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Abstract

Although the genes that encode membrane proteins make about 30% of the sequenced ge-
nomes, the evolution of membrane proteins and their origins are still poorly understood. 
Here we address this topic by taking a closer look at those membrane proteins the ances-
tors of which were present in the Last Universal Common Ancestor, and in particular, the 
F/V-type rotating ATPases. Reconstruction of their evolutionary history provides hints 
for understanding not only the origin of membrane proteins, but also of membranes them-
selves. We argue that the evolution of biological membranes could occur as a process of co-
evolution of lipid bilayers and membrane proteins, where the increase in the ion-tightness 
of the membrane bilayer may have been accompanied by a transition from amphiphilic, 
pore-forming membrane proteins to highly hydrophobic integral membrane complexes.

1 Introduction

Th e origins of membrane proteins are inextricably coupled with the origin of lipid 
membranes. Indeed, membrane proteins, which contain hydrophobic stretches and 
are generally insoluble in water, could not have evolved in the absence of functional 
membranes, while purely lipid membranes would be impenetrable and hence use-
less without membrane proteins. Th e origins of biological membranes – as complex 
cellular devices that control the energetics of the cell and its interactions with the 
surrounding world (Gennis 1989) – remain obscure (Deamer 1997; Pereto et al. 
2004). 
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Th e traditional approach that is employed to reconstruct the early evolution of 
a particular cellular system is to compare the complements of its components in 
bacteria and archaea, the two domains of prokaryotic life (Koonin 2003). Th e con-
servation of a set of essential genes between archaea and bacteria leaves no reason-
able doubt in the existence of some version of Last Universal Common Ancestor 
(LUCA) of all cellular organisms (Koonin 2003; Glansdorff  et al. 2008; Mushegian 
2008). Th e comparison of particular cellular systems in bacteria and archaea yield-
ed informative results, especially, in the case of the translation and the core tran-
scription systems (Harris et al. 2003; Koonin 2003). However, the comparison of 
bacteria and archaea does not shed light on the origin of biological membranes be-
cause they fundamentally diff er in these two domains of prokaryotic life 
( Wächtershäuser 2003; Boucher et al. 2004; Pereto et al. 2004; Koonin and Martin 
2005; Koga and Morii 2007; Th omas and Rana 2007). Th e dichotomy of the mem-
branes led to the proposal that the LUCA lacked a membrane organization (Martin 
and Russell 2003; Koonin and Martin 2005). However, the nearly universal conser-
vation of the key subunits of complex membrane-anchored molecular machines, 
such as general protein secretory pathway (Sec) system (Cao and Saier 2003) and 
the F/V-type ATP synthase (Gogarten et al. 1989; Nelson 1989), indicates that 
LUCA did possess some kind of membrane (Koonin and Martin 2005; Jekely 
2006).

Th e universal conservation of the key subunits of the F/V-type ATPases/syn-
thases (F/V-ATPases) – elaborate, rotating molecular machines that couple trans-
membrane ion transfer with the synthesis or hydrolysis of ATP (see Boyer 1997; 
Walker 1998; Perzov et al. 2001; Müller and Gruber 2003; Weber and Senior 2003; 
Yokoyama and Imamura 2005; Beyenbach and Wieczorek 2006; Dimroth et al. 
2006; Forgac 2007; Mulkidjanian et al. 2009, for reviews) – is particularly challeng-
ing, since this enzyme complex is apparently built of several modules (Walker 1998) 
and therefore is anything but primitive. Th erefore F/V-type ATPases, together with 
the related bacterial fl agella, make one of the main exhibits of today’s proponents of 
“Intelligent Design”. Th e F-type and V-type ATPases are also remarkable as being 
one of the few cases, outside the translation and core transcription systems, where 
the classic, “Woesian” phylogeny (Woese 1987) is clearly seen, with the primary 
split separating bacteria from the archaeo-eukaryotic branch that splits next 
 (Gogarten et al. 1989; Nelson 1989). F/V-type ATPases are more “demanding” 
than the Sec system – they require perfect, ion-tight membranes for proper func-
tioning. Hence understanding the evolution of the F/V-type ATPases might shed 
light on the evolution of not only membrane proteins but also membranes proper.

Recently, by combining structural and bioinformatics analyses, we addressed the 
evolution of the F/V-type ATPases by comparing the structures and sequences of 
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archaeal and bacterial members of this class of enzyme (Mulkidjanian et al. 2007, 
2008a,b, 2009). Here we survey these fi ndings and explore their implications for the 
origin and the earliest evolution of membranes. We argue that the history of mem-
brane enzymes was essentially shaped by the evolution of membranes themselves. In 
addition, we discuss the mechanisms of an evolutionary transition between the 
primitive replicating entities and the fi rst membrane-encased life forms, as well as 
the role of mineral compartments of hydrothermal origin in this transition.

2  Comparative analysis of F/V-type ATPases: example of function 

cooption?

Together with two evolutionarily unrelated families, the P-type ATPases and ABC 
transporters, the F/V-type ATPases belong to a heterogeneous group of enzymes 
that use the energy of ATP hydrolysis to translocate ions across membranes 
 (Skulachev 1988; Gennis 1989; Cramer and Knaff  1990; Saier 2000). Th e F/V-type 
ATPases, however, are unique functionally, because they can effi  ciently operate as 
ATP synthases, and mechanistically, in that their reaction cycle is accompanied by 
rotation of one enzyme part relative to the other (Noji et al. 1997; Imamura et al. 
2005). Biochemically, F/V-ATPases are composed of membrane-bound parts (FO 
and VO, respectively) and catalytic protruding segments (F1 and V1), which can be 
washed off  the membrane, e.g., by Mg2+-free solution (see Fig. 1a). Th e headpiece of 
the bett er studied F-type ATPases is a hexamer of three �- and three �-subunits with 
each of the latt er carrying an ATP/ADP-binding catalytic site (Stock et al. 2000). 
Th e hexamer, together with the peripheral stalk and the membrane anchor, makes 
the “stator” of this enzyme complex. Th e “rotor” consists of the elongated �-subunit 
that, via the globular �-subunit, is connected to a ring-like oligomer of 10–15 small 
c-subunits (see Fig. 1 and Deckers-Hebestreit et al. 2000; Gibbons et al. 2000; Stock 
et al. 2000; Capaldi and Aggeler 2002; Angevine et al. 2003; Pogoryelov et al. 2005). 
Th e sequential hydrolysis of ATP molecules by the �3�3catalytic hexamer rotates the 
central stalk together with the ring of c-subunits relative to the stator, so that the ring 
slides along the membrane subunits of the stator (Boyer 1997; Noji et al. 1997; 
Panke et al. 2000; Itoh et al. 2004). Th is sliding movement is coupled to the trans-
membrane ion transfer and generation of membrane potential (Cherepanov et al. 
1999; Mulkidjanian 2006). Th e enzyme also functions in the opposite direction, i.e., 
as an ATP synthase. In this mode, the ion current rotates the c-ring, and the ATP 
synthesis is mediated by sequential interaction of the rotating �-subunit with the 
three catalytic �-subunits (Cherepanov et al. 1999; Capaldi and Aggeler 2002; 
 Weber and Senior 2003). Th e V-type ATPases share a common overall scaff old with 
the F-ATPases but diff er from them in many structural and functional features (for 
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Fig. 1. Structure and evolutionary relationships of F-type and A/V-type ATPases. (a) Modern F-type 

and V-type ATPases; the minimal, prokaryotic sets of subunits are depicted; orthologous subunits are shown by the same colors and 

shapes, and non-homologous but functionally analogous subunits of the central stalk are shown by diff erent colors. The a-subunits 

that show structural similarity but might not be homologous (Mulkidjanian et al. 2007) are shown by distinct but similar colors; in 

the case of those V-ATPase subunits that are diff erently denoted in prokaryotes and eukaryotes, double notation is used: eukaryotic/

prokaryotic. The composition of peripheral stalk(s) and their number in V-ATPases remains ambiguous, with values of up to 3 being 

reported (Esteban et al. 2008; Kitagawa et al. 2008). For further details, see refs. (Mulkidjanian et al. 2007, 2009). (b) Membrane 

rotor subunits of the Na+-translocating ATP synthases; left, undecamer of c-subunits of the Na+-translocating F-type ATP synthase of 

Ilyobacter tartaricus (PDB entry 1YCE; Meier et al. 2005); right, decamer of K subunits of the Na+-translocating  V-type ATP synthase 

of Enterococcus hirae (PDB entry 2BL2; Murata et al. 2005); both rings are tilted to expose the internal pore; in I.  tartaricus, Na+ ions 

(purple) crosslink the neighboring subunits, whereas in E. hirea the Na+ ions are bound by four-helical bundles that evolved via a 

subunit duplication (see also Mulkidjanian et al. 2008b,  2009).
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details see Fig. 1a and Müller and Gruber 2003; Imamura et al. 2005; Yokoyama and 
Imamura 2005; Drory and Nelson 2006; Mulkidjanian et al. 2007; Mulkidjanian 
et al. 2009).

F-type ATPases are found in bacteria and in eukaryotic mitochondria and chlo-
roplasts, whereas the V-type ATPases are found in archaea, some bacteria, and in 
membranes of eukaryotic cells (Gogarten et al. 1989; Perzov et al. 2001; 
 Nakanishi-Matsui and Futai 2006; Mulkidjanian et al. 2008b). In particular, vacu-
oles contain V-type ATPases that use the energy of ATP hydrolysis to acidify cel-
lular compartments (Nelson 1989; Perzov et al. 2001; Beyenbach and Wieczorek 
2006; Forgac 2007). Some authors classify the simpler, prokaryotic V-type ATPas-
es into a separate subgroup of A-type (from archaeal) ATPases/ATP synthases 
 (Hilario and  Gogarten 1998; Müller and Gruber 2003). Others, however, prefer to 
speak about bacterial and eukaryotic V-type ATPases (Perzov et al. 2001; Drory 
and  Nelson 2006; Nakanishi-Matsui and Futai 2006). In phylogenetic trees, the 
A-type ATPases invariably cluster together with the eukaryotic V-ATPases and 
separately from the  F-type ATPases (Gogarten et al. 1989; Hilario and Gogarten 
1993, 1998).

Among the F-type ATPases and the V-type ATPases, both proton translocating 
and Na+-translocating forms are found. Th e ion specifi city of the sodium-dependent 
F/V-type ATPases is, in fact, limited to the ion-binding sites of their membrane-em-
bedded parts FO and VO, respectively (see Fig. 1 and von Ballmoos et al. 2008). In the 
absence of sodium, Na+-ATPases have the capacity to translocate protons (Dimroth 
1997; von Ballmoos and Dimroth 2007). In contrast, H+- ATPases are apparently 
incapable of translocating Na+ ions (Zhang and Fillingame 1995). Th is asymmetry is 
most likely due to the higher coordination number of Na+, which requires six ligands 
(Frausto da Silva and Williams 1991), while proton, in principle, can be translocated 
by a single ionizable group. Comparative analyses of the subunits c of Na+-translocat-
ing and H+-translocating ATPases identifi ed several residues that are involved in Na+-
binding and are the principal determinants of the coupling ion specifi city (Zhang 
and Fillingame 1995; Rahlfs and Müller 1997; Dzioba et al. 2003). However, the 
exact modes of Na+ binding in F- and V-ATPases remained obscure until the struc-
tures of the membrane-spanning, rotating c-oligomers of the Na+-translocating ATP 
synthases of the F-type and V-type have been resolved (see Fig. 1b and Meier et al. 
2005, 2009; Murata et al. 2005). Strikingly, the superposition of these structures re-
veals nearly identical sets of amino acids involved in Na+ binding which almost per-
fectly superimpose in space (Mulkidjanian et al. 2008b). When pitt ed against the 
topology of the phylogenetic tree of F/V-type ATPases, the similarity of the Na+-
binding sites in the two prokaryotic domains led to the conclusion that the last 
 common ancestor of the extant F-type and V-type ATPase, most likely, possessed a 
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Na+-binding site (Mulkidjanian et al. 2008b). Indeed, sodium-dependent ATPases 
are scatt ered among proton-dependent ATPases in both the F-branches and the V-
branches of the phylogenetic tree (Mulkidjanian et al. 2008b). Barring the extremely 
unlikely convergent emergence of the same set of Na+ ligands in several lineages, 
these fi ndings suggest that the common ancestor of F-type and V-type ATPases con-
tained a Na+-binding site.

Th e ion specifi city of the F/V-type ATPases, however, is decisive for the nature 
of the bioenergetic cycle in any organism. Although proton-motive force (PMF) 
and/or sodium-motive force (SMF) can be generated by a plethora of primary so-
dium or proton pumps, F/V-type ATPases are unique in their ability to utilize PMF 
and/or SMF to produce ATP (Cramer and Knaff  1990). Owing to its nearly ubiqui-
tous presence, the proton-based energetics has been generally viewed as the primary 
form of biological energy transduction (Deamer 1997; von Ballmoos and Dimroth 
2007). By contrast, the ability of some prokaryotes to utilize sodium gradient for 
ATP synthesis has been usually construed as a later adaptation to survival in extreme 
environments (Konings 2006; von Ballmoos and Dimroth 2007). Th e results of our 
analysis indicated that the sodium-based mechanisms of energy conversion preced-
ed the proton-based bioenergetics.

However unexpected it might be (see Skulachev 1988; Dibrov 1991; Häse et al. 
2001), the evolutionary primacy of sodium bioenergetics seems to fi nd independent 
support in membrane biochemistry. As argued in more detail elsewhere 
 (Mulkidjanian et al. 2008b, 2009), creating a non-leaky membrane that can main-
tain a PMF suffi  cient to drive ATP synthesis is a harder task than making a sodium-
tight membrane. Th e conductivity of lipid bilayers for protons is by 6–9 orders of 
magnitude higher than the conductivity for Na+ and other small cations 
 (Deamer 1987; Haines 2001; Konings 2006). Th is diff erence is based on the unique 
mechanism of transmembrane proton translocation: whereas the conductivity for 
other cations depends on how fast they can cross the membrane/water interface 
(Deamer 1987; Nagle 1987; Tepper and Voth 2006), the rate of proton transfer 
across the membrane is limited not by the proton transfer across the interface, but by 
the “hopping” of protons across the highly hydrophobic midplane of the lipid bi-
layer (Deamer 1987; Haines 2001). Hence, proton leakage can be suppressed by 
decreasing the lipid mobility in the midplane of the bilayer and/or increasing the 
hydrocarbon density in this region. Accordingly, proton tightness can be achieved, 
for example, by branching the ends of the lipid tails and/or incorporating hydrocar-
bons with a selective affi  nity to the cleavage plane of the bilayer (Haines 2001).

In agreement with the hypothesis on independent emergence of proton-based 
energetics in diff erent lineages, representatives of the three domains of life employ 
distinct solutions to make their membranes tighter to protons, namely, the mobility 
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of side chains is restricted in distinct ways and diff erent hydrocarbons are packed in 
the midplane of the H+-tight membranes (see Haines 2001; Konings et al. 2002; 
Konings 2006; Mulkidjanian et al. 2008b, for details). Th is fact supports the sugges-
tion on the independent transition from the sodium to proton bioenergetics in dif-
ferent lineages.

Where did the fi rst, apparently, sodium-translocating F/V-type ATPases come 
from? Th e comparison of the F-type and V-type ATPases shows that they are built of 
both homologous and unrelated subunits (see Fig. 1 and Mulkidjanian et al. 2007). 
Th e subunits of the catalytic hexamer and the membrane c-ring are highly conserved 
(Gogarten et al. 1989, 1992; Nelson 1989; Lapierre et al. 2006). Th e subunits that 
are thought to form the hydrophilic parts of the peripheral stalk(s), also appear to be 
homologous, despite low sequence similarity (Supekova et al. 1995; Pallen et al. 
2006). Th e membrane parts of the peripheral stalks show structural and functional 
similarity as well (Kawasaki-Nishi et al. 2001; Kawano et al. 2002), although it re-
mains unclear whether or not they are homologous. By contrast, the subunits of the 
rotating central shaft s, which couple the catalytic hexamers with the c-ring (shown 
by dissimilar colors in Fig. 1), are not homologous (Nelson 1989) as substantiated 
by the presence of dissimilar structural folds (Mulkidjanian et al. 2007).

Building on this conservation patt ern, we suggested that the common ancestor of 
the F-type and V-type ATP was not an ion-translocating ATPase but rather an ATP-
dependent protein translocase in which the translocated protein itself occupied the 
place of the central stalk (Mulkidjanian et al. 2007). Indeed, the catalytic hexamers 
of F-type and V-type ATPases are homologous to hexameric helicases, specifi cally, 
the bacterial RNA helicase Rho, a transcription termination factor (Patel and Picha 
2000). Th is relationship led to the earlier hypothesis that the ancestral membrane 
ATPase evolved as a combination of a hexameric helicase and a membrane ion chan-
nel (Walker 1998). However, the structures of the membrane segments of the F/V-
ATPases (FO and VO, respectively, see Fig. 1) have litt le in common with membrane 
channels or transporters, which are usually formed by bundles of �-helices (von 
Heijne 2006). As shown in Fig. 1b, the c-oligomers are wide, lipid-plumbed mem-
brane pores with internal diameters of ~3 and ~2 nm for VO and FO, respectively 
(Meier et al. 2005; Murata et al. 2005). Conceivably, such a pore (without lipid 
plumbing) was large enough to allow passive import and export of biopolymers in 
primordial cells. When combined with an ATP-driven RNA helicase, this type of 
membrane pore could yield an active RNA translocase that subsequently would give 
rise to an ATP-driven protein translocase, as depicted in Fig. 2. Th en it is not surpris-
ing that a direct homologous relationship exists between the F/V-ATPases and those 
subunits of the bacterial fl agellar motors and Type III secretion system (T3SS) that 
are responsible for the ATP-driven export of fl agellin or secreted proteins by these 
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machines. Th is relationship can be traced through the catalytic subunits (Vogler 
et al. 1991) and the subunits of the peripheral stalk of the F/V-ATPases (Pallen et al. 
2006).

As discussed in more detail elsewhere (Mulkidjanian et al. 2007), there is a 
 plausible path for the transition from a protein translocase to an ion-translocating 
machine. Th e key to the transition is decrease of the pore conductivity, possibly, as a 
result of several amino acid replacements in the c-subunit, which would cause trans-
located proteins to get stuck in the translocase. Th en, the torque from ATP hydroly-
sis, transmitt ed by the stuck substrate polypeptide, would cause rotation of the c-ring 
relative to the ex-centric membrane stator. Th is rotation could eventually be coupled 
with transmembrane ion translocation along the contact interface, via membrane-

Fig. 2. The proposed scenario of evolution from separate RNA helicases and primitive mem-

brane pores, via membrane RNA and protein translocases, to the ion-translocating membrane 

ATPases. The color code is as in Fig. 1; ancient/uncharacterized protein subunits are not colored. The striped shapes denote the 

translocated, partially unfolded proteins. The presence of two peripheral stalks in the primordial protein translocase and the fl agel-

lar/T3SS systems is purely hypothetical and based on the consideration that a system with one peripheral stalk would be unstable in 

the absence of the translocated substrate. The involvement of two FliH subunits in each peripheral stalk is based on the ability of FliH 

dimers to form a complex with one FliI subunit (Minamino and Namba 2004; Imada et al. 2007).
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embedded, charged amino acid side chains that, otherwise, keep together the mem-
brane subunits. Given that the structural requirements for a central stalk are likely to 
be minimal (Mnatsakanyan et al. 2009), this scenario naturally incorporates inde-
pendent recruitment of unrelated and even structurally dissimilar proteins as central 
stalks in ancestral archaea and bacteria. Th e transition from a protein translocase to 
an ATP-driven ion translocase would be complete with the recruitment of the central 
stalk subunits, i.e., inclusion of their genes in the operons of the F-type and V-type 
ATPases, respectively (Mulkidjanian et al. 2007).

3 Emergence of integral membrane proteins

 In the previous section, we have noted that the common ancestor of the c-oligomers 
in the F-ATPases and V-ATPases could initially function as a membrane pore. As 
argued by several authors (Frausto da Silva and Williams 1991; Szathmáry 2007), 
such pores could be needed to enable exchange of small molecules and even poly-
mers between proto-cells and their environment. At the same time, they could 
 represent a transition state towards the fi rst integral membrane proteins. Integral 
membrane proteins contain long stretches of hydrophobic amino acid residues. By 
contrast, in water-soluble globular proteins, the distribution of polar and non-polar 
amino acids in the polypeptide chain is quasi-random (Finkelstein and Ptitsyn 
2002). Assuming that the quasi-random distribution patt ern is an ancestral trait, a 
gradual, multi-step transition from soluble proteins to membrane proteins with long 
hydrophobic stretches has to be envisaged. Furthermore, modern membrane pro-
teins are co-translationally inserted into the membrane by the translocon machinery 
that ensures proper protein folding in the membrane (White and von Heijne 2008). 
Th e translocon itself is a membrane-bound protein complex that could not have 
 existed before the membrane proteins evolved. In the absence of the translocon, a 
hydrophobic protein, if even occasionally synthesized, would remain stuck to a pri-
meval ribosome. Th erefore, a scenario of the membrane evolution must enclose an 
evolutionary scenario for the emergence of integral membrane proteins.

Th e global evolutionary analysis of integral membrane proteins by Saier et al. led 
to the conclusion that the evolution went from non-specifi c oligomeric channels, 
which were built of peptides with only a few transmembrane segments, towards 
larger, specifi c membrane translocators that emerged by gene duplication (Saier 
2003), see also the chapter by Saier et al. in this volume. Still, the widespread notion 
that a stand-alone hydrophobic �-helix could, via multiple gene duplication, yield 
increasingly complex membrane proteins (see e.g., Popot and Engelman 2000) does 
not appear plausible: a solo, water-insoluble �-helix could hardly leave the ribosome 
in the absence of a translocon complex.
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Physically more plausible are the scenarios that start from amphiphilic �-helices 
(Pohorille et al. 2003; Mulkidjanian et al. 2009). Th e simplest �-helical protein fold 
is an �-helical hairpin (long alpha-hairpin according to the SCOP classifi cation 
 (Andreeva et al. 2008). Th ese hairpins are stabilized via hydrophobic interaction of 
the two �-helices. Since such stabilization is unlikely to be particularly strong, a hair-
pin, upon an eventual interaction with a membrane, might spread on its surface and 
then reassemble within the membrane in such a way that the non-polar side chains 
would interact with the hydrophobic lipid phase. Th e hairpins, then, should tend to 
aggregate, leading to the formation of water-fi lled pores, inside which the polar sur-
faces of �-helices would be stabilized. Th is arrangement seems to be partially re-
tained by the c-ring of the F-ATPase that is built up of �-helical hairpins (see Fig. 1b) 
and is sealed by lipid only from the periplasmic side of the membrane. From the cy-
toplasmic site, the cavity is lined by polar residues and is apparently fi lled with 
segment(s) of the �-subunit and water (Pogoryelov et al. 2008). Th e described 
mechanism of spontaneous protein insertion into the membrane, which does not 
require translocon machinery, is still used by certain bacterial toxins and related pro-
teins. Th ose proteins are monomeric in their water-soluble state, but oligomerize in 
the membrane with the formation of pores (see Parker and Feil 2005; Anderluh and 
Lakey 2008, and references therein).

Membrane pores could be formed, in principle, not only by many small hair-
pins – which themselves could result from multiple duplication events, as inferred 
for the c-subunit of the F/V-type ATPase (Davis 2002) – but also by larger am-
phiphilic proteins that, aft er binding to membranes, might undergo “inside-out” 
 rearrangements (see also Engelman and Zaccai 1980) with the formation of a water-
fi lled pore in the middle of a helical bundle. Th is kind of protein architecture is 
exemplifi ed by SecY (Van den Berg et al. 2004), another ubiquitous membrane pro-
tein besides the c-subunit of the F/V-ATP synthase. Starting from the pores that 
were built up of amphiphilic stretches of amino acids, integral membrane proteins 
could then evolve via the combined eff ect of (i) multiple replacements of polar ami-
no acids by non-polar ones, and (ii) gene duplications, ultimately yielding multi-
helix hydrophobic bundles (Saier 2000, 2003). Concomitantly, some membrane 
proteins would form the fi rst translocons, enabling controlled insertion of these 
 hydrophobic bundles into the membrane (White and von Heijne 2008).

4 Emergence of lipid membranes

Th e fi rst membrane proteins required lipid membranes. What were their origins? 
Th e comparison of bacteria and archaea can hardly help to clarify the origins of lipid 
membranes because, as already noted, they are fundamentally diff erent in these two 
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domains (see Boucher et al. 2004; Pereto et al. 2004; Th omas and Rana 2007, for 
reviews). In both prokaryotic domains, phospholipids are built of glycerol phos-
phate (GP) moieties to which two hydrophobic hydrocarbon chains are att ached. 
Th e GP moieties, however, are diff erent: while bacteria use sn-glycerol-1-phosphate 
(G1P), archaea utilize its optical isomer sn-glycerol-3-phosphate (G3P). Th e hydro-
phobic chains, with a few exceptions, diff er as well, based on fatt y acids in bacteria 
and on isoprenoids in archaea. In bacterial lipids, the hydrophobic tails are linked to 
the glycerol moiety by ester bonds whereas archaeal lipids contain ether bonds. Th e 
diff erence extends beyond the chemical structures of the phospholipids, to the evo-
lutionary provenance of the enzymes involved in the synthesis of phospholip-
ids – they are either non-homologous or distantly related but not orthologous in 
bacteria and archaea (Boucher et al. 2004; Pereto et al. 2004; Koonin and Martin 
2005; Koga and Morii 2007).

Th e evolutionary stage when the fi rst lipid membranes could emerge is also un-
certain. Th e “lipids early” models suggest that the fi rst life forms, presumably RNA-
based, were enclosed in lipid vesicles from the very beginning (see e.g., Segre et al. 
2001; Deamer 2008), whereas the “lipids late” models suggest that lipid membranes 
could be preceded by the emergence and evolution of simple, virus-like, RNA/pro-
tein life forms (see e.g., Martin and Russell 2003; Koonin and Martin 2005; Koonin 
2006).

Several lines of evidence support the “lipids late” schemes.

(a) Th e “lipids early” schemes imply that the fi rst lipids were recruited from the 
available abiogenically synthesized compounds. Although amphiphilic molecules 
such as fatt y acids are found in meteorites (Deamer and Pashley 1989) and could be 
present on the primeval Earth, it is unlikely that they all had uniformly long hydro-
phobic tails, which is a pre-condition for the formation of a stable bilayer. By con-
trast, the enzyme-synthesized amphiphilic molecules can be expected to be more 
homogenous.

(b) It is generally accepted that a pure lipid bilayer is not a practical solution for a 
primeval organism because it would prevent any exchange between the interior and 
the environment. Th erefore, the “lipids early” models suggest that the fi rst mem-
branes were leaky, enabling the exchange of low-molecular compartments with the 
surrounding mileau (Deamer 2008). Th e existence of the fi rst life forms should, 
however, also depend on their ability to exchange genes and to share enzymes 
(Koonin and Martin 2005; Szathmáry 2007). Th e known machines for the translo-
cation of biological polymers across the membrane are made of proteins, which im-
plies a co-evolution of membrane proteins and lipids.
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(c) Table 1 contains the list of ubiquitous genes that are likely to be present in the 
LUCA. Only 2 of these ca. 60 entries, namely the above discussed c-subunit of the F/V-
ATPases and the SecY pore subunit, belong to membrane proteins. Th is under-repre-
sentation of membrane proteins suggests that the emergence of membrane proteins 
(and membranes) may have followed the emergence of RNA/protein  organisms.

(d) Th e existence of a pre-cellular RNA/protein world is supported by the fi nding of 
viral hallmark genes shared by many groups of RNA and DNA viruses–but missing 
in cellular life forms. Th e inhabitants of this world might have been virus-like parti-
cles enclosed in protein envelopes (Koonin 2006; Koonin et al. 2006).

A really strong argument in favor of the “lipids early” models is that the lipid 
vesicles, by separating the fi rst replicating entities, may have enabled their  Darwinian 
selection (see e.g., Monnard and Deamer 2001). Th e primeval compartmentaliza-
tion, however, could have been achieved even without lipid vesicles. Russell et al. 
have hypothesized that the early stages of evolution may have taken place inside 
iron–sulfi de bubbles that formed at warm, alkaline hydrothermal vents (Russell and 
Hall 1997, 2006; Martin and Russell 2003). It has been suggested that iron-sulfi de 
“bubbles” could encase LUCA consortia of small, virus-like replicating entities 
(Koonin and Martin 2005; Koonin et al. 2006). Such entities could share a common 
pool of metabolites and genes, so that each interacting consortium, e.g., inhabitants 
of one inorganic “bubble” at a hydrothermal vent, would comprise a distinct evolu-
tionary unit. Such a scheme, with an extensive (gene) exchange between the mem-
bers of one consortium but not between diff erent, mechanistically separated 
 consortia solves a major conundrum between the notion of extensive gene mixing 
that is considered a major feature of early evolution (Woese 1998) and the require-
ment of separately evolving units as subjects of Darwinian selection (Koonin and 
Martin 2005; Mulkidjanian et al. 2009).

Th is “inorganic” solution of the compartmentalization problem is further ex-
ploited in the recent “Zinc world” scenario according to which the life on Earth 
emerged, powered by solar radiation, within photosynthetically active precipitates 
of zinc sulfi de (ZnS; Mulkidjanian 2009; Mulkidjanian and Galperin 2009). 
 Honeycomb-like ZnS precipitates are widespread at the sites of deep sea hydrother-
mal activity (Takai et al. 2001; Hauss et al. 2005; Kormas et al. 2006; Tivey 2007). 
Here, the extremely hot hydrothermal fl uids leach metal ions from the crust and 
bring them to the surface (Kelley et al. 2002; Tivey 2007). Since hydrothermal fl uids 
are rich in H2S, their interaction with cold ocean water leads to the precipitation of 
metal sulfi de particles that form “smoke” over the “chimneys” of  hydrothermal vents 
(Kelley et al. 2002; Tivey 2007). Th ese particles eventually aggregate, sett le down, 
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Continued on next page

Table 1. Products of ubiquitous genes and their association with essential divalent metals (the table is taken from Mulkidjanian 

and Galperin 2009)

Protein function EC number 

(if available)

Functional 

dependence 

 on metals

Metals in at least 

some structures 

Products of ubiquitous genes, according to Koonin (2003)

 Translation and ribosomal biogenesis

  Ribosomal proteins (33 in total) Mg Mg, Zn 

  Seryl-tRNA synthetase 6.1.1.11 Mg, Zn Mn, Zn 

  Methionyl tRNA synthetase 6.1.1.10 Mg, Zn Zn 

  Histidyl tRNA synthetase 6.1.1.21 Mg No metals seen

  Tryptophanyl-tRNA synthetase 6.1.1.2 Mg, Zn Mg

  Tyrosyl-tRNA synthetase 6.1.1.1 Mg No metals seen

  Phenylalanyl-tRNA synthetase 6.1.1.20 Mg, Zn Mg

  Aspartyl-tRNA synthetase 6.1.1.12 Mg Mg, Mn 

  Valyl-tRNA synthetase 6.1.1.9 Mg Zn 

  Isoleucyl-tRNA synthetase 6.1.1.5 Mg, Zn Zn 

  Leucyl-tRNA synthetase 6.1.1.4 Mg Zn 

  Threonyl-tRNA synthetase 6.1.1.2 Mg, Zn Zn 

  Arginyl-tRNA synthetase 6.1.1.19 Mg No metals seen

  Prolyl-tRNA synthetase 6.1.1.15 Mg, Zn Mg, Zn, Mn 

  Alanyl-tRNA synthetase 6.1.1.7 Mg, Zn Mg, Zn 

  Translation elongation factor G 3.6.5.3 Mg Mg

   Translation elongation factor 

P/ translation  initiation factor eIF5-a

Zn 

  Translation initiation factor 2 Zn 

  Translation initiation factor IF-1 No divalent metals

  Pseudouridylate synthase 5.4.99.12 Mg, Zn No metals seen

  Methionine aminopeptidase 3.4.11.18 Mn, Zn, or Co Mn or Zn or Co

 Transcription

  Transcription antiterminator NusG – – No metals seen

  DNA-directed RNA polymerase, subunits α, β, β’ 2.7.7.6 Mg Mg, Mn, Zn 

 Replication

  DNA polymerase III, subunit β 2.7.7.7 Mg Mg 

  Clamp loader ATPase (DNA polymerase III, subunits γ and τ) 2.7.7.7 Mg Mg, Zn 

  Topoisomerase IA 5.99.1.2 Mg No metals seen

 Repair and recombination

  5’–3’ exonuclease (including N-terminal domain of PoII) 3.1.11.- Mg Mg

  RecA/RadA recombinase – – Mg
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and, ultimately, form sponge-like structures around the vent orifi ces. Th e sulfi des of 
iron and copper precipitate promptly (Seewald and  Seyfried 1990), their deposition 
starts already inside the orifi ces of hydrothermal vents  (Kormas et al. 2006). Th e 

Table 1. Continued

Protein function EC number 

(if available)

Functional 

dependence 

 on metals

Metals in at least 

some structures 

 Chaperone function

  Chaperonin GroEL 3.6.4.9 Mg Mg

  O-sialoglycoprotease/ apurinic endonuclease 3.4.24.57 Zn Mg, Fe 

 Nucleotide and amino acid metabolism metabolism

  Thymidylate kinase 2.7.4.9 Mg Mg

  Thioredoxin reductase 1.8.1.9 – No metals seen

  Thioredoxin – Zn 

  CDP-diglyceride-synthase 2.7.7.41 Mg No entries

 Energy conversion

  Phosphomannomutase 5.4.2.8 Mg Mg, Zn 

  Catalytic subunit of the membrane ATP synthase 3.6.1.34 Mg Mg

  Proteolipid subunits of the membrane ATP synthase 3.6.1.34 – No metals seen

  Triosephosphate isomerase 5.3.1.1 – No metals seen

 Coenzymes

  Glycine hydroxymethyltransferase 2.1.2.1 Mg No metals seen

 Secretion

  Preprotein translocase subunit SecY – – Zn 

  Signal recognition particle GTPase FtsY – – Mg

 Miscellaneous 

  Predicted GTPase – – No metal ligands 

in the structures

Additional ubiquitous gene products from Charlebois and Doolittle (2004)

 DNA primase (dnaG) 2.7.7.7 – Zn 

  S-adenosylmethionine-6-N’,N’-adenosyl (rRNA) 

dimethyltransferase (KsgA)

2.1.1.48 Mg No metals seen

 Transcription pausing, L factor (NusA) – – No metals seen

The lists of ubiquitous genes were extracted from refs. Koonin (2003) and Charlebois and Doolittle (2004). The data on the de-

pendence of functional activity on particular metals were taken from the BRENDA Database (Chang et al. 2009). According to the 

BRENDA database, the enzymatic activity of most Mg-dependent enzymes could be routinely restored by Mn. As concentration 

of Mg2+ ions in the cell is ca. 10–2 M, whereas that of Mn2+ ions is ca. 10–6 M, the data on the functional importance of Mn were 

not included in the table. The presence of metals in protein structures was as listed in the Protein Data Bank (Henrick et al. 2008) 

entries. See Mulkidjanian and Galperin (2009) for further details and references.
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sulfi des of zinc and manganese precipitate slower  (Seewald and Seyfried 1990) and 
can spread over, forming halos around the iron–sulfur apexes of hydrothermal vents 
(see Tivey 2007, for a recent review). Th e Zn world model suggests that under the 
high pressure of the primeval, CO2-dominated atmosphere, very hot, Zn-enriched 
hydrothermal fl uids could reach even the sub-aerial, illuminated environments, so 
that ZnS could precipitate within reach of UV-rich solar beams (nowadays such hot 
fl uids can discharge to the continental surface only as steam geysers). ZnS is a very 
powerful photocatalyst; it can reduce CO2 to formate with a quantum yield of up to 
80% (Henglein 1984; Henglein et al. 1984; Kanemoto et al. 1992; Eggins et al. 
1993), can produce diverse other organic compounds from CO2 (Fox and Dulay 
1993; Eggins et al. 1998), including the intermediates of the Krebs cycle (Zhang 
et al. 2007; Guzman and Martin 2009), and can drive various transformations of 
carbon- and nitrogen-containing substrates (Yanagida et al. 1985; Kisch and  Künneth 
1991; Kisch and Lindner 2001;  Marinkovic and Hoff mann 2001; Ohtani et al. 
2003). In the illuminated environments, the UV light, serving as a selective factor, 
may have favored the accumulation of RNA-like polymers as particular photostable 
(Mulkidjanian et al. 2003; Sobolewski and Domcke 2006). A direct contact of the 
fi rst RNA-based life forms with the surfaces of porous ZnS compartments should be 
of key importance: these surfaces, besides catalyzing abiogenic photosynthesis of 
useful metabolites and serving as templates for the synthesis of longer biopolymers 
from simpler building blocks, could prevent the fi rst biopolymers from photo-disso-
ciation by absorbing from them the excess radiation  (Mulkidjanian 2009). Th e idea 
that the fi rst RNA molecules may have been shaped by ZnS surfaces is supported by 
an almost perfect match of the distances that separate the positively charged Zn2+ 
ions at the ZnS surface (Dinsmore et al. 2000) with the distances between the phos-
phate groups in the RNA backbone (0.58–0.59 nm; Saenger 1984). In addition, 
Zn2+ ions showed an exclusive ability to catalyze the formation of naturally occur-
ring 3�–5� linkages upon abiogenic polymerization of nucleotides (Bridson and 
 Orgel 1980; Van Roode and Orgel 1980).

As the ZnS-mediated photosynthesis is accompanied by the release of Zn2+ ions 
(Henglein 1984; Kisch and Künneth 1991), it should yield a steadily Zn-enriched 
milieu within ZnS compartments. A Zn-rich milieu is geologically unusual; the 
equilibrium concentration of Zn in the anoxic primeval waters was estimated as 
 10–15–10–12 M (Zerkle et al. 2005; Dupont et al. 2006; Williams and Frausto da Silva 
2006). If the LUCA consortia indeed dwelled within photosynthesizing ZnS com-
partments, then Zn2+ ions could be preferably recruited as metal cofactors by the 
proteins and RNA molecules of the LUCA. Th is prediction is easily testable. Table 1 
exemplifi es that the ubiquitous proteins – which are likely to be present in the 
LUCA – show notable preference for Zn as compared to other transition metals 
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(see refs. Mulkidjanian 2009; Mulkidjanian and Galperin 2009, for further details 
on the Zn world scenario).

Th e photosynthesizing Zn world, however, could exist only as long as the pres-
sure of the CO2 dominated atmosphere was high enough to enable delivery of very 
hot, Zn-enriched hydrothermal fl uids at illuminated sett ings. When the atmospheric 
pressure dropped below ca. 10 bar, the continental hydrothermal fl uids should cool 
down and become gradually depleted of Zn ions, so that fresh ZnS surfaces could no 
longer form in sub-aerial sett ings, but only deeply at the sea fl oor. Th e organisms 
would have found alternative ways to reduce CO2 and should have learned to deal 
with Fe2+, the dominating transition metal ion in primordial sea (with an estimated 
content of 10–5–10–6 M; Zerkle et al. 2005; Dupont et al. 2006; Williams and Frausto 
da Silva 2006). Iron, unlike zinc, can generate harmful hydroxyl radicals and is there-
fore detrimental for RNA (Meares et al. 2003; Cohn et al. 2004, 2006; Luther and 
Rickard 2005). Lipids can prevent the damaging action of iron-containing minerals 
on RNA (Cohn et al. 2004), so that the need to protect biopolymers from iron-
containing surfaces could have prompted the transition from surface-confi ned repli-
cators to lipid-encased life forms.

Why then are the lipid membranes of modern archaea and bacteria so diff erent? 
Several hypotheses were suggested to explain the aforementioned usage of diff erent 
GP enantiomers by archaea and bacteria. Koga has suggested that the fi rst GP moi-
eties were racemic because of their abiogenic origin; only later the enzymes for the 
synthesis of G1P and G3P separately evolved in archaea and bacteria, respectively 
(Koga et al. 1998; Koga and Morii 2007). Wächershäuser has suggested that mem-
branes of pre-cells were built of lipids that contained racemic GPs units that were 
synthesized by a primitive non-stereospecifi c enzyme. Th e further segregation of the 
G1P- and G3P-containg lipids was suggested to be physico-chemical, so that lipids 
that carried the same GP enantiomers clustered together and eventually yielded 
 subpopulations of organisms enriched in either enantiomeric phospholipid. It was 
suggested further that the higher stability of “homochiral” over “heterochiral” mem-
branes could favor the emergence of diff erent enzymes for stereospecifi c synthesis of 
diff erent GP enantiomers in archaea and bacteria, respectively (Wächtershäuser 
2003). Pereto et al. (2004) have hypothesized that G1P and G3P were initially syn-
thesized in a non-specifi c way, as byproducts of two diff erent dehydrogenases al-
ready present in the cenancestor, and that specifi c enzymes for the synthesis of G1P 
and G3P separately evolved from these two dehydrogenases in archaeal and bacte-
rial lineages, respectively.

All these hypotheses are based on the assumption that the phospholipids of the 
LUCA (or pre-cells, or cenancestor) contained GP moieties that, as in modern mem-
branes, linked two lipid “tails” together. In fact, there is no evidence that the very fi rst 
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membranes were built in this way. Even the modern membranes contain, besides 
GP-containing two-tailed phospholipids, also single-tailed fatt y acids and four-tailed 
cardiolipin molecules. Th e concept of gradual, multistep membrane evolution, as 
outlined in previous sections, is bett er compatible with a scenario where the fi rst 
lipids could be simple and single-tailed. As argued above, the function of fi rst, sup-
posedly porous, membranes was limited to occluding biological polymers while 
 enabling the exchange of small molecules and ions. Th e experiments with simple 
amphiphilic compounds have shown that vesicles made either of fatt y acids (Deamer 
and Dworkin 2005; Deamer 2008) or of phosphorylated isoprenoids (Nomura et al. 
2002; Gotoh et al. 2006; Streiff  et al. 2007) can entrap polynucleotides and proteins. 
Isoprenoids were likely to be present at the stage of LUCA: their enzymatic synthesis 
is simple, and they are found in all domains of life, unlike fatt y acids that, most likely, 
have emerged in the bacterial lineage (Smit and Mushegian 2000). Hence, one can 
speculate that the leaky membranes of LUCA were simple, being built of e.g., phos-
phorylated isoprenoids. To att ain ion-tight membranes, the fi rst cells, however, had 
to stabilize the membrane/water interface and increase the thickness of the mem-
brane, since the permeability of lipid bilayer to small ions (with exception of protons, 
see above) is limited by ion penetration across the membrane/water interface and 
depends on the membrane thickness (Deamer 1987; Nagle 1987; Tepper and Voth 
2006). A pair-wise linking of hydrophobic tails by GP moieties seems to be the 
chemically simplest way to solve both tasks: the membrane interface becomes less 
leaky to ions and the thickness of the bilayer increases by ca. 0.6 nm. In addition, the 
phosphate moiety of GP ensures the amphiphilicity of the bilayer and an eventual 
binding of a head group. Bacteria and archaea may have found this simple solution 
independently, by using diff erent GP enantiomers and unrelated enzymes. In Bacte-
ria this transition may have been accompanied by the recruitment of fatt y acids; the 
isoprenoid derivatives, however, were retained by bacterial membranes, in particular, 
as hopanoids and single-tailed quinones (Haines 2001; Hauss et al. 2005).

5  Scenario for the origin and evolution of membranes 

and membrane proteins

Apparently, the central theme in the early cellular evolution was the increasing tight-
ness of cell envelopes. Indeed, the emergence of such a complex device, that is the 
modern biological membrane, could proceed only via many intermediate stages. 
 Szathmáry et al. have recently developed and modeled a set of evolutionary scenari-
os that exemplifi ed the crucial importance of the interaction and exchange between 
the primeval replicating entities for the stability of their populations (Szathmáry 
2006, 2007; Könnyü et al. 2008; Branciamore et al. 2009). According to Szathmáry 
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Fig. 3. The proposed scenario for the evolution of membranes and membrane enzymes. The 

scheme suggests the emergence of fi rst replicating entities within honeycomb-like ZnS precipitates of hydrothermal origin. Note 

that FeS and ZnS particles (black and gray dots, respectively) precipitate at diff erent distances from the hot spring (the picture is 

based on data from Seewald and Seyfried 1990; Takai et al. 2001; Kelley et al. 2002; Kormas et al. 2006; Russell 2006). The evolution 

of membranes is shown as a transition from primitive, porous membranes that were leaky both to Na+ and H+ (dotted lines), via 

membranes that were Na+-tight but H+-leaky (dashed lines) to the modern-type membranes that are impermeable to both H+ and 

Na+ (solid lines). As the common ancestor of the F- and V-ATPases possessed a Na+-binding site (Mulkidjanian et al. 2008b, 2009), 

the LUCA (regardless of whether it was a modern-type cell or a consortium that included replicating, membrane-surrounded enti-

ties) either had porous membranes so that the common ancestor of the F- and A/V-ATPases operated as a polymer translocase, with 

Na+ ions performing a structural role, or had membranes that were tight to sodium ions but permeable to protons; in this case the 

LUCA could possess sodium energetic (see main text, and Mulkidjanian et al. 2008b, 2009; Mulkidjanian 2009; Mulkidjanian and 

Galperin 2009, for details).
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(2007), an increase in the complexity of pro-cells should be accompanied by their 
progressive sequestering from the environment, so that the gradual build-up of 
 enzymatic  pathways inside the pro-cells would be accompanied by decrease in mem-
brane permeability. Figure 3 depicts a tentative scenario of a co-evolution of 
 membranes and membrane proteins where the gradual decrease in membrane 
 permeability, on the one hand, enables the emergence of new enzyme systems that 
demand tight membranes and, on the other hand, leads to expunction of “leaky” 
membrane proteins.

Th e scenario starts from simple replicating entities that may have dwelled in hon-
eycomb-like mineral compartments, which, in the framework of the Zn world sce-
nario (Mulkidjanian 2009; Mulkidjanian and Galperin 2009), could help to (photo)
select the fi rst RNA organisms, provide a shelter and nourish them. At this stage, the 
fi rst replicators could survive only by sharing metabolites, enzymes, and genes. 
Gradually, however, the fi rst life forms may have att ained protecting envelopes that 
initially could be built predominantly of proteins. Th e subsequent transition to the 
predominantly lipid membranes should be accompanied by the emergence of prim-
itive membrane pores that might resemble the c-rings of the F-type and V-type 
 ATPases. Th e requirement for horizontal gene transfer and gene mixing should, 
however, drive the emergence of active, ATP-driven RNA and protein translocases, 
giving rise, in particular, to the ancestor of the F/V-type ATPases, which, apparently, 
was a chimera of a (former) RNA-helicase and a membrane pore.

Th e next stage of evolution is envisaged as selection for tighter membranes that 
would maintain the ionic homeostasis of the evolving cells. According to the 
 principle of chemistry conservation (see e.g., Mulkidjanian and Galperin 2007), pri-
mordial cells would strive to keep their internal chemistry similar to the chemical 
compositions of the brine in which the fi rst life forms had emerged. Besides the need 
to maintain a high internal Zn concentration (aft er the supposed dramatic shift  of 
the Zn/Fe ratio in their habitats, see also Mulkidjanian and Galperin 2009), the fi rst 
cells should be also challenged by growing sodium content in the sea water. Since 
the cytoplasm of all cells contains more potassium than sodium, and the translation 
systems specifi cally require K+ for functioning (Bayley and Kushner 1964; Spirin 
et al. 1988), the fi rst life forms were likely to emerge in K+-rich environments 
 (Natochin 2007; Mulkidjanian 2009). Th e concentration of Na+ in the sea water, 
should, however, increase with time (DeRonde et al. 1997; Foriel et al. 2004; Pinti 
2005), aff ecting the Na+/K+ ratio inside the pro-cells. Th ese challenges should 
strongly favor evolution both of ion-tight membranes and of ion pumps, in particu-
lar those capable of expunging Na+ ions out of the cell. Th is requirement could be 
behind the transition from a protein translocase to the precursor of a  Na+-translocating 
membrane ATPase.
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Most likely, the ancestral rotating ATPases would pump Na+ along with other 
Na+-pumps, such as the Na+-transporting pyrophosphatase (Malinen et al. 2007) 
and Na+-transporting decarboxylase (Dimroth 1997), which are present in both 
bacteria and archaea and appear to antedate the divergence of the three domains 
of life. Unlike the other Na+ pumps, the common ancestor of the V/F-ATPases, 
owing to its rotating scaff old, would be potentially able to translocate Na+ ions in 
both directions. Upon further increase in the ocean salinity, reversal of the rota-
tion would result in Na+-driven synthesis of ATP by this primordial rotary ma-
chine. Already in Archaean, the concentration of Na+ in the ocean water was ap-
prox. 1 M (DeRonde et al. 1997; Foriel et al. 2004; Pinti 2005), i.e., it was high 
enough for the rotary machine to switch from the ATP hydrolysis to the ATP syn-
thesis mode. Th is event marked the birth of membrane bioenergetics: together 
with the ancient Na+ pumps, the ancestral V/F-type ATP synthases would com-
plete the fi rst, sodium-dependent bioenergetic cycle in a cell membrane, as shown 
in Fig. 3.

Th e fi nal evolutionary step in the present scenario is envisaged as transition to 
proton-tight, elaborate membranes that provided bett er protection to the cells. 
Th ese membranes, in addition, were more lucrative from the point of view of ener-
getics: proton transfer can be chemically coupled to redox reactions, especially 
those of water and diverse quinones, thus enabling the advent of effi  cient redox- 
and light-driven generators of PMF, such as cytochrome bc1 complex  (Mulkidjanian 
2007), cytochrome oxidase (Brzezinski 2004) or water-splitt ing photosystem II 
( Junge et al. 2002). Th erefore, once the membranes could maintain PMF and the 
fi rst proton pumps emerged, the sodium-binding sites of the F-type and V-type 
ATPases became obsolete and deteriorated independently in multiple lineages. 
Ancestral, less eff ective sodium bioenergetics persisted in anaerobic thermophiles 
and alkaliphiles that cannot benefi t from proton energetics and in some marine 
and parasitic bacteria and archaea that exist in high-sodium environments 
 (Mulkidjanian et al. 2008a). Further traces of Na+-based bioenergetics are seen in 
the universal distribution of Na+ gradients and Na+-dependent systems of solute 
transport in virtually all known cell types. In particular, plasma membranes of ani-
mal cells remained proton-leaky, “sodium membranes” (Skulachev 1988) inas-
much as they, although with some exceptions (Wieczorek et al. 1999), cannot 
maintain H+ gradient.

In conclusion, we would like to submit that the evolution of membrane proteins 
should be considered together with the evolution of the membrane lipids since the 
specifi c physical properties of lipid bilayers, in particular, their permeability, control 
the functions that membrane proteins can perform.
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Abstract

We here review studies concerned with the evolutionary pathways taken for the appear-
ance of complex transport systems. Th e transmembrane protein constituents of these 
 systems generally arose by (1) intragenic duplications, (2) gene fusions, and (3) the super-
imposition of enzymes onto carriers. In a few instances, we have documented examples 
of “reverse” or “retrograde” evolution where complex carriers have apparently lost parts of 
their polypeptide chains to give rise to simpler channels. Some functional superfamilies 
of transporters that are energized by adenosine triphosphate (ATP) or phosphoenolpyru-
vate (PEP) include several independently evolving permease families. Th e ubiquitous 
ATP-binding cassett e (ABC) superfamily couples transport to ATP hydrolysis where the 
ATPases are superimposed on at least three distinct, independently evolving families of 
permeases. Th e prokaryotic sugar transporting phosphotransferase system (PTS) uses 
homologous PEP-dependent general energy-coupling phosphoryl transfer enzymes su-
perimposed on at least three independently arising families of permeases to give rise to 
complex group translocators that modify their sugar substrates during transport, releas-
ing cytoplasmic sugar phosphates. We suggest that simple carriers evolved independently 
of the energizing enzymes, and that chemical energization of transport resulted from the 
physical and functional coupling of the enzymes to the carriers.

1 Introduction

“Nothing in biology makes sense except in the light of evolution.” Th is precept, 
enunciated by Dobzhansky (1964), summarizes what must be considered to be one 
of the most important tenants of biology. We owe our gratitude to the greatest biolo-
gist of all times, Charles Darwin, for revealing the essence and implications of this 
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statement. In fact, the scientifi c method and the Unity Principle in Biology, which 
allow extrapolation of information from one organism to others, depend on the dis-
coveries of Darwin (Ayala 2009).

Evolution is the framework upon which we must interpret and understand all 
biological data, but the genomics revolution has tremendously expanded the avail-
able dataset. Th e reams of data are now so large and numerous that we need refi ned 
tools to read the many pages in the book of life. Th e recently founded disciplines 
of bioinformatics and biosystematics, ever expanding, provide these tools (Koonin 
2009).

2 Molecular transport

Focusing on transmembrane molecular transport, we recognize that transport sys-
tems are essential to every living cell (Saier 2000). Th ey (1) allow all essential nutri-
ents into the cell and its compartments, (2) regulate concentrations of metabolites 
by both uptake and excretion mechanisms, (3) provide ion concentration gradients 
that generate electrical potentials and allow the propagation of action potentials, 
(4) export macromolecules such as complex carbohydrates, proteins, lipids, DNA, 
and RNA, (5) catalyze export and uptake of signaling molecules that mediate in-
tercellular and intracellular communication, (6) prevent toxic eff ects of poisons by 
catalyzing their active effl  ux, and (7) participate in biological warfare by exporting 
biologically active agents that damage or kill other cells. Th us, transport is an essen-
tial aspect of all life-endowing processes: metabolism, communication, biosynthe-
sis, reproduction, and both cooperative and antagonistic interorganismal behaviors 
(Busch and Saier 2002). Th e Transporter Classifi cation DataBase (TCDB; www.
tcdb.org) classifi es all of the transporters found in nature and presents brief descrip-
tions of their known characteristics (Saier et al. 2006, 2009).

3 Techniques to establish homology or the lack of homology

To establish that diff erent membrane proteins are polyphyletic (arose independently 
of one another), it is necessary to establish distinct routes of evolutionary appearance 
(Saier 1994). Th is has become possible due to the availability of (1) more sensitive 
soft ware (Yen et al. 2009), (2) large numbers of homologs resulting from genome 
sequencing, and (3) application of the Superfamily Principle. Th is principle, fi rst 
established by Doolitt le (1981), states that if A is homologous (derived from a com-
mon ancestor) to B, and B is homologous to C, then A must be homologous to C. In 
spite of the simplicity of this fairly obvious precept, its validity is still questioned by 
some molecular biologists.
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To establish homology between two or more proteins, one can invoke the Su-
perfamily Principle and various statistical approaches (Wang et al. 2009; Yen et al. 
2010). Our criteria require that two sequences of at least 60 amino acyl residues give 
a comparison score of at least 10.0 standard deviations, corresponding to a probabil-
ity of 10–24 that this degree of similarity arose by chance (Dayhoff  et al. 1983; Saier 
1994). Programs are used that take account of unusual amino acid compositions in 
these proteins, such as convergently evolved short sequence motifs, multiple short 
repeat sequences and regions of strong hydrophobicity for membrane proteins (Yen 
et al. 2009, 2010).

To establish a lack of homology, one must show that the two proteins evolved 
 independently, following diff erent evolutionary pathways (Wang et al. 2009). Th is 
has recently been achieved for the adenosine triphosphate-binding cassett e (ABC) 
and phosphotransferase system (PTS) functional superfamilies, revealing at least 
three distinct transmembrane families of transport proteins in each of these super-
families (Saier et al. 2005; Wang et al. 2009).

4 Transport protein diversity

Our bioinformatics laboratory has conducted bioinformatic analyses of integral 
membrane transport proteins belonging to dozens of families (Saier 2003a). Th ese 
families rarely include proteins that function in a capacity other than transport. Only 
a few of the members of these families can function in other capacities. Th ese other 
derived functions include regulation and signal transduction (Stasyk et al. 2008; 
Aguena and Spira 2009; Tetsch and Jung 2009).

We have presented evidence that transporters evolved independently of other 
protein classes such as enzymes, structural proteins, and regulatory proteins (Saier 
2003b). Many transporters have arisen by intragenic duplication, triplication, and 
quadruplication events, in which the numbers of transmembrane �-helical hydro-
phobic segments (TMSs) or amphipathic �-strands have increased. Th e elements 
multiplied may encode 2, 3, 4, 5, 6, 10, or 12 TMSs and gave rise to proteins with 4, 
6, 7, 8, 9, 10, 11, 12, 16, 20, 24, and 30 TMSs. Gene fusion, splicing, deletion, and 
insertion events have also contributed to protein topological diversity.

Amino acid substitutions have allowed membrane-embedded domains to be-
come hydrophilic domains and vice versa, although this has occurred rarely. Some 
evidence suggests that amino acid substitutions occurring over evolutionary time 
may, in some cases, have drastically altered protein structure. Other proteins such 
as toxins that are inserted into the membranes of target cells, and amyloid proteins 
that can form transmembrane pores in one conformation, can exist in more than one 
stable form (Kelly 1998; Rossjohn et al. 2007). Th ese observations reveal that the 
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lack of three-dimensional structural similarities cannot be used as a reliable indica-
tion of independent origin.

Th e results summarized in this chapter establish the independent origins of sev-
eral transporter families and allow reliable postulation of the specifi c pathways taken 
for their appearance. We also present an example of “reverse” evolution whereby a 
complex transport carrier has lost part of its structure through evolution to give rise 
to a functionally more simple channel protein. Th ese novel examples provide insight 
into the diverse mechanisms by which transport systems evolved.

