn+]vy(xn+j))+Tn+k'
j=0 '

i=0

The sequence | v,} generated by the method satisfies

k X )
Z Olj_\’,.+j=h Z ﬂ;f(-’ﬁ.ua}’;.ﬁ)» .
=0

=0

and on subtracting and using the mean value theorem (with the notation of §1.3) we
obtain

i hZﬁ, (x”,,zm) Evest Tovs (376)

This difference system for {E,} is deceptive; it looks linear but is indeed nonlinear since
the values ¢, ; all lic on the line segment from y,.; to y(x,, ;) and hence E,,; is an
unknown nonlinear function of {,, ;. We cannot handle this system, so we force it to
be linear constant coelficient by making the assumption
af
= J, a constant matrix. (3.77)
oy
Wc make the further assumption that T, ., = T, a constant vector, so that (3.76) now reads

Y

i (ol —hBJIE,, ;=T (3.78)
=0

T
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sometimes known as the linearized error equation. Since the constant term T plays no
part in determining whether the norms of the solutions of (3.78) grow or decay as n » » .
it can be ignored, and (3.78) is essentially the same system as {3.64) with A réplaced by
J ai.d yuu; by E, ;. The subscquent analysis holds, and we conclude that | E,} —0 as
n—ooo if hAeR,, where A, t =1,2,...,m arc now the cigenvalues of J, and .2, is the
region of absolute stability of the method. A similar extension in the case of relative
stability is clearly possible.

The flaw in this argument lies in the aqsumptlon (3.77). 1t is simply not true in gencral
that the eigenvalues of J, even if J is taken to be piccewise constant (that is. recalculated
from iime io time as the compuiation proceeds), aiways correctiy represeni, cven in
qualitative sense, the behaviour of,the solutions of the nonlincar system (3.76). (It is, of
course, true when f(x, ¥) = Ay, A a constant matrix. in which case the dillerence systems
for the solution and for the errors are essentially the same)) We shall have more (0 say
about ‘frozen Jacobian' assumptions in Chapter 7, but meanwhile let us look at two
examples. .

First, consider the problem used in the numerical examples of §2.7,

V=fxy, y0)=n  xel0,1] \

where y = [u,0], s (3.79)
and S0 =[o,vv - D/u]", n=[12, 3] l
with exact solution
u(x) =1 +j3 exp(—8x)3/8, v(x)= — Jexp(—8x) (3.80)
The Jacobian of the system is
0 |
aﬁay:[-v(u—— yu* (Qv- I)/uJ‘
Its eigenvalues ;re real, and can be expressed in closed form as
Ay =(v— 1), Ay=v/u. (3.81)
Substituting for u and v from the exact solution {3.80), we obtain
Ay = —8, Ay = —=24/[3 + exp(R¥)]. (3.82)

In the interval [0,1] of integration, 1, increases from — 6 to nearly zero. and we note
that for all x > 0 both eigenvalues lie in the interval [ — 8,0].
The linear multistep method of Example 3 in §2.7 was

Yue3tdVnr2 = 3Vne1 — (n9rm+5f (3.83)
Since the eigenvalues of the Jacobian of the system to be solved are real, we need
compute only the interval rather than the region of absolutc stability for this method.
This interval turns out to be (—4,0), and hence we can satisly the condition

hie®,, t=1,2
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by choosing h such that — 8h lies in (—4,0); that is, by choosing I < h* = 5 = 0.0417.
. rom Table 2.4 0of §2.7. we sce that the global errors do indced decrease for h < h* and
increasc for i > h*. For this example the linearized error equation approach gives sensible
results. ,

We do not need to look far for a counter-example, however. Consider the same system

(3.79), but with new initial values given by

The exmeT solution s now

i

u(x) =11 - 3cxp{—-8x)1/8, v(x) = 3exp(— 8x). (3.84)

Since the system is unchanged, the eigenvalues of the Jacobian are still given by (3.81),
but when we substitute the exact solutions (3.84) for u and ¢ we obtain

Ay = —24/[3 —exp(8x)].

Comparing with (3.82), we sce that while 4, is unchanged, the bechaviour of A, for positive
v is radfeally changed. At x = % =(in3)/8 0.137, 4, is infinitc. For xe[0,%), 4, is
negative, but {4,] becomes extremely large as x — %; for x > X, A; is positive. Were we
to compute a solution of this new initial value problem using method (3.83), whose
interval of absolute stability is (—1,0), then the theory based on the linearized error
cquation would predict that in order lo avoid error growth, we would have to take
sharply decreasing values of h as x approached %, and that error growth would be
unaveidable for x > . In practice, nothing of the sort happens, and the table of errors
for numerical solutions in the interval [0, 1] with a range of steplengths is virtually
identical with thosc given in Table 2.4 of §2.7 for the original initial value problem.
What is happening is that the lincarized error equation, faced with the impossible task
of attempling to mimic the behaviour of the true nonlinear error cquation, throws up
one cigenvalue, 4,, which does the best it can in predicting in a general sort of way the
exponential decay exp( -~ 8x), but the other cigenvalue, 4, is meaningless; in the case
of the original initial value problem, it happened not to get in the way.

The literature of the 1960s and 1970s contains many results (some of which are
reported in Lambert (1973)) on absolute and relative stability, but these results are of '
less significance nowadays. The reasons for this are partly that there has been a steadily
growing appreciation of the limitations of linear stability theory and the emergence of
4 much more satisfactory theory of nonlinear stability (which we shall discuss in
Chapter 7), but mainly because modern codes for the numerical solution of initial value
problems do not actually test for absolute or relative stability. Quite apart from the
possibility of bizarrc results, as illustrated above, such a procedure would be hopelessly
uncconomic: it would require frequent updatings of the Jacobian and of its entire

“spectrum of cigenvalucs, a heavy computational task for a large system. Instead, these
codes rely on their monitoring of the local truncation error to alert them to any instability;
i the estimate of the LTE becomes too large, the step is aborted and the steplength
reduced.

This is not Lo say that lincar stability theory is of no value. A method which cannot
handle satisfactorily the linear test system y'= Ay is not a suitable candidate for

!
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incorporation into an automatic code. More precisely, linear stability theory provides
a uselul yardstick (il one can have a yardstick in the complex plane!) by which different
linear multistgp methods (or classes of such methods) can be compared as candidates
for inclusion in an automatic code. There is ample computational evidence that methods
with large regions of absolute/relative stability out-perform those with small regions.

One specilic result of linear stability theory, already referred to, is worthy of note.
namely that all optimal methods have regions of absolute stability which either are
empty or do not contain the negative real axis in the neighbourhood of the origin. This
means that when such methods are applied to the ftest system ' = Ay, where the
eigenvalues of A4 have negative real parts, the numerical sotution will satisly |y, I = %
as n— oo, for all sufficiently small posilive hi, whereas the exact solution satisfies
[ y(x)I =0 as x — co. Example 4 of §2.7 (although not a linear multistcp method) has
an empty region of absolute stability, and such behaviour is exemplified by the numerical
results quoted. (Once again, it is fortuitous that linear stability works well for the
particular nonlinear problem in question; it would not be difficult to produce one for
which the theory was much less satisfactory) The mechanism by which methods with
empty regions of absolute stability arc none the less convergent has already been
explained in the comments on Example 4 in §2.7.

Exercises
4

3.8.1. Use the boundary locus method to show that the region of absolute stability of the method
Yovz = Ya= 30 0y + 30

is a circle centre (—%,0) and radius § Check this result by using the Routh -Hurwitz criterion
to show that the interval of absolute stability of the method is the diameter of this circle.

38.2. Using Figure 3.2, find the api roximate maximum steplength that will achieve absolute
stability when the 3-step Adams-Moulton method is applied to the scalar problem y” + 20y +
200y =0, y(® =1, y(0) = — 10, recast as a first-order system. Test your answer numerically.

3.8.3*. Find an expression for the locus of &% 4 for the method

I .
Yaso — (L a)yusy +ay,= i%[(5+1)fnoz R =0 fp g ~ (0 +52)f,]
' ’

Deduce the interval of absolute stability when a # — 1; check your result by using the Routh- Hurwitz
criterion to find the interval of absolute stability. Find :#, in the cases (i} x = 1, (i) x=—1.

3.8.4*%. A linear multistep method is defined by its first and second characteristic polynomials
p, 0. Show that if

v Relplexp(i)alexp(—if)] =0 M

then the method is absolutely stable cither for no T of for all i with Rc(fni < (. Show that the
most general zero-stable linear 2-step method of order at least 2 which satisfies (1) is

Yn+2 ")’nzh[ﬂfnz +200 = Pfua B
!

and that it is absolutely stable for all i with Re(in) < 0'if and only if f#>}.
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38.5%. Consider the method

Y= (b @y, +ay, =kl =a)(fen + [, —l<a<l

(it Show that the order is independent ofoz
(i) Find the locus of @4, in the form n? = F(£), where h = {+ in.
(tn) Hence sketch 02, and show that it divides the complex plane into three regions; ascertain
which of these regions are regions of absolute stability.
(iv) Deduce that the interval of absolute stability is independent of a.
(v) Construct a suitable two-dimensional linear constant coefficient problem and use it to devise
and carry out a numerical experiment to corroborate your findings in (it).

3R.6*. A consistentlincar 2-step method for the numerical solution of the second-order problem
Yi=flxy, yaj=n, yla}=4 1
is defined by
Ynez= sy + Va=W[Bfura + (1= 28)f0ur + B1.). )

We are interested in the question of whether the numerical solution {y,} given by (2) is periodic
when the exact solution y(x) of (1) is periodic. Accordingly, we choose as test cquauon the scalar
equation .

w2 3
V= —uty, 3
whose solutions are periodic, of period 2a/t. 1n a development analogous to linear stability theory,
we say that (2) has an interval of periodicity (0, Hé), where H = hy, il the numerical solution of
the difference equation resulting from applying (2) to (3) is periodic for all H2e(0, H).

(b Find the interval of periodicity of (2) in each of the cases § =0, f=5/6 and f = 1/(2 — 2 cos ¢),
O<p<2n

(i 1f (2) is applied to (3) with a steplength h for which H?e(0, H1), show that the numerical
solution has approximately the correct period in the following sense. Let h be such that there
exists an integer m such that mh = 2n/g; then show that

Yaim=Ya +OR"Y)  foralln,
where
LL2(xkh)i=2(x + 2h) = 22(x + h) + 2(x) — K[B2"(x + 2h) + (1 = 2)2"(x + h) + fz"(x)]
=0(hr ' 2), '

(Hint: Put z(x) = explipex) in L[z(x), h])

3.9 ADAMS METHODS IN BACKWARD
DIFFERENCE FORM

Adams methods constitute a sub-family of linear multistep methods defined by
L

k
Ynok=Vmok-1=h 2 Bifuss (3.85)
j=o
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These methods have a long history, the explicit Adams- Bashforth methods having been
first introduced in a numerical investigation of capillary attraction (Bashforth and
Adams, 1883); the implicit Adams-Moulton method$ first appeared in connection with
problems of ballistics (Moulton, 1926). Today they stiil remain easily the most popular
family of linear multistep methods, and form the basis of almost all predictor- cortector
codes for non-stiff initial value problems.

There are good reasons for this popularit)’. Firstly, in comparison with many other
families of linear multistep methods, Adams methods have good regions of absolute
stability; this is to be expected since as h— 0 the roots r, of the stability polynomial
satisfy r,—»{,=0,5s=2,3,..., k. Secondly, the Adams methods have a definite advantage
in the situation where the steplength is changed during the computation. We shall discuss
the implementation of step changes in the next chapter, but it is clear that when the
steplength is changed there i§ a problem, in that the back values are no longer at the
appropriate values of x. One solution is 1o use interpolalion to establish the necessary
back values, and for general linear multistep methods this would mean interpolat’”  ~*
the existing back values of y followed by function evaluations to obtain the back valucs
of f. For Adams methods, there is clearly never a need to interpolate the back values
of y, and direct interpolation of the back values of f.is enough. Lastly, Adams methods
are capable of being expressed in terms of backward differences in a form that greatly
eases the problems of implementing them in an automatic code; we now derive these
alternative forms. In this context, it is convenient to rewrite (3.85) in the equivalent
form

‘ k .
Yot —Yn=h Z ﬂjfn*jvk+l‘ (3.86)
j=0

We start by considering the explicit Adams-Bashforth methods. In the next chapter,
we need to distinguish between implicit and explicit finear multistep methods which
appear in the same context; we do this by attaching the superscript *” o all symbols
relating to explicit methods. It is thus appropriate to do this for all symbols relating to
the Adams—Bashforth methods. Recall f[rom §3.3 that certain classes of linear multistep
methods (including the class of Adams methods) could be derived by a process of
polynomial interpolation. Analogously to (3.19), we consider the identity

PXa ) — yx,) = f " Ydx (387)

We replace y'(x) by f(x, y(x)) and seek a polynomial interpolant of the data

(xn)fn)’ (xn-l‘ifn—l)vuv

By §1.10, such an interpolant, in terms of backward differences, is given by
4 i

. k-1 _
I () =12 (x, +rh) =P} _, Z (—l)'( )v 1. (3.88)

Xn-ks1sSn-x41)

Approximating the integrand on the right side of (3.87) by /}_,(x) and proceeding as
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in §3.3, we obtain

! k-1
Yori avn:J Py ((Nhdr=h 3 ¥V, v (389)

0 i=0

yr=(=1 L (:')m. (3.90)

It is important to notc that the y¥ are independent of k. We could use (3.90) to evaluate
the y*,i=0.1,2...., but there is a more constructive way to proceed. We seek a generating
function for the y*, that is, a function of a dummy variable t which, when expanded in
powers of ¢ will have the y¥ as coefficients. That is, we scek a function G*(¢) such that

. ) ) v N w 3
GHiy= Y k= Y »-r)'f ( j)dr:J [Z (_.1)'( f):ldr.
i-0 i=0 0 i oli=0 i '

The integrand on the furthest right side can be recognized as the expansion of the
function (I — )", whose integral with respect to ris —(1 —¢)~"/In(l — ). Hence,

. 1 -1 —t
G*(t) = R N :
]n(l—l)[l~l jl (I =nin(t —~1) 390)

which we rewrite in the form

where

. —In(1—1) 1 ‘
(/*(l)[ ,}: o ) )
{ 11 (3.92)
Now .
—In{l -1 t 20
m )=l+—+»—-+_.+...
t 2 3 4

and

| =l+t+00+0+
—t

and it follows form (3.92) that the y¥ are given by
23

N t ot
e S M LRI A ~~)<l R >: Tt 240+ e

Equating cocflicients of 1 gives the following relation, from which the y} can be readily
calculated:

¥ V¥ *
R R I L O L N Y N 1 2
2 3 i+ 1
The first few ¥ arc casily seen to be
=1 ot=h u=d i=e
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Thus the family of Adams-Bashforth methods can be written as
Yaer = Yu= Lo+ 390+ 5V ARV (393)

Truncating the series on the right side after k terms and expanding the backward
differences in terms of functiod values, gives the following:

k=1 yn+1_yn=h.[n

h
k=2 y,,;l_yn:‘l_i(:}fn_fnfl)

==
il
“

»

" h i
Yner = ¥n= 1’2'(23fn“ 16fa_y +5/, 2)
§

[ . i
ked oy, ~.vn=2—;<55fn— SOf,_ 4 37f0 =90, )

These are the standard k-step Adams-Bashforth methods, k =1,2.3,4, but in the form
(3.86) rather than the form (3.85).

The importance of the fact that the y} are independent of k is now cicar. By storing
only the four numbers y¥,i=0,1,2,3, we effectively store all four k-step Adams Bashforth
methods with k =1,2,3,4. Further, il we wish to replace a k-step Adams Bashforth
method by a (k — 1)-step, we merely drop the last term in the series on the right side of
(3.93); if we wish to replace it by a (k + 1)-step method, we add an extra term, constructing
the additional backward difference from the previously calculated vatues. This ability
easily to change the stepnumber (and therefore the order) is an cssential property of the
algorithms we shall discuss in the next chapter.

We have established that the k-step Adams-Bashforth method is given by

k-1
S yn+l—yn=h Z y,‘*vlfn‘

i=0
The difference between the values for y,,, given by the (k+ I)-step and the k-step
Adams-Bashforth methods is therefore - .

Ry VA, = By y™ () + 002,

(by §1.2, using the fact that y' = f), a result which strongly suggests that the k-step
Adams-Bashforth method has-order k and error constant yf. We can establish this
more formally as follows.

Let £* be the linear difference operator associated with the k-step Adams  Bashforth
method, and let z{x) be a sufficiently differentiable function. Then, by (3.13).

LHz(x)h] = 2(x, 4 ) — 2(x,) = h kzl V()

. i=0

where Vz'(x,) = z(x,) — 2'(x, - 1), etc. Hence we may write

Xri4 1 k-1
L z(x), k) = J Z()dx =N Y yFViZ(x,)
i=0

Xn U
L]
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Let I, (x)=1, ,(x,+rh)=PF « - 1(r) interpolate the data

(X 2 (XX, 1 2 D (X okt 102 (X — g1 1)).
Then '

~ ko) A =r\_,
Pooiin=% (‘1)'< ; )V'l'(xn)

=0

and, by (1.31), the interpolation error is given by
- /e
' fm—uqub4—WKk)MW“%w)

where &(r) is in internal point of the smallest interval containing X,, X, 1,y Xa_x4
and x, + rh, and the bar over z** ' indicates that each component of z**" is evaluated
at a dilferent value of £(r). Hence

L z(x,) h]l = Jl [k_zl (— |).-< _ir>V"z'(X,,)

+(—- I)"< _kr>h"2""+ ”(r:(r))}h dr—h kil yxrViz(x,).
i=0

It follows from (3.90) that
! —_—
. L z(x, ) h] = h"”J (- l)"( kr>z'”‘”’(5(r))dr
0

Noting that ( — 1)* ( —kr> does not change sign for re[0, 1], we can apply the generalized

mean value thcorem for integrals (see §1.3) to obtain

l —
_‘/"'[z(x,,);h]=h"”i‘“”(5)J (—1)"( r)dr
0 k
= hk+ lv:z'(k+l)(é)’

by (3.90).
Itfollows that the k-step Adams—Bashforth method has order k and error constant .
By an analogous approach, the implicit Adams-~-Moulton methods can also be
expressed in terms of backwards differences of f. We start from the same identity (3.87),
but this time, after replacing y’ by f, we seek a (vector) polynomial interpolant of the data

(anVerl)v (xmfn)v"'i (xn+k—lvfn+k—l)'
Note that there are now k + 1 data points rather than k, so that the appropnate

interpolant, replacing (3.88), is
w(fvwnn.
i

k
L) = IdxX o +rh) =Pr) = Y (—

i=0

T A
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We obtain in place of (3.89) and (3.90)

0 X .
! Yn+l'—yn=J. Py(ryhdr=h Z ViV iy
-1

i=0

0 7 _ .
y,=(—|)'f ( ir)dr.

The generating function G(t) for the y, is given by

G(t) = ‘i yt' = .io(“‘)i’,[:(:jd': r. LZO(—:) ( , )Jdr

The integrand is the same as in the case of the Adams-Bashforth methods, but the
limits of integration are different. We easily find that

where

’ G() = ot (3.94)

and it follows that

2 1
TR IS | (F TR ) 1
(Yo + 71t +72 Y3 )( Y3ty

whence

g T g Yo {1 ifi=0

2 3 iv1 o ifi=1.2...
The first few y, are seen to be

1 — 1 —_- 1 — 19
Yo=1, i=-13 Y2=-—13 V3= 38 Ya= — 715

Thus the family of Adams-Moulton methods can be w‘riucn as

Yn+1 —y,.=h(f..+. "%Vf.wl _]l—zvzfpwl ’"TlAijn«tl "FI%)V4.["+| + ) (3-95)

Truncating the series on the right side after k + | terms (contrast with truncating after
k terms in (3.93)) and expanding the backward «differences in terms of function values
gives the following:

k=1 yy4,— (fn+l+f)
k=2 VYa+1— Sf"+l+8f fn l)
h
k=3 y"+1—y"=55(9fn+1+lgfn_sfr;~l+fn—2)
k=4 y,. — (251fm+646f—2é4fh L+ 106f,_, — 197,_3).

A .
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These are the standard k-step Adams - Moulton methods, k = 1,2, 3.4 in the form (3.86).
Note that, formally. we do not include in the class of Adams-Moulton methods the
method obtained by truncating the right side of (3.95) alter just one term, that is, the

mcthod

Yart = Ya=hf0sy,

known as the Backward Euler method. It could be argued that to do so would be
confusing, since we would then have two |-step Adams-Moulton methods, the Backward
I'wier method and the Trapezoidal Rule. Nevertheless, there is advantage in regarding
the Backward Euler method as the unique Adams-Moulton method of order 1.

By an arpument exactly analogous to that usced for the Adams-Bashforth methods,
we can establish that the k-step Adams Moulton method has order k+ 1 and error
constant 3, ;. {Note that order k + 1, rather than k, is consistent with the fact that we
truncatted the series in (395 alter k + 1 terms, whereas that in (3.93) was truncated alter
k terms.)

We can summarize the results we have obtained as follows, where p is the order and
Coi the error constant:

k-1

—ya=h 3 VYL,
i=0

i

k-step Adams Bashlorth: Pue p* =k, Ct =1t

k
k-step Adams Moulton:  3aey =y, =h Y 3.V Ly, P=k+ 1, Cory=7Tesy-
i=0
‘ '

(3.96)

We conclude this section by observing that the history of the application of Adams
methods has a somewhat ironic flavour. In the pre-computer days computations had
to be done by hand, with only a (non-programmable) mechanical calculator to help
with the arithmetic. It was standard practice in all step-by-step computations to keep
up-dating a table of the differences (including higher differences) of the numerical solution,
since this was a good way of spotting the inevitable arithmetic errors that crept in.
(Such a difference table amplifies errors in an identifiable pattern.) Thus, difference tables
were an accepted adjunct to all step-by-step computations. In the case when an initial
value problem was being solved by an Adams method, it was natural to use the backward
diffcrence form, since the differences were all to hand. If one computed with, say, a
kth-order Adams Bashlorth, then the differences V', i=0,1,..., k — 1, were utilized in
the method, and the difference V*f, gave an indication of the local accuracy. 1f, as the
computation procceded, the differences VAf, became too large, one would simply ¢ art
adding the term hy¥V*/, to the right side of the method; if V*~'f, became too small,
one would drop the term hy¥ - VE~ '/, from the right side. In other words, the kth-order
method would be replaced by a (k + 1)th- or a (k — 1)th-order method as the occasion
demanded. When programmable computers first became available such arbitrary
changes of method were somewhat frowned upon, and it was accepted practice to
compute with a fixed method and rely on changes of steplength (exceedingly unpleasant
to implement in a hand computation) to control accuracy. The irony is that it is now
accepted that the key to high cfficiency in modern codes for initial value problems is
the ability to vary both the steplength and the order of the method. Such codes almost

\Qq.u
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always use Adams methods (in predictor—corrector form), and the implementation of
order changes is precisely that employed in the old days of hand computation. Plus ¢a
change, plus c'est la méme chose! :

1

3.10 PROPERTIES OF THE ADAMS COEFFICIENTS

In the next chapter we shall be much concerned with the important role that Adams
methods play in predictor-corrector theory. h} that context, we shall need a nun}bc.r
of results concerning the cocflicients which define the Adams methods, and it is
convenient 1o gather these together in this section. Some of these properties are needed
(o enable us to move fram backward difference form to standard form, and call for a
little additional notation.

Let the kth-order Adams-Bashforth method in standard form be defined by the
characteristic polynomials p,‘*(r;), o}(r) and the kth-order Adams-Moulton method by
pul(r), o(r). Tt is important to note that the subscript k denotcs the order, not the
stepnumbe}, of the method. For k=2, the kth-order Adams -Bashflorth method has
stepnumber k and is explicit whereas the kth-order Adams Moulton has stepnumber

k—1 and is implicit. Hence for k > 2,

1 k-2

D

p:(r)':rk“rk_ ’

397
' o:(r) and o,(r) hdve degree k — 1.

Thus, for example,
P =r’—r, ad(ry=4503r— l.)'

pary=r—1, 0,{r)= %(’4” 1),

which define the second-order Adams—Bashforth and Adams—Moulton methods. Note
the anomalous situation when k = 1; we have already agrecd to regard the Backward
Euler method as the Adams—Moulton method of order 1, but it does not satisly (3.97).
For this reason, some of the properties we are about to list hold only for k=2

j
Property b yf= ) v, =012
i=0

Property2 yf —yf.,=v, Jj=123,..

\%

k—1
Property3 Y (y,VIfur =¥V =vi, Vo Kk
j=0

Y

Property 4 The leading coelTictent in a,(r) is yf_,, &

) =rofn+yier =1t k=l
Property § {0”‘(') rog(n + vl ‘ 2
°u+,(’)="0k(7)+h(r—-|), k22
Property 6 y}_,0;,,(r) = yiro ) = yof(),  k>2
Property 7 of, (1) =0,,,(r) +1r — Dof(r). ! |

k>
Property 8 ro(n) i af(r)=yi_,r— 1), k=2
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Proof of Properties 1 and 2 Recall the generating lunctions G*(1) and G(t) for the
cocfficients %) and {31, defined by (3.91) and (3.94). It foltows that

GO~ 1) = G*(v),
whence

L3

(ot 45,00+ )+t + Y=y a3 + -

On cquating coefficients of 1/, Property 1 results. Property 2 follows immediately. O
. Proof of Property 3
Lo = L) =0V sy

The left side of Property 3 can thus be written as

/‘n:,"n&l -

L .
Y VI =V =91 =S

i=0

where )
k " .
SVE= 3 v Gy -y V)
ji=0
k-2 k-1
SRR AR D WA AR D W (TR T LA A S
j=0 j=1

Put j =i - 1 in the first summation and j =i in the second to get

k-1
SVI=p Vit 2 D V40—V 49— 93
i=1 f
By Property 2. the sccond term on the right side is zero, and the third term vanishes

since 1, =% (= 1). Hence

S(V) = )‘ff 1ka
and Property 3 is proved. a

Proof of Property 4 By writing the kth-order Adams-Bashforth and Adams-Mouiton
methods in standard and in back ward difference form and equating the results, we obtain

atEM, .= Z 12 *yif., k=1

(3.98)

a ), o0y = Z yJij,,‘ k=22

i=0

The leading cocfficient in a,(r) is the coefficient of f, on the left side of the second of
{3.98) which, from the right side, is Zj;é ¥;= ¥s-» by Property I. Hence Property 4is
established for k = 2: that it aiso holds for k = 1 is readily checked. ad

.
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Proof of Property 5 Since V=1~ E~!, the first of (3.98} may be written in the form

k-1

Z Y —

Replacing k by k + 1 in (3.99) gives

R (EMxsr = ET'YWE o k2l (1.99)

o BV, u= Z V= EYEY,

or

' ‘
E_IO:H(E)L,,“‘ = Z )’7(] ME")’E"' lfmku*
j=0

On subtracting (3.99) we obtain

[E~"at, (B) - HE S,y =y —ETEY,

ke
whenc-

ooy (E) —

which establishes the first part of Property 5. The proof of the second part is identical
except that, in view of (3.98), the result holds only for k> 2. 1

Eo}E) =y (E — 1},

Proof of Property 6 By (3.98) and the fact that E™!' =1 -V, we have, for k=2

[rodB) — E-'y 08B, 0hy
[ v n T e,
i

= 71. z }’]Vj_yk{ Z ()' “‘}'7-1)Vj_)':A1Vk}J/V,,

L ji=

-
=y y — % Z ¥ Vig oyt v ]/'" {(by Property 2 and y} = y,)
L Jj=o

k-1
=y, ¥ YV ot lV"Jf" {by Property 2)
L j=0

k
=¥ Z V/ijn=y:-1“k+1(5)fn—h {by (3.98)).
j=0 :
Hence
[E}’:U;‘(E) - ka:(E)]f,..-k+ 1 = }':_ 10+ |(E)f"4k +1
which establishes Property 6. . ‘ ]

Proof of Property 7 Eliminating (r — 1)* from the two identities in Property S gives

TOa ) = nofs () =rlyfo,() - yofn], k=22

w.dpook3000.con) ,
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Subtracting this result from Property 6 and using Property 2 givés

— YOy (r)+ }'kU:H('):("‘ I)Ykat(r).

k=2

which cstablishes Property 7 in the casc k = 2; that the property also holds tor k=1 is

readily checked.

Proof of Property 8

s lre 4y r - D) =ytro(r) —y080),

whencee, by Property 2

Propertics 5 and 6 imply that

k=2

ol = D = nren) -y o).

Dividing through by y, gives Property 8.

a

d

1tis of interest to note that Property 5. a recurrence refationship for the polynomials

arry k=12,

and o, (1), k=23, provides a very efficient means of generating the

Adams methods in standard form from the coeflicients {y}}. {y;} which define the same
methods in backward difference form. Recall the first few pF, v,

S T I B T
Wt 5

O H T L]
Tk ? 3d 720

The Adams Bashforth methods in standard form are generated as shown below.

at(r) (Euler's Rule) 1
r(r“'(r)r - o r

Yo —1h r =4
m;(r) 7 %rz —%r

Vi - )7 51 ~g} +5
1) Bt 4
%) TR
Y- i ~3rr 4% -3
a¥(r) 320 -3 +3r -3

)
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Similarly, the Adams-Moulton methods are generated as shown below.

o,(r) {Trapezoidal Rule) i 4!
o) , [
yalr — 1) -.lerl +ir -
70 &5 A -1
ros(r) P
yalr—1)? . — 5 + 4r? —1r + o
1) e L
o) ; Y o
valr = D* —Frt At i i o
os(r) ’ 3 +§%r*‘ﬁ '4—7‘—(')12 +j5(%7r —7;"67
¢
3.11 GENERAL LINEAR MULTISTEP METHODS IN

BACKWARD DIFFERENCE FORM

We have seen that all Adams-Bashforth methods of order up to k can be generated in
backward difference form if the k + 1 numbers y*, i =0,1,....k are known: likewise. all
Adams—Moulton methods of order up to k + 1 can be generated if the k + | numbers
v, i=0,1,2,...,k are known. It is natural to ask wl‘lcthcr general linear multistep
methods can similarly be compactly expressed in terms of backward differences. This
is indeed possible, and turns out to be an efficient way of computing the cocflicicnts of
classes of linear multistep methods.
The key is to extend the class of Adams methods to the more general form

yn+l—Yn=h(Y:)fn+x+yslvfn+s+yslvzfn+s+'“)' S=O‘1’2""' (3100)

Clearly, putting s=0 in (3.100) gives the class of Adams-Bashforth methods (where
y¥ =7?), and putting s = 1 gives the class of Adams-Moulton methods (where y; =y/).
For s> 1, the methods retain the Adams left side, but are ‘over-implicit’. The technique
for finding the coefficients {y;}'is a straightforward modification of that used to find
{y*} and {y} for the conventional Adams methods. Starting from the identity (3.87),
we now seek an interpolant for f on the set of k + s data points

(xn+s)fn+s)v (xn+x-l‘fn+x~l)v‘”*(xmfn)v-‘-(Xn—‘k¢ hfnr—kb 1)~
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T'he required interpolant, of degree k + 5 — L, is

k+s-1 o —r R
L, =1, ‘(r"“+rh)=:l’:u_l(r)= Z (—l)‘( ; >V' nts

i=0

and in place of (3.89) and (3.90) we obtain

1-x k+s-1 i
Yorr = ¥n= J Pi+s— l(r)hdr =h 2 Y:V‘-fn*'s
=0

1—-s/
~,~;=(--i)‘J. ( .r)dr.
s i

We note that the integrands in (3.90) and (3.101) are the same; only the limits of integration
differ. The argument following (3.90) holds, the only change being that the generating
function (1), defined by

(3.101)

G'= Y yr
(=0

now simplifics (o

—(l=0"" 1-3
G'(r) = (., t) N
In(l —1) |_,
_ s—1
= ._L(l__lL,, (3.192)
In(f —1)
Rewriting this in the form
—In(t
0 Gy = (1 —
{
or
(o 4P A N+ 2413+ = (10! (3.103)

and equating cocfficients of powers of t enables us to compute the coefflicients y;. However,
it is easicr to usc an obvious generalization of Property 1 of§3.10. It follows from (3.102)
that

1
G‘(r)zi G (1), s=0,1,...

or
P AR A = (R )t T Ry ),

iquating the cocfficicnts of ¢/ gives

i
Y= ny”, j=0,12,...,5=0,12...
i=0
whence

yov=nt j=L23.,s=012 . (3.104)

®
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Table 3.1 The Adams array: )'/’, s=0.1,.... 7

s=0 1 1 5 3 251 95 1 528
= 2 12 8 730 788 60480 17280 .
'
s=1 i otk § -1 i | 19 =3 _—863 - 275
= 7 T2 74 720 160 60 38 24192
s=2 1 -3 s iy 11 ‘11~ 271 13
= B3 13 14 710 1440 60 480 1480
s=13 1 hott-} 23 -3 z19 o1 -191  _-191
= T 12 8 720 1430 60 480 120960
s=4 TR $3 ~55 251 ) 271 1ot
I 12 34 70 160 0380 7120960
s=5 1 -9 95 ~161 1901 -95 863 —13
3 12 24 720 788 60 180 3380
s=6 1 -11 149  -3st 6731t ~4277 19087 275
- 2 12 1a 720 1440 60480 227192
§=17 1 -13 215 649 17261 - 1971 198721 o 5287
- F] 12 24 720 ion 60480 17280

A

a direct generalization of Properties | and 2 of the Adams Bashforth/Adams Moulton
methods. From (3.103), it is clear that

yo=1, s=0,1,2,...,

slo that (3.104), together with a knowledge of the Adams- Bashforth coeflficients {,‘,’}
enables us readily to write down a two-dimensional array of the coelficients
yj, s=0,1,2,...,j=0,1,2,...; we shall christen this array the Adams array. The array is
shown for 5,j=0,1,2,...,7 in Table 3.1. :

We note in passing that the columns of the’ Adams array, as opposed to the rows.
possess a fair amount of structure arising from (3.104). Thus we note that the first j + |
entries of the (j + Uth column are symmetric if j is even, and antisymmeltric if j is odd.
Further, all of the entries in the (j + th column satisly the following identity:

M-

(- 1)‘({>}v;*‘: [, os=0.01,2...i=0.12.....
1

i=0

Finally, we note the relationships between the main diagonal and the first row, between
the diagonal above the main and the second row, etc.

The order p and error constant C, | of members of the class (3.100) can be established
by a direct extension of the analysis given in §3.9 for Adams Bashforth and Adams
Moulton methods. We are now in a position to define formally the k-step s-Adams
method as follows:

k-1 .
Cases=0:  y,o,~y,=h ) yVif,, k=1, p=k C,o =y}
. AR ' (3.105)
Cases> L y"”—y"=hl;ﬁ’7v'fn+,y ‘ kzs, p=k+1, C,+|=7'i¢,~l

4
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{Note that the restriction k > s when s> 1 is consistent with the fact that in §3.9 the
Backward Euler method did not fit the Adams-Moulton pattern.)

We can usc (3.105) to express general classes of linear multistep methods in backward
difference form. In attempting to list the coeflicients for the gencrali class of linear multi-
step methods, one faces the practical problem of deciding how many parameters to
include. Il one attempts to include all possible methods, then the number of parameters
becomes unmanageable; for example the general class of 6-step implicit zero-stable
methods contains 12 parameters. Low-order methods of such classes are of little interest,
and a reasonable compromise is to include just enough parameters to allow complete
control of the location of the spurious roots of the first characteristic polynomial p({).
That is, we retain k — | parameters in a k-step method. This results in explicit methods
having order k {the maximum possible subject to zero-stability) and in implicit methods
having order k + 1 (the maximum possible subject to zero-stability, if k is odd; if k is
even the maximum is k + 2, see §3.4). It is convenicent to choosc these k — [ parameters
in the following way: recalling that consistency demands that p({) has a root at +1,
we write p({) for a k-step method in the form

pO=(C- D"+ 4,072+ -+ AU+ A ) (3.106)

where the A, j=1.2. .. k-1 arc the parameters to be retained. Clearly, if p({) is to
satisfy the root condition, these parameters have to be chosen so that the polynomial

PO=C""+ A 77 AU+ A '

has all its roots in or on the unit circle, has no rhultiplc roots on the unit circle and
does not have a root at + 1. The left side of the linear k-step method becomes

3
Z iVn s i Vark 7 Ynak-1 F A Vnarat = Vi) ¥ A2 Vs = Vo)

j=0
A (Vs = V) (3.107)
k-1

= Z AVy

=0

Ag=1. k=2 (3.108)

ntk-s®

(Note that the condition k = 2 is not restrictive; if k = 1, there are no [ree parameters,
and the methods become the one-step Adams methods, explicit or implicit.)
Let hR,(k,s) denote the right side of the methods given by (3.105); that is, let

k-w 1 — 1
e {] ifs=0 (3.109)

R (k.s):= AN F
okesy= 2 iV o 0 ifs>1.

The subscript n denotes that the method is being applied at x, to give a value for y at
X,+1. Thus, for cxample, the k-step s-Adams method {with 5> 1) shifted one steplength
to the right is given by

3

Ynv2 " Va1 = hR,, (k,s5)

X
=h Y yiVifasies

i=0

NG
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From (3.105), (3.107) and (3.109), the family of implicit linear k-step methods with k — |
free parameters A;, i=1,2,...,k - 1, can be written in backward difference form as

Inrk— Vurko1 F A Vnakor = Yaan-2) o+ Aty = ¥
=h{R, (k1) + AIR"H_z(k,‘Z) +o A Rk R ] k=2

By (3.108) and (3.109), this class can be written more formally as

k-1 k=1 k
Y AV iros=h LAYV Ag=1 k22, (3.110)
o .

s=0 3=0 =

where we have left-shifted the methods by k — | steplengths (that is, replaced n by
n—k+ 1) so that t' = class of methods is presented in a form analogous to that of the
Adams-Moulton methods. ‘

The order of (3.110) is k + 1, and the error constant is

. k-1
Cova = Z Ayt
" $=0
In the case when k is even, it is possibleito stretch the order to k + 2, and still achieve
zero-stability, by suitably choosing the A, such that C,., = 0. In this case the error

constant is given by
k

Cars= 2 ATL >
5=0
The family of explicit k-step linear methods with k — 1 free parameters can similarly
be written in backward difference [orm as

Vask—=Ynrk-t ¥ A1 Wniscr = Yaan-2) + o+ A (e = ¥)
Ry sy 1 O)+ A Ry sao gtk — 1D+ o4 A Rk— 1 k=D, k>2

or, in a form analogous to (3.110),

k-1 k-1 k-1

Y AV =h Y A Y ¥V A= k22 G.111)
=0 s=0 i=0

The order of (3:111) is k and the error constant is

k-1

Cisr= Z A

=0

It is not possible to increase the order past k and still achicve zero-stability.

We have thus been able to express in terms of backward differences the class of
implicit k-step linear methods of order k + 1 and the class of explicit k-step linear
methods of order k. If we wish to obtain such classes in standard form, rather than in
backward difference form, then, obviously, we could express the backward differences
in (3.110) and (3.111) in terms of function values. It is, however, somewhal easier first
to express the s-Adams methods themselves in terms of function values. This is done
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in Table 3.2 for s=0,1...., Sand s<k—1<5 wheret=1.i{s=0and t=0if s> I.
Jor convenience of presentation, we have left-shifted the methods so that the k-step
s-Adams method is expressed in the form
{ 1 ils=0
t=

k-1
Vi - vn*x:h Besfa-s .
foson = deey=h 3 B, 0 il =1

§=0

FFurther, in order to make the table more readable, we have expressed the coeflicients

B,, . for cach method in the form B, =b,_ /d, where b,_, and d are integers. In
ahle 3.2 the coclficients b are histed {under columns headed f, _ ) together with the

Vahle | e coellicients b, nder colu headed toget
denominator d, stepnumber k, order p dnd error constant C,, .
We illustrate the application of Table 3.2 by using it first to construct'a family of

Table 3.2 Coefficients of s-Adams methods

I fa fo 2 fy 3 fa_s fa_s d kK op Gy
O-Adams | | S %
. 3 -1 2 2 2 5
23 -~ 16 3
(Vi = ¥alh= > 1233 H
55 -s59 37 -9 24 4 4 2
1901 -2774 2616 —1274 251 720 05 S 55
4277 —7923 9982 —7298 2877 —475 1440 6 6 3981
I-Adams 1 | 21 2 3
5 8 —1 12 2 3 =
(v = v W= 9 9 -5 1 24 3 4 P
251 646 - 264 106 -—19 0 4 5 &
475 1427 -798 482 173 27 1440 5 6 S8
2-Adams —1 - 8 5 12 2 3 =
—1 K 3 - 2 2L
(i 1= )h = 1 I 4 3 4 710
—-19 346 456 - 74 It 720 4 5 AL
-27 637 1022 258 77~ 1440 5 6 i
3-Adams 1 -5 19 9 24 3 4 2
(Vy 2= Vo 3Vh= 1 —74 456 346 19 720 4 5 S
11 -93 802 802 -93 It 1440 5 6 6-01—493‘6
4-Adams ‘
-19 106 —264 646 251 70 4 5 X

(g a=¥n 2= ]
~11 77 -258 1022 637 —27 1440 5 6 2oL

S-Adams .
(Yo s =¥, Jh= 27 —173 482 798 1427 475 1440 5 6 ou%s
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implicit linear 4-step methods of order 6 (the maximum possible, subject to zero-stability).
Following the discussion preceding (3.110), we see that the family of implicit linear 4-step
methods of order 5 can be constructed by forming a linear combination of the 4-step
s-Adams methods for s = 1,2,3,4. From Table 3.2, this procedurc yields

Vo= Vaot F AU = Vo 2) F A0 = Ypo )+ A3y 3 — 0 d)

h
=?£(—)[(251 — 194, 4 114, — 194} [, + (646 + 3464, — 7414, + 1064}/,

F{=264 + 4564, + 4564, — 264401, _, 1 (106 744, 364, + 646401,
$
F (=194 1A, = 194, + 25143) [, -4 (3.112)

(The reader may wish to ascertain that the same formula results from sctling k=4 in
(3.110).) Again from Table 3.2, the order of {3.112) is S and the error constant is

C6=|_2,—0(A.\ ‘)+|440(’1|“ 2)
The order rises to 6 il we choose 4,, A, and A, such that C, =0, that is if
Ay=1+ (A, — Ay (3.113)

Substituting for A, from (3.113) in (3.112) gives the required 2-parameter family of
implicit 4-step methods of order 6. The error constant is, from Table 3.2,

Coim (8634 2714, — 1914, + 271 4,)/60 480
=(—999 + 2714, — 1364,)/102060. (3.114)
on substituting for A, from (3.113). One must, of cours¢, choose the parameters A, and
A, so that the melhod is zero-stable. For example, we can conslruct at I-parameter
family of symmetric methods by choosing A4, = A ., whence, by (3.113). A; = |. The first
characteristic polynomial now factorizes thus

PO =(C = D+ DI+ (A = DT+ 1.

and it is easily ascertained from Figure 1.1 of §1.9 that zero-stability is achieved if
—1< A; <3 We have thus identified a [- pardmeler family of zero-stable symmetric
4-step methods which have order 6, given by

yn+(Al - I)(y"-] —yn—l)_yn—A
)

h
=§6[(29—A;)(f,.+f..-4)+(—66+ 144A4) [, 2 + (94 + 344N [,y + [a-3)]

with error constant C, =(—37 + 54,)/3780. We note in passing that sctting A, =11/ 19
(an acceptable value for zero-stability) produceq the special case of Quade’s method,

8 6h
Yn—rg’(Yn—x = Va3) " Vn-s= ’la(fn+4f,.41 +4f, s+ 1 4)

a method from the 1950s. (See Exercises 3.2.2 and 2.5.2)

L}
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Families of explicit linear k-step methods of order k can likewise be constructed by
taking a Jinear combination of the k-step 0-Adams method and the (k — 1)-step s-Adams

methods. s = 1.2,....k — |. Thus, for example, the 2-parameter family of explicit 3-step
methods of order 3 is seen from Table 3.2 to be

Yo H A = Dy (A = Ay — Ay,
h
= ‘2[_(23+ SAy = AN S+ (16484, +8A)f,  +(5— A, +54,) .21,

with crror constant C, = (9 — A, + A4,)/24.

Exercise

3114 Use Table 3.2 1o construct a (k — 1)-parameter family of explicit tinear k-step methods for
k= 2,3,4. Show that for cach family, the order of the methods is k and that orders greater than
k cannot be obtained if the methods are to be zero-stable.

3.12 THE BACKWARD DIFFERENTIATION FORMULAE

As we shall sec later in this book, the regions of absolute stability of the Adams-Moulton
methods, though reasonably sized, turn out to be inadequate to cope with the problem
ol stiffness, where stability rather than accuracy is paramount. A class of implicit linear
k-step methods with regions of absolute stability large enough to make them relevant

(o the problem of stiffness is the class of Backward Differentiation Formulae or BDF,
defined by

X
Z Vs ;=B Snin- (3.115)

j=o

This class can be seen (in a hand-waving sort of way) to be a dual of the class of
Adams Moulton methods. The fatter is characterized by having the simplest possible
(subject to consistency) first characteristic polynomials p({) = (* — ¥~ ', whereas the
BDF have the simplest possible sccond characteristic polynomials 6({) = 8,¢*. Moreover,
there is a certain duality between the techniques for deriving the Adams—Moulton
mcthods and the BD1 in backward difference form, Instead of starting from the identity

(3.87) .

EERN]

Y(xps 1) = p(x,) = J y'(x)dx

Xn

replacing ¥ by f and integrating the polynomial interpolant of the back values of f,
we start from the differential system itself

y =[x,y (3.116)

6O
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and differentiate the polynomial interpolant of the back values of y. By §1.10. the data
(Xn+lvyn4 l)ﬁ (Xnvyn)w'“v(xn—k+lvyn-k# l)
is interpolated by the polynomial I,(x) of degree k given by
k S —r\_.
()= L(Xpa g + ) =P4() = (“”'( ; )V'_\'Mr
i=0

[}
The left side of (3.116) is replaced by the derivative of this interpolantat x = x,, ;. given by

Vi.‘.n 1

r=0

| . cd -
Bt = P00 = Y (- 1y ¢ ( ")

hi<e + dr\_i

and the right sidc is replaced by f,,,, giving the Backward Diflcrentiation Formulac in
the following backward difference form:

k
Z 3V iy =hai ]
§=0

where (3.117
ey
== dr\ i /l-o
The 8, are easily found by direct evaluation to be
8o=0, & =1/, i=12... (3.118)

(A generating function is no longer neccssary, but it is casily seen lvo be
GPPF(t) = — In(! — 1)) In order to put the methods given by (3.1 17) and (3.118) in the
standard form (3.115), we first divide through by 3¥.,d; {in order that 4, =1), and
appropriately right-shift each method. Recalling that , = 0, we get

k
Ty Z OV vy =t fo s (3.119)
=1

where

k
T, = 1/ ¥ 6. (3.120

On expanding the differences on the left side of (3.119), we get the class of BDF methods
in the standard form (3.115). ‘

By an argument analogous to that used for the Adams-Moulton r-nclhods in §3.10,
we find that the order of the k-step BDF is k and the error constant 1s

Croer = = Ulpu- (3.121)

Clearly, the BDF do not have zero-stability built in, in the way that the Ad'fm?s
methods do, and it is necessary to examine, for each k, the roots of the first characteristic
polynomial. It turns out that for k= 1,2,...,6, the methods are zero-stable, but that [or

. §
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Figure 3.4 Regions of absolute stability for the k-step BDF.
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Table 3.3 Coefficients of the BDF

101

k ay axs oy a % X . Xo B
* I —

t I -1 i
4 1 2
2 ! =3 3 3
18 9 2 o
3 | 1t [§] i i
48 6 3 12
4 =5 i -1 73 %
5 1 _ 300 300 200 s _ 12 6o
137 7 137 137 137 37
6 1 __ 360 450 _ 400 225 72 10 60
137 147 747 187 137 147 143

k=7 the methods are all zerd-unstable (see Cryer, 1972). The coefficients of the BDF
in the form (3.115), together with the error constants are given in Table 3.3 for

k=1,2,...,6.

The important [cature of the BDF is the size of their regions of absolute stability.
These are shown in Figure 3.4. We note that for | <k <6 these regions contain the
whole of the negative real axis, and that for k= 1,2, they contain the whole of the
negative hall-pline. (For k=3, the boundary of the region marginally invades the
negative half-plane near the points +i) These propertics are significant in the context

of stiffness.
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4 Predictor—Corrector Methods

4.1 PREDICTOR-CORRECTOR MODES

Suppose that we wish to solve the standard initial value problem by an implicit linear
multistep method. Then at each step we have to solve for y,,, the implicit system

k-1

K-
Yiae t Z “j)'n+j=hﬂkf(xn+kv,\’nu)+]' Z Bifurj 4.1
j=o j=o

We normally do this by the fixed point iteration

k-1 k-1
YR Y o= MBS (X YL+ Y Bifass il arbitrary, v = 0.1,
i=0 i=0

4.2

which, by (3.8), will converge to the unique solution of (4.1} provided that

h < 1/(1B: L),

where L is the Lipschitz constant of f with respect to y. For non-stifl problems, this
restriction on h is not significant; in practice, considerations of accuracy put a much
more restrictive constraint on h. Although (4.2) will converge for arbitrary y!), | each
iteration calls for one evaluation of the function f, and computation can obviously be
saved if we can provide as good a guess as possible for ¥}, This is conveniently done
by using a separate explicit lincar multistep method to provide the initial guess, ylal
We call this explicit method the predictor and the implicit method (4.1) the corrector,
the two together comprise a predictor—corrector pair. There will turn out to be advantage
in having the predictor and the corrector of the same order, which usually means that
the stepnumber of the predictor has to be greater than that of the corrector. Rather
than deal with the complication of having two different stepnumbers, we take the step-
number of the predictor, which we shall call &, to be the stepnumber of the pair, and
no longer demand of the corrector that the second of the conditions (3.2), namely
lool + | Bol # O, holds. Thus, for example, we regard

h h )
Ynr2 = Vus1 =5(3f~+1 ~fa) yn*Z-—yn?l =i(f“2 + fai)

as a predictor-corrector pair with stepnumber 2, even though the corrector is essentially
a 1-step method. We shall always distinguish between the predictor and the corrector
by attaching asterisks to the coeflicients (and to any other parameters, such as order
and error constant) of the predictor. Thus the general k-step predictor-corrector or PC
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pair s

™M=

k-1
“7}'”}:" Z ﬂffnj
j=o

0

k
Z a}.vn+j=h Z ﬂ]fn+j~
j=o0

j=0

)]

4.3)

There arc various ways, or modes, in which the pair {(4.3) can be implemented.
Virstly, we could use the predictor to give the first guess yi%,, then allow the iteration
(4.2) to proceed until we achicve convergence (in practice, until some criterion like
Pl - BT <, where 1 is of the order of round-off error, is satisfied). This is called
the mode of correcting to convergence. In this mode, the predictor plays a very ancillary
role. and the local truncation error and linear stability characteristics of the predictor—
corrector pair are those of the corrector alone. What makes this mode unattractive in
practice is that we cannot tell in advance how many iterations of the corrector—and
therefore how many function evaluations —will be involved at cach step. In writing an
algorithm based on the mode of iterating to convergence, we arc in effect writing a
blank cheque. In general this is to be avoided; in the special case of real-time problems,
it can be downright dangerous. An cxample of a rcal-time problem would be an
awtomatic landing system for an aircraft; such a system can be modelled by a system
of ordinary differential cquations, the solution of which determines the appropriate
scttings of the control surfaces and throttles of the aircraft; it is not much use if the
numerical procedure for solving the differential system takes so long to compute on an on-
board computer that it cads up by telling the control system what these settings should
have been a few seconds ago! In such situations, it is paramount that the computin
time should be predictable, and that is never possible in the mode of correcting t
convergence. :

A much morc acceptable procedure is to state in advance just how many iterations
of the corrector are to be permitted at each step. Normally this number is small, usually
1 or 2. The local truncation error and linear stability characteristics of the predictor—
corrector method in such a finite mode depend on both the predictor and the corrector;
we investigate this dependence in later sections. A useful mnemonic for describing modes
of this sort can be constructed by using P and C to indicate one application of the
predictor or the corrector respectively, and E to indicate one evaluation of the function
{. given x and y. Note that if the system of differential equations is of large dimension
then a function evaluation can represent a significant amount ol computing; thus it is
usual to regard the number of evaluations per step as a rough indication of the computing
cffort demanded by the method. Suppose we apply the predictor to evaluate pi%,,
evatuate /1, = f(x,,,, »10), and then apply (4.2) just once to obtain yl!},. The mode
is then described as PEC. I we call the iteration a second time to obtain yi2} | which
obviously involves the further evaluation fU], = f(x, ,,, y1'1,), then the mode is described
as PECEC or P(EC)%. There is one further decision we have to make. At the end of the
P(EC)? step we have a value y!2), for y,,, and a value 1), for f(x,, . ¥n+s). We may
choose to update the value of f by making a further evaluation f12), = f(x,, ., ¥13,%
the mode would then be described as P(EC)?E. The two classes of modes P(EC)'E and
P(1:C)* can be written as a single mode P(EC)*E' ™', where u is positive integer and

ON
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t=0or I, and are defined by
P(BC'E! "

k-1 k-1
. 0 7 -
P: YA Y eyl =k Y ey
j=o <o

(EC)y" SR = 0yl '
l‘ v=01,..q—1 (44)

k=1 koot
AT Tt = 5
J=0 =0

ift=0.

E¢ - _ ,/L“) v = S0 ."L“ol W

’

Alternatively, the predictor and corrector may be written in the form (3.5) as
pYE)y,=ha"(E)f,, p(E)y,=ha(E)],,

respectively, where p*, p and o have degree k and a* has degree k — | at most. With
this notation, the mode P(ECY'E' "' may be defined by
L}

P(ECy'E!' "
p: E*yI + [p*(E) — ENyiY = ha(E) !
(ECy~ EH0 = [ (X an ESLY ,

ve=00t o — | (4.5)
EU U4 [p(E) — EXJy = W, E* [ 4 Rl (E) — f E*] /0

E*fU = f(x, 40, EYyW),

EU O if 1=0.

