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Preface

In the late 1960s and early 1970s, 1 wrote a book on the numerical analysis or ordinary

diITerential equations -ntitled Campl/tatiorwl Methods i/l Ordillary Differential Eqllatioll.~,

published in 1973; to .ny considerable surprise, it is still in print. That book was largely

based on a course or lectures I had given to M.Sc. students or numerical analysis in the

University or Dundee, a course which I have continued to give ever since. As the years

have passed, the role or Lambert (1973) has changed from being virtually the content

or that course, through a phase when parts or it were dropped and replaced by newer

material, to the current situation, where it is relegated to the status or a background

reference, There has never been a revised edition or Lambert (1973). I have always felt

lukewarm about the idea or revised editions; too often the end-product seems to resemble

the results of altering a house by chopping bits orr and throwing up extensions-it

fulfils its new purpose, but it is not what you would have designed if you had had a

free hand. The-present book is intended as a replacement Ior Lambert (1973), and is by

no means a revision of it. Although the general topic remains the same, the overlap

between the two books has turned out to be very small indeed. The intended readership

is precisely the same as for Lambert (1973), namely postgraduate and advanced

undergraduate students and users of numerical methods.

Emphasis in the subject or numerical methods for initial value problems in ordinary

differential systems has changed substantia lIy since Lam bert (1973) was written. i\ t that

time, new methods were cons-tantly being proposed (frequently with scant consideration

or the problems or efficient implementation); on the theoretical side, convergence was

or course well understood, but stability relied exclusively on a linear theory based on an

over-restrictive linear constant coefficient test equation. In contrast, the major codes in

use today are based on only a handful of methods (Adams- Bashlorth-Moulton.

Runge-Kutta and the Backward Differentiation Formulae), hut embedded in very

sophisticated and well-analysed implementations; moreover, there now exists a much

more satisfactory nonlinear stability theory. (It is a little ironic to note that all or the

names mentioned in the preceding sentence arc from the nineteenth century.)

In this book I have tried to reflect those changes. From the outset. systems of differential

equations rather than scalar equations are considered, and the basic topics or consistency.

zero-stability and convergence arc set in a context of a general class or methods. Linear

multistep and predictor-corrector methods arc studied, at first in general, hut with

increasing emphasis on Adams methods. Problems of implementation arc considered

in much more detail than in Lambert (1973). Many or the results on Runge-Kutta

methods in Lambert (1973) are valid only for the scalar problem. and 1 therefore felt it

necessary to include a non-rigorous account or the Butcher theory Ior Runge- Kutta

methods for systems. or course, this theory existed when Lambert (1973) was written.

but I felt at that time that it was too demanding for a text at this level: I no longer

believe this, and have round that students can not only assimilate this material. but
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x PREFACE

rather enjoy it (I have also included a brief account of the alternative approach of

Albrecht, which appears not to be as well known as one would expect.) There is much

more emphasis Oil embedded explicit Runge-Kuua methods and on implicit

Runge Kutta methods. The topic of stiffness is treated in much more detail than in

Lambert (1973). and includes an account of nonlinear stability theory. Numerical

experiments arc interspersed with the text, and exercises are inserted at the ends of

appropriate sections. In .the main, the latter are straightforward and are intended only

to Illustrate and, occasionally, to extend the text; those which are longer or more

demanding iue marked *.

This change of emphasis towards implementation has presented rnewith two problems.

Firstly, I had to decide to leave out a number of methods (such as cyclic methods)

which. though of intrinsic interest, do not appear to be competitive. The hardest decision

in this respect was to omit extrapolation methods, for which a case for competitiveness

can he made; in the end, I concluded that the interests of the intended readership would

he better served by not sacrificing any of the material on the major classes of methods

to make room for them. I have not included general linear methods on the grounds

that they are not yet competitive. The second problem is that studying a smaller number

of methods in greater depth tends to raise the level of difficulty. I believe that I have

managed to avoid this by giving non-rigorous accounts where appropriate; where rigour

IS essential. I have quoted theorems, but supplied proofs only where these are constructive

(in a numerical analytical sense). My evidence for this belief is that most of the material

in this hook has been tried out on students at the same level as those I taught in 1973

(and I see no overwhelming indications that 1990 students are any brighter or better

prepared'). I do not believe that the change of emphasis has produced a duller book

(hllt the reader will have to judge that for himself). One of the magical properties of

11I;lthematil:s is its ahility tIl keep producing fascinating ideas even when it is attempting

to answer practical and technical questions; there can be no better example of this than

the emergence of the elegant order star theory of Hairer, Wanner and Nersett, briefly

covered in Chapter 6.

I am grateful to my friend and colleague Des Higham for his careful reading of the

manuscript and for his many useful suggestions.

J. D. LAMIlERT

Dundee, Scotland

November 1990

I
I
I

1 Background Material

1.1 INTRODUCTION.,

The level of mathematical background needed for this book is not particularly high; in

general, a knowledge of the calculus and of some aspects of numerical linear algebra

(vector and matrix norms, LU-decomposition) together with some familiarity with

complex numbers will suffice. Inevitably, there will be occasions when we need to employ

some additional concepts and techniques, not perhdps part of every reader's experience.

In some situations, such as the development of Butcher's algebraic theory of

Runge-Kutta methods (Chapter 5), it seems appropriate to develop the necessary tools

in situ; but in others, where the use of the tools is more incidental. such an approach

can be disruptive. Accordingly, in this chapter we collect together a number of these

additional concepts and techniques. No attempt is made to trealthem in a comprehensive

manner, and we settle for taking them just as far as is necessary for an understanding

of their use in the remainder of the text.

This chapter is, of necessity, a bit of a rag-bag, and readers who are familiar with its

contents are urged to proceed at once to Chapter 2.

1.2 NOTA TlON

. .
ThIS book is concerned with the numerical solution of sysrcIIl5 of ordinary differential

equations, which means that we shall regularly be dealing with vectors. sb widespread

will be the use of vectors that any attempt to differentiate between scalars and vectors

by setting the latter in bold fount would result in rather an ugly text, For most of the

time it will be obvious from the context whether a particular symbol represents a scalar

or a vector, but when there is.doubt we shall insert statements such as'(EIR to indicate

that x is a real scalar and yEIR'" to indicate thai y is a real m-dimensional vector.

Alternatively, we may write statements such as

to indicate that x is a scalar and y and fare »i-dirnensional vectors. Similarly, ~EC

ZEe'" will indicate that ( is a complex scalar and z 'a complex III-dimensional vector.

The nh component of yEIR'" will be denoted by 'y, so that we may write

y=[l y,2 y, ... ,'"y]T,

where the superscript T denotes transpose (vectors will always be column vectors). The

slightly unusual notation of labelling a component of a vector by a left superscript is

rather forced upon us; the more conventional positions for such labels are pre-booked

for other purposes.
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2 BACKGROUND MATERIAL MEAN VALUE THEOREMS 3

Any norm of a vector ,I' or of a rna trix A will be denoted by II y II and II A II respectively,
and when vector and matrix norms appear in the same context it is assumed that the
matrix norm is subordinate to the vector norm. When we need to use a specific norm,
it will usually be the Lz-norm, 1I'lI z, defined by

II A 11 2 = (maximum eigenvalue of iP A)I/2,

where it is the conjugate of the matrix A,
We shall frequently lise the notation

when applying it in a vector context. As Iar as our applications of the theor~m will be
concerned, the difficulties introduced by the v~ctor context are merely n~tatlOnal. and
virtually constitute only nuisance value. In this section we state mean value theorems

f h f ti L(Z)ECt where each of F and z can be either scalar or vector, andor t e unc Ion " " . . . . f' .
introduce some simplifying notation which will be useful in avoiding the nuisance ,lCtOI

later.

Case 1 P: IR' --> IR t F(z) is a scalar function of the scalar argument z and tuc

mean value theorem takes the familiar form

I'.F,,=F., , t: tlzF.=!',.(P.,,-F.)=P.+2~2F.+t+F.,

'IIF.=F.--I-'. I' 'IIzF.='II(Fn-Fn_I)=F.-2F._I+Fn_2' etc.

When the equally spaced data arise from the evaluation of a continuous function, that
is when F; = F(x n ) , then, provided F(X)EC k

, we have the useful results that

(1

(I.

(I.~

(11

/ =' I, 2,. ., III,

where each of thc mean values (" I = 1,2, .. , ,III lies in the open interval with cnd pain

z and Z·.

F(z) - nz*) = (f- z*)F'((),

where the mean value ( lies in the open interval' with end points z and :*

Case 2 F: IR 1-> IR m F(z):= [' F, zF, ... , '"F)T is a vector function or the scala

argument z. We can apply (1.1) to each component of F to get

where F' is the vector with components 'F', t = 1,2, ... ,III, and the bar indicates that cue
component of F' is evaluated at a different mean value: ~ now merely symbolizes

typical mean value. That is,

"(0:= [' F'(( d. 2F'(( 2)"'" mF'(~m) ]T,

but it is not in general true that the same mean value will apply Ior each component
hence the presence of the subscript in (,. A vector form or (t .2) would be much mal
convenient, so we force this by writing

Case 3 F: IRm -> IR ' 'F(z) is a scalar function of the vector argumc
z:= ['z, 2Z,,';,., mz]T, and the mean value theorem takes the form

where ( is an internal point or the line segment in IRm joining z to :*

Case 4 F: IRm --+ IRm F(z):= [I P, 2F, ... ,mF]T is a vector function of the veeI
t '- [' 2 mZ]T We can apply (1.4) to each component of F to obtainargumen Z.- z, z,.,., .

as II --> D,nil) = 0(/1")

EF.=Fn+"E
zF.=E(EF.)=F.+

2, etc,

Note that if n.is a polynomial of degree k; n(r) = L~~ oy)r), then we may write L~~ oy)F. +J

as n(ElF.. Negative exponents are also allowed so that, for example, E-JFn=Fn_J.
The forward dif]i.'r('/lc(' operntor ts is defined by /'" = E - I, and the backward difference
operator V hy V = I - E- I, so that

where II is a scalar and F may be either a scalar or a vector. It means that there exists
a positive constant K such that II P(lI) II ~ KIIP for It sufficiently close to zero. Normally,
we do not bother to add the phrase 'as IJ ->0' and merely write F(IJ) = O(IJP), bu't 'as
11--> 0' is still implied. This is of some importance, since P(ll) = O(h P) is an asymptotic
statement concerning what happens for sufficiently small II: its interpretation must not
be debased into implying that F(II)is roughly the same size as h", no matter the size of It!

We shall occasionally use the notations xE[a, hJ, xE(a, h),xE(a, b] and xE[a, b)meaning
that the scalar x satisfies a ~ x :( b, a < .x < b, a < x ~ h and a ~ x < h respectively. We
shall also write .1'( x)ECm[a, h] to mean that y(x) possesses m continuous derivatives for
xE[a,hl The rth total derivative of y with respect to x will be denoted by
yl'l(xl,r = 0, 1,2, ... , where yl0I(X) == y(x) and y(l)(x) == y'(x). We shall also use the
notations /1 := Hand H =: A to mean' JI is defined 'to be B'.

The usc of the finite difference operators E,!',. and V will frequently prove helpful.
These are defined as follows. Let {(xn, Fn ) , XnE R ['-nE IRm, l1 = 0, 1,2, ... } be a set of equally
spac('d data points in IRm

+ I: that is, 'we have that x, = Xo + nh, where-Ji is a con.rant.
Then the [orward slli/i operator E is defined by

where, as in Case 2, we do not have the same mean value C, for each component. Us

1,3 MEAN VALUE THEOREMS

On several occasions later in this book we shall make use of the standard mean value
theorem, Although this result is very familiar in a scalar context, care must be taken

m a'p
'F(z) - 'F(z*) = L ('z - 'z") r , ((,),

I~ I a.
.~ = 1,2, ... ,111 \1
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4 BACKGROUND MATERIAL FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 5

where 'y' = (d/dx)'y(x). We immediately abbreviate the phrase italicized above to
'first-order system'. or just 'system', The system (1.9) can be written in vector form as

th~ notation

o'F
F.,(z) :=-- - (z).. o'z y'=f(x.y). (1.1 0)

where J is the Jacobian malrix of 1" with respect to z, and the bar indicates that each
row of J is evaluated at a different mean value; that is '

Each of the mean values (,. t = 1,2, ... , m is an internal point of the line segment in R'"
joining z to z*..

where y=[ly.2Y, .... '"y]T and f=Cf,2f..... '"f]T. so that f:1R x IR'"--.IR'".
We note that each 'f depends on 1Y. 2y, . .'., on)'. that is. the system is cOl/pIed. Were it

the case that each 'f depended on 'y alone. the system would he I/lIcol/l'led. and each
equation in it could be handled independently of the rest. It is this coupling that is the
essence of a system; an uncoupled system is not essentially different from a scalar
differential equation.

The general solution of a first-order system of dimension m contains, in general. m
arbitrary constants; thus, for example, it is easily checked by substitution that the
two-dimensional system

we can write (1.5) in the more convenient form

nz) F(z*) = J(()(z - z*),

l'''((') F I2(( .) ',.((,1 J
J(O = 1"21((2) Fnl(2) F2,"((2)

F,"2((,") F,","((,")1","1((,")

(1.6)

•y' = 1v]»: + 2yx }
2y' = X[(2y)2 _ 1]/' Y

(1.\ I)

In the situation we shall meet, (('(x) is a vector function of x but y(x) remains a scalar
(unction, and clearly (1.7) can be applied to each component of cp (provided, of course,
that the stated conditions on q? and fJ hold), giving the result

There is another mean value theorem, the generalized mean value theorem for integrals,
which we shall have occasion to usc. In its scalar form it states that if cp(x) and g(x) are
scalar functions of the scalar variable x where, in .n interval [c, d] of x, cp(x) is continuous
and y(x) is integrable and of constant sign. then there exists a mean value ~e(c,d) such thatrq?(x)g(x)dx = cp(~)rg(x)dx. (J.7)

f

I"

I
I

is satisfied by

•y(x) = x [eos(C I x + c2)]/C 1

2y(X) = -sin(C1x+C2 )

for any values (with the exception of C, = 0) of the arbitrary constants C" C 2' For the
general m-dimensional system, the m arbitrary constants can be fixed by imposing m side
conditions. If these m conditions take the form of demanding that the 'r, t = 1.2.... , m
all take given values at the same initial point, then the system together with the conditions
constitute an initial value problem. Writing the system in the vector form (1.10), the
general initial value problem thus takes the form ;4

Once again. we abbreviate the nomenclature, and henceforth refer to (1.12)as a 'problem'.
We regard (1.12)as the standard problem; this book is concerned entirely with numerical
processes for solving (1.12).

Not all problems possess a unique solution, or indeed any solution at all. The following
standard theorem lays down sufficient conditions for a unique solution to exist; we shall
always assume that the hypotheses of this theorem are satisfied:

r,p(x)g(x)dx = cii(e)rg(x)dx.

where the notation ,p(~) implies that: each component of cp is evaluated at a different
mean value in the interval Ir, d).

1,4 FIRST-ORDER SYSTEMS OF ORDINARY
DIFFERENTIAL EQUA TlONS

where
y' ='= f(x, y.). y(a) = 'I. (112)

Throughout this book we shall be concerned with a first-order system of ordinary
diffl'relltial equations of the form

holds for every (x.j'], (x.y*)eD. Then for any I]EIR'", t!lere exists a unique solution y(x) of
tile problem,(I.12), where y(x) is continuous mrd differentiable for al/ (x, r)e D.

Theorem 1.1 Let f(x.y), wilerI' f: IR x IR'" --. IR'", he defined and COlllinl/ous for all (v, .1')

in tile region D defined by a":; x ,,:; 17, - 00 <'/< 00, t = 1.2, .. , III, where a mldh are
finite, and let there exist a constant L such thatI' If( I 2 '" )y =. X. y. y•... , y }

2}" = 2f(x. 'y. 2y, ... , '"y)
,

'"y' = '"f(x, 'y, 2y,.,., '"y)

(1.9) IIf(x,y) - !(x,y*)II,,:; Lllr - r*1I (1.13)
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BACKGROUND MATERIAL HIGHER· ORDER SYSTEMS 7

11': III x Ill'" x IR'" x .. · x Illm--> Illm

where

(== .1'(0»)

(== 1'111)

(== .1'(21)

q-f irne s

Y I := )'

Y2 := }"I

YJ := Y'2

Define Y,EIR"', r= 1.2.".,q by

can be rewritten as a first-order system of dimension qin. by the following device:

f(x:y) continuously differentiable wrt J' for all (x,y)ED
c?((x,y) satisfies a Lipschitz condition wrt y for all (x,Y)ED
-=:-((x,r) continuous wrt I' for all (x,y)ED,

the condition can he thought of as requiring a lillie more than continuity but a little
less than differentiability. If [t«, y) is differentiable wrt y, then from the mean value
theorem (I.ll) we have t hat

The requirement (1.1.1) is known as a Lipschitz condition. and the constant L as a
Lipwchu z collstallt. Since

/(x,r)- ((x,y*) = .f(x,()(y- .1'*),

where the notation implies that each row of the Jacobian .J = 1' ( (x , y )/ (1y is evaluated
at different mean values, all of which are internal points on the line segment in Ill'" + I

from h,I') to ex.r*). that is. all of which are points in D. It follows that the condition
(I 1:1) can he satisfied by choosing the Lipschitz constant to be

L= sup II N(x, y)/rly II·
(.'t:,.l'IFn

(1.14) The last q - I of the above equations together with (1.15) gives

1,5 HIGHER-ORDER SYSTEMS

a :I-dimensional autonomous problem, with solution

Thc Ifth-ordcr III-dimensional system of ordinary differential equations of the form

Y' = F(x, V),
•

Y:= [Vi, Y~'"'' y;]Telllq ... ,

F:=[Y~, Yj, ... , y;,rpT(X, YI' Y2 , . " , Yq)]TElRq»,

Y' = F(x, V), Y(a) = X'

wherex:=['1I.'12, .. ·.'1q]T. ;
When seeking numerical solutions of initial value problems, it is standard practice

first to reduce a qth-order system to a lirst-order system. The only exception is when
the system is second orderIand in particular, when such a system does not involve the
lirst derivatives), for which special numerical methods have been devised. Even then,
whether or not it is better to make the reduction is an unresolved question the
invest'igation ef which leads us into the no man's land of frying to compare norms over
different spaces. In any event, the availability or sophisticated software for the numerical
solution of first-order systems is a strong incentive always to make the reduction.

The initial value problem consisting of (1.15) together with the initial conditions
yl'l(a) = '1r+ I. r = 0, I•.. " q - I, can thus be written in the form

where

Y~-l = Yq

Y~ =rp(X,Y1,Y2' ..../q),

which is a first-order system of dimension qlll.1l can be written in more compact form as

f

}

I

(1.15)

ly(I)= 1

21'(1) =°
'y(l) = I,

v'" = rp(x. ylOl, yC II •...• J'Cq - I'),

1.1" = Iy;-'y + 2iy

2r ' = 'y[e.d - 1]/1.1'

'r' = 1

'r(x)=xcos(x-I), 2y(X)= -sin(x-I), Jy=x.

Since we rcgurd thc dimension of thc problem as being arbitrary, there is clearly no
loss of generality in assuming that the general III-dimensional problem is autonomous.
(In fact. we will not generally make that assumption, although it will prove useful to
do so in thc development of Runge-Kutta theory in Chapter 5.) However, there is a
loss of generality in assuming that a scalar problem is autonomous, since the conversion
to autonomous form would raise the dimension by 1. and the problem would no longer
be scalar; thus the general scalar problem remains as y' = [i«, y), y(a) = '1.

If in (I 12) I is Independent of x, the problem (and the system it involves) is said to
be au(mlOlllou.\: and to he /lm!-tllIlO/lOIllOUS otherwise. It is always possible, at the cost
of rarsmg the dimension hy I. to write a non-autonomous problem in autonomous form.
All one need do is add an extra scalar equation ... + I y' = I with initial condition
.... l\'Ia) = a, which implies that"' + 1Y == x, so that the new (III + I)-dimensional system
I,S clearly autonomous. For example, if we add to (1.11) the initial conditions I .1'( I) = I,
-rll) = O. the resulting 2-dimensional non-autonomous problem can be rewritten as
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8 BACKGROUND MATERIAL

1.6 LINEAR SYSTEMS WITH CONSTANT
COEFFICIENTS

The first-order system \" = f(x,y), [: IR x IR"' ...... IR"' is said to he linear if J(x,y) takes the

form f(x.\,) = II(x)\' + <(I(x), where A(x) is an m x m matrix and CPEIR"'. Further, if

11(x) = A. independent of x, the system is said to be linear with constant coefficients.

Associated with such a system

SYSTEMS OF LINEAR DIFFERENCE EQUATIONS 9

. [ IJ . [i J l x/2 J
y(x)=x1exp[(l+t)x] . +x2exp[(I-I).x) + I.' 2 .

• 1 1·~ ( + \)1

The eigenvalues of A are I + i and 1 - i, and the corresponding eigenvectors arc [I. i]T

and [i, I]T respectively. Note that there is no need to normalize the eigenvectors, since

they are going to be multiplied by the arhir",r}' constants %, and Y2' By trying a

particular integral of the form [ax + 11, ex + d]T, we establish that'" = [:</2, ~ (I + :<)/2]T

is a particular integral. The general solution is therefore

(1.\ 6)y' = Ay + cp(x)

Ifv(x) is the general solution of (1.17) and "'(x) is any particular solution of (1.\6), then

r(x) = .v(x)+ ,~(x) is the general solution of (1.16). (y(x) is the complementary Junction of

(1 16). and I~(X) is a particular ill/eyral.)

A set of M solut ions: .I',(x), / = 1,2, ... , M} of (1.17)is said to bdillearly independent it

is the /UlI1lOi/('/I('(}/lS form

y'= Ay. (1.\ 7)

The initial conditions are seen to be satisfied when Y., = I - i/2. Y.2 = I/2 ~ i. On

substituting these values into the general solution and simplifying. we find the solution

of the problem is given by

1 y(x) = (2cos x + sin x)exp(':<) ;+- x/2

2y(X) = (cosx - 2sillx)exp(x) - (1 +x)/2.

A set of 111 linearly independent solutions {y,(x),t = 1,2, ... ,m} of (1.\7) is said to form

a [undamcnt al system of (1.17), and the general solution of (1.\7) is then a linear

combination of the solutions which form the fundamental system. It is easily checked

by substitution that .v,(x) = exp().,x)c" where )" is an eigenvalue of A and c, the

corresponding eigenvector, satisfies (1.17). In the case when A has distinct eigenvalues

(the only case we shall need) the set of eigenvectors c., t = 1,2, ... ,111 are indeed linearly

independent and thus the solutions {exp()"x)c" t = 1,2, ... ,,,,} form a fundamental

system. We then have that the general solution of (1.17) is

"'
j'(x) = I x, exp()"x)c"

r = t

where the x, arc arbitrary constants, and that the general solution of (1.\6) is

[

- 21 19

A= 19 -21

. 40 -40

Exercises

1.6.1. Solve the initial value problem y' = Ay, rIO)='( I, O. - IJT. where

-20J20 .
-40

1.6.1. Write the scalar differential equation },IJ\ = ay12' + /J.I'"' + e.\' + '1'( xl as a first-order system

y' = Ay + $(x). Show that the eigenvalues of A arc thc roots of thc polynomiu] ,.' _ ",.' - hI' - c,

Show also that if "'(x) is a particular integral of thc given scalar differential equation, thcn

'1':= ["'(x), ",11\(X), ",l2I(X)]T is a particular integral of the equivalent first-order ;ystem.

1.6.3. The diffcrential equation .I'D. + Y = x 2 + exp( - h) has a particular intcgr..l

x2 - [exp( - 2x)]/7. Find the equivalent first-order system and. using the results <If the preceding

exercise, find its general solution.

(1.\ 8)

t= 1,2, ... ,M.
M

I C,y,(x) == o~c, = 0,
, = I

"'
y(x) = I x,exp()"x)c, + "'(X),

r= 1

(1.19)
1.7 SYSTEMS OF LINEAR DIFFERENCE EQUATIONS

WITH CONSTANT COEFFICIENTS

where "'(x) is a particular solution of (1.16).

The x, arc of course uniquely specified if an initial condition y(a) = '7 is added to

(1.16); no tc that {r., / = 1,2, ... ,11I} forms a basis of Ill-dimensional vector space.

The eigenvalues and eigenvectors of A are, in general, complex, as will be the constants

Y,; hut, due [0 the presence of complex conjugates, the solution (1.19) will be real-c-as

indeed it must he. For example. consider the 2-dimensional initial value problem

Let {Y., n = no, no + I, no + 2, ... } be a sequence of vectors in IRm
. Theil the system of

difference equations I

where the Yj are scalar constants (that is, are. independent of II) and <p"EIR"'. constitutes

a kth-order system oj lillear differe/lce equations wirll ecms/mll ('()c(lidcllrs. Note that the

solution of such a dilTerence system is a sequence {Y.} of vectors The technique for

establishing the general solution of (1.20) is a direct analogue of thai for the system

(1.16) of linear dilTerential equations with constant coefficients. Let :,i-,,: be the general

( 120)
II = /In, 11 0 + I, lin + 2..

l

L YjY.+j=cP.,
j=O

\ ~

y(O) =/1,y' = Ay + cp(x),

where
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solution of the /UI/110i/CllCOIIS form Using the given starting values. we obtain a set of four equations for the four arbitrary

vectors dll,dl2,d3.d4' whose solution gives

" I
,1'" = "/1j-l r·,d l l·+ " r·d +,1.L L " '1' ••

k

Y.= I r·d, + !/J••
,= I

I

71:(1'):= Il'jl·J.
j~O

II = 0.1,.

[
i/4 1Ii ~

4 ~ (I + 3il/4

Exercises

lim 'fJ.+ J«, = ~(I + )5).

'["/4-1 J {.-21/2[ sin 1171:/4 J l"+2JY = 2· + 2 +.
• (II - 3)/2 cos 1171:/4 + 3 sin Itn/4 I

where the summation term is taken to be zero when the upper limit or summation is negative.

1.7.4. The Fibonacci numbers are a sequence of integers {",.11l = 0, t. ... ) such that each member
of the sequence is the sum of the two preceding it. the first two being 0 and t Construct the first
eleven Fibonacci numbers and comp-ute the ratio "'. + I /"' •• II = 1,2.. .9. Do you see any signs of
this ratio converging as 11 increases? By solving the appropriate scalar difference equation. prove
that

[
"14 - 1 J . [' -i/4 J .[ i/4 1["+21=2· + 1+1· +(1-1)" . +

Y. (11-'- 3)/2 ( ) (I - 3i)/4 (I + 3i)/4 1

On writing I ±i = j2(cos 71:/4 ±i sin 71:/4) we' obtain the solution in real form:

1.7.1. For the example at the end of the above section. calculate .1'4' r~ and .1'" directly [rum thc
difference system and the given starting values and show that the values so round coincide with
those given by the general solution.

1.7.2. If Y.+ 2- 211Y. + I + 11.1'. = c. n = O. 1.2..... where .1'•• CE~m. I'E R c is constant and ()< II < I.
show that Y. -+ c/(I - II) as 11-+ 00.

1.7.3. Let r. and 1'2 be the roots. assumed distinct, or the quadratic 1" - a"~ 1>. Show that the
solution of the inhomogeneous linear constant coefficient difference systemr. , z - l'.\·•• I - I>r.= 'T•.
satisfying the initial conditions Yo = Do • .1', = "10 where .1'•• 'T~. ,10, (I,E~m, is given oy

\

I [.. .-, .-1 • '.-1" • It 'JY.=-- (1'1-1'2)<5.-(1'1 -1'2 )r,r2 DO+ L(r, -I', Pi
r l -r2 )"-'0.

whence

,

I
I
i
i
i
I

(1.21)

,=,,+ 1

/I = 110• /10 + I. 110 + 2. ' , , ,

j ~ I

11=1/". 11 0+1.110+2.... =C,=0. t=I.2..... K.

I

L ;';1'.+;=0.
; -"

"L e,I'., = O.
1-;--1

If it(,.) has /.; distinct roots then it can be shown that the set of solutions {r7}, t = 1.2•. .. . k
forms a fundamental system off 1.21)and the general solution 0,f(l.20) is then {Y.} where

/\ set of /.; linearly independent solutions {{r".,}. 1 = 1.2•.... /.;} of (1.21) is said 10 form
a!iIll<!lIl1lcl/(ul '.\'Slem of (1.21). and the general solution of (1.21) is then a linear combina
tion of the solutions which form the fundamental system. Let us attempt to find a
solution of (1.21) of the form r •., = r7. By substitution. we find that this is indeed a
solutiou pr ovidcd that 1', is a root of the characteristic polY/1o/llial

where the tI, i and the d, arc arbitrary vectors. When the roots of 71: are complex then
the corresponding vectors d, arc likewise complex; the presence of complex conjugates
ensures that the solution will he real. For example, consider the 2-dimensionaI4th-order
difference system

where the d, are arhitrary vectors. which will he specified if k initial values or st artinq
/,II/IU'S are givcn. If 1', is a root of 7I:(r) of multiplicity /1 and the remaining k -/1 roots
are distinct then the set of solutions {r~}. {/1r~ }..... {n"-'''~} and {r7}. t = /1 + I.
II + I ... . . k form a fundamental system. and the general solution of (1.20) becomes {y.},
where

and let l'II.} he a particular solution of (1.20); then the general solution of (1.20) is' I'.},
where .1'. =i'. + 'II rt '

I\. set of K solut ions: {y n ,,}. I = 1.2•...• K} of( 1.21) is said to be linearly independent if

1.8 ITERATIVE METHODS FOR NONLINEAR SYSTEMS
OF ALGEBRAIC EOUA nONS

We shall frequently need to find numerical solutions of systems of nonlinear algehraic

equations of the form •

Y.+4,6Y.'J+ 14V.'2-16Y.+1 +8Y.=[/1,lf, y.EIR2•

'with starting values .1'" = [I.OJT• .1'1 = [2.IJ T, Y2 = [3.2JT. YJ = [4,3]T. By trying a
particular solution of the form r/J. = Ita + b. a.b, E1R 2

, we find that;jJ. = [n + 2.I]T is such
a solution. The characteristic polynomial is

71:(") =,.4 - 6rJ + 14r2 - 16r + 8 = (r - 2)2(r2 - 2r + 2).

which has roots 2.2. I + i, I-i. The general solution thus has the form

1'. = 2·rI" + /12·rl I 2 + (I + i)"d3 + (I - i)·d 4 + [/I + 2, I]T.
\ \ i

Y = cpr}'). cp: W' -+ IR m
. (1221
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lhis is done iteratively by one of two different methods. The first is fixed point iteration,
which consists of constructing a sequence {yl"} defined by

where

II (j1(Y) - (j1(Y*) II ~ M II y - y* II

1l1corc/1/ 12 Let '('(.I') satisfy a Lipschitz condition

(1.27)\' = 0, 1,2, ..
'.

[ I - ~q1(y'OJ)Jt.yI"J = - .1"'1 + ,p(r"I),
oy

is the increment that must be added to the old iterate to obtain the new aile. (We have
added the tilde to avoid later confusion with tJ., defined in ~ 12: 3. operates on the
iteration superscript, whilst A operates on the subscripts in a set of discrete values: .I,,:.)

N( vton iteration is considerably more expensive on computing time than is fixed point
iteration. Each step of the lalter costs just one function evaluation, whereas each stcp
of the former calls for the updating of the Jacobian and a new LV decomposition and
back substitution. In order to cut down 011 this computational effort, one can decline
to update the Jacobian, so that (1.26) is replaced by

E,Yercises

This means that the same LU decomposition can bc used for every stcp of the iteration,
and only new back substitutions need be performed. The iteration (1.27) is known as
modified Newton iteration (and sometimes as quosi-Ncwton or nseudo-Newton itcl'ati!JII).
Note that it is the analogue of drawing all tangents parallel to the first one in the
interpretation of Newton iteration for a scalar problem.

1.8.1. Show that there existsa unique solution of the scalar equation I' = '/,(1'). where '/,(.1') = cos L

Fixed point iteration for this equation can be nicely demonstrated on a hand calculator. Set an.'
number on the calculator (set to compute in radians. of 120ursel and repeatedly press the cosine
key. Hence demonstrate that the iteration converges to the solution. .I' = O,7J90X5.", no mutter
what starting value is used. '

1.8.2. Using a microcomputer (or a programmable calculator} s'lww that. for the problem in
Exercise 1.8.1, modified Newton iteration sometimes convergesand sometimes diverges. depending
on the starting value. Show also that if the starting value is reasonably close to the solution. then
it converges considerably faster than does fixed-point iteration.

(1.23)

(1.24)v = 0,1,2, ....

v=o, 1,2, ... ,.1'(0) arbitrary.

for ,,/I .1', .1", wi,er<' t lu: Linschitz constant M satisfies °~ M < I. Then there exists Cl unique
soluuon y = CI. of (I ,22), and if {yI.l} is defined by (1.23), then .1"'1-> IX as v-> co.

Occasions will arise where we are unable to satisfy the hypotheses of Theorem 1.2,
and the iteration (1.2:\) diverges. In such circumstances we turn to another form of
iteration, Newton iteration, and usually just hope that a unique solution of (1.22) exists.
Newton iteration (or the Newton Raphson process) is most familiar when applied to
.hc scalar problem ny) =0, F: IR -> IR, when it takes the form

lhc following theorem states conditions under which (1.22) possesses a unique solution
to ~hieh ihe iteration (1.23) will converge: .

The interpretation of (1.24) in terms of drawing tangents to the curve z = F(y) and
dctcrrruning where they cut the y-axis will be familiar to most readers. Such an
interpretation is enough to indicate that Newton iteration, unlike fixed point iteration,
has only local and not global convergence; that is, it will not converge for arbitrary .1'[0 1

but only for .1"'" sufficiently close to the solution. There exist theorems telling us how
close to the solution .1""1 has to be, but these are seldom of value in applications, and
the usual practice is simply to guess .1'1 01; if the iteration fails to converge. we abort it ,
and seek a better first guess. If convergence is achieved; then it is quadratic, that is, the
error in the current iterate is asymptotically proportional to the square of the error in
the previous iterate,

Newton iteration applied to thc system F(y) = 0, F: IROO -> IROO,lakes the analogous form

v = 0, 1,2, ... , (1.25)

where .I( I) = l<Y','\'I(r), the Jacobian matrix of F with respect to y. Applied to (1.22)
(pUlling nr) = J' - '('(I)) we clearly get

v = 0,1,2, ....

1.9 SCHUR POLYNOMIALS
\

We shall frequently be concerned with the question of whether the roots of a polynomial
with real coefficients lie within the unit circle. There is a handy phrase for describing
such polynomials:

In practice, it is more efficient not to invert the matrix but instead use LV decomposition
(sec, for exampic, Atkinson and Harley (1983)), to solve, at each step of the iteration,
the linear algebraic systcm

Definition A polYllomialn(r) of degree k is said rio he Schur if its roots r, satisfr 11',1 < L
,t = 1,2,., .,k.

v = 0,1,2, ... , (1.26)
It is mildly surprising that the conditions for a polynomial to be Schur turn out not to
be particularly easy or natural. There exist several criteria each of which throws up a set
of inequalities that must be satisfied by the coefficients ofthe polynomial. In the author's
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experience, the criterion which usually produces the most easily solved set of inequalities
is (he Routh ll urwit z criterion. This is in fact a criterion for thc roots of a polynomial
(0 lie in the left half-plane, so it is necessary lirst to make the transformation r---> z,
r, ZFC, where

r=(1 +z)/(I-z).

This transformation maps the boundary of the circle Irl = I onto the imaginary axis
Re z = (), and the inferior of (he circle 1r] = 1 onto the left half-plane Re z < O. Deline

(1.28)

where we may assume, without loss of generality, that (/0 > O. The necessary and sufficient
conditions for the roots of /'(z) to lie in the half-plane Re z < 0, that is, for n(r) to be
Schur, are that all leading principal minors of Q be positive, where Q is the k x k matrix
defined by

t- 2,1) (2,1 )

III II) (/5 (/2t - I

110 112 (/4 (/H-2 '4
0 III (/) (/H-) tQ=
0 110 (/2 (/H-4

~

° 0 0 (/.

(0, -1)

Figure 1.1

We illustrate hy an example, which is itself a useful result. Consider the quadratic

(where II) is to be taken to he zero if } > k). II can be shown that these conditions imply
thalli) > O, } = 0, I, ... , k, so that the positivity of the coefficients (/) in (1.28) is a necessary
but not sufficient condition for n(r) to be Schur. For k = 2,3,4, the Routh-Hurwitz
conditions turn out to be:

n(r) = r 2 + ar + p. i = 0, I, ,r'. 'P:(z, w) = L y,(w)z', yr(w)¥ 0, )';(w) = L l'uIl'J,
1=0 j=O

Exercises

1.9.1. Use the Routb -Hurwitz criterion to find the interval of (1. for which the polynomial
2r3 + (2ot - l)r2 + (Sot - 2)r+ I - 30t is Schur. Check your result by finding a linear factor of the
polynomial and using Figure 1.1.

1.9.2* P~(z, w), Z, WEC, is a polynomi~1 of exact degree r in z, whose coefficients ,~re themselves
polynomials in W of degree at most q, where at least one of these polynomialcoefficients has exact
degree q. Specifically,

(1.29)

II i > 0, } = 0, I, 2

II j > O,} = 0, I, 2, 3, (/1112 -(1)0 0 > 0

IIi> O,) = 0,1,2,3,4, (/1020J - (/o(/~ - lI 411; > O.

k = 2;

k = 3;

k = 4;

Applying (1.28), we have that

/'(z) = (I + Z)2 + ex(1 - Z2) + fi(1 - Z)2 = (/OZ2 + 0IZ + O 2,
where

110 = I - rx + fi, III = 2(1 - P), (/2 = 1 + ex + fi.

where there exists at least one i"E{O, t, ... ,r} such that l',.,¥O.
We shall say that P'(z, w) is ultimately Schur it there exists a positive constant K such that

PP(z, w), regarded as a polynomial in z, is Schur for all "' satisfying Re II' < - K < 0. Prove that
if'P'(z, w) is ultimately Schur, then Yr, ¥ 0.,

The necessary and sufficient conditions for the quadratic (1.29) to be Schur are therefore
that the point (a, fl) lies in the interior of the triangle in the a, f1 plane bounded by the lines

1.10 INTERPOLATION FORMULAE

fi = I, f1 = a-I, f1 = - a-I

(see Figure 1.1).

..
t

Consistent with our policy for this chapter, as staled in ~ 1.1, we shall gather together
in this section only those results from interpolation theory which will be needed later
in this book. The reader who wishes to see a full account, including proofs, is referred
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•
Although the Lagrange formula is conceptually simple, it suffers a serious dis-

a~vantage. If we wish to add a further data point (x. _q _. I' F. _q _ 1) then, using (1.32)
With q replaced by q + I, we can obtain an expression for I q + 1(x), hut there is no easy
way in which we can generate I q + 1(x) directly from Iq(x). An alternative form overcomes
this difficulty.

to Isaacson and Keller (1966). In most accounts of interpolation theory, the points to
he interpolated arc taken to he (x n , j' Fn +J)' j = 0, 1,... , q, but for our purposes it will
he more natural to taken them as (x._ j' F. _j)' j = 0, I, ... ,q.

There exists a unique vector polynomial (that is, a polynomial with scalar argument
and vector coefficients) of degree at most q which interpolates (that is, passes through)
the (I + I distinct data points (x, j' F._ j) j = 0, I, ... , q, where X. _ JEIR and F._ JEW'. We
shall denote this polynomial by l.(x), and we shall be particularly interested in
representations of Iqlx) which enable us readily to compute I q+ dx) from Iq(x).

The interpolant takes a particularly simple form in the case when the data points are
equally spaced, that is, when x, _j = x, -- jh, j = 0, 1, ... , q, and h is a constant. In such
circumstances it is advantageous to make use of the backward' difference operator V,
defined in Ii1.2.

The Newton-Gregory backward interpolation formula

When the data arc evenly spaced, Iq(x) may be written in terms of the backward
differences of F as

Ii x - X"-i
Lq.J(x):=

I=OXn _ j - X,,-i
I~J

It is obvious that Lq.l'() is a polynomial in x of degree q, and moreover that

i = 1,2, . . ,q.

It follows that Iq(x) can be written in the form

• lq(x) = t'L .(x)F .
j=O q.) - n r F (1.32)

(1.30)

where x = x, + rh, and ( ~ 1') is the binomial coefficient. Illustrating in the case q = 2
we have I

The Newton divided difference interpolation formula

Given the q + I (unequally spaced) data points (x._ j.P. _ j)' j = 0, I, ... , q, we define the
divided differences F[n, n - 1,.... , n - i], i = 0, I, ... , q recursively by

F[n]:= F.

If the data points have arisen from evaluating a function F(X)ECq + 1, that is if
F" i = F(x,,_ j)' j = 0, 1,... , q, then the error in the interpolation can be written in the form

F(X,,+rll)-I/xn+rh)=(-I).+I( -I' )hq+lFlq+l)(~) (1.31)
q+1 12(x ) = F[ /I] + (x - x.)F[n, /I - 1],+ (x - x.)(x - x, _ 1 )F[/I, II - I, II - 2],

Iq(x) = F[n] + (x - X.)F[II,II- I] + ...
+ (x - x.)(x - Xn - tl .. .(x - xn - q + tlF[II,11 - I, ... ,II - q]. (1.34)

Illustrating this in the case q = 2., we have

(1.33)F[n,n _1, ... ,/1_ i] = F[/I,II- I, .. -,/1- i + I] - F~II=-I,,~ - 2.'...'...'...:.'~_=---.!1.

~ X"-X n - i

The interpolating polynomial Iq(x) can be written in the form

-ee- 1'=0 => P2(r) = F.

¢> 1'= -I => P 2(r) = F; - VF. = F._ 1

= 1'= - 2 ee- P2(r) = F. - 2VF. + V 2F. = F.- 2.

x = X._ I

x = X._ 2

where, using the notation of Ii1.3, the bar indicates that each component I F(q+ I) is
evaluated at different mean values ~" each of which is an interior point of the smallest
interval containing x.' x, t I' ... ' x,,+q and X. + rh.

Note that from (1.30) it is straightforward to generate 1q+ 1(x) in terms of Iq(x).

The Lagrange interpolation formula

In the case when the data are unevenly spaced, the easiest interpolation formula is that
due to Lagrange. Define

whence

12(x. ) = F[n] = F.

12(x•. ,}= F[n] -(F[n] - F[n - I]) = F[n - I] = F._I

12(x. _2) = F[n] +(x._ 2 - x.)F[n, n - I] - (Xn _ 2 - x._ .1(F[II, II - I] - -t» - I, II - 2])

=F[n]+(xn-'-1-x.)F[n,n-I]+(x._2-Xn_dF[II-I,II-2]

= F[n] - (F[n] - F[/I- I]) - (F[II- 11- F[/I- 2])

= F[n - 2] = F.- 2.
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Note that when the data become equally spaced. then the divided differences do IlOt

revert to backward differences. It is easily seen that when x,.; j = .x, - jlt '

However. it is readily checked that on putting x, _j = x, - j/r and using (1,38), the Newton
divided difference interpolation formula (1.34) reverts 10 the Newton- Gregory backward
interpolation formula (1.30) for equally spaced data.

Now (1.34) and (1.32) arc different representations of the lmique polynomial of degree
It most ,/ interpolating the data [x, _j' F. _j)' We can therefore equate the coefficients
of xq in the two polynomials to get

q =0.1, ....

It follows that the value of F[II, II - I, .... 11 - q] IS independent of the order of the
"lteger, II, 11- I, .. ,11 q. More precisely,

1 .
F[II.II- I, ... ,11- i] = -- \l'F••

i!/rl

I

i = 1,2, .. ,1/ - I. (1,38)

In view of (1.35). this can he rewritten as

l
q

. , ( v) = I. ( x) + (X-··· xol(v-x. ,) ...(x-x._ q)F[II.II-I ..... II-q-l] (1.36)

1" 1 ,(x) = I,,{x) \ (x x.)(x -- x. d .. .(x - x._ q)F[II.II- I..... 11- q.1I + I].

1,11 THE DIRECT PRODUCT OF MATRICES

1.10.1. Find the quadratic polynorriiaI12 {x ) which interpolates the data points (v.l/v) for x = 1.0.
0.9. 0.8 using (i) the Newton-Gregory backward interpolation formula and (iiI the Lagrange
interpolation formula.

1.10.2, Find the cubic polynomial 1)(x) which interpolates the data points CV,I/x) for
x = 1.0.0.9.0.8.0.75 using (i) the Lagrange interpolation formula and (ii) the result found in
Exercise 1.10.1 together with equation (1.36). You should be persuaded of the advantage of the
divided difference approach.

Exercises

,.
Suppose we were dealing with a scalar differential equation y' = fIx •.1'), [: IR x IR --> IR;
there arise occasions when we need to consider an s x s matrix whose elements are values
of of/oy. However. in this book we shall be dealing exclusively with the system of
differential equations y' = f(x. y), f: IR x Rm --+ IRm; the corresponding matrices will have
dimension ms x ms. the scalar element af/oy being replaced by the III x m Jacobian
matrix oflay. This leads to somewhat heavy notation. which tends to obscure what is
going on. A useful notation which helps overcome this problem is that of the dircCI
product of two matrices. In this section we define the direct product and list only those
properties which we shall need. A fuller treatment can be found in Lancaster (1969).

Definition Let A = [all] be all s x s matrix alld leI 8 he (//1 m x m I/Ialr;x, Theil the
direct product of A and B. denoted by A ® B. is all ms x ins matrix dCf/llcd by

·t

(1.35)q = 0,1,.

1.,,(x)=I,,(x)-\(x -x.)(x-x._tl ...(x-x._ q)F[II+I.II..... II-q] (1.37)

a representation of the polynomial interpolating(x._j.F._j).j= -1.O.I •.... q i'n terms
of the polynomial interpolating (x, j' F. j). j = O. I, ...• q, which we shall need later in
this book We illustrate this result in the case q = I. when (1.37) reads

where :1'".1', ... ,I'q: is any permutation of the integers {II,II- I •... ,11 - q}.
Now let us suppose that we wish to add an extra point (x._ q I' F._ q _ , ) to the data

,et Then it follows from (1.34) that the unique polynomial Jq +' (x) of degree at most
'/ + I interpolating the data (x. j.F. _j)' j = O. I•...• q + I is given by

and. in contrast with the Lagrange form. we have an easy way of generating I q + ,(x)
from I ,,(v)

What would happen if we wished to add to the original data set an extra point
1\•• ,./ ", ,) at the 'other end") The answer is that nothing new happens at all. since
there i, 110 such thing as the 'other end'! The data. being unevenly spaced. can be
distrihuted in any manner. and we certainly have not assumed that x. > x, _ I > ... > x._ q .

There is nothing to stop us labelling the extra point (x.+ i - F. t d rather than
I \rl q ,. F. c 1) and, noting that x, _q _, does not appear in (1.36). we can rewrite that
cqua tion in the Iorrn

12(x) = I, (x) + (x - x.)(x - x, _dF[ 11 + 1.11.11 - I].

when:

I,'(x) = nil] + (x - X.)F[II.II- I].

Sincc I, (x) interpolates (x •• F.) and (x. _" F. _1) then so does J2(X).since the added term
is zero at x ,= x•• x, _ ,. Further,

1
2(x.!

tl = nllj + (x. t , - X.)F[II,II - I] + (x.+ 1- x.)(F[1I + 1.11] - F[II, 11 - I])

= nil] + (x. " _. x.)F[1I + 1.11] = F[II + I] = F.+ 1 ,

10

allB a l2 8 ,
a"B

a21 B an B ahB

A®B=

a"B a'2B aHB
I

Properties
•

(I) (A®B)(C(8)D) = AC(8)BD, where A and Care s x s, Band Dare m x III.

(2) (A(8)B)-I=r l(8)B- 1•
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LII If the eigenvalues of A arc Pi'; = 1,2, ,s, and those of Bare qj,j = 1,2, ... ,111, then
A0H has eigenvalues p,qj' i= 1,2, ,s,j= 1,2, ... ,111.

Exercises

1.11.1. Prove Property (I) and deduce Property (2).

1.11.2. Verify thaI Properly (3) holds for the case

A=(: ~} B=(~I ~).

2 Introduction, to
Numerical Methods

2.1 THE ROLE OF NUMERICAL METHODS FOR
INITIAL VALUE PROBLEMS

The mathematical modelling of .many problems in physics, engineering. chemistry.
biology etc. gives rise to systems of.ordinary differential equations (henceforth shortened
to 'systems'). Yet, the number of instances where an exact solution can he found by
analytical means is very limited. Indeed, the only general class of systems for which
exact solutions can always be found (subject to being able to find a particular integral)
consists of linear constant coefficient systems of the form

y' = Ay + F(x), (21)

where A is a constant matrix. There are of course many examples of particular linear
variable coefficient or nonlinear systems for which exact solutions arc known, but. in
general, for such systems we must resort to either an approximate or a numerical
method.

In this context, by 'approximate methods' we mean techniques such as solution in
series, solutions which hold only asymptotically for large v, etc. Sometimes the view is
taken (wrongly in the author's opinion) that since powerful and well-tested numerical
procedures are now commonly available; such approximate methods are obsolete. Such
a view ignores the fact that approximate methods frequently (as in the case of linear
variable coefficient systems) produce approximate aencral solutions. whereas numerical
methods produce particular solutions satisfying given initial or boundary conditions;
specifically, numerical methods solve initial or boundary value proh/cIIIs, not ,~yslelllS.

Situations can arise where a low accuracy approximate general solution of the system
is more revealing than high accuracy numerical solutions of a range of initial or boundary
value problems. Further, even when the task in hand is the solution of a specific initial
or boundary value problem, the system may contain a number of unspecified parameters;
approximate methods can sometimes cast more light on the influence of these parameters
than can repeated applications of a numerical method for ranges of the parameters, a
procedure which is not only time-consuming but often hard to interpret.

Conversely, some mathematical modellers seem loath to turn to numerical
procedures, even in circumstances where they are entirely appropriate, and do so only
when all else fails. Just because an approximate-s-or even an exact-method exists is
no reason always to use it, rather than a numerical method, to produce a numerical
solution. For example, calculation of the complementary function in the exact solution
of the simple systew (2.1) involves, as we have seen in § 1.6. the computation of all of
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the eigenvalues and eigenvectors of the matrix A; it is not difficult to construct examples
where a numerical solution of an initial value problem involving (2.1) computed via the
eigensystem will be considerably less accurate and efficient than one computed by an
appropriate numerical method applied directly to the problem. Modern numerical
methods, packaged in highly-tuned automatic algorithms are powerful and well-tested
procedures which, together with other techniques, should surely find a place in the
toolkit of any mathematical modcller.

2.2 NUMERICAL METHODS; NOMENCLATURE
AND EXAMPLES

This book is concerned with numerical methods for inilial value problems only. As we
have seen in ~ 1.5, a higher-order differential equation or system of equations can always
be rewritten as a first-order system, and we shall always assume that this has been done,
so that the standard problem we attempt to solve numerically is

Example 1

Example 2

Example 3

Example 4

where v = [11,.21'., . ,'"I,]T.f = [If, 2f, ... , ~fJT and '1 = [' '1,2,/, ... , "'IJTare III-dimensional
(column) vectors, and x and a arc scalars. A solution is sought on the interval [a,bJ of
v, where (/ and /, arc finite. It is assumed that the hypotheses of Theorem 1.1 (see §IA)
hold, so that there exists a unique solution y(x) of (2.2).

All of I he numerical methods we shall discuss in this book involve the idea of
discretization; that is, the continuous interval [a,hJ of x is replaced by the discrete point
set ~ x.}' defined by x, = (/ +- nil, II = 0, 1,2, ... , N = (h - a)/h. The parameter h is called
the steplenqt tv; for the time being (in fact for quite some time) we shall regard it as being
a constant, though we remark in passing that much of the power of modern algorithms
derives from their ability to change h automatically as the computation proceeds. We
let Y. denote an approximation to the solution y(x.) of (2.2) at x.'

y' = [tx, Y), y(a) = '1,

Yn ::= y(x.),

(2.2)

(2.3)

where

where

IJ
Y:+2 - 3y.+ 1+ 2)'. = '2 [f(x.+ 1'.1'.+ I) -- 3f(x.,.\'.l].

•
Example 5

k 1 = f(x., Y.)

k 2 = fIx. + til, 1'. + ~llkl)

k3 = fIx. + ~II,}'. + ~llkj)

and our aim is to find a means of producing a sequence of values {J'.} which approximates
the solution of(22) on the discrete point set {x.}; such a sequence constitutes a numeriral
so/uti"'l of the problem (2.2),

A IIIlIIl('ri('(/1 metiiod (henceforth shortened to 'method') is a difference equation
involving a number of consecutive approximations Y. + },j = 0, I, , k: from which it will
be possible to compute sequentially the sequence {Y.!II = 0, 1,2, , N}; naturally, this
differcncc equation will also involve the function f. The integer k is called the stepnumber
of the method; if k = I, the method is called a one-step method, while if k > I, the iethod
is called a IIlllltistep or k-slep method.

An a/yori/lm, or pack aye is a computer code whieh implements a method. In addition
10 computing the sequence {Y.} it may perform other tasks, such as estimating the error
in the approximation (2.3), monitoring and updating the value of the steplength hand
deciding which of a family of methods to employ at a particular stage in the solution.

Numerical methods can take many forms.

Example 6

IJ
Y.+ 1 - Y. = -(iii + k 2 ) ,

2
where

k1 = f(x.,y.)

k2 = fIx. + b.v, + ~lJkl + ~lJk2)'

Clearly, Examples 5 and 6 a~e one-step methods, and on putting .I'~) = 'I the sequence
{Y.} can be computed sequentially by setting 11= 0, 1,2,.... 111 the difference cquauon.
Examples 1,2 and 4, however, are 2-step methods, and It Will be necessary to provide
an additional startinq Iwlue YI before the sequence {Y.} can he computed; In the case
of Example 3, a 3-st~p method, it will be necessary to provide two additional starting
values, YI and Y2' Finding such additional startingvalues presents no serious difficulty
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where

(2.6)

•.• II
.. " II-

~ (, , h, \ , ".. ..*" , (, , 3", \ , II
~ \. J T2L) LIIYn + I - I n + ~ 11 -r- \ J -r 2- L} L11 y"

M = (3 + ~"L)L.

it is straightforward 10 show that

whence the second of (2.5) is satisfied with

IIj(x,y) - f(x,Y*)II:( Lily - y* II,

Let us consider the numerical solution of the initial value problem (2.2) ~ven by the
general method (2.4) with appropriate starting values, that is the solution given by

and it is clear that the first of the conditions (2.5) is satisfied. By repeatedly applying
the Lipschitz condition

2.2.1. Show that the conditions (2.5) are satisfied for all o~the six examples given in this section.

Each of the major classes of methods will be studied in detail in separate chapters
later in this book, but certain fundamental properties, common to all these classes, can
be developed for the general class (2.4),and this will bedone in the following sections.

3,~ CONVERGENCE

Exercise

k

L: Cl:jY,,+j = ht/Jj(Y"+l'Y"+l- 1"" .Yn,X,,:hll
J~O

y,.="~("),'l=O,I,... ,k-1. J
ln the limit as the steplength 11-+ 0: the discrete point set {xnl X n= (/ + 11",11 = 0, I, .... N =
(b - a)/h} becomes the continuous interval [a. h]. An obvious property to require of any
numerical method is that, in this limit, the numerical solution {Yn.1l = 0, I, ... , N =
(b - a)/h}, where {Y.} is defined by (2.6), becomes the exact solution y(x), XE [II, h]. This,
in loose terms, is what is meant by col1IJergellce; the concept is straightforward, but there
ai ~ notational difficulties to be considered.

Consider a sequence of numerical solutions given by (2.6) obtained by repeatedly
halving the steplength, that is by taking h =<Iho,/I], h2 , ... , where Iii = Ilo/2

i, and let us
temporarily adopt the notation Y.(/'i) to denote the value J'" given by (2.6) when the
steplength is hr. •

Figure 2.1 typifies the sort of behaviour we envisage for a convergent method; here
the solid line represents the exact solution for a component 'y(x) of y(x). and the points
marked 0, 0, + represent the numerical solutions {'y,,(holl. {'Yn(" d l, {'y.(h

2
)}

r
•,
I

I

I
(2.5)

(2.4)
I

L :):jY,,+j = ht/Jj(Y.+l'Y"+l", ... ,y",x,,;h),
joO

where the subscript [ on the right-hand side indicates that the dependence of rP on Y,,+l'
\'" 'I 1"'" .I'n' X n is through the function /(x, y). We impose two conditions on (2.4),
namely

I

({I,I L ll\'ntj-Y:,jll
j =- (I

( h 3h)
t/Jr = I X,,+2' 3Yn t 1 - 2y"+ 2 j (X". \,y,,+ d - '2 f(x", Yn) + j(x.,Y,,)

One can always employ a separate one-step method to do this, but in practice all modern
algorithms based on multistep methods have a self-starting facility; this will be discussed
in Chapter 4.

If the met hot! is such that, given .1',,+ j' j = 0, I, ... , k - I,the difference equation yields
\'" , l explicitly, it is said to be explicit; this is clearly the case for Examples 2,3,4 and
) If the value 1'", l cannot be computed without solving an implicit system of equations,
as is the case for Examples I and 6 (note that in the latter k 2 is defined implicitly) then
the method is said to be uuplicit. Since the function{ is in general nonlinear in Y, implicit
methods involve t hc solution of a nonlinear system of equal ions at every step of the
computation. and arc thus going to be much more computationally costly than explicit
methods. Note that in the case of explicit methods the provision of the necessary starting
values essentially converts the method into an algorithm, albeit a rather rudimentary
one In contrast. an implicit method is some way from being an algorithm, since we
would have to incorporate in the latter a subroutine which numerically solves the implicit
system of equations at each step.

l.xamplcs 1,2 and .1 arc examples of lillear multistep methods, a class in which the
difference equation involves only linear combinations of Y,,+ j, j(x" I j' Y"+ j),j = 0, I, ... , k.
lxurnplc 4 is a predictor ml'rcc/or method, in which an explicit linear multistep method
(the predictor) is combined with an implicit one (the corrector); notc that the resulting
method is explicit. Examples 5 and 6 fall in the class of RUllye--Kulla method, a class
with a much more complicated structure.

All of thc above examples, and indeed (almost) all of the methods covered in this
hook can be written in the general form

where M is a constant. These conditions are not at all restrictive; for all methods of the
form (2.4)considered in this book, the first is satisfied, while the second is a consequence
of the fact that the initial value problem (2.2) is assumed to satisfy a Lipschitz condition
(Theorem 1.1 of ~ J.4). Thus, Example 4 can be re-cast in the form
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o
+

+
+

o
+ <>

starting values I/p(h), 11=0, I .... , k - I; referring to Figure 21 again. the obvious
restriction is that as h - 0, ,,"(h)- 'I. 11= 0, I ..... k - I. Secondly. if convergence is to be
a property of the method, then convergence must take place for all initial value problems.

Definition The method defined hy (2.6) is said to he convergent ii, lor all ;1I;t;al mlfle
problems satisfying tire Irypotllese] of Theorem 1.1. lI'e harr that

lim y" = v(x)
h-O "

x=a+It

holds for all xE[a. h) and for all solutions {Y"} orrlre clit]cmlce cqiuuion in (2.6) satis(ri/lf/
starting conditions .1',. = 'I,.(h) (or II'lJic~1 lim '1"{l1) = 1/. II = 0.1.... k - I. A IIII'Ihod wlridl
is nor cO/lIJergellt is said to he divergent.

• x
(]

Figure 2.1

I

An alternative equivalent definition is possible:

2.4 CONSISTENCY

Alternative Definition Tire method defilled h.l' (2.6) is said to lie convergent i], [or 01/
initial value problems sat isfyillg tire hypotheses or Theorem 1.1. \I'e hare that

Note that the starting values in (2.6) as well as the solution ll'"11I = k, k + 1, ...• N} arc
thus required to converge. Although this definition is much simpler. it docs not alert
us to the notational difficulties that will be encountered when we attempt to use the
definition in any analysis.

We now turn to the question of what conditions a numerical method must satisfy if it
is to be convergent' We would expect that one such condition would he that it has to
be a sufficiently accurate representation of the dilTerent ial system. It would be an infinitely
accurate representation if the dilTerence equation (2.4) were satisfied exactly when we
replaced the numerical solution y"+ j at x, + j' by the exact solution y( \" f j)' for
j = O. 1,2.... , k. We therefore take as a measure of accuracy the value of the residual
R"H which results on making this substitution. We thus define R"+k by

(27)

as h -4 O.max II y(x") - Yn 11- 0
O!;" ~ N

k •

R"H:= L IXjy(X"+j) - h¢['(y(x"H)'Y(x"" d.·· .. .1'("")•.\"; /1).
)=0 .

-( = <I + 31r" = <I + 6h, = a + 121t 2 = ... ,

respectively II would he quite inappropriate to consider the convergence of the sequence
'I "ill" I. '1',,(11 , I. '\,,11'2)' . /01' /ix('d II; for any fixed II such a sequence would clearly tend
to the initial v.i luc '" What is appropriate is to consider a fixed value, say .x = a + 3ho.
ofv and. noting thai

lim F(1r.n)
h-~O

x = (J +nit

• lim (I + II)" = lim exp[nln(1 + h)] = lim-l-. a In(1+ hl ] = exp(x - a).
•• 1) •• " .-0 It

.r - 1/ .. "It , - n .. ""

consider the convergence of the sequence 'y.\(lr o). 'Y6{1ltl. 'y'2(/'2l, .... to 'y(.\);
moreover. we clcarlv want this to happen for all xE[a. h] and for t = 1,2, .... m. Of
course. we need to consider not only the case where the steplcngth is repeatedly halved,
hut more general sequences of stcplcngths tending to zero. We arc thus led to the idea
of a limiting process in which Ir -0 and 11- Cf) simultaneously in such a way that
\ ~ <I + IIIr remains fixed. Such a limit is denoted by

;1I1d is called a /i\('d st at iun limit. It is nothing more than an ordinary limit in which
we must substitute (\ <I)/Ir for II in F(It.II) before letting h - 0 (or. alternatively, substitute
(\ - <I)/n for Ir in F(1r.1I) before letting 11- (0). For example.

0lternatively.

lim cxp] IIln( I + Ir)] = lim explnln( I + ~_=~I)] = exp(x - u).
h--oO "_ 'Y' 11

\ - (J t nh

There remain two other points to he considered before we attempt to frame a definition
of convergence. Firstly. it is clear that we have to impose some restrictions on the

Rn H is essentially the local trllllcatioll error, which we shall discuss in detail for the
various classes of methods later in this book. There ate. however. several variants of
the definition of local truncation error; sometimes it is taken to be R"+k/I,. and sometimes
it is further scaled by a .constant multiplier independent of II.

A first thought on the appropriate level of accuracy that might he needed for
convergence is that we should ask that R"" - 0 as h -4 O. Further thought shows that
this is not going to be enough. If we let II - 0 in (2.7) then (assuming that ,prdocs not
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tend to 'fJ as h ->D, as is certainly always the case) we have that value problems, if

k

RnH -> I: CXjY(Xn+j)
j=o and

(2'lj)

and the condition l~nH ->0 as h--.O can put a constraint only on the coefficients \l,J iii
the method (2.4) It docs not constrain the function rPf in any way, and we cannot
believe that convergence can be obtained with arbitrary rPr' since that would be
equivalent to choosing the function f arbitrarily; in short, the method would not even
know which difkrcnlial system it was dealing with. As We shall see presently, the
appropriate level of accuracy is to demand that R; Hlh --.0 as h -->0,

whence, since y(x) is a solution of the differential system r' = fix, r),

(2.9iil

The method (2.4) is thus consistent if it satisfies the two conditions (2.9).

The role of each of these conditions can be illustrated as follows. Assume that the
sequence {Yn} converges, in the sense of the preceding section. to sOl/le function
Z(X)EC 1 [a, b], where z(x)'¢;O. Then

Deiinition The me/Trod (2.4) is said to be consistent if, for all illilial value problems
~(//is/yill!llhe hypotTrews or Theorem l.l, the residual RnH defilled by (2.7) satisfies

(2.8)

Yn +J--. z(x n ) as h --.0. x, = (/+ III,. ; =0,1, .. . .Ic,

(The word 'consistent' is shorthand for the phrase 'consistent with the differential system") and from (2.4) we obtain in the limit

We now establish the conditions which (2.4) must satisfy if it is to be consistent. From
Theorem 1.1 of ~ 1.4 we can assume the existence of y'(x) in [a, b], but not necessarily
that of higher derivatives. This means that. in investigating the limit (2.8), we must use
the mean value theorem rather than any expansion in powers of h. Referring to §1.3,
Case ,2. we may write

j = 0.1 •.. . .k,

whence the condition (2.9i) must hold. Thus convergence of 1J',,: to any non-trivial
function, not necessarily related to the solution of the initial value problem. is enough
to imply (2.9i). This is in agreement with our earlier remark that requiring that R

n
, k --.0

as "--.0 eapnot be enough. Now assume that (2.9i) holds. Then. since

where

and ~,jE(Xn,Xn+j)' / = 1.2, .... 11I. It then follows from (2.7) that we may write (2.4) in the form

k

I: jcxiYn+j - Yn)1 jl: = <pr(Yn, k' Yn" " ...• Y,,'\n: II).
j=O . .

•
(2.10)

In the limit as h --.O. .x, = (/ + nh,

In the limit as h ->0, x, = a + II",

rPf(Yn H' YnH - I"'" Yn' Xn;") = <Pr(z(xn).::(Xn), .... z(x n). Xn: 0)
I

so that ,(2.10) gives

(Yn+ j - Yn)!.i" = z'(x n )

and

j=O,I, ... ,k

and

<Pj(Y(XnH)• .v(XnH - d,···. Y(Xn), Xn; h) = rPf(Y(Xn)'y(Xn),···, Y(Xn),Xn; 0)

since, as 11-> O. x, + j:= x, + jh -> xn.j = 0, I, ... , k. It follows that (2.8) holds, for all initial Thus, if z(x) satisfies the differential system z' = .({iX• z], then the second of the consistency
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conditions (2.9ii) is satisfied. We have thus shown that if \ Y.} converges to allY non-trivial
function then (29i) is satisfied, and if that function is a solution of the given differential
system, then (2.9ii) is satisfied.

Note tha t if the met hod (2A) sat isfies (2.9i) but, instead of satisfying (2.9ii) it satisfies

(/'I(dx.),dx. ), . ,y(x.l,x.;O)I(JoJel j ) = Kf(x.,v(x.)),

where K is 1I constant, then it will attempt to solve the initial value problem for the
differential system y' = KI(x, V).

It is appropriate at this stage to introduce the first cliaract cristic polynomial p
associated with the general method (2A), defined by

to the scalar initial value problem y' = .r, y(O)=0 to get a one-step difTerence equauonol the form
Y. + 2 - Y. + I = q>(II,h). By trying a particular solution of the form r. = All' + BIl, find the exact
solution of this difference equation satisfying the initial condition r, = jll' (which coincides with
the exact solution of the problem at x = 11) lIence show that as "-40, "->X, v = "". thc sequence
{Y.} so obtained does converge,but not to the solution of the initial valueproblem Whyis this?

2.4.2. Use the method of Exercise2.4.1 to compute numerical solutions of the scalar initial value
problem y' =4x y l l2 , y(O)'; I for 0,;;: x ~ 2, using the steplengths ,,= 0 1,0.05 and 0025 Compare
the results with the exact solution y(x) = (I + x')' and deduce that the numerical solutions are
not converging to the exact solution as 11 -4 O.

2.5 ZERO-~TABILITY

XE[a, 1>].z' = [i», z) + b(x), z(a) = 'I + <5,

Definition (Hahn, 1967; Stetter, 197/) Let (b(x), Mand (j>(x), ,i» heanI' (\\0 1'<'1'1 1/1'1""lOllS
of (2.2) (lnd let z(x) and z·(x) be the resulting perturbed soll/riolls. Theil iF rllere exists a
positive constant S sue" that, jar all xE[a,b], '

\

Although, as we have seen in the preceding section, convergence implies consistency,
the converse is not true. It can happen that the difference system produced by applying
a numerical method to a given initial value prohlem suffers an in-built instahility which
persists even in the limit as ,,-+ 0 and prevents convergence. Various forms of stability
will be discussed later in this book; the form to be considered here is called zero-st abitit y,
since it is concerned with the stability of the difference system in the limit as II tends to
zero. •

We start by considering a stability property of the initial value problem (2.2). Suppose
that in the problem (2.2) we perturb both the function ( and the initial value 'I and ask
how sensitive the solution is to such perturbations. The perturbation ()(x),,\) and the
perturbed solution z(x) are defined by the perturbed initial value problem

(2.11)

p(1) = 0

'/'I(y(x.), y(x .), ... , y(x.), x.: 0)/p'(I) = ((x., y(x.)).

(2.12i)

(2.12ii)
I

We conclude this section hy applying the conditions (2.12) to each of the Examples
I (, of ~22. II is easily seen that (2.12i) is satisfied for all six examples, and it is
straightforward to see that (2.12ii) holds for Examples I lind 3. For Example 2,
I'll') = 1'2 _. 1', whence 1"( 1) = 1 and

<PI( r(x.), y(x.),., y(x.), x.: 0)/ p'( 1) = V(x., y(x.))

and the method is inconsistent; if it is applied to the initial value problem (2.2) it will
attempt to solve instead the problem y' = 1((x, y), VIa) = 'I. For Example 4,
1>11') = 1'2 - 1,1)'( I) = 2 and

k

p(O:= I exp,
}=o

where (Eif: is a dummy variable. II is then possible to write the necessary and sufficient
conditions (2.9) for the method (2A) to be consistent in the following alternative form:

II z(x) - z·(x) II ,,-::; Sf.
whenever

IIb(x) - b·(x)lI,,-::; e and lib - ()·II,,-::; e,
(2D)

whence

(~j(Y(X.), y(x.), x.: 0) = 2{(x., y(x.))

and (212il) is clearly satisfied. For Examples 5 and 6, it is clear ihat when h =0 and Y.
is replaced hy \,(x.), each of the k, reduces to ((x.,\,(x.)), and (2.12ii) is satisfied. Thus,
all of the Examples except Example 2 are consistent.

Exercises

2.4.1. Apply the method

h
1'.. , ~\'., I = 12[4!(x.+2,Y.+2) + 8!(x.+ t,}'.+.tl- !(x.,y.)]

then the initial value problem (2,2) is said 10 be totally stable.

To ask that an initial value prohlem be totally stable (or, equivalently, properly-posed)
is not asking for much; note that S can be as large as we please as long as it is a (finite)
constant. Indeed, it is straightforward to show that the hypotheses of Theorem 1.1 of
§IA are sufficient for the initial value problem (2.2) to he totally stable (sec, for example,
Gear (l97Ia)).

Any numerical method applied to (2.2) will introduce errors due to discretization and
round-off, and these could be interpreted as'being equivalent to perturbing the problem;
if (2.13) is not satisfied, then no numerical method has any hope of producing an
acceptable solution. The same will be true if the difference equation produced by the
method is itself over-sensitive to perturbations. We therefore consider the effects of
perturbations of the function rP( and the starting values '1,,(") in (2.6). The perturbation
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:"".11 =0.1. . N: and the perturbed solution {Z".II =O.I, ... ,N} of (2.6) are defined by
the perturbed difference system

±'1jZ,, ' j = It[4> f (Z. , b Z"+A_ I•.... Z". X";h)+ ,)"H J ]
i () .

Z"=II,.(lI)+,)". tt=O,I .... ,k-1
(2.14)

(where 0: is a free parameter) satisfying the initial conditions

)'0 = I, .1'1 = I.

On substituting - .I' for fix, .1') in (2.16) we obtain the difference equation

(I + h/2)Y.+2 - [I + 0: -(I -a)h/2Jy"+ 1 + a(1 - h/2)y" = O. )'0 = .1'1 = I.

!)cfil1iti'l/l Lc(: (1".11 = (), I N f and P:.II = O. I N} he <IllY IWo perturbations of
1.:'6). <l1Il1 lei {z".II=O.I N} and {z:.II=O.I N} he lite resultinq perturbed

xolution«. Then if ther« cxls! constants S and ho such that, for allIIE(O,hoJ,

We consider the simple perturbation in which ,)" = (I. a constant. for II= O. I, .... N. The
perturbed difference equation is thus

(I +hI2)z.+2-LI +a-(I-a)hllJzHI +'1(1 -h/2)z" =;'<5 (2.ii;

Several comments can be made about this definition:

we S<I.\' thai the method (2.4) is zero-stable.
with roots 0: and (j - h/2)/(1 + hI2). A particular solution is found 10 be <lI(I -:x) if 0: -# I
and nb if 0: = I. Thus the general solution of (2.17) can be written in the form

(2.IH)Zo = 1 + ,), Z 1 = I + ,I.

(I +h/2)r2...- [1+0:-(I,-a)/r/2Jr+a(l-hI2)

Following §1.7, the characteristic polynomial of (2.17) is(2.15)
O~II~NJ
O~II~N,

II'I,ellel'el'

Case 0: -# 1 After some manipulation. we find that the solution of (2.17)
satisfying the starting conditions (2.18) is

If we replace the constant perturbation ,I by another constant perturbation (1*. thcn thc
resulting perturbed solution {z:} is obviously given by (2.20) with () replaced by ,1*. On
subtracting we obtain '

* {I [ li« (I -hI2)"J I}z"-z"= --- ---0:"-(l+11/2)a + (I- t5*).
C I - 0: . 1+ 11/2 I - '1

Now, for all hE(O,hoJ, O:E[ -I, I),

Z"=Po:"+Q[(I-h/2)/(1 +11/2)J"+{')/(I-a)
11,1

where P and Q are arbitrary constants.

(2.20)

(2.19)

(2.21)

if :x -# I

if a = 1

- 1[ " (I - 11/2)"J ()z" - -- A(J)o: + B(t)) -- - +
C 1+ h/2 1 - a

A(J)=/,[a,)/(I-a)-I]
B(b) = (1 -0: -0:,))(1 + h/2)

C = I - a - 11(1 + a)/2

where

(al Zero-stability requires that (2.15) holds for all hE(O,/loJ; it is therefore concerned
with what happens in the limit as h -> O.

(hi Zero-stahility is a property of the method. not of the system. Our assumption that
(2.2) satisfies a Lipschitz condition ensures that the problem is totally stable and
therefore insensitive 10 perturbations; zero-stability is simply a requirement that the
diiiorenco sj'Slem which the method generates be likewise insensitive to perturbations.
II is equivalent to saying that the difference system is properly posed.

(c) 1\ very practical interpretation can be put on the definition. No computer can
calculate to infinite precision. so that inevitably round-off errors arise whenever cPf
is computed; in (2.14). 1,1".11 = k, k + I•...• N} could be interpreted as these round-off
errors. Likewise. the starling values cannot always be represented on the computer
to infinite precision. and {,I". II = O. 1•... , k - I} could be interpreted as round-off
errors in the starling values. !f(2IS) is not satisfied. then the solutions of the difference
system generated by the method. using two different rounding procedures-for
example. using two different computcrs-vcould result in two numerical solutions
of the same difference syslem being infinitely far apart. no mailer how fine the
precision. In other words. if the method is zero-unstable, then the sequence {Yo} is
essentially uncomputable.

