
http://www.cambridge.org/9780521825375


This page intentionally left blank



Introduction to Population Biology

How do plant and animal populations change genetically to evolve and
adapt to their local environments? How do populations grow and inter-
act with one another through competition and predation? How does be-
haviour influence ecology and evolution? Introduction to Population Biology
covers all these areas and more. Taking a quantitative and Darwinian
perspective, the basic theory of population processes is developed using
mathematical models. To allow students of biology, ecology and evolution
to gain a real understanding of the subject, key features include:

� step-by-step instructions for spreadsheet simulations of many basic equa-
tions to explore the outcomes or predictions of models

� worked examples showing how the equations are applied to biological
questions

� problem sets together with detailed solutions to help the reader test
their understanding

� real-life examples to help the reader relate the theory to the natural
world.

dick neal is Professor of Biology at the University of Saskatchewan.
His main interests are in population ecology, particularly relating to the
breeding biology of small mammals and the ecological impacts of mining.
He has taught ecology to undergraduate students for many years, and
enjoys helping students to integrate their knowledge of different areas
and to be critical in their thinking.
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Preface

This introduction to population biology is based on a 13-week course
I have taught at the University of Saskatchewan since 1979. When
I developed the course I was inspired by Wilson and Bossert’s 1971
book, A Primer of Population Biology, by Emlen’s 1973 book, Ecology:
An Evolutionary Approach and by Wilson’s 1975 book, Sociobiology. It
was a revelation to me how these three books used an evolutionary
perspective to synthesize such areas as population ecology, population
genetics and behavioural ecology, because I had been educated in a
tradition where such subjects were taught separately.

Over the past decade I became increasingly frustrated in my at-
tempts to find an appropriate text for my course. There are many
superb texts available: encyclopedic texts on either ecology or evolu-
tion; more specific texts dealing with population ecology or popula-
tion genetics or behaviour; and a few texts that cover two of these
more specific areas, but to cover the breadth of material I teach would
require using parts of two or three of these books. What is disappoint-
ing, however, is the lack of any evolutionary perspective in most of
the ecology books. This is surprising given that Darwin used various
principles of population biology to develop his theory of natural se-
lection: the potential for geometric growth of population numbers,
and the limitation of resources that leads to a struggle for existence
through the effects of competition, disease, and predation. Thus, most
students of ecology and population biology would have little reason
to agree with Theodosius Dobzhansky’s famous statement ‘Nothing
in biology makes sense except in the light of evolution.’

The purpose of this book

This book aims to give students a solid introduction to Darwin’s the-
ory of natural selection, and then use this as an underlying theme to
introduce the basic principles of population ecology, population ge-
netics and some aspects of behavioural ecology. The book is suitable
for second- or third-year university students seeking a broad intro-
duction to population biology. It is expected that students will have a
background in general biology, Mendelian genetics, algebra and cal-
culus, although the latter is not essential.

The book treats the subject in a quantitative way, developing vari-
ous mathematical models in a step-by-step manner, and showing how
they apply to the real world. This is done in a variety of ways. First,
spreadsheet simulations are developed for most of the basic equa-
tions so that students can explore the outcomes or predictions of the
various models and see how they may change when the variables are
altered. Detailed instructions are provided so that students can con-
struct these spreadsheet simulations themselves, using either Quattro
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Pro or Excel spreadsheet programs. Second, there are many worked
examples in the text to show how the equations are applied to biolog-
ical questions, and students can test their understanding of this by
answering the problems that are provided at the end of many chap-
ters. Detailed solutions of these problems are provided at the end
of the book. Third, the analysis of the mathematical models through
the use of simulation studies or the solving of simple problems allows
us to develop a set of general predictions, conclusions, or principles.
Finally, a series of empirical examples are examined to illustrate how
well the various principles apply to world around us.

The content of this book

Part I (Chapters 1--3) covers Darwin’s theories of evolution, including a
biographical sketch outlining the experiences that led to his question-
ing of the fixity of species, a review of his great synthesis The Origin
of Species, and finally a more detailed examination of the theory of
natural selection.

Part II (Chapters 4 and 5) covers the mathematical models of ex-
ponential and logistic growth. These two models occur in various
modified forms in models of selection (Chapter 10) and interspecific
competition (Chapter 17), and have great heuristic value. They are also
highly relevant to Darwin’s theory of natural selection in relation to
the consequences of overproduction of offspring and the struggle for
existence through intraspecific competition.

Part III (Chapters 6--13) covers classical population genetics, mainly
for single gene loci with two alleles, but also for polygenic sys-
tems (quantitative inheritance). This section makes a quantitative as-
sessment of how mutation, migration, chance and selection effect
changes in allelic frequencies to determine whether there is support
for Darwin’s assertion that natural selection is the main factor guid-
ing evolution.

Part IV (Chapters 14--16) returns to the topic of population growth
and examines the effects of age on the basic demographic parame-
ters of birth and death, and then develops both age-structured and
state-structured population growth models. This section concludes by
giving a brief overview of the evolution of the life-history character-
istics of organisms.

Part V (Chapters 17--20) covers the interaction between species and
the social behaviour of animals. First, interspecific competition is re-
viewed, including two-species Lotka--Volterra models both with and
without a removal factor operating. The implications of competition
and predation on the species composition of communities are also
assessed. Then a few predator--prey models are examined, followed by
a review of the various ways by which prey reduce the risk of being
eaten. The genetic basis of behaviour is briefly examined, followed
by a consideration of altruistic acts between relatives and ritualized
contests or fighting, two types of behaviour that seem contrary to
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Darwin’s theory of natural selection. Altruism is explained in terms
of inclusive fitness, or kin selection, and ritualized contests are ex-
plained by using game theory, which considers the optimum be-
haviour of an individual in relation to what all the other individuals
in the population are doing. Finally, the book concludes with a brief
introduction to sexual selection and mating systems in animals.