4.2 THE LOCAL TRUNCATION ERROR OF
PREDICTOR-CORRECTOR METHODS

If the predictor-corrector pair is applicd in the mode of correcting to convergence then
the local truncation error is clearly that of the corrector alonc. If. however, the pair is
applied in P(EC)*E' ™' mode, ( =0, I, then the local truncation error of the corrector
will be polluted by that of the predictor. In this section we investigate the level of this
pollution.

Let the predictor and corrector defined by (4.3) have associated linear difference
operators £* and ., orders p* and p and error constants C*,, and C,,, , respectively.
As always when dealing with local truncation error, we make the focalizihg assumption
W =ylxas )i=0,1,....k— 1, and indicate by jI'l, approximations to y at x,,,
generated when the localizing assumption is in force. We also assume that y(x)e (P '},
where p = max(p*, p). It then follows from §3.5 that

'gm[y(x); h] = C;‘_+ ‘hp'+ lytln + H('\,) + 0(’!'" ¥ 2)} “46)

LLyxyh]=Cp,y By D) + 0" 2.
r

» §
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Following the analysis of §3.5, we have that for the predictor.
k k-1
L )= T B (i Y ) + LA ()]
1= 0 j=0
and ' ‘ 4.7
~|n| . "
DA z ak il =h z (R

On subtracting and using the localizing assumption and (4.6) we obtain

VX g) = PO = Cr, RS C R T Likets ) 4.8)
Since the predictor corrector pair is being applied in P(EC)E' ' mode, as defined by
(4.4). the cquations for the corrector, corresponding to (4.7), arc

K
Z 7,‘"“}.:,‘):" Z ﬂ /(\'"+1J( ,,H )+f/’[y(.\',,);h]

) =0

and

LS|
R S A L AR N ): Bif (pu 7 v=00, 1

joo
On subtracting and using the localizing assumption, we have
‘(\nok)f.‘ln\o.k”_h/; [/ n+ ke \ n*k)) f(.\'"*,(,fl"vlk)]+_‘/7[y(')(");h]
of
*h/f (r,..k NG = T T+ Cou 17 ()

+0(h"’2, v=01,... ¢ —1 4.9)

(using the notation of §1.3). What follows depends on the relative magnitudes of p* and p.
First consider the case p* = p. On substituting (4.8) into (4.9) with v =0 we get that

YOG = T =€y T D) 4 O(hT 2,
This expression for vix, )~ '], can now be substituted into (4.9) with v=1 to get
\(\M‘() Lzlk_clﬁ hptly(rwn( )+0(h‘”2)4

Continuing in this manner we find that

W) = T = G 7197 V) 4+ 001 2),
Thus if p* = p, the PLTE of the P(ECY'E ' mode is, for all £ > 1, precisely that of the
corrector AIonc

Now consider the case p* = p— 1. On substituting (4.8) into (4.9) with v =0 we now
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get that
y(x,,*,()fyf,},‘—-[ﬂk fC"y”"’(\)+C,, ) Wty ohtt Y,

Thus if p =1, that is if the mode is PECE' "', the PLTE is not identical with that of
the corrector, but the order of the PC method is that of the corrector. However, on
successive substitution into (4.9) we find that for p > 2,

Pan) = U, = Cpa AT ) 4 007 2),

Al
and the PLTE of the PC method becomes that of the corrector alonc.
Now consider the case p* = p — 2. On substituting (4.8) into (4.9) with v =0, we get

M) = P = B £C* Py )+ O, (4.10)

Thus if = 1, the order of the PC method is only p— 1. Substituting (4.10) into (4.9)
with v =1 gives

Yxuan) = FH = [(ﬂk f) Cr oy D)+ Cpagdt! ”(x,,)]h”' L4 QU Y,

and thus for g =2 the order of the PC method is that of the corrector, but the two
PLTEs are not identical. Further successive substitutions into (4.9) show thatforu > 3

Y(Xnn) = P = Cp B2 D) + O ),

n+k

and the PLTE is that of the corrector alone.
It is now clear that the order and the PLTE‘ of a PC method depend on the gap
between p* and p and on y, the number of times the corrector is called. Specifically.

(i) if p* = p (or if p* < p and p> p — p*), the PC method and the corrector have the
same order and the same PLTE,
(i) if p* < p and p = p — p*, the PC method and the corrector have the same order but
different PLTEs, and
(i) if p* <pand p<p—p*— 1, the ordcr of the PC method is p* + pt { < p).

Note that the modes P(EC)"E and P(EC)" always have the same order and PLTE.

4.3 MILN®='S ESTIMATE FOR THE PLTE;
LOCAL EXTRAPOLATION

At the end of §3.7 we noted that attempts to csllnmlc the PLTE of a lincar multistep
method directly from the formula

YXman) = Fusre=Cpu )
ran up against the difficulty of trying to estimate " 'Yx,) numerically. Predictor

]



108 PREDICTOR-CORRECTOR METHODS

corrector methods have a substantial advantage over linear multistep methods in that,

due to a device duc orlyndlly to W. E. Milne, it is possible to estimate the PLTE of

the former without any need to attempt a direct estimate of y7* Y(x,). The device, which

works only if p* = p.is as close as one ever gets in numerical analysis to getting something

for nothing. and is indeced a major motivation for using predictor-corrector methods.
It follows from the preceding section that if p* = p, then

Fm O ) = y(x, ) — PUE 4 O ?)
and
Cp |l'pH 0 (x,) = p(Xak) — Vm +0(I",+2)

On subtracting we obtain

(c} e D) = L, = 5L, 4 00+ 2)

v~ Cona

whenee we obtain the Milne estimate for the PLTE

PLTE = C,, iy ) = Wyt — i)

where 4.11)

N
C:+ 1 CM i
On the right side of the first of (4.11) we have replaced 7%, by yil, since it is no longer
necessary to remind ourselves that the localizing assumption is in force; recall the
argument in-§37 that PLTE is an acceptable measure of local accuracy despite the
localizing assumption.

The main use made of the estimate {4.11) is the monitoring of steplength, which could
be decreascd if the norm of the error estimate exceeds a given tolerance, and increased
if the norm is less than the tolerance by a given factor. However, as is the case with all
error estimates, one is tempted also to add the error estimate to the numerical solution,
thereby increasing the accuracy. This addition used to be known as a modifier, but is
now usually called local extrapolation. It is clearly equivalent to raising the order of the
method by one. It is common practice in many modern codes to perform local extra-
polation at cach step and still usc the error estimate (4.11) to monitor steplength, the
rationale being that if the steplength is chosen so that the error estimate (4.11) for y1,
is acceptable, then surcly the error in the more accurate loca'y extrapolated value will
also be acceptable. This argument is not altogether sound—higher order methods do
notinvariably produce smaller errors than do lower order ones—and there is no avoiding
the Tact that local extrapolation is basichlly an attempt to cat one’s cake and have it!
Nevertheless, local extrapolation is an accepted feature of many modern codes. It can
be applied in more than onc way. We could apply local extrapolation after each call of
the corrector; using L as the mnemonic for local extrapolation, the resulting modes can
be denoted by P(ECLYE'"",t =0 or 1. Alternatively, we could choose to apply local
ulmpolanon only after the final application of the corrector, resulting in the modes
PECY'LE' "1 =0 or I; clearly the two families of modes coincide when p= 1. Noting
that. from (4.11), local extrapolation is equivalent to replacing y'"! by

yIVI 4+ W(yM (0])
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these modes are formally defined as follows: +

P(ECLy'E!'

p: yLol,‘nL:;:aj y["','}-—h Z /I*j“‘ 1 | .
(ECLY: I =S ™,
IS Z )r[‘"lj—lnlikf",k+ln‘;il Bt v=0 = 41
o
YA = (1 Wypl s e,
E! 70 Si= eyl =0
P(EC)'LE: ) '
P Tanl =k T At
o
(ECy": o= [ V1)
- ’ ‘et v=0.1,.... p—1
P+ ]:ZO @y = b f+h Xo B, (4.13()
L: L"l.—(l + W)L g0l
E: So= Tt
P(EC)"L: '
P T =Y g
. . $=0
(ECY = S i)

Vo0t ey 413

AR Z .yf,"l,~h[l,(j"'k+h Z B; /quu

ji=0

L = (4 Wl = Wil

Exercises

4.3.1. The predictor P and the two correctors C, C are defined by their characteristic polynomials
as follows:

PoopMO =0t -1, ‘m—,(zg 420
C: pl=0 -1, o((y=2+40+ 1)
PO=0-30 4L o) =3¢+ 2 -0

ol
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..+ote that ('is Simpson’s Rule.) Show that Milne's estimate is applicable to the predictor-corrector
pairs (P, C) and (. O). Write down the algorithms which use (a) P and C in PECE mode and (b)
P and C in PECLE mode. (Algorithm (a) is often known as Milne's method and (b) as Hamming's
methad.)

4.3.2*. The scalar initial valuc problem y' = — 10(y — D)%, y(0) =2 has exact solution y(x)=
{2 4+ 10041 + 10x). Knowledge of the exact solution enables us to implement the localizing
assumption, and thus compute the actual LTE. Using P and C defined in Exercise 4.3.1 compare
the actual LTE with the Milnc estimate (a) for the mode of correcting to convergence and (b) in
PECE mode. Use cxact starting values, take = 0.01 and compute from x'=0to x=0.2.

4.3.3. In (4.12) we wrote the two modes P(ECLY'E' ', 1 =0, L. in a single statgment. Why was
this not dune in {4.13) for the two modes P(ECY'LE' "', t =0, 1?7

434, Let P have order p* and € have order p. Show that an estimate of the PLTE similar to,
but not identical with (4.11) can be constructed when p* > p, but not when p* < p.

4.35% A result of tenrict (1962) shows that Milne's estimate holds without the localizing
assumption provided p*({) = p{{), the mode of correcting to convergence is employed and the
starting errors are 0(h?) with g > p, where the PC method has order p. Find a fourth-order
predictor which when used with the corrector C defined in Exercise 4.3.1 satisfies the condition

() = p(¢). Devise and carry out a numerical experiment, using the problem of Exercise 4.3.2%,
to test this result,

4.4 PREDICTOR-CORRECTOR METHODS BASED
ON ADAMS METHODS IN BACKWARD )
DIFFERENCE FORM

Almost all modern predictor -corrector codes for non-stifl problems use Adams-
Bashforth methods as predictors and Adams—Moulton methods as correctors; such PC
methods are conscquently sometimes called ABM methods, but the phrase ‘Adams
method’ is also somewhat loosely used to mean an ABM method. We saw in §3.9 that
the Adams methods, when expressed in backward difference form, had particularly

simple and attractive structures: these structures can be fully exploited in the framework

of predictor corrector methods.

Since we shall of course be making use of the Milne cstlmdlc for the PLTE, it is
necessary that predictor and corrector have the same order. This is achieved by taking
the predictor to be a k-stcp Adams-Bashforth method and the corrector to be a
{k — 1)-step Adams. Moulton; both then have order p=k. From (3.96), the k-step kth
order ABM pair is thus

k-1
Voot = ¥a=h 2 ¥V, pr=k Ci =W
! i=0

k=12,.... (4.14)

k-1

Vasr —¥a=h Z Vivifnh p=k Cii=%
i=0

(On setting k = | in (4.14) we note that the PC pair comlstmg of Euler's Rule and the
Backward Euler method is now considered as an ABM pair of order 1; see the comments
towards the end of §3.9)
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We can at once anticipate a notational difficulty. If we envisage (4.14) being applied
in P(EC)*E"! ~' mode then, in the second of (4.14), y, ., will be replaced by vI'/"/'), and

the single value f,, , on the right side by /" | the remaining values f, _; being replaced

by f°9, j=0,1,....k— 1. We can overcome this difficulty by defining Vi 1o be
f“"l w1th the smgle value U1 replaced by fI'] . That is,

nt+1

Vi = R - (@13

NO 1
Thus, for example, V2 1 = (01— 2704 712l Note that it follows from (4.15) that

i iy o
VI =V =S - (4.16)
We now make use of Property 3 of §3.10, amcndcd to take account of the notation
we have just introduced. 1t is easily seen that the prool of Property 3 is unaflected by
the particular value taken by f,,,, so that we may write the result in the form

k-1

L VS =iV = Vi (4.17)
=0 '

where the notation is defined by (4.15).

We now apply the pair (4. 14) in P(EC)“F‘ ~"'mode, and usc the structure of the Adams
methods to develop a form of the ABM 'method which is compultationally convenient
and economlca‘IA In what follows, those equations which constitute the implementation
are enclosed in boxes. The mode is defined by

k-1
p: o _ym+;, Y yrviflec (4.18)
i=0
(ECy": S = ) 1
k-1 v=0,1,..., 01
W=y h Y szifL"{n"J (.19
i=0
E!-t FU = ey ie=0.

If we were to apply (4.19) as it stands then we would need to compute and store the
differences V! fU " for i=1,2,...,k — 1 for each call, v =0, 1,... .t — 1, of the corrector.
The computational effort can be reduced, by the lollowing approach, to the computation
of just one such' difference.

Subtracting (4.18) from (4.19) with v =0 gives

k=1 g
P =y =k Y VoS VT
i=0
and on using (4.17) we obtain
= Y+ Vo (4.20)
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Now subtract successive cqualions in (4.19) to get
ylrn - yo=h Z (V! fLuHrl i-nff."{x‘])v v=1,2... 10—l
But, by (4.16),
VU =V S = 18 =

Morcover, 3} 2}y, = ¥i_,, by Property 1 of §3.10, and hence we have that

yl\* 1" _ VL\I] + [,),:_‘(f!‘vll __fL»:ll} Vo= ],2,.__’”_ i. (421)

To apply the Milne estimate, we nced to compute y# — yt9  Subtracting (4.18)
from (4.19) with v =yt — | gives

] ~1 ’
WL = h % LS Ve
=hy¥ vV fn"‘ 1']'
by (4.17).
{Alternatively, we could add all the equationsin (4.21) and add (4.20) to the result to get
W= =yt .(f“‘ D= R+ Ve
=hyg_\V s lfsu“# ,",

by (4.15)) Since 7}, =y¢ and C_,, =y, the Milnc estimate (4.11) for the PLTE at
Y, + 1 {(which we shall denote by T, ,) is given by

. Covy b
= c* F-C =yl = T - "Y.'-nVﬁ— S
. p+1 pHi K W

But, by Property 2 of §3.10, y¥ —y, = y}_,, whence

Ty =hy Vi _ [0 4.22)

1
1
g
H

i
y
I

Note that injthe case t =1, T,,, | = hy, V¥l 1.

The actua] computation takes the form of lmplemenlmg each of the boxed results
(4.18)s (4. 20)% (4.21} and (4.22). Note that the implementation of (4.18) and (4.20) and
cach call oft{4.21) if t = 0 (cach call except the last if t = 1) is followed by a function
evaluation, ﬁmkmg jt+ | —t evaluations in all, which must be the case for a P(EC)"E! ™'
mode. g

It is ass.umcd that the back data need in (4.18), namely the differences

vign —0 I,...,k~ 1, have been stored. The difference V§ /14" needed in (4.20) can

n+l

‘a
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be obtained by computing
V:; lfL“;l” = V:)ff.“{{’ - Vif{.“_'l

for i=0,1,...,k — 1. Using (4.16), the difference V% _ /%7 appearing in (4.22) can be
computed from

=D T - 1,
Finally, the back data can be updated by compulting
V“ le.“;lll = Vif{.”;;‘ - V‘f!,“-”, i=0,1,.... k-2,
or by adding fU- 1 — /19 o Vi [l Ni= 12,
the next step.
The computation takes a particularly simple form in the case of the PECE' "' mode

(a popular choice). Of the four boxed equations, (4.21) no longer applics and the remaining
three become

.,k — 1. We arc then ready to compute

’ k=1
Y=y h Yyt

i=0
y =yl A VS (4.23)
Ther = h)‘&v:)f!.‘;]']
dnd we hote that the sume difference now appears on the right sides of the last two
etjuations.

We illustrate the above procedure by considering the case of a third-order ABM
method in P(EC)? mode. Recall from §3.9 that y2 =1 y¥ =1 y¥=3 and y, = — 35
note that we do not need y,, y, or y,. We assume that the back data f1'\ V"' and
V2 /Ul gre available. The sequence of sub-steps for the integration stepfrom x, to x,, , , is

P 0, =4 B4 3V VR
J00, = 1)
Vof V= 1 - S
Vot =V, -V
VOl = Vas, - v '

C vl =y + VS

E: Sy = e i)

C v =y A S -0
TR - -

Error Tyey = —3hV2 11

Update VA, = 0, -

VL=V, -V
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From (3.110), we may write the implicit linear k-step method with k — I free parameters
as '

k-t k=1 L3
;0 A:Vyn+l—s=h ZO As l;{))’rﬂv‘f;ﬂ'h (426)

where Aq = 1. This method has order k + 1 and error constant Cy,,=3*23 A%l
Since, with a k-step predictor of similar structure, we can achieve only order k, it is

nccessary to reduce the order of(4.26) to k, that i§ to replace k by k — 1 in (4.26), yielding

k-2 k-2 k-1
JZZOA(Vyn‘l*(:h g,oAsigoy:*lv‘fn«th A()=l ¥ (427)

Note that this is the usual situation where, in order to achieve parity of order, the
corrector has to have a smaller stepnumber than the predictor. We shall use (4.27) as
corrector; note that it has k — 2 free parameters, order k and error constant

k-2
Cosi= ¥ Auih. (4.28)

s=0
The explicit lincar k-step method with k — 1 [ree parameters can, by (3.111), be written

(

as

k-1 n
A, Y PV, Ag=1. (4.29)
i=0

k-1 k-
Z AJVYN0|~:=h Z
s=0 5=

0

It has order k and error constant C},, =Y 1 A.y!. In order that the left sides of
predictor and corrector be identical, we must set A, _, =0 in (4.29), yielding

k-2 k-2 k-t .
LAY =h AT iV Ag=1. (430)
= 5=0

i=0

We shall use (4.30) as predictor; like the corrector (4.27), it has k — 2 free parameters
and order k, but its error constant is

k-2
Ch., =Y Ay 4.31)
=0

Note that when k =2, (4.27) and (4.30) become the second-order Adams—Bashforth and
Adans Moulton methods respectively. '

We need the folowing natural generalization of Property 3 (§3.10) of the Adams
coeflicients; its proof, which is almost identical with that of Property 3, uses the fact that
7 —yi= =7, which follows from (3.104).

k-1
'Zo (V,{* Ivifw 1 }':V'f..) = Y:_ |Vlfn+l) s=0,1,2,...,

]

where the ¥}, s=0,1,2;... arc defined by (3.10). This result can be amended, as in the

-
. v
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preceding section, to read

[y

k-t " .
Y it vt = Y VAL =012, (4.32)
=0
where the notation is defined by (4.15).
We apply the k-step kth-order pair (4.30) and (4.27) in P(EC)'E' "~ mode and. by an
argument which is exactly parallel to that used in the preceding section and which uses
{4.32), we obtain the following sequence of sub-steps:

k-2 k-2 k-1
P =y = T AV Ak Y ALY v
=1 s=0 i=0

k=2
whi=ylo+ "< AxviA,)Vﬁ,f o
=0 +

(4.33)

k-2
y',”fl”=Y',”l,+"(ZA,v:_n>(f‘,”ll—f',‘f|”)~ v=12. -1
s=0

k-2
T,s1= h( -oA’y;* I)V:nl E.,‘;x”

where A, =1 throughout. On comparing these equations with the boxed equations
(4.18), (4.20), (4.21) and (4.22) of the'preceding seé:tion, we see that, despite the somewhat
formidable notation,llhe extension is really quite straightforward. The structure is
preserved and the same differences have to be computed and updated {(apart from the
trivial addition of the differences Vy!*! | __in the first equation). The remaning equations

differ from their counterparts in the preceding section only inasmuch as yf_ is replaced
by X*-2Ay;_, and y, by Ti23 A0t

It should be noted that there is no possibility of choosing the free paramcters A
s=1,2,....,k—2 so as to increase the order of the method (although of course local
extrapolation can still be performed). Were we to choose the A, to force the corrector
to have order k + 1, then we would also have to ensure that the order of the predictor
was also k + 1, since otherwise the Milne estimate would not be applicable; but there
exist no explicit linear k-step methods of order k + 1 which satisfy the root condition
and, since p* = p, if the predictor fails to satisfy the root condition then so too does
the corrector and the PC method becomes zero-unstable. The free parameters could,
however, be used to atiempt to improve the regions of absolute stability ol the PC
method or to reduce its PLTE.

Again as in the preceding section, we find that applying local extrapolation to the
mode defined by (4.33} (in P(ECL)"E! ~* mode) is equivalent to replacing the kth-order
corrector (4.27) by the (k + 1)th-order corrector given by (4.26) with A, _, =0.

4.6 LINEAR STABILITY THEORY FOR
PREDICTOR-CORRECTOR METHODS

Recall that in §3.8 we considered the application of a lincar multistep method o the
test equation y’ = Ay, where the eigenvalues 4, t =0,1,....m of A are distinct and have

Sf
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negative real parts, and deemed the method to be absolutely stable if all solutions {y,}
of the difference system resulting from applying the method to the test equation tended
to scro as n tended to infinity. By means of the transformation y,=Qz, where
Q 'AQ =diag[A,.4,...., 1,,}. we saw that it was enough to apply the method to the
scalar test equation y' = iy, where 4, a complex scalar, represented any eigenvalue of A.
The characteristic polynomial of the resulting scalar linear constant coefficient difference
equation, which we called the stability polynomial, n(r, k) where fi —h). determmed the
region of absolute stability of the method.

A similar aproach can be applied to predictor-corrector methods. It is not difficult
to show that the same diagonalizing transformation y, = @z, uncouples the general
predictor—corrector method so that, once again, it is enough to consider the scalar test
equation y' = y. Our first task is to find the stability polynomial ior the P(ECY'E!' ™
mode deflined by (4.4) or (4.5). Note that this will be the characteristic polynomial of
the difference cquation for the final value yll.

It is highly advantagcous to definc the mode in operator notation as in (4.5). Applying
this to the test equation ' = 1y, we obtain

I ylﬂl +[pME) — E"]y“" ha‘(E)y“‘ 1 (4.34)
EAL 4 [p(E) — By = BB AV + o (E) — BLEXTyY ",
v=0,1,...u—1, (435
where, as in §3.8, we have written /i for hA. On defining
H:=hp, (4.36)
and subtracting successive equations in (4.35) we obtain
EXyE -

yEy=HENYM ==, v=12,..,0—1,

which can be re-written as
VI (L4 )yt Hyl =Y =0

Regard this as a difference equation in {yI", v =0,1,..., u}. The equation is linear with
constant cocflicients, and its characteristic polynomial is s> — (1 + H)s + H which has
roots | and I1. 1t follows from §1.7 that the solution for y, takes the form

YW =A, +B,H, v=01,...,u—1

where 4, and B,,,, are independent of v, These constants can be evaluated if we regard
any two of the y!"l v =0, 1,.., jt as being given boundary values. Choosing the boundary
values to be y[”' and y¥, the resulting solution for y{'! turns out to be given by

(1 — Hyl = yld — gryl0h 4 g(yl0h— ylely -y =0, 1, 4.37)
(It is easily checked that this solution has the required form and takes the chosen
boundary values.) Now put v=yp — | to get

(1 — H#yyb= = = (= H)pMO 4 (1 — H Yyl
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which, on defining

_HY(1-H)
M, (H)= 2 (4.38)
can be rewritten in the form ’
HyW =1 = M(H)y!® + [H — M,(H)]y". 4.39)

On eliminating y1°! between (4.34) and (4.39) we obtain, after a little rearranging,
HEMy- U = [HE* — M (H)p*(E)]y™ + M (H)ha*(E)y 1. (4.40)

Since t =0 or 1, this is an equallon involving y* and y*~ "1 only. Another such equation
is afforded by setting v=p— 1 in (4.35):

‘

p(E)y(‘" HE*yU= YV 4 [ha(E) — HEX]y!" ™. (4.41)

The final stage is to eliminate y*~" between (4.40) and (4.41) to obtain a difference
equation in y¥l .

Caset =0 The elimination gives

(P(E) — ho(E) + HE*]y" = [HE* — M (H)p*(E) + M (H)iio*(E) ]y
or
{p(E) - hG(EH M (H)[p*(E) — ho*(E)]}y = 0.

The stability polynomial, which is the characteristic polynomial of this difference
equation, is therefore

Reczcyelrs B) = p(r) — ho(r) + MUH)[p*(0) — ho* ()], (4.42)
where M (H) and H are given by (4.38) and (4.36). ‘
Caset =1 Equations (4.41) and (4.40) now become
| p(E) =Byt
and . )
[HE — M (H)p*(E)1y = [HE* — M (H)ho*(E) Jyl "

On ecliminating y%*~!! between these two equations we obtain '

{HE'(p(E) — ho(E)] + hM (H)[p*(E)o(E) — AE)o(E)]}y¥) = O,
whence, by (4.36), we find the stability polynomial

Toop(r, 1) = Aur'Lo(r) — ha(r)] + M) 4o (r) — plr)o*(r)). (4.43)

Our first observation is that, whereas the principal local truncation error of the
P(EC)'E' ~* mode is, in normal circumstances, that of the corrector alone, the 'i-~ar
stability characteristics of the P(EC)*E! ~* mode are not those of the corrector and,
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moreover, differ markedly in the cases t =0 and r=1. Recalling from §3.8 that the
stability polynomial of the hncar mulitistep method defined by the polynomials p{r) and
alr) is nlr.h) = p(r)— ho(r), we see from (4.42), (4.43) and (4.38) that the stability
potynomial of the P(ECYE' "' mode is essentially an 0(h*) perturbation of the stability
polynomial of the corrector: npgcng(r,h) has the simpler structure, and is a linear
combination of the stability polynomials of the predictor and of the corrector.

From (4.36), H = I]/fk = hif},, whence

[HI=hIAL Bl < h AL B

since 4 represents any cigenvalue of A, and any norm of A is greater than the spectral
radius of 4. Further, we may take 4]l to be the Lipschitz constant L of the system
V' = Ay, and we have that

PHI < LIS < |

by (3.8). 1t then follows from (4.38) that M (H) -0 as - 0. Thus, as we would expect,
the stability polynomial of P(EC)'E' 7' tends (essentially) to that of C as u— co. (The
factor r* in Moyl 1) has no eflect in the limit as p— 0.

As for lincar muitistep methods, a predictor -corrector method is said to be absolutely
stable for given h il for that h all the roots r, of the stability polynomial satisfy |r,] < 1;
the region .2, of the complex h-planc in which the method is absolutely stable is the
region of absaelute stability. Such regions are found using the boundary locus technique
described in §3.8. However, for predictor-corrector methods the polynomial =(r, fr) is
nonlinear in h, and we can no longer solve explicitly [or h the equation n(exp(i6), h) =0
which defines the boundary 0:#, of the region #,. We can, however, sofve numerically

{by Newton itcration, for cxample) lor a range of values of 0, and thus obtain a plot of -

# .. There is a single exception 10 this, namely the PEC mode. From (4.43) and (4.38)
it follows that

-

Tt = 101 =B )] + ")~ ) (.44)

k

which is lincar in i

For lincar multistep methods we showed that the root ry of the stability polynomial
satisfied ry = exp(fl) + 0(h™* ') (see {3.72). The proof of this result hinged on the fact that
niexp(h). I = O(h"* 1) (see (3.70)). Now if the predictor and corrector both have order p,
then by the argument which led to (3.70), we have that

p*(exp(h)) — ho*(cxp(in) = O(hr* 1),

»

P(exp(fl)) - fto(exp(ﬁ)) = 0(;‘,” n,
and 1t lollows that
p*exp(i)oexp() — plexp())o*(exp(h)) = 0 1).

From (4.42) and (4.43) it follows that 7pecpp- (exp(h),h) = O(h"* ') and consequently
r, =cxp(h) + O(h™* '). Thus, for predictor-corrector methods, just as for linear muitistep
methods, the region of absolute stability cannot contain the positive real axis in the
neighbourhood of the origin.

o —
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Let us now consider the degree of the stability polynomiais defined by (4.42) and
(4.43). In general, mpccpe(r ft) has degree k whi!sl pgecplrs ) has degree 2k. Thus, to
achieve absolute stability, twice as many roots have to be controlled for the P(EC)"
mode as for the P(EC)'E mode, suggesting that the latter class of methods will have
the larger regions of absolute stability, a conjecture that we can go some way towards
substantiating by the following observations. From (4.38) we have that for = 1,2....

+1 4l
EMJEIL - ,,’_11‘#(‘1: H) - }i (1—H) =M, (H). (4.45)
"1+ MH) {—H+H(-H)  1-H"

Now consider the mode P EC)** !; by (4.43), its stability polynomial is .
Roeye (1, 1) = B Lp(r) = ho(n] + M, ((H)Lp*(No(n) — p(r)a*(r) ).
By (4.45) and (4.36)

1+ M,(H)

i [
"P(F,C)“ . I(r’ h)
i

= P*[1 + M (H)][p(r) = ha(r)] + hM (H)[p*(Na(r) = p(r)a*(r)]
= P{plr) — ho(r)] + M (H){r*p(r) = hL(r* = p*(Na(r) + p(ra*()] . (4.46)

The form of the right side suggests that we make the following definitions:

pry=rtol),  6n=ralr) } @47
FHO=rolr), E*0)= L — p*()1o(r) 4 pla*r)

Now p(r), a(r) and p*(r) all have degree k, while a*(r) has degree k — 1. It follows from
{4.47) that j(r), 6(r) and 5*{r) have degree 2k, but 3*(r}has degree at 2k — 1 at most (since
af = 1). The linear multistep method with first and second characterstic_polynomials
p*(r), 6*(r) is therefore explicit, and we shall accordingly denote it by P. The linear
multistep method similarly defined by the polynomials (r), 6(r) is implicit, and we shall
denote it by C; note that C is just C right-shifted by k steplengths. With this notation,
(4.46) can be written as '

1+ M,(H)

Tpgeye 17 B = Treepen M =12, (4.48)
By
It follows directly from (4.44) that a similar result holds in the case =0, namely
! = i 449
Enpec(r, h) = nﬁ(r, h), (4.49)
k

where n;(r, h) is the stability polynomial of the explicit linear multistep method P. The
factors [1 + M (H))/B. in(4.48) and 1/B, in(4.49) being independent of r, we conclude that
R ,PECY*' =R, [PECVE], pu=0.1.., (4.50)

with the obvious interpretation that, in the case 1t =0, PECYE=PE=P.

7
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It can be shown that P has the same order and error constant as P. The mode
P(EC)** ! is not, however, computationally equivalent to P(EC)*E, aithough there does
exist a relationship between the solutions computed by the two modes; see Lambert
(1971) for fuller details. Clearly, C has the same order and error constant as C; moreover,
the Milne estimate for the PLTE will be the same for the two modes P(ECY**! and
P(EC)E. Thus, to any P(EC)**' mode there corresponds a P(EC)'E mode with the
same PLTE and Milne estimate, and with identical region of absolute stability. The
converse is not true, and it follows that if we look for the + ~edictor—corrector method
costing p + 1 evaluations per step which has the ‘best’ stability region, then we ought
1o search the class of P(ECYE methods’ Such a ‘best’ method may or may not be
replaceable by a P(EC)** ' method with the same PLTE and stability region; when such
a replacement is possible, the stepnumber will be reduced.

The relationships {4.47) linking P(ECy** ! to B(ECY'E take a particularly’ simple form
in the case of ABM methods. For a kth-order ABM, we have from (4.24) that the
polynomials [p*.a*], [p.o] defining P and C respectively are given by

pHY = plr)=r"'r—1), a*(r)y=o}r), a(r) = ra,(r).

Substituting these in (4.47) gives

pn=p*n=r*'r-1,

dry=rtlaln, M) =r " redn + r— Dot

All four polynomials j(r), 5*(r), G(r) and ¢*(r) now have a common factor r*~! which

can be disregarded, since zero roots of the stability polynomial do not have any effect
on the region of absolute stability. We may therefore replace (4.47) by

piry=pHn=rir—1,  dry=rlor)

FHr)=ray(r) +(r— Do)

and the P(ECY'E method now has stepnumber k + | rather than 2k. Conside;, for
example, the second-order ABM for which

prn=ri—r, at=0r—172, pn=r—1, o) =0+1/2

and we oblain

PpMry=rir—1), =@ -3r+1)2

C:plry=rir—1,  )=r*(r+1)2.
We note that the stepnumber is indeed 3 and that P is explicit. )

The regions of absolute stability of the kth-order ABM methods, k = 1,2, 3,4, in PEC,
PECE and P(EC)? modes arc shown in Figure 4.1.

The stability region of the kth-order Adams—Bashforth method is also included and
is labelled PE. As was the case for linear multistep methods, all these regions are
symmetric about the real axis, and Figure 4.1 shows the regions only in the half-plane
Im(k) > 0; note that the scale in Figure 4.1 is larger than in Figures 3.2 and 3.3 of §3.8.
We hdve had occasion to remark previously that k = 1 gives a somewhat anomalous

SV
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Figure 4.1 Regions of absolute stability for kth-order ABM methods.

member of the ABM family, and that is again the case in Figure 4.1. For the cases
k=12,3,4 there is a clear pecking order in terms of size of stability region, namely (in
descending order) PECE, P(EC)?, PE, PEC. That PEC has poorer stability than PE
(the straight Adams-Bashforth method) is not surprising; we have already seen that
PEC has the same stability region as an explicit method P, which turns out to have
poorer stability than the Adams-Bashforth method. Comparison with Figure 3.2 of §3.8
shows that the stability region for the Adams-Moulton method in the mode of correcting
Fo convergence is{not surprisingly) in every case greater than that for the modes displaycd
in Figure 4.1. With the exception of the anomalous case k = 1, the regions for each mode
become smaller as the order increases. .

From (4.42) we note that the stability polynomial of a P(EC)'E mode is a linear
combination of the stability polynomials of the predictor and of the corrector. However,
the region of absolute stability is a highly nonlinear function of the stability polynomial.
so we cannot infer that if the predictor and the corrector separately have good stability
regions then the P(EC)"E will also have a good stability region. (The same holds true a
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Jortiori Tor the P(EC)* mode.) By way of illustration, let us construct a faily of
predictor corrector methods in which the correctors are the BDF described in §3.12
(not, we add, the usual application of the BDF —see Chapter 6 for that.) The kth-order
corrector is then given by (3.119), and a suitable kth-order predictor is

k
Tx Z (5iviyn+k = hr (1 ~ Vk)fuu 4.5
=1 :

with the notation of §3.12. In the case k = 1, this predictor—corrector pair coincides with
the first-order ABM, but for k = 2, 3,4, the above predictor has a larger regioh of absolute
stability than has the kth-order Adams-Bashforth. The BDF correctors have, as we
have seen in Figure 3.4 of §3.12, infinite stability regions and are greatly superior to the
Adams-Moulton methods in this respect. Yet the constructed BDF predictor-corrector
pair in PECE mode has, lor k = 2, 3,4, stability regions which differ only slightly from
thosc of the ABM.

Let us now consider the effect on absolute stability of local extrapolation, in the two
classes of modes P(ECL)*E' ™' and P(EC)*LE! "' defined by (4.12) and (4.13). By an
argument similar to that which produced the stability polynomials (4.42) and (4.43) for
the P(EC)*E' ™' modes, the following stability polynomials can be derived:

reecLys(r, 1) = (1 + W)[p(r) — ha(n)] + [M(H + WH)— W1[p*() — ha*()] (452)
Tpecuplr B) = B L1+ W)lplr) = ho()] = WIp*0) —ha*()]}

+ M, (H + WH)[p*(a(r) — p(no*(")] : (4.53)
ToeorLelr 1) = (1 + W)[p(r) = ho(r)] + [M,(H) + (H — YW1[p*(r) —ha*()] (4.54)
Togeera (1) = Br* {(1 + W)[p(r) — ho(r)] — WLp*(r) — ha*()]}

+ [M,(H)+ HW][p*(na(r) — p(r)o*(r)] 4.55)
where, as before,
- u —_
H=ph M= f’—“—H), W Seti_ {4.56)
1 —-H*" Crii—Cphuy

(see (4.36), (4.38) and (4.11)).

Note that on putting W =0, that is, not performing local extrapolation, (4.52) and
(4.54) both revert 0 Mppcpy(r i given by (4.42), and (4.53) and (4.55) both revert to
Toqecylrs 1) given by (4.43). Note aiso that in the case py=1, when P(ECLYE'"'=
P(ECYLE! ", we have that M,(H) = H and it follows that

M H+WH) - W=H+WH-W=H+(H=1W=M(H)+(H- )W,
M,(H + WH)=H + WH = M (H) + WH,

s

and (4.52) and (4.54) coincide as do (4.53) and (4.55).

Let us now consider the case when the PC pair consists of a kth-order ABM method
in P(ECLE mode. By (4.25) we know that Py,(EC,,L}'E' ' = Pyy(ECus nY'E' ' 50
that the stability polynomials given by (4.52) and (4.53) with P =P,,,, C = C, must

A
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coincide respectively with those given by (4.42) and (4.43) with P=Pgy, C=Cyu.,,
To show that this is indeed the case takes a little work. By (4.24) Py, and C,, are
defined by

p*=prr),  o* =0l p=rodn. ol =rayr).

where p?(r) = rp,(r) =r* —r*~'. Substituting in (4.52) gives

T ecarels ) 5 (1 + Wrrloir) — hon] + M, (H + WH) = W]legin) - ha#(n]

= rpy(r) = R[(1 + Wiray(r) = Wo N1+ M (H + WH)[p3(r) - ho ¥
(4.57)

‘

Now H (= hp,) depends, through f,, on k, and it is necessary in this arguinent to make
that clear by writing H, for H. By Property 4 of §3.10 we have

H,=hy}_|. (4.58)

Further, by (3.96) of §3.9, the error constants of Py, and Cy, are given by CH, =74
Cy+1 = Vi Whence, by (4.56)

W=n/of —vw)=nvi T +EW=3, (4.59)

where we have used Property 2 of §3.10. The terms on the right side of (4.57) can now
be simplified. By (4.59),

(1 + Wiroy(r) — Wat (] = [yiror) — nox (D)o = o ), k=2,
by Property 6 of §3.10. Further, by (4.58) and (4.59),
]
Hy+ WH =G} rb Dty =Tnf = Hio

Hence (4.57) now reads

T ecannyrslts B) = 1060) — hoy s () + My s DE0Z0) = ho ()]
k=2 (4.60)

! = nP(k)(EC(k + n)'E(r’ h)'
by (4.42). Note that when a kth-order predictor is combined with a (k + 1)th-order
corrector in an ABM method, it is no longer necessary to right shift the corrector; thus
p(r) = rpyr), o(r) = 0,4 ,(r) properly define Cy 4, in this context. It is readily established
by direct substitution that (4.60) also holds for k =1. A similar argument shows that

Mool 1) = Trasteca s T 1)
»
and we have demonstrated the required result. '
There is one further point of interest to be extracted from the ABM case. Consider

the mode P (ECq+ )t} it is defined by setting

P‘(’)=P:(")a a"‘(r)=o:‘(r), p(r)=[’k§l(r)1 a(r):(’k&\(r)v

where Q:(r)=p,+,(r)=r"—‘r"“. (See note following (4.60)) Now let us apply the
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equations (4.47) to get

A = i), () =rroysy(r), pHr)=r'p(r)

G = =+ o (0 +H 0t =T a i)

=" op (N +(r = Do)

=gk, (0, k=1
Property 7 of §3.10. On dividing out the common factor #* 7!, we have
Ay =rpys (fr),  G(r)=roy.4(r),
ﬁ*(’)=’ﬂ:(’)=l7:+|(’), "‘(r)=‘7:+l(r)
PECLE . .
2t PECLE - 2¢
P(ECL) 2
PE P(ECL)
PECL PE
N PECL
§
y
-2 -1 -2 -1
k=1 k=2
210
. PECLE
P{ECL)
e
PECL <
N
T T
-2 -1
k=3 k= 4-

Figure 4.2 Regions of absolute stability for kth-order ABM methods withy
local extrapolation. : :
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whence P = C= Cysyp and it follows from (4.50) that

RA[P(ECq+ )" "' 1= RuLPy,  (EC,, ) E].

:

Combining this with the result (4.25) we have
QA[P(k)(EC(l)L)“+ l] = QA[P(l+ 1)(EC(A+ 1))“E]'

+

Thus, a kth-order ABM method applied in the mode P(ECL)**' (i.e. with local
extrapolation applied at every call of the iteration) has the same stability region as a
(k + 1)th-order ABM applied in the mode P(ECYE (i.e. without local extrapolation).

The regions of absolute stability for the kth-order ABM methods, k= 1,2,3,4 in the
modes PECL, PECLE and P(ECL)? modes are shown in Figure 4.2. As in Figure 4.1,
the stability region for the kth-order Adams-Bashforth method is also included and is
labelled PE. Again, the case k=1 is anomalous, but for k=2,3,4 we observe that
although local extrapolation has the effect of enlarging the stability regions, the pecking
order of PECLE, P(ECL)%, PE, PECL is unaltered. The result (4.61) is well illustrated
in Figure 4.2; for example, the region for P(ECL)?, k=2 is the same as for PECLE.
k =3, and the region for PECL, k = 2 coincides with that for PE, k=3.

(4.61)

Exercises )

4.6.1. Use the Routh—Hurwitz criterion to'find the intervals of absolute stability of the predictor
(4.51) with k = 2 and of the PECE algorithm constructed from the same predictor and the 2-step
BDF as corrector. Compare these intervals with the corresponding ones for the 2-step Adams
Bashforth method and the 2-step ABM. (See Figure 4.1 and Figure 3.3 of §3.8.) Hence corroborate
the conclusions drawn in the above section. '

4.6.2. The predictor y,,;+4y,+ — Sy, =h(4f,,, +2f,) is combined with Simpson's Rule as
corrector in PECE mode. Show that if the roots of the stability polynomial are r, and r, (r,
being the perturbation of the principal root of p) then for all real h, the method is relatively stable
according to the criterion |r,| <|r,| (which is not quite Criterion A of §3.8). Show, however, that
the method is not relatively stable (in the above sense) for smail imaginary h.

4.6.3. The result (4.49) shows that a PEC method has the same region of absolute stability as the
explicit method P, defined by the characteristic polynomials 5*(r), ¢*(r) given in (4.47). Let k = 2, and

consider the following five equations which arise from the application of the PEC method at a
number of consecutive steps:

P+ o+ = WS B30, a=0,1.2
O TV BORY Y IR N SR RN}

Hence show that the predicted values {y!'} generated by the PEC method satisfy the explicit
method P. Deduce that the numerical results produced by the PEC method could alternativels
be obtained by using P to calculate the sequence {yi”'} for the whole range of integration, and
then modifying y!® to 1Y) by applying the 3-term recurrence relation

t

“ ,‘21 +a, ,.l+] v+ %YL” = h(ﬂszO} ,+ ﬂ:ffﬁ'. + ﬂofs.ol)- ;

Explain why this interpretation of the PEG method corroborates the result (4.49,



128 PREDICTOR-CORRECTOR METHODS

‘:;6.4[.~(~Vcr[i[y the result (4.61) by calculating the stability polynomials for P, (EC;,L)* and
[EILR RIS '

4.7 CHANGING THE STEPLENGTH IN
AN ABM ALGORITHM

As'v'vc have seen. predictor-corrector methods possess many advantages, notably the
facmly for monitoring the local truncation error cheaply and efficiently. H;)wevcr i]here
is a balancing disadvantage, shared by all multistep methods, namely the difﬁ;:ul(ies
encountered in implementing a change of steplength. In the remainder of this chapter
we shall be discussing ways in which predictor-corrector methods are implemented in
m_o(lcrn codes, and incvitably heuristic arguments based on computational experience
will play a significant role. Such codes are almost always based on ABM methods, so
o we shall restrict our discussion to that family of methods. ’
Suppose that we have used a kth-order ABM method (which will have stepnumber
k) to compute y,, but before going on to compute y,, ; we want to change the steplength
from Ji to ah. In order to apply the method to compute an approximation to y at x, + ah
wc'nccd back data at x,. which we have, and at x, —ah,x, — 2ah, ..., x —(k: l)ah,
which we do not have. (The codes referred to above use a range of'AB’I.vl" methods o}
orders up. to 13, so that quite a lot of new back data may have to be generated on
change of steplength.) Many different ways of tackling this problem have been proposed
but we shail discuss only those that have found to be-the most successful; a gooci
refercqce on this topic is Krogh (1973). The available techniques can be calego;ized into
two dancr.enl groups. The first, known as interpolatory techniques, use polynomial
interpolation of the existing back data in order to approximate the r;lissing back data;
there arc several ways of doing this. In the sccond group, the ABM methods themselve;
are replaced by ABM-like methods which assume that the data is unevenly spaced, and
whose coefficients therclore vary as the steplength varies. Stepchanging techniques l::ased
on such methods are usually known as variable step techniques, a name which the author
finds unsatisfactory; algorithms which have the facility for changing both steplength
and order are widely known as ‘variuable step variable order’ or VSVO algorithms
whether they use interpolatory or ‘variable step’ techniques to implement a change o}

steplength, and there is clearly a clash in the nomenclature. Accordingly, we prefer to.

call t'his s-econd group of techniques variable coefficient techniques.

W}(h interpolatory techniques, ABM methods have an advantage over other
predlclor—clorhrcclor methods, in that, since p*(r) = p(r) = r* — F* =1, we never need to
gencrate missing back values of y, only those of f. The interpolation can be doge wholly
in the x - [/ space, thus avoiding any call for additional function evaluations. The ke
piece of information we work from is the unique polynomial of degree k~.l whicl):
interpolates the available back data (x,_,, f,-,), t=0,1,...,k — 1. Note that, by (1.31)
of §1.10, the errors in this interpolation will be O(h*); since, in an ABM imp]c;ne)rlltat.ion
ic back values of f (or their diflerences) are multiplied by h, the error in y due to
|nlcfpolation crrors in the back data will be O(k** 1), that is, of the same order as the
LTE. Now the interpolating polynomial can be defined (and stored) in a number of
dlrfcrcn! ways, thus giving rise to a number of different interpolatory techniques We
could simply work out its coefficients (which would not be a very efficient way to

N ~
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proceed), we coyld specify it by the data f,_,t=0,1,....,k =1, or by the backward
differences V'f,,i=0,...,k — t, or we could fix the polynomial by specifying its value
and that of its first k — 1 derivatives at the point x,. In §4.8 and §4.9 we sHall consider

“in some detail two interpolatory techmques; in the first of these the interpolating

polynomial is specified by the backward differences of f,and in the second the values
of the interpolant and its derivatives are specified at x,,.

Variable coefficient techniques essentially consist of Adams methods in backward
difference form, as in §4.4, but derived under the assumption that the solution has been
computed at unevenly spaced values of x. We shall carry out such a re-derivation in
§4.10. Computation of the variable coeflicients at each step becomes the major
computational effort in using these techniques. When the steplength is held constant
for a number of steps, then the coeflicients naturally become constant, and the methods
become equivalent to standard ABM methods.

It is not a straightforward matter to compare the computational effort of interpolatory

* and variable coelficient techniques. With interpolatory techniques, the amount of

computation involved clearly increases as the dimension m of the initial value problem
increases, whereas the effort of computing the coefficicnts in a variable coelficient
technique remains independent of m. Thus variable coeflicient techniques become more
attractive if the system is large. Nevettheless, it is still generally true that algorithms
employing variable coefficient techniques are computationally more expensive than those
using interpolatory techniques. On the other hand. they are more flexible in handling
very frequent changes of steplength and are, in practice, rather more robust since, unlike
interpolatory techniques, they always use computed and not interpolated back data.

4.8 CHANGING THE STEPLENGTH;
DOUBLING AND HALVING

In the preceding section, we listed a number of different ways in which, in an interpolatory
step-changing technique, the interpolant of the available back data could be specificd.
If we are implementing an ABM method in P(EC)'E' "' mode in backward difference
form as described in §4.4 then, of the options.listed, that of defining the polynomial by
specifying the backward differences is clearly the most natural. From (4.18) of §4.4, the

" back data that have been stored on conclusion of the step from x,_, to x, are

Vi1 i=0,1,...,k — 1. In what follows we shall drop the superscript [t — t], which
is to be taken as read. Ideally, what we would like is an algorithm in which the input
consists of these differences and the output is the corresponding differences of the
interpolated values at x, —tah,t=0,1,....k—1. A remarkably simple algorithm, due
to Krogh (1973), does just this, in the case when stepchanging is restricted to doubling
or halving the current steplength. One might think that no such algorithm is nccessary
in the case of doubling the steplength, since the previously computed values f,_,,
Su-ase-os Su-2x42 could be used as the new back data. However, Krogh (1973) reports
that such a technique is consistently less accurate in practice than the algorithm we are
about to describe. This is not altogether surprising, since the technique of using every
other value of f uses information which is further away from the current step than that
used in an interpolatory technique (recall that k can be large), and the solution may
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have locally changed in character; indeed it is often such a change that creates the need
to alter the steplength in the first place.

Let I(x) be the unique polynomial (with coefficients in R™) of degree k — ! passing
through the k pomls (X0 fu-ht=0,1,...,k— 1. We then have that

Vl(\)—Vf,., i=0,1,.., k=1 4.62)

where VI(x)i=I{x) = Hx — h), VI(x)=V" (X)) -V (x—h),i=23,....
differences of a polynomial of degree p are constant, it follows that

Since the pth

vir

v 1
X i

Yoo DY RS A A £y
nl =Y, i =K KT dy.... 7.0y

In the step- doubling case, we wish to generate a set of differences of the data I(x,),
Hx,—2h),...,l(x,— 2(k — 1)h). Let us .denote such differences by V(D,I(x,,),i=
01, k— I dcfncd by Vi1 (x):= I{(x) = 1(x — 2h), Vp, 1(x):= V5, 1(x) = V{5, 1 (x — 2h),
i=2, 3 .,k —1. (The subscript D is bracketed to avoid any possible confusion with
the nolalion introduced in (4.15) of §4.4) Now,

VI(x,) = 1(x,) — I(x, — h),
21(x,) = 1(x,) = 20(x, — h) + I(x, — 2h),
whence
2V~ V2)I(x,) = 1(x,) = (x, = 2) = Yy (x,)

Thus we have the following identity:

Vi =2V - V2 ' (4.64)
From equations (4.62), (4.63) and (4.64) we are able to generate V(D,I(x,,) in terms of
Vif,i=12.. . k—1 (The case i =0 is trivial.) We illustrate the procedure in the case
k=>5.

Vil (x) = V(2 = V)(x,)=2V(, - Vf,
Vinl(x,) = V2 = V) (x,) = (4V? - 4V> + V¥)I(x,)
= 4V2fn - 4V3fn + V‘fn
Vi (x,) = V(2 — V) I(x,) = (8V? — 12V* 4+ 6V° — VO)I(x,) (4.65)
=8V —12VYI(x,)  (by (4.63))
=8V3f, — 12V*f,
Vinl(x,) = V42 = V)*I(x,) = (16V* + - )I(x,)
=16V*1(x,) = 16V*/,.

lI'or general k, the above procedure is neatly accomplished by a segment of code due
to Krogh (1973). (For ease of exposition, the segment is written for the case feR!;
adaptation to the casc f eR™is straightforward.) Let A(= A[i]):=V'f,,i=1,2,...,k—
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and consider the following few lines of code:

forj:=1tok —2do
begin
fori:=jtok —2do A[i]:= 2.0+ A[i] ~ A[i + 1];
Afk — 1}:=20+ALk~ 1];
end;
ALk —11:=20+A[k - 1];
Applying this in :he case k =5 gives

'(4.66)

A, A, A, As
Vi Vi, V I LA
j=1 @v-vyy, Qv -VvI)f, Qv -V, 2V,
j=2 (4Vz AV 4 VY[, 4V —4VY)f,  4viy,
j=3 8V — 12V¥)f, 8V*f,

16V4 7,

and, on comparing with (4.65), we see that the code scgment (4.66) has transformed the

vector [mevzfmvjfmv‘fn]T into [V(D)fmv(zn)fm (D). fnv (D)[ ]T

A similar procedure for halving the steplength can be deduced from the above. We now
wish to generate a set of differences [rom the data I(x,), [(x, — 1/2),..., l{x, — (k — Dh/2).
Let us denote such differences by V(,,,I(x,,),i =0,1,....k — 1, defined by V4, I(x):= I{x) —
Hx — 1/2), Vi I(x):= Vi Ixy= Vi, 1(x = h/2),i=2,3,... .k — 1. Now, deducing Vp,
from V is obviously the same process as deducing V from V,j,, and from (4.64) we can
thus write

- v
V= 2V(ln - (m

We can no longer express V,, explicitly in lerms of V but, by analogy with (4.65). we
see that the transformation which takes [(V,f,)", (VanSn AV (V)T into
[OVL (VAL (V2 )T, (V4 £,)"] is a linear one and, morcover, the transforming matrix
is trlangular making the inversion of the transformation simple. Specifically, in the case
k=5, we have by analogy with (4.65)

' V=02V~ qzu))’(“n)
V=@V, =4V + Vi (x,)
V2 fu=(8V0, — 129E,)I(x,) '
VS =16V, 1(x,). )
This linear system is readily solved to give

Vil () =75V4/, \

V(a,,,l(x,,) =iV + V.

Vinl () =3V £, + 4V L+ &V,

Vanl () =3V, + 5V 4+ V2 o+ 135V o

Once again, this procedure can be carried out, for general k, by a segment of code which

(4.67)

1]
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is, in eflect, (4.66) applied backwards. As before, let A(= A[i)):=V'[,,1=1,2,... . k—1;
then the segment of code {again written for the case feR!) is

ALk — 1]:= ALk — 17/2.0;
for ==k - 2downto l do
begin

Alk = 1]:= ALk = 11/20; (4.68)
fori:=k — 2downtojdo A[il:=(A[i}+ A[i + 1])/2.0;
end;
Applying this in the case k =5 gives
Ay Ay A, A,
vy, vy, vif, " V/a
5V, .
j=3 vt (VP HLVYY,
i=2 WV GV VYL GV VR + VY,
Q=T VL GV VYL GV eV GV GV VeV + Y

and, on comparing with (4.67), we sce that (4.68) has achieved the desired result.