Bcfor,e slating the necessary and sufficient conditions for the method (2.4) to be
zero-stable. let us consider an example. We shall consider the solution of the scalar
initial value problem

.\" = - .1', .1'(0) = I.

whose exact solution is jt.c) = cxp( - x), by the consistent implicit two-step method and

Ih "+'/1 11-/1/21< I0: (-o:)! ~ ho/(I - a), 1(1 + h/2)0:1 ~ 1,+ho/2,
I + hl2

I~I I- ~ ----------.
C II-o:-ho(l +0:)/21

v '

V y i, ,{
.!
;~
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provided Ih;lt VVT choose h" such that 0 < ho < 2(1 -- ~)/(I + ~), It follows that (2,15)
hold-, with

v h,,/( I -~) + I + ho/2
.,= +1/(1-0:),

II - 'l. - 1,,,(1 + ~)/21

lhi-, will not he the case, however. if 10:1> I. Consider the term /i~" on the right-han.'
side 01 (221), Since

thus have convergence if -I":;rx < 1. and divergence if Irxl > I On applying the same
limiting process to (2,22), it is easy to establish that divergence also OCClIIS when 1. = I.

The above exarrple shows that zero-stability is concerned with the roots of the
characteristic polynomial of the difference equation (217), Of course. had we applied
the method to a nonlinear problem. then the resulting difference equation would have
been nonlinear and there would have been no such thing as a characteristic polynomial
Nevertheless, for general problems, as Ir-+ 0, the method (2.4) tends 10 the linear constant

coefficient diITerence system
lim h-i" = x lim 0:"/11 = if)
h • 0
, "h

I

'rx·v+,=OL J .. M 1
J~O

thi . term becomes unhouutlcd as /i -4 O. and (2,15) cannot hold,

Case 'l - 1 Using (219). the solution of(2, 17)satisfying the starting conditions
(2IX) turns out to be

The roots of a polynomial being complex, an alternative statement of the root condition
is that all of the roots of the first characteristic polynomial must lie in or on the unit
circle, and there must be no multiple roots on the unit circle. Note that all consistent
one-step methods satisfy the root condition, fxample I of ~22 clearly fails to satisfy
the root condition. since p has a spurious root at - 2; the remaining five Examples all
satisfy the root condition,

Theorem 2.1 T!Je lIecessary alld sllifidellt condition [or Ihc mcthod f/;I'CII ".1' (2.4) alld
(2.5) to be zero-stable is tluu it satisfies tIre root ('(JIIditioll.

whose characteristic polynomial is p((). the first characteristic polynomial of the method,
defined by (2, II); it is no surprise that it is the location of the roots of p(C)that controls
the zero-stability of the method.

Let the roots of p(() be C, i = 1.2"", k. If we assume the method is consistent. then
by (2.12i), one of the roots must be + I. We call this root "rillci"ol root. and always
label it (I (= + 1), The remaining roots (/. i = 2,3.",. k, are the spurious roots, and arise
because we choose to represent a first-order differential system by a kth-oreler difference
system. Obviously. for a one-step method there arc no spurious roots, (Note that in our
example, it is the root (I - !J/2)/(1 + h/2) of the characteristic polynomial of(2, 17) which
produces an approximation to the desired solution, and it is this root which tends \0

the principal root of p as h-« 0; the other root tends to the spurious root rx of I' (it so
happens that it coincides with IX) and this is the root which has the capability of invoking
zero-instability.) It turns out that zero-stability is ensured if the roots of I' satisfy the
following condition:

Defillitioll t!Je method (2.4) is said to sati.~ry the rout condition il,,1/ 01 tl,C roots 01 tlw
first c!Jaracteristic polvnomia! !Ja'ie //Jodllills less ,11011 or cqua! /() 1111;'.1', olld those of
modulus unity are simple,

(2,22)

if -1 :<:;;'7. < I

if lal > I.

if -I :<:;;0:< I

iflo:l> I

I(I -- h/2)"
z" -+ I + /i/2

a:

"l'/i 2 /i+2(1-/i/2)"J.,,= + +11 (,)-b'),
2/i 2/i I + /i/2 . ,

11- 2. I, + 2 (I -- 11/2)"
z" = 1 + ;5 + ,) + Ill)

2/i 211 1 + 11/2

and on replacing z" hy z:. () by ()'. and subtracting. we obtain

As /, -->fl. 11/1 Y, the term within the square bracket becomes unbounded, and (2.15)
ca nnot hold

rhus. lor this example. the condition (2,15) is satisfied if and only if - I ,,:; o: < 1.
II IS easily checked that thc method used above is consistent, and we can see as follow

th;il we have convergence if 1:<:;; 7. < I, but divergence otherwise (thus demonstrating
thal consistency IS not sufficient for convergence). Let h -+ O. II/i = x and 11 -+ 0 in (2.20),
noting that the lalter ensures that the conditions J',,-+r, as /'-+0, Il=O, .. "k-l,
appearing in the definition of convergence. are satisfied, Then

and therefore

On comparing expansions in powers of Ii, it is easily seen that

I - /i/2
= exp( --") + O(lr 3

).

I + "/2

whence z,,'--> cxpl -11/,) = exp] -- x], the exact solution of the initial value problem, We

. \
For a proof of this theorem, see, for example. Isaacson and Keller (1966), We note

that our example corroborates this result, since both roots I and 'l. of I' lie in or on the
unit circle when -1:<:;; a < I, there is a root outside the circle when 11.1> I. and there
is a multiple root on the circle when 0: = I.

Some authors (for example, Lambert (1973)) adort the following alternative definition

of zero-stability:
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1111"I'I1(1/il"" J)efi/litio/l The /lie/hod (2.4) is said to he zero-stable if it satisfies the rooI

cow/it ion.

In view of Theorem 21 the two definitions are clearly equivalent, but there are two
disadvantages in adopting the alternative form, Firstly, it does not have the flavour of
a stability definition in the way that our first definition has, Secondly, it does not draw
attention to the fact that zero-stahility, heing nothing more than a requirement that the
difference system he properly posed, is a minimal demand,

We ,lfe nnw in a position to state the necessary and sufficient conditions for

convergence,

n'I'Orl'n! 2,2 '1'1,,' /lecessary awl st!lficie/ll conditions for the melhod (2.4) 10 he convergent
"I''' '/1lI1 i/ hI' both cO/lsiste/lt ,,/ld zero-stable.

2.5,4. Demonstrate the effectof zero-instability by using the method

II
Y.+, - (I +1:)Y." + 'Y.Y. = 2[(3 - 'Y.)I(x•• 1'.1'.; ,) - (I j ~)f(.\ •. r.)]

with (i) IX= 0, (ii] 'Y. = - 5 to compute numerical solutions of the scalar initial value problem
y'=4xy'12,y(0)= I for 0,,; x"; 2, using the steplengths ',=0,1,005.0.025.

2.5.5*. The family of methods (2.16) is a sub-family of the two-parameter family of methods

(1)

where f. +1= f(x •• j' Y. +J)' j = 0, I, 2, The family (I) is a useful one for illustrative purposes since
it has the property that when it is applied to the scalar initial value problem .1" = r. y(O) = I the
resulting difference equation can be solved exactly. Show that this solution, with starting values
Yo = '10 [= '1o(h)). Y, = 'I, [= ,,,(ll~J is

where

2.6 THE SYNTAX OF A STABILITY DEFINITION

(Hint: Consider the expansion of the logarithm of the lert side.) We assume that the starting
values satisfy

(2)

iflU -l},
il fI=-l

i=O,1lim '1,(11) = I,
h-O

(
\ - pit ). {exp(x.l[1 + q + fl)x.11 + 0(1,')]

\-(1 + PIlI exp(x.)[1 + h..\.II' +O(lt-')]

.'

(i) Demonstrate that when 11:1 < I the method converges, for all starting values satisfying (2),

(ii) Demonstrate that when lal > I the method diverges for ,/"""/'(11 starting values satisfying (2).
but that it converges for the specific starting values '10= I, '1,(11) = (I - 1II')/[ I - (I + filII]
(whichsatisfy(2)). Why would wenot be able to demonstrate this numerically? Try doing so.

(iii) Demonstrate that when a = I, there exist some starting values satisfying (2) for which the
method converges, and some for which it diverges (sometimes in the sense that {.I'.} converges
to the wrong solution. and sometimes in the sense that Y. -+ 'D as I,~ O. " -+ ff0),

[ ( I - (ii, )'J/Y. = Ary,' + I _ (I + rI)11 C.

Zero-stability is not the only form of stability pertinent to the numerical solution of
initial value problems, and several other stability definitions will appear later in this
book. In this section we shall discus's a general framework for such definitions anti
introduce a 'syntax diagram', which the reader may (or may not) find helpful.

A stability definition can be broken down into the following components:

I. We impose certain conditions C, on the problem (2,2) which forec the exact solu':
y(x), xe[a,b], to display a certain stability property.

A =(-1 + PII)'1o + [I -(I + mi,],,,. fl = [I -(I + fi)II]'(nth - ",). C = 'Y. - 1 -- l~ -II + 'Y.fI)lI,

shhw further that

I,
Y•• , + (~- I)y •• , - 1:Y. = 4 [(1: + 3)f(x. +" y• .,) + (3a + I)f{x., Y.)]

is zero-stable. Apply the method, with 'Y. = -I to the scalar initial value problem y' = y, y(O)= I,

and solve exactly the resulting difference equation. taking the starting values to be Yo = y, = I.
lienee show thaI the numerical solution diverges as 11 -+ 0, n -+ CI),

where (•• j = [ix; + i- .1'., j)' .i= n, I., .,4, Show that the method is convergent.

2.5.3, A method is given by

R M,
I', I 4 - 1<) lr. + .\ -- Y. + ,) - Y. = 19U. +4 + 4.1.+ 3 + 4(•• I + f.),

Y.+ -'i2 + j,r. +' + joY. = 11(P.!. + , + Pof.)·

Show that the method satisfies the conditions (2.5) of §2,2 and is consistent. Find the range of a
1M which it is zero-stable.

Exercises

25,1. Find the range of ~ for which the method

.1'•• , =.1\.+2 -6'Y.(Y.+, - Y.)+ chi],•• z -4I.+J/2 + 7f.+. + 2f.)

II
.r•• z = 2y., 1 - Y. + 3(4(.+31, - 3f.+1 - I.),

where I . . I = fIx • . i' Y. 1 ), .i=0, I, 2. I. + 3/2 = f(x •• 3/2' Y. + 312) and Y. + ,1/2 is given by a formula
of the form

Theorem 2.2 is the fundamental theorem of this subject. It was first proved for linear
multistep methods by Dahlquist (1956)·-see also Henrici (1962), A proof for the class
(2.4) can he found in Isaacson and Keller (1966), Proofs for yet wider classes of methods
can he found in Gear (1965), Butcher (1966), Spijker (1966), Chartres and Stepleman
11(172) and Miikcla, Nevanlinna and Sipilii (19741.

25.2. Quade s method is given hy
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, \I'e apply the method (2.4) to the problem, assumed te satisfy Cpo

J We ask what conditions em must be imposed on the method in order that the

numerical solution: \'", /l = 0, I, .. , N} displays a stability property analogous to that

displayed hy the exact solution

This 'syntax' can be represented by the diagram below.

(2.24)

IE[O,I].1" = f(x, .1'), .1'(0) = '1,

2.7 SOME NUMERICAL EXPERIMENTS

and

where

The experiments described in this section consist of applying each of thc six Examples

of methods given in §2.2 to the same initial value problem, using a range of step lengths.

The purpose is two-fold: firstly to demonstrate the effects of the properties defined in

the preceding sections, and secondly to persuade the reader that it is by no means

guaranteed that a convergent method will always produce acceptable numerical

solutions.
The initial value problem to be solved is

. (2.23)

{1'" I possesses

analogous stability

property

1'(x) possesses
=>

stability property
Pro hIem 1----------;_---1

The syntax diagram for zero-stability can therefore be written as shown below.

Lipschitz condition

II f(x,Y)-f(x,y*)II"::; Lily - 1'*11

It is easily checked that (2.24) satisfies the hypotheses of Theorem 1.1 and is therefore

totally stable, The unique exact solution is'

• I/(x)= [\ + 3exp( - 8x))/8, I'(x) =- .\c:'{p(- KI),

The syntax diagram is not a replacement for a stability definition; thus in the above

example, it is still necessary to refer to the formal definitions of total stability and

zero-stability. It is more a device for putting stability concepts into context. In the

general syntax .diagram (223), the rightmost lower box normally defines the stability

property of the method, and the box to its left defines the conditions for that property

to hold; but it can also be the case that the middle box defines the stability property

in which case the rightmost box is interpreted as a consequence of the property,

Thus, if we adopt the alternative definition of zero-stability given in §2.5, the syntax

diagram now appropriate to convergence rather than zero-stability-becomes as

shown below.

Table 2.1

Example 1

and we note that the solution decays in the sense that both 111(1)1 and Ir(lll decrease

monotonically as x increases from 0 to I. When additional starting values are needed

these are taken to coincide with the exact solution. It is impracticable to reproduce the

numerical solution at every discretization point, and we present only tables of the error

E" defined by

at intervals of 0.2 of x, for 11 range of values of I,.

It .
1'"+1 + Y"+ 1- 2y" = 4 [/(x"+2'Y"+2) + 81(1"+ \,.\'", 1) + 3I(I",r"l].

This method is consistent but zero-unstable and therefore divergent. See Table 2.\ for

numerical results.
Lipschitz condition

II f( x, Y) .-- I fx, I'*)II ~ Lily - I'* 1\

Method f--~---';>-~---l p(O satisfies
root condition

Again, we find the alternative definition of zero-stability less satisfactory than the first

definition.

In certain circumstances (which will arise in Chapter 7), it will be appropriate to

replace 'problem' by 'system' in the top line of the syntax diagram. OfF indicates overflow.

0.2 0.C2653
0.4 0.13504

0.6 0.9025\
0.8 6.1568

1.0 42.040

h = 00125

01'405
t8 ~n
2.~xIO'1

OF

h = 0025

0.00898
4.0807
18713
863679
40 x lOin

h = 0.05

0.00823
0.20852
5.8904
\66.69
47\6.9

h= 01x

{y"} converges

toy(x)

Method consistent
1-----------';.--

and zero-stable
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The divergence IS clear. For each fixed li, the error increases rapidly as x increases.
I or v = 02 the error initially decreases as h decreases, but soon starts to increase; for
all other fixed values ofv, the error increases as " decreases.

Example 2

SOME NUMERICAL EXPERIMENTS 41

Table 2.3

x h= 0.1 h= 0.01, h = 0.001 h = 0.0001
-----------

0.2 0.30195 0.03613 o.om 77 OO()() 38
0.4 0.39651 004390 0.00444 (U)()(144

0.6 0.38950 0.OW37 Ot)()) 91 ()OOO19
0.8 0.33972 0.03 I 25 Ol)()) 06 ()()()(lJ I
1.0 0.27775 0.02322 0002 25 ()()()(122

Thh method is zero-stable hut inconsistent and therefore divergent. See Table 2.2 for
numerical results.

Example 3

Divergence due to zero-instability led to an explosion of error in Example I. Here
divergence is caused by inconsistency, and leads to no such explosion, but manifests
itself in a persistent error which refuses to decay to zero as " is reduced (even to the
excessively small value of 10- 4); indeed, for x = 0.2,0.4, the error eventually increases
slowly as h is decreased. The sequence {J'n} is converging as h -4 0, but not to the solution
of 1224). This is exactly what we would expect, since the method satisfies the first of
thc consistency conditions (2.12) hut not the second. Following the discussion towards
thc end of ~2.4, we would expect it to attempt to solve a different initial value problem,
namely

Table 2.2

x h= 0.1 h= 0.01 h= 0001 h = 0.0001
- ----~------------_._-

0.2 1.27.17 1.1104 1.1576 1.1627
0.4 1101 'I 0.90784 0.91616 091715
OJ, 07'1501 0.592 '14 0.58618 0.58559
O.X 055384 0.36517 035422 0.35318
10 IU8425 022080 0.21018 0.20917 Table 2.4

x h=O.1 h = 0.05 h = 0025 h = 0.0125
'--~------ ---..

0.2 000837 9.3 x 10 4 1.1 x 10 4

0.4 0.25776 0.04105 2.4 x 10 4 4.5 x 10
,

0.6 '1.4975 0.11969 ~6 x 10 4 1.4 x 10
,

1Q.8 8.0876 0.33012 2.1 x 10
,

],8 X 10-h
1.0 43.507 0.90507 6.8 x 10 h '1.6 x 10 0

This method is consistent and zero-stable and therefore convergent. Sec Table 2.4 for
numerical results.

The last two columns demonstrate that the method docs indeed converge. However.
there appearsto exist some value ,,* of II between 0.025 and 0.05, such that for fixed
h > h*, the error increases as x increases, while for fixed II < h", the error decreases as
x increases. We shall examine this phenomenon in detail later in this hook, hut for the
moment we note that for h > It* the numerical solution/generated by the method is not
acceptable. Thus convergent methods do not always give acceptable answers; one has

, to choose h to be sufficiently small.

XE[O, I],z(O) = 'I,z' = [t«, z),

where

and

Example 4

whose exact solution is
where

:(x) = [( 1 + 3 exp( - 8x/3))/8, - 3 exp( - 8x/3))1.

The errors 1:':. where F::= II :(xn ) - z; III are given in Table 2.3.
One is persuaded that the method is indeed attempting to solve the above initial

value problem,
This method is consistent and tero-stable and therefore convergent. See Table 2.5 for
numerical results.
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02
0.1
0(,

O.X
10
1.2
14

h= 0.1

OXlJ6 42
.1.9745
229~S

1.1\02
794.75

Table 2.5

h= 0.01

000665
O.OR924
1.71.11

.1.1193
64.1.23

h = 0001

27 x IO-~

15 x 10 4

14 X 10- 3

0.OR209
1.9633

h = 0.0001

1.7 X 10- 7

4.7 x 10-"
1.2 x 10- 4

2.9 X 10- 3

0.07147
1.74R9

42.794
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Table 2.6

x h = 0.4 h = 02 h = 01 h = 0 05

----- -----_.. ._--_.

0.2 0.61R47 0039 19 0.00.159

0.4 78066 0.12322 0015 J2 000144

0.6 0.024 R8 0004 4~ 000044

0.8 19.521 0.00502 0.001 17 O,lXXll2

1.0 0.00101 0.00029 O.O()() 0.1

1.2 49.622

Example 6

where
k, =f(x",}'")

k2 =' fIx" + 11,1'. + 'I/lk. + ~"k2)

This method is consistent and zero-stable and thercf~re .convcrgcnt. Scc Table 2.7 for
numerical results.

'I he IC'>Idls here arc somewhat unexpected. and appear to he demonstrating divergence
rat her than convergence l lowcvcr. on comparing them with those for the divergent
I'x;lmple I. a significant difference emerges, In Example I, as It is decreased, the value
of .1 at which the numerical solution parts company with the exact solution-to put it
in hroad terms moves dow/" to the initial point x = 0; in Example 4, it movesfurtlter
(111111 Irorn the initi:d pomt. (In the case of It = 0.0001 we have extended the interval of
integration to show this.) If we were to keep on reducing II, the same pattern would
emerge: the numerical solution would he a reasonable approximation to the exact
solution lor longer and longer intervals of x, but would always blow up for sufficiently
large .x. Thus, in thc limit as h -s O, the point at which the numerical solution detaches
itself from the exact solution tends to infinity, and so the method is convergent; for
I sample I. that point tends to the initial point, and the method is divergent. Thus, this
example provides a salutary lesson there exist convergent methods which, no matter
ho« small the steplcngth. will produce numerical solutions which will blow up for
~uniCll:ntly long intervals of integration.

Example 5

It
l'n" - I'n = -(k, + .1k,). 4 .

where

x

0.2
0.4
0.6
08
1.0
1.6
2.4

h= 08

1.5887

082953
0.43452

Table 2.7

h=O.4

0.R2093

0.15598

0.00857
0.00046

02744R
0.08591
0.020n

.0004 56
O.OOO9(i
O.()O()OI

h = 0.1

00550<)
0021 24
OOO(,15
OOOl5R
o 000 3R
o

k , = f(x n, Yn)

k 2 = f(x n+ ilt,Yn + iltkd
k, = [ix ; + jlt,y" + jltk 2 )

This method is consistent and zero-stable and therefore convergent. Sec Table 2.6 for
numerical results.

Thc comments made on Example 3 apply equally to this example, except that the
value of I,· is considerahly larger. lying between 0.2 and 0.4. We conclude that the
maximum. value of II which gives a solution which docs not blow-up depends on the
method (and presumably on the problem too).

Convergence is again del onstrated. This time, the errors decay as .\ increases [or all
the values of 11 used; indeed this would be the case no matter how large Ii.

The above examples were chosen to demonstrate various stability phenomena which
will be studied in detail later in this book; in particular they illustrate that zero-stability
is not the only form or stability that will have to be considered. Such stubilitv phenomena
are not related to any particular class of methods, and it would therefore he quite wrong
to draw any conclusion, on the basis of these 'results, aboul which class of methods
performs best.



3 linear Multistep Methods

3.1 NOTA nON AND NOMENCLATURE

1'1 §2.2, we mentioned the class of linear multistep methods, in which thc function
cPf(Y.H'Y.H-t, ... ,),.,x.;h) defined by (2.4) takes the form of a lincar combination of

the values of the function .r evaluated at (x. + i: y•• ). ; = O. I.. . k. Using the shortened
notation

f. +):= [tx; + ), Y. +)), ; =0, I, .... /.;

wc define a lillear multistep met/rod or /;/1('(1/' k-$/l'fJ nutluul in standard form hy

~ ~

L 1X)}'.+)=h L I/J~+j'
~=o 1)=0

where IX) and p) arc constants subject to the conditions
•

(31 )

IX~.= I, (.1.2)

The first of these conditions removes, in a convenient manner. the arbitrariness that
arises from the fact that we could multiply both sides of (J I) hy the same constant
without altering the method. (Other means of removing this arbitrarincss nrc of course
possible; thus some authors divide both sides of (3.1) by L: c 0 Ilj . ) The second condition
prevents both lXo and Po being zero, and thus precludes methods such as

Y" + 2 - y" + 1 = "f~, +- l'

which is essentially a l-step and not a 2-step method. and is in practice indistinguishable
from the l-step method

Y.+ 1- J'. = /IJ~. (.n)

Method (3.3) is Euler's Rule, the simplest of all numerical methods.
There is an alternative notation for linear multistep methods. In (2.11) we introduced

the first characteristic polynomial p associated with the general method (2.4). /' being
the polynomial of degree k whose coefficients arc IXj . In thc case of linear multistep
methods it is natural to define a similar polynomial whose coefficients arc Ilj' We thus
define the first and second characteristic polYllOmials of (3.1) by

k k

(r).= " vj (V)._" fI vjp ~. L lXi" (J ~ .- L j~'
j=O j=O

(3.4)

where (EC is a dummy variable. Using the notation of ~ 1.2. the linear multistep method
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I.'·, I can now he written in the form in efficient modern algorithms. Other sub-classes are characterized hy

p(E)y. = ha(E)j•. (3.5)

and are clearly also zero-stable for all k. Explicit memhers of this sub-class arc known
as Nystrom me/hods. and implicit members 'as Gellel'll!i:ed Millle-Simp"o'l methods. A
well-known example of a Nystrom method is the Mid-point Rille

where L is the forward shift operator. The conditions (3.2) imply that p is a monic
polynomial or delo!ree " and that /' and a do not have a common [actor r Both notations
have advantages. and we shall usc whichever is the more convenient for the analysis in
hand.

Ihe method (],I) is clearly explicit if III = O. and implicit if III # 0. Equivalently. we
can say that (:15) is Implicit If a has degree k and explicit if it has degree less than k.
For an explicit method. the sequence 1Y. l can he computed directly. provided the
necessary additional starting values have been obtained. whereas for an implicit method
it IS necessary to solve at each step the nonlinear (in general) system of equations

Y. >2 - Y. = 2hl.+ I'

and of a Generalized Milne-Simpson method is Simps()/J's Rule

h. , .
Y. + 2 - Y. = 3U", 2 + 4/. , 1 + f.)·

(3.10)

(311 )

where ,/ is a known function of previously computed values of Y.+,. By Theorem 1.2 of
~ I.X. this system of equations possesses a unique solution for Y.H. which can be
approaChed arhitrarily closely hy the iteration

(112)

3.2 THE ASSOCIATED DIFFERENCE OPERATOR; ORDER
AND ERROR CONSTANT

A sub-class that is important in dealing with stiffness consists of the Backward
Differentiatton For/l1l1lae or BDF. which are implicit methods with (f(C) = II,e': as we
shall see later, they are zero-stable only for a restricted rangc of k.

Finally, we observe that although the method (3.1) is linear. in the sense that it
equates linear combinations of Y.+, and of I.". the resulting difference system for :r,,)
is (in general) nonlinear, since I is (in general) a nonlinear function of r. The analytical
study of nonlinear difference systems is much harder than that of the corresponding
nonlinear differential systems. and since the major motivation for contemplating
numerical methods in the first place is our inability to get very far with the latter study.
we cannot be optimisticabout our chances of obtaining powerful ,,",,{\'rica/ results about
the solution of the difference system. Thus, numerical methods involve a trade-off: the
price we pay for being able to compute a numerical solution is increased difficulty in
analysing that solution.

and

In §2.4 we introduced the idea of using the residual. defined by (2.7), as a measure of
the accuracy of a method. To be a little more precise. hy Iorminp a Taylor expansion
about some suitable value of x, we could express the residual as a power series in h:
the power of /1 in the first non-vanishing term is then an indication of accuracy. For
example. let us carry out this procedure for Euler's Rule (13) and the Trapezoidal Rule
(3.9). taking x. as the origin of the expansions. Using the filet that r' = [t»: v), we ohtain

(3.8)

(3.7)

(3.6)

y~(~l arbitrary\' =0.1, ...•

h < Ij(lfllIL).

lxccpt in the case of sliff systems. which will be studied later in this book, condition
Lnq docs not present any problems: we find that considerations of accuracy impose
restrictions on the steplcnlo!th " which are far more severe than (.\.8). (The situation is
very different for stiff systems. for which L» I and the restriction imposed by (3.8) is
so severe that an alternative to the iteration (3.7) must be sought.)

Within the gcncr al class (.\.1)of linear multistep methods, there are several well-known
<ub-classe«. The sub-class of methods of Adams tyne are characterized by

provided that () <. At < I. where M is the Lipschitz constant with respect to Y. H of the
ri!,ht-hand side of LUI If the I.ipschitz constant of I with respect to y is L. then we
can lake ,\f to have the value 1,l/lll L and the iteration (3.7) converges to the unique
solution of (.161 provided

SInce the spurious roots of /' arc all situated at the origin of the complex plane, methods
of Adams type arc clearly zero-stable for all values of k. Methods of Adams type which
have the maximum possible accuracy are known as Adams merhods; if they are explicit
they arc known as Adllms HIIsl,/orrl, mcrhods. and if implicit as Adams-Maul/on me/hods.
The I-step Adams Bashforth method is Euler's Rule (3.3). while the l-step Adams
Moulton method is the Trapczoulu! Hull',

II
Y. + 1 - Y. = 2U. + 1 + I.)· (3.9)

Ir, . , h
J

(lJ •
R.+ 1 = y(x.+ \) - y(x.) - 2 [y (x. +d + .I'(x.)] = -- 12r' (x") + 0(1, ).

Ad.uns methods are anwn!' the oldest of linear multistep methods. dating back to the
nineteenth century: nevertheless. as we shall see later. thcy continue to play it key role

respectively, from which we conclude that the Trapezoidal Rule is the more accurate by
one power of h.



/JC/illil;oll The linear difference operator !I' associated wit]: tire li,lcar multistep method
(3. /) i.\ de/illed hr

However. there are some difficulties with this approach. Firstly, Theorem 1.1 of ~ 1.4
implies only thaI V(X)EC I [a. h]. so that the higher derivatives of y(x) used in the Taylor
expansions may not cxist. Secondly, it is not immediately clear whether. if we use a
different origin for the Taylor expansions. the leading term in the expansion of the
residual will have the same power of" and the same numerical coefficient.

.The first difficulty is easily overcome. Once we have substituted y'(x.+ j ) for
fh". ;. v(x., ,)) in the expression defining the residual, subsequent manipulations
involving Taylor expansions make no further use of the fact that j.[x] is the exact solution
of the initial value problem. The same result would be obtained if we replaced y(x) and
y'hl in (3.12) hy z(x) and z'(x) respectively, where ztx) is an arbitrary differentiable
function. 111 other words. the important thing in (3.12) is the difference operation that
takes place, 110\ the particular [unction operated on.

Substituting these expansions into (3.16) yields an expression identical in form with the
right-hand side of(3.14). Equating the result term by term with (JI4) yields.

49

il = O. I. 2..

THE ASSOCIATED DIFFERENCE OPERATOR

•
The functions zlql(X + Ih). q = 0, 1,2•... (where ZIOI(X) ~ z(x)) can now each be Taylor
expanded about x, thus:

LINEAR MULTISTEP METHODS48

!

'I'lz(x): "J:= L [!Xjz(x +iii) -Irll/(x +JIr)).
j:-O

(3.13)
/p

=Dp+IDp_I+"'+ Do
fI!

II'Ir('/'c z(x)EC1Ia,hl is (//1 arbitrurv [unction.

We now choose the Iunctiou zt.v) to be differentiable as often as we need. expand
:::h + iii) and :::'(x +;Ii) about .v, and collect terms in (3.13) to obtain

(3.14)

where the Cq are constants.

f
/)C/III;/illll Th« luwur 1III1/Ii.\I<,/1 IIIcl"od (3.1) alld lire associated dif(erellce operator !f}

defilled hy (3.13) al'c said 10 he %rder P if. ill (3.14). Co = C I = .. , = CP = O. Cp+1 # O.

The following formulae for the constants C, are easily established:

It follows that C, = O. q = O. I •...• fI, if and only if 'D q ,= 0, q = O. I ..... fl. Thus we could
equally define the method and the associated dilTerence operator to have order fI if the
first p + I coefficients in the expansion (3.16) vanish. and this definition ~s independent
of I; that is, the definition of order given above is indeed independent of the origin or
the Taylor expansions.

Moreover, if,Cq=O, q=O.I •...• !'. Cp + 1 #0. then

Dp+,=Cp+ ,• Dp+2=Cp+2+tCp.I'
k

Co = L 'Y.j~I'(I)
j==n

!

C1 = L ti«, -lij) ~ p'(I) - a(l)
J == 0 ..

(3.15)

etc. Thus the first non-vanishing coefficient in the expansion (J 16) is independent of I,

but subsequent coefficients do depend on I, Clearly. the first non-vanishing coefficient.
Cp + 1. is the only one to have any significance.

We can obviously use the formulae (3.15) to establish the order and error constant
of any given linear multistep method; but we can also use them to construct linear
multistep methods of given structure, For example, consider the two-parameter family
of linear two-step methods given by

q = 2,3•....

The definition of order will be useless unless we can satisfy ourselves that we get the
same result if we choose to expand about a different origin; this is the second difficulty
referred to above. Suppose we expand :::(x +J") and z'(x +J") about x + IIr rather than
about x, where I need not necessarily be an integer. In place of (3.14) we obtain

Definition
by (3.15),

A linear multistep method oforder fI is said to have error constant C qirclI
" + I' ~

(3.17)
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Exercises

where '1 ( =f 0) and {I nrc free parameters (sec Exercise 2.5.5* of92.5). Using (3.15) we have

(II

III

,= 1.2.

rr,(~) = n(l)

ITj' I(~) = 4n;(C),

1'1 (0 = I'm.
/'!' dO= (/1;10.

.1'"'2-(1 +(lly. I I +exY"="lIll/"" I {I" I. I 11, /" , , 1.

,
c=[I,I .... .rj'. (p=[2,.1,.",+lr .

where f. = fIx., J'.), U is an r x r upper triangular matrix, I' is a scalar and c. 1',. ,P. cEIhI'. The
vectors e and </> are given by

and the error constant Cr " satisfies

3.2.6*. There exists in the literature a family of one-step methods for the numerical solution of
our standard problem; these methods nrc applicable to the general system. but we shall assume
here (in order to keep things simple) that the prohlelll is scalar. The method, arc given b)

;, )"'1 =y.+III.+c
T".+

K"(/" , , -l"ll
IJI.= III. + </>T". J

V., 1= Uv. + II(I, , I -i.«

Prove that the linear multistep method has order I' if and only if

1'1(1)=0, ('j,tfll=jrrll), i=1.2... "and/'r.,II)i"I/'+ tln",II)

Use this result to verify your answer to Exercise 122.

3.2.5*. A hybrid method is an extension of a linear multistep method which involves II v, II

evaluated ut un off-step point Ix",,, J'" + II, 0 < r < I" /'II (0, I.... , k: (I he valuc .I" " IS glll'n hI a
separate formula; but that need not chnccrn us hcrc.) An explicit /ero-stuhlc 2-stcp mcthod ..,

this type has the form

v : '(" + 1)1 C, ' I = ..'I'[.yr ' ':"J

3.2.4, Alinear multistep method is defined hy its first and second charucrcristic polynomials ,'I~).
a(o. Sequences of polynomials 1{'lOU = 1,2, ... }. 1njl01 j = I. 2. : arc constructed as follows:

The associated linear difference operator, the order and thc error COllstallt call be defined in
obvious extensions of the corresponding definitions for a linear multistep method.

(i) Show that for any 'l satisfying - I < ex < I there exists a v.rluc Ilf r lor which the method tl)
has order 4, and find the relation between rand '1 which must thcn hold. Why do we exclude

the case (l = - I?
(ii) Show that there exists a uniqnc value for r and for 'l such that the method (II has order 'i.

and K, c and U are all constant and can be regarded as the parameters of the famil) It is assumed
that starting values Yo and 1'0 are available.

'3.2.2. Find the order and error constant of Quade's method. givcn in Lxcrcisc 2S2. What is the
most efficient point about which to take Taylor expansions')

3.2.3. Let 2' be the linear difference operator associated with a linear multistep method. Sho«

that the method has order" if and only if

2'[.\':11] ¢ 0, r= 0.1 ... P and 'l't yr' ':"J'i' O.

I,'

if a = I

if fI = - J
if a = I, fJ = - J.

k k

I:j'1 j=I:fij ,

i-» t r»

I

L '1i = 0,
i ()

I. {I I ;. order I' = I, error constn nt C 2 = ('1 .- l)(fI+ I)

I. {I -.c ;, order" = 2, error constant C) = jll (ex - I)

I, {I =f 1, order" = 2, error constant C) = - ({i +!)
I, {I = -. ;, order" = 3, error constant C4 = -i I2 'if '1 =

if '1 =

If'1 i

if'll

('I ee2 (IH) [I ql(H {i+exf1) + exflJ=0

(', = H4 - (I + '1) J- [2( I + Ii) - (ex + {i+ exli)] = (ex - l)(fI + J)

C, = _,I [X -(I + '1)J -- \[4(1 + fi)-('1 + {I +exf1)J = {-(fI+j)
,'. h(ex - I)

('J = 2
1
J [ 10 (I -j '1) [ - !, IX( I + {i) - ('1 + {i+ ex{I)J = - h

1(, +l = .!flY!'"); IIJ,

where r(\1 is the exact solution of the initial value problem. It follows from (3.1"4) and
till" discussion in ~24. that a linear multistep method is consistent if it has order p ~ 1.
II then lollow-, frum 1.1 1'i) that for n consistent linear multistep method, we have

P(I) = 0, p'( I) = a(I).

Note that if n( I) ~ D. we would have I'( I) = 1"( I) = 0: I' would then have a double root
at I I and the method would fail to satisfy the root condition. Thus, for all consistent
zero-stable linear multistep methods, n( I) =f O. (This is why some authors normalize linear
multistep methods by dividing through by a(I); see §3.1.)

.'.2.1. Construct a onc-par.unctcr family of implicit linear two-step mcthods of greatest possible
order. and find the order and error constant. For which values of the parameter is the method
n -nvcrgent?

or. equivalently

l lc ncc,

1Note. however. that the method is zero-unstable for a = I.)
Although the above approach is the standard one for deriving linear multistep

methods, it can happen that for methods with large stcpnumbcr it is easier to abandon
f,'rlllulac 1.1. I 'i). and pl'l fnrlll thc Taylor expansions lI/J illitio about some point other
t h.ru v, ill the hope of utililing svmmctry: sec Exercise 3.2.2.

1111;1111. \\C nh'l'ln: that 12.7), which defines the residual R" II' for the general class
01 tIIl·thod, (2.41. gin's in the case of linear multistep methods
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3.3 THE LINK WITH POLYNOMIAL INTERPOLA TlON

I lvnce find the order of the nne-parameter family of methods defined by (I) and (2). Find also

the values nf 1\ [or which Ii) the method has maximum order. and (ii) the equivalent LMM

" a 2-s'ep method: identify the equivalent LM Ms in both (i] and (ii),

tliil (ISing the results of (il. find. in terms of the eigenvalues of the matrix M = U - C,pT, the

Ll\nditinn fill the uvncru! method 11) to be zero-stable for all values of 1\.

(121)

We can now define Y.+ 2 and Yn to he approximations to r(x" + 2) and rCx.) respective!..,.

such that the approximate equality in (3.21) becomes an exact equality, thus obtaining

Simpson's Rule.
The reader will have noted that the above derivation of Simpson's Rule is virtually

identical with that of Simpson's Rule for quadrature, that is, for the numerical

approximation of the definite integral r"' )fIx) dx: indeed all Newton Cotes quadrature

formulae can be interpreted as linear m~ltistep methods. However, there is an important

distinction in the way in which quadrature rules and linear multistep methods are

applied, If Simpson's Rule is used to evaluate the definite integral r:" I(x)dx, then it is

successively applied, to the su b-intervals [:<:0' .x2J, [x 2' x4 ], [x 4 , x,j, ctc., \\'/lich slIh

intervals do nol overlap; the error in integration over the whole interval is simply the

sum of the errors over each sub-interval. In contrast, if Simpson's Rule is used to integrate

an initial value problem, then it is successively applied to the sub-intervals [xo,.'I: 2J,

[X1,X3J, [X2,X4J, etc., w/ridl sub-intervals do overlap. The accumulation of error is now

much more complicated, and it should not be totally unexpected that Simpson's

Rule, an excellent method for quadrature, turns out (as we shall see later) to he a had

method for integrating initial value problems,

The above procedure can be used to derive only linear multistep methods for which

p(O = (k - (k- q for some integcr q, 0,;;; q < k, Note that this class contains more than

the linear multistep equivalents o] the standard Newton Cotes quadrature formulae.

For example, the 2-step Adams- Moulton method could be derived hy replacing (3.19) by

(2)r I 31 f'l
' 1/ . 4 Kf

I = L. ,= L0 I J (= UJ ree.

l.incnr multistep methods arc closely linked with the process of polynomial interpolation.

Two distinct such links can he established, the first involving interpolation of the I
values. the second involving that of the y values. We shall illustrate by using both

approaches to derive Simpson's Rule (3.11).

The method we seck thus has the form

Ii) IIv cousidcrin]; the linear comhination:Z::; ol'j)'.+j+ t- with a suitable choice of coefficients

I,. I n.1. .1. ,llt1\\ that the method (I) is equivalent to a linear multistep method (LMM)

\\ Ithsicpnumbcr 1 + I. and show hnw the coefficients in the equivalent LM M can becalculated

in u-rms of the parameters appearing in (I). [/lillts: First find v., J in terms of v.' c, I.,

I" I. . f• . , and the mauix AI = U - ",p I The Cayley-llamilton· theorem might come in

Iw,dy I
tiil lllu-tr.uc vour answer 'n Ii) hy finding the LMM equivalent to (I) in the case when

Sta'tlng from the identity

(3.18) J
.,""

'. y(x n+2)-Y(.'I:.+,)= . y'(\)d\ .
.\".,

On evaluating the definite integral and expanding VIn + 2 and "12In + 2 in terms of

j = 0,1,2.

but retaining the approximation (3.20) for f. Likewise, the 2-step Adams Bashforth

method could be derived by reducing the degree of the interpolant P to one and avoiding

the involvement of 1.+ 2' •

The second approach is somewhat more direct, in that it interpolates the data (x n• .I'n)

rather than (x., f.), but in a Hermite or OSCillatory sense; this means that the interpolant

is required not only to take prescribed values at the interpolation points, hut to have

prescribed slopes at such points as well. Over the span [x.' v, + 2J of the method, let I(x)

be such a Hermite interpolant (with vector coefficients). That is, we require I(x) to satisfy

There are six (vector) conditions in all; if we allowed I(x) to have six free (vector)

parameters, then all that would happen would be that, the six. conditions would specify

I(x) uniquely. Instead, we choose I(x) to have live free parameters, usc any five of the

six conditions to specify I(x), and substitute the result in the sixth condition; in other

words, we find the eliminant of the live free parameters between the six conditions.

Choosing I(x) to be a polynomial, then in order to achieve live free vector parameters,

(3.20)

(3.19)J
X" "

y(x.+2)-Y(x.)= y'(x)dx,

x"

we replace 1'"(\) hy IC'c\'{\)) and, having an eye to the data we vish to involve on the

right-hand side of (11 R), approximate I by the unique vector interpolant of degree 2

in .v p<tssing Ihrough the I hrcc points (x. + 2' f. + 2), (x. + I' In + ,), (x.' In) in IRm + 1. Referring

to ~ \I 0, the appropriate interpolant is given by the Newton- Gregory backward

intcrpolatinn formula

12( \ I = :' 2(x . >2 +rht=:l'2(r)=[1 +r"1+ir(r+ 1)"1 2J f n + 2 '

enabling us to approximate the right-hand side of (3.19) by



54 LINEAR MULTISTEP METHODS THE FIRST DAHLOUIST BARRIER 55

ifxE[x". .Y:"+ I]

iLxE[x"+ I.X"+2J,

.,

(I)

with 11 replaced by 11+ 1 and add. to get a two-step method involving the parameier ,,"+ )'". J

Choosing the value of this parameter in order that / ~(x" + I) = ,~, 1lv, + ,) should agam produce
Simpson's Rule.

3.3.4. (i) Let the exact solution of the initial value problem he locally represented in the interval
[x,. x,+,) by the cubic interpolant fIx) = (/,X

3 + ",X' + ",.V + "n. Find the eliminant of the four
coefficients a" i = O. 1.2. J. between the five conditions

Tlleorem 3.1 No zero-stable linear k-step methot! call hupe order exceed;ll!! k + I wI/ell
k is odd and k '+2 wilen k is even.

to obtain an explicit method (the Taylor algorithm or order three}

(ii) Repeat (i) but with I(x) replaced by the rational function R(vl = I",v' + "I V + "o)i(\ + (I,l.
applying the same condit ins (I). The result will be a new explicit method. Why is the method
derived in (i) applicable to an m-dirncnsional problem. while that derived in (ii) is applicable only
to a scalar problem?

(iii) Suggest circumstances in which the method round in Iii) mighl be expected 10 perform
better than th'at found in (i). Illustrate by applying both methods to the scalar problem. .I" = I + .I'.
y(0) = I. (',.,;: x",;: 0.75. (The exact solution is r(.x) = tant.x + 11/4).}

I

3.4 THE FIRST DAHLQUIST BARRIER

A natural question to ask is what is the highest order that can he achieved hy a convergent
linear k-step method. In seeking high order, the consistency condition is automatically
satislied, but we meet a very real barrier in attempting to satisfy the root condition.
This barrier has become known as the [irst Dahlquist harrier. since it was originally
investigated in the seminal paper ofGermund Dahlquist (1956); this paper was the first
to bring strict mathematical analysis to the problem of the convergence of numerical
solutions to initial value problems. and ushered in a new era in thc subject.

The linear k-step method (3.1) has 2k + 2 free coefficients r1;,fld = I), I. .... k, of which
one, (Jk is specilied by (3.2) to be I. There arc thus 2k + I free parameters (2k. if the
method is constrained to be explicit). From (3.14) and (3.15). it follows that if the method
is to have order p, then fI + 1 linear equations in 'Xj. {Ii'; = 0, I..... k, must he satisfied.
Thus the highest order we can expect from a linear k-step method is 2k if the method
is implicit, and 2k - 1 if it is explicit. Linear k-step methods achieving such orders are
called maximal. However, maximal methods. in general. fail to satisfy the root condition
and are thus zero-unstable. The first Dahlquist barrier is encapsulated in the following
theorem (Dahlquist (1956); sec also Henrici (1962)):

A zero-stable linear k-step method of order k + 2 is called an opiimn! method: naturally
k must be even and the method implicit. It can be shown that all of the spurious roots
of the first characteristic polynomial of an optimal method lie on thc unit circle. a
situation that gives rise to some stability difficulties which we shall investigate in ~3.R .
The result is that optimal methods do not perform well. and so it would be incorrect
to deduce from Theorem 3.1 that zero-stable k-step mcthods of order k + I. where k is
odd, are overshadowed by the optimal methods (hat can he achieved when k is even

(3.22)

which also has the requisite number (live) of free vector parameters u.b, C, d. e, then again
SlIllpson's Rule emerges.

y'[z(x);h] = - ./oh~z'~) + ....

Exercises

.1..1.1. Starlin!! lr.un the idcuttty

r\'1 \", ,I - I'(x"")::,,, /Ix)dx
x .. "

derive the 2·",,1' Ad.un« Hashlorth and Adams Moulton methods .

.1.:\.2. 1\1 the end or the .rhove section, we indicate that a single application of Simpson's Rule is
equivalent to joe:d Itermite interpolation by a cubic spline. Let SJv) indicate such a cubic spline
applied In the interval I'". \". ,J By considering the relationships between SJx) and S", .(.x) at
the overiapl"n!! point<. sho", thai integrating an initial value problem from x = a to x = h by
repeated applicarions of Simpson's Rule is equivalent to glohal Hermite interpolation by a (global)
cubic spline (that is. a luncuon which is cubic in each of the sub-intervals (x"x,+ ,) in' I.h) and
has continuous first and second derivatives in (a,b)).

.1.3.3. There is an alternative way of establishing the relationship between Simpson's Rule and
Permil\' interpolation 0.1' a cubic spline. Consider the interpolant I"(x) = y"x 3 + a"x' + a"x + a,o.

Impose the conditions ,"(x" 'i) = r"'j./:(x'+i)= I"i' j =0.1. and eliminate a". a,h a,o from the
resulting [our conditions to get a formula which will involve y,. Write down this formula again.

If ~I vI IS repLlccd hv l'( v]. a polynomial of degree ,,: 4, then clearly ylq'(x) = () for all
'/ > 'i. so that '/'11'1 vi; hl = O. implying that the method is exact.

The link between linear multistep methods and polynomial interpolation is a revealing
one. We can anticipatc thaI linear multistep methods will perform badly in situations
where polynomial interpolation would perform badly c--u point we shall return to in
Chapter (i ,Where we discuss stiffness. However, useful though the correspondence
bcrwccn lilibr multislej1 methods and polynomial interpolation is. that correspondence
is not one-to-one. If. in the ahove derivation. the reader cares to replace the quadratic
polynomial /(x) given hy (.122) hy the CII/I;C spline S(x) deli ned by

\lC must choose the degree to be four, that is choose

where £I. h. c. d.« arc ",·dimcnsional vector parameters. A straightforward calculation
sh"ws that the eliminant is indeed Simpson's Rule. Note that if the solution of the initial
value problem happens to he a polynomial of degree ~ 4. then I(x) and y(x) become
identical. and Simpson's Rule would be exact. This is consistent with the readily
established fact that Simpson's Rule has order 4. and error constant - <10, so that the
difference operator associated with Simpson's Rule expands to give
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Simpson's Rule occupies a unique position in this hierarchy. It has stepnumber 2 and
order 4. and is thus both maximal and optimal.

of the line segment joining y(x"p) to Y,,+I in IRon. Equation (3.24) now yields

(l- hpJ(x" +I' 'I"+I) J[y(x" +I) - )'..H] = 1~ I k' (3.25)

3.5 LOCAL TRUNCA TlON ERROR AND GLOBAL
TRUNCA TlON ERROR

In ~12 we used the power of I, in the first non-vanishing term i'l the Taylor expansion
of the residual U"". defined hy (2 7). to define the order of a linear multistep method.,
11 1\ natural to use the residual itself as a finer measure of accuracy, giving rise 10 the
lollowing definition:

Thus if the method is explicit ({II = 0) then the LTE at "" H is simply the difference
between the exact and the numerical solutions at x" +1 (subject. of course, to the localizing
assumption). If the method is implicit, then to a first approximation (that is. ignoring
the O(h) term on the left side) the same is true. .

We note that the definition (3.23) of LTE demands only thal r(x)E C I [a, IJ], and this
is guaranteed by Theorem 1.1 of § IA. If, however, we are prepared to assume that
y(xh=cP+ 1 [a, b], where p is the order of the method, then by (.1.14) we have

/)../;//;(;(1/1 Tl:.. local truncation error or LTE of tlu: method (3.1) at X"H' denoted by

.,." 'I is de{i//ed hy

T =C IrP+l),1P+II(Y)+O(hr -l i )
r'+k P+ I -","

and it follows from (125) that for both explicit and implicit methods

(3.26)

(3.23)

II,Ir..r .. C/' is IIII' associiu ..d d;!f(-rc//ce operatnr d..-finedhy (3. I3) allli y(x) is the exact solution
of rill' initiol vuluc proh/e//' (2.2).

I", I is thus seen 10 he identical with R"H' The local nature of 1;,H can be seen if we
make the following somewhat artificial assumption, known as the localiZing qssumption.
We assume that .1'", i = y(x" + j)' j = 0, I....• k - I, that is, that all of the back values are
exact: let us denote hy .f" I I the value at X"H generated by the method when the localizing
assumption is in force. It follows from (113) that

I I

L '.I;I'(x" +ih) = h L /Ijy'(x" +;h) + .Y'[y(x,,); h]
i II i> 0

I

= II L fIJ(x" + jh, y(x" + jh)) + T" II'
i- (J

)'(X_ tl ) - Y,,+I = Cr + 1v:: ')'IP' 11(-",,) + o(/,r 1
2)

The term Cp+ I w: 1ylP+ 1)(X,,) is referred to as the principal local Irlmcalim, error
or .'LTE.

If no localizing assumption is made, then the difTerence between the exact and the
numerical solution is the accumulated or global error.

Definition The global truncation error or GTE of lire metlunl (J./) III \"H' denoted b)'
E.+! is defined by

The LTE and the starting errors accumulate to produce the GTE, but this accumulation
process is very complicated, and we cannot hope to obtain any usable general expression
for the GTE. However, some insight into the accumulation process can be gleaned by
looking at an example.

Consider the Mid-point Rule

since rex) <atisfics the differential system y' =/(x.y), The value .I'''H given by the method
satisfies

Ie. I k - 1

I'"q+ L'1jr".,=hfIJ(X,,+I'Y"H)+h L {lj/(x"+j'y"+).
} - II j=O

applied to the scalar problem

y,,+ 2 _.- y" = 21rf"+ 1

y' = y. y(O) = I

(3.27)

(3.28)

and on subtracting and using the localizing assumption we obtain

(3.24)

whose exact solution is y(x) = exp(x). Since we wish to sec the effect of starting errors,
we choose as starting values O(hq

) perturbations of the exact starting values, and take

To get an expression for the GTE, we must first attempt to solve the difference equation

The method (3.27) has order 2 and error constant ~, and it follows from (3.26) that the
LTE at x_ is

We now apply the mean value theorem to the right side of (3.24). Using the notation
of ~ 13. Case 4, we have thai

((-'", l'y(X" H)) - /(X" +1'.1'" tI) = J(X"H.'I"H)[y(X,,+k) - Y"H]'

where J is the Jacobian matrix of I with respect to y. and the notation implies that
each row of J is evaluated at different mean values ""H' each lying in the internal part

(3.29)

(DO)
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It is easily checked that the solution of (3.3\) which satisfies the initial conditions (3.29)
is given by

obtained when (.1.27) is applied to (3.28), namely

Y.+2 - 2hy.+ 1- Y. = O. (3.3\ )

(3.35) we see that there is no loss of order in the starting errors due to accumulation.
Further, if we were to mimic what we would do in practice and choose q ? 3, so that
the starting errors were at least of the same order as the LTE. then the starting errors
would not influence the leading term in E.; indeed we could afford to lake q = 2 and
still not alter the order of E.,

Using the f;ict that /II, = x.' we obtain

and 1'1. /"2 arc the roots of 1'2 - 2111' - I = O. Now,

where

n(r2)r~ - n(r.lr~ 1Y.= -'--' .----
1'1 - 1'2

n(r) = exp(h) - I' + (WI - rwo)h" J
(3.32)

Exercises

3.5.1. Using (i) Euler's Rule and (ii) the Trapezoidal Rule. verify the validity of (3.25) for the scalar
initial value problem .1" = )..1', .1'(0) = I, for a general steplength II. (Use the exact solution of the
problem to impose the localizing assumption.)

3.5.2. Consider the application of the method (3.17) of §3.2 to the scalar initial value problem
.1" = .1', .1'(0) = I, Using the results of Exercise 2.5.5* of §2.5 show that the relationships between
the GTE, the LTE and the starting errors, established in this section for the Mid-point Rule, also
hold for (3.17).

r~ = exp(x.)[1 -11 2X./6 +0(h3
)] '}

r~ = (- l)·exp(- x.)[1 + Ih./6 + 0(lt3)].

Further, since 1'1 -- 1'2 = 2 + 0(11 2
) . we find from (3.32) and (3.33) that

n(r d = (w I - wo)lI" + 0(/,3)+0(/1" + I)

= (I'I - r2)[(w l - wo)h"/ 2 + 0(h3
) + 0(/1"+ I)]

and
n(r 2)= 1'1 - 1'2 + (WI + wo)lt" + 0(lt 3

) + 0(1t" + I)

=(1'1-1'2)[1 +(W 1 + wo)h"/2 + 0(1t ·1) + 0(1t" +1jJ.

Thus. (.1.32) gives

(3.34)
3.6 ERROR BOUNDS

It is possible-at the cost of some quite heavy analysis-- to establish bounds for both
the local and the global truncation errors. However. as we shall show presently, these
bounds are of no 'practical value, and so we shall only summarize the results here, giving
references where full derivations may be round.

Referring to equation (3.26), it is tempting to conjecture that. by analogy with the
Lagrange form of remainder for a Taylor series, the local' truncation error can be
expressed (with the notation of §1.3) in the form

whence we would have the bound

\'. = exp(x.)[1- kh2x. + t(W I + wo)h"]

- t(- I)"exp( - X')(WI - Wo)lt" + 0(lt3
) + 0(/1" +1).

Since y(x.) = exp(.'.). we have that the global truncation error at x, is

where

Y = max lIy(p+ll(x)ll,
XElo.b]

(3.37)

(3.38)

E. = \,(x.) - .1'.

= kIh. exp(x.) - ~ h"[(wl +w())exp(x.)-( - I)"(wl - wo)exp( - x.)]

+ 0(/,3) + 0(1t" + I). (3.35)

Two points of importance emerge from this example, On comparing (3.30) with (3.35)
(and, ignoring for the moment O(hO) terms in the latter), we see that while the local
truncation error is 0(h 3

), the global truncation error is 0(h2
); that is, one power of h has

been lost owing to the process of accumulation. We can see exactly where this loss
occurred, namely. on going from (3.33) to (3.34). Secondly, on comparing (3 '9) with

the bound holding over the range of integration [0.17]. However. it [urns out that (3.36)
holds for some linear multistep methods but not for others. The il1(11/('l1ce !rllleriarl or
Peal10 kemel, G(s), of the method is defined by

k •

G(s) = L [(X}j-s)~ -p{J/j-S)~-I]
J~O

where p is the order of the method and the function z + is defined hy

{
z ifz? 0

z, = 0 ifz < O.
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where

clearly seen. We note from (3.39) that, if the LTE is bounded by GIIP' I Y, then the
corresponding term in the global bound is bounded by GI,P Y This mirrors exactly
the behaviour we observed in the example of §3.5. That example showed that the
actual global truncation error, for a particular example, was O(/I P

), and (3.42) shows
that for all linear multistep methods applied to a general problem, it cannot be
worse than O(/I P) ; it follows that, in general, the glohaltruncation error of a pth-order
linear multistep method is O(/I P) .

(c) If the bound 0 is O(h P+ . ) (the natural choice) then the starting errors have a second
order elTect on the error bound; one can alTord to take () = O(h P ) without altering
the order of the bound'. These conclusions again reflect those drawn from the example
of §3.5.

(d) Just as for the LTE, if round-olT errors are locally bounded hy Kb" + I, then they
are globally bounded by KIr". However, this is not a realistic model for what happens
in practice. We know of no computers where t~e user can ask for arhitrarily small
levels of round-off; we choose to work in single-, double- or triple-length arithmetic,
and have no further control over the level of local round-off. A more realistic
assumption would thus be to replace Kh"+. in (3.40) by r., a fixed bound on local
round-olT error. This clearly has the elTect of replacing the term KII" in (3.42) by clh,
which leads to an interesting conclusion: as I.~ 0, the bound initially decreases due
to the term in h", but eventually increases (to infinity) due to the term rfh. thus
corroborating what common sense tells us, that, in general, convergence to the exact
solution can never be achieved in practice with a computer that works in finite
arithmetic. .

(e) Let us ignore round-off by setting K = 0 (or c = 0). Then if, in accordance with the
definition of convergence, we assume 0~ 0 as II~ 0, we have that II E" \I -+ 0 as II~ 0
if p ~ I; that is, the method is convergent if it is consistent. But what has happened
to the condition of zero-stability, which we know to he necessary for convergence?
The answer is that if the method is zero-unstable, then it can he shown ~!1at the {)',}
used to define r become unbounded, so that r = CfJ and convergence is lost.

(f) Can the bound be used in practice to give the user a helpful guarantee on how
accurate the computed solution is? The answer is no! All or the terms in (3.42)except
Land Yare functions of the coefficients of the method only, and arc readily computed.
L can be taken to be the maximum value that \I iJI/iJy \I takes in [a,!J], and this could
be estimated a posteriori by evaluating alliJy on the numerical solution {.I'"} rather
then on the (unknown) exact solution y(x). Ycould similarly be estimated a posteriori
by the (error-prone) process of numerically dilTerentiating the solution {y"} p + I
times. However, the real reason why the bound is of no practical value lies in the
fact that it is nearly always excessively conservative. For example, we note from
(3.42) that the bound grows exponentially with x, and this applies even if the solution
decays, in which case we would expect the actual global error also to decay (see the
'examples of §2,7). •

(3.41)

(3.40)

(3.39)

k

B= II{Jjl 0= max IIEpll
j=O p=O.I, ... ,k-1

k k

.I (1j.v"+j=h I (Jj.((X"+j,ji"+j) +O"Khq+ l
,

FO j~O

If and only if G(s) is of constant sign in the interval [0, k] of s does (3.36) hold; this is
the case for all Adams methods. However, whether or not G(s) changes sign in [0, k],
a hound akin to (3.37) holds, namely

II g"11 :0:::; rl Ako + (x, - a)(hPG Y+ h"K)} exp{rLB(x" - a)} (3.42)

where Y is given by (3.38) and

G = { Iep' II ifG(s)does not change sign in [0, k]

[J~ IG(sllds]lp! ifG(s)changes sign in [0, k].

(Full details can he found in, for example, Lambert (1973).)
The global error bound we are about to quote can take account' of the elTect of local

round-off error. Let us denote by {ji} the sequence generated by the method when a
local round-olT error is committed at each step, that round-olT error being bounded by
KII"' I; that is, lji"l is given by

We similarly adapt the definition of global error by defining E" H:= y(x" H) - ji"H' We
introduce the notation

and L is thc Lipschitz constant of the differential system in the problem being solved.
We note that () is a bound on the starting errors, and that for all Adams methods
r = 1/(1 - hlf1kIL).

Then, provided that

the global error (including round-off) is bounded as follows:

for all x"E[a,h]. For a derivation of this bound, see Henrici (1962,1963).
Several comments can be made about the bound given by (3.42).

(a) The condition (3.41) is clearly satisfied for all explicit methods; for implicit methods,
it coincides with (3.8) of §3.I, which was the condition for the implicit dilTerence
equation to have a unique solution.

, (h) The elTect of the three sources of error, LTE, starting error and round-olT error are

We conclude by illustrating comment (f) above by applying the bound (3.42) to
Example,3 of §2.7 where the method .

I,

I 1 3 II
y"+ 3 + 4'y"+ 2 - 2y"+ I - 4: y" = 8(191" + 2 + 51")

i7
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was applied in the intcrval ju.L] to the problem

1y' = 2Y ,y(O)= t
2y'=ll'ey_I)/'y 2y (0) = - 3

whose exact solution is l\'{x)=[1 +3exp(-8x)]/8,2y(x)= -3exp(-8x). We ignore
round-off error, and since exact starting values were used in §2.7 we set 0 = 0, The
hound given by (3.42) now reads

numerical solutions, is highly artificial, and there is no way that it can be implemented
in practice, Some authors propose, as an alternative measure of local accuracy, the local
error or LE defined as follows:

\

Definition, Let u(x) he the solutioll of the initia! vallie problen:

u' = f(x,II), u(x. H _ ,) = Yn+l-"

Then the local error, LEn H at xn + k is defined hy

where, III he consistent with the results of §2.7, we take 11'11 = 11'112 throughout. The
mel hod has order .~ and error constant 17/48: a tedious calculation establishes that G(.q
docs not change sign for SE'lO, 3], so that G = 17/48. Ry constructing and solving a
difference equation for :I"~' we find that I" = I. Usingtheexaet solution, we have that

y'41(x ) = exp( - 8x)[ 1536, 12228]T,

and II,,141(S) 112 takes its maximum value of 12384 at x = O. The maximum value of
1I'IJYll2 als~ occurs at x = 0 and is 50.GO\. B takes the value 3, so that (3.43) gives

(145)
It

Yn+2-(1 +1X)Yn+1 +IXYn=-[(3-IX)!n+1 -·(1 +ex)j.],2 .

The nomenclature in the literature is a little confused in this area and some authors use
'local error' to have oth meanings (e.g. Hairer, N0rsett and Wanner (1980)). If LE. H

is expanded in powers of I" then the leading term in this expansion is called the principal
local error or PLE. Note that no localizing assumption arises in this definition; .1'. H _ 1

and Y. +I are the actual computed values, in which truncation error will have accumulated.
The situation is perhaps clarified by Figure 3.1, which illustrates the situation in the
case k = 3; for a typical component '.I', the points marked x dena Ie the numerical solution
{'Yn}, those marked 0 the back values 'Yn+ J'.i = 0, 1,2 under the localizing assumption.
and the point marked + the value 'Y. H (in the notation of §3.5). It is sometimes claimed
that, because of the absence of any localizing 'assumptions, the LE is a more natural
measure of local accuracy than is the LTE. We shall challenge this view later in this
section.

By (3.26), for a method of order p the LTE is O(lt P + ' ). Intuition suggests that the LE
is also O(hP+ I), since it is free of accumulation of error. An interesting question arises:
is the PL TE the same as the PLE? We approach this question by first considering what
happens for an example. The convergent method

(3.43)

(3.44)

and we sec al once t ha t this bound is horele;sly pessimistic. From §2.7, when h = 0.0125,
the actual global errors at x = 0.2 and x = \.0 were \.I,X 10- 4 and 9.6 x 10- 7 respect
ively: the bounds on the global error given by (3.44) at these points are \.8,x 1010 and
1.2 x I()('~ respectively, A customer is unlikely to be impressed by being told that there
is a cast-iron guarantee that the errors in the numerical solution are everywhere less
Ihan 1.2 x IO"~,

Despite its inability to give useful practical results, the bound (3.42) is none the less
helpful in our understanding of how local errors propagate.

Exercise where IX, -I ~ IX < I, is a parameter,'has order 2 and error constant C3 = (5 + ex)/12. If

."1.6.1. Construct the influence function G(s) for the method

(1.# -5.

lind the range of ~ for which G(s) docs not change sign for SE[O,2] and demonstrate that ror ex
in I hat range,

If' IG(sllds = [C P + ,I.
pi 0

LTE

L.E

x
x

3.7 LOCAL ERROR x

The LTE, as defined in §3.5, is useful in analysing local errors, but the localizing
assumption, necessary for an interpretation in terms of the difference between exact and

..
Xn

Figur'e 3.1
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As for the example of ~J.5, we find that the solution of (3.48) satisfying (3.49) may be
wriucn

and secondly, from (3.5.1),

1'2 = ih - ill2 + ~IIJ + 0(11 4
) = jlr[cxp( -Ir) + 0(11-')]

whence 1'; + 1 = (hI2l" + 1 +0(/1" + 2), and provided q ? 3, we have

Comparing (3.52) with (3.47), we see that for general Ct.E[ - I, I), the LE and the LTE
are very different. In particular, note that when Ct. = - I the factor 1'; +' in the second
term of (3.52) does not decay as 11 ~ 00. wb conclude that for general linear multistep
methods PLE ¥ PLTE.

Does the above example persuade us that LE is to be preferred to LTE as a mea,sure
of local accuracy? Whilst the definition of LE does appear to indicate thai it is the more
natural measure of local accuracy, the results of the above example can be interpreted
as being a little disturbing. Global error arises through three factors, (i] the starting
errors, (ii) the 'local' errors committed at each step, and (iii) the manner in which these
two errors are propagated; here we are searching for the most acceptable definition of
(ii). From (3.47) and (3.52) we first note that the LE, unlike the LTE, is influenced by
the starting errors (and the PLE is so influenced if we make (he natural choice q = 3).
But any measure of local accuracy should not be concerned with what happened in the
starting phase; LE is straying from factor (ii) to factor (i). Secondly, in the example we
demanded that - t ~ Ct. < I, in order to ensure that the method was zero-stable; the
analysis would certainly need modification in the case Ct. = I, but it holds good for Ct. > I.
!fwe take Ct. > I then the method is zero-unstable and the global error will be unbounded.
From (3.52) we see from the term in 1';+ I that the LE will also become unbounded as
11 increases. One could argue that the LE is rightly warning us that the numerical solution
is bad. However, ~ measure of local accuracy need not, indeed should not reflect zero
instability, which as we have seen in §2.5 is precisely to do with the adverse accumulation
of local errors and not with the size of those local errors themselves: so LE also strays
from factor (ii) to factor (iii). One could say that LE pokes its nose into what is not its
business!

Having made some possibly controversial remarks, let us now make some conciliatory
ones by noting that LE is usually defined in the context of codes which almost invariably
use Adams methods. We observe from (3.47) and (3.52) that if Ct. = 0, when the method
becomes the 2-step Adams-Bashforth method, a remarkable simplification takes place.
Rn~ •

(3.46)

(3.48)

(3.47)

(3.49)

(3.50)

(3.51)

q?'I.

Yn=n(r2)r~-Q~rl)r; }
1'1 - 1'2

Q(r) = exp(lJ) - I' + (WI - rwo)lJq

I 2 I I + Ct. J 41', = I + II + II _ ...~.. II + 0(11 ),
2 4 I-Ct.

I I I 1+ Ct. Jl
1'2 = C1. + (I - Ct.)1J - 1J2 + 1J3 + 0(1J 4

).
2 2 4 I - Ct.

y' = y, y(O) = I,

LTE. + 2 = h(5 + Ct.)1J 3exptx.] + 0(1J 4
).

Applying (.1.45) to (.1.46) generales the difference equation

J'", 2 ~ l' + IJ -+- ~ (3 - C!)}H i + [C! + ~ (1 +it)}. ~ O.

whose exact solution is y(x) = cxpt.x], then the local truncation error at X n+ 2 is

we apply it to the scalar problem

We are interested in seeing whether local error is alTected by starting errors, so we take
the initial conditions for (3.48) to be O(lJq) perturbations of the exact conditions:

where

and 1',,1'2 arc now the roots of

By expanding the discriminant of this quadratic in powers of IJ, or by using sums and
products of roots (or preferably by both !) we find the following expansions for r 1 and 1'2:

where 1'2 = Ct. + 0(11).

LEd 2 = AIIJ exp(xn+ d + 0(11 4
) == 1~1I3 explx.) + 0(1r 4

)

and PLEn+2 = PLTEn+ 2.
We are tempted to conjecture that for all methods of Ada/lls type, PLTE = PLE: we

can prove as follows that this conjecture is indeed true, under natural conditions on
the starting errors.

Consider the general linear k-step method of Adams type of order p? I,

The function II in the definition of local error satisfies u' = U, u(xn+;) = Yn+ l' and is
therefore lI(x) = Yn + I exp(x - x, + ,). It follows that

LEn+ 2 = lI(xn+2) - Yn + 2 = Yn+ I exp(lJ) - Yn + 2'

On substituting for Yn + I' Yn + 2 from (3.50) and using the expansions (3.51), we find after
some manipulation that

15+a [15+Ct. ]LEn+ 2 = 11 3exp(x n)- ... -~- h3 + (WI - wo)hq 1';+ 1 + 0(1J 4
) + O(hq + 1),

12 I -Ct. 121-Ct.
(3.52)

k

YnH-YnH-I =11 L fJJn+j
]=0

(3.53)
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applied to the problem v' = [ix, y). y(a) = 11. with starting values which are in error by
O(/''' I I). The method is convergent and from comment (b) in ~3.6, we know that the
glohal error satisfies L" = O(lr"), II = k, k + I.... ; it follows from our assumption on the
starling errors that

Now, for J= O. I..... k - 2.

Assuming that the exact solution y(x) is sufficiently differentiable, then. if Cp + I is the
error constant. we have that

k

r(x"H)-Y(\,,'h .l=" L: {ljf(x,,+j.y(x"+j))+C"+III"+lyl"~I)(x,,)+0(1I"+2)
j~O

E; = 0(""), n = 0.1 •.... (3.54) ~ (j-k+ I)',,{r'-li( ) 0(/1'11)
=y"H-1 + L, -'--,-- I. X"'k-I'Y,,+k-1 + r •

.'1= I S.

where j<,-II(X.y) = [d,-I/dx,-I ]f(x.y). S= 1.2..... p. Also.

s- (J-k+I)','{I'--I'( ( )) 0(/1"1)y(x,,+j)=Y(X"H-t!+ L ----,--- I. X,,'h-I'Y X"H-I + J .
p= I S.

and on subtracung (l.<;31 and using the mean value theorem with the notation of §1.3.
\\1,,' llht:Jin

II =0.1 •...• (3.55)

On subtracting and applying the mean value Ilrcorcm lIT ohr.un. using (l54)

u(x,,+j) - y(x"+J = - [l + O(h)]["H_ 1+ O(lr" II) = -- L"H- I + O(lrl' , I).

Hence, for j = O. I•...• k - 2. II = 0, I....•

where the bar indicates that each row of the Jacobian aflay is evaluated at possibly
different values of 'I" I i: all of which lie in the line segment in ~m from y(x"+}) to y,,+}.
It follows from (354) and (3.55) that

Let II(X) he the solution of the initial value problem

and in view of our hypothesis that the starting errors are 0(11"+ I) we may write

U(X"+j) - Y" +j = u(x,,+ j) - y(x" +J + j[x, +j) - .1'" +j

= - E"+k .. 1 + E" +j + O(lrl' +1)

= - E"H_I + E"H-2 - I:"H-2 + ... - E,,+i' 1 + E,,+j + O(/rl' +I)

by (3.56). Hence from (3.58) we obtain that

whereas

(3.56)

II =0.1 •...•

II =0.1 ......E" + I - E" = 0(11" +I).

L". k - I:" I k _ I = 0(11"+ I).

II'=((X,II). U(X"H_I)=Y,,+k_I' (3.: .)

Then, hy definition of the LTE of the method

k

II(X",k!-II(X,,'k I)~" L: /IJ(x,,+j.u(x"+j))+C"+11l,,+l ufl'+I)(x,,)+0(IIP+ 2)
j~O

and on suhtracting (l5.1) and again using the mean value theorem we have

k iJ(
II(X" ,k! -.I", k = /, L: {lj . (x" Ij. '"+J[II(X"'j) - y,,+j]

i-» (1.1'

+C""I1"+'u("+'\x,,) +0(111'+2). 11=0.1 ....

From the definition of LE". k. II(X" H _ t! = Y" H _ 1 and it follows that

Since y(x) - u(x) = 0(11"). it follows that PLE" H = PI.TE" +ko 11 = 0, I..... thus proving
the conjecture.

The above result can be e~tended a lilllc. Assume that a linear multistep method
satisfies the root condition and, in addition, , = I is the OIrll' root of 1'(0 on the unit
circle; such methods are sometimes said to satisfy the stroru; root ('O/l(!it;OIl. Then it can
be shown (Lambert. 1990) that if the solution of the problem satisfies y(X)EC" + I [a. 17 ].
where p ~ 1 is the order of the method. and the starting values are in error by 0(111'),
then PLTE = PLE if and only if L~=oPj = I. Clearly. Adams methods satisfy this last
condition and the strong root condition. '

We have said nothing so 'far on how we would. in practice, cstimate the LTE (or the
LE). From (3.26) we have that the PLTE is given by

PLTE C I P + 1 ,II' + III ..)
"H = ~,,+ 1 I ,} .v, .

It would be possible to replace the exact solution y(x} by the numerical solution {.I"I
and hence estimate .1'(1'+ I)(X") by the process of numerical dilTerentiation-·an inaccurate
process. especially when high derivatives are sought. However. linear multistep methods
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(see §1.6)and it follows from (160) that all solutions .\'(x) of (3.59) satisfy

We now ask what conditions must be imposed in order that the numcrical solutions
{Y.} generated when a Iinekr multistep method is applied to (359) satisfy

art: normally implemented in the form of predictor-corrector pairs. and it turns out
that in this form a much more satisfactory estimate of the PLTE is available at virtually
no computational cost. We therefore defer the question of estimating the PL TE to
Chapter 4.

\1.\'(.\)\1 ....0 as x .... .x,

Exercise as II .... Cf~·. (3.621

.17.1*. Repeat the analysis performed in the above section for the method (3.45) applied to the
problem (3.46;, hut with the explicit method (3.45) replaced by the implicit method

h
Y• • ,-(1 + C'I)Y•• I + C'lY. = 12[(5 + a)!. +2 + 8(1 -a)!.+. -(I - Sa)!.J.

Show that the PLTF and PtE coincide if and only if a = 0, when the method becomes the 2-step
Adams Moulton method.

Let the linear multistep method

k k

I Ct.jY.+j=I, I fljI~+;
j~O j~O

be applied to (3.59). The resulting difference system for l)'M} is

k ,

I (Ct.jl-lrfljA))'M+j=O'
)~O

(363)

(364)

3.8 LINEAR STABILITY THEORY
where I is the III x m unit matrix. Since the eigenvalues of A arc assumed distinct, there
exists a non-singular matrix Q such that

where the eigenvalues )." I = 1,2, ... , m of the constant m x m matrix A (assumed distinct)
satisfy

Let us refer hack to Example 3 of §2.7. where a convergent linear multistep method
was applied to the tcst problem (2.24). The numerical results showed that there appeared
to exist some value II" of the steplcngth such that for fixed II> h" the error increased
as x increased, whereas for fixed h < h" it decreased. Further, it can happen (as in
Fxample 4, which is not. however, a linear multistep method) that for an fixed positive
values of II, the errors produced by a convergent linear multistep method increase as
\ increases. In such situations. clearly the local errors are accumulating in an adverse
fashion; in other words. we are dealing with a stability phenomenon. The only form of
stahility we have considered so far is zero-stability, which controls the manner in which
errors accumulate, but (mly ill the limit as h ....O. What is needed is a stability theory
which applies when h takes a fixed non-zero value.