5 The ABC superfamily

Th e ABC superfamily is considered to be one of the two largest superfamilies of trans-
membrane transporters found in nature (Davidson et al. 2008; Higgins 2007), the other 
being the Major Facilitator Superfamily (MFS) of secondary carriers (Pao et al. 1998; 
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Fig. 1. Generalized schematic depiction of ABC transporters. (a) ABC solute exporters consist of the mem-

brane-embedded porter (M) and the superimposed ATP hydrolyzing subunit on the cytoplasmic side of the membrane (C) that 

provides energy for effl  ux of the solute from the cell. These two components can be fused together in a single polypeptide chain to 

form a half permease. In some ABC porters, especially but not exclusively in eukaryotes, two M and two C equivalent domains are 

fused together to comprise a full length ABC transport system in one polypeptide chain. (b) ABC solute uptake porters generally 

consist of the membrane-embedded porter (M), the ABC energizer (C), and an extracytoplasmic receptor (R). R transfers the solute to 

the porter, M and triggers ATP hydrolysis by C. Phylogenetic analyses of the homologous C subunits have shown that they segregate 

according to polarity (direction) of transport, and that the ABC proteins that function with exporters, segregate according to the 

topological type of membrane subunits (ABC1, 2, or 3) they energize.
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Saier et al. 1999). Th e generalized structures of ABC exporters (a) and importers (b) 
are depicted schematically in Fig. 1 (Davidson et al. 2008; Oldham et al. 2008). By 
tradition, the ABC superfamily is defi ned on the basis of its energy-coupling proteins, 
the monophyletic ATP hydrolyzing (ABC) domains or subunits, which all share a 
single common origin (the C subunits in Fig. 1; Higgins 2007). Th e integral mem-
brane porter domains or subunits (the M subunits in Fig. 1) provide the basis for clas-
sifi cation of most other transport protein families. In many, but not all ABC uptake 
transporters, additional components, the extracytoplasmic receptors (the R subunits 
in Fig. 1b) are essential for effi  cient activity.

We have long wondered if the membrane constituents of ABC transporters are 
monophyletic. If they are homologous, a single transport mechanism and common 
structural features can be predicted. However, if ABC porters are polyphyletic, there 
is no basis for extrapolating fi ndings made with one phylogenetic group of proteins 
to another (Chang et al. 2004). With this in mind, we recently investigated the evo-
lutionary origins of ABC exporters (Wang et al. 2009).

6 Independent origins for ABC porters

Th ere are currently 86 recognized families of ABC transporters, 33 for solute up-
take and 53 for solute export (see www.tcdb.org). Th ey can transport small molecules 
such as  nutrients, salts, and toxins, or they can function in macromolecular effl  ux, se-
creting proteins, complex carbohydrates, and lipids (Wang et al. 2009). Th e integral 
membrane components (the M subunits in Fig. 1) belong to three topological types 
called ABC1, ABC2, and ABC3. All three types are present in all three domains of 
living organisms, bacteria, archaea, and eukaryotes, although one of them (ABC3) 
has only been found in lower unicellular eukaryotes but not in higher multicellular 
eukaryotes (Wang et al. 2009).

Th e three types of porters are shown schematically in Fig. 2. Th e three repeats 
of two TMSs, found in the 6-TMS ABC1 porters, arose from a primordial 2-TMS 
hairpin-encoding genetic element by intragenic triplication, yielding a protein con-
sisting of three tandem transmembrane hairpins, all in the same polypeptide chain, 
and all with the same orientation in the membrane (Fig. 2a). By contrast, the ABC2 
porters arose from a primordial 3-TMS-encoding genetic element by intragenic du-
plication, yielding the present day 6-TMS proteins with the two homologous halves 
having opposite orientation in the membrane (Fig. 2b). Finally, ABC3 porters can 
have 4, 8, or 10 putative TMSs (Khwaja et al. 2005). Th e 4-TMS-encoding genetic 
element, present as a pair in some ABC3 transporters, intrageically duplicated to 
yield the 8- and 10-TMS proteins, always with the two homologous 4-TMS do-
mains having the same orientation in the membrane (Fig. 2c). Surprisingly, in the 
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Fig. 2. Three topological types of ABC porters, illustrating the types of internal repeats pres-

ent in each one. In all cases, vertical dashed lines separate the repeat units. (a) ABC1: a 6-TMS topology resulting from in-

tragenic triplication of a primordial 2-TMS-encoding genetic element. The three hairpin repeats have the same orientation in the 

membrane and are homologous to one another. (b) ABC2: a 6-TMS topology resulting from intragenic duplication of a primordial 

3-TMS-encoding genetic element. The two 3-TMS repeats have opposite orientation in the membrane. (c) ABC3: an 8-TMS topol-

ogy resulting from intragenic duplication of a primordial 4-TMS-encoding genetic element. The two 4-TMS repeats have the same 

orientation in the membrane. Two 4-TMS half permeases can also comprise an ABC3 porter, similar to ABC1 and ABC2 porters as 

shown schematically in Fig. 1.

10-TMS proteins, the two repeat units are separated by two extra, non-homologous 
TMSs that must have arisen during or aft er the duplication event (Khwaja et al. 
2005).

Although the ABC1 porter type is found in larger numbers of exporters than 
ABC2 types, it appears that all ABC uptake systems are of the ABC2 type. We pos-
tulate that the ABC3 porters arose relatively late in evolutionary time, as the re-
peat units in the 8- and 10-TMS proteins have a high degree of sequence identity 
compared to the smaller repeat units in the ABC1 and ABC2 types. Moreover, the 
distribution of ABC3 proteins is much more restricted than those of the other two 
topological types (see Table 1 in Wang et al. 2009, for more detailed classifi cation, 
topological assignments, and properties of these primary active transporters).

High-resolution X-ray structures are now available for several ABC importers 
and several ABC exporters (Davidson et al. 2008; Oldham et al. 2008). Th e original 
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research references describing these structures can be found in these cited  references 
as well as in Wang et al. (2009). Th e importers all have a similar three dimensional 
fold, but this structure diff ers drastically from that of the exporters, which however 
show similar three dimensional structures relative to each other. Th is observation is 
in agreement with our conclusion of multiple origins for ABC1-3 porters. Th is is be-
cause all of the importers prove to be of the ABC2 type, while all of the exporters for 
which structural information is currently available are of the ABC1 type. Structures 
of ABC2 and ABC3 exporters are not yet available. X-ray crystallographers therefore 
have their work cut out for them. We are bett ing that the structures of these porters 
will confi rm our bioinformatic conclusions regarding their independent origins.

7  The phosphoenolpyruvate-dependent sugar transporting 

phosphotransferase system (PTS)

PTS transporters are structurally even more complex than ABC transporters 
(Fig. 3). Th is fact may be att ributed to the functional complexity of the system, as it 

Fig. 3. Schematic depiction of the protein constituents of a typical PTS permease. A PTS per-

mease is a sugar transporting Enzyme II complex of the bacterial phosphoenolpyruvate-dependent phosphotransferase system. 

The sugar substrate (S) is transported from the extracellular medium through the membrane in a pathway determined by the inte-

gral membrane permease-like Enzyme IIC (C) constituent, often a homodimer in the membrane as shown. The sequentially acting 

energy-coupling proteins transfer a phosphoryl group from the initial phosphoryl donor, phosphoenolpyruvate (PEP), to the ultimate 

phosphoryl acceptor, extracellular sugar, yielding intracellular sugar–phosphate (S–P). These enzymes are: Enzyme I (I), HPr (H), 

Enzyme IIA (A), and Enzyme IIB (B). I, fi rst general energy-coupling protein; H, second general energy-coupling protein; A, indirect 

family-specifi c phosphoryl donor; B, direct permease-specifi c phosphoryl donor; and C, permease that catalyzes transport and phos-

phorylation of the sugar substrate. A given bacterial cell may possess multiple PTS Enzyme II complexes, each specifi c for a diff erent 

set of sugars. Only the Mannose-type systems have the IID components.
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has at least ten recognized functions (see Table 1 and Barabote and Saier 2005). It 
functions in transport, sugar phosphorylation, chemoreception, and the regulation 
of both gene expression and metabolism by several mechanisms. Regulation is me-

Table 2. Characteristics of three families of PTS permease complexesa

A. The Glc–Fru–Lac family

 1. Fru: The original PTS (proposed)

 2. Mosaic origins of IIAs and IIBs 

 3. IIAGlc is not homologous to IIAMtl

 4. IIBGlc is not homologous to IIBChb

B. The Asc–Gat family

 1. IICAsc homologs are often fused to IIA and IIB homologs, but IICGat homologs never are

 2.  IICAsc homologs are always encoded by genes in operons with IIA and IIB genes, but 

IICGat homologs can be encoded in operons lacking IIA and IIB genes

 3. Some IICGat homologs are found in organisms that lack all other PTS proteins

 4. Asc and Gat IIA and IIB constituents are distantly related to IIA and IIB constituents of the Glc–Fru–Lac family

C. The Man family

 1. All constituents (IIA, IIB, IIC, and IID) diff er structurally from all other PTS permease proteins

 2. All members, but only members of this family, have IID constituents

 3. The IIB constituents are phosphorylated on histidine rather than on cysteine as is true for all other IIBs

 4. All constituents of the Mannose IIABCD systems probably evolved independently of those of the IIABC systems

aThe superscripted abbreviations refer to the substrate sugars as follows: Glc, glucose; Fru, fructose; Lac, lactose; Mtl, mannitol; 

Chb: diacetyl chitobiose; Asc, L-ascorbate; Gat, galactitol; Man, mannose.

Table 1. The PTS: functional complexity as indicated by the processes it catalyzes

  1. Chemoreception

  2. Transport

  3. Sugar phosphorylation

  4. Protein phosphorylation

  5. Regulation of non-PTS transport

  6. Regulation of carbon metabolism

  7. Coordination of nitrogen and carbon metabolism

  8. Regulation of gene expression

  9. Regulation of pathogenesis

10. Regulation of cell physiology
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diated by the capacity of the PTS to serve as a protein kinase system, phosphorylat-
ing numerous regulatory proteins. Additionally, the PTS functions in regulation and 
is regulated by virtue of its capacity to become phosphorylated by ATP-dependent 
protein kinases (Deutscher et al. 2006; Saier et al. 2005).

A PTS permease complex generally consists of fi ve proteins or protein domains 
called Enzyme I, HPr, IIA, IIB, and IIC (Barabote and Saier 2005). As shown in 
Fig. 3, the ultimate phosphoryl donor is phosphoenolpyruvate (PEP) which phos-
phorylates Enzyme I, an enzyme showing extensive sequence similarity to an enzyme 
of gluconeogenesis, PEP synthase. Th e phosphoryl group of Enzyme I is transferred 
to HPr, and then it is sequentially passed on to two constituents of the Enzyme II 
complex, IIA, and IIB (Postma et al. 1993). Only when IIB is phosphorylated can 
the sugar be transported into the cell, and it is simultaneously phosphorylated at the 
expense of IIB-phosphate. Surprisingly, X-ray crystallographic data for the Enzymes 
IIA and IIB have shown that they do not all have the same fold. Instead, it appears 
that there are three structurally dissimilar IIAs and three structurally dissimilar IIBs. 
Th e IIA and IIB constituents may therefore be polyphyletic (Table 2; see Saier et al. 
2005; and  Peterkofsky et al. 2001).

8 Independent origins for PTS permeases

Evidence suggests that, like ABC-type porters, the IIC components of PTS per-
meases are polyphyletic (Hvorup et al. 2003; Saier et al. 2005). Th ere are three to-
pologically, and presumably evolutionarily distinct, families of PTS porters. Th ese 
will be presented briefl y below.

Members of the Glucose (Glc)–Fructose (Fru)–Lactose (Lac) family transport 
a wide range of sugars and have a uniform topology of eight TMSs per polypeptide 
chain (Nguyen et al. 2006). Th ese porters function with two of the three recog-
nized types of IIA and IIB proteins. Th ese systems were probably the fi rst to evolve. 
 Fructose systems are thought to be primordial because (1) many bacteria have only 
this PTS permease, (2) only fructose 1- and 6-phosphates are fed directly into gly-
colysis without modifi cation, and (3) the PTS may have evolved as a component of 
glycolysis.

Th e PTS lactose permease is unrelated to the more carefully studied lactose per-
mease (LacY) of Escherichia coli, which is a secondary carrier and a member of the 
MFS (see above and Pao et al. 1998; Saier et al. 1999). Preliminary results suggest 
that many of the 8-TMS PTS porters have arisen from a 3-TMS precursor by dupli-
cation to 6, as did the ABC2 porters, but then 2 TMSs were added at the C-terminus 
(unpublished data). Th e details of this proposed evolutionary pathway are still un-
der investigation.
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Th e ascorbate (Asc)–galactitol (Gat) family of IIC proteins consists of members 
with 12 TMSs showing no sequence similarity to members of the Glc–Fru–Lac 
 family (Hvorup et al. 2003). Th e properties summarized in Table 2 suggest that the 
Gat porters can function either as secondary carriers or as PTS-coupled systems, 
while Asc porters can function only as PTS-coupled systems (Saier et al. 2005). 
Th ese 12-TMS IIC permeases arose by internal duplication of a genetic element 
encoding a primordial 6-TMS-encoding element. Th ese permeases function with 
sequence divergent IIA and IIB constituents derived from those of the Fru–Glc–Lac 
family (Saier et al. 2005).

Finally, the primary membrane constituents of the third family, the Mannose 
(Man) family, consist of 6-TMS proteins showing no signifi cant sequence similarity 
to proteins of the other two PTS porter families (Huber and Erni 1996). Addition-
ally, they function with another integral membrane protein called IID. IID proteins 
have just one TMS, and although they are essential for function of the mannose-type 
PTS permeases, they are lacking in the other types of PTS permeases (Huber and 
Erni 1996; Esquinas-Rychen and Erni 2001). Moreover, their IIA and IIB constitu-
ents (oft en fused together) are also unrelated to those of the other two families. It 
seems that all constituents of the Mannose PTS transporters evolved completely 
independently of those of the other two families of PTS porters. Th eir only shared 
components are the general energy-coupling proteins, Enzyme I and HPr (Postma 
et al. 1993).

It should be noted, that the basic unit in all three types of porters contains 
6-TMSs as described above, and the routes of appearance of these units are not yet 
 established. Th ey may conceivably have had an early common origin. If so, they di-
verged into three diff erent topological types during the evolutionary process. X-ray 
crystallographic  studies as well as further bioinformatic analyses may shed light on 
this interesting possibility.

9 Reverse (retro)-evolution

As noted in the Introduction Section, “evolution tends towards complexity”. Recently, 
a novel family of Ca2+ release-activated Ca2+ (CRA C) channels, promoting an immune 
response to pathogens, has been characterized (Matias et al. 2010; Parekh 2009). Th e 
proteins comprising these channels are called Orai. Each such polypeptide chain pos-
sesses four transmembrane helical segments (TMSs; Matias et al. 2010), and these 
assemble into an oligomeric channel complex (Di Capite and Parekh 2009; Prakriya 
2009).

We have provided convincing evidence that the 4-TMS Orai channels are ho-
mologous to parts of the members of a family of heavy metal ion (Me2+) exporters 
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(Matias et al. 2010). Th is family of carriers, the Cation Diff usion Facilitator (CDF) 
family, exhibits the properties summarized in Table 3, which also compares these 
properties with those of the CRA C channel family: (1) while CDF carriers catalyze 
Me2+:H+ exchange (antiport), CRA C channels catalyze bidirectional Ca2+ fl ux; (2) 
while CDF carriers are ubiquitous, being present in bacteria, archaea, and eukary-
otes, CRA C channels are present only in eukaryotes and are found specifi cally at the 
plasma membrane/endoplasmic reticulum junction; (3) while CDF carriers have 
6-TMSs, CRA C channels have just four per polypeptide chain, both with N- and 
C-termini in the cytoplasm; (4) while CDF carriers exhibit tremendous size and 
sequence divergence, CRA C channels are relatively of the same size and exhibit a 
much higher degree of sequence similarity; and (5) fi nally, both use a pair of anionic 
amino acid residues (aspartate or glutamate) to bind the divalent cation. All of these 
properties indirectly suggest some type of evolutionary relationship between these 
two protein types.

Careful examination of the sequences of CDF carriers and Orai CRA C channels 
revealed highly signifi cant sequence similarity (Matias et al. 2010). While TMSs 3 
and 4 of CDF proteins show statistically signifi cant similarity with TMSs 1 and 2 
of the Orai channels, and the same is true of TMSs 5 and 6 of CDF carriers versus 
TMSs 3 and 4 of Orai proteins, other combinations of comparisons showed much 
lower comparison scores. It could be shown that both protein types derived from a 
primordial 2-TMS hairpin structure, triplicating (via intragenic triplication) to give 
6-TMSs for the CDF carriers and apparently duplicating (via intragenic duplication) 
to give 4-TMS proteins for the Orai CRA C channels. Th ese facts as well as the ubiq-
uitous distribution and the tremendous size and sequence divergence of the former 
proteins versus the limited distribution of the much more uniform Orai proteins, 
which exhibit much more similar sizes and sequences, led to the proposal shown in 
Fig. 4.

Figure 4 shows the proposed pathway for the origin of the 6-TMS CDF proteins 
and for the CDF-derived 4-TMS Orai proteins. Intragenic triplication of a primor-

Table 3. Comparisons of CDF carriers with crac channels

CDF (TC# 2.A.4) Crac-C (TC# 1.A.52)

1. Secondary carriers: catalyze Me2+:H+ antiport Channels: catalyze bidirectional Ca2+ fl ux

2. Ubiquitous; in plasma membrane and intracellular 

membranes of eukaryotes

Present only in eukaryotes; at plasma 

membrane/endoplasmic reticulum junctions

3. 6-TMSs; N- and C-termini inside; dimeric 4-TMSs; N- and C-termini inside; tetrameric

4. Much size and sequence divergence Little size and sequence divergence

5. Two aspartates are critical for Me2+ binding Two glutamates are critical for Ca2+ binding
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dial 2-TMS-encoding element yielded the 6-TMS carriers, and subsequent loss of the 
gene segment coding for the fi rst two of these 6 TMSs resulted in the fundamentally 
less complex channel proteins of the CRA C family (Matias et al. 2010). Th is seems 
to be an example of “reverse” or “retrograde” evolution where a more complex struc-
ture yields a smaller and fundamentally simpler one. Th is is in contrast to the usual 
pathway of evolution where smaller, simpler structures, via intragenic duplication and 
fusion events, give rise to structurally and functionally more complex proteins (Saier 
2003b). Th is is the fi rst example we know of where a complex carrier was probably the 
precursor of a simpler channel-forming protein, although other types of simplifying 
mutations have been described.

10 Conclusions and perspectives

Recent quantitative bioinformatic data have revealed that two of the largest func-
tional superfamilies of transporters, ABC-type primary active transporters and 
PTS-type substrate phosphorylating transporters, are true mosaic systems. Both 
apparently consist of at least three families of permease subunits or domains that 
have evolved independently of one another, following diff erent routes of evolution-
ary appearance. Th eir sole common feature is their use of sequence-similar types of 

2 × 2 2 × 3

Primordial hairpin (2-TMSs)

Orai1 (4-TMSs)
(CRAC Ca2+ Channels)

CDF (6-TMSs)
(Me2+:H+ Antiporters)

             not likely

likely

–2

Fig. 4. Proposed common origin for CRAC channels and CDF carriers. The fi gure illustrates two potential 

pathways: the likely pathway whereby triplication of the primordial hairpin structure gave rise to a 6-TMS CDF carrier, followed by 

the loss of TMSs 1–2 to give 4-TMS Orai channels. See text for details.
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energy-coupling proteins, the ATP hydrolyzing subunits of ABC transporters, and 
the common phosphoryl transfer proteins, Enzyme I and HPr, of PTS porters. It is 
interesting to note, however, that the system-specifi c IIA and IIB constituents, like 
the IIC permeases, may have arisen at least three times independently. Moreover, the 
PTS can also phosphorylate dihydroxyacetone using a soluble, cytoplasmic Enzyme 
II complex that, surprisingly, is derived from ATP-dependent dihydroxyacetone ki-
nases (Gutknecht et al. 2001).

New evidence is revealing that in both the ABC and PTS superfamilies, the 
membrane porters alone may be able to catalyze transport without energy coupling 
involving ATP or PEP (Saier et al. 2005; Eudes et al. 2008; Rodionov et al. 2009; 
Zhang et al. 2009). Th us, the primordial transport proteins, upon which a chemical 
form of energy has been superimposed, may still exist in nature, in states resembling 
their primordial chemical energy uncoupled states. Further studies will be required 
to determine to what degree these observations are applicable to other complex 
transport systems. Nevertheless, the bioinformatic analyses reviewed here provide 
guides for future structural, mechanistic, and physiological investigations.
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Abstract

Transmembrane proteins are involved in a wide variety of vital biological processes in-
cluding transport of water-soluble molecules, fl ow of information and energy produc-
tion. Despite signifi cant eff orts to determine the structures of these proteins, only a few 
thousand solved structures are known so far. Here, we review the various resources for 
structure-related information on these types of proteins ranging from the 3D structure to 
the topology and from the up-to-date databases to the various Internet sites and servers 
dealing with structure prediction and structure analysis.

Abbreviations: 3D, three dimensional; PDB, Protein Data Bank; TMP, transmembrane 
protein.

1 Introduction

Integral membrane proteins play crucial roles in living cells, because they act as 
 special gates to enable the transport of various water-soluble materials as well as 
 signals. Th ey are involved in almost all cellular processes such as communication 
with the outside world, transport of nutrient and metabolism across membranes, 
and energy generation processes. Because of their vast functional roles, membrane 
proteins are important targets of pharmacologic agents. According to a recent study, 
G-protein coupled receptors, a subclass of transmembrane proteins (TMPs), are the 
targets of approximately half of all drugs currently on the market (Klabunde and 
Hessler 2002) and among the 100 top-selling drugs 25% are targeted at members of 
this protein family. Using various prediction tools on genome sequences to predict 
TMPs reviled that approximately 20–25% of proteins coded in genomes sequenced 
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so far are TMPs ( Jones 1998; Mitaku et al. 1999; Krogh et al. 2001; Ahram et al. 
2006).  Despite these facts, according to the PDBTM database, only a few hundreds 
of TMP structures have been determined to date (Tusnády et al. 2004, 2005b). Th e 
structure determination of this type of proteins by X-ray crystallography and by 
NMR techniques is hampered by the diffi  culties in crystalizing them in an aqueous 
environment and by their relatively high molecular weight. Knowledge of three-di-
mensional (3D) structures of TMPs is essential both for understanding most of the 
cellular process and for development of new drugs. In this review we discuss the 
various resources to obtain structural information of TMPs ranging from the 3D 
structure to the topology (two-dimensional (2D) structure) and from the up to date 
databases to the various Internet sites and servers dealing with structure prediction 
and structure analysis.

2 3D structure resources

2.1 Protein Data Bank

Th e ultimate resource of 3D structures of most macromolecules is the Protein Data 
Bank (PDB; Berman et al. 2000). PDB was started in 1971, and since then the ar-
chive has grown from seven structures to now more than 62,000, as of the writing of 
this manuscript. However, this database contains high number of errors ranging 
from simple syntactic errors to severe structural errors, which lend to the necessity 
of remediation of the whole database (Henrick et al. 2008). Th e remediation project 
eliminate the problem related to the chemical description and nomenclature of the 
monomer units of the biological polymers; to the diff erences between the chemical 
and the macromolecular sequences and to the primary citation assignments, but the 
coordinates have not been changed. Aft er the remediation, numerous annotation 
errors still remained, such as inappropriate keywords and/or problems with the gen-
eration of biomolecules (the biological form of the polymer molecules). Currently, 
about 4500 entries in the PDB exist with the keyword of “membrane”, of which only 
877 contain structure embedded into the membrane in its original biological form, 
while 208 entries, which are really a structure of TMPs cannot be found by simple 
keyword search (e.g., 1ezv). In numerous cases, the “membrane” or “transmem-
brane” annotations are correct, but the database entries comprise the atomic struc-
ture of a globular fragment of a multidomain TMP, like the nucleotide-binding 
 domain (NBD) of ATP-binding cassett e transporters (see e.g., 2bbo, the NBD1 of 
CFTR). Th ey also include proteins that interact with membrane proteins, but they 
themselves are not membrane embedded proteins.

Since, these errors and/or features still exist; the structure of TMPs cannot be 
easily selected from PDB by simple text search. Th is led scientists to extract TMPs 
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from PDB by using the knowledge of experts, who select TMP by hand or to  develop 
new computer algorithms to do this task automatically. We will discuss the manually 
collected data sets and the developed algorithms in the future  sections.

2.2 Manually curated structure resources of TMPs

Manually curated structure resources of TMPs are listed in Table 1.  Th e fi rst such 
collection was made by Preusch et al. (1998), comprising 24 structures and was later 
revisited by White and Wimley (1999). Th e resulted list of PDB fi les forms the base 
of the most accurate and constantly maintained Internet resource of membrane pro-
teins of known 3D structures, the so-called White’s Database (htt p://blanco.biomol.
uci.edu/Membrane_Proteins_xtal.html). In 2006, Hartmut Michel collected a list of 
membrane proteins from PDB but this list has not been maintained so far, therefore 
the information in it is rather out of date (htt p://www.mpibp-fr ankfurt.mpg.de/ 
michel/public/memprotstruct.html).

Th e Membrane Protein Data Base (MPDB) was created by manually curating all 
PDB entries having “membrane” keywords (Raman et al. 2006). Information, such 
as protein characteristics, structure determination method, crystallization technique, 
detergent, temperature, pH, author, etc. have been extracted from the PDB headers 
into a relational database, which in turn can be easily used for various searches and 
statistics. Record entries are hyperlinked to the PDB and Pfam for viewing sequence, 
3D structure and domain architecture, and for downloading coordinates. Links to 
PubMed are also provided. It was an intention to update the database weekly, follow-
ing the PDB updates, but in the last years, the database was maintained irregularly.

Scientists can use the various structure classifi cation databases for selecting and 
investigating TMPs as well. Such database is SCOP (Lo Conte et al. 2000), in which 
the “Membrane and cell surface proteins and peptides” class contains the vast major-
ity of TMPs whose structures have been determined so far. Th e other widely used 
classifi cation database, the CATH database (Orengo et al. 1998) does not contain 

Table 1. Manually curated structure resources of TMPs

Name and URL Last updatea No. of entries

Hartmut Michel’s Database (http://www.mpibp-frankfurt.

mpg.de/michel/public/memprotstruct.html)

March 30, 2006 93

MPDB (http://www.mpdb.ul.ie) September 8, 2009 1005

MPtopo (http://blanco.biomol.uci.edu/mptopo) August 30, 2007 25

Stephen White’s Database (http://blanco.biomol.uci.

edu/Membrane_Proteins_xtal.html)

October 29, 2009 559

aBefore December 10, 2009. 
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such class defi nition; therefore users can apply only for keyword searching to select 
membrane proteins in this classifi cation system. While SCOP is updated regularly, 
CATH update has been done over 1 year ago.

2.3 TMDET algorithm

Th e above-mentioned diffi  culties of PDB and the fact that the manually created In-
ternet sites and databases comprise list of TMPs, but do not give information about 
the membrane embedded part of these proteins, necessitate to develop an automatic 
algorithm, called TMDET algorithm (Tusnády et al. 2004). TMDET is a geometri-
cal approach, which is able to distinguish between transmembrane and globular pro-
teins using structural information only and can locate the most likely position of the 
lipid bilayer, i.e., the membrane planes relative to the position of atomic coordinates. 
Th is information is absent in the PDB fi les, because during the structure determina-
tion of TMPs one vital component, the membrane itself is missing from these struc-
tures, as TMPs are taken out from the lipid bilayer, and crystalized by masking their 
exposed hydrophobic parts by amphiphilic detergents, so that the protein–detergent 
complex can be treated similarly to soluble proteins (Ostermeier and Michel 1997). 
Th e discrimination work even in cases of low resolution or incomplete structures 
such as fragments or parts of large multi-chain complexes.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Q-value

Fr
eq

ue
nc

y

40

35

30

25

20

15

10

5

0

Fig. 1. Discrimination between globular (blue bars) and transmembrane (red bars) proteins 

using the objective value (Q-value) of TMDET algorithm.



G. E. Tusnády and I. Simon

49

Th e algorithm utilizes the basic properties of TMPs that is the membrane em-
bedded part of a TMP contains regular secondary structures (�-helices or �-strands) 
and the protein surface exposed to the lipids is hydrophobic. To fi nd, which part of a 
TMPs are in the double lipid layer, an objective function was defi ned and optimiza-
tion was made to maximize its value by rotating the TMP under investigation 
through the 4� direction of the space. In a given direction, the protein is cut into 1 Å 
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wide parallel slices, and the relative frequencies of secondary structure elements and 
the membrane-exposed “water accessible surface area” are calculated in each slice. 
Th e weighted sum of these values is averaged through the slices, and the direction 
and position giving the maximum value of these averages gives the most probable 
position of the membrane, while the fi nal value of the objective function can be used 
to make diff erences between transmembrane and globular proteins, as it can be seen 
on Fig. 1. Th e main steps of TMDET algorithm are shown in Fig. 2.

One obvious power of the TMDET algorithm, that it can identify non-biological 
quaternary structures, by a special symmetry investigation of protein chains. Non-
biological oligomer structures can be formed during the crystalization process. For 
example, in the PDB structure 1f88 of bovine rhodopsin, two identical chains are 
arranged in parallel, but in a non-biological, head-to-tail orientation (Fig. 3; 
Palczewski  et al. 2000). Th is arrangement allows strong contacts between the trans-
membrane helices as well as the soluble parts of the molecule, but because of the 
diff erences of the extracellular and intracellular environment, this orientation can-
not be the native complex. Nevertheless, the signifi cant number of interactions 
makes it diffi  cult to distinguish these cases from real oligomeric structures. Th e serv-
er for the quaternary structure of proteins originally developed for globular proteins 
(PQS; Henrick and Th ornton 1998), failed to recognize these artifacts, and this 
wrong oligomeric structure can be found in the PDB biounit classifi cation as well. 
However, the TMDET algorithm can recognize the wrong oligomeric form and cor-
rectly locate the biological molecule with the correct membrane position.

We have implemented a web server running the TMDET algorithm for user sub-
mitt ing 3D coordinate of TMPs (Tusnády et al. 2005a), which is not in PDB. Th is 
can be a newly determined structure or results of modeling. Th e server accept coor-

a b

Fig. 3. The structure of bovine rhodopsin (1f88) from membrane plane (a) and from the extra-

cytosolic space (b), using the following color scheme: membrane-spanning region is colored by yellow, extracellular sides are 

colored by blue and  intracellular sides are colored by red for both chains.
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dinates in PDB format and results in an normal HTML output plus a XML fi le con-
taining the calculated position of membrane planes as well as the necessary rotation 
and translation so the normal of the membrane plane became parallel to the z-axis.  
Pictures showing the calculated membrane embedded parts of the protein and the 
membrane planes are also generated.

2.4 PDBTM database

Th e TMDET algorithm allows the appropriate classifi cation not only of the well-
determined structures, but also of the classifi cation of low-resolution structures, as 
well as cases when only a fragment or a partial structure of a multi-chain protein 
complex is available. Th e discrimination power of TMDET algorithm is >98% (see 
Fig. 1); therefore, it can be used to create and maintain a database that contains the 
TMPs of known 3D structures, as well as the calculated most probable membrane 
localization of these proteins. By scanning all entries in the PDB by the TMDET al-
gorithm we have created the PDBTM database (Tusnády et al. 2004, 2005a,b).

Th e aim of PDBTM database was twofold. First, it assigns a transmembrane 
character for each entry in the PDB, which allows the construction of a comprehen-
sive and up-to-date list of TMPs with known structures (and obviously a list of non-
TMPs too). Second, it identifi es the location of the lipid bilayer that is relative to the 
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coordinates system of the molecule. For all identifi ed TMPs, the algorithm also de-
termines the number and type of transmembrane segments in the sequence as well. 
Moreover, the algorithm is able to assign canonical and non-canonical elements 
within the membrane region. Some alpha helical proteins contain segments that do 
not cross the membrane, but turn back at the middle of the membrane (membrane-
loop) (e.g., aquaporin, 1fqy, Murata et al. 2000), whereas the inside of the pore that 
is formed by beta-barrel proteins are basically shielded from the membrane, and can 
accommodate globular regions or alpha helical segments as well (e.g., the transloca-
tor domain of a bacterial autotransporter, 1uyo, Oomen et al. 2004).

Th e PDBTM database is available at htt p://pdbtm.enzim.hu. Th e database con-
tent is updated every week following the regular PDB updates by running the 
 TMDET algorithm on each new PDB fi le. Th e growing statistics can be seen on 
Fig. 4. Th e database is downloadable, either the full database in one big fi le, or its 
subsets containing the alpha helical or the beta-barrel TMPs. Th ere is a possibility to 
browse all the fi les as well.

2.5 OPM database

While PDBTM focuses on collecting all TMPs from PDB and annotate their sequenc-
es, an alternatively developed method (Lomize et al. 2006a) and the resulted Orienta-
tion of Proteins in Membranes database (OPM; Lomize et al. 2006b) take more care 
about the exact position of lipid bilayer in all type of membrane embedded proteins 
(integral and peripheral membrane proteins). Th e applied method combines atomic 
solvation parameters for the water-decadiene system, interfacial polarity profi les in 
membranes determined in EPR studies, ionization energies of charged residues and 
elimination of energetic contributions from any atoms situated in the polar pores or 
channels of TM proteins that do not interact with lipids  (Lomize et al. 2006a). Th is 
approach can also discriminate between TM and water-soluble proteins and deter-
mine the positions of TM proteins with a precision of ~1 Å for the hydrophobic thick-
ness and ~2° for the tilt angle relative to the membrane normal. Th e results are in good 
agreement with experimental studies of 24 TMPs. Th e database provides a classifi ca-
tion of membrane proteins as well, based on the structure of their main membrane-
associated domains, by using four hierarchical levels: type (TM or peripheral/ monotopic 
protein and peptides), class (all-�, all-�, �	+ �, �/�), superfamily (evolutionarily related 
proteins), and family (proteins with clear sequence homology).

2.6 Modeling protein–lipid assembly

Many biophysical studies indicate interactions with lipid/detergent molecules and 
show that interactions are critical to the folding and stability of membrane proteins. 
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To bett er understand the structure function relationship of membrane proteins, the 
investigation of interactions between protein and lipid environment is needed. We 
can do it by using molecular dynamics simulations on computers. However, full 
atomic simulations are extremely time consuming and are limited to system size of 
up to ~100,000 atoms and time length of up to ~100 ns, therefore, for high-through-
put approach it cannot be used. To predict membrane protein interactions with a 
lipid bilayer a technique with extended size and timescale is needed, such that 
coarse-grained molecular dynamics (CG-MD) simulations (Bond and Sansom 
2006;  Sansom et al. 2008). It was shown that there is a good agreement between the 
atomic simulation and CG-MD simulation in terms of predicted lipid head-group 
contacts.

CG-MD method was applied on a representative set of 91 proteins embedded in 
dipalmitoyl-phosphatidylcholin (DPPC) bilayer (Scott  et al. 2008). Th e 91 TMPs 
included 33 �-barrel and 58 �-helical TMPs. Th e results of these predictions, i.e., the 
positioning of the 91 proteins in a membrane bilayer, are collected in a database, 
called CGDB (htt p://sbcb.bioch.ox.ac.uk/cgdb). For each protein in this database, 
the coordinates of the lipid and protein at the end of the simulation are available for 
download, along with the results of analysis of lipid–protein interactions. It was 
shown that CG approach represents an intermediate resolution, lower than that of 
all atomic simulations, but provides more details on protein–lipid interactions than 
is possible with a hydrophobic “slab” models.

3 2D structure resources

TMPs have a common structure, where the transmembrane �-helices are roughly in 
parallel orientation to each other forming an �-helical bundle in the case of �-helical 
TMPs, while �-sheets form barrel in the case of �-barrel proteins. Th erefore, the 
knowledge of sequential positions of these transmembrane segments together with 
the knowledge of what part of the sequence can be found at the in/out side give a 
rough picture about the structure of these proteins. Th is information called topology 
or 2D structures (Elofsson and von Heijne 2007). Th erefore, obtaining information 
about topology helps to understand the structure of TMPs, as well.

Although the various labs make huge eff orts to solve more and more structures of 
membrane proteins, and funded consortiums, like European Membrane Protein 
Consortium (E-MeP, htt p://www.e-mep.org), New York Consortium on Membrane 
Protein Structure (NYCOMPS, htt p://www.nycomps.org) or Membrane Protein 
Structure Initiative (MPSi, htt p://www.mpsi.ac.uk) activated hundreds of trials to 
 express, solubilize, purify, crystalize, and solve structures of membrane proteins, the 
topology prediction of these proteins is still the easiest, fastest, and complete, but less 
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accurate way to get to know the 2D structures of membrane proteins. Th ere are 
 numerous prediction algorithms and servers to do this task, to overview them we 
refer to reviews in this area (Chen and Rost 2002; Chen et al. 2002; Elofsson and von 
Heijne 2007; Punta et al. 2007; Tusnády and Simon 2009). Here, we focus our att en-
tion to those databases and algorithms, which collect data about topology and can 
incorporate these data to make more accurate 2D prediction of TMPs, respectively.

3.1 TOPDB database

Th ere are numerous molecular biological and biophysical methods that can help to 
learn the topology of TMPs (van Geest and Lolkema 2000). Th e most oft en used 
such methods are fusion experiments [e.g., fusion with alkaline-phosphatase (Boyd 
et al. 1993), �-lactamase (Broome-Smith et al. 1990), or �-galactosidase (Miller 
1972)], topology determination by post-translational modifi cations (e.g., glycosyla-
tion, Bamberg and Sachs 1994), experiments using proteases (Bakos et al. 1996), 
various techniques using immunolocalization (e.g., epitope insertion, Kast et al. 
1996), and experiments utilizing chemical modifi cation techniques (e.g., cystein 
scanning mutagenesis, Bogdanov et al. 2005). Although there are hundreds of arti-
cles using these techniques to determine topologies of TMPs, the collection of these 
data had not been performed for a long time. Th ere were several database collecting 
“well characterized” membrane proteins and the topologies of them, such that the 
so-called Möller database (Möller et al. 2000) and TMPDB database (Ikeda et al. 
2003), but those databases do not contain the raw results of the experiments, just 
the most likely position of the transmembrane segments in the sequence. Th e au-
thors of these databases underlined that the interpretation of individual experiments 
are sometimes diffi  cult and the transmembrane annotation was provided by human 
experts, considering the results of the mere hydropathy plot analysis and experi-
ments. None of these databases were ever updated; therefore, they cannot be used in 
a recent topology analysis, as the information in them is rather outdated.

Th e fi rst and almost complete collection of topologic data of TMPs is the  TOPDB 
database (Tusnády et al. 2008). Th is database contains information gathered from 
the literature and from public databases available on the Internet for more than a 
thousand TMPs. Th e collected raw experimental data are classifi ed and processed 
uniformly in TOPDB, and this collection and data classifi cation are rather valuable 
by themselves. A large part of the data come from PDBTM database by translating 
the 3D arrangement of the lipid bilayer represented in PDBTM into sequential in-
formation for TOPDB and by adding information on sidedness (i.e., which part of 
the 3D structure is outside and which are inside). Th is information was extracted 
from literature by checking several hundred articles describing the 3D structure of 
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TMPs. A large number of structures in the PDB correspond to the soluble fragment 
of TMPs. Th ese cases also contain information about the topology in an indirect 
way. Th e third part of topology data were generated by searching for these solved 
structures of globular fragments of TMPs in PDB by comparing the corresponding 
data of a given protein in PDB, PDBTM, and UniProt.

In TOPDB each entry contains the most probable topology of the given 
 protein. Th e topologies were generated by the modifi ed HMMTOP algorithm 
(Tusnády and Simon 2001), which is able to use the experimental results as 
 constraints during the topology prediction. We discuss constrained prediction 
methods later. Th e web server of the  TOPDB database gives the usual access to the 
database itself, by providing various possibilities to search in topology data (e.g., 
searching by experiment types, by organism, by keyword, by identifi er, or even by 
structural type), and by giving the opportunity of various downloads of the data-
base. Using the server the user can easily visualize the determined topology of a 
given protein, as well as the collected experiments for that protein. Th e user also 
can fi nd an appropriate and well-documented defi nition for the various membrane 
types and which side of each membrane is considered to face to inside and which 
to outside.

Another more obvious benefi t of TOPDB is that we can validate the various 
experiment types, comparing their results to the 3D structure as the most reliable 
source of the topology data. In general, the results of various experiments are in 
good agreement with the 3D structures, but there are two common pitfalls. One of 
them emerges in the case of utilizing reporter enzymes as fusion proteins. In cases, 
when the N-terminus is outside, but there was no transmembrane helices prior to 
the fusion point, the reporter enzyme could not be transferred outside, and re-
mained inactive. Moreover, if the fusion points were aft er the fi rst transmembrane 
helix, the topologies were frequently inverted. Th e other common error is the mis-
interpretation of the lack of immunoglobulin binding to extra inserted or endogen 
epitopes localized in the cytosol. In these cases, the binding can be seen only aft er 
membrane permeabilization by using special detergents. However, if the extracy-
tosolic epitope is shaded, i.e., the antibody cannot bind due to structural reasons, 
the epitope will be accessible aft er the use of detergent, which in turn  results in 
binding.

3.2 TOPDOM database

Th e TOPDOM database is a collection of domains and sequence motifs located 
 consistently on the same side of the membrane in �-helical TMPs. Th e database was 
created by scanning well-annotated TMP sequences in the UniProt database  (Bairoch 
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et al. 2005) by specifi c domain or motif detecting algorithms, such as Prosite 
 (Sigrist et al. 2002), Pfam (Finn et al. 2006), Prints (Att wood et al. 2003), and Smart 
 (Letunic et al. 2004). Th e identifi ed domains or motifs were added to the database if 
they were uniformly annotated on the same side of the membrane of the various pro-
teins in the UniProt database.

Because of the continuous and fully automated update in every 3 weeks  following 
the update of UniProt database, the number of identifi ed domains  increased from 
1010 to 1064, from the launch of the database until now. Th e database  currently 
contains 463, 155, 302, and 144 domain and motif defi nitions from Pfam, Prints, 
Prosite, and Smart databases, respectively, which are uniformly  annotated in the 
same side of the membrane of the various proteins in UniProt database.

Th e information about the location of the collected domains and motifs can be 
incorporated into constrained topology prediction algorithms, like HMMTOP, 
 increasing the prediction accuracy, as it will be discussed in Section 3.3.

3.3 Prediction methods incorporating experimental results

Predictions, which can incorporate experimental results or other information about 
topology, are called constrained predictions. Th e constrained predictions give re-
sults, which correspond to a given condition (i.e., the N-terminal let be at outside) 
and diff ers from fi ltering the output of predictions to a given condition. Constrained 
prediction can be easily performed using hidden Markov model-based on prediction 
algorithm by modifi cation of the Baum–Welch and/or Viterbi algorithm. Th e fi rst 
such application was HMMTOP2 (Tusnády and Simon 2001). Later two other 
HMM-based methods, TMHMM and Phobius were also modifi ed to reach this fea-
ture (Melén et al. 2003; Käll et al. 2004; Bernsel and von Heijne 2005; Xu et al. 
2006). Th e mathematical details of the necessary modifi cation can be found in  Bagos 
et al. (2006).

Obviously, constrained prediction increases the accuracy and reliability, as it was 
shown in the case of the human multidrug resistance-associated protein (MRP1; 
 Tusnády and Simon 2001). Later this approach was used to determine the topology 
of 37 Saccharomyces cerevisiae membrane proteins (Kim et al. 2003), global topology 
analysis of Escherichia coli (Daley et al. 2005) and yeast (Kim et al. 2006) genomes 
and to improve the prediction accuracy by domain assignments (Bernsel and von 
Heijne 2005). Th e optimal placement of constraints was also investigated and it was 
shown that the accuracy can be increased by 10% if the N- or C-terminal of the poly-
peptide chain is locked, and 20% is the maximum obtainable increase, if one of each 
loop or tail residue in turn is fi xed to its experimentally annotated location (Rapp 
et al. 2004).
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Abstract

Th e fi rst atomic-resolution structure of a membrane protein was solved in 1985. Aft er 
25 years and 213 more unique structures in the database, we learned some remarkable 
biophysical features that thanks to computational methods help us to model the topology 
of membrane proteins (White 2009). However, not all the features can be predicted 
with statistically relevant scores when few examples are available  (Oberai et al. Protein 
Sci 15: 1723–1734, 2006). Too oft en the notion that similar functions are supported 
by similar structures is expanded far behind the limits of a safe sequence identity value 
(>50%) to select templates for modeling the membrane protein at hand. To select proper 
templates we introduce a strategy based on the notion that remote homologs can have 
a role in determining the structure of any given membrane protein provided that the 
two proteins are co-existing in a cluster. Sequences are clustered in a set provided that 
any two sequences share a sequence identity value 
	40% with a coverage 
	90% aft er 
cross-genome comparison. Th is procedure not only allows safe selection of a putative 
template but also fi lters out spurious assignments of templates even when they are 
generally considered as the structure reference to a given functional family. Th e strategy 
also can play a role in indicating which membrane protein sets still would be worthwhile 
a structural investigation eff ort. Possibly when more membrane proteins will be available, 
the clustering system will allow fold coverage of the membrane protein universe.

1 Introduction

Th e prediction of membrane protein topology and that of diff erent post-translational 
modifi cations (PTMs) are important problems of sequence annotation aft er genome 
sequencing. Membrane proteins play a fundamental role in cell biology and are among 
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the most addressed targets of pharmaceutical and life science research. Th ey perform 
basic functions within the cell biological processes, including cell signaling, energy 
conservation and transformation, ion exchange and transport. Membrane proteins 
are diffi  cult to study (Newby et al. 2009). Th ey are inserted to a diff erent extent into 
the lipid membrane phase of cells and subcellular compartments, exposing portions 
of various sizes to polar’s outer and inner environments (Phillips et al. 2009).

Most of the presently available computational methods allow predicting two 
basic features of membrane proteins: (i) the location of transmembrane domains 
along the protein chain (topography) and the location of the N- and C-termini with 
respect to membrane plane (topology). Topologic models are suffi  cient in many in-
stances to design experiments to determine the location of the inner and outer loops 
with respect to the membrane and concomitantly the number of transmembrane 
domains (Casadio et al. 2003).

A complementary source of information helpful to model membrane proteins is 
the knowledge of the presence in their sequence of special functional motifs such as 
signal peptides (SPs) and glycosylphosphatidylinisotol (GPI) anchors. Th ese two 
relevant signals strongly infl uence the folding of the mature protein, both diminish-
ing the length of the fi nal sequence by promoting the cleavage of specifi c segments 
at the N-termini (SPs) and C-termini (GPI-anchors), respectively.

Membrane proteins fold as bundles of alpha helices (all-alpha membrane pro-
teins) or as barrels of beta sheets to minimize their conformation energy within the 
lipid membrane phase. Most all-alpha helices comprise a large fraction of hydro-
phobic residues. Given the hydrophobic nature of SPs and GPI-anchors, erroneous 
helices can be assigned as SPs or GPI-anchors in a genome-wide analysis. For this 
reason, they should be properly detected and eventually removed before fi ltering the 
protein sequence with computational methods.

Another relevant constraint that can be exploited to test and evaluate the protein 
topology is the putative presence of disulfi de bridges. Disulfi de bridges are cova-
lent bonds that link together two diff erent cysteine residues close in the protein 3D 
space. Th is tie short-circuits the protein backbone and constrains the protein folding 
(Martelli et al. 2004).

Finally the protein function can help in many instances to select a template for 
modeling the sequence at hand even in the case of distantly related homologs and this 
is strictly correlated to the problem of functional annotation of membrane proteins.

2 From membrane protein sequence to topologic models

Historically membrane proteins have been always considered a specifi c class of pro-
teins with peculiar chemico-physical properties. Indeed their partial or total inser-
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tion into the membrane phase generates two typical solvent exposure interfaces 
of the protein: one is polar and the other hydrophobic. Th is feature is considered 
a major cause of the diffi  culties reported in generating high-resolution crystals 
(Newby et al. 2009). However, structure modeling of membrane proteins can also 
be facilitated when the constraints that the membrane phase poses to the protein 
folding are taken into account. Several computational methods have been devel-
oped through the years with the purpose of recognizing from the sequence to which 
extent the protein can interact with the membrane. Th is allows highlighting which 
regions are eventually exposed to the polar solvent on either surface of the mem-
brane. Methods starting from the protein sequence can predict the topography, the 
topology or both. In the following, we will briefl y review the main underlying ideas 
that are popular within the scientifi c community and promote the development of 
diff erent methods.

2.1 Datasets of membrane proteins

When implementing a computational method for predicting the topology of mem-
brane proteins and assessing its performance, a very basic step is the selection of 
a dataset of proteins whose topology is well known. A dataset for the prediction 
of protein topology comprises possibly non-redundant protein chains with their 
annotations, in the form of residue-labels that identify transmembrane regions, in-
ner loops, and outer loops, (and maybe reentrant loops). In the early days when 
it was possible to count on the fi ngers of one hand the number of high-resolution 
membrane proteins present in the Protein Data Bank (PDB; Fariselli et al. 1993), 
transmembrane annotation was indirectly obtained using low-resolution experi-
ments to enrich the benchmark set ( Jones et al. 1994). Th ese indirect annotations 
(sometimes contradictory) highlighted loop regions in the cytoplasmic sides or 
in the extra-cytoplasmic sides and the transmembrane regions were routinely in-
ferred using hydrophobic profi les. Low-resolution data were compiled to generate 
the fi rst and widely used dataset of membrane protein annotations (Möller et al. 
2001). When more membrane protein 3D structures were available, it turned out 
that the low-resolution annotations were not as good as previously thought (Chen 
et al. 2002).

Presently, although the number of unique membrane protein structure increased 
up to 214, the exact extent of the membrane bilayer surrounding the folded chains 
is not known. Th is poses uncertainty to the exact termini of the transmembrane re-
gions. Several semiautomatic methods have been developed to face this problem 
(Tusnády et al. 2004; Lomize et al. 2006) leading also to diff erent results. An alter-
native way of defi ning the transmembrane segments is to adopt the secondary struc-
ture annotations as derived from the 3D protein structure (Martelli et al. 2003).
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2.2 Scoring the accuracy of diff erent methods

Most popular scoring indexes are listed in the following and they help in determin-
ing to which extent methods are reliable. However, a direct comparison of diff er-
ent implementations is oft en hampered by the adoption of diff erent training/testing 
sets. Nevertheless, a good suggestion is to check in the original paper if these indexes 
have been correctly evaluated on a training/testing set with very low redundancy.

Th e Matt hews correlation coeffi  cient (MCC) for a given class s (in our case, 
membrane and non-membrane residue) is defi ned as
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where d(s) is the factor
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p(s) and n(s) are respectively the true positive and true negative predictions for class 
s, while o(s) and u(s) are the numbers of false positives and false negatives.

Th e sensitivity (Sn) for each class s is defi ned as
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Th e specifi city (Sp) is the probability of correct predictions and it is expressed 
as follows:
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When much interest is focused on predicting the topology of membrane proteins, 
more stringent scoring indices such as Qok and Qtop can be adopted. Th ese compute 
the transmembrane segment location (Qok) and the topology (Qtop) accuracy of a set 
comprising Np proteins, respectively and are defi ned as
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where Pok is the number of proteins whose all transmembrane segments are cor-
rectly assigned. For each protein this is a binary measure, since the index assigns 
1  (correct) or 0 (wrong), depending on the fact that a prediction meets both of the 
following conditions.

(i)   Th e number of predicted segments equals the observed ones.
(ii)   Th e overlap between the predicted and expected segments equals at least k resi-

dues. Th e number k can be fi xed or determined by the length of the predicted 
and observed segments. Tok is the number of proteins whose both topology 
(the loop sides) and transmembrane segment location are correct. Since Tok is 
a subset of Pok, Qtop is always lower than or equal to Qok.

2.3 Propensity scales versus machine learning-based methods

A basic feature that allows the prediction of membrane protein topology is the diff er-
ent residue composition of the regions exposed to polar and apolar environments. In 
particular, in all-alpha membrane proteins, hydrophobic residues are more abundant 
in alpha-helical segments than in loops. Diff erences also exist between the compo-
sitions of inner and outer loops, being the former richer in positively charged resi-
dues (von Heijne and Gavel 1988). All the prediction approaches try to catch these 
diff erences by assigning diff erent propensity values to each residue in the sequence 
depending on the diff erent portions of the protein. On the basis of experimental 
results and/or statistical considerations, the most simple methods assign propen-
sity values to each residue type independently of the sequence context leading to a 
propensity scale for the 20 residues. Th e most popular experimental scales are the 
Kyte–Doolitt le hydropathy scale (Kyte and Doolitt le 1982), the Wimley–White free 
energy scales for water/interface and water/octanol partition (White and Wimley 
1999), and the White–von Heijne free-energy scale for membrane insertion (Hessa 
et al. 2005). All the scales are only suited to discriminate transmembrane regions 
from polar loops. More sophisticated methods include topogenic signals and require 
the adoption of statistical approaches: several scales, each one describing the pro-
pensity of a residue for a particular portion of the protein (e.g., inner loop, helix 
inside, helix middle, helix outside, and outer loop), were derived from the analysis of 
proteins with known topology ( Jones et al. 1994).

Th e assumption of independence of the propensity values from the sequence 
context requires a limited number of parameters and strongly limits the predictive 
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power of the scale-based methods. Machine learning-based methods were devel-
oped to overcome the above-mentioned problems and specifi cally for their ability of 
extracting complex association rules from a training set containing known examples 
(Bishop 2006). Th ese rules are stored into the numerical values assigned to the in-
ternal parameters of the machine learning-based methods and can be used further 
for predicting the context-dependent propensity values for all the residues of new 
sequences. Among the diff erent machine learning tools, Neural Networks (NNs) 
are particularly suited to analyze the information contained in a sequence segment 
surrounding the residue to be predicted (Fariselli et al. 1993) and the evolutionary 
information contained in the sequence profi le (Rost et al. 1995). More recently, Sup-
port Vector Machines (SVMs) have been adopted with a similar approach (Nugent 
and Jones 2009). Both NNs and SVMs, as well as scale-based methods, compute a 
propensity value for each residue in a sequence, without taking into account topo-
logic constraints, such as the minimal length of a transmembrane region. For this 
reason they need to be post-processed with an optimization method, as described 
in Section 2.4.

Hidden Markov models (HMMs) are a widely used machine-learning  approaches 
that are able to cast topologic constraints simply by designing a graphical model 
composed of states that represent the position of a residue in a protein structure 
and are connected by arrows that in turn represent the allowed transitions. Aft er 
the training phase, emission probabilities for each residue are assigned to each state 
together with transition probabilities among these states. Diff erent decoding algo-
rithms have been developed for globally predicting the topology of a new sequence 
(Sonnhammer et al. 1998). HMMs have been widely used for predicting the mem-
brane protein topology (Tusnády and Simon 2001; Martelli et al. 2002, 2003; Käll 
et al. 2004, 2005; Viklund and Elofsson 2004).

2.4 Methods for optimizing topologic models

Th e best performing predictors of membrane protein topology generally include 
tools to optimize the length of transmembrane segments. Th is is a historical need 
since the local residue propensity is not enough to fully exploit the putative protein 
folding. Th e fi rst tools based on the classical hydropathy scales already defi ned rules 
to accept transmembrane segments on the basis of the maximal number of residues 
included in the region (Kyte and Doolitt le 1982). In practice, the positive regions of 
the plots of the protein sequences are scored in terms of the value of the maximum 
peak, the area of the positive region and its length. Th en some empirical rules are 
adopted to accept the positive regions as a transmembrane segment (or divide it 
into diff erent transmembrane segments). Kyte and Doolitt le implemented one of 
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the fi rst bioinformatic programs in C language to perform the kinds of computations 
described above (Kyte and Doolitt le 1982, Appendix). A similar fi ltering technique 
was also implemented in the early machine-learning approaches, where the local res-
idue scores were obtained with a NN system (Rost et al. 1995). However, segment 
optimization procedures require several ad hoc rules that did not always guarantee 
global optimization of the predictive scores.

A more rigorous approach was obtained by developing a dynamic programming 
algorithm that globally optimizes the sum of residue scores and concomitantly fulfi lls 
the requirement that all the predicted transmembrane segments have a length com-
patible with the bilayer crossing ( Jones et al. 1994). A similar method was also imple-
mented to improve the accuracy of NN predictors (Rost et al. 1996). Later these ideas 
were cast into a more widely applicable algorithm suited to optimize the global score 
with segment constraints and capable to fi lter outputs of diff erent types of predictors 
(Fariselli et al. 2003b).

Th e optimization algorithms based on dynamic programing are very similar to 
the HMM decoding procedures, such as the Viterbi algorithm (Bishop 2006). For 
this reason, diff erently from NN- and SVM-based predictors, results out of HMM-
based methods do not need to be post-processed with an optimization algorithm. 
HMMs automatically incorporate in their automaton grammar global constraints. 
Th is can be exploited by adopting the Viterbi or Posterior-Viterbi decodings to au-
tomatically assign predictions that are compatible with the membrane constraints 
(Fariselli et al. 2005).

Finally, the best performing methods available evaluate the topology prediction 
by optimizing a global score and by maintaining the constraints derived from the 

Table 1. Available servers for the prediction of membrane protein topology

Name Method Single/

multiple 

sequence

Signal 

peptide 

prediction

URL References

ENSEMBLE NN and HMM Multiple No gpcr.biocomp.unibo.it/predictors Martelli et al. (2003)

HMMTOP HMM Single No www.enzim.hu/hmmtop Tusnády and Simon (2001)

MEMSAT-SVM SVM Multiple Yes bioinf4.cs.ucl.ac.uk:3000/psipred Nugent and Jones (2009)

PHDhtm NN Multiple No www.rostlab.org Rost et al. (1996)

PHOBIUS HMM Single Yes phobius.sbc.su.se Käll et al. (2004)

POLYPHOBIUS HMM Multiple Yes phobius.sbc.su.se Käll et al. (2005)

PRODIV HMM Multiple No topcons.cbr.su.se Viklund and Elofsson (2004)

SPOCTOPUS NN and HMM Multiple Yes octopus.cbr.su.se Viklund et al. (2008)

TMHMM HMM Single No www.cbs.dtu.dk/services/TMHMM Krogh et al. (2001)
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dataset of membrane protein structures. In this way, the predicted models benefi t by 
both local and global information (Table 1).