There is sufficient content to cover a one-semester course on pop-
ulation biology, and I suspect that most students will find it difficult
to cover every aspect of the book in that time. Consequently, instruc-
tors will be able to pick and choose to some extent, concentrating on
some topics and either omitting or briefly reviewing others accord-
ing to their particular interests and objectives. I hope you will find
this book to be a useful introduction to population biology. Colour
versions of the photographs in the text and copies of the various
spreadsheet programs may be obtained from the following website:
http://arts.usask.ca/population/.
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Part I
Evolution by
natural selection

Population biology has its roots in many different areas: in taxonomy,
in studies of the geographical distribution of organisms, in natural
history studies of the habits and interactions between organisms and
their environment, in studies of how the characteristics of organisms
are inherited from one generation to the next, and in theories which
consider how different types of organisms are related by descent.
Charles Darwin made a synthesis of these areas in his 1859 book,
The Origin of Species by Means of Natural Selection, and this provides us
with a convenient starting-point for our introduction to population
biology.

The theory of evolution by means of natural selection is the most
important theory in biology, but with some notable exceptions one
would not realize this after reading many of texts in the area of
population biology. Thus, it is no accident that we begin this book
with an evolutionary bias.

The purpose of the following three chapters is to provide a his-
torical perspective, and also an understanding of the philosophical
content, of Charles Darwin’s theory of evolution through the process
of natural selection. It is important to understand this Darwinian per-
spective of biology, because it provides a loose framework for the re-
mainder of this book. In the first chapter we will examine some of the
early experiences of Darwin, which may have led him to conclude that
organisms evolve and are related by descent. In the second chapter
we examine his book The Origin of Species in more detail to see how
he structured his argument for his two theories of evolution: that
all organisms are related by descent, and that the main mechanism
for this evolutionary change is the process of natural selection. In
the third chapter we will examine the theory of natural selection in
more detail in an attempt to explain why so many people have had
difficulty with the theory since it was first proposed by Darwin more
than a century ago.





Chapter 1

Darwin concludes that
organisms evolve

Prior to the time of Charles Darwin, there were many fine natural
history studies that shed some light on the areas of population
ecology and animal behaviour. Studies on population genetics were
largely related to the breeding of domesticated animals and plants.
Although considerable success had been made in breeding new va-
rieties of many species, how the characteristics of organisms were
inherited remained a mystery. Carl Linnaeus had developed the bino-
mial classification system during the previous century and collectors
were roaming the globe finding ever more species and plotting the
distributions of many species. The astonishing variety of organisms
was becoming more and more apparent. There had also been spec-
ulation about the evolution of organisms, in fact Charles Darwin’s
paternal grandfather, Erasmus Darwin, had written on the subject in
his book Zoonomia, but undoubtedly the most famous theory on this
subject was that of Jean Baptiste de Lamarck in 1801. However, these
evolutionary ideas had little scientific credence at the time when
Charles Darwin was receiving his education. So we may ask: what
led Charles Darwin to conclude that organisms had evolved from a
common ancestor?

1.1 Charles Darwin: some important early
influences (1809–31)

Charles, born in 1809, was the fifth of six children of the physician
Robert Darwin and his wife Susannah. When Susannah died in 1817
the household was ruled by the triumvirate of Charles’ older sisters,
whilst his father was a domineering presence who had little sympathy
with the antics of a small boy. One can only imagine what it was like
for Charles. After the trauma of his mother’s death her name was
not even allowed to be mentioned in the household; he had three
older sisters who zealously provided him with moral guidance; and
over all he had the overwhelming presence of his father who had
strong opinions about what Charles should be doing with his life. He
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escaped by collecting things like minerals, shells and bird’s eggs. At
least he was praised for this type of endeavour.

As Charles grew older he became close to his elder brother Ras
(Erasmus). They overlapped for a period at Shrewsbury School where
they were provided with a classical, but somewhat dull, education.
The two brothers set up a chemistry lab in the garden shed and had a
grand time creating explosions and dreadful smells, in the manner of
so many small boys. By the time he was 15 he had taken up shooting
and revelled in hunting birds. Charles loved the outdoor life but was
not doing well in his school work. His father worried about his lack
of ambition and decided that Charles should join his brother, Ras,
to study medicine at Edinburgh University. This maintained a family
tradition because both Charles’s father and grandfather had studied
to be physicians at Edinburgh.

Prior to his going it appeared that he had an aptitude for medi-
cine. Charles accompanied his father on his visits to patients through-
out the district during the summer of 1825 and by all accounts did
well. He kept records, administered prescriptions, and even had a few
patients of his own, all under the approving and watchful eye of his
father. All seemed to bode well. There would be another generation
of physicians in the family.

Charles was to spend two years (1825--7) in Edinburgh. When he
joined his brother there, at the tender age of 16, they dutifully went to
classes and studied together. However, his interest in medicine slowly
withered. Although his chemistry professor, Thomas Hope, was lively
and interesting, he found his medical professors to be incredibly dull.
His anatomy professor, Alexander Munro III, was rumoured to even
use his grandfather’s lecture notes on occasion! If true, it would mean
that Charles literally heard some of the same material as his own
grandfather, another Erasmus Darwin. Charles detested the practical
side of anatomy where human cadavers were slowly dissected week
by week. However, the final straw was his horror of surgical opera-
tions that were performed on patients at a time when there were no
general anaesthetics. They were bloody, ghastly affairs, carried on at
the utmost speed to shorten the period of pain for the patient. He
witnessed two operations, and fled during the second one never to
return to an operating theatre. He was just too queasy at the sight of
blood to become a physician.

Although Darwin lacked the motivation, and the stomach, to ap-
ply himself to the drudgery of learning medicine, he revelled in his
natural history pursuits. He and his brother went for walks along the
seashore collecting marine invertebrates, and Charles even learned
how to do taxidermy from a freed South American slave. However,
when his brother left to study anatomy in London at the end of the
first year Charles essentially stopped studying medicine and began
to study natural history in earnest. The academic year of 1826--7 saw
some important developments in his education.

He joined the Plinian Society which was dominated by freethink-
ing students who insisted that all science, biology included, was
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governed by physical laws, not supernatural forces. There were nu-
merous debates between them and the more orthodox Christians,
and so Darwin became familiar with the arguments for and against
natural philosophy. The Plinians also did rambles along the shores
of the Firth of Forth, and so Darwin had numerous colleagues with
whom he could share his interest in natural history.