In attempting to set up such a theory, we follow the spirit of §2.6. where we discussed
the syntax of a stability definition, and seek some simple test system, all of whose
solutions tend to zero as x tends to infinity. We then attempt to find conditions for the
numerical solutions to behave similarly. The simplest such test system is the linear
constant coefficient homogeneous system

(3.67)

(3.66)

(3.65)

f,

1=1.2..... 111.

as 11 .... 00. 1 = 1.2..... 111.

k

I (Ct.)1 -lrfJ)A)z. +) = O.
)a 0

k

I (Ct.j-hfljA,)'ZM+j=O,
j~O • \

where z, = CZ., 2Z..... , mzM]T Since the eigenvalues of A are in general complex. we note
that each equation in (3.66) is a complex linear constant coefficient homogeneous
dilTerence equation. By (3.65), \I YM \I .... 0 as II .... 00, if and only if \I ZM II .... 0 as II .... 'x'. and
hence (3.62) is satisfied if and only if all solutions {'Z. } of (3.66) satisfy

We now define ZM by

Since I and A are both diagonal matrices, this system is 1I/1col/plt'd, that is we may write
it as

and on pre-multiplying (3.64) by Q ~ t, we obtain

, (3.59).1" = Ay

The general solution of (3.59) takes the form

ReA, < 0, 1= 1,2, ... ,m. (3.60)
Now, from §1.7 we know that the general solution of each of the dilTerence equations
in (3.66) takes the form .

m

y(x) = I x, exp(A,x)C,
r=O

(3.61)
m

'z.= I x"r:, 1=1,2.... ,111,
,,= t
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where the x" arc arbitrary complex constants and 1'" s = 1,2, ... ,111 arc the roots, assumed
distinct. of the characteristic polynomial

1

L (!X j - hfl/,)r1

i>»

functions of the coefficients of. the polynomial. and it follows that there must exist a
root 1'1 of It which has the property that 1', - (I = I as h - O. The following argument
tells us how r I approaches 1 as Ir- O.

Let the linear multistep method satisfy the root condition. have associated difference
operator :L' and have order p » I. Then ..'I)[z(x); Ir] = 0(1r" , I) for any sufficiently
differentiable function z(x); exp(Xx).'where lEe. is such a function. and we may write

On dividing by oxp(J.x) we obtain

1

:L'[exp(h); h) = L {!X,iexP[).(x +1/1}] -1'fI/exp[)(x +ilr)]} = 0(/," f I).
j=O

(3.69)where

This polynomial can conveniently be written in terms of the first and second characteristic
polynomials fl, (J of the method (sec equation (3.4)) as

n(r, i/~:= p(r) - ha(r) }

Ir:= h).

which may be written

The polynomial n(r, h) can be reconstructed in terms of its roots r,. s = 1,2.. .. k as

(J.70)

(J71)

/)efillllio/1 ~ The (illeur /lllI/lisrep /IIellllld (3.63) is said to he absolutely stable for qiven h
,Iii)/" thut h sa]! rhe roots or the stabiiitv poly/wl1Iial (3.69) salisfy 11',1 < I, s= 1.2, ... .k,
olld 10 he absolutely unstable [or thut i,olhl'rwise.

and )" a complex paral!leter. represents a/1)' of the eigenvalues l,. 1= 1.2, ... ,111 of A.
Ihe polynomial n(I".I,) is called the stabilitv polYllol1liol of the method. Clearly, (3.67)

and consequently (162) arc satisfied if all the roots 1', ( = r,(h)). s = 1,2, ... , k of n(r, h)
satisfy Ir,l < I. and we arc motivated to make the following definition.

Clearly we arc interested in knowing for what products on, and A the method is
absolutely stable. whence the following definition:

(3.72)

Since, as ii-o. exp(h)-+ I, and r,-(,. s = 1,2•...• k, the first factor on the left side tends
to zero as h - O. and no other factor can do so since. by the roots condition. (, is the
only roots of p(() located at + I. It follows that

(Note that, by the following argument, the factor I -- i'/I k can never he zero: let rIA) be
the spectral radius of A. The Lipschitz constant L of the function [ = Ay is L = II A II ~
r(A) ~ IAI (where Ais any eigenvalue of A). Hence the condition (U). I, < 1/1 flk IL. implies
that h< I/Ifill.)

On setting r = \:xp(h) in (3.71) and using (3.70), we ohtain

[exp(h) - 1',][exp(h) - 1'2]" [exp(h)- "k] = o(i," , I)

It immediately follows that for small hwith Re h> 0.11',1 > I. and the method is absolutely
unstable. In other words, the region of absolute stability o{ all.\' cOIIl'CI"UeIH li//eal'militislcp
melhod can/1ot collla;/1 11,1' posilive real axis ill lire IlciulthourllOod of [1,1' ol'iqill. Note that
since the above argument is asymptotic (as h- 0), we cannot conclude that the region
of absolute stability does not contain part of the positive real axis for large li'l or that
the boundary of the region does not intrude into the positive half-plane away from the
origin.

The most convenient method for finding regions of absolute stability is the boundarv
locus technique. The region .<;11'A of the complex h-plane is defined by the requirement
that for all hE.<;II'A all of the roots of n(r,h) have modulus less than I. Let the contour
(JiJtA in the complex ii-plane be defined by the requirement that for all hEr";#A OllC of
the roots of It(r,h) has modulus I, that is. is of the form r = exp(iIJ). Since the roots of
a polynomial are continuous functions of its coefficients it follows that the boundary

=

Re A, < 0

r = 1.2.... ,111

Linear multistep

method

\,' = Ay, A has distinct

eigenvalues )./

Iklillir;(111 "I'I,e tincar mult istcn method (3.63) is said 10 haec region of absolute stability
if ,. I\·h",.e;#, is a ref/;(1I1 o! th» col1lplex h~fJla/1l', if it is absolutelv stable for all hE'~A'
JI/(' int crscct inn or ·;fA with tlu: real axis is called th« interval of absolute stability.

Note that the interval of absolute stability is relevant to the case of the scalar test
equation y' = iI', l real.

We construct below the syntax diagram for absolute stability.

The region of absolute stability. ,;II' A' is a function of the method and the complex
parameter i, only. so that for each linear multistep method we are able to plot the region
.;fA in the complex h-plane. If the eigenvalues of A are known it is then possible to
choose h sufficiently small for hA,E:fI A to hold for I = 1,2, ... , m.

We note from (.169) that when h = 0 the stability polynomial n(r. h) reduces to the
first characteristic polynomial p. Recall from §2.5 that for a consistent linear multistep
method p(O always has a root (, = I, and this we called the principal root; if the method
is l.ero-s~able. this root must be simple. Now the roots of a polynomial are continuous

~\
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must hold. This cqu.uion is readily solved for h, and we have that the locus of oiJIA is
given by

(If II, must consist of (1.11 1 (or of part of iJ,1I A ; some parts of iJ.'1f A could, fa'r example,
correspond to 1t(1', i'l having one root of modulus I, some of the remaining roots.having
modulus less Ih;I" I and some having modulus greater than 1). Thus, for all hEoiJIA ,

the identity

-1

'I

k=2

(3.73)It(exp(i(/)';I)= p(exp(iO))- ha(exp(iO)) = 0

h = h(Oj = p(exp(iO))ja(exp(iO)). (3.74)

I~A

-1

k=4

-1

k=3

Figure 3.3 Regions of absolute stability for k-step Adams-Bashforth methods.

I ,

methods of stepnumbers I to 4 in Figure 3.3. Having found (1:11 1 , we haJ to deduce
what 9tA is. For the Adams-Moulton methods with k = 2,3,4 and the Adams Bashforth
methods with k = 1,2,3, iJ.!Jf A is a simple closed contour; to see that the shaded regions
in Figures 3.2 and 3.3, that is the illteriors of tht: regions bounded by (l:?p A' are indeed
the regions of absolute stability, all we need do is observe that, from (3.72). all linear
multistep methods are necessarily absolutely unstable for small positive values of Re(h).
For the Adams-Moulton method with k = I (the Trapezoidal Rule). the contour i l.'1f A is
simple but no longer closed; it is indeed the whole of the imaginary axis. The same
argument shows that the region of absolute stability is the whole of the negative half-plane
Re(h) < O. \

Things are not quite so simple for the Adarns-Bashforth method with k = 4, where
the contour iJ9tA is closed but no longer simple, since it crosses itself at two points
(which are just to the right of the imaginary axis). The argument we have used above
establishes that the region of absolute stability contains the shaded region. but it is not
clear whether it also contains the two loops lying iii the positive half-plane. The point
marked A in Figure 3.3 lying on the loop of o9fA in the first quadrant corresponds to
taking 6 = n/2, which, by (3.74), implies that h= 0.272 + 0.578i at A. With this value for
h, n(r, h) turns out to have roots

-2

k=4

I
%

fI
•k =1

"or the Adams Moulton method with k = I (the Trapezoidal Rule), the contour iJ9tA is
particular geometrical shape, bUI in most cases we simply use (3.74) to plot h(O) for a
range of (/ErO,21t], and link consecutive plotted points by straight lines to get a
representation of ??P ..r The contours i),Jr A so obtained for the Adumx-Moulton methods
of stepnumbcrs I to 4 arc shown in Figure 3.2 and those for the Adams-Bashforth

Figure 3.2 Regions of absolute stability for k-step Adams-Moulton methods. i, 1.076 +0.744i, 0.357 +0.05Ii, 0.190 - 0.470i.
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(Note that since 11 is a polynomial with complex coefficients, its complex roots no longer
arrear as complex conjugate pairs.) The first root has modulus I (justifying A as a point
on (' !fA) but the second root has modulus greater than 1. By continuity, the interior of
the loop cannot he a region of absolute stability. Hy symmetry, the same holds for the
I(lor in the fourth quadrant, and we conclude that the shaded region in Figure 3.3
constitutes the entire region of absolute stability.

We note in rassing that Figures 3.2 and 3.3 prompt two conjectures: that implicit
mel hods have larger regions of absolute stability than explicit methods and that, as
order increases, the regions of absolute stability shrink. The first is, in a general sense,
true of all numerical methods; the second is not (d. explicit Runge-Kulla methods, '0

hc discussed in Chapter )).
It is or sornc interest to apply the boundary locus method to one further example,

namely Simpson's Rule, given by

1/(1') = r? - I, l1(r) = ~(r1 + 4,. + I).

Applying (374), we rind after a little manipulation that the locus of 11,'19 A is given by

~ 3i sin 0
h(O)=. --

2 + cos 0

and therefore lies wholly on the imaginary axis. For all 0, the function 3 sin 0/(2 + cos 0)

lie between - ,,/.1 and J.1. and it follows that 11!19A is that part of the imaginary axis

running from J.1i to ,/.1i. We know that for hEiJ.Cjf'A' n(r,h) has a root of modulus I
(in this instance, both roots have modulus I) and we conclude that Simpson's Rule has
an empty region or absolute stability. All optimal methods have regions of absolute
stahility which arc either empty or essentially useless in that they do not contain the
negative real axis in the neighbourhood of the origin (see Steller (1973), page 268 for
fuller details) In essence, hy squeezing out the maximum possible order (subject to
fel(l.stability) hotn a linear multistep method of given stepnumber, the absolute stability
region gets squeezed nat This is why optimal methods are not favoured. •

The interval of absolute stability can. of course, be deduced directly from the region,
but sometimes we want to rind only the interval, in which case quicker methods are
available. It is then appropriate to take hEIR, in which case n(r,h) becomes a real
polynomial. The criterion for absolute stability is then that n(r, h) he a Schur polynomial,
and the Routh Hurwitz criterion, discussed in § 1.9, can be applied. Consider, for
example. the .1-ster Adams Moulton method given by

where

a, = - 24H > °if H < 0.

a1 = 2 - 48H > O/ifII < i.,
at = 4 - 16H > °if II < i,
ao = 2 + 16ll > 0 jf II > - k

The conditions aj > 0, j = 0, 1,2,3, are thus satisfied iff If E( ~- ~,O) The remaining
condition a.a2 > aoa, is satisfied iff,

144H1
- 22H + I > 0,

which condition (the discriminant of the left side being negative) is easily seen to be
satisfied for all H. It follows that 11(1', h) is Schur iff If E( - k, 0), or equivalently hE( - 3,0).
The interval of absolute stability is thus (- 3,0), a result corroborated by Figure .1.2.

Linear stability theory supports a further crop of definitions concerning relari!'e
stability, a topic nowadays considered less 'significant than hitherto. The rationale for
this development is as follo~s. Recall the result (3.72) that

(372)
,.

A consequence of this is that when we use a linear 'multistep method to solve numerically
the test system (3.59) in the case when A has some eigenvalues with positive real parts
then, for sufficiently small It, the numerical solution {Y.} will have the property that
II Y. II 00 as n ..... 00. This is as it should be, since from (.1.61) we know that 111'(x) II -+ o:
as x 00 when any of the )., have positive real part; the situation is acceptable, provided
that II y(x) II and II Y. II tend to 00 at approximately the same rate. Let ),* be the eigenvalue
of A with greatest (positive) real part. It follows from (361) that the growth of II r(v) II
will be dominated by the term exp[(Re.l.*)x]. Now, from (3.72),

(3.75)

Relative stability is concerned with whether rdh.!c*)" or 1',(11),*)" (for some sE[2, 3, ... , k])
dominates the numerical solution. If the former holds then, in view of (.1.75), that is
acceptable. The concept also has some relevance to the case of decaying solutions, since
one might not be happy with a numerical solution which decayed, but not as fast as
did the theoretical solution. Among many criteria that have been proposed to encapsulate
this notion are the following:

We can clearly define regions and intervals of relative stability based on each of these
criteria, A is probably the most sensible criterion, but is hard to apply. In view of (3.72),
B is not very different from A, at least for smalllhl, and is a little easier to apply, C is
much easier to apply, since a change of argument in the stability polynomial from I' to

1'(1') = 1" - 1'2, 11(") = (91" + 191'1 - 51' + 1)/24

whence. selling 1/:= /1/24 for convenience, we obtain

11(1'./1) = (1 - 91f)r' - (I + 191f)r 1 + 5H,. - l!.

On applying the tr.msforrnation I' = (1 + z)/(I - z) we obtain

criterion A: 11',1 < Irt I,

cri .rion B:' 11',1 < lexp(h)l,

criterion C: 11',1 < lexp(h)l.

s = 2,3, , k

s = 2,3, , k,

s = 1,2" .. .k
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sometimes known as the linearized error eqllatioll. Since the constant term T plays no
part in determining whether the norms of the solutions of (1 7R) grow or decay as II -+ f ,

it can be ignored, and (3.78) is essentially the same system as 0.(4) with A replaced h~

J al,d Yn+j by En + } . The subsequent analysis holds, and we conclude that II Enll--+O as
"--+ OC! if hA,E[}f,f' where A" t = 1,2, ... , III are now the eigenvalues of .l, and .Jf

i
' is the

region of absolute stability of the method. 1\ similar extension in the case of relative
stability is clearly possible, ,

The flaw in this argument lies in the assumption (177). It is simply not true in general
that the eigenvalues of J, even if J is taken to he piecewise constant (that is, recalculated
from time 10 lime as the computation proceeds), always correctly represent. even in a
qualitative sense, the behaviour of, the solutions of the nonlinear system n.76). (It is. of
course, true when [i», y) = A)', A a constant matrix, in which case the difference systems
for the solution and for the errors are essentially the sarnc.) We shall have more to say
about 'frozen Jacobian' assumptions in Chapter 7, bUI meanwhile let us look at two
examples.

First, consider the problem used in the numerical examples of ~ 2.7,

R, where r = Hlexpli,)! implies that C will be satisfied if 7!(Rlexp(II)I, II) is a Schur
polynomial in U Unfortunately, C can give bizarre results, reflecting the fact t~at, for
substantial regions of h, Irll may be greater than lexp(h)l, although close to It. For
cx.unplc. the intervals of relative stability for the 2-step Adams-Moulton method, using
each of these criteria, are:

1\: (- 1.50, 00)

B: (- 1.39,00)

C: (+ 2.82, <Xl)

Confusion over definitions may have been II minor factor in the decline of interest in
relative stability, hut the major reason is probably the fact that it is absolute stability,
not relative stability, that is relevant to the problem of stiffness, to be discussed later in
this hook.

It will not have escaped the reader's notice that the theory propounded above is
highly restrictive, in that it applies only to the test system .1" = Ay, whereas in practice
we usually find ourselves dealing with the general systerny' = !(X, .1'). Attempts can be
made to extend the applicability of linear stability theory to general systems by construct
Ing an approximate system of difference equations for the global error En := y(x n)- Yn'
As we shall sec presently, such attempts can give rise to very misleading results. One
st;nls hy noting that the definition of the local truncation error Tnu implies that

where

and

.1" = [ix, y), .1'(0) = 'I,

y = [II,V]T,

!(x,y)=[v,v(V-I)/IIJ T,

XE[O,IJ

II = [1/2,

(179)

In the interval [0, IJ of integration, A2 increases from - 6 to nearly zero. and we note
that for all x > 0 both eigenvalues lie in the interval [ - 8,OJ

The linear multistep method of Example 3 in §2.7 was

k k

L IXjy(Xn+ jh) = II L (Jj!(xn+),y(xn+j)) + Tnu ·
i :» j=O '

The sequence (Yn} generated by the method satisfies

k k

L IXjJ'n+j=h L (Jj!(xn+),Yn+j)'
j:O )-0

and on suhtracting and using the mean value theorem (with the notation of § 1.3) we
obtain

(3.76)

This difference system for {En} is deceptive; it looks linear but is indeed nonlinear since
the values (n + j all lie on the line segment from Yn + j to y(x n+ j)' and hence En +) is an
unknown nonlinear function of (n +j' We cannot handle this system, so we force it to
he linear constant coefficient by making the assumption

with exact solution

II(X) = [I +3 exp( - 8x)J/8, "(x) = - 3 cxp] - Rx).

The Jacobian of the system is

allay =[0 I'J
- v(v - 1)/11 2 (211 - 1)/11 .

\
Its eigenvalues are real, and can be expressed in closed form as

A\=(v-I)/II, ).2 = vju.

Substituting for II and v from the exact solution (3.80), we obtain

)'2 = - 24/[3 + exp(Rx)].

(380)

(181)

(382)

We make the further assumption that Tnu = T,a constant vector, so that (3.76) now reads

(383)of .. = J, a constant matrix.
Dy

k

L [IXjI-hfljJJEn+j=T
j~O

(3.77)

(3.78)

1 1 3 Ir
Yn + 3 + 4)'n + 2 - "2Yn + 1 - 4J'n = 8(l9In + 2 + SIn)'

Since the eigenvalues of the Jacobian of the system to be solved are real, we need
compute only the interval rather than the region of absolute stability for this method.
This interval turns out to be ( - i, 0), and hence we can satisfy the condition

t= 1,2
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Since the system is unchanged. the eigenvalues of the Jacobian are still given by (3.RI),
but when we suhstitute thc exact solutions (3.R4) for II and" we obtain

hy choosing" such that - X" lies in ( -1,0); that is, by choosing" < It* = -h = 0.0417.
, rom Table 24 of ~27. we sec that the global errors do indeed decrease for It < It* and
increase for" > 1,*. For Ihis example the linearized error equation approach gives sensible
results.

We do not need to look far for a counter-example, however. Consider the same system
U,79). but with new initial values given by

Comparing with (J.X2). we see that while J, is unchanged, the behaviour of ),2 for positive
\' is radjcull y changed. At x = .x = (In 3)/R ;::: 0.137, )'2 is infinite, For XE[O, X),),2 is
negative, hut 1),1 becomes extremely large as x -.x; for x> .x, )'2 is positive. Were we
to compute a solution of this new initial value problem using method (3.R3), whose
interval of absolute stability is (- i,O), then the theory based on the linearized error
equation would predict that in order to avoid error growth, we would have to take
sharply decreasing values of It as x approached .x, and that error growth would be
unavoidable for x >x. In practice, nothing of the sort happens, and the table of errors
for numerical solutions in thc interval [0, I] with a range of steplengths is virtually
identical With those givcn in Table 2.4 of &2.7 for the original initial value problem.
What is happening is that thc linearized error equation, faced with the impossible task
of attempting to mimic the behaviour of the true nonlinear error equation, throws up
one eigenvalue, i.,. which docs the best it can in predicting in a general sort of way the
exponential decay cxp( - Rx), but the other eigenvalue, ),2' is meaningless; in the case
of the original initial value problem, it happened not to get in the way.

The literature of the Il)(,Os and 1970s contains many results (some of which are
reported in Lambert (197.1)) on absolute and relative stability, but these results are of' ,
less significance nowadays. The reasons for this are partly that there has been a steadily
growing appreciation of the limitations of linear stability theory and the emergence of
a much more satisfactory theory of nonlinear stability (which we shall discuss in
Chapter 7). but mainly because modern codes for the numerical solution of initial value
problems do not actually test for absolute or relative stability. Quite apart from the
possibility of bizurrc results. as illustrated above, such a procedure would be hopelessly
uneconomic; it would require frequent updatings of the Jacobian and of its entire
spectrum of eigenvalues, a heavy computational task for a large system. Instead, these
codes rely on their monitoring of the local truncation error to alert them to any instability;
If the estimate of the LTE becomes too large, the step is aborted and the steplength
reduced.

This is not to say that linear stability theory is of no value. A method which cannot
handle satisfactorily the linear test system y' = Ay is not a suitable candidate for

(I)Re(p(exp(ill))a(exp(- iii))] = 0

incorporation into an automatic code. More precisely. linear stability theory provides
a useful yardstick (if one can have a yardstick in the complex plancl] by which different
linear llluitiste,p methods (or classes of such methods) can be compared ascandidates
for inclusion in an automatic code. There is ample computational evidence that methods
with large regions of absolute/relative stability out-perform those with small regions,

One specific result of linear stability theory, already referred to. is worthy of note.
namely that all optimal methods have regions of absolute stability which either arc
empty or do not contain the negative real axis in the neighbourhood of the origin, This
means that when such methods are applied to the lest system y' = 11\', where the
eigenvalues of A have negative real parts, the numerical solution will satisfy 11.1'. II -+ x
as 11-+ 00, for all sufficiently small positive /" whereas the exact solution satisfies
lIy(x)II-+0 as x -+ 00. Example 4 of ~2,7 (although not a linear multistep method) has
an empty region of absolute stability, and such behaviour is exemplified by the numerical
results quoted. (Once again, it is fortuitous that linear stability works well for the
particular nonlinear problem in question; it would not he difficult to produce one for
which the theory was much less satisfactory.) The mechanism by which methods with
empty regions of 'absolute stability are none the Icss convergent has already been
explained in the comments on Example 4 in ~2,7.

.1'.+, - J'. = ~!JU.+ \ + "f.)

" ..Y.+> -(I + !Xli'., ,+ !XY. =- ((5 + !XlI." + X(I - !X)!.,\ -(1 + 51)!.]. 12
, ,

Exercises

3.8.1. Use the boundary locusmethod to show that the regionofabsolute stahilityof the method

is a circle centre (- ;,0) and radius ;. Check this result hy using the Routhllurwitz criterion
to show that the interval of absolute stability of the method is the diameter of this circle.

3.8.2. Using Figure 3.2, find the ap: roxirnate maximum steplength that will achieve absolute
stability when the 3-step Adams-Moulton method is applied to the scalar problem v" + 20\" +
200y= 0, y(O) = I, y'(O] = -10, recast as a first-order system. Test your answer numerically.

3.8.3*. Find an expression for the locus of ",ojf.• for thd method

Deducethe intervalofabsolute stabilitywhen!X f - I;checkyour resultby usingthe Routh- Hurwitz
criterion to find the interval of absolute stability. Find ,}fA in the cases [i] 'Y. = I. (ii) 1 = - I.

3.8.4*. A linear multistep method is defined by its first and second characteristic polynomials
p, (J. Show that if

then the method is absolutely stable either for no ;; or for all ;1 with Re(;I) < n. Show that the
most general zero-stable linear 2-step method of order at least 2 which satisfies (I) is

Y.+2 - Y.= 'I (fif. + z + 2(1 ~ fill., ,I fll.],
I

and that it is absolutely stahle for all ;; with Re(h) < or and only if fl > J

(3.84)v(x) = 3 exp( - 8x).

),2 = - 24/[3 - exp(8x)].

lIt\') = II - .1 exp( - 8x)]/X,

'1 he exan solution is now
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3.11.5·. Consider the method

We are interested in the question of whether the numerical solution {y.} given by (2) is periodic
when the exact solution y(x) of (I) is periodic. Accordingly, wechoose as test equation the scalar
equation

(it Show that the order is independent of a.
(iii Find the locus of ,'.:IfA in the form ~2 = F(e). where h= e+ ill.

(i,il lienee sketch ,bl A and show that it divides the complex plane into three regions; ascertain
which of these regions are regions of absolute stability.

0-) Deduce that the interval of absolute stability is independent of (x.

(-I Construct a suitable two-dimensional linearconstant coefficient problem and use it to devise
and carry out a numerical experiment to corroborate your findings in (iii).

3.M.fl·. Aconsistent linear2-stepmethodfor the numerical solutionof thesecond-orderproblem

These methods have a long history, the explicit Adams- Bashforth methods having been
first introduced in a numerical investigation of capillary attraction (Bashforth and
Adams, 1883); the implicit Adams-Moulton methods first appeared in connection with
problems of ballistics (Moulton, 1926). Today they still remain easily the most popular
family of linear multistep methods, and form the basis of almost all predictor corrector
codes for non-stiff initial value problems.

There are good reasons for this popularity. Firstly, in comparison with many other
families of linear multistep methods, Adams methods have good regions of absolute
stability; this is to be expected since as ,,~O the roots r, of the stability polynomial
satisfy r, ~ {, = 0, S = 2,3, ... , k. Secondly, the Adams methods have a definite advantage
in the situation where the steplength is changed during the computation. We shall discuss
the implementation of step changes in the next chapter, but it is clear that when the
steplength is changed there i~ a problem, in that the back values are no longer at the
appropriate values of x. One solution is to use interpolation to establish the necessary
back values, and for general linear multistep methods this would mean interpolat ,J

the existing back values of Y followed by function evaluations to obtain the back values
of f. For Adams methods, there is clearly never a need to interpolate the back values
of y, and direct interpolation of the back values of f.is enough. Lastly, Adams methods
~re capable of being expressed in terms of backward differences in a form that greatly
eases the problems of implementing them in an automatic code; we now derive these
alternative forms. In this context, it is convenient to rewrite (3.85) in the equivalent
form(3)

(I)

(2)

-1<(X<1.

Y" = -Jl 2 y ,

y" = fix, y), y(a) = /I, ita) = ~

Y.+ 2- 2.1'.+ 1+ Y. = h2 [PI. +2 + (1- 2{J)1•• I + PI.].

is defined by

whose solutionsare periodic, of period hi/I. In a development analogous to linear stabilitytheory,
we say that (2) has an interval of periodicity (0, II~), where II = hu, if the numerical solution of
the difference equation resulting from applying(2) to (3) is periodic for all 112 E(0, II~).

(il Find the interval of periodicity of (2) in each of the casesP = 0, P = 5/6 and P = 1/(2 - 2cos<p),
() < 'f < 21t

(iii If (2) is applied to (3) with a steplength I, for which l/2 E(0, H~), show that the numerical
solution has approximately the correct period in the following sense. Let h be such that there
exists an integer III such that mh = 21t!J1; then show that

We start by considering the explicit Adams-Bashforth methods. In the next chapter,
we nee~ to distinguish between implicit and explicit linear multistep 'iethods which
appear In the same context; we do this by attaching the superscript "to all symbols
relating to explicit methods. It is thus appropriate to do this for all symbols relating to
the Adams-Bashforth methods. Recall from §3.3 that certain classes of linear multistep
methods (including the class of Adams methods) could be derived by a process of
polynomial interpolation. Analogously to (3.19), we consider the identity

where

Y. , m = Y. + O(h"+ ') for all n,

. k

y.+·!-y"=h 2:: Pjf.+j~HI·
j~O

(3.86)

YT ztx]; h]:= z(x + 2h) - 2z(x + h) + z(x) - h2[pz"(x + 2h) + (I - 2P)z"(x + h) + pz"(x))

= 0(/,"' 2). Ix"' ,
y(x~+ d - y(x.) = y'(x)dx.

x.

(3.87)

ill in): Put z(x) = exp(i/lx) in YTz(x);ltJ.) We replace y'(x) by f(x, y(x» and seek a polynomial interpolant of the data

3.9 ADAMS METHODS IN BACKWARD
DIFFERENCE FORM

(x"./"), (x._ i, f.- d,..·, (x, -H 1./' ~ HI)'

By §1.1O, such an interpolant, in terms of backward differences, is given by

Adams methods constitute a sub-family of linear multistep methods defined by (3.88)

k

Y.tk-Y.tk-I=h 2:: Pjf.+ j·
j=O

(3.85)
Approximating the integrand on the right side of (3.87) by l:~ 1(.'1:) and proceeding as
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in 0.3, we obtain

(;*(r)=t )'It;=I (-r)ifl(~r)dr=J"r'f (-ni(-r)Jdr.
,0 '-=0 0 I 0_1=0 I

It is important to note that the YI are independent of k. We could use (3.90) to evaluate
the ;-1, i = 0, 1,2.... , but there is a more constructive way to proceed. We seek a generating
[unction for the rl' that is, a function of a dummy variable t which, when expanded in
powers of 1 will ha vc the )'1 as coefficients. That is, we seek a function G*(t) such that

• Ir
Y.+ 1;- Y. = 12 (23(. - 16(.- \ + Sf. 2)

h
1'•• \ - l'. = - (55(. - 5')f~_ \ + 37/. 2 - ')1,,).- 24' .

k = I: )'.+1 - Y. = Ilf.
II

Y.. 1 - Y. =; 2(3(. - (. - I)k = 2:

k. '" 4:

k = 3:

Thus the family of Adams-Bashforth methods can be written as

)'.+ 1- Y. = IIU. + !Vf. +1\ V2(. + ~\l.1f. + ... )

Truncating the series on the right side after k terms and expanding the backward
differences in terms of function values, gives the following:

(3.89)

(3.90)YI = (- 1)'L(~ r) dr.

where

The integrand on the furthest right side can be recognized as the expansion of the
function (I -0 ',whose integral with respect to r is -(I-t)-'/In(l-t). Hence,

,.

1 [-I l -t
(J*(I) = In( I - I) i~, + I = (1=')1;;(1-=1)

which we rewrite in the form

-* [-In(l-t)J 1(, (t) = '.
t I-t

Now

(3.91)

(3.92)

These are the standard x-step Adarns-Bashforth methods, k = 1,2,3,4, but in the form
(3.86) rather than the form (3.85).

The importance of the fact that the )'1 arc independent of k is now clear. By storing
only the four numbers Yi, i = 0, 1,2,3, we effectively store all four k-step Adams Bashforth
methods with k = 1,2,3,4. Further, if we wish to replace a k-step Adams Bashforth
method by a (k - I)-step, we merely drop the last term in the series on the right side of
(3.93); if we wish to replace it by a (k + I)-step method, we add an extra term, constructing
the additional backward difference from the previously calculated values. This ability
easily to change the stepnumber (and therefore the order) is an essential property of the
algorithms we shall discuss in the next chapter.

We have established that the k-step Adams- Bashforth method is given by

-In( I - I) t t 2 t 3

=1+-+ ..-+ + ...
t 2 3 4

and

= I + ( + (2 + (.1 + ...
I-t

1- I

Y.+I-y.=1r L: )'iV;f.·
i=O

The difference between the values for Y.+ I given by the (k + Il-stcp and the k-step
Adams-Bashforth methods is therefore

and it follows form (392) that the YI are given by

('r'~ + rr(+ )'; (l 1 y; (.1 + .. { 1 + i+ ti + ~ + ... ) = I + ( + t 2 + t.1 + ....

Iquating coefficients 0('; gives the following relation, from which the YI can be readily
calculated:

(by §1.2, using the fact that y' = f), a result which strongly suggests that the k-step
Adams- Bashforth method has' order k and error constant r:' We can establish this
more formally as follows.

Let ft'. be the linear difference operator associated with the k-step Adams 13ashforth
method, and let z(x) be a sufficiently differentiable function. Then, by (J.13),

Y* y* Y~,,* + ; I + i 2 + '" + = 1
I, 2 3 i + 1

The first few )'1 arc easily seen to be

),* = 1
I 2'

i=O, 1,2, ....

Y• = ~3 8'

I I

ft'·[z(x);It] = z(x.+.)- z(x.) -II L riV;z'(\n)'
i:::O

where Vz'(x.) = z'(x.) - z'(x, _ I)' etc. Hence we may write

I
X" ' I 1- I

.'e*[z(x);It] = x. z'(x)dx -It Jo )'iV;z'(x.).

•
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LeI T, I (x) = T, _I (x, + ril) =: r.. I (r) interpolate the data

Then

and, by (I.J I), the interpolation error is given by

where e(r) is in internal point of the smallest interval containing x., X._ 1, ... , x.-
k
+l

and x. + rh, and the bar over Zl' + II indicates that each component of Zlk + I) is evaluated
at a different value of ~(r). Hence

We obtain in place of (3.89) and (3.90)

where

The generating function G(I) for the y, is given by

00 00 fO (- r) fO [ 00 (- r)JG(t) = L y/ = L (- t)l . dr=L (- I)i . dr.
1=0 1-=0 -I r _I .=0 I

The integrand is the same as in the case of the Adams -- Bashforth methods, but the
limits of integration are different. We easily lind that

Y"[z(x.);II] = I' ry (_I)i( -r)ViZ'(X.)
oL,=-o l

+(- 1)'( ~ r)hkilH I)(~(r))} dr - h :t~ yjViz,(x.).

It [ollows from (J90) that

2'"[z(x.); iI] = hH
' f (-I)' ( ~r )z1H 1)(~(r)) dr.

Noting that ( - I)' ( ~ r) does not change sign for rE[O, I], we can apply the generalized

mean value theorem for integrals (see §1.3) to obtain

-I
G(I)=--~-

In(1- I)

whence

Yl+!'!..=...!.+y.-~-+ ... +_J!<J....={I ifi=O
2 3 i + 1 0 if i = 1,2, ...

The first few y, are seen to be

Yo= 1, YI = - j, Y2 = - A, Y3 = - -;., Y4 = - 7
12

QO'

(3.94)

Y"[z(x.);Ir] = Irk<, ilk< II(e) f (-1)'( ~r)dr

= Ir'+ Iy:i l'+II(e),

by (3.90).

It follows that the k-step Adams-Bashforth method has order k and error constant y:.
By an analogous approach, the implicit Adams-Moulton methods can also be

expressed in terms of backwards differences of f. We start from the same identity (3.87),
but this time, after replacing y' byf, we seek a (vector) polynomial interpolant of the data

(x.+ "f.+ tl, (x.,f.), .. ·, (x."_I,I."_I)'

Note that there are now k + 1 data points rather than k, so that the appropriate
interpolant, replacing (3.88), is

Thus the family of Adams-Moulton methods can be written as
j

Y'+I-y.=h(f'+I-!VI'+I---hv21'+I--;'V31,+,-~loV4f.+, + ... ). (3.95)

Truncating the series on the right side after k + I terms (contrast with truncating after
k terms in (3.93)) and expanding the backward-differences in terms of function values
gives the following:

h
k=l: y.+I-Y.=2(f.+l+I.)

h
k = 2: Y.+I - Y.= \2 (5J. +• + 81.- 1.- tl

h
k = 3: Y.+. - Y. = 24(91.+1 + 191. - 51~-1 + 1.-2)

h
k = 4: Y.+1- Y.= 720(2511.+ I +6~61. - 2641h-, + 106(._ 2- 19I.- 3)'
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These arc the standard k-step Adams Moulton methods, k = 1,2.3.4 in the form (3.86).
Note that, formally. we do not include in the class of Adams-Moulton methods the

method obtained by truncating the right side of (3.95) after just one term, that is, the
method

always use Adams methods (in predictor-corrector form), and the implementation of
order changes is precisely that employed in the old days of hand computation. Plus ra
c!lange, plus c'est la meme c!lose!

.1'., I ~ Y. = Itf., I' 3.10 PROPERTIES OF THE ADAM'S COEFFICIENTS

known as the Bnckwunl Euler method. It could be argued that to do so would be
confusing. since we would then have two l-stcp Adams- Moulton methods, the Backward
Iulcr method and the Trapezoidal Rule. Nevertheless, there is advantage in regarding
the Backward Euler method as the unique Adams-Moulton method of order I.

By an argumenl exactly analogous to that used for the Adams-Bashforth methods,
we can establish thaI the k-step Adams Moulton method has order k + I and error
constant )'1' ,. (Note that order k + I. rather than k, is consistent with the fact that we
truncated the series in (.1.95) alter k + 1 terms, whereas that in (3.93) was truncated after
k terms.)

We can summarize the results we have obtained as follows, where p is the order and
("/., , the error constant:

We conclude t his section by observing that the history of the application of Adams
methods has a somewhat ironic flavour. In the pre-computer days computations had
10 be done hy hand. with only a (non-programmable) mechanical calculator to help
with the arithmetic. It was standard practice in all step-by-step computations to keep
up-da ting a tahie of the dillcrcnces (including higher differences) of the numerical solution.
since this was a good way of spotting the inevitable arithmetic errors that crept in.
(Such a difference table amplifies errors in an identifiable pattern.) Thus. difference tables
were an accepted adjunct to (11/ step-by-step computations. In the case when an initial
value problem was being solved by an Adams method, it was natural to use the backward
difference form. since the differences were all to hand. If one computed with. say, a
klh-ortfer Adams Haxhlorth. then the differences Vi!., ;=0, I, .... k- I. were utilized in
the method. and the difference VI!. gave an indication of the local accuracy. If, as the
computation proceeded, the differences v.r: became too large, one would simply: art
adding the term 1l)':VI/~ to the right side of thc mcthod; if Vi-If. became too small,
one would drop thc tcrm It)': _I vl

- If. from the right side. In other words, the kth-order
method would be replaced by a (k + l lth- or a (k - I)th-order method as the occasion
demanded. Whcn programmable computers first became available such arbitrary
changes of method were somewhat frowned upon, and it was accepted practice to
compute with a fixed method and rely on changes of steplength (exceedingly unpleasant
to implement in a hand computation) to control accuracy. The irony is that it is now
accepted that the key to high efficiency in modern codes for initial value problems is
the ability to vary both the stcplength and the order of the method. Such codes almost

Property 2 y; - 1';-1 = y}' j = 1,2,3, ...
I-I

Property 3 I (y}V}f.+I-y;V!f.)=y:_,V'f.<I' k~1
}=o

which define the second-order Adams-Bashforth and Adams-Moulton melhods. Noll'
the anomalous situation when k = 1; we have already agreed 10 regard the Backward
Euler method as the Adams-Moulton method of ordcr I, bUI it does not satisfy (3.97).
For this reason, some of the properties we are ~bout to list hold only for k ~ 2.

}

Property I 1'; = I 1'10 j = 0, 1,2, ..
1=0

(3.97)

a!lr) = ~(3r - I).

a2(r)'= ~(r + I),

fI!(r) = r 2 - r,

p2(r)=r-l,

Thc leading coefficient in a,(r) is Y:-I' k ~ I

{
a: + .(1') = ra:(r) + y:(r - 1)1, k ~ I

aH I(r) = ra 1(r) +Yl(r.-.C I)', k ~ 2

1':_ I a~ + I (I') = y:ral(r) - r,a:(r), k ~ 2

a:+I(r)=aHI(r)+1r-l)a:(r),' k~ I

rat(r),- at(r) = 1':_I(r - 1)1, k ~ 2.

Property 6

Property 7

Property 8

Property 5

Property 4

Thus, for example,

In the next chapter we shall be much concerned with the important role that Adams
methods play in predictor-corrector theory. I~ that context, wc shall need a number
of results concerning the coefficients which define the Adams methods, and 11 IS

convenient to gather these together in this section. Some of these properties are needed
10 enable us to move Irnrn backward difference form (0 standard form. and call for a
little additional notation.

Let the kth-order Adams- Bashforth method in standard form be defined by the
characteristic polynomials p:(r), a:(r) and the kth-order Adams- Moulton method by
PI(r), al(r). It is important to' note that the subscript k denotes the order. not tire
stepnumber, of the method. For k ~ 2, the kth-order Adams -Bashforth method has
stepnumber k and is explicit whereas the kth-order Adams Moulton has stcpnurnber
k - I and is implicit. Hence for k ~ 2,

p:(r) = rl_ r l - I • pdr) =',.l~ 1_ r :2,

a;(r) and al(r) have degree k - I.

(3.96)

c:+ 1= 1': )

CH 2 =1'HI'
'I

P =k + I,

p* = k,
I-I

.1'., 1-.1'. = II I «vi:
;=0

I

.1'., I -- .1'.= II I )';''1'f.+ i 

i =0

k-stcp Adams Moulton:

k-step Adams Hashlorth:
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Proof of Property 5 Since V = 1 - E- I
• the first of (J9R) may be written in the form"ro,,1 "I l'ropcrtic« I (///(/:! Recall the generating functions G*(I) and G(t) for the

cocfficirnts :I'~: and: I',:, defined by (J91) and (3.94). It follows that
k - I

*(E)f - \' '*(1 E-1)}I;k-1f
(Jt n-k+l - L lj - ~ ~ "~Jc+ I'

j=O
(.199)

v:hence

(1',,+I',I+I'l,1+.)(I+I+t 2+·,,)=y6+yi t+yi l + ....

On equating coefficients of (i, Property I results. Property 2 follows immediately. 0

Replacing k by k + 1 in (3.99) gives

k

a:+I(Elf._,k= L y;(I-E I)ief. I

t> 0

or
, I'ro'" oiPropcn y 3

I" = I. , 1 ~ cr" + 1 - /.) = (I - V)/. + I '

k

E- 1(1. (E)f \' *(1 r: I)}d 1.1.""1'k+1 ,,-k+I=L-Yj -c t: ,,"_
j= 0

The left side of Property .1 can thus be written as

I ,

I [)'jVi/". 1 - V;Vi(1 - V)/.+ .I = S(V)f" +1
;-=(J

where

On subtracting (3.99) we obtain

[E-1a* (El-a*(El]f =v*(I-E-I)kEk- l /
l+1 .. J "--k+1 \k .. .. ,n A;~I

whenc

a:\ I (E) - £a:(El = y:(E _ 1lk,

which establishes the first part of Property 5. The proof of the second part is idcnt ical
except that, in view of (3.98), the result holds only for k ~ 2. 0

Put i c, i-I in the first summation and j = ; in the second to get

k - I

S(V) =)'( I Vk + I ()'i-, Vi + (y; - yi)V i]
+)'0 - Y6'

i= t

(hy Property 2 and r~ = 1'0)

(by Property 2)

Proof of Property 6 By (3.98) and the fact that E- I = I - V, we have. for k ~ 2

o

k-2 k-I
«v; ,vl + I v;V}'l+ I (Vj-v;JVj+Vo-Y6'

}=o }=l

By Property 2. the second tcrm on the right side is zero, and the third term vanishes
since ..." = ;',~ ( = I). Hence

and l'ropcrty J is proved.

l'roo! "I l'ropcrtv 4 By writing the klh-order Adarns-Bashforth and Adams-Moulton
methods in standard and in backward dilTerenceform and equating the results, we obtain

k

=Y:-I L YjVjf"=Y:~laHI(E)f"_1
j=O

(by (3.98)).

k- t

IT: (1:)[. -ft+ I- I y;V}f.,
k" }i> 0 (3.98)

k- I

ITIII:}/" III = I yjVjf", k~ 2,
i> 0

Hence

[£y:ak(E) - Yka:(E)]f,,_H 1= }':-laH I(Elf,,-H I

which establishes Property 6. o
The leading coefficient in ITk(r) is the coefficient of f. on the left side of the second of
(.l9lil which. from the right side, is L:~:6 Yj = Y:_ l' by Property I. Hence Property 4 is
established for k ~ 2: that it also holds for k = 1 is readily checked. 0

Proof of Property 7 Eliminating (r - Ilk from the two identities in Property 5 gives
"

y:aH I(r) - h a:+l(r) = r[y:ak(rl - Yk(1:(rl]. k ~ 2.

www.ebook3000.com

http://www.ebook3000.org
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Similarly, the Adams- Moulton methods are generated as shown below.Subtracting this result from Property 6 and using Property 2 gives

- YkIJ H I (r) + h IJ: +t (r) = (r - I)YI<7:(r). k ?: 2

which establishes Property 7 in the case k > 2; that the property also holds lor k = I is
readily checked. 0

" ro4 o!l'ropcUI' 8 Properties 5 and 6 imply that

i': I [ml(r) + I'I(r - I)k) = Y:flJl(r) -1'IIJ:(r). k >2

whence, hy Property 2

<1;(r) (Trapezoidal Rule) lr +1
1

~r2 +F
-fir2 + 1r 1

(0 -12

)': ,,'I(r - 1)1 = YlflJl(r) - YIIJ:(r).

Dividing through hy )'k gives Property lI. o +i:<
II IS of interest to 11(\[e [hal Property 5. a recurrence relationship for the polynomials

IJ;(rl. k = 1.2,. and IJk(r). k = 2. .1, .• provides a very efficient means of generating the
Adams methods in standard form from the coefficients {Y;l, {l'j} which define the same
methods in backward difference form. Recall the first few 1':. 1'1:

k 0 2 3 4

... 1 5 3
I k 2 12 8

t. 1 1 1 19-2 -12 - 24 - 720

The Adams Bashfort h methods in standard form are generated as shown below.

~r4 + Hr3

- /10 r4 + /io r3

g~r4 + ill r3

+Ur2 - i;r +i:<
- 2~r2 +i. r

- /2~r2 + IIS~'·
19

-"72"0

- tA r2

IJ~(r) (Euler's Rule)
3.11 GENERAL LINEAR MULTISTEP METHODS IN

BACKWARD DIFFERENCE FORM

I'~(r - I)

IJ;(r)

rIJ;(r)

)';(r 1)2

IJ;(r)

rIJ;(r)

y;(r - I)'

171 (r)

1
-2

- ~r +rt

HrJ _}r 2 + rtr

~r3 _ :r2 + ~r 3
-8

~r3 -Hr2 +Hr 3
-8

We have seen 'that all Adarns-Bashforth methods of order up to k can he generated in
backward difference form if the k + I numbers Y~. i = O. I... , k are known; likewise, all
Adams-Moulton methods of order up to k + I can be generated if the k + I 'numbers
1'" i = 0, 1,2,.,., k are known. It is natural to ask whether general linear multistep
methods can similarly be compactly expressed in term's of backward differences, This
is indeed possible, and turns out to be an efficient way of computing the coefficients of
classes of linear multistep methods.

The key is to extend the class of Adams methods to the more general form

(3.100)

Clearly, putting s = 0 in (3.100) gives the class of Adams-Bashforth methods (where
yj' = y?), and putting s = I gives the class of Adams- Moulton methods (where 1'; == 1'/)·
For s > I, the methods retain the Adams left side, but are 'over-implicit', The technique
for finding the coefficients {y;}'is a straightforward modification of that used to find
{yn and {YI} for the conventional Adams methods, Starting from the identity (3.l\7),
we now seek an interpolant for f on the set of k + s data points



Wc notc thal the integrands in 0.90) and (3.101) are the same; only the limits of integration
differ. The argument following 0.90) holds, the only change being that the generating
function (i'(I), defined hy
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Ihe required interpolant, of degree k + s - I, is

ami in place of 13.X9) and (190) we obtain

f'-"(-r),':= (._ ;)1 _, ; dr. (3.101)

GENERAL LINEAR MULTISTEP METHODS 93

Table 3.1 The Adams array: ).;, s = O. 1.. .7

i= 0 i= 1 j = 2 i= 3 i=4 i= 5 i= 6 i= 7
._---~._------

5=0 1 5 J 151 95 19087 5257
'2 rs ii 'ITO IRS (;0480 17280

5=1 -I - I -I - 19 -.1 -H{,j - 275
T 12 'IT TIO Ho 604RO 24 192

5= 2 -3 5 I 11 'II 271 I J
T rr 24 720 T440 60480 4480

5= 3 -5 23 -3 -19 - II - 1(}1 - 191
T rr T TIO T4.l0 (,0480 120960

5=4 -7 53 - 55 151 3 2"71 lin
T rr 2T m TIiO (to .-RO 120%0

5=5 -9 95 -161 1901 - 95 ·863 - I J
T TI 24 ""i2O TifR (;0'480 4480

5=6 -11 149 -351 6731 ·4277 I Q 081 275-2- IT 24 "'7fi.) 1440' fiij-.fRo inTI

5=7 - 13 215 - 649 17261 - 1 ()il II)H 121 ~2~1
-2- IT 24 120' -I (~fj- hi) 4HO [n8"

co

(1'(1) = L y;c i

'~O

now simplifies to

a direct generalization of Properties I and 2 of the Adams Hushforth.Adams Moulton
methods. From (3.103), it is clear that

and equating coefficients of powers ofc enables us to compute the coefficients y:. However,
it is easier to use an obvious generalization of Property I of §3.1O. It follows from (3.102)
that

)'~ = I, s = 0, I, 2,... ,

I •

so that (3.104), together with a knowledge of the Adams Bashforth coefficients li,n.
enables us readily to write down a two-dimensional array of the coefficients
yj, s = 0, 1,2, ... .i = 0, 1,2, ... ; we shall christen this array the Adams al'I'a.\'. The array is
shown for s,j T' 0, 1,2, ... ,7 in Table 3.1.

We note in passing that the columns of the' Adams array, as opposed to the rows.
possess a fair amount of structure arising from (3.104). Thus we note that the first'; + 1
entries of the (j + I)th column are symmetric if j is even. and antisymmetric ifj is odd.
Further, all of the entries in the (j + l lth column satisfy the following identity:

s = 0, I, 2. . .j = O. 1.2... .t (_I)i(~)}'j+i= I,
1=0 I

(3.103)

(3.11;)2)

-s -(I-W'II-,
(j (I) = In(1 ":"1)' -r s

-1(1-1)·'-1
-----.

ln] l -I)

-In(1 ~ I)
-- G'(I) = (I - 1)'- I

1

Rewriting this in the form

or

y;) + y; 1 + y;12 + ...= (I + 1 + 12 + ...)(y~+ 1 + y~+ 1 ( + y~+ 1 (2 + ...).

l.quating the coefficients of t! gives

or

I
0'(1)=· G'+I(I),

I-I
s=O, I, ... Finally, we note the relationships between the main diagonal and the first row. between

the diagonal above the main and the second row, etc.
The order p and error constaY1t Cp + I of members of the class 0.100) can bc established

by a direct extension of the analysis given in &3.9 for Adams l3ashforth and Adams
Moulton methods. We are now in a position, to define formally thc k,.~cep s-Aclam,~
method as follows:

j

) 'J'~ = '"' )"" + 1 , . 0 I 2 0 I 2L. J = , , ,... ,s= , , , ...
i=O

whence

)'j- Yj. I = Yl + I, j = 1,2,3, ... , s = 0, 1,2, ... (3.104)

Cases = 0:

Cases ~ I:

k - I

Y.+ 1- Y. = h L y?Vif.,
i=O

k~ I,

k ~ s,

p=k, Cp+I=)'~ 1

J

(3.105)

P = k + I, Cp + I = }'~ + I'
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k - I

CH 2 = L: A,y~:;
,-=0

(3.110)
k-I k-I k

L: A,\7Y.+l-,=h I A, I y;+IVif.t"
.JcO ,"0 1-0

= h[R. H _ I (k, I) I- A I R. H _z(k',2) I- ... I- Ak _ I R.(k, k)j,

By (3.108) and (3.109), this class can be written more formally as

where we have left-shifted the methods by k - I steplengths (that is, replaced II by
II - k + I) so that t! ~ class of methods is presented in a form analogous to that of the
Adams-Moulton methods.

The order of (3.110) is k + I, and the error constant is

From (3.105), (3.107) and (3.109), the family o'f implicit linear k-step methods with k - I
free parameters A" i = 1,2, ... , k - I, can be written in backward difference form as

(3.106)

(Note that the restriction k ;:,s when s > I is consistent with the fact that in §3.9 the
Backward Euler method did not fit the Adams-Moulton pattern.)

We can use (3.105) to express general classes of linear multistep methods in backward
difference form. In attempting to list the coefficients for the general class of linear multi
step methods, one faces the practical problem of deciding how many parameters to
include. H one attempts to include all possible methods, then the number of parameters
becomes unmanageable; for example the qeneral class of 6-step implicit zero-stable
methods contains 12 parameters. Low-order methods of such classes are of little interest,
and a reasonable compromise is to include just enough parameters to allow complete
control of the location of the spurious roots of the first characteristic polynomial p(o.
That is, we retain k - I parameters in a k-step method. This results in explicit methods
having order ~ (the maximum possible subject to zero-stability) and in implicit methods
having order k I- I (the maximum possible subject to zero-stability, if k is odd; if k is
even the maximum is k I- 2, see §3.4) It is convenient to choose these k - I parameters
in the following way: recalling that consistency demands that p(O has a root at I- I,
we write 11(0 for a k-step method in the form

k

L: (Xj\'.'j= r.'k .I'.'k-I I- AdY.H-1 - Y.H-Z)I-· . + Ak - 2(Y.+2 - Y.+tl
j~O

has all its roots in or on the unit circle, has no multiple roots on the unit circle alld

does not have a root at I- I. The left side of the linear k-step method becomes

In the case when k is even, it is possible: to stretch the order to k + 2. and still achieve
zero-stability, by suitably choosing the A, such that CH 2 = O. In this case the error
constant is given by

The family of explicit k-step linear methods with k - I free parameters can similarly
be written in backward difference form as

k

Ck +3 = L: A,y~~~.
.$=0

or, in a form analogous to (3.I 10),(3.108)

(3.107)

k > 2.
k I

= L: 11,'17.1'. H."
~ --, ()

!,J
where the A j,j = 1,2. ,k- I are the parameters to be retained. Clearly, if p(O is to
satisfy the root condition. these parameters have to be chosen so that the polynomial

(Note that the condition k;:, 2 is not restrictive; if k = I, there are no free parameters,
and the methods become the one-step Adams methods, explicit or implicit.)

Let hR.(k,s) denote the right side of the methods given by (3.105); that is, let

k - I k - I 1- I

I A,'i7y.+ 1-, = h L: A, L: y;V1f.,
,=0 3'=0 i=O

The order of (J,II I) is k and the error constant is

(3.111)

It:- (J)

R.(k,s):= L: y;V1f.+"
i-=O

{
I ifs=O

w = 0 if s ;:, I.
(3.109) k -I

CHI = I A,y~.
,=0

The subscript II denotes that the method is being applied at x, to give a value for Y at
• X. + I' Thus, for example, the k-step s-Adarns method (with s;:, I) shifted one steplength
to the right is given by

Y. + 2 - Y.+ 1= hR.+ ,(k,s)
k

=h L: y;Vif.+ I.,.
;=0

It is not possible to increase the order past k and still achieve zero-stability.
We have thus been able to express in terms of backward differences the class of

implicit k-step linear methods of order k + I and the class of explicit x-step linear
methods of order k. If we wish to obtain such classes in standard form, rather than in
backward dilTerence form, then, obviously, we could express the backward differences
in (3.110) and (3.11I) in terms of function values. It is, however, somewhat easier first
to express the s-Adams methods themselves in terms of function values. This is done
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in Table 3.2 for s = 0, 1,... ,5 and s ~ k - I ~ 5, where 1= lif s = 0 and 1=0 if s ~ I.
Ior convenience of presentation, we have left-shifted the methods so that the k-step
v-Adams method is expressed in the form

,-,
YH-.<;' I -- J'"--.~ = It L B"-3/"-5'

,,=0

t={1 ifs=O
o if ~ I.

implicit linear 4-step methods of order 6 (the maximum possible. subject to zero-stability).
Following the discussion preceding (3.110), we see that the family of implicit linear 4-step
methods of order 5 ean be constructed by forming a linear combination of the 4-step
s-Adams methods for s = 1,2,3,4. From Table 3.2, this procedure yields

lurthcr, in order to make the table more readable, we have expressed the coefficients
11" , for each method In thc form B"_, = ,,"_,Id, where b, _, and d are integers. In
Table 12 the cocfficicnts n, ... arc listed (under columns headed 1,,-:1) together with the
denominator d, stcpnurnber k, order l' and error constant Cp + I'

We illustrate the application of Table 3.2 by using it first to construct 'a family of

h
= -- [(251 - 19A, + II A z - 19Ad {" + (646 + 346A I ~ 7411 2 + 106Ad f" - I7M . . . .

+{-264+456A t+456A 2 - 264A.d l n_2 1(106 74:!, 346,.12+646:1")/"_3
\

+(-19+IIA I-19A z+25IA 3)/ " _4' (3.112)

Table 3.2 Coefficients of s-Adams methods

'0 I '0 I

O·Adams

(I"" -1,)/"=

"
I

3

2J
55

1901

4277

-I

-16
- 59

- 2774

-7913

5
37

2616
9982

" )

-9
-1274

-7298

',- 4

251

2877

t.: I

-475

d

1

2

12

24

720

1440

k

I

2

3

4

5

6

p

I

2

3
4

5
6

I
2'
5
rr
3
8

251
120
9~

288
19087
60480

(The reader may wish to ascertain that the same formula results from setting k = 4 in
(1110).) Again from Table 12, the order of (3.112) is 5 and the error constant is

C6 = '~0(A3 - I) + Illo(A, - I1 z)·

The order rises to 6 if we choose' A I' A z and A 3 such that C (, = 0, tha I is if

(3.113)

Substituting for A 3 from (3.113) in (3.112) gives the required 2-paramcler family of
implicit 4-step methods of order 6. The error constant is, [rom Table 3.2,

_._-_..._---------~--------

-------- .._------------------

-- 173 482

106 -264

77 - 258

(3.114)

C7''=(-863+ 271A, - 191A z + 271Ad/60480

=(-999+271A I-136A z)/102060.

y"+(At-I)(Yn-l- Y"-3)- Y"-4

hi.
= 90[(29 - AtlU" + f"-4) + (-66 + 144Atlf"-2 + (94 + 3411,)U"_1 + .In-3)]

p(()=(( -1)(( + I)[e +(A , - 1)( + 11.

on substituting for A 3 from (3. t 13). One must, of course, choose thc parameters A I and
A z so that the method is zero-stable. For example, we can construct at I-paramcter
family of symmetric methods by choosing A z = A" whence, by (3.113). A 3 = I. The first
characteristic polynomial now factorizes thus

and it is easily ascertained from Figure 1.1 of § 1.9 that zero-stability is achieved if
- I < A I < 3. We have thus identified a I-parameter family of zero-stable symmetric
4-step methods which have order 6, given by

with error constant C7 =(-37 + SA 1)/3780. We note in passing that scuing A, = 11/19
(an acceptable value for zero-stability) produces the special case of Quade's method,

8 611
Y"-i9(Yn-l- Y"-3)- Y"-4= 19U"+4f"-1 +4/"-3 +("-4)

a method from the 1950s. (See Exercises 12.2 and 2.5.2.)

-,
II
-I
24
-19
720
-3

160
- 863

60480

I
24
II

720
II

1440
171

60480

3
160
271

60480

- 863
60480

-19
120
-II
1440
- 191

60480

2

3

4

5
6

4

5
6

3

4

5
6

6

5

6

I

2

3

4

5

2

3

4

5

3
4

5

2
12

24

720

1440

12

24

720

1440

24

720

1440II

27

-II

475 1440 5

720 4

-27 1440 5

251

637

II

77

-19

-93

1427

-19

-173

9

346

802

I

106
482

646

1022

-I

-74

-258

-798

-I

-5
-- 264

-798

8 5

13 IJ

346 456

637 1022

I

8

19

646

1427

-5 19

-74 456

- 93 802

1

II

II

27

1

5

9

251
475

-I

--I

-19

-27

-19

-II

tl" --1,_ ,)/" =

l-Adams

2-Adams

(I, I - I" ,)/" =

3-Adams

fl', 1 - y" .,1/" =

4-Adams

(I, ,-.\', 4)/"=

S-Adams

(.\'" 4 - Y" ,)/" =
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Families of explicit linear k-step methods of order k can likewise be constructed by
taking a linear combination of the k-step O-Adams method and the (k - I)-step s-Adarns
methods, s = 1,2, ... , k -- I. Thus. for example, the 2-parameter family of explicit 3-step
methods of order 3 is seen from Table 3.2 to be

.1'., I + (A, - I )Y. + (A 2 - A I )Y. - I - A 2 y. _ 2

"= 121(23 + 5A ,- A 2)! . + (-16 + 8A I + 8A 2)! . 1+ (5 - A, + 5A 2)! . _2].

with error constant C4 = (9 - A, + A2)/24.

Exercise

and differentiate the polynomial interpolant of the back values of r By ~ I 10.the data

(x, + l' }'"..j. I)' (x I'll y,,), ... , (x" - k + I' J'"- k + I )

is interpolated by the polynomial Ik(x) of degree k given by

lk(x)=ll(x.+, +rIJ)=:Pk(r) = t (_I);(-r)V;Y.+I'
i=O J

1

The left side of(3.116) is replaced by the derivative of this interpolant at x = x. + I' given by

III . d (-.r)1 .
I~(x.+tl= P~(r)I,~o=, L.(-l)'d . V'r., I

h "~O ' r I 'co

and the right side is replaced by f .. \. giving the Backward Differentiation Formulae in
the following back ward difference form:.lll.l. Usc Table.12 to construct a (k - l l-pararneter family of explicit linear k-slep methods for

k = 2.1.4 Show that for each family. the order of the methods is k and that orders greater than
k cannot be obtained if the methods arc to be zero-stable.

3.12 THE BACKWARD DIFFERENTIA TlON FORMULAE

k

L ",V'y.+ 1= h!.. I

J=o
where (1117)

replacing \" by f and integrating the polynomial interpolant of the back values of [,
we start from the differential system itself

y(X.; ,) - y(x.) = IX"' I v'(x) dx
x.

As we shall see later in this hook. the regions of absolute stability of the Adams-Moulton
methods. though reasonably sized. turn out to be inadequate to cope with the problem
of stiffness, where stability rather than accuracy is paramount. A class of implicit linear
k-step methods with regions of absolute stability large enough to make them relevant
to the prohlem of stiffness is the class of Backward Differentiation Formulae or BDF,
defined by

(1121)

(1120)

(3.119)

(3.118)i= 1.2,

k

tl L ",v'y. H = Iltkf. H',= I

"0 = O. ", = I/i.,

where

On expanding the differences on the left side of (3.119). we get the class of BDF methods
in the standard form (3.115). .

By an argument analogous to that used for the Adams-Moulton methods III §3.IO.
we find that the order of the k-step BDF is k and the error constant 15

Clearly. the BDF do not have zero-stability buill in, in the way that the Ad~ms

methods do, and it is necessary to examine, for each k, the roots of the first churacteristic
polynomial. It turns out that for k = 1:2.... ,6, the methods are zero-stable. but that for

The ", are easily found by direct evaluation to be ,

(A generating function is no longer necessary". but it is easily seen to be
GRDF(t) = _ In( I - t).) In order to put the methods given by (3.117) and (1118) III the
standard form (3.115). we first divide through by L~=o(); (in order that Ct., = I). and
appropriately right-shift each method. Recalling that "0 = 0, we get

(3.115)

(3.116)y' = !(x.y)

k

L Ct.jY.+j = IJfiJ.H·
j=O

This class can he seen (in a hand-waving sort of way) to be a dual of the class of
Adams Moulton methods The latter is characterized by having the simplest possible
(subject to consistency) first characteristic polynomials p(() = (k _ (k - '. whereas the
BDF have the simplest possible second characteristic polynomials O"(() = fik(k. Moreover,
there is a certain duality between the techniques for deriving the Adams-Moulton
methods and the IlDF in hack ward difference form. Instead of starting from the identity
(lX7)
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Table 3.3 Coefficients of the BDF

k a, as a. a] al ~1 ~o {I, p Cp • 1

--------------- -

~I
1

~1

2 4 2 2 2
-1 1 -- Q

3 18 Q 2 c J .I
-IT rt -- n 1\ -21

4 48 2!!. II> .I 12 4 12-n 25 -n 2~ i~ -rn

5 300 300 200 7~ 12 co 5 10-TTI TI, -TTI r.'7 --m 111 - TTI

6 360 4~0 400 22 s 72 10 "0 (, 20-ITI ITI -ITI ITI -ITI 141 T47 -141

k ~ 7 the methods are all zero-unstable (sec Cryer. 1972). The coefficients of the BDl·
in the form (3.115), together with the error constants are given in Table 3.3 for
k= 1,2, ... ,6. '

The important feature of the BDF is the size of their regions of absolute stability.
These are shown in Figure 3.4. We note that for I ,,;; k ,,;; (i these regions contain the
whole of the negative real axis, and that for k = 1,2. they contain the whole of the
negat~ve half-plane. (For k = 3, the boundary of the region marginally invades the
negative half-plane near the points ± i.) T,hese properties arc significant in the context
of stilTness. .

53
.'

__..L-_--'-

k=3 k=4

51 61

31 31

k=5 k=6

Figure 3.4 Regions of absolute stability for the k-step BDF.
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4 Predictor-Corrector Methods

4.1 PREDICTOR-CORRECTOR MODES

Suppose that we wish to solve the standard initial value problem hy an implicit linear
multistep method. Then at each step we have to solve for Y. H the implicit system

k-I k-I

nH+ I Ct. j)'.+j=hf3d(x.H,Y.H)+h I/iJ.lj'
j~O j~O

We normally do this by the fixed point iteration

(4.1)

k-I k - I

y~v++1IJ+ L Ct.JY.+j=ItPd(x.H,)!~VL)+11 L PJ.+j'
J- 0 J~ 0

.r~OJk arbitrary, v = O. 1, ....

(4.2)

which, by (3.8), will converge to the unique solution of (4.1) provided that

where L is the Lipschitz constant of f with respect to .1'. For non-stiff problems. this
restriction on It is not significant; in practice, considerations of accuracy put a much
more restrictive constraint on II. Although (4.2) will converge for arbitrary y~OJk' each
iteration calls for one evaluation of the function f, and computation can obviously be
saved if we can provide as good a guess as possible for y~oJ k' This is conveniently done
by using a separate explicit linear multistep method to provide the initial guess, .r~oJk·

We call this explicit method the predictor and the implicit method (4.1) the corrector;
the two together comprise a predictor-corrector pair. There will turn out to be advantage
in having the predictor and the corrector of the same order, which usually means that
the stepnumber of the predictor has to be greater than that of the corrector. Rather
than deal with the complication of having two dilTerent stepnurnbcrs, we take the step
number of the predictor, which we shall call k, to be the stcpnumber of the pair, and
no longer demand of the corrector that the second of the conditions (3.2), namely

laol + IPol # 0, holds. Thus, for example, we regard

II
Y.+2 - Y.t 1= 2(f., 2 + 1.+ tl

as a predictor-corrector pair with stepnumber 2,even though the corrector is essentially
a l-step method. We shall always distinguish between the predictor and the corrector
by attaching asterisks to the coefficients (and to any other parameters, such as order
and error constant) of the predictor. Thus the general k-step predictor-corrector or PC
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t = 0 or I, and are defined by

P(EC)"E I - ,:

pan IS

(4.3)
P:

(EC)":

k- I k - I

Y
IOJ + " a*y l/•J . = h '\ fl* rl" -rl

, "+A: L....t } "+} L J. "-+-J
)=0 )=0

f~'J k = f(x. +k')'~'; k)

respectively, where p.,p and a have degree k and rr* has degree k - I at most. Wit h
this notation, the mode P(EC)"E 1

-, may be defined by
\

If the predictor-corrector pair is applied in the mode or correcting to convergence then
the local truncation error is clearly that of the corrector alone. If. however, the pair is
applied in P(EC)"E I

-, mode, t = 0, I, then the local truncation error of the corrector
will be polluted by that of the predictor. In this section we investigate the level of this
pollution.

Let the predictor and corrector defined by (4.:1) have associated linear difTerence
operators 2* and 2, orders p* and p and error constants C~., I and Cpr I respectively.
As always when dealing with local truncation error, we make the localizing assumption
y~vl)=y(x.+)),j=O.I,... ,k-l. and indicate by .v~'lk approximations to J' at X.u
generated when the localizing assumption is in force. We also assume that r(x)E CIH '.
where Ii= maxjp", pl. It then follows from §3.5 that -

(4.6)

(45)

(44)\'=0.1. ",/,- I

if I = O.f~'l. = f(x., k' y~'! kI,
I

2*[y(x); h] = C;. + Iv: +1yIP' + 1)(x)+O(/IP' + 2)}
2[y(x); h] = Cp+ »: 1ylP+ II(X) +O(/'P + 2).

k-I '-·1

YI'" IJ + " IX. yip, = hfl fl" + II '\ fI.fl" fI"+A: ~ J "+1 k. "+A: Z: J. n+/
)=0 )~O

Alternatively, the predictor and corrector may be written in the form (3.5) as

4.2 THE LOCAL TRUNCA TlON ERROR OF
PREDICTOR-CORRECTOR METHODS

(EC)P: Ekf~vl = It»; H' e)'~'I) I I
' \' = n. I ..... /1 - I

ey~V+ II + [peE) - Ek]y~J =:' hflkEkf~'J + hta(E) - fhF.klr~'-"

EO-I): e!~') = f(x.u, E'y~rJ), if, = O.

There arc various ways. or modes, in which the pair (4.3) can be implemented.
I-'irstly, we could usc the predictor to give the first guess y~O}A:' then allow the iteration
(42) 10 proceed until we achieve convergence (in practice, until some criterion like
ii \~: ,'.1 1 \'~':.II < I:, where I: is of thc order of round-off error, is satisfied). This is called
the mode of ("''''I'«(illl/ to (O/l/'I'/'!fl'IICI'. In this mode, the predictor plays a very ancillary
role. and the local truncation error and linear stability characteristics of the predictor
corrector pair are those of the corrector alone. What makes this mode unattractive in
practice is that we cannot tcll in advance how many iterations of the corrector-and
rhcrcforc how many function evaluations-will be involved at each step. In writing an
ulgorithm based on the mode of iterating to convergence, we arc in effect writing a
hlank cheque. In general this is to be avoided; in the special case of real-time problems,
it can he downright dangerous. An example of a real-time problem would be an
automatic landing system for an aircraft; such a system can be modelled by a system
of ordinary differential equations, the solution of which determines the appropriate
settings of the control surfaces and throttles of the aircraft; it is not much use if the
numerical procedure for solving the differential system takes so long to compute on an on
board computer that it ends up hy telling the control system what these settings should
have heen a few seconds ago! In such situations, it is paramount that the computing
time should he predictable, and that is never possible in the mode of correcting to
con vergence.

II much more acceptable procedure is to stale in advance just how many iterations
of the corrector are to he permitted at each step. Normally this number is small, usually
I or 2. The local truncation error and linear stability characteristics of the predictor
corrector method in such a finite mode depend on both the predictor and the corrector;
we investigate this dependence in later sections. A useful mnemonic for describing modes
of this sort can he constructed by using P and C to indicate one application of the
predictor or the corrector respectively, and E to indicate one evaluation of the function
r. given x and y. Note that if the system of difTerential equations is of large dimension
then a function evaluation can represent a significant amount of computing; thus it is
usual to regard the number of evaluations per step as a rough indication of the computing
effort demanded by the method. Suppose we apply the predictor to evaluate y~Olk'

evaluate /~O} k = [tx ; r k' Y~()~k)' and then apply (4.2) just once to obtain y~11k' The mode
is then described as PEe. If we call the iteration a second time to obtain y~21k' which
obviously involves the further evaluation f~llk = f(x. H, y~11k)' then the mode is described
as I'F.CEC or P(EC)2 There is one further decision we have to make. At the end of the
I'(F.C)2 step we have a value y~22k lor Y.H and a value f~llk for !(X.H,Y.H)' We may
choose to update the value of f by making a further evaluation f~21k = !(x.H.y~21k);

the mode would then be described as P(EC) 2E. The two classes of modes P(EC)"E and
1'(1;(')" can be written as a single mode P(EC)"E I

-', where J1 is positive integer and
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h'llowing the analysis of ~:I.5. we have that for the predictor get that
k k-I

I 'lJr(xn +) = II I/17f(xn+ j.Y(Xn'j))+..'L'*[y(xn)) r]
i c:- n i- 0

and (4.7)

}'(x )_},III =[fI ~[C*),IPI(x )+c rIP'''(x )]h P ' l +Olh p + 2 )."+" "+ k k oy" " r ~- I. " ,

Thus if Jl = l, that is if the mode is PECE I, - " the PLTE is not identical with that of
the corrector, but the order of the PC method is that of the corrector. However. on
successive substitution into (4.9) we find that for II:;;' 2,

On subtracting and using the localizing assumption and (4.6) we obtain

Sincc thc predictor corrector pair is being applied in !'(Eel"E' I mode, as defined by
(44). Ihe cqu;\tious for the corrector. corresponding to (4.7). are

, k

I 'ljd'n'j)=h I/IJ(xn+j.y(xn+j))+..'L'[y(xn);h]
j II J""O

(4.10)

Thus if II = \, the order of the PC method is only p - I. Substituting (4.10) into (4.lJ)
with \' = I gives .

y(x )_ yI11 =[(pl7J)2 C* y'P-Il(x)+C r IP ' I I( X ) l p + ' + O(hP' 2)
. ,,+ It "+ Ir: Ir: iJy n-: I - n ,,+ 1_ - " J '

\

and the PLTE of the PC method becomes that of the corrector alone.
Now consider the case p* = P -- 2. On substituting (4.8) into (4.9) with \.= O. we get

(4.8)

v=O,I,···.II-I.

, , •.. I

-I,' 'I + '\ .1'" -I Ii (( ,I") 1 '\ f/ (( I!I-tl)"I..... .L "'J.,-'"I;-' /". x fl , ,- . ) " ..... + J L j. xn+j'Y"+j ,
J /J j~ 0

nnd

()\1 subtracting and using the localizing assumption, we have and thus for II = 2 the order of the PC method is that of the corrector, but the two
PLTEs are not identicak Further successive substitutions into (4.9)show that for Jl~ :I

This expression for dx" I,) _. ),~I.lk can now be substituted into (4.9) with v = I to get

(using the notation of ~ 11) What follows depends on the relative magnitudes of p* and p.
l irst consider the case p* ~ r On substituting (4.8) into (4.9) with v =°we get that

\lx n I ,) _\~'.','1 = hlid f(x nH' y(x nOk)) - It», H. y~'l.)] + .'iT y(x,,);11]

1'(
=hllk , (X"tk"I.)[y(x".d-.v~·'L]+Cp+,hP"ylP+ll(X.)

I'.\'

y(X.H) - y~'lk = Cp + Ihr' I yiP 'I)(x,) + O(hP~ 1),

and the PLTE is that of the corrector alone.
It is now clear that the order and the PLTE of a PC method depend on the gap

between p* and p and on Jl, the number of time~ the corrector is called. Specifically.

(i) if p* ~ P (or if v" < p and II> P - p*). the PC method and the corrector have the
same order and the same PLTE.

(ii) if p* < p and II = P - p*, the PC method and the corrector have the same order but
dilTerent PLTEs, and

(iii) if p* < p and II ~ P - p* - I, the order of the PC method is r: + II « p],

Note that the modes P(EC)"E and PiEC)" always have the same order and PLTE.

(4.9)I' = 0, I •... , Jl - I+ O(/,P 1
2 ),

Continuing in this manner we find that

4.3 MILNr-'S ESTIMATE FOR THt PLTE;
LOCAL EXTRAPOLA TlON

At the end of §17 we no led thaI attempts to ,estimate the PLTL of a linear multistep
method directly from the formula

Thu«, if p* ~ p, the PUT of the P(EC)"E I - I mode is, for all II ~ \, precisely that of the
corrector alone.