In practice, using (4.66) to implement step-doubling works very satisfactorily, but
using (4.68) to implement step-halving can run into difficulties over adverse accumulation
ol error when k is large. Krogh (1973) reports cases where-using (4.68) to halve the step-
length in an ABM mcthod can result in the error estimate increasing! Problems of this
sort, encountered when reducing steplength, are not confined to the use of (4.68); they
can arise with any interpolatory technique, and are essentially due to the fact that the
underlying polynomial interpolant which the ABM method uses to advance the solution
does not, after a step change, pass through previously computed points, but through
an interpolant of thesc points. There exists a modification (applicable in the case of an
ABM mcthod in PECT: modc with step-having by (4.68)) which successfully overcomes;
this difficulty; it is rather too claborate to quote here, and the reader is referred to Krogh
(1973) for details.

Exercise

48.1. Corroborate (4.65) by the foliowing calculations: Let I{x)=x*+4x>+3x?+2x+ 1,
evaluate I(x) for x=0, -1 —1 — —g, — 2, and construct a table of backward differences V'I{0),
i=0,1,2,3,4. Apply (4.65) to find the corresponding differences V:D)I(O). Now evaluate I{x) at
x=0,—1,-2 -3,~4 and check that the differences gencrated by these values coincide with

the V) 1{0). Why do they coincide exactly? Carry out a similar calculation to check (4.67).

4.9 CHANGING THE STEPLENGTH; THE NORDSIECK
VECTOR AND GEAR’S IMPLEMENTATION

We now look at another interpotatory technique in which we use a different option for
identifying the vector polynomial /(x) of degree k— 1 which interpolates the known

i B

3
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back values f,_,,t=0,1,...,k — I, namely that of fixing /(x) and us first k — | denivatives
at the point x,. Let F(x,)eR™ be defined by

F)= [ V) (v )T
=[N VTN (P T

by (4.62). Observing that V'I(x,) = 0(k'), it seems appropriate, when defining a vector
whose m-block components are I(x) and its first k — | derivatives cvaluated at x,, to
scale the ith derivative by k', and define G(x,)eR™ by

GOxp= LU AUV B )T . (4.69)

The technique of storing back data in terms of an interpojant and its derivatives evaluated
at a single point was first proposed by Nordsieck (1962), and it is appropriate to refer
to G(x) as a Nordsieck vector. The result of the scaling by powers of I is that we can
obtain G(x,) in terms of F(x,) by means of a linear transformation

G(x,) = AF(x,) (4.70)

where the matrix A is independent of h. If we now wish to replace /i by oh, all we have
to do to the vector G(x,) is multiply the ith m-block component by o'~ (see (4.69)): the
corresponding vector of differences of I(x,) evaluated at x,-tah, 1 =0.1,. ... k — 1, is then
obtained by inverting the transformation (4.70).

Consider for example the cast k =S. Then I(x) = I(x, + rh} =:P(r). where

Py = [, + 1V, + 5r(r 4+ DV S, 4 4rlr + Dir + 2V,
+ A5+ Dir + 20+ )V,
Since KI%(x,) = PO0), - g,i = 1,2,3,4, we find that
' W) = Vf, 4 4VEf, 4493, 44V,
RIPx) = V2 [, + V[, + BV,
RIOx,) = V1, + 394,
[3 hdl(d)(x”) - V“fv;v

whence (4.70) holds with

100 0 0
01 i uou
A={ 0 0 I 1 i @71
00 0 1 U
000 0 I

where I is the m x m unit matrix and 0 the m x m null matrix.
Suppose that we wish to double the steplength; this is equivalent to multiplying G(x,)
by the block diagonal matrix  *

D =diag[l, 21, 41, 81, 16]]
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If we define
Fontxali= L) (Vo G (V3 [ (5 (Vi e (Vi [T,
then Fyp(x,) is given in terms of F(x,) by '
Fpyx,) = A" 'DAF(x,).

On performing the matrix arithmetic we find that

170 o o0 0 |
02 -1 0 0
Fpx)=| 0 0 31 —41 I |F(x) 4.72)
00 0 8 —12
00 0 0 16

thus reproducing the result we obtained in (4.65).

This is all by way of introduction, and we would not seriously propose that the above
procedure be used as a step-changing technique. What this illustration does is highlight
the advantages and disadvantages of the approach. The advantage is clear—the ability
1o change steplength by an arbitrary factor. The disadvantage is that the computation
of the matrix A (which is different for different values of k) and of its inverse and the
matrix multiplications together represent a quite unacceplably large amount of
computation.

A development due to Gear (1967, 1971a), in which the ABM mcthod is implemented
in standard—-not backward difference—form, makes ingenious use of a Nordsieck
vector. The device, which successfully overcomes the disadvantage noted above, is best
seen when the ABM method is applied in P(EC)* mode. In both the original Notdsieck
methods and in the Gear development the interpolant to be stored in terms of derivatives
is not that which interpolates the back data f,_,, t=1,2,...,k—1, but the Hermite

interpolant P(x) which, in the sense of §3.3, is equivalent to the Adams-Bashforth .

predictor in the ABM method. If the ABM method apphed in P(EC)“ mode, has order
k. then P(x) has degree k and satisfies

P(’(n+k)=y[.o+!kv P(X",k_l)=yL"lk_‘
P, )= j=01.. k-1

ntj

4.73)

(P(x) has k + 1 m-vector cocfficients; as in §3.3, the elimir ant ‘of these k + 1 coefficients
between the k + 2 conditions (4.73) is the kth-order Adams-Bashforth method.) The
back data used by the predictor can be lined up to define a back vector Y¥],eR™**"
given by

TP (TN LY TV et LIPS (0 o) L A (4.74)

Clearly Y, | dctermines P(x) uniquely; so does the vector of P(x) and its first k
derivatives evaluated at x,,,_,. For the reasons discussed earlier, it is appropriate to
scale these derivatives by powers of h and it turns out to be helpfui also to scale them
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1

,by factorials. We therefore define the Nordsieck vector ZW  eRm T by

h*

T
Zoh- [(P(x”. D) P4 - l))‘,...,kgr"“(x"...v.))’]. (4.75)

The transforination from Y"!, | to 2™, _ is a lincar one,
Z L =0Yi, 7 (4.76)

and, as in our earlier illustration, the scaling of the derivatives of P(x) by powers of h
results in Q being independent of h. The elements of @ are thus constants which depend
only on lhe cocfficients of the kth-order Adams- Bdshforlh mcthod. However, from
(4.74), (4.75) and (4.73) we sce that the first m-block components of Y!!,  and Z¥], |

are identical, as also are the second m-block components. Thus @ must have the form

! 000 - O
o171 00 -0

Q=|* = » = . i (4.7
* %k % K . %

The kth-order ABM in P(EC)* mode written in standard lorm is, by (4.4),

P: ylol _)’!."ln |+h z /}tflu 11

C: y;‘"f”—yf_“j,‘ W+ h/},‘f['"lk +h Z /Ijj""“[j", v=0.1,...,u—1
j=0

(4.78)

where, since the corrector has stepnumber one less than that of the corrector, ffo = 0.

The Gear approach amounts to twisting the arm of (4.78) to make it look like a
one-step method {which it will not be) and then applying the transformation (4.76) (in
a more general context) whereupon the method genuincly becomes one-step. It foHows
from (4.78) that

RN T X T AT Il R IV AR (4.79)
and
sl = 10 S T | (450
i
Now introduce the simplifying notation
54 (B = BB J=01,. k=1 dm=l_§j:)a;_fl;';j”. (481)
K-

The coeflicients 67 turn out to be very simple functions of k. Consider the polynomial

4

k k
Z 6;"]::[ Z (ﬁf _ﬂj)rj]/ﬂks

j=0 =0
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where /f,‘*':AO, fla=10. Now, in the notation of §3.10, ¢X(r) and a,(r) are the second
clmruclAcrlsuc polynomials of the Adams-Bashforth and Adams-Moulton methods
respectively, of order k, and both have degree k — 1 (see (3.97)). Recalling that in thé
present context we have right-shifted the corrector by one steplength, we may write

k ) k
Y pri=atinh Y B! =rou,
j=0 j=0

whence
K

Y 810 =[at(r) - ray(n/h.

j-0

It follows from Propertics 8 and 4 of §3.10 that

M=

6jrj= —(r—hk

it

j=0

whence

_ ok
‘ 5 =(— 1t 1“(j>, j=0.1,... k. (4.82)

(Note also that, from (4.81). d,,, = [1 + (=1} 9 ] i)
We can now write (4.80) as o

o= o= B, - dy).
Now define the vector YU eRm 1 by
YOT e { LA DT, 0T B TR ifv=0 ,
LA IR TR )T YT it =12,
(4.83)

Note lhalv we have used the same notation in (4.74) and (4.83), but there is no
contradiction; on putting v =y and replacing n by n — | in (4.83), we recover {4.74).
By (4.83), (4.81), (4.79) and (4.80) we can now write (4.78) in the lollowing form:
ProYI =Byl
Cooy M=yt L GRYPL), v=0,1,... 0 — 1} (459
where Bis an m(k + 1) < m(k + 1y matrix, G is an m(k + 1) x m matrix and F, an m-vector,

is & function of an m(k + 1) vector argument, given by

TS R Y GRS LT B T [ 5.1 ]
O oF 0 Sp 0 o 8 sr | I
0 1 0 - 0 0 0
B= =
0 0 1 0 o = 0 (485)
0o o0 0 I 0. [ 0 ]
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and
h(f1 —d, ), ifv=0
F(yYtl, ={ (,f}“‘ ,,,"f,k,) - (4.86)
U = ifv=12...,u—L

Note that, since fI'], = f(x, 4, ¥'),), F is indeed a function of Yl Note also that B
and G depend only on the coefficients in the ABM method and are independent of /.
In {4.84) we have achieved an apparently one-step form, but this is of course illusory.
since the vector of back values, Y"1, | depends on values of fatx, .y Npsx-200--o X,.

However, let us now apply the transformation
‘ ZM, =Y, v=01 (4.87)

where Q is defined by (4.76). Note that from (4.80) F(YPL ) is a function of the first two
block components only of Y!"l, and that, from the structure of @ given by (4.77), the
first two block components of Y!"!, will be identical with thosc of ZM (=Yl
follows that F(Y™ )= F(Z!1,). Hence, on applying the transformation (4.87). we can

write (4.84) wholly in terms of Z}1,, 201, | as

p. 2z, =0BQ" IZ~L“+’~—1 (4.88)
C ZUrN=ZW, 4 GFEZU) v=00 -]

where G = QG. Now (4.88) is genuinely a one-step method since, by (4.75). the vector
of back values, Z"!, |, depends only an information at the point X,y We can
change steplength from h to ah simply by multiplying the ith block component of Z!!, _|
by a'"Y i=1,2,...,k+1, and the advantage of the Nordsicck approach is realized. it
would appear that the disadvantage—the sxcessive computational effort-—still remains,
particularly in the prediction step. However, il turns out that the product QBQ ™' is

precisely the m(k + 1) x m(k + 1) block Pascal matrix T1; defined by

T
k
0 1 20 3 <]>1.
k
oo I 3 - ()1
’ M= 2) | (4.89)
()
00 0 I - I
3 .
- ,
00 0 o0 I

This interesting result can be established in a number of ways. The following is an

outline of a direct proof. .
The matrix Q! is easier to handle than is Q. Define &:= x,, ;.. ,: from (4.73), (4.74).
(4.75) and (4.76), we see that ™' maps

(P, RPN, APDENT/2 .., M PU(E) /KT
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into
[PENT, MPYENT, HPUE — W), W(PO(E — (k= DA)TTT

FFrom Taylor cxpansions and the fact that, since P(x) is a polynomial of degree
k. P'"x)=0for s>k we have thatfori=1,2,... .k — 1

hPOE — ih) = hPYYE) — iR2POE) + -+ (— T PRk — 1)

whcence _ -
' I 0 0 0 0
0 | 0 0 0
o1 -2 3 k(— 111
=10 1 —2u 322 k(=2
(0 1 —2k— D k=121 o k(= kDR
and ’ _
11 1 I 1
0 I 21 31 ki
0 1 0 0 0
0 'n=|o I -2 31 k(- D1 | 4.90)
0 1 =221 322 k(-2 1
[ 0 1 —2k-21 k-2 k(—k+2)*"l_J

Now. from (4.85) and (4.90) it is clear that for i > 2 the ith block row of BQ ™! is identical
with the ith block row of @~ 'Il. That the first and second block rows of the two
products are also identical can be established by expanding (about £) the linear dillerence
operators associated with the predictor and corrector and using the fact that both are
of order k. We thus show that BQ " '=Q 'Il,or M=QBQ"". ‘

That QBQ ' =I1is much more than just a pretty result. In the first of (4.88) we n
longer need to compute (for each k) the matrices B, Q and QBQ ~'. Moreover, multiplica-
tion of a vector by a Pascal matrix can be achieved extremely cheaply. It is left to the
reader to verily that the following segment of code (again written for the case m = 1)
computes the product [la, where a = [ag,ay,... . a]"

fori:=0tok — 1do
forj:=k downtoi + L do
alj—1}=alj— 11+ aljk;

(Note that no multiplications are involved.)

L}

4.10 CHANGING THE STEPLENGTH; VARIABLE
COEFFICIENT TECHNIQUES

An carly example of a variable coefficient technique was afforded by Ceschino (1961)
who derived variable cocfficient formulae of Adams type for orders up to 4. Although

a
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there are now much more efficient ways of implementing variable coefficient techniques.
Ceschino’s formulae serve to illustrate the sgrt of problems encountered with such
techniques. Suppose we have used a third-order ABM method to compule an acceptable
numerical solution at x,, but before proceeding further we want to change the steplength
from h to ah. Let Yu+ja denote the numerical solution at Xpi = X+ jahj =12, and
et fysja= S(Xy4 jas Yo+ jo)- Then, using Ceschino's third-order formulae, the solution is
advanced for x, to x,,, by the predictor-corrector pair .

' )
Troa=at 20012492 4 20, ~ 430 4 21f,, 4 5004 20/, |

--ah ' (4.91(1))
nta =Yyt ——[(3 + — 2, o
Yata=) +6(l+a)[( 20 pea t G+ )+, -2, ]

Hov»{ever, to advance the solution one further step 1o x,, ,, we need another special
predictor together with the standard third-order Adams Moluton corrector:
: []

ah : )
yn*la=yn+a+6“ +(1M)[(9+ l4a)fn+a_(3 + 5(1)“ +‘7)./n + 512A/n71]

o (4.916i)
yn+21=yn+a+l°5(5fn+2a+8fn+¢_fn)'

_(Note that the above formulae all revert to standard ABM formulae when x = 1) The

difficulties are now apparent, For a third-order method we needed to compute (and
store) three special formulag; Tor a kth-order method we would need 2k — 3 such special
formulae, and if, as in modern codes, we wish to operate with k ranging from 1 to 13.
say, then the grand total of special methods needed would be 144. But there is an even
more serious drawback, namely that, if the order is k: then it takes k — 1 steps to complete
,a change to steplength. During these k - 1 steps, there may arise a need to change the
steplength again (and perhaps more than once); we leave it to the reader to contemplate
the ensuing complications!

A more constructive approach is to assume from the outset that the back data is
already unevenly spaced. The development we describe here is essentially due to Krogh
(1974) but we shali (partially) adopt an approac'h due to Hall (1976) which is notationally
easier to follow. We restrict ourselves to the case of Adams-like methods applied in
PECE mode; adaptation to other modes is straightforward. Let us refresh our memory
about how we developed Adams-Bashforth methods in backward difference form in
§3.9. To derive a k-step Adams-Bashforth method (of order k), we started from the
identity '

In+ |

Vs )= y(x,) = J yY(x)dx,

Xn

'replaccd y(x) by f()f, y(x)) and approximated the integrand by the Newton-Gregory
interpolant (3.88) which interpolated the data

(x"’f")’(xn-l‘fn—l)"“'_(xn—lulvfn—'ku)

which was, of course, assumed evenly spaced. Now that we are dealing with unevenly
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spaced data, the appropriate interpolating polynomial of degree k — 1 is given by the
Newton divided difference interpolation formula (see (1.34) of §1.10)
1
1=+ = x) M e —1]

Fo =X N =X, )= x, L) =1 on—k 4+ 1], (492)

tHere. the superseript * indicates, as always, that we are dealing with a predictor, and
, the notation f'[ - ] indicates that, since we are setting up a PECE mode, the function
vilues used to construct the divided differences are 17 i=0,1,... k-1

On integrating this interpolant and arguing as in §3.9, we obtain the k-step kth-order
predictor

k-1
e = Y g f =1L (4.93)
i=0
where

Ny 1 ) X
J dyx=1x,,, —x, ili=0
97 = (4.94)
J (x —xx—x, ) (x—x,_;,)dx ifi=12,...,.

{We shall return tater to the question of how to compute the coeflicients g} efficiently.)

Recalling from §4.4 that the cfficient way to implement the corrector in a constant
steplength ABM method s to express the corrected valie as an update of the predicted
value (see (4.23)), it is natural to try to develop the interpolant for the corrector from
that for the predictor. The result (1.37) of §1.10 allows us to do just that, and tells us that
the polynomial of degree k which interpolates the data

(\‘n‘ I'.’nO I)'(xmfn)""a(xn—k+|’f"_|(+|)

L) =18 () (X - x X=X, ) x—x, ) oln+ Ln,,n—k+ 1] (4.99)

where the notation f!indicates that, when evaluating the divided difference, the single
function value /1! isreplaced by /1| (consistent with the notation defined by {4.15)).

Note that /,(x). being of degree k, will generate a corrector of order k + 1 which,
together with the kth order predictor (4.93), will be equivalent to a kth order PECE
algorithm with local extrapolation. Let us pursue that option for a moment. Integrating
I, () from x, to x,, , will yield a formula for y{1} — yi'?, just as doing likewise to I¥_ (x)
yiclded the formula (4.93) for vt — yit 1t follows from (4.95) and (4.94) that the
corrector stage (with local extrapolation) can be written as

W= gt L=k 1] (4.96)

I quations (4.93) and (4.96) define the kth-order PECE method with local extrapolation.
to get the kth-order PECE method with no local extrapolation, we obtain from (4.95),
with & replaced by k — 1, the polynomial I, _ ,(x) of degree k — 1,

I, (=1} Z(.\')+(.\'-——x,,)(x~x,,_,)---(.\'—x,_“z)f},[n+l,n,,..,n—k+2] (4.97)

AN
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+

which interpolates the data

.

(TN £ N 1L N C U LU

Recalling that in a kth-order ABM method the corrector is right-shilted by one steplength
relative to the predictor, this is the appropriate data set for the corrector. Further. from
(4.92), the polynomial I'*_,(x), which now appears in (4.97), can be written in the form

o) =1 (x) = (x —x)(x = x,_;)(x— X, s D=1 n-—-k+ 1]

The interpolant representing the kth-order corrector is then, by (4.97),

Leor () = T3 (0 4 (0= )00 =, 1) o = X, )
x {fiin+tn. . on—k+2]— -1, n—k+1]}
=8 () + (Kt — Xoowa DX = )0 =, M [+ o on =k + 1]

by the definition of divided differences (see (1.33)). Following the same argument as
before and using (4.94), we have that the corrector step can be written as

Y =i = — Xk R Soln L=k 1] (4.98)

which, together with (4.93), defines the k-step kth-order PECE mcthod.
We can obtain an error estimate by comparing the value of yI'}| given by the above

kth-order corrector with that given by the (k + Ith-order corrector (4.96), thus. on
subtracting (4.98) from (4.96) we have

»

]
Tys1= {q: —(Xpa1 = Xnes JF_ o+ L o=k 4 1] (4.99)

It is instructive to compare the prediction, correction and error estimation stages, given
by (4.93), (4.98) and (4.99) respectively, with their equal-spacing-case counterparts (4.23)
of §4.3. In the case when the data is equally spaced, we find from (4.94) and (1.38) of
§1.10 that

1 N . iy
g,‘=i!h‘+'y' S =1 on—i+ 1=V NN } (4.100)

it on— k1= 0 kY

from which it is straightforward to show that the formulac given above do revert
to (4.23).

We return to the problem ol how best to compute the cocfficients g* delined by (4.94).
Let us evaluate the first few g* directly:

*
go_xn+l'—xn

gt = I T x = x,)dx = Xy — %)

Xn

g; = J‘ (x - xn)(x = Xp— l)dx = (xu# 1 — Xn- l)(xn+ 1 Xn)z/z - L‘n 1 '\An)\‘/‘/6

(4.101)
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(integrating by parts in the last of these). Clearly, we need to find a way of generating
the g* that is suilable for automatic computation. The way to do it turns out to be to
embed the g¥ in a more extended definition. Let us use the notation

J‘xm, J‘x J‘x F(x)dx

e et

J-times

to denote the j-fold integral

UL L] e

J-times

and define g;; for j=1,2,... by

! J‘"”J J d-“'—‘(xnn"xn)j/j! ifi=0

—_— e

gi; = Ftimes (4.102)

J 'J J (x = X)X = X,_ 1) (X — Xy g4 ) dX ili=1,2,...

J-times

Clearly, from (4.94), we have that g¥ =g¢;,,i=012,.... The point of introducing the

coefficients g;; is that, by repeated use of integration by parts, it is possible to establish
the following recurrence relation:

.‘lij:(-\'n+l_'\'n—i{l).‘]ivl.j'—jgl‘l.j*17' i=1,2,...,j=12.., {4.103)

from which it is possible to build up the following triangular array which generates the

¢;.; and hence the g*:
\\’ P23
i

Ol gor Yoz do3
i i

1 !in 92

2| gn

The entries in the first row are given directly by (4.102), and the arrows indicate the
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dependence of elements in later rows on those in the preceding row. Thus we get

Go1 = Xp4 1~ Xp» Go2 = (Xps1 — Xa)/2, o3 = (Xus | — X,)'/6

911 = (Xns 1 = X)gor — G2 = (Xps s — X,2)*/2

912 = Xn 1y = Xa)g02 — 2903 = (Xp st — X,)'/6

g21= (s = Xn- 1)1y — 12 = (Xt = Xpo ) (Xnsy = X2 = (X1 — X, P/6.

We sce that the generated values for g* =g, i = 0, 1,2, agree with those found in (4.101).

If the PECE algorithm described above is run with the steplength held constant for
a number of steps, then the coellicients g* become constant, and need not be re-computed
at each step. However, as we have seen in (4.100), they do not become the standard
Adams-Bashforth coefficients y?, just as the divided dilferences do not revert to standard
backward differences. Equations (4.100) indicate that in the general case of unequally
spaced data points, the coeflicients g* will be very small if the turrent steplength is small
(and i reasonably large), while the divided differences will be very large. Multiplication
of a very small number into a very large one is a process likely to exacerbate the effect
of round-off error, and it would be attractive to find an alternative formulation in
which the coefficients and the ‘divided differences’ separatcly revert to standard Adams
coeflicients and backward differences respectively when the steplength is held constant.
Such an alternative has been developed by Krogh (1974), who replaces the divided
differences f[n,n—1,...,n—i] by modified divided differences _f[u, n—1.....n—i],
defined by :

f[n,n— Lo..,n=i] =(x"‘;-'.x,_,)(x"——x,,_z)m(x,,-—.\',,A,A)f[n.n —~1,...,n—il

It is readily seen that f{n,n—1,....n— i] does revert to Vif, when the data are equally
spaced. The development in terms of these modificd divided differences follows the
general pattern of our development for unmodilied divided differences, but is con-
siderably more complicated. The reader is referred to the paper by Krogh or to a
particularly readable account in Shampine and Gordon (1975). Both of these references
describe several devices which increase the efliciency with which the method is
implemented, the error estimated and the modified divided diflerences updated. The
resulting method is more than just a technique one calls up when a change of steplength
is required; it is used throughout the computation, since it automatically reverts to the
standard ABM method in backward difference form whenever the steplength is held
constant. Indeed, the recurrence relation (similar to {4.103)) for the coefficients which
replace the g} (and which will revert to the y}* when the steplength is constant) turns
out to be one of the best ways of generating the coefficients yF. !

i
4.11 THE STRUCTURE OF VSVO ALGORITHMS

One fact that has cleaﬂy emerged from the eXiensive computational experience that has
accumulated over the years is that the key to high efficiency in predictor—corrector
algorithms is the capacity to vary automatically not only the steplength, but also the
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order (and hence the stepnumber) of the methods employed. Algorithms with such a
capability arc known as variable step, variable order, or VSVO, algorithms. It is not our
purpose here to advocate, far less to study in detail, any particular VSVO algorithm, but
rather to describe, in a general way, how they work. It is emphasized that we deal here
only with algorithms for non-stifl initial value problems, although several existing VSVO
codes include options for dealing with stiff systems, options which we shall ignore in
this section.
The essential components of VSVO algorithm are:

(1) a family of methods,
(1) a starting procedure,
{11) a local error estimator,
{iv) a strategy for deciding when to change steplength and/or order, and
(v) a technique for changing the steplength and/or order.

We consider each of these components in turn. Note that we have not included in
this list any mention of linear stability. Algorithms do not normally test to see whether
the condition ol absolute stability is satisficd for a given steplength (much too expensive!),
and rely on the fact that if such a condition is not satisfied then the error estimate will
grow sharply, and the algorithm will then take appropriate action.

Family of methods This is almost always the family of ABM methods, of
orders ranging ([rom 1 to around 13. In some algorithms the low-order ABM are replaced
by predictor corrector methods with better regions of absolule stability, since, at low
order, it is usually lack of stability rather than accuracy that limits, the steplength.
Various modes can be employed, but PECE with local extrapolation is probably the
most popular.

Starting procedure This is simplicity itsell. The algorithm always starts with
the onc-step ABM pair (or its alternate) which does not require any additional starting
values, and allows the steplength/order-changing strategy to take over. This usually
resuits in the order building up rapidly over the initial few steps.

Error estimator  This is always afforded by some form of Milne's device which,
as we have seen in §4.4, takes a particularly simple and efficient form for ABM methods.

Strategy The account here essentially follows that given by Hall (1976).
Suppose that the algorithm is currently working with a kth-order method; let E, be the
norm of the locai error estimate at x,, ,,and fet t be a user-defined tolerance. Then an
obvious criterion lor acceplance of the step from x, to X, 4, is that

E <1, (4.104)

1 3
the so-called ‘error-per-step’ criterion. It can, however, be argued that since the user
is really interested in the accumulated and not the local error, it is inconsistent to worry
only about the size of the local error and not about how many steps the error is
committed at between two given values of x. This gives rise 1o an alternative criterion,
E, <, the so-called ‘error-per-unit-step’ criterion. Arguments can be put for both

i v e
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criteria. We shall develop a strategy based on the criterion (4.104), but adaptation to
the other criterion will be obvious. .

Recall from §4.4 that the norm of the error estimate for a kth-order ABM method is
(see (4.22))

Ev= 1T il =1V, 2700

=1

(4.105)

This estimate is available after the final application of the corrector in a P(ECE' ™
algorithm, and before the final evaluation (in the case t = 0); thus if the error estimate
does not satisfy (4.104 and the step aborted, that final evaluation need not be made.

At first sight, we now seem to have an impossible task; we have only one criterion
from which to deduce two pieces of information, namely what should be the steplength
and the order at the next step. However, there is a Very common situation in elementary
calculus where we ask for one piece of informaticn and invariably get two! It is when
we ask what is the maximum of a function, when, on the way to getting that maximum,
we always find the point at which the ma'ximum is taken. The very same mechanism
comes to our rescue here.

Suppose that on completing the step from x, to x,,, the criterion (4.104) is satisfied.
and the computed value for yL"l, consequently accepted; suppose further that the final
evaluation has been made (in the case of a P(EC)'E mode) and that the backward
differences have been updated, so that we are ready to take the next step. Before doing
that, we ask what would have been the maximum steplength we could have used on
the just completed step from x, to x,,, using ABM methods of orders k — I,k and
k + 1. Whichever of these three steplengths turns out to be the greatest will be the
steplength we shall use for the new step, and the value of k which produces that maximum
steplength will be the order we shall use on the new step.

Let the steplength used with the kth-order mclhod on the step from x, to x,,, be
h,. Since that step was successful it must have produced an error estimate which satisfied
(4.104); that is, we must have that ’

Ek = ﬂf,
~ th+l
x k>

0<p<l
(4.106)

(where K is'v a constant) since the method hds order k. The maximum steplength I, we
could have taken with this kth-order method would have produced an error estimate

E, satislying

Ex=tx~Khi*". (4.107)
It follows from (4.106) and (4.107) that g~ (h,/h)**", whence
_ T IR+ 1)
hkzhk[—] . (4.108)
E,

an estimate we can compute, using (4.105). Suppose now that we had computed from
X, 10 X,4,, using ABM methods of orders k — 1 and k + 1, and steplengths b, _, and
hy + ; respectively. Then it can be shown that the formulae

E._,=nh,_,y.-IV;:‘,f!,“J,"H, Enn:||hk+1)’:+1V:tl|fy‘;1"“ (4.109)
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also hold, so that E,,,, i=—10,1 can be computed. (There is an argument here in
favour of local extrapolation, balancing our arguments against it in §4.3; Hall (1976)
shows that the sccond of (4.109) is strictly valid only if local extrapolation is performed.)
The argument used above to derive (4.107) can then be repeated to yield

1tk + 1+
= 4
"krixhkﬁ[ "_‘] »
Evs

The order we use for the next step is k + 7, where

i=-—101

hyoy= max k.
lef = 1.0,1}

and the maximum steplength we can use on the next step is h, ,;. Note that one possible
outcome is that we retain the same order at the next step, but change the steplength.

In this area of implementation there is, not surprisingly, a large heuristic element.
Thus, most algorithms would multiply the maximum steplength advocated by the above
argument by a heuristically chosen factor less than but close to one, so as to reduce
the chances of a marginal rejection at the next step. Algorithms may also bias decisions
in favour of retaining order, and may (particularly in the case of those using inter-
polatory step-changing techniques) include an embargo against changing the steplength
too frequently.

Technigue In §4.7-§4.10 we have already considered in detail techniques for
step-changing. The technique for changing the order is much more straightforward. If
the technique for changing the steplength is either variable coefficient or interpolatory
using backward differences, then the reduction of the order from k to k — 1 is achieved
by throwing away the kth difference; an increase of order from k to k + 1 is accomplished
by forming the (k + 1)th difference, which is simply achieved by retaining all of the back
data at the completion of the step rather than throwing away the data at x, 4y, as
one normally would do. In the case when step-changing is done via a Nordsieck vector,

an order reduction of one is achieved by ignoring the last component of the Norgdsieck

vector (though, as shown by Hall (1976), the resulting method is no longer equivalent
to an Adams method). An order increase of one can be achieved by estimating an extra
derivative in the Nordsieck vector by differencing the current last component.

Itis natural (o ask whether the convergence properties of predictor—corrector methods,
previously established on the assumption of constant steplength and constant order,
still hold in a VSVO formulation. Results by Gear and Tu (1974) and Gear and Watanabe
{1974) show that a VSVO algorithm based on ABM methods with step-changing achieved
by a variable coefficient technique is always convergent (as the maximum steplength
employed in the interval of integration tends to zero). If an interpolatory technique is
used then convergence is assured if the step/order-changing technique is such that there
exists a constant N such that in any N consecutive steps there are always k steps of
constant length taken by the same kth-order ABM method, for some value of k. These
results emphasize yet again that variable coefficient techniques, though usually more
expensive to implement, are basically sounder than interpolatory techniques.

Finally, we mention a few of the better known VSVO codes and indicate which
step-changing techniques they use. The first two VSVO implementations appeared

| v
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,simultaneously, when Gear (1969} and Krogh (1969) gave concurrent presentations at
the same conference in 1968. The corresponding codes are DIFSUB (Gear, 1971a), which
uses the Nordsieck vector, and DVDQ (Krogh, 1969), which uses step doubling or
halving. GEAR (Hindmarsh, 1974) is a much modified and extended version of DIFSUB.
A widely used code, EPISODE (Byrne and Hindmarsh. 1975), uses the variable coefficient
technique, as does DE/STEP, which is described in considerable detail in the book by
Shampine and Gordon (1975). Initial value problems for systems of ordinary differential
equations can be very lively mathematical creatures and, on occasion, are capable of
upsetting even the most sophisticated of codes; striking examples of this can be found
in Shampine (1980).



5 Runge—Kutta Methods

5.1 INTRODUCTION

The simplest of all numerical methods is Euler's Rule,
$
Yoo = Vn + h.fn‘

It is linear in y, and f, and, being a one-step method. presents no difficulty when we
want to change the steplength; but of course it has very low accuracy. Lincar multistep
methods achieve higher accuracy by retaining linearity with respect to y,.; and
Jaepi=0,1,... k but sacrificing the one-step format. The result of retaining the linearity
is that the local error has a relatively simple structure, which is why we are able to
estimate it so easily via Milne’s device; the cost of moving to a multistep format is, as
we have seen, the considerable difficulties encountered when we want to change
steplength.

Runge-Kutta methods develop from Euler’s Rule in cxactly the opposite direction:
higher order is achieved by retaining the one-step form but sacrificing the linearity, The
result is that there is no difficulty in changing the steplength, but the structure of the
local error is much ihore complicated, and there exists no easy and cheap error estimate
comparable with Milne's device. We are rather in a Catch-22 situation: with linear
multistep methods it is easy 10 tell when we ought to change steplength but hard to
change it, while with Runge-Kutta Methods it is hatd to tell when to change steplength
but easy to change it!

The general s-stage Runge-Kutta method [0 the problem

y =[xy, yvay=n [BxR"-R" 5.1y
is defined by
! yn+l:yn+hzhikt
) i=1
where , (5.2)
ki=f(x..+fih,y,.+hZa;jk,>; |A=l.2.‘,.,5
i=1
We shall aiways assume that the following (the row-sum condition) holds:
3 >
=Y a; i=L2....s (5.3)
j=1

It is convenient to display the coeflicients occurring in (5.2} in the following form. known
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as a Butcher array:

Cy dyy Gy s
. €2 a;y 4z aas
Cs Gy Ay dys (54)
bl bZ b:
We define the s-dimensional vectors ¢ and b and the 5 x s matrix 4 by
c={epneqnedy b=[bb,y....0,]", A=[a,]) (5.5)

Note that, by (5.3), the components of ¢ arc the row sums of A. Clearly an s-stage
Runge-Kutta method is completely specified by its Butcher array

L*_A
b
An alternative form of (5.2), which in some contexts is more convenient, is
Yne1=Vath i bif(x, +ch, Y},
where o (5.6)

Y=y, +h Y a,f(x,+ch Y)),
j=1

The forms (5.6) and (5.2) are seen to be equivalent if we make the interpretation

i=12...,5s

k=[x +ehY), i=12...s 057

Il in (5.2) we have that a;;=0 for j>i, i=1,2,...,5, then each of the k, is given
explicitly in terms of previously computed kj, j=1,2,...,i—1, and the method is then
an explicit or classical Runge-Kutta method. If this is not the case then the method is
implicit and, in general, it is necessary to solve at each step of the computation an
implicit system for the k. Note that this system has dimension ms, so that implicitness
in a Runge- Kutta method poses an even more daunting computational problem than
does implicitness in a linear muitistep method. There is a sort of half-way house; if it
happens that ;=0 for j>i,i=1,2,...,5 then each k; is individually defined by

ki=f<-’(n+ci}7yYn+ Zauk}>, i=1,2..,s
j=1

and instead of having to solve at each step a nonlinear system of dillpension ms, we
have to solve s uncoupled systems each of dimension m; this is less demanding, but still
more so than in the case of an implicit linear multistep method. Such methods are called
semi-implicit. Summarizing, we have:

Explicit method:

.,§ < A strictly lower triangular.

CONSISTENCY, LOCAL TRUNCATION ERROR, ORDER & CONVERGENCE 151

Semi-implicit method:

ay=0,j>ij=1,2,...,5 == A lower triangular.

Implicit method:
a,;# 0 for some j>i <> A not lower triangular.

A remark that can be made about Runge-Kutta methods (and one which seldom
appears to be made) is that they constitute a clever apd sensible idea. The unique solution
of a well-posed initial value problem can be thought of as « single integral curve in
R™*! but, due to truncation and round-off error, any numencal slullon is, in effect,
going to wander off that integral curve, and the numerical solution is inevitably going
to be affected by the behaviour of neighbousing integral curves. Thus it is the behaviour
of the family of integral curves, and not just that of the unique solution curve, that is
of importance, a point we shall return to when discussing stiflness later in this book.
Runge-K utta methods deliberately try to gather information about this family of curves.
Such an interpretation is most easily seen in the case of explicit Runge-Kutta methods,
where, from (5.2) and (5.3), we have

)
kl =f(xmyn)v
ky = f(xy + c3h, y, + c3hky),
k,-f(x +¢;h, y,+(c3—au)hk + hay,k,)

Start from (x,, y,), take one step of Euler’s Rule of length ¢,h and evaluate the derivative
vector at the point so reached; the result is k,, We now have two samples for the
derivative, k, and k,, so let us use a weighted mean of k, and k; as the initial slope in
another Euler step (from (x,, y,)) of length c;h. and evaluate the derivative at the point
so reached; the result is k,. Continuing in this manner, we obtain a set k,, i=1.2.....s
of samples of the derivative. The final step is yet another Euler step

Var1=Yath Z bik;

from’ (x,, ¥a) 10 (X4 1, ¥us1), Using as initial slope a weighted mean of the samples
ky,ky,..., k,. Thus, an explicit Runge-Kutta method sends out feelers into the solution
space, to gather samples of the derivative, before deciding in which direction to take
an Euler step, an eminently sensible idea.

5.2 CONSISTENCY, LOCAL TRUNCATION ERROR,
ORDER AND CONVERGENCE

In Chapter 2 we considered the general cla'sslof methods (2.4),

k

Z_ AjVnsj = hd’f(}’mrb Vausrk—to-- o2 Yo Xps H). (5.8)
j=0 .

www.ebookd
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On putting

k=1, % =1, e =—1,

(5.9)
k,.:_/'<_x"+c,-h.y,,+h Y a,.,k]>‘ i=12,...,s

we sce that the class (5.8) contains the class of Runge-Kutta methods.

Recall from equations (2.9) of §2.4 that the necessary and sufficient conditions for
(5.8) to be consistent are

’ X
k &
£ 2=00 dytoth st 50U 3 sy )= SGcn st
ji=0 j=0

Applying these conditions in the case when (5.9) holds, we sce that the necessary and
sufficicnt condition for a general Runge-Kutta method to be consistent is

D) X0 = [k 3} < 3 b= 1, (5.10)
i=1

Following the discussion in §3.5, we define the local truncation error T,,, of (5.2) at
X,+1'to be the residual when y, . ; is replaced by y(x,, ), j=0,1; that is,
Tov v = Y1) = ¥(xa) = h(ylx,), X, 1), ¢ (5.11)

where ¢ is defined by (5.9). Il p is the largest integer such that T,,, = 0(h**!), we say
that the' method has order p. 1f, as in §3.5, we denote by y,,, the value at x, , , generated

by the Runge Kutta method when the localizing assumption that y, = y(x,) is made,

then, since
Fos1 =Yt d’[(,\’mx,.; m,
we have from (S.11) that

YXai )= Fasr =Tauyr (5.12)

{Comparc with {2.25) of §3.5)
If the method is consistent then it follows from (5.10) that

PO 1) = ¥ () = @ (3(xa), X 1) = By () = h f(x, y(x) + 0(h?)
=0(h?), !

since y'(x) = f(x, y(x)). Thus, from (5.11), a consistent method has order at least 1, a
result in line with our dcfinition of order for linear mulitistep methods. Note also that
Euler’s Rule, which is both a Runge-Kutta and a linear multistep method, has order 1
whichever definition of order onc uses. ‘
it is obvious from (5.9) that Runge -Kutta methods always satisfy the root condition
of §2.5 and hence, by Theorems 2.1 and 2.2, are convergent provided only that the
consistency condition (5.10) is satisfied. .

S
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It is possible to establish bounds for the local and global truncation errors for
Runge-Kutta methods, but these turn out to be, in practice, as uscless as the
corresponding bounds for lincar multistep methods. Once again, if the mc.lhod has order
p, the local truncation error is 0(h** ') and the global truncation error is O(h").

5.3 DERIVATION OF EXPLICIT RUNGE-KUTTA
METHODS FOR SCALAR PROBLEMS

Runge-Kutta methods ‘rst appeared in 1895, and up 1o the 1960s only explicit methods
were considered. Moreover, the derivation of such methods invariably assumed a scalar
problem, and it was tacitly (and wrongly, as it turns, out) assumed that no(hing of
significance would change when these methods were applied to systems. The (echmque
for deriving the order conditions consisted of matching the expansion of the solution
generated by one step of the Runge-Kutta method with the Taylor eéxpansion of the
exact solution, the terms in the expansions being calculated essentially by brute force.
Such calculations are notoriously heavy and tedious, particularly if high order is sought.
In this section we derive in this way explicit Runge-Kutta methods with up to three
stages, this being adjudged sufficient to persuade the rcader (without exposing him to
100 much tedium) that some better approach is needed.
By (5.2) and (5.3) the 3-stage explicit Rynge-Kutta method can be written as

Vs = Yo+ Mbyky + boky + bik3)
ki = f(xa¥a)
ky = f(x, + hcy, yo+ heyky)
ky = f(X,+hey, y,+ hley — ay)ky + hagky).

(5.13)

We assume that f{x, y) is sufficiently smooth, and introduce the shortened notation

oy P e

ox e ax? oxcy

f:= f(xsy)* fx: fx_\( Efr,\)::

etc. all evaluated at the point (x,, ¥(x,))., Then, on expanding y(x,.,) about x, as a
Taylor series, we have

YXns 1) = $(x) + By V) + 32 Y2(x,) + g Px,) + O,
Now,
yVx) =/,
YR = e+ [y =L+ 11,

YI0) = fex + foof + [ Use ¥ S )+ f..{,ﬁ' + 11 o
= fex+ Ul + 2 for + LU )
Let us shorten the notation again by defining
F=fi+[fy G=LutUlw+ I fn (5.15)



154 RUNGE-KUTTA METHODS

so that we can write the expansion for y(x,,,) as
Y ) =30 +hf + ShEF + LFf,+ G+ 0(h*). (5.16)

In order to use (5.12). we need a similar expansion for 7, ;. Expandmg the k; given
by (5.13) we have k, = f and

ky=[+he,(f, +kf))+ SA(foe + 2k, S + kif,)+ o(h3).
On substituting f for k,, and using the notation in (5.15), w get
ky = f +he,F + 303G + 0(h%)]. | (5.17)
We can treat k, similarly (but now the tedium sets in!).
ky=f+h{cyfo+ [cs—ay)ky +aszk,1f,}
+ 302} fa + 265[(e3 — azdky + a3k, 1S,
. + [(cy —ay )k, + assk 12/, + O(h?).

Now write f for k,. substitute for k, from (5.17) and retain terms up to 0(h?) to get

ky= [ + heyF + h¥(cyay,F f, + $c2G) + O(h?). ‘ (5.18)

On substituting from (5.17) and (5.18) into (5.13) and using the localizing assumption
(and the attendant notation introduced in §3.5), we obtain the following expansion for

.i'nt |:
Paar = 3(6) + by + by + b3)f + B by, + bacs)F
%113[2b3c2a32!7f, + (hzci + b;,cg)G] +0(h*). (5.19)
I is now a question of trying to match the expansions (5.16) and (5.19). Let us see what

can be achieved with one, two and three stages. (For more than three stages, there would
be a term k4 in (5.13) which would contribute additional terms.)

One-stage The method (5.13) becomes 1-stage if we set b, =b;=0. Then
{5.19) reduces to
Fae1=Y(x)+ by f + 0(h*).

From (5.12) and {5.16) we sce that the best we can do is set b, = I, whence T, , = 0(h?).
Thus there exists only one explicit one-stage Runge-Kutta method of order 1, namely
Euler's Rule.

Two-stage. The method becomes two-stage if ‘we set by =0, when (5.19)
becomes :
Fary = 9(x)+ hiby + by)f + h?byc, F + 3 h%byclG + O(H*).
On comparing with (5.16) we see that order 2 can be achieved by choosing

by+by=1, by,=1 (5.20)
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This is a pair of equations in three unknowns, so there exists a singly infinite family of

explicit two-stage Runge-Kutta methods of order 2. It is cvident from (5.16) that no

member of this family can achieve order higher than 2. Two particular solutions of

(5.20) yield well-known methods:

(i) The modified Euler or improved polygon method is given by b, =0, b, = 1, ¢; = 1. Its
Butcher array is )

I

(ii) The improved Euler method is given by by =h, =1, ¢, = 1. lts Butcher array is

1 1

Three-stage We can achieve order 3 if we can satisly the following conditions

by+by+by=1

1

. b2C1+b3C3-—§
T byl byl=l

1

bycyas; =3.

There are now four equations in six unknowns and there exists a doubly infinite family
of solutions; consideration of the h* term, which we ignored in the derivation, confirms
that none of these solutions leads to a method or order gredlcr than three. Two particular
solutions lead to well-known methods:

] Heun'’s third-order Sformula with Butcher array

! 0

(ii) Kutta’s third-order formula with Butcher array
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By a similar approach it is possible to show that there exists a doubly infinite family
of explicit four-stage Runge Kutta methods of order 4, none of which has order greater

than 4. By far the best known of these is the classical Runge-Kutta method which has
Butcher array

0

111

2 | 2

t 1o 1t

2 2

t1o00 1 (521)
L S L |
6 3} 31 6

So popular is this method that, when one sees a reference to a problem having been
solved by ‘the Runge - Kutta method’, it is almost certainly this method that has been
used. As we shall sce later, there turn out to be good reasons for choosing a four-stage
fourth-order method, but (5.21) does not perform notably differently from other
fourth-order Runge -Kutta methods. Of course, the presence of three zeros in A4 is
attractive, but the author suggests another reason for its historical popularity. In the
pre-computer days, computations were performed on purely mechanical devices like the
‘signal-box™ Brunsviga, now to be found only in museums. Multiplication or division
was a tiresome business on such machines, involving a great deal of handle-turning. As
always, the main effort was in the function evaluations needed to produce the k, That
the ¢; and the a;;in (5.21) arc always cither | or § (as opposed to 4, for example) increased
the chances of any divisions in the evaluations of f terminating quickly!

This section has thrown up several points of interest. There exists a single explicit
one-stage Runge Kutta method of order 1, a singly-infinite lamily of two-stage meth..ds
of order 2, a doubly-infinite family of three-stage methods of order 3, but a doubly- {(not
a triply-) infinite family of four-stage methods of order 4; some sort of anomaly is
indicated. Secondly, the contrast with the ofder conditions for linear multistep methods
is interesting: in the latter we worked naturally with total derivatives of the exact solution,
and local truncation errors were multiples of h7* 'y!"* (x,). From (5.16) and (5.19) we
sce that the natural building blocks of Rtinge- Kutta methods are not the total derivatives
of the exact solution, but rather certaifi functions, such as F and G (see (5.15)) of the
partial derivatives of f. Thirdly, in the case of linear multistep methods, the dimension
of the system was unimportant, and the development for a scalar problem would hardly
have differed from our development for an m-dimensional system. In contrast, the
development given above for a scalar ptoblem does not extend in any obvious way to
an m-dimensional problem; for example, how would we interpret (5.14} if y, f €R™ This
last comment is our starting point for the next section.

. %

Exercises

5.3.1. Find a solution of the third-order conditions for which ¢, = ¢, and b, = b,; the resulting
explicit method is known as Nystrém’s third-order method.

5.3.2. Show that the predictor-corrector method consisting of Euler's Rule and the Trapezoidal
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¢ -
Rule in PECE mode is equivalent to the improved Euler method. Find the three-stage explicit
Runge-Kutta method which is equivalent to the same predictor-—corrector pairin PLEC)E mode.

5.3.3. Show that if f(x, y) = g(x) the improved Euler method reduces to the Trapezoidat Rule for
quadrature and that Kutta's third-order rule and the popular fourth-order method (5.21) both
reduce to Simpson's Rule for quadrature, Show that Heun's third-order formula reduces to the
two-point Radau quadrature formula [*) F(x)dx = §F(— D+ JF(L) applied to j':: P y(x)dx.

54 THE BUTCHER THEORY; INTRODUCTION '

The ideas we arc about to describe can be traced ‘mck to a paper by Merson “957)'
but their development into a major theory is duce to J. C. Butcher, in 1 long serics of
papers starting in the mid-1960s. The reader who wishes to see a full account of the
theory is referred to the book by Butcher (1987) which, incidentally, contains the most
comprehensive available bibliography on the subject of numerical methods for ordinary
differential equations, listing some 2000 catries. In the folfowing sections we shail present
only a simplified version of the theory, aimed at enabling the reader to use the theory
to establish the order conditions (and the structure of the local truncation error) and to
appreciate some of the consequences. In particular, we shall not give uny pmof§ of the
theorems involved, and oug treatment of the algebraic aspects will be non-rigorous
(possibly to the point of offending some readers!).

Recall from §1.4 that, while there is a loss of generality in assuming that the scalar
initial value problem is autonomous, there is no such loss in the case of a problem
involving a system of ordinary diflerential equations. We are now dealing with systems,
and a useful simplification is achieved by assumjng the autonomous form

. y=f) yay=n  [B"SR" m>| (5.22)

Let us start by sceing what dificulties we get into by trying to adapt the approach of
the preceding section to the systems case. The first problem we hit is the counterpart
of (5.14), where we need to express the total derivatives of y in terms of [ and its partial
derivatives. For the scalar autonomous case (5.14) rcads

yW=f =00 ¥ =0 S (5.23)

What are the corresponding expressions when y, feR™ To keep things simple, |§t us
consider the case m =2, so that y=['y,2y]", f =['f, %/]". Introducing the notation

=€(~i.f-), im0 elc.
ady)

P0G
aUy)aty)
we have Ly =17, 2y = 21 whence we find on differentiation that

A =1 () + 0N P =00+ 000N

ifjf

or
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and
O =00+ MNEN + TGN + L00]
+ NN + YN+ L5000 + 40
(5.25)
=20 (N4 0NN + L UACN + 00
+ 5,CN0N + Y00 + L0000 + 1)

Note that (5.24) can be written as y'» = df (3y)f, where df/dy is the Jacobian matrix,
a naturai gencralization of the sccond of'(5.23). in contrast, {5.25) cannoi be wriiten in
matrix/vector form, and it does not look at all like a generalization of the last of (5.23).
Clearly we cannot go on like this to evaluate even higher derivatives (and we have not
yet considered the case of general m). A better notation is essential, and indeed more
than a notation is needed; we need to discover a structure for these higher derivatives.
(On the question of notation, the reader should be warned that in the following sections
we shall continually be changing (and simplifying) notation; the guideline will be that
as soon as we become familiar with a particular notation we will try to simplify it further.)

5.5 THE Mth FRECHET DERIVATIVE;
ELEMENTARY DIFFERENTIALS

Following Butcher (1972), we introduce a key definition, ihat of the Mth Frechet
derivative:

Definition  Let 2, f(z)eR™. The Mth Frechet derivative of f, denoted by f™)(2), is an
operator on R™ x R™ x --- x R™ (M times), linear in each of its operands, with value

m m m

T™EK Ky Ky =Y Y. Z Fiusaina KK gy MK ey
i=1ji=1ja=1 lu=
I ] . (5.26)
(argument) l(operands) |
where
K, =['K,%K,,...,"K]TeR",  1=1,2,..., M,
o o f(2) L)
i = 00 a0, .., o0Mz)
and
e;=[0,0,...,0,1,0,...,0]"eR"

!

s (ith component)
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This somewhat daunting definition becomes perhaps a little less so if we make the
following comments:

(1) The value [ f™)(z)(---) is a vector in R™, but it is typographically difficult to display
it as a vector. The vector e, in (5.26) is introduced merely as a notational device to
overcome this; the expression between the first summation and the vector ¢ is the
ith component of the vector.

(2) Repeated subscripts are permitted in (5.26) so that all possible partial derivatives of
order M are involved. Thus, if M =3, m= 2, the following partial derivatives will

appear:
0 ; ()
lfnn a(n(fa’ lfuz-— fxzx fzn a(c);g(ziz)
3N 2(f)
‘fnz:lfuz fzzl 6(' )0(2 )2, 'fzzz‘-‘a{a’j 1,2

(3) The argument z simply denotes the vector with respect to whose component we are
performing the partial differentiations.
{4) An Mth Frechet derivative has M operands; this is the key property to note.

Let us now put m=2, and see if we can interpret the results (5.24) and (5.25) of the
preceding section in terms of Frechet derivatives.

» \

Case M=1

3

2 2
f“)(z) Z Z ‘f].(hKl)ei

(K + ‘fz(’Kl)] 2
[’fl('x,n ,(K,) 528

where '
o(f)
Az

Now replace z by y, and K, by f(noting that all four are 2-dimensional vectors). Equation
(5.28) now reads

o)
a2z)

= if,= i=12

(5.29)

1 1 1 2
, f“’(y)(f(y))=[ LN+ Il f’]= y2

2D+ 21:00)

by (5.24). In the context of deriving Runge—Kutta methods, we do not really need to
be told that partial derivatives of f are to be taken with respect to the component of y
(what else is there?), so that we can shorten the notation in (5.29) to

¥ = 1),

Thus, the second derivative of y is the first Frechet derivative of f operating on f: from

(5.30
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15A24).wc sce that this IS cquivalent to saying that the second derivative of y is the
Jacobian of f operating on f. ' '

Case M =2

2 2 2
_/”’(Z)(Kx»K‘z): Z Z Z f[j,jz(j‘Kl)(hKZ)ei
i=1ji=1ji=1 '
:{-‘/]J‘K:)('Kz)* Y KDCK )+ lfu(zl\’l»)(le)’* '12,CK)CK,)
Zr,.<'l<.)(‘l<z)+’f.z(‘K,)(’KzH’,fz,(’Kl)('K,Han(’Kl)(’Kz)]'

Replace = by y and put K| = K, = f to get

a2+ 20, 0NN + 'fn(’f)’]
2420100 NCN + 200

where the notation on the left side indicates that the partial derivatives are with respect
to components of y, not z. On comparing with (5.25), we see that the right side of (5.31)
represents some, but not all, of the terms on the right side of (5.25), and that we obtain
_\"'”‘hy adding to the right side of (5.31) the vector

{ UACD LD LCA0N + zfz(z.f)]]
YN+ LENT 2L + 20001
Now if, in (5.29), we replace the operand f(y) by the operand [“(y)(f(y)) (given by

(5.29) itsell ), the result is precisely (5.32). Hence, shortening the notation as in (5.30)
{5.25) can be written as '

TR SO = [ (531

(5.32)

R AV R AL VA T)))

Comparing this with the last of (5.23) (the corresponding result for the scalar case)
we sce that we have achieved a generalization which appears natural; it is straight-
{c())r.\;?;ij to show that when m=1, f(f, f) does reduce to f,,f? and f(f(f))
_We have, of course, proved the results (5.30) and {5.33) only for the case m =2, but

it 1s not hard to sce that they will hold for all m. Thus, we have seen that y'? is a single
Frechet derivative of order 1 and that y** is a linear combination of Frechet derivatives
of orders 1 and 2. In gencral, ' turns out to be a linear combination of Frechet derivatives
of orders up to p — . The components in such linear combinations are called elementary
differentials; thcy are the counterparts for systems of terms like F and G (see (5.15)) for
scakar problems, and are the natural building blocks for Runge—Kutta methods. They
arc defined recursively as follows:

«

(5.33)

Definition  The elementary differentials F: R™ - R™ bff and their order are defined
recursively by ' .