The most important influence on Darwin, however, was his men-
tor, Dr Robert Grant, who was an expert on sponges (Porifera). Grant
was a radical freethinker and a convinced evolutionist. On their walks
along the seashore collecting marine life they discussed the evolution-
ary ideas of Lamarck and Erasmus Darwin. More particularly, Grant
introduced Charles to a more scientific approach to the study of nat-
ural history and how it could be used to investigate evolutionary
questions. Grant collected and kept alive many curious marine inver-
tebrates, including sponges, sea-mats (phylum Bryozoa) and sea-pens
(phylum Cnidaria). He was particularly interested in their eggs and lar-
vae and their microscopic structure. He was able to show that sponges
had characteristics common to both plants and animals and so could
be near the root of the animal and plant kingdoms. With Darwin’s
help, he also showed that many different phyla possessed similar free-
swimming ciliated larvae, which suggested links between the differ-
ent groups. Grant was convinced that all organisms were related by
descent and his comparative studies of lowly invertebrates showed
possible links between the various phyla and kingdoms. Darwin did
not appear to be impressed by Grant’s conclusions but one wonders
how this experience may have influenced his later thinking about evo-
lution. Darwin made a few discoveries of his own that were referred
to by Grant in his work, but it is clear that he was a little disen-
chanted by Grant stealing his observations. Darwin, however, was to
form a habit of working closely with senior scientists and learning
the art of scientific investigation.

Finally, another important influence on Darwin during his stud-
ies at Edinburgh was the natural history course given by the Regius
Professor of Natural History, Robert Jameson, who had founded the
Plinian Society in 1823. The course dealt with the emerging science
of geology, and how to interpret the various rock strata. Jameson be-
lieved, and taught, that the various rock strata had been precipitated
from the ocean, but Darwin had already been taught that the rocks
had been crystallized from molten magma by his chemistry professor,
Thomas Hope. Darwin believed Hope’s views rather than Jameson’s,
because Jameson was a very boring lecturer. However, Jameson taught
the practical side of geology well, showing his students the various
minerals in the museum and taking them on field trips to see the
various rock strata in situ. Darwin learned the sequence of rock strata
and how to recognize them. The course helped to broaden Darwin’s
viewpoint on natural history but he found the subject of geology so
boring that he never wanted to study it again.

When he left Edinburgh in April of his second year, it was clear
that his medical studies were at an end. He made a trip to France
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with some of his Plinian Society friends, with his sister Caroline to
keep him out of mischief, all paid for by his father, of course. Then
it was off to Shropshire in England to hobnob with the local squires
and plan for the autumn shoot which would start 1 September. His
father’s patience was finally wearing thin. When Charles returned to
Shrewsbury to face the music, his father angrily told him ‘You care
for nothing but shooting, dogs, and rat-catching, and you will be a
disgrace to you and your family’!1 Charles was suitably chastened and
humbled.

One can sympathize with his father’s concern. Charles seemed
to have little ambition other than natural history, and indulging in
hunting and shooting. His father certainly didn’t want a son who
was dependent on him for his livelihood. What possible career could
there be? Once again his father would dictate Charles’s future, de-
ciding that he would become a vicar in the Church of England. In
many respects this was a sensible decision because vicars with inter-
ests in natural history and shooting were common. But first there
were two hurdles to overcome. Charles was not particularly religious
and neither was he a hypocrite, so he had to persuade himself that
he could believe in the doctrines of the Anglican Church. He was able
to do this after reading, among others, the Reverend Sumner’s book,
The Evidences of Christianity. Secondly, he had to brush up his Greek
and Latin because he had forgotten most of what he had learned at
Shrewsbury School. His father hired a tutor to help with this task
and this delayed his departure to Christ’s College, Cambridge until
the start of 1828, where he would read for a B.A. in Natural The-
ology. He would be at Cambridge for much of the next four years
(1828--31).

He nearly failed again. As usual he started with good intentions,
but the subject matter he had to learn in order to become a parson
wasn’t exactly riveting compared to natural history. At that time the
nation was being swept by a passion for collecting beetles and Darwin
joined in the fad in earnest. He avidly collected beetles, when he
should have been studying, and during his time at Cambridge built
up a very fine collection. He even hired locals to collect for him until
he discovered them selling the rarer specimens to a fellow student
first, presumably for a better price! There was also a technical and
academic side to this hobby. Beetles had to be identified, and their
habits known if one was to build a superior collection. When the
books failed him, he could ask other beetle fanatics at the university.
He took up with his cousin William Darwin Fox, another beetle enthu-
siast, who introduced him to the Friday night discussions at the home
of the Reverend John Stevens Henslow, professor of botany, where un-
dergraduates and professors would mingle. There he met some of
the great scientists of the day, such as Adam Sedgwick, professor of
geology, and William Whewell, the new professor of mineralogy.

1 Some biographies indicate that this comment was made at the end of Charles’s
schooling at Shrewsbury; before going to study medicine in Edinburgh rather than
after.
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Unfortunately, his initial efforts at studying for his degree didn’t
last and he started to miss lectures again and slowly drifted away
from Henslow’s discussion group. His lack of direction, similar to his
history at Edinburgh, was all too evident. By the middle of his second
year at Cambridge his tutor warned him that he was not prepared
for his preliminary exam, which was scheduled for March of 1830.
Darwin was depressed and probably afraid of what his father would
say if he failed again. He began to apply himself to his studies in a
more disciplined way in the autumn of 1829. He was fortunate in that
the curriculum was not particularly onerous, and so a few months of
cramming and hard work could make up for 18 months of idleness.
His strategy worked and to his great relief he succeeded in passing
his preliminary exam.

It was during this period that he rekindled his association with
Professor Henslow. Before long, the two of them could be seen walking
together discussing a wide range of topics. Darwin became entranced
by botany, not just the collecting and identification of plants around
Cambridge but also looking at their pollen under the microscope.
Thus, Darwin was getting excellent training in yet another branch
of natural history. His new found enthusiasm for botany did not di-
vert Darwin from his studies for his degree. He stayed in Cambridge
over Christmas cramming for his finals and he duly passed them in
January 1831, ranking tenth out of the 178 who passed. He finally had
a B.A. degree but had to remain in Cambridge until June to attain his
residency requirement for the degree.