Now consider the case p* = p - I. On substituting (4.8) into (4.9) with v = 0 we now ran up against the difficulty of trying to estimate yiP + "(x,,) numerically. Predictor

/11
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these modes are formally defined as follows:

P(ECL)"E 1
- ' :

corrector methods have a substantial advantage over linear multistep methods in that,
due to a device due originally to W. E. Milne, it is possible to estimate the PLTE of
the former without any needto attempt a direct estimate of ylP+ "(x.). The device, which
work» 0"/.1' ifl'* = ", is as close as one ever gets in numerical analysis to getting something
for nothing. and is indeed a major motivation for using predictor-corrector methods.

It follows from the preceding seetion that if p. = p, then

and

()n subtracting we obtain

(C;+ 1- C
p

+ ,)IrP + IyiP + 1)(x.) = ji~1 k - ji~ol k + O(lIP + 2),

P:

(ECL)": f r,·, - (( ,I,·)
"+~ -. ,xn+k.J"+k.)

k - 1 k - 1

pr"ll+ \' 1X.),I'<1.=Ir/1 (1'1 +/1 \' n/I,,·'I
"+A: .L_Jn+J Il:.n+II LI'J.n+j'

F u ),1"+ II = (I + W)~". + 111=~ w\:to, I
"+.\0: )"+"'. "+11

f~L = f(x.+I' y~'lk)' if t = o.

I' = O, I... . . /1 - I (412)

On the right side of the first of (4.11) we have replaced y~lk by y~1k since it is no longer
necessary to remind ourselves that the localizing assumption is in force; recall the
aruurncn! in ~17 that I'LTE is an acceptable measure of local accuracy despite the
localizing assumption.

The main usc made of the estimate (4.11) is the monitoring of steplcngth, which could
be decreased if the norm of the error estimate exceeds a given tolerance, and increased
if the norm is less than the tolerance by a given factor. However, as is the case with/all
error estimates, one is templed also to add the error estimate to the numerical solution,
thereby increasing the accuracy. This addition used to be known as a modifier, but is
now usually called local cxtrupolution. It is clearly equivalent to raising the order of the
method by one. It is common practice in many modern codes to perform local extra
polation al each step and still use the error estimate (4.11) to monitor steplength, the
rationale being that if the steplcngth is chosen so that the error estimate (4.11) for y~1k

is acceptable. then surely the error in the more accurate local'y extrapolated value will
also be acceptable. This argument is not altogether sound-higher order methods do
not invariably produce smaller errors than do lower order ones--and there is no avoiding
the fact that local extrapolation is basically an attempt to eat one's cake and have it!
Nevertheless. local extrapolation is an accepted feature of many modern codes. It can
hc applied in more than one way. We could apply local extrapolation after each call of
the corrector: using L as the mnemonic for local extrapolation, the resultIng modes can
he denoted by I'(ECL)"E 1-', t = 0 or I. Alternatively, we could choose to apply local
extrapolation only after the final application of the corrector. resulting in the modes
1'( FC)"LE 1 .. ', t = 0 or I; clearly the two families of modes coincide when ~ = I. Noting
thaI. from (411 l, local extrapolation is equivalent to replacing )'~" by

where

(4.I3(i))

(4. L1(ii))

aO(O = j(2(' - (2 + 2()

0(0= ~(e +4( + t)

a(O=~(e+2(2-0

P: pOlO=(4-1,

c: p(o=e -I,

e: plO = C _, ij( 2 + ~,

k - I k - I

~rO] + \' IX.),I,'I = /1 \' /1· 11"1Y.+I L. ) .+j L. j .• +j
j=O ]=0

k - 1 k _. I

~(OJ + \' lX.yl") = Ir \' n.f·[" - II
Y. +I L. j • + j L. 1'1 • + j

j=O j=O
t,

YI", =(1 + W)~I"I - w~rnl
"+A: )'"+l:.1 n+A:

J~'L = It», +d~'l k) 1
k - I \ 1- I I' = O. I. ... . /1 - I

pI' + II + \' IX yl"] . = [,n ('t'l +Ir \' /1 /·I'd
n+A: L J rt+) 11'1. "til L j. "+j

j=O, j=O

J~'L = f(x. +d~'l k) • }

k-I ' .. 1 I' = n, I, ... ,/1 - I
pt.. I) + \' IX .y'"] . = Irll j~r'·) +h \' /1. I~'" II

"+ It L' n +} k" +II: L J." + j
)=0 1=0

YI" I = (I + W)~r"1 ', W),,[OI
"+11 1',,+1.: "+11:"

Exercises

P(EC)"LE:

P:

E:

L:

4.3.1. The predictor P and the two correctors C.eare defined by their characteristic polynomials
as follows:

(EC)":

L:

,
P(EC)"L:

P:

(4.11)

whence we obtain the Milne estimate for the PLTE

I'L I L = C
p

, ,h P + 'ylP+ lJ(x.) = W(y~'lk - y~O}k)l

W:= Cp + 1

C:+I-Cp + 1
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4.4 PREDICTOR-CORRECTOR METHODS BASED
ON ADAMS METHODS IN BACKWARD '.i

DIFFERENCE FORM

(415)

(4.16)

(4.17)

(4.18)

(419)

1'=0,1 ....• 11 - 1

if t = O.

k - I

Y
IOI = yl~l + 11 \' }'+ViII,,-,j
"+ 1 " L.. I "

i==O

f~V11 ~ f(x" + I. )'~'11)

v~f~l, - V:J~'ll = f~'l, - f ~"~ ,.

P:

Thus, for example, V~f':ll = f~vll - 2f':' + f':~ I' Note that it follows from (4.15) that

i\ - I •

.1'111 _.1'101 =11 \' (\lV'fl"-'I_},~Vif'I"-'J)
"+1 ,,+1 L Ii 0 "fl I·"

i=O

We now make use of Property 3 of §3.10. amended to take account of the notation
we have just introduced. It is easily seen that the proof of Property J is unaffected by
the particular value taken by f"+ I' so that we may write the result in the form

We can at once anticipate a notational difficulty. If we envisage (4.14) being applied
in P(Eq~E 1 r t mode then, in the second of (4.14). J'"+ I will be replaced by .v~':i J, and
the single value!" + I on the right side by !~'L, the remaining values !"_j being replaced
by er j = 0, I, ... , k - I. We can overcome this difficulty by defining v:J~l, to be
V'!~11 with the single value !~11 replaced by f~'l" Thnt is,

where the notation is defined by (4.15).
We now apply the pair (4.14) in P(Eq"E '-' mode, and use the structure of the Adams

methods to develop a form ~f the ABM 'method which is computationally convenient
and economical. In what follows, those equations which constitute the implementation
are enclosed in' boxes. The mode is defined by

and on using (4.17) we obtain

If we were to apply (4.19) as it stands then we would need to compute and store the
differences V~f':+-i' for i = 1,2, ... , k- I for each call. I' = 0, I.. . ,II - I. of the corrector.
The computational effort can be reduced, by the following approach. to the computation
of just one such' difference.

Subtraeting (4.18) from (4.19) with v = 0 gives

(4.14)k = 1,2, ....

p= k,

p+ = k,
k ~ I

1'" I I - J'" = II I ri"';'!",
i""'O.- ,

.1'"'1-.1'"=11 I r,V'I" + I'
i"=O

, "

Almost all modern predictor corrector codes for non-stiff problems use Adams
Rashforth methods as predictors and Adams-Moulton methods as correctors; such PC
methods arc consequently sometimes called ABM methods, but the phrase 'Adams
method' is also somewhat loosely used to mean an ABM method. We saw in §3.9 that
the Adams methods. when expressed in backward difference form, had particularly
simple and attractive structures: these structures can be fully exploited in the framework
of predictor corrector methods.

Since we shall of course be making use of the Milne estimate for the P\..,TE, it is
necessary that predictor and corrector have the same order. This is achieved by taking
the predictor to be a k-step Adams- Bashforth method and the corrector to be a
(k - I j-step Adams Moulton; both then have order p = k. From (3.96), the k-step kth
order ABM pair is thus

,. .ote that C isSimpson's Rule.] Show that Milne's estimate is applicable to the predictor-corrector
pairs (P. C) and (/', (') Write down the algorithms which use (a) P and C in PECE mode and (b)
P and {' in PECLE mode. (Algorithm (a) is often known as Milnes method and (b) as Hamming's
method.)

4.3.2*. The scalar initial value problem r' = - 10(y - 1)2. y(O) = 2 has exact solution y(x) =
12+ 10v)/(1 + IOv). Knowledge of the exact solution enables us to implement the localizing
assumption. and thus compute the actual L1E. Using P and Cdefined in Exercise4.3.1 compare
thc actual LTF with the Milne estimate (a) for the mode of correcting 10 convergence and (b) in
PECE mode. Use exact starling values. take 11 = 0.01 and compute from x'= 0 to x = 0.2.

4..13. In (4.121 we wrote the two modes P(ECL)"E1-,. / = O. I. in a single statement. Why was
this not dune in (41.1) for the two modes I'(EC)"LE' ', / = O,I?

4..14. Let I' have Older 1'* and C have order p. Show that an estimate of the PLTE similnr to.
hut not identical with (411) can he constructed when p" > 1'. but not when p+ < p.

4.3.5*. A result of l lcnrici (1%2) shows that Milne's estimate holds wi/hout the localizing
assumption provided I,"(e) "" 1'(0. the mode of correcting to convergence is employed and the
starting errors arc 0(11"1 with '/ > P. where the PC method has order p. Find a fourth-order
predictor which when used with the corrector Cdefined in Exercise 4.3.1 satisfies the condition
1'"(0"" pm· Devise and carry out a numerical experiment, using the problem of Exercise 4.3.2+,
to test this result.

(O~ setting k = I in (4.14) we note that the PC pair consisting of Euler's Rule and the
Backward Euler method is now considered as an ABM pair of order I; see the comments
towards the end of ~J.9.)

(420)
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Now subtract successive equations in (4.19) to get

v = I, 2,... , J1 - I.

But. by (4.16),

Moreover, I:~:~}'i=r:-I' by Property I of§3.10, and hence we have that

be obtained by computing

for i = 0, I, ... , k - I. Using (4.16), the difference V: _ I f~+-t" appearing in (4.22) can be
computed from

Vt f",-'I=Vtflo-')+!II,-I)-f[OJ.
,..-, 1 ,. + 1 0" + 1 ,,+ I ,,+ I

Finally, the back data can be updated by computing

i = 0, I, ... , k - 2,

To apply the Milne estimate, we need to compute )'~.l. - y~021' Subtracting (4.18)
from (4.19) with \' = It ~ I gives

)'~':III = y~'! 1 + Irl'i_ I U~'ll - f~'+-IIJ), \'= 1,2, ... ,1~- I. (4.21) or by adding f~'+-il - f~02 I to V~f~'+-t'l, i = 1,2, ... , k - I. We arc then ready to compute
the next step. '

The computation takes a particularly simple form in the case of the PECE I -, mode
(a popular choice). Of the four boxed equations, (4.21)no longer applies and the remaining
three become

lind we note that the SUrne difference now appears on the right sides of the last two
equations.

We illustrate the above procedure by considering the case of a third-order ABM
method in P(EC)2 mode. Recall from §3.9 that Y6 = Ii yi =~, ri = ti and }'] = - f4;
note that we do not need Yo, YI or Y2' We assume that the back data f~ll, Vf~1] and
V2f~l) are available. The sequence of sub-steps for (he integration step from x.to x, + 1 is

by (4.17). _
fAlternatively, wecould add all the equations in (4.21)and add (4.20)to the result to get

y~'l, - J,~02 1 = hy:_ I (f~+-Il I - f~02 1 + V~f~~-ill
= hr:_1V:_I f~+-i',

hy (4.15).) Since C;. 1 = l'i and Cp+ I = Yt, the Milne estimate (4.11) for the PLTE at
x•• 1 (which we shall denote by 1~ + 1) is given by

T - Cpt I (,[., _ 10J ) Yt_~ I • Vt fll'-'J
.• • 1 - C. C J. + I Y. + 1 -. lYt - 1 • - I • + I •

P t I - p + 1 Yt - Yt

But, by Prop~rty 2 of §3.10, t': - Yt = Y:_I' whence

(4.22)

Ii

Note that inGthe case t = 1 T = II}' Vtfl. - I J.- ~ , ''I'" 1 It ,.+ 1 .

The actua] computation takes the form of implementing each of the boxed results
(4.18)i (4.20)/(4.21) and (4.22). Note that the implementation of (4.18) and (4.20) and
each call ofl]4.21) if t = 0 (each call except the last if t = I) is followed by a function
evaluation, making II + I - t evaluations in all, which must be the case for a P(EC)0E1-.
mode. ~

It is assiimed that the back data need in (4.18), namely the differences
Vir~ ", i =:~. I, ... , k - I, have been stored. The difference V~f~+-t'l needed in (4.20)can

_ "'I

P:

E:

C:

E:

C:

Error

Update

t -I

Y
IO) =yll)+h" y~Vif(l-'1
"+ I,. L I rt

i=O

YI I I =y[O) +IIY. Vtf(l-f)
"+ 1 ,. + 1 -': ~ I 0 ,. +JI

1~ + 1 = hYtV~f~I+-/J

YIOI = y(21+ h(flll + !Vflll -1- _5_V 2{1I1)
,.+1,. ,. 2 ,. 12·"

f~Oll = It», + I' y~02 I)

Vof~lll = f~oll - f~1J

V~f~lll '= Vof~lll - Vf~11

V~f~ll, '= V~f~lll - V2f~I'

y~lll = y~Oll + tiiJVU~'l \
f~11I =f(x'+I,y~'11)

y~211 = y~lll + tiiJ(f~12 1 - f~Ol,)

VU~lll = V~f~121 + f~12 J - f~021

T i l "']f(1)
.+I'=-R Iv .+1

Vf~J11 = f~lll - f~1)

, V2f~lll = Vf~lll - Vf~ll.

(4.23)
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From (3.110), we may write the implicit linear k-step method with k - I free parameters
as

Note that this is the usual situation where, in order to achieve parity of order, the
corrector has to have a smaller stepnumber than the predictor. We shall use (4.27) as
.corrcctor; note that it has k - 2 free parameters, order k and error constant

where Ao = I. This method has order k + I and error constant Cl+ 2 = L~:;-ci A,y:: \.
Since, with a k-step predictor of similar structure, we can achieve only order k, it is
necessary to reduce the order of(4.26) to k, that i~ to replace k by k - I in (4.26), yielding

1- I I-I I

L A,VY.+l_,=h L A, L y;+IVif.+I'
.t=O $=0 '=0

(4.32)

(4.33)

\'= 1.2,···,11-{

I-I I. •

"(y~+IVif(p) -y'Vif{p,)=y' Vlfl,d s=0,1,2, ..
L.. I "" + 1 t " It - 1 v "+ I'

faO

(

1 - 2 )
YI I l =ylOI +It "AI" Vlr l" - ""+ I ,. + 1 L.'f II:~ t 0." + I

J= 0 ~-

1-2 1-2 I-I

YtOI = ytpl_ " A V),tp) + h " A ")'~Vlflp -,)
"+1 ,. l..J J "+I-J '- J L. I "

.'1= 1 s=o '=0

(

1 - 2 )
Yl d I) = yl') + II "A ,,' (fl') - r: I I)

"+1 "+1 i.J HII:-l "+1 "+1'
5=0

preceding section, to read

where the notation is defined by (4.15).
We apply the k-step kth-order pair (4.30) and (4.27) in P(EC)"E I

-r t mode and. by an
argument which is exactly parallel to that used in the preceding section and which uses
(4.32), we obtain the following sequence of sub-steps:

(4.26)

I (4.27)Ao = I.
1-· 2 I·· 2 1- I

L A,vy., I -., = It L A, L y:+ 1V1f.+I'
.'1=0 .,=0 1=0

where the y:, s =0, 1,2, ... arc defined by (3.10). This result can be amended, as in the

The explicit linear k-step method with k - I free parameters can, by (3.rt I), be written
as

We shall use (4.30) 'as predictor; like the corrector (4.27), it has k - 2 free parameters
and order k, but its error constanl is

Recall that in §3.8 we considered the application of a linear multistep method 10 the
test equation y' = Ay, where the eigenvalues A" t = 0, l , ... , III of A are distinct and have

4.6 LINEAR STABILITY THEORY FOR
PREDICTOR-CORRECTOR METHODS

T.+ 1= h(:.t: A,y:+ I )V:_ d~+-t"

where Ao = 1 throughout. On comparing these equations with the boxed equations
(4.18), (4.20), (4.21) and (4.22) of thepreceding section, we see that, despite the somewhat
formidable notation, the extension is really quite straightforward. The structure is
preserved and the same differences have to be computed and updated (apart from the
trivial addition of the differences Vy~ll_' in the first equation). The remaning equations
differ from their counterparts in the preceding section only inasmuch as I':_I is replaced

by L~:;-~ A,y~_1 and 1'1 by L::~ A,y:+ I.

It should be noted that there is no possibility of choosing the free parameters A"
s = 1,2, ... , k - 2 so as to increase the order of the mel hod (although of course local
extrapolation can still be performed). Were we to choose the A, to force the corrector
to have order k + 1, then we would also have to ensure that the order of the predictor
was also k + I, since otherwise the Milne estimate would nol be applicable; but there
exist no explicit linear k-step methods of order k + I which satisfy the root condition
and, since p. == p, if the predictor fails to satisfy the root condition then so too does
the corrector and the PC method becomes zero-unstable. The free parameters could,
however, be used to attempt to improve the regions of absolute stability of the PC
method or to reduce its PL TE.

Again as in the preceding section, we find thaI applying local extrapolation 10 the
mode defined by (4.33~ (in P(ECL)PE I

-
r mode) is equivalent to replacing the kth-order

corrector (4.27) by the (k + 1)th-order corrector given by (4.26) with AI _ I = 0

(4.31)

(4.29)

(4.28)

(4.30)Ao = I.

s =0, 1,2, ... ,

1-2

C:+ I = L A,y~.
.1=0

1-2

Cl+ I = L A,y:+I.
,aO

II I-I I-I

L A,Vy•• I -, = h L A, L y:Vif.,
.t=O $=0 1=0

Note that whcn k = 2, (4.27) and (4.30) become the second-order Adarns-Bashforth and
Adans Moulton methods respectively.

We need -Ihe following natural generalization of Property 3 (§3.10) of the Adams
coefficients; its proof, which is almost identical with that of Property 3, uses the fact that
i'; + I - 1'; = - 1'; _p which follows from (3.104).

It has order k and error constant C:+ 1 =L~:ciA,y~. In order that the left sides of
predictor and corrector be identical, we must set A1- I = 0 in (4.29), yielding
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where Anu and B.,. are independent of v, These constants can be evaluated if we regard
any two of the y~vl, \' = O. I, .. ,/1 as being given boundary values. Choosing the boundary
values to be y~nl and y~'I, the resulting solution for y~vl tur~s out to be given by

(It is easily checked that this solution has the required form and takes the chosen
boundary values.) Now put v = /1 - I to get

(1 - W)y~·-II = W-l(l_lI)y~O) +(I - W-I)y~I,

(4.42)

(4.41)

(4.39)

(4.38)
W(I-H)

M.(H):= ,
I-H·

which, on defining

or

can be rewritten in the form

np1EC)'E(r, h) = p(r) - ha(r) + M ~(H)[p*(r) - ha*(r)],

-where M.(H) and H are given by (4.38) and (4.36).

Since t = 0 or I, this is an equation involving y~J and y~ - II only. Another such equation
is afforded by setting v = Jl- 1 in (4.35):

On eliminating y~O) between (4.34) and (4.39) we obtain, after a little rearranging,

HEky~\-1I= [H Ek - M .ul)p*(E)]y~1 + M .ul)ha*(E)y~-", (4.40)

Case t = 0 The elimination gives

The final stage is to eliminate y~-II between (4.40) and (4.41) to obtain a dilTerence
equation in y~).

Case t = I Equations (4.41) and (4.40) now become

p(E)y~1 = iia(E)y~ -II

[P(E) - halE) + HEk]y~1 = [H Ek - M.(H)p*(E) + M .(H)ha*(E)]y~'

{pIE) -::ha(E)-+-M.(H)[p*(E) - ha*(E)]} y~1 = O.

The stability polynomial, which is the characteristic polynomial of this difference
equation, is therefore

and

{HEk[p(E) - halE)] +hM.(H)[p*(E)a(E) - ptE)a(E)]} y~1 = 0,

whence, by (4.36), we find the stability polynomial

1tPlECj.{r, h) = p.rk[p(r) - haIr)] +M ~(,fl) [p*(r)a(r) - p(r)a*(r)]. (4.43)

tHEk - M.lH)p*(E)]y~J = [lJ~k - M.(H)ha*(E)]y~-1J.

On eliminating y~ - II between these two equations we obtain

Our first observation is that, whereas the principal local truncation error of the
P(EC)"E 1

- ' mode is, in normal circumstances, that of the corrector alone, the ';"~~r

stability characteristics or the P(EC)·E1
- . mode are not those of the corrector and,

(4.36)

(4.37)v = 0, I, ... , Jl.

v = I, 2, ... ,Jl - I,

v = 0, I, ... ,Jl- I

where, as in §3.8, we have written h for hA. On defining

H:= hfJk

e(y~' + I I _ y~'I) = H e(y~'1 _ y~V- 11),

which can be re-written as

e}'~nl + [p*(E) - Ek]y~1 = ha*(E)y~-') (4.34)

ey~" II + [(I(E) - e]y~'1 = hfJkEky~vl + h[a(E) - fJkEk]y~-I),

v = 0, I, ... Jl- I, (4.35)

and subtracting successive equations in (4.35) we obtain

negative real parts, and deemed the method to be absolutely stable if all solutions {Y.}
of the difference system resulting from applying the method to 'the test equation tended
to zero as /l tended to infinity, By means of the transformation Y. = Qz., where
Q I AQ = diag[)'I,A 2" .• , Am]' we saw that it was enough to apply the method to the
scalar test equation y' = Ay, where A, a complex scalar, represented any eigenvalue of A.
The characteristic polynomial of the resulting scalar linear constant coefficient difference
equation, which we called the stability polynomial, n(r,l1) where /i = hA, determined the
region of absolute stability of the method.

A similar aproach can be applied to predictor-corrector methods. It is not difficult
io xhow ihai the same diagunaH/.ing transformation Ylt = Qz" uncouples the general
predictor-corrector method so that, once again, it is enough to consider the scalar test
equation y' = .tl'. Our first task is to find the stability polynomial .or the PlEC)~EI-'

mode defined by (4.4) or (4.5). Note that this will be the characteristic polynomial of
the difference equation for the [inal value y~l.

It is highly advantageous to define the mode in operator notation as in (4.5). Applying
this to the test equation y' = ).y, we obtain

V~d II ~ (I + H)y~vl + Hy~v-II = O.

Regard this as a difference equation in {y~vl, V = 0, I, ... , Jl}. The equation is linear with
constant coefficients. and its characteristic polynomial is S2 - (I + H)s + H which has
roots I and ll. It follows from §1.7 that the solution for Y. takes the form
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Let us now consider the degree of the stability polynomials defined by (4.42) and
(4.43). In general, 7!pIEC)'E(r, h) has degree k whilst nPfECI,(r, h) has degree u: Thus, to
achieve absolute stability, twice as many roots have to be controlled for the p(Ee)"
mode as for the P(EC)PE mode, suggesting that the laller class of methods will have
the larger regions of absolute stability, a conjecture that we can go some way towards
substantiating by the following observations. From (4.38) we have that for II = 1,2....

moreover. differ markedly in the cases r = 0 and r = I. Recalling from §3.8 that the
stability polynomial ofthe linear multistep method defined by the polynomials p(r) and
ITlr} is n(r.") = (1(1') - IIITlr), we see from (4.42), (4.43) and (4.38) that the stability
polynomial of the P(EC)"E 1

, mode is essentially an O(h") perturbation of the stability
polynomial of the corrector; nm<l'E(r, h) has the simpler structure, and is a linear
combination of the stability polynomials of the predictor and of the corrector.

From (4.36), II = il/ik= "iA, whence
~(H) = __ 1!~~~~ HL

, 1 + Mp(H) 1- W + W(\ - H)

H"+ 1(1- H)
--- = M + ,(Ji).
1- HP+ I "

(4.45)

since i. represents any eigenvalue of A, and any norm of A is greater than the spectral
radius of A. Further. we may take II A II to be the Lipschitz constant L of the system
I.' = Ay, and we have that

(4.48)

(4.47)

II = 1,2..

It follows directly from (4.44) that a similar result holds in the case II = 0, namely

Now consider the mode P EC)P + I; by (4.43), its stability polynomial is

npIEC1'" I (I',h) = flkrk[p(r) - ha(r)] + MP + I (H)[(I*(r)IT(r) - p(r)IT*(r)].

By (4.45) and (4.36)

I+M (1/). ~

fJk
P np(EC)" I (I', It)

= 1'1[1 + M p(I/)] [p(r) - hO'(r)] + hM,,(I/) [,,*(r)IT(r) - ,,(r)IT*(r)]

= rl[p(r) - hO'(r)] + M .(I/){rkp(r) - h[(rk - (1*(1'))0'(1') + (I(r)a*(r)]) (4.46)

The form of the right side su&gests that we make the following definitions:

p(r):= rlp(r), a(r):= ,-lair) }

r(r):= rlp(r), a*(r):= [I'I - p*(r)]O'(r) + p(r)O'*(r).

Now p(r), 0'(1') and p"(r) all have degree k, while 0',*(1') has degree k -' I. It follows from
(4.47) that p(r), air) and p*(r) have degree 2k, but a*(r)'has degree at 2k - I at most (since
IX: = I). The linear multistep method with first and second characterstic_polynomials
p"(r), a"(r) is therefore explicit, and we shall accordingly denote it by P. The linear
multistep method similarly defined by the polynomials p(r), air) is implicit, and we shall
denote it by C; note that Cis just C right-shifted by k steplengths. With this notation,
(4.46) can be written as .

(4.4~)
I _ A A

nl'tc(r,") = rk[ll(r) - "IT(r)] + 11[(1*(1')0'(1') - p(r)IT*(r)]
Ilk

which is linear in il.
For linear multistep methods we showed that the root 1'\ of the stability polynomial

satisfied r, = exp(il) +O(ilp
, 1) (see (3.72). The proof of this result hinged on the fact that

n(exp("),lr) = Ol"r \ I) (see (3.70)). Now if the predictor and corrector both have order p,

then by the argument which led 10 (3.70), we have that

hy (3.1\). II Ihen follows from (4.31\) that M,,(lI)-+O as 11-+ 00. Thus, as we would expect,
the stability polynomial of p(Fe)"F I -, tends (essentially) to that of C as Jl-+ 00. (The
factor rk in np(I'I,,(r. h) has no effect in the limit as /1-+ 00.)

As for linear multistep melllOds, a predictor-corrector method is said to be absolutely
stable for given" if for that" all the roots 1', of the stability polynomial satisfy 11',1 < I;
the region .ff A of the complex ii-plane in which the method is absolutely stable is the
region of absolute stability. Such regions are found using the boundary locus technique
described in 93X However. for predictor-corrector methods the polynomial n(r, h) is
nonlinear in il. and we can no longer solve explicitly for h the equation n(exp(iO), h) = 0
which defines the boundary lUIA of the region .cJt A' We can, however, solve numerically
(by Newton iteration. for example) for a range of values of 0, and thus obtain a plot of
ref? A There is a single exception \0 this, namely the PEe mode. From (4.43) and (4.38)
It follows that

(4.50)

(4.49)

11=0,1, ..

with the obvious interpretation that, in the casen = 0, P(EC)"E = PE = P.

I - A

-npEclr,lt) = np(r, It),
PI

where np(r, h) is the stability polynomial of the explicit linear multistep method P. The
Iactors] l +M p(I/)]IPI in (4.48)and IIPI in (4.49)being independent of 1', weconclude that

p*(exp(h))O'(exp(h)) - p(exp(it))O'*(exp(h))= O(hP+ 1).

From (4.~2) and (4.43) it follows that np(EC1"E' _, (exp(h),h) = O(h P + I) and consequently
1'1 = exp(h) +O(h P ' I). Thus, for predictor-corrector methods, just as for linear multistep
methods, the region of absolute stability cannot contain the positive real axis in the
neighbourhood of the origin.

and it follows that

,,*(exp(ir)) -- i'IT*(exp(ir)) = O(hr + I),
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'I

It can be shown that P has the same order and error constant as P. The mode
1'(1' C)" + I is not, however, computationally equivalent to P(EC)"E, although there does
exist a relationship between the solutions computed by the two modes; see Lambert
(1971) for fuller details. Clearly, Chas the same order and error constant as C; moreover,
the Milne estimate for the PL TE will be the same for the two modes P(EC)Il" 1 and
P(EC)"E. Thus, to any P(EC)'+ I mode there corresponds a P(EC)IlE mode with the
same PL TE and Milne estimate, and with identical region of absolute stability. The
converse is not true, and it follows that if we look for the' -edictor-corrector method
costing p + I evaluations per step which has the 'best' stability region, then we ought
to search the class of P(EC)"E methods'Such a 'best' method mayor may not be
replaceable by a P(EC)" + I method with the same PLTE and stability region; when such
a replacement is possible, the stepnumber will be reduced.

The relationships (4.47) linking p(EC)·"1 to P(EC)IlE take a particularly simple form
in the case of AIlM methods. For a kth-order ABM, we have from (4.24) that the
polynomials [p*, a* J, [p, aJ defining P and C respectively are given by

I ;

PECE
p(Ed__

PE ~~~~

PEC

-2 -1

k =1

21

PECE
p(Ed

PE
PEC

- 2 -1

k =2

p*(r) = p(r) = rk- I (I' - I), 21 2/

We note that the stepnumber is indeed 3 and that P is explicit.
The regions of absolute stability of the kth-order ABM methods, k = 1,2,3,4, in PEC,

I'ECE and p(EC)2 modes arc shown in Figure 4.1.
The stability region of the kth-order Adams-Bashforth method is also included and

is labelled PE. As was the case for linear multistep methods, all these regions are
symmetric about the real axis, and Figure 4.1 shows the regions only in the half-plane
1111(;/) > 0; note that the scale in Figure 4. I is larger than in Figures 3.2 and 3.3 of §3.8.
Wc have had occasion to remark previously that k = 1 gives a somewhat anomalous

Substituting these in (4.47) gives

per) = p *(1') = r lk - 1(1' - 1),

a(r) = r H lak(r), a*(r) = ,J-I[rl1k(r) + (I' - 1)11:(1')).

All fo~r polynomials ii(r), p*(r), a(r) and a*(r) now have a common factor r
k
-I which

can be disregarded, since zero roots of the stability polynomial do not have any, effect
on the region of absolute stability. We may therefore replace (4.47) by

per) = ji*(r) = rk(r - I), a(r) = r2uk(r),

a*(r) = rO'k(r) + (I' - 1)11:(1')

and the P(EC)"E method now has stepnumber k + I rather than 2k. Consider, for
example, the second-order ABM for which

p;(r.) = 1'2 - 1', a;(r) = (31' - 1)/2, P2(r) = I' - I, uk) = (I' + 1)/2

k=4

- 2 -1

PECE
p(EC)2

PE

PEC

-1

k=3

Figure 4.1 Regions of absolute stability far kth·arder ABM methods,

-2

PECE
p(EC)2

PE
PEC

member of the ABM family, and that is again the case in Figure 4. I. For the cases
k = 2,3,4 there is a clear pecking order in terms of size of stability region, namely (in
descending order) PECE, P(EC)2, PE, PEe. That PEC has poorer stability than PE
(the straight Adams-Bashforth method) is not surprising; we have already seen that
PEC has the same stability region as an explicit method P, which turns out to have
poorer stability than the Adams-Bashforth method. Comparison with Figure 3.2 of §18
shows that the stability region for the Adams-Moulton method in the mode of correcting
to convergence is (not surprisingly) in every case greater than that for the modes displayed
in Figure 4.1.With the exception of the anomalous case k = I, the regions for each mode
become smaller as the order increases.

From (4.42) we note that the stability polynomial of a P(EC)"E mode is a linear
combination of the stability polynomials of the 'predictor and of the corrector. However.
the region of absolute stability is a highly nonlinear function of the stability polynomial.
so we cannot infer that if the predictor and the corrector separately have good stability
regions then the P(EC)IlE will also have a good stability region. (The same holds true a

a*(r) = (41'2 - 31' + 1)/2

a(r) = 1'2(1' + 1)/2.

P: ji*(r) = 1'2(1' - I),

C:p(r) = 1'2(1' - 1),

and we obtain
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fortiori for the P(EC)" mode.) By way of illustration, let us construct a family or
predictor corr~ctor methods in which the correctors are the BDF described in 03.12
(not, we add, the usual application of the BDF-see Chapter 6 for that.) The kth-order
corrector is then given by (3.119), and a suitable kth-order predictor is

wit h the notation of §3.12. In the case k = I, this predictor-corrector pair coincides with
the first-order ABM, but for k = 2,3,4, the above predictor has a larger regioh of absolute
stahility than has the kth-order Adams-Bashforth. The BDF correctors have, as we
have seen in Figure 3.4 of §3.12, infinite stability regions and are greatly superior to the
Adums-Moulton methods in this respect. Yet the constructed BDF predictor-corrector
pair in PECE mode has, for k = 2, 3,4, stability regions which differ only slightly from
those of the AHM.

Let us now consider the effect on absolute stability of local extrapolation, in the two
classes of modes P(ECL)"E I

-
r and P(EC)"LE 1 - ' defined by (4.12) and (4.13). By an

argument similar to that which produced the stability polynomials (4.42) and (4.43) for
the P(EC)"E 1-, modes, the following stability polynomials can be derived:

Further, by (3.96) of §3.9, the error constants of PIll and C l k\ are given by Ci... 1= )'i,

C H 1 = Yl' whence, by (4.56)

(4.58)

a(r) = ral(r),p(r) = rpl(r),a*(r) = ai(r),p*(r) = pi(r),

Now H ( = hPl) depends, through Pl' on k, and it is necessary in this argument to make
that clear by writing H k for II. By Property 4 of §3.\ 0 we have

where pi(r) = rpl(r) = rk - rl- I
. Substituting in (4.52) gives

ltPlo,(EClkME(r, h), (I + W)r[Pl(r) - hal(r)] + [Mo(H + W H) - WJ [pi(r) - hai(r)]

= rpk(r) - h[(I + W)rak(r) - Wai(r)] + A-f,,(11 + WII)[pi(r) - itai(r)].
(4.57)

coincide respectively with those given by (4.42) and (4.43) with P = PIll' C = e,k'" 1\'
To show that this is indeed the case takes a little work. By (4.24) 1'(11 and C(ll are

defined by

(4.5 I)
1

rl I "iViYOH = Ilrl(1 - Vl)!oH
1= 1

where we have used Property 2 of §3.1O. The terms on the right side of (4.57) can now
be simplified. By (4.59),

ltp/ECLI"E(r, h) = (I + W)[p(r) - ha(r)J + [M"(H + WII) - WJ [p*(r) - ha*(r)J

ltp/ECLI,,(r, i'l = fllrk{( I + W)[p(r) - ha(r)] - W[p*(r) - ha*(r)]}

+ M "(H + W JI) [p*(r)a(r) - p(r)a*(r) J

ltp/EC)"LE(r, h) = (I + W)[p(r) - ha(r)] + [M"(H) + (H - I)WJ[p*(r) - ha*(r)J

ltpIEC)'L(r, i,l = {lkrk{(1 + W)[p(r) - ha(r)J - W[p*(r)- ha*(r)J}

+ [M ,,(II ) + /I WJ[p*(r)a(r) - p(r)a*(r)J

(4.52)

(4.53)

(4.54)
by Property 6 of §3.IO. Further, by (4.58) and (4.59),

•
H l + WH l = (yilyi-I);')'i-I = hI': = HH I'

(4.59)

where, as before,

M (11)= H"(I - H)
II 1- II" ' (4.56)

Hence (4.57) now reads

ltPlk,(EC'k,L)'E(r, h) = rpl(r) - haH I (r) + M .(IIH d[pi(r) - hai(r)]

= ltPlk,IEC,k. 1II'Il(r, ill, k ~ 2 (4.60)

(see (4.36), (4.38) and (411)).

Note that on putting W = 0,_that is, not performing local extrapolation, (4.52) and
(4.54) bo!h revert to 7!PII'CI.,,(r, II) given by (4.42), and (4.53) and (4.55) both revert to
7!p(lq..{r, II) given by (4.43). Note also that in the case, /-l = I, when P(ECL)"E 1 - ' ;:

P(EC)°LE'-', we have that M1(H) = H and it follows that

M1(1I + WII)- W= H + WH - W= II +(H -I)W= MI(H)+(H -I)W,

Md/l + WH)= H + WH = M1(H)+ WH,

and (4.52) and (4.54) coincide as do (4.53) and (4.55).

Let us now consider the case when the PC pair consists of a kth-order ABM method
in P(ECL)"E mode. By (4.25) we know that P{k)(EC(1)L)"E1 - ' ;: P(l)(EC{H I))"E 1 - ' so
that the stability polynomials given by (4.52) and (4.53) with P = P(kl' C = C{k) must

by (4.42). Note that when a kth-order predictor is combined with a (k + 1)th-order
corrector in an ABM method, it is no longer necessary to right shift the corrector; thus
p(r) = rpk(r), a(r) = a H 1(r) properly define CIH I) in this context. It is readily established
by direct substitution that (4.60) also holds for k = l. A similar argument shows that

ltp'k,(EC'k,LI,(r, h) = ltp,k;(EClk. III,(r, h)
I

and we have demonstrated the required result.
There is one further point of interest to be extracted from the ABM case. Consider

the mode P(k,(EC(H 1))"+ I; it is defined by setting

p*(r) = pi(r), a*(r) = a:(r), p(r) = PH dr), a(r) = aH I (r),

where p.i(r) = PH I(r) = r l - ~l- I. (See note following (4.60).) Now let us apply the
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q = 0, 1.2

q = 0, I.

4.6.2, The predictor Y.+2 + 4y.+ ,- 5y. = h(4f.+, + 2f.) is combined with Simpson's Rule as
corrector in PECE mode. Show that if the roots of the stability polynomiai are r, and r2 (r I

being the perturbation of the principal root of p) then for all real Jr, the method is relatively stable
according to the criterion Ir2 1,;;; Ir.l (which is not quite Criterion A of §3.8). Show, however, thai
the method is not relatively stable (in the above sense) for small imaginary IJ.

4.6.3. The result (4.49) shows that a PEC method has the same region of absolute stability as the
explicit method P, defined by the characteristic polynomials p*(r), a*(r) given in (4.47). Let k = 2, and
consider the following five equations which arise from the application of the PEC method at a
number of consecutive steps:

y~Ol,+ 2 + ocr y!"!,+ I + oc~yl.'l, = h(fJU~Ol,+ I + fJULOl,),
. Y!,~'+2 +OCly!'ll,+ I+,ocoy!'ll, = h(fJd~Ol.+ 2+ fJ .fLO!,+ t + pofLol.),

Exercises

Hence show that the predicted values {Y!0l} generated by the PEC method satisfy the explicit
method P. Deduce that the numerical res~lts produced by the PEC method could alternativeI:
be obtained by using Pto calculate the sequence {y~OI} for the whole range of integration, and
then modifying y!'0l to Y!,II by apply,ing the 3-term recurrence relation

Y!,'l2 +oc,y!"1 I'+ OCOy!'11 =h(fJdLO!2 + fJ.fLO!, + PofLOI)..

Explain why this interpretation of the PEG method corroborates the result (4.49;

whence P= P(H I)' C== C(H 1)' and it follows from (4.50) that

a, [P(k)(EC(H I))P+ I] = [)fA[P(H I)(EC1H I))"E).

Combining this with the result (4.25) we have

e, [P(l)(EC(k,ljP +I] = [)fAP(H I)(EC1H I))"E). (4.61)
I

Thus, a kth-order ABM method applied in the mode P(ECl)P + 1 (i.e. with local

extrapolation applied at every call of the iteration) has the same stability region as a
(k + l)th-order ABM applied in the mode P(EC)"E (i.e, without local extrapolation).

The regions of absolute stability for tho kth-order ABM methods, k = 1,2,3,4 in the
modes PECL, PECLE and P(ECl)2 modes are shown in Figure 4.2. As in Figure 4.1.
the stability region for the kth-order Adams-Bashforth method is also included and is
labelled PE. Again, the case k = I is anomalous, but for k = 2, 3,4 we observe that
although local extrapolation has the effect of enlarging the stability regions, the pecking
order of PECLE, P(ECL)2, PE, PECL is unaltered. The result (4.61) is well illustrated
in Figure 4.2; for example, the region for P(ECL)2, k = 2 is the same as for PECLE.
k = 3-, and the region for PECl, k = 2 coincides with that for PE, k = 3.

• 4.6.1. Use the Routh-Hurwitzcriterion to'find the intervals of absolute stability of the predictor
(4.51) with k = 2 and of the PECE algorithm constructed from the same predictor and the 2-ster
BDF as corrector. Compare these intervals with the corresponding ones for the 2-step Adams
Bashforth method and the 2-step ABM. (See Figure 4.1 and Figure 3.3 of 93.8.) Hence corroborate
the conclusions drawn in the above section. .

2i

i

2i

-1

-1

k=2

k = 4·

-2

PECLE
P(ECL)2

PE
PECL

-2

PECLE

P(ECL{
PE
PECL

2i

2i

p(r) = rpk + I (r), aIr) = ra, + I (r),

p*(r) = rp:(r) = P:+ I(r), 11*(r) = a:+ I(r)

-1

-2 -1

k = 3

-2

k = 1

a*(r) = (r k - r k + rk-l)aH I(r) +(rk - rk-I)a:(r)

= rk-l[aH ,(r) + (r - I)a:(r)]

= rk-Ia:+ I(r), k";3 I

PECLE
P(ECL)2

PE
PECL

Figure 4.2 Regions of absolute stability for kth-order ABM methods with
local extrapolation.

PECLE
2

P(ECLl

PE
PECl

by Property 7 of §3.! O. On dividing out the common factor r" - 1, we have

and

equations (4.47) to get

ji(r) = r», + I (r), aIr) = rkak + I (r), ji*(r) = rkp:(r)



128 PREDICTOR-CORRECTOR METHODS CHANGING THE STEPLENGTH; DOUBLING AND HALVING 129

4.6.4. Verify the result (461) by calculating (he stability polynomials for P(2)(EC(2)L)2 and
l'c" FCI."E.

4.7 CHANGING THE STEPLENGTH IN
AN ABM ALGORITHM

As we have see.n. ~redictor-corrector ~ethods possess many advantages, notably the
facility Ior ~omtortng the local truncation error cheaply and efficiently. However, there
IS a balancing disadvantage, shared by all multistep methods, namely the difficulties
encountered in implementing a change or steplength. In the remainder of this chapter
we shall be discussing ways In which predictor-corrector methods are implemented in
modern codes, and inevitably heuristic arguments based on computational experience
Will playa Significant role. Such codes are almost always based on A8M methods so
we shall restrict our discussion to that family or methods. '

Suppose that we have used a kth-order ABM method (which will have stepnumber
k) to compute Yn, but before going on to compute Yn+ I we want to change the steplength
from IJ to oh. In order to apply the method to compute an approximation to Y at X

n
+ah,

we need back data at x.: which we have, and at X n - «h, x, - 2ah.... ,x, - (k _ 1)/Xh,
which we do not have. (1 he codes referred to above use a range of ABM methods of
orders up. to 13, so that quite a lot of new back data may have to be generated on
change of steplength.) Many different ways of tackling this problem have been proposed
hut we shall ~iscuss ~nly those that have fo~nd to ~. ~e most successful; a good
reference on this topic IS Krogh (1973). The available techniques can be categorized into
two different groups. The first, known as interpolatory techniques, use polynomial
interpolation of the exisung hack data in order to approximate the missing back data;
there arc several ways or doing this. In the second group, the ABM methods themselves
arc replaced ?y ABM-like methods which assume that the data is unevenly spaced, and
whose coefficients therefore vary as the steplength varies. Stepchanging techniques based
on such methods arc usually known as variable step techniques, a name which the author
finds unsatisfactory; algorithms which have the facility for changing both steplength
and order arc Widely known as 'variable step variable order' or VSVO algorithms,
whether they usc Interpolatory or 'variable step' techniques to implement a change of
steplength, and there IS clearly a clash in the nomenclature. Accordingly, we prefer to.
call this ~econd group of techniques variable coefficient techniques.

With interpoiatory techniques, ABM methods have an advantage over other
predlctor-cor.rector methods, in that, since p*(r)= p(r) = rk - r" -1, we never need to
generate missmg back values o.fy, only those of f. The interpolation can be done wholly
I~ the x ~.1 space, thus aVOldlllg any call for additional function evaluations. The key
piece of information we work from is the unique polynomial of degree k _ I which
int~rpolates the av~ilahlc back data (xn- ,,fn- ,), T = 0, J, ... ,k - I. Note that, by (1.31)
of ~ I.W, the errors III this IIlt~rp~lation will be OW); since, in an ABM implementation
thc hack ~alues of f (or their differences) are multiplied by h, the error in y due to
interpolation errors In the back data will be O(hH I), that is, of the same order as the
L.TE. Now the interpolating polynomial can be defined (and stored) in a number of
different ways, thus giving rise to a number or different interpolatory techniques We
could Simply work out its coefficients (which would not be a very efficient way to

proceed), we C041d specify it by the data fn-,' r = 0, I, ... , k - I, or by the backward
differences V'fn, i = 0, ... , k - 1, or we could fix the polynomial by specifying its value
and that of its first k - I derivatives at the point x•. In §4.8 and §4.9 we shall consider
in some detail two interpolatory techniques, in the first of these the interpolating
polynomial is specified by the backward differences of f. and in the second the values
of the interpolant and its derivatives are specified at x•.

Variable coefficient techniques essentially consist or Adams methods in backward
difference form, as in §4.4, but derived under the assumption that the solution has been
computed at unevenly spaced values of x. We shall carry out such a re-derivation in
§4.1O. Computation of the variable coefficients at each step becomes the major
computational effort in using these techniques. When the steplcngth is held constant
for a number of steps, then the coefficients naturally become constant, and the methods
become equivalent to standard A.BM methods.

It is not a straightforward matter to compare the computational effort of interpolatory
and variable coefficient techniques. With interpolatory techniques, the amount or
computation involved clearly increases as the dimension 1/1 of the initial value problem
increases, whereas the effort of computing the coefficients in a varia hie coefficient
technique remains independent of m. thus variable coefficient techniques become more
attractive ir the system is large. Nevertheless, it is still generally true thai algorithms
employing variable coefficient techniques are computationally more expensive than those
using interpolatory techniques. On the other' hand, they are more flexible in handling
very frequent chan~es of steplength and are, in practice, rather more robust since, unlike
interpolatory techniques, they always use computed and not interpolated back data.

4.8 CHANGING THE STEPLENGTH;
DOUBLING AND HAL VING

In the preceding section, we listed a number of different ways in which, in an interpolatory
step-changing technique, the interpolant of the available back data could he specified,
If we are implementing an ABM method in P(EC)"E 1

-I mode in backward difference
form as described in §4.4 then, or the options listed, that of defining the polynomial by
specifying the backward differences is clearly the most natural. From (4.18) of §4.4, the
back data that have been stored on conclusion of the step lrom .'(._1 to x. are
V'f~-I), i = 0,1, ... , k - I. In what follows we shall drop the superscript [/1 - t], which
is to be taken as read. Ideally, what we would like is an algorithm in which the input
consists of these dIfferences and the output is the corresponding differences of the
interpolated values at x, - ioh, T = 0,1, ... , k - I. A remarkably simple algorithm, due
to Krogh (1973), does just this, in the case when stepchanging i~ restricted to doubling
or halving the current steplength. One might think that no such algorithm is necessary
in the case of doubling the steplength, since the previously computed values f. - 2'

f.-~, ...,fn-2H2 could be used as the new back data. However, Krogh (1973) reports
that such a technique is consistently less accurate in practice than the algorithm we are
about to describe. This is not altogether surprising, since the technique of using every
other value of f uses information which is further away from the current step than that
used in an interpolatory technique (recall that k can be large), and the solution may
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where VI(x):= I(x) - ltx - Ir),Vi/(x):= V I
- I/(x) - V I

- I/(x - h),i = 2,3, .... Since the pth
differences of a polynomial of degree p are constant. it follows that

have locally changed in character; indeed it is often such a change that creates the need
to alter the steplength inthe first place.

Let I(x) be the unique polynomial (with coefficients in R'") of degree k - I passing
through the k points (x._ ,,f. _,),r = 0, I, ... , k - 1. We then have that

:_"" 11I-I\"I\T ., ••••

'(4.66)

forj:= I tok - 2do

begin
for i:=j to k - 2 do A [i]:= 2.0d [i] .. A [i + I];

A[k - 1]:= 2.0.A[k·- I]; I
end;

A[k - 1]:= 2.0.A[k - I];

Applying this in the case k = 5 gives... - ,

and consider the following few lines of code:

(4.62)i=O,I •... ,k-1

whence

Thus we have the following identity:

VI(x.) = I(x.) - I(x. - h),

V 2/(x.) = I(x.) - 2/(x. - h)+ I(x. - 2/r).

V4 I .
2V4 f.
4V4 I.
8V4 I .
16V4 f .

V3f .
(2V3

- V4 )f .
(4V3 - 4V4)f.

(8V3
- 12V4)I.

V2f.
(2V2

- V3)f.

(4V2 - 4V3+ V4)f.

Vf.
j = 1 (2V - V 2)f.

j=2
j=3

and. on comparing with (4.65). we see that the code segment (4.66) has transformed the
vector [Vt; v2t; v3I: v4 f.]T into [V(D)f••vtm f., V~D/.'VtD/.]T

A similar procedure for halving the steplength can be deduced from the above. We now
wish to generate a set of differences from the data I(x.), ttx; -1r/2)•... , I(x. - (k - 1)11/2).
Let us denote such differences by V(m/(x.), i = 0, I•.... k - I. defined by V(1I)/(x):= I(x) 
I(x - h/2),V:H)/(x):= ~:;;)I/(JC~~ V:'~II/(x - ',/2), i = 2,3.... , k - I. Now. deducing VW 1

from V is obviously the same process as deducing V from V(1I1' and from (4.64) we can
thus write(4.64)

In the step-doubling case, we wish to generate a set of differences of the data I(x.),
lix; - 21r), ... , I(x. - 2(k - I )Ir). Let us· denote such differences by V:D)/(x.), i =
(l, I, ... , k - I, defined by V(1J1/(x):= I(x) -/(x - 2h).V:D)/(x):=V:;,l/(x) - V:;/ I(x - 2h).
i = 2,3, ... , k - I. (The subscript D is bracketed to avoid any possible confusion with
the notation introduced in (4.15) of §4.4.) Now,

From equations (4.62), (4.63) and (4.64) we are able to generate V:D)/(x.) in terms of
ViI., i = 1,2, ... , k - I. (The case i = 0 is trivial.) We illustrate the procedure in the case
k = 5.

For general k, the above procedure is neatly accomplished by a segment of code due
to Krogh (1973). (For ease of exposition, the segment is written for the case fER I ;

adaptation to the case I EIR'" is straightforward.) Let A i ( = A [i]):= Vlf., i = 1;2, ... ,k- I,

, Vlm/(x.) = V(2 - V)/(x.) = 2Vf. - v2 f.

Vf/))/(x.) = V 2(2 - V)2/(x.) = (4V2 - 4V3+ V4)/(x.)

= 4V2f. - 4V3f. + v-f.
V j

3
D,! (X. ) = VJ(2 - V)3/(x.) = (8V3 - 12V4 + 6V 5 - V6)/ (x . )

= (8V3
- 12V4 )/ (x. ) (by (4.63))

= 8V3f. - 12V4f .

V:/J,!(x.)=V4(2 - V)4/(x.) = (16V4 + ... )/(x.)

= 16V4/(x.) = 16V4f.·

(4.65)

V == 2V(11) - Vfll)'

•
We can no longer express V(11) explicitly in terms of V but, by analogy with (4.65). we
see that the transformation which takes [(V(//J.)T, (Vtll/.)T, (Vi~,/.)T, (V:"J.)T]T into
[(V f.)T, (V2 f.)T, (V3 f.)T, (V4f.)T]T is a linear one and, moreover, the transforming matrix
is triangular, making the inversion of the transformation simple. Specifically, in the case
k = 5, we have by analogy with (4.65)

Vf. = (2V(II) - V(2m)l(x.)
v2I. = (4V(2H) -'-4V~II) + V~I))/(x.)

v3 f. = (8V~III- 12V~I))/(.".)

V4f. = 16VtHll(x.).

This linear system is readily solved to give

V:m/(x.)=if,V4f.
}

V(~I)l(x.) = lV3 f. +-fiVi.f.
(4.67)

V:ml(x.) = lV2f. + lV3f. + ~V4f.

V(/I)l(x.) = lV f. + iV2 f. + if,V3I, + 1~8V4f.·

Once again, this procedure can be carried out, for general k, by a segment of code which
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is. in effect, (4.66) applied back wards. As before, let Ai(= A [i]):= Vif., I = 1,2, ... , k - I;
then the segment of code (again written for the case feRI) is

back values f.-" r = 0, I, ... , k - I, namely that of fixing I(x) and its first k - I derivatives
at the point x•. Let F(x.)elR"'l be defined by

A[k ~ 1]:= A[k - 1]/2.0;

fori:= k- 2downto I do

begin

A[k - 1]:= A[k - 1]/2.0;

for i:= k - 2downtoj do A[i]:= (A [i] + A[i + I] )/2.0;
end;

Applying this in the case k = 5 gives

(4.68)

F(x.):= [(J.)T, (V f.)T, .... (V' - II.)T]T

= [(f(x.»T,(VI(x.))] T,.. ,(V' - I/(x.))T]T.

by (4.62). Observing that V'f(x.) = O(h i
), it seems appropriate, when defining a vector

whose m-block components are I(x) and its first k - I derivatives evaluated at x.' 10

scale the ith derivative by hi, and define G(X.)E ~"" by

(469)

The technique of storing back data in terms of an interpolant and its derivatives evaluated
at a single point was first proposed by Nordsieck (1962), and it is appropriate to refer
to G(x) as a Nordsieck veclor, The result of the scaling by powers of /, is that we can
obtain G(x.) in terms of F(x.) by means of a linear transformation

,
hl(l)(x.) = VI. + !V2I. + ~V3I. + tV4I.

h2/ (21(X. ) = v2f. + VJI. +HV4I .
h3/(3)(x . ) = V3I . + iV4f.
h4/ (4)(x . ) = v4 f~,

whence (4.70) holds with

where the matrix A is independent of /1. If we now wish to replace h by :X/I. all we have
to do to the vector G(x.) is multiply the ith Ill-block component hy ,1.'-1 (see (4.69)); the
corresponding vector of dilTerences of I(x.) evaluated at .t.-wh, r = O. I, .... k - I, is then
obtained by inverting the transformation (4.70).

Conside~ for example the case k = 5. Then I(x) = lt»; + rh) =: P(r). where

P(r) = f. + rVJ. + !r(r + 1)V2f. + kr(r + I)(r + 2)VJ I"
+ -Ar(r + I)(r + 2)(r + 3)V4I ..

Since h'/(/)(x ) = pO)(r)1 i = I 2 3 4 we find that I •" ,.=0" , , ,

A4 A 3 A2 AI

V4f. V 3f. V 2f. vr:
!V

4 f.
i=J iV"f. nV3+ ~V")f.

;=2 kV"f. (iV3 + kV 4)I. (!V 2 + kV3 + «r».
; = I j

l
i,V

4 I. (~V3 + J\V 4)f.
l1v 2 + kv 3 + ';"V4)f.

(!V + kV2 + i6V3 + lisV4)f.

and. on comparing with (4.67), we see that (4.68) has achieved the desired result.
In practice, using (4.66) to implement step-doubling works very satisfactorily, but

using (4.6R) to implement step-halving can run into difficulties over adverse accumulation
of error when k is large. Krogh (1913) reports cases where-using (4.68) to halve the step
length in an ABM method can result in the error estimate increasing! Problems of this
sort. encountered when reducing steplength, are not confined to the use of (4.68); they
can arise with any interpolatory technique, and are essentially due to the fact that the
underlying polynomial interpolant which the ABM method uses to advance the solution
docs not, after a step change, pass through previously computed points, but through
an interpolant of these points. There exists a modification (applicable in the case of an
ABM method in PFeE mode with step-having by (4.68» which successfully overcomes,
this difficulty; it is rather too elaborate to quote here, and the reader is referred to Krogh
(1913) for details.

Exercise

4.11.1. Corroborate (4.65) by the following calculations: Let I(x) = x" + 4xJ + 3x 2 + 2x + I;
evaluate I(xl for x = o. -l. - I, -~, - 2, and construct a table of backward differences V'/(O),
i = n, 1,2.3,4. Apply (4.65) to find the corresponding differences V;D/(O). Now evaluate I(x) at
x = O. - I. - 2,- 3, - 4 and check that the differences generated by these values coincide with
the V;mIW). Why do they coincide eX<Jcrly? Car~y out a similar calculation to check (4.67).

•
G(x.) = AF(x.)

[10
0 0

OJ
o I !I 1.1 1.1

3

~IA = 0 0 I ' 1 12

o 0 0 I i l

o 0 0 0 I

(4.70)

(4.71)

4.9 CHANGING THE STEPLENGTH; THE NORDSIECK
VECTOR AND GEAR'S IMPLEMENTA nON

We now look at another interpolatory technique in which we use a dilTerent option for
identifying the vector polynomial I(x) of degree k - I which interpolates the known

where I is the m x m unit matrix and 0 the m x III null matrix.
Suppose that we wish to double the steplength; this is equivalent to multiplying G(x.)

by the block diagonal matrix

D = diag[I, 2/, 41, 8/, 16/].
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(4.711)

(4.77)

(4.76)

(4.75)

k -I
\.,(0) = ,,(pI + II " nr:-II
In+A: -""+1-1, L j n+j

j= 0

P:

The kth-order ABM in P(ECt ,mode written in standard form is, by (4.4).

where, since the corrector has stepnumber one less than that of the corrector, flo = O.
The Gear approach amounts to twisting thc arm of (4.78) to make it look like a

one-step method (which it will not be) and then applying the transformation (4.76) (in
a more general context) whereupon the method genuinely becomes one-step. It follows
from (4.78) that

and, as in our earlier illustration. the scaling of the derivatives of P(x) by powers of It
results in Q being independent of h. The clements of Q are thus constants which depend
only on the coefficients of the kth-order Adams- Bashforth method. However, from
(4.74), (4.75) and (4.73) we see that the first m-block components of Y~'l k .. I and z~'l k·· I

are identical, as also are the second Ill-block components. Thus Q must have the form

The transforlnation from Y~'lk _1 to z~lk _ I is a linear one.

•by factorials. We therefore define the Nordsieck vector Z~'L_I ElRml H
1) by

Z~1k _1:= [(P(X. H _ .n'. II(P(I)(x. H _ I))T, ...• Ilk(pI11(X. H . tl)TJT
k!

(4.72)

- I

~ JF(x.)
-121

161

o
o

-41
81

o

o
-I

~I

o
o~

~ 1 U

o 21

I-'o(x.) = 0 0
o 0
o 0

If we define

On performing the matrix arithmetic we find that

then F1IJ,(x.) is given in terms of F(x.) by

thus reproducing the result we obtained in (4.65).
This is all by way of introduction, and we would not seriously propose that the above

procedure be used as a step-changing technique. What this illustration does is highlight
the advantages and disadvantages of the approach. The advantage is clear-the ability
to change steplength by an arbitrary factor. The disadvantage is that the computation
of the matrix A (which is different for different values of k) and of its inverse and the
matrix multiplications together represent a quite unacceptably large amount of
computation.

A development due to Gear (1967, 197Ia), in which the ABM method is implemented
in standard-vnot backward difference-form, makes ingenious use of a Nordsieck
vector. The device, which successfully overcomes the disadvantage noted above, is best
seen when the ABM method is applied in P(ECt mode. In both the original Notdsieck
methods and in the Gear development the interpolant to be.stored in terms of derivatives
is not that which interpolates the back data f.-" r= 1,2,... ,k-l, but the Hermite
interpolant P(x) which, in the sense of §3.3, is equivalent to the Adams-Bashforth
predictor in the ABM method. If the ABM method, applied in P(EC)P mode, has order
k, then P(x) has degree k and satisfies . .

(4.73)

The coefficients 0; turn out to be very simple functions of.k. Consider the polynomial

±o;r):= [ ±(fI; - {Jj)rjJ/flk,
J=O }=o

(4.81)

(4.80)

(4.79)

k - I

I _ '\' '*(1,.-1 1
In+lr.- L. (lj. n+j .

j= 0

1'= 1,2..... //- I

j = 0, I, ... , k - I;

YI I ) _yIO) =hfl {flO! _ k~1 [(fI*-fl·)/11 J(I/'-II}
n+k n+A k n+k, '-' J J k.n+j .

j=O

Now introduce the simplifying notation

and

(4.74)

P(x. + d = y~02k' P(x. H - tl = y~lk _ 1

P'(x.+j)=f~+-jl), j=O,I, ... ,k - I.

([1(x) has k + I Ill-vector coefficients; as in §3.3, the elimirmt 'of these k + I coefficients
between the k + 2 conditions (4.73) is the kth-order Adams-Bashforth method.) The
back data used by the predictor can be lined up to define a back vector Yl."lkERm(H I)
given by

Clearly Y~'L_I determines P(x) uniquely; so does the vector of P(x) and its first k
derivatives evaluated at x. H _ ,. For the reasons discussed earlier, it is appropriate to
scale these derivatives by powers of II and it turns out to be helpful also to scale them
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where 11:.=0.11,,=0. Now. in the notation of §3.IO, a:(r) and ak(r) are the second
chaructcristic polynomials of the Adams-Bashlorth and Adams-Moulton methods
respectively. of order k, and both have degree k - I (see (3.97)). Recalling that in the
present context we have right-shifted the corrector by one steplength, we may write

k

I (5;r
j = [a:(r) - rak(r)]/II,.

j - 0

Note that, since .r~·'lk = .r(x.H,y~'lk)' F is indeed a function of r~'l,· Note also that B
and G depend only on the coefficients in the, ARM method and arc independent of II.
In (4.84) we have achieved an apparently one-step form. but this is of course illusory.
since the vector of back values, Y~'!k-I' depends on values orf at "'.+, - ,. "'.+ k - 2.···' x".
However, let us now apply the transformation

(4l\6)
if \' = 0

if\'= 1,2.... ,//-1.

and

k

I fljr
j = radr),

j= 0

,
I II; r

j = a:(r).
jon

whence

11 follows from Properties X and 4 of §3.10 that

(4.88)

(U7)

1,=0.1 .... ,'1 - I

\. = O. I•...• /1.

, ..
0 21 31 G}
o 0 3/ G}0:= (489)

0 0 0 G}
I'

0 0 0 0

P: z~olk = QBQ-' Z~lk-I
C: Z~':kIJ = Z~''lk + GF(Z~'L),

where G= QG, Now (4.88) is genuinely a one-step method since. by (4.75). the vector
of back values, Z~lk-1' depends only an information at the point X.+l-I· We can
change steplength from h to a.1I simply by multiplying the ith block component of z~'L -1

by a.'- 1, I= 1,2, .. " k + '1, and the advantage of the Nordsieck approach is realized. It
would appear that the disadvantage-the -xcessive computational effort ...~ still remains.
particularly in the prediction step. However. it turns out that the product Q8Q-l is
precisely the m(k + 1) x rn(k+ I1block Pascal matrix Il: defined by

This interesting result can be established in a number of ways. The following is an
outline of a direct proof: '.

The matrix Q-I is easier to handle than is Q. Define ¢:=x.+l I; from (473), (474).
(4,75) and (4.76~ we see that Q-l maps

[(p(~)T, h(p(l)(WT,1I2(pI2IWlT/2!, ... ,llk(plkl(WT/kl]T

where Q is defined by (4.76). Note that from (4.86) F( )'~'l,) is a function of the first two
block components only of Y~'lk and that. from the structure Qf Q given by (4.77). the
first two block components of Y~'lk will be identical with those of z~'l, (= Qr~'lk): it
follows that F(Y~'lk) == F(Z~'lk)' Hence, on applying the transformation (4.87), we can
write (4,84) wholly in terms of z~'ll' z~'L _I as

(4.82)

(4.84)
v = 0, I, ... ,/1 - I }

j = O. I, . . . .k.

P: r~n.', = lJY~'lk_'

C Y~',\ll = Y~'L + GF(Y~'lk)'

I II: ,I 11: _2 1 fli' fl~1 flkl
0 (5:_ I I (): _ 2/ or1 °ri l 1
0 I 0 0 0 0lJ= G= (4.85)0 0 I 0 0 0

0 0 0 0 0

whence

Now define the vector r~:l,EIR,"'k+ 11 by

,
I ()jr

j = -(r-I)\
j= 0

(Note also that. [rom (4X I). d. H = II + (_ I)k+ 1Vklf~'+k II.)

We can now wruc 14.XO) as

if v = 0 }
if v = 1,2, ... ,/1.

(4.83)

Note that we have used the same notation in (4.74) and (4.83). but there is no
contradiction: on putting \.= II and replacing /I by /I - I in (4.83). we recover (4.74).

By (4.83), (4X I), (4.79) and (4.XO) we can now write (4.78) in the following form:

where B is an m(k + I) x m(k + I) matrix, G is an m(k + I) x m matrix and F, an m-veetor,
IS a [unction of an m(k + I) vector argument, given by
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into
[(p(mT, III p(lI(~))T, Ir(p(I)(~ - h))T,... ,h(pOI(e - (k - 1)h»T]T.

hom Taylor expansions and the fact that, since P(x) is a polynomial of degree
k, I''''(x) =() for s> k, we have that for j = 1,2, ... , k - I

Now. from (4.85)and (4.90) it is clear that for j ~ 2 the ith block row of BQ-I is identical
with the ith block row of Q - I n. That the first and second block rows of the two
products arc also identical can he established by expanding (about ~) the linear dilTerence
opcrutors associated with the predictor and corrector and using the fact that both are
of order k, We thus show that BQ- , = Q-I Il, or n = QBQ - 1. .,

That QBQ -, = II is much more than just a pretty result. In the first of (4.88) we no
longer need to compute (for each k) the matrices B, Q and QBQ - I. Moreover, rnultiplica
tion of a vector by a Pascal matrix can be achieved extremely cheaply. It is left to the
reader to verify that the following segment of code (again written for the case //I = I)
computes the product no, where a = [ao, a" ... , Ql]T:

for j:= 0 to k - I do

for i> k downto j + 1do

aU - 1]:= aU - I] +aU];,

(Note that no multiplications are involved.)

4.10 CHANGING THE STEPLENGTH; VARIABLE
COEFFICIENT TECHNIQUES

An early example of a variable coefficient technique was alTorded by Ceschino (1961)
who derived variable coefficient formulae of Adams type for orders up to 4. Although

\JO

there are now much more efficient ways of implementing variable coefficient techniques,
Ceschino's formulae serve to illustrate the sort of problems encountered with such
techniques. Suppose we have used a third-order ABM method to compute an acceptable
numerical solution at x., but before proceeding further we want to change the steplength
from It to ah. Let Y. +j. denote the numerical solution 'at x... .;> .'1'. + jzh.] = 1:2. and
let f ...J. = f(x.+ j.' Y.+j.)' Then, using Ceschino's third-order formulae. the solution is
advanced for x, to X.+o by the predictor-corrector pair

'11.1t 2 1

::::~.. ::,~::i:(:':2::f:~: ~~:~ :1::: ':I~ '1:,:.2',1;' ,J'j 1491 iiiI
Ho":ever, to advanc~ the solution one further step to .'1' ... 2, we need another special
predictor together With the standard third-order Adams Moluion corrector:

Y.+2. = Y.+. + 6(111.: ~}(9 + 14cx)f.+. - (3 + 5CJ.)( I +IX)!" + 5CJ.2f~ _, J)
11.11 (4lJ I (Ii))

Y.+2. = Y.+. + 12 (Sf. +2. + 8f.+. - f.)·

(Note ~hat the above formuhe all revert to standard ABM formulae when :J. = I.) The
difficulties are now apparenll. For a third-order method we needed to compute (and
store) three spe.cial f~rmulae; for a kth-order method we would need 21; - 3 such special
formulae, and If, as m modern codes, we wish to operate with I; ranging from I 10 13.
say, then the grand total of special methods needed would be 144. But there is an even
more serious drawback, namely that, if the order is k; then it takes k - I steps 10 complete

,a change to st~plength. During these k ~ 1 steps, there may arise a need to change the
steplength agam (and perhaps more than once); we leave it 10 the reader to contemplate
the ensuing complications!

A more constructive approach is to assume from the outset that the back data is
already unevenly space~. The development we, describe here is essentially due to Krogh
(1974) but we shall (partially) adopt an approach due to Hall (1976) which is notatiouallv
easier to follow. We restrict ourselves to the case of Adams-like methods applied in
PECE mode; adaptation to other modes is straightforward. Let us refresh our memory
about how we developed Adams-Bashforth methods in backward difference form in
~3.9..To derive a k-step Adams-Bashforth method (of order k). we started from the
Identity ,

y(x. + I) - y(x.) = IX.' I y'(x) dx,
' .

.replaced y'(x) by f(x, y(x» and approximated the integrand by the Newton-Gregory
interpolant (3.88) which interpolated the datil

(x., f.), (x'_l' f. -I)"" ,(x._ H I'f.- k + I)

which was, of course, assumed evenly spaced. 'Now that we are dealing with unevenly
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spaced data. thc appropriate interpolating polynomial of degree k - I is given by the
Newton divided diffcrcnce interpolation formula (see (1.34) of ~ 1.10):

It ,(X)=f l[III+(x-x"lf l [ " . II - I ]

+ .. +(x-x,,)(x-x,,-d···(x-x,,_k+2)f l[lI.n-I ..... n-k+ I]. (4.92)

'Inc. the superscript. indicates, as always. that we are dealing with a predictor. and
the notation fl[ ... ] indicates that. since we are selling up a PECE mode. the function
\ nlucs used to construe! the divided differences are f~l~ /.; = O. I..... k - I.

On intcgrating this interpolant and arguing as in ~J.9. we obtain the k-step kth-order
predictor

( . flol ) (x fll J) ( . 1111)X,,+I' "+1' XII' It '0'" ·\"-t.:~2·, "-k+2'

which interpolates the data
•

Recalling that in a kth-order ARM method the corrector is ril!ht-shifted by one sieplength
relative' to the predictor. this is the appropriate data set for the corrector. Further, from
(4.92), the polynomial 1: _2(X). which now appears in (4.97).can be written in the form

1:_ 2 (x ) = I:_,(x) - (x - x,,)(x - X,,_I) .. (x - X,,-H2)f l [ II. 'I - 1... 11 -- k + I).

The interpolant representing the kth-ordcr corrector is thcn. by (4.97).

1.- dx) = 1:_ 1(x) +(x - x,,)(x - x" _ I)'" (x - x. _H 2)

X {f~[11 + 1.11..... 11 - k + 2] - ('[11.11 - 1..... /1- k + In

= I:_I(X) + (x.+ 1- x.-l+ Il{(x - x,,) .. ·(x - .\,,-1+ 2)(,"[11 + I. II" .. 11 - k + I]}

by the definition of divided dilTcrences (see (1.33». Following the same argument as
before and using (4.94). we have- that the corrector step can be written as

y~l] I - y~Oll = (x" +I - x; _H do:_,(~[II + I, II.... II - k + I]. (4.9R)

(4.93)

(4.94)

if; = 0

if; = 1.2......

l ,

\'~",I, ... \'~'I = L: qrt'[n.lI- 1..... 11- ;].
i=O

where

f We shall return later to thc question of how to compute the coefficients g~ efficiently.)
Recalling from ~4.4 that the efficient way to implement the corrector in a constant

stcplcngth /111M method is to express the corrected value as an update of the predicted
value (sec (4.2.1)). it is natural to try to develop the interpolant for the corrector from
that for the predictor. The result (1.37) of ~ 1.1 0 allows us to do just that. and tells us that
the polynomial of dcgree k which interpolates the data

(x"' I.f", I).(x".f,,).··· .(X"_l+ ,.f"-l+ ,)

's

which, together with (4.93). defines the k-step kth-ordcr PECE method.
We can obtain an error estimate by comparing thc value of r~,'.' I given by thc above

kth-order corrector with that given .by the (k + I )th-order corrector (4.96); thus. on
subtracting (4.98) trom (4.96) we have

, I

T.+ 1={g:-(x.+ I-x,,-HI)g:_,ln[Il+I.II... II-k+11 (499)

11 is instructive to ~ompare the prediction. correction and crror estimation stages. given
by (4.93), (4.98) and (4.99) respectively. with thcir equal-spacing-case counlerparts (4.23)
of §4.3. In the case when the data is equally spaced. we find from (4.94) and (1.38) of
§1.1 0 that

(4100)

(4101)

/1[11.11-1, .... 11-;+ 1]=V'/~'I/(;IIr') }

f~[11 + LIl•...• /1- k + I] = V~f~l} I /(k1/r l
)

from which it is straightforward to show that the formulac given above do revert
to (4.23).

We return to the problem of how best to compute thc coefficients U~ defined by (4.94).
Let us evaluate the first few gi directly:

(4.96)

lqu.u ions (4.')]) and (4.%) define the kth-order PECE method with local extrapolation.
In get thc kth-ordcr PECE method with no local extrapolation, we obtain from (4.95).

with k replaced by k - I. the polynomial 1.- "x) of degree k - I.

l , l(x)=I: 2(xl+(x··x,,)(x-x,,_I) .. ·(x-x._l+2)f~[n+I.I1, ... ,'I-k+2] (4.97)

where the notation!.', indicates that. when evaluating the divided difference, the single
function value f ~,'.' , 's replaced by f~'~ I (consistent with the notation defined by (4.15».

Note that 11(\ ), being of degree k, will generate a corrector of order k + I which.
together with the kth ordcr predictor (4.93). will be equivalent to a kth order PECE
algorithm with 1~)Cal extrapolation. Let us pursue that option for a moment. Integrating
III xl from x" to x"' 1 will yield a formula for y~lll - y~I'.just as doing likewise to I:_,(x)
yielded the formula (49.\) for \,~r~ I - y~". It follows from (4.95) and (4.94) that the
corrector stage (with local extrapolation) can be written as
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dependence of elements in later rows on those in the preceding row. Thus we get

9\\ =(x.+\-X.)901-902 =(x.+ I-x.)2/2

912 = (X.+ 1- X.)902 - 2903 = (x.+ 1- x.)]/6

921 = (x, + I - x. _ tl9 II - 912 = [x, + 1 ;- .'1:. _ tl(x. + I - x.)2/2 - (v, + I - x.)3/6.

(integrating by puns in the last of these). Clearly, we need to find a way of generating
the "i that is suitable for automatic computation. The way to do it turns out to be to
embed the !Ii in a more extended definition. Let us use the notation

fn"" L.. ·LF(X)dX
j-lime'!!

901 = x. + \ - x.,

j-timu

to denote the j-Iold integral

The entries in the first row arc given directly by (4.102), and the arrows indicate the

4.11 THE STRUCTURE OF VSVO ALGORITHMS

We see that the generated values for gi = 9i1. i = 0, 1.2. agree with those found in (4.101).
If the PECE algorithm described above is run with the stcplcngih held constant for

a number of steps. then the coefficients gi become constant, and need not be re-computed
at each step. However, as we have seen in (4.100). they do not become the standard
Adams- Bashforth coefficients yi. just as the divided differences do not revert to standard
backward differences. Equations (4.100) indicate that in the general case of unequally
spaced data points, the coefficients gi will be very small if [he current steplength is small
(and i reasonably large), while the divided differences will be very large. Multiplication
of a very small number into a very large one is a process likely to exacerbate the effect
of round-off error, and it would be attractive to find an alternative formulation in
which the coefficients amJ the 'divided differences' separately revert to standard Adams
coefficients and backward differences respectively when the steplength is held constant.
Such an alternative has been developed by Krogh (1974), who replaces the divided
differences f[n, n - I, ... , n - i] by modified divided di(rerellces ][11, II - I, ... , II - r],
defined by

J[n,n-l, ... ,II-)] =(x.:...:x._ 1)(x.-x._ 2) .. ·(x.-x._JIlII.II-1 ....• II- i).