(i) [ is the only elementary differential of order 1, and
(iiy if F,.s=1.2.....M are elementary differentials of orders r, respectively, then the

>
S

4
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Frechet derivative

f(M)(Fxs Fa...nFy) (5.34)

is an elementary differential of order

M
1+ Y r. {5.35)
s=1

Notes

(1) The elementary diferentials F, Fy,..., Fy appearing as operands in (5.34) need
not be distinct; likewise, the orders r, in (5.35) need not be distinct.

(2) Let us slim down the notation for elementary differentials as far as we sensibly can.
By now we are familiar with the fact that an Mth Frechet derivative has M operands,
and we do not need the notation to tell us twice what the order of the Frechet
derivative is. In {5.34), we can see that there arc M operands, so we db not need the
superscript (M); nor do we need to be reminded at every stage that we are dealing
with Frechet derivatives of /. All we need is a simple notation, such as the brackets
{-++}, to indicate that a Frechet derivative of the order indicated by the number of
operands within the brackets has been taken. Strictly, we do not even need the
commas to separale the operands, so our shortened notation for (5.34) is

(F\Faroo s Fadi= f™F Fau Fyg). (5.36)

(3) The order of the elementary differential (5.36) is, by (5.35), the sum of the orders of
the elementary differentials F, s =1,2,..., M plus 1; thus the rule is, sum the orders
and add 1 ‘for the brackets’.

"

We now identify all elementary differentials of orders up to 4 (and simplify the notation
even further).

Order 1 There exists only one clementary differential, /.
*

Order 2 The only possibility is to take M =1, and the single operand to have
order 1; this identifies the operand as f, and there thus exists just one elementary

di(ferential N =1}

Order 3 There are now two options. We could take M =2, in which case
both of the operands must have ordei 1, and thus must be f, giving the elementary
differential f@(f, f)={ff}. The othei possibility is to take M =1, in which case the
single operand must have order 2, and can only be [N f)={[f}. giving the elementary
differential f(f(f)) = {{f}}. We can shorten the notation further by writing

)

f* dfor fff o fy { for {{{-+{ and }, for }}} -}
e~ N e [——
k-times k-times k-times
Note that, with this notation, the order of ah elementary differential will be the sum of
the exponents of f plus the total number of left or right brackets. There are thus two
elementary differentials of order 3, namely {f?} and {,f},
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Order 4 There are lour elementary differentials:

M = 3=operands f.f, f =elementary differential {f°}
M =2=operands [, { f}=>elementary differential {f{f}, (={2S}/})

operand { f2} =clementary differential { £},
M=1= or
operand {,/},=elementary differential {5/ },.

‘

There is clearly a combinaiorial problem in trying to determine all ¢

differentials of given order. This, and other questions, can be answered by investigating
an analogy between elementary differentials and rooted trees, which we shall develop
in the next scction. ‘

We conclude by noting that we now have even more concise cxpressions for the total
derivatives ' and y**; we can now rewrite (5.30) and (5.33} in the form

Y= W= e (537)

The reader is invited to compare the latter of these with the horrendous equations (5.25)
{which covered only the case m = 2) to appreciate how much progress has been made
in taming these higher derivatives!

Exercise

5.5.1. (i) Given the differential system ' = uv, v' = u + v, calculate, by direct differentiation, u® and
¥ in terms of v and v,

iy Let v=[wr]", f=[u.u+0v]" Calulate fO(f(f)) and f2f,f) and check that
P = () 4 S f) gives the result obtained in (i).
(iii) Repeat (i) and (ii) for the system v’ = uvw, v = u(v + w), w' = v(v + w).

5.6 ROOTED TREES

Rooted trees are algebraic creatures, and a rigorous treatment would demand z'm
approach via graph theory, such as can be found in Butcher (1987). However, we can
get by with a very naive approach by simply not distinguishing beiween a rooted tree
and its graph, and ‘defining’ the latter by pictures. Thus we say that a rooted tree
(hencelorth, just ‘tree’) of order n is a set of n points (or nodes) joined by lines to give

a picture such as ?/
.

root
The only rules (which arc shared by most trees of the horicultural variety) are that there
must be just one root, and branches are not allowed to grow together again. “Thus the

following are not allowed:
\></ <& | ‘

100t root

o e ey
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.

We shall use the notion of ‘graflting’ two or more trees on to a new root to produce a

new tree, thus
N Y — \\>>

Let us draw all the tree of orders up to 4.

Order Trees Number of trees
1 . I
2 ' e 1
3 v, 2
4 & \> Y 2 y 4

In the preceding scction, we saw that there were also preciscly 1,1,2 and 4 clementary
differentials of orders 1,2,3 and 4 respectively. The analogy between the proliferation
of elementary differentials and that of trees stems (no pun intended) from the fact that
if we graft trees t,, t5,...,t) of orders ry,r,,...,ry respectively on to a new root, then
the result is a new trec of order 1+ 3 M r, that is, the sum of the orders of the
constituent trees plus one for the new root; lhrs is precisely the same rule as (5.35) for
elementary differentials. We cah see as follows that there is a one-to-one correspondence
between elementary dfferentials and trees:

(i) Let f, the unique elementary differential of otder | correspond to the unique tree of
order 1, which consists of a single node.

(i) If the elementary differentials F of order ry, s=1,2,.... M correspond to trees ¢, of
orders ro s=12,..., M, then let the elcmcntary drlTeren(mI {F\F,,...,Fy} of order
1% Mo correspond to the tree of order 1 + r, obtained by grafting the M trees
F,s=1,2,...,M on to a new root.

s—l

. Examp{e

Fy~ty= N/ Fy~ty= / F}”’JzY

then {F\FyF3} ~ \hj

In the next section we shall make this correspondence a little more formal, but for the

" moment we note that the number of elementary differentials of order r must be the same

as the number of trees of order r. A result from combinatorics answers the question of
how many trees there are of given order:

Let a, be the number of trees of order n. Then a,,a,,..., satisly termwise the identity

Coaptautagt e =(E—u)" (1 —w?)" (L —ut)y
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From this we can obtain the following table:

n 1 23 45 6 7 8
a, t 1 2 4 9 20 48 115

(We note in passing that it is rather easier to write down, say, all nine trees of ordey 5

than it is to build up all nine elementary differentials of order, 5 in the way we did 'n
the preceding section.)

Clearly, we need a notation for trees. In the preceding section, we saw that all
elementary diflerentials could be labelled by combinations of the two symbols f (the
unique elementary differential of order 1) and {---} meaning ‘we have taken a Frechet
derivative (of the order indicated) of the operands appearing between the brackets’.
Likewise, all trees can be labelled with combinations of the symbol 1 for the unique tree
of order 1 (consisting of a single node) and the symbols [ ---] meaning ‘we have grafted

the trees appearing between the brackets*onto a new root’. We shall denote n copies of
the trec t, by 17,

(-0 by [ and ]33] by 3 .
N — S —
k-times k-limes
For example,
ty=[1] = <

L=[)(= ([N =[]y = >
ty=[0,02] = [[e] (el 0el23]0]
= L [eled,leltds =

In cach casc, the order of the tree is the sum of the number of appearances of t and of
cither ] or [ Such labellings are clearly unique, provided we do not distinguish between,
say, [t[1]] and [[t]t] (just as we do not distinguish between {f{f}} and {{f}/}.

In addition to the order of a tree, we shall also need the symmetry and the density of a
tree, defined recursively as follows:

Definition The order r(t), symmetry o(t) and density y(t) ofa tree t are defined by

Ht)=o(1)=y(1)=
and .
r([e ey =1+ nr(ty) + nyr(ty) +
o([(7e5 - D=nlnyt - (a(t) (@)
y([ep ey - D) =r([e ey - D)) ()™ -

(= number of nodes)

Finally, let a(t) be the number of essentially different ways of labeiling the nodes of the
tree t with the integers 1,2,.. ., r(1) such that along each outward arc the labels increase.
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What is meant by ‘essentially diflerent’ is illustrated in the foillowing examples:
3 2
t; =[’1=\>. Then ’\1/‘ and \~*

etc are not regarded as essentially different ldbellmgs and afr,) = 1.

{z——[t[t]] \> Then \> \> and \>

are regarded as essentially different labellings, and a(t,) = ? In any event, we have from

combinatorics an easy way of computing a(f), namely

AR

v(l)'

= (5.38)
ol

Table 5.1 displays r(t), o), y(t) and a(t) for all trees ¢ of order up to 4.

Table 5.1

Tres Name ) oft) y{t} a(t}
' T 1 1. 1 t
/s (1] 2 I 2 I
\/ (7] 3 2 1
< (e 3 1 6 1
> [ 4 6 4
O ] 4 | 8§ 3
Y (2] 4 2 12 1
. S (e 4 i 24 1

Exercise

5.6.1. Extend Table 5.1 to include alf trees of order 5.

5.7 ORDER CONDITIONS

Let us formalize the correspondence between elementary diflerentials and trees con-
sidered in the preceding section.

Definition The function F is defined on the set T of all trees by

Fo =71 } (5.39)
\ F([tllz,.,.,lu])={F(tl)F(lz)...,,FUM)}.

Table 5.2 shows F(t) for all trees ¢ of order up to 4.
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Table 5.2
Order Tree t F(t) '

i . 1 ' f
2 a (] {1}
3 N TS
< (2112 {2f}2

4 - \\’; (] )
Y [t[*]; {S{1:
[, {zfz}z

§ [s]s {3f}3

Recall that our first objective in seeking to derive order conditions {or the general
Runge-Kutta method was to find a means of expressing the total derivatives of y in
terms of the partial derivatives of f. This is achieved in a remarkable theorem of Butcher,
which states that, for general ¢, y'? is a linear combination of all elementary differentials
of order ¢ and, morcoever, tells us what the cocfficients in the lincar combination are.
A prool of the theorem can be found in Butcher (1987).

Theorem 5. Let y' = f(y), f:R™—R"™. Then

i

Yo=Y a)F(), (5.40)

n=q
where F(t) is defined by (5.39) and aft) by (5.38).

By way of illustration, let us apply this theorem for p < 4; we see at once that from
Tables 5.1 and 5.2 that

y= i)
YW =A{+{0}
Y= {43 L+ S s

Note that the first two of these were already given by (5.37;.

Recall from (5.2) and (5.3) of §5.1 that the general s-stage Runge-Kutta method for
the autonomous problem

y=fy@=n [R"-R" (5.41)

Yar1=Yath Y bk (5.42()) -
=1

where

ki=fya+h Y agk), =125 (5.42(ii))
=1 :
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and * L
. 3
. G= Y a; i=12,....5 (5.42011))
J=1

Let us define the right side of (5.42(i)) to be y, (), which we then expand as a Taylor serics
abo1it h=0 to get ’

+1p? d* 1. () 4o .7 (5.43)
R L

d
Yo+t = YA(O) + hd_h .\’n(h) R

=0

The corresponding expansion for the cxact solution at x,,, is

y('xn+ 1) = ,V(Xn) + hy(”(xn) + %hly(lt('\_") + (544)

Making the localizing assumption that y(x,) = y, { = ¥,(0)). we scc that the method (5.42)
will have order p if the expansions (5.43) and (5.44) match up to (and including) the
terms in h". Theorem 5.1 cnables us to express the derivatives @ appearing in (5.44)

in terms of elementary differentials of f; we need a similar result for the derivatives
)

dq

ey s L2,

[

appearing in (5.43). First, we modily the notation in (5.42) by defining ag, = h..
i=1,2,...,s and then define on the set T of all trees, a new function y/(t), which depends
on the elements of the Butcher ‘array of (5.42).

Definition
(1) Fori=1,2,...,s,s+ | define on the set T of all trees the functions yr; by

Yi(1)= z ai;
j=1
(5.45)

e

Yyt ty1) = i agr (W (0) Y A y).

=1
(2) Define Y{t):= 1, (1)

In Table 5.3 we develop the functions (1) and (1) for all trees of order up to 4: all
summations are from | to s.

Comments on Table 5.3
(1) The entries in Table 5.3 are obtained by repeatedly using(5.45) in the following way.

Fori=1,2,...,5 ¥d{1)=Y a;= ¢, by (5.42(ii));
J
Y()y=Y a,4y ;=2 b;=) b, on chlanging the (dummy) summation ipdex:
b J i .

Fori=12,..,s, ¢t =Y a,(0)=2 a;c;}
] ]
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Table 5.3
Tree t VN i=12...,s ()
- T };a,,(=ca) ' ;b;
s Tae Tbe
~ (%] ;mf; ;mq
. < () Yoo T b,
) Lo Lhe!
O (2] Tae Lo Lbese,
Y (e FayTan Lbay;
§ (03] TayToxTac, > beganey
M =Tt = Y by = Lbes
Fori=1.2os L) = Do LD = Lay Y. apc

UL =Y ag ;) ape = Zhﬂ;kﬂ = Zb,-a,lc,, and so on.
j k * ij

(2) When a tree t has an alternative (but nccessarily equivalent) label, then the func-
tions (1) are independent of which label we choose. Thus the fourth-order tree [1[t]]
could equally well be labelled [[t]1], giving Y(t) =X a3 apcic; =T aauc,c;=
2 Ui d iy as in Table 5.3,

. . . . !
(3) Eventually. all we will be interested in are the functions (1), but clearly we nced the
functions Y1), i=1.2...., s for trees of a given order to enable us to calculate (t) for
trees of higher ordu,

(4) There is a uscful rule-of-thumb which, if, used with care, shortens the process of
finding ¥(1) it works for all trees except t = 1. It goes as follows: Read the name of the
trec from left to right, ignoring all second brackets]; interpret the first bracket [
+ cncountered as b, all subsequent brackets [ as a, and t as ¢. Finally, link the suffices in
the natural way, noting that b and ¢ have single suffices, whilst a has a double suffix.
For cxample, .

[t[t]] = bcac 4 = %b,cia,-jcj.

EER v s T

o

Ve

ORDER CONDITIONS 1€

It is, however, possible to misinterpret this rule-of-thumb. Consider for emmple th
fifth-order tree t = [[t][t]]. Applying (5.45), we have

2
vilt) = Za,jZalkc,(Zaj, ,,—Za,J(ZaJ,‘(k) . i=12..s

and ‘

Mﬂ—Zb<Zm”>{ (5.4¢

" The rule-of-thumb gives [[t][t]] - bacac, which could be interpreted to mean tha

Y(t) = Y biaycapce, (which is not, of course, the same as (5.46)). However, the structur
[{t1{z]1] should warn us that the correct interpretation of the rule-of-thumb is

2 t
(L)~ bac 0 = T (z ) |

]

A second theorem of Butcher enables us (o calculate the derivatives appearing i
(5.43) in terms of the functions F defined by (5.39) and the functions (t). A proof of th
theorem can be found in Butcher (1987),

Theorem 5.2 Let the Runge-Kutta method (5.42) define the expansion (5.43). Then th
derivatives on the right side of (5.43) are given by

q
%;hm) = ), aAMOYOF()

\dt h=o r=d

where F(t) is evaluated at y,, y(1) is defined by (5.45) and a(t) and y(1) are defined as in §5.6.
The main result follows immediately from (5.43) and (5.44) and Theorems 5.1 and 5.2:

Theorem 5.3 The Runge-Kutta method has drder p if (1) =
order r(t) < p and does not hold for some tree of order p + 1.

1/:(t) holds for all trees o

Hence to establish the conditions for any Runge Kutta method (explicit or implicit) to

have order p, all we need do is write down all the trees of order up to p, compute i1

and y(1) and set y(1) = /(1) for each tree in the list. Using the data provided by Tablc

5.3 and Table 5.1 of §5.6, we obtain the order conditions given in Table 5.4, for orders
up to 4.

Example
3-stage explicit: a,, =0, j=1,2,3,=¢,=0,0,;=0,j=2,3, a;;, =0. From Table 5.4,

Orderp=1: by + b, + b, =1
Orderp=2 hyc, +hyey=3
Orderp=3 bycl+hyel=}

baf’u(z—%
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Table 5.4
Order conditions
Tree ' Ay el = "
. 1 Yo o =1
.
< | (] 2 Y b =3
:
« (%] 3 gb,c,’ =3
< §83) Thag, =;
v a e
D o) Sheoe, =4
e (11 Thag] =
< o Y bayapes =45

ijk

These are the same conditions as we obtained in §5.3. Note that the left side of the last
of the order 4 conditions in Table 5.4 becomes 0, and the condition cannot be satisfied,
thus showing that order 4 cannot be attained by an explicit.3-stage method.

2-stage implicit: From Table 5.4, order 4 requires that eight conditions be satisfied;
moreover, from (5.42(iii)) we must also have that ¢; =a,, + a,,, ¢; = a5, + a,4,,giving
ten conditions in all. There are just eight coefficients in the Butcher array, but it turns
out that there docs exist a unique solution given by the array

1 v3 1 1 /3
it% i at¥
1ov3 | 1_y3 1
2 6 4 6 4
1 1
2 2

(Strictly speaking, the Butcher array is not unique since replacing each plus sign in the
first row by a minus and each minus sign in the second row by a plus also represents
a solution of the order conditions; but since b, = b,, both solutions give the same (unique)
method.)
Finally, it follows at once [rom (5.43) and (5.44) that if the method (5.42) has order p
then the local truncation crror is given by
hp+ 1 v
LTE = Y a1l —y(OW(OIF@) + 0+ ?) 547
(P + Dr=p+1

where the functions F(t) arc evaluated at the value y(x,) of the argument.

e

il

ORDER CONDITIONS m

Exercises .

s

+ §.7.1. Extend Tables 5.3 and 54 to include all trees of order 5.

§7.2. Show that each of the following Runge-Kutta methods has order 4.
(i) The popular explicit method (5.21) of §5.3,
(ii) The implicit methods

. .

3-v3 1 3-2.3
3 4 12
3+ 34243 !
e l P 4
1 !
H 2

5.7.3. Show that the 3-stage method in 5.7.2 (i) can be written in the form
\ . h
Yatrtz —3Vne1=3¥nt 8(fn —fas1)
N h . .
Yar1 =pnt 6(f"+4]“ 12t Jas)

Suggest a use to which this form could be put.

5.7.4. Write the following method as.a Runge-Kutla method, and find its order:

. ; .
Yar2n=V¥at .;[f(‘n e+ 0]

' h
s Yntr =yn+4![3]‘(_“;-*2/3)+.f(.‘.n)]'

5.7.5. Show that the following method for the problem ' = {(3). ¥(xg)= ¥o. R R™ s
equivalent to a 4-stage semi-implicit Runge-Kutta and hence show that it has order three:

'
P o= i,[f( P+ £
} _
= UL 0]
}
Yorr = Ya= ;[Zf(,m D+ — 2D, =2+ )

(Hint: Use the alternative form (5.6) of §5.1 for a Runge- Kutta method )

5.7.6. Define a bush tree to be a tree all of whose branches stem from the root of the tree, and a
trunk tree to be h tree with only one branch stemming from the root. Using the tables found in
Exercise 5.7.1, demonstrate that il 3 a;c;= L¢Z for all i, then the order conditions for all bush
trees of orders 3, 4, § can be ignored, and that if 3 ha;;=bi(l —c) for all j then the order
conditions for all trunk trees of order 3, 4, 5 can likewise be ignored. Using the formal definitions
of y(t) and (1), prove that these results hold for general order greater than 2.
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‘

5.7.7*. Consider the followtng semi-implicit Runge-Kutta method:
Ky = flya+ Bhky), ko= f(y, + hk, +ﬂhk1)} :
Vaor = Yo = LG+ Bk, + (5= ik, ] M

0 Find p. the order of the method, and show that it is independent of .

(m Express the PLTE in the form of a lincar combination of elementary differentials of order
P+ Lexpressing the coefficients in the combination in terms of f# only. To what does the
PLTE reduce in the case when f = Ay, A a constant matrix?

(- Apphy (b to the problem 3" = Ay to obtain an expression of the form y,, , = R(hiA, B)y,, where
RthA )y is o vational function of the matrix h4. By comparing y,, | with the exact solution
Vi, ) which satisfies vix, ) = cxp(hA)y(x,), find the PLTE directly, and check that it is
wdentical with the expression found in (if).

(Notesexptid) =1 4t 4 (hAPR/ 2 + (hAY3 + )

5.7.8*. The Trapezotdal Rule is being used to solve numerically the problem y' = f(y), y(xo) = yo»
fo™ e RM using a constant steplength It where x, = x + nh.

i Show that applying the Trapezoidal Rule on two successive steps to advance the solution from
vo to s eguvalent to applying a 3-stage semi-implicit Runge-Kutta method with steplength
11 =25, and write down the Butcher array for this equivalent method. Verify the order directly
by applying the Runge Kutta order conditions and, by considering the trees [t*] and [[t]],
show that the truncation error after two steps is — § 'y 3 (xg) + O(h*).

i Generalize the result of (1) to the case of N successive steps; that is, find the equivalent
N 4 D-stage semi-implicit Runge - Kutta method with steplength 11 = Nk, verify the order
and show that the truncation error at xy is — ;5 (xx — xo)h?y*'(xo) + O(h?).

8.7.9*% An cexplicit method for solving v = f(x,y), y(xo) = yo, f: R x R" = R™, consists of the
following:

ky = f(x,.p,)
Step k= f(x,+hy,+ hk)
.vn¢|:yn+%h(kl+k2)
Stepj, jz12 {"rw—/ wagor Iy (G - ek, 1+°‘"")
,\,,p,':),.»;r-|+hkj¢l

Applving the first two steps is equivalent to applying a 3-stage explicit Runge-Kutta method
with steplength /1 = 2h. Write down the Butcher array for this equivalent method and show that
it has order two. Continue the process by writing down the Butcher array for the 4-stage method
with 11 ="3h which is equivalent to the the first three steps of the given method etc., until the
pattern is clear enough to enable you to write down the Butcher array [or the (j + 1)-stage method
with steplength H = jh which is equivalent to the first j steps of the given method. Show that
thiy cquivalent method has order two.

Calculate (for j sufficiently large) E;, the PLTE of the equivalent (j + 1)-stage method in terms
of clementary differentials. Since E; is the principal accumulated truncation error of the given
method, we can define the principal Iocal error of that method to be L, given by Ly=E;—E-_
Show that (for sufficiently farge j) L, (= L) is independent of j, and show that there ex1sts a
unique value of the free parameter o for which L takes the form Kh®y'¥(x), where K is
constant,
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5.8 SCALAR PROBLEMS AND SYSTEMS

A remarkable and (at the time) totally uncxpected resull that emerged from the Butcher
theory is that a Runge-Kutta method which has order pfor a scalar initial value problem
may have order less than p when applicd to a problem involving a system of differential
equations. To see how this can come about, let us consider what the Frechet derivatives
and the elementary differentials reduce to when m = I. From the definition of §5.5 we
see that when m = | the Mth Frechet derivative reduces to

SOK Ko Ky = [y (K Ky Ky KeR' 1=1.2. M.

M-times

Table 5.5 shows the corresponding reduction of the elementary diflerentials of orders
up to 4.

Recall the expansions (5.44) and (5.43) for the exact and the numerical solutions: by
Theorems 5.1 and, 5.2 these become

Z Z Ok

q—lq rin=q ‘

Ji == 30T

q=1 tl Hn=q

x40 q) =3

(5.48)
(GRBIAGIIG

where the F(1) are evaluated at the value y(x,) = y, = ,(0} of the argument.

If all the F(r) are distinct (which is certainly the case when m > 1} then the order is
4 iff () = 1/y(t) for all trees of order up to 4. However, we see [rom Table 5.5 that
when m =1 two of the fourth-order clementary differentials reduce to the same scalar
expression. Specifically, let 1, =[t[t],. 1, =[,12],: then when m=1. F(1,) = Flt;) =
Sy, f,f*. Hence, in the case of a scalar problem, the two conditions

23

Wit =1/t ) =1/3(5) (5.49)
Table 5.5
1) t 1) ‘ Scalar form
! T s g
2 [ =10 e
Sl 2 =120 AJ;,

2
(2], S ATE VAR VAL T)) S

4 (=’ (Y= 000 f,,‘f’
(x[1]; {f{f}z 72, {f})’ Lol S
[zfz]z {zf }1 fm({ } f,-f,vyfz
[, {s )= fm({ 1) (f,-)"f

L3
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could be replaced by the single condition

ot )P W) + alt)y(E) () = alty) + alty) (5.50)
and the coefficients of F(t,) { = F{t,)) in the expansions (5.48) would still match, so that
order 4 would be achieved. 1t can of course happen that a solution which satisfies (5.50)
does not satisly {5.49). An example of this phenomenon is afforded by the 4-stage explicit
method with Butcher array .

0 |
1 1
, 2 2
o 1 -3 (5.51)
I 0 $ -3
O

‘This method has order 4 il applicd to y' = f(y), f:R' - R', but order only 3 if applied
to v' = f(y), [:R" = R™, m> 1. Of course, as we have seen in §1.4, the general scalar
problem is not ¥ = f(y), Wa) =, [:R' >R, but

[:R'x R - R'

¥y =1y, Ha)y=n, (5.52)
which we can write (see §1.4 again) in the form
2 =¢(z), z(a)={, ¢:R? - RY,

where z=[y,x]", ¢ = [/, 117, { = [#,a]". We then find that

Fit) = {olo} = [+ SN+ S0,
F“Z) = {2(,’2 }2 = []y(fxx + szxy + fzfyy))o]T)

which are not identical. It follows that all Runge-Kutta methods of order up to 4 have.,

the sume order for a system and for the general scalar problem (5.52).

flowever, if we proceed to fifth-order conditions we find that there are two trees
{tL.t]s and [,t[t]; for which the corresponding elementary differentials coincide for
the general scalar problem (5.52). Thus there exist methods which have order p (=95)
for the general scalar problem (5.52), but have order less th~n p for a system. As ont
may imagine, there was considerable consternation when this result first appeared, since
there were in existence several Runge-Kutta methods of high order, invariably derived
as in §5.3 for a scalar problem, but applied in practice to systems. {According to rumour,
this was the case in the computation of the trajectories of some of the eariy space shots!)
However, it turned out that none of these methods fell into the class of those whose
order for a scalar problem differed from that for a system.

We summarize the above results as follows:

Statement A:  The method has order p for y' = f(y), f:R" > R™, m> |
Statement B: The method has order p for y = f(x,y), f:R! x R - R!
Statement C: The method has order p for y' = f(y), /:R' > R".

=

9

N
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Table 5.6
0 Problem (1} Problem (H)
h Error Ratio Error Ratio
06 . 152x%1073 1.46 x 1072
228 ‘ 10.2
0.3 6.66 x 1073 1,43 x 1073
18 9.
015  370x 10" 1.58 x 1074
16.5 ' 8.6
0075 224 x 1077 184 x 1073
Then, forl<p<3, A<BeC
for p = 4, AeB=C, but C#B '
forp=5, A=B=C, but C=+B, HzA

We conclude with a simple numerical illustration. Consider the lollowing two scalar
initial value problems:
¥

My= Jy yO=1,  and

Both have the same exact solution y(x) = (I + x/2)?. We solve these problems using the
Runge-Kutta method (5.51) which has order 4 when applied to the autonomous system
(1), but order only 3 when applied to the non-autonomous problem (11). The global
errors at x = 3.0 for a range of steplengths are given in Table 5.6.

“The solution for problem (1) does appear to be more accurate than that for probiem
(11), but this is not very compelling evidence; the problems are different, even though
they have the same exact solution. What is more persuasive is the column of entries
headed ‘Ratio’, where we have calculated, for each h, the ratio of the error when the
steplength is h to the error when the steplength is h/2. For a pth-order method. the local
error is 0(h**!), but the global error is O(h"). Thus, for a four-order method we expect
this ratio to tend to 2* = 16 as )t -0, whereas for a third-order method we would expect
it to tend to 2° = 8. The results in Table 5.6 thus indicate that we are indeed achieving
fourth-order behaviour for problem (1), but only third order for problem (IT).

»

() ¥ =yl + /2 ¥ =1.

\

[

Exercises

5.8.1. Apply (5.51) to the two scalar initial value problems y' =y, y¥(0)=1 and y" = xy. y(0} =1
and compute y{h) — y, for each, where y(x) is the exact solution. Deduce that (5.51) is exhibiting

_ fourth-order behaviour for the first problem but third-order for the second.

5.8.2. Construct a table showing for each tree of order r <5 the expressions to which the
corresponding elementary differentials of f reduce when feR'.

5.8.3. (i) Deduce from the table found in the preceding exercise that when a fourth-order Runge-
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Kutti method is applied to a scalar equation y' = f(y) then four of the elementary differentials
which oceur an the expressiont Tor the PLTE reduce to the same expression @{r).
t) Consider the eaxplicit method

0
x 't
I 11 i
2 2 Ba 8
| -1
! - 2
2x 2n
! . 2 1
0
0 3 6

Show that for alf vatues of 2 the order is precisely four h‘hcn applied to the general system y' = f(y),
{ €™ In the case when m = 1, find the value of & for Which the coefficient of @(1), defined in (1),
is scro. .

¥

5.9 EXPLICIT METHODS; ATTAINABLE ORDER

In §5.7 we saw how to cstablish the conditions for a- Runge-Kutta method to have
given order. We now turn to the problem of finding solutions of these order conditions,
and in this section we consider the question of what order can be achieved by an s-stage
explicit method. We start with two further results of Butcher, the first of which is a
technical lemma which we shall need later in this section.

Lemma 5.1 Let U and V be two 3 x 3 matrices such that

wy, w,, 0 v
UV:[“’.;]= Wy Wiy O, where wy wy, # wy wy,.

0 0 0

Then cither the last row of U is the zero row vector or the last column of V 1§ the zero
column vector.

Proof  Clearly UV is singular and therefore either U is singular or ¥ is singular. If U
is singular, then there exists a non-zero row vector p=[p,,p,,p,] such that pU =0,
whenee pUV =0 and it follows that

Since wy wyy —wywy, #0, 0t follows that p; = p, =0, and hence that [0,0,p;]U =0,
since py # 0, it Tollows that the last row of U consists of zero clements. In the case when

1

- b

i
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A o

V is singular, there must exist a non-zero column vector ¢ such. that Vg=0.
and a similar argument establishes that the last column of V contains only zero
elements g
The second result establishes an upper bound to the order that can be attained by
an explicit s-stage method. Its proof is a neat example of the power of the Butcher

’

approach.
Theorem 5.4  Ans-stage explicit Runge-Kutta method cannot have order greater than's.

Proof Let the s-stage method have order n, and consider the pih order tree r ={,_,t],_ .
It follows from §5.6 that y(r) = p! and [rom §5.7 that w(r)zzi-lhh'“h biaiag g,
. Since the method is explicit, a;; =0 for j > i, and it follows that y(1) =0

a G
oer thore ¢ ,jp—2 Of the integers 12,5 such that

unless there exists a sequence i,jy,jz, .-
i>jy>jy> >jp-2> 1

(Note that j,_,=1 would not do, since then ¢; ,=¢, =0 Hence (1} =0 (and the
order condition (t) = 1/y(1) contradicted) unless i 2 p, whence p<i<s. ]

The obvious question now is whether order p = s can be attained for all s. We consider
in turn the cases s=2,3,4,5, and attempt to find the general solution of the order

conditions. .

Two-stage methods
Butcher array

1
Otder 2 conditions: by + b, =1, bycy =
The general solution is

c,=A4#0, by =1-1/21, by=1/24,
a single one-parameter family.

Three-stage methods
Butcher array

€3 | dn a4 =0

Ay +dy; =5
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()rdc‘r 3 conditions
by+by+by=1
bycy+bycy =1
byl +bycl=4%

byas,c, =4
On solving these cquations, we find that the solutions fall'into three cases:
Case |
;2= dn =4 cy=qp

— — -2
()A(l (4 +,ﬁ)i_2 b 2-3u b 3

= 6u Ted—p T eui—p)
,”_/ttwﬂ—l)ﬂt], = _ -
231-12) A34-2)
where 4 # 0,2, 1, and p #0. ,
Case 2
2 ! —1
('2=3. (-J:O,b,:‘i—v, h2=2,b,=v, a3,=——an=—4—v~, v#0.
Cuase,3
2 1 1
('2=(',=3, b,=4, hzzi—w, by=w, a,,—g——Z; a32=£, w#0.

Thus there is one two-parameter family and two one-parameter families of solutions.
We might conclude from this that the pattern is clear, and that for 4-stage methods
there will be a three-parameter family of fourth-order methods, plus some families with
fewer paramcters; we would be wrong!

Four-stage methods
Butcher array

0

Cp | dyy Ay =C; .

Cy | 4y dy, a3, taz;=c,
Ci | dgy dgy U4y gy + a4y + Uy =Cy4.

[ by by by b

The order conditions are now too cumbersome to be written out in [ull, and we use a
summation notation; for the remainder of this section, all summations run from I to s,
the stage-number; where no suffices appear under the summation sign, the summation
1s Ltaken over «ll subscripts appearing in the terms to be summed.

26
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Order 4 conditions » |

.  Yb =1
(2) Yhei=%
Q) Yhcl=%
(4) Y bhaje, =% - (553)
(5) Yhiel=3

6y Shea.c =1
AV /_,lll/j 8

(7) Zh (l”('j *lz
(8) th‘,‘u“/k(k = 2—‘;»

Finding all solutions of this set of nonfinear equations is a formidable task. However.
results due once again to Butcher lighten the task considerably. We apply Lemma 5.1
quoted at the start of this section with

C; €y C4 by by, - f,
U= C§ (‘:7; CZ , V=| by by us=p85 |,
Ay A3 A, by bacs pa— By

where
A=Y a0, — 3]
]
wy=bit —cp
ﬂj= Zh,a”,
i

ij=2.3.4. (5.54)

Let UV [wy]: then, using conditions (2), (3) and (5), we get wy, =, wyp =1 =Wy,
wy, = 4. Also, .

w,3=ch[bj(l—c,) Zbau] ——%———0 by (2), (3) and (4),

1

Wy =Zc,’[bj(l -
j

=Ty | =4~ b dy=0.by (.09 nd (),

=1_11
T 6 13

Wiy = Zb,c,[Za,-,cj—%cf] =3 —11=0 by (6) and (5).
I i 7

0, by (4) and (3),

v =Eb| Sa -l

~w33=Z[ZaU€J—%(‘f:|[b,~(l—c) Zhlal,]_\\” \\,,—3‘3-{—%135:0.
i i

by (7) and (8). ‘
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Thus
o
UV =[w;]= 'lf 1o
0 0 0

Since wy w,, — wyywy; =4 — 5 #0, the hypotheses of the lemma are satisfied, and we
must have that cither 4, «() i=2,3,4 or j;=f;,j= 2 3 4. We show that the first of
these alternatives is 1mp0§§|blc Since 4, = Z“h c;—-%c3.c; =0 and a,;=0,j=2,3,4,

A, = 0 implics that ¢, = 0. Now, lor an cxphcn method, the order condition (8) of (5.53)
becomes

battgyay,cy = 55,

(5.55)

whence ¢, # 0. The second alternative, y; = f§,, j = 2,3,4, must therefore hold, and this
has two important conscquences. By (5.54) this means that
Zh,»(l,,- =hi(t —¢;),

i=234 (5.56)

[t follows that

Yhae; =3 bl —¢)e;=1 -1 =1by(2) and (3),
2 hiact =L bl =)} —g——:,—‘, by (3) and (5),
Y ba,a j,((,(=Zhj(l—(])aJ-,((‘,‘ +— 3 =15 by (4)and (6).

In other words, conditions (4), (7) and (8) arc automatically satisficd if the remaining
order conditions are satisfied, and can be ignored.

The second consequence comes from setting j = 4 in (5.56) and noting that Zb,a,‘ =0,
since a; = 0l f 2. Thus by(l — ¢4) =0, and since by (5.55) h, cannot be zero it follows

Yat ¢y = b Thus we have the perhaps surprising result that for allfour -stace explicit
Runge Kutta methods of order 4,¢4 = 1.

The fact that ¢, is fixed results in the general solution of the order conditions con-
stituting a two-parameter family, not, as might have been anticipated, a three-parameter
family. The full solution of the order conditions is still rather too cumbersome to
reproduce here, and the reader is referred to Butcher (1987). The solution consists of
one two-paramecter family of solutions and four one-parameter lamilies.

Five-stage methods
Butcher array

0
2| Oy ay) =0,
Ca | 4y Uy, ay; +ay;=c;
Co | gy ay; gy Qg + G4y + ag3 =0y

Cs gy dsy gy dgy Asy + A5y +dgy+asq4=Cs.

oo
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The order 5 conditions are the eight conditions (5.53) (with the summations now running
from 1 to 5) together with the following nine additional conditions

O Lbci=x
" (10) th "u‘;_Lo
(ll) Zh(l l]]_f?

(12) Y biciagape, = &
13y Y bdY apc))’ =55 (5.57)
(14) Y biayjc ;"%

(15) Zb'a,-jcjujk(‘,‘ =4
(16) Zb,u,l ,,(( =5
. (17 Y bl O = s
Guessing from our previous results, we might expect that there would exist a one-
parameter family of solutions; but, as we should have gathered by now, this is not an
area in which it is wise to guess! For decades beforg the Butcher theory was established.

many altempts were made to find a five-stage explicit method of order 5, and none were
successful. The following theorem of Butcher put an end to the scarch.

Theorem 5.5 There exist no five-stage explicit Runge Kutta methods of order S,

Proof The proof closely follows the argument carlicr in this section which led to the
result that ¢, = | for all four-stage explicit methods of order 4, and we shall omit some
of the detail. First apply Lemma 5.1 with

€y €3 €4 Br Brcy 2
U= C§ C§ el |, V=1 By Bsyes vy |
Ay Ay Ay Ba faca va

where A, and B, are given by (5.54) (but now for i=273,4.5) and

= 1801~ )~ T hiy j=23.4,5. (5.58)

Proceeding as before to use the order conditions (5.53) and (5.57) together with the fact
that fs=0=v,, we find that

\
L3

I-— AN

uv={wyl=| i
- 0

(5.59)

-
o 8-a-
oo

Since wy Wy, — Wy W), = 1o — 743 # 0, the hypotheses of the lemma are satisfied, and
we must have that either 4, =0,i=2,3,4, or v,=0,j = 2,3.4. The first is impossible: by
exactly the same argument used earlier, 1, = 0 implies ¢, = 0, and since condition (17)
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Note that if the error estimate is not required, then five stages are required to obtain
the solution. :

In most modern automatic codes based on embedded Runge-Kutta methods local
extrapolation is used. Indecd, RKF45 is sometimes run as a (5,4) method, even though
it is not designed for such use, since error-tuning has been carrled out on the fourth-order
and not the fifth-order formula.

Embedded methods specifically designed for use with local extrapolation have been
developed by Dormand and Prince (1980), Prince and C .rmand (1981); see also Sharp
(1989). In these methods it is the higher-order formula which is error-tuned and which
carries the solution; the difference between the values given by the higher and lower
order methods, though no longer a true estimate of the local truncation error, is used
as a basis for monitoring steplength. Perhaps the most popular of these is a (5, 4) method,
sometimes known as DOPRI (5, 4), defined by the modified Butcher array

0
1 1
5 5
3 3 2
i0 10 30
4 a4 -1 32
H 33 13 g
8 19372 __ 25360 64 448 212
[ 6561 2187 6561 729
! 9017 __ 358 46732 49 . 5103
3768 33 3T 178 18636
3s 0 500 125 _ 2187 11
384 110 191 6784 B4
5179 0 7571 393 __ 92097 187 1
37600 16695 640 339200 100 - 30
35 0 500 123 18 11 0"
j8a 1113 192 6784 34
71 0 .1 71 _ 11253 22 A
37600 T6 69 1920 339300 323 0

(Note that we are sticking to the notation defined by (5.65), so that the vector b7 for
the method which carries the solution is the one starting 35/384,....) :

The above method has seven stages, as opposed to the six stages of England's method
and RKF4S; however, the last row of A is identical with the vector b, and we see, as
follows, that this means that the method has effectively only six stages. Let the vectors
k; evaluated during the step from x, to x,,, be denoted by k. Then we have

o ‘
k" = j'(x,, +hy,+hY a,,k}‘)

i=1

whence
6 .
k"'*l =f<x"+h,y,,+h Z b,k;):k;

i=1

and there is no need to compute k7*'. Methods with this property are sometimes known

as FSAL methods (First Same As Last).
Let us now compare the four embedded methods given above by applying each to

G S
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the second-order initial value problem
U= — “(ul + Uz)‘JIZ,U" - _ U(llz + UZ)J/Z (566)
«u(0) = 1,u'(0)=0,v(0)=0,v'(0) =1

which has exact solution u(x) = cos x, v(x) = sin x. Of course, we first rewrite (5.66) as
an equivalent first-order system, as in §1.5. Since .the exact solution is known, it is
possible to implement, at each step, the localizing assumption y, = y(x,), use the method
to compute ,,, and thus compute the local truncation error from (5.12); the L,-norms
of the resulting exact local truncation errors are given in the columns headed LTE in
Table 5.7. The L,-norms of the estimates for the local truncation error provided by the
embedded method are given in the columns headed EST. (In the case of RKF45, the
bracketed numbers indicate LTE when the method is used as a (5,4) pair, EST is, of

Table 5.7
Merson England RKF45 DOPRI (5.4)

X LTE EST LTE EST ILTE EST LTE EST

h=0.8 Errors x 10°
0.8 2 3 3] 10 4(4) 1 4 1
1.6 4 6 46 46 19421 3 17 4
24 7 6 36 45 20(19) 5 9 3
32 4 4 '8 7 303) 1 | 1
40 2 3 14 13 5(4) 1 4 1
48 5 7 47 45 20(21) 3 17 4
56 7 6 33 38 18(16) 5 9 3
6.4 4 4 9 4 3(3) 0.4 | 1

A

' h =04 Errors x 10*
0.8 3 20 61 51 9(3) 7 3 5
1.6 10 28 182 175 19(11) 21 5 13
24 12 25 94 11 11(10) 14 1 7
3.2 7 23 27 19 53 2 1 1
40 3 20 73 62 10(3) 8 4 6
48 11 29 183 ‘176 19(12) 21 5 13
5.6 12 24" 82 97 10(10) 13 i 7
6.4 [ 23 27 25 5(3) 2 ] 1

. . h =0.2 Errors x 10’
08 12 129 228 206 ° 37(8) 30 3 20
1.6 25 147 577 57 74(18) 73 4 44
24 26 140 259 285 30(14) 39 1 22
32 15 135 82 78 8(3) 5 2 3
40 12 130 266 243. 41(9) 35 3 23
48 . 26 148 577 573 73(18) 73 4 44
56 26 139 222 247 26(13) 34 B 19
6.4 15 135 79 80 7(3) 6 2 3
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course, ?ndcpcndcnl of whether one uses the formulae as a (4,5) or a (5,4) pair) The
integration range is [0,6.4}, which covers one cycle of the periodic exact solution, and
the computations are performed for three values of the steplength h. ’

. We can draw several conclusions from this numerical experiment. Merson's method
is remarkably accurate when one remembers that it uses only five function evaluations
per step, whereas all the others use six. The error estimate is good for large steplength
but for small steplength the error is badly over-estimated. One can see why Merson’s:
method remains popular, despite its shortcomings. England’s method is the least accurate
but it gives, for all steplengths, remarkably good estimates of the error. RKF45 has a
tendeney to underestimate the error, a tendency which is most noticeable af large
stcplgnglh. This is the penalty incurred in crror-tuning; crfor-tuning consists of trying
loimr'mmizc the cocfficients in the principal local truncation error, and results in the
principal error being less than normally representative of the whole local truncation
error, an effect obviously magnified when the steplength is large. In DOPRI(5.4), the error
is a hittle underestimated at large steplength and clearly overestimated at small steplength;
the smallness of the error reflects the use of local extrapolation. As one would expect’
using RKF 45 as a (5, 4) pair {the bracketed numbers) results in a poorer error estimaté
pul a more accurate solution—though not as accurate as that given by DOPRI (5, 4). It
is of course dangcrous to draw too many conclusions from a single example, but the
author has conducted the above experiment on a number of problems, and the above
conclusions always appeared valid.

[n a simple automatic code based on embedded methods, the user sypplies a tolerance
TOL, and the algorithm successively halves the steplength until the error estimate is
fess than TOL; if the estimate is less than TOL/2°* Y, where p is the order, the steplength
is doublgd. '(More sophisticated strategies are of course usually employed.) In such a
context, it is not obvious that error-tuning—and for that matter the use of local
cxtrapolation —-is nccessarily advantagecous. Whether one does better with a less accurate
method which has a very sharp error estimate (such as England’s method) or with a
more accurate error-tuncd method for which the estimate is less sharp, resulting in the
need for heuristic safeguards in the code, is ultimately a problem-depende:nt question.

There exist Fehlberg methods of orders up to eight. Unfortunately, all the Fehlberg

m’c(hqfls ol order greater than four suffer a peculiar deficiency, exemplified by the 8-stage
(5,6) Fehlberg method, for which the vectors ¢' and ET are

"=00, & & 3L 4L 1,0 1] } ,

T_r1-5
E —'[ﬁ—ﬁv 03 Oy Oy 0\ 6_65’ ‘géé, _65—6]

(5.67)

Now supposc that such a method is applied to a system in which f depends only on
. Then the fifth- and sixth-order methods reduce to ,

8
Yasr =Vt B Y bif(x, +c;h),

j=1

8 . .
,pn+l =4Vn+h Z bjf(X"+lel)
j=1

respectively, whence

j=1

8
Pas1— Yasr1=h Z E]f(xn"‘cjh)‘:() )

by (5.67). Thus, when f(x,y)= f{x) the two methods give identically the same result,
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and the error estimate is in all cases zero, no matter what the size of the actual local
truncation error. We can anticipate that such methods will give mislending results when
applied to a system y' = f(x,y), in which f depends much more strongly on x than it
does on y. Alternative embedded methods of orders 5 to 8, which do nat encounter this
difficulty, are given by Verner (1978). Higher-order embedded methods using local
extrapolation are derived by Dormand and Prince (1980); in that reference can be found
an 8-stage (6,5) method and a 13-stage (8,7) thethed. :

Computational experience shows that Runge-Kutta codes can be competitive with
ABM codes for problems where function evaluations are nol too expensive. Examples
of such codes are DVERK (Hull, Enright and Jackson, 1976), which uscs an 8-stage
(5,6) pair, RKF7 (Enright and Hull, 1976), based on a Fchiberg (7,8) pair and XRK
(Shampine and Baca, 1986) which uses the Dormand Prince (8, 7) pair. The effectiveness
of a Runge"fKulla code is much improved i the order of the pair is appropriate to the
particular problem in hand; thus there have been developed variable order Runge-Kutta
codes such a RKSW (Shampine and Wisniewski, 1978) which can switch between a (3,4
and a (7, 8) pair.

Exercises

5.10.1. The scalar problem y = x% + y, p(0) = 0 has exact solution ¥(x) = Zexp(v) —x? =2 =2
Express y(h) as a power series in h. Compare y(h) with y, given by applying Merson's method
(5.63) once. Deduce that the PLTE is O(h®), but that the estimate (5.64) does not correctly estimate
the PLTE. )

* 510.2*. Find the exact solutidn of the scalar problem )" =ax + by + ¢, ¥(0) =0, where a.b and

¢ are constants. Apply Merson’s method, (5.63) to this problem and compute the sotution v, at
x = h. Calculate y(h)— y, and thus corroborate that the method is of order four. Show furthet
that the PLTE is indeed given by (5.64). (The equation y' = ay + bx + ¢ is the most general scal
equation for which the Merson estimate is valid.)

5. 1‘i IMPLICIT AND SEMI-IMPLICIT METHODS
» '

As we noted in §5.1, implicit Runge—Kutta methods, even semi-implicit ones, are very
expensive to'implement and cannot rival predictor—corrector or explicit Runge-Kutta
methods in efficiency when the prublem to be solved is not stiff. Their use is almos!
exclusively restricted to stifl systems, in which context their superior stability propertie:
justify the high cost of implementation. Consequently, much of our discussion ol implicit
methods and their implementation will be left to Chapters 6 and 7, where the problew
of stiffness is addressed. In this section we merely list various categories of implicit
methods and give examples of the more common methods. The reader who wishes t(
see a fuller discussion of the derivation of these methods from the order condition:
derived in §5.7 is referred to the books by Butcher (1987) and Dckker and Verwer (1984).

If the general Runge-Kutta method (5.2) is applicd to the scalar problem )" = f{x)
then the result is a quadrature formula

J. " J)dxx ypyy = ya=h Z b f(x,+ ¢;h)

Xn i=1
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reads

hsdsa0,3035C; = 1550 (5.60)

it follows that ¢, #0. Therclore v;=0,j=2,3,4 but v, =0 implies that f (1 —c4) =
2Y Bias = 2Bsass =0, since fig =0 f[rom (5.54). Now, aiso from (5.54), By =bsasy #0,
by (5.60). Hence we have that ¢ = 1.

We now apply Lemma 5.1 again with

r (IS i r My ey (= B —cy) 1

U ZL ;o V=1 pt3 pacy (uy— )l —cy) |,
4; ts  fscs {us = fs)( —cs)

where 4, t; and f8; are given by (5.54) (for i, j = 2,3,4,5). Using the order conditions (5.53)

and (5.57) together with the fact that ¢, = | implies that p, =0 =(py — f)(1 —c ), we

find that UV is once again given by (5.59). The argument used above shows that ¢, #0,

and it follows that (us— fs)(I —cs)=0; since f5=0, we have from (5.54) that

hg(l — ¢4)? =0, and since by # 0 by (5.60), it follows that cs = 1.
We have thus established that ¢, = ¢; = 1. Now consider

bl —cdagapey =bs(1 —ca) Y, asapc, + by(l — c‘)a43d3zczl= 0.
But, by order conditions (8) and (12), we also have that
Zh.'(l — A, = Z bial}ajkck - Z th}au"jkch = TIE - 3% = Ti'ﬁ'

We thus have a contradiction, and the theorem is proved. O

Theorem 5.5 can be extended to show that there exist no p-stage explicit methods of
order p for p > S; see Butcher (1987). The question of what order can be achieved by
an explicit s-stage method is still an open one; the following is known (Butcher, 1987):

Order 123 45 6 7 8 9 10

Minimum stage number 1 2 3 4 6 7 9 Il 12<s5<17 3<sg 17

The reason for the popularity of fourth-order methods is now clear. (By a somewhat
illogical process, this may also explain the popularity of fourth-order predictor-corrector

methods in the days before VSVO algorithms were developed!) The construction of

explicit methods with order greater than four is quite involved; the best reference is once
again Butcher (1987).

5.10 EXPLICIT METHODS; LOCAL ERROR ESTIMATION

As we have already remarked in §5.1, there exist no estimates for the local truncation
error of explicit Runge-Kutta methods which are comparable in computational

N
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cheapness with the Milne estimate for predictor—corrector methods; ail of the estimates
discussed in this section reqlire more function evaluations per step then are needed
simply to advance the solution.

The first technique we discuss is Richardson extrapolation, also called the deferred
approach to the limit; it is an old technique, and one which is applicable to any numeri-
cal method. Suppose that we have used a Runge-Kutta method of order p to
obtain the numerical solution y, , , at x, , ;. Under the usual localizing assumption that
¥a = y(x,), it follows from (5.47) that the Jocal truncation error T, can be written in
the form .

Tors = Yna1) = Fust = YOI+ O, 5.61)

wheré W(y(x,)) is a function of the elementary diflerentials of order p + | evaluated at
y(x,). (As in §3.5, the notation j, , , indicates the value for y at x,., | given by the method
under the localizing assumption.) Let us now compute a second numerical solution at
X,+1 by applying the same method with steplength 2k, but starting from x, _ ;: denote
the solution so obtained by %,,,, the tilde indicating that the localizing assumption is
again in force (but now at x,_,). Then we may write

Y(Xpa1) = Zuy g = W(p(x, ))2HY T +0(h" ")
=Y (y(x,))2h)"* " +0(h"*?) (5.62)

on expanding y(x,_,) about x,. On subtracting (5.61) from (5.62) we obtain

@41 = DRI ()] = sy = 2oy + 00 D),

whence we have, from (5.61), the following estimate for the principal local truncation
error:

PLTE = (Fosy = Zos JA2"" ' = 1),

This estimate works well in practice, and can be successfully used to monitor stepiength,
but it is expensive to implement; if the explicit Runge-Kutta method has s stages, then
in general an additional s — 1 function evaluations are needed, k, at x,_, having been
already computéd. {The author was once asked by a member of a seminar audience— in
a quite different context—why he didn’t just use the ‘usual’ method for estimating the
error of any numerical method; it transpired that the ‘usual’ method consisted of repeating
a step with double the steplength, subtracting and dividing by the magic number 31.
The magic number 31 is, of course, 2°*! — | when p=4; such is the popularity of
fourth-order methods!)