2.5 Single sequence versus multiple sequence profi le

One of the historical events in the advancement of the protein structure prediction 
was the introduction of evolutionary information in the form of sequence profi les 
when protein secondary structure evaluation was the task at hand (Rost and Sander 
1994). Th e key idea was the exploitation of the protein profi le to represent the input 
sequence. Starting from a multiple sequence alignment containing the sequence of 
interest, the profi le is obtained by computing the frequency of the diff erent residues 
in the diff erent alignment positions. Th us the sequence profi le P of a protein se-
quence s consists of a N �	L matrix whose N rows represent the 20 amino acidic resi-
dues and the L columns specify the protein sequence positions. Each profi le entry 
P(a, p) contains the frequency of the amino acid type a in the sequence position p.

Th e advantages of utilizing profi les in place of the multiple sequence alignments 
are: (i) the information on the residue conservation of each sequence position p can 
be given in input to a predictor as aggregate information using a 20-residue vector 
and (ii) the computational complexity is independent of the number of aligned se-
quences since the information is condensed in the frequency entries of the profi le.

Th e sequence profi le provided as input to a NN-based method increased the perfor-
mance also for predicting the topology of membrane proteins (Rost and Sander 1994).

A step forward in the prediction of the membrane protein topology was the im-
plementation of new HMMs allowing the emission of vectors instead of symbols 
(Martelli et al. 2002). By this, it is possible to exploit the information contained in 
the sequence profi les and at the same time to defi ne the grammatical structure that 
the bilayer imposes to the topology of membrane proteins (Martelli et al. 2003).

It is worth noticing that also methods based on propensity scales can improve 
their performances by taking advantage of the evolutionary information (Fariselli 
et al. 2003a,b). For instance, it is possible to compute the propensity values of each 
sequence position using the sequence profi le P and a propensity scale h by averaging 
along a sliding window of W residues as

 ∈ ∈

+∑ ∑1
( )= ( , ) ( ),

| |
j W a N

H i P a i j h a
W

 
(7)

where N is the set of the 20 residues, P(a, p) is the frequency of the residue type a 
in the sequence position p (the sequence profi le) and h(a) is its propensity value 
(htt p://gpcr.biocomp.unibo.it/predictors/; Psi Kyte-Doolitt le within TRA MPLE).
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Presently all the state-of-the-art methods for the prediction of the topology 
of membrane proteins (Table 1) achieve their performances by exploiting evolu-
tionary information. However, the introduction of sequence profi les makes the 
methods dependent on the selected alignment method, and this increases the 
computational time required to generate a prediction. For each protein sequence 
to be predicted a corresponding sequence profi le must be created by searching and 
aligning a large set of similar proteins. Although today computing sequence pro-
fi les can count on huge computational power and fast heuristic algorithms such as 
PSI-BLAST (Altschul and Koonin 1998), the waiting time required to annotate 
entire genomes can be signifi cantly long.

2.6 Prediction of signal peptides and GPI-anchors

An important issue when predicting membrane protein topology starting from ge-
nomic sequences is that N-terminal SP as well as C-terminal peptides cleaved upon 
GPI-anchoring are oft en incorrectly predicted as transmembrane alpha-helices. To 
address this problem, both SPs and GPI propeptides can be predicted with specifi c 
tools and sequences are currently be preprocessed by deleting the cleaved segments. 
Predictors for SPs include SignalP (Bendtsen et al. 2004) and SPEPlip (Fariselli 
et al. 2003a,b), both based on NNs.

A recent approach incorporates the prediction of SPs in tools suited to mem-
brane protein topology determination by means of HMMs (Käll et al. 2004;  Viklund 
et al. 2008) and SVMs (Nugent and Jones 2009) (Table 1). Specifi c tools are also 
available for predicting mitochondrial and chloroplastic N-terminal target peptides, 
such as TargetP (Emanuelsson et al. 2000) and MITOPROT (Claros and Vincens 
1996).

Despite the paucity of known examples to be included in the training sets, pre-
diction of the C-terminal peptides cleaved upon GPI-anchoring is effi  ciently per-
formed by FragAnchor (Poisson et al. 2007) and PredGPI (Pierleoni et al. 2008).

2.7 More methods are better than one: CINTHIA

Prompted by the results described above we decided to take advantage of the dif-
ferent state-of-the-art methods to bett er annotate all-alpha membrane proteins fo-
cusing on the human genome. Th e recently developed Consensus of International 
Transmembrane Helical Intelligent Annotators (CINTHIA) can be regarded for 
a whole human proteome as an annotation process performed by a metapredic-
tor. Th e CINTHIA pseudocode is described in Fig. 1. CINTHIA is a very simple 
metapredictor that exploits the predictions made by ENSEMBLE_2.0, MEMSAT3, 
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and PRODIV_0.92 (see Table 1 for references) and uses the MaxSubSeq algorithm 
(Fariselli et al. 2003a,b) to fi nd the best scoring model. Th e prediction of important 
features including the presence of SPs, the presence of disulfi de bonds, and the pre-
dicted topologic models with diff erent methods are included in the process (Fig. 1). 
In the case of SPs and GPI anchors, when the predicted features are present, the 
corresponding segments are excluded by the process to equalize strings delivered to 
diff erent predictors. Th e metapredictor then assigns optimal scores to a topologic 
model for any given sequence. CINTHIA is therefore the fi nal step of the annota-
tion process and it needs almost all previous methods to be evaluated. On a dataset 
consisting of 131 high-resolution protein structures CINTHIA outperforms the ac-
curacy of the single methods (Table 2), providing a more synthetic and reliable an-
notation system of the all-alpha membranome of the human genome.

When the human genome is predicted, the distribution of the CINTHIA anno-
tations follows the patt ern shown in Fig. 2, with a huge number of proteins annotat-

Fig. 1. The pseudocode of the CINTHIA procedure. (*) In the case of Polyphobius that includes signal peptide 

prediction, only the GPI-anchor is removed.

Table 2. Accuracy of the diff erent methods on a set of high-resolution proteins

Method Topography (Q
ok

a) Topology (Q
top

a)

ENSEMBLE 2.0 0.86 0.74

MEMSAT3 0.89 0.84

POLYPHOBIUS 0.82 0.66

PRODIV 0.92 0.86 0.74

TMHMM 2.0 0.76 0.60

CINTHIA 0.93 0.86

aPrediction indexes are defi ned in Section 2.2.
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ed with a single transmembrane spanning helix and a smaller peak that corresponds 
to proteins predicted with seven transmembrane regions.

2.8  A large-scale annotator of the human proteome: the PONGO system

Th e annotation eff orts of the BIOSAPIENS European Network of Excellence 
(  Juncker et al. 2009) have generated several distributed annotation systems (DAS) 
with the aim of integrating bioinformatics resources and annotating metazoan ge-
nomes (htt p://www.biosapiens. info). In this context, the PONGO DAS server (htt p://
pongo.biocomp.unibo.it) provides the annotation on predictive basis for the all-alpha 
membrane proteins in the human genome, not only through DAS queries, but also 
directly using a simple web interface. We recently developed a new version of the 
PONGO system. Th is new version still maintains the functionalities of the previous 
browsable database version (Amico et al. 2006), and adds new features, including:

•  CINTHIA, a consensus of the profi le-based transmembrane predictors (see above).
• Predicted PTMs such as SPs, GPI-Anchors, and disulfi de-bonds.

Th e new PONGO still adopts the previously developed technology defi ning its 
environment/web server/DAS server, which is based on a relational database con-
taining all the data generated by the work package (Amico et al. 2006). PONGO can 
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Fig. 2. Distribution of the number of proteins as function of the number of transmembrane 

helices predicted by CINTHIA in the human membranome.
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be queried through the web interface available at htt p://pongo.biocomp.unibo.it (or 
following a link from www.biocomp.unibo.it), or through the DAS client at EBI (www.
ebi.ac.uk). Th e local DAS annotation server, administered by the Bologna Biocom-
puting Group at the Bologna University, is resident on the same machine.

Th e end-user can trace for each UniProt (www.uniprot.org) sequence of the hu-
man proteome whether the protein is or is not endowed with a SPs, a GPI-anchor, 
whether the sequence is or is not a membrane protein, and in this case its putative to-
pology. Th e topologic model is computed by three predictors and also by  CINTHIA 
on the basis of three profi le-based predictors of transmembrane regions (see above). 
Th is allows to make a direct comparison among diff erent predictors at the same time 
and to assess whether the expected results are or are not in agreement with the end-
user experimental fi nding. Furthermore, the new PONGO displays the annotations 
of putative cysteines that can be involved into disulfi de bonds (Fig. 3). By this, an 

Fig. 3. A typical output of the PONGO annotation system (pongo.biocomp.unibo.it). See text for explanation 

on the annotation system.

Table 3. PONGO annotates the human proteome

No. of human proteins in PONGO 92,186

% globular proteins     72

% proteins with a GPI anchor annotation     1

% proteins with a signal peptide annotation     18 

% proteins with all-alpha transmembrane annotations     28
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estimation of the total number of proteins in the human genome with a given feature 
can also be obtained. Th e data are shown in Table 3.

3  From membrane protein sequence to function and structure

In the previous section, we outlined the state-of-the-art methods to conventionally 
address the problem of membrane protein topology prediction. A still open ques-
tion is as to which extent function can help in identifying the best topologic model. 
Most of the membrane proteins are usually clustered on the basis of general broad 
functions. According to this procedure, eventually common domains can be detect-
ed aft er modeling with HMMs and this can help in protein alignments of sequenc-
es with an overall very low pairwise sequence identity (pfam.sanger.ac.uk). When 
a “family” contains protein/s known with atomic resolution, these are regarded as 
a putative structural template for all the sequences within the set. As an example, 
all the proteins in the super family of G-protein-coupled receptors routinely inher-
ited the structure of bacteriorhodopsin (Pebay-Peyroula et al. 1997) as long as the 
structure of bovine rhodopsin became available (Palczewski et al. 2000). Th is struc-
ture turned out to be somewhat diff erent from that predicted on the basis of the 
bacteriorhodopsin template. Furthermore, since in the PDB membrane proteins of 
bacterial origins are generally more abundant than proteins from Eukaryotes, the 
eukaryotic target in the functional family is modeled considering the prokaryotic 
fold as the necessary template (www.rcsb.org/pdb/home/home.do). By now, several 
examples of proteins crystalized aft er modeling have indicated that this procedure 
may be risky (Casadio et al. 2002). For most of the membrane proteins clustered 
into conventional functional families (pfam.sanger.ac.uk), sequence identity is barely 
detectable and there is no a priori knowledge that can ensure that function conserva-
tion necessarily implies also structure conservation at a non-statistically signifi cant 
level of sequence identity.

To cope with the problems discussed above and prompted by the necessity of 
large-scale genome annotation, we recently developed a non-hierarchical cluster-
based procedure for gene functional and structural annotation. Th e method (the 
Bologna Annotation Resource, BAR) is based on a large-scale cross genome com-
parison of 599 genomes, including some 551 Prokaryotes and 48 Eukaryotes for 
a total of 2,624,555 protein sequences (Bartoli et al. 2009). BAR tested on some 
other 201 completely sequenced genomes was successfully able to improve the an-
notation process both in relation to structure and function (Bartoli et al. 2009). Th e 
clustering procedure that was adopted is based on the notion that any two protein 
sequences to belong to the same cluster share a sequence identity value 
40% with 
a length of the aligned region normalized to the alignment length (coverage) 
90%. 
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Th ese stringent criteria ensure that in a cluster only sequences with a similar length 
are collected and that when a template/s is/are present the sequences are covered 
for most of their length. Furthermore, by assigning specifi c Gene Ontology (GO) 
terms (www.geneontology.org) to the clusters and by statistically validating them, the 
presence in a cluster of a given sequence ensures that the sequence, when possible, 
inherits also a function. Th is function is detailed by the corresponding GO terms. 
Clusters can contain 3D structures with structural domains classifi ed according to 
SCOP (scop.mrc-lmb.cam.ac.uk/scop/).

With BAR, four main levels of annotations are possible with diff erent alterna-
tives for a total of 11 fi ne-tuned levels of annotations: (i) cluster-specifi c GO; i1: 
PDB/SCOP monodomain; i2: PDB/SCOP multidomain; i3: PDB without SCOP 
annotation; i4: without PDB; (ii) GO terms with P-value greater than the selected 
threshold (P-value >0.001); i5: PDB/SCOP monodomain; i6: PDB/SCOP multi-
domain; i7: PDB without SCOP annotation; i8: without PDB; (iii) without GO; 
i9: PDB/SCOP monodomain; i10: PDB/SCOP multidomain; i11: PDB without 
SCOP annotation; and (iv) no annotation.

Two main results can be obtained with BAR: (i) analyzing the most represented 
genes among genomes, fi nding genes that are expressed in all the kingdoms and 
inferring common traits of the living machinery of all prokaryotic and eukaryotic 
organisms and (ii) annotating protein sequences and assigning functions and struc-
tures to sequences that do not share a high level of similarity with the annotated 
ones. In the following, we highlight how this can help the recognition of membrane 
protein folds.

3.1  Membrane proteins: how many with known functions and folds?

Considering sequences from 599 genomes with BAR we may evaluate that the per-
centage of membrane proteins with GO terms is about 30. Out of this some 2% 
sequences are also endowed with PDB structure/s in the clusters.

3.1.1 All-alpha membrane proteins

In BAR 89 clusters, comprising 28,320 protein sequences, have at least one all-
alpha membrane structure that can be considered according to our procedure 
as the template/s of the cluster. As shown in Table 4, 27,953 membrane proteins 
(98.7% of the total) inherit a template 3D structure not directly linked to them by 
other annotation procedures such as those of UniProt. When present in the same 
cluster, templates are highly similar [root-mean square deviation (RSMD) within 
0.2 nm]. Our results support the conclusion that by following the BAR clustering 
procedure, known folds can be adopted as templates for a much larger fraction of 
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membrane protein sequences than before. Furthermore, also a functional annota-
tion procedure is derived and statistically validated. Th e most represented molec-
ular function GO terms in the clusters with a PDB template are transmembrane 
transporter activity (GO:0022857), substrate-specifi c transmembrane transporter 
activity (GO:0022891), ion binding (GO:0043167), and ion transmembrane trans-
porter activity (GO:0015075). Th e most functional annotated proteomes in terms 
of membrane proteins are Homo sapiens, Danio rerio, Gasterosteus aculeatus, and 
 Macaca mulatt a.

3.1.2 All-beta membrane proteins

In BAR, 25 clusters have at least one all-beta membrane 3D structure that can be 
regarded as a template. By this, some 1475 protein sequences from 226 prokaryotic 
organisms can also inherit a template (Table 5). Interestingly enough, no eukaryotic 
porin falls into any of the well-annotated prokaryotic clusters containing beta-barrel 
structures. Here the most represented GO molecular functions are transmembrane 
transporter activity (GO:0022857), substrate-specifi c transmembrane transporter 
activity (GO:0022891), ion binding (GO:0043167), and cation transmembrane 
transporter activity (GO:0008324). Th e most functionally annotated proteomes in 
relation to all-beta membrane proteins are Pseudomonas aeruginosa, Escherichia coli, 
and Salmonella typhimurium.

Table 4. BAR annotation of all-alpha membrane proteins in 599 complete genomes

GO GO

(P-value ≤ 0.001)

GO

(P-value > 0.001)

– GO

PDB No. of clusters 81 (91%) 73 (82%) 8 (9%) 8 (9%)

No. of 

sequences

28,216 (99.6%)

[direct: 298 (1%), 

inherited: 27,918 

(98.6%)]

28,054 (99.1%)

[direct: 291 (0.98%), 

inherited: 27,763 

(98.12%)]

162 (0.5%)

[direct: 7 (0.02%), 

inherited: 155 

(0.48%)]

104 (0.4%)

[direct: 10 (0.1%), 

inherited: 94 (0.3%)]

SCOP

Mono-domain

No. of clusters 53 (60%) 48 (54.4%) 5 (5.6%) 5 (5.6%)

No. of 

sequences

22,925 (81%)

 [direct: 162 (0.6%), 

inherited: 22,763 

(80.4%)]

22,781 (80%)

[direct: 160 (0.56%), 

inherited: 22,621 

(79.4%)]

144 (1%)

[direct: 2 (0.04%), 

inherited: 142 

(0.96%)]

53 (0.19%)

[direct: 5 (0.02%), 

inherited: 48 (0.17%)]

SCOP

Multi-domain

No. of clusters 15 (17%) 14 (16%) 1 (1%) –

No. of 

sequences

4542 (16%)

[direct: 102 (0.4%), 

inherited: 4440 

(15.6%)]

4540 (16%)

[direct: 100 (0.4%), 

inherited: 4440 

(15.6%)]

2

[direct: 2, 

inherited: – ]

–
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3.2 What do BAR clusters contain?

In anyone of the clusters containing membrane protein structures, sequences with 
three threshold values of identity to the templates can be found: (i) very high values 
(
50%). Th e high coverage of our clustering procedure ensures that when diff erent 
templates are available from diff erent sequences RMSD values of diff erent templates 
coexisting in the same cluster are high; (ii) many sequences are endowed with iden-
tity values 
40%. Also in this case building by comparison can be safely performed 
and the results can be obtained with any other method based on homology search; 
and (iii) the cluster contain sequences that are <40% identical to the sequence 
template/s (this may vary from 12% to 100% of the sequences in the cluster). In this 
case sequences with an identity much lower than 30% to the template are clustered 
together and can be regarded as distantly related homologs. By this, in spite of the 
very low sequence identity value, the remote homolog inherits both a structure and 
specifi c GO term/s. Furthermore our stringent clustering criteria also ensure high 
overlapping between the template and the target. Some clusters, containing mem-
brane proteins endowed with structural motifs very diffi  cult to predict with conven-
tional predictors of topology, are detailed below (Bartoli et al. 2009).

3.2.1 The cluster of glyceroporins

Membrane proteins of the aquaporin family are highly selective for the perme-
ation of specifi c small molecules with the exclusion of ions and charged solutes. 
Th eir structure is endowed with a unique feature in that two helices meet at their 

Table 5. BAR annotation for beta-barrel membrane proteins in 599 complete genomes

GO GO

(P-value ≤ 0.001)

GO

(P-value > 0.001)

– GO

PDB No. of clusters 22 (88%) 21 (84%) 1 (4%) 3 (12%)

No. of 

sequences

1415 (96%)

[direct: 66 (4.5%), 

inherited: 1349 (91.5%)]

1381 (94%)

[direct: 66 (4.5%), 

inherited: 1315 (89.5%)

34 (2%)

[direct: –,

inherited: 34 (2%)]

60 (4%)

[direct: 14 (1%), 

inherited: 46 (3%)]

SCOP

Mono-domain

No. of clusters 14 (56%) 13 (52%) 1 (4%) 2 (8%)

No. of 

sequences

900 (61%)

[direct: 50 (3%),

inherited: 850 (58%)]

866 (59%)

[direct: 50 (3%), 

inherited: 816 (56%)]

34 (2%)

[direct: –,

inherited: 34 (2%)]

51 (3%)

[direct: 12 (1%), 

inherited: 39 (2%)]

SCOP

Multi-domain

No. of clusters 1 (4%) 1 (4%) – –

No. of 

sequences

57 (4%)

[direct: 2 (0.3%), 

inherited: 55 (3.7%)]

57 (4%)

[direct: 2 (0.3%), 

inherited: 55 (3.7%)]

– –
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Fig. 4. Cumulative distribution of the number of sequences as a function of the sequence 

identity in the cluster of glyceroporins. The cluster contains 404 sequences from 256 organisms (226 Prokaryotes; 

30 Eukaryotes), among which 9 (from E. coli and Shigella sonnei) are endowed with a PDB structure. Each sequence within the cluster 

was globally aligned to each of the 9 structural templates and the maximum value of sequence identity was considered. One hundred 

and thirty-seven sequences (34%) share <30% identity to a structural template and can therefore be modeled.

N-ter

C-ter

a b

Fig. 5. 3D model of the glycerol uptake facilitator protein from Streptococcus thermophilus. 

(a) The glycerol uptake facilitator protein from E. coli (PDB ID: 1FX8) is the template. (b) Superimposition of the model of the Glycerol 

uptake facilitator protein from Streptococcus thermophilus (yellow) on the E. coli template (gray). Re-entrant alpha helices are shown 

in red (TMH3) and in blue (TMH7). N- and C-termini of the template face the cytoplasm. The RMSD value between the model and the 

template is 0.7 Å. Molecular models are visualized with UCSF Chimera (www.cgl.ucsf.edu/chimera).
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N-terminal ends in the center of the membrane bilayer (re-entrant helices; Fu et al. 
2000; Newby et al. 2008). Sequences cluster in a cluster that is named the cluster 
of glyceroporins since it contains nine sequences with PDB structures from E. coli 
and Shigella sonnei. Templates are structurally superimposable (RMSD = 0.13 nm). 
Interestingly enough in these clusters 226 sequences are from Prokaryotes and 30 
from Eukaryotes. Clustering allows that some 137 sequences (34% of the total in 
the cluster) with <30% identity to the structural templates can also be modeled on 
the nine templates (Fig. 4). An example is given in Fig. 5, where the 3D model of 
the glycerol uptake facilitator protein from Streptococcus thermophilus was computed 
adopting as a template the counterpart from E. coli (sequence identity of the target 
to the template = 23%). Th e N- and C-termini of the template face the cytoplas-
mic side. Consequently the same topology is inherited by the target. Th e RMSD 
of the observed to the computed structure is 0.07 nm. Models are computed with 
 Modeller (Eswar et al. 2008).

3.2.2 The cluster of multidrug transporter proteins (EmrE proteins)

EmrE is a multidrug transporter from E. coli that functions as a homodimer of a 
small four all-alpha transmembrane helices. Typical member of the small multi-
drug resistance family, its membrane topology was controversial till recent X-ray 
structural details that support a dual topology model of the dimeric functional unit 
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Fig. 6. Cumulative distribution of the number of sequences as a function of the sequence 

identity in the cluster of multidrug transporter proteins (EmrE proteins). The cluster contains 490 se-

quences from 280 prokaryotic organisms, among which 2 (from E. coli) are endowed with a PDB structure. Each sequence within the 

cluster was globally aligned to each of the two structural templates and the maximum value of sequence identity was considered. 

161 sequences (29%) share <30% identity to a structural template and can therefore be modeled.
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N-ter

C-ter

a b

Fig. 7. 3D model of the quaternary ammonium compound-resistance protein from Bacillus 
thuringiensis. (a) The bacterial multidrug effl  ux transporter from E. coli (PDB ID: 3B61) is the template. (b) Superimposition 

of the model of the quaternary ammonium compound-resistance protein from Bacillus thuringiensis (blue) on the E. coli template 

(cyan). The RMSD value between the model and the template is 1.8 Å. The four all-alphahelices of the apo-monomer of the template 

are shown. It has been reported that EmrE template binds the transport substrate tetraphenylphosphonium (TPP) as an asymmetric 

dimer confi rming that this protein is endowed with a dual topology in its functional unit (Chen et al. 2007).

N-ter

C-ter

a b

Fig. 8. 3D model of the P-glycoprotein 19 from Arabidopsis thaliana. (a) Mouse P-glycoprotein template 

(PDB ID: 3G5U). (b) Superimposition of the model of the P-glycoprotein 19 from Arabidopsis thaliana (blue) on the mouse template 

(cyan). The two sequences belong to a specifi c cluster of 245 sequences from 33 eukaryotic organisms. The RMSD value between the 

model and the template is 1.75 Å.
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 (Chen et al. 2007). In BAR the cluster of EmrE proteins contains 490 sequences 
from 280 prokaryotic organisms (Fig. 6). Two sequences with a PDB structure from 
E. coli can be regarded as structural templates. One hundred and sixty-one sequences 
(29%) with <30% identity to the structural template can be modeled accordingly 
(Fig. 7). Our modeling here refers to the protein apo-monomer (Chen et al. 2007). 
Th e dual topology is a feature of the dimeric functional unit.

3.3.3 The cluster of P-glycoproteins

Th e structure of a mouse P-glycoprotein whose sequence is 87% identical to the 
human counterpart is the prototype of membrane proteins that detoxify cells by ex-
porting hundreds of toxins (Aller et al. 2009). Th e sequence comprises some 1284 
residues and the structure includes 12 transmembrane all-alpha helices arranged in 
two bundles within two halves with a pseudo twofold molecular symmetry. Both 
N- and C-termini face the cytoplasm. Th e cluster labeled by this molecule contains 
245 sequences from 33 eukaryotic organisms. Within the cluster a counterpart from 
Arabidopsis thaliana comprising some 1252 residues with a negligible sequence 
identity to the template (about 18%) inherits the structure (Fig. 8) and the topo-
logic model.
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Abstract

Transmembrane �-barrel (TMB) proteins are embedded in the outer membranes of 
mitochondria, Gram-negative bacteria, and chloroplasts. Th ese proteins perform critical 
functions, including active ion-transport and passive nutrient intake. Th erefore, there is 
a need for accurate prediction of secondary and tertiary structures of TMB proteins. A 
variety of methods have been developed for predicting the secondary structure and these 
predictions are very useful for constructing a coarse topology of TMB structure; however, 
they do not provide enough information to construct a low-resolution tertiary structure 
for a TMB protein. In addition, while the overall structural architecture is well conserved 
among TMB proteins, the amino acid sequences are highly divergent. Th us, traditional 
homology modeling methods cannot be applied to many putative TMB proteins. Here, 
we describe the TMBpro: a pipeline of methods for predicting TMB secondary structure, 
�-residue contacts, and fi nally tertiary structure. Th e tertiary prediction method relies on 
the specifi c construction rules that TMB proteins adhere to and on the predicted �-residue 
contacts to dramatically reduce the search space for the model building procedure.

1 Introduction

Transmembrane �-barrel (TMB) proteins are an important class of proteins embed-
ded in the outer membrane of Gram-negative bacteria, mitochondria, and chloro-
plasts  (Wallin and von Heijne 1998; Schulz 2000; Tamm et al. 2004). It is estimated 
that genomic databases currently contain thousands of TMB proteins (Wimley 
2002, 2003), and ongoing large-scale sequencing eff orts are producing many more 
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(Yooseph et al. 2007). TMB proteins carry out diverse biochemical functions includ-
ing active ion transport, passive nutrient intake, and defense against att ack proteins 
(Koebnik et al. 2000; Schulz 2000). Th us, elucidating the structure and function 
of TMB proteins has immediate medical relevance, as bacteria membrane proteins 
are potential targets of antimicrobial drugs and vaccines ( Jackups and Liang 2005). 
Crystallizing transmembrane (TM) proteins is especially challenging; thus, predict-
ing the structural features and tertiary structures of TMB proteins from sequence is 
an interesting and important task (Casadio et al. 2003; Oberai et al. 2006).

1.1 1D feature prediction

Th e types of methods utilized to predict the one-dimensional (1D) secondary struc-
ture features of TMB proteins (i.e., the positions of TM �-strands and the types of 
loops) include turn identifi cation (Paul and Rosenbusch 1985), sequence profi les and 
hydrophilicity scales (Welte et al. 1991), rule-based amino acid composition  (Gromiha 
et al. 1997), Artifi cial Neural Networks (ANN; Diederichs et al. 1998;  Jacoboni 
et al. 2001; Gromiha et al. 2004; Randall et al. 2008), sequence profi les and Hidden 
Markov Models (HMM; Martelli et al. 2002; Liu et al. 2003; Bagos et al. 2004a,b, 
2005; Bigelow et al. 2004; Fariselli et al. 2005; Garrow et al. 2005;  Gromiha and Suwa 
2005; Gromiha et al. 2005; Park et al. 2005; Bigelow and Rost 2006; Waldispühl et al. 
2006b), consensus methods (Bagos et al. 2005), ANN combined with Support Vector 
Machines (SVM; Natt  et al. 2004), and radial basis networks (Ou et al. 2010).

Some of the HMM-based methods for 1D prediction have also been utilized to 
screen proteomes for putative TMB proteins and discriminating them from globular 
and TM �-helical proteins (Martelli et al. 2002; Bagos et al. 2004a,b; Bigelow et al. 
2004; Bigelow and Rost 2006). A variety of other methods have been developed 
specifi cally for the screening/discrimination task (Zhai and Saier 2002; Garrow 
et al. 2005; Gromiha et al. 2005; Park et al. 2005).

Th e 1D structure predictions are very useful for constructing a coarse topology 
of TMB structure (Tamm et al. 2001). However, they do not provide enough infor-
mation to construct a low-resolution tertiary structure for a TMB protein ( Jackups 
and Liang 2005). In addition, traditional homology modeling of TMB proteins is 
hindered by the lack of sequence similarity between the small number of TMB pro-
teins with known structures and the thousands of TMB proteins without known 
structures (Schulz 2000; Jacoboni et al. 2001).

1.2 � -Contact and tertiary structure prediction

TMB proteins adopt a common �-barrel fold and obey specifi c construction rules, 
as outlined in Schulz (2000). For instance, known TMB proteins consist of an even 
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number of membrane spanning �-strands with an anti-parallel �-meander topology. 
Some recently published methods take advantage of these construction rules to pre-
dict the inter-strand �-residue pairings of TMB proteins ( Jackups and Liang 2005; 
Waldispühl et al. 2006a, 2008; Randall et al. 2008). Accurate residue–residue con-
tact predictions can provide strong constraints for building tertiary structure mod-
els, as has been demonstrated by successful globular protein structure prediction 
methods (Skolnick et al. 1997). For TMB proteins, accurate prediction of �-residue 
contacts provides even stronger constrains because of the common fold and con-
struction rules.

Since there are a limited number of non-redundant TMB proteins with known 
structures in the Protein Data Bank (PDB; Berman et al. 2000) and membrane pro-
tein databases (Tusnády et al. 2005a; Lomize et al. 2006), it is challenging to  develop 
robust knowledge-based methods to predict inter-strand pairings in TMB proteins. To 
overcome the small dataset problem the method transFold (Waldispühl et al. 2006a) 
used pair-wise inter-strand residue statistical potentials derived from globular pro-
teins to predict the inter-strand residue pairings of TMB proteins with moderate ac-
curacy. Th ese researchers improved upon their work when they developed  partiFold, 
which utilizes a Boltzman partition function to estimate �-residue interaction prob-
abilities; however, this method is limited to non-water-fi lled TMB proteins.

Currently the only freely available method that takes the next step and automati-
cally predicts the tertiary structure of TMB proteins from the predicted 1D and �-
residue contacts is the TMBpro method (Randall et al. 2008). Th e remainder of this 
chapter focuses on prediction pipeline of the TMBpro methodology for predicting 
TMB secondary structure, �-residue contacts, and tertiary structure.

2 Data

2.1 Benchmark sets

Th e initial development and validation of the TMBpro methodology utilized two 
sets of TMB proteins described in the literature. Th e fi rst is the dataset described 
in (Waldispühl et al. 2006a), which consists of 14 redundancy-reduced TMB pro-
teins. Th e authors divide this set into two main subsets: non-water fi lled (NWF) and 
water fi lled (WF). NWF consists of (PDB code) 1QJP, 1QJ8, 1THQ, 1P4T, 1I78, 
1K24, 1QD6. WF consists of 1A0S, 1AF6, 1PRN, 2OMF, 1E54, 1TLY, and 2POR. 
In contrast, the TMBpro method treats all 14 proteins as a single set. Th e secondary 
structure assignments used for this set come from the DSSP program (Kabsch and 
Sander 1983). Th ese assignments were then condensed to two classes: strand (�) 
and non-strand (–). Th ese single character designations are used throughout this 
chapter when dealing with two-class representation. Following the work described 
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in Waldispühl et al. (2006a), the group published a web-server for predicting fea-
tures of TMB proteins called transFold (Waldispühl et al. 2006b). Th roughout this 
chapter, this dataset is referred to as SetTransfold. Th e TMBpro secondary structure 
and �-contact prediction results are compared to transFold using this set.

Th e second set is described in Bagos et al. (2004a) and also contains 14 redun-
dancy-reduced TMBs. Nine of them overlap with SetTransfold: 1QJP, 1QJ8, 1I78, 
1K24, 1A0S, 1PRN, 2OMF, 1E54, and 2POR. Th e fi ve proteins that diff er are: 
1QD5, 2MPR, 1FEP, 2KMO, and 2FCP. Rather than using the DSSP assignments, 
the authors manually designated TM (�) and non-TM (–) segments for each pro-
tein in this set. Th is approach was motivated by the observation that many of the 
�-strands in TMB proteins extend signifi cantly beyond the membrane, and the au-
thors sought to focus on the TM regions. Th e authors have made their method avail-
able as the web-server PRED-TMBB (Bagos et al. 2004b). For the remainder of this 
chapter this dataset is referred to as SetPRED-TMBB. Th e secondary structure and 
topology predictions of TMBpro are compared to PRED-TMBB using this set. Th is 
set was also used to evaluate the TMBpro tertiary structure predictions.

Th e two datasets were created and treated independently in order to make fair 
comparisons to previous work. For all of the proteins in SetTransFold the secondary 
structure annotation comes from DSSP. For all of the proteins in SetPRED-TMBB 
the secondary structure annotation comes from manual designation. For the nine 
proteins common to both datasets both types of secondary structure annotation 
were curated. For example, protein 1QJ8 is present in each dataset, but with dif-
ferent secondary structure annotation (DSSP in SetTransFold and manual designa-
tion in SetPRED-TMBB). Results comparing TMBpro to transFold were based only 
on SetTransFold annotations, and results comparing TMBpro to PRED-TMBB were 
based solely on SetPRED-TMBB annotations.

Th e TMBpro results calculated from SetTransFold and SetPRED-TMBB were 
compared to the published results of the respective methods. To compare TMB-
pro �-contact predictions to those of transFold using the same predicted second-
ary structure, the protein sequences of SetTransFold were submitt ed to the transFold 
server. Th e transFold server predicts the secondary structure into four classes: mem-
brane facing strand  residues (M), channel facing strand residues (C), loops inside 
the periplasm (i), and extra-cellular loops (o). TransFold also predicts �-residue 
contacts. Th ese single character designations are used throughout this chapter and 
in the output of the TMBpro server. Th e PRED-TMBB server predicts secondary 
structure into three classes: TM, periplasmic, and extra-cellular. For both datasets 
the two-class representation is expanded to three-class by designating “�” residues 
as either “M” or “C” based on visual inspection of the structures. Th ese representa-
tions (M, C, –) were used to train a three-class predictor.



A. Randall and P. Baldi

87

2.2 Cross-validation

Th e predictors were trained and tested using leave-one-out cross-validation 
(LOOCV) on SetTransFold and SetPRED-TMBB independently. A single protein is 
held out of the set, a model is built using the other 13, and a prediction is made on 
the held out protein. Th is process is repeated for each protein in the set to obtain 
the evaluation statistics in the Results Section. LOOCV provides the best estimate 
of the generalization accuracy of a predictor when the dataset is stringently non-
redundant; however, with larger datasets LOOCV is not practical because of the 
training time involved in building a model for each member of the dataset. Th e same 
LOOCV procedure is applied to template usage in the tertiary structure prediction 
evaluation.

2.3 Template construction

Th e template fi les were created by extracting the backbone (N, C�, C) coordinates 
from the monomeric PDB fi les in SetPRED-TMBB. Th e curated (�, –) designations 
were used to label each residue position in the template. Th is set contained 2 proteins 
with 8 strands, 2 with 10 strands, 1 with 12 strands (1QD5), 4 with 16 strands, 2 with 
18 strands, and 3 with 22 strands. Th e strand count of the predicted secondary struc-
ture is used to select templates for modeling. If the strand count of 1QD5 is correctly 
predicted, no templates would be available for modeling because of the LOOCV 
procedure. To account for this, a template from one additional 12-stranded protein 
(1TLY) was constructed and added to the template library. Also, if a 14-stranded 
protein is predicted, no templates would be available; therefore, templates from two 
 14-stranded TMB proteins (1T16 and 2F1C) were built. In addition, the structure 
of the fi rst  24-stranded TMB protein was recently released (Remaut et al. 2008), and 
this structure (2VQI) was also added to the template library. Th e manually curated 
designations were not available for these four proteins, so the TM segment ranges 
published in the Orientation of Proteins in Membranes (OPM) database (Lomize 
et al. 2006) were used. For the proteins in SetPRED-TMBB the manual designations 
agree strongly with the OPM defi nitions.

3 Methods

3.1 Secondary structure prediction

3.1.1 Neural network implementation

Th e TMB secondary structure predictor uses specialized neural network architec-
ture called a one-Dimensional Recursive Neural Network (1D-RNN). Th is network 
architecture has been used for the prediction of secondary structure, SSpro  (Pollastri 
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et al. 2002), domain boundaries, DOMpro (Cheng et al. 2006b), and disordered 
regions, DISpro (Cheng et al. 2005). As in the prior applications, the input at each 
position to the neural network is the profi le of the sequences in the NR database 
aligned to the target sequence using PSI-BLAST (Altschul et al. 1997). It has been 
the experience of the authors that there is litt le chance of over-fi tt ing the models 
because of the weight sharing involved in the 1D-RNN architecture. Th is feature of 
the architecture makes it appropriate for the small datasets used to construct TMB 
prediction methods.

3.1.2 Two-class prediction (�, –)

For two-class prediction the 1D-RNN is trained on the two-class 1D representation: 
(�) and (–). When making a prediction, the output from the model is the predicted 
probability of class membership to each class. Th e initial predicted secondary struc-
ture, Sinitial, consists of the class with higher predicted probability at each position. 
Th e fi rst row in Fig. 1 contains an example of Sinitial for the TMB protein 1P4T. Since 
the secondary structure of TMB proteins adhere to consistent construction rules, 
post-processing is performed on the predicted probabilities to revise the secondary 
structure prediction. Th e lengths of �-segments and the diff erent types of loop seg-
ments are constrained by minimum and maximum values; however, the length of 
N- and C-termini (–) segments is left  unconstrained. Table S1 in the Supplementary 
Materials of Randall et al. (2008) contains a summary of the specifi c values used for 
the diff erent segment types for each dataset. In the example in Fig. 1, the initial sec-
ondary structure prediction Sinitial for protein 1P4T violates multiple constraints. To 
describe the post-processing strategy formally additional notations are introduced 
here: N is the number of residues in a sequence, S is any two-class secondary struc-

SS Source Secondary structure of protein 1P4T (Predicted and Annotated)

Initial Pred 2

Pred 4

Annotation

Pred 2 (Smax)

(Sinitial)

Fig. 1. Predicted secondary structure for protein 1P4T. LOOCV prediction made using SetTransfold. Initial 

Pred 2 (S
initial

) is the initial two-class prediction by the neural network. Pred 2 (S
max

) is the two-class prediction after post-processing. 

Pred 4 is the four-class prediction with loop types inferred from Pred 2 (S
max

) and membrane/channel pattern predicted by the three-

class predictor. Annotation is the 1D sequence according to the DSSP designations for strand boundaries and assignment of “M”, “C ”, 

“i ”, “o”, and “.” based on visual inspection.
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ture that does not violate any of the model constraints, Si is the secondary structure 
at position i, O is the matrix of predicted probabilities output from the 1D-RNN, Oi,� 
and Oi,non-� are the predicted probabilities that Si is “�” or “–”, respectively. Th e post-
processing objective function is the sum of predicted probabilities for each position 
of S as defi ned in Eq. (1).

 =
∑

1

sum( )=
i

i

N

i,SS O  (1)

Given sum(S) as the objective function, the goal is to fi nd an S which maximizes 
sum(S), this secondary structure is denoted as Smax. A dynamic-programing (DP) 
solution that incorporates the parameters of the TMB construction rules was devel-
oped to effi  ciently identify an Smax.

Th e number of �-strands in Smax is used in the fi nal prediction of strand count. 
During the search for Smax the DP method saves the value of sum(S) for each value 
of potential strand count. If the number of strands “�” is provided as an additional 
constraint, the notation Smax,� indicates an optimal S with � strands. Th is informa-
tion can be useful for assessing the confi dence in the predicted secondary struc-
ture and corresponding strand count. Table S2 in the Supplementary Materials of 
Randall et al. (2008) contains a summary of the Smax,� results for the proteins in 
SetPRED-TMBB. For 1QJ8 the gap between Smax,8 (130.4) and the next highest sum 
Smax,10 (115.2) is 11.7%, whereas for 1A0S the gap between Smax,16 (340.9) and the 
next highest sum Smax,18 (340.1) is only 0.2%. Th e larger the gap, the more confi dent 
the predictor is in its strand count. For benchmarking purposes, this information is 
not useful, as the predictor will use the single best Smax; however, this information 
could be valuable to a user who may decide to build tertiary models from multiple 
strand counts.

3.1.3 Three-class prediction (M, C, –)

To predict the membrane/channel patt ern within the � segments a separate neural 
network was trained to predict three classes: M, C, and other (–). Th e architecture 
for the three-class predictor is the same 1D-RNN architecture used for the two-class 
predictor. Th e output of the network is the probability of class membership in each 
of the three classes. For each � segment predicted in the fi nal two-class prediction 
Smax, the membrane–channel (M/C) patt ern is predicted by choosing the patt ern 
with the higher predicted probability sum. For the example protein, 1P4T, in Fig. 1, 
the fi rst � segment is predicted to be from position 6 to 18. Equation (2) shows the 
calculation for the sum of predicted probabilities for each patt ern.
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�
�

18,7, 17,6,

7, 17, 18,6,

sum_MC= + + + +
sum_CM = + + + +

MC CM

M M CC

O O O O
O O O O  

(2)

In this case sum_MC > sum_CM so the patt ern beginning with “M” is forced 
over the � segment. From the three-class prediction, the (–) segments are assigned 
as periplasmic (i) or extra-cellular (o) according to the TMB protein construction 
rules. In Fig. 1, the fi nal four-class prediction of the example protein 1P4T is com-
pared to the annotations.

3.2 �-Contact prediction

Between two paired �-strands, only every other pair of aligned residues is hydrogen 
bonded. Residue pairs that are aligned, but not hydrogen bonded to one another, 
are still considered �-contacts. Th e DSSP program is used to automatically identify 
 �-contacts in known protein structures. DSSP classifi es �-contacts based on inter-
residue atomic distances and angles. TMBpro-CON is trained on true  �-contacts us-
ing a two-Dimensional Recursive Neural Network (2D-RNN) (Baldi and  Pollastri 
2003; Cheng and Baldi 2005; Cheng et al. 2006a). TMBpro-CON predicts �-con-
tacts in TMB proteins by fi rst predicting the probability of pairing between all pairs of 
predicted �-strand residues. For each pair of strands the pseudo-energy (i.e., the sum 
of the individual predicted pairing probabilities) of all possible strand–strand align-
ments is calculated. Th en TMBpro-CON utilizes the following rules to restrict the 
search for acceptable pairings: consecutive strands must pair in anti-parallel fashion; 
the terminal strands must pair in anti-parallel fashion; the shear number must be be-
tween 0 and +4 with respect to the strand count; membrane-facing residues must pair 
with other membrane-facing residues; and core-facing residues must pair with other 
core-facing residues. A DP method is used to fi nd a set of contact predictions that 
maximizes the global pseudo-energy while conforming to the construction rules.

3.3 Tertiary structure prediction

TMBpro-3D combines de novo and template-based methods to predict tertiary struc-
ture, using a search energy composed of predicted structural feature, physical interac-
tion, and statistical terms. Th e conformational search is performed using simulated 
 annealing with a move set that utilizes whole protein templates and fragment assembly.

3.3.1 Search energy

Th e search energy used in the conformational search is a linear combination of the 
following terms:
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E• beta_pairs – favors hydrogen bonding between predicted �-contacts.
 E• mc_patt ern – favors predicted M/C patt ern using template residue membrane-
channel values.
 E• globular_pair-wise – rewards favorable side-chain interactions between predicted 
non-� positions (Zhang et al. 2003).
E• chain_break – favors close termini proximity at artifi cial chain break sites.
E• centroid_repulsion – penalizes clashes between side-chain centers of mass.
 E• vdw_repulsion – penalizes steric clashes between all explicitly modeled atoms using 
Van der Waals radii.

Th e details of each individual and the corresponding weights are provided in the 
Supplementary Materials of Randall et al. (2008).

3.3.2 Template usage

Th e strand count (�) of the predicted secondary structure is used to screen for 
 potential templates. Each template with a strand count matching � is used to gener-
ate an ensemble of models. All models are then ranking according to their energy, 
and the model with the best search energy is the fi nal tertiary prediction. To allow 

Initial template usage

Final template usage

Fig. 2. Hypothetical template usage example for the fi rst two TM segments. M and T represent the 

model and template, respectively. U controls where the template is used: “
” indicates the position is modeled from T (U
i
 = 1), 

whereas “f” means the position is modeled by fragment modeling (U
i
 = 0). The wavy vertical lines mark the chain breaks. The center 

residue of each segment is boxed to help illustrate the shifts. Initially the centers of segments are aligned (all H
i
 = 0). In the fi nal 

model, the 1st segment is shifted 1 position to the left (H
1
 = –1) and the 2nd segment is shifted 3 positions to the right (H

2
 = 3).
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fl exible alignment of each predicted �-segment to its corresponding template seg-
ment, TMBpro creates artifi cial chain breaks at the center of each non-� region, 
 dividing the model into �  loosely coupled sub-models. Th e sub-models are allowed 
to move independently, but their interactions are captured through the global en-
ergy function.

Four arrays of variables (M, T, U, and H) are used to manage template utiliza-
tion during the conformational search (Fig. 2). Th e model M is an array containing 
the xyz coordinates of the backbone atoms (N, C�, C), indexed by the residue num-
ber i. Th e template T is a similar array built for the template protein. Th e template 
usage U is an array of binary variables indicating whether or not T is used to model 
M at each residue position. Ui = 1 indicates that T  is used to model Mi, while Ui = 0 
means Mi is modeled by fragment replacement using the fragment library (Simons 
et al. 1997). Th e alignment shift  H is an array of length �, where each position is the 
integer shift  between model and template segment relative to center–center align-
ment. Initially the centers of all model and template segments are aligned, corre-
sponding to Hi = 0 for i = 1, …, �. From these center–center alignments, U is set to 
1 at each predicted � position that aligns to a �-residue in the template, and the rest 
of U is set to 0 (Fig. 2). During the search phase the values of H and U are modifi ed 
to explore the use of T.

3.3.3 Move types

Th e following move types are used in the simulated annealing protocol to search the 
conformational space:

• Shift  Single Segment by k: Hi = Hi + k
   i = segment index;  k �	Z and –max � k � max;
   max = (length of segment i)/2;
• Shift  m Consecutive Segments by k: Hj = Hj + k, for j = i, …, i + m–1
   i = starting segment index; m �	Z and 2 �	m � �;
   k �	Z and –max � k � max;
   max = (length of shortest among m segments)/2;
• Adjust Single Segment Template Usage by k: Ul = � for l = b, …, b + k–1
   b = index of boundary residue (Ub �	Ub+1);
   � = 0 (contraction) or � = 1 (extension);
   k �	Z and –max � k � max;
   max = number of residues to next boundary;
• Replace with Fragment: use fragment to model Mi, …, Mi + k
   i = index of fi rst residue to replace;
   k �	Z and 1 � k � 9;
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Th is move is applied only to regions where the template is not used 
(Ui, …, Ui + k = 0).

3.3.4 Conformational search

Th e space of possible conformations is searched using simulated annealing with 
a linear cooling schedule and the move-set described above. Th e search is performed 
in two distinct phases. Phase 1 focuses on modeling the TM segments, while Phase 
2 focuses on modeling the loops. In Phase 1 all move types are used and the weights 
for Eglobular_pair-wise, Echain_break, Ecentroid_repulsion, and Evdw_repulsion are set to 0 to allow the 
search to quickly fi nd a conformation that satisfi es the predicted strand constraints 
(low Ebeta_pairs and Emc_patt ern). At the end of Phase 1 the values of H are locked, so that 
the model-template alignments are no longer allowed to change. Th is reduces the 
move set in Phase 2 to only Adjusting Single Segment Template Usage and Replace with 
Fragment. In addition, all energy terms are used in Phase 2. Th e search is run with 
diff erent random seeds to generate an ensemble of predicted models, equally utiliz-
ing the available templates. Th e model with the lowest fi nal search energy is returned 
as the tertiary structure  prediction.

4 Results

Th e TMBpro secondary structure prediction results were compared to the pub-
lished results of the transFold (Waldispühl et al. 2006a) and PRED-TMBB (Bagos 
et al. 2004a) methods. To assess TMBpro �-contact prediction, it was compared 
to the published results of transFold, and to the server output in order to make a 
comparison using the same predicted secondary structure as input. Since TMBpro-
3D was the fi rst publicly available method to predict the structure of TMB proteins 
without relying on sequence–sequence, sequence–profi le, or profi le–profi le align-
ments for template usage no comparison was made to previous work.

4.1 Secondary structure prediction results

As described previously, a two-class (�, –) secondary structure predictor special-
ized for TMB proteins was developed. Th e two-class predictions are used to predict 
the three-class (M, C, –) and infer four-class predictions (M, C, i, o). Two separate 
secondary structure predictors were developed using the non-redundant datasets 
SetTransfold and SetPRED-TMBB to make comparisons with the related methods.

4.1.1 Secondary structure evaluation metrics

To assess secondary structure prediction performance the following per-residue 
metrics were used: the two-class accuracy (Q2), three-class (M, C, –) accuracy (Q3), 
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Mathews correlation coeffi  cient (MCC; Baldi et al. 2000), and segment overlap mea-
sure (SOV; Zemla et al. 1999). In addition to these common measures, additional 
measures utilized in previous work were also included for the sake of comparison. 
For comparison to transFold the per-segment recall (sensitivity) Q�

%obs and precision 
Q�

%pred are also included, with correct prediction defi ned as an observed �-strand in-
tersecting exactly one predicted �-strand, and vice versa (Waldispühl et al. 2006a). 
Th e per-segment measures for comparison to PRED-TMBB include the number of 
true positives (TP), the number of false negatives (FN), and the number of false 
positives (FP). In addition, the number of correctly predicted topologies (TOP), 
that is when all strands and loops have been predicted correctly according to Bagos 
et al. (2004a), is also included.

4.1.2 Results using SetTransfold

Table 1 contains a summary of TMBpro-SS secondary structure prediction results 
compared to transFold. LOOCV was used on SetTransfold to assess TMBpro-SS and 
to compare it to transFold. TMBpro-SS outperforms transFold signifi cantly using 
the Q2 (77.84–69.91%) and MCC (0.538–0.380) measures. TMBpro-SS performs 
slightly bett er than transFold, according to the per-segment measures Q�

%obs and 
Q�

%pred.

Table 1. TMBpro-SS compared to transFold 

Method Q
2

MCC SOV Q
3

Q��
% obs Q�

% pred

transFold 69.9 0.380 – 58.5 94.9 85.2

TMBpro-SS 77.8 0.538 0.800 71.5 97.2 88.2

For this comparison TMBpro-SS is evaluated using LOOCV on the SetTransfold dataset. Comparison metrics are: Q
2
, two-class per-

residue accuracy; MCC, Mathews correlation coeffi  cient; SOV, segment overlap measure, Q
3
, three-class per-residue accuracy; 

Q�
%obs, per-segment recall (sensitivity); Q�

%pred, per-segment precision.

Table 2. Secondary structure prediction compared to PRED-TMBB

Method TP FP FN TOP Q
2

Q
3

MCC SOV

PRED-TMBB 203 13 11 8 84.2 – 0.720 –

TMBpro-SS 204 6 10 11 88.3 88.0 0.751 91.3

TMBpro-SS is evaluated using LOOCV on the SetPRED-TMBB dataset and compared to PRED-TMBB. Per-segment measures 

are: TP, true positives; FP, false positives; FN, false negatives; Topology measure: TOP, correct topology; Per-residue measures: 

Q
2
,  two-class accuracy; Q

3
, three-class accuracy; MCC, Mathews correlation coeffi  cient; SOV, segment overlap measure.
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4.1.3 Results using SetPRED-TMBB

Table 2 contains a summary of TMBpro-SS secondary structure prediction results 
compared to PRED-TMBB. In order to make an objective comparison to PRED-TMBB, 
the same LOOCV was applied on the same set of proteins (SetPRED-TMBB).

Of the 214 annotated �-strands PRED-TMBB correctly predicts 203, while 
 TMBpro-SS correctly predicts 204. PRED-TMBB makes 13 FP predictions, while 
TMBpro-SS only makes 6. Using the TOP measure of correct topology prediction 
PRED-TMBB correctly predicts 8 TOP, while TMBpro-SS succeeds on 11. TMB-
pro-SS also outperforms PRED-TMBB according to the Q2 (88.3–84.2%) and MCC 
(0.751–0.720) measures. When comparing TMBpro-SS to itself between datasets 
it has signifi cantly higher Q2, Q3, MCC, and SOV when using SetPRED-TMBB (see 
Tables 1 and 2). It is unclear how much of this diff erence is due to the fi ve proteins 
that diff er between the sets, and how much is due to the diff erent types of annotation 
of the training data. Th e Q2, Q3, MCC, and SOV results for individual proteins are dis-
played with the detailed tertiary prediction results in table 4 of Randall et al. (2008).

4.2 �-Contact prediction results

Th e input to TMBpro-CON is the amino acid sequence and a two-class second-
ary structure. SetTransfold was used to perform �-contact prediction with three dif-
ferent sets of two-class secondary structure: (1) predicted by transFold server, (2) 
predicted by TMBpro-SS, and (3) DSSP designations. Th e TMBpro-CON results 
using (1) were compared to the �-contacts predicted by the transFold server. Th e 
TMBpro-CON results using (2) were compared to the transFold published results. 
Using SetPRED-TMBB �-contact prediction was performed with two sets of two-
class secondary structure: predicted by TMBpro-SS and hand curated annota-
tions from Bagos et al. (2004a). No comparison to previous work was made using 
 SetPRED-TMBB since PRED-TMBB does not predict �-contacts.

4.2.1 �-Contact evaluation metrics

For evaluation of �-contact prediction the authors of transFold introduced the con-
cept of a compatible pair of residues to allow contact predictions that are nearly cor-
rect to be counted. Consider a pair (i, j) to be a true �-residue pairing. Th e contact 
pairs (i, j) and (m, n) are considered to be compatible if, for a given integer �, (i, j) 
= (m � �, n ��). In their work they use a value of � = 2 for evaluation. Both � = 2 
and � = 0 were used to assess TMBpro, and the performance measures utilized were 
precision and recall. Th e precision is calculated by (number of correct �-contact pre-
dictions/total number of �-contact predictions) and recalled by (number of correct 
�-contact predictions/total number of true �-contacts).
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4.2.2 Results using SetTransfold

A summary of �-contact prediction results for both protein sets and all secondary 
structure sets is available in Table 3. Using the same secondary structure as input 
(the predicted secondary structure from the transFold server) TMBpro-CON per-
forms slightly bett er than the transFold server by all measures. Using the predicted 
secondary structure from TMBpro-SS as input, TMBpro-CON performs signifi -
cantly bett er than transFold server results and published results according to all 
measures.  Using the DSSP assigned secondary structure as input TMBpro-CON 
predicts exact �-contacts with precision 0.478 and recall 0.520. Th ese results dem-
onstrate the upper bound in �-contact prediction accuracy of TMBpro-CON, given 
improvements in secondary structure prediction only.

4.2.3 Results using SetPRED-TMBB

Taking the predicted secondary structure from TMBpro-SS trained on SetPRED-
TMBB as input, TMBpro-CON predicts exact �-contacts with precision 0.414 and 
recall 0.407. Th ese values are signifi cantly higher than the corresponding prediction 
using SetTransfold (see Table 3). Th is diff erence can be accounted for by the more 
accurate secondary structure predictions for SetPRED-TMBB. Th e �-contact recall 
results for the individual proteins are shown in the tertiary results.

4.3 Tertiary structure prediction results

Th e TMBpro tertiary structure predictions are evaluated here on SetPRED-TMBB 
using the secondary structure and �-contacts predicted by TMBpro. Only the single 
tertiary structure model with the lowest search energy is evaluated.

Table 3. �-contact prediction results

Dataset / method Precision �� = 0 Recall � = 0 Precision � = 2 Recall � = 2

SetTransfold

transFold – published – – 0.350 0.450

transFold – server results 0.084 0.105 0.434 0.512

TMBpro-CON (transFold) 0.110 0.128 0.445 0.532

TMBpro-CON (TMBpro-SS) 0.206 0.215 0.648 0.671

TMBpro-CON (DSSP) 0.478 0.520 0.960 0.960

SetPRED-TMBB

TMBpro-CON (TMBpro-SS) 0.414 0.407 0.851 0.819

TMBpro-CON (annotation) 0.484 0.529 0.967 0.996

The secondary structure method used by TMBpro-CON is in parentheses. For � = 0 only exact pairs are counted, for � = 2 pairings 

within � 2 are counted as correct. True �-contacts are determined by the DSSP program.
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4.3.1 Tertiary structure evaluation metrics

Th e two measures used to evaluate tertiary predictions were root-mean square de-
viation (RMSD) and global distance test total score (GDT_TS). Th e latt er has been 
used as the primary numeric measure in recent critical assessment of methods of 
protein structure prediction (CASP) experiments (Zemla et al. 2001; Moult et al. 
2005). Th e TM notation is used as a subscript to indicate that the measure is calcu-
lated on only the TM segments of the true structure compared to the model.

Fig. 3. C� trace of the lowest energy prediction for protein 1QJ8 aligned with the crystal struc-

ture. Crystal structure trace is thicker and both traces are colored from cold (blue) to hot (red), from N- to C-termini. Calculated 

on all residues, the GDT_TS is 52.0 and the RMSD is 5.5 Å. Calculated on the curated TM segments only, the GDT_TS is 69.9 and the 

RMSD is 3.6 Å.
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4.3.2 Prediction results

Th e best prediction, in terms of the GDT_TS and RMSD on the whole structure is 
made on the protein with the second highest �-contact recall: 1QJP. Th e �-contact 
recall is 0.65, the GDT_TS is 57.3 and RMSD is 4.3 Å. Th e GDT_TSTM is 68.3 and 
RMSDTM is 3.0 Å. Th e next best whole structure predictions are for proteins 1QJ8 
(52.0, 5.5 Å), 1PRN (50.0, 7.1 Å), and 1E54 (49.3, 7.7 Å). Figure 3 presents an image 
showing the predicted structure for 1QJ8 superimposed on the true structure. For 
several proteins the GDT_TSTM results are strong. For proteins 1QJ8, 1QJP, 1PRN, 
1I78, 1E54, 2OMF, and 1FEP the GDT_TSTM is greater than 60.0. Th ese predictions 
correspond to correct topology predictions and high �-contact recall when compared 
to the other predictions. Th e signifi cantly lower GDT_TS and higher RMSD scores 
on the whole structures refl ect the diffi  culty of modeling long loop regions and core 
domains folded inside the larger proteins.