It is readily seen that J[n, II - 1•.... 11 - i] does revert to Vif. when the data are equally
spaced. The development in terms of these modified divided differences follows the
general pattern of our development for unmodified divided differences. but is con
siderably more complicated. The reader is referred to the paper by Krogh or to a
particularly readable account in Shampine and bordon (1975). Both of these references
describe several devices which increase the efficiency with which the method is
implemented, the error estimated and the modified divided differences updated. The
resulting method is more than just a technique one calls up when a change of steplength
is required; it is used throughout the computation. since it automatically reverts to the
standard ABM method in backward difference form whenever the steplength is held
constant. Indeed, the recurrence relation (similar to (4.103)) for the coefficients which
replace the 9i (and which will revert to the Yi when the steplength is constant) turns
out to be one of the best ways of generating the coefficients )'7'-

One fact that has clearly emerged from the exiensive computational experience that has
accumulated over the years is that the key to high efficiency in predictor-corrector
algorithms is the capacity to vary automatically not only the stcplength, but also the

(4.103)

(4.102)

if i = 1.2, ...

if i = 0

i= 1.2..... i> 1,2,....

32
j

2

o

f'(X-X.)(X-X'-I)"'(X-X.-1+1)dX
x ..

j-limc~

j-limn

Yij=(X.+ 1 -X.-i+llI/i-l.j-jgi-l.j+I'

f
x

.. ' , fX
X I1 x ..

f xn" f x f'... dx=(x.+,-x.)j/j!
x" -'"" .~"

<Iij =

and define !/;j for j = 1.2•... by

[n'lL["{L F(x)dx}.JoxJox.

Clearly. from (4.94). we have that gi = gil' i = O. 1.2, .... The point of introducing the
coefficients 'Iij is that. by repeated use of integration by parts. it is possible to establish
the following recurrence relation:

from wh'jch it is possible to build up the following triangular array which generates the
!hi and hence the qi:
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(where K i~ a constant) since the method has order k. The maximum steplength ~k we
could have taken with this kth-order method would have produced an error estimate

£k satisfying

criteria. We shall develop a strategy based on the criterion (4.104), but adaptation to

the other criterion will be obvious. , .
Recall from §4.4 that the norm of the error estimate for a kth-order ABM method IS

(see (4.22))

This estimate is available after the final application of the corrector in a P(EC)"E 1-,

algorithm and before the final evaluation (in the case r = 0): thus if the error estimate
does not satisfy (4.104 and the step aborted, that final evaluation need not be ",Iad~.

At first sight, we now seem to have an impossible task: we have only one criterion
from which to deduce two pieces of information, namely what should be the steplength
and the order at the next step. However, there is a Very common situation in elementary
calculus where we ask for one piece of information and invariably get two! It is when
we ask what is the maximum of a function, when, on the way to getting that maximum.
we always lind the point at which the ma,ximum is taken. The very same mechanism

comes to our rescue here.
Suppose that on completing the step from x. to x. + I the criterion (4.104) is satisfied.

and the computed value for y~'ll consequently accepted; suppose further that the final
evaluation has been made (in the case of a P(EC)"E mode) and that the backward
differences have been updated, so that we are ready to take the next step. Before doing
that we ask what would have been the maximum steplength we could have used on
the just completed step frlom x, to X.+I using ABM methods of orders ": I,k and
k + J: Whichever of these three steplengths turns out to be the greatest WIll be the
steplength we shall use for the new step, and the value of k which produces that maximum
steplength will be the order we shall use on the new step.

Let the steplength used with the kth-order method on the step from x• .to x, + I be
hk' Since that step was successful it must have produced an error estimate which satisfied

(4.104); that is, we must have that

£k = {Jr, 0 ~ {1 ~ I

(4.106)

(4.105)

We consider each of these components in turn. Note that we have not included in
this list any mention of linear stability. Algorithms do not normally test to see whether
thc condition of absolute stability is satisfied for a given steplcngth (much too expensive!),
and rely on the fact that if such a condition is not satisfied then the error estimate will
grow sharply, and the algorithm will then take appropriate action.

Error estimator This is always afforded by some form of Milne's device which,
as we have seen in ~4.4,takes a particularly simple and efficient form for ABM methods.

Starting procedure This is simplicity itself. The algorithm always starts with
the one-step t\ BM pair (or its alternate) which does not require any additional starting
values, and allows the stcplcngth/order-changing strategy to take over. This usually
results in the order building up rapidly over the initial few steps.

Family of methods This is almost always the family of ABM methods, of
orders ranging from I to around 13. In some algorithms the low-order ABM are replaced
by predictor corrector methods with better regions of absolute stability, since, at low
order, it is usually lack of stability rather than accuracy that limits, the steplength.
Various modes can be employed, but PECE with local extrapolation is probably the
most popular.

(i) a family of methods,
Iii) a starting procedure,

(iii) a local error estimator,
(iv) a strategy for deciding whcn to change stcplength and/or order, and
(v) a technique for changing the steplength and/or order.

ordcr (and hence the stcpnumber) of the methods employed. Algorithms with such a
capability are known as vuriub!« step, oariableorder, or VSVO, algorithms. It is not our
purpose here to advocate, far less to study in detail, any particular VSVO algorithm, but
rather to describe, in a general way, how they work. It is emphasized that we deal here
only with algorithms for non-stilTinitial value problems, although several existing VSVO
codes include options for dealing with stilT systems, options which we shall ignore in
this section

Thc essential components of VSVO algorithm are:

(4.109)

(4.108)

(4.107)

- [t JI/(k+l)
hk ~ hk - ,

£k

an estimate we can compute, using (4.105)_ Suppose now that we had computed from
x, to x.+ I' using ABM methods of orders k - I and k + I, and steplengths hi - I and
h

k
+ I respectively. Then it can be shown that the formulae

." .'f f
t; \/ /I

(4.104)

Strategy The account here essentially follows that given by Hall (1976).
Suppose that the algorithm is currently working with a kth-order method; let £k be the
norm of the local error estimate at x. + 1 ,and let t be a user-defined tolerance. Then an
obvious criterion for acceptance of the step from x, to x, + I is that

I

the so-called 'error-per-step' criterion. It can, however, be argued that since the user
is really interested in the accumulated and not the local error, it is inconsistent to worry
only about the size of the local error and not about how many steps the error is
committed at bctwecn two given values of x. This gives rise to an alternative criterion,
E, ~ lIT, thc so-called 'error-per-unit-step' criterion. Arguments can be put for both
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also hold, so that L~.;, i = - 1,0, I can be computed, (There is an argument here in
favour of local extrapolation, balancing our arguments against it in §4.3; Hall (1976)
shows that the second of (4,109)is strictly valid only if local extrapolation is perforrned.]
The argument used above to derive (4.107) can then be repeated to yield

- [ r Jll(~+ 1 +i)
Ilkt-i~/'k+i --~ ,

EH i

The order we use for the next step is k + I, where

hH i = max hH ii., -1.0. II

i = - 1,0, I.

,simultaneously, when Gear (1969) and Krogh (1969) gave concurrent presentations at
the same conference in 1968.The corresponding codes are 01 FSUH (Gear, 197Ia), which
uses the Nordsieck vector, and DVDQ (Krogh, 1969), which uses step doubling or
halving. GEAR (Hindmarsh, 1974)is a much modified and extended version of 01 FSU 11
A widely used code, EPISODE (Byrne and Hindrnarsh. 1975). uses the variable coe,fTicient
technique, as does DE/STEP, which is described in considerable detail in the book by
Shampine and Gordon (1975). Initial value problems for systems of ordinary differential
equations can be very lively mathematical creatures and, on occasion, are capable of
upsetting even the most sophisticated of codes; striking examples of this can be found
in Shampine (1980).

and the maximum steplength we can use on the next step is hH i . Note that one possible
outcome is that we retain the same order at the next step, but change the steplength.

In this area of implementation there is, not surprisingly, a large heuristic element.
Thus, most algorithms would multiply the maximum steplength advocated by the above
argument by a heuristically chosen factor less thun but close to one, so as to reduce
the chances of a marginal rejection at the next step. Algorithms may also bias decisions
in favour of retaining order, and may (particularly in the case of those using inter
polatory step-changing techniques) include an embargo against changing the steplength
too frequently.

Technique In §4.7-§4.IO we have already considered in detail techniques for
step-changing. The technique for changing the order is much more straightforward. If
the technique for changing the steplength is either variable coefficient or interpolatory
using backward differences, then the reduction of the order from k to k - I is achieved
by throwing away the kth difference;an increase of order from k to k + I is accomplished
by forming the (k + I)tb difference, which is simply achieved by retaining all of the back
data at the completion of the step rather than throwing away the data at X. U _I' as
one normally would do. In the case when step-changing is done via a Nordsieek vector,
an order reduction of one is achieved by ignoring the last component of the Nordsieck .
vector (though, as shown by Hall (1976), the resulting method is no longer equivalent
to an Adams method). An order increase of one' can be achieved- by estimating an extra
derivative in the Nordsicck vector by differencing the current last component.

It is natural to ask whether the convergence properties of predictor-corrector methods,
previously established on the assumption of constant steplength and constant order,
still hold in a VSVO formulation. Results by Gear and Tu (1974)and Gear and Watanabe
(1974)show that a VSVO algorithm based on ABM methods with step-changing achieved
by a variable coefficient technique is always convergent (as the maximum steplength
employed in the interval of integration tends to zero). If an interpolatory technique is
used then convergence is assured if the step/order-changing technique is such that there
exists a constant N such that in any N consecutive steps there are always k steps of
constant length taken by the same kth-order ABM method, for some value of k. These
results emphasize yet again that variable coefficient techniques, though usually more
expensive to implement, are basically sounder than interpolatory techniques.

Finally, we mention a few of the better known VSVO codes and indicate which
step-changing techniques they use. The first two VSVO implementations appeared

,VI



5 Runge-Kutta Methods

5.1 INTRODUCTION

The simplest of all numerical methods is Euler's Rule.
I

Y. + 1 = .1'. + "f.·

It is linear in Y. and I. and. being a one-step method, presents no difficulty when we
want to change the steplength; but of course it has very low accuracy. Linear multistcp
methods achieve higher accuracy by retaining linearity with respect to .1'. + j and
I. +J' j = 0, I, ... , k,but sacrificing the one-step format. The result of retaining the linearity
is that the local error has a relatively simple structure, which is why we are able to
estimate it so easily via Miln~'s device; the cost of moving to a multistep format is. as
we have seen, the considerable difficulties encountered when we want to change
steplength.

Runge-Kutta methods develop from Euler's Rule in exactly the opposite direction:
higher order is achieved by retaining the one-step form but sacrificing the linearity. The
result is that there is no difficulty in changing the steplength, but the structure of the
local error is much more complicated, and there exists no easy and cheap error estimate
comparable with Milne's device. We are rather in a Catch-22 situation: with linear
multistep methods it is easy to tell when we ought to change steplength but hard to
change it, while with Runge-Kutta Methods it is hard to tcllwhcn to change steplength
but easy to change it!

The general s-staqe Runqe-Kutta method f~r the problem

y' = [ix, y), y(a) = ,/. [: IR x IR m
--> IR m

is defined by

s

Y.+I =Y.+" I hjkj

i= I

where

(5.1)

(5.2)

i = 1,2•... ,s

It is convenient to display the coefficients occurring in (5.2) in the following form. known

We shall always assume that the following (the rOIl'-sum cOllditioll) holds:

S I'

e; = I aij' i = 1,2•... , s.
j= I

(5.3)



\
kl = f(x., y.),

k2= Is», + C2'1,Y. + c2hk d.

k 3 = It», + ('3 ' 1, Y. + (c 3 - an)"k , + h1l 3 2k 2)

Implicit method:
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alj = 0, j > i, j = 1,2, ... , s -ee- A lower triangular.

alj ¥- °for some j> i, -ee- A not lower triangular.

A remark that can be made about Runge-Kutta methods (and one which seldom
appears to be made) is that they constitute a clever and sensible idea. The unique solution
of a well·posed initial value problem can be thought of as a single integra! curve in
R'"+I; but, due to truncation and round-olT error. any numerical slution is. in effect.
going to wander off that integral curve, and the numerical solution is inevitably going
to be affected by the behaviour of neighbouring integral curves. Thus it is the behaviour
of the family of integral curves, and not just that of the unique solution curve. that is
of importance, a point we shall return to when discussing stiffness later in this book.
Runge-Kutta methods deliberately try to gather information about this family of curves.
Sueh an interpretation is most easily seen in the case of explicit Runge- Kulla methods.
where, from (5.2) and (5.3), we have

Semi-implicit method:

(5.6)

(5.4)

(5.5)

Note that. hy 15.3), the components of c are the row sums of A. Clearly an s-stage
Runge-Kulla method is completely specified by its Butcher array

~ b~.
An alternative form of (5.2). which in some contexts is more convenient, is

Y.+, = Y. + h t b,f(x. + c,h, f t ). },= 1

a

Y, = Y. + h L aljf(x. + cjh, f j ) . i = 1.2.... .s.
}= I

We define the s-dirnensional vectors c and b and the s x s matrix A by

c=[c\.c2•...• c,]T, b=[b ••b2,.... b,]T, A=[alj].

where

150 RUNGE-KUTTA METHODS

as a Butcher array:

c\ al. all alJ
('2 a21 an a2,

c, a,1 a,2 ass

bl b2 b,

H in (5.2) we have that alj =°for j ~ i, i = 1.2, , s, then each of the k, is given
explicitly in terms of previously computed kj , j = 1.2, , i-I. and the method is then
an explicit or classical Runge-Kutta method. If this is not the ease then the method is
implicit and, in general, it is necessary to solve at each step of the computation an
implicit system for the k j • Note that this system has dimension ms, so that implicitness
in a Runge Kutta method poses an even more daunting computational problem than
does implicitness in a linear multistep method. There is a sort of half-way house; if it
happens that a'j = °for j> i, i = 1,2, ... , s, then each k, is individually defined by

k, = f(X' + c,h,y.; tail})' i = 1.2.... , S
j=1

and instead of having to solve at each step a nonlinear system of di~ension InS, we
have to solve s uncoupled systems each of dimension m; this is less demanding, but still
more so than in the case of an implicit linear multistep method. Sueh methods are ealled
semi-implicit. Summarizing, we have:

The forms (5.6) and (5.2) are seen to be equivalent if we make the interpretation

i= 1,2, ... ,s. (5.7)
'/

• Start from (x., y.), take one step of Euler's Rule of length c2 " and evaluate the derivative
vector at the point so reached; the result is k 2' We now have two samples for the
derivative, k , and k2, so let us use a weighted mean of k , and k 2 as the initial slope in
another Euler step (from (x.,Y.) of length C3'1. and evaluate the derivative at the point
so reached; ~he result is k3 . Continuing in this manner.' we obtain a set k,. ; = 1.2..... s
of samples of the derivative. The final step is yet another Euler step

,
Y.+I =y.+11 L bjkj

i= I

from' (x.,Y.) to (x.+ ,,}'.+ d. using as initial slope a weighted mean of the samples
kl,k 2 , ... ,k,. Thus, an explicit Rungc-Kuua method sends out feelers into the solution
space, to gather samples of the derivative, before deciding in which direction to take
an Euler step, an eminently sensible idea.

5.2 CONSISTENCY, LOCAL TRUNCA TION ERROR.
ORDER AND CONVERGENCE

Explicit method:

aij = O,j ~ i, j = 1,2, ... , s -ee- A strictly lower triangular.

In Chapter 2 we considered the general class of methods (2.4),

l

~ IXjY. + j '= luPf(Y' H,}'. H _ I'" .• Y••x.; 11).
J=O •

(5.8)
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Applying these conditions in the case when (5.9) holds, we see that the necessary and
sufficient condition for a general Rungc-Kutta method to be consistent is

Following the discussion in §3.5, we define the local truncation error T.+ 1 of (5.2) at
'1:.+ ,·to be the residual when r.+j is replaced by y(x H j ), j = 0, I; that is,

we sec that the class (5.X) contains the class of Runge-Kutta methods.
Recall from equations (2.9) of §2.4 that the necessary and sufficient conditions for

(5.X) to be consistent arc

(5.13)

11 is possible to establish bounds for the local and global truncation errors for
Runge-Kutta methods, but these turn out, to be. ill practice, as useless as the
corresponding bounds for linear multistep methods. Once again. if the method has order
p, the local truncation error is O(/I P + ') and the global truncation error is 0(/1").

5.3 DERIVATION OF EXPLICIT RUNGE-KUTTA
METHODS FOR SCAL1J.R PROBLEMS

Runge-Kulla methodsrst appeared in 1895,and up to the 1960sonly explicit methods
were considered. Moreover, the derivation of such methods invariably assumed a scalar
problem, and it was tacitly (and wrongly, as it turns. out) assumed that nothing of
significance would change when these methods were applied to systems. The technique
for deriving the order conditibns consisted of matching the expansion of the solution
generated by one step of the Runge-Kutta method with the Taylor expansion of the
exact solution, the terms in the expansions being calculated essentially by brute force.
Such calculations are notoriously heavy and tedious, particularly if high order is sought.
In this section we derive in this w,ay explicit Runge-Kutta methods with up to three
stages, this being adjudged sufficient to persuade the reader (without exposing him to
too much tedium) that some belle; approach is needed.

By (5.2) and (5.3) the 3-sta~e explicit Runge-Kuua method can be written as

Y. + \ = Y. + Ir(hl k) + h2k 2 + h3k., )

k, = f(x., .1'.)

k 2 = f(x. + IrC2' Y. + lre2k)

k3 = It», + IrC3,)'. + II(e, - cl,12)k l + lra'2k2)'

We assume that f(x, Y) is sufficiently smooth, and introduce the shortened notation

(5.9)

(5.10)

')'0= - I,'1'1 = I,

'/'(l,l'(x.),x.:O)= f(x.,y(x.» <:<> t bi = I.
i-I

..

rPf(Y.' x.: h) = L b1k']
i= 1

k; = f(x. + C/l,y. + h jt, a;jkj), i = 1,2, .. . ,s

k = I,

On putting

7~ , , = y(x. + ,) - y(x.) - hrPj(y(x.), x.: h), , (5.11)

where rP( is defined by (5.9). If p is the largest integer such that T.+, = O(hP + I), we say
that the method has order p. If, as in §3.5, we denote by YH' the value at x.+ I generated
by the Runge K utta method when the localizing assumption that Y. = y(x.) is made, .
then, since

we have [rorn (511) that I> f(x,y),
L> of(x, .1')

X' ox'
i1 2 ((x, 1')

Ix,( == f,,):= ~ 1 '".
,.xi .\'

(5.12)

(Compare with {~.25) of ~J.5.)

If the method is consistent then it follows from (5.10) that

etc. all evaluated at the point (x., y(x.»., Then, on expanding y(x. + I) about .x, as a
Taylor series, we have

y(x.+ ,) = y(x.) + hylll(x.) + ~lr2yI2J(X.) + ~h'.\'13J(xn) +0(/i4).

y(x., I) - y(x.) - rPt(r(x.), x.; h) = hy'(x.) - hf(x., y(x.» +0(h2)

= 0(h 2
),

since y'(x) = f(x, r(x)). Thus, from (5.11), a consistent method has order at least I, a
'result in line with our definition of order for linear multistep methods. Note also that
Euler's Rule, which is both a Runge- Kutta and a linear multistep method, has order I
whichever definition of order one uses.

It is obvious Irorn (5.9) that Runge -Kutta methods always satisfy the root condition
of §2.5 and hence, by Theorems 2.1 and 2.2, are convergent provided only that the
consistency condition (5.10) is satisfied.

Now,

y(1)(x.) = f,

y(2)(X.) = I, + f"y' = I, + ff,·
y(3)(x.) = fn + fxJ + fU,., + f,·J) + f,U, +If,)

= fn +ut.,+ I' I, + Iltx + If,).

Let us shorten the notation again by defining

F:= I, + ffy, G:= L, + 2If,,. + f 2I,."

(5.14)

(5.15)
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(5.17)

so that we can write the expansion for y(x.+ ,) as

(5.16)

In order to u~e (5.12), we need a similar expansion for Y. + I' Expanding the k, given
by (5.13) we have k , = I and

kz = f + !rczU, + kt!,) + ~h1c~(fH + 2kJx, + kif,.,) + O(lIJ).

On substituting f for k , and using the notation in (5.15), w get

kz = I + hc1F + ~hlc~G + O(h J
)].

This is a pair of equations in three unknowns, so there exists a singly infinite family of
explicit two-stage Runge-Kutta methods of order 2. It is evident from (5.16) that no
member of this family can achieve order higher than 2. Two particular solutions of
(5.20) yield well-known methods:

(i) The modified Euler or improved polygon l~el/JOd is given by b l = 0, b1 = I, C 1 =~. Its
Butcher array is

We can treat k, similarly (but now the tedium sets in!). (ii) The improved Euler method is given by hi = /'2 =~, ('1 = I. Its Dutcher array is

kJ = I + hlc J f x + [(cJ - aJ2)k l + aJ2k1 JI, }
+ ~IIZ{c~fxx + 2cJ[(cJ - aJ2)kl +aJ2k1Jfx,

+ [k.. - adk, + aJ2k zJ1fyy} + O(h J
).

Now write f lor k,. substitute lor k1 from (5.17) and retain terms up to 0(h1
) to get

~ I I .

---h-T1 1

Three-stage We can achieve order 3 ifwe can satisfy the following conditions

On substituting from (5.17) and (5.18) into (5.13) and using the localizing assumption
(and the attendant notation introduced in §3.5), we obtain the following expansion for

Y.+ 1= y(x.) + hblI +0(h4
).

From (5.12)and (5.16) we sec that the best we can do is set b, = I, whence T. + I = 0(h1
).

Thus there exists only one explicit one-stage Runge-Kutta method of order I, namely
Euler's Rule.

,
:i

o ~

I
:i
1
:i

(i) Heun's third-order formula with Butcher array

o

b, + b1 + bJ = I

b1c1+ bJcJ = t
blC~ + bJc~ = !

bJ claJ2 = t·
There are now four equations in six unknowns and there exists a doubly infinite family
of solutions; consideration of the h4 term, which ..fve ignored in the derivation, confirms
that none of these solutions leads to a method or order greater than three. Two particular
solutions lead to well-known methods:

(5.19)

(5.18)

Y. + I = y(x.) + h(b, + b1 + bJ)f + hZ(b1c1+ bJcJ)F

~ hJ[2bJc1aJ1FI, + (b1C~ + bJc~)GJ + 0(h
4

) .

II is now a question of trying to match the expansions (5.16) and (5.19). Let us see what
can be achieved with one, two and three stages. (For more than three stages, there would
be a terlT,l k4 in (5.13) which would contribute additional terms.)

One-stage The method (5.13) becomes l-stage if we set b1 = bJ = O. Then
(5.19) reduces to

Two-stage The method becomes two-stage if 'we set bJ = 0, when (5.19)

becomes

Y. + I = y(x.) + h(b, + b1)f + h1b1c1F+ t hJblC~G +0(11
4

) .

On comparing with (5.16) we see that order 2 can be achieved by choosing

(5.20)

(ii) KUlla's third-order formula with Butcher array

0
I I
1 2
I -1 2

I 1 I
6 3 6



By a similar approach it is possible to show that there exists a doubly infinite family
of explicit four-stage Runge Kutta methods of order 4, none of which has order greater
than 4. By far the best known of these is the classical RUllfJe~Kulta method which has
Butcher array

So popular is this method that, when one sees a reference to a problem having been
solved by 'the Runge Kutta method', it is almost certainly this method that has been
used. As we shall see later, there turn out to be good reasons for choosing a four-stage
fourth-order I11ct hod, hut (5.21) docs not perform notably differently from other
fourth-order Runge Kutta methods. Of course, the presence of three zeros in A is
attractive, hut the author suggests another reason for its historical popularity. In the
pre-computer days, computations were performed on purely mechanical devices like the
'signal-box' Brunsviga. now to be found only in museums. Multiplication or division
was a tiresome business on such machines, involving a great deal of handle-turning. As
always, the main effort was in the function evaluations needed to produce the k; That
the r. and the (/ij in (5.21) arc always either I or! (as opposed to~, for example) inereased
the chances of any divisions in the evaluations of f terminating quickly!

This section has thrown up several points of interest. There exists a single explicit
one-stage Runge Kutta method of order I, a singly-infinite family of two-stage methods
of order 2. a doubly-infinite family of three-stage methods of order 3, but a doubly- ~not

a triply-) infinite family of four-stage methods of order 4; some sort of anomaly is
indicated. Secondly, the contrast with the order conditions for linear multistep methods
is interesting; in the latter we worked naturally with total derivatives of the exact solution,
and local truncation errors were multiples of hP +

'
y IP+ I) ( X n ) . From (5.16) and (5.19) we

see that the natural building blocks of Rungc-Kutta methods are not the totalderivatives
of the exact solution. hut rather certain functions. such as F and G (see (5.15)) of the
partial derivatives of I . Thirdly. in the case of linear multistep methods, the dimension
of the system was unimportant, and the development for a scalar problem would hardly
have differed from our development for an III-dimensional system. In contrast, the
development given above for a scalar ptoblem does not extend in any obvious way to
an III-dimensional problem: for example, how would we interpret (5.14) if y,f ER"'? This
last _comment is our starting point for the next section.

157

(5.23)

(5.22)f:IR"'->IR"', Ill> I

THE BUTCHER THEORY: INTRODUCTION

y(ll = I, .1'121 = fJ, yl3l = f",P + f;f.

y' = fly), y(a) = 'I<

Let us start by seeing what dificulties we get into by trying 10 adapt the approach of
the preceding section to the systems case. The first problem we hit is the counterpart
of (5.)4), where we need to express the total derivatives of r in terms of / and its partial
derivatives. For the scalar autonomous case (5.14) reads

What are the corresponding expressions when y,fEIR""1 To keep things simple, let us
consider the case 111 = 2, so that y = [I y, 2y] T, f = Cr, 2fJT Introducing the notation

we have 1.1'(1) = If, 2yll) = 2f, whence we find on differentiation that

5.4 THE BUTCHER THEORY; INTRODUCTION

The ideas we are about to describe can be traced hack to a paper by Merson (1957),
but their development into a major theory is due to 1.C. Butcher. in a long series of
papers starting in the mid-1960s. The reader who wishes 10 see a full account of the
theory is referred to the book by Butcher (I?87) which. incidentally, contains the most
comprehensive available bibliography on the subject of numerical methods for ordinary
differential equations, listing some 2000 entries. In the following sections we shall present
only a simplified version of the theory, aimed at enabling the reader to lise the theory
to establish the order conditions (and the structure of the local truncation error) and to
appreciate some of the consequences. In particular, we shall not give any proofs of the
theorems involved, and ou~ treatment of the algebraic aspects will be non-rigorous
(possibly to the point of offending some readers!).

Recall from §1.4 that, while there is a loss of generality in assuming that the scalar
initial value problem is autonomous, there is no such loss in the case of a problem
involving a system of ordinary differential equations. We are now dealing with systems,
and a useful simplification is achieved by assumjng the autonomous form

•
Rule in PEeE mode is equivalent to the improved Euler method. Find the three-stage explicit
Runge-Kutta method whichisequivalentto thesamepredictor-corrcctor pair in P(EC)'E mode.

5.3.3. Show that if j(x,y) '" g(x) the improved Euler method reduces to the Trapezoidal Rule for
quadrature and that Kulla's third-order rule and the popular fourth-ordcr method 15.2t) hoth
reduce to Simpson's Rule for quadrature. Show that l Ieun's third-order formula reduces to the
two-point ~adau quadrature formula J~ :F(x)dx = ~ F( - I) + Jn:) applied to J:: .h (II-,)dx

(5.21)

0
I I
"2 "2
I 0 I
"2 "2

0 0

I I I I
(; "1 "1 (;
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Exercises
or

5.:\.1. Find a solution of the third-order conditions for whieh C2 = CJ and b1 = bJ ; the resulting
explicit method is known as Nvstrom's third-order method.

5.3.2. Show that the predictor-corrector method consisting of Euler's Rule and the Trapezoidal

121_(1/1
.I' - 'I,

(5.24)
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5.5 THE Mth FRECHET DERIVATIVE;
ELEMENTARY DIFFERENTIALS

Note that (5.24)can be written as y{21= af/(ay)f, where af/ay is the Jacobian matrix,
a natural generalization of the second or'(5.23). in contrast, (5.25) cannot be written in
matrix/vector form,and it does not look at all like a generalization ofthe last of(5.23).

Clearly we cannot go on like this to evaluate even higher derivatives (and we have not
yct considered the case of general mI. A better notation is essential. and indeed more
than a notation is needed; we need to discover a structure for these higher derivatives.
(On thc question of notation, the reader should be warned that in the following sections
we shall continually be changing (and simplifying) notation; the guideline will be that
as soon as wcbecome familiar with a particular notation we will try to simplify it further.)

and

'r'" = 'f"Cfr + IfI2CfWf) + 'fICflef) + If2ef)]

+ If2Ief)Cf) + If22ef)2 + lf2eflef) + 2f2(2f)]

1.1'131= 't, tl 1
f) 1 + 2f12CfWf) + 'I, CUIf) + If2ef)]

+ 2f1 Ief)Cf) + 2f22ef)2 + 2f2[2f1Cf) + 2f2].

(5.25)

This somewhat daunting definition becomes perhaps a little less so if we make the
following comments:

(I) The value brfIMJ(Z)(''') is a vector in Rm, but it is typographically difficult to display
it as a vector. The vector e, in (5.26) is introduced merely as a notational device to
overcome this; the expression between the first summation and the vector e, is the
ith component of the vector.

(2) Repeated subscripts are permitted in (5.26) so that all possible partial derivatives of
order M are involved. Thus. if M = 3, m~ 2, the following partial derivatives will
appear:

aJ('f) I I i aJef)
'L«, =-- fl12 = fl21 = f211 =-----

a(lz)J' aCz)2aez)

aJef) ,_ aJef)
''[ 1'[ 'f '[ i = I, 2.

122 = 212 = 221 ~ aez)aez)2' 222 - D(~).J'

(3) The argument z simply denotes the vector with respect to whose component we are
performing the partial dilTerentiations.

(4) An Mth Frechet derivative has M operands; this is the key property to note.

Let us now put m = 2, and see if we can interpret the results (5.24) and (5.25) of the
preceding section in terms of Frechet derivatives.

Following Butcher (1972), we introduce a key definition. that of the Mth Frechet
derivative:

Case M= 1

Definition Let z, f(Z)E IR m
. The Mth Frechet derivative off, denoted by PM)(Z). is an

operator on IRm x IR m x ... x IRm (M times), linear in each of its operands, with value

PMI(Z)(K I,K 2 , .. ·,KA/)= f f f ... ·, f 'hi> .-j"j~K/2K2,···.J"KMei
--- l=tj.=lj;z=1 1M"" 1 .

2 2

jll)(z)(K.) = L L 'fj,(l'K.)ef,= I j, = I

(5.28)

where

Now replace z by y, and K I byf(noting that all four are 2-dimensional vectors). Equation
(5.28) now reads

(5.26)

(argument) (operands)

where

f'[ _ a('f)
1- /Jez)'

i= 1,2.

Thus. the second derivative of y is the first Frechet derivative of f operating on ]: from

by (5.24). In the context of deriving Runge-Kutta methods, we do not really need to
be told that partial derivatives off are to be taken with respect to the component of y
(what else is there?), so that we can shorten the notation in (5.29) to

(5.30)

(5.29)

y(2)=jlll(f).

(5.27)

t = 1,2, ... ,M,

aM

a(l'z)a(i>z),... ,ae"z) If(z)

e j = [0,0, ... ,0, 1,0, .... O]TElRm

1
(ith component)

lind

"
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(5.24) we see that this is equivalent to saying that the second derivative of .I' is the
Jacobian off operating on f.

Case M = 2

Frechet derivative

f(M)(F 1,F2'.··' FM )

is an elementary differentia! of order

(534)

2 2 2

/12I(z)(K I,K'].) = I I I 'ff'h( h Kd(),K 2)e,
i = I i,> I ii> I

M

I + II',·
$""1

(5.35)

Now if, in (529). we replace the operand fly) by the operand f(l)(y)(f(y)) (given by
(5.29) Itself), the result IS precisely (5.32), Hence, shortening the notation as in (5.30),
('i.25) can be written as

= r- 1I ,,(1K ,)(1 K2)+ l/12('K,WK 2)+ 1.. f2d 2K ,')(1K 2) + IIne Ktle K2)]

2f l , ( ' K 1)(' K 2) + 2I'2(1K, )eK 2) + 2f21eK d(1 K 2)+ 2IneK de K 2) .

Replace z by .I' and put K' = K 2 = I to get

(5.36)

We now identify all elementary differentials of orders up to 4 (and simplify the notation
even further).

Notes
(1) The elementary differentials F l' F2"'" FM appearing as operands in (5.34) need

not be distinct; likewise, the orders 1', in (5.35) need not be distinct.
(2) Let us slim down the notation for elementary differentials as far as we sensibly can.

By now we are familiar with the fact that an Mth Frechet derivative has M operands,
and we do not need the notation to tell us twice what the order of the Frechet
derivative is. In (5.34), we can see that there are M operands, so we do not need the
superscript (M); nor do we need to be reminded at every stage that we are dealing
with Frechet derivatives of f. All we need is a simple notation, such as the brackets
{... }, to indicate that a Frechet derivative of the order indicated by the number of
operands within the brackets has been taken. Strictly, we do not even need the
commas to separate the operands, so our shortened notation for (5.34) is

(3) The order of the elementary differential (5.36) is, by (5.35), the sum of the orders of
the elementary differentials F" s = 1,2, ... , M plus I; thus the rule is, sum the orders
and add 1 'for the brackets'.

(5_32)

(5.33)

where the notation on the left side indicates that the partial derivatives are with respect
to components of r, not z. On comparing with (5.25), we see that the right side of (5.31)
represents some, but not all, of the terms on the right side of (5.25), and that we obtain
,,1.1' ,by adding to the right side of (5.31) the vector

1- 'I, [lId'/) + '(2en] + 1(2 [2f dl.f )+ 2f 2efl ]]
L2Ir/d If) + 'I2ef)] + 2f2[2.f~(If) + 2f2ef)] .

Comparing this with the last of (5.2J) (the corresponding result for the scalar case)
we see that we have achieved a generalization which appears natural; it is straight
forwf~rfd to show that when III = I, jl2'(f,f) does reduce to f yyI 2 and f(l)(f(ll(f))
to. r .

_\\,e,have. of course, proved the results (5.JO) and (5.33) only for the case III = 2, but
it is not hard to see that they will hold for allm. Thus, we have seen that yl21 is a single
Freehet derivative of order I and that J,l31 is a linear combination of Frechet derivatives
of orders I and 2. In general, y,r1turns out to bea linear combination of Frechet derivatives
of orders lip to I' I. The components in such linear combinations are called elementary
differentials; they are the counterparts for systems of terms like F and G (see (5.15)) for
scalar problems. and are the natural building blocks for Rungc-Kutta methods. They
are defined recursively as follows:

Order 1 There exists only one elementary differential, I·
•

Order 2 The only possibility is to take M = I. and the single operand to have
order I; this identifies the operand as I, and there thus exists just one elementary
di~erentjal jl1)(f) = {I}

Order 3 There are now two options. We could take M = 2, in which case
both of the operands must have order I, and thus must be f, giving the elementary
dilTerential fl2l(j,f) = {If}. The other possibility is to take M = I, in which case the
single operand must have order 2, and can only be jO)(f) = (fl, giving the elementary
dilTerential jl1)(f(1)(f)) = {{f}}. We can shorten the notation further by writing

j

t' for fff .. ·t; h for {{{ ... { and }I for }I I ... }
Definition The elementary differentials F,: IR'" -+ IR'" ~f f and their order are defined ,.
recursively hy ".

(i) I is II,e only elementary differential of order I, and
(ii) il F" s = 1,2, ... , Mare elementary differenttais of orders 1', respectively, then the

Note that, with this notation, the order of all elementary differential will be the sum of
the exponents of f plus the total number of left or right brackets. There are thus two
elementary differentials of order 3, namely {l2} and {d)z.
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N umber of trees

ROOTED TREES

,0 -'$>\

Trees

/

V, >
v-,0,Y,<

In the preceding section, we saw that there were also precisely I, 1,2 and 4 elementary
dilTerentials of orders 1,2,3 and 4 respectively. The analogy between the proliferation
of elementary differentials and that of trees stems (no pun intended) from the fact that
if we graft trees II' 12, ... ,IM of orders r l ,r2 , ... ,r M respectively on to a new root, then
the result is a new tree of order I + L:~ I r" that is, the sum of the orders of the
constituent trees plus one for !-he new root; this is precisely the same rule as (5.35) for
elementary dilTerentials. We can see as follows that there is a one-to-one correspondence
between elementary dlTerentials and trees:

We shall use the notion of 'grafting' two or more trees on to a new root to produce a
new tree, thus

Let us draw all the tree of orders up to 4.

Order

1
::J

2

3~
r

"i.:
4

(5.37)r'" = {I},

RUNGE-KUTTA METHODS

M = 3 => operands fJ.f =>elementary dilTerential {f3} ,

M = 2-s opcrunds I, {I} =>elementary dilTerential {f{fh (=={d}f})

{

operand l.el =>c1ementarydifferential {zf2lz
M = I => or

operand {zfl2=>elementary differential {3I} 3'

Order 4 There are four elementary dilTerentials:

S.S.1. (i] Given the differential system u' = uv, v' = u + v, calculate, by direct differentiation, ulJ ) and
,,'" in terms of u and v,

There is dearly a combinatorial problem in trying to determine an the elementary
differentials of given order. This, and other questions, can be answered by investigating
an analogy between elementary differentials and rooted trees, which we shall develop
in the next section.

We conclude by noting that we now have even more concise expressions for the total
derivatives yO) and yl31; we can now rewrite (5.30) and (5.33) in the form

The reader is invited to compare the latter of these with the horrendous equations (5.25)
(which covered only the case //I = 2) to appreciate how much progress has been made
in taming these higher derivatives!

162
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5.6 ROOTED TREES

, Example,.

Let an be the number of trees of order 11. Then at>a2, ... , satisfy termwise the identity

a l +a2u +a3u1 +0 ... == (I - u)-·'(I - u1)- . ' (1 - lI"r"j ..·.

(i) Let I, the unique elementary differential of order I correspond to the unique tree of
order 1, which consists of a single node.
(ii) If the elementary dilTerentials F, of order r" s =! I, f" ...,M correspond to trees I, of
orders r., s= 1,2, ... ,M, then let the elementary dilTerential {F,F 2 , ... ,FM } of order
I .+ L~ 1 r. correspond to the tree of order 1 + L:~ I r, obtained by grafting the M trees
F" s= 1,2, ... ,M on to a new root.

Fr-I I = V F 2 - 12 = ./ F 3 - t J =Y
then {F IF2F3 l -~

In the next section we shall make this correspondence a little more formal, but for the
. moment we note that the number of elementary' differentials of order r must be the same

as the number of trees of order r. A result from combinatorics answers the question of
how many trees there are of given order:

roo'(oot

The only rules (which arc shared by most 'trees of the horicultural variety) are that there
must be just one root, and branches are not allowed to grow together again/Thus the
following arc not allowed:

(ii) Let y=[u,[)J r, f=[ur:.u+v]I Calculate fI1Ilf"llf)) and fl2llf,f) and check that
1'''' =fl'U"'( Il) + f"'( {.II gives the result obtained in (i).

(iii) Repeat (il and (ii) for the system u' = UVIV, v' = u(v + IV), IV' = v(v + IV).

"

Hooted trees arc algebraic creatures, and a rigorous treatment would demand an
approach via graph theory, such as can be found in Butcher (1987). However, we can
gel by with a very naive approach by simply not distinguishing belween a rooted tree
and its graph, and 'defining' the latter by pictures. Thus we say that a rooted tree
(henceforth, just 'tree') of order II is a set of n points (or nodes) joined by lines to give
a picture 'such as



164 RUNGE-KUTTA METHODS ORDER CONDITIONS 165

From this we can obtain ,the following table: What is meant by 'essentially different' is illustrated in the following examples.

[[ [ ... [ by [t and l"]]] by ]t
'-v--' '--v--'

II 2345678

a. I 2 4 9 20 48 115

(5.38)

and'~',

Table 5.1

Name Tit) a(l) y(l) (1(1)

I.

[r] 2 2
~-- ------

[r2] 3

rt.n 3 6
~~----~~._-

[ t-'] 4 (-, 4

[r[-n 4 I 8

[[r2]] \ 4 2 12

[[[r]]] 4 24

/

v

<

1'(1)'
a(I)= .

a(l)}'(I)

Tree

Exercise

Table 5.1 displays 1'(1), a(l), }'(I) and a(I) for all trees I of order up to 4.

etc. are not regarded as essentially different labellings, and a(l I) = I.

• '2 =r-r.n =\>' Then ,0, . ,0, and .J,, , ,
are regarded as essentially different labellings, and a(12 ) = 3. In any event, we have from
combinatorics an easy way of computing a(I), n.amely ,

5.6.1. Extend Table 5.1 to include all trees or order 5,

'-limesk·times

For example,

'I=[r] .(

12 = [r[r]]( = [[r]r]) = [r[r]2 = (>
'-, = [t11;J = [[r][r[r]][r[r]]]

= [2r][r[r]2[r[r]3 = 0>

Clearly, we need a notation for trees. In the preceding section, we saw that all
elementary differentials could be labelled by combinations of the two symbols f (the
unique elementary differential of order I) and { ... } meaning 'we have taken a Frechet
derivative (of the order indicated) of the operands appearing between the brackets'.
Likewise, all trees can be labelled with combinations of the symbol r for the unique tree
of order I (consisting of a single node) and the symbols [ ... ] meaning 'we have grafted
the trees appearing between the brackets-onto a new root'. We shall denote n copies of
the tree II by I~,

(We note in passing lhat it is rather easier to write down, say, all nine trees of order 5
than it is to build up all nine elementary differentials of orderS in the way we did 'n
the preceding section.)

In each case, the order of the tree is the sum of the number of appearances of r and of
either 1or [. Such lahcllings arc clearly unique, provided we do not distinguish between,
say, [r[r l l and [[rJr] (just as we do not distinguish between {f{f}} and {{f}I}.
In addition to the order of a tree, we shall also need the symmetry and the density of a
t rcc, defined recursively as follows:

Definition The order 1'(1). symmetry a(l) and density y(t) oj a tree t are defined by

r(r)=a(r)=y(r)= I,
5.7 ORDER CONDITIONS

(/nl! Let us formalize the correspondence between elementary differentials and trees con
sidered in the preceding section.

a([I~'t;'·.. ]) = n1!n2' .. ·(a(ttl)"'(a(t2))"''''

y( [I~'t;'···]) = 1'( [t~'t;' ... ])(y(ttl)"'(y(t2))· ' ....

Finally, let (l(l) be the number of essentially different ways of labelling the nodes of the
tree I with the integers 1,2,.,., r(t) such that along each outward arc the labels increase.

Definition The function F is defined 011 the sel T of all trees /J)'

Table 5.2 shows F(t) for all trees t of order up to 4.

(5.39)
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Table 5.2 and

Order Tree F(II
i = 1,2, .. . ,5. (5.42(iiill

Recall that our first objective in seeking to derive order conditions for the general
Runge-Kutta method was to lind a means of expressing the total derivatives of yin
terms of the partial derivatives of f. This is achieved in a remarkable theorem of Butcher,
which states that, for general q, y(q) is a linear combination of all elementary differentials
of order q and, moreocvcr, tells us what the coefficients in the linear combination are.
A proof of the theorem can be found in Butcher (1987).

Fheorem 5.1 Let y' = f(y), f: IR'" -+ IR'". Then

dq I~ y.(II) ,q = 1,2, ...
dl,q h=O

appearing in (5.43). First, we modify the notation in (5.42) by defining ", + I,i:= hi'
i = 1,2,... ,5, and then define on the set T of all trees, a new function ~/(r). which depends
on the elements of the Butcherarray of (5.42).

(5.44)

Making the localizing assumption that y(x.) = J'. ( = .1".(0»), we see that the method (542)
will have order p if the expansions (5.43) and (5.44) match up to (and including) the
terms in h". Theorem 5.1 enables us to express the derivatives .1"0 1 appearing in (5.44)
in terms of elementary differentials of f; we need a similar result for the derivatives

I

Let us define the right side of(5.42(i)) to be y.(II), which we then expand as a Taylor s~ries

aboit h = 0 to get .

Y.+ 1 = y.(O) + '1~ .1'.(11)\ + ~ 11 2 d,

2

2 )'.(h1\ + . (5.4JI
dll h=O d I h=O

The corresponding expansion for the exact solution at x, + I is

y(x.+ tl = y(x.) + hy(I)(X.) + ~h2)'(2I(X.) + ...

f

{f}

{lJ}

{f(f}2
{,f2},

bf}J

/ [r)

V [r i )

" e,r],<
'J/ [ rJ)

~ [r[r),

[,r'),

> [Jr]J

2

4

By way of illustration, let us apply this theorem for p ~ 4; we sec at once that from
Tables 5.1 and 5.2 that

y'21 = {f}

yO) = {f2} + {1I}2

y'41= {f3} + 3{f{f}2 + {1I 2}2 + bfl3'

Note that the first two of these were already given by (5.3i;.
Recall from (5.2) and (5.3) of §5.1 that the generals-stage Runge-Kutta method for

the autonomous problem
Comments on Table 5.3
(1)The entries in Table 5.3are obtained by repeatedly using (5.45)in the following way.

111 Table 5.3 we develop the functions t/Jj(t) amI ~/(I) for all trees of order up to 4: all
summations are from I to s.

(5.45)

t/J,(f)= ±"'j , )
) = I

i/([l t t2,... ,IM])= t aljt/J jUi\t/Ji!2) .. ·t/JP.ll)·
)= I

(2) Define t/J(1):=t/J'~1(1).

Dejinition
(1) For i = 1,2, ... , s, s + I dejille all the set Tor alt trees IIII' filll('I;()".~ t/Ji by

(5.40)ylq) = L !X(t)F(t),
r("~q

where F(t) is defined hy (5.39) and !X(I) by (5.38).

y' = flY), y(a) = n, f: IR'" -+ IR'"
,

Y.+ 1 = Y. + h L b/k,
/= 1

is

where ,
ki = fly. + h L aljk),

j= 1

i= 1,2, ... ,5

(5.41)

(5.42(i))

(5.42(ii))

For i = 1,2, ... , s, t/J (f) =Lau = Ci' by (5.42(iii));
)

t/J(f) = L a,+ t.) =L b) = L bi> on changing the (dummy) summation index:
) ) I

For i = 1,2, ... , s, t/Jj([r]) = Laljt/J)(r) = La/F)~
) )
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and

A second theorem of Butcher enables us to calculate the derivatives appearing il
(5.43) in terms of the functions F defined by (5.39) and the functions !/J(r). A proof of th
theorem can be found in Butcher (1987),

(5.41

; = 1,2, ... s

It is, however, possible to misinterpret this rule-of-thumb. Consider for example th
fifth-order tree t ~ [[r][t]]' Applying (5.45), we have

"'i(t) = IaIjIajlcIIa}"c" = Ia'j(Ia jlcl)2,
j , " j I

The rule-of-thumb gives [[r][r]] -+ bacac, which could be interpreted to mean tha
,I,(t) =.... b.a..c,a ·.c. (which is not of course, the same as (5.46)). However, the structur'Y Lijk I f) ) JII. " c.
[[t][t]] should warn us that the correct interpretation of the rule-of-thumb is

n-u-n -+ b(ac)2-+ "'(t) = ~ b{ ~a'jcjr
j

Table 5.3

Tree "',(t). ;= 1.2,. ., s "'(t)

La'I(=e,) Lb,
I ,

./ [r] Laijc) Lb,cf
I ,

-----
'../ [ r 2] Laue: Lb,e~j ,
/ [[r]] La'ILal,c, Lb,aijcj

I ,
--"!_}----

\j.- l1 3]
La'f; L b,c~j f

0 [1[1]] L a,fl L allel L b,ctO,fj
j I 'j

Y u-:n La,jLal,e; Lb,a'fJj I 'j

> [[[1])] La'jLaj,Lalnc. Lb,.(J,pj,C,
I I iJl

l/t([r]) = La" II} = L"l'j= Lb,c,;
j j , ,

For;= 1,2, ... ,s, I/t,/[[r]))=Lalfl/t}([r))=LaIfL ajlc.;
j } I

I/t( [ l rJ J) = L a, , I.j L ajlc. = L bflj,c, = L b,aljc j, and so on.
j • jl '}

Theorem 5.2 Let the Runqe-Kutta method (5.42) define th« expansion (5.43). Theil th,

derivatives on the right side of(5.43) are givell by

~~ Yn(hll = I cr:(t))'(I)I/t(t)F(t)
\ dl1 q

h~O rfl1~q

where F(t) is eoaluated al Yn, "'(t) is defined by (5.45)allli «(r) alld )'(t) are delilled(IS ill§5.6.

(2) When a tree r has an alternative (but necessarily equivalent) label, then the func
tions '/t,It) arc independent of which label we choose. Thus the fourth-order tree [t[t]]
could equally well be labelled LEt]!], giving ",,(t) = L.ja'jL.,aj,clcj = L.}.la,jl}lc,c}=
Lj{l,;C,LI{ljICI, as in Table 5.3.

The main result follows immediately from (5.43)and (5.44)and Theorems 5.1 and 5.2:

Theorem 5.3 Tire Runge-Kulla melhod has drder p if I/t(f) = 1/;'(1) IIO/ds for all frees 0;

order r(t} ,.; p and does not hold for SOllIe tree of order /' + I.

Example
3-stage explicit: a l } = 0, j = 1,2,3, =C 1 = 0, (l2j = O,.i = 2,3, ((33 = O. From Table 5.4.

Hence to establish the conditions for any Runge Kulla method (explicit or implicit) I"

have order p, all we need do is write down all the trees of order up to /'. compute I/t(l I

and y(l) and set "'(I) = Ijy(l) for each tree in the list. Using the data provided by Table
5,3 and Table 5.1 of §5.6, we obtain the order conditions given in Table 5.4, for order,
up to 4.

.,
(3) l.vcntuully, all we will be interested in are the functions I/t(l); but clearly we need the
functions '/t,(I), i = 1.2.... , s for trees of a given order to enable us to calculate "'(t) for
trees of higher order.

(4) There is a useful rule-of-thumb which, if, used with care, shortens the process of
finding I/t(l): it works for all trees except t = r. It goes as follows: Read the name of the
tree from left to right, ignoring all second brackets]; interpret the first bracket [
encountered as h. all subsequent brackets [ as a, and r as c. Finally, link the suffices in
the natural way. noting that band c have single suffices, whilst a has a double suffix.
For example.

[r[ r]] -+ bcac-+ '" = I b,cia/f}'
'}

Order p = I:

Order p = 2:

Order p = 3:

b; + b2 + /13 = I

/1 2 C 2 + /13(3 =

"Ie; +b3c;=
b3(13 2C 2 =
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Table 5.4

Order conditions

Tree r(l} "'It) '" l/y(l)

2: b, '" t
I

<'
»

2: blc, "'![r] 2 . 2
I

-----_~_--

" [r 2
] 3 2: blc~ "'i

I

/ [[r]] 2: b,a,;:) =~<
I)

'W [r.1] 4 2: blc: _I-.,
\

<;> r-r-n 2: b,c,al;:) =~
Ij

''( [[-u 2: bla,;:: =-A
')

;; [[[r]]] 2: b,alja),c, '" i.
I)'

These are the same conditions as we obtained in §5.3. Note that the left side or the last
of the order 4 conditions in Table 5.4 becomes 0, and the condition cannot be satisfied,
thus showing that ordcr 4 cannot be attained by an explicit3-stage method.

2-stage implicit: From Table 5.4, order 4 requires that eight conditions be satisfied;
moreover, from (5.42(iii)) we must also have that C1 = all + a 12, C2 = a 2 1 + a 2 z; \giving
ten conditions in all. There arc just eight coefficients in the Butcher array, but it turns
out that there docs exist a unique solution given by the array

i + "6
3

1 ,/3
2-6
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Exercises

, 5.7.1. Extend Tables 5.3 and 5.4 to include all trees of order 5.

5.7.2. Show that each of the following Runge-Kutta methods has order 4.
(i) The popular explicit method (5.21) of &5.3,
(ii) The implicit methods

0 0 0 0
\ - I

2' 24
I I

i- f,

5.7.3. Show that the 3-stage method in 5.7.2 (ii) can be written in the form

I I /1
Y. + 1/2 - j Y.+, = j Y. + 8(f. - f. + I)

/1 .
Y.+, "'Y.+ (f.+4f~+112+ f., ,).

6

Suggest a use to which this form could be pUI.

5.7.4. Write the following method as.a Runge-Kuua method. and lind its order:

Jr .
~. + 2/.\ '" Y. + ~ [f(.\'. +2/.,) + f(l.l]

"Y.+! "'Y.+ ,j[3f(Y.+2f,\)+((y.ll

5.7.5. Show that the following method for the problem y' = ftd. 1(\,,) = I". f: IRm
~ !Roo. is

equivalent to <I 4-stage semi-implicit Runge-Kutta and hence show that it has order three:

Jr
),11 1 = V + _[f(),f11 )+ ((I')]

,,+1 ." 2 ,,+1 .~"

I
2

I
2

/1
YII1 = "III + ~[!(,,1I1 ) + f(.·111 )],,+2 J,,+ t 2 ),,+2 J,,+ I

(Strictly speaking, the Butcher array is not unique since replacing each plus sign in the
first row by a minus and each minus sign in the second row by a plus also represents
a solution of the order conditions; but since b, = b2 , both solutions give the same (unique)
method.)

Finally, it follows at once from (5.43) and (5.44) that if the method (5.42) has order p
then the local truncation error is given by

!lP+ I

LTE = L IX(I)[ I - y(I)Ijt(t)]F(I) + O(h P + 2) (5.47)
((I + I)! ,(t)=p+ I

where the functions F(t) are evaluated at the value y(x.) or the argument.

91

/1
Y.+I - Y.= 3[2f(y.+,)+'!(Y')] - ~[y~121- 21'~1} 1+ y.J

(Him: Use the alternative form (5.6) of §5,1 for a Runge- Kulla method.)

5.7.6. Define a bush tree to be a tree all of whose branches stem from the root of the tree, and a
trunk tree to be II tree with only one branch stemming from the root. Using the tables found in
Exercise 5.7.1, demonstrate that if L.Jail·) = l('~ for all i. then the order conditions for all bush
trees of orders 3, 4, 5 can be ignored, and that if L.,hiCli) = ,,)( I - <) for all j then the order
conditions for all trunk trees of order 3, 4, 5 ean likewise be ignored. Using the formal definitions
or r(l) and 1/1(1), prove that these results hold for general order greater than 2,
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5.7.7*. Consider the following semi-implicit Runge-Kutta method: 5.8 SCALAR PROBLEMS AND SYSTEMS

5.7.11*. The Trapezoidal Rule is being used to solve numcncally the problem y' = f(y), y(x o) = Yo,
t ;J" ·I~"'. using a constant steplcngth II where x, = -'0 + lIlt.

III lind p. the order of the method. and show that it is independent of (J.
1111 hpress the I'I.TI' in the form of a linear combination of elementary differentials of order

I' + I. opressing the coefficients in the combination in terms 'of (I only. To what does the
I'I.TI·: reduce in the case when I = Av. A a constant matrix?

11111 \1'1'1, (, I to the problem .1" = ..1.1' to obtain an expression of the form .1'.+, = R(lrA,fJ)y.. where
I<tlt ..1.(I) is a ra'lonal function of the matrix I,A. By comparing .1'., I with the exact solution
'\',. ,I. whirh satisfies 1'1\". I) = exp(lIAly(-,"). find the PLTE directly. and check that it is
identical WIth Ihe expression found in (ii].

1\,,/(' e,p""" = I j h..1 I (h..n'/2' + "'11)'/3' +

(5.49)

(5.4X)

r=I.2... M.jlM)(K., K 2 , ... , K M ) = !l'y.. .,rK.K2'" KM • K,EIR I
•

'-v---'
M-limt'''

Table 5.5 shows the corresponding reduction of the elementary differentials of orders
up to 4.

Recall the expansions (5.44) and (5.43) for the exact and the numerical solutions; tty
Theorems 5.1 and, 5.2 these become

A remarkable and (at the time) totally unexpected result that emerged lruut the Butcher
theory is that a Runge-Kutta method which has order f1 for a scalar initial value problem
may have order less than p when applied to a problem involving a system of differential
equations. To see how this can come about, let us consider what the Frcchet derivatives
and the elementary differentials reduce to when III = I. From the definition of ~5.5 we

see that when III = I the Mth Frechet derivative reduces to

where the F(I) are evaluated at (he value y(x n) = Yn = .1'.(0) of the argument.
If all the F(I) are distinct (which is certainly the case when /II> I) then the order is

4 iff ljJ(t) = l/y(l) for all trees of order up to 4. However, we see from Table 5.5 that
when Ifl = I two of the fourth-order elementary differentials reduce to the SOllll' scalar
expression. Specifically, let I, = [r[r]2' '2 = [2r2]2: then when III = I. F(I,) = F(l2) =t.s.r Hence, in the case of a scalar problem, the 11\'0 conditions

(1)
i, = Ill:" ~ (11Ik,')' k2 = ": + Itk, + fJltk21}
I"" - I. -1'[(2 + (I)k l +(i-(I)k 2 ].

Sit!' 1

\11 Show that applyin!! the Trupcvoidal Rule on two successive steps to advance the solution from
I" t" '-, is cquiv.ilcnt to ;lpplying a J-stage semi-implicit Rungc-Kuua method with steplength
/I = 2h.and \I rite dO\ln the Butcher array for this equivalent method. Verify the order directly
hv appl,ing the Run!!e Klllta order conditions and. by considering the trees [r 2] and [[r]],
chow thai thc truncation error after two steps is - ~ I,"yl"(-,o) + 0(11').

till (ienerali/e the result of ti) to the case of N successive steps; that is, find the equivalent
1\ j II·stage semi-implicit Runge Kulla method with steplength II = Nil, verify the order
and ,show that the truncation error at -'N is - i'i (-'N - .\-0)1I 2y13 l(xo) + O(h').

5.7.'1*. An explicit method for solving y'=((x,y). .1'(-'0)=.1'0, f:R x R"'-R"', consists of the
following:

Appl~lng the first t w» sleps is equivalent to applying a J-stage explicit Runge-Kutta method
with step!ength 1/ = 21t. Write down the Butcher array for this equivalent method and show that
it has order two Continue the process by writing down the Butcher array for the 4-stage method
\\lth 1/ = '.1/r which is equivalent to the the first three steps of the given method etc., until the
pattern is clear enough to enable you to write down the Butcher array for the (j + I)-stage method
\I ith stcplcngth 1/ = p, which is equivalent to the first j steps of the given method. Show that
llll~ equivalent method has order two.

Calculate (for i sufficiently large) Ej • the PLTE of the equivalent (j + II-stage method in terms
of elementary differentials. Since E, is the principal accumulated truncation error of the given
mvthod. we can define the principal local error of that method to be Lj , given by LJ:= £1- E_ I .

Show that (for sufficiently large j) I-J ( = L) is independent of j, and show that there exists a
unique value of the free parameter a for which L takes the form Kh'yIJ'(X), where K is
con-tunt.

SIt!';. i> 2
{

k ; . I: }(x"'i-' + llt,y,+j-I +n-a)Hj~' +allkj)

.\ .. I j - .\ .. ~ j -. 1 + Irk j + I'

((tI

2

3

4

Table 5.5

F(II Scalar form
._----_.._--

( I
-----------

[ r] {f} = (111(/) 1,1

[r 2] {f 2} = (l2l(/,f) 1,,/2
[2r]2 {2f}2";' f"'(/")(/)) U;l'(

[ r J ] {f'} = fIJl(/,f,f) [n,·.e
[r[r]2 {fU}2 = fl2l(/, {f} f (,.JIJ
[2r2]2 {2F}2=pll({f2lJ [,InI

2

[J r], {,fh = fOl( {d}2) (/,)'j
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(II) y' = .1'/( I + x/2). .1'(0) = I.and

A=B=C, but C+B

A=B=C, but C+B, Jl+A.

Table 5.6

Problem (I) Problem 1111
h Error Ratio Error Ratio

0.6 1.52 x 10- 3 1.46 x 10- 1

22.8 10.2
0.3 6.66 x IO-~ ',43 x 10- J

18 91
0.15 3.70 x 10- 6 1.58 x 10 4

16.5 8.6
0.075 2.24 x 10- 7 1.84 x 10-'

(I) .1" =../Y, .1'(0) = I,

Exercises

5.8.1. Apply (5.51) to the two scalar initial value problems .\,' = r, rIO) = I and .1" = x\" .1'(0) = I
and compute y(h) - YI for each, where y(x) is the exact solution. Deduce thai (5.51) is exhibiting
fourth-order behaviour for the lirst problem but third-order for the second.

5.8.2. Construct a table showing for each tree of order I' ~ 5 the expressions to which the
corresponding elementary differentials of f reduce whenfER I

.

5.8.3. (i) Deduce from the table found in the precedingexercise that when a fourth-order Runge-

Both have the same exact solution y(x) = (I + X/2)2. We solve these problems using the
Runge-Kutta method (5.51) which has order 4 when applied to the autonomous system
(I), but order only 3 when applied to the non-autonomous problem (II). The global
errors at x = 3.0 for a range o~ steplengths are given in Table 5.6.

The solution for problem (I) does appear to be more accurate than that for problem
(II), but this is not very compelling evidence; the problems arc different, even though
they have the same exact solution. What is more persuasive is the column of entries
headed 'Ratio', where we have calculated, for each 11, the ratio of the error when the
steplength is h to the error when the steplength is 1112. For a pth-order method, the local
error is O(hP+ I), but the global error is Q(/IP). Thus, fo'r a four-order method we expect
thls ratio to tend to 24 = 16 as Ir->0, whereas for a third-order method we would expect
it to tend to 23 = 8. The results in Table 5.6 thus indicate thai we are indeed achieving
fourth-order behaviour for problem (I), but only third order for problem (II).

We conclude with a simple numerical illustration. Consider the following two scalar
initial value p~~blems:

for p ~ 5,

Then, for I ~ p ~ 3,

for p = 4,

(5.50)

0
I
2

-I I 3 (5.51) :;2 -2
J,

I 0 4 I
3 -3

J
I 2 0 I
Ii 3 Ii

Z' = ,p(z), z(a) = {,

where e = [.I', XJT, 'p = [I, IJT, ( = [II, aJT We then find that

F(I ,) = {cp{ CfI} 2 = [(.fn + ffyy)(f. + ffy), OJ T
,

/-(12 ) = {2,p2 h = U~(.fn + ut.; + Pfyy),OJT,

This method has order 4 if applied to y' = f(y),f:!R 1->!R1
, but order only 3 if applied

to I" = I( .1'), I: !Rm -> ~~m, III > I. Of course, as we have seen in § lA, the general scalar
problem is not y' = .ltv), y(a) = /1, I: R I -> IR I, but

y'=I(x,y), y(a) = '1, f:R ' xR',->!R ' (5.52)

which we can write (sec ~ 1.4 again) in the form

and the coefficients of FIr ,) ( = F(r 2)) in the expansions (5048) would still match, so that
order 4 would he achieved. It can of course happen that a solution which satisfies (5.50)
docs not satisfy (5.49). An example of this phenomenon is alTorded by the 4-stage explicit
method with Butcher array

which arc not identical. It follows that all Runqe-Kutta methods of order up to 4 have..:
tlu: same orderlor a sysrel/l a/lll (or lire yeneral scalar problem (5.52).

l lowcvcr, if we proceed to fifth-order conditions we find that there are two trees
l rLlt]" and [2t[ tl, for which the corresponding elementary differentials coincide for
the qeneral scalar problem (5.52). Thus there exist methods which have order p (~5)

for the general scalar problem (5.52), but have order less th: n p for a system. As one
may imagine, there was considerable consternation when this result first appeared, since
there were in existence several Runge-Kutta methods of high order, invariably derived
as in ~5.J for a scalar problem, hut applied in practice to systems. (According to rurnour,
this was the case in the computation of the trajectories of some of the early space shots!)
However, it turned out that none of these methods fell into the class of those whose
order for a scalar problem differed from that for a system.

We summarize the above results as follows:

Statement A: The method has order p for y' = fly), f: nm -> !Rm
, m> I

Statement B: The method has order p for .1" = f(x,y), f: R I x R I -> R I

Statement C: The method has order p for y' = fly), f: R I -> !R I
.

could he replaced by the sinqte condition
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Kulla method is applied to a scalar equation y' = fry) then four of the elementary differentials
II luch occur in the expressi"l\ Ior the I'LTE reduce to the same expression 0(1).
lill ('(lnsider the cxplici! method

V is singular, there must exist a non-zero column vector q such that Vq = o.
and a similar argument establishes that the last column of V contains only zero

elements 0

()

7- 7-

I I

2 2 H7- R7-

I 1 ~I

~1 2
27- 2'1

(\ 2 1

(, 3 6

Sholl that for all values or '1 the order is precisely fo~r v.:hcn applied \0 the general system y' = f(Yl,
If' ,lr In thc casc when III = I. find the value of &ro'r 'which thc coefficient of 0(1). defined in (il,
IS zero.

The second result establishes an upper bound to the order that can be attained by
an explicit s-stage method. Its proof is a neat example of the power of the Butcher

approach.

Theorem 5.4 An s-staqe explicit Runqe-K till a lIIet/rod ClIlIIlOI /w('e orderqreater (Ir'1/I s.

Proof Let the s-stage method have order v.and consider thc pih order tree r = [p- 1r)p_I'
It follows from §5.6 that y(t) = pi and from §5.1 that 1jJ(t) = Li.J,.hJr IhIQii,aJd,"

Q ('. Since the method is explicit. (liJ = 0 Ior j > i. and it follows that 1jJ(t) == 0
Jr-,Jp - l Jr - l • I I

unless there exists a sequence i'}I,h,".,}p~2 of the integers 1,2." .. s SUCl t rat

i »]; >}2 > ". >}p-2 > I.

(Note that }p_ 2 = I would not do, since then c;r 1 = C I == 0.) Hence 1jJ(r) = 0 (and the
order condition 1jJ(I) == Ijy(t) contradicted) unless i;::, p. whence p ~ i ~ s 0

5.9 EXPLICIT METHODS; ATTAINABLE ORDER

In ~5.7 we saw how to establish the conditions for a' Runge-Kutta method to have
given order. We now turn to the problem of finding solutions of these order conditions,
and in this section we consider the question of what order can be achieved by an s-stage
explicit method. We start with two further results of Butcher. the first of which is a
technical lemma which we shall need later in this section.

The obvious question now is whether order I' = s can be attained for allx We consider
in turn the cases s = 2,3,4.5, and attempt to find the general solution of the order

conditions.

Two-stage methods
Butcher array

°Lemma 5./ tel U and V he two J x J matrices such thai

•
Order 2 conditions; hI + b2 = I, b2('2 =!.

The general solution isno

W l 2

Then either th« /lIS/ rol\' of U is tlu: zero roll' vector or the last CO/UIIIIl of V is (he zero
CO/IIIIIII ,'eclor.

('2 = A# 0, b, = I - IjlA, hz = Ij2i.,

a single one-parameter family.

Proof Clearly U V is singular and therefore either U is singular or V is singular. If U
is singular, thcn there exists a non-zero row vector I' = [1'1.1'2.1'3] such that pU = O.
whence pU V = 0 and it follows that

Three-stage methods
Butcher array

Since 11'111\'22 -1\'21 11',Z #0. it follows that PI =pz=O. and hence that [0,0,p3]U=0;
since /'.\ # O. it follows that lhe lust row of U consists of zero elements. In the case when

° a 2 1 =('2

(/31 + (/32 = (,.
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Order 3 conditions Order 4 conditions

(5.53)

(I) Ih,= I

(2) Ih,c, =!

(3) IhiC~ = ~

(4) Ih;a;l') = i
(5) Ih,c;' = *
(hI LhjCi!lijC j = ~,~,

(7) Ih 2 - 1,aijc) - 12

(8) Ih,a,jajk('k = -A-
Finding all solutions of this set of nonlinear equations is a formidable task. However.
results due once again to Butcher lighten the task considerably. We apply Lemma 5.1
quoted at the start of this section with

\ [ C
2

u= C~

).2

b _ _2_-_3_Jl_
2 - 6A(). - Jl)'

Jl()' - Jl)
aJ2 = ),(3;'-'=-2)

hI = 6).11 - 3(). +_~~,
6).11

1/[3.J.(). - I) + II]
ll.ll =

).(3). - 2)

where ). # 0, j, II, and II # O.

Case 2

b, + b2 + bJ = I

b2C 2 + bJcJ =!

b2C~ + bJc~ = 1
bJ a J2 C2 = *.

('ase I

On solving these equations, we find that the solutions fallinto three cases:

vi'O. where

lase)

I
hi = 4'

3
/12 =··_-w

4 '
I

aJ 2 =-,
4w

wi'O.
(5.54)

Four-stage methods
Butcher array

Thus there is one two-parameter family and two one-parameter families of solutions.
We might conclude from this that the pattern is clear, and that for 4-stage methods
there will be a three-parameter family of fourth-order methods, plus some families with
fewer parameters: we would be wrong!

The order conditions arc now too cumbersome to be written out in full, and we use a
summation notation: for the remainder of this section, all summations run from I to s,
the stage-number; where no suffices appear under the summation sign, the summation
is taken over al/ subscripts appearing in the terms to be summed.

0

('2 all

(' all (/J23

C4 a 4 1 (/42 (/43'

hi h2 hJ h4

a 2 1 = C2

aJI+aJ2=c3

a 4 1 + a42 + (/4J = C4•

Let V V = [wij]; then, using conditions (2), (3) and (5), we get II" 1 1 =!, II" 12 = 1= \I'll'

Wll = 1. Also,

W I3 = ~c{bil - cJ) - ~ h;ai}J=! - ~ - i = 0, by (2), (3) and (4),

w2 J = ~cj[b}1 - c}) - ~hiai} ] = ~ - t..- h = 0, by (3), (5) and (7),

WJI = ~ b{ ~a,}cJ - !c~ ] = *-H = 0, by (4) and (3),

wJ2 = I b1cl[I al}c} - !c~ ] = A- H= 0, by (6) and (5).
" }

W n = ~[~aiFJ - !C~ J[ hi(1 - Ci; - ~hj(/}i ] = \1'.11 - \1'.12 - h + h\ = O.

j

by (7) and (8).
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(5.58)

(9) IbiC~ =*
(10) I bjcJ(/j/'j = in
(II) Ib·(/(2_'

j(j ij j - T~

(12) I "j(", C1i/ 'jk("1='-to
(13) I hilI C1,"J(Y =)'" (5.57)

(14) II 3 I'iaije j = 20

(15) I "i(l;jCjCljl("k =Jt
(16) I/iCli/1jl("; =r!o
(t 7) I bj(ljjCljlakmCm = do'

Theorem 5.5 There-exist 110 [ioe-staqe ('xflliC'i1 RII/IW Kill/a III<,(/rods of order 5.

where A/ and (3; are given by (5.54) (but now for i = 2,3.4.5) and
I

Vj=!(3/I-c j)---.I(3;(Ijj, )=2,3,4,5.
I

The order 5 conditions are the eight conditions (5.53)(with the summations now running
from I to 5) together with the following nine additional conditions

Guessing from our previous results, we might expect that there would exist a one
parameter family of solutions; but, as we should have gathered by now, 'this is not an
area in which it is wise to guess! For decades before the Butcher theory was established.
many attempts were made to find a five-stage explicit mcthod of order 5, and none were
successful. The following theorem of Butcher put an end 10 the search.

Proof The proof closely follows the argument earlier in this section which led to the
result that C4 = I for all four-stage explicit methods of order 4. and we shall omit some
of the detail. First apply Lemma 5.1 with

1
t.

If..,
" .

~
r,
f

(5.55)

(5.56)j = 2,3,4.

Thus

It follows that

whence C z # O. Ihe second alternative, Ilj = (i;,) = 2,3,4, must therefore hold, and this
has two important consequences. By (5,54) this means that

Since II', I 1\'22 - II'ZI 11',2 = k- ~ ¥ 0, the hypotheses of the lemma are satisfied, and we
must have that either ).,= 0, i = 2,3,4, or Ilj = {lj,j = 2,3,4, We show that the first of
these alternatives is impossible. Since A2 =" (12 'C j - !c 2 C I = 0 and a - 0 J'- 2 3 4L) 2 '2' 2} - , - , , ,

j

Az = () implies that C l = O. Now, for an explicit method, thc order condition (8) of (5.53)
becomes

I h;a i , ( ; = I "j( I - Cj)Cj =i - i = *, by (2) and (3),

I hiQ,/'; = I bI( I - cjk; = i - i'£A-; by (3) and (5),

r. h,a'Jajl(1 = I hj ! 1- cj)ajkCI =*- ~ = -b, by (4) and (6).

In ot hcr words. conditions (4).,(7) and (8) are automatically satisfied if the remaining
order conditions arc satisfied. and can be ignored.
. The second consequence comes from settingj = 4 in (5.56) and noting that I b

j
a i4 = 0,

since a'j= 0 If ; ~ i. 1I11IS h4 { 1 ~ (4) = 0, and since by (5.55) h4 cannot be zero it follows
'lat (4 = I. Thus we have the perhaps surprising result that for all [our-stace explicit

HIIII!!e Kuu a nwtluul« of order 4,('4 = I.
The fact that (, is fixed results in thc general solution of the order conditions con

stituting a two-parameter family, not, as might have been anticipated, a three-parameter
family. Thc full solution of the order conditions is still rather too cumbersome to
reproduce here. and the reader is referred to Butcher (1987). The solution consists of
one two-parameter family of solutions and four one-parameter families.