It was time to prepare himself for ordination and a country parish,
but he seemed to be in no hurry. He continued to collect beetles and
also to botanize with Henslow. He also continued with his studies,
but now out of self-interest rather than simply trying to pass exams.
Darwin had been impressed by William Paley’s works on The Principles
of Moral and Political Philosophy and A View of the Evidences of Christianity,
which were required material for his degree; now he read the last
of the famous archdeacon’s trilogy, Natural Theology, which argued
that we live in a world designed by God. To Darwin, Paley’s logic
seemed irrefutable. He was later to change his mind on this matter
(see Chapter 3).

Two other works fired Darwin’s zeal for scientific study. The first
was on the philosophy of science by Sir William Herschel, who had
discovered the planet Uranus. To Darwin it seemed as if the explana-
tory powers of the scientific method were limitless if applied in the
proper manner, and built on the work of earlier scientists. The sec-
ond was the seven-volume work of Alexander von Humboldt’s account
of his travels to South America. Darwin was fascinated by his obser-
vations on natural history, particularly his description of the forests
and volcanic cones of Tenerife in the Canary Islands. Why not make
an expedition there? He persuaded Henslow and three others that
they should go for a month the following year, and even obtained
the permission to go from his father, as well as the all-important fi-
nancial backing. This development was to lead to a final, and crucial
influence on his intellectual development at Cambridge.
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An expedition to Tenerife would require a geologist and Darwin
was given this task. He needed to develop his skills in that area and so
was directed to take Adam Sedgwick’s course. Sedgwick was a much
better lecturer than Jameson in Edinburgh and Darwin became an
ardent disciple of the subject. Later, that summer, Sedgwick took
Darwin on a field trip to north Wales where he learned the art of
interpreting the earth’s crust from one of the foremost masters of
the craft. They spent a week together until Darwin felt confident
that he could interpret all that the Canary Islands had to offer. They
went their separate ways and Darwin arrived home in Shrewsbury on
29 August to find a letter from Henslow.

Henslow had been asked to recommend a young gentleman, in-
terested in science and natural history, to act as a companion for
Captain Robert Fitzroy of HMS Beagle. Fitzroy was going to make a
voyage to survey the coast of South America that would last for some
years. Henslow considered Darwin to be just the man for the (unpaid)
job, and pointed out to Darwin that the voyage would provide ample
opportunity to conduct natural history studies. The ship was due to
leave in four weeks. Charles was jubilant; this was much better than
a month-long trip to Tenerife. His enthusiasm was not shared by his
family and his father responded with a resounding ‘No’. The good
doctor had several reasons for his decision. It seemed rather dubious
having an invitation like this so late in the day; presumably others
had been offered the position and had turned it down; he feared
that his son would never settle down to a steady life afterwards and
the trip might ruin his reputation as a clergyman; and yet again
he was changing his profession, when it was time for him to settle
down and earn his own living. His father’s decision came as a heavy
blow, but Charles could hardly ignore his father’s opinion because he
would have to rely on his father to pay for his expenses on the voyage.
He went to visit his uncle Jos Wedgwood2 who, when he learned of
the invitation, favoured the voyage and persuaded Charles’s father to
change his mind.

Darwin went to visit Fitzroy in London. It was an important meet-
ing for both young men (Charles was 22 and Fitzroy 26 years of age)
because they would be spending some years in close company on the
ship. Social conventions dictated that a ship’s captain could not frater-
nize with his crew and so Fitzroy would be almost entirely dependent
on Charles for social discourse. Fortunately, the two warmed to each
other and it was agreed that Darwin would join the ship.

The next few months were a whirlwind of activity for Charles as he
prepared for the voyage. He accumulated the necessary materials and
equipment to collect rocks, minerals, fossils, and all manner of ani-
mals and plants. He also acquired several books to help him identify
and interpret what he would see. One of these was the first volume of
Principles of Geology by Charles Lyell (the other two volumes were sent
to him during the voyage). The book discussed how to interpret the

2 The brother of Robert Darwin’s deceased wife, Susannah.



UNIFORMITARIAN AND CATASTROPHIST THEORIES 9

earth’s crust and was to have a major impact on Darwin’s views. Be-
fore dealing with Darwin’s experiences on the Beagle we will examine
this last influence on his intellectual development.

1.2 The earth’s crust: uniformitarian and
catastrophist theories

As people began to examine the rocks which make up the earth’s
crust, they were faced by a gigantic puzzle. Some of the rock strata
had clearly been laid down by sedimentary processes because one
could see the fossil remains of organisms embedded in them, while
others were of volcanic origin. As time went on it was recognized
that there was some regularity in the sequence of sedimentary rocks
over large areas, and there was speculation that the same sequence of
rocks existed throughout the world. The puzzle was complex because
at any locality there was only part of the sequence of strata and so
to determine the whole sequence one had to combine the sequences
from different localities. This was difficult for two reasons. First, in
many cases certain strata appeared to be missing from a sequence, so
that the sequence of strata might be A B D F in one locality, A C D
in another, B C E F in a third, and so on. What was the correct
sequence? This could only be discovered when the sequences of rocks
from many localities were compared and an explanation could be
provided to account for the missing strata. Second, as rocks were
examined more closely more strata were recognized, and so areas had
to be restudied to see if the newly discovered stratum was present or
not. Each rock stratum was characterized by different fossilized plants
and animals. In many cases, these fossils represented entire faunas
and floras that were no longer living; several mass extinctions seemed
to have occurred.

We can gain some appreciation of the complexity of the puzzle by
examining a modern interpretation of some aspects of the geology of
the south-western United States where a considerable thickness of the
earth’s crust has been exposed (Fig. 1.1). It may be seen that the top of
the sequence of sedimentary rocks in the Grand Canyon overlaps the
bottom of the exposed sequence of rocks in Zion Canyon, and sim-
ilarly the top of the sequence of rocks at Zion Canyon overlaps the
bottom of the exposed sequence of rocks in the Bryce Canyon area. In
this case it is relatively simple to combine the sequence of rocks from
the three areas into the overall correct sequence, but imagine how
difficult it would be to do this where only two or three strata were ex-
posed in each locality and if some of the strata were missing. Together
the three areas form an exposed sequence approximately 2.1 km
in depth: 1500 m at the Grand Canyon and approximately 300 m
at each of the other two localities.