Th e worst whole structure and TM segment predictions are made on proteins 
1A0S and 2MPR, both of which have true strand counts of 18, but are modeled 
using 16-stranded templates because of incorrect secondary structure topology 
predictions. Additionally, the locations of multiple strands in the 2POR prediction 
are incorrect resulting in an incorrect topology according to the TOP measure. Th e 
worst whole structure and TM segment prediction for a protein with correct topol-
ogy prediction was made on the 10-stranded protein 1K24. Th e topology is correct 
using the TOP measure; however, the locations of the sixth and seventh strands are 
off  by seven residues. Using a slightly stricter standard for topology assessment, this 
prediction would be considered an incorrect topology. From these results it is clear 
that the correct topology is necessary to build a reasonable tertiary model.

Th e detailed tertiary structure prediction results for each protein in SetPRED-
TMBB are available in table 4 of Randall et al. (2008).

4.3.3 Self-consistency results

To evaluate the self-consistency of TMBpro the curated secondary structure and 
true �-contacts were provided as input to the program. Th e performance was as-
sessed both allowing and disallowing the inclusion of the native template among the 
available templates, and the results are displayed in the rightmost section of table 4 
in Randall et al. (2008). When the native template is included, TMBpro always re-
covers the true structure. When the native template is not included, the RMSDTM re-
sults range from 1.5 to 4.5 Å. For 12 of 14 predictions, the RMSDTM is less than 2.8 Å. 
Th e only two exceptions are proteins 2FCP, with an RMSDTM of 3.5 Å, and 1QD5, 
with an RMSDTM of 4.5 Å. At 723 residues 2FCP is one of the longest proteins in 
the set, so a slightly higher error is not surprising. 1QD5 is only 269 residues, but 
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contains an irregular bulge in the fi rst strand that is not present in its only available 
template (1TLY).

5 Discussion

Recently, tertiary structure models predicted by TMBpro have been used to ana-
lyze mitochondrial porins in Trypanosoma brucei (Singha et al. 2009) and to com-
pare channel characteristics between porin families of the marine cyanobacterium 
Prochlorococcus (current work with Dr. Adam Martiny of UC Irvine). Th e results of 
the latt er project and the benchmark results of TMBpro trained on an updated set 
of non-redundant TMB proteins will be reported elsewhere. Th e updated version 
of TMBpro will be trained using the automatically calculated TM annotations from 
the OPM (Lomize et al. 2006) or PDB_TM (Tusnády et al. 2004, 2005b). Addi-
tional features to improve TMBpro’s usability will include (1) an advanced interface 
that allows users to submit their own secondary structure defi nitions, fi x the num-
ber of TM segments, and select specifi c structural templates for model building and 
(2) inclusion of confi dence estimates for each residue in the model and the model as 
a whole in the output returned to the user.

TMB proteins have clear biological and medical relevance. Due to their importance 
and the diffi  culty of experimentally determining their structures, accurate  tertiary 
structure prediction of TMB proteins is an important task for the protein structure 
prediction community. Traditional homology modeling methods will perform well if 
the target protein is similar enough to a solved protein to create a quality alignment; 
however, for the vast majority of putative TMB proteins traditional homology model-
ing will fail. Th e construction rules TMB proteins follow provide a greatly reduced 
search space compared to the globular protein structure prediction problem. In this 
chapter the TMBpro methodology for predicting secondary structure, �-contacts, 
and tertiary structure of TMB proteins was described. Th e TMBpro prediction server 
is freely available as part of the Institute for Genomics and  Bioinformatics suite of pre-
diction tools at: htt p://www.igb.uci.edu/servers/psss.html.
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Abstract

Multiple sequence alignment remains one of the most powerful tools for assessing evo-
lutionary sequence relationships and for identifying structurally and functionally impor-
tant protein regions. Membrane-bound proteins represent a special class of proteins. Th e 
regions that insert into the cell membrane have a profoundly diff erent hydrophobicity 
patt ern as compared with soluble proteins. Multiple alignment techniques employing 
scoring schemes tailored for sequences of soluble proteins are therefore in principle not 
optimal to align membrane-bound proteins. In this chapter we describe some of the char-
acteristics leading transmembrane proteins to display diff erences at the sequence level. 
We will also cover computational strategies and methods developed over the years for 
aligning this special class of proteins, discuss some current bott lenecks, and suggest some 
avenues for improvement.

Abbreviations: TM, transmembrane; MSA, multiple sequence alignment; SP, sum of pairs 
(score); TC, total column (score).

1 Introduction

Over the past years, integral membrane proteins have received a great deal of att en-
tion. Th ey carry out essential functions in many cellular and physiologic processes, 
such as signal transduction, cell–cell recognition, and molecular transport. Mem-
brane proteins are likely to constitute 20–30% of all ORFs contained in genomes 
( Jones 1998; Wallin and von Heijne 1998). Unfortunately, the number of deter-
mined transmembrane (TM) structures in the PDB is still very low: 1.7% (1139 
of more than 64,000) are TM (Tusnády et al. 2005). Despite a solid growth of the 
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number of membrane protein structures (White 2004), and a steadily increasing 
fraction in the total PDB (up from ~1.4% in 2003), their determination remains a 
diffi  cult task, such that they will continue to lag behind the number of experimen-
tally solved soluble protein structures.

Given the biomedical importance of TM proteins and the large and growing gap 
between the number of solved TM protein structures and the number of TM protein 
sequences, sequence analysis techniques are crucial. Th e simultaneous alignment of 
three or more nucleotide or amino acid sequences is one of the most common tasks 
in bioinformatics. Multiple sequence alignment (MSA) is an essential pre-requisite 
to many further modes of analysis into protein families such as homology model-
ing, secondary structure prediction, phylogenetic reconstruction, or the delineation 
of conserved and variable sites within a family. Alignments may be further used to 
derive profi les ( Gribskov et al. 1987) or hidden Markov models (Bucher et al. 1996; 
Eddy 1998; Karplus et al. 1998) that can be used to scour databases for distantly 
related members of the family.

Th e automatic generation of an accurate multiple alignment is potentially a daunt-
ing task. Ideally, one would make use of an in-depth knowledge of the evolutionary and 
structural relationships within the family but this information is oft en lacking or diffi  -
cult to use. General empiric models of protein evolution (Dayhoff  et al. 1978; Henikoff  
and Henikoff  1992) are widely used instead, but these can be diffi  cult to apply when 
the sequences are less than 30% identical (Sander and  Schneider 1991). Furthermore, 
mathematically sound methods for carrying out alignments, using these models, can 
be extremely demanding in computer resources for more than a handful of sequences 
(Carrillo and Lipman 1988; Stoye 1998). To be able to cope with practical dataset 
sizes, heuristics have been developed that are used for all but the smallest datasets.

Th e most commonly used heuristic methods are based on the progressive align-
ment strategy (Hogeweg and Hesper 1984; Feng and Doolitt le 1987; Th ompson 
et al. 1994; Heringa 1999). Th e idea is to establish an initial order for joining the 
sequences, and to follow this order in gradually building up the alignment. Many im-
plementations use an approximation of a phylogenetic tree between the sequences 
as a guide tree that dictates the alignment order.

Although appropriate for many alignment problems, the progressive strategy suf-
fers from its greediness. Errors made in the fi rst alignments during the progressive 
protocol cannot be corrected later as the remaining sequences are added in. Att empts 
to minimize such alignment errors have generally been targeted at global sequence 
weighting (Altschul et al. 1989; Th ompson et al. 1994), where the contribution of 
individual sequences is weighted during the alignment process. However, such glob-
al sequence weighting schemes carry the risk of propagating rather than reducing 
error when used in progressive multiple alignment strategies (Heringa 1999).
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2 Factors infl uencing the alignment of transmembrane proteins

Transmembrane regions have a modifi ed amino acid composition and diff erent con-
servation patt erns as compared to soluble proteins. Most current MSA techniques 
have been built, and optimized, to align homologous soluble proteins. Even though 
many such techniques are still applicable to TM regions, yielding a somewhat lower 
alignment accuracy than for soluble proteins (Forrest et al. 2006), there are some 
specifi c diff erences that should be taken into consideration when creating a MSA 
for TM proteins.

Th e lipid environment of TM regions infl uences the folding properties of the 
protein backbone and side chains, which can be observed not only in a diff erent ami-
no acid  composition, but also in diff erent evolutionary substitutions and diff erent 
structural conservation. Th e hydrophobic nature of lipid tails of the membrane does 
not allow for H-bonding with the backbone or side chains of the peptide as water 
does. Th erefore, backbone H-bonds of a TM region are typically satisfi ed through 
secondary structure: membrane spanning helices or beta barrels. Th e amino acid 
composition of TM regions is predominantly hydrophobic. Th ese conditions are 
similar to the buried regions of soluble protein. TM regions nevertheless show some 
characteristic quite diff erent from buried regions.

Donnelly et al. (1993) noted that TM helices, though mostly hydrophobic, had 
an alternating patt ern of conserved and non-conserved amino acids; the conserved 
amino acids form the core of the protein structure, while the non-conserved hydro-
phobic amino acids point out toward the lipids. Furthermore, regions facing other 
protein parts within the lipid are typically enriched in phenylalanine and in tyrosine 
(Langosch and Heringa 1998; Bordner 2009). Jones et al. (1994) noted that polar 
regions are highly conserved within TM regions; this may be explained by charges 
or H-bonds needing to be satisfi ed by the protein itself, making polar residues in the 
membrane highly specifi c.

2.1 Transmembrane substitution rates

Conventional scoring matrices such as PAM (Dayhoff  et al. 1978) or BLOSUM 
 (Henikoff  and Henikoff  1992), routinely used for sequence retrieval and alignment, 
are therefore not optimal to align TM regions. Several groups have made att empts to 
capture the evolutionary trends specifi c to TM regions in an amino acid substitution 
matrix, e.g., the JTT  matrix ( Jones et al. 1994), the PHAT matrix (Ng et al. 2000), 
the asymmetric SLIM matrices (Müller et al. 2001) and the bbTM matrix special-
ized for TM beta-barrels ( Jimenez-Morales et al. 2008). Substitution scores, sij, are 
generally based on the frequency of amino acid substitutions, qij, in a set of aligned 
homologous sequences, according to:
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where � is a constant, and fi are the background frequencies of amino acids. For the 
JTT  matrix the qij and fi were both calculated from aligned TM regions. Th e PHAT 
matrix calculates the observed substitutions in a similar fashion, but takes the ex-
pected number of substitutions (fi fj) from general hydrophobic areas; in this way 
the background expectancy is based on TM as well as buried regions from soluble 
proteins. PHAT was shown to outperform the JTT  matrix on database homology 
searches; this may be rationalized through background noise in alignments being 
similar to hydrophobic regions (Ng et al. 2000).

Table 1 shows the major diff erences in substitution rates between TM regions and 
soluble proteins, by subtracting the normalized PHAT matrix from the normalized 
 BLOSUM62 matrix (Henikoff  and Henikoff  1992). It can be observed that the po-
lar residues have large positive self-substitution scores, i.e., the substitution scores in 
PHAT are higher than those in BLOSUM62, indicating that polar residues are more 
conserved in TM regions. Table 1 also shows that hydrophobic residues are less con-
served, and that proline is particularly conserved in TM regions. Th e high proline con-
servation may be explained by the special role of proline residues forming kinks in TM 
regions (von Heijne 1991).

2.2 Transmembrane alignment gaps

Not only amino acid substitution rates, but also amino acid insertions and deletions 
show diff erent patt erns in TM proteins. Generally speaking the TM regions are 
much more conserved than their interconnecting loops (e.g., Forrest et al. 2006). 
Th ese connecting loops may be very long, change considerably in size between ho-
mologs and they also show great structural fl exibility or variability. Long loops are 
quite typical for TM proteins, and may be used for fl y-casting (Daff orn and Smith 
2004) or possibly to prevent aggregation of the highly hydrophobic TM regions 
(Abeln and Frenkel 2008); however, they pose a particular problem for MSA tech-
niques. Typically gap open penalties should be higher for TM regions, as is shown 
for the PRA LINE-TM example below (Pirovano et al. 2008a).

3 Overview of TM MSA methods

Not many techniques have been developed to improve the alignment of TM pro-
teins. Th e method STAM (Shafrir and Guy 2004) represents an early att empt to 
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improve alignment accuracy by combining diff erent substitution matrices. A more 
recent study by Forrest et al. (2006) reported that the use of a bipartite scheme 
(consisting of  BLOSUM62 and PHAT) does not signifi cantly improve membrane 
protein sequence alignments. Th ey suggest that the previously reported progress is 
more likely to depend on the separation of the TM blocks or on the sett ings of spe-
cifi c gap penalties.

We have recently investigated the eff ects of incorporating TM-specifi c informa-
tion into the multiple alignment tool PRA LINE, dubbed PRA LINE-TM (Pirovano 
et al. 2008a). Th is information is integrated in a “soft ” way, compared to the STAM 
approach where TM segments are fi rst chopped and then aligned separately. In the 
PRA LINE-TM approach the choice of the matrix depends on consistent TM predic-
tions over a column and is determined dynamically during the alignment procedure. 
By applying the PHAT substitution matrix on consistently predicted TM regions, 
we show that it is possible to signifi cantly improve the alignment quality.

3.1  TM-aware multiple sequence alignment by the Praline method

Th e strategy adopted by Praline for TM protein alignment, includes three basic tech-
niques: (1) profi le pre-processing, (2) a bipartite alignment scheme, and (3) tree-
based iteration of the alignment.

3.1.1 Profi le pre-processing

Th e profi le pre-processing strategy in the PRA LINE method (Heringa 1999) is a 
position-specifi c weighting scheme aimed at incorporating into each sequence, 
trusted information from other sequences. As such, it works contrary to the early 
weighting schemes mentioned above (Altschul et al. 1989; Th ompson et al. 1994) 
which att empt to upweight sequences according to their divergence. In principle 
it is a good idea to perform global weighting aimed at increasing the contribution 
of more distant sequences as they carry more information at each alignment posi-
tion. However, when sequence weighting is used in progressive multiple alignment, 
the increased chance of mistakes when aligning distant sequences can well lead to 
error propagation (Heringa 2002). Vogt et al. (1995) compared local and global 
alignments of pair-wise sequences with a data bank of structure-based alignments 
 (Pascarella and Argos 1992) and included a set of over 30 substitution matrices with 
optimized gap penalties.

Th e best global alignments were achieved with the Gonnet residue exchange 
matrix (Gonnet et al. 1992), resulting in 15% incorrect residue matching when se-
quences with 30% residue identity were aligned. Th e error rate quickly increased to 
45% incorrect matches at 20% residue identity of the aligned sequences, and to 73% 
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error at 15% sequence identity. Rost (1999) stressed the same point and reported 
even higher pair-wise alignment error rates in the twilight zone (below 30% iden-
tity). Th ese statistics clearly demonstrate that increasing the global weight for distant 
sequences is likely to lead to misalignment and error propagation during progressive 
multiple alignment. Th at is why the Praline pre-processing strategy tends to upweight 
“trusted” sequences. For each sequence, a multiple alignment is created by stacking 
other sequences (master–slave alignment) that score beyond a user-specifi ed thresh-
old aft er pair-wise alignment with the sequence considered: a low threshold would 
result in a pre-processed alignment for each sequence comprising many or all other 
sequences (where the chance for alignment error is large), while higher thresholds 
would allow the information from fewer sequences into the alignment (with lesser 
alignment error). For each of the thus formed pre-processed alignments, a profi le is 
constructed. Th e PRA LINE method then performs progressive multiple alignment 
using the thus constructed pre-processed profi les. Each input sequence is now repre-
sented by its associated pre-processed profi le, which incorporates knowledge about 
other “trusted” sequences (in particular similar sequences) and comprises position-
specifi c gap penalties. Th is enables increased matching of distant sequences and 
 appropriate placement of gaps outside ungapped core regions during progressive 
alignment, thereby avoiding errors early on in the progressive alignment.

3.1.2 Bipartite alignment scheme

Th e PRA LINE bipartite strategy for TM proteins was implemented following the 
scheme devised for the alignment of soluble protein sequences for which 3-state 
secondary structure, i.e., �-helix, �-strand, and coil, is delineated (Heringa 1999). 
Th e PRA LINE-TM tool fi rst predicts the TM topology for each input sequence, 
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Fig. 1. Overview of the PRALINE-TM bipartite alignment strategy.
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using the state-of-the-art TM topology predictor Phobius (Käll et al. 2004). Next, 
the profi le-scoring scheme simply applies TM-specifi c substitution scores from the 
PHAT matrix to consistently predicted TM positions, during the progressive align-
ment stage of PRA LINE. In Fig. 1, an overview of this bipartite alignment strategy as 
implemented in PRA LINE-TM is given. An alternative way of looking at the bipar-
tite alignment strategy is to consider the TM info to be appended to residue types, 
thereby eff ectively doubling the number of residue types and quadrupling the size of 
the substitution matrix.

Th e current PRA LINE profi le-scoring scheme uses the following equation to 
score a pair of profi le columns x and y:

 
α β∑∑

20 20

= 1 = 1

S( , )= ( , ),i j
i j

x y M i j
 

(2)

where �i and �j are the frequencies with which residues i and j appear in columns x 
and y, respectively, and M(i, j) is the exchange weight for residues i and j provided by 
the selected substitution matrix M. By default profi le columns are aligned using the 
 BLOSUM62 matrix. Two profi le columns will be matched using the PHAT matrix 
only in case each residue in the column is predicted to be member of a TM seg-
ment (see Fig. 1). Th is is done to guarantee that inconsistently predicted positions 
do not negatively infl uence the alignment quality. As a result, and contrary to the 
STAM method (Shafrir and Guy 2004), PRA LINE-TM potentially allows TM seg-
ments to be aligned to non-TM segments (Pirovano et al. 2008a). Th e BLOSUM62 
and PHAT substitution matrices are normalized using their diagonal elements as 
described by Abagyan and Batalov (1997). Th e “soft ” bipartite scheme of Praline is 
less sensitive to errors in the delineation of the TM regions, as compared with “hard” 
bipartite schemes such as adopted in the STAM method. In fact, in the latt er hard 
approaches the exact defi nition of the TM segment is critical because TM segments 
cannot be aligned with non-TM segments. Incorrectly delineated TM regions are 
likely to lead to misaligned TM and soluble segments, and no provision can be made 
for variable numbers of TM segments within families.

3.1.3 Tree-based consistency iteration

As a third and last step, the PRA LINE-TM method employs an additional iterative 
strategy based on tree-dependent consistency iteration, which is similar to the tree-
dependent strategy proposed by Hirosawa et al. (1995) and its implementation in 
the  MUSCLE method (Edgar 2004). In this scenario, each edge of the phylogenetic 
(guide) tree is used to divide the alignment in two subalignments, which are succes-
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sively realigned. Th e new alignment is retained only if an improved sum of pairs (SP) 
score is achieved. In the case of PRA LINE-TM, this score is obtained by summing 
the substitution values of both the BLOSUM62 and PHAT matrix (depending on 
the TM topology of the amino acid pair). For the tree-based consistency strategy 
one iterative cycle implies that each edge of the tree is visited once. Th e maximum 
number of iterations is set to 20 by default to keep computations within bounds.

3.2 Bipartite MSA compared to standard MSA

It is important to know whether a bipartite scheme can improve alignment quality 
by including TM-specifi c information during the alignment procedure. Our recent 
work compares the PRA LINE and (bipartite) PRA LINE-TM strategies with three 
state-of-the-art TM topology predictors. Th e results are summarized in Table 2 
and are based upon a standard progressive alignment strategy (which we refer to 
as  “basic”) to make a fi rst comparison between an alignment method excluding 
and including the TM bipartite scheme. Accuracy is measured by comparing the 
alignment produced with the reference alignment. For BAliBASE, the BAliBASE 
“testing” program is provided that implements two scoring schemes: the SP score 
measures the fraction of correctly aligned residue pairs while the total column (TC) 
score expresses the fraction of correctly aligned columns. Th e TC score is the stricter 
of the two. (Note the distinction with the SP scoring used during alignment, which 
is based on a sum of substitution scores as explained in the previous section.)

A notable increase can be observed for all three TM predictors, albeit Phobius 
gives the best performance overall. Phobius has shown to be one of the most ac-
curate TM topology predictors, especially on sequences that also contain a signal 
peptide (Käll et al. 2004; Jones 2007).

Independent contributions to the alignment quality coming from the PHAT ma-
trix and TM-specifi c gap-open penalties were also investigated. Th e results in Fig. 2 
clearly show that the combination of BLOSUM62/PHAT matrices yields optimal 
results, while using only BLOSUM62 or only PHAT does not, even when optimized 

Table 2. Performance of the PRALINE and PRALINE-TM basic strategies (without pre-profi ling) on reference set 7 of BAliBASE 

(at gap-open and gap-extension  penalties of 15.0 and 1.0 for both the soluble and the transmembrane regions)

Method SP score TC score

PRALINE basic 0.646 0.231

PRALINE-TM basic – HMMTOP 0.679 0.264

PRALINE-TM basic – TMHMM 0.725 0.254

PRALINE-TM basic – Phobius 0.737 0.268
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gap penalties are used (Pirovano et al. 2008a). Using only BLOSUM62, a small im-
provement can also be obtained by optimising the TM gap-open penalty; these in-
fl uences however are much less pronounced than the use of the bipartite scheme.

Th e most striking observation to be made from both Table 2 and Fig. 2 is the 
positive eff ect on the alignment quality of the PHAT matrix applied to reliably pre-
dicted TM regions. In Table 2 the results are shown at an arbitrary gap-open penalty 
of 15.0 and gap-extension penalty of 1.0 for both the soluble and the TM regions. 
Figure 2 shows that the positive eff ect of using the PHAT matrix on TM regions is 
consistent over the whole range of gap-open penalties.

3.3 Comparing PRALINE-TM with non-TM MSA methods

Table 3 compares PRA LINE-TM (gap-open penalty 15.0; TM gap-open penalty 
16.5; pre-profi le cut-off  11.0) with other widely used multiple alignment methods, 
which are designed for aligning soluble proteins. Th e default PRA LINE method, 
i.e., “prepro” without TM information, with optimized parameter sett ings over this 
dataset is included for reference (gap-open penalty 15.0; pre-profi le cut-off  8.5). 
 Generally, methods reach average SP scores about 10% lower than for soluble pro-
teins (Pirovano 2010). All methods reach SP scores that are twice as high as corre-
sponding TC scores. PRA LINE-TM achieves the highest SP score for two  datasets 
and the highest TC score for four datasets. Concerning the averages overall eight 
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datasets, ProbCons slightly outperforms MAFFT and PRA LINE-TM on the SP 
score. On the more critical TC score PRA LINE-TM clearly scores best.  ClustalW and 
MUSCLE score considerably lower on almost all datasets. Th e standard  PRA LINE 
method achieves a SP score comparable to ClustalW, but can be placed between 
MAFFT and ProbCons with respect to the TC score. Importantly, inclusion of TM 
information in PRA LINE-TM improves overall SP and TC scores compared to stan-
dard PRA LINE.

It should be mentioned that the PRA LINE and PRA LINE-TM methods were op-
timized on the TM dataset, whereas the other methods were run at default sett ings. 
It is noteworthy in this respect that an increased pre-profi le cut-off  value of 11.0 for 
 PRA LINE-TM worked best, in contrast to the cut-off  value of 8.5 that was found to be 
optimal for soluble protein sequences. Th e “tighter” pre-profi les with fewer but more 
similar sequences yielded improved TM predictions, leading in turn to improved 
alignments. Concerning this training scenario, both MAFFT and ProbCons are rela-
tively robust on TM sequences. Nonetheless, the results show clearly that a TM-based 

Table 3. Comparison between the PRALINE-TM method and fi ve widely-used multiple alignment methods

Set ClustalW MUSCLE MAFFT ProbCons PRALINE PRALINE-TM

SP score

7tm 0.847 0.836 0.835 0.882 0.816 0.860

Acr 0.906 0.946 0.937 0.935 0.930 0.936

Dtd 0.786 0.855 0.844 0.877 0.824 0.863

Ion 0.354 0.520 0.509 0.527 0.346 0.543

Msl 0.864 0.870 0.845 0.849 0.813 0.874

Nat 0.630 0.738 0.766 0.745 0.720 0.713

photo 0.887 0.902 0.934 0.913 0.915 0.933

ptga 0.461 0.551 0.729 0.716 0.404 0.683

Avg. 0.717 0.777 0.800 0.806 0.721 0.801

TC score

7tm 0.410 0.340 0.320 0.410 0.310 0.430

Acr 0.580 0.670 0.620 0.670 0.690 0.620

Dtd 0.250 0.310 0.210 0.340 0.360 0.390

Ion 0.000 0.000 0.030 0.090 0.000 0.000

Msl 0.610 0.630 0.610 0.600 0.580 0.660

Nat 0.020 0.130 0.120 0.180 0.220 0.140

photo 0.490 0.460 0.550 0.490 0.570 0.730

ptga 0.010 0.060 0.180 0.150 0.000 0.080

Avg. 0.296 0.325 0.330 0.366 0.341 0.381

Individual and average SP and TC scores are given; for each set the best scoring method is highlighted in bold.
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strategy can signifi cantly improve the quality of TM protein sequence alignments, 
and should be considered a promising avenue for other applications as well.

4 Benchmarking transmembrane alignments

Owing to the underrepresentation of solved crystal TM structures in the PDB da-
tabase, it is a diffi  cult task to assess the quality of TM protein sequence alignments 
based on structural comparisons. To date, out of the many alignment benchmarks 
available for standard proteins, only BAliBASE (Bahr et al. 2001) has devoted a spe-
cial reference set to TM proteins, ref7. Th is set contains eight accurately aligned TM 
families and consists of in total 435 sequences with an average length of 567 resi-
dues. Th e number of TM �-helices per sequence varies from 2 to 14.

For BAliBASE the SP and TC scores explained above are used. Other general 
benchmark sets use diff erent names (the PREFAB “Q score” and SABmark fD score 
are equivalent to the SP score), or diff erent scores (SABmark fM score is the total 
number of correctly aligned pairs from the test alignment, and is also stricter than 
the SP score). It is however not trivial to select the biologically most meaningful 
scoring scheme, as even gold-standard structure-derived alignments can show high 
variability (Pirovano et al. 2008b). In particular, this can be a serious problem for the 
strongly variable TM loop regions.

Despite the eff orts that are being made to cover a signifi cant part of the TM struc-
ture space (i.e., by taking families that display diff erent evolutionary distances and a dif-
ferent number of TM helices), the number of sequences is rather low for robust testing 
of alignment methods. Particularly, only 15% of TM proteins in the PDB are porin-
like �-barrel TM protein structures (Tusnády et al. 2005), so that a general benchmark 
set for �-TM alignments is currently lacking. Moreover, for a number of benchmark 
sequences the TM segments are determined from structure prediction, leading to a 
circular problem between TM alignment construction and prediction. Th e scarcity of 
reference data creates a problem for optimising any MSA technique for TM proteins, 
as overfi tt ing of variables is unavoidable on such small and biased datasets.

Th e HOMEP dataset of homologous membrane proteins (Forrest et al. 2006) 
provides an alternative possibility for evaluating TM alignment accuracy. Th e set 
consists of 36 TM proteins with solved crystal structures which can be grouped into 
11 SCOP families of similar topology. By making pair-wise structural superpositions 
within the families a set of 94 homologous comparative models has been compiled. 
For each pair of structures the TM location is determined both manually and us-
ing TMDET (Tusnády et al. 2005). Th is set has been the basis for the comparison 
of  diff erent sequence alignment algorithms as applied to membrane proteins by 
 Forrest et al. (2006).
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Other ways of testing the quality of TM alignments may be more indirect. For 
example, the performance of TM prediction methods can be used as a measure to 
evaluate alignment quality. It should be stressed that many of these methods use 
multiple alignments as an input for deriving prediction rules and paradoxically the 
quality of the alignment turns out to be a crucial factor here  (Cserzö et al. 1994, 
1997; Käll et al. 2005; Jones 2007). A scenario thus could be to select TM sequenc-
es for which corresponding crystal structures are available and retrieve for each of 
the homologous sequences using PSI-BLAST (Altschul et al. 1997). Subsequently, 
these sequence sets can be aligned by the competing alignment methods and serve 
as input for a TM prediction method. Th e prediction quality can be assessed us-
ing information on TM segment topologies and locations derived from the crystal 
structures, as routinely done for TM prediction method comparison (e.g., Nugent 
and Jones 2009).

4.1 Defi ning TM regions

A related and important issue is the defi nition of the membrane-bound region of 
the protein itself. In addition to the membrane-bound region, that strictly consists 
of the membrane-exposed “TM region” residues, the notion of membrane-spanning 
region (MSR) is oft en used (e.g., Möller et al. 2001; Forrest et al. 2006). Th e MSR 
is the secondary structure element, mostly �-helix but also �-strand, that crosses 
the membrane and potentially extends far outside the membrane region proper. Th e 
TM region therefore is a subset of the MSR. A defi nition based on X-ray crystallog-
raphy data is also possible, provided suffi  cient electron density is observed that can 
be associated with the lipid region (Fyfe et al. 2001). Other experimental methods 
include proteolytic cleavage and chemical probe methods (e.g., Jennings 1989, for a 
review). In general, however, the boundaries of the lipid-associated region cannot be 
determined unambiguously (Möller et al. 2001).

Th e common method for defi ning the membrane-bound region of the protein is 
by the evaluation of the periodicity of hydrophobicity and conservation along the 
sequence, for example, the TMDET method and corresponding PDB_TM  database 
 (Tusnády et al. 2005). Buried residues, i.e., in the protein core, are on average as hy-
drophobic as membrane-exposed residues, but considerably more conserved (e.g., 
Donnelly et al. 1993). In addition, the membrane-associated regions are anchored 
transversally in the membrane by strongly conserved polar and/or positive residues 
that fl ank the hydrophobic region on either side. Propensity tables for core and head-
group region location of amino acids, and also neural nets or Hidden Markov mod-
els (HMMs), are commonly used to identify or predict TM regions  (Sonnhammer 
et al. 1998). Interestingly, for optimal training of a HMM-based model the gold-
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standard TM region defi nition used has to be adjusted; all segments were shortened 
on both ends by three residues, and the new “optimal” segment boundary was deter-
mined by the model itself (Sonnhammer et al. 1998; Krogh et al. 2001). Likewise, 
for evaluation of the performance of TM prediction methods generally an overlap 
between fi ve and ten residues from the predicted TM segments with the 21 residues 
average length of the MSR is considered a successful prediction (Möller et al. 2001; 
Käll et al. 2004; Jones 2007). Please refer to Chapter 4 Topology prediction of mem-
brane proteins by Rita Casadio et al. for a more extensive overview of this topic.

What therefore commonly remains undefi ned in the description of the TM 
prediction methods is whether it is the core-headgroup boundary, or the head-
group-solvent boundary that is actually predicted. For accurate TM MSA it is 
these boundaries that are of crucial importance to the successful selection of ap-
propriate substitution matrices for the diff erent regions. Moreover, the determina-
tion of the substitution scores depends critically on a well-defi ned demarcation of 
the regions of diff erent composition and conservation patt erns, especially since 
relatively litt le sequence data are available on which these scores can be based.

5 Applications for TM multiple alignments

Multiple sequence alignment is used for various problems wherein accurate align-
ments between two or more proteins are required. For TM proteins, there are in 
particular many applications that require accurate profi les of multiple homologous 
sequences. For example, the prediction of TM regions, TM topology prediction 
(e.g., Jones 2007; see also Chapter 4 Topology prediction of membrane proteins by 
Rita Casadio et al.), and the predictions of binding sites of TM proteins (Bordner 
2009) all require accurate MSA; advances in MSA techniques for TM proteins 
may therefore also benefi t these applications.

Owing to the lack of experimentally solved TM structures homology model-
ing is a particularly important application. MSA techniques may help to improve 
the alignment quality necessary for accurate homology modeling by adding infor-
mation from other homologous sequences. Forrest et al. (2006) give a particu-
larly helpful review on the homology modeling of TM proteins. Th ey fi nd that in 
general techniques developed for soluble proteins may also be used for TM pro-
teins, although a slight drop in accuracy is observed as compared to soluble pro-
teins. Surprisingly, the TM regions of the proteins are more accurately modeled 
than the interconnecting loops; this may be explained by the larger (structural) 
conservation of the TM regions, as they form the core of the TM domains. Th e 
transferability of methods developed for soluble proteins to TM proteins, such 
as secondary structure prediction, may be explained by the similar hydrophobic 
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environment of buried regions in soluble proteins, and lipid exposed region in 
TM  domains.

5.1 Homology searches of TM proteins

Alignments between (multiple) proteins are used for two distinct purposes to: 
(1) decide if two proteins are evolutionary related, a homology search, or (2) deter-
mine the most accurate alignment between (a set of) evolutionary-related proteins. 
Th e latt er problem is usually addressed with MSA techniques. Th e two problems 
are strongly related, therefore techniques improving the alignment quality may also 
improve database search specifi city and vice versa. For example, it has been shown 
that the PHAT substitution matrix, originally developed to improve homology 
searches, can also substantially improve the quality of multiple sequence alignments 
 (Pirovano and Heringa 2008). Th is is not surprising as both problems are heavily 
dependent on substitution rates between amino acids. On a similar note, profi les 
created by homology searches may be used to improve MSA (Simossis et al. 2005).

Some particular issues have been observed for homology searches of membrane 
proteins; generally methods developed for soluble protein are used, such as PSI-
BLAST (Altschul et al. 1997) or HMMER (Eddy 1998). However, it has been noted 
that false positive rates may go up considerably as compared to database searches for 
soluble proteins. Homology searches for TM proteins in general protein databases 
using BLAST may be improved by employing TM-specifi c substitution matrices 
(e.g., Ng et al. 2000; Müller et al. 2001; Jimenez-Morales et al. 2008). Th e compo-
sitional bias of TM proteins may be overcome with corrections to scoring (Schäff er 
et al. 2001), or substitution matrices (Altschul et al. 2005). However, to our knowl-
edge, it has not been verifi ed whether such compositional bias corrections indeed 
improve homology searches for TM proteins. In addition, homology searches may 
be improved by adding information about the predicted TM regions and their to-
pology; this information is in particular valuable for the search of more remote ho-
mologs (Bernsel et al. 2008).

6 Current bottlenecks

A few signifi cant problems concerning MSA method development are holding back 
progress in accurate alignment of TM proteins:

1.  Benchmark sets are limited in quantity and quality, and are severely biased  toward 
TM helices. Th is limits tuning of method parameters, accurate determination of 
substitution rates and proper cross-validated testing of the MSA methods.
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2.  Homology searches are known to yield relatively large numbers of false positives 
for TM proteins. It is unclear to what extent recent method developments have 
improved this issue. A thorough investigation of these false positive rates is nec-
essary for current homology detection methods. Accurate homology detection, 
especially a low false positive rate, is crucial for the generation of high quality 
profi les to guide alignment and TM topology prediction.

3.  Th e very defi nition of membrane regions remains highly ambiguous, both theo-
retically and practically. Th is poses potentially severe problems for accurate de-
termination of substitution rates for the diff erent regions (core, headgroup, and 
soluble). Th e optimal performance of a TM alignment method depends on a strict 
correspondence of the regions on which the substitution matrices have been cal-
culated, and the predicted regions used in the bipartite alignment scheme.

7 Avenues for improvement

In contrast to the bott lenecks identifi ed above, several feasible and practical adjust-
ments are worth considering to improve alignment accuracy of TM proteins. We list 
them in approximate order of expected return on investment:

1.  Current TM-specifi c substitution matrices have been determined about a decade 
ago. Th e increase in experimental TM protein data will allow bett er estimates for 
the exchange parameters, in particular for the �-barrel TM regions. Moreover the 
current substitution matrices were developed specifi cally for accurate homology 
searches, which will not necessarily yield the best results for alignment methods.

2.  TM region prediction depends on accurate profi les, and is used in creating the 
TM multiple alignment. During the MSA procedure the profi le quality progres-
sively increases, which gives the opportunity to iteratively improve TM predic-
tions and thereby the TM multiple alignment.

3.  A known feature of TM loops is their fl exibility and variation in length. Th e bi-
partite scheme implies separate gap penalty sett ings for the TM and non-TM re-
gions, but does not distinguish between TM loops and non-TM  domains.

4.  Particular features of the TM regions, such as the “positive inside” rule, TM 
 topology, location of the head groups which are also predicted by the TM predic-
tion methods, are not explicitly used in current alignment schemes. For homol-
ogy detection, inclusion of TM topology has signifi cant positive eff ect (Bernsel 
et al. 2008). For example, penalties for misaligned regions may be included.

5.  A more fi ne-grained approach for region-specifi c substitution matrices, as well 
as misalignment penalties mentioned above, could be benefi cial. Particularly, the 
amino acid composition and substitution rates of �-barrels are known to diff er from 
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current values for �-helical TM regions. Also (protein) buried versus lipid exposed 
TM residues show signifi cantly diff erent conservation patt erns. Finally, the polar 
headgroup region imposes particular constraints on the amino acid composition.

6.  Apparently, allowing predicted TM regions to be aligned with non-TM regions is 
necessary for accurate alignment of TM proteins; either due to inaccuracies in the 
TM prediction, fl exibility in the length or due to number of TM regions between 
homologs. To optimize the TM to non-TM alignment one needs to correct for 
the compositional bias between these regions, for example, by non-symmetrical 
substitution matrices.

7.  Further method improvements might come from more balanced and comprehen-
sive benchmarks, not only containing alignments, but for instance also including 
validation of TM prediction methods based on diff erent alignment inputs (from 
diff erent alignment strategies).

8 Conclusions

MSA methods, trained on soluble proteins, in general do a reasonable job at 
aligning TM protein sequences; we approximate a diff erence of 10% in accuracy. 
Alignment quality can be improved signifi cantly using a TM-specifi c substitution 
matrix and proper gap penalty sett ings, as shown by the PRA LINE-TM example. 
In our view the improvement is mainly att ributed by the fact that the bipartite 
scheme, using BLOSUM62 and PHAT, is applied in a fl exible manner to undi-
vided sequences during each step of the alignment procedure. Att empts where 
TM and soluble regions were aligned independently did not succeed in making 
signifi cantly bett er alignments (Forrest et al. 2006). Strict gap penalty-sett ings for 
TM regions improve the overall performance; however, these eff ects should not 
be overestimated; the optimal TM gap-open penalty was only slightly higher than 
the standard penalty.

Overall we conclude that TM-awareness is an important concept for optimising 
MSA quality, yielding an increased performance of about 10%. However, none of 
the methods included here was able to align more than 40% of the reference align-
ment columns on average (TC score), so that further optimization remains a chal-
lenging task. Nevertheless, the diffi  culty of experimentally determining TM protein 
structures makes this a worthwhile eff ort.
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Abstract

A topology model of a membrane protein is a two-dimensional representation of the 
three-dimensional structure. Most oft en, it is the only structural information available 
and it can either come from computer predictions, experiments or a combination of both. 
However, it has lately become clear that some membrane protein structures contain fea-
tures that cannot be described by a traditional topology model. Th ey might contain kinks 
in their transmembrane helices, have interface helices that lie parallel to the membrane 
surface or contain re-entrant regions that only partially enter the membrane. Since these 
structural features are almost always functionally important and there are more and more 
structures available each year, there has been an increasing eff ort in predicting them. Th is 
chapter describes transmembrane helix kinks, interface helices, amphipathic membrane 
anchors, and re-entrant regions in detail, both from a biological perspective and from the 
methods that try to predict them. Additionally, prediction of free energy of membrane 
insertion and Z-coordinates is also covered.

1 Introduction

At fi rst glance, membrane protein topology models seem like a straight-forward 
concept and good two-dimensional (2D) approximations of three-dimensional 
(3D) structures. For the majority of known membrane proteins this holds true but 
as more and more structures become available, some membrane proteins appear 
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too complex to be described by a topology model. Th is leads to a situation where 
one has to choose between losing structural information by fi tt ing the structure to 
a too simple topology model, or perhaps a bett er choice, redefi ning the topology 
concept.

Figure 1 shows one subunit of the homotrimeric sodium-dependent aspartate 
transporter (Boudker et al. 2007) and is a prime example of a complex membrane 
protein structure. Apart from having several tilted helices that do not pass through 
the lipid bilayer perpendicularly, it also has two re-entrant regions (light green and 
dark green) where the protein chain fi rst enters the membrane, makes a turn, before 
fi nally leaving the membrane on the same side as it originated from. In this case, it 
resembles a helix hairpin that never fully traverses the lipid  bilayer. 

One other structural feature lost in a standard topology model is the disrupted 
transmembrane helix. In Fig. 1, the helicity of two transmembrane helices (yellow 
and orange) is broken inside the membrane. 

Th e structural features described above are unfortunately lost in a traditional to-
pology, but recently more and more topology predictors and other methods have 
started trying to predict them. Th ere are several reasons for this: basic topology 
 prediction methods perform well, though their prediction accuracies no longer in-
crease as dramatically over existing methods as they once did. As more structural 
data have become available, it is now possible to develop new methods that were 

Fig. 1. Structure of the sodium-dependent aspartate transporter (2nwl.pdb). The orange and yellow 

transmembrane helices are disrupted and the green and dark green show two re-entrant regions. The structure is rotated 180° in the 

direction of the arrow. The fi gure was made using PyMOL (DeLano 2002).
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impossible perhaps 5 years ago. Finally, features such as re-entrant helices, kinks, and 
interface helices are almost always functionally important. Th is chapter will describe 
such features in greater detail, both from a biological perspective and the methods 
that try to predict them.

2 Background

2.1 The Z-coordinate as a measure of distance to the membrane

Th e 3D structures of membrane proteins do not usually contain any information 
regarding the positioning of the protein within the membrane. Th e reason for this is 
that during structure determination, the protein is removed from the membrane and 
is crystallized using amphiphilic detergent molecules. Th ese are usually disorgan-
ized and diffi  cult to assign coordinates. Occasionally, a few lipid molecules and/or 
detergent molecules may be included in the fi nal structure since they are bound to 
the crystallized membrane protein, and these can facilitate the determination of the 
positioning in the membrane. 

In order to compare diff erent membrane protein structures to each other they 
need to have a common coordinate system. To do this, the atom coordinates from 
the original structure need to be changed so that the structure is positioned in a 
hypothetical membrane. Th e simplest way to do this is to calculate a vector that is 
the average of all the transmembrane helices of the structure and rotate it to the 
theoretical vector (Wallin et al. 1997). Aft er this, the average hydrophobicity of the 
amino acids in 1 Å wide slabs is calculated. Th e coordinate system of the amino ac-
ids is then translated so that the hydrophobic maximum is defi ned as the middle of 
the membrane (Z = 0 Å) and a positive value of the Z-coordinate is directed to the 
non-cytoplasm and a negative value to the cytoplasm. Th e Z-coordinate is thus the 
distance of an amino acid relative to the membrane. More advanced methods have 
recently been developed, for instance TMDET (Tusnády et al. 2004) and OPM 
(Lomize et al. 2006) that rotate and translate membrane protein structures to the 
most likely position inside a membrane.

Figure 2 is an example of a Z-coordinate plot for a rhodopsin membrane protein. 
It can be seen that the Z-coordinate rises and falls steeply for the transmembrane 
helices, but also that other structural features such as the C-terminal helix can be 
clearly recognized in the plot.

3 Interface helices

Close to the membrane–water interface region, membrane proteins sometimes con-
tain helices that run roughly parallel to the membrane surface, see Figs. 2 and 3a. 
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Such interface helices are located between 15 and 25 Å from the middle of the mem-
brane and have a diff erent amino acid composition than loops and the ends of trans-
membrane helices in the same region. Th e most conspicuous diff erence is that they 
have almost twice as a high fraction of tryptophan (Trp) and tyrosine (Tyr) residues 
than loops and transmembrane helices (Granseth et al. 2005). Th e direction of the 
aromatic ring of Trp residues is directed toward the center of the membrane when 
located in an interface helix more than 15 Å from the center of the membrane. Th is 
makes it possible to bury the bulky, hydrophobic, six-membered ring inside the hy-
drophobic bilayer. Th e interface helices are also less hydrophobic than re-entrant re-
gions and transmembrane helices, but more hydrophobic than average loop regions 
(Viklund et al. 2006). Interface helices are between 4 and 19 amino acids long with 
an average of 8.9, almost as long as the average length of a helix in a soluble protein. 
Interestingly, the more amino acids that are between two adjacent transmembrane 
helices, the more frequent it is for an interface helix to be present between them. All 
transmembrane helices separated by more than 31 residues had an interface helix 
between them. Th is suggests that interfacial helices might be a way of constraining 
and positioning transmembrane helices since long loops without interface helices 
would otherwise have a larger degree of structural freedom.

Not much is known about what functional roles interface helices play although 
for photosystem I, the interface helices are thought to shield cofactors from the aque-
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Fig. 2. Structure of rhodopsin and its corresponding Z-coordinate plot of its C� atoms. The colors 

of the helices  correspond to the colored regions of the Z-coordinate plot.
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ous phase ( Jordan et al. 2001). For the MscS mechanosensitive channel it is thought 
they are involved in channel gating by transferring mechanical force from a sensor 
domain to a transmembrane helix in the ion channel (Bass et al. 2003), and for the 
KirBac 1.1 inward rectifying potassium channel they are thought to be responsible 
for the regulation of the channel gating (Doyle 2004).

3.1 Prediction of interface helices

Th e only method to date that has att empted to predict interface helices is TOP-MOD 
(Viklund et al. 2006). It is an hidden Markov model-based (HMM) method that use 

a b

c d

Fig. 3. Examples of structural features that are missed by traditional topology models. 

(a)  Structure of rhodopsin with interface helix colored orange. (b) Structure of a monotopic membrane protein that is attached to 

the membrane with an in-plane membrane anchor (orange). (c) Structure of rhodopsin with helical kinks. The orange spheres are 

the heavy atoms of proline residues and the green is a kink induced by non-proline amino acid, in this case it is a glycine. It is diffi  cult 

to see the deviation of the helices caused by the kinks because of the viewpoint of the image. (d) Structure of aquaporin with its 

re-entrant regions in orange.
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sequence profi les provided by BLAST as its input. It uses a rather complex model of 
an interface helix state compartment since it refl ects that residues inside an interface 
helix can either be directed toward the membrane surface or be directed away from 
the membrane, a situation that leads to diff erent preferences of amino acids in the two 
categories. Even though there were more training data for interfacial helices than for 
re-entrant regions, prediction performance was not very good. Forty-two percent of 
the interface helices could be detected with 75% specifi city using a jack-knifed data-
set. Th is implies that the interface helices are more diverse and the sequence charac-
teristics weak.

3.2 Prediction of amphipathic membrane anchors

Amphipathic membrane anchors are interface helices that att ach a non-transmem-
brane protein to the membrane, see Fig. 3b. Th is means that the protein does not 
contain any helices that span the membrane, but is att ached to it with a so-called 
 in-plane membrane (IPM) anchor, most oft en an amphipathic helix located in the in-
terface region, roughly parallel to the membrane. Th ese proteins are called monotopic 
membrane proteins and their amino acid composition in the membrane–water inter-
face region is by and large similar to the interface helices in transmembrane proteins 
(Granseth et al. 2005). Th e main diff erences are that a higher fraction of Trp and Tyr 
residues of IPM anchors are directed towards the centre of the membrane, while they 
are composed of fewer acidic amino acids and more basic amino acids compared to 
the interface helices of transmembrane proteins. 

Interestingly, the support vector machine-based method AmphipaSeeK describes 
that some of its false positive predictions are in fact interface helices of transmem-
brane proteins (Sapay et al. 2006b). Although the method is trained and developed 
to predict IPM anchors, there is, at least, partial similarity between them and inter-
face helices. It is also clear that the main problem with predicting IPM anchors is the 
low sensitivity, around 30% when the specifi city is 99.8%. It should be noted that the 
dataset is small, even by membrane protein standards. 

4 Helical kinks in transmembrane helices

Transmembrane helices oft en contain disruptions of the alpha-helical backbone in 
the membrane region. Th ese are called helical kinks since they lead to a slight de-
viation in the direction of the helix (See Fig. 3c), and are frequently responsible for 
functional diversity in superfamilies (Hall et al. 2009). Th e most well-known induc-
er of helical kinks is proline (Pro) due to its unique cyclic side chain that locks its � 
backbone dihedral angle at –75°. Th is structural rigidity is what oft en causes second-
ary structure disruptions such as membrane helix kinks. However, only about 20% 
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of all Pro located in transmembrane helices cause helix distortions so a Pro residue 
is not by itself a clear indicator of whether a kink is present or not (Hall et al. 2009). 
Yet, Pro is responsible for 35–60% of the distorted membrane helices (Yohannan 
et al. 2004). Other amino acids that cause kinks are serine, threonine, asparagine, 
and glutamine. 

Transmembrane helix distortions are common; in rhodopsin, 6 out of 7 heli-
ces are distorted (Palczewski et al. 2000), and in a larger dataset, 44% out of 405 
contained kinks (Hall et al. 2009). Even though Pro is not a perfect kink indicator, 
much can be learned by looking for conserved Pro in multiple sequence alignments 
of membrane proteins. Many of the non-Pro kinks found in rhodopsin-like proteins 
with known three-dimensional structure contained Pro residues at the same po-
sitions in their homologous proteins (Yohannan et al. 2004). Th ese positions are 
called vestigial prolines – the hypothesis being that an initial Pro causes a kink, which 
later becomes locked in the structure by other longer range interactions. Aft er that, 
the Pro residue serves no particular structural role and can be mutated to a diff erent 
residue. 

4.1 Prediction of helix kinks

Th e simplest way to predict a helix kink is to create a multiple sequence alignment 
and look for regions containing conserved Pro residues (Yohannan et al. 2004). 
When a sequence alignment contained more than 10% Pro, a kink or distortion 
was present in the corresponding structures, 36 out of 39 times. Another way is to 
use molecular dynamics (MD) simulations starting from a canonical helix with all 
the side chains of the amino acids in an extended conformation (Hall et al. 2009). 
Th e simulations were able to reproduce the shape of kinked/non-kinked TM heli-
ces 70% of the time. If a Pro residue was present in a kinked helix, 79% of the helix 
simulations were within 1.5 Å of the crystal structure, for the vestigial Pro, 59% were 
correct but it was possible to increase this by 4–14% by replacing the alternate ami-
no acid with a Pro residue prior to simulation. Finally, only 18% of the non-proline 
kinks were reproduced.

5 Re-entrant regions

A re-entrant region is a membrane penetrating part of the protein that enters the 
membrane and then exits again from the same side, see Fig. 3d. Th ere is no clear cut 
defi nition of what constitutes a re-entrant region, but one sensible way of defi ning 
them is basing it on the Z-coordinate of the residues. Diff erent studies have used dif-
ferent ways of defi ning what a re-entrant region is, which makes direct comparisons 
of results somewhat ambiguous. Viklund et al. fi rst defi ned a re-entrant region as a 
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part of the sequence that penetrates the membrane between 3 and 25 Å and start and 
end on the same side of a membrane located at 15 Å. Regions penetrating between 
1.5 and 3 Å were also included if they monotonically decreased/increased with re-
gard to the deepest lying residue. Re-entrant regions were also subdivided into three 
more categories depending on their secondary structure. A helix hairpin enters and 
exits the membrane as helices which are connected to each other by a loop (helix–
coil–helix, see Fig. 1). Th e second category contains regions that have one helix fol-
lowed by a coil or coil followed by helix (helix–coil/coil–helix) and for instance 
includes the re-entrant region of aquaporin (Fig. 3d). Th e third and fi nal category is 
a re-entrant region that only has irregular secondary structure (coil). Th ese defi ni-
tions were used to train the fi rst machine learning methods to detect these structures 
(Viklund et al. 2006). 

Later methods changed the way of annotating re-entrant regions to be classifi ed 
only by the Z-coordinates of the amino acids and not by the secondary structure. 
Nugent and Jones (2009) assigned a part of the sequence that penetrates at least 
6 Å but not more than 6 Å from the opposite membrane face as a re-entrant region. 
A recent study by Viklund and Elofsson (2008) subdivided annotations into three 
diff erent classes, a membrane dip (roughly equivalent to the coil described above), 
a re-entrant region (equivalent to the Nugent et al. defi nition) and a TM hairpin 
which is basically two short membrane helices that penetrate further than 6 Å from 
the opposite membrane border but never crosses it.

Not so much is known about the sequence characteristics of re-entrant regions, 
but they are on average less hydrophobic than transmembrane helices but more so 
than interface helices (Viklund et al. 2006). Th ey are also commonly enriched with 
small amino acids such as glycine and alanine. Th is is not surprising since glycine is 
frequently found in coil regions that change the direction of the amino backbone by 
180°, which all re-entrant regions do. Th e deepest penetrating regions also contain 
more helix secondary structure than more shallow ones.

5.1 Prediction of re-entrant regions

5.1.1 TOP-MOD

TOP-MOD is an HMM-based method, which has demonstrated a sensitivity of 
0.69 and specifi city of 0.72 when detecting re-entrant regions. Th ese results are 
however based on known transmembrane helix locations, which is a somewhat ar-
tifi cial situation since re-entrant regions might be mispredicted as transmembrane 
helices and vice versa. Under a more realistic scenario, where both re-entrant- and 
transmembrane-helices are predicted, the sensitivity drops to 0.47 with the same 
specifi city. Th e main source of the decrease in sensitivity is that 8 out of 36 re-entrant 
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regions were falsely predicted as transmembrane helices, coming mainly from the 
longer helix–coil–helix category.

5.1.2 TMloop

TMloop is not based on any machine learning algorithm, instead it uses collective 
motifs to identify re-entrant or membrane dipping loop regions (Lasso et al. 2006). 
Th e re-entrant regions were identifi ed in structurally determined membrane pro-
teins and sequence alignments were created to identify sequence motifs. In order to 
avoid false positive matches, the motifs were evaluated against known non-re-entrant 
regions in a large number of membrane proteins. Th e method uses three diff erent 
types of patt ern matching: identical motifs, motifs-based on chemical equivalency, 
and fi nally, motifs using structural equivalency. It is also possible to either use a sin-
gle motif mode or a collective motif mode where the latt er mode permits non-exact 
matching and uses a set of partially overlapping patt erns. Th is makes it possible to 
fi nd more distantly related re-entrant regions. 

Th e main drawback of a motif-based method is that it is only possible to identify 
re-entrant regions that are already known and characterized.

5.1.3 OCTOPUS

Th e fi rst method that fully integrated a model for re-entrant regions into its topologi-
cal grammar was OCTOPUS (Viklund and Elofsson 2008). It uses a combination 
of hidden Markov models and artifi cial neural networks for its predictions. Con-
ceptually, it is similar to combining Z-coordinate predictions with a hidden Markov 
model for the fi nal topology prediction. Four neural networks predict which region 
an amino acid belongs to based on their position-specifi c substitution matrix pro-
vided by a BLAST search. Th e networks are predicting: membrane (±0–13 Å), 
interface (±11–18 Å), loop (±13–23 Å), and globular (±23–�Å), amino acids. Th e 
output from these network combined with additional neural networks trained on 
other sequence characteristics are then fed into a hidden Markov model that in ad-
dition to predicting transmembrane helices also is able to predict re-entrant helices/
membrane dipping loops and helix–helix hairpins (See Fig. 1). It is able to fi nd 10 of 
49 re-entrant helices/membrane dipping loops and only two false positive predic-
tions in a cross-validated dataset. Four out of seven hairpins were correctly predicted 
with no false positives. Combined with its 94% accuracy in predicting the correct 
topology, it is clearly one of the most capable methods available today.

5.1.4 MEMSAT-SVM

One other method that also performs really well is MEMSAT-SVM, a support vec-
tor machine-based method that also predicts re-entrant regions (Nugent and Jones 
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2009). It achieves 89% accuracy in predicting the correct topology of its own cross-
validated dataset, on which OCTOPUS only has 79% accuracy. Seven of eleven pro-
teins with re-entrant regions were correctly predicted by MEMSAT-SVM, on which 
OCTOPUS was correct on eight. It seems as if MEMSAT-SVM is bett er at predict-
ing the topology of “normal” membrane proteins, whereas OCTOPUS is slightly 
bett er at predicting re-entrant regions. It is, however, diffi  cult to assess until inde-
pendent benchmarks are performed. 

6 Prediction of the Z-coordinate

ZPRED is a novel method that tries to predict how deep inside the membrane an 
amino acid is located (Granseth et al. 2006). In order to do this, it uses artifi cial 
neural networks trained on a combination of sequence profi les and topology pre-
dictions to estimate the position of the amino acids in the 5–25 Å region. It is impor-
tant to note that ZPRED does not provide any information about the orientation of 
the protein since it is trained on the absolute value of the Z-coordinates, see Fig. 4. 
Th e predictions are also constrained to treat all residues more distant than 25 Å 
from the membrane center as a single “globular” region and residues closer than 
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Fig. 4. Example of a Z-coordinate and ΔG prediction of the same rhodopsin molecule depict-

ed in Fig. 1. Note that the light gray plot is the absolute value of the Z-coordinate of the C� atoms since that is what ZPRED (red) 

is trained to predict. The ΔG prediction is in green.
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5 Å to the center as a single “membrane core” region. Th e reasoning behind this is 
that the environment in these regions is rather homogeneous, either hydrophilic 
or hydrophobic, and instead focuses predictions to the regions where the environ-
ment changes the most. Th e average error of ZPRED’s prediction is 2.55 Å and two-
thirds of the amino acids are predicted within 3 Å of the correct Z-coordinates in a 
cross-validated test. 