Five-stage methods
Butcher array

Proceeding as before to use the order conditions (5.53)and (5.57) together with the fact
that (3s = 0 = Vs, we find that

Since W II W22 - W 2 1 w1 2 = 1~o - 1~4 ;6 0, the hypotheses of the lemma are satisfied, and
we must have that either A, =0, i =2,3,4, or I'j =O,j = 2.3,4. The first is impossible; by
exactly the same argument used earlier, A2 = 0 implies C2 = O. and since condition (17)

0

(1 a l ,

C.l a J , a J l

("4 a 4 , a 4 1 a4.1

c~ a 5, l/ 52 a53 l/S4

hi h2 bJ b 4 'b s

a 2 1 =C 2

a31+ a32=C 3

a4 1 + a 4 2 + a4 3 = C4·

a S I + a S2 + a S3 + (lS4 = Cs'

I 0]11

~ ~ .
(5.59)
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which has exact solution u(x) = cos x, v(;() = sin x. Of course, we first rewrite (5.66) as
an equivalent first-order system, as in §1.5. Since .the exact solution is known it is
possible to implement, at each step, the localizing assumption y" = y(x"), use the method
to compute Y. + 1 and thus compute the local truncation error from (5.12); the L2-norms

of the resulting exact local truncation errors are given in the columns headed LTE in
Table 5.7. The Lz-norms of the estimates for the local truncation error provided by the
embedded method are given in the columns headed EST. (In the case of RKF45, the
bracketed numbers indicate LTE when the method is used as a (5,4) pair; EST is, of

(5.66)
u" = - u(u2 + 0 2)-312, e" = - V(1/2 + 1,2)3/2}

" u(O) = I, u'(O) = 0, v(O) =0, v'(O) = I

the second-order initial value problem

Table 5.7

Merson England RKF45 DDPRI (5.4)
x lTE EST lTE EST ILTE EST lTE EST

h = 0.8 Errors x 103

0.8 2 3 II 10 4(4) I 4 I
1.6 4 6 46 46 19(21) 3 17 4

i
2.4 7 6 36 45 20(19) 5 9 3
3.2 4 4 .--, 8 7 3(3) I I I
4.0 2 3 14 13 5(4) I 4 I

! 4.8 5 7 47 45 20(21), 3 17 4
1

'1

5.6 7 6 33 38 18(16) 5 9 J
6.4 4 4 9 4 3(3) 0.4 1 I

h = 0.4 Errors x 105

0.8 3 20 61 51 9(3) 7 3 5
1.6 10 28 182 175 19(11) 21 5 13

1 2.4 12 25 94 III II (10) 14 I 7

~ 3.2 7 23 27 19 5(3) 2 I 1
4.0 3 20 73 62 10(3) H 4 6

, 4.8 II 29 183 ' 176 19(12) 21 5 13
5.6 12 24 82 97 10(10) 13 I 7
6.4 6 23 27 25 5(3) 2 I 1

------~-~------~-------

.J h = 0.2 Errors x 101
" f·

J
0.8 12 129 228 206 37(8) 30 3 20
1.6 25 147 577 571 74(18) 73 4 44
2.4 26 140 259 285 30(14) 39 I 22

·,1
3.2 15 135 82 78 8(3) 5 2 3

,-; 4.0 12 130 266 243. 41 (9) 35 3 23

I! 4.8 26 \48 577 573 73(18) 73 4 44

"1
5.6 26 139 222 247' 26(13) 34 1 19

-. 6.4 \5 135 79 80
"

7(3) 6 2 3
'. ~ia
:1
.'!i

~9.,
~

,-..:-".1

0
1 1
"5 "5

3 3 9
TO 40 40

4 44 56 32
"5 45 -15 9"
8 19372 25360 64448 212'
9 6561 -2T8T 636T - TI"9

9017 355 46732 49 5103
)Ti;8 -33 -nrr Tn" -ITIn

35 0 500 1B 2187 II
384 Till ill - 6'i8"i 84

5179 0' 7HI 393 92097 187 I
57600 16695 640 - TI920ii TIOii 40

35 0 500 IB 2187 II 0JIi" TITI ill - 6784 84

71 0 71 71 17253 22 _2...
57600 -~ T910 - TI920ii 3"TI 40

Note that if the error estimate is not required, then five stages are required to obtain
the solution.

In most modern automatic codes based on embedded Runge-Kutta methods local
extrapolation is used. Indeed, RKF45 is sometimes run as a (5,4) method, even though
it is not designed for such use, since error-tuning has been carried out on the fourth-order
and not the fifth-order formula.

Embedded methods specifically designed for use with local extrapolation have been
developed by Dormand and Prince (1980), Prince and C -rrnand (1981);see also Sharp
(1989). In these methods it is the higher-order formula which is error-tuned and which
carries the solution; the difference between the values Riven by the higher and lower
order methods, though no longer a true estimate of the-local truncation error, is used
as a,basis for monitoring steplength. Perhaps the most popular of these is a (5,4) method,
sometimes known as DO PRI (5,4), defined by the modified Butcher array

whence

(Note that we are sticking to the notation defined by (5.65), so that the vector P for
the method which carries the solution is the one starting 35/384, ....)

The above method has seven stages, as opposed to the six stages of England's method
and RKF45; however, the last row of A is identical with the vector P, and we see, as
follows, that this means that the method has effectively only six stages. Let the vectors
kj evaluated during the step from x, to x, + 1 be denoted by k7. Then we have

and there is no need to compute k~ + 1. Methods with this property are sometimes known
as FSAL methods (First Same As Last),

Let us now compare the four embedded methods given above by applying each to
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by (5.67). Thus, when f ix, y) = f(x) the two methods give identically the same result,

Now suppose that such a method is applied to a system in which f depends only on
r. Then the fifth- and sixth-order methods reduce to

5.11 IMPLICIT AND SEMI-IMPLICIT METHODS
I

As we noted in §5.I, implicit Runge-KUlla methods, even semi-implicit ones, are very
expensive to'implement and cannot rival predictor-corrector o~ explic~t Runge- Kutta
methods in efficiency when the problem to be solved IS not stiff Their use IS almost
exclusively restricted to stiff systems, in which context their superior stability propertie
justify the high cost of implementation. Consequently, much of our dISCUSSion of implicii
methods and their implementation will be left 10 Chapters 6 and 7, where the prl)bl~11
of stiffness is addressed. In this section we merely list various categories of implicii
methods and give examples of the more common methods. The reader who wishe.s II

see a fuller discussion of the derivation of these methods from the order condition'
derived in §5.7 is referred to the books by Butcher (1987)and Dekker and Verwer (1984)

If the general Runge-Kutta method (5,2) is applied to the scalar problem y' = j(.\1

then the result is a quadrature formula

Exercises

5.10.1. The scalar problem y' = x' + y, y(O) = 0 has exact solution r(.x) = 2exp(x) - ". - 2x - :
Express y(h) as a power series in h. Compare y(lI) with .1', given by applying Merson s method
(5.63) once.Deducethat the PLTE is0(/1 5 ), but that the estimate (5.64) does not correctly esumutc

the PLTE.
5.10.2*. Find the exact solution or the scalar problem r' = a.x + hI'+ C. r(O) =0, where. a.1> and
c are constants. Apply Merson's method,(5.63) to this problem and compute the solution r, at
x = h, Calculate y(h) - y, and thus corroborate that the method is or order Iour Show further
that the PLTE is indeed given by (5.64). (Theequation r' = a.\'+ I" + c is the most general scal.u
equation for which the Merson est~mate is valid.)

and the error estimate is in all cases zero, no matter what the size of the actual local
truncation error. We can anticipate that such methods will give misleading results when
applied to a system y' = f(x, y), in which f depends much more strongly on x than It
does on y. Alternative embedded methods of orders 5 to 8, which do not encounter this
difficulty, are given by Verner (1978). Higher-order embedded methods using local
extrapolation are derived by Dormand arid Prince (1980); Il1 that reference can be found
an 8-stage (6,5) method and a 13-stage (8,7) method. . ' . .

Computational experience shows t~at Runge- Kulla codes can be competitive with
ABM codes for problems where lunction evaluations arc not too expensive. Example,
of such codes are DVERK (Hull, Enright and Jackson, 1(76), which uses an R-slag.l·
(5,6) pair, RKF7 (Enright and Hull, 1976), based on a Fchlbcrg (7,8)palr and XRK
(StJampine and Baca, 1986)which uses the Dormant! Prince (8,7) pair. 1 he efTectlvenes~
of a Runge- Kulla code is much improved j.f the order of the pair IS appropriate to the
particular problem in hand; thus there have been developed variable order Runge- Kutta
codes such a RKSW (Shampine and Wisniewski, 1978) which can SWitch between a (3,41

and a (7,8) pair.

8 ~ ~

P.+ 1= Y. + h I bjf(x" + cil)
j=1

8

Y.+ 1= Y. + Il I bjf(x. + cjll),
i> I

respectively, whence
8

v.+1- Y"+ 1= h I Elf(x" +C)I)'= 0
1=1

course, independent of whether one uses the formulae as a (4,5) or a (5,4) pair.) The
integration range is [0,6.4], which covers one cycle of the periodic exact solution, and
the computations arc performed for three values of the steplength h.

We can draw several conclusions from this numerical experiment. Merson's method
is remarkably accurate when one remembers that it uses only five function evaluations
per step. whereas all the others use six. The error estimate is good for large steplength,
but for small steplength the error is badly over-estimated. One can see why Merson's
method remains popular, despite its shortcomings. England's method is the least accurate
but it gives, for all steplengths, remarkably good estimates .of the error. RKF45 has a
tendency to underestimate the error, a tendency which is' most noticeable at large
steplcngth. This is the penalty incurred in error-tuning; ertor-tuning consists of trying
to minimize the coefficients in the principal local truncation error, and results in the ,
principal error being less than normally representative of the whole local truncation
error, an effectobviously magnified when the steplength is large. In DOPRI (5,4), the error
is a little underestimated at large steplength and clearly overestimated at small steplength;
the smallness of the error reflects the use of local extrapolation. As one would expect,
using RKF 45 as a (5,4) pair (the bracketed numbers) results in a poorer error estimate
bul a more accurate solution-though not as accurate as that given by DOPRI (5,4). It
is of course dangerous to draw too fTlany conclusions from a single example, but the
author has conducted the above experiment on a number of problems, and the above
conclusions always appeared valid.

In a simple automatic code based on embedded methods, the user sl.jppliesa tolerance
TOl, and the algorithm successively halves the steplength until the error estimate is
less than TOl; if the estimate is less than TOl/2"+ I, where p is the order, the steplength
is doubled. (More sophisticated strategies are of course usually employed.) In such a
context, it is not obvious that error-tuning-and for that matter the use of local
extrapolation --- is necessarily advantageous. Whether one docs better with a less accurate
method which has a very sharp error estimate (such as England's method) or with a
more accurate error-tuned method for which the estimate is less sharp, resulting in the
need for heuristic safeguards in the code, is ultimately a problem-dependent question.

There exist Fehlberg methods of orders up to eight. Unfortunately, all the Fehlberg
methods of order greater than four sufTer a peculiar deficiency, exemplified by the 8-stage
(5',6) Fehlberg method, for which the vectors cT and ET are

('T = [0, i, n. ~, ~, I, 0, I] }
(5.67)e = [ ~~, 0, 0, 0, 0, ~J, ir" ir,l
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reads

(5.60)

it follows that ('2 oF 0. Therefore \'i = O,j = 2, 3,4; but V4 = 0 implies that fl4(1 - C4) =
~ IJl i (/ i4 = 2fl~(/~4 = n, since /I~ = 0 from (5.54). Now, also from (5.54), fl4 = b5a54 ¥- 0,
by (5.60). Hence we have that C4 = I.

We now apply Lemma 5.1 again with

cheapness with the Milne estimate for predictor-corrector methods; all of the estimates
discussed in this section reqhire more function evaluations per step then are needed
simply to advance the solution.

The lirst technique we discuss is Richardson extrapolation, also called tile deferred
approach 10 Ihe limit; it is an old technique, and one which is applicable to any nurneri
cal method. Suppose that we have used a Rungc-Kutta method of order p to
obtain the numerical solution Y.+ 1 at x•• I' Under the usual localizing assumption that
y. = y(x.), it follows from (5.47) that the local truncation error T. + I can be written in
the form

(5.62)

r r. r. ,'. l r II. lI_r_

::: =~;;:: =:;;Jl'L 'J "J l '-l
r·J.~J.

U = (; (2 ('2 V = 113 113 C3.\ ~ ,
). 2 A.\ A~ 115 115 C5 (/15 - fl5)(1 - C5)

where Ai, Iii and flj arc given by (5.54)(for i,j = 2,3,4,5). Using the order conditions (5.53)
and (5.57) together with the fact that c4 = I implies that 114 = 0 = (114 - fl4)(1 - C.), we
find that U V is once again given by (5.59). The argument used above shows that C2 ¥- 0,
and it follows that (115-/15)(I-c5)=0; since fl5=0, we have from (5.54) that
h5( I - ('5)2 = 0, and since h5 ¥- 0 by (5.6P), it follows that C5 = 1.

We have thus established that (4 = C5 = 1. Now consider

Lh;(I - c;)(/Ij(lil('l = b5( I - c~)L a5jajlcl + b.(1 - c4)a.3a32c2 = o.
. ~

But, hy order conditions (8) and (12), we also have that

(5.6i)

where '¥(y(x:» is a function of the elementary' diffcrenti,lls of order I' + I evaluated at
y(x.). (As in §3.5, the notation Y. + 1 indicates the value for y at x. + I given by the method
under the localizing assumption.) Let us now compute a second numerical solution at
x.+ I by applying the same method with steplength 21t, but starting from x. _I: denote
the solution so obtained by z.+ l' the tilde indicating that the localizing assumption is
again in force (but now at x._ I ) . Then we m~y write

y(x.+ d - z.+ 1 = '¥(y(x._ d)(211)P+ 1+ o(lr 2)

= '¥(y(x.»)(2!1)P+ I +our2)

on expanding y(x._ d about x•. On subtracting (5.61) from (5.62) we obtain

(2P+1 -1)~I'I'[J'(x.)]=_v.+I-z.+1 +O(ltP+2),

We thus have a contradiction, and the theorem is proved. o whence we have, from (5.61), the following estimate for the principal local truncation
error:

5.10 EXPLICIT METHODS; LOCAL ERRDR ESTIMATION

As we have already remarked in §5.1, there exist no estimates for the local truncation
error of explicit Runge-Kutta methods which are comparable in computational

Theorem 5.5 can he extended to show that there exist no postage explicit methods of
order p for p:? 5; sec Butcher (1987). The question of what order can be achieved by
an explicit s-stagc method is still an open one; the following is known (Butcher, 1987):

The reason for the popularity of fourth-order methods is now clear. (By a somewhat
illogical process, this may also explain the popularity of fourth-order predictor-corrector
methods in the days before VSVO algorithms were developed!) The construction of
explicit methods with order greater than four is quite involved; the best reference is once
again Butcher (1987).

This estimate works well in practice, and can be successfully used to monitor steplength,
but it is expensive to implement; if the explicit Runge-Kutta method has s stages, then
in general an additional s - 1 function evaluations are needed, k I at x. _ I having been
already computed, (The author was once asked by a member of a seminar audience- in
a quite different context-why he didn't just usc the 'usual' method for estimating the
error of any numerical method; it transpired that the 'usual' method consisted of repeating
a step with double the steplength, subtracting and dividing by the magic number 31.
The magic number 31 is, of course, 2P + I - I when I' = 4; such is the popularity of
fourth-order methods!)

There exist in the literature a number of error estimates for explicit Runge-Kutta
methods which do not involve additional function evaluations, but these are based on
computed values at a number of consecutive integration steps. This approach obviously
raises difficulties when the steplength is changed, and effectively sacrifices the major
advantage of using Runge-Kutta methods, 'namely the freedom to change steplength
with no attendant complications.

An early example of a Runge-Kutta method specially constructed to allow all Ll .ir

estimate in terms of the computed values k, was proposed by Merson (1957). Merson's

PLTE "';U.+ 1 - z.+ .)/(2P + I - I).

109

2 3 4 6 7 9 II 12;:';s;:,;17 13;:';s,;:;;17

2345678

Minimum stage number

Order
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0
I I
J J
1 1 1
J 4" 4"

0 -I 2
2 7 10 0 1
J J1 J1 J7
I 28 1 546 54 378
~ 6TI -~ 625 625 ~ 625

1 0 2 1 0 01\ J 1\
1 0 0 5 27 125

24 4H 5{; .1.'6

1 0 2 1 27 125
-8 -J -16 ~6 .136
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A feature of this method is that the last two clements of hT are zero, implying that if
the error estimate is not required then only four stages (the minimum possible for fourth
order) need be computed. The method is thus economical if only occasional estimation
of the error is intended.

Perhaps the most popular (4.5) method is RK F45, one or a class of methods developed
by Fehlberg (1968, 1969). In this class, the coefficients of the method are chosen so that
the moduli of the coefficients of the functions F(I) appearing in the principal part of the
local truncation error (5.47) are small. We shall say that methods derived in this way
are error-tuned. The modified Butcher array for RKF45 is

e = [E1, E2 , ... , E,]. It is convenient to attach to such an embedded method the label
(p,p + I). Note that the solution for JIM + 1 given by the pth order method is used as the
initial value for the next step, so. that the method has order p. One; could use the
(p + I)th-order ~alue for Y.+ I as the initial value, for thc next step, inwhich case the
method has order p + I; it is appropriate in such cases to alter the lapel to (I' + I. pl.
This process is, of. course, local extrapolation, discussed in ~~.3 injthe context of
predictor-corrector methods; the caveats given there still apply. t

It follows from §5.9that for a fourth-order embedded method a minimum of six stages
will be necessary. An example of such a method is the (4, 5) Enqlands m('rlrod (England,
1969), given by the modified Butcher array

0
1 1
4" 4"

3 3 9
8 TI TI

12 1932 7200 7296
13 2T91 -2T91 2T91

439 -8 3680. 845
TI6 513 - 4104

1 8 2 3544 1859 II

"2 -J1 - 2ill 4104 -45

25 0 1408 2197 I 0TI6 rsss 4104 -~

16 0 6656 28561 q 2
rrs 12825 56430 -55 55

1 0 128 2197 1 2
360 - 4275 - 75240 55 55

c;f\

I
'j

1

I
j

I
t

(5.63)

(5.64)

(5.65)

0
1 I
:I J
1 I 1
:I 1\ 1\
1 I 0 3
"2 8 8

1 0 3 2J -J

1 0 0 2 1
1\ J 1\

This is a 'i-stage method and it is easily checked that it has order 4. Merson proposed
that the principal local truncation error be estimated by ,

If this were ,j valid estimate of the principal local truncation error, then adding (5.64)
to the value for I'M+ 1 given by ('i.63) would yield a 5th-order method for which c and
A would he as in (5.63) and hT would be •

Ie

merhod is defined by the Butcher array

Now. we know [rom 95.9 that it is impossible for a 5-stage method to have order five,
and we must conclude that the estimate (5.64) is not valid. Indeed one finds that the
'i-stage method consisting of (5.63) with hT modified as above has order only three;
however, it has order five in the special case when the differential system is linear with
constant coefficients Although Merson's method played an important role in pointing
the way to future developments, it is necessary to warn against using it for general
problems, a warning that would appear to be necessary since its use appears still to be
widespread. In practice, Merson's method usually overestimates the error, often grossly
so at small stcplcngth, and this has led to the belief that its use is always safe, albeit
inefficient. However. some time ago England (1969) gave examples where Merson's
method /11I(Jerestimates the error.

The essence of the Merson idea is to derive Runge-Kutta methods of orders p and
p + I, which share the same set of vectors {k;}; this process is known as embedding. In
order to present embedded methods, we shall modify the Butcher array to the following
form:

This notation is to be interpreted to mean that the method defined by c, A and bT has
order p and that defined by r, A and iJT has order p + I. The difference between the
values for YM + 1generated by these two methods is then an estimate of the local truncation
error. The vector e is ;;r - bT, so that the error estimate is given by h '2:;.1 E;k/, where
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Gauss methods

Note that the I-stage Gauss method may be written

which the reader may recognize (and it does not matter if he does not) as a Gaussian
quadrature formula with ordinates (or abscissae) x, + cJh and weights hj , j = 1,2, ... , s.
The word 'Gaussian' is used somewhat loosely in this context, and there are several
families, other than the original Gauss family, of quadrature formulae with unevenly
spaced ordinates. Fully implicit Runge-Kutta methods arc categorized by the class of
quadrature formulae to which they revert when we put [tx, y) = J(x). In the following
we shall list low-order methods of various classes, quoting the stage-number s and the
order fl· I

The first class of fully implicit methods consists of Gauss or Gauss-Legendre methods
(Butcher. i964). These squeeze out the highest possible order, and the s-stage Gauss
method has order 2s.

01 I

T;
0 I 1

i -4
2 I s
3" 4 12

I 3
a i

0 1 -1-'/6 - t + ./6
'9 ----.r- -1-8-

6-,16 1 88+7,16 ~
10 '9 -s6O 360

6+,16 1 88 +43,16 88-7,/6
--nr '9~ ---ml

1 16+,16 '16 -,6
'9 ~ 36

Scz 3,p= 5

Note that the l-step Radau IA method docs not satisfy the row sum condition (5.3)
The row sum condition wasimposed because it greatly simplifies the derivation of the
order conditions and there is nothing to be gained in terms of extra order by not
imposing it-well, almost! For very low order only, it is possible to use this extra
freedom to improve order, a curiosity first observed by Oliver (1975). The I-step Radau
IA method is an example of this phenomenon.

s=2,p=3

the interval of integration. This means that the corresponding implicit Runge- Kutta
methods have either C I = 0 (Radau I) or r, = I (Rac/au II). The maximum attainable
order of an s-stage method is now '25 - I, and it turns out that this order can be achieved
by a number of different choices of coefficients. We quote only the classes that turn out
to be of most interest, namely the Radau IA and Radau IIA methods (Ehle, 1969;
Chipman, 1971).

RadaJ fA

5= I,p= I

~
2 2

1

3 -./3 I 3 -11,,3-6- t
3+,13 H

11"3
1

~ i

1 1
2 2

~-JI~ ~ 10-3Jl~ 2S-6JI~
-.-0- 36 -4-~- -1-80-

I 10+3JI~ 2 10-73/1~
2 -----n- '9

~ + ,II ~ 2S+6Jl~ .!Q.±l.:L!2. ~

10 -1-80- 4~ 36

s 4 s
18 '9 18

s = 2,,, = 4

s= 1,"= 2

s = 3,,, = 6

in which form it is known as the Implicit Mid-point Rule. Note also that the 2-stage
Gauss method was derived as an example in §5.7

The second category of methods reverts to the Radau quadrature formulae,
characterized by the requirement that the ordinates include one or other of the ends of

Radau /lA
Y. + 1 = Y. + hk l

= Y. + hf(x. + t h,Y.+ thkl)

= Y.+ hf(x. + t h,Y. + t(y. + 1 - y.)).

The method can thus be written as

.Y.+1 = Y.+ hf(x. + th,t(y. + Y.+il), (5.68)

s = l,p = 1

s=2,p=3

~
1 s I
3 12 -12

I 3 1
i i

3 I
i i
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1
9

s = 3." = 5 4-,.16 88 -1,6 296 - I (,t), ft -2+3~6-10 J6<j- -1800-- --zrr:-
4+,,16 296+169,,9 88 + '7, 6 -2-3,,/6
10 1800 ---:ifj() --rrr-

16-,,'6 16+ \/'6 1
~ ~ 9
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s =4,1' = 6 0 0 0 0 0
.5-../S 11 +,.15 25-,5 25 - I). j - 1 +.. 5

10 ~ 110 -'20-- ---no--
5 +,.15 11 - ..,/5 25+ I), 5 25 +... ~ - I - • 5
-'0- ~ ----rro- -120 120-

I 5 j I.
TI T1 T1 T1

I 5 5 I
TI n i1 TI

Note that. by all argument similar to that which showed that the l-stage Gauss method
could be rewritten as the Implicit Mid-point Rule, we see that the l-stage Radau I1A
method can be written as the Backward Euler method

Note that the 2-stage Lobotto lilA method is just the Trapezoidal Rule. Note als? that
the Lobatto IlIA J11ethods, unlike the Radau IIA, are genuinely FSAL methods (see§5.10l

Lobatto 11I8

Lobatto IliA

which we mct ill ~3.9. (This humble method is thus simultaneously the first-order
Adams Moulton method, the I-step BDF method and the l-stage Radau IIA method;
to confuse things further, it is also called the Implicit Euler Rule.) Note also that in the
Radau IIA methods the last row of the matrix A is identical with bT. When this h.ippened
in an explicit method, as we saw in the preceding section it did for DOPRI(5,4), a
function evaluation was saved, and the stage-number efTectivcly reduced by I. Alas,
there is no such benefit here, since for an implicit method it is no longer true that k 1

evaluated at the step starting from X.+ I is identical with I(x.+I,y.+ d.
The last category of methods is associated with the Lobatto quadrature formulae, for

which the ordinates include both ends or the interval or integration. The corresponding
implicit Runge Kutta methods (which obviously must have stage-number at least 2)
have C I = 0 and r, = I. The maximum attainable order is now 25- 2. According to a
classification or Butcher (1964a), these methods are or the third type, which is why they
are called t.obat o III methods. Again, various possibillties arise, the most useful or which.
are the Lobatto lilA and IIIB methods or Ehle (1969) and the Lobatto me methods
or Chipman (1971); all attain order 2s - 2. '.

Note that the 2-stage Lobatto IIIB method is another example or the row-sum conditior
not being met; note also that this method is semi-implicit.

5=2,1'=2

s=3,p=4

0 0 0

I I 1
2' 2'

I 1
2' 2'

0 0 0 0
I 5 1 I
2' 24 J -14

1 2 I
6 J 6

I 2 I
6 J 6

s = 2,1'= 2

S.= 3,1'= 4

s= 4,1' = 6

Lobatto Ille

s;"'2,p=2

0 I 02'

I I O'2'

1 I
2' '2
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Now integrate (5.69) with respect to x from x = x, to x = x; + cih,i = 1,2, ... , s and from
x = x, to x =x, + 1 to get

(5.73)

(5.72)

i = 1.2.. . . ,s,

r = 0, I, ... ,s - I.

i = 1,2, ... ,5,

,
Y.+I =Yn+1t L bjk j

j=1

. '(fll)P(x. + h) - P(x.) = h L Lil)dl kj.
j= I 0

[(X.+C,h)'+I_x~+I]/(r+ I)=:h ±afj(x. + cjlJ)',
j= I

On equation powers of II, we easily obtain the condition

and

Now, for j= 1,2,... ,s, define

and (5.71) and (5.72) give

kj = P'(x. + c,h)= [ix; + c,h,PIx. + 1';11))
l

. = f( x, + c,h,y. + Jr J. ~'-jkj).

and

is an exact quadrature formula when f(x) Is a polynomial of degree ~ 5 - 1 is the same
as to say that it is exact when f(x) = x', r = 0. 1,... ,5 - I, leading to the identity

•

j
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and we have an implicit Runge- KUlla method with the elements of c being the collocation
points and b and A given by (5.73). The class of collocation methods consists of those
implicit Runge-Kutta methods which can be derived in this fashion.

There is another interpretation we can put on collocation methods. Consider what
happens to the alternative form (5.6) of thegeneral Runge- KUlla method if we put
f(x, y) = f(x). The second of (5.6) can be interpreted as a quadrature formula for

I
X . +t,h

f(x)dx, i = 1,2, ... , s. It follows from the above (sec(5.71))that if the Runge- Kulla
x •

.method is a collocation method, then each of these quadratures will he exact if ( is a
polynomial in x of degree ".~.- I, a property sometimes used to define the class of
collocation methods. We can take this argument further to produce a useful character
ization of collocation methods. Since a polynomial is linear in its coefficients, to
say that

(5.69)

(5.70)

i = 1,2,... ,s.

a

P'(x. + Ih) = L LAt)k j
j=1

P(x.) = y.,

P'(x. + c,h) = It», + c.h, Pix; +c,h)),
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5 = 3,p = 4 °
I I I
6" -) 6"

1 I 5 1
i 6" TI -TI

I I 2 1
6" J 6"

1 2 I
6" ) 6"

5 = 4.p = 6
5 _°,151

1 -,15 .,15 1
12 IT 12 -TI., 1 10-1,15 {1

10 12 i -6-0- 60
5+,15 I 10+1,15 1 ,15
10 TI -r;o- i - 60

I 5 5 I
TI TI 12 rr

1 5 5 I
12 TI 12 rr

.,
Implicit Runge KUlla methods can also be categorized according to whether or not
they are m//ocal;OII mcthnds. Collocation is an old idea, widely applicable in numerical
analysis, and consists ofchoosing a function (usually a polynomial) and a set of collocation
points, and then demanding that the function does. at the collocation points, whatever
is necessary to make it mimic the behaviour of the unknown function we are trying to
approximate numerically. In the context of solving the initial value problem
.1" = [ix, y), y(a) = 'I, we can advance the numerical solution from x, to x.+ I by choosing
a polynomial P of degree 5. with coefficients in nm

, and a set of distinct collocation
points (x. + c,-h,; = 1.2•...• s} and demanding that

Note that this defines PIx) uniquely. We then complete the step by taking Yn+ 1=

/'(x. + II). II was originally shown by Wright (1970) that this process is identical with
an s-stagc implicit Rungc-Kutta method. To see this, observe that P'(x) is a polynomial
of degree 5 - I which interpolates the ·s data points (x. + c.h, P'ix; + c,Jr)). i = 1.2, ... , s.
We can therefore write it in the form of a Lagrange interpolation polynomial (see §1.10).
Define ki ;= P'(x. + c,h),i = 1.2, ...• s; then, on writing x = x, + th, we have

where

i = 1,2,... ,s (5.71) (J = 1,2, ... , s, i = 1,2•... ,5. (5.74)



(5.78)

(~-:- 3J2)/I
4

(4 + J2)ll

4

4(1 - J2ll1 + J2

811

(4-J2)11

4

~.:t:. 3J~ljt
4

4(I + ..j2)11 - ';3:.
811

(2 - J2)11

(2 + J2)/1

Exercise

where I' takes one of the three values (2/J3) cost 10), - (2/',1'3) cos(50 ), ... (2/J31 cos(70'),
the roots of 3\,3- 31' = I.

Finally, we briefly mention a further class of implicit methods, the sill{jly-implicit
Runge-Kutta or Sf RK methods, developed by Nersett (1976) and Burrage (1978a, 1978b,
1982). Although these arc fully implicit methods, they can be regarded as generalizations
of DIRK methods. The trouble with DIRK methods is that it is very difficult indeed
to construct such methods with high stage-number (those appearing in the literature
have order at most four), making them unsuitable as the basis of a variable order code.
Now, it is clear that the spectrum of eigenvalues or the matrix A for a DI RK method
consists of the single eigenvalue Qjj repeated 5 times. SIRK methods arc delined by the
requirement that the matrix A, though not lower triangular, should have a spectrum
consisting of the single eigenvalue II repeated s times, where 5 is the stage-number. As
we shall see in §6.li, this has the consequence that the methods can be implemented at
a cost not much greater than that Ior a DIRK method. SIRK methods of arbitrary
order can be derived; see Dekker and Verwer (1984). An example of a SIRK method is
the 2-stage method

which has order 2 in general and order 3 if JI = (3 ± J3)/6.

5.11.1. Use (5.74) to show that the SIRK method (5.78) is a collocation method.
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There exist three 3-stage DIR K methods of order 4 given by

1+1' I+\'
0 0

.;; 2 2

I I + I'
- 0
2 2 2 (5.77)

1-1'
- I - 21'

I+\'
1+\'

2 2

I

6\,2
1-

3\,2 6\,2

3/1 - I 3,1- 1
0

611 6/1

I + Ii 1-/1
(5.75)-- ---- /1

2 2

3/12 I

3/12 + I 3/12 + 1

3 ± J3 3±J3
0

6 6

3 + J3 +J~ 3±J3 (5.76)
6 3 6

I I
- -
2 2

•
(Note that for (J = I, (5.74) is just the row-sum condition (5.3).) Indeed, for an s-stage
Runge Kutta method of order at least s and with distinct c., (5.74) is a necessary and
sufficient condition for the method to be a collocation method (see, for example, Hairer,
N0rsett and Wanner (1980)).

The families of implicit Runge-Kutta methods quoted earlier in this section split into
two groups; the Gauss, Radau IIA and Lobatto IlIA methods are collocation methods
while the Radau lA, Lobatto IIIB and Lobatto IIIC are not. If the reader feels in need
of mathematical exercise, he can verify that (5.74) holds for each of the quoted methods
in the first group and is contradicted for each method in the second group. If l: is
really desperate for exercise, he may also verify that (5.73) holds for each method in the
first group.

We turn now to semi-implicit methods. As we have already remarked in §5 1, the
computational effort in implementing these methods is substantially less than for 'a fully
implicit method, but still sufficiently onerous for the methods to be of interest only for
stiff systems. We shall discuss their implementation in that context in Chapter 6, where
it will emerge that considerable gains in efficiency occur in the case when all of the
clements on the main diagonal of the coefficient matrix A of a semi-implicit method are
identical. This defines the class of diagonally implicit Runge-Kutta methods or DI RK
nictbods, developed by Nerseu (1974), Crouziex (1976) and Alexander (1977). (There is
some confusion over nomenclature in this area; some authors use the term 'diagonally
implicit' to describe £//1)' semi-implicit method, and then refer to the DIRK methods we
have just delined as singly diagonally implicit.) .

It is readily established that the following 2-stage semi-implicit method has order 3
for all values of the parameter II other then /1 = 0: . •

There exists no value of II for which the method has order greater than 3, but taking
11 = + J3/3 gives the following pair of DIRK methods:

196 RUNGE-KUTTA METHODS
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which is precisely the result we would get from applying the method (5.2)to the system5.12 LINEAR STABILITY THEORY FOR
RUNGE-KUTTA METHODS z' = Az. (5.82)

to avoid confusion with the coefficient matrix A appearing in the Butcher array of a
Runge-Kinta method. The matrix ,r;{ is assumed to have distinct eigenvalues A, where
Reli.,) < 0, I = 1,2,... , Itl, and the non-singular matrix Q is defined by Q-l dQ = t\ =
diag[i. J , Az, ... , A. m ], Applying the general Runge-Kulla method (5.2) to (5.79)
gives

We lirst met linear stability theory in the context of linear multistep methods (see §3.8),
where \"~ chose as test system the system y' = Ay, where A is an m x m matrix with
distinct eigenvalues {A" I = 1,2, ... , m} lying strictly in the negative half-plane, a condition
which ensures thai all solutions of the test system tend to zero as x tends to infinity.
Since the eigenvalues of A are distinct there exists a non-singular matrix Q such
that Q-'IAQ=A=diag[J.l,Az, ... ,Am ] and, by using a transformation y=Qz, we
showed that it was enough to consider only the scalar test equation y' = AY, where
i.E4~ and Re().) < O. Linear stability was concerned with the question of whether
or not the numerical solution of this scalar test equation tended to zero as n tended to
infinity.

The application of the transformation Y = Qz uncoupled not only the original test
system but also the difTerenee system arising from the linear multistep method, and
it was obvious that this was also true for predictor-corrector methods. It is perhaps
less obvious that it holds also for Runge-Kulla methods, and we start by showing
that this is indeed the case. We had better change the notation, and write the test
system as

Now define Y,eeR' by Y:= [Y 1, Yz," " Y,]T and e:= LI, I, ... , I]T; we may then write
(5.85) in the form

(5.85)

(5.84)

-(5.83)

i~ 1'2"'}

AEe, Re(A.) < O.

IR(h)1 < I

Y'=AY,

Yj = Yn -!'.h t aij Yj ,
-'" j= I

Yn+ 1= Yn + h t b,Yi·
1= I

and the method is absolutely stable for those values of h for which (5.84) holds. The
region fJI A of the complex h-plane for which (5.84).holds is then the region of absolute
stability of the method. Let us now investigate the form that R(h) takes. It is marginally
easier to work with the alternative form (5.6)of the general s-stage Runge- Kutla method.
Applying this to the test equation (5.83) (where, we recall, Yn is scalar) yields

Y=Yne+hAY, Yn+I=Yn+ hhTy.

Solving the first of these for Y and substitutingin the second gives

If we apply the general Runge-Kutta method (5.2) to (5.83). we are clearly going to
obtain a one-step dilTerence equation of the form

Yn + 1 = R(h)Yn,

where, as before, h = I,)" We shall call R(h) the stability jil/lCriOlf of the method. Clearly
Yn ....0 as n ....00 if and ottly if

It is clear from (5.82) and (5.81) that we have indeed uncoupled both the difTerential
system nd the difTerence system. We are thus justified in using as test equation the
scalar problem •

(5.79)

(5.80)

i = 1,2, .. . ,5.

y' = sly

,
Yn+1 =Yn+ h L hikl

j= I

where

Now define z, and I; by

k, = QI{> i = 1,2, ... ,5. where I is the 5 x 5 unit n.atrix, The stability function is therefore given by

Substituting for Yn and k; in (5.80) and premultiplying by Q- I gives

,
. z, + I = z; +It L hill

i= I

(5.86)

An approach due to Dekker and Verwer (1984) gives an alternative form for R(h). To
avoid filling the page with large determinants, we develop this alternative for the case
5 = 2, when (5.85) may be written as

where

li=A[Zn+lt.± aul)], i= 1,2,... ,5
J= I

(5.81)
-haJ2
1- han
-hhz

0] [ 1'1 ,] [Yn]o Yz = Yn .

I Yn+1 Yn
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, he solution for y" I I by Cramer's rule is y"+ I = N /D where

(5.XX)

CI 0 0 0

c2 c2 0 0
1

c3 c3 - 032 °32 0

bl b2 b)
•

b, + b2 + b3 = I

b2c2 + b3c3 = ~

b2d + b3d =!
b30 32C2 = k·

Suhtracting the last row of N from each of the first two rows leaves N unaltered, whence

It is clear that the above derivation can be extended to the case of general s, and thatr
().X7) holds in general. The alternative forms (5.86)and (5.87)for R(h) are complementary;
sometimes one is more convenient, sometimes the other.

LeI us consider what form R(h) takes when the method is explicit; that is, when A IS
a strictly lower triangular matrix. The matrix 1- hA is then lower triangular, with all
the clements of Its rnam diagonal being unity. It follows that det(l- hA) = I, and by
()X7) we sec that for all explicit Runge-Kutta methods the stability function is a
polynomial in h. For implicit and semi-implicit methods, however, det(l- hAl is no
longer I, but is itself a polynomial in h, so that the stability function becomes a rational
function of i, (which is why we called the stability function R).

(I H(i,) is a polynomial in h, then there is' no way in which the condition (5.84) for
absolute stability can he satisfied when 1h1--+ 'XJ, and it follows that all explicit methods
11<Ive finite regions or absolute stability. (We found this to be the case for expJicitlinear
multistep methods and for predictor-corrector methods when the corrector was applied
a finite number of times essentially an explicit process.) When R(h) is a rational function
or i,. however, it is al least possible that (5.84) can be satisfied when Ihl--+ 00, holding
out the possibility that implicit and semi-implicit Runge-Kutta methods can have infinite
regions of absolute stability.

As we have already mentioned, the role of implicit and semi-implicit Runge-Kutta
methods is in attempting to solve stiff systems, so we shall delay until Chapter 6 any
further discussion of the linear stability properties of such methods; in the remainder
of this section we consider only explicit methods. Reeal1 from §5.9 that explicit methods
of tl}c maximum attainable order for a given stage-number contain a number of free
parameters. We have not as yet been able to find a means of using this freedom to
advantage, and at first sight linear stability theory would appear to be a happy hunting
ground; why not choose the free parameters to optimize the region of absolute stability?
L,~t us try to do this in the case of the family of explicit 3-stage methods of order three.
The Butcher array and the order conditions are

I + I.+ --h"),Pl'(x") +0(/,0 ), .
p.

From (5.86), R(h) = I + hbTd, whence

R(h) = I +(b l + b2 + b3) ;; + (b2C2 + bJ c3 )h2+ /'3ll.'2('2h' (5.89)

On applying the order conditions (5.88) (note that only three or them arc needed) we
find that

•
whence we must have that

y +1 = [I + hA. + ~h2A.2 + ... + ~-hPA.pJy" + 0(/,0+ I)
" 2! p!

Solving this triangular system gives, ..

d, = I, d2 = I + c2h,

We recall from §5.9 that there exist one two-parameter family and two one-parameter
families of solutions 0[(5.88). The easiest way to compute R(ll) is to use (5.86)and define
d;= (1- hA)-le, whence

for all 3-stage methods of order 3. So much for our hopes of choosing free parameters
to improve the linear stability properties I

The above result can be generalized as follows. Let the s-siage explicit Runge Kutta
, method have order p. It follows from §5.7 that, under the localizing assumption that

Y = y(x ) the value y given by the method applied to the test equation (5.83) differs
" II , II + 1 + I

from the Taylor expansion of the exact solution y(x" + I) of (5.83) by terms or order lIP .

Now, it readily follows from repeatedly differentiating (5.X3) that the expansion for
y(x"+ dis

. I 2 2 I
y(x"+ d = y(x").+ hA.y(x")+ 2i It A. y(x") + .

(5.87)
A det[I - hA + hebT ]

R(h)= x
det[I - hA]

Clearly, [) = del [I - iI/I], and we obtain y" + I = R(h)y", where



. I. I - -
Y.+I/Y.= I +/r+ /r2+ ... +-hP+0(hP + I

) . (5.90)
2! p!

Oil the other hand.•it is clear from (5.87) that for an s-stage explicit meth~d R(h) will
he a polynomial In IJ of degree at most s. This fact, together with (5.90), implies that if
s = p (and we know from §5.9 that this can only happen for s = 1,2,3,4) then

s-staj,e explicit Runge-Kutta methods of order s, s = 1,2,3,4, obtained using the scanning
technique, are displayed in Figure 5.1; the regions are symmetric about the real axis.
and Figure 5.1 shows only the regions in the half-plane Im(i/) > O. Note that for 5 = I
(Euler's Rule), the boundary of the region is a circle. It is of interest to note that as the
order increases, the stability regions become larger; the opposite happened for linear
multistep methods. . . .

U the s-stage method has order.p < 5 (and this will always be the case for s > 4) then,
from (5.90) and (5.91), the stability function clearly takes the form
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Thus. for s = 1,2, J,4, all s-stage explicit Runge-Kutta methods of order s have the same
stahility function, and therefore the same stability regions. These stability functions are
given by (5.91)and we could compute the boundaries of the corresponding regions of
absolute stability by adapting the boundary locus technique described in §3.8. An
alternative approach is to write a program along the following lines. Let R(h) = x + iy,
scan the line x = constant and set the point (x, y) if and only if IR(h)1 < I, then increment
x and repeat the process. Note that this approach, which we shall call the scanning
ICc/ill/que, IS practicable only for one-step methods. It is more expensive on computing
tunc than the boundary locus technique, but is easier to program-an advantageous
exchange if one has a desk-top microcomputer! The regions of absolute stability for

. - I -2 I -
R(!!l=Yn+)y.=!+h+-h + ... +-/r'.

2! s!

2/ 2/

(5.91) (5.92)

where the coefficients 1', are functions.of the coefficients of the method. There is now
scope for attempting to improve the stability region, but it has to be said that attempts
to exploit this possibility do not produce anyi spectacular results. The stability function
can be computed as a function of h from (5.86). but if we go at this task like a bull at
a gate we land ourselves in a lot of needless work. First observe that we need
compute the inverse of (1- hAl; all t..!'at is needed is the product (1 - hAl- I e which, as
before, we define to be d. Then (1- hA)d = e, a triangular system which can be readily
solved for d. Moreover, if the method has order p, then we know that R(h)= I + hbTd
has the form given by (5.92),and we need only to find the terms in irq, q = p, r + I, ... , S - I
in d. Let us illustrate by finding R(h) for an s-stage (explicit) method of order s - I. We
need onlyfind the term in h,-I in d, which means that we need save only the highest
power of h at each stage of the solution of the system (l - ilA)d = e. Using the row-sum
condition and indicating terms-involving lower powers of it by L.P., we obtain

d l = I

dz = I + ha2l d l = czh +L.P.

dJ = I + haJ Id I + haJ2dZ = aJ2c2hz + L.P.

-2 -2
5' 2 d, = I + ha,ld 1 + ha'2d2+ ... + ira,.,_ ttl,

= a,.,_la,_I.,_2 ... aJ2c 2h,- t + L.P.

5'3 5,4

Figure 5.1 Regions of absolute stability for s-stage explicit
Runge-Kutta methods of order s. '

Note that if the method had order s, then the order conditions require that
1/1([:,-1 r)._ tl = 1/5!,which merely corroborates (5.91). By a similar approach (now saving
only terms in the two highest powers of h) we can show that for an s-stage method of

which, in the notation of §5.7, is· just the function 1/1([,-1 rl.- d. Note that }', is easily
computed; it is just the product of the elements of the first sub-diagonal of A multiplied

by b,. We thus have

The term in h' in R(h)= I + hbTd is then y,h' where

-3

3/

-3
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order s - 2

The obvious extension to the general case p < s holds.
Using this approach, we can easily investigate the linear stability properties of the

embedded methods discussed in §S.lO. In the following, the stage-number s and the
order fl refer to the method carrying the solution and not to the pair of embedded
methods. The stability (unctions or the various methods are

MUSlin's mel hod; s = 5, " = 4

4t 4t

England's method; x = 4, fl = 4 -4
(0) ( b)

5.13 ORDERC0ftlDITfONS; THE ALTERNA TfVE
APPROACH OF ALBRECHT

(d)
-4

, (c 1

Figure 5.2 Regions of absolute stability: (a) Merson's method. (b) England's method. (c)
RKF45 (d) DOPRI (5,4). '

5.12,2. Show that for all semi-implicit Runge-Kutta methods the denominator of the stability
function is a product of real linear factors.

5.12.3. Convinceyourself, as follows, that the 'moon' ~n Figure 5.2(d) is really there: usinga.ruler,
estimate from Figure 5.2(d) the coordinates of a point inside the 'moon', and show I hat IR(ltll< I
at that point. In a similar way.convince yourself that the 'moon' is disjoint from the main region

of absolute stability.

So far in this chapter, we have made much use of the well-established Butcher theory.
A quite diITerent approach to the problem of finding the conditions lor a RUt.lge Kulla
method to have given order has been proposed by Albrecht (1987). An interesung featu~e

of this work is that it applies to Runge-Kuua metHods the Ideas we developed 111

-4

[

- 21 19 -20]
A = 19 -21 20

40 -40 -40

RKF45; s=S,p=4

R(il) = 1 + h+ it 2/2 + h3/6 + h4/24 + j;5/104.

DOI'RI(5,4); s = 6, r = 5

I«il) = I + i, + 11 2/2 + ,,3/6 + ,,4/24 + ,,5/120 + ,,6/600.

Exercises

Figurc 5.2 shows the corresponding regions or absolute stability, computed by the
scanning technique described earlier in this section. The region Ior England's method
is. or course, identical with that given in Figure 5.1 for s = 4 and is included only for
comparison.

The presence or a 'moon' in Figure 5.2(d) is a surprise! It is of no particular practical'.
significance, but it docs raise two points or interest. First, it demonstrates that there
,'xists an explicit Runge-Kutta method whose region of absolute stability is a union of
disjoint subsets. Secondly, it shows up an unexpected advantage that the scanning
technique has over the boundary locus technique; there is no way that the latter would
cvCT'have discovered the 'moon" The region for the fifth-order DOPRI(5,4) method is
perhaps a lillie smaller than we might have expected. An alternative (5,4) pair with
improved region or absolute stability is offered by Dormand and Prince (1980).

5.12.1. Illustrate the effect of absolute stability by using the popular fourth-order explicit method
(5211 of ~5.3 to compule numerical solutions of the problem y' = Ay, y(O)= [1,0, _I]T, where

using two fixed stcplcngths, such that it is inside 9f A for one of the values and outside it for the
01 her.

A
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(5.98)

(5.100)

(5.101 )

(5.97(i))

(5,97(ii»)

; = 1.2,... ,S}

{= I, 2,... ,s1-
q - 1,2, ...

::: ~J= [AT o'J
01 h 0

au ,
.... b. 0

'c' 1 •
cl'=~-(~I)1 I a,.fr

l
,q. q . )=1

- 1 1 •C =---- I b,e,-I
, q! (q-I)!f~1 /

!f,[z(X); h] = CII1Iz(1 '(x) + Ci 211 2z<2 )(x) + ''',
!f[z(x); h] = C Ihzlll(x) + C2112zl~)(x) + ...

Y.+ I = slY. + 1IYlF(x.., Y.+ .;11).

where 0., is the s x s null ma'trix, 0.= [O,O,... ,O]TelR· and e = [I.I, .... I]TE IR,.
The method (5.95) can now be written in the form of an A-method,

The essence of the Albrecht approach is to observe that each of the s internal stages
(5.95(i)) and the final stage (5.95(ii)) of a Runge-Kuua method are linear. in the sense
that a linear multistep method is linear. Nonlinearity arises only when we substitute
from one stage into another. We can regard each of the s + I stages as being a generalized
linear multistep method (on an unevenly distributed discrete point set) and associate
with it a linear dilTerence operator, in exactly the same way as we did for linear multistep
methods in §12 (see (113». Let z(x) be a sufficiently dilTerentiable arbitrary function
and define !f" i = 1,2, ... , sand !f by

, , ;/[Z(X); /1]:= z(x + C/I) - z(x) - II i a,)z'(x + cjil). ; = 1'2"""~}
• ja I (5.99)

!f[z(x); h]:= z(x + h) - z(x) - II i b,z'(,x: + (',h).
i= 1

Proceeding as we did for linear multistep methods, we expand =(x + (',h), z(x + II) and
z'(x + cJh) about x and collect powers in h to obtain

Define Y.+I'F(x., Y.+1;h)ER·+ 1 by

Y.+1:= [y" +" ' y. +c,' ... , y"+c.' y"+ 1] T

F(x., Y.+!; h):= [fIX. +clh, y"+,,),f(x" +C211, y.+,,), ... ,fIx. +(',11. y"+c.l,f(x" + I' Y. + tl]T

(5.96)

where

(5.94)

(5.93)

(5.95(ii))

, (5.9~(i»i= 1,2,... ,s

l

I (J.jY"+j=hrPj(Y.H.Y.H- ..... ,y.;h)
j=O

c 1 all a l2 ···a ts

t~~
C2 a21 a22'" a2•

hT c. a. 1 a.2 ···au

b l b2 · .. b.

.s

Y.+ 1 =y.+h I bJ(x.+c,h,y.+c,).
i= 1

s

Y.+q = Y"+ h I aijf(x" + cjh,y.+ c)
j= 1

Writing this method in the alternative form (5.6)(with a slight 'notational change) we
have

where y", <IJrE IR"m•. r;{ is a am x am matrix (where. as usual, m is the dimension of the

differential system) and <tJrsatisfies a Lipschitz condition with respect to its second and
third arguments; thc subscript f indicates that the dependence of <tJ on Y". Y. + I is
ihlllllgh the function f(x.y) defining the differential system. (We have written .Ill in place
of the more natural A to avoid later confusion with the matrix A of coefficients of a
Runge Kutta method.) It isof interest to compare (5.93)with the general class of methods

Chapter 3 for linear multistep methods. In this section we give only an outline of
Albrecht's approach; full dctails can be found in Albrecht (1987).

Albrecht (1985) defined a general class of methods. the A-methods, by

which we considered in Chapter 2 (see (2.4) of §2.2). At first sight, (5.93) might appear
less general than (5.94). but this is not so; Y., which has dimension urn whilst y. has
dimension m. can itself be a function of Y., Y. + I •.... The class of A-methods is indeed"
a very broad one and encompasses, in addition to the methods discussed in this book,
other classes of methods such as cyclic methods; it also turns out 'to be an appropriate
allernative framework for the study of the Nordsieck vector approach of§4.9; see Albrecht
(I9HS).

Re-casting a Runge-Kutta method for an m-dimensional system as an A-method
, leads to a somewhat cumbersome notation which is considerably simplified in the case

III = I. One of the features of the Albrecht approach is that, unlike the Butcher theory,
analysis in the case of the scalar initial value problem yields all of the order conditions
for the systems case (cf. §5.8). Thus nothing essential is lost if, for the remainder of this
section. weconsider only the scalar initial value problem y' = [i», y), y(a) = /1. The reader
who wishes to see the full analysis for the m-dimensional case is referred to Albrecht
(1987).

Consider the general s-stage Runge-Kutta method defined by the Butcher array



208 RUNGE-KUTTA METHODS ORDER CONDITIONS; THE ALTERNATIVE APPROACH OF ALBRECHT
, '

209

Note in particular that un=[U~.II;, ... ,II;]T Define the vectors ..'!'[z(x);h], CqEIR' by

which can be seen as a generalization of the corresponding result «3.15) of §3.2) for
linear multistep methods. We could define order in the same way as we did for a linear
multistep method and say that the ith internal stage has order Pi if CII = Cp = ... =
C

~ ~ ~. ~

ip, = 0, C i .p, + I '" 0, and the final stage has order P if C I = C2 = .., = Cp = 0, Cp + I'" O.
Note that the row-sum condition (5.3) implies that CII = 0, j = 1,2, ... , s, so that each
internal stage has order at least I, that is, is consistent.

It will prove helpful to write (5.100) and (5.101) more compactly. To this end we
introduce, for the purposes of this section only, the following notational convention.
Let u=[u l,u 2,... ,u,]T and V=[V IoV2, ... ,v,]T be two vectors in IR'. Then we denote
by uv the vector in R' obtained by componentwise multiplicatio~; that is

(5.109)

On putting f(x,y(x)) = y'(x) and using (5.98), (5.99) and (5.103), we obtain

Y(x.+ I) - dY(x.) - h!MF(x., Y(x.+.); h) = [..'!'T[y(X.);h], Y[y(x.); IIJ]T =: T.+ IElRd '.
(5.108)

The parallel with linear multistep theory continues. The vector T. + 1> the residual
when the 'exact' vector Y(x.+ I) replaces the 'numerical' vector Y.+ I in (5.98), is the local
truncation error of the A-method (5.98) equivalent to the Runge-Kutta method (5.95),
a natural extension of the definition T. H := ..'f'[y(x.; h] «3.23) of §3.5). It is natural that
T.+ 1 should be a vector of dimension s + I, since each of the s internal stages and the
final stage have different local truncation errors and, in general, different orders,

Recall that for a method of order p the global truncation error is of order h". We
could therefore define the A-method (5.98) to have order p if sup, II Y(x, + ,) - Y.+ III = 0(hP)
However, recalling the structure of Y.+ r- this would clearly be asking too much; all that
is needed is that.

(5.102)

(5.103)
..'I'[z(x); h]= [2' I [z(x); hJ, 2'2[Z(X);hJ, ... , 2',.[Z(X); h]]T}

Cq := [C Iq'C2q"'" C,qJT
•

and C, =0,.

H the Runge Kutta method is to have order p, then clearly a necessary (but far
from sufficient) condition is that the final stage should have order p. We thus obtain
from the second of (5.105) the following necessary condition for the meth~d (5.95) to
have order p:

(5.111 )

11=0,1, ... ,. (5.112)

U - [u.+, J
"+ 1 - u"+ 1 '

q,+1 =4.e+ll~u.+1 +tn+"}

4.+ I = 4.+ 'Ib u; + , + E. + r

q = 1,2,... ,p,

which is enough for, (5.109) to be satisfied (just enough, when one recalls that
n'O(hP + 1)= O(hP), since nh = x, - a). Thus we 'arrive at the following conditions for the
Runge-Kutta method to have order p:

Now, if the conditions (5.106) are satisfied then E•• I = O(/I P + 1), by (5.105) and (5.104).
If, in addition, bTU.+ 1 = 0(11P) then the second of (5.111) reads

4,+ 1= 4.+ O(hP + I)

Y(x.+d- Y.+ 1 = d[Y(x.) - Y.] + h!M[F(x., Y(x.+ d; Ir)- F(x., Y.+ 1; Ir)] + T•• , .
(5.110)

where q.+ I> U.+ i- t.+ I EIR' and 4,+ " a.+" E,+ 1 EIR. Note that 4.+, = y(xn+ d- Y.+ t

Substituting in (5.110) and using the partitioned forms of the matrices s/ and ~ (see
«5.97)), we obtain '

Let us simplify the notation by defining Q.+I:= Y(x.+t!- Y.+ 1 and U.+,:=
F(x., Y(x. +1);h) - F(x., Y.+ I; h). We can partition these vectors and T, +I as follows:

Subtracting (5.98) from (5.108) gives

(5.106)

v

(5.107)

(5.104)

q = 1,2, ... (5.105)

q = 1,2, . . . ,p.

C~ I I T -I'
q = -i - - -~- b cq

,

q. (q-I)!

I I
C'= cq

- Acq - I
q q! (q - 1)1 '

We can now write (5.100) and (5.101) in the form

-,:[z(x); h] = ~lhZ(lI(X) + ~2h2z'2)(X) + }
.!I'[z(x); hJ = C,hz(Il(x) + C2h

2z(2)(X) + .

where, using th~ notation defined by (5.102),

(Note that (5106) is equivalent to Lihic?- , = I/q, the order condition which corresponds,
for q ;" 2, to the tree lr" I] in the Butcher theory.)

In order to obtain sufficient conditions for the method to have order p, we consider
the global truncation error. This error being the difference between the exact and the
numerical solution, it is natural to proceed by defining vectors that bear the same
relation to the exact solution as the vectors Y. + 1 and F(x., Y.+ ,; h) defined by (5.96) do
to-the numerical solution. Thus, we define Y(x.+ Il, F(x., Y(x.+ t!; h)EIR'+' by

Y(x. + ,):= [y(x. + C I h), y(x. + c2h), ... , y(x. + c,h), y(x. + h)]T

n,., Y(x.+ I); h):= [fIx. + c,h, y(x. + c,h)),f(x. + C2h,y(X. -+ c2h)) .. ·,

·f(x. + ch, y(x. + c,h)),f(x. + h, y(x. + h)),]T.
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The analysis by which the second of these conditions is brought into an implementable
form can be summarized as follows. From the definitions of U. + I and Q.+ I it is possible
to expand u;+ I in the form

bTc=!= Ib,c, =t
I

0= bTC
2 = bT(c2/2 - Ac)=bTAc = bTc2/2 = i

j

=Iblo/jC j = i
Ij

bTc3 =1_Ib,c~ = ~,

Order 3

We can now apply the conditions (5.114). recalling from (5.105) that

I I ,j~ IC := .-. c' - ------- Ac .
q q! (q - 1)!

•

Order 2

Order 4

Order 1

out the first few wi
wi =0

r! = Cl

w! = r! = C2

'rj = C 3 + AC2

wj = rj + Dr! = C3 + AC2 + DC2

r: = C. + AC3 + A2C
2 + ADC2

w* = r! + r!r! + Dr· + D2,·/2

4 = C. ~ AC3+ A2el + ADC2 + C~ + DC3 + DAC2 + D2C
2/2

(5.114)

(5.113)

ifp ~ 3J

q= 1.2•...• p,

i> 1,2..... M(i), i=2,3, ... ,p-1

bTc·- 1 = I/q.

hT(Xlj=O,

Finally. (5.113) can be used to set up a recurrence relation between the WI(x.) and
ri(x.). from which the following procedure for implementing the second of (5.114) can
he derived,

Let »: and ri, i = 1.2•... be defined by the following recurrence:

where Pi' i = 1,2, ... are diagonal matrices (and where the convention (5.102) pertains).
Moreover we can assume that u. + 1 and q.+ I can be expanded. in a neighbourhood of
I,= O. as power series in II. It follows from the fact that C I = 0, that such series start
with the term in h2

, giving

Uo+ 1 = w2(x . )h2 + w3(x . )h3 + + wp_l(x.)hP -
1 +O(h P)

q.+ 1= r2(:<.)h 2 + r3(x.)h 3 + + rp_l(x.)hp-1 + O(hP) .

The s-dirnensional vectors wj(x.) and r,{x.) have the form

where (Xij, fJijE~S and the ejj(x.)E~ are nothing other than the scalar forms of the
elcmentary dilTerentials of the Butcher theory, though this last fact is not made use of.
It can be shown that the e l j are all distinct (and it is this that makes it possible to get
the full set of order conditions from an analysis restricted to the scalar problem) and
it is enough to observe that the conditions (5.112) are equivalent to

wi =0

=I b,oijQjkCk = -b
Ijk

¢yoI b,c,Qijcj = k·
Ii

These are precisely the conditions for order 4 derived earlier from the Butcher theory;
see, for example, (5.53) of §5.9. Note that w: is the sum of eight terms; these, together. ',

'\ ,*,*r* + ...JL. A II v . ,
A,~ •• ~ 2

).+,.+y='-)

j- 2 1 [
w* = '\ Dj r* .+ '\

I ,f....., I-} L.
]=oJ· A.~"2

A+~=i-j

where the notational convention (5.102) is assumed. The CI are given by (5.105) and
D = diagtc.. C2' .... c.), the coefficients CI and the matrix A are defined by the Butcher
array of the s-stage Runge- Kutta method. Each wi is a sum of terms, and these individual
terms are the (Xij. giving

This procedure enables us to identify the vectors (XI) and thus apply (5.114). Let us work
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with the first of (5.114) with q = 5, give rise to the nine additional conditions needed to
attain order 5, thus ~orroborating that the above approach, although based on the
scal;~r problem, does Indeed generate all of the order conditions for a system.

As we h~ve seen .above, the second of the conditions (5.114) gives rise to a series of
orthogonality conditions'. These can be employed to provide alternative proofs of the
theoretical results we obtained In §5.9, specifically the non-existence of an explicit 5-stage
method of order 5 and the fact that c. = I for all 4-stage explicit methods of order four'
sec Albrecht (1989). '

6 Stiffness: Linear Stability Theory

6.1 A PRELIMINARY NUMERICAL EXPERIMENT

Exercise Let us consider two initial value problems each involving a linear constant coefficient
inhomogeneous system of dimension 2.

5.13.1. Use the approach described in the above section to derive the additional nine conditions
for a Runge- K una met hod to ha ve order 5.

-,

Problem 1

[ Il l [-2 IJ[IYJ [ 2sinx 1['Y(O)J [2J
2Y'J= I -2 2 y + 2(co;x-sinxL' 2y(0) = 3 .

Problem 2

(6.1)

'[I 'J '[ 22;' = ~8 I J[IYJ [ 2sinx J
-999 2y + 999(cosx-sinx)' [

,y(O) J= [2 J.
2y(0) 3

(6.2)

Both problems have identically the same exact solution, given by

[
I y(')J [I ] [ sin x J= 2 exp( - x), + .
2y(') I cos x

(6,)

The graph of this common solution in the interval [0, 10] of x is shown in Figure 6.1(a).
The object of this numerical experiment is to attempt to generate numerically graphical
solutions of Problems 1 and 2 which are acceptable representations of Figure 6.1(a).

For our first attempt we use a simple code based on the fourth-order explicit embedded
Runge-Kutta method RKF45, described in §5.1O. The code controls steplength in the
following way, Call the local error estimate produced by the method EST. The user
provides a tolerance TOl (and an initial steplength 110) and if EST> TOl the steplength
is successively halved until EST ~ TOL. If at any step EST < TOl/2~ (recall that the
local error is O(h~», the steplength is successively doubled until TOl/2~ ~ EST ~ TOL.
Since a graphical solution is limited by the resolution of the computer graphics, there
is little point in asking for high accuracy and we set TOl at the modest value of 0.01;
we choose ho = 0.1 (for no particularly good reason). The resulting graphical solution
when the code is so applied to Problem I is shown in Figure 6.1(b); the numerically
generated points are marked + and N is the number of steps taken to complete the
integration from x = 0 to x = 10. The code accepts the initial step length of 0.1 until
x = 2.0, when it doubles the steplength to 0.2; it takes 60 steps to complete the solution,
and clearly gives an adequate respresentation of Figure 6.1(a).

We now apply the same code, with the same values for 11 0 and TOl to Problem 2.
The results, shown in Figure 6.I(c), are very different from those for Problem I. Before
computing the first step, the code halves the steplength three times to 0.0 125 and before



(6.5)

(6.4)

215A PRELIMINARY NUMERICAL EXPERIMENT

[ IY] = Kl exp ( - x) [ I ] + K2eXP( - h )[ I ]+[sinx]
2 y I - I cos x

where K1 and K 2 arc arbitrary constants. For Problem 2, the eigenvalues are -I and
:-1000, and the general solution is

[
I YJ [ I J [ I J [ sin x J2 = KJ exp( - x) + K 2 exp( - 1000x) + .
y I '-998 cosx

An explanation of the results of our numerical experiment can be made in terms of
linear stability theory. Since for both problems the eigenvalues arc real. we need consider
only intervals of absolute stability. From Figure 5.2 of §5.12 we sec that the interval of
absolute stability of RKF45 is approximately (- 3,0) so that for Problem I absolute
stability is achieved if - 31tE(- 3,0), or It < 1.0; even the modest tolerance of 0.0 I requires
It to be less than that, so that it is the demands of accuracy and not of linear stability
that constrain the steplength. For Problem 2, however, absolute stability is achieved
only if -1000ltE( - 3,0), or It < 0.003, and the demands of linear stability rather than
those of accuracy constrain the steplength. (In the next section we shall modify this last
remark somewhat.) Earlier in this book we remarked that automatic codes for the
numerical solution of initial value problems do not normally test for absolute stability,
but rely on their error-monitoring features to det~ct the increase in error that occurs if

Let us now try a different code, based on the 2-step Gauss method described in §5.11.
It has the same order (four) as RKF45, but is implicit. The step-control mechanism is
the same as in the first code, the local error estimate now being provided by Richardson
extrapolation (see §5.1O). Applying this code to Problems I and 2 (with the same values
for TOL and ho as we used previously) gives the results shown in Figures 6.1 (d) and
6.1(e) respectively. For Problem I, the code initially doubles the steplength to the .value
0.2 which is retained until x = 2.0, when it is doubled again to 0.4: a total of 29 steps
are needed to complete the solution. For Problem 2, the code initially doubles the step
length twice to the value 0.4, which is retained for the remainder of the computation,
except for a solitary step of length 0.8, at x = 6.4; the code takes a total of 24 steps 10

complete the solution.
So, we have two similar problems which behave very differently when tackled

numerically. The explicit RK F45 method solves Problem I easily, with a fairly large
average steplength, but can solve Problem 2 only at the cost of culling the steplength
down to an unacceptably small level. In contrast, the implicit 2·stage Gauss method
solves both problems with moderately large average steplength (and actually appears
to find Problem 2 marginally the easier). The phenomenon being exhibited here is known
as stiffness; Problem 2 is stiff, while Problem I is non-stiff. Clearly the phenomenon
cannot be a function of the exact solution, since this is the same for both problems, and
must be a property of the differential system itself. It is thus more appropriate to talk
of stiff systems rather than of stiff problems. This thought suggests that we consider,
not the particular solutions of Problems I and 2 satisfying the given initial conditions,
but the general solutions of the systems, which in turn requires us (sec § 1.6) to look at
the eigenvalues of the coefficientmatrix of the systems. (Henceforth we shall refer to
such eigenvalues simply as eigenvalues of the system, or of the problem.) For Problem I,
the eigenvalues are -I and - 3, and the general solution is

:.' ;)
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taking the second step it halves it twice more to 0.003125; thereafter the steplength:r\~
oscillates between that value and 0.001 5625. The code takes a total of 3373 steps to ~:l

complete the solution, resulting in the ~aturation of crosses shown in Figure 6.1(c). The:;];,
result is an accurate numerical solutlOn-:-a much mor.e accurate one ~han "" had;;:1;h
intended, and indeed a much more expensive one; recalhng that RKF45 IS a six-stage. I;'

method the code has made a total of over 20000 function evaluations. It is impossible Ht
to get a cheap solution of this problem with an explicit Runge-Kutta method (or, indeed,::~l
with any explicit method). If we dispense with automatic step-control and attempt to: ;~~

use an explicit method with a fixed steplength of around 0.1, then the numbers pr~~~~:)l~'.
are nonsense, and very soon overflow. . ;ii~r

A~l'
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6.2 THE NATURE OF STIFFNESS

where y, IflE IP:'" and A is a constant m x III matrix with eigenvalues A,EC, t = 1,2, ... , m

(assumed distinct) and corresponding eigenvectors C,EC'", t = 1,2, ... , m. The general
solution of (6.6) (sec ~ 16) takes the form ~.

In this section we consider (at some length') various aspects of the phenomenon of
stiffness. 'Phenomenon' is probably a more appropriate word than 'property', since the
latter rather implies that stiffness can be defined in precise mathematical terms; it turns
out not to he possible to do this in a satisfactory manner, even for the restricted class
of linear constant coefficient systems. We shall also examine critically various qualitative
statements that can he (and mostly have been) made in an attempt to encapsulate the
notion of stiffness. and select the most satisfactory of these as a 'definition' of stiffness.
We start by generalizing the linear stability analysis of the preceding section.

Consider the linear constant coefficient inhomogeneous system

the stcplcngth corresponds .'0 operating outside a region of absolute stability, and
consequently reduce the steplength until absolute stability is obtained. Our numerical
experiment shows the simple-minded code based on RKF45 doing just that; it cuts
down the stcplength so that it oscillates between 0.003125 and 0.0015625, consistent
":ith the linear stability requirement that h < 0.003. In contrast, the 2-stage implicit
(';IlISS method has, as we shall see later, a region of absolute stability which includes
the whole of the left half-plane. so that the linear stability requirement hAefJl holds for
all positive 11 when the eigenvalue A. has negative real part; thus for both problems linear
stabilitymakes no demands on the steplength. The reason that the 2-stage Gauss code
solves Problem I in less steps than docs the RKF45 code is simply that the Gauss
method has a smaller local truncation error (for this particular problem).

In Lambert (1973) (and elsewhere) this statement is adopted as a definition of stiffness.
However, as we hope to show by the following examples, such a definition is not entirely
satisfactory-nor indeed is the definition of stiffness ratio. Let us consider the following
three systems, quoted together with their general solutions. The first is lh~ system
involved in Problem 2 of the preceding section; in order to avoid confusion. we shall
call it System 2, and the remaining examples Systems:' and 4.

Statement 1 A linear constant coefJicil'llt system is stifT if all of its l'i'/l'llra{lIn !tarc
negative real part and the stiffness ratio is large.

so that «,exp(Xx)c, is the fastest transient and /\,exp(~y)c, the slowest. If we solve
numerically an initial value problem involving the system (6.6) and our aim is to reach
the steady-state solution, then we must keep integrating until the slowest transient is
negligible. The smaller IRe ~I is, the longer we must keep integrating. If. however. the
method we are using has a finite region of absolute stability (as did the RKF45 code
of the preceding section), we must ensure that the steplcn~th II is sufficiently small for
I1A,efJlA , t = 1,2, ... , In to hold. Clearly a large value of IRei] implies a small stcplcngth.
We therefore get into a difficult situation if IRe II is very large and IRe ~I is very small:
we are forced to integrate for a very long time with an excessively small steplength. This
is precisely what happened when we attempted to integrate Problem 2 of the previous
section by the RKF45 code; it was necessary to integrate to around .\ = 10 if we wanted
to see the form of the steady-state solution, but the eigenvalue - I~ forced the

J steplength to be excessiv Iy small. Note the irony that the eigenvalue .l which causes
the stability difficulties has a very short-term effect on the exact solution (6.7). and indeed
none at all in the case ofProblem 2, where the initial conditions happened to wipe out
the fast transient altogether.

It would therefore appear that stiffness arises when IRe II is very large and IRe ~I

very small; it seems natural to take the ratio IRe Ilil Re ~I. the stiffness ratio. as a measure
of the stiffness of the system. We are now in a position to make the first of the statements
which are candidates for adoption as a definition ~f stiffness:

(6.6)y' = Ay + !pIx).

where the K, arc arbitrary constants and ljJ(x) is a particular integral. Now let us suppose
that

'"
y(x) = I K,exp(A.,X)L, + ljJ(x).'

1""1

(6.7)
System 2

[:~:J = [~~ -~9~ J[:~J+ [999(C~:i~n~ sin •• (6.9)

which implies that each of the terms exp(A,x)c, -> 0 as x -> 00, so that the solution y(x)
approaches ljJ(x) asymptotically as x -> 00; the term exp(A,x)c, will decay monotonically'
if )., is real and sinusoidally if A, is complex. Interpreting x to be time (as it often is in '
physical problems) it is appropriate to call L;':, I ", exp(A,x)C, the transient solution and
I/Ih) the stcadv-state solutiou. If IRe A,I is large then the corresponding term ", exp(A,x)c,
WIll decay quickly as x increases and is thus called a fast transient; if IRe A/I is small
the corresponding term ", exp(A,x)C, decays slowly and is called a slow transient. Let
;'~EP"t = 1,2•.. . ,m} be defined by

t= 1,2....• m,RcA,.( 0,

IRe XI ~ IRe A,I ~ IRe~l, t= 1,2, ... ,m

(6.8)

[
I ] [I] '[ I J [sin x JY = K1 exp( - x) + "2 exp( - lOOOx) + .
2y I -998 COSY

System 3 ,

['Y'] [-2 I J[IYJ [ 2sinx -'j
2 y' = -1.999 0.999 Zy + 0.999(sinx-cosx)_

[ I ] [IJ [ 'I 'J [Sin XJy = "I exp( - x) .+ KZ exp( - O.oph) +'.
• 2Y I . I.999 cos x

(6.10)

, ,.s



fly'] f- O.002 0.001 Jf'y] [ 0.OO2sin(0.OOlx) ]
L2y' =L 0.998 -0.999 L2 y + 0.999[cos(0.OOlx)-sin(0.OOlx)] (6.11),

fly] = 1(, exp( - x)[ I ] + 1(2 exP(_O.OOIX)[']+[s I(.O.OOOO'X))].L2y -998 , cosff). Ix

"or Svstcrn 2. J. = - 1000 and ). = - I, while for Systems 3 and 4, X= - I and
i. = - 0.001; all three systems thus have a stiffness ratio of 1000.
~ We have already seen in the preceding section that System 2 cannot be solved by the
RK1'45 code unless the steplcngth is excessively small, and that this happens even in
the case when I( 2 = 0 and the fast transient is not present in the exact solution. The
same happens even if we choose initial conditions such that 1(, = 1\2 = 0; in that case
the RKF45 code is unable to integrate even the very smooth solution y(x) = [sin x, cos x]T
with a steplcngth greater than roughly 0.003. This system is exhibiting genuine stiffness,
and the difficulties arise whatever the choice of initial values. Note that if the initial
conditions are such that the fast transient is present in the exact solution, then we would
expect to have to usc a very small steplength in able to follow that fast transient; the
effect of stiffness is that we have to continue using that small steplength long after the
fasl transient has died. .,

Now let us consider System 3. If we impose initial conditions such as y(Ot= [2,3.999] T,
which corresponds to /(, = 1(2 = I, and apply the RKF45 code (with the prg~usly used
values for TOl and "0), then the stcplength settles down to 0.4. This is broadly what
we would expect, since the modulus of neither of the eigenvalues is sufficiently large to
impose a stability restriction on the steplength. Of course, if we wish to reach the steady
state solution, we must continue the integration until the term in exp( - O.OOlx) is
negligible say equal to TOl; this implies integrating from x = 0 to x = 1010 at a cost
of around 2500 steps. The total computational effort is comparablewith that for Problem
2. thus supporting the view that stiffness ratio is a consistent measure of ·stiffness.
l lowcvcr, if we change the initial conditions to y(O) = [2, 3]T, for which 1\, = 2, ";2 = 0,
the slow transient in (6.10) is annihilated and there is no need to integrate a long way
to reach the steady-state solution. There is no stability restriction on the steplength, so
there arise none of the difficulties we associate with solving a stiff system by a method
with a finite region of absolute stability. The RKF45 code with the previously used
values of TOl and Ito integrates from x = °to x = 10 (now well into the steady-state
phase) at a cost of only 25 steps. The problem is effectively not stiff at all! Thus, if
Statement I were adopted as a definition, the stiffness of a system would depend on the
initial conditions imposed by a particular problem-a state of affairs that would not
be acceptable for a linear constant coefficient system.

The inadequacy of the concept of stiffness ratio can perhaps best be seen by considering
what happens in the limiting case when the eigenvalue with smallest modulus real part
is in fact zero. The contribution of that eigenvalue to the exact solution is then a constant.
If the moduli of the real parts of the remaining eigenvalues are not particularly large,
the system exhibits no signs of stiffness, yet the stiffness ratio is now infinite! ,

The 'stiffness' exhibited by System 3, which is caused solely by the presence of a very
slow transient, is not the same sort of phenomenon as the stiffness exhibited by System 2.

Statement 3 Stiffness occurs wilen some components of tile sollllion decal' nil/eli more
rapidly than others" '-
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Statement 2 Stiffness occurs wilen stahility requirements; ratller 111(/11 llrose of aeCl/rae\'.
constrain the steplenqth.