This impressive slice of the earth’s history does not provide a com-
plete record of the sequence of sedimentary rocks on earth. There are



10 DARWIN CONCLUDES THAT ORGANISMS EVOLVE

Fig. 1.1 Geology of Bryce
Canyon, Zion Canyon and Grand
Canyon, USA, showing the
sequence of rock strata and their
relationship to the major
geological eras. (Modified from
Wise (1998) with permission.)

gaps in the sequence, called unconformities, where strata are missing.
For example, if we consider the Palaeozoic rocks at the Grand Canyon,
the first three strata (Tapeats Sandstone, Bright Angel Shale and the
Mauv Formation) form a continuous series of deposits correspond-
ing to the Cambrian period. Between this sequence and the Redwall
Limestone, which corresponds to the Mississippian (Carboniferous)
period, there is a huge gap in the record corresponding to rocks of
the Ordovician, Silurian and Devonian periods (we will consider the
Temple Butte Limestone in a moment). This unconformity covers a
time span of approximately 145 million years, and Strahler (1987) ex-
plains how this may have occurred. We can imagine that during the
Cambrian period the area lay under a shallow sea and the Tapeats
Sandstone, Bright Angel Shale and Mauv Formation were deposited
one after the other. Perhaps there were some younger deposits on top
of the Mauv Formation, but we will never know. At some point during
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the following 145 million years the shallow marine area was uplifted
and the surface rocks were eroded away down to the Mauv Formation.
The area then subsided and during the Mississippian (Carboniferous)
period the Redwall Limestone was deposited. The history of events
was undoubtedly more complicated than this because in some areas
of the Grand Canyon there are pockets of Temple Butte Limestone
sandwiched between the Mauv Formation and the Redwall Limestone.
Temple Butte Limestone was laid down during the Devonian period.
This means that during the missing 145 million year sequence of
strata there were at least two cycles of uplifting and erosion, between
which there was a period of subsidence when deposition occurred.

Interpreting the history of the earth by looking at the sequence
of rocks was obviously no simple matter, particularly at first. During
the eighteenth century two theories were developed to account for
the fossil record in the sedimentary rocks. Each theory had a very
different view of the earth’s history.

The uniformitarian theory was originally proposed by James
Hutton (1726--97). This viewed the earth as a steady-state system.
Events in the past were the same as those occurring in the present
day; fossils were laid down as sediments slowly accumulated in areas
of deposition, and exposed sediments were subjected to erosion. There
was an endless cycle of subsidence and sedimentation, followed by
uplifting and erosion. Organisms became extinct and were replaced,
but how they were replaced and how these new species originated
was never made clear. There was no progression in the fossil record,
indeed at some time in the future one could envision the return of
the dinosaurs and other extinct organisms. The earth was extremely
old, and in Hutton’s view there was no beginning (of time) and there
would be no end.

In France, Georges Cuvier (1769--1832), developed the catastrophist
theory after he examined the rocks in the Paris basin. He considered
that the various fossils in the different rock strata were records of
catastrophic events, such as wide-scale floods, which had occurred
several times during the earth’s history. He considered that the
sedimentary rocks were laid down intermittently as a result of cata-
clysmic forces, rather than continuously. He observed a progression
in the fossil record, in the sense that the fossils in the shallower,
more recent, deposits were more similar to present-day animals and
plants than the fossils in deeper deposits. In his view the world was
not very old. Cuvier scrupulously avoided mixing science with his reli-
gious views and so it is rather unfortunate that his theory eventually
became associated with supernatural forces.

Cuvier’s work was translated into English by Robert Jameson,
Darwin’s geology professor at Edinburgh, who put a theological slant
on the catastrophist theory. Fossils were the result of a series of catas-
trophes sent by God, who then replaced the extinct organisms with
new species. This revised form of Cuvier’s theory was particularly pop-
ular in England when Darwin was receiving his university education.
Some geologists, the Reverend William Buckland of Oxford University
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Table 1.1 Some components of uniformitarian and catastrophist views at the time of Darwin

Phenomenon or process Uniformitarian view Catastrophist view

1. Age of earth Extremely old; measured in
millions of years.

Not very old; measured in
thousands of years.

2. Geological processes
of rock formation

The causes of volcanic
action, uplifting, erosion,
subsidence, and
sedimentation operate at all
times with the same
intensity as at present.

Different causes operated in the
early history of the earth.
Irregular, cataclysmic events laid
down rocks. Now little change is
occurring.

3. Directional change in
fossil records?

Rejected; the world in a
steady state, but there may
be cyclical changes over
time.

Yes; progressive change with
recent fossils more like living
forms than older fossils.

4. Theological aspects (a) Naturalistic; life may
have been created by God,
but now changes always a
result of secondary causes.
Or (b) Mainly naturalistic;
but there may be occasional
divine intervention.

Always allows for direct divine
intervention.

Source: After Mayr (1982).

among them, argued that the geological history of the earth was en-
tirely consistent with the biblical stories of Creation and Noah’s Flood.
Lyell’s book, which reargued the uniformitarian theory, would have a
major influence on Charles Darwin. Lyell believed that the earth was
very old, but not timeless as Hutton had envisioned. One could esti-
mate its age by determining sedimentation rates and then measuring
the depth of the various strata of sedimentary rocks. He considered
the replacement of extinct species with new species the ‘mystery of
mysteries’, and he probably believed in divine intervention to explain
this process, although he never made this clear. Some of the gen-
eral beliefs of the two camps at the time of Darwin are outlined in
Table 1.1.

Darwin liked Lyell’s arguments, but he did not accept them uncrit-
ically. In time he was persuaded to accept the uniformitarian views
about the age of the earth, and that natural causes could account
for changes in the earth’s surface (Component 2 of Table 1.1). He was
particularly attracted to the idea that small, imperceptible changes
could accumulate over vast periods of time to create major changes.
However, he accepted the catastrophist view of progressive change in
the fossil record rather than a steady-state earth (Component 3 of
Table 1.1). Perhaps more importantly Darwin was beginning to think
about the history of life on earth and developing a worldwide view,
which was to have important ramifications as he travelled and made
observations around the globe.
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1.3 The voyage of the Beagle (1831–6)

We have seen that Darwin had the natural inclination as well as the
training to be a superb natural historian, having been mentored by
some gifted professors in the areas of marine invertebrates, botany
and geology. He had also been exposed to evolutionary ideas, but we
should remember he had trained to be an Anglican vicar and so was a
person of rather orthodox views who was concerned about what other
people thought of him. As Darwin prepared himself for the voyage,
he was filled with nervous apprehension. After two false starts, the
Beagle finally left Plymouth on 27 December 1831 on a voyage that
would last almost five years (Fig. 1.2).