There exist in the literature a number of error estimates for explicit Runge-Kutta
methods which do not involve additional function evaluations, but these are based on
computed values at a number of consecutive integration steps. This approach obviously
raises difficulties when the steplength is changed, and effectively sacrifices the major
advantage of using Runge-Kutta methods, namely the freedom to change steplength
with no attendant complications. -

An early example of a Runge-Kutta method specially constructed to allow an ¢ or
estimate in terms of the computed values k; was proposed by Merson (1957). Merson’s

§
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method is defined by the Butcher array

0
1]
33
LI I R §
. il § %
%éO% (5.63)
I%O—%z '
§ 0 03 3

This is a 5-stage method and it is casily checked that it has order 4. Merson proposed ‘

that the principal local truncation error be estimated by

I — 2k, + 9k, — 8k + k4)/30. (5.64)

Il this were a valid estimate of the principal focal truncation error, then adding (5.64)
to the value for y, ., given by (5.63) would yield a 5th- ordcr method for which ¢ and
A would be as in (5.63) and b7 would be
[.0.0.5. 57+ 170,85 74.95) = [#5.0. 5. 341
Now. we know from §5.9 that it is impossible for a 5-stage method to have order five,
and we must conclude that the estimate (5.64) is not valid. Indeed one finds that the
5-stage mcthod consisting of (5.63) with b' modified as abovc has order only three;
however, it has order five in the special case when the differential system is linear with
constant cocllicients. Although Merson’s method played an important role in pointing
the way to future developments, it is necessary to warn against using it for general
problems, a warning that would appear o be necessary since its use appears still to be
widespread. In practice, Mcrson's method usually overestimates the error, often grossly
so at smail steplength, and this has led to the beliel that its use is always safe, albeit
inefficient. However, some time ago England (1969) gave examples where Merson’s
method underestimates the error.
The essence of the Merson idea is to derive Runge-Kutta methods of orders p and
p + 1, which share the same set of vectors {k;}; this process is known as embedding. In

order to present embedded methods, we shall modify the Butcher array to the following
form:

.:-l-—

A

(2}

bT
BT (5.65)

ET

This notation is Lo be interpreted (o mean that the method defined by ¢, A and b" has
order p and that dcfined by ¢, 4 and bT has order p + 1. The difference between the
values for y,, , gencrated by these two methods is then an estimate of the local truncation
error. The vector ETis hT — b7, so that the error estimate is given by h Y3, | E;k;, where
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=[E,E,,...,E]. ltis convenient to attach to such an embedded method the label
(p p + 1). Note thal the solution for y,, , given by the pth order mclhod is used as the
initial value for the next step, so.that the method has order p. One_could use the
(p + 1)th-order value for ¥.+1 as the initial valuc for the next step, in “which casc the
method has order p+ I; it is appropriate in such cases to alter the label to (p + L. p).
This process is, of course, local extrapoiation, discussed in 543 in ithe context of
predictor—corrector methods; the caveats given there still apply.
1t follows from §5.9 that for a fourth-order embedded method a minimpm of six stages
will be necessary. An example of such a method is the (4,5) England’s mcthml {England,
1969), given by the modified Butcher array

0

! 1

3 3

1 1 1

3 4 4

| 0 -1 2

2 7 10 A

3 7 17 0 27

1 28 1 546 54 378

3 615 3%  61% 625 675
1 2 1
I 0 3 6 0 0
1 3 27 128
34 0 0 a8 36 336

! 1 0 2 1 21 125

-8 -3 T T6 36 336

A feature of this method is that the last two clements of b! are zero, implying that if
the error estimate is not required then only four stages (the minimum possible for fourth
order) need be computed. The method is thus economical if only occasional estimation
of the error is intended.

Perhaps the most popular (4,5) method is RKF45, one of a class of methods developed
by Fehlberg (1968, 1969). In this class, the coeflicients of the method are chosen so that
the moduli of the coefficients of the functions F(1) appearing in the principal part of the
local truncation error (5.47) are small. We shall say that methods derived in this way
are error-tuned. The modified Butcher array for RKF45 is

0

1 o

3 4

3 2 kA

8 33 32

12 1932 __ 71200 1296

13 2197 7197 7197
439 8 3680, _ 845

1 1% - 313 3104

i [ _ 3544 1859 et

3 37 2 7565 4104 40
25 1408 2197 1
716 0 7565 4104 g 0
16 0 6656 28561 _9 2
13% 12825 56430 50 5%

‘ i 0 128 2197 1 2

360 3378 75740 S0 55
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which the reader may recognize (and it does not matter if he does not) as a Gaussian
quadrature formula with ordinates (or abscissae) x, + c;h and weights b), j = 1,2,...,s.
The word ‘Gaussian’ is used somewhat loosely in this context, and there are several
families, other than the original Gauss family, of quadrature formulae with unevenly
spaced ordinates. Fully implicit Runge-Kutta methods are categorized by the class of
quadrature formulae to which they revert when we put f(x,y) = J(x). In the [ollowing
we shall list low-order methods of various classes, quoting the stage-number s and the
order p. '

The first class of fully implicit methods consists of Gauss or Gauss—Legendre methods

GEAY

(Butcher, 1964). These squeeze out the highest possible order, and the s-stage Gauss
method has order 2s.

Gauss methods

s=1,p=12 i i
{
_ 3-43 1 3-243
s=2.P—4 [3 1 [
3+3 3+243 :
=" i
' 1 '
3 3
—1 = s—v13 5 10-3J15 25-6415
s=3,p=6 iG 36 a3 180
1 1043718 2 10-3/18
3 3 9 _d7fL—
s+/18 | 25+64135 10+3415 5
. io 180 rys 38
3 4 3
is 5 18

Note that the |-stage Gauss method may be written
Yurr = Yo+ hky
= Ya+ Hf(xo + 3 yu + 3hk)
= Yo+ B (X0 + 31 Y + HYas1 = ya))-
The method can thus be written as

Ayn+l =yn+hf(xn+%hv%(yu +A.V..+1)), (568)

in which form it is known as the Implicit Mid-point Rule. Note also that the 2-stage
Gauss method was derived as an example in §5.7

The second category of methods reverts to the Radau quadrature formulae,
characterized by the requirement that the ordinates include one or other of the ends of

R I LR
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the interval of integration. This means that the corresponding implicit Runge-Kutta
methods have either ¢, =0 (Radau I} or ¢,= | (Radau I1). The maximum attainable
order of an s-stage method is now 2s — 1, and it turns out that this order can be achieved
by a number of different choices of coefficients. We quote only the classes that turn out
to be of most interest, namely the Radau 1A and Radau 114 methods (Ehle, 1969;

Chipman, 1971). d |

Radad IA

s=1,p=1
s=2,p=13
1 3
4 4
1 -1-v6 —1+v6
s=3,p=35 0 9 8 8
6-y6 | 1 884746 BB-43.6
\ 7o 5 360 360
6+V6 1 88+43/6 88-7V6
10 9 360 360
1 16+J6 ‘46-v6
g kD) o

Note that the 1-step Radau 1A method does not satisfy the row sum condition (5.3).
The row sum condition was imposed because it greatly simplifies the derivation of the
order conditions and there is nothing to be gained in terms of extra order by not
imposing it—well, almost! For very low order only, it is possible to use this extra

freedom to improve order, a curiosity first observed by Oliver (1975). The 1-step Radau

1A method is an example of t

Radau lIA
s=1Lp=1
s=2,p=3

his phenomenon.

1] 1
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y = = 4-v6 88-1.6 296-10609.6  -2+346
s=3p=35 io 360 7800 135,
4+v6 | 296+169.9  88+7.6 ~2-3v6
10 7800 360 135
1 16-16 16+46 1
35 36 9
+
16-v6 16446 1
35 36 3

Note that, by an argument similar to that which showed that the I-stage Gauss method
could be rewritten as the Implicit Mid-point Rule, we see that the 1-stage Radau IIA
method can be written as the Backward Euler method

Yoer =Yat W, 4+ oy, )

which we mct 1 §3.9. (This humble method is thus simultaneously the first-order
Adams Moulton method, the I-step BDF method and the I-stage Radau 11A method;
to confuse things [urther, it is also called the Implicit Euler Rule.) Note also that in the
Radau 1A methods the last row of the matrix A is identical with ™. When this h.ppened
in an explicit method, as we saw in the preceding section it did for DOPRI(5,4), a
function cvaluation was saved, and the stage-number effectively reduced by 1. Alas,
there s no such benefit here, since for an implicit method it is no longer true that k,
cvaluated at the step starting from x,,, is identical with f(x,,,,y.+ 1)

The last category of methods is associated with the Lobatto quadrature formulae, for
which the ordinates include both ends of the interval of integration. The corresponding
implicit Runge Kulla methods (which obviously must have stage-number at least 2)
have ¢, =0 and ¢, = 1. The maximum attainable order is now 25 — 2. According to a
classification of Butcher (1964a), these methods are of the third type, which is why they
arc called Lobato 111 methods. Again, various possibilities arise, the most useful of which .
are the Lobatto 11IA and HIB methods of Ehle (1969) and the Lobatto 11IC methods
of Chipman (1971); all attain order 25 — 2. ' ' '

Lobatto 111A

s=2p=2 0|l 00
N
L1
2 2
s=3,p=4 0f 0 0 0
1 51 1
2 22 3 T 1z .
My L2 1
6 3 6
L2
6 3 6
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.

S=4,p=6 0 0 0 0 . l(i .
-vS 11+vS 25-45 25-13.5 -1+
10 130 - 120 120 130
“1-.5
+J58 P1-vS 25+13.8 254,38 1= 5
51(\)/ 10~ 110 120 ERVL)
! 3 3 L
! 12 11 [ 12
1 s 5 !
i3 12 12 11

Note that the 2-stage Lobotto HI1A method is just the Tr.apezoidal Rule. Note als? that
the Lobatto HIA methods, unlike the Radau 11A, are genuinely FSAL methods (see §5.10)

Lobatto 111B

1
s=2,p=2 , 0 3 0
1 ]
L1
b1
| I |
s=3,p=4 0| 5 3
L 1 1
' 2 6 3
<1 s
1 6 [ ,
1 2 1
3 3 8
1 -1-45 -1+.5 0
s=4,p=6 0 17 74 Z
~y$ ] 25+, 5 25-138 0
5no » 12 20 120
5+vVS 1 25+13.8 25-4S 0
10 12 120 120
! 1145 11+,5
1 T3 3% 24 0
! 3 3 L
137 12 12 [}

' P .
Note that the 2-stage Lobatto [11B method is another example of the row-sum conditio:
not being met; note also that this method is semi-implicit.

Lobatto I1IC

s=2,p=12
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s=3p=4 0| & -§% %
1 t s _ 1
H 6 12 12
NN I

- = 1 ~J3 V3 1
s=4,p=6 0 | 17 % 11 13
5-vs | 1 10-1J5 ¥s
10 12 [ 60 60
5+v5 1 10+17J8 1 _J5
10 12 60 q 60
1 1 s KX i
12 12 12 2
1 s S5 1
12 12 13 12

4

Implicit Runge Kutta methods can also be categorized according to whether or not
they are collocation methods. Collocation is an old idea, widely applicable in numerical
analysis, and consists of choosing a function (usually a polynomial) and a set of collocation
points, and then demanding that the function does, at the collocation points, whatever
is necessary to make it mimic the behaviour of the unknown function we are trying to
approximate numerically. In the context of solving the initial value problem
¥ = f(x, y), v(a) = 4, we can advance the numerical solution from x, to x,,, by choosing
a polynomial P of degree s, with coefficients in R™, and a set of distinct collocation
points {x, + ¢;hi=1,2,...,s} and demanding that

P(x,) =y,

P(x,+ch)= f(x, +ch P(x, +ch), i=12..,s

13
Nolte that this defines P(x) uniquely. We then complete the step by taking y,,, =
Plx, + h). 1t was originally shown by Wright (1970) that this process is identical with
an s-stage implicit Runge-Kutta method. To see this, observe that P'(x} is a polynomial
of degree s — | which interpolates the s data points (x, + b, P'(x, + ;) i=1,2,...,s
We can therefore write it in the form of a Lagrange interpolation polynomial (see §1.10).
Define k= P'(x, + ¢;h).i=1,2,...,s; then, on writing x = x, + th, we have

Px,+thy= Y Lk, (5.69)
J=1
where
L ]
Liin=]]— (5.70)
t=1C;—C '
i#)
Now integrate (5.69) with respect to x from x = x, to x = x,,'+ chi=12,...,5s and from
x=x, 10 x=x,,, to get
P(x, + )~ P(x,)=h Y (J Lj(l)dl>kj, = 1;2,.,.,5 5.71)
i=1\Jo

s '_ﬁ' et

i
IMPLICIT AND SEMI-IMPLICIT METHODS 195

and
: s i
P(x,+h) = P(x,)=h Y (I Lj(t)dt>kj. (5.72)
i=1\Jo
Now, for j=1,2,...,s, define ) ’
[ 1
a= J. L(t)dt, i=12,...,5, by= J Li(ndt (5.73)
(4] 0
and (5.71) and (5.72) give
ky= P(x, + c;h) = f(x, + c;h, P(x, + c;h)}
H
. . =f(x,,+c.h,y,,+hia,.jk,), i=1,2,...,5,
. =

and
‘ . Yerr=Yath Y bk,
=

and we have an implicit Runge-Kutta method with the elements of ¢ being the collocation
points and b and A given by (5.73). The class of collocation methods consists of those
implicit Runge-Kutta methods which can be derived in this fashion.

There is another interpretation we can put on collocation methods. Consider what
happens to the alternative form (5.6) of the general Runge-Kutta method if we put
J(x,») = f(x). The second of (5.6) can be interpreted as a quadrature formula for

Xn¥eih
I S()dx,i=1,2,...,s. It{ollows [rom the above (see (5.71)) that if the Runge-Kulta

Xn
.method is a coliocation method, then each of these quadratures will be exact if f is a
polynomial in x of degree <s.— 1, a property sometimes used to define the class of
collocation methods. We can take this argument further to produce a useful character-
ization of collocation methods. Since a polynomial is linear in its coeflicients, to
say that

Xntcih f 3
J Jxdx=h} a;f(x,+c;h)
" Xn =1

is an exact quadrature formula when f(x) is a polynomial of degree < s — 1 is the same
as to say that it is exact when f(x}=x",r=0,1,...,5s — 1, leading to the identity
L}

(ot chy* =X r+ D=h Y ay(x, + by,  r=01,...,s—1
j=1
On equation powers of h, we easily obtain the condition

Y ayc; t=cjla, o=12...,s, i=12,....s (5.74)
=1

i
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. X
(Note that for o =1, (5.74) is just the row-sum condition (5.3).) Indeed, for an s-stage
Runge Kutta mcthod of order at least s and with distinct ¢;, (5.74) is a necessary and
sulficient condition for the method to be a collocation method (see, for example, Hairer,
Nersett and Wanner (1980)).

The families of implicit Runge-Kutta methods quoted earlier in this section split into
two groups; the Gauss, Radau 1A and Lobatto I11A methods are collocation methods,
while the Radau TA, Lobatto I1IB and Lobatto IIIC are not. If the reader feels in need
ol mathematical exercise, he can verifly that (5.74) holds for each of the quoted methods
in the first group and is contradicted for each method in the second group. If L is
really desperate for exercise, he may also verify that (5.73) holds for each method in the
first group.

We turn now to scmi-implicit methods. As we have already remarked in §5,1, the
computational effort in implementing these methods is substantially less than for a fully
implicit method, but still sufficiently onerous for the methods to be of interest only for
stiff systems. We shall discuss their implementation in that context in Chapter 6, where
it will emerge that considerable gains in efficiency occur in the case when all of the
clements on the main diagonal of the coefficient matrix 4 of a semi-implicit method are
identical. This defines the class of diagonally implicit Runge—Kutta methods or DIRK
methods, developed by Nérsett (1974), Crouziex (1976) and Alexander (1977). (There is
some confusion over nomenclature in this area; some authors use the term ‘diagonally
implicit’ to describe any semi-implicit method, and then refer to the DIRK methods we
have just defined as singly diagonally implicit.) .

It is readily established that the following 2-stage semi-implicit method has order 3
for alt valucs of the paramcter y other then p=0: '

N e 0
o 6u '
14+ | —p
S Lr -z 5.75
2 # 2 .79
3u? i
3Jpt+ 1 3pt 4+

There cxists no value of p for which the method has order greater than 3, but taking
p=F /3/3 gives the following pair of DIRK methods:

N E R IEE SV
, 6 6
‘ CEINEN N INE R IVE (576)
6 3 6
1 |
2 2

p .
St e

(o0
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There exist three 3-stage DIRK methods of order 4 given by
L-f_\' ,I, +v 0 0
2 2 ‘
’ I |
! o ey
2 2 2 (5.77)
—vy . L4y
‘ (o IR !
2 2
r ;
| [ 1 i
' 6r? W o

where v takes one of the three values (2//3)cos(107), ~ (2//3)cos(50 ), — (2//3) cos(707),
the roots of 3v3 —3v =1,

Finally, we briefly mention a further class of implicit methods, the singly-implicit
Runge-Kutta or SIRK methods, developed by Ngrsett (1976) and Burrage {1978a, I978b,
1982). Although these are fuily implicit methods, they can be regarded as generalizations
of DIRK methods. The trouble with DIRK methods is that it is very difficuit indeed
to construct such methods with high stage-number (thosc appcaring in the literature
have order at most four), making them unsuitable as the basis of a variable order code.
Now, it is clear that the spectrum of eigenvalues of the matrix A for a DIRK method
consists of the single eigenvalue a;; repeated s times. SIRK methods are defined by the
requirement that the matrix A4, though not lower triangular, should have a spectrum
consisting of the single eigenvalue u repeated s times, where s is the stage-number. As
we shall see in §6.5, this has the consequence that the methods can be implemented at
a cost not much greater than that for a DIRK method. SIRK methods of arbitrary
order can be derived; see Dekker and Verwer (1984). An example of a SIRK method is
the 2-stage method )

(4 - \/2)1‘ (‘1* 3\/2)11
(22 — p
4+ 2
2+ /2 (44 3y 2 4+ /2 (5.78)
4 4
41+ -2 40— Jou+ 2
8u 8

which has order 2 in general and order 3 if p=(3 J3)/6.

Exercise 4

5.11.1. Use (5.74) to show that the SIRK method (5.78) is a collocation method.
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5.12 LINEAR STABILITY THEORY FOR
RUNGE-KUTTA METHODS '

We first met linear stability theory in the context of linear multistep methods (see §3.8),
where vz chose as test system the system y' = Ay, where A is an m x m matrix with
distinct eigenvalues {A,,t = 1,2,...,m]} lying strictly in the negative half-plane, a condition
which ensures that all solutions of the test system tend lo zero as x tends to infinity.
Since the eigenvalues of A are distinct there exists a non-singular matrix @ such
that Q7'4Q = A =diag[4,,4,,...,4,] and, by using a transformation y=Qz, we
showed that it was enough to consider only the scalar test equation y' = Ay, where
/e and Re(l)<0. Linear stability was concerned with the question of whether
or not the numerical solution of this scalar test equation tended to zero as n tended to
infinity.

The application of the transformation y = Qz uncoupled not only the original test
system but also the difference system arising from the linear multistep method, and
it was obvious that this was also true for predictor—corrector methods. It is perhaps
less obvious that it holds also for Runge-Kutta methods, and we start by showing
that this is indeed the case. We had better change the notation, and write the test
syslem as

y =ty (5.79)

to avoid confusion with the coeflicient matrix 4 appearing in the Butcher array of a
Runge-Kutta method. The matrix o is assumed to have distinct eigenvalues A, where
Re(4,) <0, t=1,2,...,m, and the non-singular matrix Q is defined by Q" 'o/Q=A=
diag[4,,4,,...,4,]. Applying the general Runge-Kutta method (5.2) to (5.79)
gives

Vax1 = Yo+ h Z hik;

where : (5.80)

k,-=.w’|iy,,+h'z aukj], Ci=1,2,...,s '

j=1
Now define z, and /; by
yn:QZm k[=th i=l,2,...,s.

Substituting for y, and k; in (5.80) and premulitiplying by Q™' gives

Sz =2z, +h Z bil;

where (5.81)

1,»=A[z,,+h Z a,-jlj:l. i=12,...,s
=1
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which is precisely theresult we would get from applying the method (5.2} to the system
7 =AMz (5.82)

It is clear from (5.82) and (5.81) that we have indeed uncoupled both the differential
system nd the difference system. We are thus justified in using as test equation llze
scalar problem :

y = Ay, AeC, Re()) <0 {5.83)

If we apply the general Runge-Kutta method (5.2) to (5.83), we are clearly going to
obtain a one-step difference equation of the form
Yar1 = Ry,
where, as before, it = hi. We shall call R(h) the stability function of the method. Clearly
y.—0 as n— oo if and ofily if
IR < 1 (5.84)
and the method is absdlulgly stable for those values of /i for which (5.84) holds. The
region #, of the complex h-plane for which (5.84),holds is then the region of absolute
stability of the method. Let us now investigate the form that R(h) takes. It is marginally

easier to work with the alternative form (5.6) of the general s-stage Runge-Kutta method.
Applying this to the test equation (5.83) (where, we recall, y, is scalar) yields

YIZYn+;'ZaiJYj, i=1,2,...,5
Ay

. (5.85)
yn+l=yn+il Z b,Y;.

I=1 '

Now define Y, eeR® by V:=[Y,,Y,,...,Y,]T and e:=[[,1,...,1]"; we may then write
(5.85) in the form

Y=y.e+hAY, y, . =y, +hb"Y.
Solving the first of these .for Y and substituting'in the second gives
Va1 =Yall + RO —hA) ],
where [ is the s x s unit n.atrix. The stability function is therefore given by
| Rhy=1+hb"(I —hA) ‘e (5.86)

An approarch due to Dekker and Verwer (1984) gives an alternative form for R(h). To
avoid filling the page with large determinants, we develop this alternative for the case
s =2, when (5.85) may be written as

{—ha,, —hay,, 0 Y, . Va
' —hay, 1—hay,, O Y, |=1] .
“hbli ~ hb, 1 Yn+y Vn
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‘Fhe solution for y, , by Cramer's rule is y,,, = N/D where

I — by, —ira,z Vu l—fla“ —flau 0
N =det ~hay, t—hay, y, |, D=det —ﬁa“ - ilazz 0
- hh, —hhy, y, —~hb, —hb, 1

Subtracting the last row of N from each of the first two rows leaves N unaltered, whence

V—ha,, +hb, —ha,,+hb, ©

N = det il(lz, +hb, 11— f:un + thz 0 [=y,det[I—hA+ ilebT].
—hh, —hb, Va

Clearly, D = det{J = 4], and we obtain Voo = R(it)y,,, where

—hA+heb? »
R(J )—gf'—[—h—x’ hA + heb) : (5.8)

det[I —hA}
Jtis clear that the above derivation can be extended to the casc of general s, and that ¢
(S.87) holds in general. Fhe alternative forms (5.86) and (5.87) for R(h) are complementary;
somctimes onc is more convenient, sometimes the other.

Let us consider what form R(h) takes when the method is explicit; that is, when A4 1s
a strictly lower triangular matrix. The matrix [ — fi4 is then lower triangular, with all
the clements ol its main diagonal being unity. It follows that det(] —hA)-l and by
(5.87) we sce that for all cxplicit Runge-Kulta methods the stability function is a
polynomial in h. For implicit and semi-implicit methods, however, det(l — hA) is no
fonger 1, but is itsell a polynomial in b, so that the stability function becomes a rational
function of i (which is why we called the stablllly function R). ‘

IR is a polynomial in h, then there is no way in which the condition (5. 84) for
absolute stability can be satisficd when || — o0, and it follows that all explicit methods
have finite regions of absolute stability. (We found this to be the case for explicit linear
muttistep methods and for predictor -corrector methods when the > corrector was applied
afinite number of times - essentialty an explicit process.) When R(it} is a rational function
of I, however, it is at least possible that (5.84) can be satisfied when || — oo, holding
oul the possihility that implicit and semi-implicit Runge—Kutta methods can have infinite
regions of absolute stability.

As we have already mentioned, the role of implicit and semi-implicit Runge-Kutta
methods is in attempting (o solve stiff systems, so we shall delay until Chapter 6 any
further discussion of the linear stability properties of such methods; in the remainder
of this section we consider only explicit methods. Recall from §5.9 that explicit methods
of thc maximum altainabic order for a given stage-number contain a number of free
parametets. We have not as yet been able to find a means of using this freedom to
advantage, and at first sight lincar stability theory would appear to be a happy hunting
ground; why not choosc the free parameters to optimize the region of absolute stability?
Lot us try to do this in the case of the family of explicit 3-stage methods of order three.
The Butcher array and the order conditions are

‘
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¢y 0 0 0
C3 C o o
Cy €3—ay; az O
b, hy by

b +b,+by=1

byc, + bye

1l

3
byci + byl

:N—- [ ST

(5.88)

byayzcy =

We recall from §5.9 that there exist one two-parameter family and two one-parameter
families of solutions of (5.88). The easiest way to compute R(h) is to usc (5.86) and define
d:=(I — hA) 'e, whence

1 o ol[4 1
) —cyh 10 || d, !
(an—CJ)lAt S TLEN! d, 1

Solving this trian'gular system gives
dy=1, dy=1+c,h 113='l+c3f1+cza32f12.
From (5.86), R(h) = 1 + hb"d, whence
R(by= 1 +(by + by + by) it (bycs + bye)h? + byayyerh. (5.89)

On applying the order conditions (5.88) (note that only threc of them arc needed) we
find that

R =1+ D+ 122+ 06

for all 3-stage methods of order 3. So much for our hopes of choosing free parameters
to improve the linear stability properties!

The above result can be generalized as follows. Let the s-stage explicit Runge -Kutta

- method have order p. It follows from §5.7 that, under the localizing assumption that

y, = y(x,), the value y, ., given by the method applied to the test equation (5.83) differs

from the Taylor expansion of the exact solution y(x, ) of (5.83) by terms of order hett

Now, it readily follows from repeatedly differentiating (5.83) that the expansion for

y( X+ l) 1S
' { R
Yoxwer) = ylx,) + hly(x) + o W22 y(x) + o+ AT+ 00 ")
. .
whence we must have that

1
Yat1 =[1 +h/1+%h2,1’ 4+ +7hu"]y,+0(h"“)
! p!
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or

[

I I 1. .
Vi t/Ve=1 +h+2lh2+-~~+»—'h"+0(h"“). (5.90)
! p!

. . _
On the other hand, it is clear from (5.87) that for an s-stage explicit method R(h) will
he a polynomial in i of degree at most s. This fact, together with (5.90), implies that if
s = p {and we know from §5.9 that this can only happen for s =1,2,3,4) then

R(f!)=;',,i,/}'"=.+ﬁ+lﬁz+---+lfn’. (5.91)
’ 2! s! )

Thus. for s = 1, 2,3, 4, all s-stage explicit Runge-Kutta methods of order s have the same
stahility function, and therefore the same stability regions. These stability functions are
given by (5.91) and we could compute the boundaries of the corresponding regions of
absoluté stability by adapting the boundary locus technique described in §3.8. An
alternative approach is (o write a program along the following lines. Let R(h)y=x + iy,
scan the line x = constant and sct the point (x, y) if and only iflR(ﬁ)I < 1, then increment
v and repeat the process. Note that this approach, which we shall call the scanning
technique, is practicable only for one-step methods. It is more expensive on computing
time than the boundary locus technique, but is easier to program-—an advantageous
exchange if one has a desk-top microcomputer! The regions of absolute stability for

21 ) 2(
-2 -2
MR ) 5=2
3¢ 3¢
-3 -3
5:=3 s$:=4

Figure 5.1 Regions of absolute stability for s-stage explicit
Runge-Kutta methods of order s.
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s-stag 2 explicit Runge-Kutta methods of order s, 5= 1,2, 3,4, obtained using the scanning
technique, are displayed in Figure 5.1; the regions are symmetric about the real axis.
and Figure 5.1 shows only the regions in the haif-plane Im(/1) > 0. Note that for s =1
(Euter’s Rule), the boundary of the region is a circle. It is of interest to note that as the
order increases, the stability regions become larger; the opposite happened for linear
multistep methods. : :

If the s-stage method has order,p < s (and this will always be the case for 5 > 4) then,

from (5.90) and (5.91), the stability function clearly takes the form

R(ﬁ)=l+fi+;ﬁ2+~-~+i_71"+ AL (5.92)
2 p! g=p+1
where the coefficients y, are [unctions.of the coeflicients of the method. There is now
scope for attempting to improve the stability region, but it has to be said that attempts
to exploit this possibility do not produce anys spectacular results. The stability function
can be computed as a function of h from (5.86). but if we go at this task like a bull at
a gate we land outselves in a lot of needless work. First observe that we need

compute the inverse of (I — hA); all that is needed is the product (I — 14)"'e which, as

_ before, we define to be d. Then (I — hA)d = e, a triangular system which can be readily

solved for d. Moreover, if the method has order p, then we know that R(iy=1 + hw'd
has the form given by (5.92), and we need only to find the terms inht. q=p,p+Ll...s—1
in d. Let us illustrate by finding R(h) for an s-stage (explicit) method of order s — 1. We
need only find the term in #*~! in d, which means that we need save only the highest
power of h at each stage of the solution of the system (I — iA)d = e. Using the row-sum
condition and indicating terms fmvolving lower powers of it by L.P., we obtain

d =1

dy =1+ hay,d, = c;h + LP.

dy =1+ hay,d, + haydy = ayyc,h? + LP.
' : R R R
d,=1+ha,d, +ha,dy + -+ ha,,_d,

=a,',_‘a,_,‘,_z~--a32c2fl"‘ +L.P. .
The term in k* in R(ﬁ) =1+ hb"d is then ‘)‘jl" where

’ 'Ys=b:as,:—1“:—1,;—42“'“3252

which, in the notation of §5.7, is'just the function W([,- t],—). Note that y, is easily
computed; it is just the product of the elements of the first sub-diagonal of 4 multiplied
by b,. We thus have

RA)=1+h+h2 204+ 0 s — 1) FI(L -t

Note that.if the method had order s, then the order conditions require that
W([,- 171y-1) = 1/s!, which merely corroborates (5.91). By a similar approach (now saving
only terms in the two highest powers of h) we can show that for an s-stage method of

-V X
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aorder s — 2

RUN= 1+ T+ 02204 4 b s = 204+ e ([ ptd, o) + (-1t y).

The obvious extension to the general case p <s holds.

Using this approach, we can easily investigate the linear stability properties of the
embedded methods discussed in §5.10. In the following, the stage-number s and the
order p refer to the method carrying the solution and not to the pair of embedded
methods. The stability functions of the various methods are "

Merson's method; s=35,p=4
’ Ry =1+ h + 122 + /6 + h*/24 + h*/144.
England’s method;, s=4, p=4

R(hy=1+h+ h*2+h/6 + h*/24.
RKF45, s=5p=4
R(iy=1+h + 1?2 + h3/6 + h*/24 + h3/104. |
DOPRI(S,4), s=6p=S5
R(y =1+ i+ /2 + 3/6 + */24 + h%/120 + 7/600.

Figure 5.2 shows the corresponding regions of absolute stability, computed by the
scanning technique described earlier in this section. The region for England’s method
is. of course, identical with that given in Figure 5.1 for s =4 and is included only for
companson.

‘The presence of a ‘moon’ in Figure 5.2(d) is a surprise! It is of no particular practical

significance, but it does raise two points of interest. First, it demonstrates that there
sxists un explicit Runge-Kutta method whose region of absolute stability is a union of
disjoint subscts. Sccondly, it shows up an unexpected advantage that the scanning
technique has over the boundary locus technique; there is no way that the latter would
cver-have discovered the ‘moon’! The region for the fifth-order DOPRI(5,4) method is
perhaps a hittle smaller than we might have expecled. An alternative (5,4) pair with
improved region of absolute stability is offered by Dormand and Prince (1980).

Exercises

5.12.1. Tlustrate the effect of absolute stability by using the popular fourth-order explicit method
(5.21) of §5.3 to compute numerical solutions of the problem y = Ay, y(0)=[1,0, — 177, where

~21 19 =20
A= 19 —21 20
40 -40 —40

using two fixed steplengths, such that b is inside &, for one of the values and outside it for the
other.

e
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Figure 5.2 Regions of absolute stability: (a) Merson’s method. (b) England’s method. (c)
RKF45 (d) DOPRI (5,4). '

[l

5.12.2. Show that for all semi-implicit Runge-Kutta methods the denominator of the stability
function is a product of real linear factors.

5.12.3. Convince yourself, as follows, that the ‘moon’ 4n Figure 5.2(d) is really there: using aAruler,
estimate from Figure 5.2(d) the coordinates of a point inside the ‘moon’, and show that |R(h)} < 1
at that point. In a similar way, convince yourself that the ‘moon’ is disjoint from the main region
of absolute stability.

5.13 ORDER CONDITIONS; THE ALTERNATIVE
APPROACH OF ALBRECHT

So far in this chapter, we have made much use of the well-established Butcher theory.
A quite different approach to the problem of finding the conditions for a RuggeKutta
method to have given order has been proposed by Albrecht (1987). An interesting featu‘re
of this work is that it applies to Runge-Kutta metHods the ideas we developed in

L]
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Chapter 3 for linear multistep methods. In this section we give only an outline of
Albrechts approach; full details can be found in Albrecht (1987).
Albrecht (1985) defined a general class of methods, the A-methods, by

Yoor = o Yy b hOp(x, Yoy Yori3h) (5.93)

where Y, d)fe R™™, o is a om x om matrix (where, as usual, m is the dimension of the

differential system) and @ satisfies a Lipschitz condition with respect to its second and
third arguments; the subscript f indicates that the dependence of ® on Y,, Y, ., is
ihrough the function f{x, y) defining the diffcrential sysiem. {(We have written & in place
of the more natural 4 to avoid later confusion with the matrix 4 of coefficients of a
Runge Kutta method.) Itis of interest to compare (5.93) with the gencral class of methods

k

'Zoajyn+]=h¢f(yn+kvyn+k—l"")yu;h) (5'94)
i=
which we considered in Chapter 2 (see (2.4) of §2.2). At first sight, (5.93) might appear
less general than (5.94), but this is not so; Y,, which has dimension om whilst y, has
dimension m, can itsell be a function of y,, yu+1,.... The class of A-methods is indeed,
a4 very broad onc and encompasses, in addition to the methods discussed in this book,
other classes of methods such as cyclic methods; it also turns out to be an appropriate
alternative framework for the study of the Nordsieck vector approach of §4.9; see Albrecht
{1985).
Re-casting a Runge-Kutta method for an m-dimensional system as an A-method
" leads to a somewhat cumbersome notation which is considerably simplified in the case
m = 1. One of the features of the Albrecht approach is that, unlike the Butcher theory,
analysis in the case of the scalar initial value problem yields all of the order conditions
for the systems case (cf. §5.8). Thus nothing essential is lost if, for the remainder of this
scetion, we consider only the scalar initial vatue problem y’ = f(x, y), y(a) = . The reader
who wishes to sce the full analysis for the m-dimensional case is referred to Albrecht
(1987). '
Consider the general s-stage Runge-Kutta method defined by the Butcher array

Cy asy Qgy Ay

| bbb, . ‘.‘

Writing this method in the alternative form (5.6) (with a slight notational change) we
have

Vora =Vt h Y ayfe, tehy,,)  i=12...s (5.956)
j=1 .

Yoer =t h Y Bf (xn €Yy se) (5.95(i))
i=1
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Define Y,, ,,F(x,, Y, ;heR**! by .

Y,.+1:=[}’.n‘,}’”,,,-«-,Y,,“,»)’n:,|]T -
F(X,‘, Yn+l;h):= [f(x,,+c1h,y”n),f(x,,+czh, y,,4q)v~ .. vf(xn+('3h,}',,+(_)~f(~\'n* l'yn+ l)]T

» (5.96)
and define & and & by
0 0 0 1
0 0 0o 1
o=] . '=[0” C] (5.97())
: Lo, 1]
10,0 - 0 l_|
[ a3y Q43 a;, 0
dz; Qy; a0 A0, )
R = = (5.97(ii))
LA
asl Qagy Ay 0, '
s_b‘ bz A b, 0

where 0,, is the s x s null matrix, 0, =[0,0,...,0]7eR* and e = [1,1,..., 1]"eR".
The method (5.95) can now be written in the form of an A-method,

' . Your =AY, + hBF(x, Yy ). (5.98)

The essence of the Albrecht approach is to observe that each of the s internal stages
(5.95(1)) and the final stage (5.95(ii)) of 2 Runge-Kutta method are linear, in the sense
that a linear multistep method is linear. Nonlinearity arises only when we substitute
from one stage into another. We can regard each of the s + 1 stages as being a generalized
linear multistep method (on an unevenly distributed discrete point sct) and associate
with it a linear difference operator, in exactly the same way as we did for linear multistep
methods in §3.2 (see (3.13)). Let 2(x) be a sufficiently differentiable arbitrary function
and define &, i=1,2,...,5 and &£ by

ZLil2x), h]:=z(x + ¢h) — z{x) — h i ayz'(x + rjix), i=12....5
. X ‘ I (5.99)
LL2xph=z(x+h)—z2x)—h Y bz'(x + c;h).
i=1

Proceeding as we did for linear multistep methods, we expand z(x + ¢;h), z(x + h) and
2'(x + c;h) about x and collect powers in h to obtain

L2(3) k] = ChzM(x) + Coh?2D(x) + -,

i=12,...,s
; .':'?’[z(x);h]:.—élhz(n(x)Jr@2,,2212)(x)+ } (5.100)

where
C .Cl' 1 ‘Z g1 - 1.2
=" a , t=12,...,8
PP
| L q=1,2,... (5.101)
Co=rim iy & bl

q (@- D=
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which can be seen as a generalization of the corresponding result ((3.15) of §3.2) for
linear multistep methods. We could define order in the same way as we did for a linear
multistep method and say that the ith internal stage has order p, if CuxCp==
Cip,=0,C;, .1 #0, and the final stage has order p if Cl C; = C —O C,,+l ;1:0
No(c that the row-sum condition (5.3) lmphcs that C,, =0, i= l 2 ...,$, so that each
internal stage has order at least I, that is, is consistent.

It will prove helplul to write (5.100) and (5.101) more compactly. To thls end we
introduce, for the purposes of this section only, the following notational convention.
Let u=[u, u,,...,u,}" and v=[v,,v,,...,0,17 be two vectors in R*. Then we denote
by uv the vector in R’ obtained by componentwise multiplication; that is

. T
uvi= U0, Uy0q,..., 40,7

(5.102)

Note in particular that 4" = [u7,u%,...,u’]". Define the vectors £[z(x); h], C,eR* b
P 14 s q y

Zla(x) b= [ Lz(x); k], Lo z(x); k], .

E % h
T Lz(xihl] } (5.103)
Co={C10Cop.... Cy]'.
We can now write (5.100) and (5.101) in the form
LLaAx)h] = C hz2M(x) + C,h2 2P x) + - (5.104)
PLax);h] = Chz2V(x) + Coh* 2 () + -+ '
where, using the notation defined by (5.102),
C,= ! - At ¢ =vlr - ———l~v~b7c" Y g=12,... (5105)
q q' (q_|)' q q' q—l)‘ ) y Ly .
and C, =0,.

If the Runge-Kutta method is to have order p, then clearly a necessary (but far
from sufficient) condition is that the final stage should have order p. We thus obtain

from the second of (5.105) the following necessary condition for the method (5.95) to
have order p:

bTe'" ' = 1/q, q=12,...,p (5.106)
(Note that (5.106) 1s equivalent to 3, b;c? ™' = 1/g, the order condition which corresponds,
for ¢ =2, to the tree [t* '] in the Bulcher theory.)

In order to obtain sufficient conditions for the method to have order p, we consider
the global truncation error. This error being the difference between the exact and the
numerical solution, it is natural to proceed by defining vectors that bear the same
relation to the exact solution as the vectors Y, , | and F(x,, Y,, ,; h) defined by (5.96) do
to-the numerical solution. Thus, we define Y(x,,,), F(x,, Y(x,+ ) )eR**! by

Y(x,4q)

= [y(x, + ¢ 1), p(x, + C3h), ..., y(x, + ch), yix, + )T

Flx,, Y(x, =[x, + c b, y(x, + ¢ b)), f(x, + coh, y(x, + c,h))-- (5.167)

S+ e y(xa + ), fixy + b Wx, + )T

W

-
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On putting f{x, y(x)) = ¥'(x) and using (5.98), (5.99) and (5.103), we obtain

h]) =T, eR L
(5.108)

Y(x,s 1) — o Y(x,) — hRBF(X,, Y(x,s 1) 1) = [LTIAx) B), LLHx,)

The parallel with linear multistep theory continues. The vector T,., the residual
when the ‘exact’ vector Y(x,, ,) replaces the ‘numerical’ vector Y, ,, in (5.98), is the local
truncation error of the A-method (5.98) equnvalent to the Runge-Kutta method (5.995),
a natural extension of the definition T, , = L[ ¥(x.; h] ((3.23) of §3.5). It is natural that
T, ., should be a vector of dimension s + 1, since each of the s internal stages and the
final stage have different local truncation errors and, in general, different orders.

Recall that for a mcthod of order p the global truncation error is of order h*. We
could therefore define the A-method (5.98) tq have order p if sup, it Y(x, .} — Y, . ( | = O(h?)
However, recalling the structure of Y, ,, this would clearly be askmg too much; all that
is needed is that,

SUP | 9(Xn+ 1) = Yus | = O(I7). (5.109)

Subtracting (5.98) from (5.108) gives

Y(xn+l)— Yn+l =‘M[Y(xn)~ Yn] +hg[F(X", Y(xn*l); h)— F(Xm Yn+1;h)] + Tn*l'

(5.110)

Let us simplify the notation by defining Q..y = Y(x,4s )= Y,uy and U,,y=
F(x,, Y(Xp41); 1) — F(Xa Y,41;h). We can partition these vectors and T, as follows:

‘ qn+l “n+l f"+1
= , Upyyy = , T,,, =
. Q"*l |:4n+l] * [an+l] . [[n-tl]
A\

where Goeq, Uys g, tos €R° and 4,4y, B4, £ €R Note that 4,0y = y(x,01) = yusr-
Substituting in (5.110) and using the partitioned forms of the matrices o/ and # (see
((5.97)), we obtain !

qn+l=4ne+h/4un+l+tn#l’} (Slll)

Ger =4+ hb Tyt + sy

Now, if the conditions (5.106) are satisfied then {,,, = O(h"* 1Y), by (5.105) and (5.104).
If, in addition, bTu,, , = O(h*) then the second of (5.111) reads

‘?n*l =4n+0(h‘,+1)‘

which is’ enough for, (5.109) to be satisfied (just enough, when one recalls that
n-0(h?* 1) = O(h*), since nh = x, — a). Thus we arrive at the following conditions for the
Runge-Kutta method to have order p:

BTu, 0y = O(h?),

)

bt =1/, q=12....p, n=01,..,. (5112
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The analysis by which the second of these conditions is brought into an implementable
form can be summarized as follows. From the definitions of U, ., and @, ,, it is possible
o expand u,, , in the form

“n#lZGan+1+qu:+l+G3q:+‘+"' (5.113)

where G, i = 1,2,... are diagonal matrices (and where the convention (5.102) pertains).
Morcover we can assume that u,, , and g,,, can be expanded, in a neighbourhood of
h =0, as power series in h. It follows from the fact that C, =0, that such series start
with the term in h?, giving ’

Uy y = wy(x)h2 4+ walx)h® + - + w, (xJh* ™' + O(h?)
Guoy = ra(x )R+ ra(x ) + 41, (X JHP =Y+ O(hP). .
The s-dimensional vectors w(x,) and r{x,) have the form

M)

N(D
wi(x,) = Z aijelj(xn)v rix,) = i ﬁueu(xn)
j=1 j=1

where o;;, f,;€R° and the ¢;(x,)eR are nothing other than the scalar forms of the
elementary differentials of the Butcher theory, though this last fact is not made use of.
1t can be shown that the e, are all distinct (and it is this that makes it possible to get
the fuil set of order conditions from an analysis restricted to the scalar problem) and
it is enough to observe that the conditions (5.112) are equivalent to

bTc? 1 = 1/g, g=12,...,p,

, ; o . } (5.114)
bl =0, j=1,2,..., M), i=23,..,p—1 ifp=3.

Finally, (5.113) can be used to set up a recurrence relation between the w(x,) and
ri(x,), from which the following procedure for implementing the second of (5.114) can
be derived. ‘

Let wr and r*, i=1,2,... be defined by the following recurrence:
wi=0
rE=Ci+Awr |, iz2
i-21 .
wh= Y DA+ Yot Y a4, P22
j=0J Apz? Anvz2
A+pu=i-§ Atpu+v=i—}j

where the notational convention (5.102) is assumed. The C, are given by (5.105) and
D = diag(c,, ¢y, .., ¢,), the coefficients ¢, and the matrix A are defined by the Butcher
array of the s-stage Runge—-Kutta method. Each w! is a sum of terms, and these individual

terms are the a;;, giving
wh=a; +ap oyt !

This procedure enables us to identify the vectors «;; and thus apply (5.114). Let us work
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out the first few w}

wt=0" .
. _

L =G
¥ _ . '

y‘Wz—rz—Cz >

' r; =C3 + ACz
wi=rt4+Drl=Cy+AC, +DC,
rt=Cy+ ACy+ A*C, + ADC,
w;=r;+r;r;+Dr;+Dzr;/2 g

=Cy+ ACy+ A’Cy + ADC, + C1+ DCy + DAC, + D?C,y/2

We can now apply the conditions (5.114), recalling from (5.105) that

1
Cq:= B e e A(‘d‘ !t

' q- N
Order 1 ble=1<sY b=1
Order 2 ble =§esY biey =4
i
Order 3 bt =4esY bl =4
i

0=b7C,=b"(c}/2 - Ac)e>bTAc=bTc?}2 =1
+

=Y bay; =3
Orderd b'cd=leY bel=% ,
]

0=>b"Cy=bT(c%/6 — Ac?/2)e>bT A =b'*3 =5

0=bTAC, =bTA(c*/2 ~ Ac)=b A’ c =b"Ac* /2= 5

— b
<) biayauc, =15
ik -

0=b"DC,=b"D(c?/2 — Ac)e>b"DAc=b"Dc*/2=b"c* /2=

1
. <Y biciaye; =4
, i

These are precisely the conditions for order 4 derived earlier from the Butcher theory;
see, for example, (5.53) of §5.9. Note that w* is the sum of eight terms; these, together
Ay v 4
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wuh the first of (5.114) with g = 5, give rise to the nine additional conditions needed to
attain order 5, thus corroborating that the above approach, although based on the
scalar problem, does indeed generate all of the order conditions for a system.

As we hqvc seen above, the second of the conditions (5.114) gives rise to a series of
or(hoggnahty conditions. These can be employed to provide alternative proofs of the
theoretical results we obtained in §5.9, specifically the non-existence of an explicit 5-stage

mcthod of order $ and the fact that ¢, = 1 for all 4-sta ici
e orech (1580, . ge explicit methods of order four;

Exercise

5.13.1. Use the approach described in the ab i i i
ove section to derive the additional nine iti
for a Runge-Kutta method to have order 5. conditions

6 Stiffness: Linear Stability Theory

6.1 A PRELIMINARY NUMERICAL EXPERIMENT
L}

Let us consider two initial value problems each involving a linear constant coeflicient
inhomogeneous system of dimension 2.

Problem 1

T ) [ak) e
' L2y ] Lt 24l 2cos x —sinx) | | 2y(0) NS ’

Problem 2

‘1.0 (¥ . ' , i
T o bl LEFED o
2y ] 1998 —999 |L 2y 999(cos x — sin x} 2y(0) 3

Both probiems have identically the same exact solution, given by

Y1 ! sin x
[um]—mp( x>[l]+[cm]_ ¢

The graph of this common solution in the interval [0, 107 of x is shown in Figure 6.1(a).
The object of this numerical experiment is to altempt to generate numerically graphical
solutions of Problems 1 and 2 which are acceptable representations of Figure 6.1(a).
For our first attempt we use a simple code based on the fourth-order explicit embedded
Runge-Kutta method RKF45, described in §5.10. The code controls steplength in the

_ following way. Call the local error estimate produced by the method EST. The user

[y

provides a tolerance TOL (and an initial steplength hg) and il EST > TOL the steplength
is successively halved until EST < TOL. If at any step EST < TOL/2* (recall that the
local error is 0(h%)), the steplength is successively doubled until TOL/23 < EST < TOL.
Since a graphical solution is limited by the resofution of the computer graphics, there
is little point in asking for high accuracy and we set TOL at the modest value of 0.01;
we choose hy = 0.1 (for no particularly good reason). The resulting graphical solution
when the code is so applied to Problem 1 is shown in Figure 6.1(b); the numerically
generated points are marked + and N is the number of steps taken to complete the
integration from x =0 to x = 10. The code accepts the initial steplength of 0.1 until
x = 2.0, when it doubles the steplength to 0.2; it takes 60 steps to complete the solution,
and clearly gives an adequate respresentation of Figure 6.1(a).

We now apply the same code, with the same values for h, and TOL to Problem 2.
The results, shown in Figure 6.1(c), are very different [rom those for Problem 1. Before
computing the first step, the code halves the steplength three times to 0.0 125 and before
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¢

(a) Problems 1 and 2, exact solution.
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(b) Problem 1, RKF45; N = 60.
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(e) Problem 2, 2-stage Gauss; N =24."
: RPN

Figure 6.1 S

(d) Problem 1, 2-stage Gauss; N =29.

taking the second step it halves it twice more to 0.003 125; thereafter the steplength”

oscillates between that value and 0.001 5625. The code takes a total of 3373 steps to‘f'

compiete the solution, resulting in the saturation of crosses shown in Figure 6.1(c). The :
result is an accurate numerical solution—a much more accurate one than we'had
intended, and indeed a much more expensive one; recalling that RKF45 is a six-stagé
method, the code has made a total of over 20000 function evaluations. It is impossible
to get a cheap solution of this problem with an explicit Runge-Kutta method (or, indeed,
with any explicit method). If we dispense with automatic step-control and attempt to ¢

use an explicit method with a fixed steplength of around 0.1, then the numbers produgéd:S; ;

1

are nonsense, and very soon overflow.

P
§
+ ++ * . \' o
+ . .
o Tyt N *. " i
et Th + K & '
et Pt Hrgat L
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~ Let us now try a different code, based on the 2-step Gauss method described in §5.11.
It has the same order (four) as RKF45, but is implicit. The step-control mechanism is
the same as in the first code, the local error estimate now being provided by Richardson
extrapolation (see §5.10). Applying this code to Problems 1 and 2 (with the same values
for TOL and h, as we used previously) gives the results shown in Figures 6.1(d) and

. 6.1(¢) respectively. For Problem 1, the code initially doubles the steplength to the value

0.2 which is retained until x = 2.0, when it is doubled again to 0.4: a total of 29 steps
are needed to complete the solution. For Problem 2, the code initially doubles the step-
length twice to the value 0.4, which is retained for the remainder of the computation,
except lor a solitary step of iength 0.8 at x = 6.4; the code takes a total of 24 steps to
complete the solution.

So, we have two similar problems whigh behave very differently when tackled
numerically. The explicit RKF45 method solves Problem 1 easily, with a fairly large
average steplength, but can solve Problem 2 only at the cost of cutting the steplength
down to an unacceptably small level. In contrast, the implicit 2-stage Gauss method
solves both problems with moderately large average steplength (and actually appears

" to find Problem 2 marginally the easier). The phenomenon being exhibited here is known

as stiffness; Problem 2 is stiff, while Problem 1 is non-stiff. Clearly the phenomenon
cannot be a function of the exact solution, since this is the same for both problems, and
Tmust be a property of the differential system itself. It is thus more appropriate to talk

- ‘of stiffl systems rather than of stiff problems. This thought suggests that we consider,

not the particular solutions of Problems | and 2 satisfying the given initial conditions,

" but the general solutions of the systems, which in turn requires us (sec §1.6) to look at

the eigenvalues of the coefficient mhatrix of the systems. (Henceforth we shall refer to
such eigenvalues simply as eigenvalues of the system, or of the problem.) For Problem 1,
the eigenvalues are —1 and ~3, and the general solution is

1 inx
[zy]=xlexp(—x)[l]+Kzexp(-—3x)[ : J'l-l:sm-‘] 6.4
y 1 -1 cos X

where x, and x, are arbitrary constants. For Problem 2, the eigenvalues are —1 and
- 1000, and the general solution is

'y]_ _ [l} 1 sin x '
' [zy =K, exp{— x) | +KZCXP(_'IOOOX)[—998}+[cosxi|' (6.5)

An explanation of the results of our numerical experiment can be made in terms of
linear stability theory. Since for both problems the eigenvalues are real. we need consider
only intervals of absolute stability. From Figure 5.2 of §5.12 we sec that the interval of
absolute stability of RKF45 is approximately {—3,0) so that for Problem 1 absolute
stability is achieved if — 3he(— 3,0), or h < 1.0; even the modest tolerance of 0.01 requires
h to be less than that, so that it is the demands of accuracy and not of linear stability
that constrain the steplfnglh. For Problem 2, however, absolute stability is achieved
only il — 1000he(—3,0), or h <0.003, and the demands of linear stability rather than
those of accuracy constrain the steplength. (In the next section we shall modify this last
remark somewhat) Earlier in this book we remarked that automatic codes for the
numerical solution of initial value problems do not normally test for absolute stability,
but rely on their error-monitoring leatures to detgct the increase in error that occurs if

A
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the steplength corresponds to operating outside a region of absolute stability, and
conscquently reduce the steplength until absolute stability is obtained. Our numerical
experiment shows the simple-minded code based on RKF45 doing just tHat; it cuts
down the steplength so that it oscillates between 0.003 125 and 0.0015 625, consistent
with the lincar stability requirement that h <0.003. In contrast, the 2-stage implicit
Gauss method has, as we shall sce later, a region of absolute stability which includes
the whole of the left half-planc, so that the lincar stability requirement hie® , holds for
all positive h when the cigenvalue 4 has negative real part; thus for both problems linear
stability makes no demands on the steplength. The reason that the 2-stage Gauss code
solves Problem | in less steps than does the RKF45 code is simply that the Gauss
method has a smaller local truncation error (for this particular problem).