ZPRED was later improved by altering window sizes, inclusion of polarity based 
encoding, post-processing etc. and incorporation of two diff erent networks, one 
for single TM proteins and one for multi-helix membrane proteins (Papaloukas 
et al. 2008). Since this lead to a large amount of parameters to optimize with only a 
relatively small amount of training data, principal component analysis was used to 
decrease the dimension of the input data from 551 to 13, which described 99% of 
the variation of the original data. ZPRED2 was able to decrease the average error to 
2.18 Å. 

7 Free energy of membrane insertion �G

One method that is worth mentioning even though it does not predict re-entrant 
regions or interface helices is SCAMPI, since it uses a novel way of predicting mem-
brane protein topology (Bernsel et al. 2008). Instead of training a machine learning 
method on known membrane protein sequences/profi les, it is based on experimen-
tal observations of membrane helix insertion into the lipid bilayer by the translocon 
(Hessa et al. 2005, 2007). Th e position-dependent free energy of membrane inser-
tion (ΔGapp) was measured for each of the 20 amino acids using a model system con-
sisting of larger protein att ached to a helix consisting of alanine and leucine residues. 
Th e helix was then altered by having one or several of the same kind of amino acid 
at diff erent positions in the helix. Th e ΔGapp could then be determined by measuring 
the fraction of helices that was inserted into the membrane versus the fraction that 
was not inserted. Th e experimental results were then modeled by single or double 
Gaussian functions. Th e total ΔGapp for a natural or synthetic transmembrane helix 
could then be described by an equation, see Eq. (1), and an example prediction is 
shown in Fig. 4.
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In Eq. (1) the fi rst term sums up the individual contributions of each amino acid. 
Th e next part is a cyclical term describing the hydrophobic moment since the contri-
butions sometimes diff er when two amino acids are facing the same side of the helix. 
�Gapp is also dependent on the length of the helix. 

To summarize, instead of being based on statistics derived from membrane pro-
teins with known topology, data from physical experiments were used.

Two diff erent predictions methods were created: one that simply uses a sliding-
window scanning the protein sequence calculating ΔGapp values. In the resulting 
curve, minima are assumed to be the transmembrane helices and the positive-in-
side rule (von Heijne 1992) is used to orient the prediction. Th e second method, 
 SCAMPI, is model-based. SCAMPI is similar to hidden Markov models, but  without 
transition probabilities. It has four diff erent modules, the membrane compartment 
(M), inside loop (I), outside loop (O), and inside loop close to the membrane (i). 
Th e reason for the last module is to incorporate the positive-inside rule due to the 
overrepresentation of arginines and lysines in inside loops. Th e membrane module 
uses Eq. (1) to calculate the free energy of insertion and converts it to the corre-
sponding estimated insertion probability used as an emission probability, whereas 
the i, I, and O modules use fl at distributions for amino acid emission probabilities. 
Th e two methods are also capable of using homology information to yield more ac-
curate predictions.

Both methods are reported to have similar performance, around 80% correctly 
predicted topologies, similar to MEMSAT3 and PRODIV-TMHMM. It is however 
slightly worse at discriminating globular proteins from membrane proteins than 
other methods.

8 The frequency of re-entrant regions and interface helices

As more membrane protein topology prediction methods are developed and more 
genomes are sequenced, the general consensus appears to be that around 25–30% 
of the encoded proteins in a genome are membrane proteins. How many re-entrant 
regions do these contain? Among the known membrane protein structures, around 
5% contain re-entrant loops (corresponding to the helix–coil–helix and coil/helix 
classes described above; Cuthbertson et al. 2005). Th ese proteins are from various 
organisms and do not say anything about how frequent the regions are in a genome. 
Predictions using TOP-MOD estimate that around 10–15% of the membrane 
 proteins of a genome contain re-entrant regions (Viklund et al. 2006). However, 
MEMSAT-SVM predicts a much smaller fraction, around 2–3% (Nugent and Jones 
2009). Th e main reason for this signifi cant diff erence is probably the diff erent defi ni-
tions of what a re-entrant region is.
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9 Summary

 Th e traditional topology predictions methods of today are good at detecting • 
which regions that are located inside the membrane.
 Many membrane proteins contain structural features that are missed by tradi-• 
tional topology models and predictions methods, for instance interface helices, 
re-entrant regions, and kinks in transmembrane helices.
 Interface helices are parallel to the membrane and located in the membrane–• 
water interface region.
 Re-entrant regions enter the membrane, then exit again from the same side. Th ey • 
never completely cross the membrane.
 Kinks break the helicity of transmembrane helices and are oft en caused by pro-• 
line residues.
 Several new topology prediction methods try to predict these features, but the per-• 
formance is not on par with the performance of transmembrane helix detection.
 Other new prediction methods try to predict physical features such as the free • 
energy of insertion of a transmembrane helix or how deep into the membrane an 
amino acid is located.
Th e references and URLs of the diff erent methods are summarized in Table 1.• 
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Abstract

Th e function of a membrane protein is dependent on that it is inserted into the lipid bilay-
er in a correct way. Intriguingly, for a small number of membrane proteins, there is grow-
ing evidence that they have fl exible topologies. Some of them have a varying number of 
helices inserted into the membrane, or have the same number of transmembrane helices, 
but diff erent membrane spanning regions. Others are inserted with opposite topologies 
in the membrane in an approximate 1:1 ratio, forming antiparallel homodimers. Th us, the 
same sequence can code for more than one topology. During the last few years, there have 
been increasing eff orts in studying topologically fl exible proteins since they might hold 
clues about the evolution of membrane proteins.

1 Introduction

Most membrane proteins are topologically stable and are always inserted into the 
membrane in a unique way since the directionality of transport across the membrane 
is well defi ned, and an incorrect topology would disrupt the function of the protein. 
Th ere is, however, growing evidence that a small number of membrane proteins have 
fl exible topologies and during the past few years there have been increasing eff orts 
in studying these, both out of curiosity and because they might hold clues about the 
evolution of membrane proteins.

Figure 1 shows an example of a membrane protein, EmrE, which exhibits dual-
topology in its crystal form (Chen et al. 2007). Th e structure forms a homodimer 
where the subunits exhibit opposite topologies while sharing the same amino acid 
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sequence. Th is demonstrates that some protein sequences can be inserted either way 
into the membrane, thus having dual-topology. Th e topology of EmrE is a contro-
versial topic; some reports show that it cannot have dual-topology in its functional 
state (Soskine et al. 2006) while another shows that it can (Rapp et al. 2007). Other 
membrane proteins with potential dual-topology are also controversial, but it is dif-
fi cult to sett le the arguments since it is possible that experimental techniques used to 
evaluate the topology and function might actually alter them (Soskine et al. 2006). 
Fortunately, comparative genomics makes it possible to draw some conclusions 
about the existence of dual-topology and the evolution of membrane proteins.

Th is chapter summarizes what is currently known about dual-topology proteins, 
discusses what the implications are with regard to membrane protein evolution and 
how dual-topology proteins can be found and examined by bioinformatic methods.

Fig. 1. Structure of EmrE from E. coli in a dual-topology conformation where the subunits have 

opposite topologies. The coloring of the transmembrane helices is the same for both subunits (transmembrane helix 1 is 

yellow, 2 light green, 3 dark green, and 4 almost black). The gray molecule in the middle is the bound substrate. The top part of the 

picture shows the structure viewed from the side of the membrane and the lower part shows it from top. The right parts show the 

TMH as idealized arrows for clarity. The fi gure was generated using PyMOL (DeLano 2002).
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2 Background

2.1 A brief history of dual-topology research

Th e word dual-topology was fi rst mentioned in 1989 by Parks et al. (1989) in ex-
periments with viral hybrid genes. Th ey discovered that by fusing the N-terminus 
of the M2 polypeptide from infl uenza A with the signal anchor and ectodomain 
from paramyxovirus protein HN, the resulting hybrid molecule was inserted into the 
membrane in two opposite orientations. In 1994, two groups reported that the large 
envelope protein (protein L) of Hepatitis B virus appeared to have two diff erent to-
pologies, one with three transmembrane helices when located inside the endoplas-
mic reticulum (ER) membrane and the one with either three or four when located in 
the virion envelope, see Fig. 3b (Bruss et al. 1994; Ostapchuk et al. 1994). However, 
they did not comment on dual-topology until a year later when they continued their 
research on the properties of the Hepatitis B envelope proteins (Bruss and Vieluf 
1995; Prange and Streeck 1995). Since these fi rst reports of atypical behavior of 
some viral membrane proteins, dual-topology proteins have now been found in all 
three domains of life.

2.2 The diff erence between dual- and multiple-topology

Dual-topology refers to membrane proteins that are inserted with opposite topologies 
in the lipid bilayer, in an approximate 1:1 stoichiometry (von Heijne 2006). Th ey are 
usually small, around 100 amino acids, do not have very long loops between their 
transmembrane helices, and have a small number of arginines and lysines (Rapp 
et al. 2006). Figure 1 shows an example of a dual-topology membrane protein.

Multiple-topology refers to when a membrane protein either has varying number 
of helices inserted into the membrane, or has the same number of transmembrane 
helices, but diff erent regions are membrane inserted. Multiple topologies are caused 
by one or more marginally hydrophobic and therefore ineffi  ciently inserted trans-
membrane helices (von Heijne 2006).

Th ese defi nitions will be used throughout the rest of this text, but in others mul-
tiple-topology is oft en denoted dual-topology.

2.3 Topology mapping

In order to study the topologic behavior of a membrane protein, it is necessary to 
experimentally verify its topology. Th e most common way of doing this is by topol-
ogy mapping, where the location of specifi c amino acids is determined – whether 
they are located in the cytoplasm, inside the membrane, or in the extra-cytoplasmic 
space. Antibodies or biochemical agents can be used to do this (Kimura et al. 1997), 
but another common technique is to fuse a foreign protein domain to a loop  region. 
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Th e domain is only active when it is located on one side of the membrane and 
 inactive on the opposing side (Manoil 1991). Th e methodology has been used to 
study the topologic behavior of EmrE by fusing green fl uorescent protein (GFP) or 
alkaline phosphatase (PhoA) to its C-terminus (Rapp et al. 2006). GFP is the only 
fl uorescent when it is located inside the cytoplasm whereas PhoA is only functional 
when it is located in the periplasm. Th is makes it possible to study how sensitive the 
topologies of dual-topology candidates are to amino acid mutations. One potential 
drawback with the protein domain fusion technique is that the fused domains are 
oft en large and litt le is known about their infl uence over topology.

2.4 Arginines and lysines are important for the topology

Th e best known sequence characteristic of a membrane protein, apart from the hy-
drophobic transmembrane helices, is the “positive inside” rule. It states that the ma-
jority of the positively charged amino acids, arginines (R) and lysines (K), in the 
loops are located on the cytoplasmic side of the membrane. Th ere is an almost twice 
as high a fraction of K and R on the cytoplasmic side compared to the extra-cyto-
plamic side (Granseth et al. 2005) and genome-wide studies have confi rmed that 
the bias is present in almost all organisms (Wallin and von Heijne 1998; Nilsson 
et al. 2005).

Dual-topology proteins generally have few positively charged amino acids in 
their loops and the diff erence in their numbers between the two sides, the KR-bias, 
is close to zero, leading to the possibility of being inserted either way into the mem-
brane. Topologically stable membrane proteins usually have a KR-bias >2 or <–2.

2.5  Internal structural repeats – evidence of former gene duplication 

events

One of the unexpected results that became apparent when more and more mem-
brane protein structures were determined was that up to 50% of them had a clear, 
internal symmetry which was particularly common among transporters (Choi et al. 
2008). Th e symmetry is evident when the structure is divided into two or more 
parts and aligning them to each other, resulting in a root mean square deviation 
of 2–4 Å. It is most common with a twofold internal symmetry, for example, the 
aquaporin structure, but there are also cases of threefold symmetry, such as in cy-
tochrome c oxidase. Th e symmetry can be explained as evidence of an ancient gene 
duplication followed by a gene-merging event. Th is is the most common way of 
topology evolution and usually leads to a duplication of the number of transmem-
brane helices, although it is also possible with only partial duplications (Shimizu 
et al. 2004).
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Usually it is impossible to detect the internal symmetry by sequence information 
alone, since sequence identities range between 10% and 25%, and the components 
have simply diverged too far from each other. However, by combining homology 
information with careful Smith-Waterman alignments, Choi et al. (2008) predicted 
that around 25% of the membrane proteins in Swiss-Prot had probable internal re-
peat symmetry.

Twofold internal symmetry can be divided into two separate classes: a mem-
brane protein where the two halves have an even number of transmembrane helices 
will have a parallel internal symmetry with a symmetry axis perpendicular to the 
membrane plane, see right part of Fig. 2. A membrane protein where the two halves 
have an odd number of transmembrane helices will have an antiparallel symmetry, 
with its axis of symmetry in line with the plane of the membrane. Th is is a particu-

Fig. 2. Possible evolutionary steps for membrane proteins with internal symmetry. A dual-topolo-

gy protein with an even number of transmembrane helices would need a de novo creation or a loss of a  membrane helix in order for 

a possible merge to occur after the duplication.
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larly intriguing situation when taking the evolutionary explanation behind internal 
symmetry into consideration since half of the merged protein would contradict the 
“positive-inside” rule. Th e reason why dual-topology proteins att ract so much att en-
tion is that they have a KR-bias close to zero and are therefore suitable as precursors 
for membrane proteins with internal antiparallel structural symmetry, see left  part 
of Fig. 2.

3 Prediction of dual-topology

Th ere are no easy and straightforward ways of predicting whether a protein has 
dual-topology or not. Currently, the only successful approach has been the use of 
comparative genomics in combination with sequence characteristics (Rapp et al. 
2006). Pfam was used to scan 174 fully sequenced prokaryotic genomes and clas-
sify each protein into one or several Pfam families (Finn et al. 2008). Th e topology 
of each member of the families was predicted by TMHMM (Krogh et al. 2001) and 
the sequences of the families were aligned by ClustalW (Th ompson et al. 1994). 
Th is made it possible to create “consensus topologies” where each position in the 
multiple sequence alignment was assigned as residing within the membrane or be-
longing to a loop. Th is was achieved by choosing the most frequent state and fi lter-
ing so that the consensus membrane helices were suffi  ciently long. Th e KR-bias 
was then calculated for each sequence in the family by adding lysine and arginine 
residues located in odd loops and subtracting them when found in even loops. Th e 
consensus topology was necessary to decrease mispredictions that would have oc-
curred had the individual TMHMM predictions of each sequence been used, since 
a missing transmembrane helix would have led to a drastically diff erent KR-bias.

What emerged when looking at the location of the genes that encoded the known 
dual-topology proteins was that they occurred either as closely spaced pairs or as 
singletons in the genomes. Th e closely spaced pairs encoded homologous proteins 
with opposite topologies whereas singletons encoded proteins with a KR-bias close to 
zero, implying that they had dual-topology. Of the Pfam families searched in the 174 
genomes, only the  small multidrug resistant (SMR) family, the CrcB family (involved 
in camphor resistance) and DUF606 (a family with unknown function) seemed to 
have dual-topology members and possibly also the GlpM and UPF600 families.

3.1  The small multidrug resistance family: one family, diff erent topologies

One of the most intriguing and controversial membrane protein families is the 
SMR. Members of this family export a wide range of toxins and polyaromatic cat-
ions from the cell by coupling transport to the infl ux of protons (Chung and Saier 
2001; Schuldiner et al. 2001). Th e SMR proteins exist mainly in bacteria but also in 
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some archaeal and eukaryotic organisms. Th ey are approximately 110 amino acids 
long and have four transmembrane helices, which make them compact, without any 
long, protruding loops that extend from the membrane.

Two of its members in Escherichia coli, EmrE (shown in Fig. 1) and SugE, most 
likely have dual-topology but interestingly, two other members, YdgE and YdgF do 
not have dual-topology and have opposite topology to each other (Rapp et al. 2006). 
Th e ydgE and ydgF genes overlap on the E. coli chromosome and their proteins only 
catalyze drug effl  ux when they are coexpressed (Nishino and Yamaguchi 2001). Th e 
two proteins are therefore thought to form an antiparallel heterodimer in the lipid 
bilayer. EmrE and SugE each correspond to the top left  part of Fig. 2 and YdgE/F the 
middle part, aft er the gene duplication and K + R drift . Th e evolutionary hypothesis 
is that a singleton gene encoding a dual-topology protein undergoes gene duplica-
tion. Aft er that, the genes mutate and evolve opposite KR-biases so that the two 
resulting proteins become fi xed in opposite orientations. Th e two genes might also 
fuse into a single gene, see Fig. 2, but this has not been found in the members of the 
SMR family, possibly because it would require the de novo creation of a transmem-
brane helix. However, it has been found in other families, see the DUF606 family 
below.

EmrE has been extensively studied and mutated to test the proposed evolu-
tionary hypothesis. One especially illuminating experiment was to emulate the 
 evolution by converting one gene encoding a homodimeric EmrE to two genes 
encoding heterodimeric EmrE, where each subunit had opposite topology to the 
other (Rapp et al. 2007). It took three mutations to create a Nin–Cin version and 
three more to create a Nout–Cout version. When expressing only the Nin–Cin version of 
EmrE or Nout–Cout version individually, the E. coli cells were unable to survive in high 
concentrations of a toxic compound, ethidium bromide, whereas the cells survived 
when the proteins were coexpressed, strongly suggesting a functional, antiparallel 
heterodimer. Th is supports the notion that dual-topology proteins are progenitors 
of membrane proteins with antiparallel internal symmetry.

3.2 The DUF606 family contains fused genes

Most members of the DUF606 family contain fi ve transmembrane helices but there 
are also members that are twice as long and have 9 or 10 helices (Rapp et al. 2006). 
For the larger proteins, the fi rst and second halves are homologous to each other, with 
around 20–35% sequence identity, and they have opposite KR-bias. Proteins with fi ve 
transmembrane helices had a KR-bias close to zero when found as singletons and had 
opposite KR-biases when found in closely spaced pairs. Th us the DUF606 family seem 
to be the fi rst family found containing members in all the diff erent stages of the evolu-
tionary hypothesis.
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4  Examples of membrane proteins with dual- 

or multiple-topology

Th ere are of course other examples of membrane proteins with dual- or multiple-
topology and here follows a few of them. Th ere are also some examples that use 
topology as a targeting system.

4.1 MRAP

Th e melanocortin-2 (MC2) receptor accessory protein (MRA P) contains a sin-
gle transmembrane helix and is involved in traffi  cking of the G-protein-coupled 
MC2 receptor to the plasma membrane (Sebag and Hinkle 2007). Th e MC2 re-
ceptor remains non-glycosylated or core glycosylated without the presence of 
MRA P and this leads to retention in the endoplasmic reticulum (ER) and sub-
sequent degradation (Petaja-Repo et al. 2001). Both antibodies that bind to the 
N- and C-terminal tails and glycosylation studies indicate that MRA P exists in 
both Nout–Cin and Nin–Cout orientations and they form an antiparallel homodi-
mer in the membrane, see Fig. 3a. Molecular complementation studies with frag-
ments of yellow fl uorescent proteins att ached to the termini of MRA P revealed 
that dual-topology was present in both the ER and the plasma membrane (Sebag 
and Hinkle 2009).

4.2 Ductin

Ductin is similar to the F0 subunit of FlF0 ATPase and is predicted to have four trans-
membrane helices (Dunlop et al. 1995). Six ductin molecules either make up a func-
tional unit for the core structure of V0 (a part of a vacuolar H+-ATPase, V-ATPase), 
or a component of a connexon channel in gap junctions (the structure that connects 
neighboring cells). When ductin is a part of V-ATPase, it has a Nout–Cout topology 
(where the termini are facing the luminal side of the ER) and when part of a con-
nexon channel, it has a Nin–Cin topology, where the termini are inside the cytoplasm 
of the cell. Dunlop et al. show in in vitro studies that ductin is co-translationally 
inserted in dual orientations in microsomal membranes in an approximate 1:1 ratio 
thus exhibiting dual-topology.

Interestingly, alterations of conserved charged residues in the N-terminal region 
did not change the ratio of the two opposing forms of the protein (Dunlop et al. 
1995). Th e replacement of acidic amino acids with basic ones had no eff ect on the 
ratio of the two conformations. Th is is surprising since the topology of other dual-
topology proteins oft en change into one or the other orientation when the KR-bias 
is altered.
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4.3 Hepatitis B virus L protein

One single open reading frame of Hepatitis B virus encodes three homologous mem-
brane proteins: small (S), medium (M), and large (L) envelope proteins. Since the 
three proteins have diff erent start codons but share open reading frame, the 226 ami-

a b

c d
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Fig. 3. Topology of potential dual-topology membrane proteins. (a) Dual-topology of the melanocortin-2 

receptor accessory protein. The non-cytoplasmic region in the top part of the fi gure can either be the lumen of the endoplasmic retic-

ulum or be the periplasm. (b) Multiple topologies of Hepatitis B virus L protein. (c) Multiple topologies of the Hepatitis C virus protein 

NS4B. (d) Multiple topologies of twin-arginine motif translocase subunit A, TatA. (e) Multiple topologies of the prion protein, PrP.
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no acids of S are present in both M and L, and M is present in L. Th e proteins have 
four transmembrane helices and interestingly, the L protein has two diff erent topol-
ogies. During maturation, approximately half of the L proteins post-translationally 
translocate their N-terminal region across the ER membrane. Th e multiple-topology 
is preserved in the viral envelope aft er the virus buds from its host cell and by retain-
ing their N-terminal domain inside and outside the viral capsid, the L protein serves 
dual functions of capsid envelopment and receptor binding (Lambert and Prange 
2001). Th e two diff erent topologies diff er in that one has three membrane helices 
and the other has four, the N-terminal helix is either inside the membrane or not, 
see Fig. 3b (Lambert et al. 2004).

4.4 Hepatitis C virus protein NS4B

Th e non-structural protein 4B from Hepatitis C virus causes membrane chang-
es of the ER leading to the formation of a membranous web, which is essential 
for the replication of the virus (Appel et al. 2005). NS4B has four transmem-
brane helices immediately aft er translation with the N- and C-termini located 
in the cytosol. Aft er processing, some of the molecules have an additional fi ft h 
N-terminal transmembrane helix, with the N-terminal end in the ER lumen, see 
Fig. 3c. Th is location of transmembrane helix is suggested to be associated with 
the membrane-changing capacity of NS4B. Th e multiple-topology of NS4B is 
also a conserved feature occurring in all seven of the genotypes included in the 
study (Lundin et al. 2006).

4.5 TatA

Th e Tat system is able to transport folded proteins through the cytoplasmic mem-
brane or the thylakoid membrane (Weiner et al. 1998). Th e proteins that the Tat 
system transports have a “twin-arginine” motif in their N-terminal signal sequences 
and hence the name. TatA is considered to be the pore forming subunit and forms 
homo-oligomeric complexes in the membrane, where each TatA molecule contains 
one N-terminal transmembrane helix followed by an amphiphilic helix, and a hydro-
philic C-terminus. Th e N-terminus was fi rst reported to be located in the periplasm 
(Gouffi   et al. 2004), but later studies revealed that it resides in the cytoplasm (Chan 
et al. 2007) whereas the amphiphilic helix is located either in the periplasm or inside 
the membrane as a second transmembrane helix, see Fig. 3d. Th e two diff erent con-
formations are dependent on membrane potential. Th ere is also some speculation 
that the pore adjusts the number of TatA molecules depending on the size of the 
substrate (Oates et al. 2005).



E. Granseth

147

4.6 PrP

Th e prion protein (PrP) is considered to be the infectious agent behind diseases 
like Creutzfeld-Jakob in humans, mad cow disease in catt le and scrapie in sheep. 
Th e hypothesis is that PrP exists in two diff erent conformations, PrPC, which is a 
normal cell-surface glycoprotein and PrPSc, an altered isoform which can convert 
PrPC into more PrPSc which then eventually causes spongiform destruction of brain 
tissue (Prusiner 1997). Th e underlying biochemical processes behind this are not 
completely understood, but some argue that there exists another form of PrP, CtmPrP, 
that is att ached to the membrane by a transmembrane helix whereas PrPC is secreted 
and att ached to the ER membrane by a GPI-anchor in its C-terminus. Interestingly, 
there is one more form, NtmPrP, which has inverted topology compared to CtmPrP, see 
Fig. 3e (Hegde et al. 1998a). Th ere is speculation that a proportion of the variants 
rely on unidentifi ed accessory proteins that interacts with translocation apparatus in 
the ER (Hegde et al. 1998b).

CtmPrP also has an unusual dual mode of att achment to the membrane – it has both 
a transmembrane helix and a C-terminal glycolipid anchor. Some evidence indicates 
that  CtmPrP is involved in neurodegenerative diseases since known disease-causing 
mutations were demonstrated to lead to an increase of CtmPrP in vitro (Hegde et al. 
1999). However, later studies revealed that only pathogenic mutations in the hydro-
phobic region had any eff ect on the relative amounts of the transmembrane forms 
of PrP; known pathogenic mutations in other regions did not have any eff ect. Th is 
implies that transmembrane PrP might not play as big role as previously thought in 
the pathogenesis of prion diseases (Stewart and Harris 2001).

5 Using topology inversion for function

5.1 SecG

Th e bacterial protein conducting channel, SecYEG, consists of three inner mem-
brane proteins that are responsible for the insertion of proteins into the membrane 
and the transportation of secretory proteins through the membrane.

Th ere is some experimental evidence to suggest not only that SecG can undergo 
topology inversion (Nishiyama et al. 1996; Nagamori et al. 2002), but also that this 
is not necessary for the function of the SecYEG complex (van der Sluis et al. 2006). 
Modifi ed SecG molecules that have a single topology, either by cysteine cross-link-
ing or by gene-fusions, are indeed functional, but the rate of protein translocation 
is higher if SecG is unrestricted to alter its topology. However, for this to occur, the 
soluble protein SecA is required and there is also suggestion that other factors such 
as SecDF may be required to invert SecG (Sugai et al. 2007).
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6 Using dual-topology as a targeting system

Th ere are indications that some membrane proteins exhibiting dual-topology in the 
ER use their diff erent forms as a way of targeting themselves to the correct mem-
brane in some tissues. Interestingly, both proteins that are reported to do this are 
expressed in hepatocyte cells in the liver.

6.1 Cytochrome p450-2E1

Cytochrome p450s (p450s) has been implicated in alcoholic liver disease and is most 
commonly found in the ER where it is involved in the metabolism of various small 
hydrophobic compounds. It consists of one N-terminal hydrophobic transmembrane 
region and a large catalytic C-terminal domain. Th is domain is normally exposed to 
the cytoplasmic side of the ER membrane. However, immunofl uorescent microscopy 
has indicated that some p450s have their catalytic domain on the outside of hepato-
cyte cells in rat and human livers (Wu and Cederbaum 1992). Neve and Ingelman-
 Sundberg (2000) showed that for one specifi c p450s, CYP2E1, the C-terminal domain 
is located on the outside of the plasma membrane and that transport from the ER to 
the plasma membrane is dependent on a small amount (~2%) of CYP2E1 being in-
serted with opposite topology in the ER membrane during translation. Th ese are then 
transported via the Golgi apparatus to the outer surface of the plasma membrane.

6.2 Epoxide hydrolase

Epoxide hydrolase is involved in the metabolism of xenobiotics and in the hepatocyte 
uptake of bile acid. It is expressed in the ER in two opposite orientations and most 
likely has three transmembrane helices. One of the topologies is then transported to the 
plasma membrane of COS-7 cells (Zhu et al. 1999). Alterations of the number of posi-
tive charges in the N-terminal region lead to dramatic diff erences in inversions of the 
topology indicating that epoxide hydrolase is topologically sensitive, much like EmrE.
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Abstract

In multipass transmembrane proteins one face of the transmembrane helices is in contact 
with the aliphatic acyl chains of the phospholipids and with the polar interface region. 
Th e other face makes contacts with other helices or points into the protein interior. In 
larger proteins, some helices may even be buried completely. Analysis of the available 
three-dimensional crystal structures has shown that inwards pointing residues tend to 
be more conserved than outwards pointing residues. Furthermore, residues pointing 
 outwards are generally very hydrophobic whereas inward pointing residues may have dif-
ferent characteristics. Based on these two fi ndings, knowledge-based propensity scales 
have been derived that, when combined with analysis of residue conservation, allow pre-
dicting the exposure status of residues in the hydrophobic core region with about 80% 
accuracy. Th ese tools give biologists insight in the putative topology of transmembrane 
helix bundles.

1 Introduction

Bitopic membrane proteins contain a single alpha-helix that crosses the lipid bilayer 
once. In polytopic transmembrane (TM) proteins, the amino acid chain traverses 
the lipid bilayer multiple times. To satisfy the hydrogen-bonding requirements of the 
polar backbone atoms, polytopic membrane proteins either adopt the topology of 
alpha-helical bundles in their membrane part or that of beta-barrels. In this chapter, 
we will focus on the topologies of helical membrane proteins. Ideally, these occur as 
helical bundles where a number of TM helices in perfect straight conformation cross 
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the lipid bilayer as a whole. Figure 1 shows the three-dimensional (3D) structure of 
the membrane transporter lactose permease, which will be used as an educational 
example in this chapter. Obviously, its TM helices are not perfectly straight. Still, this 
structure conforms quite well to the canonical picture of a helical bundle.

When we are given the sequence of a helical membrane protein, it is quite straight-
forward to identify the membrane-spanning segments from the amino acid sequence 
with modern bioinformatics techniques (see the chapter by Casadio et al., this vol-
ume). Although the topologies of beta-barrels are even more regular than those of 
helical proteins, bioinformatics detection of beta strands from a protein sequence 
is more diffi  cult, since the exterior of the beta-barrel proteins is less hydrophobic 
than that of alpha-helical TM proteins. Once the strands are known, assembling 
them into a barrel form is not that much of a problem anymore. Th e only remaining 
challenge is predicting the register shift  between adjacent beta strands ( Jackups and 
Liang 2005). In contrast, making structural predictions for helical bundles beyond 
the identifi cation of TM helices is quite hard because the 3D structures in this class 
of proteins have turned out to be far less homogenous. Some methods that predict 
the re-entrant loop regions and helix kinks have been discussed in (the chapter by 
Granseth, this volume).

One of the simplest properties beyond the identifi cation of helical segments is to 
predict whether a TM helix faces the lipids at all, or whether it is buried in the pro-
tein. Recent sequence-based bioinformatics approaches allow making predictions 
about the buried/exposure status of single residues in TM helices and these will be 

a b

Fig. 1. (a) Shows a side view and (b) a top view of the 3D structure representation of lactose 

permease (pdb id: 2cfq). TM helix 1 is colored blue, TM helix 10 is colored yellow, and the last TM helix 12 is colored red. TM 

helices 1 and 12 are fully exposed, TM helix 10 is partially buried in its lower half.
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discussed here. Predictions can either be made as binary classifi cation into buried/
exposed states or one can predict the real-valued solvent accessibility. For boundary 
TM helices, this knowledge then allows predicting the rotation angle around their 
helix axis. Figure 1 shows that some helices are half in and half out. In such a situa-
tion, these methods even allow predicting which part of a helix is “inside” the helical 
bundle where it makes no contact with the lipids and which part of the helix is “out-
side” where one of its faces makes contact with the lipids. Th is assignment can be of 
signifi cant interest to researchers working on membrane transporters or channels 
because it may allow them to determine the pore-facing TM helices, possibly even 
the specifi city gate or the substrate-binding site.

Early reports suggested that integral membrane proteins are sort of “inside-out” 
proteins (Engelman and Zaccai 1980; Rees et al. 1989). Th e reasoning behind this 
was as follows. Whereas “normal” water-soluble proteins have a mostly hydrophilic 
surface, the surfaces of the membrane-spanning parts of TM proteins tend to be very 
hydrophobic as they are in contact with the lipid acyl chains. On the other hand, the 
interior of water-soluble proteins is mainly hydrophobic (except for some enzymes 
that have deeply buried active sites such as acetylcholine esterase or cytochrome 
P450 proteins) whereas one assumed the inside of membrane pores and channels 
to be partly hydrophilic according to the properties of the transported substrates or 
of the redox-active co-factors. If this was the case, the hydrophobicity patt ern of TM 
helices would need to follow a clear periodic patt ern so that it could be used to pre-
dict helix rotation angles around their axes. Below, we will discuss the computation 
of the helical hydrophobic periodicity that is a quantitative measure for the imbal-
ance of hydrophobicity on diff erent faces of an alpha-helix. However, with more and 
more high-resolution structures of TM proteins becoming available in the recent 
years, it turned out that the bare hydrophobicity is not a strong signal for orienting 
helix rotational angles.

A somehow related concept led to the development of special amino acid pro-
pensity scales. Th ese scales express the tendency of particular amino acid types in 
the hydrophobic core of the membrane to preferentially point outside or inside. In 
fact, the chemical environment of the residues in TM segments is very complex. 
When exposed to the membrane, residues may interact with the hydrophobic acyl 
chains or with the polar head groups of the surrounding phospholipids. When fac-
ing the protein interior, amino acid side chains may interact with residues of other 
TM helices or re-entrant loops, or even with structural water molecules and sub-
strate molecules. As discussed above, simple hydrophobicity-based scales are not 
very successful. With more and more structural data becoming available, a number 
of knowledge-based approaches have been derived that constitute an eff ective way 
to model such complex environmental eff ects in an unbiased way.
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2 Hydrophobicity analysis

When considering the hydrophobicity h(i) of each residue i or the averaged hydro-
phobicity at position i in a multiple sequence alignment (MSA) one can defi ne the 
 hydrophobic moment of a helix as vectorial sum of the connecting vectors from 
the helical axis to the C� atoms or centers of mass of the residues weighted by the 
residue hydrophobicity (Eisenberg et al. 1982). Figure 2 shows the resulting hydro-
phobic moments of three helices of lactose permease. From this hydrophobicity 
(or for other properties of the sequence), one can compute the helical variability 
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Fig. 2. (a–c) Show the calculated hydrophobic moments for the TM helices 1, 12, and 10 of 

lactose permease (pdb id: 2cfq). As discussed in the text, the hydrophobic moment vector points preferentially toward 

the face of the helix that is exposed to the bilayer. The fi gures were created with the tool Membrane Protein Explorer (http://blanco.

biomol.uci.edu/mpex/).
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of this property along the sequence by projecting it onto trigonometric functions 
( Eisenberg et al. 1984; Rees et al. 1989):

( ) ( )( ) ( )( )ω ω ω
= =

⎡ ⎤ ⎡ ⎤
= − + −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑

2 2

1 1
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N N

i i

P h i h i h i h i

Here, <h> is the average hydrophobicity of the full sequence or of a particular 
helix, N is the number of residues in the considered segment and � is the rotation-
al angle between adjacent side chains. Th e alpha-helical character, �, of the P(�) 
curve can then be quantifi ed as
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An ideal helix with 3.6 residues per turn yields an angle of 360°/3.6 = 100° be-
tween successive residues. Th us, the greater the fraction of the P(�) curve that is 
in the alpha-helical region (85–115°), the greater the resultant �. In other words, 
the more the prediction scale conforms to the helical periodicity, the greater is its 
alpha-helical character. Th e normalization factor 6 accounts for the diff erence in in-
tegration ranges. However, tests on membrane proteins with known 3D structures 
showed that hydrophobicity moments or the helical periodicities are poor indica-
tors of the solvent-exposed faces of TM helices (Cronet et al. 1993; Stevens and 
Arkin 1999; Park and Helms 2006). Th erefore, the notion of membrane proteins as 
“inside-out” proteins does not hold true.

3 Amino acid propensity scales

Knowledge-based propensity scales allow making computational predictions even 
without fully understanding the underlying chemical and physical processes. Th is is 
a clear advantage. On the other hand, there may be multiple ways of deriving such 
scales and many diff erent sources of data. Th erefore many diff erent scales have been 
derived, e.g., for describing the hydrophobicity of amino acids or, as discussed here, 
for predicting the tendency of amino acids in the TM segments of helical membrane 
proteins to make contacts with the lipid chains or to be buried in the protein core.

Th e knowledge-based scale for Propensities Residue Orientation in Transmem-
brane segments (kPROT; Pilpel et al. 1999) was one of the fi rst knowledge-based 
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scales for predicting the angular orientations of TM helices. At that time, the num-
ber of available 3D structures of helical TM proteins at atomic resolution was still 
very small so that no reliable statistics could be obtained from these. However, the 
number of protein sequences that were annotated as TM proteins was already more 
than suffi  cient. Th erefore, the authors compared the frequencies of amino acids in 
the membrane-spanning helices of proteins with single and multiple TM segments. 
Th is was done based on the intriguing idea that a higher abundance of an amino acid 
type in the TM segments of multi-span proteins indicates a tendency to face the pro-
tein interior. In contrast, a higher abundance of an amino acid in the TM segments of 
single-span proteins indicates that it has a higher tendency to be exposed to the lipid 
phase. In the proposed kPROT scale, the TM helix orientation propensity of each 
residue is related to the ratio of the two abundances. Using the proportions of amino 
acid j in the total set of TM segments of proteins with single and multiple spans fj

single 
and fj

multiple, the kPROT value for amino acid j was defi ned as:

single

multiplekPROT = ln .j
j

j

f

f

Following the concept of inverted Boltzmann statistics, a logarithmic relation 
is used here in order to convert the frequencies observed in the database into free-
energy-like scores, assuming that the database constitutes a statistical ensemble.

Th e TransMembrane helix LIPid (TMLIP) scale was presented in (Adamian 
et al. 2005). At that time, the number of known 3D structures of helical membrane 
proteins had increased to 29 non-redundant proteins. Th is now allowed obtaining 
the frequencies of exposed versus buried residues directly from analyzing the known 
structures. Th e propensity Pj of an individual residue type j to interact with phospho-
lipids was defi ned as the ratio of the probability fj

e of being exposed to the lipids to 
the probability fj

b
 of being buried:

e

b= ,j
j

j

f
P

f

where

e
e

e ,j
j

n
f =

n
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b .j
j

n
f =

n

For a specifi c region (hydrocarbon core or headgroup region), nj
e is the number 

of probe-accessible (exposed) residues of type j and ne is the total number of probe-
accessible residues. Th e authors derived two diff erent scales using diff erent refer-
ence states of the denominator fj

b. For TMLIP1, nj is the total number of residues of 
type j in the region, and n is the total number of residues in the region. For TMLIP2, 
nj is the number of buried residues of type j, and n is the total number of buried resi-
dues in the region. As for kPROT, the tabulated values are logarithmic values ln(Pj). 
Residues with ln(Pj > 0) have a tendency to face lipids, and residues with ln(Pj) > 0 
tend to face away from lipid. As a reference state, this approach employs the random 
probability of fi nding a residue type in a specifi c region.

As more and more crystal structures of membrane proteins will become avail-
able in future, researchers will likely continue developing scales as the kPROT and 
TMLIP scales discussed above. Interestingly, in the linear regime there exists a pre-
cise defi nition of an optimal scale (Park and Helms 2007). Let us consider a training 
dataset of a number of TM proteins with N residues in total and let X be a vector of 
length N that contains the numerically encoded concatenated sequence of these TM 
proteins. On the other hand, let Y be the vector that contains the numerical values 
of the probe accessibilities of all these residues. We are interested in deriving a scale 
� that best expresses the tendency of the 20 natural amino acids to be lipid-exposed. 
By including an extra element for an intercept value, � will be a vector of length 
21. When multiplying � and X and subtracting it from Y, we can defi ne the sum of 
squared errors

( ) ( ) ( )β − β − βTSSE = Y X Y X

between the actual probe accessibilities Y and the predicted accessibilities X�. In-
stead of only using the sequence of the proteins, sequence-based methods can gen-
erally be made more sensitive by utilizing frequency profi les derived from MSA of 
the protein sequence with related sequences. In this case, X will be a N by 21 matrix 
holding the profi le of length N and an extra column. Minimizing SSE with respect to 
� is the task of linear regression. Th e analytical solution is given as

−β ( )T 1 T= X X X Y
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In this way, one can derive a well-defi ned propensity scale that by construction 
gives the best agreement of predicted probe accessibilities and the observed accessi-
bilities. One must note, however, that this optimality holds only in the linear regime. 
Although there may still be bett er alternatives, it is very interesting to analyze what 
this procedure gives for the dataset of known structures. Th e MO scale obtained by 
this derivation is given in Table 1. Th e MO scale is strongly correlated with the struc-
ture-based scales TMLIP2 (0.84) and the one by Beuming and Weinstein (0.82) 
while there is only a moderate correlation of 0.6–0.7 between the MO scale and 
popular hydrophobicity scales (Park and Helms 2007). A decomposition analysis 
indicated that hydrophobicity plays a weaker role than for soluble proteins in the 
thermodynamic stability of HMPs. Interestingly, the MO scale was best correlated 
with the partial-specifi c volume of the amino acids (0.85). Th is underlines the need 
for amino acids in the protein interior to pack extremely well. On the surface of heli-
cal bundles, the fl exible lipid chains can easily pack around arbitrarily formed amino 
acids as long as they are hydrophobic enough.

4 Methods using sequence conservation

Due to the Darwinian principle of mutation and selection, residue positions that are 
of functional importance or of importance for protein expression and protein struc-
ture tend to be more conserved than on average. Th erefore, sequence-based bioin-
formatic techniques oft en try to quantify the level of conservation. Th is may then 
be correlated, for example, with features of 3D protein structures. Statistical studies 
of protein–protein binding interfaces showed that residues at interfaces tend to be 
more conserved than elsewhere on the protein surface. Similarly, one may suspect 
that buried residues in the core of the TM-spanning regions of helical proteins are 
more conserved than exposed residues (Taylor et al. 1994). Th is is to be expected 
because helical TM bundles are well-packed and because buried residues are more 
likely to have a functional role.

Table 1. The MO scale for helical membrane proteins (Park and Helms 2007)

Residue MO scale Residue MO scale Residue MO scale Residue MO scale

A –0.09 G –0.18 M –0.23 S –0.19

C –0.16 H –0.24 N –0.23 T –0.18

D –0.27 I  0.05 P –0.10 V  0.02

E –0.20 K –0.10 Q –0.22 W –0.03

F –0.01 L  0.02 R –0.21 Y –0.15
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In order to quantify the level of conservation one needs a MSA with at least 20 
related protein sequences to accurately estimate conservation indices. Various meth-
ods exist for computing conservation indices. We have worked with the program 
Al2Co presented in (Pei and Grishin 2001). In the variance-based measure, the con-
servation index C(i) for sequence position i in an MSA compares fj(i), namely the 
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Fig. 3. (a, b) Show the conservation indices of the residues in helices 1 and 12 of lactose per-

mease (pdb id: 2cfq). (c) Shows the conservation indices of residues in helix 10. In the crystal struc-

ture of the protein, residues exposed to the bilayer are less conserved than the residues buried in the protein structure. The color 

scale is slate blue for residues with conservation index (cI) <–0.3, Cyan for –0.3 � cI < 0.0, quartz for 0.0 � cI < 0.3, neon pink 

for 0.3 � cI < 0.8, and dark purple for 0.8 � cI. The fi gures were generated with the tool TopoView (http://gepard.bioinformatik. 

uni-saarland.de).
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frequency of amino acid j in the sequence position i to the overall frequency fj of 
amino acid j in the alignment

( ) ( )= −∑ 2( ) .j j
j

C i f i f

A position with fj(i) equal to fj for all amino acids j is assigned C(i) = 0. On the 
contrary, C(i) takes on its maximum for the position occupied by an invariant amino 
acid whose overall frequency in the alignment is low. Figure 3 shows the conserva-
tion indices of the positions along three TM helices of the lactose permease mem-
brane transporter. Helices 1 and 12 are boundary helices whereas helix 10 is partly 
buried.

Beuming and Weinstein (2004) made a pioneering contribution when they 
combined amino acid propensities with sequence conservation. Following the ap-
proach of Beuming and Weinstein, we have combined in our TMX method (Park 
et al. 2007) the conservation index C(i) and the frequency profi le into a positional 
score S(i) of each residue position i:

( ) ( ) ( )= ⋅ + ⋅∑
20

=1

S .C j j
j

i C C i C f i

Here, CC and Cj are coeffi  cients that may be optimized by linear or nonlinear 
techniques. In the approach by Beuming and Weinstein, both coeffi  cients were set 
to 0.5. Th e TMX method is a two-stage classifi er that predicts each position i to be 
buried or exposed. In the fi rst stage, the score for position i is computed using a 
window of size 21. Th is means that on both sides of position i, the frequency profi les 
of ten further residues are considered. Th e second stage then uses a binary support 
vector classifi er to classify the positional score as exposed or buried. Th e advantage 
of this approach is that also a confi dence value is provided for each prediction. Th e 
TMX method has an accuracy of 78.71% from a leave-one-out test. Th is is signifi -
cantly higher than the 68.67% accuracy of the Beuming–Weinstein method when 
tested in the same manner on the same dataset and also higher than the 71.06% for 
the method of Teasdale et al. (Yuan et al. 2006) who developed a classifi er to predict 
real-valued rSASA values. Figure 4 shows the TMX predictions for the same three 
helices of lactose permease. Th e clear separation of the red and blue faces of the he-
lices in this graphical representation indicates that helices 1 and 12 are likely bound-
ary helices whereas helix 10 is partly buried and partly exposed.
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Th e recent method RHYTHM by Hildebrand et al. is based on a new set of pro-
pensity scales for residues to contact another helix or the membrane (Rose et al. 
2009). Separate scales were derived for a dataset of 21 channel proteins and for a 

13G 20F

31P

24G

17F

10W
28P

21F
32I

14L 25A

18F

11M

29F 221

15F

33W

26Y

19Y

30F

12F

384V

3951

388V

381A
399T

392F

385L 396S

389A

382Y

319K

326V337I

330L
323M316V

334F

327P

320T

313L
331V

324F

317I
328F

321L

314E

332G 325E

318L

336Y

329L

322H

333C

315V

335K

393T

386G

397V

390L

383L
394L

387L

398F
391G

23M

16F

34L

27F

a b

c

Fig. 4. (a, b) Show the predicted burial status according to the TMX method for the residues 

in helices 1 and 12 of Lactose permease (pdb id: 2cfq). (c) Shows the burial status prediction 

results for helix 10. Helices 1 and 12 show a uniform distinction between their buried and exposed faces, while for helix 10 

the direction of residues exposed to the bilayer gradually changes for residues near the cytoplasmic side of the membrane to the 

residues near the periplasmic side. For residues predicted as buried by TMX, the color scale is orange for a predicted positional score 

PS � 0.0, orange red for 0.0 < PS � 0.5 and red for 0.5 � PS. So red residues are predicted as buried with highest confi dence. For 

residues predicted as exposed, the color scale is cyan for PS � 0.0, slate for 0.0 < PS � 0.5, and blue for 0.5 � PS. There, blue residues 

are predicted as exposed with highest confi dence.
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dataset of 14 “membrane-coils” proteins. Evolutionary information about sequence 
conservation is additionally derived from the MSAs stored in the Pfam database. 
Conservation is added as a bonus to the contact predictions. Th e authors noted that 
this Pfam prediction did not signifi cantly aff ect the specifi city of the predictions. So 
far, RHYTHM has not been benchmarked against the earlier methods.

5 Applications of burial prediction

Th ere now exists several web-services that allow predicting buried versus exposed 
regions of TM helices, see Table 2. Whereas ProperTM, LIPS, RA NTS, and TMX 
depend on generating MSAs to produce predictions about TM helix orientations or 
solvent accessibility, the method RHYTHM avoids this time-consuming step be-
cause it utilizes information from precomputed alignments.

An ideal area for applying bioinformatics techniques for burial/exposure predic-
tion is the positioning and orientation of TM helices in density maps from electron 
microscopy (Fleishman et al. 2004a). Structure determination through cryoelec-
tron microscopy typically results in intermediate- or low-resolution structural in-
formation. In these maps one can oft en clearly identify the positions of TM helices 
but not those of individual amino acids. Further experimental data or predictions 
of further structural constraints may help establishing the correspondence between 
the TM segments of the sequence and the densities in the EM map assumed to be 
TM helices. If this can be successfully done, computational tools for predicting the 
rotational angles of TM helices about the helix axes come into play. For example, 
in a study on the gap junction channel connexin, cryo-EM could resolve the posi-
tions and tilt angles of the four TM helices at 5.7 Å in-plane resolution and 19.8 Å 
vertical resolution (Fleishman et al. 2004b). Th ere are obviously 4 � 3 � 2 � 1 = 24 
possibilities to assign the four TM segments to the four helix positions. Th e authors 
have considered all those solutions where the evolutionarily variable positions of 
the helices are placed in lumen- or lipid-exposed positions, whereas conserved faces 

Table 2. Available web-servers to predict the orientation of transmembrane helices

Name URL References

ProperTM http://icb.med.cornell.edu/services/propertm/start Beuming and Weinstein (2004)

LIPS http://gila.bioengr.uic.edu/lab/larisa/lips.html Adamian and Liang (2006b)

RANTS http://gila.bioengr.uic.edu/lab/larisa/rants.html Adamian and Liang (2006a)

TMX http://service.bioinformatik.uni-saarland.de/tmx/ Park et al. (2007)

RHYTHM http://proteinformatics.charite.de/rhythm/ Rose et al. (2009)
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were packed inside the protein core. Moreover they could identify in the MSA of the 
connexin protein family fi ve pairs of correlated mutations in the TM and juxtamem-
brane domains. Based on the underlying assumption that contacting pairs of resi-
dues undergo dependent evolution these residue pairs could be used as additional 
structural constraints where these residue pairs all need to make direct contacts to 
each other. Th ese constraints then allowed the authors to optimize the rotational 
helical angles and suggest a unique structural model for the gap junction channel at 
residue resolution.

Another possible application of exposure/burial predicting techniques is the 
prediction of contact interfaces on the TM parts of the protein surfaces. In the area 
of soluble proteins, there is good evidence that residue conservation at protein inter-
faces is slightly higher than elsewhere on the protein surface. Also TM proteins oft en 
form oligomers or supracomplexes. Examples are the oligomerization of G-protein 
coupled receptors (Gurevich and Gurevich 2008) or the formation of supracom-
plexes in the respiratory chain (Witt ig and Schägger 2009). Unfortunately, the num-
ber of known 3D structures and, in particular, that of oligomeric assemblies is still 
too low at the present time for a statistically meaningful analysis of this  hypothesis.

As a last application, the prediction of transporter pores or of catalytic residues can 
be mentioned. In preliminary work we have shown that TMX profi les of transporter 
helices provide suffi  cient information to map the helices of transporters with unknown 
3D structure in a threading-approach onto the pore-lining helices of transporters with 
known structure ( Jan Christoph and Volkhard Helms, unpublished work).

In summary, we conclude that the prediction of buried/exposed states of TM 
residues in helical proteins has reached a mature state. Several robust methods 
have been presented that exploit the potential of propensity scales and of sequence 
 conservation. New tools have recently started to additionally include structural in-
formation about helix contacts. Th ere still seems to be room for improving the pre-
diction accuracies by combining these novel structural features with the traditional 
sequence-based features in an optimal fashion. Also, one may consider developing 
hierarchical approaches that combine tools optimized for the subfamilies of mem-
brane transporters, channels, receptors, etc.
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Abstract

Membrane-spanning α-helices represent major sites of protein–protein interaction in 
membrane protein oligomerization and folding. As such, these interactions may be of 
exquisite specifi city. Specifi city oft en rests on a complex interplay of diff erent types of 
residues forming the helix–helix interfaces via dense packing and diff erent non-covalent 
forces, including van der Waal’s forces, hydrogen bonding, charge–charge interactions, 
and aromatic interactions. Th ese interfaces oft en contain complex residue motifs where 
the contribution of constituent amino acids depends on the context of the surrounding 
sequence. Moreover, transmembrane helix–helix interactions are increasingly recognized 
as being dynamic and dependent on the functional state of a given protein. 

Abbreviations: GpA, glycophorin A; H-bond, hydrogen bond; TMD, transmembrane 
 domain.

1 Introduction

Studying membrane protein structure and assembly has made it clear that interac-
tions and dynamics of α-helical transmembrane domains (TMDs) play a crucial role 
in their folding, oligomeric assembly, and function. Various aspects around this top-
ic have been covered by excellent recent reviews (Fleming 2000; Popot and  Engelman 
2000; Shai 2001; Ubarretxena-Belandia and Engelman 2001; Arkin 2002; Helms 
2002; Langosch et al. 2002; Chamberlain et al. 2003; DeGrado et al. 2003;  Schneider 
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2004; Seelig 2004; Bowie 2005; MacKenzie 2006; Matt hews et al. 2006; Rath et al. 
2007, 2009; MacKenzie and Fleming 2008; Moore et al. 2008; Slivka et al. 2008; 
Langosch and Arkin 2009). 

Th e importance of transmembrane helix–helix interactions for membrane pro-
tein folding was originally indicated by showing that the polytopic light-sensor bac-
teriorhodopsin could be split proteolytically into several fragments, which could 
subsequently be reassembled to functional protein (Popot et al. 1986; Ozawa et al. 
1997). A role for TMD–TMD interactions in the non-covalent assembly of single-
spanning, or bitopic, membrane proteins was demonstrated when the TMD of the 
major erythrocyte membrane protein glycophorin A (GpA) formed dimers on SDS 
gels with exquisite sequence-specifi city (Bormann et al. 1989; Lemmon et al. 
1992a,b). Th ese fi ndings were conceptualized in the two-stage model. In the fi rst 
stage, transmembrane α-helices are membrane-integrated independent from each 
others and assemble via sequence-specifi c helix–helix interactions in the second 
stage (Popot and Engelman 1990, 2000).

TMD–TMD assembly results in distinct patt erns of residue conservation during 
evolution. Specifi cally, TMDs of bitopic proteins are more conserved than the re-
mainder of the protein and conservation is stronger at one side of the helix (Zviling 
et al. 2007). With polytopic proteins, sequence variation is higher where TMD heli-
ces face the lipid bilayer than at helix–helix interfaces (Samatey et al. 1995; Stevens 
and Arkin 2001). Further, single-spanning membrane proteins are more tolerant to 
mutation in comparison to multi-spanning proteins, where most TMDs contact 
multiple helices ( Jones et al. 1994a,b). Together, this refl ects conservation of amino 
acids at the sites of TMD–TMD packing and highlights their importance for specifi c 
interaction. Analyzing high-resolution structures of polytopic proteins showed pref-
erential orientation of aliphatic residue types (Ile, Leu, Phe, and Val) toward the li-
pid phase while polar residues tend to participate in helix–helix interfaces (Liang 
et al. 2005). Small and hydroxylated residues (Gly, Ala, Ser, and Th r) prefer regions 
of high packing density (Adamian and Liang 2001). Neighboring pairs of residues 
with a high propensity of occurrence include Gly pairs, pairs of an aromatic residue 
and a basic residue (e.g., Trp–Arg, Trp–His, and Tyr–Lys), of polar non-ionizable 
residues (e.g., Asn–Asn, Gln–Asn, and Ser–Ser), of two ionizable residues, and of 
one ionizable residue and a residue with a carboxamide side chain (e.g., Asp–Asn, 
Javadpour et al. 1999; Adamian and Liang 2001). Th ese contact potentials clearly 
point at a rich diversity of molecular forces within transmembrane helix–helix inter-
faces discussed in detail below. Th ey also hint at the mechanisms that provide 
 sequence-specifi city of interaction. Nevertheless, we currently only have a rudimen-
tary understanding of the mechanisms that ensure specifi city of TMD–TMD 
interactions and avoidance of promiscuous ones. In addition, it is clear that these 
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interactions are frequently regulatable by expression of competitor sequences, side-
chain protonation, lipid bilayer structure, small molecules, etc. (Fig. 1a). Regulating 
reversible interactions within the membrane is likely to be essential for regulation of 
protein function. Also, certain TMDs exhibit more than one interface in a complex, 
rendering it janus-headed (Rath et al. 2006; Barwe et al. 2007). 

2  Technical approaches to identify transmembrane helix–helix 

interfaces

High-resolution membrane protein structures, and by implication of TMD–TMD 
interfaces, are experimentally investigated mostly by X-ray crystallography which 
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Fig. 1. Molecular basis of transmembrane helix–helix assembly. (a) Overview of factors that are known to infl uence 

TMD–TMD interaction. (b) A simplifi ed depiction of how diff erent types of interfacial residues and motifs might be distributed in 

TMD sequence space. The baseline of the distribution corresponds to low-affi  nity non-specifi c interactions; peak heights are crude 

estimates based on published data of model cases. Single letter designation for amino acids is used, s and p refer to small and polar, 

respectively. Part a is modifi ed after Fig. 1 in Langosch and Arkin (2009).
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has revealed the structures of about 210 unique polytopic membrane proteins 
(htt p://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html) that currently account 
for only ~2% of all protein structures. Progress has been slower with bitopic pro-
teins. While the structure of the GpA TMD dimer has already been solved over 10 
years ago by NMR studies in detergent (MacKenzie et al. 1997) and later in mem-
branes (Smith et al. 2001), about half a dozen NMR structures have been presented 
more recently and X-ray crystallography has solved one of them (Oxenoid and Chou 
2005; Call et al. 2006; Bocharov et al. 2007, 2008a,b; Schnell and Chou 2008; 
 Stouff er et al. 2008; Lau et al. 2009; Sato et al. 2009; Stein et al. 2009; Wang et al. 
2009; Yang et al. 2009). 