Darwin soon discovered he was a wretched sailor and felt home-
sick and depressed. Not a very auspicious beginning! The Beagle sailed
to South America by way of the Canary Islands and the Cape Verde
Islands. In order to land on Tenerife in the Canary Islands, the ship
would need to be quarantined because of the cholera outbreak in
Britain. Fitzroy refused to wait and Darwin was bitterly disappointed
at missing one of the objects of his desires. His disappointment evap-
orated when they landed on St Jago in the Cape Verde Islands. He
saw lush tropical vegetation for the first time and was overwhelmed,
although the island mainly consisted of arid volcanic terrain. Every-
where he went, he took careful notes which showed he had a good
eye for detail. In particular, he noticed a white band of compressed
seashells and coral running for miles through the rocks about 10 m
above sea-level. Obviously, it had once been under water but was now
raised above the sea. It was not distorted and so it did not seem to

Fig. 1.2 Route and chronology of
the voyage of the Beagle, 1831–6.
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him that it represented a violent, cataclysmic upheaval. Rather it ap-
peared to conform with the uniformitarian view of gradual uplifting,
as proposed by Lyell whose book he had been reading on the voyage.
This viewpoint of small movements in the earth’s crust slowly accu-
mulating to produce mammoth changes would be used by Darwin to
interpret the geology of all of the areas he visited. He had begun to
be converted to the uniformitarian view.

As they sailed on to South America, he settled more and more into
the ship’s routine. He read and studied, he collected whenever he had
an opportunity, he carefully labelled all he collected, and he made
copious notes on all he observed. He wrote to friends and relatives,
particularly Professor Henslow and his sister Caroline. He got on well
with Fitzroy and the rest of the ship’s crew. Because he was the cap-
tain’s companion, any of Darwin’s wishes were attended to by the
rest of the crew, which was a great help as he carried out his sci-
entific work. He also hired one of the ship’s crew, Syms Covington,
to be his servant, secretary and natural-history assistant during the
voyage. To begin with he was treated in a stiff, formal manner by the
sailors, but eventually Fitzroy gave him the nickname ‘Philos’, short
for the ship’s philosopher, and this light-hearted greeting was used by
everyone.

They reached Bahia, now called Salvador, in north-eastern Brazil
on 28 February 1832, and Fitzroy and his crew would spend the next
42 months carefully charting the coastline of the southern half of the
continent. Tedious business, but it allowed Darwin to collect spec-
imens at various landings along the coast and he also made more
extensive inland journeys into Uruguay, Argentina and Chile. In fact,
Darwin was to spend much more time ashore than on the ship dur-
ing the nearly five years of the voyage. Overall he spent 39 months on
land and only 18 months at sea. While ashore he worked like a man
possessed; he had to make his observations and collections quickly
because he was seldom sure when the Beagle would move on. The in-
tensive fieldwork on land was complemented by periods on the ship
where he could review his work and carefully annotate and pack his
collections of plants, animals, fossils and rocks, before planning his
next adventure ashore.

He made a number of significant observations during this phase of
the journey. He marvelled at the wonderful adaptations of plants and
animals to different environments in different parts of the continent.
He must have wondered if this was evidence of a beneficent creator as
Paley had so eloquently argued in his books. He also collected a num-
ber of fossils and noted that the more recent ones found in shallow
deposits, like the giant sloth, Megatherium, and the giant armadillo,
Glyptodon, were more similar to the present-day fauna than were older
fossils found in the deeper deposits. He also continued to interpret
the geology of the various areas from a uniformitarian viewpoint. He
was to have some first-hand experience of continental uplifting while
he was in Chile. On reaching the town of Valdivia he experienced a
severe earthquake and was surprised at its intensity. The inhabitants
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Fig. 1.3 Darwin visited
Chatham, Charles, Abermarle and
James Islands of the Galápagos
archipelago during a five-week
period in 1835. The present-day
names of the islands are shown in
italics.

told him it was as severe as the one of 1822, and it was clear that
earthquakes were common in the area. They sailed 320 km north to
the city of Concepción which was close to the centre of the seismic
activity and which had been virtually destroyed. There he noticed
that the main beach had been raised above the previous sea level,
and Fitzroy measured this gain in elevation at eight feet (2.44 m).
Later Darwin observed deposits of seashells, some of which were still
coloured, at heights up to 100 m or so above sea level. To Darwin
the reason was obvious: a series of earthquakes over a long period of
time had combined to elevate the land, increment by increment, on
a continental scale. He was observing that the earth was not static
and that the effects of several relatively small changes could combine
to produce a major change.

The Beagle finally left the shores of South America on 6 September
1835 bound for the Galápagos Islands, where Darwin was to have the
key experience that would make him question the doctrine of the
fixity of species. He only recognized the experience in retrospect, and
he almost bungled the opportunity he was given. The Galápagos were
a group of 15 or so islands of volcanic origin, straddling the equator,
approximately 950 km off the west coast of South America (Fig. 1.3).
Darwin was looking forward to the change in scenery and examining
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the animals and plants of the archipelago because he knew that the
islands were populated by a rich variety of species found nowhere
else. He had read in Lyell’s second volume of his book about the
problem of explaining the origins of island species. Lyell postulated
two theories: they could immigrate from nearby mainland areas, or
they could be unique species created by God. It would seem that the
second explanation was the most likely for the Galápagos because
they were so isolated.