The difficulty with this-statement is that it does 'not differentiate between the genuinely
stilTSystems 2 and'4 and the pseudo-stiff System 3. Statements based on comparing the
rate of change of the fastest transient with that of the steady-state solution come up
against another difficulty. Consider a homogeneous system .1" = A.I': the steady-state

One can certainly observe this happening when Systems 2 and 4 are solved by the
RKF45 code. It does not happen for System 3, and the statement properly separates
out the genuinely stiff system from the pseudo-stiff. However. the statement is not entirely
accurate. Stability is concerned with the acclllnltlation of error, yet we recall from the
preceding section that when Problem 2 was solved by the RKF45 the initial steplength
of 0.1 was immediately cut down to 0.0125, whereas for the non-stiff Problem 1. the
initial steplength was accepted. THus the local error at the very first step was substantially
hir 'ier for the stiff problem than for the non-stiff. It is not possible to separate stability
from accuracy in quite as clear-cut a manner as the statement implies.

Another such statement that has been made is

It is debatable whether such systems should be called stiff at all, and we shall call them
pseudo-stiff. In contrast with System 2, for all choices of initial conditions such systems
can be integrated by methods with finite regions of absolute stability using the sort of
steplength that the exact solution would suggest was reasonable. Note, however, that
the associated homogeneous system y' = Ay, where A is the coefficient matrix in System
3, is genuinely stiff, indeed precisely as stiff as are the homogeneous systems associated
with Systems 2 and 4. It i's the presence of a steady-state solution which varies at a rate
comparable with that of the fastest transient that motivates us to regard System 3 as
pseudo-stiff and not genuinely stitf. This remark forces us to abandon the notion that
stiffness oi a iinear constant coefficient system can be described solely in terms of the
spectrum of the matrix A; it is essential to consider the full system .1" = Ay + <p(x). Thus
Statement I fails, on another count, to be acceptable as a definition of stiffness.
-These conclusions might suggest that true stiffness requires that IRe()ll must be large
in-some absolute sense, say IRe(Xli » I. Consideration of System 4. for which IRe II = 1.
soon dispels that notion. Here, the steady-state solution varies extremely slowly with x
and we might hope to be able to integrate in the steady-state region with a very large
steplength, of the order of 100. The presence of the eigenvalue - I precludes this
possibility, even in the case when 1(, = 1(2' where the RJ<.F45 code chooses a steplength
of 9.4; it takes a very long time even to see the form of the steady-slate solution. which
is produced with much greater accuracy than we want. System 4 is stiff in exactly the
same sense as is System 2. (In fact if in System 2 we make the transformation x = 0.()01 ~

and then write x for ~, we obtain System 4.)
A statement 'fhieh is frequently made in an attempt to tic down the concept of

stiITness is
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solution is zero, and WIY transient varies infinitely rapidly compared with the rate of
change of the steady-state solution, so that all homogeneous systems become stilT!

Perhaps the best statement we can come up with-and we shall adopt it as our
'definition'-is one which merely rela,tes what we observe happening in practice:

Definition /f a IIIlIIleri(a/ method with a finite region of absolute stability, applied to a
system with any initial conditions, isforced to use in a certain interval of integration a step
lenyth wluc]: is excessively small i/I relation to the smoothness of the exdct solution in that
ilJlert,al, then the system is said to be stiff in that interval.

This docs differentiate between the genuinely stilT and the pseudo-stiff system, and
moreover introduces the idea that stiffness may vary over the total interval of integration.
What we mean by an 'excessively small' steplength depends on what stage in the
integration we have reached. In the phase when the fastest transients are still alive, the
exact solution is not at all smooth; a very small steplength is natural and should not
be seen as 'excessively small'. When the fast transients are dead, the exact solution is
smooth, and we call properly regard the same very small stcplength as being 'excessively
small'. Note that if we adopt this definition, then we can relax the requirement (6.8) that
all the eigenvalues of A have negative real part. The definition still makes sense if A has
somc eigenvalues with positive real parts which are small relative to IRe Xl I

Let us now consider another aspect of the phenomenon of stiffness, first pointed out
ny Curtiss and llirschfoldcr (1952). The non-stiff and stilT Problems I and 2 of the
preceding section were chosen to have the same exact solution. However, if we look not
just at the exact solution but at the neighbouring solution curves as well, we see very
different pictures. For the non-stiff Problem I, these neighbouring curves approach the
exact solution curve at a moderately slow rate, whereas for the stilT Problem 2, they
approach the solution curve so steeply that it is necessary to use a large magnifying
glass to sec what is happening. We blow up Figure 6.1(a) and look at- a very small
interval, L4.6S4,4.696J of x, ncar where 2y(X), the second component of the common
exact solution (6.3) of Problems I and 2, crosses the x-axis: The graph of 2y(X) ; shown
as the heavy line labelled (0) in Figure 6.2. The line labelled (I) is a neighbouring solution
curve for Problem I and that labelled (2) a neighbouring solution curve for Problem 2;
both pass through the point II, where x = 4.685, Y = - 0.004. The point II is very close
10 the exact solution, the global error at x = 4.685 (the length of the line AoA) being
- 0.005. The effect of the inevitable errors in any numerical method is that the numerical
solution point lies not on the exact solution curve but at a neighbouring point such as
II. When we evaluate the function f(x, .1') = Ay + cp(x) at the point II (or at points very
dose to II in the case of an explicit Runge- KUlla method such as RKF45) we are simply
evaluating the slope of the neighbouring solution curve through II (or at points very
close to II). In the case of the neighbouring solution curve (1) of the non-stiff Problem I,
this gradient information is a good approximation to the gradient information on the
exact solution curve (0), since the two curves are virtually parallel. Not so (or the
neighbouring solution curve (2) for the stilT Problem 2, where the slope of (2) at II is
wildly different from the slope of (0) at 110 , We would need to move much further up the
curve (2)-- at least as far as B-before we begin to get reasonable gradient information.
In order to stay that close to the exact solution, we need to employ a very small steplength.

More can he gleaned from Figure 6.2. The argument we have given above assumes

(2)

I
1
I

(1)

\

(0)

Figure 6.2

that the step.ahead from II will depend only on gradient information evaluated at II
(or points very close to it in the case of an explicit Runge Kulla method). This is not
the case if the method is implicit. To simplify ideas, consider what would happen if we
employed the explicit Euler's Rule, starting from point II with steplength 0.01. Euler'<
Rule is equivalent to proceeding down the tangent to the solution curve through II, that
is, in the direction labelled E in Figure 6.2, until x reaches the value 4.695. This take
us very far away on the other side of the curve (0), and it is not hard to envisage that
a further Euler step from x = 0.695 will take us even further away, demonstruting
instability. Recalling from §5.1 the interpretation of an explicit Runge-Kutta method
as a sequence of Euler steps, it is clear that RK F45 will fare no better than docs Euler'.
Rule. For the implicit Trapezoidal Rule however, we proceed along a direction which i,
the mean of the slope at II and the slope at the new solution point. II simple calculation
shows that this is the direction labelled T in Figure 6.2, a direction which suggests that
stability can be achieved without forcing the steplength to be excessively small. Thus
by considering the geometry of the neighbouring solution curves, we can anticipate thai
no explicit method will be able to cope efficiently with a stiff system, but that implicit
methods may be able to do so.

The above arguments motivate yet another statement concerning stiffness:

Statement 4 A system is said to be stiff ill a !/il'ell i//(el'l'lIl of x if ill Ihal ill/el'l'.,1 ,I,.
neighbouring solution curves approach tile solution CIII'I'(' at a rale which is verJ' larqe ir
comparison with tile rate at which the solution varies ill tllat iliterl'Ol.

Like our definition, this statement properly separates out the genuinely stiff system Irorr
the pseudo-stilT and stresses that whetheror not a system is stiff depends on the stag.
of integration we have reached. For a genuinely stilT system the neighbouring curve,
will indeed approach the solution curve at a rate which is very large (relative to thl
rate of change of the solution in its post-transient phase), but which is not particularlv
large relative to the current rate of change of the solution in the phase when the Iastes:

.,
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The exact solution of this problem is 1y(x) = I/x, 2 r(x) = exp( - x 2
) , We see that for

x ~ I the solution decays monotonically and is smooth: the larger x is, the smoother
the solution becomes. If we now attempt to solve this problem by the RKF45 code with
TOL = 10- 4 , we find that the total number of steps N(x) taken to reach the point x is
as follows:

gave an indication of the local behaviour of the variable coefficient or nonlinear system.
The same 'frozen Jacobian' argument can be used to attempt to describe the stiffness
of a variable coefficient or nonlinear system in terms of the distribution of the eigenvalues
of the frozen Jacobian. In Chapter 7, Of! nonlinear stability theory for stiff systems, we
shall give some further examples illustrating the invalidity of this approach. (It \~as the
inability of linear stability theory to deal satisfactorily with variable coefficient or
nonlinear systems that led to the development of an alternative stability theory.) It
follows that Statement I does not hold for variable coefficient or nonlinear systems; the
remaining Statements do hold for such systems (subject to the reservations expressed
earlier), In particular, it is invariably the case that stiff variable coefficient and nonlinear
systems cannot be integrated by a method with a finite region of absolute stability unless
the steplength is excessively small; thus our definition of stiffness (despite its use of the
language of linear stability theory) docs hold for variable coefficient and nonlinear
systems. Consider the following nonlinear example:

I y' = IIIY _ 2yexp(x 2)/x 2 - x,

2y' = Wy - exp(x 2
) - 2xexp( - x 2

),

(6.121

2.2

701

2.0

192

11'(1)= I }
21'(1) = exp( - I).

92

1.81.6

40

1.4

20

1.2x

N(x)

lransients arc still alive. Moreover, like our definition, Statement 4 makes sense even if
we allow the matrix Ato have some eigenvalues with small positive real part. However,
Statement "4 obviously would not make a very practicable definition in the sense that
it would tell us whether or not a problem with unknown solution was exhibiting stiffness
only alia we had computed the solution (and at least one neighbouring solution). The
same sort of crit icism cannot be made of our definition of stiffness; if we attempt to
solve a problem involving a stiff system using a code based on a method with a finite
region of absolute stability, we will quickly become aware of the presence of stiffness
and abort the computation,

An antilytic interpretation that can be rut on the phenomenon of neighbouring curves
that we have just discussed is that the function [tx, y) = Ay + rp(x) is ill-conditioned, that
is, has a large Lipschitz constant. For such a system, small changes in the value of y
lead to large changes in [i«, y)( = y'). For our linear constant coefficient system, the
Lipschitz constant may be taken to be L = II ofloyII = II A II ~ max.] .1.,1, for any norm.
Thus. for a stiff system, L is large, and indeed some authors use the phrase 'systems with
large Lipschitz constants' to describe stiff systems. However, this leaves open the question
'Large relative 10 what?', Attempts can be made to answer this question, but such
attempts do not, in the author's opinion, result in definitions which are superior to that
we have adopted.

The reader who is familiar with singular perturbation theory will see some connection
between that phenomenon and stiffness; indeed systems exhibiting singular perturbation
can be seen as a sub-class of stiff systems. We do not pursue this connection further,
other than to quote a very simple example. Consider the homogeneous linear constant
coefficient system

where the matrix A has real eigenvalues .1. 1' ,(2 such that ,(1 «,(2 < O. By eliminating 2y
and,2 v' we obtain the equivalent second-order scalar equation

Since i.t , i 2 are the zeros of the quadratic ),2_(£11 1 +1I21),(+(a I I1l 21 - £l12£l2 d this
scalar equation can be rewritten as

As i' l --> - rf~, we have the classical singular perturbation situation.
All of our discussions on the nature of stiffness ha~e so far centred around the linear'

constant coefficient system. Variable coefficient linear systems y' = A(x)y + rp(x) and
nonlinear systems y' = f(x,y) can also exhibit stiffness, and it is such systems that present
the real computational challenge. In our discussion in §3.8 of linear stability theory for
linear multistep methods, we reproduced an argument which' purported to extend linear
stability theory to variable coefficient and nonlinear problems, and showed by example
that such an argument could lead to invalid conclusions. The flaw in the argument was
the assumption that the Jacobian A(x) or of/oy could be assumed piecewise constant
(or 'frozen') and that the behaviour of the resulting linear constant coefficient system

Our definition of stiffness would indicate that the system is not particularly stiff fOI
1.0,;;; x ,;;; 1.6; thereafter, the steplength becomes increasingly small relative to the
smoothness of the exact (or of the computed) solution, and increasing stiffness is indicated
The numerical solution so produced is quite acceptable; at x = 2.2 the Lrnorm of the
global error is 4 x 10- 4

.

Despite the existence of counter-examples, it has to be said that analysing the stiflnes
of a variable coefficient or nonlinear system by freezing the Jacobian and applyiru
Statement I, can (and very often does) give valid qualitative (and sometinies quantitative
information about the stiffness of the system, Applying such an argument to (6.12), thl
numerical solution in some interval containing the point x will be deemed stable if till
steplength there is such that !J,(,(X)E[JfA' t = 1,2, where :1P A is the region of absolute
stability of the RKF45 method, and ,("t = 1,2, are the eigenvalues of the Jacobian 0

the system in (6.12);evaluated on the exact solution. These eigenvalues are readily foun.
to be - lie y)2 and - I/ey)2 so that on substituting from the exact solution we have

Table 6.1 compares h(MAX), the maximum steplength that the above 5[;lI,.oIl'

requirement allows at x, with h(ACT), the actual step length the code typically used il
a neighbourhood of x. I

r

. nV
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where the K, are arbitrary constants and 11" d, are respectively the eigenvalues (a.ssumed
distinct) and the eigenvectors of B. The numerical solution {.I'.} is an approxImation

to the exact solution '

,1",/ = 1,2, ... ,/11, of A al! lie within a~ infinite' wedge in the left half of the ii-plane.
bounded by the rays arg It = 11 - IX, arg II = 11 + 'J.. (Recall that complex eigenvalues occur
as complex conjugate pairs.) Multiplying i.,Ee by IIE~ is equivalent to moving along
the ray from the origin to A" and it follows that II;., also hes within this wedge, for all
positive values of II.This observation motivates the following dcfiniuon (Widlund, 1967):

Definition' A method is said 10 be A(Cl)-stable, IXE(O, 11/2) u«, 2. {hl- 'J. < 11- argir < 'J.::

it is said to be A (O)-stable if i/ is A(IX)-stable for some 'J.E(O, 11/2). I

Clearly, A(O)-stability has some relevance to the j class of problems for which a.1I of
the eigenvalues are real and negative. In that case, however. we can do better by requinng
only that !Jt

A
contains the negative real axis, thus mouvatmg the following definition

(Cryer, 1973):

DejiniCion A metllOd'iS said /0 be Ao-stable'if.<Jf A 2. {hi Re il < 0, 1mh=O}.

An alternative way of slackening the requirements of A-stahility is to argue that. lor
many problems, the eigenvalues which prodnce the fastest transtents all he to the left
of a line Re h= - a, where a> 0, the remaining eigenvalues (which are responsible for
the slower transients) being, clustered fairly close to the origin. We arc thus assurrung
that there are no eigenvalues with small negative real part and large imugmury part.

This motivates the following definition (Gear, 1969):

Definition A me/hod islaid /0 be stiffly;;table ;f.-)fA "2 .1f I u:.R2 II'lrere:.R I = {hiRe;; ~ - a1
and !Jt

2
= {hl- a ~ Re h < 0, - C ~ 1mIt ~ c}, all~l a,alld care positu:e real II lI/lIbels.

, The minimum region that is necessary to ensure A-stability, A('J.)-s~ability and stiff
stability are shown in Figure 6.3. It is at once obvious that stiff stability implies A('J.)-

stability with IX = arc tantc/«), ..'. .
. It is possible to argue that there is a sense in which A-stablh~y, far from being over-

restrictive, is not restrictive enough. Consider the Trapezoidal Rule, )'.+ I =}'~ +
!hU.+ I + I.), which is A-stable (see Fi~ure ~.2. of §3.8), applied. to t~e test eq~atlon
y' = Ay, where A is an m x 111 matrix wl~h dlst~nct eigenvalues /; satisfying Re A, < O.
t= 1,2, ... ,111; as before, we indicate by A the eigenvalue WIth the maximum modulus
real part. We obtain the system of difference equations

(6.15)

(6.14)

(6.13)

'"
Y. = L K,(/I,)"d"

t e I

y(x.) = f K,eX\?(Ax.)C, = ,t K, exp(Axo)[exp(i.II))·c"
,= I

Y.+ 1 = By., B = (/ '- hA/2r 1(/ + 'IA/2).

It is straightforward to check that the general solution of (6.13) takes the form

J

I
'J

A-stahility turns out to be a demanding requirement (particularly for linear multistep
methods) and it is natural to restrict the class of problems in some way and seek
alternative and less demanding requirements which will remove the restriction on the
steplength for that restricted class of problems. Consider the case when the eigenvalues

,f)ejinition A method is said /0 be A-stable if fit A 2 {hi Re h< O}.

It is clear from the considerations of the preceding section that, as far as the linear
constant coefficient system y' = Ay + q>(x) is concerned, if the method employed has a
region of absolute stability which includes the whole of the left half-plane, then there
will be no stability-imposed restriction on the steplength. Denoting itA by h, (as in §3.8),
we have the following definition (Dahlquist, 1963)

6.3 LINEAR STABILITY DEFINITIONS PERTINENT
TO STIFFNESS

The 'frozen Jacobian' approach thus affords a virtually perfect explanation of what
happened in practice. Stiffness has no effect until x> 1.6; for x~ 1.6 it is accuracy, not
stability that dictates the steplength (see Statement ,2). Thereafter, h(ACT) follows
h(MAX) quite convincingly. Despite the excellent results that the 'frozen Jacobian'
argument gives in this example, we will find, in §7.I, that there exist examples in which
the above procedure yields results which are not only poor, but frankly ludicrous.

In this section, the impression might have been given that stiffness is an example of
that sort of bizarre, pathological problem which so fascinates the mathematician but
which seldom arises in real-life situations. Let the reader be assured that this is very far
from the truth. The author is unaware of precisely when the word 'stiffness' first entered
the literature, but it probably had its origins in control theory. (Any control mechanism
which could be modelled by a stiff system would have a strong tendency to seek the
equilibrium solution and would feel 'stiff' in the mechanical sense.) Stiffness arises in a
wide array of real-life problems, and areas such as chemical kinetics, reactor kinetics,
control theory, electronics and mathematical biology regularly throw up stiff systems,
some of an awesome degree of stiffness. The author sometimes gets the impression that
the degree of stiffness that real-life problems exhibit becomes greater year by year.
Perhaps within the mathematical community there are groups of mathematical modellers
striving to produce ever more accurate models which include the 'switching-on'
phenomena thaI produce very fast transient solutions, as well as groups of numerical
analysts striving equally hard to get rid of these transients!

224 STIFFNESS: LINEAR STABILITY THEORY

Table 6.1

1.0 1.2 1.4 1.6 1.8 2.0 2.2
-~~-~~--~---'---- ----

I. -7.4 -17.81 - 50.4 -167 -652 -2,981 -15,994
h(MAX) 0.41 0.17 0.06 0.QI8 0.005 0.0010 0.000 19
Ir(ACT) 0.01 0.01 0.01 O.QI 0.005 0.0013 0.000 16

\ I J.-.
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where the c,( =1= d,) arc the eigenvectors of A. Now, if a matrix A has eigenvalues A." and
N(') is a rational function, then the eigenvalues of R(A) are R(A.,). It follows from (6.13)
that II, '" (I -+- 11;',/2)/( I - h).,/2), t = 1,2, ... , m; in particular, B must have an eigenvalue
II such that

•
which is close to zero when IIJII is large. Thus the terms [exp(iJI)J" and (fi)" both tend
to zero rapidly as n .... CfJ, and we would not expect to see a slowly damped error.

We illustrate this phenomenon by applying both methods, with a fixed steplength,
to System 2 of the preceding section. If we apply the initial conditions of Problem 2 of
~6.1, which annihilated the fast transient, the phenomenon cannot be observed. However,
if we change the initial conditions to y(O) = [O,OJ T

, the exact solution becomes

C()m~aring (6.14) with (6.15) we sec that /1, approximates exp(A.,h); note that 1/1,1 < I, so
that (II,)"....0 as n .... 0"-, (which must happen, since the method is A-stable). Hmrever if
IReII is very large and h not particularly small (and the whole idea of A-stability is not
10 have II excessively small), then IhII will be large, and we see from (6.16) that ii will
he close to - I. Thus the term [exp(hI)]", which tends to zero extremely rapidly as
11--+ Cf.J is approximated by the term (ji)" which tends to zero very slowly, and with
alternating sign. as n ....a.. We can expect a slowly damped oscillating error when we
apply the Trapezoidal Rule in such circumstances.

In contrast, if we apply the Backward Euler method y"+ I = y" -+- hf" + I' then we obtain
the difference system (6.13), but with B now given by B = (I - hA) - I; (6.16) is then
replaced by .

10

I (b)

Figure 6.4 (a~ ,!rapezoidal Rule. (b) Backward Euler method

-2 '

Definiton A on'e-step method is said to be L-slable if it is A-stahle and, ill addition, lI·hell
applied to the scalar test equation y' = A.y, A. a complex constant with Re A. < 0, it yields
Y.+J = R(hA.)y., where IR(IrA.)I-+O as RehA.-+ - 00.

o~ x ~ 10; the continuous line represents the exact solution and the numerical solution
points are indicated by the symbol -+-. (Note that the fast transient dies so quickly, that
the graph of the exact solution jumps immediately from 0 to the slow transient plus
steady-state solution.) The slowly damped oscillating error in the numerical solution is
clearly demonstrated. In Figure 6.4(b), the numerical solution for 2.1', given by the
Backward Euler method applied with the same fixed steplength, is plotted: there is clearly
no slowly damped error.

In attempting to frame a definition that separates out methods like the Backward
Euler method from those like the Trapezoidal Rule, we observe firstly that we can cope
only with one-step methods, and secondly that, since the essential point is the difference
in behaviour between (6.16) and (6.17), it would be enough to consider a scalar test
problem y' = A.y. We thus arrive at the following definition (Ehle, 1969;Axelsson, 1969):

(6.16)

, (6.17)II = 1/(1 -hI),

fi = (I -+- hI/2)/( I - hIj2).

[ 'VJ=-lexp(_x)[I]+_1 eXP(-I000X)[ I. ]+[sinx]
2y 999 I 999 - 998 cos x

and the fast transient is present. Figure 6.4(a) shows the results (for the component 2y
only) of applying the Trapezoidal Rule with the fixed steplength iJ = 0.2 in the interval

This property is sometimes called stiffA-stability or strong A-stability; the 'L' in L-stability
indicates that special behaviour far to the left of the origin is required. Note the hierarchy

L-stability:=ol A-stabilily => stilT-stability=> A(a)-stability

=> A(O)-stability=> Ao-stability.
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(a)

+1

In practice, the slowly-damped-error phenomenon exhibited by methods which are
.t-stablc but not L-stahle is nowhere near as disastrous as Figure 6.4(a) would suggest.
In our example, the fixed steplcngth of 0.2 is much too large to allow the method to
provide a good approximation during the phase whcn the fast transient in the exact
solution is still alive, and a large error is introduced. This error is then damped only
vcry slowly. A more practical setting would be to apply the' Trapezoidal Rule in an
automatic code which monitored error and changed the steplength.If we do this, then
the code initially selects a very small steplength, but increases the steplength to a 'normal'
value when the fast transient is dead. We can see this happening if we apply the automatic
code based on the 2-stage Gauss method, employed in §6.1, to the above examp•.. For
the Gauss method, the [unction R(/tJe) appearing in the definition of L-stability is
rI + /t)./2 + (/t))2/12]/[ I - /tA/2 + (hJe)2/12]. The method is A-stable, but not L-stable;
clearly, R(/t),) -+ I as Re Ii), -~ -- if), and there would be a slowly damped (but now
non-oscillatory) error if the method were applied to a stiffsystem, using a fixed steplcngth
with is not excessively small. However, when the automatic codc is applied to the
above problem it chooses the following initial sequence of steplcngths:

0.0015625, 0.0015625, 0.003 125, 0.00 625, 0.4, 0.4" ...

In Figure 6.5(a). the continuous line is the graph of the exact solution for the component
I y(x), given by (6.19), in the interval [0, I.S]; after the fast transient exp( - Sax) becomes

Thereafter the stcplcngth stays at 0.4 except for a single step of 0.8, and the numerical
solution so obtained is perfectly acceptable. The moral is clear; never compute with a
fixed stcplength, particularly if stiffness is around!

An alternative means of removing the slowly damped error associated with methods
which are A-stable but not L-stable is to employ smoothing, as first advocated by Lindberg
(1971) for the Trapezoidal Rule. This consists of replacing Y. by .P. :=(Y._I +2y. +Y.+ 1)/4,
and then using the value .~. to propagate the solution. Smoothing can be carried out
at the first P steps only (when the fast transients are still alive) or introduced whenever
the numerical solution exhibits lack of smoothness. An analysis of the effect of smoothing
on the truncation error can be found in Lindberg (1971). Let us examine the effect of
applying smoothing just once to the numerical example illustrated in Figure 6.4. Using
the Trapezoidal Rule with the fixed steplength of 0.2, we compute Yl and Y2' replace YI
hy PI and let the computation proceed from there. The graphical solution so obtained
is indistinguishable lrorn Figure 6.4(b).

SOIT)e authors appear to consider it self-evident that L-stability is to be preferred to
A-stability, hut this is not always so. Consider the following example:

+
+ +

++++

+

+++
+ +

+ +
+ +

(b) •

Figure 6.5 (a) Backward Euler method (b) Trapezoidal Rule

-1

+1 +++
+ +

+ +
+ +

negligible, the solution is sinusoidal, with a very slowly increasing ampli.tude. The
numerical solution points given by the L-stable Backward Euler ~ethod With a fixed
steplength of 0.04 are indicated by the symbols +, and clearly give an unacceptable
solution. Figure 6,5(b) shows the acceptable results given by the ,A-stable but
non-L-stable Trapezoidal Rule. . .

The explanation of the Backward Euler's peculinr behaviour for this problem lies 111

the shape of its ab .ilute stability region. This region is the exterior of the Circle radius
I and centre Re h= I, 1m II = 0 (see Figure 3.4 of §3.12), and thus includes part of the
right half-plane as well as the whole of the left half-plane. The eigenva~ucs of the system
. (618) -50 a~d 0.1 + 8i and for moderate values or II, the P01l1ts 11(0.1 ± 8/) he
10 . are - , d f h
in the region of absolute stability; in Figure 6.~ (which shows the first qua. rant 0 t. e
complex h-plane only) the position of the point //(0, I + 8,) when 11=0.2 IS shown 111

relation to the boundary of the absolute stability region,

(6.19)

(6.18)
-42.1 ]

58.1 Y,
-34

50.1

-58

42.1

[

exp(O.1 x) sin 8x +exp(':'- SOx) ]
y(x)= exp(0.lx)cos8x-exp(-'50x) .

exp(O.lx)(eos 8x + sin 8x) + exp( - 50x)

l 42.2
y' = -66.1

26.1

with exact solution
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Thc eigenvalues (0.1 1 Hi) givc rise 10 sinusoidals with dC('(Iying amplitudes in the
numerical solution, whilst the corresponding eigenvalues of the system in (6.18)give rise
10 sinusoiduls with incrcasinq amplitude in the exact solution (6.19). In order to get a
numerical solution which faithfully represented the exact solution, we would need to
choose h sufficiently small for h(O.1 ± 8i) to lie within the region of absolute instability! A
simple calculation shows that this implies h < 0.0031245.

Unlike the phenomenon of the slowly damped error produced by the Trapezoidal Rule,
moving from a fixed step to an automatic code does not improve mallers. We can expect
nothing else; the difficulty has nothing to do with the fast transient, and therefore cannot
he expected to go away when the fast transient dies. Indeed, an automatic code consisting
of that used in ~6.1. but with the Backward Euler method replacing the 2-stage Gauss
method, runs into serious trouhle when applied to (6.18). With TOL set at 0.01, it chooses
an initial stcplcngth of 0.003 125 (by chance, almost precisely the crucial value at which
hm.l ±!li) hits the boundary of the region of absolute stability) but then doubles the
steplcngth to 0.00625 when x is around 0.08. That stcplcngth is maintained for the rest
of the integration to .x = 1.5, which is achieved at a total cost of 252 steps. The result
is a convincingly smooth solution, but one in which the sinusoidals decay slowly in
amplitude rather than increase. Wrong numerical results that look right are the most
dangerous ones' If we set TOL at 0.001, then the code chooses an initial steplength of
0.000 7!1 I 25, doubles it to 0.0015625 at around x = 0.06 and maintains that value for
the remainder of the integration, taking a total of 999 steps. The numerical solution
now correctly generates a sinusoidal solution with slowly increasing amplitude. The
disturbing thing about this example is that the automatic code proves capable of
generating convincing solutions which are not only inaccurate but whieh give incorrect
tll/ali/ativc information. Perhaps the moral is that one should use a range of tolerances;
even if that range produced nothing but damped sinusoidals, one would notice that as the
tolerance decreases, the sinusoidals became less damped, and one's suspicions would be
aroused. In contrast, the same code, but with the Trapezoidal Rule replacing the
Backward Euler method, encounters no difficulty; with TOL = 0.01, it initially chooses

Exercises

(I)

(I)y, + 1 = y, + II,If.l', • I)'

(i) Showthat for the testequation y' = ;'y,;' a realnegative constant,r, --+0 as /I --+ x· forall h > O.
(ii) Considerthe following novel wayofapplying(I).Given r" insteadofspecifying II, and solving

the implicit equation (I) for y, + I' let us specify .1', + 1 and solve (1) fur h, which is now given
explicitly. In order to specify Y.+ 1 sensibly, let us use a 2-stage second order explicit
Runge-Kutta method to estimate }'.+ I from Y., using II," I (known from the previous step)
as steplength. But the sequence {y,} obtained by such an algorithm is precisely the same as
that generated-by the 2-stage explicit Runge-Kutta method on its own (though not on the
samediscretization), and cannot possibly havethe property provedin [i)! Resolve this paradox.
(If all else fails, try a numerical example.)

6.3.3*. Use the Routh-Hurwitz criterion to show thai the method-

6.3.1. Use the result of Exercise 1.9.2 with z and II' replaced by rand hrespectively to prove that
no explicit linear multistepmethod and no predictor-corrector pair in P(EC1"E I -', r = 0, I. where
11 is finite, can be Ao·stable.

6.3.2. The Backward Euler method applied with a sequence of variable steplengths {II,1 to the
scalar test equation y' = fly) gives

a steplength of 0.006 25, but once the fast transient is dead the steplength rises to 0.025.
and a satisfactory solution' is achieved in 66 steps.

The behaviour observed above is not specific to the hack ward Euler method; all
L-stable methods are liable to behave like this when the system has some eigenvalues
with positive real parts. For all conventional one-step 'methods, the function l\(lri.)
appearing in the definition of L-stahility is a 'rational function, and the requirement
IR(hJ.)I->O as Rel,J.-> - 00 implies that IR(lIl)I->O as RcI,;'---+ + OC'. The region of
absolute stability must therefore include part of the positive half-plane, since the method
is clearly absolutely stable for very large positive 11).. Behaviour of the sort illustrated
above is bound to happen for a suitahly chosen problem.

Summarizing the two pehnomena described above. we can say that methods which
are A-stable but 1I0t L-stable will, for most problems. produce solutions with slowly
damped errors, but these errors can be satisfactorily controlled by an automatic code;
L-stable methods do not produce such slowly damped errors but can produce misleading
results, which will not be easily detected by an automatic code, when applied to an
infrequently met class of problems. On the whole, there seems to be something to be
said in favour of what we might call precisely A-slaMe methods, that is, methods whose
regions of absolute stability are precisely the left half-plane; the numerical solutions of
the test system y' = Ay then tend to zero l1S /I iends to infinity if" and 0/11.1' if" the exact
solutions tend to zero as x tends to infinity.

We conclude by emphasizing (yet again) that although all of the definitions in this
section have been motivated by the class of linear constant coefficient systems, they arc
widely used in the context of variable coefficient or nonlinear systems; for much of the
time, but not always, they coptinue to m~ke sense.

2

Figure 6.6

o
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I
is An·stable. Use the boundary locus method to find a91A• Consider a linear constant coefficient

-,1,'111 whose eigenvalues V,} arc given by
Table 6.2 The Pade table

11\ considering where the infinite wedge containing these eigenvalues intersects a91A, show that
the method is nol A(O)·slable.

We saw in ~5.12 that if a Runge-Kutta method is applied to the test equation for
absolute stability. .\" = J.y. ),EC I a constant, we obtain

6.4 RA TlONAL APPROXIMA TlONS TO
THE EXPONENTIAL; ORDER STARS

I + If + ~q' +*q'
1:':.~(i!J(+tq'

I - ~q

I J J' I J__+ 5l l -t:.J(j'i +;oq

I - ~q + -/ol/2

I + tq + (oq_' ::-,~~qJ

I - ~q + foq' - l~oqJ

1+ q + ~q'

t + ~~~~q~
1- tq

1+!q+.Lq'
__~_l__l~_

1- -}q+ Ti q2

I + ~q + fc;q'
i'=-~q + -lo~' - t!n q3

I+q

t +iq

I--}q

I +1q

I _~q +*q2

___I_::~
1 - ~q + ~q2 - i.qJ

I

I

I-q

I =3,4, ... ,m.1. 1= - /1+ ;, 1.2 = - /I - i, A,real,. -/I<A,<O,

and hence that

y(x. I I)" Y. + I = [exp(h) - R(h)]y(x.) = O(IIP+ 1)

Let the method have order p; then, using the localizing assumption Y. = y(x.), it follows
from (6.20) and (6.21) and the definition of local truncation error that

where if:= h). and H(·) is a rational function when the method is implicit or se~i-implicit
and a polynomial function when the method is explicit. It is clear that if any implicit
linear l-stcp method is applied to the test equation, we again obtain (6.20) with R(') a
rational function. The exact solution of the test equation is y(x) = K exp(b:), K an
arbitrary constant, whence

to exp(q) has order.J. As we would expect from a count of the parameters a.. hi in (6.24),
the maximum order that a R~(q) approximation can attain is S j- T. Such approxi!,TIations
of maximal order arc known as Pade approximations, and we denote them by R~(q). It
can be shown (see,for example, Butcher (1987» that the coefficients of R~(q) are given by

S! (S+T-i)!. 12 S b =(-I)j---7"--.~'1.:1::T_-:-j)!J·=I.2, ... ,T
a,=--- 1= , , ... " J (S+ T)'. J·'.(T-J·)I.(S +n! illS - i)l

. 's
Using these results, we construct in Table 6.2 the so-called Pade tahle of R r(q) for S.
T = 0, 1,2,3. A more extensive Pade table can be found in Butcher (1987).

The linear stability properties of a one-step method which generates the dilTerence
equation (6.20) are determined by the behaviour of R(/r). It is convenient to use the
nonmenclature of acceptability, introduced by Ehle (1969); we adopt the following
definition:

(6.20)

(6.21)

Y.+ 1= R(h)y.,

y(x. + I) = exp(IIA)y(X.) = exp(h),y(xn ) .

(6.22)

We arc thus motivated to study rational approximations to the exponential exp(q), qEc'
Let I/Ee and let H~ ('I). whereas S ;;,0, T;;, 0, be defined by

R~(l/) = Ct aiqi)I(J/jqj). ao = ho = I, as'" 0, b; '" 0 (6.23)

where a.. hjE IP., i = 0, I, ... , S, j = 0, I, ... , T. We say that R~(q) is an (S, T) rational
anproxinuuion of order ,) 10 tlu: exponential exp(q) if R~(q) = exp(q) + O(qP+ 1). It follows
lrorn (6.23) lhat we can find the order of a given rational approximation from the fact
that if

, I +a 11/+' '+0,1/'-(1 +hll/+···+hrqT)(1 +Q+q2/2!+· .. )=0(qP+I) (6.24)

thcn the approximation is of order fl. For example, putting S = T = 2, a l = 1, a2 =~,
hi = 0, hz = - ~ in (6.24), we find that p = 3. Thus the rational approximation

z 1+ q + q2/3
R2(q) = --'I=--q2)6---

Definition A rational approximation R(q) to exp(q) is said to be
(a) A-acceptable if IR(q)1 < I whenever Re q < 0,
(b) Ao-acceptable if IR(q)j < I whenever q is real and neqali"e, a/l(l
(c) L-acceptable if it is A-acceptable and IR(q)l ....9as Re q -+ - co.

Clearly the method is A-, Ao- or L-stableaeeording as R(h) is A-, Ao- or L-acceptable.
It is obvious that the rational approximation R~(q) cannot be A-acceptable if S > T, and
that if R~(q) is A-acceptable and T> S, then R~(q) is also L-acceptable.

Our first two results on acceptability concern rational approximations which contain
free paramet~rs and are not, in general Pade approximations. Define

(6.25)

(We do not label these approximations according to the notation of (6.2J) since Sand
T depend on the values taken by the parameters 11. and fl.) For general 11., RI(q; ~) has

IYY
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RATIONAL APPROXIMATIONS TO THE EXPONENTIAL; ORDER STARS

becomes l<.e{KpP+ l exp[i(p + I )O] } < 0(pp+2), i.e. cos[(p+I)/J]>O(p) if K>O and

cos[(p + 1)0] < O(p) if K < 0.) . .
Figure 6.7(a) is a magnified view of how the ~rder s~ar, In the case p = 5, must look

in a small square surrounding the origin; the region ;jJ IS shaded and C(:M) .IS unshade~.

Temporarily writing q = x + iy, it is easy to see by example that R(Cf) = H(x.+ IY! = R(x.y ).
so that fJI must be symmetric about the real axis; thus the configuration III Figure 6.7(a)

is the only possible one.
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Theorem fJ.4 ilih!«, /9(9) If T = 5 + I or T = 5 + 2, then R~(q) is l-acceptable.

Theorem (,.2 (BirkhofT lind Varga, /965) If T = 5, then R~(q) is A-acceptable.

Theorem (i/ (Lilliger and Wil/oughhy. /970) Let Rt(q;lX) and R
2(q;

IX, {3) be defined by
(6.25). Then

(a) R I (q; a) is A-accep(ah/eiiand olily if a: ~ 0 and L-acceptable ifand only ifa: = 1,and
(h) R2 (q; IX.rn is A-lI('("eptahle if and only if IX~ 0, {3 ~ 0 and Lsocceptable if and only if

a = fi> O.

Theorem 6.3 (Varga, J9(, /) If T ~ 5, then R~(q) is Ao-acceptable.

order one. but has order two (Pade approximations) if IX= 0; R2(q; IX,{3) has order two for
general a, fl, order three if a -# O.fl = j and order four (Pade approximation) if IX = 0, {3 = l

Thus. all entries on the main diagonal of the Pade table and anywhere below that
diagonal are Ao-acceptable. Those on the main diagonal and on the two sub-diagonals
below it are A-acceptable; note that any A-acceptable entry below the main diagonal
is automatically L-acceptable. It is clear that there cannot be any A-acceptable entries
above the main diagonal, so the key question is whether there exist A-acceptable entries
in the Pade table below the second subdiagonal. The; well-known Ehle conjecture asserted
Ihat there are none, so that ki(q) is A-acceptable if and only if T - 2 ~ 5 ~ T. This
conjecture remained unresolved for many years, and was eventually proved (with a
remarkable absence of any heavy analysis) by Wanner, Hairer and Nersett (1978), using
their elegant theory of order stars. In this book, we have adopted the policy of not
providing proofs of theorems when such proofs do not add to an understanding of the
result. We make an exception here. Order star theory appears in many contexts besides
this one (see. for example, the survey paper by Wanner (1987) which uses order star
theory to prove. illter alia. Theorem 3.1 of §3.4), and some familiarity with the ideas
involved may prove helpful; besides, the proof is such a nice piece of mathematics! The
following is a sketeh of how the proof goes.

The region of absolute stability .<?fA of a Runge-Kutta or linear l-step method is
defined by {?fA = {qd~IIR(qll < I}, where R(-) is defined by (6.20). We consider, instead
of .,,,..1' the region :J4 = {qECilR(q)1 > lexp(q)I}. (Note that C(&i), the complement of &i,
is essentially the region of relative stability, according to Criterion B of §3.8.) The region
:jJ is called an order star, because of its star-like shape (see Figure 6.7). By elementary
applications of classical complex variable theory, four lemmas can be established:

,
Lemma J R(q) is a rational approximation to exp(q) oforder p if and only if, for q ....0, fJI
consists of P+ I sectors each of angle 1[/(p + I) separated by p + I sectors of C(&i) each
01the sam<: anqle.

(Proof follows from considering R(q)exp(-q)= I +KqP+l +0(qP+2), K-#O a real
constant; for sufficiently small p, where q = p exp(iO), the condition IR(q)1 > [exp] _ q)1

(d)

Figure 6.7

(e)



/.elIllIW 3 {~ad/ hO/lI1ded lillqa o( multiplicit» II contains at least II poles of R(q) (a pole
of IIIII/liplicily I' countinq as I' poles),alld each houllded dual finqer afmultiplicity n contains
al least II zeros of R(I/) (a zero of multiplicit v \' co/lIllillg as v zeros).

{.(·IIIIIW 2 The boundar v n:M,o(:'.d possesses precisely Iwo hranches which go 10 infinity.

(I'ro"f follows from considering the strong increase in !exp(I/)1 as Re q -+ 00, and its
strung decrease as Re '{-+ - (x).)

The boundary ,;:M is continuous; Figures 6.7(b), (c), (d), (e) show the order stars for
a selection of 5th order rational approximations to the exponential, and illustrate some
of the possible configurations. These figures (produced by an obvious modification of
the scanning technique described in ~S.12) by no means exhaust the possibilities for the
case p = 5; the reader is invited to sketch other configurations and also to consider the
situation for other values of p. Regions of ~ arising from a single sector are called
[uuters, and arc labelled fl in Figure 6.7, if they are bounded, .and F I if they are
unbounded. Similarly. bounded and unbounded fingers of C(.~) arc called dual fingers,
and arc labelled d I and D I respectively. If a region stems from n sectors of !J4 it is
called a lill!!"r o(IIlllltiplici{\' II. and is labelled f. if it is bounded and F. ifit is pnbounded;
similar regions of C(:M) arc called dual fingers of multiplicit y n and are labelled d. if they
arc hounded and D. if they arc unbounded. All regions of the q-plane can be labelled
in I his way; note that the sum of the subscripts in f., F., d. and D. always equals 2(p + I).
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Th~orem 6,5 Tile (S, T) Pa,le approximatloll, k~(l/), i.l A-<lCCl'pl<1h/c I( <llld 0111.1 i(

T-2~S~T.

Fi ur 67 b is the order star of R;(q) which. by Theorem 6.5. is A-acceptable; note
that 7t s:ti~fi~S) the requirements of Lemma 4. Figures 6.7(c) and (d) arc. the order stars
of R I( ) and RO(q) which arc A-unacceptable; note that for both. the .reg~on eft 1I1tersec,ts

. h4 h
q,

.5 . Figure 6 7(e) is the order star for a non- Pade R s(lI) approxlma-WIt t e imaginary axis. .
tion of order 5; sec Exercise 6.4.5.

Exercises

6.4.1. Execute the following program'

begin
while PATIENCE> TOLdo

begin '
forS:=0I03do
for"':= 0 to 3do
[use (6.24) to check theentriesinTable 6.2]:

end;

As we shall see presenlly, no explicit linear multistep or explicit Runge·K~lla method

f th properties of A- A(ex)- Ao- or stiff-stability; neither can a
can possess any 0 e "

end.

6.4.2. Show that the method of Exercise 5.7.4 applied to the test equation 1" = ),1' generates the
(2,\) Pade approximatio.n to exp(IIA) and therefore cannot be An-stable. . .

Th f II
. - th d due to Liniger and Willoughby (1970). uses the second derIvatives6.4.3. e 0 OWing me 0,

of y, obtained by dilTerentiating the dilTerential system:

I 1r
2

(" (II ) .Il']
-~[(1+0:),,1\) +(1-0:)\,(\)]- [(/I+<X)r;,,- -(XI, .

Yft+I-Y"-2 J,,+I ." 4

, . r the definition for a linear multistep method. show that the method
By an dobvlohuS e,xft/ejnsl~n nOd order four if in addition 0: = 0. Find the range of values for <X and
has or er tree I = 3 a ' .. '
fJ for which the method is (i) A-stable and (II) L-stable. . '

6.4.4. Find the position of the polesand zerosof R;(q) and check that Figure6.7(b) IS compatible

with Lemma 3.
. . 4 whose order star is given by Figure6.7(e) was constructed .as

6.4.5. The approxImatIon Rs(q) h . t _ I 1+ i 2 + i (check that. with this choice
f II ws Choose the denominator to ave zeros a q - 2' -' - . .

Of 0 I" f R4() Figure 6.7(e) is compatible with Lemma 3) and choose the coefficients 111 the
o po es or s q , -' 4

numerator so that the approximation has order 5. Find R slq).
\

(Proof follows from the principle of the argument and the fact that the argument of
R(lilexP( - 1/) can he shown to decrease along oar.)

IA'IIIIIW 4 R(I/) is A-acceplahle if OIld only if !J4 has no intersection with the imaginary
axis WId I~(I/) has 110 poles ill the half-plalle Re q < O.

(Proof of the 'if' part follows from the fact that lexp(q)J = I 'on the imaginary axis and
the maximum principle; the 'only if' part follows from the definition of !J4.)

fin the following. we usc the notation [x] to mean the biggest integer which is less
than or equal to .x, and C· to indicate the half-plane Req <0.)

l.ct R(I/) he an .t-acccptablc approximation of order p. Then at least [(p + 1)/2] fingers
(a finger of multiplicity \' counting as v fingers) start in C· (Lemma I), none of which
can cross the imaginary axis (Lemma 4), and none of which arc bounded (Lemmas 3
and 4). Hence these [(p + I)/2] fingers must collapse into one unbounded multiple finger
(Lemma 2), and will therefore enclose [(p + 1)/2] - I bounded dual fingers in C-, each
of which contains at least one zero of R(q) (Lemma 3), For example, when p= 5,
A-acceptability of {{(1I) means that only the configuration (b) in Figure 6.7 is possible;
note that there arc indeed 2( = [(5 + 1)/2] - I) bounded dual fingers in C -.

The·total number of zeros of R(I/) is therefore at least [(p + 1)/2] - 1. Now suppose
that R(q) = k~'(lI), the (S, T) Padc approximation; then p = S + T, and R~(q) has S zeros.
H~nce we have S ~ [(p + 1)/2] - I or 2S + 2 ~ 2[(p + \)/2] ~ p, since '

{
p + I ifpisodd

2[(p + 1)/2] = p
ifpis even.

We thus have that 2S + 2 ~ S + T, or S ~ T - 2. It is of course trivial to show that we
cannot have A-acceptability if S > T, so that the Ehle conjecture is proved:

6.5 HANDLING IMPLICITNESS IN THE
CONTEXT OF STIFFNESS
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where

1'=0,1, ...
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Table 6.3

x 1.0 1.2 1.4 1.6 1.8 2.0 2.2

h(ACT) 001 0.01 0.01 0.01 0.005 O(X)13 0.00016

h(TR) 0.25 0.11 0.04 0.01 0.003 0.0007 0.000 13

(6.30)

to compute the bound (6.29) on the steplength, we take as generous a view as possible
and choose L to be not supilcf/cYiI but the local value at \' of !!,lI/,ly!! (using the
Lrnorm) obtained by evaluating the Jacobian on the known exact solution. We denote
by h(TR) the resulting maximum steplength that could be used with the Trapezoidal Rule
if the convergence condition (6.29) is to be satisfied. Table 6..1 compares II(TR) with
h(ACT).

We see that, once stilTness manifests itself. theconvergence condition (6.29) forces the
Trapezoidal Rule to use a steplength smaller than that which stabilit forces the RKF45
code to use!

The only way out of this difficulty is to abandon fixed point iteration in favour of
Newton iteration (see § 1.8); in order to save on LV decompositions, modified Newton
iteration (see §1.8,equation (1.27)) is almost invariably employed. Applying this (0 (6.27)
gives

(6.26)

(6.27)

(6.28)v = 0, I, .. :

k k

I (9'.+j=h Illjf.+ j
j=O j=O

predictor corrector method ill P(EC)/IE I -, mode, where 11 is fixed and finite (an explicit
process). Sec, lor example, Figures 4.1 and 4.2 of Chapter 4. We arc thus forced to use
only implicit methods to solve a problem involving a stiff system. It might appear that
if. for example, we want to preserve the A-stability of the Trapezoidal Rule, all we need
do is use it as corrector in a predictor-corrector pair applied inthe mode of correcting
to convergence, when the linear stability properties of the pair will be those of the
corrector alone (sec ~4.1). Alas, stiffness has another trick up its sleeve!

Consider the general implicit linear multistep method

applied 10 the general problem .1" = [t», .1'). y(tI) = ", We can rewrite (6,26) in the form

k -I

'1'. = '1'(X•• Y.,Y.+ I" ··'Y.H-I;h):= I (- 'XjY.+j + hPjf.+ j)
j-O

is a known function of previously computed values. If (6.26) is the corrector in a
predictor corrector pair, then the mode of correcting to convergence consists of allowing
the fixed point iteration

tn run until convergence is achieved. However. we recall from §4.1 that the iteration
/6.2X) converges if

(6.29)

where L i~ the Lipschitz constant of f with respect to y. If f is assumed differentiable
with respect 10 y. then we may take L to be suplliJfliJyll, and we have that

L= supllrJf/rJYII ~ max IA,I ~ IRe XI,

where we recall that ~Y~'lk = Y~'+\IJ - Y~''L. If (6.30) converges. then it does so to the
solution of (6.27); accordingly, it is quite common to keep the matrix I - II{lk,lIVI'
constant not only throughout the iteration. but to usc it for the next one or two
integration steps we well. The matrix is up-dated, and a new LV decomposition
computed, only when the iteration fails to converge.

If'the system is linear, then [tx, .1') = A(x)y + cp(x) and (6.27) becomes

(6.31)

where )." t = 1,2, ... ,111 are the eigenvalues of iJf /0.1', X being the eigenvalue with largest
modulus real part. If the system is stiff, then IRe XI is very large, and it follows from
(6.29)thath must be very small. We arc thus in a Catch-22 situation. If we use an explicit
method to solve a stiff system we have to use an excessively small steplength to avoid
instability; if we usc an implicit method with an absolute stability region large enough
10 impose no stability restriction, we can choose a steplength as large as we please, but
we will not be able to solve the implicit equation by the iteration (6.28) unless the
stcplcngth isexcessivelysmall! To sec how nasty this Catch-22 can be in practice, consider
the nonlinear example (6.12) of §6.2. Recall that this problem did not exhibit stiffness
until x reached the value 1.6,but that thereafter it became increasingly stiff, as witnessed
hy Table 6.1, which showed the actual steplength (h(ACT)) used by the explicit RKF45
code. Suppose we were to solve the problem by the A-stable Trapezoidal Rule. In order

and the computational cost per step is one LV decomposition and back substitution.
If A(x) = A, independent of x, then the same LV decomposition is used throughout the
interval of integration. Note that if we put fIx, .1') = 1(x)y + cp(x) in (6.30) we obtain

[1- hPkA(x'H)]~Y~'lk= - y~·lk + "Pl[A(x.H)y~'lk +cp(xn+dJ +"'.
= - [1- hPkA(x'H)]Y~'lk+hPkCP(X.+d + "'., I' = 0, I, ...

whence

1'=0, I•...

which states that the iterates Y~'ll' v = 1,2, ... are all equal to the solution for Y. H given
by (6.31). In other words, Newton iteration (now identical with modified Newton
iteration) converges in just one step when the problem is linear.
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Itis marginally easier in this context to use the alternative form (5.6) of the method:
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Table 6.4

x 1.0 1.2 1.4 1.6 1.8 20 2.2
._---. -----

h(TR) 0.25 0.11 0.04 0.01 0003 (WOO? 0.000 13

.h(2G) 029 0.13 0.05 0.01 0.004 OOOOR 0.000 14

excessively small steplengths. As an illustration, consider the 2-stage Gaus~ method
applied to the nonline..r problem (6.12). A calculation.similar to that which led to the
results displayed in Table 6.3 can be used to establish the maximum steplength 11(2G)
which can be employed with the 2-stage Gauss method if the iteration (6.34) is to
converge; Table 6.4 shows that the restrictions that convergence of the fixed point
iteration imposes on the ·2·step Gauss method are comparable with those it imposes on
the Trapezoidal Rule.

Once again, we are forced to replace the fixed point iteration (6.34) by Newton or
modified Newton iteration; applying the latter to (6.33) and using (6.35) gives

(6.32)

(6.33)

'~I,2", }

Y=F(Y),

,
Yi = Y. + h L lli/f(x. + [jh, Yj),

j - I

.,
Yn+ 1= J'n +h L bd(xn+ ch, Yi)

i'=t

. Similar difficulties arise if we attempt to usc fixed point iteration to implement an
Implicit Runge-Kulla method: the notation is now a little more complicated. Consider
an implicit s-stage Runge-Kulla method specified by the Butcher array

where

The second of (6.32) may be written as

Y:= l yT" yTz, ... yT]TEIR"" F(Y)'= [F T FT FT]TE",,,,,
'!I: ' • I' 2" .. '! 1M.

U"" - hA®J)~ yld = r t" , v = 0, I, ... (6.36(a))

(6.37)

(6.38(a))

(6.36(b))

",~,]
II,

II., - I

o

r l ' ) = - r l " + F( y"I)~ yl"] = yld I) _ yt'),

where Ill< i = 1,2.... , s are the eigenvalues of A and the w j arc all either 0 or I; this is
the Jordan canonical form of A (see, for example, Gourlay and Watson (1973)). If the
11, are all distinct, then Wj=O,j= 1,2, ... ,5-1, and M is a diagonal matrix_ wh?se

. f id h f . f }'I"I fl') t yl"1 r t'·]elements are the eigenvalues 0 A\ Consi er t e trans ormation rom . 0 •

given by

and 1 is the ms x ms unit matrix. Note that (6.36(a)) requires us to compute. at each
integration step, a single LU decomposition of an illS x "'s. matrix. and a new back
substitution for each call of the iteration. The LU decomposition IS the expensive part.
particularly since the dimension of the matrix may be quite large. It is possible. in some
circumstances, to reduce this computational effort by utilizing, as follows, a transforma
tion due to Butcher (1976).

For any s x s matrix A there exists a nonsingular matrix H such that

where

(6.35)

(6.34)

i = 1,2, .. . ,5.

v=O, I•...yl,' I) = Flyl')),

.,
r, = Fi( y) = J'n + 'I L (/iJ(x. +ch, Yj ) ,

i""!

~ill converge if 0 ~ M < I. where M is the Lipschitz constant of F(Y) with respect to'
} : assuming differentIability we take M to be sup II of/oY II. Now'

l
U l l af/oy ul2of/oy ... ahof/oY

J
r'l/r'Y=II 112Iar/ay a22a(l0Y ::: a2,o(/oy.

u'lafloy a'2aflay anaf/ay

and

The fixed point iteration

Using the notation of direct products. descr~bed in §1.11. we can write

By Property (3) of § 1.11. the eigenvalues of aF/oY are hl1,A,. i = 1,2..... s, t ='I.? .... m, \
where the Ili are the eigenvalues of A and the A, those of af lay. The eigenvalues 11,
depend only on the method. and are not particularly small in practice, and if thesystem
is stiff then {A,} contains an eigenvalue X where IRe XI is large. It follows from an
argument analogous to that used for implicit linear multistep methods that aF/ay has
eigenvalues with large modulus. and that the iteration (6.34) will converge only for
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where I .. is the m x m unit matrix. By Property (2) of §l.Il, the inverse transformations
are

We compute the single LU decomposition i.. -1111J = L I U ,: then

- hJ 1_-LU,
L,U I

M=[/1 I]
. II'

I

Illustration 2 Consider a 2-stage singlyimplicit method: the matrix A has an
, eigenvalue /1 of multiplicity 2. Then •

.,
(6.38(b))

or

yl":= (H (8)/,"))/1'), r"):= (H<8)I,")["(·I.

I )dining 3 y"':= }'I' j I' - yl", (6.36) becomes

where

Now, using Properties (I) and (2) § 1.1/ and (6.37), we obtain -llt;'JJ.
VI

We thus have that Exercise

which is the modified Newton iteration now couched in terms of the transformed
variables y"', f-"I. The crucial difference between (6.39) and (6.36(a)) is that whilst
Ihe latter required the LU decomposition of an ms x ms matrix, (6.39) requires s LU
decompositions of the blocks I," - h/1,J; the computational effort is proportional to sm3

instead of (sm)), a considerable saving. The saving is even greater if the Runge-Kutta
method is one of the class of singly-implicit (SIRK) methods described in §5.11. For
such, methods, the II, are all equal, and there is only one LU decomposition to be
performed at each integration step, giving SIRK methods a level ofefficiency approaching
that of DIRK methods. Note that the procedure described here is less attractive if the
matrix A has complex eigenvalues; in that case, the transforming matrix H in (6.38) will
also be complex, as will be the transformed variables yl'l, ["1'1. We conclude with two

illustrations.

v=O,l, ... (6.39)
6.5.1. Illustrate the use of the Butcher transformation by computing one step, of length 0.1. of
the numerical solution of the problem II' ="', tl' = 5(1 _Ill)" -II, 11(0) = 2, p(O)= 0 by the
Runge-Kutta method with Butcher array

2-'.j2 1_ J2 3J2
1----

4 4

. 2+ J2
3J2 J21+--- 1+· --

4 4

I 3J2 I 3,/2- + --- - -
2 8 2 8

Illustration 1 Consider a 2-stage implicit Runge-Kutta method for which the
matrix A has real distinct eigenvalues III and /12' Then

[
I - hu J 0 ]

12," - hM (8) J = '" 0,..1
1," - hl12J .

We compute two LU decompositions of m x m matrices, namely 1 - h/1IJ = L IU 1,

1.. -h/12J=L2V2: then

6.6 LINEAR MUL TlSTEf' METHODS FOR STIFF SYSTEMS

If one is looking for methods with any of the linear stability properties defined in §6J.
the class of linear multistep methods docs not provide a particularly good hunting
ground; happily there is one notable exception (the BDF) to this statement. Just how
difficult it is for linear multistep methods to achieve A-stability is spelled out in the
following theorem:

where

Theorem 6.6 (Dahlquist, 1963) (i) An explicit lillear multistep method canllot he Asstab!«.
(ii) The orde~ ~r an A-stable linear multistep method Cll/Jllot exceed tIVO. (iii) Thv
second-order A-stable linear multistep method witl, smalle.~t error constallt is the
Trapezoidal Rule.

In other words, if we insist on full A-stability, the Trapezoidal Rule (which, earlier in this
chapter, may have seemed to bejust a conveniently simple example) is the most accurate
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Theorem 6.7 (Widlrmd, /9(7) (i) An explicit linear multistep method cannot be
J1(O)-stahle. (ii) There is only aile A(O)-stahle linear k-step method whose order exceeds k,
namely the Trapezoidal Rule. (iii) 'For allIXE[O, 1(/2) there exist A(IX)-stable linear k-step
methods of order p for which k = p = 3, k = p = 4.

Table 6.5

k 4
._-----

IXm.. 90' 90° 88' 7J 'i) 19

ami" 0 0 0.1 07 24 61

If, in Theorem 6,7(iii), we relax the requirement that methods be A(IX)-stable for all
IXE[O, 1(/2), then we can easily find k-step methods of order k for k > 4 that are A(IX)-stable
for specific values of IX. The most notable class of such methods is that consisting of the
k-step backward differentiation formulae (BDF), k = 1,2.... ,6, derived in §3.12. (Recall
that these methods are zero-stable only for k ~ 6.) From the regions of absolute stability
for the BDF, shown in Figure 3.4 of §3.12, we see that it is more natural 10 consider
stiff-stability rather than A(IX)-stability; indeed the dellnit ion of stiff stability given in
§6.3 is virtually tailor-made for the BDF. All of the BDF, k ~ 6, arc stiffly stable (and
therefore A(IX)-stable); Table 6.5 lists the maximum value of 7. and the minimum value
of a, the parameter appearing in the dellnit ion of stiff stability.

One can see by the following informal argument that the BDF arc likely to be
well-suited to dealing with stiffness. Recall from *3.8 the stability polynomial
1(r, h):= p(r) - haIr);' for a stiff system 1;'\ will be large, and n(I".;') will be dominated by
haIr). It would therefore seem a good idea to choose l1(r) so that its roots are all safely
inside the unit circle, and where safer than at the centre of the unit circle? Thus we are
led to the choice aIr) = ri , which (together with the implicitness that Theorem 6.7demands
and the requirement that the order be as high as possible) defines the BDF.

The BDF are central to the construction of efficient algorithms for handling stiff
systems; they play the same role in stiff problems as the Adams methods do in non-stiff
ones. Although the use of the BDF for stiff problems goes hack 10 Curtiss and Hirschfelder
(1952), their implementation in VSVO form stems from the work of Gear (1969). Such
implementations have essentially the same structures as those we descrihed in Chapter
4 for non-stiff problems. The basic differences are that the Adams-Moulton correctors
are replaced by the BDF and the (truncated) fixed point iteration of the corrector is
replaced by modified Newton iteration (as described in §6.5), pursued to convergence.
Newton iteration (unlike fixed-point iteration) does not converge for an arbitrary starting
value, but only for one sufficiently close to the solution, so that it is essential-c-as well
as desirable from the point of view of efficiency-that an accurate starting value be
provided. Robertson and Williams (1975) showed that if one attempts to obtain such a
starting value by means of a predictor which involves any of the previously computed
f values, then traces of the fast transient solution are liable to pollute the predicted
value and lead to loss of accuracy (another manifestation of the fact that when a system
is stiff fly) is an ill-conditioned function). Prediction by extrapolation of previously
calculated y-values only is preferable. To bemore specific, consider the k-step kth-order
BDF in standard form (see (3.115) of §3.12),

(6.40)

(6.41)

(6.42)

;, =hA,

Y.+ 1- Y. = h[(1 - 0)[.+ 1 +Of.],

II has order only I in general, and order 2 if 0= t, when it becomes the Trapezoidal
Rule. Applying (6.40) 10 the test equation y' = AY gives

I +;'0 _
1'., I = I ~ (I _ 0);' Y. = R I (h; I - 20)y.,

where R t (-;.) is dellned by (6.25) of §6.4. It follows from Theorem 6.1 of §6.4 that the
Theta method IS A-stable if and only if a~ t. One way in which the free parameter 0 in
(6.40) can be gainfully employed is .in the technique of exponential fitting (Liniger and
Willoughby, 1970). II. method IS said to be exponentially fitted at a (real) value A if
when the method is applied to the scalar test problem y' = AoY, y(xo) = Yo, it yields°th~
exact so.lutlon. Jr.the Theta m~thod is ~pplied to this test problem, we clearly get Y. =
LR I(h).?, I - 21i)] _:0' which coincides With the exact solution y(x.) = Yoexp(Ao(X. - xo»
If exp(;'oh) = R I (hAo; I - 20). From (6.41), this is equivalent to choosing

Ii = __ 1_ _ exp(hAo)_
hAo I - exp(hAo)

linear multistep method we have! Theorem 6.6 is often known as the second Dahlquist
hamer. (Recall the first Dahlquist barrier, Theorem 3.1 of §3.4.) It is of interest to note
that order star theory (sec *6.4) can be used to provide a proof of this theorem
(Wanner, 1987). Implementations of the Trapezoidal Rule for stiff problems usually
I~c?rporate .the smoothing procedure described in §6.3 and an extrapolation technique
\\ hich effectively raises the order to 4; local error estimation is usually achieved by
Richardson extrapolation (sec §5.IO).

II. linear l-stcp method which can be of value in the context of stiffness is the Theta
method, I

For al] hAo < 0, the value of 0 given by (6.42) satisfies 0 ~ t, so that A-stability is
preserved. lf, for the linear constant coefficient system y' = Ay, stiffness is caused by an
Isolated real ncgauvc eigenvalue of A, exponential lilting to that eigenvalue (estimated
hy the power method) gives good results. If the stiffness is caused by a cluster of such
eigenvalues, then it can be beneficial to lit exponentially to some mean of the eigenvalues.
For variable coefficient linear and nonlinear systems (subject as always to our
reservations about :frozen Jacobians'), the same technique can be applied, with periodic
updating of the estimate of the dominant eigenvalue.

Turning to linear multistep methods with less than full A-stability, we meet more
barriers, but less fearsome ones:

Theorem 6.8 (Crver, /973) (i) An explicit linear multistep method cannot be Ac stable.
(II) There exist Ao-stahle linear multistep methods of arbitrary order.

i

\ L IXjY. + j = hfJif. + i'

J=O
(6.43)
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The order is k and the error constant CH I' If the predicted value for Y.U is to have
order k then it will be necessary to interpolate the k + I points (x, + j, .1'.+ j).
i = - 1,0, I, ... , k - 1 From (1.30) of § 1.10, the appropriate interpolant is

Idx n , k 1+ rlJ) =:/\(r) = ±(- I)i( ~ r)t,JiY.u_I'
i=O I

Exercises
,

6,6.1. Show that the Trapezoidal Rule is exponentially filled at 0 and that the Backward Euler
method (and indeed anyone-step L-stable method) is exponentially fitted at - 00.

6.6.2. By subtracting y~Olk' given by (6.44). from Y... and using the fact that Yn H - \ = (I - Vh'...·
find an alternative derivation of (6.45).

6.6.3. The Implicit Midpoint Rule

It is still possible to apply Milne's estimate for the local truncation error. If we regard
(6.44) as a linear multistep method then by (1.31) of§ 1.10 it has order k and error constant

C* =(_I)k+l( -I )='1..
HI k + I .

6.7 RUNGE-KUTTA METHODS FOR STIFF SYSTEMS

(I).1'.+ 1- Y. = hfq(x. + x.+ I)' ~(Y. + r.+\))

is a close relative of the Trapezoidal Rule

Y.+I - Y.= ~h[f(x.+I'Y.+d+ f(x.,y.)]. (2)

(It is indeed its Qne-Ieg twill; see §7.4.) Show that both methods give the same result when applied
to the scal-r test equation }.'= ).Y, and deduce that (I) is A-stable. Show, however, that when
both methods are applied to the scalar test equation y' = A.(x)y, A.(x) < 0 for all x, all of whose
solutions tend to zero a~ x tends to infinity, then all solutions of (I) satisfy y. -' 0 as II -' 00 for
all h > 0, but those of (2) do so only if h satisfies a 'condition of the form 0 < 'I < H(x., x, +,). Find
H(x",xo+ I)' Devise and carry out a numerical experiment to illustrate this result.

(6.44)

(6.45)
CI'LTE = k~_ (.I' _ .1'1 01 )

I-C
k

+
1

nU .+k'

From (4.11) of~4.3 we have that

(6.46i)

(6.46ii)

where Yn + k is the solution of (6.43) obtained by modified Newton iteration.
Thus. the building hloeks for a VSVO algorithm are all available. and a development

parallel to that we have discussed in detail in Chapter 4 for ABM methods is possible.
In particular, two aspects of the BDF can be exploited; firstly, the BDF can be
conveniently expressed in back ward difference form (see (3.117) of §3.12) and, secondly,
the kth-order nDF is equivalent to selling f. U equal to the slope of the interpolant
through (x, + j' Yn + j)' j = 0, I.... , k (again, see §3.12). Further details can be found in
Prothero (1976) and Brayton, Gustavson and Hachtel (1972). Finally, we mention two
aspects of VSVO implementations of the BDF which do not arise in similar imple
mentations of the ABM. If the system is large and complicated,then finding analytic~lly
the elements of the Jacobian matrix can be an onerous task (hut a symbolic manipulator
can help); accordingly some codes estimate the derivatives Dif/8 i y by differencing.
Secondly, there can be a choice of strategy in the initial phase depending 'on whether
the user wants to see an accurate representation of the fast transients or is content
merely to sec the solution after such transients are dead.

The codes DI FSU B. G EAR and EPISODE, referenced in §4.11, all have stiff options.
(It is possible for codes to determine automatically whether or not to use stiff options;
sec, for example, Shampine (1982).) There also exist variants of GEAR adapted for
particular circumstances. Thus GEARB' (Hindmarsh, 1975) is intended for problems
where the Jacobian is large and banded; one important instance of this situation arises
when a partial differential equation is semi-discretized-a topic we shall touch upon in
~6.9. GEARS (Spellman and Hindmarsh, 1975) is appropriate for problems where the
Jacobian is large and sparse. Finally we mention the code FACSIMILE (Curtis and
Sweetenham, J985) which deals only with stiff problems; a survey of this code can be
found in Curtis (1987).

It is much easier to find implicit' Runge-Kutta methods-as opposed to linear multistep
, methods-with the linear stability properties defined in §6.3; of course, as we have seen.
implicit Runge-Kutta methods are more expensive to implement than their linear
multistep counterparts. We saw in §5.12 that when an s-stage Rungc-Kutta method
with Butcher array

~I

is applied to the usual scalar test equation .1" = )..1', ,{ec, it yields the difference equation
.1'.+ ,= R(h)y., where R(h), a rational function of ii, is the stability function and IJ = IJi...
In §5.12 we derived two alternative forms (5.86) and (5.87) of R(IJ); for convenience, we
reiterate them here:

R(h)= I +hbT(I-hA)-l e

R(h) = det[I - h(A;- ebT)]
det(l- hAl..

where e=[I,I, ... ,I]TeRJ
• The method will be A-, Ao• or L-stable according as R(h)

is A-, Ao• or L-acceptable. We have already observed that when the method is explicit,
(6.46) implies that R(h) is a polynomial in h,.and there is no possibility of the method
having any of these stability properties. In §5.11 we provided several examples of implicit
and semi-implicit methods, and all we need do to establish their stability propert-v i<
to use (6.46) to determine R(h) and then use the results of §6.4 on the acceptability 01
rational approximations to the exponential. However, it can be heavy work applying
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A - ebT=[~: ::],
o + + '+

, 0 + + '+
. h(A ebT)] and det(l- ;;A) both have degree at most s - 1 in h, and

Again, det[bel -h (- 1 _ I) Pade approximation and the methods are A-stable.
R(h) must t e s- ,s

•

Lobatto /118

A-eb
T=[: : :

, 0 0 0

- bT)] has degree at most s - I in il. Moreover,
On expanding, we see that det[l-II(A - e . h d is 2s _ 2 R(h) must beh h d e at most s - I and, smce t e or er 1 , ,
det(l- A) now a~ egre. . .b Theorem 62 of§6.4,the methods are A-stable.
the (s - I, s - I) Pade approximatIon, y .
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• - _ T b the elements 'of 'its last row and argui,ng a.s in the
Expandmg det[l- h(A eb)] y i)' . the (s _ I s) Pade approxlmallon, and
tase of the Radau lA, we ~ee that R( 1 I~ agam . ,. '.

the methods are L-stable.

either of (6.46) to specific examples, and we can obtain the results we want much more
easily, and in greater generality, by employing an argument used in §5.12.

Consider first the class of Gauss methods described in §5.11. The s-stage Gauss method
has order Ls, which means that when applied to the test equation y' =.l.y it will produce
Y.+ 1 = R(h)y., where R(h) = exp(h) + O(h2s+ I); that is, R(h) is a rational approximation
of order 2s to the exponential exp(h). By (6.46ii), the numerator and denominator in
R(h) are polynomials in h of degre~ at most s. Since there exists a uniqu~e (:,s) rational
approximation of order 2s to exp(h), namely the Pade approximation R'(h), it follows
that R(h) = R:(h), which, by Theorem 6.2 of§6.4, is A-acceptable. Thus all Gauss methods
arc A-stable. We note that this implies the existence of A-stable implicit Runge-Kutta
methods of arbitrarily high order.

For the remaining classes of fully implicit methods described in §5.11 we use an
approach due to Dekker and Verwer (1984). The essential point is the structure of the
matrix A - eb T appearing in (6.46ii). We shall establish this structure merely by
observation of the examples quoted in §5.11, so that our stability results \'(ill be formally
proven only for these examples. The extension to the general case can be found in
Dekker and Verwcr: alternative proofs can be found in Butcher (1987). First let us
consider a tempting argument, which is false. Take, for example, an s-stage Radau
method, which has order 2s - I. We could attempt to show that the denominator in
H(ll) has degree s, and then deduce from an order argument that R(h) was the (s - I, s)
Pade approximation; the flaw is that it could equally be an (s, s) non-Pade approximation
of order 2s - I. The valid argument goes as follows.

From the examples of §5.11, we observe that thematrices A - eb T have special forms,
from which follow the corresponding forms of J - h(A - eb T); we then apply (6.46ii). All
matrices are s x s; the symbol + denotes a constant element; independent of h, and •
one which is of degree at most 1 in h.
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Radau fA

0 + +

:} ['
• •

:}
~ .

A - ehT = - T '\
0 + + 1-IoIA-,")~ ! • • , .

0 + n
+ • • L

Expanding dct [I - h(A - ebT)] by the elements of its first column, we see that it is a
polynomial in hof degree at most s - I, Since det(l- hAl has degree at most s in hand

I'
the approximation has order 25 - I, R(h) must be the (5 - 1,5) Pade approximation. By ~ I
Theorem 6.4 of §6.4, the methods are all A-stable, indeed L-stable. I

Radau I/A

A_''''{
+ +

~} J_hIA_,"'I{
• •

J 1+ + • ... •

+ + • .. , •
0 0 0 0 \\~

Lobatto utc

A-<b'~[l ~ ~~} I_~A-<b')~[t ~ ..... ~ J
. t I _ h(A - ebT)] has degree at most 5 - 2 in ii, while

On expandmg, we see that de [H R(i) ust be the (5 _ 2, s) Pade approximation
det(J - hAl has degree at most s. ence t I m
and by Theorem 6.4 of §6.4 the methods are L-stable.

The above resu~t~ are. s.ummarized in T~b~tf~~~ard calculation using either of (6.46)
Turning to semI-ImplicIt methods, astra g d 3' b (576) of §5. I I

shows that for \he pair of 2-stage DIRK methods of or er given y. . '

_ 1+)3h/3-(1 ±Jjllz~_.