6.2 THE NATURE OF STIFFNESS

In this section we consider (at some length!) various aspects of the phenomenon of
stiffness. *Phenomenon’ is probably a more appropriate word than ‘property’, since the
latter rather implics that stiffness can be defined in precise mathematical terms; it turns
out not to be possible to do this in a satisfactory manner, even for the restricted class
ol lincar constant cocflicient systems. We shalf also examine critically various qualitative
statements that can be (and mostly have been) made in an attempt to encapsulate the
notion of stiffness, and sclect the most satisfactory of these as a ‘definition’ of stiffness.
We start by generalizing the lincar stability analysis of the preceding section.
Considér the lincar constant cocflicient inhomogeneous system

Yy =Ay + o(x), (6.6)

where p, e R™ and A is a constant m x m matrix with eigenvalues 1,eC, t=1,2,....m
(assumed distinct) and corresponding eigenvectors ¢,eC™t =1,2,...,m. The general
solution of (6.6) (see §1.6) takes the form

W= 3 Kexplhne, + i), 6.7)
t=1 R

where the , arc arbitrary constants and y(x) is a particular integral. Now let us suppose
that

Re 4, <0, t=12,...,m, {6.3)

which implics that cach of the terms exp(4,x)c, = 0 as x — 00, so that the solution y(x)

approaches y(x) asymptotically as x — co; the term exp(4,x)c, will decay monotonically -
il 7, is real and sinusoidally if 4, is complex. Interpreting x to be time (as it often is in :

physical problems) it is appropriate to call 37, k,exp(4,x)c, the transient solution and
r(x) the steady-state solution. 1T |Re A,| is large then the corresponding term x, exp(4,x)c,
will decay quickly as x increases and is thus called a fast transient; if |Re 4] is small
the corresponding term k,exp(4,x)c, decays slowly and is calied a slow transient. Let
i Aeld,t=12,...,m} be delined by

[Re 1| = |Re | =|Re ki,
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so that k,exp(dx)c, is the fastest transicnt and Kk, expldx)e, the slowcsl: vlf' we solve
numerically an initial value problem involving the system (6.6) and our aim 18 to_reac.h
the steady-state solution, then we must keep integrating u.nn] thc‘slowcsl_ transient is
negligible. The smaller Re 4} is, the longer we must kecp ?nlcgrzltlpg. . how_ever, the
method we are using has a finite region of absolute stability (as did lI\.e RKF4S code
of the preceding section), we must ensurc that the slcplcn%lh h is sufficicnitly small for
hi,e®,t=1,2,...,mto hold. Clcarly a large vu_luv.: of |Re 4| implics a smu.ll stcplcng}hi
We therefore get into a difficult situation il {Re A} is very lurgc and [Re ] s very sm.nlll.
we are forced to integrate for a very fong time with an excessively small steplength. 1"h|s
is precisely what happened when we attempted to integrate Problem 2 of .lhe previous
section by the RKF45 code; it was necessary to integrate to around x = 10 if we wanted
to see the form of the steady-state solution, but the cigcn.vuluc — 1000 f’orced the
steplength to be excessiv ly small. Note the irony that the cngenvzfluc A which causes
the stability difficulties has a very short-term effect on the exact solution (6.7), and‘mdeed
none at all in the case of Problem 2, where the initial conditions happened Lo wipe out
the fast transient altogether. o

It would therefore appear that stillness ariscs when |Re A} is very I:frgc and |Re 4|
very small; it seems natural to take the ratio |Re A|/]Re Al the stiffness ratio, as a measure
of the stiffness of the system. We are now in a position to make the first of the statements
which are candidates for adoption as a definition of stiffncss:

Statement 1 A linear constant coefficient system is stiff if all of its cigenvalues have
negative real part and the stiffness ratio is large.

In Lambert (1973) (and elsewhere) this statement is adopted as a dclin}ilio.n of stiﬂpess.
However, as we hope to show by the following examplcsi. such a dcﬁmt.lon is not enurgly
satisfactory—nor indeed is the definition of stiffness rallo.'Let us consnder‘lhc following
three systems, quoted together with their general solutions. The first is the system

involved in Problem 2 of the preceding section; in order to avoid confusion, we shall
call it System 2, and the remaining examples Systems } and 4.

System 2

Wyl [ -2 1y N 2sink ]

2y 1998 —999 { %y 999(cos x — sin x) (6.9)
1y i ‘ I sinx

[2y]=x‘exp(-—x)[l]+Kzexp(— 1000x) _go3 + cosx |

A

System 3

1. -2 1 y N 2sin x l

2y | =1.999 0999 | 2y | 10999sinx —vosx)_ (6.10)

'y ! e sin x
! [2}’]=Kiexp(—X)\:l]+K2€xp(—0'opu) 1.999 * cosx |
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System 4 .
' y':| _[-0002  0.001 ]{ ' y:l N [ 0.002 5in(0.001x) ]
2 7] 0998 0999 J{ 2y 0.999[c0s(0.001x) — 5in(0.001x)] 6.11)

vl B | B 1] - [s .(o.oou)}
[zy]"“”p( x’[—m}”’exp( 0'00“)[1 "1 cos(0.001) |

lF'or System 2. 7= ~1000 and A= —1, while for Systems 3 and 4, 1=—1 and
J = —0.001; all three systems thus have a stiffness ratio of 1000.

We have already scen in the preceding section that System 2 cannot be solved by the
RK I45 code unless the steplength is excessively smali, and that this happens even in
the case when x, =0 and the [ast transient is not present in the exact solution. The
same happens even if we choose initial conditions such that x, =k, =0; in that case
the RK F45 code is unable to integrate even the very smooth solution y{x) = [sin x, cos x]7
with a steplength greater than roughly 0.003. This system is exhibiting genuine stilfness,
and the difficulties arisc whatever the choice of initial values. Note that if the initial
conditions are such that the fast transient is present in the exact solution, then we would
expect to have to use a very small steplength in able to follow that fast transient; the
effect of stiffness is that we have to continue using that small steplength long aflter the
fast transient has died. !

Now lct us consider System 3. If we impose initial conditions such as y(0),= [2, 39997,

. . Jr
which corresponds to k, = r, = 1, and apply the RKF45 code (with the préviously used
values for TOL and hy), then the steplength settles down to 0.4. This is broadly what
we would expect, since the modulus of neither of the eigenvalues is sufficiently large to
impose a stability restriction on the steplength. Of course, if we wish to reach the steady-
state solution, we must continuc the integration until the term in exp(—0.001x) is
negligible---say cqual to TOL; this implies integrating from x = 0 to x = 1010 at a cost
of around 2500 steps. The total computational effort is comparable with that for Problem
2, thus supporting the view that stiffness ratio is a consistent measure of stiflness.
However, if we change the initial conditions to y(0) = [2, 3]7, for which x, =2, K1 =0,
the slow transicnt in {6.10) is annihilated and there is no necd Lo integrate a long way
to reach the steady-state solution. There is no stability restriction on the steplength, so
there arise nonc of the difficuities we associate with solving a still system by a method
with a finitc region of absolute stability. The RKF45 code with the previously used
values of TOL and h, integrates from x =0 to x = 10 (now well into the steady-state
phase) at a cost of only 25 steps. The problem is eflectively not stifl at all' Thus, if
Statement | were adopted as a definition, the stiflness of a system would depend on the
initial conditions imposed by a particular problem—a state of affairs that would not
be acceptable for a lincar constant coefficient system.

The inadequacy of the concept of stiffness ratio can perhaps best be seen by considering
what happens in the limiting case when the eigenvalue with smallest modulus real part
is in fact zero. The contribution of that eigenvalue to the exact solution is then a constant.

If the moduli of the real parts of the remaining eigenvalues are not particularly large,

the system exhibits no signs of stifness, yet the stiffness ratio is now infinite!
The ‘stiffness’ exhibited by System 3, which is caused solely by the presence of a very
slow transient, is not the same sort of phenomenon as the stillness exhibited by System 2.

21
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It is debatable whether such systems should be called stifl at all, and we shall call them
pseudo-stiff. In contrast with System 2, for all choices of initial conditions such systems
can be integrated by methods with finite regions of absolute stability using the sort of
steplength that the exact solution would suggest was rcasonable. Note, however, that
the associated homogeneous system y' = Ay, where A is the coeflicicnt matrix in System
3, is genuinely stiff, indeed precisely as stiff as are the homogeneous systems associated
with Systems 2 and 4. It is the presence of a steddy-state solution which varics at a rate
comparable with that of the fastest transient that motivates us lo regard System 3 as
pseudo-stifl and not genuinely stitf. This remark forces us to abandon the notion that
stiffness of a iinear constani coeflicieni sysiem can be described solely in terms of the
spectrum of the matrix 4; it is essential to consider the full system 3" = Ay + @(x). Thus
Statement 1 fails, on another count, to be acceptable as a definition of stiffness.
—These conclusions might suggest that true stiffness requires that [Re(1)| must be large
in‘some absolute sense, say |Re(4)| » 1. Consideration of System 4, for which |Re Al=1.
soon dispels that notion. Here, the steady-state solution varies extremely slowly with x
and we might hope 1o be able to integrate in the steady-state region with a very large
steplength, of the order of 100. The presence of the eigenvalue — | precludes this
possibility, even in the case when x| = x,, where thé RKF45 code chooses a steplength
of 0.4; it takes a very long time even 1o see the form of the steady-state solution. which
is produced with much greater accuracy than we want. System 4 is stifl in exactly the
same sense as is System 2. (In fact il in System 2 we make the transformation x = 0.001$
and then write x for ¢, we obtain System 4.)

A statement which is frequently made in an attempt to tic down the concept of
stiffness is .- ’

Statement 2 Stiffness occurs when stability requirements, rather than those of accuracy.
constrain the steplength.

One can certainly observe this happening whén Systems 2 and 4 are solved by the
RKF45 code. It does not happen for System 3, and the statement properly separates
out the genuinely still system from the pscudo-stifl. However. the statement is not entirely
accurate. Stability is concerned with the accumulation of error, yet we recall from the
preceding section that when Problem 2 was solved by the RKF45 the initial steplength
of 0.1 was immediately cut down to 0.0 125, whercas for the non-stiffl Problem 1. the
initial steplength was accepted. THus the local error at the very first step was substantially
hig “er for the stiff problem than for the non-stiff. It is not possible to separate stability
from accuracy in quite as clear-cut a manner as the statement implies.
Another such statement that has been made is

s

Statement 3 Stiffness occurs when some components of the solution decay much more
rapidly than others

4 s
The difficulty with this-statement is that it does ‘not differentiate between the genuinely

stiff Systems 2 and*4 and the pseudo-stiff System 3. Statements based on comparing the
rate of change of the fastest transient with that of the steady-state solution come up

~ against another difficulty. Consider a homogeneous system )’ = Ay: the steady-state
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solution is zcro, and any transient varies infinitely rapidly compared with the rate of
change of the steady-state solution, so that all homogeneous systems become stiff!

Perhaps the best stalcment we can come up with-——and we shall adopt it as our
“definition’—is onc which merely relates what we observe happening in practice:
Definition  If a numerical method with a finite region of absolute stability, applied to a
system with any initial conditions, is forced to use in a certain interval of integration a step-
length which is excessively small in relation to the smoothness of the exdct solution in that
interval, then the system is said to be stiff in that interval.

This does differentiate between the genuinely stiff and the pseudo-stiff system, and
maorcover introduces the idea that stiffness may vary over the total interval of integration.
What we mean by an ‘excessively small’ steplength depends on what stage in the
integration we have reached. In the phase when the fastest transients are still alive, the
exact solution is not at all smooth; a very small steplength is natural and should not
be secn as ‘excessively small’. When the fast transients are dead, the exact solution is
smooth, and we can properly regard the same very small sieplength as being ‘excessively
small’. Note that if we adopt this definition, then we can relax the requirement (6.8) that
all the eigenvalues of A have negative real part. The definition still makes sense if A has
some cigenvalues with posilive real parts which are small relative to [Re ] 4

Let us now consider another aspect of the phenomenon of stiffness, first pointed out
by Curtiss and Hirschfolder (1952). The non-stiff and stff Problems 1 and 2 of the
preceding section were chosen to have the same exact solution. However, if we look not
just at the exact solution but at the neighbouring solution curves as well, we see very
different pictures. IFor the non-stiff Problem 1, these neighbouring curves approach the
exact solution curve at a moderalely slow rate, whereas for the stiff Problem 2, they
approach the solution curve so steeply that it is necessary to use a large magnifying
glass to sce what is happening. We blow up Figure 6.1(a) and look at a very small
interval, [4.684,4.096] of x, ncar where y(x), the second component of the common
exact solution (6.3) of Problems 1 and 2, crosses the x-axis: The graph of 2y(x) ;s shown
as the heavy linc labelled (0) in Figure 6.2. The line labelled (1) is a neighbouring solution
curve for Problem | and that labelied (2) a neighbouring solution curve for Problem 2;
both pass through the point A, where x = 4.685, y = — 0.004. The point A is very close
to the exact solution, the global error at x = 4.685 (the length of the line 444) being
—0.005. The cffect of the inevitable errors in any numerical method is that the numerical
solution point lics not on the exact solution curve but at a neighbouring point such as
A. When we cvaluate the function f(x, y) = Ay + ¢(x) at the point A (or at points very
close 1o A in the case of an explicit Runge-Kutta method such as RKF45) we are simply
cvaluating the slope of the neighbouring solution curve through A (or at points very
close to A). In the case of the neighbouring solution curve (1) of the non-stiff Problem 1,
this gradient information is a good approximation to the gradient information on the
exact solution curve (0), since the two curves are virtually parallel. Not so for the
neighbouring solution curve (2) for the stiff Problem 2, where the slope of (2) at A is
wildly different from the slope of (0) at A,. We would need to move much further up the
curve (2)—at least as far as B—before we begin to get reasonable gradient information.
In order to stay that close to the exact solution, we need to employ a very small steplength.

More can be gleaned from Figure 6.2. The argument we have given above assumes
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that the step,ahead from A will depend only on gradient information evalua{edi at A
(or points very close to it in the case of an explicit Runge- Kutta method). This is not
the case if the method is implicit. To simplify ideas, consider what would happen if we
employed the explicit Euler’s Rule, starting from point A with steplength 0.01. Euler's
Rule is equivalent to proceeding down the tangent to the solution curve through A, that
is, in the dircction labelled E in Figure 6.2, until x reaches the value 4.695. This takes
us very far away on the other side of the curve (0), and it is not hard to envisage ll_mt
a further Euler step from x =0.695 will take us even further away, demonstrating
instability. Recalling from §5.1 the interpretation of an explicit Runge-Kutta method
as a sequence of Euler steps, it is clear that RKF45 will farc no better than doces F.ulcr}
Rule. For the implicit Trapezoidal Rule however, we proceed along a direction which i
the mean of the slope at A and the slope at the new solution point. A simple calculation
shows that this is the direction labelled T in Figure 6.2, a direction which suggests that
stability can be achieved without forcing the steplength to be excessively small. Thus
by considering the geometry of the neighbouring solution curves, we can unncipz.xtc l|.\’.\‘l
no explicit mgthod will be able to cope efficiently with a stff system, but that implicii
methods may be able to do so.
The above arguments motivate yet another statement concerning stiflness:

Statement 4 A system is said to be stiff in a given interval of x if in that interval the
neighbouring solution curves approach the solution curve at a rate which is very large it
comparison with the rate at which the solution varies in that interval.

Like our definition, this statement properly separates out the genuinely stiff system from
the pseudo-stiff and stresses that whether or not a system is stiff depends on the stag
of integration we have reached. For a genuinely stiff system the nenghbounpg curve:
will indeed approach the solution curve at a rate which is very large (relunvg to the
rate of change of the solution in its post-transient phase), but which is not particularly
large relative to the current rate of change of the solution in the phase when the fastes
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transicnts arc still alive. Moreover, like our definition, Statement 4 makes sense even if
we allow the matrix 4to have some eigenvalues with small positive real part. However,
Statement 4 obviously would not make a very practicable definition in the sense that
it would tell us whether or not a problem with unknown solution was exhibiting stiffness
only after we had computed the solution (and at least onc neighbouring solution). The
same sort of criticism cannot be made of our definition of stilfness; il we attempt to
solve 4 problem involving a stiff system using a code based on a method with a finite
region of absolute stability, we will quickly become aware of the presence of stiffness
and abort the computation.

Ao analufie intarmens thiat o~y bn niy

An anaiytic inlerpretation that can oc puton t c (] !
that we have just discussed is that the function f(x, y) = Ay + ¢{x) s ill-conditioned, that
is, has a large Lipschitz constant. For such a system, small changes in the value of y
lead 1o large changes in f(x.y)(='). For our linear constant coefficient system, the
Lipschitz constant may be taken to be L= [|df/dy| = || A}} 2 max,|4,], for any norm.
Thus, for a stiff system, L is large, and indeed some authors use the phrase ‘systems with
large Lipschitz constants’ to describe stiff systems. However, this leaves open the question
‘Large relative to what?. Attempts can be made to answer this question, but such
attempts do not, in the author’s opinion, result in definitions which are superior to that
we have adopted.

The reader who is familiar with singular perturbation theory will see some connection
between that phenomenon and stiffness; indeed systems exhibiting singular perturbation
can be scen as a sub-class of stifl systems. We do not pursue this connection further,
other than to quote a very simple example. Consider the homogeneous linear constant
cocflicicnt system ' :

: 1
l:l)’]_[an anz}l: ,V]
T 2,0
’y az 4y y
where the matrix 4 bas real cigenvalues 4, 4, such that 4, « 1, < 0. By eliminating %y
and'zy' we oblain the cquivalent second-order scalar equation

an o nha
ac pacn

"V ay, +ay)"Y +(ay 4y, — aga,,) y =0.
Since 4,,7, are the zeros of the quadratic 4 —(ay, + ay;)A +(a,,a;; — a;,a;;) this
scalar equation can be rewritten as

(1720 = (14 2/4,)'y + 4, 'y =0.

As i, —» — o, we have the classical singular perturbation situation.

All of our discussions on the nature of stiffness have so far centred around the linear
constant cocllicient system. Variable cocfficient linear systems y' = A(x)y + ¢(x} and
nonlinear systems y' = f(x, y) can also exhibit stiffness, and it is such systems that present
the rea] computational challenge. In our discussion in §3.8 of linear stability theory for
lincar multistep methods, we reproduced an argument which purported to extend linear
stability theory to variable cocfficient and nonlinear problems, and showed by example
that such an argument could icad to invalid conclusions. The flaw in the argument was
the assumption that the Jacobian 4(x) or df/dy could be assumed piecewise constant
{or ‘frozen’) and that the behaviour of the resulting linear constant coefficient system

.
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gave an indication of the local behaviour of the variable cocflicient or nonlincar system.
The same ‘frozen Jacobian' argument can be used to attempl to describe the stiffness
of a variable coefficient or nonlinear system in terms of the distribution of the eigenvalues
of the frozen Jacobian. In Chapter 7, on nonlinear stability theory for stiff systems, we
shall give some further examples illustrating the invalidity of this z\p.pmach (1t was the
inability of linear stability theory to deal satisfactorily with variable 'cocl'ﬁcwnl or
nonlinear systems that led to the devclopment of an alternative stability theory.) 1t
follows that Statement 1 does not hold for variable coeflicient or nonlincar systems; the
remaining Statements do hold for such systems (subject to the reservations expr§ssed
earlier). In particular, it is invariably the casc that stilf variable cocfficient and nonlinear
systems cannot be integrated by a method with a finite region of absolutc‘: slflbilily unless
the steplength is excessively small; thus our definition of stiflness (despite its use of the
language of linear stability theory) does hold for variable cocfficient and nonlinear
systems. Consider the following nonlinear example:

‘y' = l/‘y— zﬂexp(xz)/xz - X, l_"“) =1 } (6.12)
2y = 12y —exp(x?) — 2xexp(—x2), ‘() =cxp(—1).

The exact solution of this problem is 'y(x)= 1/x, 2y(x) = exp(— x?). We see that for
x> 1 the solution decays monotonically and is smooth; the larger x is, the smoother
the solution becomes. If we now attempt to solve this problem by the RKF45 code wil'h
TOL = 10~*, we find that the total number of steps N(x) taken to reach the point x is
as follows:

.

I ¢ 12 14 16 1.8 20 22
N(x) 20 40 60 92 192 701

Our definition of stiffncss would indicatc that the system is not particularly stff fou

- 10< x < 1.6; thereafter, the steplength becomes increasingly small relative to the

smoothness of the exact (or of the computed) solution, and increasing stiffness is indicated
The numerical solution so produced is quite acceptable; at x = 2.2 the L,-norm of the
global error is 4 x 107%.

Despite the existence of counter-examples, it has to be said that analysing the stiffnes:
of a variable coefficient or nonlinear system by freezing the Jacobian and applying
Statement 1, can (and very often does) give valid qualitative (and sometimes quantitative
information about the stiffness of the system. Applying such an argument to (6.12), the
numerical solution in some interval containing the point x will be deemed stable if the
steplength there is such that hA(x)e® ,,t = 1,2, where A, is the region of absolutc
stability of the RKF45 method, and 4,,¢ = 1,2, are the eigenvalues of the Jacobian o
the system in (6.12), evaluated on the exact solution. These eigenvalues are readily founc
to be — 1/(*y)? and — 1/(*y)* so that on substituting from the exact solution we have

1= —exp(2x?), 1i=-x.

Table 6.1 compares A(MAX), the maximum steplength that the above st
requirement allows at x, with i(ACT), the actual steplength the code typically used 1
a neighbourhood of x.
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Table 6.1
x 1.0 12 14 1.6 1.8 20 22
; ' —-74 —17.81 —50.4 —167 —652 -2,981 —15,994
hMAX) 041 0.17 0.06 0.018 0.005 0.0010 0.00019
- WACT) 0.01 0.01 0.01 0.01 0.005 0.0013 0.00016

The ‘frozen Jacobian’ approach thus affords a virtually perfect explanation of what
happened in practice. Stiflness has no effect until x > 1.6; for x < 1.6 it is accuracy, not
stability that dictates the steplength (sce Statement 2). Thereafter, h(ACT) follows
hMAX) quite convincingly. Despite the excellent results that the ‘frozen Jacobian’
argument gives in this example, we will find, in §7.1, that there exist examples in which
the above procedure yields results which are not only poor, but frankly ludicrous.

In this section, the impression might have been given that stiffness is an example of
that sort of bizarre, pathologicul problem which so fascinates the mathematician but
which seldom arises in real-life situations. Let the reader be assured that this is very far
from the truth. The author is unaware of preciscly when the word ‘stilfness’ first cntered
the literature, but it probably had its origins in control theory. (Any control mechanism
which could be modclicd by a stiff system would have a strong tendency to seek the
cquilibrium solution and would feel 'stiff” in the mechanical sense.) Stiffness arises in a
wide array of real-life problems, and areas such as ehemical kinetics, reactor kinetics,
control theory, clectronics and mathematical biology regularly throw up stiff systems,
some of an awesome degree of stiffness. The author sometimes gets the impression that
the degree of stiffness that real-life problems exhibit becomes greater year by year.
Perhaps within the mathematical community there are groups of mathematical modellers
striving to produce cver morc accurate models which include the ‘switching+on’
phenomena that produce very fast transient solutions, as well as groups of numerical
analysts striving equally hard to get rid of these transients!

6.3 LINEAR STABILITY DEFINITIONS PERTINENT
TO STIFFNESS

It is clear from the considerations of the preceding section that, as far as the linear
constant cocfficient system y' = Ay + ¢(x) is concerned, if the method employed has a
region of absolute stability which includes the whole of the left half-plane, then there
will be no stability-imposed restriction on the steplength. Denoting h by k, (as in §3.8),
we have the following definition (Dahlquist, 1963) :

X

Definition A method is said to be A-stable if #,2 {h|Reh < 0}.

A-stability turns out to be a demanding requirement (particularly for linear multistep
methods) and it is natural to restrict the class of problems in some way and seek
alternative and less demanding requirements which will remove the restriction on the
steplength for that restricted class of problems. Consider the case when the eigenvalues
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A, t=12,...,m of A all lie within an infinite' wedge in the left lmlf. of the h-planc.
bounded by the rays argit =n—o,argh=n+2 (Recall lhul cqmplex e|genval.ues occur
as complex conjugate pairs.) Multiplying 2,eC by -heR 15 gquwalgnl to m9vmg alon%l
the ray from the origin to 4, and it follows that hi4, also ties within this wedge, for a

positive values of h. This observation motivates the following definition (Widlund, 1967):

Definition " A method is said to be A(a)-stable, ae(0,n/2) if # , = th| —a<n—argh<aj:
it is said to be A(0)-stable if it is A(x)-stable for some x€(0,1/2).

Clearly, A(0)-stability has some relevance to thc‘cluss of problems for which aill' of
the eigenvalues are real and negative. In that case, however. we can do bclle'r by requiring
only that #, contains the negative real axis, thus motivating the following definition
(Cryer, 1973):

' ’ " - -
Definition A method is said to be Ag-stable if &2 {hlReh <0,1m h=0}.

An alternative way of slackening the requircments of AASluhiHl.y is to argue that, l[ofr
many problems, the eigenvalues which produce lhe fastest lransgnts all lic to 'the‘ re t
of a line Refi = — a, where a > 0, the remaining cngcnvzllu@ (vwhlch are responsible for
the slower transients) being,clustered fairly close to the origin. We are thlls assuming

that there are no eigenvalucs with small ncgative real part and large imaginary part.
This motivates the following definition (Gear, 1969):

h h !
Definition A method is said to be s(ifﬂy§table iR DA VA, whcr_c':ﬁ, ={hReh< —aj
and R, = {71| —a<Reh<0,—c<Imh<c}, and a and c are positive real numbers.

+  The minimum region that is necessary to ensure A-stubilily. A(a)-.s‘(abi'lity ?11d stiff

stability are shown in Figure 6.3. 1t is at once obvious that stiff stability implies 4(«)-
ili i = arc tan{c/a). ‘

StAalt:l?st;::Istill‘)lz to argue (th/az there is a sense in which A-siabilil.y‘ far from being over-
restrictive, is not restrictive enough. Consider the Trapczc?ldal Rule, yp+y= Yot
1h(fy+y + fa), which is A-stable (see Figure 32 of §3',8), apphed‘ to thc; test ;ql{auog
y = Ay, where A is an mxm matrix with dlst!nct engenva}ues Ay satls'ymg t‘:A,<l \
t=1,2,...,m; as before, we indicate by 4 the eigenvalue with the maximum modulus
real part. We obtain the system of difference equations

Vos1 =By, B=(—hA/])" Y1+ h4/2). (6.13)
It is straightforward to check that the general solution of (6.13) takes the form
Y= 5 Ki()d, (6.14)

=1
where the K, are arbitrary constants and p,,d, are respectively the c.igcnvulucs (u‘ssun?ed
distinct) and the eigenvectors of B. The numerical solution {y,} is an approximation
to the exact solution :

= § xexpitee, = 2 mexp(sallerptin e, (6.15)
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Figure 6.3 A-stability; A(x)-stability; Stiff stability
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where the ¢,(# d,) arc the cigenvectors of 4. Now, if & matrix A has eigenvalues 4,, and
R(') is a rational function, then the eigenvalues of R(A) are R(4,). It follows from (6.13)
that g, = (1 + hi,/2)/(0 — hA,j2),t = 1,2,...,m; in particular, B must have an eigenvalue
ji such that

a=(1+ hI/z)/(l ~hi/2). ' (6.16)

Comparing (6.14) with (6.15) we see that u, approximates exp(4,h); note that |i,] < 1, so
that (11,)"— 0 as n— o0 (which must happen, since the method is A-stable). Ho»yever if
|Re Z| is very large and h not particularly small (and the whole idea of A-stability is not
to have h excessively small), then [h1] will be large, and we see from (6.16) that ji will
be close to — I. Thus the term [exp(hd)]", which tends to zero extremely rapidly as

n— o0 is approximated by the term ()" which tends to zero very slowly, and with
alternating sign, as n— oc. We can expect a slowly damped oscillating error when we

apply the Trapezoidal Rule in such circumstances.

In contrast, if we apply the Backward Euler method y,,, = y, + iif, ., then we obtain
the difference system (6.13), but with B now given by B=(I —hA)™; (6.16) is then
replaced by -

=1/t —hl}, . Y (6.17)

1S
which is close to zero when {hZ] is large. Thus the terms [exp(h4)]" and ()" both tend
to zero rapidly as n— o0, and we would not expect to see a slowly damped error.

We illustrate this phenomenon by applying both methods, with a fixed steplength,
to System 2 of the preceding section. If we apply the initial conditions of Problem 2 of
§6.1, which annihilated the fast transient, the phenomenon cannot be observed. However,
il we change the initial conditions to y(0) = [0, 0]", the exact solution becomes

U 1 1 1 sin x
A V= T exp(=x)| | {4 —exp(— 1000 +
[Zy] 999 *P! ‘)[IJ 599 *P{ ”[498] [cosx]

and the fast transient is present. Figure 6.4(a) shows the results (for the componéfll 2y
onlyj of applying the Trapezoidal Rule with the fixed steplength A =0.2 in the interval
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Figuré 6.4 (al Trapezoidal Rule. (b) Backward Euler method

0 < x < 10; the continuous line represents the exact solution and the numerical solution
points are indicated by the symbol +. (Note that the last transient dies so quickly, that
the graph of the exact solution jumps immediately from 0 to the slow transient plus

. steady-state solution.) The slowly damped oscillating error in the numerical solution is
clearly demonstrated. In Figure 6.4(b), the numerical solution for ?y, given by the
Backward Euler method applied with the same fixed steplength, is plotted; there is clearly
no slowly damped error.

In attempting to frame a defivition that separates out methods like the Backward
Euler method from those like the Trapezoidal Rule, we observe firstly that we can cope
only with one-step methods, and secondly that, since the essential point is the difference
in behaviour between (6.16) and (6.17), it would be enough to consider a scalar test
problem y’ = 1y. We thus arrive at the following definition (Ehle, 1969; Axelsson, 1969):

Definiton A on’e-step method is said to be L-stable if it is A-stable and, in addition, when
applied to the scalar test equation y' = 1y, A a complex constant with Re 1 <0, it yields
Yn+1 = R(hA)y,, where |R(h1)| =0 as Rehi - — 0

This property is sometimes called stiff A-stability or strong A-stability; the ‘L in L-stability
indicates that special behaviour far to the left of the origin is required. Note the hierarchy

L-stability = A-stability = stiff-stability = 4(«a)-stability
= A(0)-stability = A4,-stability.

09 o
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In practice, the slowly-damped-crror phenomenon exhibited by methods which are '

A-stable but not L-stable is nowhere near as disastrous as Figure 6.4(a) would suggest.
In our example, the fixed steplength of 0.2 is much too large to allow the method to
provide a good approximation during the phase when the fast transient in the exact
solution is still alive, and a large error is introduced. This error is then damped only
very slowly. A more practical setting would be to apply the Trapezoidal Rule in an
automatic code which monitored error and changed the steplength. If we do this, then
the code inilially sclects a very small steplength, but increases the steplength to a ‘normal’
value when the fast transicntis dead. We can see this happening if we apply the autematic
code based on the 2-stage Gauss method, employed in §6.1, to the above examp:. For
the Gauss method, the function R(hl) appearing in the definition of L-stability is
[V 4+ hi/2 + (Y1211 — hi)2 +(h4)*/12). The method is A-stable, but not L-stable;
clearly, R(hi)—1 as Rehd— — oo, and there would be a slowly damped (but now
non-oscillatory) crror if the method were applied to a stiff system, using a fixed steplength
with is not cxcessively small. However, when the automatic code is applied to the
above problem it chooses the foltowing initial sequence of steplengths;

0.0015625, 00015625, 0.003 125, 0.00625, 0.4, 04,....

Thetcalter the steplength stays at 0.4 except for a single step of 0.8, and the numerical
solution so obtained is perfectly acceptable. The moral is clear: never compute with a
fixed steplength, particularly if stiffness is around! .

An alternative means of removing the slowly damped error associated with methods
which arc A-stable but not L-stable is to employ smoothing, as first advocated by Lindberg
{1971)for the Trapezoidal Rule. This consists of replacing y, by §, =(Vuoy F 290+ Vo s )4,
and then using the value §, to propagate the solution. Smoothing-can be carried out
at the first p steps only (when the fast transients are still alive) or introduced whenever
the numerical solution exhibits lack of smoothness. An analysis of the effect of smoothing
on the truncation error can be found in Lindberg (1971). Let us examine the effect of
applying smoothing just once to the numerical example illustrated in Figure 6.4. Using
the Trapezoidal Rule with the fixed steplength of 0.2, we compute y; and y,, replace y,
by §, and let the computation proceed from there. The graphical solution so obtained
is indistinguishable from Figurc 6.4(b). :

Some authors appear to consider it self-evident that L-stability is to be preferred to
A-stability, but this is not always so. Consider the following example:

422 501 —42.1 !
Y= —661 —58 581 |y,  yO)=]| 0 (6.18)
261 421 -34 2

with exact solution

exp(0.1x) sin 8x + exp(= 50x)
yix)= exp(0.1x)cos 8x — exp( —50x) ‘ . (6.19)
exp(0.1x)(cos 8x + sin 8x) + exp(— 50x)

In Figurc 6.5(a), the continuous linc is the graph of the exact solution for the component
'(x), given by (6.19), in the interval [0, 1.5]; after the fast transient exp(— 50x) becomes
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Figure 6.5 (a) Backward Euler method. (b) Trapezoidal Rule

igi solution is sinusoidal, with a very slowly increasing ampliltude. The
:i%nhf:ibcl:l’ s‘:rution points given by the L-stable Backward Euler me(hod with a fixed
steplength of 0.04 are indicated by the. symbols +, and glearly give an unacceptatl))le
solution. Figure 6.5(b) shows the acceptabie results given by the A-stable but

-L- oidal Rule. o
no'rll‘hlé z;aptirn’z{zzzezf the Backward Euler’s peculinr l?ehaviour f(?r this prol?lem hes' in
the shape of its ab. Hlute stability region. This region is the exterior of the circle radius
1 and centre Reh =1, Imh =0 (sec Figure 3.4 of §3.12). and thus includes part of the
right half-plane as well as the whole of the left hall-planc. The elgcnva!ucs of the system
in (6.18) are —50 and 0.1 + 8i, and for mdderate values of h, the points h(0.1 + 8i) lie

“in the region of absolute stability; in Figure 6.6 (which shows the first quadrant of the

complex h-plane only) the position of the point h(0.1 + 8i) when h=0.2 is shown in
relation to the boundary of the absolute stability region.

| b



230 STIFFNESS: LINEAR STABILITY THEORY

(7 (0.1+ 8/
'//////////

_
-

7

(@]
n

Figure 6.6

The cigenvilues (0.1 1 8i) give rise Lo sinusoidals with decaying amplitudes in the
numerical solution, whilst the corresponding eigenvalues of the system in (6.18) give rise
to sinusoidals with increasing amplitude in the exact solution (6.19). In order to get a
numerical solution which [laithfully reprcsented the exact solution, we would need to
choose h sufficiently small for h(0.1 + 8i) to lie within the region of absolute instability! A
simple calculation shows that this implies h < 0.0031 245.

Unlike the phenomenon of the slowly damped error produced by the Trapezoidal Rule,
moving from a fixed step Lo an automatic code does not improve malters. We can expect
nothing clse; the difficulty has nothing to do with the fast transient, and therefore cannot
be expected to go away when the fast transient dies. Indeed, an automatic code consisting
of that used in §6.1, but with the Backward Euler method replacing the 2-stage Gauss
method, runs into scrious trouble when applied to (6.18). With TQL set at 0.01, it chooses
an initial steplength of 0.003 125 (by chance, almost preciscly the crucial value at which
hi0.1 + 8i) hits the boundary of the region of absolute stability) but then doubles the
steplength to 0.006 25 when x is around 0.08. That steplength is maintained for the rest
of the integration to x = 1.5, which is achieved at a total cost of 252 steps. The result
is a convincingly smooth solution, but one in which the sinusoidals decay slowly in
amplitude rather than increase. Wrong numerical results that look right are the most
dangerous ones! If we set TOL at 0.001, then the code choose$ an initial steplength of
0.000781 25, doubles it to 0.0015625 at around x = 0.06 and maintains that value for
the remainder of the integration, taking a total of 999 steps. The numerical solution
now correctly gencrates a sinusoidal solution with slowly increasing amplitude. The
disturbing thing about this example is that the automatic code proves capable of
generating convincing solutions which are not only inaccurate but which give incorrect
qualitative information. Perhaps the moral is that one should use a range of tolerances;
even if that range produced nothing but damped sinusoidals, one would notice that as the
tolerance decreases, the sinusoidals became less damped, and one’s suspicions would be

aroused. In contrast, the same code, but with the Trapezoidal Rule replacing the
Backward Euler method, encounters no difficulty; with TOL = 0.01, it initially chooses

i
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a steplength of 0.006 25, but once the fast transient is dead the steplength rises to 0.025.
and a satisfactory solution’is achieved in 66 steps.

The behaviour observed above is not specific to the backward Euler method: all
L-stabie methods are liable to behave like this when the system has some eigenvalues
with positive weal parts. For all conventional one-step ‘methods. the function R{h4)
appearing in the definition ol L-stability is a rational function, and the requirement
[R(h1)] =0 as Rehd— — oo implies that |[R(AA){—0 as Rehi— + oo, The region of
absolute stability must therefore include part of the positive hall-plane, since the method
is clearly absolutely stable for very large positive 2. Behaviour of the sort illustrated
above is bound to happen for a suitably chosen problem.

Summarizing the two pehnomena described above. we can say that methods which
are A-stable but not L-stablc will, for most problems, produce solutions with slowly
damped errors, but these errors can be satisfactorily controlled by an automatic code;
L-stable methods do not produce such slowly damped errors but can produce misleading
results, which will not be easily detected by an automatic code, when applied to an
infrequently met class of problems. On the whole, there seems to be something to be
said in favour of what we might call precisely A-stable methods, that is, methods whose
regions of absolute stability are precisely the left haif-planc; the numerical solutions of
the test system y' = Ay then tend to zero as n iends to infinity if and only if the exact
solutions tend to zero as x tends (o infinity.

We conclude by emphasizing (yet again) that although all of the definitions in this
section have been motivated by the class of linear constant cocfficient systems, they arc
widely used in the context of variable coefficient or nonlinear systems; for much of the
time, but not always, they coptinue to ma‘ke sensc.

Exercites

6.3.1. Use the result of Exercise 1.9.2 with z and w replaced by r and Ji respectively to prove that

- no explicit linear multistep method and no predictor-corrector pair in PECY'E' ', t = 0, I, where

s finite, can be A -stable.

6.3.2. The Backward Euler method applied with a sequence of variable steplengths {h,} to the
scalar test equation y’ = f(y) gives

Yue1 = Yot f(¥004) m

(i) Show that for the test equation y* = Ay, 1a real negative constant, y, = 0uasn— o forallh > 0.

(i) Consider the following novel way of applying (1). Given y,. instead of specifying /1, and solving
the implicit equation (1) for y, ,,, let us specify v,,, and solve (1) for h, which is now given
explicitly. In order to specify y,., sensibly, let us use a 2-stage second order explicit
Runge-Kutta method to estimate y,,, from y,, using /1,_, (known from the previous step)
as steplength. But the sequence {y,} obtained by such an algorithm is precisely the same as
that generated; by the 2-stage explicit Runge-Kutta method on its own (though not on the
same discretization), and cannot possibly have the property proved in (i)! Resolve this paradox.
(If all else fails, try a numerical example.)

6.3.3*. Use the Routh-Hurwitz criterion to show that the method

h
,Vnz")’..u=5(f-.4~1+2f.+|+fn) n

| ¥y
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is An-stable. Use the boundary !ocus method to find d&,. Consider a linear constant coeﬂiéient
vwrem whose eigenvalues {4,} are given by .

Ay=—jqu4i, A= —p—i, Areal, —p<i <0, 1=34,..,m

By considering where the infinite wedge containing these eigenvalues intersects o2, show that
the method is not A{0)-stable.

6.4 RATIONAL APPROXIMATIONS TO
THE EXPONENTIAL;, ORDER STARS

We saw in §5.12 that if a Runge-Kutta mcthod is applied to the test cquation for
absolute stability, y' = iy. 2eC! a constant, we obtain

Yat1 = R(’ )}m (6‘20)

where fiz= hd and R(') is a rational function when the method is implicit or ser'ni-implicit
and a polynomial function when the method is explicit. It is clear that if any implicit
lincar 1-step method is applicd o the test cquation, we again obtain (6.20) with R(:) a
rational function. The exact solution of the test equation is y(x) = Kexp(ix), K an
arbitrary constant, whenee

A M 1) = exph)y(x,) = exp()y(x,) ©621)

1.ct the method have order p; then, using the localizing' assumption y, = y(x,), it follows-

from (6.20) and (6.21) and the definition of local truncation error that

Y1 1) ¥auy = [exp(h) = R p(x,) = O(h"* ")
and hence that

R(i) = exp(h) + O(h**1). (6.22)

We are thus motivated to study rational approximations to the exponential exp(q), geC.
Let geC. and let Ri(qg). whereas S 20, T = 0, be defined by

5 ) T )
Rl;(‘l):< Z ".“f)/( Z quj)v ag=bo=1, as#0, br#0 (6.23)
i j=0 .

i=n

where a,b,eR, i=0,1,...,S, j=0,1,...,T. We say that RS 7(q) is an (S, T) rational
approximation of order p to the exponennal exp(q) if R3(q) = exp(q) +0(g"*"'). It follows
from (6.23) that we can find the order of a given rational approximation from the fact
that if

ltag+ - 4as® (0 +bg+ - +brg")l +q+¢%21+--)=0(g"*") (629

then the approximation is of order p. For example, putling S=T=2, a; =1, a, =4,

b, =0,b, = — % in (6.24), we find that p = 3. Thus the rational approximation
1+q+q%3

Ri(q)= “’*‘“;/é‘“

» §
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Table 6.2 The Padé table

1 144 1+q+4° I+q+’q’+hq
! L+39 T+3a+ed [RSUAR U
1—q 1-1q 1-14q ‘ 1-1q
1 1+4q |+1q+ q I+ q+~—q +§q
I-q+1q l_?—q_+:q_ 1-1g+35¢° I—-q+mq2
1 l+iq l+§q+#q2 i 1+3g+ 354 +”oq
1—q+ig? -1 1-Jq+ig—%a® 1-3a+30 —59 I—1q+5¢" — 59’

to exp(q) has order,3. As we would expect [rom a count of the parameters a;. b; in (6.24),
the maximum order that a R3(g) approximation can attainis S + T. Such dpprommauom
of maximal order arc known as Padé approximations, and we denote them by RT(q) It
can be shown (see, for example, Butcher (1987)) that the coeflicients of R $(q)arcgiven by

SUS+T=0 o s b=ty e ST ),= L2 T
S+ 1) iS—-0 (S+ TY jNT - )

a; =

Using these results, we construct in Table 6.2 the so-called Padé table of ﬁsr(q) for S.
=0,1,2,3. A more extensive Padé table can be found in Butcher (1987).

The linear stability properties of a one-step method which generates the difference
equation (6.20) are determined by the behaviour of R(). 1t is convenient to use the
nonmenclature of acceptability, introduced by Ehle (1969), we adopt the following
definition:

Definition A rational approximation R(g) to exp(q) is said to be
(a) A-acceptable if |R(g)| <1 whenever Req <0,

(b) Ao-acceptable if |R(q)} < | whenever q is real and negative, and
(c) L-acceptable if it is A-acceptable and |R{g)| —-»9 as Reg— —

Clearly the method is A-, Ao- or L-stable according as R(hyis A-, Ay- or L-acceptable.
It is obvious that the rational approximation Rs( ) cannot be A-acceptable il § > T, and
that if R3{(q) is A-acceptable and T > S, then R3(q) is also L-acceptable.

Our first two results on acceptablllty concern ratlonal approximations which contain
free parameters and are not, in general Padé approximations. Define

_+it—wg
Rolaio: 1= 41 +a)q .
6.25)
Riy(qia = | TR 20+ a(P =04’

1 -4t +a)g + P+ 0)q?

(We do not label these approximations according to the notation of (6.23) since § and
T depend on the values taken by the parameters a and f.) For general o, R,(q: 2) has
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order one, but has order two (Padé approximations) if « = 0; R,(g; a, §) has order two for
general o, f§, order three if « # 0, ff = § and order four (Padé approximation)ifa = 0, = i

Theorem 6.1 (Liniger and Willoughhy, 1970) Let R,(q;
(6.25). Then

a) and Ry(q;a, ff) be defined by

(@) R,(q:2)is A-acceptahle ifand only ifa > 0 and L-acceptable if and only ifa = 1,and
th Ry (qio BV is A-acceptable if and only if @ >0, 20 and L-acceptable if and only if
2=f>0.

Further results on acceptability concern the Padé approximations R3(q).

Theorem 6.2 (Birkhoff and Varga, 1965) If T =S, then R3(q) is A-acceptable.

Theorem 6.3 (Varga, 1961y If T =S, then RS Ha) is Ao-acceptable
Theorem6.4 (Ehle, 1969) If T=S+ 1 or T=S8+2, then Rsr(q) is L-acceptable.

Thus, all entries on the main diagonal of the Padé table and anywhere below that
diagonal arc A,-acceptable. Those on the main diagonal and on the two sub-diagonals
below it are A-acceptable; note that any A-acceptable entry below the main diagonal
is automatically L-acceptable. It is clear that there cannot be any A-acceptable entries
above the main diagonal, so the key question is whether there exist A-acceptable entries
in the Padé table below the sccond subdiagonal. The well-known Ehle conjecture asserted
that there are none, so that I?‘.‘,(q) is A-acceptable if and only if T—-2<S<T. This
conjecture remained unresolved for many years, and was eventually proved (with a
remarkable absence of any heavy analysis) by Wannér, Hairer and Nersett (1978), using
their elegant theory of order stars. In this book, we have adopted the policy of not
providing proofs of thcorems when such proofs do not add to an understanding of the
result. We make an exception here. Order star theory appears in many conlexts besides
this one (sce, for example, the survey paper by Wanner (1987) which uses order star
theory to prove, inter alia, Theorem 3.1 of §3.4), and some familiarity with the ideds
involved may prove helplul; besides, the proof is such a nice piece of mathematics! The
following is a sketch of how the proof goes.

The region of absolute stability #, of a Runge—Kutta or linear 1-step method is
defined by #, = {qeC||R{q)| < 1}, where R(-) is defined by (6.20). We consider, instead
of # ,, the region 4 = {geC||R(q)| > lexp(g)|}. (Note that C(%), the complement of B,
is essentially the region of relative stability, according to Criterion B of §3.8.) The region
# is called an order star, because of its star-like shape (see Figure 6.7). By elementary
apphcatnons of classical complex variabie theory, four Iemmas can be established:

Lemmal R(q)isa raunnal upproxlmauon to exp(q) of order p lfand onIy if, forq 0,2
consists of p+ 1 sectors each of angle nf(p + 1) separated by p + 1 sectors of C(®) each
of the same angle. '

(Proof follows from considering R{g)exp(—¢q)=1+Kqg?*!' +0(¢"*?), K#0 a real
constant; for sufficiently small p, where q = p exp(if), the condition |R(g}| > [exp(— g)i
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becomes Ke{Kp?*!exp[i(p + 1)01} <0(p"*?), ie. cos[(p+ 10]>0(p) il K >0 and

cos[(p+ 18] < 0(p) if K <0)

Figure 6.7(a) is a magnified view of how the order star, in the case p =5, must look

in a smali square surrounding the origim;
Temporarily writing g = x + iy,

the region 4 is shaded and C(#) is unshaded.

it is easy to see by etample that R(q) = R(x +iy) = R(x, 52

so that & must be symmetric about the real axis; thus the configuration in Figure 6.7(a)

is the only possible one.
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Lemma 2 The boundary 04 of B possesses precisely two branches which go to infinity.

{Proof follows from considering the strong increase in Jexp(q}{ as Req— oo, and its
strong decreasc as Reg — — o))

The boundary 8 is continuous; Figures 6.7(b), (c), (d). (e) show the order stars for
a sclection of Sth order rational approximations to the exponential, and illustrate some
of the possible conligurations. These figures (produced by an obvious modification of
the scanning technigue described in §5.12) by no means exhaust the possibilities for the
case p = §; the reader is invited to sketch other configurations and also to consider the
situation for other values of p. Regions of & arising from a single sector are called
fingers, and arc labelled f| in Figure 6.7, if they are bounded, .and F, if they are
unbounded. Similarly, bounded and unbounded fingers of C(%) are called dual fingers,
and are labelled d, and D, respectively. If a region stems from n sectors of # it is
called a finger of multiplicity n, and is labelled f,, if it is bounded and F, if it is pnbounded;
similar regions of C(:4) arc called dual fingers of multiplicity n and are labelled d, if they
arc bounded and D, if they are unbounded. All regions of the g-plane can be labelled
in this way; note that the sum of the subscriptsin f,,, F,,d, and D, always equals 2(p + 1).

Lemma 3 Each bounded finger of multiplicity n contains at least n poles of R(q) (a pole
of multiplicity v counting as v poles), and each bounded dual finger of multiplicity n contains
at least n zeros of R{q) (a zero of multiplicity v counting as v zeros).

{Proof follows from the principle of the argument and the fact that the argument of
R(g)exp(— ¢) can be shown Lo decrease along 04.) :

Lemma 4 R{q) is A-acceptable if and only if B has no intersection with the imaginary
axis and R(g) has no poles in the half-plane Req < 0. '

{Proof of the “if" part follows [rom the fact that [exp(g)] = 1 'on the imaginary axis and
the maximum principle; the ‘only if* part follows from the definition of #.)

{in the following, we usc the notation [x] to mean the biggest integer which is less
than or equal to x, and €~ to indicate the half-plane Reg < 0.)

t.ct R(g) be an A-acceplable approximation of order p. Then at least [ (p + 1)/2] fingers
(a finger of multiplicity v counting as v fingers) start in €~ (Lemma 1), none of which
can cross the imaginary axis (Lemma 4), and none of which are bounded (Lemmas 3
and 4). Hencee thiese [(p + 1)/2] fingers must collapse into one unbdunded multiple finger
(Lemma 2), and will therefore enclose [(p + 1)/2] — | bounded dual fingers in C~, each
of which contains at least one zero of R(g) (Lemma 3). For example, when ;7=5,
A-acceptability of R(q) means that only the configuration (b) in Figure 6.7 is possibie;
note that there are indeed 2(= [(5 + 1)/2] — 1) bounded dual fingers in C~.

The-total number of zeros of R{q) is therefore at least [{p + 1)/2] — 1. Now suppose
that R(q) = R";.(q), the (S, T) Pad¢ approximation; then p= S+ T, and lisr(q)]has S zeros.

Hénce we have S > [(p + 1)/2] — | or 25 +2 > 2[(p + 1)/2] > p, since
if pis odd
if piseven.

1
2Un+Uﬂ]={p:

We thus have that 2S+ 2> 8+ T, or S T — 2. It is of course trivial to show that we
cannot have A-acceptability if S > T, so that the Ehle conjecture is proved:

+

HANDLING IMPLICITNESS IN THE CONTEXT OF STIFFNESS 237

Theorem 6.5 The (S, T) Pudé¢ approximation, R3(q). is A-acceptable if and only if
T-2<S<T

Figurg 6.7(b) is the order star of ﬁg(q) which; by Theorem 6.5, 15 /1-uc?cplaglecr. :l(:lri
that it satisfies the requirements of Lemma 4. Figures 6.7(c) and (d) are 1 \f:;r'n‘crs(;dg
of ﬁi((ﬁ and R?(q) which are A-unacceptable; note that for both, lf\e ’rcslon / i roximu‘_
with the imaginary axis. Figure 6.7(¢) is the order star for a non-Padé R(q) app

tion of order §; sec Excrcisc 6.4.5.

Exercises

6.4.1. Execute the following program!

begin
while PATIENCE > TOL do

begin
for S:=0to 3do
for 1:=0to 3do
[use (6.24) to check the entries in Table 6.2]:

end; '

«  end.

6.4.2. Show that the method of Exercise 5.7.4 applicd (o the test equation V' = Ay generates the
(2,1) Padé approximation to exp(/td) and therefore cannot be Agy-stable. o
6.4.3. The followiné method, due to Liniger and Willoughby (1970). uses the second derivatives
of y, obtained by differentiating the differential system:

at)

n? s
, B - R ) — A2y .
ym—y,=5'[(| yapt + (=] - 4 [+ o0, = —o0n,']

By an obvious extension of the definition for a linear multistep mcthod, showr thzlll th? mclh:)d‘
i if, in additi =0 i he range of values for a anc
has order three if =} and. order four if, ll\“.lddlllob|;. a =0. Find the range ¢
B for which the method is (i) A-stable and (ii) L-stable.
R at Fi is compatible
6.4.4. Find the position of the poles and zeros of Rg(q) and check that Figure 6.7(b) is comp
with Lemma 3. ‘ )
imati is gi i 6.7 :as constructed as
6.4.5. The approximation R;(q) whose order star is given by Figure (e} w

follows. Choose the denominator to have zeros at ¢ = ;,l +1i,2 + i {check that, “’“h‘,thlts c‘holl;iz
R? Figure 6.7(c) is compatible with Lemma 3) and choose the coefficients in
of poles for R(q), Fig . S

B 4
numerator so that the approximation has order 5. Find Ri{q).
3

6.5 HANDLING IMPLICITNESS IN THE
CONTEXT OF STIFFNESS ‘

As we shall see presently, no explicit lincar multistep or cxp}icil Rl}r)ge~Kl_Jttzl method
can possess any of the properties of A-. A(x)-, Ao~ or stiff-stability; neither can a

P
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predictor - corrector method in P(ECY'E! 7 mode, where p is fixed and finite (an explicit
process). See, for example. Figures 4.1 and 4.2 of Chapter 4. Wc are thus forced to use
only implicit methods to solve a problem involving a stiff system. It might appear that
il, for example, we want to preserve the A-stability of the Trapezoidal Rule, all we need
do is use it as corrector in a predictor-corrector pair applied in‘the mode of correcting
lo convergence, when the linear stability properties of the pair will be those of the
corrector alone (sce §4.1). Alas, stilfness has another trick up its sleeve!
Consider the gencral implicit lincar muitistep method

b=

K
AVusj=h ), Bifusj ' 6.26)
j=0

It

j=0

applicd to the general problem v = f(x, y), pla) = n. We can rewrile (6.26) in the form

Ynan = h”k.[(xn#b yn+k) + lynv N (627)

where

]
k-

1
\ynz q""m}‘n*)’n* I""'yn+k—|;h):= Z (—mjyn#j+ I'ﬁjfn+j)
i=0

is & known function of previously computed values. If (6.26) is the corrector in a
predictor corrector pair, then the mode of correcting to convergence consists of allowing
the fixed point iteration

P =S VL) W v=0,1,0 (6.28)

to run until convergence is achieved. However, we recall from §4.1 that the iteration
(6.28) converges if

h< L/(Ip.IL), 6.29)

where L is the Lipschitz constant of f with respect to y. If f is assumed diflcrentiable
with respect (o v, then we may take L to be sup||df/dyll, and we have that ’

L=sup||df/dy| = max|4|=>|Rel],
]

where 4,,1= 1,2, ..., m are the eigenvalues of f/dy, X being the eigenvalue with largest
modulus real part. If the system is stiff, then {Re A} is very large, and it follows from
{6.29) that h must be very small. We are thus in a Catch-22 situation. If we use an explicit
method (o solve a still system we have to use an excessively small steplength to avoid
instability; if we use an implicit method with an absolute stability region large enough
to impose no stability restriction, we can choose a steplength as large as we please, but
we will not be able to solve the implicit equation by the iteration (6.28) unless the
steplength is excessively small! To sce how nasty this Catch-22 can be in practice, consider
the nonlinear example (6.12) of §6.2. Recall that this problem did not exhibit stiffness
until x reached the value 1.6, but that thercafter it became increasingly stiff, as witnessed
by Table 6.1, which showed the actual steplength (#(ACT)) used by the explicit RKF45
code. Suppose we were o solve the problem by the A-stable Trapezoidal Rule. In order
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Table 6.3
X 10 1.2 1.4 16 18 20 22
RACT) 0.01 0.01 0.01 0.0t 0.005 0.0013 0.000 16
h(TR) 0.25 0.1 0.04 0.01 0.003 0.0007 0.000 13

to compute the bound (6.29) on the steplength, we take as generous a view as possible
and choose L to be not supl|df/dy} but the local vatue at x of |#f/Av]l (using the
L,-norm) obtained by evaluating the Jacobian on the known exact solution. We denote
by h(TR) the resulting maximum steplength that could be used with the Trapezoidal Rule
if the convergence condition (6.29) is to be satisficd. Table 6.3 compares h(TR) with
KACT). .