They reached the islands on the 15 September and over the next
five weeks Darwin visited and made collections on four of them. They
reached Chatham Island first and the black volcanic terrain reminded
him of the industrialized Midlands of England. The strangest animals
were the black, seagoing iguanas which he discovered ate only sea-
weed. They were 60--90 cm long, and scuttled among the black larval
rocks along the shore like giant rats. Darwin did not realize they were
unique to the Galápagos because museum specimens in England had
been mistakenly labelled as from South America. He was astonished
at the tameness of the animals; they were totally unafraid of humans
and could be collected with ease. He noted that the mockingbirds
were similar to the Chilean species except that they had a different
song. The ship’s crew brought 18 giant tortoises aboard for fresh meat
and then they sailed on to Charles Island where there was a penal
colony run by an English acting-governor, Nicholas Lawson. He told
them the giant tortoises had different-shaped shells on each of the
islands, but this information made no impression on Darwin because
he believed the tortoises had been imported from the Indian Ocean
by buccaneers. He did notice that the mockingbirds were different
from those on Chatham Island and from this point on he kept these
birds separated by island in his collection, although at the time he
did not consider the variation to be of great significance. He assumed
that there was little variation from island to island because they were
mostly in sight of one another. Consequently, he was much more cas-
ual with the other plants and animals he collected and rarely both-
ered indicating which island he collected them from. They went on
to Albermarle, the largest island of the archipelago, where he saw the
brightly coloured land iguanas which, like the sea iguanas, were also
vegetarian. The mockingbirds were similar to those he had collected
on Chatham Island, but when he moved to James Island they were
different again and so there were two or three varieties.

Darwin had great difficulty with many of the smaller birds that
are now known as Darwin’s finches. The plumage was similar in many
of them and they fed in large irregular flocks. He tentatively identified
them on the basis of their beaks. He called some ‘Grosbeaks’, others
‘Fringilla’ (true finches), the cactus-eaters he called ‘Icterus’ (a family
which includes orioles and blackbirds), and he even identified one as a
wren. He realized he was totally confused by these birds and that they
would require a more expert ornithologist than he to sort them out.

The Beagle finally left the Galápagos and sailed on to Tahiti, then
New Zealand, Australia, through the Indian Ocean to the Cape of Good
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Hope in South Africa. England was getting ever closer and Darwin
was anxious to be home. With the help of his servant, Covington,
he began to organize his field notes, his catalogues of specimens,
his geological and zoological logbooks, and his diary as the Beagle
sailed on across the Atlantic. As he listed the mockingbirds from the
Galápagos he considered afresh the implications of having different
types on different islands, and he wrote these prophetic words in his
private notebook, in July of 1836:

When I recollect, the fact that from the form of the body, shape of
scales & general size, the Spaniards can at once pronounce, from which
Island any tortoise may have been brought. When I see these islands in
sight of each other, & possessed of but a scanty stock of animals,
tenanted by these birds, but slightly differing in structure & filling the
same place in Nature, I must suspect they are only varieties. The only
fact of a similar kind of which I am aware, is the constant asserted
difference -- between the wolf-like Fox of East and West Falkland Islds. --
If there is the slightest foundation for these remarks the zoology of the
Archipelagoes -- will be well worth examining; for such facts would
undermine the stability of Species.

Darwin was beginning to have vague doubts about the fixity of
species. It didn’t seem logical that God would create different types
of similar animals on islands so close together, it would seem more
likely that a species had diverged in its characteristics on different is-
lands. Perhaps species could change their characteristics, but he kept
these thoughts to himself. It would take longer than expected to reach
England because after leaving Ascension Island Fitzroy steered back
to Bahia in South America to check his longitude measurements, to
the dismay of everyone else on board. Fortunately all was well, the
chronometers had kept the correct time for the perfectionist Fitzroy,
and almost two months after leaving Bahia they anchored off Fal-
mouth on 2 October 1836. The voyage of a lifetime was finally over.

1.4 Island biogeography provides the key (1836–7)

Darwin began a whirlwind of activity on his return; he literally had
thousands of specimens to be identified by experts as well as his
account of his travels to be written up and included with Fitzroy’s
narrative. He met Charles Lyell who was delighted to have a convert
to his uniformitarian view. Darwin became more and more active in
scientific circles, and it was clear that he could more than hold his
own in this heady atmosphere.

The greatest impact on his thinking, however, was made by John
Gould at the British Museum who identified his birds during Jan-
uary and February of 1837. Darwin was astonished by what Gould
told him. The mockingbirds from the Galápagos represented three
distinct species, each on a separate island, and the birds that Darwin
had tentatively identified as Grosbeaks, finches, icterids and a wren,



18 DARWIN CONCLUDES THAT ORGANISMS EVOLVE

was in fact a unique group of finches represented by 13 different
species. Gould told him that he thought that different species oc-
curred on different islands, but could not be sure because they were
inadequately labelled. Fortunately, Darwin was able to obtain other
specimens from his servant, Covington, and from Captain Fitzroy,
and Gould was able to partially reconstruct the island localities of
all but two of the species. The distribution of finches seemed com-
plicated and confusing, although there was an indication that some
species were confined to individual islands. In fact, more than a cen-
tury would pass before their distribution and taxonomy would be
resolved (Lack 1947). Nevertheless, Darwin’s prophetic words came
back to haunt him, but what he had speculated as varieties were in
fact distinct species. In addition, the mockingbirds and finches had
relatives living in South America which was the obvious source of
colonization. Darwin speculated that if certain ancestral species had
somehow reached the archipelago perhaps they had changed and di-
verged on the different islands.

Darwin was to start his ‘Transmutation’ notebooks immediately.
He was convinced that the characteristics of species were not fixed
but could change. Perhaps he could solve Lyell’s ‘mystery of mysteries’
of how extinct species could have been replaced by new species in a
natural way, rather than by divine intervention. His research into
evolution had begun.



Chapter 2

Darwin’s theories of evolution

Darwin began his ‘Transmutation’ notebooks in the spring of 1837
primarily because of John Gould’s taxonomic findings on the birds
of the Galápagos Islands. The fact that there were different closely
related species of mockingbirds on different islands seemed at odds
with the explanation that all species had been created by God (see
Chapter 1). Why would a deity create different species, living much
the same sort of lifestyle, on islands that were within sight of one
another? To Darwin it seemed much more logical that one or more
ancestral species had migrated to the islands from South America
(where related species were known to occur), and that subsequently
they had diverged to form different species on different islands.
If that is what had happened on relatively young volcanic islands,
imagine how much divergence would be possible worldwide over a
much longer geological time period. This transmutation of species
would also explain some of the observations he had made in South
America. For example, he had found fossils of the giant sloth and
the giant armadillo in shallow deposits which indicated that they
had become extinct relatively recently. They were also very similar
in body form to the present-day species. Perhaps the giant forms
had given rise to the smaller species before their demise, or the
larger and smaller species had diverged from a common ancestor
and the giant forms had lost in the competitive struggle for sur-
vival. In this way, Darwin freely speculated about various possibilities,
and then began to collect facts that would support one possibility or
another.