High-resolution structures provide detailed insight into protein–protein inter-
faces but do not necessarily identify the most critical residues that may form “hot-
spots” of interaction within them. Patt erns of interfacial amino acids have also been 
identifi ed by biochemical and biophysical methods that measure non-covalent 
TMD–TMD assembly coupled to point mutagenesis. Assembly may be examined 
by gel shift  assays, analytical ultracentrifugation, fl uorescence resonance transfer, 
and disulfi de exchange in detergent or membranes (reviewed in: Ridder and 
 Langosch 2005; MacKenzie 2006; Merzlyakov et al. 2007; Fleming 2008;  Merzlyakov 
and Hristova 2008). In addition, genetic approaches have been developed where 
interaction is monitored in a natural membrane environment. Th ese genetic ap-
proaches allow investigation of candidate TMDs. In addition, they also permit ex-
ploration of TMD–TMD interfaces in a systematic ab initio approach by selection of 
self-interacting TMDs from combinatorial libraries of randomized hydrophobic se-
quences (Russ and Engelman 2000; Gurezka and Langosch 2001; Dawson et al. 
2002; Ridder and Langosch 2005; Unterreitmeier et al. 2007; Herrmann et al. 2009, 
2010). Selection of high-affi  nity TMDs requires an experimental system where their 
interaction results in a selectable phenotype. Th e ToxR transcription activator sys-
tem has been developed for this purpose (Langosch et al. 1996) and exploits the fact 
that self-interaction of ToxR-embedded TMDs within the inner membrane of ex-
pressing Escherichia coli reporter strains enhances expression of chloramphenicol 
resistance. Th e ToxR system exists in two versions used for library screening for ho-
motypic interactions, TOXCAT (Russ and Engelman 1999) and POSSYCCAT 
(Gurezka and Langosch 2001). It has been modifi ed to investigate heterotypic inter-
actions in a dominant-negative fashion (Lindner and Langosch 2006; Yin et al. 2007; 
Herrmann et al. 2009). Th e beauty of the library screening approach is that interfa-
cial consensus motifs emerge from alignments of selected sequences and can be 
verifi ed by mutational analysis and reconstruction on neutral host sequences. More-
over, searching homology-purged databases can reveal whether or not a given motif 
is overrepresented in natural TMDs. Overrepresented motifs are likely to infer a 
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a

b

Fig. 2. Approaches and outcomes in screening combinatorial libraries for high-affi  nity TMDs. 

(a) Outline of library construction and screening. The outcome of individual screens depends on whether tetrad or heptad motifs 

are randomized, on the hydrophobicity of invariant amino acids, and on the complement of codons used for the variant ones. (b) 

Recurrent motifs as identifi ed from diff erent libraries where diff erent interfacial residue patterns had been randomized with diff erent 

sets of amino acids on diff erent invariant host backgrounds. Ω = helix/helix crossing angle; aa = amino acid. The presence of GxxxG 

motifs in high-affi  nity TMDs suggests that the corresponding helix–helix pairs have negative crossing angles, even though a heptad-

repeat pattern underlying left-handed pairs had been randomized. References: 1 – Russ and Engelman (2000); 2 – Unterreitmeier 

et al. (2007); 3 – Herrmann et al. (2009); 4 – Herrmann et al. (2010); 5 – Dawson et al. (2002); 6 – Ridder et al. 2005). Modifi ed after 

Langosch and Arkin (2009), Fig. 2.
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functional advantage for the proteins in question, for example via stronger oligomer 
formation. Also, database searching leads to testable predictions of related motifs in 
natural membrane proteins. Figure 2a illustrates the general strategy, while Fig. 2b 
summarizes the results obtained so far.

3 Structure of transmembrane helix–helix interfaces

Th e structure of TMD–TMD interfaces is both defi ned by the geometry of side-
chain packing and by more focal forces, like hydrogen bonding (H-bonding), 
charge–charge interactions, and aromatic interactions. Th ese diff erent forces 
 frequently cooperate to form complex interfaces that exhibit high degrees of se-
quence-specifi city. As a result, the role of individual amino acids tends to be highly 
dependent on the context of the surrounding structure. In the following, those dif-
ferent forces are discussed separately for the sake of simplicity. Figure1b summarizes 
how diff erent interfacial amino acid motifs may be distributed in sequence space.

3.1 Amino acid side-chain packing 

Due to packing constraints, the long axes of soluble or transmembrane helix–helix 
pairs usually adopt either positive or negative crossing angles (Chothia 1984; Bowie 
1997). In a simplifi ed model, interfacial residues of pairs with positive crossing an-
gles, also termed left -handed pairs, follow a [a..de.g]n heptad-repeat patt ern (where 
lower case lett ers represent residue positions) reminiscent of leucine zippers where 
side chains of one helix form “knobs” that pack into “holes” of the opposite helix 
surface. Th e interfaces of pairs characterized by negative angles, or right-handed 
pairs, correspond to a [ab..]n tetrad repeat where side-chain packing is less regular 
than in the “knobs-into-holes” model (Langosch and Heringa 1998; Langosch et al. 
2002, Fig. 2a). Accordingly, a recent rigorous structural classifi cation of TMD–TMD 
pairs from polytopic proteins revealed that about 2/3 of them fall into only four 
structural clusters, i.e., antiparallel and parallel helices with a limited range of cross-
ing angles that is dictated by the nature of side-chain interactions (Walters and de-
Grado 2006). Th is suggests a limited conformation space for TMD–TMD pairs, as 
predicted based on geometrical considerations (Oberai et al. 2006). However, it has 
to be borne in mind that the remaining third of these pairs correspond to additional 
conformations with more varied crossing angles and irregularities in helix structures 
(mostly wide or tight helical turns that are oft en associated with kinks, Lehnert et al. 
2004). Th e same broad structural classifi cation seems to hold true for TMD–TMD 
assemblies from bitopic proteins as indicated by high-resolution structures 
( MacKenzie et al. 1997; Smith et al. 2001; Call et al. 2006; Bocharov et al. 2007, 
2008b; Schnell and Chou 2008; Stouff er et al. 2008) and scanning mutagenesis 



D. Langosch et al.

171

(Laage and Langosch 1997; Li et al. 2004b; Ruan et al. 2004a,b; Sulistijo and 
 MacKenzie 2006; Dews and MacKenzie 2007). 

Th e formation of well-packed interfaces is supported by non-directional van 
der Waal’s forces. Albeit weak, undirectional, and strongly dependent on distance, 
van der Waal’s interactions apply to any type of side-chain atom and accumulate 
over an entire well-packed interface. As such, they are suited to support interaction 
of TMDs composed of aliphatic residues, such as oligo-Leu helices (Gurezka et al. 
1999; Mall et al. 2001; Ash et al. 2004). Similarly, TMDs containing only Leu, Ile, 
Val, Met, and Phe arranged in a heptad-repeat patt ern tend to self-interact with lit-
tle sequence-specifi city, yet are overrepresented in natural bitopic membrane pro-
teins (Gurezka and Langosch 2001). Th e NMR structure of the ErbB2 TMD (pdb 
code: 2jwa) dimer provides an example where an interface is primarily composed 
of non-polar side chains plus a Gly residue at the site of closest contact. Th e obser-
vation that fl uorinated interfaces enhance interaction of TMD helices  (Naarmann 
et al. 2006) could be explained by polarization of neighboring side-chain atoms by 
fl uorine.

3.2 GxxxG motifs

GxxxG motifs exist in many TMDs and can induce their interaction. As their func-
tion appears to result from diff erent physical forces, they are discussed in this sepa-
rate chapter. A GxxxG motif has fi rst been seen when interfacial residues of the GpA 
TMD–TMD homodimer (Lemmon et al. 1992a,b, 1994; Langosch et al. 1996; 
Fleming et al. 1997; Fisher et al. 1999; Russ and Engelman 1999; Fleming and 
 Engelman 2001; Doura and Fleming 2004; Doura et al. 2004) were mapped by mu-
tagenesis. Identifi cation of the GxxxG motif as such was originally based on the ob-
servation that changing the residue spacing between both Gly residues aff ects 
dimerization and GxxxG induces self-interaction of model TMDs (Brosig and 
 Langosch 1998). Th e GpA TMD dimer exhibits a negative crossing angle as implied 
by molecular modeling (Treutlein et al. 1992; Adams et al. 1996) and confi rmed by 
NMR studies (MacKenzie et al. 1997; Smith et al. 2001). Th e contribution of GxxxG 
to an interface is apparently driven by a complex mixture of att ractive forces and 
entropic factors (MacKenzie and Engelman 1998). It has been suggested that it leads 
to formation of a fl at helix surface that maximizes van der Waal’s interactions and 
that the loss of side-chain entropy upon association is minimal for Gly (Russ and 
Engelman 2000). Moreover, the Gly residues reduce the distance between the helix 
axes and thus may facilitate hydrogen bond formation between their Cα-hydrogens 
and the backbone carbonyl of the partner helix (Senes et al. 2001a). Th e early work 
on GpA TMD assembly was particularly rewarding since the GxxxG motif and de-
generate versions thereof (designated “smallxxxsmall” or “GxxxG-like” with Gly 



Helix–helix interaction patterns in membrane proteins

172

 exchanged for Ala, Ser, Cys, etc.), were later found in many other TMDs, including 
those of syndecans (Asundi and Carey 1995; Dews and MacKenzie 2007), mem-
bers of the BNIP family (Sulistijo and MacKenzie 2006, 2009; Bocharov et al. 2007), 
protein tyrosine phosphatases (Chin et al. 2005), viral envelope proteins (Miyauchi 
et al. 2005; Arbely et al. 2006), growth factor receptors (Mendrola et al. 2002; 
 Bocharov et al. 2008b), integrins (Gott schalk et al. 2002; Schneider and Engelman 
2004; Lin et al. 2006a; Slivka et al. 2008; Wegener and Campbell 2008), and the 
Alzheimer precursor protein (Kim et al. 2005; Munter et al. 2007; Gorman et al. 
2008) where it occurs in tandem. 

Screening combinatorial TMD libraries where a tetrad repeat patt ern had been 
randomized yielded high-affi  nity GxxxG motifs in more than 80% of all isolates 
(Russ and Engelman 2000), thus underpinning the role of this motif in TMD–TMD 
interactions. Indeed, database searching identifi ed the GxxxG motif as the most 
prevalent pair-wise motif in TMDs (Arkin and Brünger 1998; Senes et al. 2000; 
 Unterreitmeier et al. 2007). Overrepresentation of GxxxG relative to statistical ex-
pectation demonstrates that its presence supports protein function in evolution. At 
the same time, the fact that 12.5% of TMDs from non-homologous bitopic proteins 
contain at least one GxxxG motif (Senes et al. 2000; Unterreitmeier et al. 2007) sug-
gests that mechanisms must have evolved to prevent promiscuous interaction of 
TMDs with GxxxG. Indeed, the mere presence of such motifs does not reliably pre-
dict high-affi  nity interaction. Th is is exemplifi ed by the fact that GxxxG present 
within the ErbB2 receptor TMD lies outside the interface, which extends only over 
the N-terminal half of the helix (Bocharov et al. 2008b). Indeed, the N-terminal half 
self-associates with slightly higher propensity than the C-terminal half. It was sug-
gested that interaction of the former one stabilizes the active state of the receptor 
while the latt er one forms an interface in the inactive state (Escher et al. 2009). Fur-
ther, GxxxG is highly eff ective within the contexts of oligo-Met and oligo-Val se-
quences (Brosig and Langosch 1998), but not within either an oligo-Leu TMD, a 
number of randomized TMDs (Unterreitmeier et al. 2007) or the M13 major coat 
protein TMD ( Johnson et al. 2006). To avoid promiscuous homo- and heterotypic 
interactions, the impact of GxxxG depends on sequence context (Melnyk et al. 
2004). Th is is underpinned by the fi nding that the interaction energy of the GpA 
TMD varies over a wide range aft er mutation of the sequence surrounding GxxxG 
(Doura et al. 2004). High-affi  nity TMDs holding GxxxG may therefore be regarded 
as islands in GxxxG sequence space. Screening combinatorial TMD libraries has 
identifi ed some of these islands by showing that GxxxG can form high-affi  nity inter-
faces with appropriately spaced Phe (Unterreitmeier et al. 2007), clusters of His and 
polar/small residues (Herrmann et al. 2009), or ionizable residues (Herrmann et al. 
2010) as described below. 
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3.3 Hydrogen bonding

Th e role of H-bonds in TMD–TMD interfaces is discussed controversially. On one 
hand, polar residues were inferred to form extensive H-bond connections that en-
hance packing between the TMDs of polytopic membrane proteins (Adamian and 
Liang 2002). Also, Asn and Gln residues strongly promote self-interaction of model 
(Choma et al. 2000; Zhou et al. 2000, 2001; Gratkowski et al. 2001; Ruan et al. 
2004b) or natural (Ruan et al. 2004a) TMDs. Th ese polar residues are thought to 
form strong interhelical H-bonds within the apolar millieu of lipid bilayers. Apart 
from hydroxylated side chains and carboxamides, homotypic interaction of model 
TMDs is also promoted by ionizable residues, including Asp, Glu, His (Gratkowski 
et al. 2001; Zhou et al. 2001; Sal-Man et al. 2004), Lys, and Arg ( Johnson et al. 
2007), which may also be att ributed to H-bond formation in the absence of an op-
positely charged residue on the partner helix. 

On the other hand, recent studies suggest only modest stabilization of a bitopic 
model TMD–TMD interface by H-bonds (North et al. 2006) and H-bonds seem to 
contribute litt le toward stability of bacteriorhodopsin in SDS micelles ( Joh et al. 
2008; see Grigoryan and Degrado 2008 for a discussion of these results). Apart from 
H-bonds contributed by polar side-chains, it has been proposed that the Cα–H 
group is capable of participating in H-bonding (Senes et al. 2001b) since the mar-
ginal polarity of the Cα proton might be suffi  cient to serve as an H-bond donor in a 
highly hydrophobic environment. However, the eff ect upon stability of a single 
C�–H…O=C bond in bacteriorhodopsin was estimated by mutagenesis in deter-
gent micelles to be insignifi cant (Yohannan et al. 2004) and the enthalpy of a similar 
H-bond in GpA is relatively small (0.88 kcal/mol; Arbely and Arkin 2004) com-
pared to an H-bond extending from a polar side chain (~2–3 kcal/mol). 

Th us, the extent to which an H-bond contributes to the stability of a given inter-
face may critically depend on its structural environment. One example underscoring 
this notion is the fi nding that high-affi  nity TMDs isolated from a combinatorial li-
brary were enriched for His residues which were frequently accompanied by Gly, 
Ser, and/or Th r residues at positions i-4 and i-1 relative to His (Herrmann et al. 
2009). Mutational analyses confi rmed the importance of these residues in homo-
typic interaction. Probing heterotypic interactions indicated that His residues inter-
act in trans with hydroxylated residues suggesting that hydrogen bonds and possibly 
aromatic interactions stabilize the interface. Interestingly, the sequences with the 
highest affi  nities contained a C-terminal GxxxG motif which results in a [G/S/T]
xx[G/S/T]HxxxxxxGxxxG consensus patt ern. Reconstruction of minimal interac-
tion motifs on an oligo-Leu sequence supported the idea that His is part of a 
 H-bonded node that may be brought into register by a distant GxxxG (Herrmann 
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et al. 2009). Isolated His residues support the assembly of model TMDs much less 
effi  ciently (Zhou et al. 2001; Herrmann et al. 2009). Th is exemplifi es one case where 
precise geometric positioning, apparently accomplished here by GxxxG, may be re-
quired for optimal stabilization of H-bonds at a distant site. Database searching 
yielded only few candidate TMDs holding this motif. One of them corresponds to 
the previously well-investigated BNIP3 TMD. BNIP3 is a Bcl-2 family pro-apoptot-
ic protein that initiates hypoxia-induced cell death. Th e BNIP3 TMD forms a ho-
modimer characterized by the motif SHxxAxxxGxxxG (Sulistijo et al. 2003;  Sulistijo 
and MacKenzie 2006) and its NMR structure confi rmed these interfacial residues in 
the right-handed pair of helices (Bocharov et al. 2007; Sulistijo and Mackenzie 
2009). Th e BNIP3 TMD–TMD interface thus corresponds to one variant of the 
consensus motif identifi ed in a library screen. Apart from stabilizing interaction of 
bitopic subunits, His is also important in interfaces between the helices of polytopic 
proteins as residue triplets containing His and Ser or Th r are strongly overrepre-
sented there (Adamian et al. 2003).

Th e context dependence of H-bonds in TMD–TMD interfaces is also supported 
by the formation of interfaces containing Ser/Th r-clusters (Dawson et al. 2002) and 
QxxS-motifs (Sal-Man et al. 2005). Self-interacting TMDs with predominant 
 SxxSSxxT and SxxxSSxxT motifs were isolated from a combinatorial library and 
point mutagenesis showed the requirement of a cooperative network of interhelical 
 H-bonds while single Ser or Th r residues did not promote interaction (Dawson et al. 
2002). A QxxS motif was found essential for homodimerization of the bacterial 
Tar-1 protein and is signifi cantly overrepresented in a bacterial TMD database sug-
gesting its wide-spread role in homodimerization (Sal-Man et al. 2005). 

3.4 Charge–charge interactions

Early evidence for charge–charge, or ionic, interactions between TMDs came from 
studies that probed the location of helices within the membrane. Th ere, pairs of pos-
itively charged Lys and negatively charged Asp residues one helical turn apart placed 
a model helix deeper in the membrane than other spacings of the two residues (Chin 
and von Heijne 2000). On the other hand, heterotypic interaction of a pair of helices 
containing either Glu or Lys within an oligo-Leu host sequence did not exceed that 
of homotypic interaction in liposomal membranes (Shigematsu et al. 2002). Th e 
contribution of ionic interactions to oligomeric assembly was also tested for a few 
natural proteins. One well-investigated system corresponds to the T-cell receptor 
complex that is composed of single-span subunits. Th ree basic residues are found in 
the TMDs of the αβ heterodimeric receptor while a pair of acidic residues is present 
in the TMDs of each of the three associated CD3γε, CD3δε, and ζζ signaling ho-
modimers. Assembly of the complete oligomer rests on interaction of one basic resi-
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due of the central �� receptor with a pair of acidic residues within any of the signal-
ing modules. Precise geometrical positioning of oppositely charged TMD residues is 
required for T-cell receptor complex assembly. Th e underlying TMD–TMD interac-
tion is highly residue specifi c as Arg and Lys of the �� receptor heterodimer or Asp 
and Glu of the associated signaling modules cannot be exchanged for other residues 
of the same charge without loss of assembly competence (Call and Wucherpfennig 
2007). Th e solvent NMR structure of the ζζ homodimeric signaling module 
 provides some clues as to the structural basis of specifi city. In this isolated pair of 
subunits, helix–helix interaction is stabilized by a disulfi de bond and the interface 
contains a H-bond between Tyr and Th r residues. In addition, one Asp side-chain 
oxygen of each helix forms an interhelical hydrogen bond to a carbonyl of the oppos-
ing strand while one seems to be available for interaction with a basic residue of the 
receptor. Th e presence of structural water within the ζζ interface may precisely ori-
ent the ionizable side-chains within a network of H-bonds and thus explain residue 
specifi city in charge–charge interaction (Call et al. 2006). A triad of basic and acidic 
residues also appears to drive assembly of a number of other activating immune re-
ceptors (Call and Wucherpfennig 2007). Ionic TMD–TMD interactions can be dy-
namic, such as in activation of voltage-activated ion channels. Th ere, the sliding helix 
model posits that sequential formation of ion pairs between Arg residues of the S4 
TMD with acidic residues of diff erent surrounding TMDs stabilizes S4 in the mem-
brane and permits its voltage-triggered movement (Zhang et al. 2007; DeCaen et al. 
2008). 

A set of high-affi  nity TMDs was recently isolated from a combinatorial library 
whose members contain both basic and acidic residues at certain positions 
 (Herrmann et al. 2010). Th e invariant Leu-based host employed here is apparently 
hydrophobic enough to maintain polar residues within the membrane (Lew et al. 
2000; Hessa et al. 2005). A detailed analysis of representative sequences indicated 
that ionic forces between appropriately spaced basic and acidic residues seem to be 
essential for interaction. Specifi cally, an ionizable residue at position i can interact 
with another one at position i – 1, i + 2, or i + 3. It is quite likely that additional pro-
ductive combinations exist. Context dependence of these interfacial residues is again 
apparent since a C-terminal GxxxG starting at i + 7 is essential for high-affi  nity inter-
action and neighboring Ser, Cys, Tyr, or His residues contribute to the interfaces. 
Similar to the polar/His node discussed above, pre-orientation of the helices via in-
teraction of the GxxxG motif may ensure precise geometrical positioning required 
for charge–charge interaction. Database searching yielded only few TMDs whose 
potential self-interaction is suggested by a pair of appropriately spaced ionizable 
residues in combination with GxxxG. However, hundreds of natural TMDs contain 
either a basic or an acidic residue plus GxxxG. Th e majority of the latt er motifs was 
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overrepresented and might thus enter heterotypic interactions provided the spatio-
temporal co-expression of the respective proteins (Herrmann et al. 2010). In addi-
tion to this cooperation of charged residues and GxxxG, it is clear that mechanisms 
not relying on GxxxG motifs must exist that allow for formation of salt-bridges be-
tween the TMDs of those natural proteins where experiment has clearly identifi ed 
them, like the T-cell receptor. 

3.5 Aromatic interactions

Evidence for aromatic interactions between TMDs was originally provided by the 
frequent interfacial positioning of Trp, Tyr, and Phe in polytopic proteins (Langosch 
and Heringa 1998; Adamian and Liang 2001; Adamian et al. 2003). Experimentally, 
a library screen showed that Trp residues of high-affi  nity TMDs prevailed at g 
 positions of the randomized heptad motif. Mutation of Trp residues reduced self-
interaction and graft ing Trp residues onto artifi cial TMDs strongly enhanced their 
affi  nity (Ridder et al. 2005). A contribution of aromatic residues is also implied by 
the overabundance of WxxW and YxxY motifs in bacterial TMDs and mutational 
analysis of one candidate TMD that belongs to the cholera toxin secretion protein 
EpsM confi rmed that WxxW, YxxW, WxxY, YxxY, and single Trp residues support its 
self-interaction (Sal-Man et al. 2007). A stabilizing role of aromatic–aromatic inter-
actions was also seen when Phe, Tyr, and Trp promoted interaction of model TMDs. 
Further, cation–π interactions between aromatics and Arg, Lys, or His residues on 
the partner helix can lead to even higher TMD–TMD affi  nities ( Johnson et al. 
2007). In another study, a stabilizing role was observed for Phe when located at the 
i-3 position of GxxxG of high-affi  nity TMDs as isolated from a combinatorial library, 
thus yielding FxxGxxxG motifs (Unterreitmeier et al. 2007). Th is motif, and a 
number of analogs with diff erent Phe/GxxxG spacings, is overrepresented in TMDs 
of natural bitopic membrane proteins. Within the framework of an oligo-Met host, 
only FxxGxxxG (present in >200 natural TMDs) self-interacted more strongly than 
GxxxG; thus, other overrepresented variants, such as FGxxxG, GxxFG, GxxxGF, 
GxxxGxF, GxxxGxxF, and GxxxGxxxF (>1300 natural TMDs) might support het-
erotypic interactions. It is currently not clear how Phe and GxxxG cooperate to form 
a helix–helix interface. Th e role of GxxxG might be to orient the Phe residues such 
as to promote aromatic–aromatic interactions. Alternatively, the Phe residue could 
interact with the backbone at a Gly of GxxxG of the partner helix via a Cα–H…π 
 interaction known to be prevalent in soluble protein cores (Brandl et al. 2001). 
 Albeit weak, these Cα–H…π interactions could be stabilized by the low dielectric 
environment of membranes as discussed above. A noteworthy observation is that 
the effi  ciencies by which the diff erent aromatics stabilized TMD–TMD interactions 
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in these studies vary widely. While Trp, but not Tyr, promoted interaction of a li-
brary isolate where GxxxG was absent (Ridder et al. 2005), self-interaction of cer-
tain model TMDs followed the order Phe>Tyr ≈ Trp ( Johnson et al. 2007), and 
only Phe is eff ective at the –3 position of GxxxG (Unterreitmeier et al. 2007). Th ere-
fore, the mechanism and effi  ciency by which aromatics can induce helix–helix inter-
actions seems to be strongly dependent on the surrounding structure. 

4 Dynamic TMD–TMD interactions

TMD–TMD interfaces have been discussed above in the conceptual framework of 
static structures that are stabilized by mixtures of diff erent non-covalent forces. Th is 
picture is appropriate in cases where TMDs mediate kinetically stable subunit oli-
gomerization. It is clear, however, that these interactions may be reversible on time 
scales that are relevant for biological function. Th us, formation of a TMD–TMD in-
terface appears to depend on the functional state of certain proteins, such as in signal 
transduction aft er ligand binding. TMDs may interact reversibly by translational 
movement within the bilayer plane, rotate relative to each others, or undergo even 

Rotation Piston Translation

Fig. 3. Dynamics of membrane-embedded protein domains. The activation of bitopic proteins upon binding 

of soluble ligands to extracellular domains has been proposed to involve the reorientation of transmembrane helices relative to each 

others about their long axes, reversible association/dissociation, and piston movements. Modifi ed after this fi gure in Langosch and 

Arkin (2009).
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piston motions (Fig. 3; Matt hews et al. 2006; Moore et al. 2008). A few model pro-
teins will be discussed here to illustrate the point. Reversible interactions involving 
translational movement are proposed to regulate the adhesive function of integrins 
(Gott schalk and Kessler 2002; Luo and Springer 2006). Th ere, heterotypic TMD–
TMD interactions between a set of α and β subunits (Gott schalk and Kessler 
2004a,b; Schneider and Engelman 2004; Lin et al. 2006b; Lau et al. 2009) are thought 
to be displaced in favor of homotypic interaction (Li et al. 2004b) during activation 
(Li et al. 2004a). Rotation of TMDs relative to each other is a concept that appears to 
supersede the more traditional idea of ligand-induced dimerization of growth factor 
receptors. Th ere is now substantial evidence that these receptors can exist as pre-
formed dimers that are stabilized by TMD–TMD interactions. Receptor activation 
seems to involve TMD rotation in response to ligand-binding to extracellular do-
mains, in case of erythropoietin (Seubert et al. 2003), epidermal growth  factor 
(Moriki et al. 2001), and growth hormone (Brown et al. 2005) receptors. Interest-
ingly, the arrangement of TMDs can also be infl uenced by direct binding of hydro-
phobic ligands. For example, the thrombopoietin receptor was activated by a syn-
thetic compound that required a TMD His residue (Nakamura et al. 2006; Kim et al. 
2007). Also, modeling studies suggest that the TMD of the ErbB2 tyrosine kinase is 
able to rotate to adopt two alternate dimerization motifs, thereby controlling the ac-
tivity of the protein (Fleishman et al. 2002). Th is view is largely compatible with the 
idea that upon receptor activation helix–helix interaction moves from the N-terminal 
helix half to the C-terminal half (Escher et al. 2009). Changing the electrostatics be-
tween TMDs is another way to change their orientation relative to each other. Th e 
homotetrameric M2 protein from infl uenza A forms a proton channel, which is acti-
vated by lowering the pH. Its TM-helices cross each other at positive angles as indi-
cated by earlier functional (Pinto et al. 1997), biochemical (Bauer et al. 1999), and 
modeling (Dieckmann and DeGrado 1997) work. Th e high-resolution structures 
which have been solved recently (Schnell and Chou 2008; Stouff er et al. 2008) sug-
gest that His protonation promotes channel gating, although it still remains unknown 
how exactly a pH change opens the pore. Linear and 2D-IR spectroscopic studies 
have provided evidence that is consistent with a rotation of the helices about their 
long axes upon pH change (Manor et al. 2009). Th is rotational change is on the order 
of one amino acid register and may provide a molecular picture of channel gating. 
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Abstract 

Helix–helix contacts are an important feature of alpha-helical membrane proteins as they 
defi ne their characteristic helix bundle structure. No bioinformatics approaches for the 
prediction of pairwise residue contacts in membrane proteins have existed until recently. 
In this chapter we describe novel contact prediction methods based on residue coevo-
lution and machine learning techniques specifi cally geared towards membrane proteins. 
While contact prediction accuracies are limited to ~10% using co-evolving residues alone, 
machine learning methods are able to improve these accuracies signifi cantly to more than 
25% by using available membrane protein structures as a training dataset and incorporat-
ing membrane protein specifi c sequence features into the prediction process. Importantly, 
predicted residue contacts allow for identifi cation of interacting transmembrane helices 
with high accuracy. As diff erent membrane protein structures can be distinguished by 
their specifi c patt ern of helix interactions, predicted residue contacts may not only serve 
as structural constraints in modeling experiments, but also constitute valuable informa-
tion for structural classifi cation of membrane proteins with unknown structure.

1 Introduction

Th e recent surge in the number of available membrane protein structures has led to 
a growing appreciation of the fact that �-helical membrane proteins are much more 
complex than anticipated from early X-ray studies. It is now well established that 
membrane helix bundles may signifi cantly deviate from simple canonical arrange-
ments where transmembrane helices are oriented largely parallel to one another and 
perpendicular to the membrane, with interactions taking place primarily between 
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sequentially adjacent helices. Instead, individual helices may be strongly tilted or 
kinked, some may cross the membrane only halfway forming a reentrant loop, and 
observed helix packings may oft en involve residue contacts between helices distant 
in sequence (Fleishman et al. 2006; Elofsson and von Heijne 2007).

Structure prediction eff orts of membrane proteins have to address these emerg-
ing properties of membrane protein structures. While topology prediction programs 
need to be able to cope with transmembrane helix irregularities, three dimensional 
(3D) structure prediction is challenged by the increased complexity of membrane 
helix bundle packing. A crucial step toward accurate spatial models of membrane 
protein structures is therefore the prediction of residue contacts and interactions 
between helices which are important determinants of transmembrane helix bundle 
architectures and can be used as structural constraints (Barth et al. 2009).

Th is chapter presents an overview of existing methods for contact prediction 
in �-helical membrane proteins. Th ereby, the term “helix–helix contact” is used 
to describe pairwise residue contacts between amino acids situated on diff erent 
transmembrane helices while the term “helix–helix interaction” characterizes two 
transmembrane helices connected by at least one helix–helix contact. We begin with 
summarizing the current knowledge regarding the properties of helix–helix contacts 
in membrane proteins as obtained from experiments and available structural data. 
In the subsequent section, prediction of residue orientation will be briefl y addressed 
since it helps to distinguish residues facing the membrane from those oriented to-
ward the protein interior. As the latt er class of residues is much more likely to par-
ticipate in helix–helix contacts than lipid-exposed residues, the prediction of buried 
and exposed residues has been described by some authors as “prediction of helix–
helix contacts” even though such methods are not able to identify pairs of residues 
forming a helix–helix contact (for a detailed summary of lipid exposure prediction 
methods see Helms et al., this volume). We proceed to describe recent methods 
to predict pairwise residue contacts and compare their performance to analogous 
methods available for soluble proteins. Th e focus of the chapter is then extended 
from the level of individual amino acids to the level of entire transmembrane helices 
by describing how obtained helix–helix contacts can be used to predict helix–helix 
interactions and to derive overall helix architectures of membrane proteins with high 
accuracy and specifi city. Finally, a short overview summarizes how helix–helix con-
tacts can be incorporated in 3D modeling of membrane protein structures.

2 Biological background

In view of the crucial role played by helix–helix contacts and interactions in stabiliz-
ing membrane protein structures, major eff orts have been put into their analysis, both 
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experimentally and computationally. Th ermodynamic measurements  (Fleming and 
Engelman 2001; Cristian et al. 2003) as well as genetic approaches (Langosch et al. 
1996; Russ and Engelman 1999) have been developed and applied to determine the 
strength of individual helix interactions and estimate the eff ect of mutations on helix 
assembly (for a recent review see MacKenzie and Fleming 2008). Available  membrane 
protein structures have been rigorously analyzed to obtain insights into helix–helix 
packing and to derive amino acid propensities for the participation in interhelical in-
teractions (Adamian and Liang 2001; Eilers et al. 2002; Gimpelev et al. 2004).

2.1 Diversity of helix–helix contacts in membrane proteins

When analyzing the nature of non-covalent interactions within membrane proteins, 
polar residues as well as small residues have been found to strongly contribute to the 
transmembrane helix assembly despite the overall hydrophobic nature of transmem-
brane regions and the accordingly large contribution of Van der Waals interactions. 
In fact, several groups observed that the composition of helix interfaces in mem-
brane proteins is even more diverse than in soluble proteins  (Adamian and  Liang 
2001; Eilers et al. 2002). While soluble proteins have a strong preference for salt-
bridge interactions formed by oppositely ionizable amino acids, membrane proteins 
feature a much broader range of polar interactions involving residue pairs formed 
by diff erent polar residues such as S, T, Y, N, and Q (Adamian and Liang 2001). 
On average, every transmembrane helix is expected to form at least one hydrogen 
bond with another helix. Especially side-chain backbone hydrogen bonds contrib-
ute  substantially to this observation as every second hydrogen bond between trans-
membrane helices seems to be of this type (Gimpelev et al. 2004). Experimentally, 
transmembrane helices with motifs of multiple serine and threonine residues or 
single glutamine, asparagine, aspartic acid or glutamic acid residues were found to 
promote strong self interaction (Dawson et al. 2002; Zhou et al. 2000), further rein-
forcing the importance of polar residues for helix association.

Small residues (G, A, and S), on the other hand, were repeatedly found to be 
among the most over-represented residues within membrane helix interaction inter-
faces (Eilers et al. 2002; Gimpelev et al. 2004). Th ese residues found even more at-
tention aft er it had been reported that motifs consisting of two small residues spaced 
by three residues ([GAS]xxx[GAS]) are a recurrent theme in helix–helix interfaces 
(Lemmon et al. 1992; Brosig and Langosch 1998; Mendrola et al. 2002; Overton 
et al. 2003; Lee et al. 2004). Generally, small residues are thought to allow very 
close contact between transmembrane helices and accordingly extensive van der 
Waals interactions ( Javadpour et al. 1999) as well as the formation of C�–H�O 
hydrogen bonds across the helical backbone (Senes et al. 2001). Lately, however, 
measurements of helix interaction energies have indicated that GxxxG-containing 



Predicting residue and helix contacts in membrane proteins

190

transmembrane segments may interact with remarkably diff erent strength suggest-
ing that sequence context is equally important for interaction as the GxxxG motif 
itself (Doura et al. 2004; MacKenzie and Fleming 2008).

2.2  Frequency of residue contacts in membrane and soluble proteins

It is well known that the prediction of intra-molecular amino acid contacts be-
comes more diffi  cult with decreasing contact density (fraction of observed con-
tacts among the total number of possible residue pairs; Punta and Rost 2005). 
For soluble proteins, the contact density was found to depend strongly on the 
secondary structure content of a protein, with all-alpha proteins having roughly 
only half as many contacts as all-beta proteins (Punta and Rost 2005). Th is fi nd-
ing explains repeatedly reported diffi  culties in contact prediction of all-alpha 
 proteins.

Comparing the frequency of residue contacts in membrane and soluble pro-
teins, Fig. 1 shows the dependency of the number of observed contacts in a 
protein on protein length for three diff erent types of proteins: soluble proteins, 
 soluble proteins in the SCOP class all-alpha, and alpha-helical membrane proteins 
(only transmembrane segments considered). While all-alpha soluble proteins are 
found to possess slightly fewer contacts than soluble proteins in general over the 

All-α proteins, fit C = 2.5L–74.8
Membrane proteins, fit C = 2.3L–102.9

Soluble proteins, fit C = 3.2L–76.5
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Fig. 1. Contact density (number of contacts as a function of protein length) of membrane 

proteins compared to soluble proteins. The amount of contacts for any type of protein is linearly proportional 

to protein length, with membrane proteins having generally fewer contacts than soluble proteins. The fi tted curves represent 

contact functions expressing the expected number of contacts for a given protein class and length. Figure adapted from Fuchs 

et al. (2009).
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full range of analyzed protein lengths, the number of observed contacts within 
membrane proteins is even more reduced compared to soluble proteins in general 
and all-alpha soluble proteins in particular. Accordingly, the prediction of helix–
helix contacts in membrane proteins can be expected to be at least of comparable 
diffi  culty to the prediction of intra-molecular contacts within all-alpha soluble 
proteins, if not more diffi  cult.

3 Prediction of lipid accessibility

Numerous approaches have been developed for the prediction of solvent accessi-
bility in soluble proteins (for examples, see Rost and Sander 1994; Pascarella et al. 
1998; Li and Pan 2001; Pollastri et al. 2002; Yuan et al. 2002; Wang et al. 2005). 
Similarly, lipid accessibility of transmembrane residues is an important prediction 
task in the fi eld of membrane protein structural bioinformatics. According to the 
two-stage model of membrane protein folding, transmembrane helices are formed 
and inserted into the membrane at the fi rst folding stage and subsequently associate 
into the fi nal structure during the second folding stage (Popot and Engelman 1990). 
While topology prediction programs address the fi rst stage by detecting transmem-
brane helices based on hydrophobicity, lipid accessibility predictions may help to 
reproduce the second stage as they provide information about the likely orientation 
of individual transmembrane helices toward the membrane, thereby indirectly iden-
tifying the position of potential helix interaction interfaces.

In fact, when membrane proteins were still believed to fold into mostly canonical 
helix bundles where adjacent helices are oriented to one another in either parallel 
or anti-parallel fashion, the correctly predicted orientation of transmembrane he-
lices seemed to be suffi  cient for the accurate modeling of alpha-helical membrane 
proteins. Historically, the development of lipid accessibility methods has therefore 
found much more att ention than the prediction of individual residue contacts with-
in transmembrane portions and the number of methods and publicly available web 
servers in this fi eld is still growing (see Helms et al., this volume, for a detailed de-
scription of these methods).

Historically, three major strategies for predicting lipid accessibility were pro-
posed which will be briefl y summarized in the following paragraphs. Recent meth-
ods tend to combine the most successful of these strategies leading to signifi cantly 
improved prediction accuracies as described at the end of this section.

3.1 Hydrophobicity-based predictions

Soluble proteins are well known to have a distinct distribution between exposed 
polar residues and hydrophobic buried residues. Membrane proteins were similarly 
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suspected to follow an inversed hydrophobic patt ern with strongly hydrophobic resi-
dues facing the membrane environment and less hydrophobic residues buried inside 
the helix bundle. Accordingly, early approaches for predicting the angular orienta-
tion of transmembrane helices used hydrophobicity scales to derive the hydropho-
bic or hydrophilic moment of a helix which was assumed to indicate its lipid exposed 
or buried face (Rees et al. 1989, for a mathematical defi nition of the hydrophobic 
moment see also Helms et al., this volume).

However, an increasing number of available membrane protein structures have 
meanwhile unambiguously demonstrated that the hydrophobic organization of 
membrane proteins is not following a clear “inside-out” patt ern (Stevens and Arkin 
1999; Mokrab et al. 2009) with only small diff erences in hydrophobicity being ob-
served between the surface and interior of transmembrane proteins. Hydrophobic-
ity is therefore only weakly correlated with the lipid exposure of a transmembrane 
helix and is not used in recent prediction methods.

3.2  Amino acid propensity scales derived from membrane protein 

sequences and structures

While membrane protein structures were still too scarce to allow for statistically 
solid analyses of amino acid frequencies in exposed and buried positions, several 
approaches were developed to derive lipid exposure propensities for individual ami-
no acids from membrane protein sequences only. Th e most prominent example is 
the kPROT scale which compares amino acid frequencies in multi-span membrane 
proteins to those in single-span proteins assuming that these two classes represent 
an approximation to amino acid distributions in buried and exposed positions, re-
spectively (Pilpel et al. 1999). While kPROT propensities could be shown to be 
in good agreement with another sequence-based scale introduced by Samatey et al. 
(1995) and were able to predict membrane facing vectors with bett er accuracy than 
any other method available at that time, recent analyses of membrane protein struc-
tures have indicated that sequence-derived propensity scales may deviate remark-
ably from observed amino acid distributions.

With increasing numbers of available membrane protein structures, several 
analyses have compared the composition of membrane protein surface and buried 
areas, sometimes also depending on a residue’s position with respect to the mem-
brane (Beuming and Weinstein 2004; Adamian et al. 2005; Mokrab et al. 2009) 
or considering diff erent functional classes of membrane proteins (Hildebrand 
et al. 2006). Consistently, these studies reported a strongly hydrophobic composi-
tion of surfaces situated within the membrane core while small side-chains have 
a strong tendency to be enriched in buried positions. Nevertheless, aromatic and 
charged amino acids may be found in lipid-exposed positions as well, albeit more 
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oft en situated in terminal regions of the membrane than in the hydrocarbon core. 
Importantly, the interior of transmembrane helix bundles is still quite hydropho-
bic with a similar average hydrophobicity as found within the interior of soluble 
proteins.

Several propensity scales have been derived either from amino acid counts in 
exposed and buried positions (Adamian et al. 2005; Mokrab et al. 2009), from sur-
face fractions (Beuming and Weinstein 2004) or from relative solvent-accessible 
surface area (rSASA) values (Park and Helms 2007). Generally, structure-derived 
propensity scales have been shown to outperform sequence-based scales (Park and 
Helms 2006b) and are now commonly incorporated into recent lipid accessibility 
predictors (Beuming and Weinstein 2004; Adamian and Liang 2006; Hildebrand 
et al. 2006). Th e derivation of lipid exposure propensity scales is discussed in detail 
by Helms et al. (this volume).

3.3  Sequence conservation of exposed and buried transmembrane 

residues

Consistent with the properties of soluble proteins, surface residues in membrane pro-
teins are known to be less conserved than buried positions. Accordingly, sequence 
conservation is an eff ective feature for discriminating lipid exposed from interior 
residues and has found widespread application in the prediction of lipid accessibil-
ity (Rees et al. 1989; Donnelly et al. 1993; Beuming and Weinstein 2004; Adamian 
and Liang 2006; Park et al. 2007). In fact, a comparative analysis has shown that 
sequence conservation is more strongly correlated with exposure patt erns of trans-
membrane helices than available empirical propensity and hydrophobicity scales 
(Park and Helms 2006b) and hence is so far the most informative sequence feature 
related to residue exposure in membrane proteins.

3.4 Best performing methods in the fi eld of lipid accessibility

All state-of-the-art methods for the prediction of exposed and buried transmem-
brane residues or helix faces rely on sequence conservation in combination with 
structure-derived propensity scales. Various approaches have been proposed to 
combine propensity values with measures of sequence conservation into a general 
score. Individual residues are then predicted as buried or exposed either using a pre-
defi ned score threshold (Beuming and Weinstein 2004; Rose et al. 2009), or with 
the assistance of a support vector classifi er (Park et al. 2007). Alternatively, helix–
lipid and helix–helix interfaces are identifi ed by sorting all possible helix faces ac-
cording to their calculated average score (Adamian and Liang 2006).
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Currently the best prediction accuracy for the prediction of buried and exposed 
residues is reported for the TMX method, where 79% of all residues were correctly 
predicted given a dataset of 41 membrane protein chains (Park et al. 2007). Com-
plete helix faces are best predicted using the LIPS method introduced by Adamian 
and Liang (2006) which identifi ed helix–lipid interfaces from 18 membrane pro-
teins with an accuracy of 88% while the most buried helix face was correctly identi-
fi ed in 70% of all cases.

4 Prediction of helix–helix contacts

While the prediction of lipid accessibility provides crucial hints for identifying 
 individual residues likely to participate in helix–helix contacts, methods dealing spe-
cifi cally with the prediction of residue pairs forming a helix–helix contact were com-
pletely lacking until just recently. In contrast, contact prediction in soluble proteins 
has a long history, from simple prediction methods focusing on residue co-evolution 
(Gobel et al. 1994; Olmea and Valencia 1997) to complex prediction algorithms 
using machine-learning techniques to evaluate a large number of diff erent sequence 
features (Fariselli et al. 2001b; Punta and Rost 2005; Cheng and Baldi 2007). 

Recent membrane protein structures have been found to deviate remarkably from 
canonical helix bundles, with helices not necessarily oriented in parallel or anti-par-
allel fashion with respect to each other and many interactions taking place between 
sequentially distant helices (Elofsson and von Heijne 2007). Th is observation has 
motivated now the development of contact prediction methods specifi cally for mem-
brane proteins since additional constraints are needed to model such complex helix 
bundles. Furthermore, contact prediction methods for soluble proteins have been 
shown to perform only poorly on membrane proteins due to their distinct amino acid 
composition (Fuchs et al. 2009). Following the historical course of contact predic-
tion in soluble proteins, the subsequent paragraphs will fi rst summarize a study on co-
evolving residues and their relationship to helix–helix contacts in membrane proteins 
and will then present and compare two methods using diff erent machine-learning 
techniques for the prediction of residue contacts between transmembrane helices.

4.1 Co-evolving residues in membrane proteins

Mutations that tend to destabilize a particular protein structure may provoke other 
positions to mutate concurrently in order to compensate for the loss of stability. 
Amino acid contacts have been suggested to be primary spots of these compensato-
ry processes, making the detection of sequence positions with correlated mutational 
behavior an important feature for residue contact prediction methods (Gobel et al. 
1994). Recently, a fi rst analysis of correlated mutational behavior within membrane 
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proteins was conducted (Fuchs et al. 2007) which had been impossible before due 
to the paucity of available membrane protein structures.

In agreement with studies conducted on soluble proteins, it could be observed 
that only a small fraction of co-evolving residues actually involved helix–helix con-
tact pairs. However, up to 50% of all strongly correlated residue pairs detected with 
diff erent prediction methods were found to be in close vicinity to interhelical con-
tacts. Combining the outcome of several prediction methods into a consensus pre-
diction (termed HelixCorr), this fraction could be further increased to more than 
55%. Recent publications analyzing co-evolving residues already highlighted that 
residue co-evolution may have other than structural reasons (Gloor et al. 2005; Lee 
et al. 2008). Th e results obtained with HelixCorr additionally indicated that co-
evolution not only occurs to maintain specifi c amino acids required for a structural 
contact but also infl uences the correct formation of a helix–helix contact by aff ecting 
its sequence context.

Although prediction accuracies obtained in the study of Fuchs et al. (2007) were 
clearly too low to make co-evolving residues alone a useful prediction method for he-
lix–helix contacts (Table 1), their frequent occurrence in close sequence neighbor-
hood to real helix–helix contacts suggested that they might be an important source 
of information to derive helix pairs that are likely to be in direct contact, possibly 
along with the approximate region of interaction. Furthermore, given that predic-
tion accuracies were largely consistent with those reported for soluble proteins, the 
combination of residue co-evolution with other sequence features promised further 
gain in prediction accuracy as previously demonstrated for soluble proteins (Olmea 
and Valencia 1997; Fariselli et al. 2001a).

4.2  Prediction of helix–helix contacts with machine-learning techniques

When contact prediction approaches for soluble proteins were still mainly focused 
on the analysis of co-evolving residues, additional sequence information was already 

Table 1. Contact prediction accuracies obtained by diff erent methods for a non-redundant dataset of 14 membrane protein 

structures

Method Reference Contact prediction accuracy (%) Prediction accuracy (|δ| = 4) (%)

HelixCorr Fuchs et al. (2007) 12.0 55.0

TMHcon Fuchs et al. (2009) 31.8 79.3

TMhit Lo et al. (2009) 31.0 56.8

Only the best L/5 predicted contacts were considered, where L is the total number of transmembrane residues. Contact prediction 

accuracy: fraction of correctly predicted contacts out of all predicted contacts. Prediction accuracy (|d| = 4): fraction of predicted 

contacts lying within one helix turn of an observed contact.
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shown to improve the accuracy of obtained predictions signifi cantly (Olmea and 
 Valencia 1997). Accordingly, machine-learning methods which are able to incorporate 
a variety of sequence features have been consistently demonstrated to outperform 
methods using co-evolving residues alone (Fariselli et al. 2001a,b). Generally, these 
methods require contact maps of proteins with known structures for training. Dur-
ing the training phase, the machine-learning algorithm tries to deduce association 
rules between selected sequence features of each protein in the training set and its 
contact map. Th ese rules are then applied to proteins without known contact map.

Over the years, several diff erent implementations of machine-learning approach-
es have been applied for the residue contact prediction problem in soluble proteins 
with neural networks (Fariselli et al. 2001a,b; Punta and Rost 2005) and support 
vector machines (Cheng and Baldi 2007) being the most commonly used ones. For 
membrane proteins, there are now two machine-learning-based contact predictors 
available, the neural network-based predictor TMHcon (Fuchs et al. 2009) and the 
support vector machine-based predictor TMhit (Lo et al. 2009).

Both methods are specifi c for alpha-helical membrane proteins due to two rea-
sons. Firstly, they are trained on datasets consisting solely of membrane proteins 
with solved structure and hence are adjusted to the hydrophobic nature of trans-
membrane segments and the specifi c properties of helix–helix contacts between 
these segments. Secondly, they combine sequence features known to be informa-
tive for contact prediction from soluble proteins with specifi c features that can only 
be derived for membrane proteins with alpha-helix bundle fold. Such membrane 
protein-specifi c features include relative residue positioning along the membrane 
(e.g., whether a residue is found close to the intra- or extracellular side or the core of 
the membrane), transmembrane helix lengths, and predicted lipid accessibility val-
ues. Signifi cantly, for both methods these membrane protein-specifi c features made 
a particularly important contribution for improving prediction accuracy.

Tested on a non-redundant dataset of 14 membrane protein structures (listed 
in Supplementary Table 2 of Lo et al. 2009), both methods resulted in basically 
identical prediction accuracies of 31% (e.g., 31% of all predicted contacts are ac-
tual helix–helix contacts; Table 1). Compared to a contact prediction based only on 
co-evolving residues as implemented in the method HelixCorr, the application of 
machine-learning methods resulted in the improvement of prediction accuracies by 
nearly 20%. Furthermore, both methods are able to predict contacts in membrane 
proteins with at least equal accuracies as reported for comparable methods available 
for soluble proteins (for a comparative assessment of soluble contact predictors, see 
for example, Grana et al. 2005).

Interestingly, best results were consistently obtained by both TMHcon and TMhit 
for the important class of proteins with seven transmembrane helices indicating that 
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the helix architecture of these proteins is specifi cally approachable for membrane 
protein contact predictors. Th is is especially encouraging as most seven transmem-
brane helix proteins belong to the superfamily of G-protein-coupled receptor-like 
proteins which is estimated to be the target for more than 50% of all prescribed drugs 
(Lundstrom 2005) and is therefore oft en in the focus of structure modeling experi-
ments for which predicted helix–helix contacts may serve as valuable constraints.

Looking closely at the diff erences between TMHcon and TMhit, further im-
provements in membrane protein contact prediction seem possible. TMhit uses a 
two-step prediction procedure where single positions likely to participate in a helix–
helix contact are fi rst predicted and are then used as input for the second prediction 
step identifying pairs of contacting residues. Th e authors demonstrate that such a 
two-level approach not only reduces computational complexity but also improves 
prediction accuracy compared to a one-step prediction. TMHcon, on the other 
hand, uses only a direct prediction approach but incorporates several additional se-
quence features not considered in TMhit such as correlated mutational behavior, 
sequence distance, and predicted lipid accessibility. Accordingly, the combination of 
the sequence features employed by TMHcon with the two-level architecture imple-
mented in TMhit promises further gains in contact prediction accuracy.

5 Prediction of helix interactions

Membrane protein structures can diff er from each other in a number of structural 
features, including the number of transmembrane helices, the length and the fold-
ing arrangement of extramembranous loops, and helix abnormalities such as kinks. 
Additionally, proteins with the same number of transmembrane helices can be fur-
ther characterized by their specifi c patt erns of helix interactions defi ning the helix 
bundle architecture of each protein. Such helix bundle architectures can be intui-
tively visualized by graph-like structures, depicting individual helices as graph nodes 
and observed helix–helix contacts as edges connecting the nodes (Fig. 2). Such he-
lix interaction graphs substantially facilitate the detection of structural similarities 
and diff erences as they constitute a high-level representation of membrane protein 
 structures.

Helix interaction patt erns can be obtained from predicted helix–helix contacts 
in a straightforward fashion by defi ning as interacting those helix pairs that share a 
minimal required number of predicted residue contacts. By adjusting this threshold 
of required residue contacts, sensitivity, and specifi city of the fi nal predictions can 
be fi ne-tuned (the higher the threshold, the less sensitive but more specifi c the pre-
diction). Importantly, predicted residue contacts are not required to be completely 
correct as they will positively contribute to the prediction of helix interactions even 
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if their predicted residue positions deviate from their actual positions as long as they 
are found on the correct pair of helices. As can be seen from Table 1 (prediction ac-
curacy with |d| = 4), such mispredictions are observed quite frequently. In the case 
of TMHcon, for example, nearly 80% of all predicted contacts were situated within 
one helix turn of an observed contact and can therefore be expected to correctly 
identify an interacting pair of helices.

Comparing the prediction success of the co-evolving residue predictor Helix-
Corr with the machine-learning-based methods TMhit and TMHcon (Table 2), a 
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Fig. 2. Visualization of membrane protein helix bundles using helix interaction graphs. Helices 

are depicted as graph nodes while helix interactions are visualized as graph edges. The weight of each edge corresponds to the num-

ber of helix–helix contacts connecting two helices. (a) Structure of aquaporin 1 (PDB 1J4N, chain A) containing six transmembrane 

helices and two re-entrant loops (not considered within the helix interaction graph). (b) Structure of the H(+)/Cl(–) exchange 

transporter clcA (PDB 1KPK, chain A) consisting of ten transmembrane helices.
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major improvement by the latt er two methods can be observed (more than 10% gain 
in specifi city at roughly equal sensitivity). Furthermore, TMHcon slightly outper-
forms TMhit in the prediction of helix interactions with an increase of 4% and 2% 
in sensitivity and specifi city. Th e best prediction, however, is obtained with an im-
proved version of the TMHcon method (TMHcon+) which specifi cally addresses 
the prediction of distant helix interactions by combining the output of the original 
TMHcon neural network with a second neural network considering the same se-
quence features but trained only on residue pairs lying on non-neighboring helix 
pairs (Fuchs et al. 2009). Using TMHcon+, 50% of all interacting helices are correct-
ly identifi ed at a specifi city of 88%, corresponding to a 10% increase in sensitivity 
compared to TMhit as well as a 6% increase in sensitivity compared to the original 
TMHcon method.

Overall, the prediction of helix interactions reaches practically useful levels of ac-
curacy and specifi city for predictions with a sensitivity of roughly up to 50%. Future 
work aimed at obtaining predictions with bett er sensitivity may follow two possible 
directions. On one hand, improvements in the underlying residue contact predic-
tions will clearly enhance the prediction of helix interactions. Moreover, more com-
plex strategies can be conceived for the deduction of helix interactions from the raw 
contact predictions, for example by including homologous proteins in the predic-
tion process.

6  Modeling of membrane proteins with predicted contact 

information

Assuming simple membrane protein structures consisting of regular compact trans-
membrane helix bundles, several structural modeling procedures att empt to identify 
transmembrane helices and assemble them into a 3D structural model. Patt erns of 

Table 2. Prediction of helix interactions with diff erent contact predictors for a non-redundant dataset of 14 membrane protein 

structures

Method Contact threshold Accuracy (%) Sensitivity (%) Specifi city (%)

HelixCorr 7 64.5 42.9 79.5

TMhit 3 55.7 40.0 88.5

TMHcon 1 80.7 44.1 90.8

TMHcon+ 9/17 75.0 50.3 88.1

TMHcon+ combines residue contact predictions from two diff erent neural networks, where one was trained on all possible helix–

helix contacts while the second one was specifi cally trained on distant helix–helix contacts lying on non-neighboring helix pairs. 

Contact threshold: number of predicted helix–helix contacts required for the prediction of an interacting helix pair. For TMHcon+ 

the contact thresholds for both network architectures are given.
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sequence variation are usually used to identify the position of conserved helix–helix 
or more variable helix–lipid interfaces. Already Taylor et al. (1994) suggested a gen-
eral and completely automated procedure where the native structure of a protein was 
identifi ed among a large number of possible solutions by comparing the exposed 
surface of each transmembrane helix in the model with exposure patt erns predicted 
from sequence variability in a multiple alignment. More than 10 years later, Park and 
Helms generated a library of potential structural models by connecting individually 
modeled helix pairs. Five fi nal models were selected based on the comparison of resi-
due solvent accessibility in each model with conservation patt erns obtained from a 
multiple alignment (Park and Helms 2006a).

In addition to full de novo modeling approaches, several methods have been 
 proposed trying to refi ne low-resolution structures, such as those obtained from 
cryo-EM experiments, with the help of additional structural constraints. Typically, 
the resolution of cryo-EM structures is suffi  cient to identify the approximate helix 
packing of a protein but the orientation of each helix together with the position of in-
dividual amino acid side chains cannot be determined. To overcome these limitations 
it was proposed to consider sequence conservation as well as residue co-evolution to 
identify helix–helix interaction interfaces and hence the correct orientation of each 
transmembrane helix (Fleishman et al. 2004a,b). Applying this procedure to a cryo-
EM map of the gap junction channel resulted in a structural model providing a mo-
lecular explanation for nearly 30 disease-related mutations (Fleishman et al. 2004a).

Apart from the inclusion of co-evolving residues as constraints in the high-reso-
lution modeling of structures from cryo-EM maps, predicted residue contacts have 
only been rarely used so far in the prediction of membrane protein structures, which 
is also not surprising given that specifi c contact predictors for membrane proteins 
have only recently become available. However, Barth et al. (2009) have demon-
strated that such residue contacts can be extremely helpful for modeling large and 
complex membrane helix bundles. Several large membrane proteins could be mod-
eled within 4 Å of the native structure using a limited number of constraints derived 
from predicted residue contacts (Barth et al. 2009). Potentially interacting residues 
were identifi ed based on homology to a library of 621 crystallographically known 
inter-helical interactions in membrane proteins. However, as long as the low number 
of available membrane protein structures limits the application of homology-based 
procedures, general contact prediction methods such as TMHcon and TMhit are 
required to serve as the source of useful distance constraints for building models. 
While current structure prediction methods for membrane proteins are still mostly 
adapted to the idea of regular helix bundles, these distance constraints may prove 
especially helpful in identifying irregular structural features of membrane proteins, 
including strongly tilted or kinked helices.
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Abstract

Transmembrane (TM) helical proteins are of fundamental importance in many diverse 
biological processes. To understand these proteins functionally, it is necessary to 
characterize the forces that stabilize them. What are these forces (both within the protein 
itself and between the protein and membrane) and how do they give rise to the multiple 
conformational states and complex activity of TM helical proteins? How do they act 
in concert to fold TM helical proteins, create their low-energy stable states, and guide 
their motion? Th ese central questions have led to the description of critical natural 
constraints and partial answers, which we will review. We will then describe how these 
constraints can be tracked through homologs and proteins of similar folds in order to 
bett er understand how amino acid sequence can specify structure and guide motion. Our 
emphasis throughout will be on structural features of TM helix bundles themselves, but 
we will also sketch the membrane-related aspects of these questions.

1 Folding background

Central aspects of transmembrane (TM) helical protein folding are well understood 
and have important structural implications (Bowie 2005).