R(h) = I _ (3 ±)3)h/3 +(2 ± j3)ii'2/6

Recatting the general (2,2) non-Pade approximation Rz(ii; (I., mgiven by (6.25) of §6.4.
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Table 8.8

s-stagB Stability linear stabilityRK method Order lunction R(hl property

Gauss 2s R;(h) A-stability
Radau lA, IIA 25-1 R:''(h) 4-' 'ability
Lobatto III i\. IIIB 2s-2 R·'I(h) A-Mability

.' ILobatto IIIC 2s-2 R:'l(h) L-stability

see that R(h) = R1(ir; !l,fl~ if (1 = I ± 2fij) and fl = 1/1 It follows from Theorem 6,1

he same section lhal N(h) is A-acceptable only for ex = I + 2fi/3 and that (5.76) is
table onl,Y Ifwe take I he u~rer of the alternative signs, For the 3-stage DIRK methods
.rdcr 4 given by (5,77), R(h) is a (3: 3).non-Pade approximation which is not so easily
dlcd, s.mce we have no result similar to Theorem 6.1 for (3,3) approximations.
wever, It can be shown (sec, for example, Butcher (I987)) that only one of the three
hods, that given by the choice v = (2/j3) cost lO"), is A-stable.
~inally, consider the 2-stage SI RK method (5.78) containing a parameter /-I; it has

er 2 in general and order 3 if /-I. = (3 ± j3}/6, It turns out to be easier to use (6.46i)
ier than (6.46n) to establish R(h), which is given by ,

R(il) = I + (I - 2/-1)1, ~2 -x'2ll + t)1, 2

I - 2/-1h + /-I2h 2

ch is identical with R1(i,. a, fl) if 11. = 4/l- I, fJ = (2Il- W, It follows from Theorem'
that "'.1 i< A-acceptable for Il?~; the method can be A-stable and have order 3

y if we choose II = (3 I J))/6 It also follows from Theorem 6.1 that the method will
I.-stable if p = I .t J2/2, but the order is then ony 2,
tis c1earthat we have no difficulty in Iinding implicit or semi-implicit Runge-Kutta
hods which arc A- Of I.-stable, Any of these methods could, with no especially heavy
gramming effort, be made into an automatic algorithm, Step-changing is no problerr
I esumarron of the local truncation error can be done either by Richardson extra
arion or by emhcddrng (sec, for example, Burrage (1978a», For algorithms based
explicit Runge Kutta methods, using embedded methods for error estimation was
siderably more efficient (in terms of the number of function calls per step) than using
hardson extrapolation The advantages of embedding for algorithms based on implicit
hods are much less significant, since the major computational costs arise fro.a the
Idling of the implicitness, discussed in §6.5.
~Igorithms constructed in this way will work-and often be very robust-but, in
ns of efficiency, they will fall well short of the BDF-based VSVO codes described ;n
preceding section, To make implicit Runge-Kutta algorithms competitive one must
down as much as possible the computational effort of handling the implicitness. In
ticular, use of the Butcher transformation in conjunction' with SIRK methods,
cribed in §6,5. reduces the costs to a level comparable with that of VSVO codes.
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STRIDE (Burrage, Butcher and Chipman, 1979) is a variable order code which uses

this approach.

Exercises

(Use both forms of (6.46) in the following exercises.)

6.7.1. Show that the method in Exercise 5,7.4 is not A-stable,
• • •• .1. _ •• L _

6.7.1. Find the range of ~ .ir which the method in Exercise 5,7,7 IS .t-stanre, ano snow 11111•• 11<::1<::

are two values of Pfor which it is L-stable

6.7.1. Investigate th~ stability of the method in Exercise 6.5, I.

6.7.4. Find the order of the implicit method

and show that it is L-stable,

6.8 METHODS INVOLVING THE JACOBIAN

Although stiffness wasknown to users from a much earlier data, interest in the tOfic
amongst numerical analysts stems from the seminal paper of Dahlquist (1963), which
Iirst delined A-stability, Since then, there has appeared in the literature a large. num~er
of suggested techniques, ranging from the ingenious to the bizarre" for deahng ~Ith

stiffness. It is not practicable to survey all of thefe here. and we restrict our attentIOns
to classes of methods, of general applicability in the context of stillness, whl~h have a
common theme: the major classes we have studied, namely linear multistep and
Runge-Kutta methods are modilied so that they d~rectly involve the Jacobian of the
system, and are thus adaptive, The motivation for this I~ OhVIOIIS, Stiffness requires that
implicit equations be solved by Newton iteration, which 10 turn demands that we evaluate
the Jacobian of the system; so why not try to use the Jacobian in the method Itself?

The first 'such class we look at constitutes a sub-class of the so-called Obrechkof]
methods which are methods of linear multistep form but whieh involve higher derivatives
of f. Such derivatives can be obtained by repeatedly differentiating th.e· system of
differential equations, as we did at the start of §5,4, 'tie saw there tha.t this proced~re
can soon get out of hand, particularly if the system is large, so we restrrct our at~entlon

to the case when only first and second derivatives of yare involved. As we saw 10 §1.4,
there is no loss of generality in assuming that the system is autonomous, so that we
take y' = f(y), whence yW = (of/oy)f =:JUI(y),The general k-step Obrechkoff method
containing up to second derivatives is given by

ext = I, IexoI + ItJ0 I + IYo I '# 0 (6.47)
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Y. +1 = hlld(y... ) + h2yd(lJ(Y~H) + 'iI •.

The formula for modified Newton iteration is an obvious m~dification of (6.30), the ke~

difference being that the matrix multiplying the increment ~y.H becomes

Order is defined in an obvious manner analogous to that for linear multistep methods.
• -·1

The stability polynomial is clearly n(r;h):= p(r) - hu(r) - h w(r) where p(r). a(r) and w(r)
are polynomials of degree k in r with coefficients aj' Pj and Yj respectively. Enright
(1974a) advocates the use for stiff systems of the sub-class of (6.47) defined by

evaluated at Y. q. Since (( II = (af Ivy)f. the second derivative of the components of f
with respect t, those of y will appear in (6.49). Following a suggestion of Liniger and
Willoughhy (1970), who had earlier studied a more restricted set of second derivative
methods, Enright proposes that the terms a;ay[(iJfliJy)f] in (649) be replaced by
(('fI,)y)2, and only first derivatives are involved. For large systems, the evaluation of
Wfloy)2 still represents a considerable amount of computation, and Enright (1974b)
proposes a modification of (6.48) which leads to a more effi ent implementation; the
price is that the order drops to k + 1. These methods are implemented in vtiVO format
in the codes SDRI\SIC (see Enright. HIIII and Lindberg (1975) and SECDER (Addison,
I«n9)).

It has local truncation error

where Q. is a variable m x m matrix such that'll Q. II is bounded [or all II, I is the m
unit matrix. and Q: is interpreted to he I when s = o. In gcncr al. «150) is fully imj
and requires the solution at each step of a nonlinear system of dimcnsion m. If. howt
b1" = 0, s=0.1 •...• 5 - I, then the method is said to be tincarlv implicit; at each st.
is necessary to solve one linear system of dimension m. so that linear implicitness
a sense part way between implicitness and explicitness Note that the computati
cost per step of a linearly implicit method is the same as that which would arise i
solved an implicit linear multistep method by Newton iteration artd terminated
iteration after one step. The order of (6.50), again defincd by an obvious extensic
the definition for linear multistep methods, is independcnt of Q., so that one can a'
to have inaccurate representations of the negative Jacobian without affecting the accu
of the method. I ,

• A-. A(a)- and stiff-stability are investigated by applying (650) to the test equ:
y' = Ay, A an m x m matrix with all its eigenvalues in the left half plane. and se
~. = - A. The maximum order that an A- stable method or the type (650) can a
IS 25. An example of a 2-step linearly implicit VCCM (which we shall use in the
section) has order p = 2 and 5 = I. and is given by

(I + !hQ')Y•• l - [(I + ex)l + hQ.]y.+ 1+ (exl + !J,Q.)y. = ',UO - exlI." -!lJ + ex
I

TE = ht5:2 ex y(J'(x.) +!Q.},(l'(x.lJ+ OW)

This method is A-stable if - I < 11 < 1. A-stable linearly implicit VCMM with;
p = k = 3and 5 = 2. p = k = 4 can be found in Lambert and Sigurd-son (1972). Sanzo:
(1981) proved the interesting result that to every convergent linear k-step meth
~rde~ ~ (the k-step BDF is the.most significant example) there corresponds a lir
implicit k-step VCMM (with 5 = 1) of order k such that both methods general
same numerical solution when applied to y' =Ay (and Q. is chosen to be - A).

Another interpretation of VCMM presents itself if we simply gather the ten
(6.50) in a different way; (6.50) can be written as

$-1 1 1

O'L h'Q' L [a~IIY.~J-hb~'lf•• J]+ L a~Sly.+)=O.
.-0 J-O )-0, .

Thus a VCMM can ~ interpreted as a linear combination of linear multistep mel

An alternative means of introducing the Jacobian directly into linear multistep
methods consists of the variable coefficient multistep met/rods or VCM M; see Brut
(1967). Lambert and Sigurdsson (1972) and Sanz-Serna (1981). These methods
essentially linear multistep methods whose coefficients are functions of a variable ma
Q. which, in practice, is taken to be an approximation to the negative Jacobian. - OJ
evaluated at (x., y.). The class is defined by •

·1

{

I,

(6.49)

(6.48)

iJf 2 iJ (I)
I - hfJ. - - h Y1 - f

iJy iJy

Table 6.7

p=3 p=4 p=5

Enright I 7 -,
71 1m iTIO

BDF -3 -1"1 -10
TI TIT TIT

Adams-Moulton -1 1il '-3
"Ii m

1

y.>l-Y.+1-I=h I PJ!.+j+h2Yd~121
j-O

which ha ve order P = k + 2 The choice p(r) = ,t - ,t - 1 ensures, as for Adams methods.
that the spurious roots arc situated at the origin. and the argument we used in §6.6 to
mouvutc the BDF equally motivates the choice w(r) =,t. Indeed, Enright shows that
the class (64H) is stiffly stable for k ~ 7 and A-stable for k = 1.2 Tables of the coefficients
appearing III (() 4H) together with the angle a of A(ex)-stability and the parameter a
appearing III the definition of st iff stability can be found in Enright's paper. There is an
;\(Iditional honus in using Obrcchk off methods. namely that the error constants are
considerably smaller than those of linear multistep methods. Table 6.7 compares the
error constants of Enright's methods with those of the BDF and the Adams-Moulton
methods of orders 3.4 and 5.

Handling the implicitness presents some new difficulties. Modified Newton iteration
is of course necessary, hut now the implicit equation to be solved (analogous to (6.27)
of ~6.5 for linear multistep methods) is
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Exercise

coefficients in the combination being powers of hQ•. If the VCMM has order p,
n the linear multistep method

(6.55il

(6.55ii)I~Ou(O. I) = III 1.1) = O.

iJ iJ2
- u(x, I) = -2 u(x, I),
01 ox

u(x.O) = rp(x)

with the initial/boundary conditions

To apply a FD scheme, we lirst construct a rectangular mesh in the semi-infinite rectangle
o~ x ~ I, r ~ 0 by drawing lines parallel to the x- and r-axcs with mesh spacings ~x

and ~t, and seek approximate solutions to (6.55) at the mesh points (x ... I.).

m=I,2, ... ,M, 1=1,2, ... , where :<.. = m6x, 1.="61 and (M+ 1)6x= I. We denote
such an approximate solution by U~ ~ u(,"~x, n~t). A FD scheme consists of a linear
relationship between this approximation and similar ones at neighbouring mesh points.
and involves the mesh ratio r:!= 6t/(~X)2, which plays a role similar to that played by
the steplength in a linear multistep method. We shall assume that r is fixed. If the
relationship involves approximations at k successive levels of I. it is called a k-II.'I'I.'I
method. If it gives the value of U: at the newest level of I explicitly, without the need
to solve a linear system, it is said to be explicit; otherwise it is implicit If a FD scheme
is 'stable' only for a certain interval of the mesh ratio r. it is said to be cnlld;I;~Il.ally

stable, and if it is 'stable' for all positive r it is said to be unconditional!y stable, Definitions
of these properties (which can be found in Mitchell and Griffiths (1980)) a~e. not
particularly relevant to our discussion here; our aim is merely to interpret conditional
and unconditional stability in terms of the linear stability definitions developed for
ODEs in §6.3. We quote below four well-known FD methods for probl~m ~655). The
local truncation errors, delined as the residuals when the approximate solution IS replaced
by the exact, are found by Taylor expansions. It is notationally convenient to make use
of the central difference operator (j;, delined by (j;U::= U: + I - 2U: + U: - I

•
contradictory. All the early work on FD schemes concerned only scalar linear constant
coefficient PDEs. The counterpart in ODes would be the scalar equation y' = ly and
is of course trivial; that corresponding equations in PDEs are far from trivial arises
from the fact that the region in which the PDE holds plays a major role. As a vehicle
for our discussions, we take the simplest possible PDE and region. and consider .the
parabolic equation

(6.54)

J

Y. + • = Y. + h I h,k,,-.

~

I [a~·)y. +) - hb~'lf. +)] = 0
)-0

; order" - s. Combinations such as (6.53) are christened blended linear multistep
'hods by Skeel and Kong (1977), who develop a VSVO algorithm based on blends
the Adams-Moulton methods and the BDF.
:;inally, the Jacobian can also be injected directly into the coefficients of a
nge-Kutta method, an idea lirst proposed by Rosenbrock (1963). Rosenbrock
thods have heen e~tensivcly developed in recent years. and various forms have been
died; that most usually considered is

d we have assumed that the differential system is in autonomous form y' = flY). The
rtrix J is usually taken 10 be the Jacobian of/oy evaluated at Y•. We see that (1- yhJ)k,
given explicitly in terms of previously computed kJt so that a linear system for'k, has
be solved at each stage of the s-stage method. The method is thus linearly implicit.

re can regard (6.54) as either a modification of an explicit Runge-Kutta method or
linearization of a semi-implicit Runge-Kutta method. A-stable (or nearly A-stable)
ethods of the form (6.54) of orders up to 6 can be found (Kaps and Wanner, 1981),
d embedded Rosenbrock methods yielding error estimates have been derived by Kaps
d Rentrop (1979). For further information on Rosenbrock methods the interested
ader IS referred to Verwer (19R2), where a list of relevant references can be found.

1.1. For thecases k = 1.2. find the coefficients in the methods defined by (6.48), assumed to
ve order k + 2. and show that the methods are A-stable.

6.9 CORRELATION WITH FINITE DIFFERENCE METHODS
FOR PARTIAL DIFFERENTIAL EQUATIONS

The elementary explicit scheme

(6.56)

The method is explicit, two-level and is stable if and only if ,.~ t
lis section is by way of a diversion. Most readers will have had some exposure to
lite difference (FD) schemes for partial differential equations (PDEst, those who have
>t are referred to Mitchell and Griffiths (1980). Here we take a very superficial look
such methods, with the sole aim of seeing how the ideas we have developed ir this

rapier for ordinary differentialequations (ODes) correlate with those that have evolved
the study' of FD schemes for PDEs. The two subject areas have developed indepen

mtlv. with the consequence that the nomenclatures are different and sometimes

Th6 Crsnk-Nicolson scheme

(I -ira;)U~+· = (I + !rJ;lU:

LTE = O«~I)l) + (I(~I(~X)2).

The method is implicit, two-level and unconditionally stable.

(6.57)



The method is implicit. two-level and unconditionally stable. Note that it has higher
accuracy than the Crank Nicolson method.

The method is explicit, three-level and unconditionally stable.
We note with interest that (6.59) is unconditionally stable and explicit; in the context

of OUEs, we never found an explicit method with an infinite region of absolute stahilityl
There is, however, a difficulty about the convergence of the Du Fort-Frankel scheme.
namely that (659) converges to the exact solution only if the so-called .consistency
r('slra;nl is satisfied;sec, [or example, Richtmyer and Morton (1967). This requires that

(I

(( - 46//(6x)2, 0) == ( - 4r, 0) C; ::}fA

"'V -"'U =~~r...["O+IU -2'"U + '" 1(1]
,,+1 : (L\X)2 " , "

cretization f. =n6t. n =O. 1,... , and denote the numerical solution so obtained by lJ
[IV.. 2V...... UV.]T. The eigenvalues of the matrix B are known to be AJ = [ 
'}cos(jn/(M + I))]/(6X)2. j = 1,2,... , M; they are real and lie in the interval ( - 4/(6x)
of the negative real axis. We observe that, if 6:c is small, the system in (6.61) is sti'
fJlA is the region of absolute stability of the numerical method employed, then we
achieve absolute stability il the steplength 6t is such that

CORRELATION WITH FINITE DIFFERENCE METHODS

~nd on identifying "V" with U~, we see thaI the one-step method (663) is precisclj
two-level elementary explicit FD scheme (6.56) The order is 1 so that
PLTE = 0«6/)2). consistent with the first term in the LTE given in (656); the se
term arises from the truncation error of the semi-discretization process The interv
absolute stability of Euler's Rule is ( - 2,0), so that the stability condit ion (662) is sati
if and only if r ~ !' suggesting that we may interpret conditional stability of a FD sci
as being equivalent to absolute stability of an ODE method

In an exactly analogous way, we find that applying the Trapezoidal Rule to (6.(
equivalent to the Crank-Nicolson FD scheme (6.57). The A-stahility of the Trapez.
Rule corresponds to the unconditional stability of the Crank- Nicolson scheme. Reca
that the eigenvalues of B are real, it is clear that a'sufficicn/ condition for an FD sci
to be unconditionally stable is that the equivalent numerical method for (6.61
Ao-stable. At this stage we might hazard a guess that the condition is also necesSQ
but that guess would be wrong' Consider the Theta method (6.40), V" + I _ i

6IB[(1 - O)U"+ I + au"1, applied to (6 (1) ;\ straightforward (hut painful) manipul,
with Taylor series establishes thai, taking into account the truncation error assoc
with the semi-discretization, there IS a cancellation or terms in the LTE or the equiv
FD scheme if we choose '

Note that this procedure (which we are developing here only as a means of examii
the correlation be\ween PDE and ODE methods) is a viable numerical method il
own right for solving (6.55), and one that is frequently used ;\ suitable means of sol
(6.61) would be the GE;\RB code mentioned in §66

Let us first solve (6.61) hy Euler's Rule, U". I ~ U" = A(HI I ~ The nith componer
this equation is'\

·t

(6.60)

(6.59)

(6.58)

U(O)=l{I

as 61, 6x -+ O.

dU(I)/dl = BU(I),

U(I) = [' U(IVU(tJ" MU(I)JT,

l{I = [l{I(xd, CP(X2)"'" l{I(xM)f,

(I +- 2r)U~+ I = 2r(V~+ I + U~_I) + (I - 2r)U:.' I

LTE = 0((6t)2) + 0(61(6x)2).

The Du Fort-Frankel scheme

The Douglas scheme

[1-Hr-~)b;]V:+'=[1+!(r+1)b;]V:

LTE = 0«6t)3) +0(6t(6x)4).
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Let us now attempt to interpret these methods in terms of methods for OD~. Instead
or discretizing the problem (6.55) completely, we semi-discretize it by leaving I a~ a
continuous variable and discretizing only the x variable. This is equivalent to repl~cl?g

the rectangular mesh by a sequence of lines parallel to the t-axis; the process of semi-dis
cretization is thus sometimes called the melhod of lines. Define U(I):= [u(x" I). U(X2' I), ...•

u(xM,tl]T and replace a2u(x"" t )/ iJx 2 by [u(x"+I,/)-2u(x",,')+~(X"_I.~)](6x)2.
III = 1,2, .. , M. Let us denote by V(I)E"M the exact solution of the resulting semi-discrete

problem !l

where

The initial value problem (6.61) can now be solved numerical1y by any appropri~te
numcrical method for ODEs. In order to apply such a method, we make the dis-

-2 I 0 0 0
I -2 I' 0 0

and

I
lJ = .-

(6X)1 o
o

I -2 I
o 1-2

,(6.61) I I
0= ~ + --.

2 12r

The equivalen~ FD scheme is then the Douglas scheme (6.58). It is all too easy to.
to the conclusion that the unconditional stability of the Douglas scheme follows
t~e fact that the Theta method is A-stable for ~ certain range or 0 (and _11 th~ eas
viewof the fact that some authors quote the Theta method with 0 and I - (J interchan
The necessary and sufficient condition for the Theta method to be A-stable is that
(see §6.6). a condition clearly not satisfied by the choice (6.64)! It is straightforwa
establish that when 0> i. the region o~ absolute stability of the Theta method is a
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Since Q. = O( I/(i\x)l). Ihe second term in the bracket is

If i\t/6x were 10 lend to a non-zero constant as 6/, 6x -. 0, then the method would
effectively have order only zero, and would be inconsistent. Thus the l'estraint (6.60) is
necessary for consistency.

Other VCMMs can be shown to be equivalent to sptilling techniques in FD schemes
(see Exercise 6.9.1); further details can be found in Lambert (1975), where fuller details
of the work of this section can also be found.

Exercise'
-;

6.9.1*. Thefollowing fully implicit VCMM forthes~stem y' = [t«, y) hasorder twoand is A-stable
(choosing Q.= - A) for a ~ 0, 2(b+c);;l: a:

[I + ahQ. + b(hQ.)2](y... I - Y.) = h[( il + chQ.lf•• I + [1 1 + (0 - c)IrQ.]!.]

A~ply this method to y' ~ Ay, A asymmetric matrix, with the choice Q. = - C. wher~ C .is .l

triangular matrix such that C + CT = A. Show that the resulting dilT~rence sy~tem s~mphfies
considerably if we choose 0 = 0, b = - r. Make the further choice c = ~ to obtain a difference
equation which can be split into a two-stage form involving an intermediate .value (call it Y.' 1'.2)'
Apply the resulting method to (6.61) to obtain an elTectively explicit unconditionally sta?le finite
dilTerence method for . .e problem (6.55) Show that this method (known In the PDE hterature
asSaul'ev's method) suffers thesame consistency restraint:isdoes the DuFort -Frankelmethod.

(6.66)I + II + qi\l ;;l: 4r.

1 (2/(I - 20), 0) as diameter. On substituting from (6.64), this becomes the circle on
_ 12r,0) as diameter, and the stability condition (6.62) is satisfied. Thus the Douglas
nethod is unconditionally stable, but the equivalent ODE method is not Ao·stable.
Note, however, that with the choice (6.64), the Theta method is no longer a linear
nultistep method, since its coefficients depend on the steplength ~t.)

A similar phenomenon explains why it is possible for the explicit Du Fort-Frankel
,cherne to be unconditionally stable. This time the equivalent ODE method is derived
'rom the linearly implicit VCMM (6.51) of §6.8, which, when applied to (6.61), gives

(l + ~i\/Q.)U•• 2 - [(I + rx)1 + i\/Q.JU."I + (rxl + !i\/Q.)U.

= i\/ Ur~O - rx)U•• I - ~ (I + rx)U.J. (6.65)

A simple choice which satisfies (6.66) is rx = - I, q = 4/(6x)2; for this choice the region
of absolute stability is now an ellipse with axis (- 4r, 0). Note that - Q. now has an
eigenvalue - 4/(i\X)1 of multiplicity M, while the eigenvalues of Baillie in (- 4/(6x)l, 0).
With the above choice of parameters, the FD scheme equivalent to (6.65)is the Du Fort
Frankel scheme (6.59) This equivalence not only explains how an explicit scheme can
be unconditionally stable, but also affords an alternative interpretation of the consistency
restraint (6.60) Qualitatively, we can see that there is going to be trouble as we let ~t

and 6x approach zero: since Q. = ql = - 41/(i\x)2, the condition (stated in §6.8) that
II Q.II be bounded will he violated. Quantitatively, it follows from (6.52) of §6.8 that

If - I < rx < I, the VCMM is A-stable. provided we take Q. = - B. However, the fact
that (6.65) is linearly implicit means that the equivalent FD scheme will be implicit. In
an attempt to force explicitness, let us choose Q. = ql, where q is a scalar and I the unit
matrix. The coefficient of U•• 2 in (6.65) is now scalar' and the equivalent FD scheme
is explicit. However. the price that has to be paid for forcing explicitness is that (6.65)
is no longer A-stable. Sigurdsson (1973)shows that when Q. = ql, the region of absolute
stability is a simple closed region of the negative half-plane which intercepts the real
axis in the interval [ - I - rx - qi\/, OJ. The stability criterion (6.62) is thus satisfied if
we choose II and q such that
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7· Stiffness
Nonlinear Stability theor

THE SHORTCOMINGS OF LINEAR
STABILITY THEORY

At various stages in this book we have pointed out the inadequacies of linear stabi
theory when applied to nonlinear or even linear variable coefficient systems. Over rec
years there has emerged an alternative theory, whieh suffers none of the shortcomi
of linear stability theory. A full·development of this nnnlincur .II(/I>ilil\· Illeor}' is beyr
the scope of this book, and our intention in this chapter is merely to give a flavou
the work and present some of the more significant results The reader who wishe:
see a rigorous account of the theory is referred to the excellent treatise by Dekker;
Verwer (1984), whose general approach we follow here

In §3.8, where we considered th~ linear stability of linear multistep methods,
produced a popular (but false) argument which seeks to extend the applicability of
linear theory by deriving the linearized error equation (J 71\),

• I

1

L [ajl- hfljJ]E'>J = T,
j-O

where the a, and Pj are the coefficients of the linear multistep methods. En. j is the gk
error at x.+ j , T is the local truncation error (assumed constant) and J is the Jacot
of the system, also assumed constant (or 'frozen'). We showed by example that it cc
happen that the solutions of (7.1) did not correctly represent, even in a qualita
manner, the behaviour of the global error; this could happen even if the Jacobian \
taken to be 'piecewise frozen' (that is, the constant value assumed for the Jacobia
re-computed from time to time as the computation of the numerical solution progresse

In the context of stiffness, a false argument analogous to that which produced I

would go as follows. Consider the general initial value problem

y' = f(x,y), y(a) = 'I, f: n x Rot -t not,

where f(x,y) satisfies a Lipschitz condition with respect to y, so that there exists a un
solution y(x). In sqme neighbourhood of this exact solution, y(x) can be well represe
by a solution of

iJf
y' = f((x, y(x)) + iJ/x,y(x))[y - y(x)]

the so-called lJ(lriational equation. Now assume that the Jacobian iJf/oy can be 101

ff s>
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ct x· he some t,vil value of x; then the 'piecewise frozen' Jacobian argument would
ssert that in some Ilcl~hh()urhood of x", thc .olut ions or (74) behave like those of

ozen' The " (7.3) takes the form y' = Ay + cp, where cp =cp(x, y(x» does not depend
I y. Since stability essentially depends only on A, we ignore cp and arrive at the
.nclusion that the behaviour of the solutions of the equation y' == Ay, where A is a
iecewise frozen' value of the Jacobian, in some way locally represents the behaviour
the solutions of (7.2), thus justifying the use of the linear test equation y' =Ay in a

mlinear context. We can see more clearly what is being asserted if we restrict ourselves
, the homogeneous linear variable coefficient case (for which the argument ren.ains
Ise) by setting [i«, y) = A(x)y in (7.2); then equations (7.3.) and (7.2) both become

The remarkable thing about this example is that the eigenvalues of A(\) are ),1 = - 1.
;'2 = - 10, and are independent of x. Thc gencral solution of (77) is

\

l'lcns (n I 2 sin 6.X J 1 "l· sin 6\ - 2 cos (n J
1'(r ] = X \ f . + )( Ze .

2 cos 6x- sin 6\ 2 sln6\ + cos 6.\, -

(7.7)
12cos26x+45sin Ih 1

. . y.
- 1- 9sln 2 6\ - 6slll12xr-I - 9 cos 2 6x + 6 sin 12.\

y' = A(x)y = .
L - 12 sin' 6x +4.5s!n J2x

Example 2

is monotonic decreasing in a neighbourhood of x". Perhaps the most striking example
which shows that such a property does not follow from the negativity of the eigenvalues
of the 'piecewise frozen' Jacobian is one due to Vinograd (1952) (a generalization 01
which can be found in Dekker and Verwer (1984):

The general solution is certainly not monotonic decreasing for any .x.

The following is an example going the other way, where the eigenvalues of A(x) haw
positive real part but there exists a solution which is monotonic decreasing:

(7.5)

(7.4)y' = A(x)y.

y' = A(x·)y.

..
y(x) = L ",exp(A.,·x)c,.

'-I

ince A(x·) is constant, the general solutions of (7.5) has the form

vhere A.,., I = 1,2, ... , m are the eigenvalues (assumed distinct) of A(x·). The 'frozen'
acobian argument would assert that if these eigenvalues were complex we would expect
7.4) to have oscillatory solutions; if they had negative real part we would expect (7.4)
o have decaying solutions The following simple example shows that the first of these
issertions is false:

Example 3

y' = A(x)y = [ 0
_ . I - x

x

I ]
.: }',

~2\

X

\ > o. (7 H)

The eigenvalucs or A(\) arc A\, A2 = ± i/(1 + x '}, and are purely imaginary for all values
of x; yet the general solution of (7.6),

Example 1

I [ 0 :1\' = A(x)y = ----- y.
. I + x 2 -I 0

(7.6)

The eigenvalues of A(x) are Al = - I, Az = (I - x)/x, so that for XE(O. I). 1. 2 > O. The
general solution of (7.8) is

(791

and the solution given by tak ing "z = 0 is certainly not monotonic increasing for XE(O, I).

We consider one further example, which we shall use again in a later section:

The eigenvalues of A(x) are ).\1).2 = ( - I ± 2i)/(2x), so that both eigenvalues have
negative real parts for the indicated interval x ~ I. The general solution of (7.10) is

is not oscillatory. In fact, we hardly need an example to see that it is impossible for the
'piecewise frozen' Jacobian argument to predict oscillatory solutions. The question we
are investigating is whether the solutions of (7.5) mimic those of (7.4) in some neighbour
hoodofx·; we are thus looking for an indication of localbehaviour. Oscillatory behaviour
is a global phenomenon, and it does not make sense to talk of a solution being oscillatory
in some neighbourhood of x". '

More important is the question of whether negativity' of the real parts of the eigenvalues
of A(x·)imply that (7.4) has decaying solutions in a neighbourhood of x· The only
interpretation of ,decaying solutions' that makes sense for a nonlinear or a linear variable
coefficient system is to take the phrase to mean that for any solution y(x) of (7.4~ I y(x) I

Example 4

[

-:- 1

2x
y' = A(x)y =

-x

2

l:_j
x J

y,
-I
- I

2x

(7.10)

(7.11)



For the solution given by x\ = I. Xl = O.

264 STIFFNESS. NONLINEAR STABILITY THEORY CONTRACT IVI TV

,
7.15. Here i. a device for constructing linear variable coefficient and nonlinear initia
~roblems with known solutions. (It will not establish general solutions) The linear v
I.Oeffir ient problem .

and' II y(x) II, is monotonic increasing for x> (12)114
::::: 1.86.

Of course, no one seriously believes the 'frozen' Jacobian argument; but we have
become so used 10 the application of linear stability theory to stilT systems. that it is all
too easy to find ourselves making statements like 'The ei~envalues have negative real
parts and are close to the imaginary axis. so the solu ..ons will be slowly damped
oscillations' Such statements are strictly valid only for the linear constant coefficient
system y' = -1 y; for general systems they will sometimes be true and sometimes false.

Exercises

7.1.1. Fmd the eigenvalues of the 2 x 2 linear system y' = A(x)y, where

[

0 I ]ACx) = . .
cosx-sinx -2(1 +smx)

2 + sin x + cos x 2 + sin x + cos x

Show that d.) = f2 + sin x, cos xf is a solution of the system and lind (by guessing a bit) another
solution Conclude that a system with oscillatory solutions can have real eigenvalues.

7.1.2. rind the eigenvalues of the 2 x 2 linear system y' ~ A(x)y, where

y' - A(x)[z(x) - y] +z'[x], }'(a) = z(,,) = '1

ha! solution ~x) .. z(x). Likewise, the nonlinear problem

y' = [i«, y) = 'P(x, y) - 'P(x. z(x)) + z'(x), \(,,) = Z(d) = '1

has solution y(x) = z(x). (An important difference between these two is thai al/ linear pr
can be put in the form (I), whereas not all nonlinear problems can be pUI in the form (2

Use these constructions to devise problems which support the gcner al conclusions of!

7.2 CONTRACTIVITY

The examples of the preceding section should not only convince LIS that the·
Jacobian argument gives the wrong answer to the quest ton 'When do the.
a general system decay?'. but also suggest that we are asking the wrong questi,
the linear constant coefficient system y' = Ay. negativity or the real parts
eigenvalues of A implies th<lt II y(x) II decreases. but also Implies that neighl
solutioncurves get closer together as x increases. 11 turns out to be much more
to seek generalizations of this second property We are thus motivated to rn:
following definition:

l 0
A(x) =

-1/(16x')
x> O.

Definition Let y(x) and ji(x) be any two solutiO/Is of lire splem r' = fIx, y) Sf,
i~itial conditions y(a) = '7. ji(a) = ii. '7 eF ii· Then if

. ~ .
Show I hOI t [4. I 1

4••
';4] 1 is a solut ion of the system, and deduce that this example backs up the

couclusions we drew from Example 2.

7.1.3. We reveal here how we found Example J Consider the system
for all XI,X l such that,

'he solutions of the SYSlem ore said to he contractive In Ill. h I

has solution u(x) = v(x) = exp(x) (independent of p); the solution clearly increases with x. Show
that the eigenvalues ).,,)., of the Jacobian are always real and negative, and that by choosing fJ
appropriately we can make the system apparently as stiff as we like (in the sense that 11 «11 < O~

Find i he eigenvalues and the general solution of the system.
il l int Elinunate I' from the system and set w = u + u·.)

Use your results to construct more examples like Example 3 which will conlirm that there is
no relationship between decaying solutions and negativity of the real parts of the eigenvalues of
the system

7.1.4. The nonlinear system

u' = /1[exp(Jx) - u)] + v.

v' = exp(3x) - v) +exp[x],

u(O) = I

v(O) = I

We see at once the possibility of an analogous definition for numerical solutio
a k-step. method define Y•• Y. E R",l by

Y '= [yT T T]T Y _, }ft' ft+1- .. y.+1-2.· .. 'y•• 0-·0 _

Y '= [-T -T -T T - _ _ 20 # ZOo
.' yft+1-l'y.+1-l ... ·.y.]. Yo - 20

whe~e {Yft} and {yft} are two numerical solutions generated by the method with d
starting values. (Note that for a one-step methf)~ Yft = y•.)

Definition Let {Y.} and {Y.} be defined ~y F:' ~\: Then if

HYft + t - Yft + I n~ KY. - Yftll. 0 ~ n ~ N

the nu~rlcal solutions and the method are said to he contractive for liE [0. N].
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The requirement (7.14) makes a lot of practical sense. The inevitable introduction of

scrciization errors ina numerical solution can be thought of as being equivalent to

mping 1111 10 a neighbouring solution curve; if we demand that the numerical solutions

: contractive whenever the exact solutions are, then we are ensuring that the numerical

Iution cannot wander away from the exact solution. We are thus led to a new breed

stability definition with the syntax diagram (see §2.6).

<_ y + y, Y _ y) = _ IIy - ji III ~ 1'( x) II r - f 11
2

and we can take I'(X) = .. I (Note that a one-sided Lipschitz constant can be negative.)

For y' = y, (716) reads

<y __ y, y ~ ji) = II y - YIII ~ \'('() II r -i 11
2
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of Schwarz's inequality, <u,v) ~ il u 1111 v II. from which it follows that

, <f(x,y) - f(x.y), y -.9):!i;: IIf(x, y) - f(x,.v)II·IIY .: YII ~ LII r - yII
2

if we assume that (7.15) holds. Thus if [tx, y) satisfies a Lipschitz condition. then .it

satisfies a one-sided Lipschitz condition. . ..

Condition (7.16), unlike (7.15), does succeed in scparatlllg the trivial scalar examples

we used above. For y' = - y, (7.16) reads

Numerical solutions

contractive

STIFFNESS: NONLINEAR STABILITY THEORY16

The first task is 10 find an appropriate condition for the middle box of the tl p line.

7.3 THE ONE-SIDED LIPSCHITZ CONSTANT AND

THE LOGARITHMIC NORM

DefinitiOIl The /rW({101l j [x, y) and the system l' = [i«, 1') are said to satisfy a . ne-sided

Lipschitz condition If

vherc L is the Lipschitz constant. In our search for a sufficient condition for the solutions

If y' = [i«, y) to he contractive, it is clear that the Lipschitz condition is not going to

lC subtle enough To sec this we need only look at the scalar equations y' = - y and

,'= y, both of which have the same Lipschitz constant of + I: the solutions of the first

ire contractive while those of the second are not. We consider instead the so-called

me-sided UpScllllZ (/IlIdi(,on Let <,.) he an inner product and 11'11 the corresponding

nner product norm defined by II u 11 1 := <U,ll). The theory holds for any inner product,

Jut we shall nurmallv usc (lilly the inner product <U''')l= IlTV, u, vEIR"" for which the

corresponding norm IS the Lrnorm defined by II ull2 = (U
1U)'/2 = (2::~-1 'U 2)'/2.

whence we have that

and we lake v(x) = + I. For these simple examples, coutructivity appears 10 he ussocia .

with negativity of the one-sided Lipschitz constant, a result we shall now show holds

in general. '. . ... . .

LeI y(x) and y(x) be two solutions of y' = [ix, y) satisfying initial conditions rIa) = '/.

y(a) =~, where II f;~, define O(x):= IIY(x) - y(x)1I 1
, and assume that (7.16) holds Then

I

O'(x) = 2_ <y(x) - ji(x), y(x) - y(x»
I dx - -.

= 2<y'(x) - f(x), j{x) - y(x)

= 2<f(x, y(x» - [t», j{x)), )'(x) - y( '() ~ 2r( xjO( x],

by (7.16). The differential inequality O'(.x) ~ 2\'(x)0(x) can be handled in the same

way as the corresponding differential equation: defining. the intcgranng factor

w(x):= exp( - 2g v(~) d~), we obtain (djdx)[UI(x)O(x)] ~ O. which means that UJ(x)H(x)

is monotonic non-increasing for all x in [ll,h). Since w(x) IS always POSitive. It follows

that 0(x 2 ) ~ O(x rlw(x I )/UI(X2 ), for II ~ X I ~ Xl ~ h, Now

w(xtl/w(x l ) = ex p ( 2L' V(~)d~) = (ex p (L' \'(~)d~ ) r

(7.15)IIf(y) - f(y)1I ~ Lily - Yll.

lecallthe Lipschitz condition of the system y' = f(;.;,y), defined by

<fIx,}') - f(x,y),y - y) ~ \'(x)lIy _ jill2

/IO/ds for all y, yE/If, III1tI for a ~ x ~ b. The function v(x) is called a one-sided Lipschitz

constant.

II y(Xl) - Y(x l )11I ~ exp (f.' v(e)de ) II y(x.> - }'(x I) II,

lt follows from (7.17) that if v(x)~O for all xE[a,h] then

(717)

and we have contractivity. In particular, it follows that if (7.16) holds with 1'(X) == 0 then

(7.t 8) follows, thus motivating another definition:

The convex region M,E R'" is the domain of the function [ix, y), regarded as a function

of y; clearly, if [t», y) = A(x)y, M x can be taken to be the whole of R"'. Note that a

one-sided Lipschitz constant is, in general. a function of x; it is only constant as far as

.. ,. ~~~~Arnp.r rf"lnrlilinn (716) is less demanding than (7.15). To see this. we make use

(718)
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Clearly the solutions of a dissipative system are contractive. ,
We have not yet tackled the question of how to find a one-sided Lipschitz constant.

The answer lies in the logarithmic norm, defined by Dahlquist (1959).

Definuion The system }" = J(x,y) is said to be dissipative in [a.b] if

<J(x,y) - J(x, ji), y - y) ~ 0

holds Jor all y, yE M. and [or all xE[a, b].

(7.19)

immediately from (7.17) that we have found a sufficient condition for the solution
y' =A(x)y to be contractive for XE [a,b]. namely ,,[A(x)] s; 0 for XE [a,"].

We now come to the key result of this section, namely that the above result acu
generalizes to the full nonlinear system y' = J(x, y) (and indeed holds for an arbit
norm); no dubious linearizing or 'freezing' arguments are involved, and the result
be stated precisely as a theorem:

Theorem 7.1 Let II II be a given norm and let v(.\) he a rrCCf'\\'ISe coruinuous [un.
such that

The name 'logarithmic norm' is a little misleading. Although in some ways it behaves
like a norm. p[ A] is not a norm; in particular, it can be negative. Note that JI[A] is
norm-dependent; if the norm 11'11 on the right side of (7.20) is the Ll-norm II'nl , we
shall denote the corresponding logarithmic norm by Jl2 [.].

Definition The logarithmic norm II[A] oj a square matrix A is defined by

p[A]:= lim (III +bAII- 1)/b,
~-O'

where I is the unit matrix and bER

(7.20) far 1II . (\,y) ~\'(x)foraIlXE[a,hl.\(.\I,
iJy

\

Then, Ior any two soiuuons y(\),v(x) of y' = f(\,y) S(/(/III'lIi,/ inu ia! condi
y(a) = ~,y(a) = ~,~ 'I ~,

II y(x 2 ) - ji(x2 ) II ~ exp(f' \'(~)d~) II y(x d ~ i"(x I) II,

Properties of the logarithmic norm
I (Sec Dahlquist, 1959;Coppel.1965.) Let the eigenvalues of A beJ.,.t = 1.2•... ,m;then

and we may thus take JJ[A(x)] to be the one-sided Lipschitz constant; it is clear from
(7.22)that JJ[A (x)] is indeed the smallest possible one-sided Lipschitz constant. It follows

3 (See Dekker and Verwer, 1984) Let apr 1,2. ./11 he llw cl:'.cnvalues of J(A + AT);

note 'that they arc necessarily real. If, in (7.20), II II 1\ the L1-norm, given by
IlulI;:= <U,U)l = uTu, then

x~1:']-I y,

2x
,

- I

• A' 2x
Y ~ ,,)y ~ _~2~

with ~eneral solution, given by (711 I.

y(X)=K\[ X~31\2'2J+K2[ ~.~-312InxJ.
-Jx x (I-Inx)

The eigenvalues 11,.11 2 of [A(x) + AT(x)]/2 are readily found to be given by
I

11\,a2 = ;xl
± (:3 -n

and a straightforward calculation shows that $12 [A(x)] = max (11\ , a2)~ 0 if and
~~x~x. where ~=J(J5-1)::::: 1.112 and x=J(J5+ I)::::: 1.799. Now, for a
system y' ... A(x)y, we may take M" to be the whole of RIO. and we can choose Y\

This theorem goes back a long way. It was first proved by Dahlquist (1959); a
accessible reference where a proof can be found is Dekker and Verwer (1984).

We now have a sufficient condition for contractivity of the solutions of a ge
system. namely that JJ[of!oy) be non-positive in some convex region enclosin
solution we are interested in; moreover, in the case when II II = II 11

2
, we have,

(7.23), a practical means of testing whether this condition is satisfied.
Let us try this out by conducting an experiment on Example 4 of §7.\ Reca

system (7.10)

(7.21)

(7.22)

(7.23)Jll[A] = max a..

(Az,z)
JJ[/1] = max --2-'

I II z II

max Rd, ~ JJ[A] ~ II A II.

In particular, if p[A] < 0 then all the eigenvalues of A lie in the left half-plane; the
converse is not true.
2. (See Dekker and Verwer, 1984.) If, in (7.20), 11"11 is an inner product norm, then

,

Let us consider the general homogeneous linear system y' = A(x)y. Then in the left
side of the one-sided Lipschitz condition (7.16), <J(x.y)- !(x,y),y- y) becomes

•(A(x)( Y - y), Y - ji) and it follows from (7.22) that

(A(x)(y - y),y - y) ~ JJ[A(x)] U'y - YII l
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(7.24)

(7.25)

(7.26)

contractive

Numerical solutions

contractive

- Exact solutions
=>

p(E)y. == hu(E)f(y.).

p(E)y. == hf(u(E)y.).

p(E)q(Elf. = u(E)p(E)y. = 1I<1(E)!(<1(E)y.)

p(E)P. = ha(E)!U.) :

System I---- Dissipativity

--

Method
Condition

I----
?

with
<I( .1') - !()i).; - ji) ~ I'(X) II y -v Ill}

v(x) ~ 0 Ior all XE[a. hl

The system is thus assumed dissipative. The definition to he developed applies not 10
a linear multistep method, but to a close relative. Let a linear k·step method be defined
in operator notation (see (3.5) of §3.I) by

7.4 G-STABILITY

Exercise

to use is dissipativity, defined by (7.19), giving the ~~ntax diagram shown below.

The next two sections or this chapter will be devoted to filling in the middle box of
the bottom line of this syntax diagram

7.3.1. We have shown above that for Example J of §7.1. the logarithmic norm 0' A(x) is positive
for all positive x. Generalize this result by showing that the same is true for the system given in
Exercise 7.1.3.

The earliest work on constructing conditions for a numerical method to be contractive
is due to Dahlquist (/975, 1976). There is no loss or generality in assuming the system
to be autonomous, and we assume the system to be y' = fly). satisfying the one-sided
Lipschitz condition

Then the one-leg twin of (7.25) is defined by

For example, the 01 -Ieg twin of the Trapezoidal Rule, Y. + I - Y. = !h(f. + I + !.) is the
Implicit Midpoint Rule, Y. + I - Y. = h!(!( Y. + 1 +y.))(see (568) of §5.11) Not surprisingly,
there exists a relationship between the solutions of a linear multistep method and those
of its one-leg twin. Let {Y.} be a solution of (7.26), and define P. == u(E)y•. Then. since
p(E) and (1(£) commute,

or

,
,! I

Figure 7.1

i
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so that conlra~livily in [~, Xl implies that 1IY(x2) II 2 ~ II y(xtlill for all X"X
l

satisfying
x ~ x I .~ X2 ~ x. That IS. IIy(x) 11 2 should be monotonic non-increasing in [~, x). Let us .
tes.1 this by a numerical search over the parameter space ("1'''1)' In order to keep a
uniform scale In Ihe graphs. we normalize IIy(x) 11 2 by dividing by IIy(1) Ill, and look at
plots of Y(x)== IIl'{x)11 2/ I1 y(.1) 1I 2. Sinee Y(x) is clearly a function of "1/"" we have to
search only III it onc-dirnensional parameter space. Figure 7.1 shows some plots of Y(x)
aguinst x III the Interval 1~ x ~ 2.5 for various values of "1'''1' The curve for
~ 1 = I." 2.= 1.5(an arhit rary choice) is certainly monotonic non-increasing in (x, i), and ,
indeed this turns out to he the case for all values of "I and "1 tested. However, for
"I == I. "2", 0:54. Y(x) has a maximum at x =~, and so is monotonic increasing to the
left of .~. Similarly, we find that for "I = I. "1 = 3.8, Y(x) has a minimum at i and is
thus monotonic increusing 10 the right of .~ This experiment suggests that Y(x) is
monotonic IHJI1-IIlCreitSlIlg for all K I' K 2 if and only if x E [~. xJ, precisely the interval in
which /1[;1(x)J IS non-positive. ~

We do not always get results as sharp as this. If we repeat the above calculations for
Example 3 of §71 we find from (7.9) that

II I( x) II 2 == 2e - h {[" I -+ "2 X(x - I)) 2 + "1 Xl}. t
and it is clear lhal fur all finite "I' "2' II y(x)1I2 is mal otonic non-increasing for all If
sufficiently large x Huwever, from (7.8) and (7.9), the eigenvalues of [A(x) + A T(X)] !2"l
are given hy '.Ii,

Iro:n which ;1 is clear that /l[A(x)] = max (<1 1 , Ul) > 0 for all x> O. Thus Theorem 7.1
(which of course. gives only a sufficient condition for contractivity) declines to tell us J
whether or not the solutions are contractive for large x. ' .. J_:

We are now able to fill in the middle box on the top line of the s:'ntax of the new: I

stability definitions, given at the end of the preceding section. The most suitalle condition
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Numerical solutions
cont ract ive

(in the (;·norm)

NONLINEAR STABILITY OF IMPLICIT AUNGE-KUTTA MEnlODS

By 'the natural norm', we mean, of course. the norm appearing in (724), namely I

norm associated with the inner product appearing on the right Sidesor (728) and (7.29).
It is not hard to show that G·stability implies A·stability, however. Dahlquist (19

proved the unexpected result that A-stability implies (i-stability, so thnt G-s(C1hi/iry (
A-stabilily are equivalent. This fs a remarkable result; it means that for any meth
which is A-stable (a result based on a linear constant coefficient test system). there eXI
a norm (the G-norm) in which the numerical solutions arc contractive whenever
general nonlinear system being solved is dissipative It is not, of course, the result
want. We would like to have a stability condition which assured contructivity of
numerical solutionin the norm corresponding to the inner product in which the syst
is dissipative; the exact and numerical solutions would then he contractive in the sa
norm. G-stability, despite the' [act that it docs not give us what we want, played
important role in the development of nonlinear stability theory; moreover, useful boui
on the G-norm of the error can be established (see Dahlquist. 1975, IlI76)

Exercises

. '
by (7.24), and, since vex) ~ 0 for all xE[a, bJ. the condition (7.14) of §7.2;is satisfied, a:
we have contractivity of the numerical solution. We thus have the syntax diagram I
G-stability shown below. .

b
; ~ac t solutions

=> contractive

~~_~h=~~~ra~~orm)

I

~
l,

t•
j

(7.27)

(7.28)
, ,

II/..II~= L L C/jl(z.q'i,ZnH.j)'
1;Ii; I j = I

STIFFNESS NONLINEAR STABILITY THEORY

(Note that some authors normalize the standard linear multistep method by requiring
that a( I) = I, whereas we chose in 93.1 to normalize by requiring that (Xt = I; thus the
reader will find In the quoted references that the divisor a 2

( I) does not appear on the
light side of (727))

In what can be interpreted as a vector analogue of the structure inherent in the
above, it is possible to define a norm. the G·nann. of a vector Z.ER.. t

• deli ned by
/.n=[z~q"z~"'l,.z~)I, where z•• jEIR".j=O.I .... ,k-'-1. The G-norm 11'11 0 is
defined hy

272

rh,!inir;OI! LeI W o, W" ,II', he (//IY real numbers. and defl'1e rile vectors Wo, W\ER
t

by
W"=[w",w ,, .w, IJ1.~V, =[\\"''''2''' .w.JT Tllen/hek-srcpmc/hod(7.26)issaidlO
he G-slablc 1/ thrr« "'f.\!.\ 1I rca! symmeTric positive detinue marrix G such that

and {P.: is a solution of the linear mullistep method (7.25). This relationship betwFn
the solutions of (7.25) and (7.26) allows results for the one-leg twin to be translated into
(admittedly more complicated) results for the linear mullistep method. The one-leg twin
is not just a device to make (he analysis of this section work; there is some evidence
tNevanlinna and Liniger, 1978, 1979) that the one-leg twin is to be preferred in variable
steplength applications

We can now state the first of our nonlinear stability definitions, due to Dahlquist
(1975)

where 11'1 IS the (r,jJlh clement of G. and the inner product is the one used in (7.24). It
Gin be shown (Duhlquis], 1976) thai if the method (7.26) is G-stable, then

(7.29)

for any vectors :"'Zn' ,. ':n" [ljllatll)fl (72'1) can be scell .1' il Hlt"r ex tcnsion of
(727). and indeed can he laken as an alternative definition of (;·'>I.lhility; of course.

(727) is easier to apply in practice
Let (Yn: and :~n) he lWO solutions or y' = !(y), given by (7.~6) with different st..rting

values, and assume that (724) is satisfied. Further, define Y., Y.ER
mt

by

1 1 1)1 y. [-1 .-1 -T]1
Y":== [Y,,+A: - I ,Jt,,+k.~ 2"" ,y,,_ , ".= ·y... + ... -I'y" ...... - 2"" ,y,.

If the method is G·stable. it follows from (7.29) that

,
;;

t
.}
'to

I

7.4.1. Show that the Trapezoidal Rule satisfies the G-stability condition (727) with G = I.

7.4.2. Dahlquist (1976) gives a construction for linding the matrix (; for any particular one
twin and quotes, as an example. that for the 2-step BDF and its t wm (why both"] we may ta

G = l!I ~ II
Check that G is positive definite and show that the G,slability condition (727) is satisfied. (
Table 3.3 of §3.12 for the coefficients of the rnethod.]

\
7.5 NONLINEAR STABILITY OF IMPLICIT

RUNGE-KUTTA METHODS

II Y•• I - Y•• I II;; - II Y. - Y.II~ ~ 2<a(E)(y. - y.), p(E)(y. - y.) )/a2
( I)

~ 2<a(E)(y. - y.), hf(a(E)y.~ - hf(a(E)Y.) )/a 2(1)

~ 2hv(x) II a(E)(y. - Y.)U 2/a 2(1),

We s~w in §6.7 that it was much easier to lind A-stable implicit' Runge-Kutta methr
than It was to find A-stable linear multistep methods. It is thus no surprise that impl
Runge-Kutta methods turn out to be the best class for which to seek nonlinear stabil
p-operties, We remind the reader of the discussion of various sub-classes of impl
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thcr, we assume that the system y' = J(x, y) is dissipative; that is, we assume that

. -mi-irnplicit Hungc Kulla methods given in §5.II', We shall assume that the method

.~ stages and is defined by the Butcher array

(134)

"TA -I = ,,/3[ -1.1].

M:= lJA + AT I3 -11h r

Definition A Runqe-Kutta mel/rod ;.v said to he alRebraically stable II the II/</lricl's B
and M defined by (7.32) and (7.34) are botl: 1/(l1l-II(WHir L' dl'li";ll'.

whence we find that

It follows that

A-TbhTA-I=(hTA-I)ThTA-'=_{-:}-I.IJ=lJA 1+ ..1 Til

and Q = 0, Since B is clearly po~itive definite. condition (7.13) is s.uisficd ;ll1d the method
is B-stable. Indeed, it can he shown that (7.13) is satisfied for all C;<IUSS methods. as
indeed it is for all Rndau IA. Radau IIA and Lohatto IIIC IlKlhods Clc.u ly it is not
satisfied for Lobauo I ,A and IIIBmethods, since A is sinf!lIlar for these methods.

The above condition IS .rwk wn rd to aprly, (If thc reader .loubt« this. let him repeal
the above working for the 3-stage Gauss method') A much more easily <Ipplicd condition
(which involves no matrix inversions] was discovered by Burrage and Butcher (1979)
and Crouziex (1979). Let B be defined as in (7.32) and define the \ x S mat rix M by

(7.31)

(7.30)

<[tx, r(x)) ~ J(x, y(x», y(x) ~ ji(x» ~ 0

ds for any two so1uliOIlS : d xl land l.v(x) l satisfying different initial c~nditions. It
ows from Q71 Ih;11 the ex;I<:1 solutions are contractive in the norm corresponding to
inner pwduc.l IU (7 \ II We shall assume this norm throughout this section; in

ucular, t:onll<lcllvlly "I t hr met hod and of the nuuicr rcul solutions (in the sense of
n will mean contractivily In Ihis norm.

';'lil~1I/1 (/lu/elll'/', 1475); /llIIr"I!1' I/I,d Butcher, 1979; Crouzfex, 1(79) IJa Runge-Kulta
'1,(/(1 "ppl;I't!. wit]: (//1I'\ICr{Clllf' II, 11/ (Ill aulo/WIIII/ilS system satisfyillg (7.31) generates
-tructiue numeruai sniution«, ,111'11 the method is said 10 he Bvstablc; if the same is true
"II IIII' 11/(,,1,(/,/ 1\ "I'I,I/(''/ '0 u /II1/HIlI/OIIUIIIO/lS .vystl'm sali~fyillf/ (7.3/), tile method is
I to hI' UN-slahle

ilulcher (11.)75) proved the following sufficient condition for LJ-stahility; a proof can
II he found in Dekker and Vcrwcr (1984). Let LJ lind Q be s x s matrices defined by

Algebraic stability can be shownto be sufficient not only for lJ-stahtlity. but <1150 for
BN-stability. We have the syntax diagram shown below for algehraic slahdity.

en the sulllclcni condition lor }j-slah,lity is

(7.32)

System

y' = J(x,y)
<1(x, .1') ~ J(\-:~ - i'>~-OJ =

------

iI,LxaCI SllltlIIOIlS"j:

l,. contracuvc
- ------ ~---------

II ;lnd Q non-negative definite, --_._- -------~

lJN-stahilily

= mumcricul solutions

con Ir.rct ivel

Algebraic stability

(8 and M both

non-negative definite)

-4
5

8

Example 1 Since no matrix Inversions are involved, we arc prcpa rcd to use
a 3-stage example this time. LeI us choose the J-stage I Loha tto III C for wh ich

(7.33)

[
h;;,'~~,o, lutions

coutracnve

B-Slability

(numerical solutions

contractive)

I II II f (f), \'- ~) S () ] -:>I
System I .

!. ~ I I \ II

[
f{~ l ;lge KUI'<l'1

method

: thus have the syn(;lx d"lf!ram shown below for H-stabilily,

Example
the 2-slagc (j<luss method.

I r 3
" = j t 3 + 2J3 h=UJ B = 1/

A simple calculation shows that

I

-2
I

-2
4

-2 -n
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The eigenvalues of Marc 0, O,~, so that M is non-negative definite; clearly so is B, and
the method is algebraically stable As for condition (7.33), it can be shown that the
Gauss, R~dau lA, Radau IlA and Loballo Hie are all algebraically stable, whereas the
l.ob.itto Il lA ,1I1J HIU arc not.

Exsmp!e 2 For the one-parameter family of semi-implicit methods (5.75) of
~5.11, we have

The eigenvalues of Mare 0,0,6, and 6v2 + 61' + I is positive only for one root.

v VI =:' (2/j3> cos (10°). Thus (5.77) is algebraically stable only for \ == \'\: the value for
which ""e indicate in §6,7 the method is A-stable.

Hundsdorfer and Spijker (1983a) take a different approach As we have seen, the test
equation for A-stability is essentially the scalar equation r' == i\. i.EL This is replaced
by the scalar test equation

The eigenvalues of A'.•Ire () and -2; since 311l - 311 + I is positive for all u, it foll,ows
that M i~ no n-ncg.u ivc definite for alill ~ O. Thus. of the p<llr of DIRK methods given
hy (676) only t hc one ~i\'ell hy choosing JI == - J313 (the one we showed in §6.7 to be
/l-\Iable) is ulgcbr aicnlly stable

(7J7)

(7.36)

Clearly any exact solution of (7.16) satisfies

and it follows that If Re A(\) ~ () (or "II \E ltl,"1, then

(f " ~ ')r(x+II)/rlx)==exp : )(\)th

for any xE[a, b] and any h > () A stability definition for" olle-stl'p method can be
framed by requiring that the nun\erical solution of (7.16) mimics (717). that is, we shall
demand tha-t Y. + • == Ky., IKI ~ I holds for all positive I" whenever Re i( v] ~ O. The
general s-stage Runge~ Kulla method (written In the alternati\'e form (S6) of *51) applied
to (7.36) gives

;J

_II J[
- I

M == _ 1

"~ r'';.,: ,. I
l II 2 j

and we finL! thai M = ,ulil)"", where

Example 3 Recall the 3-st<lge DIRK method (5.77), for which

1.2., s,hAC\. + c,h) = r"

Introducing the notation

where

, I

Y•• 1= Y. + II I h,A(\. + c,ln},
/:: I

J[

I
1

B== .
6\,2 .

+ v

j \'

2\'

22

2

+ ,.

1 + \'

where \' IS one of I he I h I cc rcaI rools of

(7.35)

}'=l)",}l' ,r,I',

(7,38) can be written in the form

1"= [I, I, .11 1 e H',

y.+I/y.==:R(f)==I+hTr(l-Af')-l c (7J(

Note tha~ r is a function of x •. Note also that if in (7.36) we put i.(\) == )., constan
.then r ~ hI, where h = h)., and (7,39) reduces to ;

Y.+ .,'Y.= R(h) = I + hh T(I_ hA)- Ie,

which is just the. stability function of th'e method (see (5,86) of §5,12). We are now ab
to frame a definition- •

'10 construct M and find its eigenvalues for qruerul \' is a horrendous task. One is
reminded of the lawyer and mathematician Viete (1540-1603), who, on qeclining to
perform a similarly tedious piece of manipulation, described it as 'work not fit for a
('hmti';m gentleman' (Perhaps we have here the basis for a definition of a symbolic
manipulator") However, by repeatedly using (7.35), the manipulation becomes tolerable,
and we lind that M == IJI(v}M, where '

M=[-i ~~ -i]

whence
r == r.c + 11 r }
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Nonlinear stability
property

Algebraic slahility
Algebrnic stabilirv
No algehraic stahility
Algebraic stahility

A-slahility
I.-stability
A-slahility
L-stahility,

Table 7.1

linear Stability.
Order property

2.<
2\ ~ I

2" - 2
2.~ - 2

Gauss
Radau lA, IIA
Lobatto IIIA. III B
Lobatto IIIC

s'stage
RK method

Iy(x + 11)1 ~ ly(x)1-.----1: Rd(x)~O I =>

1
'Iitlll LeI )'jEC h~' slid, thn; RCYI~O. i= 1.2•...• s, with YI=YJ ifcj=c

J
• and let

Iag(YI.fZ.· ... r,). Then till' Runqe-Kutta method is said to be AN-slable if,Jor all
I';· 1- AI" is 1l01l-.~ill!lIl/Clr Clllci R(r). defined hy (7.39). satisfiesIR(r)1 ~ I.

'N' in AN-staoility denotes that we are using a non-autonomous form y' = ,l.(x)y
: standard linear test equation y' = ,l.y for A-stability.) Obviously. AN-stability =>
bility; the converse is not true.
c syntax diagram for AN-stabilily is therefore

I" ~ 'hI>' L
(sca~r) __ J

For noncontluent Runqe Kutt» methods

lor the 2-slage Lobutto lilA mel hod (the Trapezoidal Rule). we

Runge Kutt.:
mel hod

Examples
y find that

AN-stability II'M' II "S IYMI
I\I~chr;lIl' sl;lbill,ly

o
BN-staoility

o
AN-stability

-e- lJ-stahililY =- !1-sl;,hilitv

ee that the coudu ron 11\(1 II <, I for all Re }', "S O. I = 1,.2, is rlol satisfied, all we need
; choose 1'1 and )') to be real and negative. with }'I < }'z - 4, whereupon R(r) < - I.
mtrast, for the l-siagc Gauss method (the Implicit Mid-point Rule. the one-leg twin
tc Trapezoidal Rule). we find that

I + )' /2
l«f) = I

I - }'1/2

the conditions for ..lNsl.lbd,ty arc clearly satisfied,

is not difficult to find R(r) for any particular Runge Kulla method. but it can be
: difficult to dctcuniur whet her or not IR( l")] "S I II owcvcr. we seldom need 10 apply
lest. since III Ill",t Cilses. AN-stanility IS cqurvalc nt to algebraic stabilit y which is
h easier to tcvt BefOIC \\T c.iu stale these rclat iouxhips, we need ,I further definition.

It is worth reflecting for II moment 011 the import of these equivalences We started
out with a discussion of the full /I"/l/i/lcar sr.sll'lII. and sought a critcr ion Ior some sort
of'controlled behaviour' of the solutions, leading to the notion of coni ractivit v Algehraic
stability is a sufficient condition for. the numerical solutions 10 behave In a similarly
controlled manner. Y~t. with the not:all-that-imp0rlant exception of confluent methods.
we can guarantee the same contractive behaviour of the numerical solu! ions by imposing
a condition based on the scalar 1i/ll'l1r lest equation .1" = iCy)\. In other words. we need
only move a little bit away from the over-restrictive lest equation " = i\ 10 he able to
predict contractivity of the numerical solutions of a fully nonlinear svsicm' ..

Finally. in Table 7.1. we update Table 6.6 of ~6,7 10 include uonliucar stability

properties. .
In particular. we note that the Trapezoidal Rule (the 2-stage Lohatto 1111\) IS not

algebraically stable. whereas the Implicit Mid-point Rule (thc l-st.igc Gauss) and the
Backward Euler method (the 2-stage Radau IIA. the one-step IlDFI arc algebraically
stable.

"ilillll 11 1\11"'1<' J-.. Ill/II "WI!,,,,, is SUlci (II he nonconllucnt If al! IIf the (/' i = 1.2, .. ,. s.
dist in«!

Exercises

III he shown (sec. for cx.unple, Dekker and Verwer (19R4)) that the various stability
lerties we have discussed in this section are related as follows:

For general Runqe-Kutts methods

{

BN-stability => B-stability

Algebraic stability => ij

AN-stability => A-stability.

7.S.1. Show that the 2-<tar'~ Radau lA, Radau IIA and Lohatto IIIC melhods (hsted in ~5111

satisfy the condition (7.33)

7.5.2. Make a selection of the Gauss, Radau and Lobatto methods IIsled i,~ ~s II. and dcmonsrr ate
that Gauss. Radau IA. Radau IIA and Lobauo IIIC methods arc all,:chralcally stable. while
Lobatto iliA and 11I8 methods are not.

7.5.3. Derive the matrix M quoted for Example 3.(Apologies to any 'Christian gentlemen' amongst
the readership.)

7.5.~. Show that the 2-slage Lohalto IIIB method is not AN-stahle
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7S~. Tim Iwe n;lInpie IS due III lIundsdorrcr and Spijker I 19111 h). Consider the Runge-Kulla

IIlcth"d

Sh",.. Ihal HII l. ;IS defilled hy (7 WI. " given hy R(r) = III + 3YI +, l/(8 - y, - 3yz), and deduce
t hc vtabilit v [uncuo n ",i" l Icncc sh"w that the method is A-stable. By considering the values
" = _ 1/,,',., c. III. sh"'" IILII t hc method IS not AN·slahle Show (Independently) that it IS not

;1i~ehralc.i1" ,Lil,ie

Table 7.2

.1.= - 50 .( = - 5 x 101 i.= -5 x 101 i=-5xl0 1

h f(h) R(h) f(h} R(h) f(h} R(h} flh) R(h!
~ ----------

J 52 x \0 \
~ 2 " 10

\

0.2 6.4 x 10- 4 SOx 10
179 4.4 41l ·tll

3.6 x 10-~ 1 I x 10'\ U x III
,

11xlll0.\
16.4 5.8 40 40

20x10' 32 x III J l' x III
J

005 22 x IO-~

I ~ ~ 12.0 .11 411
, , 80 x III X I x III v

0025 14 x 10 I (, x III
~----'~

7.6 B-CONVERGENCE

I in.rllv. we lOllllllenl very briefly on the subject of LJ-cOIIVt'f(j('/Ice. There exists a sub
slalltl;;1 bod y of Ihe'H) 011 this topic, which is beyond the scope of this book; we ment~on

It here solei v hcc.ru-.c the reader. when solving stifT systems numerically, may on occasion
[ind results'\~hlch ;In: a liulc pUlLlillg. and might appreciate knowing that the observed
behaviour IS 10 he expected The phenllmcnon we arc about to discuss was first described
hy Prothero and Rohillson (1'J74l. who gleaned much insight from considering the family

of scalar cqu.u rons

I he vuhvcqucnt theory o[ I/·eonvergence for the full nonlinear system was. developed
hv hank. Schneid and Ueber huber (19RI. 1985:1. 1985b); an excellent review of this
'I'ork can he [ollnd In Dekker and Vcrwcr (1984)

When we 'olle a sll[f problem numerically. we expect 10 have to use a very small step
length In Ihe nllerv;d in which thc fasl transients arc still alive. If we use a method with
uu appr"prlale "'ahdlly properly (such as A-slahility or algebraic stability) then, once
the fasl tranSlenls arc dead. we expect to be able 10 use a steplength which is not
restricted hv ,ldh"ll\ conslrClIIlI~. and IhlS is Indeed t hc case l lowe vcr. t he accuracy we
uchicvcin ihi-, phu-;c ,,[ t hc xolut ion is oftell r.u hcr less t h.in the order of-the method
would lc.id II'; 10 expect

Consider Ihe scalar cqu.u ron (7.40) in the case when). IS real. The general solution is
If\) = xc xptvv] + 1/(\). where h IS an arbitrary constant. If q(x) is smooth (that is, the
higher dcrrvat ivc-; are 1101 large) and we choose). such that ),«0, then this scalar
equation exhibits stlfflless lurther, if we choose the initial condition y(x o)= g(xo), then
the solution is rl v] = 1/(\) and the [ast transient docs not appear in the solution (exactly
the situation \~e h;,d in Prohlem 2 or §6.1). Following Seinfcfd, Lapidus and Hwang
/llJ70), we choose !If\) = 10 - (10 + x)exp( - xl, giving the initial value problem •

I' = i.y + !I'lx) - )y(x),

I"=il ~ll)+ IOit(1 +).)x]exp(-:()-IO).,

wilh exact solution

y(x) == 10 - (10 + x)exp( - x).

y(O) =0

(7.40)

(7.41)

We solve this, for a range of values Ior )., by the algebr;IIl.t1lv stahle 2-~tage Gal
methou with steplength h. Naturally. no stability difliculucs ame. hill the pattern "r I

global truncation errors at x = 10 as we vary both), and II. ;1\ displayed in Tahle I
is not what we might expect. As P.I increases (and the problem becomes stiffen t
global errors increase, but flatten QuI for sufficiently large li.1

To see ir these global errors are consistent with the order or the method. we h.
also computed the ratios R(lI):= l:(h)/I:(h/2), where I.(h) is the glohal error when I

steplength is h. If a method has order" then the global error IS O(llr) arId the ratio R
should be approximately 2P; we are thus ahle to make a uumcr rcal csnm.ue of'
effective order or the method. From the ratios quoted in Tahle 71. we see that
A.::: - 50, the effective order docs appear to be 4. but as I; I incrc.rscs this order appe
to decrease progressively' until, for ),:OS - 5 x 10~. it appcurs to he 1

What is happening is that, although the exact solution IS independent of the slifTn
parameter A. (and this would also be the case in the steudy-xtatc pklse lor a prohl
with general initial conditions), the coefficient of hP ' I in' the pllnclp;t! local truncal
error (recall that this is a linear combination or ejcmcntury diffcrcut ialsl does dept
on A., and so therefore docs the global error. When 1).1 becomes vcry large. the multip
of h" in the global error becomes so large that it robs the supcr srnp: I'of allY meani
What is interesting is thai. for t his ex.unplc al least. the d1cltl\C o i dcr does not j
degenerate in a random way, hut appears to change progresSivel) [I <1111 -lto precisely 2.

We tutn now to the general problem for a nonlinear system, since our treatment
this topic is necessarily superficial, we shall eschew any formal definitions. A Runl
Kulla method is said to be B-consistent of order q if the local truncation error J~

sa sfies a bound II T•• I II ,,; kh" I for all hE(O, hi]' where the real constants k and
are independentofthe stiffnessof tire problem; they can depend on the one-sided l.ipscl
constant of the system and on the smoothness or the ~olutioll (after the rast transi
is dead), but they cannot depend on higher derivatives orthe solution which arc innucnl
by stiffness_ In a similar way, the method is said to be R-conver~rnt or order LJ ir
global error E... I satisfies a bound II E•• I II ,,; Kit' ror all /rE(O./rd. where. again. 10: ,
h2 are independent of the stiffness or the problem. Our numcrical expcrimcnt \\'0

seem to suggest that the 2-stage Gauss method is B-convergent or order only 2 Fir
class of problems(7.40). The catch is in the italicized phrase: unfortunately the order
B-consistency does depend on the problem being solved. and is thus nOl a propert)
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and that the condition for " + I = 0(11'" I + I) to hold is that

\ ,
Using (2) and the order conditions. show that P., I ~ p. the order of the method

Compare the conditions (I) with the collocation conditions ('174) of ~511

7.6.2. Using the result of the precedingexercise. find the stage orders of thc .\-slal1e (i;IUSS. Radau
IA and IIA methods for 5= 1,2. and of the sstuge Lohatto lilA. IIIn and IIIC methods f",
s = 2. 3, and check that the 1("<1111< are consistent with the cnt ncs III Tn ble 7.1 (Sec ~5 II for the

coefficients of these methods),

Table 7.3

s·stage RK method Order p Stage order ~

Gauss 2.,
Radau IA 2s - I <- I
Radall IIA 2s - I
l.uhauo IliA 2.< - 2
l.ob.ruo IIIII 2s - 2 \ - 2
l.ohau o Ille 2s - 2 \-1

t "I(~- ,= 1/1/.
1'1

1/= 1,2. :·,P., I

the method ;d"l1e II 1\ Ill'le";IIY to define i hc "I lrr f /I . . .
I

. 'L" consistency and B-convergellce
rc alive to ;\ L·la" "f I'I"hlcms.

It IS. huwcvcr , I'o"ihlc 10 find bounds fer tile' I f U .. "rl er 0 -consistcncy. Clear! we
always have '/ S (J. where (J is the order of the method defined in th . I

Y
'A I hi' e conventiona way

ower OUlll IS found as follows. Let y(x) he a sufficiently smooth fun t' d f .
the general '-,1'1" H ' K. , . c IOn an • or'. .' !'e IIIl!'e uua met 100 (111 the alternative form (5.6)) define the
residuals ',.1 ~ 1.2. .' + 1 hy

Fssentlal~y these re,ldllals arc the local truncation errors of each stage of the
R", ~ ul ta IIlCt hod uhc (s + I llh stage heing regarded as the statement _ +
II"" I>{(\ +., Y)).I . .l . . Y.+l-Y.

i-", I' ",.'. i ,I. , W len cac 1 sl.lge IS regarded as a mel hod in its own ri ht (C
with ('i')'!) "f~'i 1\) If. lor;~ 12 s+ I, -0(1"") I c . . ignt. ompare
• . ' • .,. ., - J , then p.= mintp , Pl P )
IS callcd Ihc slagl' orcin (ll the method It IS assumed that the method s~tisr.~~' f~; la
glve,~ class of prohlcm«, yet another stability criterion (BS-stability), which requir~s that
If each sta!,c of the Runuc Kuuu mel hod is perturbed b .' - I 2 I 'hI . Y r,,1 - , • -- ,s + . t en the
pert~lr )al."ln In the uumcr rcal solution given hy the method must he bounded by
K 1lI.IX, III, II. V. here J.,. I' uulcpcndcut of the slilfnc\\ For that class or problem, the order ,
of lJ-con,I'tency I~ ,II 1e;1,1 the stage order We thus have t h.tt the method is B-Ci isistent
of order //' with {" 'I'; I' '1 he stage order fi lor the classes of implicit Runge -Kutta
methods discusvcd III ~'i II arc shown In Tahle 7.1

. Our numcr ic.rl cxpcr uncnt suggested that for problem (7.41) the 2-stage Gauss method
IS B-ctJnslstent of ordcr 2: note that this is within the bounds given b T bl 7 '1Y a e ._.

,
I, - II \. t c, 11)- 1'(\.) - II I 1I11y'(\. + ~jll).

F\

,
I" ,- 1(\.'1) - y(x.)-II I ",\"('1:.. +(,11).

j. I

(7.42)

7.7 CONCLUSIONS
,

So, what docs one make 01 t lus theory ill noulinc.rr slabillty" FIl)111 t hc thcoretical point
or view, one can have no complaints It removes. in a rigorous and comprehensive
manner. all of the doubts that linear stability theory. with its dubious 'frozen' Jacobian
arguments. raises. Moreover, it turns out tha) one doc, not need parlicuLltly pl)\\crful
tools tocope with the full nonlinear system; AN-slabllity. hascd on a fairly nuld extension
of the scalar test equation of linear stability theory. is equivalent II' algehralc stahilit v
for most Runge-Kutta methods. Further. testing [or algcbraic slabllity is not difficult
(indeed sometimes easier than testing for A-stahility) Finally. lJ-cLHlvClgence gi\cs a
convincing and useful explanation of an observed phenomenon Really. we could not

have asked for more' \
But what impact has the theory had on the way in which stiff sy,lcm, ;\IC solved 111

practice? As the dates of the references show, the nonlinear thcur v has been around [or
some time. yet most real-life stiff problems continue 10 he solved by highly-tuned codes
based on the BDF. which give excellent results for the vast majority of problcrns. One
reason for this becomes clear when we recall the shortconuugs of the linear theory. To
pUIit somewhat Iancifully.the bogusexlension of the linear theory to nonlinear problems
sometimes tells us fairy-tales about how tile exact solutions migh: he expected 10 behave.
We do not believe these fairy-tales but. significanlly. neither necessarily do the methods'
We saw an example of this in the lauer pari of ~3R. where the linear theory predicted

disaster, but the method continued to behave normally
Onthe other hand. it is possihle that variable-order Runge Kulla codes based on

algebraically stable methods will he developeo to the pomt where they are competitive
with BDF codes (and of course the ever-decreasing cost of computer time biases users
towards robustness rather than efficiency). Should that happen. II would make sense to
"-efer methods whose stability is so well understood

Exercises

7_h.1. Kdcrrlng to (7421.showIhat for i = 1.2.....s the conditions for I, =0(/1"+ I) to hold are that

q = 1.2, .. . . p, (I)
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