We see that, once stiffness manifests itself, the convergence condition (6.29) forces the
Trapezoidal Rule to use a steplength smaller than that which stabilit forces the RKF45
code to use!

The only way out of this difficulty is to abandon fixed point iteration in favour of
Newton iteration (see §1.8); in order to save on LU decompositions, modified Newton
iteration (see §1.8, equation (1.27)) is aimost invariably employed. Applying this 1o (6.27)
gives

I—1 g 'l‘Ol AuiY) — _ v I : vl ¥ |
- ’/}kay(xnuyy“g) Ay = =y B (e )+ v WL
(6.30)

where we recall that Ayl'l, =yt 11— yU') (1f (6.30) converges. then it does so to the
solution of (6.27); accordingly, it is quite common to keep the matrix [ — hp.af/oy
constant not only throughout the iteration, but to use it for the next one or two
integration steps we well. The matrix is up-dated, and a new LU decomposition
computed, only when the iteration fails to converge.

If the system is linear, then f{x,y) = A(x)y + ¢(x) and (6.27) becomes

! U = BBy A+ 1) In+a = Mo (xain) + (6.31)

and the computational cost per step is one LU decomposition and back substitution.
If A(x) = A4, independent of x, then the same LU decomposition is used throlighout the
interval of integration. Note that if we put f(x, y) = 4(x)y + ¢{(x) in (6.30) we obtain

- hﬂ,(A(x,,,,,,)]ZyL'l,‘ = - ,V!.v\lsk + "ﬂu[A(X..u)yE.‘h + @lx, )]+ v,
= - [l - hpkA(xr&k)]yL‘lk + h/}k(p(xn+k) + q’m

. ’

v=0,1,...

whence

(- hﬂkA(xn*'k)]}ILv:k” =hfo(xp ) + Vo, v=0,1,...

which states that the iterates '}, ,v = 1,2,... are ali equal to the solution for v, , given
by (6.31). In other words, Newton iteration (now identical with modified Newton
iteration) converges in just one step when the problem is linear.
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. Sifn?lar difficulties arisc if we attempt to usc fixed point iteration to implement an
|mp||c1t'R'unge~Kuua method; the notation is now a little more complicated. Consider
an implicit s-stage Runge-Kutta method specificd by the Butcher array

¢ A
hT

1tis marginally easier in this context to use the alternative form (5.6) of the method:

Va1 =Y.+ h Z bif(x,+c;h, Y})
i=1
' . (6.32)
Yi=y 4+ 1Y ayfix,+c;hY),  i=12..s

j=1

The sccond of (6.32) may be written as

Y = F(Y), (6.33)
where
V=YL YL Y ) eR™ F(Yy=[F[,F],..  FT]eR™
and
Fom (N =y 4 0 Y ayf(o+ oY), =12 s
j=1

The fixed point iteration

Y= pyty, v=0,1,... (6.34)

will converge il 0 < M < 1, where M is the Lipschitz constant of F(Y) with respect to'

Y: assuming differentiability we take M to be sup{ dF/dY|. Now'

a,0f/0y a,,0f/dy a,,0f/0y
apjay = n| OS1y andffoy -~ ayafioy
gy (jf/ay a520f/ay as:af/ay

Using the notation of dircct products, described in §1.11, we can write

OFJAY =hA®2[/dy. (6.39)

By Property (3) of §1.11, the eigenvalues of dF/3Y are hud,i=1,2,...,5,¢="1,2 ..., m,*

where the y; are the eigenvalues of A and the 4, those of 3f/dy. The eigenvalues U
ficpcnd only on the method, and are not particularly small in practice, and if the system
is stifl then {2} contains an eigenvalue 1 where |Re 1] is large. It follows from an
argument analogous to that used for implicit linear multistep methods that 8F/3Y has
cigenvalues with large modulus, and that the iteration (6.34) will converge only for

t,

) P

B3
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Table 6.4
X 1.0 1.2 1.4 16 18 2.0 22
h(TR) 0.25 0.11 0.04 0.01 0003 00007 " 0.00013
 h(2G) 0.29 0.13 0.05 0.01 0.004 0.0008 0.000 14

excessively small steplengths. As an illustration, consider the 2-stage Gauss method
applied to the nonline..r problem (6.12). A calculation;similar to that which led to the
results displayed in Table 6.3 can be used to establish the maximum steplength h(2G)
which can be employed with the 2-stage Gauss method if the iteration (6.34) is to
converge; Table 6.4 shows that the restrictions that convergence of the fixed point
iteration imposes on the 2-step Gauss method are comparable with those it imposes on
the Trapezoidal Rule.

Once again, we are forced to replace the fixed point iteration (6.34) by Newton or
modified Newton iteration; applying the latter to (6.33) and using (6.35) gives

Iy — hAQ@NHAYM =T,

]

v=0,1,... (6.36(a))

where

J E—(Y""), Aybl— ytiybl b=y F(YP) (6.36(b))
y

and I, is the ms x ms unit matrix. Note that (6.36a)) requires us to compute, at each
integration step, a single LU decomposition of an ms x ms matrix, and a new back
substitution for each call of the iteration. The LU decomposition is the expensive part,
particularly since the dimension of the matrix may be quite large. 1t is possible, in some
circumstances, to reduce this computational effort by utilizing, as follows, a transforma-
tion due to Butgher (1976). '

For any s x s matrix A there exists a nonsingular matrix H such that

wow, 0 0 0
0 p w, 0 0
M=H'"AH = : (6.37)
0 0 0 pu_, o,
o - 0 0 0 I

where p;,i=1,2,...,5 are the cigenvalues of 4 and the w; are all either 0 or 1; this is
the Jordan canonical form of A (see, for example, Gourlay and Watson (1973)). Il the
y; are all distinct, then w;=0,j=1,2,...,s— 1, and M is a diagonal matrix_whose
elements are the eigenvalues of 4. Consider the transformation [rom YU Mo Y0, TV
given by

= (H @IIYY,  TM=H T @1 (6.38(a))
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where I, is the m x m unit matrix. By Property (2) of §1.11, the inverse transformations
are o
) ) 1
YMl=(H®I, )Y, M=H®I,)M". (6.38(b))

Defining A= ¥ 11— ¥ (6.36) becomes
(Iy— hA@NH® LAY =(H®I,)[ ™
or
(Lo~ hH®1,) (AR I)H®1,) AT =T,
Now, using Propertics (1) and (2) §1.11 and (6.37), we obtain

H®L) ASNH®IL)=(H ' @L)AH®)) = H AH®J = M®J.

1 §
We thus have that

(I~ MMNAY =T, v=0,1,... (6.39)

which is the modified Newton iteration now couched in terms of the transformed
variables ¥, The crucial difference between (6.39) and (6.36(a)) is that whilst
the latter required the LU decomposition of an ms x ms matrix, (6.39) requires s LU
decompositions of the blocks I,, — hyt,J; the computational effort is proportional to sm?
instead of (sm)?, a considerable saving. The saving is even greater il the Runge-Kutta
method is one of the class of singly-implicit (STRK) methods described in §5.11. For
such.methods, the y, are all equal, and there is only one LU decomposition to be
performed at each integration step, giving SIRK methods a level of efficiency approaching
that of DIRK methods. Note that the procedure described here is less attractiye if the
matrix A has complex eigenvalues; in that case, the transforming matrix H in (6.38) will
also be complex, as will be the transformed variables Y1 P We conclude with two
ilustrations.

Miustration 1 Consider a 2-stage implicit Runge~Kutta method for which the
malrix A has real distinct eigenvalues j, and u,. Then

: I, —huJ 0
M:[“' o L—hM®J=| " ]
B 5 0 1, —huyJ

We compute two LU decompositions of m x m matrices, namely I —hp,J =L, U,,
l,—huyJ = L,U,; then ‘ '

12,,,~I:M®J=[L'U' 0}:1,0,
0 LU,

L= L, OJ' U=[U‘ 0].
0 L, 0 U,| -

where

LINEAR MULTISTEP METHODS FOR STIFF SYSTEMS 243
i
Iustration 2 Consider a 2-stage singly implicit method; the matrix A has an
* eigenvalue g of multiplicity 2. Then

1 1, -1 —hJ
M=[" ] L —hM@J=| Mo
! 0 1, —hpd N

We compute the single LU decomposition i,,, —hpd = LU, then

LU —hJ
Ly, —hM@J=] ' ‘|=LU,
’ ® [0 LU,
L=[L, 0]'
0 L,

4

6.5.1. Hliustrate the use of the Butcher transformation by computing one step, of length 0.1, of
the numerical solution of the problem ' =ip, v’ = 5(1 —u?)p —u, u(0)=2,0(0)=0 by the
Runge-Kutta method with Butcher array

2-ya | -

where

U=[U' ~hl,|".l].
o U

Exercise

4

'2+\/2 |+3)Z,2, ]+\/2
4 4

W2t a2

2 8 2 8

6.6 LINEAR MULTISTEP METHODS FOR STIFF SYSTEMS

If one is looking for methods with any of the linear stability properties defined in §6.3.
the class of linear multistep methods does not provide a particularly good hunting
ground; happily there is one notable exception (the BDF) to this statement. Just how
difficult it is for linear multistep methods to achieve A-stability is spelled out in the
following theorem:

Theorem 6.6 (Dahlquist, 1963) (i) Ar: explicit linear multistep method cannot be A-stable.
(ii) The ordex of an A-stable linear multistep method cannot exceed two. (iii) The
second-order A-stable linear multistep method with smallest error constant is the
Trapezoidal Rule. ‘

In other words, if we insist on full A-stability, the Trapezoidal Rule (which, earlier in this
chapter, may have seemed to be just a conveniently simple example) is the most accurate

|
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linear multistep method we have! Theorem 6.6 is often known as the second Dahlquist
harrier. {Recall the first Dahlquist barrier, Theorem 3.1 of §3.4) It is of interest to note
that order star theory (scc §6.4) can be used to provide a proof of this theorem
(Wanner, 1987). Implementations of the Trapezoidal Rule for stiff problems usually
incorporate the smoothing procedure described in §6.3 and an cxtrapolation technique
which effectively raises the order to 4; local error estimation is usually achieved by
Richardson extrapolation (see §5.10).

A linear [-step method which can be of value in the context of stiffness is the Theta
method, )

Ynsr = Ya=hl1 =0V f, .y +01,]. (6.40)

It has order only | in general, and order 2 if 0 =1, when it becomes the Trapezoidal
Rule. Applying (6.40) to the test equation y' = 1y gives

Vo PR 11— N = . 4
R RN | ( i ())h Vn i Vn 1 ( )

where R (;°) is defined by (6.25) of §6.4. It follows from Theorem 6.1 of §6.4 that the
Theta method is A-stable if and only if 8 < 1. One way in which the free parameter 8 in
(6.40) can be gainfully employed is in the technique of exponential fitting (Liniger and
Willoughby, 1970). A method is said to be exponentiaily fitted at a (real) value Ao if,
when the method is applicd to the scalar test problem y' = 2y, y(xo) = yo, it yields the
exact solution. If the Theta method is applied to this test problem, we clearly get y, =
LR (hdg; 1 —20)1"y,, which coincides with the exact solution y(x,) = y, exp(Ao(x, — Xo))
if exp(Aoh) = R {hio; I — 20). From {6.41), this is equivalent to choosing

1 exp(hiy)

0=~ -
hly 1 —exp(hiy)

(6.42)

For alt ha, <0, the value of 0 given by (6.42) satisfies 0 <3, so that A-stability is
preserved. If, for the linear constant coefficient system y' = Ay, stillness is caused by an
. isolated real ncgative cigenvalue of A, exponential fitting to that eigenvalue (estimated
by the power method) gives good results. If the stiffness is caused by a cluster of such
eigenvalues, then it can be beneficial (o fit exponentially to some mean of the eigenvalues.
For variable coeflicient lincar and nonlinear systems (subject as always to our
reservations about ‘frozen Jacobians’), the same technique can be applied, with periodic
updating of the estimate of the dominant eigenvalue,
Turning to lincar multistep methods with less than full A-stability, we meet more
barriers, but less fearsome ones: :

Theorem 6.7 (Widlund,  1967) (i) An explicit linear multistep method cannot be
A(O)-stable. (i} There is only one A(0)-stable linear k-step method whose order ¢xceeds k,
namely the Trapezoidal Rule. (iii) For all ac[0,r/2) there exist A(a)-stable linear k-step
methods of order p for whichk=p=3, k=p=4.

Theoren 6.8 (Cryer, 1973) (i) An explicit linear multistep method cannot be A stable.
(i) There exist Aqy-stable linear multistep methods of arbitrary order.

R
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Table 6.5
k 1 2 3 4 5 6
Opax  I0° 90° 88° 73 52 19
a0 0 01 071 24  6d

§

If, in Theorem 6.7(iii), we relax the requirement that methods be A{a)-stable I'or' all
ae[0, n/2), then we can easily find k-step methods of order k for k~> 4 that are Av(a)-stdbl?
for specific values of a. The most notable class of such mecthods is l'hul consisling of llkI
k-step backward differentiation formulae (BDF), k=1,2....,6, .denvcd in §3.12. (Re‘c.al
that these methods are zero-stabie only for k < 6.) From the regions of absolute slub!llly
for the BDF, shown in Figure 3.4 of §3.12, we sce thal ilAis more 'nalum.l to cgns:d.er
stiff-stability rather than A(x)-stability; indeed the definition of stiff s;f\blllly given in
§6.3 is virtually tailor-made for the BDF. All of the BDF, k <0, are stlfﬂy‘smble (and
therefore A(x)-stable); Table 6.5 lists the maximum yalue o_f@ and the minimum value
of a, the parameter appearing in the definition ol stiff stability. ‘

One can see by the following informal argument that the BDF are likely to be
well-suited to dealing with stiflness. Recall from §3.8 the sl.ublhly pqunomml
n(r, h):= p(r) — fo(r); for a stiff system |h] will be large, and n{r./) 'wnll be dominated by
ha(r). 1t would therefore seem a good idea to choose a(r) so that I.lS roo(§ are all safely
inside the unit circle, and where safer than at the centre of the unit circle? Thus we are
led to the choice o(r) = r*, which (together with the implicitness that Theorem 6.7 demands
and the requirement that the order be as high as possible) deﬁpes the BDF. . A

The BDF are central to the construction of efficient algorithms for hapdlmg Sll'ff
systems; they play the same rolg in still problems as the Adams mclhods do in non-stilf
ones. Although the use of the BDF for stiff problems goes back to Curtiss and Hirschfelder
(1952), their implementation in VSVO form stems from the work of Ggar (I.969). Such
implementations have essentially the same structures as those we described in Chapter
4 for non,stiff problems. The basic differences are that the Adams—-Moulton correctors
are replaced by the BDF and the (truncated) fixed point iteration of the corrector is
replaced by modified Newton iteration (as described in §6.5). pursued to convergence.
Newton iteration (unlike fixed-point iteration) does not converge fgr an arbltr‘ary starting
value, but only for one sufficiently close to the solytion, so that it is esscnt.mlmas well
as desirable from the point of view of efficiency —that an accurate starting .value be
provided. Robertson and Williams (1975) showed that if one attempts ‘lo obtatn such a
starting value by means of a predictor which involves any of the previously computed
f values, then trace$ of the fast transient solution are liable to pollute the predicted
value and lead to loss of accuracy (another manifestation of the fact that when a system
is stiff f(y) is an ill-conditioned function). Prediction by extr.apolation of previously
calculated y-values only is preferable. To be more specific, consider the k-step kth-order
BDF in standard form (see (3.115) of §3.12),

k
! Z @Yn+j=hBSasns o = 1. (6.43)
j=o0
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The order is k and the crror constant Cy, . If the predicted value for y,., is to have

order k then it will be necessary to interpolate the k+1 points (X,4 Vasjh
j=—1,0,1,....k— 1. From (1.30) of §1.10, the appropriate interpolant is

k _— . .
Ik(xn‘k“l +rh) =:Pk(r)= Z (— l)’( ir)V'y,.ﬁ-.-
: i=0

Putting r = 1, we take vI%, 10 be I,(x,,), whence
o =1\ & e
Yore ™ L(_I)k i )VynH(_l: 2 VVark-1 (0.44)
i=0 ! i=0

1t is still possible to apply Milnc’s estimate for the local truncation error. 1f we regard
{6.44) as a lincar multistep method then by (1.31) of §1.10 it has order k and error constant

-1
P I =1,
Cra=(=1 (k“) ,.

From (4.11) of §4.3 we have that
PLTE= —*25- (=) (645)

where v, ,, is the solution of (6.43) obtained by modified Newton iteration.

Thus. the building blocks for a VSVO algorithm are all available, and a development
parallel to that we have discussed in detail in Chapter 4 for ABM methods is possible.
In particular, two aspects of the BDF can be exploited; firstly, the BDF can be
conveniently expressed in backward difference form (see (3.117) of §3.12) and, secondly,
the kth-order BDF is cquivalent to setting f, ., equal to the slope of the interpolant
through (., ¥aajh F=0.1,.. .k {again, see §3.12). Further details can be found in
Prothero (1976) and Brayton, Gustavson and Hachtel (1972). Finally, we mention two
aspects of VSVO implementations of the BDF which do not arise in similar imple-
menlations of the ABM. If the system is large and complicated, then linding analytically
the elements of the Jacobian matrix can be an onerous task (but a symbolic manipulator
can help); accordingly some codes estimate the derivatives J'f 18y by differencing.
Secondly, there can be a choice of strategy in the initial phase depending'on whether
the user wants (o sce an accurale representation of the fast transients or is content
merely to sce the solution after such transients are dead. :

The codes DIFSUB. GEAR and EPISODE, referenced in §4.11, all have stifl options.
(It is possible for codes to determine automatically whether or not to use stiff options;
sec, for example, Shampine (1982).) There also exist variants of GEAR adapted for
particular circumstances. Thus GEARB- (Hindmarsh, 1975) is intended for problems
where the Jacobian is large and banded; one important instance of this situation arises
when a partial differential cquation is semi-discretized—a topic we shall touch upon in
§6.9. GEARS (Spellman and Hindmarsh, 1975) is appropriate for problems where the
Jacobian is large and sparse. Finally we mention the code FACSIMILE (Curtis and
Sweetenham, 1985) which deals only with stiff problems; a survey of this code can be
found in Curtis (1987).

s o
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Exarcises

6.6.1. Show that the Trapezoidai Rule is exponentially fitted at 0 and that the Backward Euler
method (and indeed any one-step L-stable method) is exponentially fitted at — co.

6.6.2. By subtracting y!%,, given by (6.44), from y,., and using the fact that y,se-1 =1 = VI¥esn

R
find an alternative derivation of (6.45).

6.6.3. The Implicit Midpoint Rule

Y-H‘Yn=hf(%(xn+xnn)v§(}'n+)'nu)) (1)

]

is a close relative of the Trapezoidal Rule .
Ynﬂ“yn=%h[f(-"nhynu)"'f(-"m)'..)]- ‘ (2)

{It is indeed its one-leg twin; see §7.4.) Show that both methods give the same result when applied
1o the scaler test equation y' = 1y, and deduce that (1) is A-stable. Show, however, that when
both methods arc applied to the scalar test equation y' = A(x)y, A(x) <0 for all x, all of whose
solutions tend to zero as x tends to infinity, then all solutions of (1) satisfy y, -0 as n— oo for
ali h > 0, but those of (2) do so only if h satisfies a’condition of the form 0 < h < H{(x,, x,+,). Find
H(x,, Xo+ 1). Devise and carry out a numerical experiment to illustrate this result.

6.7 RUNGE-KUTTA METHODS FOR STIFF SYSTEMS

It is much easier to find impligit Runge-Kutta methods—as opposed to linear multistep

' methods—with the linear stability properties defined in §6.3; of course, as we have seen,
implicit Runge-Kutta methods are more expensive to implement than their linear
muitistep counterparts. We saw in §5.12 that when an s-stage Runge-Kutta method
with Butcher array

'. ’ bTA

is applied to the usual scalar test equation y' = Ay, AeC, it yiclds the difference equation
Vus1 = R(ﬁ)y,,, where R(fz), a rational function of I, is the stability function and h = ha.
In §5.12 we derived two alternative forms (5.86) and (5.87) of R(h); for convenience, we
reiterate them here: '

Ry =1+ hb"(I —hA) e (6.461)
I T
R(h) = w (6.46ii)
det(I — hA)

where e=[1,1,..., 1]7eR. The method will be A-, A¢- or L-stable according as R{(h)
is A-, Ao- or L-acceptable. We have already observed that when the method is explicit,
(6.46) implies that R(h) is a polynomial in h, and there is no possibility of the method
having any of these stability properties. In §5.11 we provided several examples of implicit
and semi-implicit methods, and all we need do to establish their stability properti~s is
to use (6.46) to determine R(h) and then use the results of §6.4 on the acceptability ol
rational approximations to the exponential. However, it can be heavy work applying
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cither of (6.46) to specific examples, and we can obtain the resuits we want much more
casily, and in greater generality, by employing an argument used in §5.12.

Consider first the class of Gauss methods described in §5.11. The s-stage Gauss method
has order 25, which mcans that when applied to the test equation y' = Ay it will produce
Yns1 = R(h)y,, where R(h) = exp(h) tO(hl” '), that is, R(h) is a rational approximation
of order 2s to the exponential exp(h). By (6.46ii), the numerator and denominator in
R(h) are polynomials in h of degree at most s. Since there exists a uniquAe (s, 5} rational
approximation of order 2s to exp(h), namely the Padé approximation RI(h), it follows
that R(fn) = R;(h), which, by Theorem 6.2 0 §6.4, is A-acceptable. Thus all Gauss methods
arc A-stable. We note that this implies the existence of A-stable implicit Runge-Kutta
methods of arbitrarily high order.

For the remaining classes of fully implicit methods described in §5.11 we use an
approach duc to Dekker and Verwer (1984). The essential point is the structure of the
matrix A —eb" appearing in (6.46ii). We shall establish this structure merely by
observation of the examples quoted in §5.11, so that our stability results will be formally
proven only for these examples. The extension to the general case can be found in
Dekker and Verwer; alternative proofs can be found in Butcher (1987). First let us
consider a tempting argument, which is false. Take, for example, an s-stage Radau
method, which has order 25 - 1. We could attempt to show that the denominator in
R() has degree s, and then deduce from an order argument that R(ii) was the (s — 1,5)
Pad¢ approximation; the flaw is that it could equally be an (s, 5) non-Padé approximation
of order 25 — 1. The valid argument goes as follows.

From the examples of §5.11, we observe that the matrices A — ebT have special forms,
from which follow the corresponding forms of I — il(A — eb"), we then apply (6.46ii). All

matrices are 5 x s; the symbol + denotes a constant element, independent of h; and =
one which is of degree at most 1 in h.

Radau 1A ,
0 + + -+ B TP
A-eb"=l0 + + + |, l—il(A-ebT): 0 s x o #|
0 + + o + O * * e »

Expanding det[f — h(a — eb")] by the elements of its first column, we see that itisa
polynomial in & of degree at most s — 1. Since det(I — iIA) has degree at most s in h and
the approximation has order 2s — 1, R(h) must be the (s — 1,s) Padé approximation. By
Theorem 6.4 of §6.4, the methods are all A-stable, indeed L-stable.

Radau 1A
oo+ 4 LI SRR
+ + e+ + v e
A—ebl = , l—il(A-ebT)=
+ + + + * * * *

<
(=]
<
<
(=]

gt o

i

.
T

- ek
-
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! . .
h fits last row and arguing as in the
ing det[I —h(4 —eb™)] by the elemer}ts 0 ; ng a;
E:sia:;img Rad[au 1A, we see that R(h) is again the (5~ 1,s) Pade approxlma\tvlon, and
the methods are L-stable.

Lobatto IlIA

*

+ v £ £ e % %
N : : + * * L
+ ) .
A—eb’=]| , I —h(A—eb")=| :
‘ + -+ + P
; o - 0 0 00 - 01

On expanding, we see thal det[I — f:(A — eb")] has degree at mogt s—lin g yorzgl\/e;ré
det(/ — hA) n(;w has degree at most s— |, and, since the order is 2s — 2, R(h} mbl
t;:e (s — 1, s — 1) Padé approximation; by Theorem 6.2 o[ §6.4, the methods are A-stable.

Lobatto /lIB

I & - % *
0 + - + + | L
o+ - 4+ + A . 0 =
T=]: , I—hA—eb)=
AT 0 * - *x %
0 + + 4 0
. x
Lo + + o+

h By degree at most s — 1 in h, and
i — h(A — eb")] and det(I — lrA) both have '
2%3)":\:::%2 the( (s— l,s)— 1) Padé approximation and the methods are A-stable.
L]

Lobatto /IC

0 AT S + | * * *
N ¢ o * x
o + - + + - hr)
A—ebT =] , I—hA-ebD)= L.
0o + - + + 0 .
e %
o 0 - 0 0 *

i _ ii(A — eb™)] has degree at most s— 2 in h, while
ding, we see that det[I — h(4 eb 3] ' h, wh
g;:(;’?:‘/“)‘gi degree at most s. Hence R(h) must be the (s — 2,5) Padé approximation
and by Theorem 6.4 of §6.4 the methods are L-stable.

esults are summarized in Table 6.6. . o
:}-'::n?:o:(e) ;cmi-implicit methods, a straightforward calculat_lon using ellherrofs(él.]%)
shows tha% for the pair of 2-stage DIRK methods of order 3 given by (5.76) of §5.11,

; 1F /33— (1 + /36
R(h) = - 202
W= 3+ /3 + 2+ SI/6
Recalling the general (2,2) non-Padé approximation Rz(fn; a, ) given by (6.25).of §6.4,
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Table 6.8

s-stage ility . '

Stability Linear stabili
RK method Order function A(A) propc:ty "
Gauss 2s R*(h

Rih) A-stabilit
Radau 1A, 1A 25~ 1 R~ Y(h) L 'ability
Lobatto A, HIB 252 R \(h) A b"y
Lobatto 11C 22 i

25-2 R h) L stability

:‘ee that R(h)‘z Rzl(h; a, /{) la=1+ 2\/5/3 and f1 = 1/3. It follows from Theorem 6.1
e samc scction that R(h) is A-acceptable onl ;
‘ : ylora=1+2/3/3 and th i
l.|dhlc ‘(‘)nliy lfwbc l;(\é(gl;llc upper of the alternative signs. For the \3-[sl/age DlRlztr!(15c.t7h6(l(;§
rder 4 given by (5.77), R(h) is a (3, 3) non-Padé a i i ich i

giv 3) pproximation which is not i
dlcd, since we have no result similar to Theorem 6.1 for (3,3) app:l:xirs:a:iaos:sy
wever, il can. be shown (sce, for example, Butcher (1987)) that only one of the lhrcc‘
~h'ods. that given by the choice v =(2/\ﬁ) cos(10°), is A-stable
“inally, consider the 2-stage SIRK method (5.78) containing a parameter u; it has

cr 2in genceral and order 3 il u=(3 + . /3)/6. 1 i
L ] . It turn i
rer than (6.46i1) to cstablish R(h), whicI:/i; given by * oul to-be casier to use (6461

L+ = 2uh + (n? —2u+ )l-)ilz
| — 2uh + p?h?

R(h) =

ch is identical with thfn, afyifa=4p—1, f=(2u— 1)’ 1t follows from Theorem »

(hat "lvae A-acceptable for p 2 §; the method can be A-stable and have order 3
y il we choose jo= (3 + \/3)/6. It also foliows from Theorem 6.1 that the method will
{,‘_slablc Mpu=14 JZ/Z. but the order is then ony 2. "
tis clcar.lhal we have no difficulty in finding implicit or semi-implicit Runge-Kutt
hods, W'hICh arc A- or L-stable. Any of these methods could, with no cspeciagll hc:ava
gramming effort, be made into an automatic algorithm. Step-changing is no foblen‘y
) c'snmallon of the local truncation error can be done either by Richards:n extra
anor'1 or by embedding (sec, for example, Burrage (1978a)). For algorithms based
C{(phcn Runge Kutta methods, using embedded methods for error estimation wa
siderably morc efficient (in terms of the number of function calls per step) than usins
hardson_g:xlrapolmion. The advantages of embedding for algorithms based on implicigl
hqu are much less significant, since the major computational costs arise fro.. the
idling of the implicitness, discussed in §6.5. i
Algorithms constructed in this way will work—and often be very robust—but, in
ns of emciency, they will fall well short of the BDF-based VSVO codes dcscribeci n
preceding section. To make implicit Runge-Kutta algorithms competitive one must
QOwn as much as possible the computational effort of handling the implicitness. In
lufular, use of the Butcher transformation in conjunction’ with SIRK methods
cribed in §6.5, reduces the costs to a level comparable with that of VSVO codest
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STRIDE (Burrage, Butcher and Chipman, 1979) is a variable order code which uses

this approach.

Exercises

(Use both forms of (6.46) in the following exercises.)

6.7.1. Show that the method in Exercise 5.7.4 is not A-stable.
n Exercise 5.7.7 1s A-stabie, and show ihai iheie

6.7.2. Find the range of B >r which the method i
are two values of f for which it is L-stable.

¥
6.7.3. Investigate the stability of the method in Exercise 6.5.1.
6.7.4. Find the order of the implicit method

h h 2h h Sh
k, =[(x,,y,+zk‘ ~Zk,), ky =f(x,.+ —3-‘\',,+ 4k, + 12k1>

h
Yasr T ¥ T i(kl + 3‘(2)

and show that it is L-stable.

6.8 METHODS INVOLVING THE JACOBIAN

Although stiffness was known 1o users from a much earlicr data, interest in the topic
amongst numerical analysts stems from the seminal paper of Dahlquist (1963), which
first defined A-stability. Since then, there has appeared in the literature a large number
of suggested techniques, ranging from the ingenious to the bizarre, for dealing with
stiffness. It is not practicable to survey all of these here, and we restrict our attentions
to classes of methods, of general applicability in the context of stiffness, which have a
common theme: the major classes we have studied, namely linear multistep and
Runge-Kutta methods are modified so that they directly involve the Jacobian of the
system, and are thus adaptive. The motivation for this is obvious. Stiffness requires that
implicit equations be solved by Newton iteration, which in turn demands that we evaluate
the Jacobian of the system; so why not try to use the Jacobian in the method itself?

The first such class we look at constitutes a sub-class of the so-called Obrechkoff
methods, which are methods of linear multistep form but which involve higher derivatives
of y. Such derivatives can be obtained by repeatedly differentiating the' system of
differential equations, as we did at the start of §5.4. We saw there that this procedure
can soon get out of hand, particularly if the system is large, so we restrict our attention
to the case when only first and second derivatives of y are involved. As we saw in §1.4,
there is no loss of generality in assuming that the system is autonomous, so that we
take y' =f(y), whence y” = (3f/dy)f =:/""(y), The general k-step Obrechkofl method
containing up to second derivatives is given by

& [ . 3
lzoa}y-ﬂ=h Z ﬂ;f.#;'*’hz Z ij:llp o =1, jagl + 1Bol + 1¥0l #0. (647)
= j=0 J=0
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Order is defined in an obvious manner analogous to that for lincar multistep methods.
The stability polynomial is clearly n(r; h):= p(r) — ho{r) — h*w(r) where p(r), ofr) and wi(r)
are polynomials of degree k in r with coeflicients a,, B, and y, respectively. Enright
(1974a) advocates the use for stiff systems of the sub-class of (6.47) defined by

k
Yaor = Yasr-y =h 2 ﬂjf.+1+hz)’nf:.l¢)u (6.48)
J=0
which have order p =k + 2. The choice p(r) = * — r* 7! cnsures, as for Adams methods,
that the spurious roots arc situated at the origin, and the argument we used in §6.6 to
motivate the BDF cqually motivates the choice wf{r) = r*. Indeed, Enright shows that
the class (6.48) is stillly stable for k < 7 and A-stable for k = 1,2. Tables of the coeflicients
appearing in (6.48) together with the angle o of A(a)-stability and the parameter a
appearing in the defigition of still stability can be found in Enright's paper. There is an
additional bonus in using Obrechkofl methods, namely that the error constants are
considerably smaller than those of linear multistep methods. Table 6.7 compares the
error constants of Enright’s methods with those of the BDF and the Adams-Moulton
mcthods of orders 3,4 and S.
Handling the implicitness presents some new difficulties. Modified Newton iteration
is of course necessary, but now the implicit equation to be solved (analogous to (6.27)
of §6.5 for linear multistep methods) is

Yook =hBf(Yasn) + thnf“,(y,.n) + V¥,

The formula for modificd Newton iteration is an obvious modification of (6.30), the key
difference being that the matrix multiplying the increment Ay, ., becomes

§

) 0 ,
l—hﬂ.l~h’n#/“’ (6.49)
dy ady
evaluated at v, ,,. Since [!"'=(3f/dy)/, the second derivative of the components of f

with respect 1 those of y will appear in (6.49). Following a suggestion of Liniger and
Willoughby (1970}, who had earlier studied a more restricted set of second derivative
methods, Enright proposes that the terms 3/0y[(3f/3y)f] in (6.49) be replaced by
(@f/0y)?, and only first derivatives are involved. For large systems, the evaluation of
(@f/dy)?* still represents a considerable amount of computation, and Enright (1974b)
proposes a modification of (6.48) which leads to a more efli cnt implementation; the
price is that the order drops to k + 1. These methods are implemcnted in VSVO format
in the codes SDBASIC (see Enright, Hull and Lindberg (1975) and SECDER (Addison,
1979)).

Table 6.7
p= 3 p= ‘ p= 5
Enright 5!5 177?6 i%z%‘)
BDF = # n
, Adams-Moulton ‘h" ';'i"g T_E%;

st 8 BEene
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An alternative means of introducing the Jacobian directly into linear multistep
methods consists of the variable coefficient multistep methods or VCMM; see Brui
(1967), Lambert and Sigurdsson (1972) and Sanz-Serna (1981). These methods
essentially linear multistep methods whose coeflicients are functions of a variable mz
Q. which, in practice, is taken to be an approximation to the negative Jacobian — 0,

evaluated at (x,, y,). The class is defined by
i

r [ s K [s-0
o [RTLICY IR I A ‘
j=0ls=0 j=0Ls=0 ,
where Q, is a variable m x m matrix such that'{{ Q, |l is bounded for all n, 1 is the m
unit matrix, and Q? is interpreted to be I when s = 0. In general, (6.50) is fully img
and requires the solution at each step of a nonlincar system of dimension . If, howt
b =0,5=0,1,...,5 — 1, then the method is said to be linearly implicit; at each st
is necessary to solve one lincar system of dimension m, so that lincar implicitness
a sense part way between implicitness and explicitness. Note that the computati
cost per step of a linearly implicit method is the same as that which would arise
§olved an implicit linear multistep method by Newton iteration and terminated
iteration after one step. The order of (6.50), again defined by an obvious extensic
the definition for linear multistep methods, is independent of Q,, so that one can a!
to have inaccurate representations of the negative Jacobian without affecting the accu
of the method. b

I‘A-, A(x)- and stifl-stability_are investigated by applying (6.50) to the test equi
Y = Ay, A an m x m matrix with all its eigenvalues in the left hall plane, and se
Q.= ~ A. The maximum order that an A- stable mcthod of the type (6.50) can a
is 2..9. An example of a 2-step linearly implicit VCCM (which we shall use in the
section) has order p=2 and S =1, and is given by

(T +5hQ)y, ez~ LU+ ) +hQ, )y, + (al + §hQ,)y, = h[ 13 — o) [y, y — 3(1 +a
{
It has local truncation error

. 54 a ’
TE = h3 0 y(J)(x") + %Q"),(Z)(XH)J + O(h‘).

This method is A-stable il — | <a < I. 4-stable linearly implicit VCMM with |
p=k=3andS§=2,p=k=4canbefoundin Lambert and Sigurdsson (1972). Sanz-!
(1981) proved the interesting result that to every convergent linear k-step meth
prdcf k (the k-step BDF is the most significant example) there corresponds a lir
implicit k-step VCMM (with S = 1) of order k such that both methods generat
same numerical solution when applied to y' = Ay (and Q, is chosen to be — A).

Another interpretation of VCMM presents itself if we simply gather the ter
(6.50) in a diflerent way; (6.50) can be written as

§-1 L3 k
w3 QY [Py =m0+ Y ay, =0,
=0 j=0 =0
» § .
Thus a VCMM can be interpreted as a linear combination of linear multistep met
. .
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coeflicients in the combination being powers of hQ,. If the VCMM has order p,
n the linear multistep method

k
IZO [a(;).Vnu - hbs"fn)] =0

i order p —s. Combinations such as (6.53) are christened blended linear multistep
thods by Skeel and Kong (1977), who develop a VSVO algorithm based on blends
the Adams-Moulton methods and the BDF.

“inaily, the Jacobian can also be injected directly into the coefficients oi a
nge-Kutta method, an idea first proposed by Rosenbrock (1963). Rosenbrock
thods have been extensively developed in recent years, and various forms have been
died, that most usually considered is

y,.4|=y,+h Z h‘k‘

ere (6.54)
i~1 -1
a _th)k,z_/(y,+h y a,,k,)+h1 Y vk, i=12..,s
j=0 J=0 )

d we have assumed that the differential system is in autonomous form y’ = f(y). The
itrix J is usually taken to be the Jacobian df/dy evaluated at y,. We see that (I - yhJ)k,
given explicitly in terms of previously computed k,, so that a linear system for 'k, has
be solved al cach stage of the s-stage method. The method is thus linearly implicit.
1e can regard (6.54) as either a modilication of an explicit Runge-Kutta method or
linearization of a semi-implicit Runge-Kutta method. A-stable (or nearly A-stable)
:thods of the form (6.54) of orders up to 6 can be found (Kaps and Wanner, 1981),
d embedded Rosenbrock methods yielding error estimates have been derived by Kaps
4 Rentrop (1979). For further information on Rosenbrock methods the interested
ader is referred (o Verwer (1982), wherc a list of relevant references can be found.

Exercise

1.1. For the cases k = 1,2, find the coeflicients in the methods defined by (6.48), assumed to
ve order k + 2, and show that the methods are A-stable.

6.9 CORRELATION WITH FINITE DIFFERENCE METHODS
FOR PARTIAL DIFFERENTIAL EQUATIONS

nis section is by way of a diversion. Most readers will have had some exposure to
vite difference (F D) schemes for partial differential equations (PDEs}; those who have
n are referred to Mitchell and Griffiths (1980). Here we take a very superficial look
such methods, with the sole aim of seeing how the ideas we have developed ir this
1apter for ordinary differential equations (ODEs) correlate with those that have evolved
the study of FD schemes for PDEs. The two subject arcas have developed indepen-
sntlv. with the consequence that the nomenclatures are different and sometimes
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contradictory. All the early work on FD schemes concerned only scalar linear constant
coeflicient PDEs. The counterpart in ODEs would be the scalar equation y' = 2y and
is of course trivial; that corresponding equations in PDEs are far from trivial arises
from the fact that the region in which the PDE holds plays a major role. As a vehicle
for our discussions, we take the simplest possible PDE and region, and consider,the
parabolic equation ,

2
g;u(x» ')= ;;5 u(xa ‘)v (655])

with the initial/boundary conditions

u(x,0) = ¢(x) 0<x<l; u(0, ) = u(t, 1) =0, 120 (6.55i1)

To apply a FD scheme, we first construct a rectangular mesh in the semi-infinite rectangle
0<x <1, t>0 by drawing lines parallel to the x- and f-axes with mesh spacings Ax
and At, and seck approximate solutions to (6.55) at the mesh points (x,,t,),
m=12.. M t=1,2,..., where %, =mAx, t,=nAt and (M + NAx =|. We denole
such an approximate solution by Uf, = u(mAx, nAt). A FD scheme consists of a linear
relationship between this approximation and similar ones at ncighbouring mesh points,
and involves the mesh ratio r:= At/(Ax)?, which plays a role similar to that played by
the steplength in a linear multistep method. We shall assume that r is fixed. If the
relationship involves approximations at k successive levels of ¢, it is called a k-level
method. If it gives the value of U7, at the newest level of t explicitly, without the need
to solve a linear system, it is said to be explicit; otherwise it is implicit. 1f a FD scheme
is ‘stable’ only for a certain interval of the mesh ratio r. it is said to be conditionally
stable, and if it is ‘stable’ for all positive r it is said to be unconditionally stable. Definitions
of these properties (which can be found in Mitchell and Grifliths (1980)) are not
particularly relevant to our discussion here; our aim is merely to interpret conditional
and unconditional stability in terms of the linear stability definitions developed for
ODE:s in §6.3. We quote below four weil-known FD methods for problem {6.55). The
local truncation errors, defined as the residuals when the approximate solution is replaced
by the exact, are found by Taylor expansions. It is notationally convenient to make use
of the central difference operator 82, defined by 82U%:= U, —2U  + UL .

The elementary explicit schqme
) Ut =(1+réuy, (6.56)
LTE = 0((A1)?) + 0(At(Ax)?).
The method is expliuit, two-level and is stable if and only il r' %
The Crank-Nicolson scheme
(1 —4ré)Ustt = (1 +§réD) U, (6.57)
LTE = 0((A1)®) + 0(At(Ax)?).

The method is impliéit, two-level and unconditionally stable.
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The Douglas scheme
(-3 -Heut=[0 +ir+3oiU, (6.58)
LTE = 0((At)®) + 0(At(Ax)*).

The method is implicit, two-level and unconditionally stable. Note that it has higher
accuracy than the Crank Nicolson method.

The Du Fort-Franke/ scheme

(142U =20(UL,, + UL )+ - 2yt (6.59)

m+ 1
LTE = 0((A0)Y) + 0{AL(AX)?).

The method is explicit, three-level and unconditionally stable.

We note with interest that (6.59) is unconditionally stable and explicit; in the context
of ODEs, we never found an explicit method with an infinite region of absolute stability!
There is, however, a diliculty about the convergence of the Du Fort-Frankel scheme,
namely that (6.59) converges to the exact solution only if the so-called consistency
restraint is satisficd: scc, for example, Richtmyer and Morton (1967). This requires that

At/Ax—0 as At, Ax—0. (6.60)
Let us now attempt to interpret these methods in terms of methods for ODEs. Instead
of discretizing the problem (6.55) completely, we semi-discretize it by leaving t as a
continuous variable and discretizing only the x variable. This is equivalent to rcplgcmg
the rectangular mesh by a sequence of lines parallel to the t-axis; the process of semi-dis-
cretization is thus sometimes called the method of lines. Define u(t):= [u(x,, 1), u(xz, 1), .- o
u(xy,0)]7 and replace  07u(x, 0)/0x? by [t(xps 1) = 2u(Xp, ) + U(Xm- l,f)]((Ax) ,
m=12. ., M. Letusdenote by U(t)e ®RM the exact solution of the resuiting semi-discrete

problem .
dU(ny/de = BU(1), U)=¢ v
where
UGy = ['U0. 20, MU0
(p = [‘P(Xl)» (p(xl)v"'vW(xM)]Tv
and (6.61)
-2 1 0 0
| -2 10 0
: B=-—31 o
Ll S
0 - -0 1 -2 )

The initial value problem (6.61) can now be solved numerically by any appropria'tc
numerical method for ODEs. In order to apply such a method, we make the dis-
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cretization t, = nAt, n=0,1,...,and denote the numerical solution so obtained by U
('U..2U.,...., MU,J". The cigenvalues of the matrix B are known to be 4;=[ -
2cos(jn/(M + 1)))/(Ax):, j=1,2,..., M; they arc real and lie in the interval (— 4/(Ax)
of the negative real axis. We obscrve that, if Ax is small. the system in (6.61) is stil
R, is the region of absolute stability of the numerical method employed, then we
achieve absolute stability if the steplength At is such that ,

(—4At/(Ax)}, 0y =(—4r,0)c X ,. (¢

Note that this procedure {which we are developing here only as a means of exami
the correlation be‘wccn PDE and ODE methods) is a viable numerical method it
own right for solving (6.55), and one that is frequently used. A suitable means of sol
(6.61) would be the GEARB code mentioned in §6.6.

Let us first solve (6.61) by Euler's Rule, U, ,, - U, = ArB8U_ The mth componer
this equation is

At

Uy ="U,=———["*"U, - 27U, + " U (
! . (Ax)z[ !

.nd on identifying "U, with U”, we see that the one-step mecthod (6.63) 1s precisely
two-level elementary explicit FD scheme (6.56). The order is | so that
PLTE = 0((At)?), consistent with the first term in the LTE given in (6.56); the se:
term arises from the truncation error of the semi-discretization process. The interv
absolute stability of Euler's Rule is ( — 2, 0), so that the stability condition (6.62) is sati
if and only if r < §, suggbsting that we may interpret conditional stability of a FD sct
as being equivalent to absolute stability of an ODE method.

In an exactly analogous way, we find that applying the Trapezoidal Rule 10 (6.¢
equivalent to the Crank-Nicolson FD scheme (6.57). The A-stability of the Trapez:
Rule corresponds to the unconditional stability of the Crank - Nicolson scheme. Reca
that the eigenvalues of B are real, it is clear that a‘suj]i(iem condition for an FD scl
to be unconditionally stable is that the equivalent numerical method for (6.6
Ag-stable. At this stage we might hazard a guess that the condition is also necessa
but that guess would be wrong! Consider the Theta method (6.40), Uyey — i
AI'B[(I —0)U,,, +0U,], applied to (6 61) A straightforward (but painful) manipul
with Taylor series establishes that, taking into account the truncation error assoc

with the semi-discretization, there is a cancellation of terms in the LTE of the equiv
FD scheme if we choose ‘

¢

1 1
0=_-+ —. .
2 12

The equivalent FD scheme is then the Douglas scheme (6.58). [t is all too easy to

to the conclusion that the unconditional stability of the Douglas scheme follows
the fact that the Theta method is A-stable for 4 certain range of 0 (and ~"" the eas
view of the fact that some authors quote the Theta method with 0 and | — @ interchan
The necessary and sufficient condition for the Theta method to be A-stable is that
(sce §6.6), a condition clearly not satisfied by the choice (6.64)! 1t is straightforwa
establish that when 0 > §, the region of absolute stability of the Theta method is a

]
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1 (2/(1 = 20), 0} as diameter. On substituting from (6.64), this becomes the circle on
— 12r,0) as diameter, and the stability condition (6.62) is satisfied. Thus the Douglas
nethod is unconditionally stable, but the equivalent ODE method is not A44-stable.
Note, however, that with the choice (6.64), the Theta method is no longer a linear
nultistep method, since its coeflicients depend on the steplength At.)

A similar phenomenon explains why it is possible for the explicit Du Fort-Frankel
icheme to be unconditionally stable. This time the equivalent ODE method is derived
rom the linearly implicit VCMM (6.51) of §6.8, which, when applied to (6.61), gives

(I +3810)U, g = [(1 + T + A1Q U4y + (af + 5A1Q,)U,
= 81B[33 ~ U, sy = §(1 + U, L. (6.65)

If —1 <a<], the VUMM is A-stable, provided we take Q, = — B. However, the fact
that (6.65) is lincarly implicit means that the equivalent FD scheme will be implicit. In
an attempt to force explicitness, let us choose Q, = gI, where g is a scalar and [ the unit ,
matrix. The cocfficient of U, , , in (6.65) is now scalar and the equivalent FD scheme
is explicit. However, the price that has to be paid for forcing explicitness is that (6.65)
is no longer A-stable. Sigurdsson (1973) shows that when Q,, = ql, the region of absolute
stability is a simple closed region of the negative half-plane which intercepts the real
axis in the interval [ — | —a — gAt, 0]. The stability criterion (6.62) is thus satisfied if
we choose a and g such that

| +oa+qht>4r. . (6.66)

A simple choice which satisfies (6.66) is « = — I, g = 4/(Ax)?; for this choice the region
of absolute stability is now an ellipse with axis (— 4r,0). Note that — Q, now has an
cigenvalue — 4/(Ax)* of multiplicity M, while the cigenvalues of B all lie in (— 4/(Ax)%,0).
With the above choice of parameters, the FD scheme equivalent to (6.65) is the Du Fort-
Frankel scheme (6.59). This equivalence not only explains how an explicit scheme can
be unconditionally stable, but also affords an alternative interpretation of the consistoncy
restraint (6.60). Qualitatively, we can see that there is going to be trouble as we let At
and Ax approach zcro; since Q, =ql = — 41/(Ax)?, the condition (staied in §6.8) that
1 Q. Il be bounded will be violated. Quantitatively, it follows from (6.52) of §6.8 that

DTE - |+2a U™(,) + ;Q,U”'u_)](m)’ +0((AD)*).

Since Q, = 0(1/(Ax)?). the second term in the bracket is

b
0((ADY /(AX)}) = 0((9'»> )om:).
Ax

If At/Ax were to tend to a non-zero conslant as At, Ax —0, then the method would
effectively have order only zero, and would be inconsistent. Thus the festraint (6.60) is

necessary for consistency. ,
Other VCMM:s can be shown to be equivalent to splitting techniques in FD schemes

(see Exercise 6.9.1); further details can be found in Lambert (1975), where fuller details i.v

of the work of this section can also be found.

"~
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Exercise

6.9.1*. The following fully implicit VCMM for the s;slem y' = f{x, y) has order two and is A-stable
(choosing @, = — A)for a20,2(b + ) 2 a:

y

01 + ahQ. + b(HQ N (pue s — ) = hLLT + chQ oy + 31 +(a = Q1L

Apply this method to y = Ay, A a symmetric matrix, with the choice Q.= —C, where Cis a
triangular matrix such that C + CT = A. Show that the resulting difference system simplifies
considerably if we choose a=0, b = —c. Make the further choice r=} to obtain a difference
equation which can be split into a two-stage form involving an intermediate vaiue {call it y .2}
Apply the resulting method to (6.61) to obtain an effectively explicit unconditionally stable finite
difference method for . ie problem (6.55). Show that this method (known in the PDE literature
as Saul'ev's method) suffers the same consistency restraint 4s does the DuFort -Frankel method.
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Nonlinear Stability Theor

7.1 THE SHORTCOMINGS OF LINEAR
STABILITY THEORY

At various stages in this book we have pointed out the inadequacics of linear stabi
theory when applied to nonlincar or even linear variable coeflicient systems. Qver rec
years there has emerged an alternative theory, which suffers none of the shortcomi
of linear stability theory. A full-development of this nonlincar stability theory is bey
the scope of this book, and our intention in this chapter is metely to give a flavou
the work and present some of the more significant tesults. The reader who wishe:
see a rigorous account of the theory is referred to the excellent treatise by Dekker :
Verwer (1984), whose general approach we follow here.