1.1 Two-stage hypothesis

Th e widely accepted two-stage hypothesis provides the foundation for much cur-
rent work in TM helical protein folding and structure prediction. It states that TM 
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helices fold autonomously in the fi rst stage of folding within the membrane, then as-
sociate to form helix pairs, then triples or quadruples and so forth, eventually build-
ing up to the full bundle (Popot and Engelman 1990). Th e two-stage hypothesis is 
known (and was known by its creators) to be a simplifi cation, but it is a very useful 
one. It has led to the fruitful investigation of the association of helix pairs as the foun-
dation for the folding of the full bundle and the structure prediction of TM helical 
proteins.

1.2 Translocon-aided folding

As they come off  the ribosome during translation, TM helical proteins enter the 
membrane (the endoplasmic reticulum membrane in eukaryotes or the plasma 
membrane of bacteria) via the translocon complex, and the translocon inserts the 
TM helices into the membrane in sequence order (usually; Sadlish et al. 2005; White 
and von Heijne 2008). Experimental evidence suggests that the translocon can mea-
sure the hydrophobicities of helices to determine which are hydrophobic enough to 
enter the membrane rather than be secreted, and the associated natural translocon 
hydrophobicity scale has been derived (Hessa et al. 2005, 2007). Interestingly, ac-
cording to this scale, a signifi cant fraction of TM helices are insuffi  ciently hydro-
phobic to be inserted by the translocon as isolated helices but must be inserted in 
sequence context with their immediately neighboring loops and helices (Hedin et al. 
2010). On occasion this is also insuffi  cient, and a more complex interplay between 
the protein and the translocon must be at work (Hedin et al. 2010). For the folding 
of some proteins, there is evidence for a much more elaborate and active role for 
the translocon–ribosome complex than is postulated in passive sequential-insertion 
models (Kida et al. 2007; Skach 2007; Pitonzo et al. 2009). Clearly, understanding 
the full function and mechanisms of the translocon will be an important challenge 
for years to come. Our chief interest here will be the infl uence of the translocon on 
the likely contact order of the TM helices and some of the possible structural conse-
quences for the full helix bundles.

2  Overview of non-interhelical stabilizing forces and natural 

constraints

We fi rst sketch some important non-interhelical interactions. Th ese constraints and 
interactions will act cooperatively with the interhelical ones that will be our focus.

2.1 Membrane constraints and interactions

Th e membrane creates some of the foremost natural constraints for TM helical pro-
teins. First, the membrane greatly limits the amino acid composition of a TM helical 
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protein: the protein must be suffi  ciently hydrophobic to insert into the membrane, 
yet it must also accommodate the membrane’s polar headgroup region. Second, we 
have the following known geometric constraints.

Beyond these types of protein–membrane constraints, some TM helical proteins 
have evolved to respond to subtle changes in the membrane including lateral pres-
sure, curvature, lipid composition, and phase, etc. (Perozo et al. 2002; Lundbaek 
et al. 2010).

2.1.1 Hydrophobic mismatch

A TM helical protein must avoid hydrophobic mismatch with the membrane: 
the hydrophobic stretch of each TM helix will usually position itself to match the 
 hydrophobic thickness of the membrane. Th us once in the membrane, a helix will 
usually have a restricted tilt angle with respect to the membrane normal. Th e specif-
ics are being studied both experimentally and computationally (Bond et al. 2007; 
 Krishnakumar and London 2007; Holt and Killian 2010).

2.1.2 Specifi c fl anking and anchoring interactions with polar headgroups

Residues with a mixed polar/apolar character are common in interfacial regions, and 
both basic and aromatic residues are reported to form specifi c favorable interactions 
with lipid headgroups (Ren et al. 1999; Killian and von Heijne 2000; Strandberg 
et al. 2002; Chamberlain et al. 2004). Trp anchoring is perhaps best established and 
has been studied experimentally in synthetic peptides in bilayers, where it is reported 
to inhibit helix tilting (de Planque et al. 2003; Chiang et al. 2005). Bett er character-
ization of protein–membrane interaction motifs would be an important advance.

2.1.3 Positive-inside rule

Th e positive-inside rule states that the cytoplasmic loops of TM helical proteins 
tend to be enriched in positively charged residues, and so this charge distribution 
determines the orientation of most TM helical proteins within the membrane (von 
Heijne 1989). Th e physical basis for this tendency is not well-understood and is cur-
rently being studied (van Klompenburg et al. 1997; Bogdanov et al. 2008).

2.2 Loop constraints

Loops are clearly important to translocon-aided folding and known to be essential in 
some cases (White and von Heijne 2008; Hedin et al. 2010).

Th e eff ect of loops on stability and folding has been studied in depth experi-
mentally for bacteriorhodopsin (bR) and rhodopsin. In the bR studies, loops were 
 systematically clipped and the resulting fragments were observed to reconstitute 
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a native-like structure, but with reduced stability (Huang et al. 1981; Liao et al. 
1984; Popot et al. 1987; Marti 1998). Similar studies were conducted for rhodopsin 
that showed most of its loops could not be clipped without disrupting the folding of 
the protein (Albert and Litman 1978; Litman 1979; Ridge et al. 1995; Landin et al. 
2001).

Many loops are short and stretched, and so impose a signifi cant geometric con-
straint on the connected helices (Enosh et al. 2004; Tastan et al. 2009).

3 Interhelical interactions and constraints

We can now begin to discuss how iterative folding and amino acid sequence come 
together to specify stable structures via well-known specifi c interhelical interactions. 
Th e interhelical constraints act cooperatively with the ones discussed above.

3.1 Helix–helix packing

Crick fi rst described how a simplifi ed view of the surface features of an alpha-helix 
could be seen to restrict the crossing angle of a close-packed pair of helices (Crick 
1953). If the side chains are considered as simple knobs and the spaces between the 
knobs as holes, then if a pair of helices is to be brought into extended close contact, 
a series of the knobs must fi t into corresponding hole regions. From the geometry 
of alpha helices and simplifying assumptions, he derived crossing angles for both 
parallel and antiparallel helices that would enable this type of packing. While that 
was a groundbreaking analysis, to fully describe helix–helix packing requires a more 
 nuanced approach, as one can see from the more varied helix packing in solved 
 structures.

Walters and DeGrado (2006) have made a very thorough analysis of helix–helix 
packing in solved TM helical structures. Th ey selected 445 helix pairs from 32 high-
resolution protein structures, aligned each possible pair, and clustered them so that 
each member of a cluster was within 1.5 Å C� rmsd of a reference centroid pair (the 
rmsds were computed over 10–14 residue stretches of the TM helices). Th ey found 
that 29% of pairs fell into the most populous cluster, 74% of pairs fell into the top fi ve 
most populous clusters, and 90% fell within the top 14. Th ey also found signifi cant 
amino acid propensities for specifi c positions in some helix pair clusters. We will 
reexamine the clusters from a slightly diff erent perspective in a later section.

3.2 Motifs and stabilizing specifi c interactions

Statistical studies of sequences, examination of solved structures, theoretical analy-
sis, and various types of experiments have led to the description of a small number of 
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common signifi cantly stabilizing interhelical interaction types. It has become com-
mon practice for scientists to spotlight where these kinds of interactions occur when 
introducing new experimental structures or models of TM helical proteins. Th ese 
are:

3.2.1 Packing motifs

Th ese are usually composed of close knob-in-hole type packed residues each with a 
side chain of limited conformational fl exibility. Th us each such residue can fi ll a cav-
ity and make van der Waals (VDW) and sometimes polar contacts without signifi -
cant entropic losses. Th e most common of these include the famous GxxxG, leucine 
zippers, and variants of both (Gurezka et al. 1999; Russ and Engelman 2000; Senes 
et al. 2001; Schneider and Engelman 2004). Th ere are other less common ones, e.g., 
using proline packing (Senes et al. 2004).

3.2.2 Hydrogen bonds

Although interhelical hydrogen bonds appear to be weaker on average than was once 
thought, their strength varies greatly according to environment, and they can be sig-
nifi cantly stabilizing (Zhou et al. 2000; Gratkowski et al. 2001; Arbely and  Arkin 
2004; Joh et al. 2008). Residues participating in such hydrogen bonds are oft en 
highly conserved (Hildebrand et al. 2008).

3.2.3 Aromatic interactions

Th e edges of aromatic rings can be considered as weak donors and acceptors. 
 Resulting aromatic interactions include the well-established and important cation–
pi interactions, aromatic stacking, edge-to-face aromatic–aromatic interactions, 
and interactions with polar atoms where the edge acts as donor and the center as 
acceptor (Dougherty 1996; Johnson et al. 2007; Sal-Man et al. 2007; Nanda and 
 Schmiedekamp 2008).

3.2.4 Salt bridges

Rare in TM helical proteins, but can be signifi cantly stabilizing (Honig and Hubbell 
1984).

3.3  The fi ve types of specifi c stabilizing interhelical 

interactions considered

We will focus on fi ve types of stabilizing interhelical interactions when analyzing 
structures. All of the interactions lie within or very close to the inferred hydro-
carbon region. Th ree are polar: hydrogen bonds, salt bridges, and some aromatic 
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interactions. Two are packing interactions: small residue (G/A/S/C) as knob in 
close knob-in-hole packing and I/V/L/T as knob in close knob-in-hole packing in 
I/V/L/T contact patches. For I/V/L/T patch packing, at least one of the surround-
ing hole residues must be I/V/L/T, along with some other restrictions on the hole 
residue types (Harrington and Ben-Tal 2009). Note that these packing interactions 
have been defi ned on a residue basis, so common packing motifs would consist of 
multiple such interactions.

For each interaction type, there is a fi xed interaction geometry. Th ese interaction 
geometries are fi xed sets of geometric conditions that must be satisfi ed if the donor 
and acceptor are interacting (e.g., the usual conditions for a hydrogen bond; for the 
two packing interactions, the knob is considered the donor and the hole the accep-
tor; Harrington and Ben-Tal 2009).

3.4 Structural hot spots

An idea related to the above list of interactions is that of what is sometimes called 
a structural hot spot: a residue or residues making particularly favorable contribu-
tions to stability (Bogan and Th orn 1998; Fleming and Engelman 2001). We will 
call a residue “structurally hot” or “particularly stabilizing” when it makes interheli-
cal contacts so that its contribution to the stability of the conformation is especially 
favorable, and much more favorable than would be expected for a typical residue in 
a typical conformation of the protein. It has been suggested that residues likely to 
be structurally hot make numerous favorable contacts: some VDW, but also other 
more specifi c favorable interactions (Gao and Li 2009). Such residues are some-
times termed “hub residues” (Pabuwal and Li 2008, 2009); e.g., a polar residue that 
makes numerous VDW contacts while also hydrogen bonding. Th is characterization 
of structurally hot residues has experimental support, as will be described in the next 
section, and indicates why some of the weaker specifi c interactions included in our 
list can still play a critical role in creating structural hot spots. Th is is clear if the weak 
interactions are likely stronger than generic VDW contacts would be for the atoms 
in the interactions.

Th e structural hot spot concept relates to the motif-type analysis of structures: 
one can try to describe a set of geometric conditions for a set of residues to satisfy 
(oft en specifying residue types of interacting partners) so that the resulting contri-
bution of the residues in the motif is very likely signifi cantly favorable to the stability 
of the structure. For the common motifs, it will usually be true that at least one resi-
due of the motif will contribute signifi cantly more to stability than is expected for 
a typical residue. To facilitate structural analysis, it is convenient to take the various 
packing motifs apart into the packing of their residues.
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Th eoretically, one would like a list of simple structural conditions to place on 
amino acids so that the probability that they make a signifi cantly favorable contribu-
tion to stability is much higher than that of a typical residue making typical contacts. 
In practice, consideration of the types of favorable interactions described above and 
characterizations of common motifs are extremely useful approximations to an ideal 
set of descriptors. Th ey are particularly useful because they do not depend on com-
plex tertiary contacts. Two things should be kept in mind when using these simpli-
fi ed conditions. First, the energies of the interactions can vary greatly, and in the 
case of weak hydrogen bonds or other polar interactions, the bond by itself does 
not make a participating residue “structurally hot”. But the existence of even a weak 
bond increases the probability that a participating residue makes a signifi cant con-
tribution to the stability of the conformation. Second, even optimally defi ned con-
ditions would have a probabilistic implication of stability, and a residue satisfying 
them might not be stabilizing.

In reality, not all structurally hot residues are involved in interactions of one of 
the fi ve types. Conspicuously absent are residues that simply make many VDW con-
tacts. Th ese will primarily be residues with many tertiary contacts, and such struc-
tural hot spots could be recognized only when the protein is assembled to a suffi  cient 
extent. Th is limits their use during most steps of iterative translocon-aided folding or 
structure prediction assembly.

3.5 Experimental data on residue contributions to stabilization

Faham et al. (2004) investigated the contributions of residues to stability in bR by 
systematically mutating the residues of helix B to alanine and measuring the ther-
modynamic stability of the mutants using an unfolding assay. We will interpret their 
data in terms of the fi ve types of stabilizing interactions. (Faham et al. did not pres-
ent their results in these terms but instead emphasized VDW interactions in their 
interpretation of the data.)

Each mutant was classifi ed as either severely destabilized, moderately destabi-
lized, minimally altered, or stabilized. Of the 24 residues mutated, 17 could be said 
to have some kind of interhelical contact (of greatly varying extents) with one or 
more of the other bR helices, and we will restrict our att ention to those. (Th e struc-
ture used for our analysis is 1C3W.) Th e notation used below gives the interactions 
in donor–acceptor form.

Of the 17, four were severely destabilizing: F42A, I45A, T46A, and Y57A. All of 
these residues make particularly stabilizing interhelical interactions of the fi ve types, 
and two of them make at least two, in line with the “hub residue” type of structural 
hot spot. Th e mutations do not create favorable interactions of the fi ve types, but do 
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destroy the native ones. (F42: 42-CD1-96-OD1, 42-CE1-96-O; I45 I/V/L/T patch 
packing; T46:46-OG1-96-OD2; Y57: 57-CD2-13-O, 57-OH-212-OD2, 57-CE1-
212-OD2.)

Five of the 17 mutants were moderately destabilizing: Y43A, T47A, I52A, F54A, 
and M60A. Th e fi rst four of these also make at least one particularly stabilizing inter-
helical interaction of the fi ve types. Again, the mutations do not create favorable in-
teractions. (Y43:30-NZ-43-OH, 43-CD1-27-O (borderline); T47: I/V/L/T patch 
packing, 47-OG1-27-O (water bridged); I52: I/V/L/T patch packing (borderline); 
F54: 54-CD1-17-O.)

Th e exception is M60, which by its residue type cannot participate in an interac-
tion of one of the fi ve types. Interestingly, it makes extensive VDW contact with Y57 
in the native structure. Y57A is the most destabilizing mutation of all, and Y57 does 
make three particularly stabilizing interactions as was described. It appears that the 
side chain of M60 guides Y57 to make those interactions, thereby further stabilizing 
the native position of Y57.

Th e fi ve minimally altered mutants of the 17 were: L48A, P50A, T55A, L58A, 
and S59A. With the exception of P50, these residues make few contacts of any kind. 
While we did not include proline packing in our list of favorable interactions, it would 
have been fair to do so. Since proline close packing would be considered favorable 
because it has a small side chain of restricted mobility, one would not expect P50A 
to much change stability; it is a moderate substitution. None of the other mutations 
would either add or remove a favorable interaction of the fi ve types.

Th e three stabilized mutants of the 17 were: V49A, M56A, and L61A. Both V49 
and L61 act as close-packed knobs in favorable I/V/L/T patch interactions. Th e 
substitution changes both interactions to a small residue knob-in-hole interaction, 
and so V49A and L61A amount to a substitution of one kind of favorable packing 
interaction for another. Th at alanine packing is superior is consistent with results 
on zipper motifs in TM helix pairs suggesting that small residue close knob-in-hole 
packing is more stabilizing than I/V patch packing (Zhang et al. 2009). M56 does 
not participate in any of the interactions of the fi ve types, but M56A will convert it 
to a small residue in close knob-in-hole packing. Th us this substitution adds a par-
ticularly favorable packing interaction.

Overall, this data and above analysis support the stabilizing signifi cance of the 
interactions of the fi ve types.

3.6 Particularly stabilizing interactions as geometric constraints

By examining solved structures for these kinds of particularly favorable interhelical 
interactions, one can see that they seem to be distributed in a surprisingly meaning-
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ful way: the interactions appear to tightly constrain the packing of the helices in most 
solved TM helical proteins. To put this another way, it appears that if we signifi -
cantly perturb the helix positions, we necessarily break some interactions in the set. 
If true, one might say a complete set of determining constraints/interactions of the 
fi ve types has evolved to nearly fi x each native state backbone conformation. We call 
sets of the fi ve types of interhelical interactions “determining sets” when they nearly 

Cluster 1

Cluster 2

a b c

d e f

Fig. 1. Unrelated members of the most common TM helix pair folds stabilized by diverse de-

termining sets. The fi ve types of interhelical interactions are displayed as follows. (Only four types occur in these structures: 

there are no salt bridges.) Residues in a hydrogen bond are colored orange; if a residue’s side chain (rather than a backbone atom) is 

in a hydrogen bond its atoms are shown as orange spheres. Residues in aromatic interactions are colored yellow; if their side chains 

participate in the interaction, the side chain atoms are shown as spheres. The knob atoms of G/A/S/C small close knob-in-hole pack-

ing are shown as wheat colored spheres. The knob atoms of I/V/L/T close knob-in-hole packing in I/V/L/T patches are shown as cyan 

(bright blue) spheres. The corresponding hole residues are shown as spheres if they are I/V/L/T in close contact with the knob residue; 

otherwise if the hole residue has restricted side chain conformations it is also shown in cyan. We can see unrelated helix pairs from 

the same fold with diverse determining sets. Upper panels: pairs from the top Walters–DeGrado cluster (a) 1Q90: cytochrome B6-F. 

(b) 1H2S: sensory rhodopsin II. (c) 1C3W: bR (a diff erent helix pair than the homologous one for 1H2S). Lower panels: pairs from the 

next most populous cluster (d) 1OCR: cytochrome C oxidase. (e) 1RH5: translocase SecE subunit. (f) 1OKC: ADP/ATP carrier protein.
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fi x geometrically the packing of the helix backbones. (Our terminology is based on 
the geometric meaning of “determine”: to specify position, to fi x.)

We will discuss how these observations relate to some fundamental questions of 
protein folding and describe our work to establish them. But we fi rst look at some 
simple examples.

3.7 Helix pairs revisited

Th e Walters–DeGrado clusters provide examples of diverse ways in which the fi ve 
types of interactions can be distributed to fi x the same helix-pair fold. Th e helix pairs 
within a cluster usually come from unrelated proteins or from diff erent parts of the 
same protein. As members of the same cluster, they must have similar conformations 
for the aligned 10–14 residue region. Since most TM helices are at least 20 residues 
long, the position of this region can vary, and so for some clusters not all the full 
helix pairs look similar.

We have chosen pairs that do look similar and stable to show the diverse ways 
that a fold can be stabilized. In Fig. 1,  we see three members from each of the two 
most populous clusters with their determining sets displayed. Imagine perturbing 
the positions of the helices to see how litt le one can move the helices without dis-
rupting these interactions.

3.8  Constraint perspective and underlying rigid-body geometry

Both helix packing and the constraining eff ect of the fi ve types of interactions can be 
bett er understood if some facts about the geometry of rigid bodies are kept in mind.

Any rigid body’s position in space can be specifi ed by the positions of any three 
non-collinear points on the body. If the exact positions of those three points are un-
known, but we do know that they must each lie within three given regions in space, 
then we can obtain an initial ensemble of positions of the body by placing grids on 
those three regions and systematically selecting these points to give the positions 
of the three points on the body. Th ese three positions then fi x the position of the 
body itself. If there are additional restrictions on the positions in space of any other 
points on the body, then we can check the initial ensemble of positions of the body 
and remove any positions from the ensemble that do not meet those restrictions. By 
choosing suffi  ciently fi ne grids, one can fi nd to any desired accuracy how the speci-
fi ed regions constrain the position of the body.

Th is approach can be adapted to build the combined piece ensemble of two pieces 
constrained by a set of any type of interactions with fi xed known interaction regions. 
Th ree of these interactions and their associated regions can be used to position one 
piece relative to the other and build the initial combined piece ensemble. If there are 
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more interactions of these types or additional geometric conditions (as is the case, 
e.g., for a hydrogen bond), the initial conformations can be checked and discarded if 
they do not meet these additional conditions. For our applications, four interactions 
would tend to constrain the conformations well.

For analysis of packing, we consider knob-in-hole interactions. Each knob is a 
reduced rigid representative of a side chain based on amino acid type, and each hole 
is a predefi ned region (Fig. 2). Each hole is given by the space between a set of helix 

a b

Fig. 2. Knob-in-hole. (a) The residues j,  j + 3, j + 4, and j + 7 on an alpha helix with reduced representations of their side 

chains with their atoms shown as spheres. The numbering starts from the top in this picture, and the space surrounded by these 

residues is called a hole. (b) An example of interhelical knob-in-hole packing. The knob is in yellow and the hole in blue.

a b c d

Fig. 3. Equivalently packed helices. These unrelated helix pairs have very similar folds. Fully spacefi lled models: (a) 

helix pair from bR, (1C3W); (b) helix pair from cytochrome B6-F (1Q90). Note how diff erent the side chains are in panels (a, b). In 

panels (c, d) we see the common packing of knobs-in-holes in the two structures despite their sequence diff erences.  The knobs are 

fi xed reduced representatives of side chains based on residue type. The fi ve knobs shown spacefi lled are packed in a nearly equivalent 

way in (c) the helix pair from 1C3W, also shown in (a, d) the helix pair from 1Q90, also shown in (b).
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residues i, i + 3, i + 4, i + 7, but subdivided into three regions (Harrington and Ben-Tal 
2009). Four knobs-in-holes would usually constrain a conformation of a helix pair 
quite well. But the knobs of diff erent amino acids are similar enough so that this is 
oft en true even when comparing the packing of helices of diff erent amino acid com-
position. Th at is, if four corresponding knobs pack into the same four corresponding 
holes, the two helix pairs will usually have similar conformations, especially around 
this region. In Fig. 3, we see unrelated helix pairs with fi ve knobs packed in the same 
way in both pairs. Th is can be seen in the helix pair clusters, except there is no condi-
tion that knobs pack into corresponding positions on the two pairs of helices, and so 
the result is local to the packing region.

3.9  Iterative reassembly of full TM helix bundles using interactions 

of the fi ve types

To analyze the interactions of the fi ve types as constraints, we used rigid motions 
to iteratively reassemble the helix bundle backbone of each protein using only its 
set of the fi ve types of interhelical interactions, predefi ned interaction geometries, 
and individual helix backbones. Beginning with N rigid separate pieces, initially the 
individual helices, we fi t two together and so obtained a new set of N–1 rigid pieces. 
Aft er repeating this N–1 times, there is one piece at the end, the assembled structure 
(actually an ensemble of structures as explained above).

From each solved structure, the backbone conformations of the individual heli-
ces and the side chain conformations of those residues with a side chain atom explic-
itly in an interhelical interaction of one of the fi ve types were taken. Th ose native side 
chain conformations are fi xed and rigid. Th e side chains were not taken for residues 
in the two packing interactions. All other side chains had a fi xed, rigid, reduced rep-
resentation based on residue type that is intended to give the obstruction created by 
a side chain of that residue type irrespective of rotameric state; they were not derived 
from the native structures.

Th e scoring of the structures depended only on overlap penalties and the geo-
metric conditions imposed by the interactions. It does not approximate energy: 
in particular, a VDW term was not used. For details, see Harrington and Ben-Tal 
(2009).

Th e order of reassembly was chosen to mimic a plausible translocon-guided fold-
ing pathway for each protein, and so we att empted to rebuild the structures from the 
N-terminus in a sequence order preserving fashion.

For example, here is our iterative assembly for the voltage sensor, 1ORS. At each 
step, we put two rigid pieces together using the interhelical interactions between 
them to produce a new fi xed piece (actually an ensemble as described before), as 
shown in Fig. 4. We fi rst assemble the fi rst two helices, then add 3-a to the single 
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piece (1 2). At this point, there are insuffi  ciently many interactions to add 3-b to the 
fi rst piece ((1 2) 3-a), so we next assemble 3-b and 4, and fi nally put ((1 2) 3-a) and 
(3-b 4) together to obtain the full structure (((1 2) 3-a) (3-b 4)).

3.10  The sets of the fi ve types of particularly favorable interactions 

determine the packing of helices in the native 

structures of a diverse test set

For a diverse test set of 15 TM helical proteins, the structures rebuilt in the fashion 
outlined above had an average ensemble-average C� rmsd from the native of 1.03 Å 

1, 2, 3-a, 3-b, 4 (1 2) ((1 2) 3-a) 

(3-b 4) ((1 2) 3-a)(3-b 4))

a b c

d e

Fig. 4. Assembly order for voltage sensor. An example of our iterative sequence order respecting assembly for 

the voltage sensor 1ORS. We begin with the individual helices 1, 2, 3-a, 3-b, 4, and assemble iteratively in the order shown. (a) The 

helices to be assembled in sequence order. (b) The fi rst two helices assembled, (1 2). (c) The third (half) helix is assembled with 

the  fi rst two, ((1 2) 3-a). (d) The last two helices assembled together, (3-b 4). (e) The piece made up of the fi rst three helices and the 

piece made up of the last two are assembled together to build the full structure, (((1 2) 3-a) (3-b 4)). Figure adapted from Harrington 

and Ben-Tal (2009).
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(Harrington and Ben-Tal 2009). Furthermore, with the exception of aquaporin, the 
structures could be rebuilt in a sequence order preserving fashion consistent with 
translocon-aided folding. In the case of aquaporin, the half-helices needed to be as-
sembled slightly out of order. Th is might relate to experimental results indicating 
some unusual insertion behavior of half-helices in general and helices in other aqua-
porins in particular (Pitonzo and Skach 2006; Jaud et al. 2009).

Determining sets of interactions of the fi ve types seem to be a very common 
structural feature of solved TM helical proteins, and for good physical reasons as we 
will explain. But there are proteins without them (e.g., proteins with large prosthetic 
groups). For a discussion, see Harrington and Ben-Tal (2009).

3.11  Distribution of particularly stabilizing residues, folding funnels, 

and the construction of low-energy minima

If the residues participating in these types of interactions are likely to make 
 particularly favorable contributions to stability, then their distribution in determin-
ing sets of interactions partially explains how sequence specifi es structure. Th ese 
sets of interactions help to create low-energy minima for two reasons. First, the 
abundance of these particularly favorable interactions would tend to act to make the 
structure a low-energy one. Second, when the backbone positions of the helices are 
signifi cantly perturbed, some of the determining set of the interactions will neces-
sarily be broken. At the very least and for very few perturbations, some side chains 
must be fl ipped and so rotameric barriers crossed. If we assume the interaction ener-
gies are strong enough, it will be diffi  cult to compensate for the lost interactions of 
the fi ve types given their geometric and partner specifi city and the rarity of possible 
participants. Th us the energies of the perturbed structures would tend to be higher. 
In contrast, one could not usually say the same of a “determining set of VDW inter-
actions” because of the density and promiscuity of VDW interactions.

Th e iterative assembly (consistent with translocon-aided folding) and the deter-
mining sets of interactions can also be seen as a geometric recipe for creating folding 
funnels. Th e interactions of the fi ve types are supposed to be individually and locally 
superior to generic contacts and so can successively funnel and collectively trap the 
native backbone. Th at this could be done in a controlled iterative way aided by the 
translocon makes the process much simpler. Th e native backbone conformations 
(and sub-conformations) usually have many interactions of the fi ve types that can 
stabilize them in addition to the ones that appear in the solved structures since side 
chains that participate in these interactions can adopt diff erent conformations and 
form diff erent interactions. Th ese additional interactions could further aid the fun-
neling process.
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3.12 Cooperativity with packing

Conformations of proteins are restricted by simple packing rules of the type we have 
seen for helix pairs. Between every pair of pieces (helices or subbundles) we used 
for reassembly, there must be at least four interactions of the fi ve types. But if we in-
stead consider either knob-in-hole or aromatic interactions (for loosely packed pro-
teins) between those same pieces, we fi nd that there are also at least three of these 
types of packing interactions (overwhelmingly knob-in-hole;  Harrington 2009, 
unpublished data). Th us these native conformations are also quite constrained by 
simple packing interactions (although not as constrained as by the interactions of 
the fi ve types).

3.13 Static structures versus ensembles

Th e sets of interactions of the fi ve types were derived from crystal structures. In re-
ality, an ensemble of structures underlies any crystal structure, which complicates 
the analysis. Due both to the limits of resolution and the underlying multiplicity of 
structures, it can be diffi  cult to read the set of these interactions from a structure. To 
deal with this, we added error terms to the geometric conditions; to fully address 
it would require native state ensembles for all of the crystal structures. But the fact 
that for a native backbone conformation there can be multiple determining sets due 
to, e.g., bond switching (residues in hydrogen bonds changing partners or rotam-
ers) does not contradict our analysis. If a determining set of interactions is fi xed, 
the backbone conformations are highly constrained but can slightly jitt er without 
breaking the interactions. If one began with a diff erent determining set for the same 
backbone conformation, the two backbone ensembles constrained by the two diff er-
ent determining sets would not be identical, but very similar.

4  Conservation and diversity of determining sets of stabilizing 

interactions

If such structural importance is att ributed to the determining sets of interactions of 
these types, then what happens in proteins of the same fold? For homologs, do the 
residues participating in these kinds of interactions have to be conserved or is some 
diversity possible? What about for remote homologs or proteins with related folds? 
How many ways are there to fi x similar backbone conformations using these types 
of interactions?

As we have seen for helix pairs, great diversity in the determining sets of interac-
tions is possible for very similar backbone conformations from unrelated proteins 
(Fig. 1). In homologs, we can also see this diversity.
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For homologs, the conservation patt ern of residues participating in the deter-
mining sets of interactions is mixed. In general, buried residues are more conserved 
than exposed ones (Baldwin et al. 1997; Fleishman et al. 2004; Liao et al. 2005; 

a b

c d

Fig. 5. Conservation of residues in bR and its determining set. The conservation is indicated by color from 

turquoise to maroon: turquoise means highly variable, and maroon means highly conserved. White is intermediate. (a) One view 

of bR. (b) Here the residues involved in the fi ve types of interactions are spacefi lled. (c) Another view of bR. (d) Another view of the 

residues in the determining set as spacefi lled. Thus almost all but the most exposed residues in the determining set of interactions 

are conserved. The exposed ones can vary.
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Park and Helms 2007; Hildebrand et al. 2008). For helical membrane proteins, it 
has been found that residues in hydrogen bonds are 40% more conserved than ex-
posed residues while buried residues are 25% more conserved than exposed resi-
dues  (Hildebrand et al. 2008). For many closely packed small residues, substitution 
by a bulkier residue would require a substantial change in the backbone conforma-
tion, and so such residues will tend to be conserved in the same fold for that reason 
alone. Buried residues in the determining sets tend to be very highly conserved. For 
more exposed interactions in the determining sets, diverse alternative sets of these 
constraints are commonly seen, and such residues less conserved (Liu et al. 2004). 
We will now look at this phenomenon in bR and its homologs.

4.1  Conservation and diversity of the determining sets 

of interactions of bR

We will consider the two most conserved categories of residues as classifi ed by 
 ConSurf: highly conserved and conserved (Fig. 5; Glaser et al. 2003). In the helical 
part of bR, there are 17 residues within the inferred hydrocarbon region classifi ed as 
highly conserved (the top category), and 11 of these participate in the determining 
set of interactions. Of the six remaining, two are helix-kinking prolines, one is K216, 
which is critical for binding retinal, and one is M60, which we have discussed as a 
guide for Y57. Th ere are 18 helix residues classifi ed as conserved (the next-to-top 
category), 11 of which are part of the determining set of interactions. Again, many 
of those conserved residues not participating in the determining set of interactions 
are known to be functionally important or related to important secondary structure 
features.

Th e less buried residues in the determining sets are much less conserved. In the 
crystal structures of the homologs of bR, we can see the diversity of the less buried 
parts of the determining sets of interactions (Fig. 6). Intuitively, it is unsurprising 
that mutations of more exposed residues are more likely to result in diverse deter-
mining sets of interactions simply because there would not be the additional geo-
metric constraints imposed by surrounding residues, so the evolutionary process 
would not require as many concerted mutations.

5 Determining sets, multiple states, and motion

Determining sets of interactions highly constrain the positions of helix bundle back-
bones, so how do they relate to the dynamic properties of TM helical proteins? Th e 
simplest answer according to the constraint philosophy is that each conformational 
state (or highly constrained ensemble) corresponds to a diff erent determining set, 
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and motion would result from a collection of these states. Th ere should also be a 
reasonable transition between states, which from the constraint perspective would 
mean a way to switch smoothly between the diff erent determining sets of interac-
tions corresponding to the two states. Suggested mechanisms for these transitions 
include deformation of hydrogen bonds, with non-native bonds along the transitions 
or rotameric fl ips, and sliding in interfaces dominated by small residues  (Perozo et al. 
2002; Curran and Engelman 2003; Hildebrand et al. 2008; Gardino et al. 2009).

5.1 Multiple states and motion in the ErbB family

Th e epidermal growth factor family of receptor tyrosine kinases is an interesting case 
in point. Th e members of this family (ErbB1, ErbB2, ErbB3, and ErbB4) play critical 
roles in a variety of physiological processes and their malfunction has been associat-
ed with many cancers. Each member has the same overall components: an extracel-
lular ligand-binding domain connected to a single TM helix, which is connected to 
a cytoplasmic tyrosine kinase domain. Usually the formation of hetero- and homo-
dimers of the TM helices in this family is induced by the binding of ligands to the 
extracellular domain. A ligand specifi c to ErbB2 has not been found, but it can be 
aff ected by the ligand-binding of the other family members. Furthermore, it does 
appear to form active homodimers on its own. Dimerization can trigger the tyrosine 
kinase activity of the cytoplasmic domain, and so it has a crucial functional role for 
these receptors.

a b c d

Fig. 6. Comparison of homologs: The same fold with diverse determining sets of interactions. 

The residues in the determining sets are spacefi lled and color-coded as in Fig. 1. The panels (a, b) show bacteriorhodopsin and 

halorhodopsin. (a) Bacteriorhodopsin (1C3W). (b) Halorhodopsin (1E12). The panels (c, d) show sensory rhodopsins II. (c) Sensory 

rhodopsin II, Anabaena (1XIO). (d) Sensory rhodopsin II, N. pharaonis (1H68). Figure adapted from Harrington and Ben-Tal (2009).
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Th e TM dimers of this family make att ractive candidates for study because of their 
simplicity and medical signifi cance. Th e TM helices all contain similar dimerization 
motifs near the N-terminus of their helices similar to GxxxG, but actually defi ned 
earlier (Sternberg and Gullick 1990). Seven residues later in their helix sequences, 
for all but ErbB3, there appears to be another dimerization motif related to the fa-
mous GxxxG (Fig. 7). Th is suggests that there are at least two main conformational 
states in the homo and heterodimers: one corresponding to the N-terminal motif 
and the other to the C-terminal motif. Using a scoring function based on reward-
ing the packing of small residues and a grid search for the helix pair conformations, 
Fleishman et al. (2002) produced model structures for these two states for ErbB2 
and proposed a molecular switch for activation based on them. In this switch model, 
the conformation induced by the N-terminal motif is the active form of ErbB2, and 
the conformation induced by the C-terminal motif the inactive form. Th is model 
was found to explain some known disease-causing mutations in detail, and later 
the pathway between them was validated by motion-planning methods (Fleishman 
et al. 2002; Enosh et al. 2007). Both these proposed conformations, as well as the 
proposed pathway between them, are consistent with the determining set perspec-
tive. Th e two GxxxG-like motifs as well as the nearby polar (N-terminal), aromatic 
(C-terminal), and V/I/L/T residues can all participate in the fi ve types of interac-
tions and highly constrain the conformations. Th e proposed intermediate states fea-
ture extensive close knob-in-hole V/I/L/T patch packing and some small residue 
packing, and so are also in line with the determining set philosophy of motion.

Th ese ideas have experimental support. Solution NMR structures for the TM di-
mer of ErbB2 have been found, and they closely agree with the earlier proposed mod-
el for the active state (Bocharov et al. 2007). Th e conformations use the  N-terminal 
dimerization motif as expected, and there are interhelical hydrogen bonds between 
the hydroxyl groups of Ser656 and between the hydroxyl groups of Th r652. Th ese 
interhelical hydrogen bonds are transient and vary among the conformations in the 
ensemble (Fig. 8). Additionally, an aromatic–aromatic edge-to-face interhelical in-

Fig. 7. Multiple sequence alignment around the TM segments of the four human ErbB 

 paralogs. The N-terminal GxxxG-like motif is indicated in yellow and the C-terminal GxxxG-like motif in blue. Note that ErbB3 

does not have a C-terminal motif of this type.
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teraction is reported. All of this is consistent with the determining set perspective 
we have described.

Th ere is also experimental support for the proposed inactive state of ErbB2. 
Many experiments have tested the suspected dimerization motifs in the ErbB family. 
 Escher et al. (2009) studied the dimerization capabilities in a biological membrane 
of both N- and C-terminal dimerization motifs for both homo- and heterodimers. 

a b c

d e f

Fig. 8. NMR structures of the active state of ErbB2. The stabilizing interactions for the ensemble of the active 

state of the ErbB2 dimer (2JWA). For both upper and lower panels, three diff erent models from the ensemble are shown. Upper 

panel: (a) shows the two GxxxG-like dimerization motifs spacefi lled and colored in wheat. The unused C-terminal motif is believed 

to mediate dimerization of the inactive state. (b) Transient hydrogen bonds between the hydroxyl groups of S656 are seen; here is 

one displayed spacefi lled. (c) Transient hydrogen bonds between the hydroxyl groups of T652 are seen; here one is shown spacefi lled. 

Lower panel: Since the hydrogen bonds vary among the ensemble members, their determining sets diff er. However, both S656 and 

T652 are in particularly stabilizing knob-in-hole packing interactions whether or not they hydrogen bond, so the conformations are 

well-constrained even without the hydrogen bonds. The determining sets of interactions are color-coded as described for Fig. 1. 

(d) Neither S656 nor T652 form hydrogen bonds in this conformation, so there is only small residue packing and I//V/L/T packing. 

(e) There is a S656–S656 hydrogen bond shown in orange in this conformation. (f) There is a T652–T652 bond shown in orange in 

this conformation.
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Th e N- and C-terminal motifs were studied separately by dividing each TM helix 
into two parts to create two new TM segments. One of the new TM segments con-
tained the N-terminal motif only and the other contained the C-terminal motif only, 
such that the two motifs occupied equivalent positions on their respective segments. 
For ErbB2, it was found that these C-terminal motif segments dimerized, supporting 
this putative dimerization motif and hence also the putative inactive state structure.

Th ere is very active study of the entire ErbB family; for reviews, see (Landau and 
Ben-Tal 2008; Hynes and MacDonald 2009; Lemmon 2009). One can hope that 
analysis of the type done successfully for ErbB2 will also work for the other possible 
states of the homo- and heterodimers of this family. Perhaps such methods can also 
be applied to other tyrosine kinase receptors.

6 Conclusion

From the earliest days of structural biology, the notion of energetically important 
interactions as geometric constraints has been key to many classic discoveries. We 
have argued that the idea also sheds light on the complex problems of understanding 
TM helical proteins today. Th e modern emphasis on multiple states and ensembles 
of structures as the key to function (Henzler-Wildman and Kern 2007) has a direct 
connection to old-fashioned model building. Just as model-building was guided by 
physically important interactions as constraints, these multiple states and the transi-
tions between them can be seen in part as geometrically created and mediated by 
determining sets of well-known favorable interactions. Th e folding and dynamics of 
TM helical proteins, their structure prediction and eventual design can all be seen 
more clearly in this light, despite our imperfect knowledge of these stabilizing in-
teractions, especially their energetics. We believe that these ideas form the founda-
tion for new top–down algorithms for structure and motion prediction which could 
bridge the gap to more detailed bott om–up approaches such as molecular dynamics 
simulations.
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Abstract

Membrane proteins are critical to living cells and their dysfunction can lead to serious 
 diseases. High-resolution structures of these proteins would provide very valuable infor-
mation for designing effi  cient therapies but membrane protein crystallization is a major 
bott leneck. As an important alternative approach, methods for predicting membrane pro-
tein structures have been developed in recent years. Th is chapter focuses on the problem of 
modeling the structure of transmembrane helical proteins, and describes recent advance-
ments, current limitations, and future challenges facing de novo modeling, modeling with 
experimental constraints, and high-resolution comparative modeling of these proteins.

Abbreviations: MP, membrane protein; SP, water-soluble protein; RMSD, root-mean 
square deviation; C� RMSD, root-mean square deviation over C� atoms; TM, trans-
membrane; TMH, transmembrane helix; GPCR, G protein-coupled receptor; 3D, three 
dimensional; NMR, nuclear magnetic resonance spectroscopy; EPR, electron paramag-
netic resonance spectroscopy; FTIR, Fourier transform infrared spectroscopy.

1 Introduction

Organization represents one of the key principles of life and is partly achieved, at the 
cellular level, by compartmentalization where lipid membranes defi ne the boundar-
ies between compartments. Faithful communication across membranes is mostly 
accomplished by highly specialized membrane proteins (MPs), which transport a 
wide variety of information from elementary particles to macromolecules or trans-
mit signals through long-range conformational changes. MPs are therefore critical 
to the regulation of the cell, and the disruption of their functions oft en has dramatic 
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eff ects at cellular and higher levels. Consequently, there is enormous interest in gain-
ing high-resolution structural information on these proteins, which would provide 
the basis for designing effi  cient therapies. Despite a few exceptions, X-ray crystallog-
raphy remains the main method to solve large macromolecular structures at atomic 
resolution but relies on the ability to organize the molecule regularly in three dimen-
sions. Th e fl uidity of the lipid membrane precludes such organization and led most 
crystallographers to solubilize MPs in artifi cial environments, which are oft en poor 
mimics of the lipid membranes. Consequently, many MPs resisted crystalization so 
far leaving us with a database of high-resolution MP structures, which is minimal 
compared to their soluble counterparts. Th e three-dimensional (3D) structure pre-
diction of MPs is therefore a very important alternative approach and is the topic of 
this chapter.

2 Goal of the chapter

MP structures can be classifi ed into two main classes: transmembrane helical MPs 
and beta-barrel MPs. Th e problem of predicting the structure of beta-barrel MPs is 
being discussed in one of the associated chapters. I will exclusively focus on trans-
membrane helical MP structure prediction. I will preferentially discuss the most 
recent advancements in the fi eld and try to refer to other reviews for specialized dis-
cussions on related topics. Finally, I will discuss limitations of the current methods 
and future challenges that lie ahead.

3 Methods

To a fi rst approximation, the general principles and strategies underlying MP and 
water-soluble protein (SP) structure modeling are very similar and are summarized 
in Fig. 1. All structure modeling tasks typically start with the identifi cation of se-
quence/structure homologs to the sequence being modeled (i.e., query sequence). 
Th e outcome of this search decides whether structure prediction or homology mod-
eling techniques will be used. Th e thresholds defi ning structural homologs as well as 
heuristics and knowledge-based information are diff erent between MPs and SPs and 
will be discussed in the following sections.

3.1 De novo membrane protein structure prediction

Despite recent progress in the fi eld of MP crystallography (Carpenter et al. 2008), 
MP structures still represent less than 1% of all protein structures in the Protein Data 
Bank (PDB; htt p://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html). Conse-
quently, many MP coding sequences are devoid of structural homologs and need to 
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be modeled from primary sequence information by structure prediction techniques. 
Th e MP and SP structure prediction problems diff er signifi cantly. On the one hand, 
MPs are oft en much larger than the small globular SP domains which are the current 
target of most protein structure prediction methods (Bradley et al. 2005). Th erefore, 
the conformational space accessible to MP polypeptide chains is extremely large 
and represents a real search problem for current structure prediction techniques. On 
the other hand, the lipid membrane environment imposes many constrains on MP 
structures and, in recent years, strategies have been developed to extract knowledge-
based information and defi ne heuristics to restrict the conformational space in fold-
ing simulations.

NO YES

Fig. 1. General scheme for membrane protein structure modeling. First, bioinformatic techniques are 

used to search the Protein Data Base (PDB) for structural homologs of the query sequence. If no structural homolog with sequence 

identity 
20% is found, the structure is modeled de novo from sequence information alone or by combining structure prediction 

techniques with diverse experimental data. If structural homologs are found, these are used as templates to build a model for the 

query sequence by homology modeling techniques. In general, the more experimental information is available for the modeling, the 

more accurate is the fi nal model.
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Membrane protein folding can be conceptually decomposed into two consecu-
tive steps: folding of the individual hydrophobic segments into helices followed by 
helix association (Popot and Engelman 1990). Accordingly, the problem of predict-
ing the structure of transmembrane helix (TMH) proteins has been very early on 
simplifi ed by breaking it down into the following steps: (i) delineating the bound-
aries of the TMH segments and the topology of the protein (i.e., predicting the 
membrane embedding of each segment); (ii) predicting the tertiary structure of the 
 protein (i.e., the arrangement and interactions between helices).

3.1.1 MP topology predictions

With the anisotropic constraints imposed by the membrane environment on protein 
structures and topologies, MP structure prediction becomes a two-body problem 
where the positions of the protein and the lipid membrane are tightly coupled. Th e 
anisotropic physical properties of the environment strongly infl uence MP sequences 
and have been used to extract predictive information on the topology and position 
of MPs in the lipid bilayer. Initially based on simple hydrophobicity scale, topology 
predictors have recently applied sophisticated machine-learning techniques to ex-
tract meaningful amino acid sequence patt erns and reliably predict the presence of 
transmembrane helices (Elofsson and von Heijne 2007). Th e most accurate meth-
ods currently predict the correct topology (i.e., MP orientation in the lipid bilayer 
and number of transmembrane helices) for up to 89% of all MPs (Tusnády and 
 Simon 2001; Melen et al. 2003; Viklund and Elofsson 2004, 2008; Daley et al. 2005; 
Kall et al. 2005; Kim et al. 2006; Jones 2007; Bernsel et al. 2008; Viklund et al. 2008; 
 Nugent and Jones 2009). Following their recent work on bett er understanding pep-
tide recognition by the translocon, Elofsson, Von Heijne, and co-workers developed 
a topology prediction method based on experimentally determined amino-acid con-
tributions to the free energy of membrane insertion that performs similarly to the 
best statistically based predictors (Bernsel et al. 2008).

3.1.2  The fi rst MP structure prediction methods developed during 
the past decade

Th e fi rst 3D MP structure prediction methods were essentially adaptations of meth-
ods initially developed to fold SP 3D structures from primary amino acid sequences 
(FILM (Pellegrini-Calace et al. 2003) and Rosett aMembrane (Yarov-Yarovoy et al. 
2006) were adapted from FRA GFOLD ( Jones 1997) and Rosett a (Rohl et al. 2004), 
respectively). Th e conformational search strategies remained essentially identical 
and aimed at recapitulating the trade-off  between local and non-local interactions 
during protein folding: short segments of the chain are allowed to alternate between 
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diff erent low-energy local conformations while searching for the lowest energy of 
the entire chain (Simons et al. 1997). By inserting peptide fragments extracted from 
high-resolution protein structures bearing local sequence homology to the query 
sequence, the search space is confi ned to that defi ned by the local conformational 
preferences of the protein sequence. Energy minima of the full-length polypeptide 
chain are identifi ed using Monte–Carlo sampling methods.

Th e main diff erence between MP- and SP-specifi c methods came from the im-
plementation of knowledge-based membrane-specifi c potentials of mean force. In 
FILM and Rosett aMembrane, the membrane lipid bilayer is modeled as an infi nite 
planar slab composed of several layers, each layer representing one region of the 
membrane whose physico-chemical properties infl uence the amino acid composi-
tion of the protein (Fig. 2). An initial guess of the membrane location is defi ned by 
assuming that its center lies at the mid-point of all transmembrane helices and its 
normal (i.e., axis perpendicular to the membrane plane) is colinear with the trans-
membrane helical axis (Yarov-Yarovoy et al. 2006). Th e membrane-specifi c environ-
ment potential recapitulates the frequency of observing amino acids in MPs within 
each layer along the membrane normal.

Fig. 2. Typical infi nite planar slab representation of the membrane environment in knowl-

edge-based potentials. The slab is divided in layers representing regions of the membrane whose specifi c physical properties 

infl uence the amino acid composition of membrane proteins. The backbone structure of a subunit of the V-type Na+ ATPase is repre-

sented after its embedding in the membrane was optimized with RosettaMembrane (Yarov-Yarovoy et al. 2006; Barth et al. 2009).
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FILM was tested on fi ve small membrane-embedded peptides of up to 79 resi-
dues and two TMHs, and predicted the correct topology for all but one of these 
peptides. Rosett aMembrane was tested on a larger dataset and was able to generate 
near-native models (i.e., within 4 Å of the native crystal structure) for MP domains 
of up to 120 residues and four TMHs. However, it failed at predicting the native 
topology of full-length MPs or larger MP domains.

At the interface between de novo structure prediction and comparative mod-
eling, the TASSER method threads the query sequence on parts of solved protein 
structures, and then refi nes the resulting template (Zhang et al. 2006). Validation 
on a set of 38 MP structures yielded 12 structures with root-mean square deriva-
tion (RMSD) to native within 4 Å, but many others with RMSD to native greater 
than 6 Å. Unlike FILM and Rosett aMembrane, TASSER has the particularity of 
 incorporating very large protein fragments if these can be found by sequence/struc-
ture alignments, simplifying the structure prediction into a multi-template model-
ing problem. As a major blind prediction eff ort, TASSER was applied to model the 
structures of most human G protein-coupled receptor (GPCRs).

Two related methods, MembStruk (Vaidehi et al. 2002; Li and Goddard 2008) 
and PREDICT (Becker et al. 2004; Shacham et al. 2004), were specifi cally devel-
oped to predict the structures of GPCRs from primary sequence information and 
physical principles alone. Th e packing of the helices was optimized at the coarse-
grained level to favor conformations where hydrophobic residues face the lipid 
and all-atom refi nement of these models was performed using molecular dynamics 
(MD) simulations. Th e methods produced reasonably accurate 3D models of bo-
vine rhodopsin, the only GPCR structure available at that time, with ~3 Å RMSD 
from the native structure in the membrane-embedded region. Further validation of 
these methods in blind prediction will be necessary to assess the consistency of the 
predictions. Specifi cally, blind predicted models of the beta adrenergic receptors 
can now be compared to the recently determined X-ray structures (Cherezov et al. 
2007; Jaakola et al. 2008; Warne et al. 2008) but such assessment is not yet publicly 
available. Th e fi rst blind prediction of a GPCR structure was organized recently for 
the adenosine A2A receptor (Michino et al. 2009). Several groups used TASSER 
and MembStruk but the corresponding models were not ranked within the top 10 
predictions.

Finally, other methods using MD simulations with an implicit representation of 
the membrane have been developed to predict de novo the structure of peptides or 
small membrane-embedded oligomers. Th ese are discussed in Section 3.1.4.

In summary, two main limitations of the above-mentioned methods emerged 
that impede the consistent and reliable 3D structure prediction of full-length 
MPs:
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(1)  Despite the use of knowledge-based information to delineate membrane-
embedded segments and predict MP topology, the length of MP polypeptide 
chains still represents a major conformational search problem. Alternative strat-
egies are needed to further constrain 3D space in folding simulations. Current 
research in this direction is discussed in Section 3.1.3.

(2)  Except for MembStruk, PREDICT, and other methods based on MD simula-
tions, the modeling is performed at the coarse-grained level with energy func-
tions, which do not recapitulate the physical properties of protein structures at 
atomic level. Th e best predictions are selected only based on structural simi-
larity between models (i.e., the representative structure of the largest family 
of models is oft en selected as the best prediction). As demonstrated for SPs 
however, more stringent energetic discrimination between models is essential 
in blind 3D protein structure prediction and all-atom refi nement of the models 
is necessary to capture the fi ne structural determinants of native protein struc-
tures (Bradley et al. 2005). Section 3.1.4 discusses this issue for MP structure 
prediction.

3.1.3  Solutions to the conformational search problem: folding 
with predicted constraints and contact predictors

3.1.3.1 Folding with predicted constraints

Despite the recent observation of additional topological features (e.g., reentrant 
regions, coils; Elofsson and von Heijne 2007; Kauko et al. 2008), the helix-bundle 
with helices spanning the membrane remains the main structural feature of alpha-
helical MPs. Th e core of the lipid membrane being a low-dielectric environment, 
free dipoles are not energetically favored in this region, which explains why N- and 
C-termini of transmembrane helices and connecting loops are oft en exposed to the 
more polar lipid headgroup region of the membrane. Th ese physical constraints 
restrict the orientation of helices and the diversity of possible helix–helix interac-
tions in the membrane. Such topological restrictions have been early on identifi ed 
as one of the main heuristics that could be used to constrain the conformational 
space in folding simulations of alpha-helical MPs. So far, Walters and DeGrado 
(2006) have provided the most extensive analysis of the sequence/structure cor-
relations governing helix–helix interactions. Th ey extracted all interacting pairs of 
helices from MP structures, clustered them in structurally related families and ana-
lyzed the sequence space sampled by these confi gurations. Interestingly, 75% of all 
helical pairs could be clustered in fi ve diff erent families of packing arrangements. 
Recurrent sequence patt erns were also identifi ed that stabilize specifi c structural 
families.
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Following these observations, Rosett aMembrane was developed to fold MPs 
from sequence where helical orientations could be constrained using residue–resi-
due interactions predicted from sequence/structure correlations (Barth et al. 2009). 
Th e confi guration of TMHs at interacting positions is predicted from sequence by 

Fig. 3. Schematic simplifi ed overview of the strategy developed in RosettaMembrane for fold-

ing transmembrane helical protein structures with constraints (Barth et al. 2009). The TMH regions 

are predicted for the query sequence. To search for possible interactions between helices h2 and h4 for example, each helix is used 

in a search against all interacting pairs of template helices in the structure database (as an example, two template helices H2 and 

H4 are selected from the database). Using profi le–profi le comparison over four independently sliding windows (two for each helix 

pair), a combined score S is calculated for all possible positions of the windows for all possible combinations of query and template 

helix pairs. The highest scoring pairs of template helices are used to constrain helices h2 and h4 in folding simulations. This is done by 

copying the backbone orientation for the closest point of interaction in the matching windows for the template helices H2 and H4 to 

the equivalent positions in query helices h2 and h4.
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searching a database of TMH pairs of known structures for local sequence matches 
with all possible pairs of predicted TMHs in the query sequence (Fig. 3). A library of 
possible interaction geometries defi ned by the inter-residue distance and backbone 
conformations at the interacting positions of the TMH pair from the database is 
generated for each pair of predicted helices in the query. During folding simulations, 
predicted helix pairs are constrained with a single randomly selected predicted in-
teraction in the library. To compensate for the low accuracy of the predicted interac-
tions (around 30% were native-like), a minimum of ten predicted interactions are 
tested for each helix pair, which allowed correct models to be generated for several 
MPs with complex topologies (Barth et al. 2009).

3.1.3.2 Contact predictors

In addition to the above-mentioned sequence/structure correlations, other stud-
ies identifi ed specifi c residue motifs stabilizing helix–helix interactions (i.e., polar 
residues through formation of hydrogen bonds (Zhou et al. 2001), the aromatic–
XXaromatic motif (Sal-Man et al. 2007), the GXXXG motif found in glycophorin A 
(Lemmon et al. 1992) and heptad motifs of leucine residues (Gurezka et al. 1999). 
Th e recurrent observation of such generic helix–helix stabilizing motifs strongly 
suggests their predictability from sequence by generalized patt ern search strategy.

Several groups have used machine-learning techniques to develop residue con-
tact predictors specifi cally trained on MP structures. Among the two best perform-
ing predictors, TMhit applies a support vector machine (SVM) classifi er within a 
hierarchical framework, which fi rst identifi es potential contacting residues on a per 
residue basis and then predicts the contact patt erns from all possible pairs of con-
tacting residues (Lo et al. 2009). Another method, TMHcon (Fuchs et al. 2009) 
combines residue co-evolution information, residue position within the TM he-
lix, predicted lipid exposure using the LIPS method (Adamian and Liang 2006), 
with a neural network and profi le data, in order to predict helix–helix interaction. 
TMHcon and TMhit were shown to perform close or bett er than the best contact 
predictors developed for SPs with contact prediction accuracies of nearly 26% and 
31%, respectively. When three unique contact pairs defi ne interacting helical pairs, 
TMhit predicted such pairs with accuracy, sensitivity, and specifi city of 56%, 40%, 
and 89%, respectively. As the number of contact defi ning an interacting helical pair 
increases, accuracy and specifi city increase at the expense of sensitivity. It has been 
reported that near-native structures of SP can be recapitulated with an average of 
one contact for every eight residues (Li et al. 2004). Th e recent results obtained 
by Rosett aMembrane suggest that this number might be lower for MPs and that 
libraries of predicted contacts could be directly used as constraints to fold large MP 
structures.
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Although the results obtained with TMHhit and TMHcon are promising, the 
dataset of MP structures is still relatively small and loose homology cutoff  has some-
times been adopted to generate the dataset for training the machine-learning ap-
proaches. As structural homologs can be found that have lower than 20% sequence 
identity, it will be important in future studies to train such predictors with stringent 
sequence identity thresholds.

3.1.4 MP-specifi c energy functions for decoy discrimination

In blind protein structure prediction applications, the ability to discriminate by en-
ergy near-native from non-native models is critical and has led to several develop-
ments in the fi eld of energy functions for MP structures. Because modeling  explicitly 
all the components of lipid membrane bilayers is computationally very expensive, 
most energy functions treat the lipid bilayer implicitly as an anisotropic solvent. 
Pure knowledge-based potentials, such as Ez (Senes et al. 2007), were developed 
to recapitulate the energies of amino acid insertions in the membrane. Th ese poten-
tials are derived from the distribution of amino acids at particular positions in MP 
structures, i.e., at particular depth in the membrane. Remarkably, the Ez potential 
demonstrates good correlations with the in vivo energy scale of membrane peptide 
insertions mediated by the translocon (Hessa et al. 2005). However, although an 
atom-based version has been discussed for Ez, the knowledge-based potentials are 
essentially residue-based and do not treat specifi c solvation eff ects associated with 
diff erent side-chain conformations.