In §3.8, where we considered the linear stability of linear multistep methods,
produced a popular (but false) argutent which seeks to extend the applicability of
linear theory by deriving the linearized error equation (3.78),

k

. ' Z [ajl_hﬂjJ]Ean:T‘ {

/=0

where the a; and f, are the cocflicients of the linear multistep methods, £, , ; is the gl
error at x,,,, T is the local truncation error (assumed constant) and J is the Jacot
of the system, also assumed constant (or ‘frozen’). We showed by example that it cc
happen that the solutions of (7.1) did not correctly represent, even in a qualita
manner, the behaviour of the global error; this could happen even if the Jacobian
taken to be ‘piecewise frozen’ (that is, the constant value assumed for the Jacobia
re-computed from time to time as the computation of the numerical solution progresse

In the context of stiffness, a false argument analogous to that which produced |
would go as follows. Consider the general initial value problem

v Yy =f(x,y), y(a)=n, S RxR"SR™,
where f(x, y) satisfies a Lipschitz condition with respect to y, so that there exists a un

solution y(x). In sqme neighbourhood of this exact solution, y(x) can be well represe
by a solution of

Y =J{x,y(x) + %(X' YOy — y(x)]

the so-called variational equation. Now assume that the Jacobian df/0y can be lo

s
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ozen' Then (7.3) takes the form y’ = Ay + ¢, where ¢ = ¢(x, y(x)) does not depend
i y. Since stability essentially depends only on A, we ignore ¢ and arrive at the
nclusion that the behaviour of the solutions of the squation y' = Ay, where A is a
iecewise frozen' value of the Jacobian, in some way locally represents the behaviour
" the solutions of (7.2), thus justifying the use of the lincar test equation y = Ay in a
ynlincar context. We can sec more clearly what is being asserted if we restrict ourselves
. the homogeneous linear variable coefficient case (for which the argument ren.ains
Ise) by setting f(x,y) = A(x)y in (7.2); then equations (7.3) and (7.2) both become

y = A(x)y. (1.4)

et x* be some fixed value of x; then the 'piccewise {rozen’ Jacobian argument would
ssert that in some neighbourhood of x*, the :olutions of (7.4) behave like those of

t

¥y = Alx*)y. (1.3)

ince A(x*) is constant, the general solutions of (7.5) has the form
yx)= Y xexp(Ax)c,
t=}

vhere 4%, 1=1,2,...,m are the cigenvalues {assumed distinct) of A(x*). The ‘[rozen’
acobian argument would assert that if these eigenvalues were complex we would expect
7.4) to have oscillatory solutions; if they had negative real part we would expect (7.4)
o have decaying solutions. The following simple example shows that the first of these
issertions is false: ‘

Example 1

1 0o 11
L) 09

y = Ay = -

The eigenvalues of A(x}are 4,4, = * i/(1 + x?), and are purely imaginary for all values
of x; yet the general solution of (7.6),

yix) =, (1 +x2)'”1[ 1J+ *y(l +xz)4|/2[)l‘}
~X

is not osciltatory. In fact, we hardly need an example to see that it is impossible for the
‘piccewise frozen’ Jacobian argument 1o predict oscillatory solutions. The question we
are investigating is whether the solutions of (7.5) mimic those of (7.4) in some neighbour-
hobd of x*; we are thus looking for an indication of local behaviour. Oscillatory behaviour
is a global phenomenon, and it does not make sense to talk of a solution being oscillatory
in some neighbourhood of x*. '

More important is the question of whether negativity of the real parts of the cigenvalues
of A(x*)imply that (7.4) has decaying solutions in a neighbourhood of x*. The only
interpretation of ‘decaying solutions that makes sense for a nonlinear or a linear variable
coeflicient system is to take the phrase to mean that for any solution y{(x) of (7.4), Fy()R
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is monotonic decreasing in a neighbourhood of x*. Perhaps the most striking example
which shows that such a property does not follow from the ncgativity of the eigenvalues
of the ‘piecewise frozen' Jacobian is one due to Vinograd (1952) (a generalization ol
which can be found in Dekker and Verwer (1984):

.

Example 2 _ B
‘4 [—l —9costbx + 6sin 12x  12cos? 6x + 4.5sin 12x an
= X = 3 . ). .
y (x)y L—lZsinzéxJ.-d..Ssin!Z.\f — 1 —9sin?6x — 6sin 1 2x Y
The remarkable thing about this example is that the cigenvalues of A(x) are A=~ 1L
A, = — 10, and are indcpendent of x. The general solution of (7.7) is

\

() h[cos(n' } 23in(>x}+ ”‘[sin()\'~2cos6x]
yix) = x,€ X o€ )

2cos 6x — sin 6 2sin6x + cos Hx

The general solution is certainly not monotonic decreasing for any x.
The following is an example going the other way, where the cigenvalues of A(x) have
positive real part but there exists a solution which is monotonic decreasing:

Example 3
, 0 1
y =A(x)y = REE x > 0. (7.8)
- l—x 1| —2x
X X
The eigenvalues of A(x) are 4, = — 1, 4, =(1 — x)/x, so that for xe(0. 1) 5,>0 The

general solution of (7.8) is

(X) e'x[ l] -x[ ‘2 7
=X x,€
Y ' —1 % (2 — \')J (79

and the solution given by taking x, = 0is certainly not monotonic increasing for xe(0, 1).
We consider one further example, which we shall use again in a later section:

Example 4
-1 2
, 2 x* '
y = A(x)y = | ¥, xz | (7.10)
_X —
— N ]
2 2x

The ecigenvalues of A(x) are A;,4;=(— [ + 2i)/(2x), so that both ecigenvalues have
negative real parts for the indicated interval x > 1. The general solution of (7.10) is

x"J/z Zx‘llllnx
ym:x'[—%X"’]+xZ[X"’(I —lnX)]' (i



264 STIFFNESS: NONLINEAR STABILITY THEORY

For the solution given by x, =1, x; =0,
y(llz= VI )y = J(x7 + x/4)

and' || y(x)]|, is monotonic increasing for x > (12)""* ~ 1.86.

Of course, no one seriously believes the ‘frozen’ Jacobian argument; but we have
become so used to the application of linear stability theory to stiff systems, that itis all
too easy to find ourselves making statements like “The eigenvalues have negative real
parts and are close to the imaginary axis, so the solu..ons will be slowly damped
oscillations’. Such statements are strictly valid only for the linear constant coeflicient
system ' = 4y; for general systems they will sometimes be true and sometimes false.

Exercises
7.1.1. Find the eigenvalues of the 2 x 2 linear system y' = A(x)y, where

0 I

Alx) = , .
€OS X - $in X —2(1 +sin x)

2 4sinx+cosx  24sinx+cosx
Show that 1(x) = [2 4 sin x, cos x]" is a solution of the system and find (by guessing a bit) another
solution Conclude that a system with osctllatory solutions can have real eigenvalues.

7.1.2. Find the cigenvalues of the 2 x 2 linear system y' = A(x)y, where

A 0 : } >0
x) = s x )
D=1 ekt - 12x

I
Show that {4¢"* x ¥*]" is a solution of the system, and deduce that this example backs up the
conclusions we drew from Example 2.

7.1.3. We reveal here how we found Example 3. Consider the system

R
v @lg e(x)y- 1 flLe

Find tre cigenvalues and the general solution of the system.
(Hint: Efiminate v from the system and set w=u+ ')

Use your results to construct more examples like Example 3 which will confirm that there is
no relationship between decaying solutions and negativity of the real parts of the eigenvalues of
the system.

7.1.4. The nonlinear system *
u = fi{exp(3x) —u] + v, u(0) =1
v = exp(3x) —v* + exp(x), n0) =1

has solution u(x) = v{x) = exp(x) {independent of f); the solution clearly increases with x. Show
that the eigenvalues 4. 4, of the Jacobian are always real and negative, and that by choosing §
approprialely we can make the system apparently as stiff as we like (in the sense that A, «; <0)

PR o

et .~

AP M sens

CONTRACTIVITY

L}
7.1.5. Here is a device for constructing linear variable cocflicient and nonlinear initia
-roblems with known solutions. (It will not establish general solutions) The linear v
oeflicient problem ‘

y = A)[z(x) - y] + 27 (x), pla)=z{a)=n
has solution {(x) = z(x). Likewisc, the nonlinear problem

Y = f(x,y)=@(x,y) = @{x, 2(x)} + Z'(x), yla)=z()=1

L
has solution y(x) = z(x). (An important dilference between these two is that all linear pt
can be put in the form (1), whereas not all nonlinear problems can be put in the form (2
Use these constructions 1o devise problems which support the general conclusions of {

7.2 CONTRACTIVITY !

The examples of the preceding section should not only convince us that the '
Jacobian argument gives the wrong answer to the question *“When do the . . °
a general system decay?’, but also suggest that we are asking the wrong questic
the linear constant coeflicient system y = Ay, negativity of the real parts
cigenvalues of A implies that |ly(x)|| decreases, but also implies that neight
solution curves get closer together as x increases. It turns out to be much more
to seek generalizations of this second property. We are thus motivated to m:
following definition: ‘ )

Definition Let y(x) and j(x) be any two solutiods of the system y' = f(x,¥) sc
iru'tial conditions y(a)=n, jla) =1, n #§. Then if

y(xa) = Fx) < Iyx, = Fexy)l

for all x,, x, such that

* a<x, <x,<b,

the solutions of the system are said to be contractive in [a.h)

We see at once the possibility of an analogous definitio: for numerical solutio
a k-step method define Y,, Y,eR™ by

. T
Yn'= [yn*k~l'y:+l—2""'y:]r‘

-~

Yn:= [y:u—l'P:ﬂ—zv'-'P:]T'

Y, =:
O .n 2g# Zge
Yo=1,

whch {ya} and {7,} are two numerical solutions generated by the method with ¢
starting values. (Note that for a one-step methpd Y, = o)

Definition  Let {Y,} and {Y,} be defined by (%.13). Then if
Py )
"Yl+l—?l+|"<“Yl_?l|l1 OsnsN

the numerical solutions and the method are said to be contractive for ne[0, N].

.
.
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The requirement (7.lf1) makes a fot of practical sense. The inevitable introduction of
scretization errors in a numerical solution can be thought of as being equivalent to
mping o Lo a neighbouring solution curve; if we demand that the numerical solutions
. contractive whenever the exact solutions are, then we are ensuring that the numerical
Jution cannot wander away from the exact solution. We are thus led to a new breed
stability definition with the syntax diagram (see §2.6).

Condition Exaci solutions
System t— N = .
| ? contractive

Condition
Method| +— B

S I S A

Numerical solutions

contractive

The first task is to find an appropriate condition for thc middle box of the tcp line.

7.3 THE ONE-SIDED LIPSCHITZ CONSTANT AND
THE LOGARITHMIC NORM

tecall the Lipschitz condition of the system y' = f(x, y), defined by

/() = f(PI <Lty — 1. v(119)

vhere Lis the Lipschitz constant. In our search for a sufficient condition for the solutions
f y' = f(x.y) to be contractive, it is clear that the Lipschitz condition is not going to
ye subtlc cnough. To sce this we need only look at the scalar cquations y' = —y and
/=y, both of which have the same Lipschitz constant of + 1* the solutions of the first
ire contractive while those of the second are not. We consider instead the so-called
we-sided Lipschitz condition. Let {:,-) be an inner product and |I-|| the corresponding
nner product norm defined by lult?:= (u,ud. The theory holds for any inner product,
5ut we shall normally use only the inner product (1,05 ,:= u'v, u, veR™, for which the
sorresponding norm is the I,-norm defined by fluli; = (W) = (Tm )
Definition  The function f(x,y) and the system y' = f(x, y) are said to satisfy a - ne-sided
Lipschitz condition if

) = Sy — 7> < vy = §i?

ImI:ls Jor all y.jeM, and for a< x < b. The function v(x) is called a one-sided Li#hilz
constant.

The convex region M,eR™ is the domain of the function f(x,y), regarded as a function
of y; clearly, i f(x,y)= A(x)y, M, can be taken to be the whole of R™. Note that a
one-sided Lipschitz constant is, in general, a function of x; it is only constant as far as
e areed Condilion (7 16) is less demanding than (7.15). To see this, we make use

(7.16,
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n

of Schwarz's inequality, {u,v> € Jlull- vl from which it follows that

‘ <f(x.}z)—f(x,)").y—)"><llf(x.y)-f(x.i)il-lly~)"IISLH,\'—)"'II’
if we assume that (7.15) holds. Thus if f(x, ) satisfies a Lipschitz condition, then it

satisfies a one-sided Lipschitz condition. _ .
Condition (7.16), unlike (7.15), does succeed in scparating the trivial scalar examples

we used above. For y' = — ), (7.16) reads
C—ytiy—gr=—ly—FIt<vly = Fi?

and we can take v(x) = - [ (Note that a one-sided Lipschitz constant can be negative.)

For y =y, (7.16) reads
Cy— oy iy =ly—FIF <y -5

and we take v(x) = + I. For these simplc cxamples, contractivily appears to be associy’
with negativity of the one-sided Lipschitz constant, a result we shall now show holds

in general. L N
Let y(x) and j(x) be two solutions of ¥’ = JIRS Y] satisfying initial conditions v{a) = 1.
${a) = #, where n # 7, define (x):= I y(x) — )"(x)uz, and assume that (7.16) holds. Then

A

X(x) = (-i'(—i; <y i)"i(;"). ¥(x) = §)

=2{y'(x) = § (), y(x) = y(x)>

= 2¢f (6 y) — S S 300 = P € 23200,
by (7.16). The differential inequality Q'(x) € 2v(x)8Ax) can be hun'dlcd in' the same
way as the corresponding differential equation; dcfining the intcgrating factor
w(x):=exp(— 2[3 v(£)dé), we obtain (d/dx)[m(x)ﬂ(x)) < 0, which means (-hal .m(\')Q(A\')
is monotonic non-increasing for all x in [a,b]. Since w(x) is always positive, it follows
that Q(x,) € Q(x,Jw(x,Yw(x,), for a < x, < x,; &b Now

xy . L9} 2
aAXJﬂMX:)=€Xp<2J W0d5>==<exp<j \1Qdé>>

whence we have that
y x2
“)‘(Iz)—f’(xz)lléexp(-[ v(é)d£>"y(xl)—;(xl)“v a<x, $x,<h (7.1

It follows from (7.17) that if v(x) <0 for all xe[a.b] then

Iy(xs) = Foxal S Iplxy = Fx)l a<x < <h (7.18)

and we have contractivity. {n particular, it follows that if (7.16) holds with v(x) = 0 then
(7.18) follows, thus motivating another definition:
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Definition The system y' = f(x, ) is said to be dissipative in [a,b] if

Sy = f(x,9),y— 9> <0 ) (7.19)
holds for all y,yeM, and for all xe[a,b].

Clearly the solutions of a dissipative system are contractive.
We have not yet tackled the question of how to find a one-sided Lipschitz constant.
The answer lics in the logarithmic norm, defined by Dahlquist (1959).

Definition  The logarithmic norm [ A] of a square matrix A is defined by

u[A]= lim (J1 +8A) = 1)/3, (7.20)

30"

where 1 is the unit matrix and deR.

The name ‘logarithmic norm’ is a little misleading. Although in some ways it behaves
like a norm, u[A4] is not a norm; in particular, it can be negative. Note that u{A] is
norm-dependent; if the norm ||-|| on the right side of (7.20) is the L,-norm §j-{;, we
shali denote the corresponding logarithmic norm by u;[-].

’

Properties of the logarithmic norm
I. (See Dahlquist, 1959; Coppel, 1965.) Let the eigenvalues of A be A t=1,2,...,m;then

max Re A, < u[A] < | A} (7.21)

In particular, if u[A] <0 then all the eigenvalues of A lie in the left half-plane; the

converse 1s not lruc.
2. (See Dekker and Verwer, 1984.) If, in (7.20), |1l is an inner product norm, then

(Az,z)
u{A] = max .
H HZHZ
3 (See Dekker and Verwer, 1984.) Let o,.t = 1,2, .m be the eizenvalues of HER: A",
nole that they arc neccessarily real If in (7.20), |-{ 1s the L,-norm, given by
ful2:= Cuuy, =u"u, then

(7.22)

u[A) =maxo, (7.23)

Let us consider the general homogeneous linear system y' = A(x)y. Then in the left
side of the one-sided Lipschitz condition (7.16), {f(x,y) = f(x,5),y—7) becomes
“CA(X)y— 7).y — 7> and it follows from (7.22) that .

Ay — Py = 7> < u[A)THy — 74

and we may thus take u[A(x)] to be the one-sided Lipschitz constant; it is clear from
(7.22) that u[ A(x)] is indeed the smallest possible one-sided Lipschitz constant. It follows

b
L3
Y
L
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immediately from (7.17) that we have found a sufficient condition for the solutior
y = A(x)y to be contractive for xe[a,b], namely u[A(x)] <0 for xe[a,b].

We now come to the key result of this section, namely that the above result attu
generalizes to the full nonlinear system y’ = f(x,y) (and indeed holds for an arbit
norm); no dubious linearizing or ‘lreezing’ arguments are involved, and the result
be stated precisely as a theorem:

Theorem 7.1 Let ||| be a given norm and let v(x) he a piccewtse continuous Suni
such that

af
In 3 (x, ) [ < v(x) for all xe[a, b] ve M,

y
'
Then, for any two solutions y(x}, §(x) of V= f(x, ) satisfynig initial  condi
y(a)=n, §(a) = f.n # 7,

x2

Il p(xz) = ylx)l| écxp([ \'(é)dé)ll ylxy ) = TG

x!

Jor all x|, x, satisfying a < x, <x, <bh.

This theorem goes back a long way. It was first proved by Dahlquist (1959), a
accessible reference where a proof can be found is Dekker and Verwer (1984).

We now have a sufficient condition for contractivity of the solutions of a ge
system, namely that u{df/dy] be non-positive in some convex region enclosin
solution we are interested in; moreover, in the case when ||| = |||, we have,
(7.23), a practical means$ of testing whether this condition is satisfied.

Let us try this out by conducting an experiment on Example 4 of §7.1. Reca
system (7.10)

-1 2
b ;3‘

y = Ax)y= | y x|
2 2x

with neneral solution, given by (7.11),

) X-JIZ ZX-JIZ|HX
wen| ¥
Y ' —ix”z] Kz[x'“(l—lnx)]-
The eigenvalues 0,,0, of [A(x) + A7(x)]/2 are readily found to be given by
L)

_—l I x
M

and a straightforward calculation shows that p,[A(x)] = max{g,,0,)<0 il and -
x < x< X% where x = /(/5~ )= 1112 and %= /(\/S+ 1)~ 1.799. Now, for a
system y = A(x)y, we may take M, to be the whole of R™, and we can choose §,
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Figure 7.1 ' )

so that contractivity in [x, £] implies that || y(x,)||, < || p(x,)l}; for all Xy, X, satisfying
x < xy < x; < x Thatis, | y{x)ll; should be monotonic non-increasing in [x, £]. Let us -
test this by a numerical scarch over the parameter space (k,, ;). In ordet to keep a
uniform scalc in the graphs, we normalize || y(x) |, by dividing by || y(1)li;, and look at
plots of Y(x)= || y()li;/1 y(1)]l;. Since Y(x) is clearly a function of k,/k,, we have to
scarch only in a onc-dimensional parameter space. Figure 7.1 shows some plots of Y(x)
against x in the interval 1 € x<2.5 for various valucs of x,,k;. The curve for
Ky = l.ky = 1.5 (an arbitrary choice) is certainly monotonic non-increasing in (x, x), and
indecd this turns out to be the case for all values of x, and K, tested. How}ver, for
Ky =1,K, =0.54, Y(x) has a maximum at x = x, and so is monotonic increasing to the

left of x. Similarly, we find that for k, =1, x; = 3.8, Y(x) has a minimum at % and is ’ x

thus monotonic increasing to the right of x. This experiment suggests that Y(x) is

which pu{ A(x}] is non-positive. 1
We do not always get results as sharp as this. If we repeat the above culculations for § »
Example 3 of §7.1 we hind from (7.9) that

vl =2e” 2 { [k, + x,x(x = D] + x,x2),

and it 1s clear that for all finite x,, x4, | ¥(x)}l; is mo: vlonic non-increasing for all

sufficiently large x. However, from (7.8) and (7.9), the eigenvalues of [A(x) + A'(x)]/2
are given by ;

N — — )2 . 0
0|‘02=l. 2+ (1 =2x)? + 1] : SH

< 2x

(which, of coursc, gives only a sufficient condition for contractivity) declines to tell us
whether or not the solutions are contractive for large x. -t
We are now able to fill in the middle box on the top line of the s:'ntax of the new

stability definitions, given at the end of the preceding section. The most suitat le condition } -}1-_

G-STABILITY n

to use is dissipativity, defined by (7.19), giving the syntax diagram shown below.

S Dissipativi ’ Exact solutions
stem 1ssipativit = .
y P y contractive

Numerical solutions

Method rCon(:mon -

contractive

The next two sections of this chapter will be devoted to filling in the middle box of
the bottom line of this syntax diagram. ‘

Exercise

7.3.1. We have shown above that for Example 3 ol §7.1, the logarithmic norm o7 A(x) is positive
for all positive x. Generalize this result by show:ng that the same is true for the system given in
Exercise 7.1.3.

7.4 G-STABILITY

The earlicst work on constrycting conditions for a numerical method to be contractive

is due to Dahlquist (1975, 1976). There is no loss of gencrality in assuming the system

to be autonomous, and we assume the system to be y’ = f(»), satisfying the one-sided

Lipschitz condition

with L) = Fh = F> < vy = )‘rllz} 224
v(x} < Ofor all xe[a, b].

The system is thus assumed dissipative. The definition to be developed applies not to
a linear multistep method, but to a closc relative. Let a lincar k-step method be defined
in operator notation (see (3.5) of §3.1) by

'- p(Ely, = ho(E)f(1,). (7.25)
Then the one-leg twin of (7.25) is defined by
p(E)y, = hf(a(E)y,) (7.26)

For example, the o1 :-leg twin of the Trapezoidal Rule, y ., — v, = %h(f,,, , + f.) is the
Implicit Midpoint Rule, y,, | — ya=hf(3(¥a+ 1+ ¥a)) (€€ (5.68) of §5.11). Not surprisingly,
there exists a relationship between the solutions of a linear multistep method and those
of its one-leg twin. Let {y,} be a solution of (7.26), and define §, = o(E)y,. Then, since
p(E) and o(E) commute,

p(E)o(E)y, = o(E)p(E)y, = ha(E)f(a(E)y,)
. p(E)p = ha(E)[($a)

or’
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and {9, is a solution of the linear multistep method (7.25). This relationship betwgen
the solutions of {7.25) and (7.26) allows results for the one-leg twin to be translated into
{admittedly more complicated) results for the linear multistep method. The one-leg twin
is not just a device to make the analysis of this section work; there is some evidence
{Nevanlinna and Liniger, 1978, 1979) that the one-leg twin is to be preferred in variable
steplength applications.

Wc ¢an now state the first of our nonlinear stability definitions, due to Dahlquist
(1979).

Definition  Let wow, ... w, be any real numbers, and define the vectors Wy, W,eR* by
W, =[wo.owio o oWy W, = [w,,wan, w, 1" Then the k-step method (1.26) is said to
be G-stable if there exists a real symmetric positive definite matrix G such that

WIGW, = WIGW, < 2[a(Ew 1[p(Ewe]/a’() o (1.27)
for all such W, W,.

(Note that some authors normalize the standard linear multistep method by requiring
that a(1) = 1, whereas we chose in §3.1 to normalize by requiring that o, = I; thus the
reader will find in the quoted references that the divisor o%(1) does not appear on the
rnght side of (7.27).)

In what can be interpreted as a vector analogue of the siructure inherent in the
above, it is possible to define a norm, the G-norm, of a vector Z,eR™, dcfined by

Zo=lz 217", where z,,,€R" j=0.1,... .k~ 1. The G-norm |-|lg is
defined by
k k '
“Zn”(l;:: Z Z .‘lv;(znokw‘z"uﬁ)v {7.28)
=3 j=1 .

where g, is the (1 j)th clement of G, and the inner product is the one used in (7.24). It |

can be shown (Dahlguist, 1976) that if the method (7.26) is G-stable, then
12,0 12 = 12,012 < 2¢a(E)z,, p(E)z, /a™(1) (7.29)

for any vectors 2, 2., . 7, ., Lquation (729) can be seen s a veetor extension of
(7.27). and indced can be taken as an alternative definition of G-stability; of course,
(7.27) is easier to apply in practice. .

Let [y,! and | F,} be two solutions of y" = f{y), given by (7.26) with different sturting
values, and assume thal (7.24) is satisfied. Further, define Y, Y, eR™ by

. T T TV 157 =T =TT
n‘:[y,,+k«|‘yn¢k—2""‘yn] 'Y"‘_[>-}'ﬁv+l—l’yn+k—2""’yl]

1

If lhé method is G-stable, it follows from (7.29) that
HYuer = Yor (2= 1Y, = Vo li2 < 2C0(ENy, — J), PCEN ya — 7a) Y/0 (1)
< 2(a(E)(ya — Ja) W (0(E)ya) — h (a(E)Fa) D/a?(1)
< 2 a(E)y, — F )l a(1),

NONLINEAR STABILITY OF IMPLICIT RUNGE-KUTTA METHODS 2

by (7.24), and, since ¥(x) <0 for all xe[a,b], the condition (7.14) of §7.2:is satisfied, a
we have contractivity of the numerical solution. We thus have the syhtax diagr.am f
G-stability shown below. '

[y

Exact solutions

System Dissipativity = contractive
(in the natural norm)

[y

Numerical solutions

Method Method G-stable | . = contractive
(in the G-norm)

By ‘the natural norm’, we mean, of course, the norm appearing in {7.24), namely |
notm associated with the inner product appearing on the right sides of (7.28)and (7.29).

It is not hard to show that G-stability implies A-stability; however, Dahlquist (19
proved the unexpected result that A-stability implies G-stability, so that G-stahility ¢
A-stability are equivalent. This is a remarkable result; it means that for any meth
which is A-stable (a result based on a linear constant coefficient test system), there exi
a norm (the G-norm) in which the numerical solutions are contractive whenever
general nonlinear system being solved is dissipative. It is not, of course, the result
want. We would like to have a stability condition which assured contractivity of
numerical solution in the norm corresponding to the inner product in which the syst
is dissipative; the exact and numerical solutions would then be contractive in the sa
norm. G-stability, despite the fact that it does not give us what we want, played
important role in the development of nonlinear stability theory; morcover, useful bout
on the G-norm of the error can be established (see Dahlquist, 1975, 1976).

Exearcises

7.4.1. Show that the Trapezoidal Rule satisfies the G-stability condition (7.27) with G = 1.

7.4.2. Dahlquist (1976) gives a constructinn for finding the matrix G for any particular one
twin and quotes, as an example, that for the 2-step BDF and its twin (why both?) we may ta

S

Check that G is positive definite and show that the G-stability condition {7.27) is satisfied. (
Table 3.3 of §3.12 for the coeflicients of the method.)

7.5 NOWLINEAR STABILITY OF IMPLICIT
RUNGE-KUTTA METHODS
We saw in §6.7 that it was much easier to find A-stable implicit Runge-Kutta meth¢
than it was to find A-stable linear multistep methods. It is thus no surprise that impl
Runge—.l(utta methods turn out to be the best class for which to seek nonlinear stabil
p-operties. We remind the reader of the discussion of various sub-classes of impl
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-~mi-implicit Runge Kutta methods given in §5.1 . We shall assume that the method
s stages and is defined by the Butcher array

¢} A
R (7.30)
bT .

ther, we assume that the system y' = f(x, ) is dissipative; that is, we assume that
OGP = flx (), px) = §(x)> <0 (7.31)

t
ds for any two solutions | y(x)} and {#(x)} satisfying different initial conditions. It
ows from §7.3 that the exact solutions are contractive in the norm corresponding to
inner product m (7.31) We shall assume this norm throughout this section; in
ticukar, contractivity of the method and of the numerical solutions {in the sense of
2) will mean contractivity i this norm.

iition (Butcher, 1975), Burrage and Butcher, 1979 Crouziex, 1979)  If a Runge-Kutta
‘hod applied, with any steplength, to an autonomous system satisfying (7.31) generates
tractive numerical solutions, then the method is said to be B-stable; if the same is true
o the method is applied 1o a non-autonomous system satisfying (7.31), the method is
{4 1o be BN-stable.

Butcher (1975) proved the (ollowing sufflicient condition for B-stability; a prool can
o be found in Dekker and Verwer (1984). Let B and Q be s x s matrices defined by

B=diagth, by, b)  Q=BA '+ A4 "B—A"ThhTAT (7.32)
en the sullicient condition for B-stability is
It and Q non-negative definite, (7.33)

« thus have the syntix digram shown below for B-stability.

System 1 i L I'xact solutions

. S LR E N P ,

3y o= () S - contractive

: : s AL
Runge Kutla ' Band beuf ) B-stability
B method non-negalive 92@!5 = {(numcrical solutions

contractive) !

Example

. the 2-stage Gauss method,

o B .
"'=i'i[ ) ’ 2\/3} ”=[3]- B=3l
]+2\/3 k] 3
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whence we find that

BA"M—TB:[ i —;] pTAT = A1)

It follows that
A TBT A =AY BTAT = 3[ B :][— 1]=BA"'+4 78

and Q = 0. Since B‘is clearly positive definite, condition (7.33) is satisficd and the method
is B-stable. Indeed. it can be shown that (7.33) is satisfied for all Gauss methods, as
indeed it is for all Radau IA, Radau 1A and Lobatto 1HHC methods. Cleatly it is nol
satisfied for Lobatto I iA and HIB methods, since 4 is singular for these methods.
The above condition is awkward to apply. (If the reader doubts this. fet lum repeat
the above working for the 3-stage Gauss method!) A much more casily applicd condition
{which involves no matrix inversjons) was discovered by Burrage and Butcher (1979)
and Crouziex (1979). Let B be defined as in (7.32) and define the s x s matrix Af by

M:==BA+ A'B~-bh". (1.34)

Definition A Runge-Kutta method is said 1o be algebraically stable if the matrices B
and M defined by (7.32) and (7.34) are both non-negative definite.

Algebraic stability can be showp to be suflicient not only for B-stahility. but also for
BN-stability. We have the syntax diagram shown below for algebraic stability.

System i Fxact solutions
f'—{ o - Sy - <0 = ,
y=f{xy) Slon = feoihy >~—] {7mnlr;\clnc

Runge-Kutta Algebraic stability » I};‘\;-‘swl;|hilil)'

method (Band M both = | (numerical solutions

contractive)

. non-negative definite)

Example T Since no matrix inversions are involved. we are prepared to use
a 3-stage example this time. Let us choose the J-stage Lobatto HIC for which

- 2 I !
A= s —t{ h=g| 4 B=1} 4
2 ' [

A simple calculation shows that

-2 1
M=% -2 4 -2
TS

[}
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The eigenvalues of M are 0,0.4, so that M is non-negative definite; clearly so is B, and
the method is algebraically stable. As for condition (7.33), it can be shown that the
Gauss. Radau A, Radau HA and Lobatto 11IC are all algebraically stable, whereas the

Lobatto THHA and HIB arc not.

Lxample 2 For the onc-parameter family of semi-implicit methods (5.75) of
§5.11, we have
RIS _
O | 3y 1 KITRENE
A= : . b= l }‘ B= 2
1 - n RITRE S E B VT S D 1
g

2

and we find that M = m(/l)/ﬁ, where

(3 =+ | N
m(/:):ll It I ) ), A :[ R
RITEER) . -

The cigenvalues of AT arc 0 and —2: since 3u? — 3p + 1 is positive for all u, it follows
that M is non-negative defimte for all < 0. Thus, of the pair of DIRK methods given
by (6.76) only the onc given by choosing p = — J3/3 (the one we showed in §6.7 to be
A-stable) is algebraically stable.

L

Example 3 Recall the 3-stage DIRK method (5.77). for which

I ]
I+ v
. . 1
2
: ! |
1 ! b h= : (1\'1A2 ) B= Y : 6\’1_2 ' N
2 2 ov? 6v*
1 1
P+
1+ v 1. 2v
L 2
where v is onc of the three real roots of
Id - Ju—t =0 (71.35)

To construct M and find its cigenvalues for general v is a horrendous task. One is
reminded of the lawyer and mathematician Viéte (1540-1603), who, on declining to
perform a similarly tedious picce of manipulation, described it as ‘work not fit for a
Christian gentleman’ (Perhaps we have here the basis for a definition of a symbolic
mapipulator?) However, by repeatedly using (7.395), the manipulation becomes tolerable,
and we find that M = m(v)M, where '

R | 1 =2 1

ol =6v +(>\'<+#'v M=l _2 4 -2
{v) N

36w P2 I
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The eigenvalues of M are 0,0,6, and 6v? +6v+ 1 is positive only for one root,
v vy = (2/ﬁ)cos(10°). Thus (5.77) is algebraically stable only for v = v, the valuge for
which we indicate in §6.7 the method is A-stabie.

Hundsdorler and Spijker (1983a) take a different approach. As we have seen, the tesl
equation for A-stability is essentially the scalar cquation y* = 7y, 2eC. This is replaced
by the scalar test equation ' ’

'

y = A(x)y, Ax)eC. (7.36)
Clearly any exact solution of (7.36) satishics
«+h N
ylx + /y(x)y= cxp( J' A)dy )
and it follows that if Re A{x) < 0 for all xe[a, b}, then
yix 4+ hy= Ky(x), [K{ < (7.37)

for any xe[a,b] and any h> ().\A stability definition for a one-step ethod can be
framed by requiring that the numerical solution of (7.36) mimics (7 37). that is, we shall
demand that y_, =Ky, |KI <! holds for all positive I whenever Red(v) <0. The

general s-stage Runge- Kutta method (written in the alternative form (5.6) of §5.1) applied
to (7.36) gives

3 H
Yoo =¥t 3 bAX, +c,INY,

’ =1 r
where (7.3
Y=y, +h Z ”U)‘(\" to iy,
. . I=1 :
Introducing the notation
ha(x, + ¢;h) =y, 20, T=digl, . )
‘ Yo=Y, Y, L Yvh e={11, 1)l
{7.38) can be written in the [orm '
yn*l:yn+hrry‘ Y=)',,(’+/1[‘Y
whence
Yasr/Ya=RD)=14b"T( —~ AT) "¢ (7.3¢

Note that I is a function of x,. Note also that if in {7.36) we put i(x)=/, conslan

then T :: hl, where h = h, and (7.39) reduces to

Yarr/Va=RUN=1+hb7(1 - hA) e,

which is just the stability function of the method (see (5.86) of §5.12). We are now ab
to frame a definition: ' .
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'(iun Let y,€C bhe such that Rey; <0, i=1,2,...,s, with y,= v, if ey=c¢;, and let1
.ag(y‘,yz‘,.'.,,y‘). rlr("t the Runge—Kutta method is said to be AN-slabIe];f Jor all
v 1= AV is non-singular and R(T'), defined by (1.39), satisfies |R(I')| < L. ’

‘N in AN-s.luhilily denoles that we are using a non-autonomous form y' = A(x)y
: _s(.andard lincar test equation y" = Ay for A-stability.) Obviously, AN-stability =
bility: the conversc is not (rue.

¢ syntax diagram for AN-stability is therefore

y o= Ay -
(scalar) l‘ e Re (x) <0 = ‘ y(x + <1y

1}

Runge Kutla
method

- .\ AN -stability ‘ - { fyme I <yl

Examples 1-or the 2-stage Lobatto 11TA method (the Trapezoidal Rule), we
y find that ‘

I+_y,/2

RNy = .
I —y,/2

ce that the condition [R(1) < 1 for all Rey, €0,i= 1,2, is not satisfied, all we need
i choose ¥, and y, to be real and negative, with y,. <y, — 4, whereupon R(IN) < — 1.
yntrast, for the 1-stage Gauss method (the Implicit Mid-point Rule, the one-leg twin
ic Trapezoidal Rule), we find that :

L +7y,/2

I —y,/2

R(T) =

the conditions for AN stability are clearly satisfied.

is not difficult to find R(I') for any particular Runge Kutta method, but it can be
»dificult to determine whether or not |R{()] < 1. However, we seldom need to apply
test, since in most cases, AN-stability i1s equivalent to algehraic stability which is
heasicr 1o test. Before we can state these refationships, we need a further definition.

nition A Runge Kutia method is said to be nonconfluent if all of the ¢;,i=1,2 S
distinct. : ) V2,8,

in be shown (sce, for example, Dekker and Verwer (1984)) that the various stability
serties we have discussed in this section are related as lollows:

For general Runge-Kutta methods

BN-stability = B-stability
Algebraic stability = ]
' AN -stabilily = A-stability.
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Table 7.1
s'stage  + Linear Stability Nonlinear stability
RK method Order property properly
Gauss 25 A-stability Algebraic stability
Radau IA, 1A 25— | L-stability Algebraic stability )
Lobatto (1T1A. HIB 25—2 A-stability No algebraic stability
Lobatto HIC 2s—2 1-stability, Algebraic stabality

For nonconfluent Runge Kutta methods

Algebrase \l;lh”l‘( y
0
BN-stability } = B-stability = A-stablity.
b
AN-stability

It is worth reflecting for a moment o1t the import of these equivalences. We started
out with a discussion of the full nonlincar system, and sought a criterion for some sorl
of ‘controlled behaviour' of the solufions, Jeading to the notion of contractivity. Algebraic
stability is a sufficient condition for. the numerical solutions to behave in a similarly
controlled manner. Yét, with the notaall-that-important exception of confluent methods,
we can guarantee the same contractive behaviour of the numerical solutions by imposing
a condition based on the scalar lincar test cquation ¥ = 2(x)y. In other words, we need
only move a little bit away from the over-restrictive test cquation v = 21 to be able to
predict contractivity of the numerical solutions of a fully nonlmear system!

Finally, in Table 7.1, we update Table 6.6 of 6.7 to include nonlincar stablity
properties.

In particular, we note that the Trapczoidal Rule (the 2-stage Lobatto IH1A) 1s not
algebraically stable, whercas the Implicit Mid-point Rule (the F-stage Gauss) and the
Backward Euler method (the 2-stage Radau 1A, the onc-step BDI) are algebraicatly
stable. .

Exercisas

7.5.1. Show that the 2-stag- Radau IA, Radau 1A and Lobatto [HC methods (listed in §5.11)
satisfy the condition (7.33).

7.8.2. Make a selection of the Gauss, Radau and Lobatto methods fisted in §5. 1 F and demonstrale
that Gauss, Radau 1A, Radau 1A and Lobatto HIC methods arc algebraically stable. while
Lobatto 111A and [11B methods are not. -

7.5.3. Derive the matrix M quoted for Example 3. {Apologics to any "Christian gentlemen” amongst
the readership.)

7.5.4. Show that the 2-stage Lobatto 111B mcthod is not AN -stablc
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7.8.8. This mee example is due 10 Hundsdorler and Spijker (1981b). Consider the Runge-Kutta |

method

1

L]
3
L]

1
4
3
4

1

L]
3
L]

2 2

Show that Ril'y ax defined by (739), s given by R(I') = (8 + 3y, +5 )8 —1y, — 3y,), and deduce
the stability function Kily Hence show that the method is A-slable. By considering the values
= = Yury = i show that the method 1s not AN-stable. Show (independently) that it is not

algebrircally stable

7.6 B-CONVERGENCE

Finally. we comment very hriefly on the subject of B-convergence. There exists a sub-
stantial body of theory on this topic, which is beyond the scope of this book; we mention
it here solely becanse the reader, when solving stifl systems numcrically, may on occasion
find results which are alittle puzeling, and might appreciate knowing that the observed
hehaviour is Lo be expecled. The phenomenon we are about to discuss was first described
by Prothero and Robinson (1974), who gleancd much insight from considering the family
of scalar cquations

Vo=dy 4+ g0 —Aglx),  AeC. (7.40)

Ihe subsequent theory of H-convergence for the full nonlincar system was developed
by Frank, Schneid and Ucberhuber (1981, 1985a, 1985b); an excellent review of this
work can be found 1 Dekker and Verwer (1984). '

When we <olve a stlf problem numerically, we expect to have to use a very small step-
length an the interval in which the fast transients are still alive. If we use a method with
an appropriate stabihty property (such as A-stability or algebraic stability) then, once
the fast transients are dead, we expect to be able to use a steplength which is not
restricted by stability constraints, and this is indeed the case. However, the accuracy we
achieve in this phase of the solution is often rather less than the order of-the method
would lead us to expect

Consider the scalar cquation (7.40) in the case when 4 is real. The general solution is

TNy = nexplax) + giv) where w s an arbitrary constant. If ¢(x) 1s smooth (that 1s, the
higher derivatives are not large) and we choose 4 such that 1«0, then this scalar
cquation exhibits stiffness Further, if we choose the initial condition y(x,) = g(x,), then
the solution is y(v) = ¢(x) and the fast transient docs not appear in the solution (exactly
the situation we lad in Problem 2 of §6.1). Following Scinfcld, Lapidus and Hwang
11970), we choose yix) = 10 — (10 + x)exp(— x), giving the initial value problem '

V=av k{94 104+ (0 + Axexp(—x)— 104, y(0)=0 (1.41)
with exact solution

y(x) = 10— (10 + x)exp( - x).

O-LuUuINvVIRutivLo <

Table 7.2
1= ~50 A= —5x10} i=—5x10° j=—5x10
ho L] R(h) E(m Rih) E(h} R Eh) Rih
02 64 x 10°* 50x10 ° $2x 10} S2x10
17.9 44 40 : 30
0.1 36%x10°° P x 1077 R R [V RN
16.4 58 40 ' 40
0.05 22x10°° 20x10°* 320! Tixio !
15 120 41 40
0.025 14x107 16 x 10 ° RO x 10 ° Rix 10 *®

We solve this, for a range of values for 4, by the algebraically stable 2-stage G
methoa with steplength h. Naturally, no stability dilficultics arise, but the pattern of ¢
global truncation errors at x = 1.0 as we vary both 2 and /. as displayed in Table 7
is not what we might expect. As |1] increases {and the problem hecomes stiffer) €
global errors increase, but flatten out for sufficiently large | /|

To see if these global errors are consistent with the order of the method, we b
also computed the ratios R(h):= E(h)/E(h/2), where E(h) is the global crror when |
steplength is h. If a method has order p then the global error is 0{h") and the ratio R
should be approximately 2", we arc thus able to make a numerical cstimate of -
effective order of the method. From the ratios quoted in Table 7.2, we sce that
A = — 50, the effective order docs appear to be 4, but as | 4] increases this order appe
to decrease progressively until, for 1< — § x 10%, it appears to he 2.

What is happening is that, although the exact solution is independent of the stiffn
parameter A (and this would also be the case in the steady-state phase lor a probl
with general initial conditions), the coefficient of h”* ' in the principal local truncat
error (recall that this is a linear combination of ejementary diflerentiats) does depe
on 4, and so therefore does the global error. When | 4] becomes very large. the multip
of h” in the global error becomes so large that it robs the superscript pof any meani
What is interesting is that, for this example at least, the eifective order does not j
degenerate in a random way, but appears to change progressively from 4 to precisely 2.

We turn now to the general problem for a nonlinear system: since our treatment
this topic is ngcessarily superficial, we shall eschew any formal definitions, A Runy
Kutta method is said to be B-consistent of order g if the local truncation error T,
sa sfies a bound || T,, || <kh**! for all he(0,h,], where the real constants k and
are independent of the stiffness of the problem; they can depend on the one-sided Lipsc!
constant of the system and on the smoothness of the solution (after the fast transi
is dead), but they cannot depend on higher derivatives of the solution which are influen
by stiffness. In a similar way, the method is said to be B-convergent of order ¢ if
global error E, , , satisflies a bound || E,, , || < Ki? for all he(0. hh,]. wherc, again, K :
hy are independent of thé stiffness of the problem. Our numerical experiment wo
seem to suggest that the 2-stage Gauss method is B-convergent of order only 2 for
class of problems (7.40). The catch is in the italicized phrasc: unfortunately the order
B-consistency does depend on the problem being solved, and is thus not a property

1 | & ~
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Table 7.3
s-stage RK method Order p Stage order
Gauss 2s 5
Radau [A 2s — | s—1
. Radau 1A 2s - | s
f.obatto HIA 2s -2 s
, l.obatto IHIB 2s -2 v —2
L.obatto HIC 2s -2 s— 1
the method adone Trs necessiry to deflime the order of B-consistency and B-convergence

relative to a class of problems,

1t 1s. however, possible to find bounds fer the order of B-consistency. Clearly, we
always have ¢ < p. where p is the order of the method dehned in the conventional way.
A lower bound is found as follows. Let y(x) be a sufficicntly smooth function and, for

the general s-stage Runge Kutta method (in the alternative form (5.6)) define the
residuals r.i= 1.2, . s+ | by

= v, o)y —vi) = h Z agy'(v, +c;h, i=1,2,....s
= ,

. : (1.42)
Lo = 0 ) = 30y =10 Y by, + ¢;h).

Lssentially these residuals are the local truncation errors of each stage of the
Rv - ¥utta method (the (s 4+ th stage being regarded as the statement y,, , =y, +
W3i., b, + ¢ Y)) when cach stage is regarded as a method in its own right. (Compare
with (599) of §S13) i for i= 1,2, ..s + 11, =0(h™ " 1), then pi= min(p,.py.- .- Pesy)
is called the stage order of the method. 1U1s assumed that the method satisfies, for a
given class of problems, yet another stability criterion (BS-stability), which requires that
il cach stage of the Runge Kutta method is perturbed by ;i =1,2,.. ,s+ 1, then the
perturbation i the numernical solution given by the mcthod must be bounded by
Kmax, |, . where K is mdependent of the stiffuess. For that class of problem, the order
ol B-consistency s at least the stage order. We thus have that the method is B-cc 1sistent
of order ¢. with < ¢ < p. The stage order fi for the classes of implicit Runge -Kulta
methods discussed 1 8511 are shown in Table 7.3.

Our numenicad experiment suggested that for problem (7.41) the 2-stage Gauss method
is B-cansistent of order 2; note that this is within the bounds given by Table 7.2.

e

Exercises

7.6.1. Refernng 1o(7.42), show thatfori = 1, 2,..., sthe conditions for ¢, = O(h™" 'yto hold are that

Zu,-l('j’l-_—{'/q_ q=|.2.‘..,p, “)

-
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-

and that the condition for f,,, =0(h™"'* ") 10 hold is that

3 hl
Zh‘(j"=l/q, q=|,2,..:..p‘., ()
. i=1
. . ‘
Using (2) and the order conditions, show that p, ., 2 p. the order of the method. )

Compare the conditions (1) with the collocation conditions (5.7 of §5.1 1.

7.6.2. Using the result of the preceding exercise, find the stage arders of the s-stage Gauss, Radau
l/.\'a.nd {IA methods for s= 1,2, and of the s-stage Lobatto THA. 1B and HIC methods for

- 5 3 . . X 85 r the
S=4 inid check that the results are nsistent w th the entries in Table 3 {d¢ee R ¢
] , 2, and TREEK fal 5% 2 consistent ! ] 5S¢ 1t for h

coeflicients of these methods.)
)

7.7 CONCLUSIONS

So, what docs onc make of this theory of nonlinear s!‘uhihl_\"ﬂ‘ From the theoretical pnml
of view, one can have no complaints. I removes, in @ r‘vgnmu.f an(ll com[.vrehcns‘n'c
manner, all of the doubts that linear stability theory. with its dubious .frozcn Jnco{nnnl
arguments, raiscs. Morcovcr, it turns out tha onc d(‘»c.\‘ not need p;ungnl;nly po\\xr.fu
tools to cope with the full nonlinear system; AN-sluhlh'ly. hn?cd on a larly mllq ‘Cx(?l;j:(\l\.
of the scalar test cquation of linear stability lITcory. is cqun\uvlcnl to ;_\Igc‘hr;m sl.-|ﬂ_1‘|(l_\
for most Runge-Kutta methods. Further, lcs(mg.ff)r ellg‘ghr;nc stability 1s no‘( dll .|$u '(
(indeed sometimes easier than testing for A-stability) Finally. B-convergence g;(\jus \(
convincing and useful explanation of an observed phenomenon. Really, we could no
have asked for more! - e are solved in

But what impact has the theory had on the way m.\\lmh sUIT systems .u% st 4
practice? As the dates of the references show, the nonlinear theory I\us been dl’Oz;n‘L d(tr
some time, yet most real-life stilf problems continuc to be soI\cq bx highly-tune wo es
based on the BDF, which give cxcellent results for the vast majority of pmhlcms.' ne
reason for this becomes clear when we recall the shortcomimgs of the lincar theory. TQ
put it somewhat fancifully, the bogus extension of the liqcur lhgory to nonlinear probllcn’\x
sometimes tells us fairy-tales about how tife exact solulnqns might be gxpccled ‘(o bc‘ha:jei
We do not believe these fairy-tales but. significantly. ncither ncccgsun!y do the mﬂd"o <d
We saw an example of this in the fatter part of §3.8. where the hnear theory predicte
disaster, but the method continued to behave normally

On' the other hand, it is possible that variable-order Runge Kutta codes h;lseq »Ov“
algebraically stable methods will be developed to the point where lhcy.;\re cgmpclulne
with BDF codes (and of course the ever-decreasing cost of computer time biases users
towards robustness rather than efficiency). Should that happen, it would make sense to
~vefer methods whose stability is so well understood.
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The abbreviations LM, PC and R

1l acy

N Index

K are used to denote linear multistep. predictor—corrector and

Runge-Kutta respectively. Major text references arc in hold type.
.

A-methods 206
Acceptability, A-, Ao, - 233
Adams
array 93
backward difference form 80
_Bashforth methods 46, 81, 86
—Bashforth-Moulton (ABM) mcthods
110, 115
coefficients, properties of 87
methods 46, 110
—Moulton methods 46, 84, 86
s-Adams methods 93,96, 115
type 46,65 .
Adaptive methods 251

B-consistency 281

B-convergence 281

Backward Differentiation Formulae (BDF)
47,98, 245 ,

Backward Euler method 86, 192,276,229,
279 s

Blended LM methods - 254

Boundary locus techniques 71

Butcher array 150

modified 184
Butcher transformation 241

Ceschino's formulae 139
Characteristic polynomial 10, 30, 45,70
Classical RK method 156
Codes 147, 189, 246, 250, 251, 252
Collocation methods 194
Consistency 28, 152

restraint 256
Contractivity 265
Convergence 27, 146
Crank-Nicolson scheme 255

Dahlquist barrier
first 55 \
second 244

—~ LLL .l WL -1l 's 107

Difference systems 9
Differential systems
autonomous 6
coupled 5
first-order 4
first-order constant cocfficient 8
higher order 6
homogencous 8
Direct product of matrices 19, 240
Dissipativity 268
Divided diffcrences 17
modificd 143
DOPRI(5,4) 180, 2t4
Douglas scheme 256
DuFort-Frankel scheme 256

Ehle conjecture 234
Elementary differential 160
Eliminant 53

England’s method 185, 204
Enright’'s mcthod 252

_Error constant 49,252

Error tuning 185

Euler's Rule 45,47, 149, 151,154,203
Explicitness 24,46

Exponential fitting 244

Fixed station limit 26
Frechet derivative 158
FSAL methods 186

G-norm 272
Gauss, Gauss—Legendre methods 190, 248.
275,279
Gaussian quadrature formulae 190
Gear's implementation 134
Generalized Milnc-Simpson methods 47
Generating function 82,85.92.99
Global truncation error 57
bound, LM methods 60

Hamminec method 110
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Hermite interpolation 53
Heun's third-order formula 155

Ni-conditioning 222
Implicit Euler Rule 192
tmplicit Mid-point Rule 190, 247,271,279
Implicitngss 24. 46,237
improved Euler method 155,157
Improved polygon method 155
Influence function 59
Initial vatue problems S
Interpolation formutace
Lagrange 16
Newton divided difference 17
Newton-Gregory backward 16
Iteration
lixed point 12
modified Newton 13,239
Newton 12

Jacobian 12
Yrozen’ 77,223,262

Jordan canonical form 241
Kutta's third-order formula 155

Lincar multistep methods 24, 45

in backward difference form 91
Lincar stabihty theory

for LM mcthods 0K

for PC methods T

for RK methods 198
Lincanzed error equation 77
Lincarly impliait 253,254
Lipschitz condition, constant 6,12, 22

one-sided 266
Lobatto IITA, 1B 1HC methods 193, 249,

275,279

Local error 63

principal 63
Local extrapolation

for PC methods 108,114,117

for RK methods 185 '
Local truncation error 27

boupd, LM mcthods 60

LM methods 56

Milne's estimate 108

PC methods 105, 254

principal, LM methods 57

principal, PC methods 107

RK methods 152, 170, 209
Localizing assumption, 56, 105, 201
Logarithmic norm 268

Maximal methods 55
Mean value theorems 2
for integrals 4,84
Merson’s method 183, 204
Method of lines 256 '
Mid-point Rule 47,57
Milne’s method 110
Modified Euler method 155

“Modifiers 108

Nystrém methods 47

Nystréom's third-order method 156
Nonlinear stability theory 261
Nordsieck vector 133, 134,135, 206

Obrechkoff methods 251
One-leg twin 247, 274
Operator

backward difference 2

forward difference 2

forward shift 2

linear difference 48
Optimal methods 55
Order

of LM methods 48

of RK rhethods 152, 169

stage-, of RK methods 282
Order stars 234

Padé approximations 233

Padé table 233

Pascal matrix 137

Peano kernel 59

Periodicity, intervalol 80

Properly posed 31,32

Predictor~corrector methods 24, 103, 115

Predictor. corrector modes 103
correcting to convergence 104
P(ECYE"" 105
P(ECYLE'™" 109
P(ECLY'E'™" 109

Quade’s method 36, 51,97

Radau 1A, I1A methods 191, 248, 275, 279
Rational approximations to the exponential
232
Real-time problems 104
Residual 27, 47, 209
Richardson extrapolation 183
RKF45 145,204
Roots
principal 35
spurious 35

Root condition 35

strong 67 »
Rosenbrock methods 254
Round-off error 60y
Routh-Hurwitz criterion 14,74
Row-sur condition 149
Kunge-Kutta methods 24, 149

Albrecht theory 205

Butcher theory 157

diagonally implicit (DIRK) 196, 249 276

embedded 184

e licit 150, 153

explicit, attainable order 176

-Fehlberg 185, 188

implicit 151, 189

nonconfluent 278

order conditions 153, 165

semi-implicit 151, 189

singly diagonally implicit 196

singly implicit (SIRK) 197,250
Saui'ev's method 239
Scanning technique 202, 204, 236
Schur polynomials 13,74, 76
Semi-discretization 256
Simpson’s Rule 47,52,56,74, 110,127
Singular perturbation 222
Smoothing 228
Spline 54
Stability

A- 224

A(a)- 225

A0 225

Ag- 225

AN- 278

absolute, LM methods 70

absolute, PC methods 120

absolute, RK methods 199

algebraic 275

B- 274

BN- 274

BS- 282

G- 272

L- 227

precise A- 231

relative 75, 127

stiff 225

stiff A- 227

t
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strong A- 227
total 31
zero- 32,36
Stability function 199
Stability polynomial
LM methods 70
P(ECY'E'™" 119
P(EC)'LE' ' 124
P(ECL)'E' ' 124
Starting errors 59, 60
Starting procedure 144
Starting values 10,57
Steady-state solution 216
Step-changing
doubling and halving 129
interpolatory techniques 128
Nordsicek vector techmgue 132
strategy 144
variable cocflicient technigues 128,138
Stepnumber 22
Stiffness 215,216
pscudo- 219
ratio 217
Syntax duagram 37
for AN-stability 278
for absolute stability 70
for algebraic stability 275
for B-stability 274
for contractivity 266, 271
for G-stability 273
for zero-stabihty 38

Theta method 244257
Transient solutton 216
Trapezoidal Rule 4047 86, 225.229.2
244 247 271,279
Trec 162
bush 171
density 164
order 162, 164
gymmetry 164
trunk 171

Variable coefficient multistep methods 2
258

Variable step variable order algorithms

Variational equation 262