Implicit atomic solvation potentials have been developed based on experimen-
tal free energy of transfer of amino acid analogs from vacuum to organic solvents 
 (Lazaridis and Karplus 2003; Barth et al. 2007). Th ese potentials model the membrane 
with a three-phase system: two isotropic phases for water and the hydrophobic core of 
the membrane and one anisotropic phase in between which interpolates the properties 
of the adjacent phases. More rigorous physically based descriptions of the membrane 
based on Poisson–Boltzmann or Generalized-Born formalisms have also been devel-
oped and treat the anisotropy of the membrane with multiple layers of diff erent dielec-
tric properties (Roux 2002; Im et al. 2005; Tanizaki and Feig 2005; Feig 2008).

In addition to the membrane-specifi c solvation energies, most above-mentioned 
atom-based potentials model inter-atomic interactions (e.g., Van der Waals and 
hydrogen-bonding) explicitly following the formalisms developed for Molecular 
 Mechanics force fi elds. Although IMM1 treats weak C�H–O hydrogen bonds as 
pure electrostatic interactions, this level of description was suffi  cient to reconcile ap-
parently contradicting experimental results on the role of these bonds in MP stabil-
ity (Mott amal and Lazaridis 2005). Unlike Molecular Mechanics force fi eld, Rosett a 
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models the orientation dependencies of hydrogen-bond energies resulting from their 
partial covalent character. Th e application of such potential in docking and design 
calculations demonstrated that weak C�H–O hydrogen bonds can contribute signifi -
cantly to the stability and specifi city of TMH–TMH interactions (Barth et al. 2007).

Few of these potentials have been used in structure prediction calculations. 
IMM1 was shown to recapitulate reasonably well the interactions of peptides with 
lipid charged headgroup regions and mutational eff ects on MP stability (Lazaridis 
2005; Mott amal and Lazaridis 2005). However, when applied to the prediction of 
the dimeric structure of glycophorin A, IMM1 was not able to select by energy the 
native from non-native topologies (Mott amal et al. 2006). By combining replica ex-
change MD simulations with a Generalized-Born implicit membrane model, Brooks 
et al. att empted to predict the de novo structures of several simple helix homo-oli-
gomers. When the native oligomerization state was enforced, representative mod-
els from the largest families were identifi ed that closely matched the experimentally 
determined structures for the dimeric glycophorin A, the M2 proton channel, and 
phospholamban (Bu et al. 2007). However, the native oligomeric state could not 
always be selected by energy from alternative topologies. Rosett aMembrane was 
recently applied to the structure prediction of several integral MP ranging from do-
mains of 4 TMHs to full-length MPs of 7 TMHs. Th e atomic potential was used to 
refi ne coarse-grained models and when such models were within 4 Å of the X-ray 
structures, they were oft en within the top 5 lowest energy structures aft er all-atom 
refi nement (Barth et al. 2007, 2009).

Further validation of these potentials in blind prediction tests will be necessary 
but one can already point at one main limitation in the implicit description of the 
membrane. All these models assume a planar rigid and symmetric lipid bilayer. How-
ever, many evidences suggest that the membrane itself can adapt to protein confor-
mations and achieve lower energy protein/lipid confi gurations (Bowie 2005; Hessa 
et al. 2005). Future research in this direction will likely involve the implementation 
of membrane deformation properties observed in simulations with  explicit  lipids 
within implicit membrane models (Dorairaj and Allen 2007; Choe et al. 2008).

3.2 Sequence-based modeling with experimental constraints

Although high-resolution atomic structures are not yet available for many MPs, ex-
perimental studies have generated a large diversity of data inferring residue contacts 
or proximity in MP structures. Such experimental information can oft en be used to 
restrict the conformational space of the polypeptide during folding simulations or 
to fi lter the models aft erwards, therefore improving the quality of the models. Th ese 
data involve experimental techniques such as site mutagenesis, chemical cross-link-
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ing, NMR, EPR, FTIR as well as low- to medium-resolution structures. Th e studies 
described below are not meant to be exhaustive but representative examples of dif-
ferent combinations of these techniques with structure prediction methods.

Compensatory mutations, i.e., when the eff ect of a point mutation at one site can 
be compensated by another mutation at another site, can infer a physical proximity 
between the two sites. For example, compensatory mutations suggested that Asp 
237 and Lys 358 interact directly via a salt bridge in the core of the C-terminal do-
main of lactose permease (Zhao et al. 1999), a conclusion that was later confi rmed 
by the X-ray structure (Abramson et al. 2003). Although charged residues can adopt 
many conformations to form a salt bridge, this low-resolution information was suf-
fi cient to constrain the distance and position of the two residues and generate near-
native models of the domain (Barth et al. 2009).

Disulfi de cross-linking experiments have been very popular over the last two de-
cades and can probe residue proximity and direct contacts in protein structures through 
the formation of covalent disulfi de bonds. Th is technique has been used extensively 
to probe the topology and domain organization of the lactose permease and bacterial 
chemoreceptors for example (Wu and Kaback 1996; Wu et al. 1996; Bass et al. 2007). 
It was recently combined with Rosett a to describe the 3D structure at atomic level of 
the intact integrin receptor on the cell surface (Zhu et al. 2009). Individual positions 
in the transmembrane and juxtamembrane of each monomer of the �IIb�3 receptors 
were mutated to cysteines and the ability of each possible cysteine pairs to cross-link 
was monitored in native membrane at the cell surface. Cross-linking patt erns were 
translated into 48 distance constraints and combined with  Rosett aMembrane to 
model the domains. Th e fi nal structure of the TM and juxtamembrane showed re-
markable structural similarity (RMSD: 2.1 Å) with a structure concurrently solved by 
high-resolution solid-state NMR techniques (Lau et al. 2009). Because the formation 
of covalent disulfi de bonds can disturb the structures of fl exible regions and/or stabi-
lize protein conformations that are rarely occupied at equilibrium, these data have to 
be carefully interpreted in structure modeling applications.

Th e presence of cofactors imposes stringent constraints on protein structures 
and can be used as another potential source of restraints in structure predictions. 
Cofactors are ubiquitously involved in the catalytic activities of enzymes and have 
structurally well-defi ned chemical structures. Protein residues chelating these cofac-
tors have well-defi ned chemical properties, are evolutionarily conserved, and can 
oft en be identifi ed by sequence information alone. Th e heme-binding subunits of fu-
marate reductase and cytochrome bc1 were predicted by modeling the orientations 
between the two heme-chelating histidines with a library of helical pairs binding 
hemes extracted from the PDB. Th ese sparse constraints were suffi  cient to predict 
the native topology of these two protein domains (Barth et al. 2009).
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When experimental data are available from diff erent sources, they can be com-
bined to generate a reasonably sized library of distance constraints to model the 
structure of large MP structures. An early demonstration of such approach involved 
the modeling of bovine rhodopsin with 27 distance restraints from EPR, FTIR, and 
chemical cross-linking experiments (Sale et al. 2004). Th e fi nal model was near-na-
tive with a root-mean square derivation over C� atom (C� RMSD) of only 3.2 Å to 
the X-ray structure.

Solid-state NMR techniques have gained in resolution in recent years and ob-
servables such as 15N chemical shift  and 15N–1H dipolar coupling can now be used in 
conjunction with modeling techniques to determine the structure of oligomers and 
their orientation in the lipid bilayer (Lee et al. 2008).

Finally, low- to medium-resolution structural information from cryo-electron 
microscopy (cryo-EM) can provide starting information to restrict the number of 
possible TMH arrangements and TMH orientations in the membrane prior to struc-
ture modeling eff orts. Th e resolution of the most accurate cryo-EM structures in the 
plane of the membrane typically ranges from 5 to 10 Å, allowing helical axis to be 
defi ned but precluding the observation of amino acids and therefore the assignment 
of TMHs. Th e cryo-EM data can be supplemented with sequence conservation, hy-
drophobicity patt erns, mutagenesis data, and length of connecting loops between 
TMHs. Th en, the modeling consists in assigning the helices, predicting the orienta-
tion of the helices around their axis, and building connecting loops (see Fleishman 
and Ben-Tal 2006; Topf et al. 2008; for a detailed description of the specifi c methods 
developed for the modeling).

In recent years, main eff orts combining de novo structure modeling with cryo-
EM data have targeted for example the small-drug transporter EmrE (Fleishman 
et al. 2006), the gap-junction intercellular channel (Fleishman et al. 2004), and the 
oxalate transporter (Beuming and Weinstein 2005). Th e models generated for EmrE 
proved to be close to the native topology aft er a long controversy led by wrong X-ray 
structures was solved with the recent release of the correct X-ray structure (Korkhov 
and Tate 2009). Th e model based on cryo-EM data was found to be very similar to 
the revised X-ray structure with a C� RMSD of only 1.4 Å (Korkhov and Tate 2009). 
In the case of the Gap-junction, however, the coarse-grained model based on cryo-
EM and interpretation of experimental data diff ers signifi cantly from the recently 
solved X-ray structure. Th ese discrepancies point toward the diffi  culty of combining 
and interpreting unambiguously experimental data from diff erent sources when as-
signing TMH (Maeda et al. 2009).

As several techniques are currently developed to characterize the structure at 
low-resolution of MPs in physiologically-relevant environments (Bartesaghi and 
Subramaniam 2009), the combination of modeling and intermediate-resolution 
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structure determination techniques off ers great promises for the future as powerful 
complementary approaches to high-resolution X-ray crystallography.

3.3 Comparative modeling of MP structures

Proteins with similar sequences oft en adopt similar structures. Th is simple observa-
tion led to the development of comparative modeling techniques, which have been 
widely applied to SP structure modeling (Baker and Sali 2001). Th e recent progress 
in MP structure determination and the expected restricted structural space acces-
sible to TMH proteins hold promises that such technique may become soon an im-
portant approach for high-resolution MP structure modeling.

A study analyzed carefully the applicability of the methods originally developed 
for SP to MP structure modeling (Forrest et al. 2006). Secondary structure predic-
tion methods like PSIPRED were found to perform similarly for both SP and TMH 
proteins. Accurate sequence alignments could be obtained with the best profi le–pro-
fi le alignment techniques developed for SPs. Finally, a sequence identity threshold of 
30% combined with an accurate sequence alignment was found to provide reason-
ably accurate models in the TMH regions (C� RMSD �2 Å to the native structure).

Over the past few years, many modeling studies have taken advantage of MP fam-
ilies sharing similar folds (e.g., GPCR or ion channels) to generate structural models 
of important targets and interpret functional and mutational data. However, the fi rst 
stringent test of existing methods only occurred during fall 2008 with the critical as-
sessment of GPCR structure modeling, organized for the blind prediction of the ade-
nosine A2A receptor structure (Michino et al. 2009). Th e closest structural homologs, 
the beta adrenergic receptors, share ~30% sequence identity with the  adenosine re-
ceptor. In the aligned helical regions, the beta2 adrenergic receptor structure has a 
C� RMSD of 2.8 Å to the adenosine receptor structure. A total of 206 models were 
submitt ed for which an average RMSD of 2.8 Å to the adenosine receptor in the heli-
cal regions was reported. Very few models showed signifi cant improvements over the 
template in the helical regions (Fig. 4) and were generated with modeling techniques 
combining multiple templates (Michino et al. 2009) or involving all-atom refi ne-
ment specifi cally designed for TMH proteins such as  Rosett aMembrane  (Barth et al. 
2007). As for SPs, these results clearly demonstrate the diffi  culty of refi ning struc-
tural models below 2 Å with current modeling techniques.

Most contacts between the GPCR and the ligands structurally characterized so 
far involve amino acids in the TMH region of the receptor and were relatively well 
predicted in the best models of the adenosine receptor. However, two residues of the 
long disordered extracellular loop (ECL2), which shares very low sequence identity 
with the adrenergic receptors, make also crucial contacts with the ligand. Th e ECL2 
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loop was oft en rebuilt de novo and poorly modeled when compared to the X-ray 
structure. Consequently, the ligand position was not predicted accurately and exhib-
ited RMSD over the ligand atoms and a percent of native contacts to the receptor 
ranging from 2.6 to 6.7 Å and 53 to 4% in the top 10 predictions, respectively.

Modeling techniques currently emerge that can signifi cantly and consistently 
improve starting templates in the TMH regions (Barth P, personal communication). 
However, the main future challenge lies in the modeling of long partially disordered 
loops, which can play critical role in ligand binding.

4 Conclusions and future directions

Over the past decade, the number of MP structures solved by X-ray crystallography 
has increased signifi cantly to a point where knowledge-based structure prediction 
techniques can be developed and tested. Th e SP structure prediction fi eld has greatly 
benefi ted from the organization of blind predictions with critical assessment of pro-
tein structure prediction (CASP). Similarly, it is expected that such stringent tests of 
existing structure prediction methods for MPs will help bett er defi ne directions for 
improvements. In that respect, the fi rst blind prediction of a GPCR structure was 
very informative for the comparative modeling fi eld and we look forward to similar 

Ligand binding

Cα RMSD

1.5 Å 1.3 Å
Rosetta model

A2AR X-ray structure

Fig. 4. Accurate modeling of the TM helical shifts shaping the ligand-binding site in the blind 

prediction of the adenosine receptor structure (Michino et al. 2009). The starting template, beta2 adren-

ergic receptor structure, has a 1.8 Å C� RMSD to the native in the TMH region. The comparative modeling mode of RosettaMembrane 

was able to improve the starting template in this region by 0.5 Å.
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CASPs for other MPs in the future or to the publication of blind predicted models 
(Zhang et al. 2006; Bu and Brooks 2008).

How MP structures help us understand their function in native membranes is 
a fundamental question, which I have voluntarily overlooked and would probably 
necessitate a chapter on its own. Much experimental evidence suggests that confor-
mational change is one hallmark of MP function and regulation. X-ray structures 
may only represent a snapshot in the conformational space accessible to MPs in their 
native environment. One of the main future challenges will be to reliably model al-
ternative states of MPs and stringently validate these predictions, a problem where 
the quality of both computational techniques and experimental structural data will 
matt er.

Note added in proof: A new method for predicting helix packing arrangement  using 
a contact predictor has been published recently: Nugent and Jones (2010) Plos 
Comp Biol Mar 19: 6(3) e1000714.
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Abstract

Th e family of G-protein-coupled receptors (GPCRs) is by far the best-studied family 
among the integral membrane proteins, because it represents the largest and most impor-
tant group for therapeutics. In this chapter we provide an overview of the major develop-
ments in the GPCR fi eld since the 19th century, and we shed some light on some of the 
questions that are relevant now and those that need to be answered in the future regarding 
GPCR structure and function.

1 Introduction

Over 1000 human genes encode G-protein-coupled receptors (GPCRs). Th e li-
gands that bind or otherwise activate these receptors are heterogeneous and include 
photons, odors, pheromones, hormones, ions, neurotransmitt ers, and proteases. 
GPCRs transmit signals from outside the cell to amplifi cation cascades controlling 
sight, taste, smell, slow neurotransmission, cell division, etc. 

GPCRs were long thought to perform a relatively straightforward role; coupling 
the binding of agonists to the activation of G-proteins, which in turn leads modula-
tion of other downstream eff ector proteins. However, in recent years it has become 
clear that many GPCRs have much more complex signaling characteristics. Many 
GPCRs are constitutively active, and this allows for a fi ne-grained control of the 
amount of G-protein activation, being subject to regulation by agonist as well as in-
verse agonists (Bond and IJzerman 2006). Signaling can occur by using multiple sub-
types of G-proteins, or without using G-proteins altogether (Ritt er and Hall 2009). 
Desensitization processes can involve multiple pathways, including phosphorylation 
events, arrestin-mediated receptor internalization, receptor recycling, and lysosomal 
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degradation (Hanyaloglu and von Zastrow 2008; Tobin 2008; Kovacs et al. 2009). 
Th e reason for this multifaceted behavior may be the fact that, while there are only 
about 1000 GPCRs that can be activated by an even smaller number of endogenous 
agonists, these receptors need to cater for many 1000s of diff erent messages that the 
whole organism needs to be able to transmit internally. Th e exact mechanism of this 
switching between diff erent functions is unknown.

All GPCRs form a bundle of seven transmembrane (TM) helices, connected 
by three intracellular and three extracellular loops. Although sequence similarities 
within a single family can be lower even than 25%, there are a number of conserved 
sequence motifs that imply shared structural features and activation mechanisms.

GPCRs are a major target for the pharmaceutical industry as is refl ected by the 
fact that more than a quarter of all FDA approved drugs act on a GPCR (Overington 
et al. 2006). Despite intensive academic and industrial research eff orts over the past 
three decades, litt le is known about the structural basis of GPCR function, in par-
ticular, the switches between diff erent functions, referred to above, and between the 
active and inactive states of these receptors (Rognan 2006).

Some of the major questions relevant to fundamental research into GPCR phar-
macology include the following: What residues are critical for ligand binding and for 
the activation of G-proteins or other proteins? What do diff erent receptor families 
have in common with regard to their activation mechanism? And which residues 
are responsible for the diff erences and should thus especially, or especially not be 
infl uenced by potential drug molecules?

Th e GPCR fi eld was without new structural information for almost a decade, but 
a number of high-resolution crystal structures have become available recently, giv-
ing the GPCR fi eld a big stimulus. As is oft en the case in such situations, researchers 
mainly focused on the unique and exciting aspects of these structures, tending to 
overstate the relevance and importance of the diff erences. Th e new structures pro-
vide us with new insights, but they are not the holy grail of structural biology of the 
GPCR fi eld, and many questions, limitations, and challenges remain.

2 A short history

Since the beginning of the 19th century, pharmacologists have studied the dose-
dependent eff ects of neurotransmitt ers, peptides, and other chemicals on tissues, 
organs, and animal models. Langley and Dale were the fi rst who explicitly stated 
the idea of a “receptive substance” on reactive cells (Langley 1905). Th ey per-
formed their experiments on muscle preparations and salivary glands. Th e targets 
that they were investigating later turned out to be GPCRs and ion channels. Dur-
ing the next 50 years, the elementary concepts of Langley and Dale were devel-
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oped into the receptor theory by using physiologic techniques to study receptors 
(Maehle 2004).

Th e fi eld of receptor studies was mainly a pharmacological fi eld until – in the 
1960s and early 1970s – biochemists became involved in the search for the mo-
lecular basis of hormone and drug action. Th is led to the rapid discovery of the 
 elements that make up the signaling cascades that couple hormones to the intracel-
lular eff ector proteins. Sutherland discovered the enzyme adenylyl cyclase (Rall and 
Sutherland 1958), which is responsible for the synthesis of cAMP, and cAMP itself 
 (Sutherland and Rall 1958) that mediates the actions of many receptors. Around 
the same time, Krebs discovered the cAMP-dependent protein kinase (Walsh et al. 
1968) and  Gilman had demonstrated the existence of a protein, Gs, that functioned 
as a transducer between hormone receptors and adenylyl cyclase (Ross and Gilman 
1977; Gilman 1987).

Th e impact of these discoveries was enormous; for the fi rst time scientists could 
study receptors at a level much closer to the actual signaling than was possible ever 
before. No longer was it necessary to measure complex physiologic responses such 
as muscle contraction or gland secretion; now it was possible to measure direct 
downstream eff ects such as secondary messenger generation.

Aft er the discovery of downstream eff ectors, researchers were searching for an 
even more direct measure to study receptors. Th ere was a need for a means of iden-
tifying and studying receptors directly, so that their properties no longer needed to 
be inferred from downstream eff ects. Radioligand-binding methods provided these 
means, and the development of radioligand-binding methods during the 1970s 
transformed the fi eld of receptor research (Rodbell et al. 1971; Pert and  Snyder 
1973; Yamamura and Snyder 1974; Mukherjee et al. 1975). By using these tech-
niques, it was now possible to develop approaches to analyze receptor interactions 
with  G-proteins (De Lean et al. 1980). Th is ultimately led to the development of the 
 “ternary complex model”, which provided a way of quantifying coupling effi  ciency 
of the receptors to the G-proteins (Mickey et al. 1975; Kent et al. 1980).

Radioligand-binding methods also allowed for new types of ligand-binding stud-
ies. New chemical compounds could now be tested systematically, and binding pro-
fi les were generated on membrane preparations from diff erent tissues. Th is led to the 
fi rst evidence for receptor subtypes expressed in diff erent tissues.

Th e development of radioligand-binding methods was not only of great impor-
tance for the study of receptor properties in native environments. New technologies 
that built on the principles of molecular recognition were introduced, such as radioli-
gand techniques for determining ligand binding and activity, and affi  nity chromatog-
raphy, which allowed for the creation of enriched and purifi ed sources of  receptors. 
In 1979, the Lefk owitz group was able to purify the �2-adrenoceptor by using a 
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broad range of already available �2-adrenergic ligands and a combination of already 
existing and new affi  nity chromatography procedures (Caron et al. 1979). Receptors 
were reconstituted in phospholipid vesicles with purifi ed G-protein and the catalytic 
moiety of adenylate cyclase, thereby proving that the purifi ed �2-adrenoceptor was 
indeed the functional receptor (Cerione et al. 1983, 1984; May et al. 1985).

In 1982, Ovchinnikov determined the amino acid sequence of rhodopsin using 
classical protein sequencing techniques. Th e amount of protein needed for these 
techniques was relatively large, but the easy access to retinal rod preparations al-
lowed Ovchinnikov to obtain the necessary amounts of receptor needed for the 
sequencing. An extensive study that included a combination of bioinformatics and 
biochemistry showed that rhodopsin had a 7TM architecture and the fact that it had 
this in common with bacteriorhodopsin was quickly noted (Ovchinnikov YuA 1982; 
Hargrave et al. 1983). Bacteriorhodopsin is a photon-driven retinal-binding proton 
pump for which, Henderson and Unwin (1975) had determined a 7TM topology 
using electron microscopy techniques. Aft er the discovery that bacteriorhodopsin as 
well as rhodopsin had a 7TM architecture, it was concluded that this 7TM topology 
was a common feature of light-sensitive proteins (Ovchinnikov YuA 1982).

In 1986 came an important breakthrough: the cloning of the hamster �2-adreno-
ceptor (Dixon et al. 1986). Th e gene for the �2-adrenoceptor was intronless, a fea-
ture that is also seen in many other GPCR family members (Kobilka et al. 1987b,c; 
Sunahara et al. 1990; Pepitoni et al. 1997). Th e sequence of the �2-adrenoceptor 
revealed that this receptor shared sequence similarity and a predicted 7TM topol-
ogy with rhodopsin (Dixon et al. 1986). At the time it was well known that both 
the �-adrenoceptor and rhodopsin were interacting with G-proteins in a stimulus-
dependent fashion, but the fact that both receptors also shared structural similarity 
was not anticipated. Since the sequencing of rhodopsin, the 7TM architecture was 
thought to be the hallmark of light-sensitive proteins, but now it became clear that 
this topology was likely to be a common structural feature of all GPCRs. Th is idea 
was confi rmed in the following years by the cloning of an ever-increasing number 
of GPCRs. Th e GPCRs were cloned based on similarity with already cloned family 
members. Because of this required similarity with already cloned GPCRs, it took a 
while until any distantly related receptors were discovered.

Not all of the newly cloned receptors had a known function or a known natural 
ligand. Th ese receptors for which the sequence was known, but the function and/or 
endogenous ligand was unknown, are termed “orphan receptors”. Th e fi rst example 
of an orphan receptor was the clone “G21”, which was isolated from a genomic DNA 
library shortly aft er the cloning of the �2-adrenoceptor (Kobilka et al. 1987a). Th is 
receptor was “deorphanized” by Fargin et al. (1988). Th e strategy to “deorphanize” 
the orphan receptors was to express the orphan GPCR of interest in eukaryotic cells 
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by DNA transfection, and use the membranes of these cells as targets for testing the 
binding abilities of potential ligands. Th is strategy is now known as reverse phar-
macology (Libert et al. 1991; Mills and Duggan 1994). Vassart et al. were the fi rst 
to use PCR for fi nding new GPCRs (Libert et al. 1989), and continued to work 
on deorphanizing GPCRs till today, with great success (Brézillon et al. 2001, 2003; 
Parmentier and Detheux 2006).

With the availability of a large body of cloned receptors, the focus of the GPCR 
research fi eld shift ed toward unraveling the structural features responsible for the 
many aspects of receptor function. By using a wide range of molecular genetics tech-
niques, ranging from site-directed mutagenesis approaches to the creation of chime-
ric receptors, the regions of the receptors responsible for G-protein coupling and 
ligand-binding were determined (Ostrowski et al. 1992; Strader et al. 1994). Th e 
coupling of G-proteins was att ributed to the intracellular loops, whereas the binding 
of ligands, depending on the receptor subtype, was found to take place in the out-
ward regions of the membrane-spanning domain and sometimes also partly in the 
extracellular domains.

Th e mutagenesis work provided a clarifi cation of a previously unexplained phe-
nomenon whereby many GPCRs were known to possess an intrinsic high background 
activity in the absence of a ligand, and led to the development of an interesting new 
concept: constitutive activity (Costa et al. 1992). Cotecchia et al. (1992) had created 
a chimeric receptor by replacing four residues of the third intracellular loop of the 
�2-adrenoceptor with residues from the �1b-adrenoceptor. Th is chimeric receptor 
had a surprising feature; it had the ability to signal measurably in the absence of an 
agonist. Th is feature was termed constitutive activity, and it was defi ned as ligand-
independent activity resulting in the production of a second messenger even in the 
absence of an agonist. It was found that virtually any substitution in that region led to 
increased constitutive activity (Kjelsberg et al. 1992). It was hypothesized that this 
activity arose due to the fact that these mutations disrupted interactions that nor-
mally keep the receptor in an inactive state (Lefk owitz et al. 1993). It was found that 
many diseases were linked to naturally occurring mutations in GPCRs that resulted 
in constitutively active receptors (Seifert and Wenzel-Seifert 2002).

Constitutive activity is not limited to mutant receptors. In fact, even before 
Cotecchia described the fi rst constitutively active mutant, Costa and Herz (1989) 
had already described the constitutive activity of the wild-type �-opioid receptor. 
Since then, numerous observations have indicated that the basal activity of a wild-
type GPCR might vary from totally inactive to fully active, depending on the nature 
of the GPCR.

Inverse agonism was already long known, but the discovery of (mutant inducible) 
constitutive activity made this concept accessible to experimentation in the GPCR 
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fi eld. Inverse agonists are a class of ligands that are capable of reversing the constitu-
tive activity by stabilizing the inactive state of the receptor (Costa and Herz 1989; 
Bond et al. 1995). Before the discovery of constitutive activity in GPCRs, these 
compounds had been indistinguishable from antagonists (Kenakin 2001, 2002).

By the mid-1980s, it had become clear that both rhodopsin and the �2-adreno-
ceptor were phosphorylated in a stimulus-dependent way (Wilden and Kühn 1982; 
Stadel et al. 1983). Th e phosphorylation seemed to be related to the process of re-
ceptor inactivation or desensitization. A small family of proteins, the G-protein-cou-
pled receptor kinases (GRKs), was found to perform this phosphorylation (Pitcher 
et al. 1998).

In 1986, Wilden and Kuhn reported a small protein that bound to phosphory-
lated rhodopsin, leading to steric exclusion of transducin (Wilden et al. 1986). Th is 
protein was named arrestin.

In a search for similar mechanisms for the �2-adrenoceptor, Lefk owitz et al. 
(Benovic et al. 1987) found that the GRKs alone were not suffi  cient for desensi-
tization, and that another factor was needed. Th ey found this factor and named it 
�-arrestin (Lohse et al. 1990), aft er the arrestin compound found by Wilden and 
Kühn. Phosphorylation of the receptor stimulates the binding of �-arrestin, leading 
to steric exclusion of G-proteins, inhibiting further signaling. Th ese two families, the 
GRKs and the arrestins, appear to regulate essentially all of the seven TM receptors. 
Th ese proteins share, together with the heterotrimeric G-proteins, the ability to in-
teract virtually universally with all of the receptors in a stimulus-dependent fashion.

For a decade, the structure of bacteriorhodopsin was the only structure avail-
able that remotely resembled anything like a GPCR. In 1990 low-resolution elec-
tron cryo-microscopic models of bacteriorhodopsin were published (Henderson 
et al. 1990). Hibert et al. (1991) and Dahl et al. (1991) were the fi rst to produce 
three-dimensional (3D) models for GPCRs. Th ese models were built using bacte-
riorhodopsin as a template. When the bovine rhodopsin structure became available 
 (Palczewski et al. 2000), it was seen that these models were very imprecise (Oliveira 
et al. 2004), but for many years they were the best bioinformatics could do, and they 
certainly helped the entire GPCR fi eld think about sequence/structure–function 
relations (Oliveira et al. 1994). Many mutation studies were guided by these fi rst 
(poor) models, and they aided the studies aimed at elucidating the function per 
 residue.

August 4, 2000 is an historical date in the GPCR fi eld. On that day, the structure 
of bovine rhodopsin (Palczewski et al. 2000) became available, providing research-
ers with the fi rst high-resolution crystal structure of a GPCR. Th e X-ray structures 
of bovine rhodopsin and bacteriorhodopsin are signifi cantly diff erent, and the struc-
ture of bovine rhodopsin provided some interesting and some unexpected features 
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(Oliveira et al. 2004). Th e structure showed an 8th helix that immediately aft er helix 
VII sticks out parallel to the cytosolic membrane surface, exactly as was predicted 
by Oliveira et al. (1999) a year earlier. Th e TM helices were quite irregularly shaped 
when compared to those of bacteriorhodopsin; helix II contained an �-bulge, and a 
part of helix VII was shaped as a 310 helix. Moreover, sequence alignments and mod-
eling studies reveal that it is likely that the �-bulge in helix II is not always in the 
same place, or even present at all (Bywater 2005). In contrast to popular belief, the 
loops did not all stick-out into the solvent, as the extracellular loop IV–V formed two 
 �-hairpins that were folded on top of the retinal, between the helices. Th e fi rst GPCR 
structure has not yet had the impact on the GPCR fi eld that we, before August 2000, 
expected that it would have. Th is is probably caused by the fact that most models, 
despite their sometimes great imprecision, provided enough structural information 
to explain most experiments, and because we simply do not yet know enough about 
GPCRs to fully appreciate all the things that this structure taught us.

Th e end of 2007 was the start of a small explosion of structural information on 
GPCRs. With the publication of four structures of �-adrenoceptors (Cherezov et al. 
2007; Rasmussen et al. 2007; Hanson et al. 2008; Warne et al. 2008) and one of the 
human adenosine receptor ( Jaakola et al. 2008), nearly a decade of structural silence 
had come to a close. At a fi rst glance, all these structures look highly similar with 
eight well-superposable helices. Th e largest diff erences were observed in loop IV–V. 
As the loop IV–V is intensively involved in crystal packing contacts in all known 
structures, it is not known yet whether these diff erences are real, and whether the 
diff erences have a functional importance.

GPCR signaling was long thought to consist of one ligand, activating one mo-
nomeric GPCR, aff ecting downstream adaptor proteins via one heterotrimeric 
 G-protein. However, over the years, the idea that GPCRs function as oligomers 
got increasing amounts of experimental backing. Th e fi rst suggestions that  GPCRs 
might form oligomers dates from the beginning of the 1980s, when Conn et al. 
(1982a,b) used a bivalent antibody that had a gonadotrophin-releasing hormone 
(GnRH) antagonists att ached. Th eir data implied that this “conjugated” antagonist 
might be capable of acting as an agonist that promoted “microaggregates” of GnRH 
receptor (GnRHR) leading to biphasic regulation of receptor surface expression 
(Conn et al. 1982a,b). Evidence from ligand binding and studies of inhibition using 
free TM helices provide strong support for the notion that GPCRs act as dimers. 
A  peptide derived from a �2-adrenoceptor TM domain inhibits both receptor di-
merization and activation (Hebert et al. 1996) or possibly even oligomers (Hébert 
and  Bouvier 1998). It would take a long time before the fi rst direct physical evidence 
for GPCR dimerization would become available. In 2003 Fotiadis showed the exis-
tence of rows of rhodopsin receptors within retinal disc membranes by using atomic 
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force microscopy (Fotiadis et al. 2003). Th e dimer model has been furnished with 
support from bioinformatics studies (Dean et al. 2001) in which the interfaces be-
tween putative dimer interaction sites can be identifi ed. Th ese theoretical studies 
were anticipated by an early, seminal, experimental observation from the Lefk ow-
itz  laboratory  (Limbird et al. 1975) of negative cooperativity in GPCRs. Lefk owitz 
probably anticipated the later fi nding of dimers as he concludes this article with: 
“Further investigation is required to elucidate the molecular mechanisms responsi-
ble for negatively cooperative site–site interactions and the possible regulatory func-
tions they serve”; besides that we can now be fairly certain that dimer formation is at 
the basis of this phenomenon, this statement is still valid, 35 years later.

Th e simplest model for GPCR activation is shown in Fig. 1. Actually this model 
is an oversimplifi cation, as the existence of dimers is not taken into account.

It should be kept in mind that all states interconvert very rapidly; the law of mass 
action ensures that binding of most molecules such as ligands, G-proteins, antibod-
ies, arrestins, etc., makes the equilibrium shift  in the direction of that bound state. 
Th is is nicely illustrated by experiments in which receptors are shown to bind their 
ligand more tightly if more G-protein is present (summarized in: Hamm 1998). 
Th e existence of allosteric modulators therefore is no surprise, and indeed these 
were found as early as in 1987 (Howard et al. 1987). Th e thermodynamic treat-
ment of these modulators can still be improved greatly in the GPCR fi eld. A large 
number of so-called allosteric modulators have been reported in the literature, and 

Fig. 1. Model of GPCR activation. This model does not take dimer formation or cytosolic protein binding into account, 

yet. Note that the rest state is only a “virtual” state that consists of a mixture of R and R*.
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 Christopoulos (e.g., Conn et al. 2009) has described them in a series of reviews. It is 
diffi  cult – mainly because allosteric modulation was known in other receptor fi elds 
already before it was also discovered for GPCRs – to pinpoint the original discovery 
of this phenomenon.

3 GPCR structures

GPCRs are notoriously hard to crystalize. Proteins that are naturally present in an 
aqueous phase can usually be crystalized reasonably well, but the crystalization 
of membrane proteins has proven to be very diffi  cult. Structure information is 
available for many GPCRs and the GPCRDB provides a list of about a hundred 
GPCR-related wwPDB entries. Most of these structure fi les, however, correspond 
to extramembrane domains and of those nearly all are extracellular. In addition 
to the inherent instability of GPCRs, one of the major problems is expressing 
GPCRs in large enough quantities in a form suitable for crystalization. For the 
determination of the structures that came available since 2007, it was in all cases 
necessary to jump through quite a large number of hoops to artifi cially stabilize 
the proteins.

In contrast to other fi elds where structures are leading experiments, in the 
GPCR fi eld experimental data such as site-directed mutagenesis experiments, af-
fi nity labeling techniques, and ligand-binding studies (including so-called 2D mu-
tations; van Galen et al. 1994; Horn et al. 1998, whereby the receptor and ligand 
are mutated in tandem) are leading the way in understanding the relation between 
GPCR sequence, structure, and function.

3.1 Rhodopsin

Rhodopsin was the fi rst, and for a long time, the only GPCR structure available. In 
2000 the fi rst structure was published (Palczewski et al. 2000) and later a number 
of additional structures followed. Th e signifi cance of these events can hardly be 
underestimated, as they provided a framework for the understanding of a large 
body of experimental data that was available for a long time already.

The fact that rhodopsin was the only structure available for 7 years is mainly 
due to the fact that rhodopsin is available in large amounts from bovine eye rod 
preparations, and due to the fact that rhodopsin is relatively stable compared 
to other GPCRs. Rhodopsin is not a ligand-mediated GPCR, and its sequence 
similarity to other class A receptors is fairly low. Despite having an enormous 
impact on the GPCR field, the rhodopsin structures were less suitable for mod-
eling ligand-mediated structures than was initially anticipated (Oliveira et al. 
2004).
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Th e rhodopsin structure revealed a series of – sometimes very surprising – 
facts:

•  Several helices are highly irregular, displaying highly uncommon features such 
as �-bulges and 310 helix parts in the middle of a helix.

•  An eighth helix, immediately aft er helix VII, indeed runs parallel to the mem-
brane surface, as predicted by Oliveira et al. (1999).

•  Although a few predictions to the contrary were made (Pardo et al. 1992), it was 
generally expected that the arrangement of GPCR helices would globally be sim-
ilar to that of bacteriorhodopsin, and many models were constructed based on 
this concept (Dahl et al. 1991; Hibert et al. 1991; Donnelly and Findlay 1994). 
Even though the global helix packing agreed with in silico predictions, all homol-
ogy models were too far off  to have been of any use for structure driven drug 
design (Oliveira et al. 2004).

•  By far the largest surprise in the bovine rhodopsin structure was the fact that the 
IV–V loop did not stick-out into the extracellular space, but rather was tucked 
away between the TM helices as a �-hairpin. Th is was unexpected, especially 
because no other protein in the wwPDB database contains a loop that folds in-
side/in-between the rest of the protein. Th is observation, however, did solve 

Fig. 2. Bovine rhodopsin structure (Palczewski et al. 2000, PDB ID 1F88). Helices are shown in blue, 

strands in red, loops and very irregular helices in various shades of green, and retinal in yellow. Heavy metal atoms and sugar groups 

are removed for clarity.
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one of the larger problems modelers had to deal with, namely, how to model the 
bridge between the cysteine in helix III that resides two helical turns deep into 
the membrane and the cysteine in the loop IV–V that was generally expected to 
be located outside the membrane region (Fig. 2).

3.2 Ligand-mediated GPCRs

It was not until the end of 2007 that the structures of the fi rst ligand-mediated 
 GPCRs were successfully determined. Almost simultaneously, two structures of the 
�2-adrenoceptor were published (Cherezov et al. 2007; Rasmussen et al. 2007), 
soon to be followed by the structures of the �1-adrenoceptor (Warne et al. 2008) 
and the �2-adenosine receptor ( Jaakola et al. 2008). In contrast to the crystalization 
of rhodopsin, obtaining ligand-mediated GPCR crystals is very diffi  cult, because 
GPCRs contain unstructured regions, and tend to cycle between various conforma-
tions spontaneously (Kobilka and Deupi 2007). To obtain high-quality crystals, the 
receptors must be very stable and of a conformational homogeneity. To achieve this, 
a number of diff erent tricks were applied. Th is includes the use of antibody com-
plexes (Rasmussen et al. 2007), fusion proteins (Cherezov et al. 2007; Jaakola et al. 
2008), tight-binding ligands (Cherezov et al. 2007; Rasmussen et al. 2007; Jaakola 
et al. 2008; Scheerer et al. 2008; Warne et al. 2008) and stabilizing mutants (Warne 
et al. 2008). Although impressive, when interpreting a receptor structure model it 
is important to keep in mind the fact that in GPCRs there is an intricate relation 
between stability and the diff erent aspects of receptor function.

When comparing the now available structural information, the fi rst thing that 
one notices is the similar overall architecture of the TM segments. While the helices 
of the diff erent structures are remarkably similar, the diff erences at the extracellular 
side are very large, even when the same structure is solved in two diff erent labs. Th e 
diff erences are present both in the structure of this region as well as the interactions 
with the ligands.

It is important to keep in mind that when one looks at a crystal structure, this struc-
ture does not need to be in the orientation that the molecule would have under physi-
ologic conditions. When looking at TM1 in the �1-adrenoceptor (Fig. 3), we can see 
a very strange helix conformation. Th is peculiarly shaped helix has not led to much 
excitement in the GPCR fi eld, because everyone “knows” that such helices do not oc-
cur in vivo and that this strange conformation is caused by contacts in the crystal.

Crystal contacts do not always have such large eff ects, but it is wise to be aware 
of the eff ects these contacts can have and keep this eff ect in mind when interpreting 
a structure. We have shown the crystal packing interactions of a single receptor unit 
in the 2VT4 structure in Fig. 4. It can be seen that the amount of crystal contacts is 
very large.
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When the crystal structures of the non-rhodopsin GPCRs came out, the helix 
in loop IV–V caused a lot of excitement, as this was a surprising feature. Th is region, 
however, is a region that has many crystal packing interactions. In Fig. 5, we have col-
ored the regions that form contacts in the crystal for a number of GPCR structures. 
Th is fi gure clearly shows that the extramembrane areas, and especially the extracel-
lular areas, are much involved in crystal packing interactions. Because of this, we 
must be cautious when interpreting these structural features, and be aware that they 
do not have to be an accurate representation of the “real” orientation of these parts. 
Th is implies that we cannot be certain about the spatial location of these areas, and, 
perhaps even worse, we cannot even be certain if they have any structure or that they 
are disordered and got ordered by binding either the ligand or the crystal partners, 
or both. On the other hand, the fact that the helix in loop IV–V is present in both 
the �1-adrenoceptor structure (2VT4) and the �2-adrenoceptor structure (2RH1) 
does provide support to the argument that these structural features in loop IV–V are 
real. However, loop IV–V is thought to have a number of diff erent functional roles 
 (ligand binding, ligand selectivity, and roles in activation), implying that loop IV–V 
is not present in one static conformation. It is more likely that this loop can exist in a 
number of conformations. Th is in turn implies that litt le energy is needed to change 

Fig. 3. Abnormal helix bending of TM1 (orange) in 2VT4.
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Fig. 4. Top: 2 structures of bovine rhodopsin (left Palcewski 1F88, right Schertler 1GZM) Bot-

tom left �2-adrenoceptor, bottom right adenosine �2a. Helices are blue, strands red, loops and turns several 

shades of green, the ligand yellow, and purple bars indicate a contact with a partner in the crystal.
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the orientation, which brings us back to the argument that especially in these regions 
crystal contacts can have great infl uence on the orientation of these elements in the 
crystal.

Th e ligands bound to the adrenoceptor structures are both inverse agonists, 
meaning that they suppress the constitutive activity displayed by the receptor by sta-
bilizing the inactive state. Th e ligand bound to the �2-adenosine receptor is an an-
tagonist, meaning that this compound has no infl uence on the constitutive activity 
of the receptor, but just prevents the receptor from being activated by endogenous 
ligands.

Th e diff erent eff ects of these compounds must be visible in the structures, and 
one would expect the inverse agonists, which have to alter the receptor’s conforma-
tion, to have substantially more interactions with the receptor’s active site than the 
antagonist, which basically just needs to sit “in the way”.

Th e diff erent binding modes of these ligands are illustrated in Fig. 6. Th is clear-
ly shows that the antagonist compound does not have a lot of interactions within 
the binding pocket (it is even partially located outside the binding pocket), whereas 
the inverse agonists are fi rmly located deep in the binding pocket and having inten-
sive interactions with the receptor.

Fig. 5. The �1-adrenoceptor (2VT4) crystalizes as a tetramer. This fi gure uses the same coloring scheme as 

Fig. 4, but now the three partners in the crystalized asymmetric unit are shown as a purple cartoon and a 10 Å thick layer of residues 

in the crystal partners is drawn in thin purple lines.
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In comparison with rhodopsin, the extracellular region of the adrenergic recep-
tors is very open. Th e most prominent feature, which came as a surprise to many, is 
the existence of a short helical segment in the second extracellular loop. In the ade-
nosine structure this small helix is not present. Rather, the presence of four disulfi de 
bridges results in one part of the extracellular domain to be highly ordered, forming 
a small �-sheet, whereas another part of ECL2 was not visible in the electron density 
maps due to high fl exibility. In both the adrenergic structures and the adenosine 
structure, the last few residues of ECL2 are located right above the ligand-binding 
pocket.

Th e extracellular region, especially the second extracellular loop, is thought to be 
of great importance for a lot of functional aspects. It contains a conserved cysteine 
bridge, which is the most conserved aspect throughout all GPCR families. Th is 
cysteine bridge, paradoxically, connects the most conserved region to the most vari-

Fig. 6. The active site cavity in the 2VT4 �1-adrenoceptor shown in yellow. The inverse agonists in the 

two adrenoceptor structures (2RH1 and 2VT4), after superposing them using only the seven helices, are shown respectively as blue 

and red ball & stick models. The �2-adenosine antagonist in 3EML, again after superposing the structure on just the seven helices, 

is represented by purple balls. The inverse agonists have interactions deep down in the binding pocket while the antagonist seems 

to be “just in the way,” higher up in the pocket.
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able part of the receptor (loop IV–V). Because of its conservation it must have an 
important function, which makes it all the more important to learn everything pos-
sible about its structure.

4 From sequence to structure

Th e sequences of the TM regions of GPCRs can be aligned very well, due to the 
presence of a number of very conserved residues, providing “anchors” for the se-
quence alignment. Th e loop regions, on the other hand, are notoriously diffi  cult to 
align. Very litt le structural information is available for the loops, and the sequence 
variability between receptor subtypes is very large, both in terms of residue contents 
and in terms of size.

In the latest release of the GPCRDB (Horn et al. 2003), the stretch of residues 
around the conserved cysteine in loop IV–V (ECL2) has been included in the 
alignments. Th e previous release of the GPCRDB, dating back a few years, did not 
 contain this information yet. In the hope to shed light on the strange conservation 
patt erns of loop IV–V and the cysteine bridge, we have investigated the conservation 
and correlation patt erns of the cysteines present in the second extracellular loop of a 
subfamily of the Class A receptors, the amine receptors.

4.1 The conserved cysteine bridge in the extracellular domain

It has been long observed that there are two conserved cysteine residues in the ex-
tracellular half of nearly all class A GPCRs. Th e number of cysteines present in the 
extracellular regions (including the highly conserved cysteine at the beginning of 
TMIII, C315) varies. It has been hypothesized that at least one covalent bond be-
tween two cysteines is conserved for all Class A GPCRs, and that many Class B and 
Class C also have a similar, conserved bridge. Looking at the alignment of the amine 
receptor family, both C315 and C470 are extremely well conserved.

For a number of GPCRs it has been experimentally determined that C315 and 
C470 form a disulfi de bridge. Scholl and Wells (2000) showed that the eff ect of mu-
tating either of the two cysteines in the adenosine A1 receptor leads to a complete 
loss of insertion into the membrane. Th e same experiment performed in the mus-
carinic ACM1 receptor in rat showed the same results (Savarese et al. 1992). Direct 
evidence for the existence of a C315–C470 disulfi de bridge in the �2-adrenoceptor 
and the adenosine receptor came with the publication of their crystal structures.

4.2 Loop IV–V, cysteine bridges, and ligand binding

Cysteine 315 is located at the beginning of TMIII. Based on the common overall 
TM architecture of GPCRs with known structure we can be fairly certain where 
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this residue is located with respect to other conserved elements. Because of the co-
valent link between C315 and C470, we now can also position a part of the second 
extracellular loop in 3D space, despite the fact that this loop is extremely diverse in 
sequence. Th e fact that these two cysteines now can be anchored both in alignment 
space as well as in 3D space leads to new ways of thinking about the interactions of 
the binding pocket with agonists, antagonists, and inverse agonists.

We analyzed the length of the stretch of residues from C470 to the start of helix V 
for all proteins in the amine family. Th e length (in residues) is shown for each family 
within the amine receptor super family.

Figure 7 shows that the length of the last part of the loop IV–V is fairly short for 
all families within the amine receptor family. Variation in lengths within families is 
a result of diff erences in subfamilies, i.e., the shortest stretch observed within the 
histamine family has a length of six residues and is observed in the subfamily of the 
histamine type 2 receptors, whereas all other histamine subfamilies have an average 
length of eight residues.

Th e fact that the last part of loop IV–V is fairly short (5–8 residues) in all amine 
receptors, and the fact that the distance from the top of helix III (C315) to the start 
of helix V must be bridged by this stretch, implies that these residues are located 
on top of the ligand-binding pocket for all amine receptors, and this suggests that it 
must be involved in some aspects of ligand binding.
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Fig. 7. The length (in residues) of the stretch of residues from C470 to the start of helix V. For each 

amine subfamily the minimum and maximum observed length is shown.
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C315
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T474

Fig. 9. Residues of the distal part of loop IV–V interacting with the bound ligand in the �2-

adrenergic structure (2RH1).

Fig. 8. The stretch of amino acids from C470 to the start of helix V is shown in purple. The cysteine 

bridge between C470 and C315 is shown in yellow.

In all the GPCR structures available to date, the stretch of amino acids between 
C470 and the start of helix V interacts extensively with the ligand in the ligand-bind-
ing pocket. Due to the fact that both the position of C470 and the start of helix V are 
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known, we can now assign with great confi dence a new part of the ligand-binding 
pocket. Th is is illustrated in Fig. 8, where the part of loop IV–V that is possibly inter-
acting with the ligands is shown in purple.

All structural and much functional data that are available today show that resi-
dues 472 (sometimes also 473), and 474 interact with the bound ligand. Figure 9 
shows the residues 472 and 474 in the �2-adrenoceptor structure 2RH1 (Cherezov 
et al. 2007) interacting with the ligand.

In the �2-adenosine receptor the situation is very similar. Kim et al. (1996) 
showed that the mutation E473A in the �2-adenosine receptor led to substantial 
changes in ligand-binding potential. Th is is in line with the �2-adrenoceptor struc-
ture, which shows that E473 interacts with the bound ligand (see Fig. 10). Note that 
here the orientation of the ECL2 is slightly diff erent from that in the 2RH1 struc-
ture, exposing residues 472 and 473 to the ligand, whereas in the 2RH1 structure 
residues 472 and 474 are facing the ligand.

Shi and Javitch (2002) proposed that the loop IV–V plays an important role in 
ligand binding in the entire amine receptor family. Based on the cysteine bridge 
that is present in the rhodopsin crystal structure, they modeled the DRD2 recep-
tor and found two residues that were likely to interact with the ligand. Experiments 
 (mutations to cysteines, followed by sulfh ydryl accessibility studies) performed 
on the dopamine-2 receptor by Shi and Javitch (2004) have shown that also in the 
DRD2 receptor the residues 472 and 474 are part of the ligand-binding pocket, con-
fi rming this hypothesis.

It appears that residues 471 and 473 might be involved in interactions with large 
ligands, or ligands that bind higher up in the receptor. Experiments of Wurch and 
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Fig. 10. Residues of the distal part of loop IV–V interacting with the bound ligand in the �2-

adenosine receptor (3EML).
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Pauwels (2000) have shown that changing Q471 to leucine in canine 5HT1D en-
hanced ketanserin (large antagonist) affi  nity, while having no eff ect on 5HT (small 
agonist) binding. We think that this does not necessarily need to be an eff ect of the 
size of the ligand, but might also be related to the type of ligand: agonists enter deep 
down in the ligand pocket whereas antagonists – that only need to block entrance to 
the pocket to function perfectly – are expected to bind less deep in this pocket and 
thus are likely to contact other residues.

A number of studies have shown that mutations in the TM ligand-binding  domain 
did have large eff ects on agonist binding characteristics, but that these mutations did 
not have any eff ect on antagonist binding characteristics (Townsend-Nicholson and 
Schofi eld 1994; van Galen et al. 1994). Zhao et al. (1996) showed that to convert 
the antagonist binding properties of the adenosine A1 receptor to those of the ad-
enosine A2 receptor only three residues had to be mutated: residues 471, 472, and 
473. Th is study also showed that mutations in the second extracellular loop do aff ect 
antagonist binding, but not agonist binding.

We now have seen examples of what is very likely to be a common theme in 
amine receptors. Th e conservation patt erns for the various cysteine residues ob-
served in the alignments accurately refl ect the observed cysteine bridges in the avail-
able crystal structures and agree with available experimental data.

Th e residues aft er the conserved C470 are an integral part of the ligand-binding 
pocket and can infl uence ligand-binding properties as much as any ligand-binding 
residue in the TM domain. Th is knowledge is therefore of great signifi cance for 
homology modeling and drug-docking studies. In addition, this feature off ers new 
routes to elucidating the reasons for the previously unexplained specifi city for cer-
tain GPCR subfamilies.

5 The future

Where do we go from here? To move into a more rational mode of drug design we 
should much bett er understand the sequence–structure–dynamics–function rela-
tions of GPCRs. What are the important questions that should be answered to get 
us really further in terms of this understanding? What is the role of GPCR dimers, is 
dimer formation a regulatory mechanism or is the main role increasing the combi-
natorics of signaling? Or both? How do sequence diff erences relate to functional dif-
ferences? Why are receptors so promiscuous when it comes to binding G-proteins? 
Th e number of questions is still large, and a revival of the pharma industry critically 
depends on many answers in many of these fi elds.

Th e GPCR fi eld has seen its share of bad models and models that were based on 
the selective use of references. Most models, either 3D models or mental models 
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were backed up by carefully selected mutations. But a few things are clear.  Figure 1 
shows the generic GPCR situation. Most GPCRs show a low constitutive level 
of  activity. Without any ligands they work at a fraction of their maximal activity. 
 Figure 11 shows a very generic dose–response curve.

Inverse agonists move the arrow in Fig. 11 to the left  and agonists to the right. 
All a pure antagonist needs to do is to avoid that agonists or inverse agonists can 
bind. So, a small molecule is most likely an antagonist if it binds in the upper half of 
the ligand-binding pocket where it only sits “in the way” but does not aid whatever 
processes (inverse) agonists trigger.

Much evidence points in the direction that GPCR activation requires par-
tial disruption of the structure at the cytosolic side (Fanelli et al. 1999; Kim et al. 
2004; Hornak et al. 2009). Th is disruption can be achieved by mutations, by over-
expressing G-proteins, or by ligands, so that we can conclude that there is not one 
specifi c active conformation, but that there are many conformations that can bind 
and activate the G-protein; perhaps the active forms are partially unfolded, an hy-
pothesis that is supported by the lack of visible structure in the cytosolic domains in 
all GPCR structures solved so far. Th e fact that the latt er observation was predicted 
by Oliveira et al. (1999), before any GPCR structure information existed, shows the 
power of mental models for GPCR research.

Many models have been published over the years that place GPCR activation 
in schemas that are variations on the theme R � R*. Th ese schemes can be rather 
complicated and sometimes involve multiple, interacting thermodynamic cycles. 
Whatever model we come up with, in the end amino acids will have to do the work, 
in other words, models should not disagree with realities such as the laws of thermo-
dynamics. Unfortunately, in nearly all cases the authors of R � R* models discuss 
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Fig. 11. Generic dose–response curve. Most biological and pharmacological experiments can, one way or another, be 

described by a plot like this one. The (inverse) agonist dose of zero is indicated by an arrow.
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GPCR activation as a series of consecutive steps such as “ligand-binding causes a 
structural change that causes G-protein binding”. Although useful for some lines of 
research, such models are wrong and oft en such a simplifi ed model confuses more 
than that it clarifi es. Obviously, ligand binding, G-protein binding, dimer formation, 
and even binding proteins involved in the down regulation all happen synchronous-
ly while some of these binding processes strengthen each other; e.g., positive coop-
erativity between agonist and G-protein binding because the agonist stabilizes the 
receptor conformation that is good for G-protein binding, and G-protein binding 
stabilizes the conformation that is good for agonist binding. In other cases, processes 
compete.

Another grand question is what actually happens residue by residue when a li-
gand or a G-protein binds? Given that GPCRs are constitutively active at a mea-
surable fraction of their maximal activity (which should be read as that there is at 
any moment of time a certain fraction of all receptors fully active while the major-
ity is inactive), it seems most likely that all processes that are involved in activation 
are on-going all the time. Ligand binding, G-protein binding, etc., just shift s those 
equilibriums. Do residues fl ip from one rotameric state to the other as suggested by 
Balasteros (Shi et al. 2002), or do whole helices move as was observed by Farrens 
et al. (1996), and in silico predicted by Fanelli et al. (1999) and later, in silico again 
coupled to ligand binding by Abagyan et al. (Katritch et al. 2009)? We suggest that 
there are a few mechanistic concepts shared between all GPCRs. One is the coupling 
to the G-proteins that, looking at the high level of promiscuity, must be done highly 
similarly by all GPCRs; perhaps via the Arg340 salt bridge with the conserved as-
partic acid in helix V of the G-proteins, as suggested by Oliveira et al. (1999). Th e 
other common concept must relate to the ultra conserved cysteine bridge between 
the cysteine near the extracellular side of helix III and the cysteine in the loop IV–V. 
Th is cysteine bridge can “feel” if a G-protein binds via its partner in helix III, and it 
can “see” the ligand via its partner in the loop IV–V. We therefore suggest that, one 
way or another, this cysteine bridge plays an important role in the motions of amino 
acids, helices, and domains that are related with signaling.

We do not know yet why GPCRs form dimers. Th is can be related to regulation, 
to an extension of the signaling options, or, most likely, a combination of these two. 
Nevertheless, we can be certain that there must be “communication” between the 
monomers in the dimer. Both the combinatorics – and the regulation hypothesis 
require that the one monomer knows the state of the other monomer in terms of 
ligand binding and G-protein coupling. Given the fact that both ligand binding and 
G-protein binding can be “felt” by the conserved cysteine bridge, it does not seem 
very farfetched to hypothesize that this cysteine bridge is also involved in dimer 
communication. How this is done, and which residues are involved is still unknown. 
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We might speculate that the conserved Trp420 at the membrane surface of helix IV 
has a role in dimer formation. In that case, disturbance of the loop IV–V by whatever 
mechanism might also be “felt” in helix IV and then thus also in the dimer interface. 
However, a role for helix VIII in dimer communication also cannot be excluded. 
Th e location at opposite sides of the helix bundle of Trp420 and helix VIII makes it 
unlikely that both suggested mechanism operate in tandem.

Th ere are enough questions to keep us all busy for decennia to come. Data from 
many diff erent sources have played a role in much of the research we have cited in 
this article. We have collected most GPCR-related data in the GPCRDB. And we 
will keep working on this system. A thorough understanding of the sequence– struc-
ture–dynamics–function relations of GPCRs is so important for our future quality 
of life that our whole eff ort would already pay off  if just 1 day, one person is browsing 
the GPCRDB and gets one idea that brings us one step closer to answering one of 
the main questions left  regarding these intriguing molecules.
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