Darwin realized that he would have to amass a considerable body
of evidence to support his speculation that organisms could evolve.
From his discussions with Lyell and others of the scientific establish-
ment he knew that evolution was not a respectable idea. He was not
inclined to ruffle feathers and was concerned about what other scien-
tists thought of him, so he kept his new-found speculations to himself.
It was only much later that he reluctantly revealed his theories to a
few close friends.
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He began to ask some fundamental questions and, as a result,
developed two basic theories on evolution.1 First, Darwin considered
how many times life had been created or had come into being. He the-
orized that life had only been created once and so all organisms were
related by descent. Perhaps this was a legacy from his discussions with
Robert Grant in his Edinburgh days, or perhaps for simplicity’s sake
he wished to consider divine intervention as little as possible. In any
case, he began to collect and synthesize all sorts of facts that would
support or falsify this theory. These included information on geology
and the fossil record, the geographical distribution of organisms, and
the comparative morphology, anatomy and embryology of organisms.

It was one thing to provide evidence for relationships between
organisms that were consistent, or consilient, with the theory that
all organisms are related by descent, but what was the mechanism
for transmutation of species? Darwin was convinced that the mecha-
nism involved selection because plant and animal breeders were able
to change the characteristics of domesticated species by means of arti-
ficial selection. The question for him was how selection could operate
in nature, or how natural selection could operate in an analogous way
to artificial selection. Darwin’s second theory was the theory of nat-
ural selection, and he considered this to be his greatest intellectual
achievement.

It would take Darwin about five years to accumulate the neces-
sary facts, synthesize them, make logical inferences with respect to
evolution and sketch out his two theories. For various reasons he was
extremely reluctant to publish his work. Before considering why this
was so, we will examine how he structured his arguments in his book,
The Origin of Species.

2.1 Darwin’s evolutionary theories: The Origin
of Species (1859)

Darwin’s two evolutionary theories are integrated in his book in a way
that makes it easy for the reader to slip from one theory to the other
without realizing it. In general terms, the first part of the book deals
with the theory of natural selection (see Fig. 2.1), and the second part
of the book with the theory that all organisms are related by descent
(see Fig. 2.2). There is substantial material relating to both theories
in chapters four to eight.

2.1.1 Are the characteristics of species fixed?
Darwin began his argument for evolution by considering whether it
was possible for a species to change from one form to another. In

1 Ernst Mayr (1982, 1997), considers that Darwin had five independent theories relating
to evolution. In addition to the two theories described in this chapter Mayr would add
the theories that organisms evolve, that evolution is gradual, and that speciation or
divergence between groups is a population phenomenon.
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Chapter 2. Variation
under nature
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Chapter 3. Struggle for
existence
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Chapter 4. Natural selection
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over many generations
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Chapter 1. Variation under
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Fig. 2.1 The structure of
Darwin’s theory of natural
selection as it is argued in The
Origin of Species. The arrow shows
the analogy made between artificial
(i.e. human) selection of domestic
organisms and the power of
natural selection to change the
characteristics of all organisms.
Solid lines indicate deductive links
between chapters. (After Ruse
1982.)
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all organisms related by descent
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Fig. 2.2 The structure of
Darwin’s theory that all organisms
are related by descent, as it is
argued in The Origin of Species.
Lines indicate deductive links
between chapters.

effect he was questioning two basic ideas of the doctrine of special
creation: that the characteristics of species are fixed, and that dif-
ferent species are always distinct from one another. He did this by
looking at the variation of both domesticated and natural species in
the first two chapters of his book (Fig. 2.1).

He noted that the individuals of a species are not identical, but
vary in their characteristics such that no two individuals are the same.
Breeders have produced different breeds or varieties through artificial
selection in many domesticated species, and the variation between
breeds may be enormous. Darwin was particularly interested in pi-
geons and described an astonishing diversity between such breeds as
the English carrier, short-faced tumbler, runt, pouter, Jacobin, trum-
peter and fantail. The differences between these breeds were so great
that they would probably be classified as different species, or per-
haps even genera, if they were wild animals. However, they have all
descended from the rock-pigeon (Columba livia) and can interbreed
with one another and so they belong to the same species. Similar
observations can be made in relation to dogs (Canis familiaris), where
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differences in morphology and behaviour between such breeds as the
chihuahua, dachshund, bulldog, Great Dane and St Bernard are very
striking. Finally, we can observe extraordinary variation between the
cabbage, cauliflower, broccoli, kale, Brussels sprouts and kohlrabi,
which have all been produced by artificial selection from the com-
mon wild mustard (Brassica oleracea). These examples of variation of
domesticated species show that differences between varieties of the
same species are frequently greater than the differences between
many species. Thus, living species are defined on the basis of their
reproductive isolation from one another, rather than on the degree
of morphological differences.

Much of this variation is heritable (i.e. has a genetic basis), at least
in part. Darwin also noted that new variation is continuously being
created, because new types (or sports) are produced every generation,
and so we should not be surprised that even the oldest domesticated
species, like wheat, are still capable of yielding new varieties. Plant
and animal breeders have produced an amazing range of varieties of
plants and animals, and all characters seem capable of being changed
by selection.

The individuals of wild species also vary from one another. Many
species have well-differentiated varieties which may represent geo-
graphical races or may occur in different habitats within the same
geographical area. However, even today there are many cases where
we are uncertain as to whether a type represents a variety or a true
species (i.e. are reproductively isolated from other types). For example,
some plants might be classified as distinct species by one authority,
but be classified as varieties within a common species by another
authority. By way of example, Darwin considered the difficulty of de-
termining the taxonomic status of the primrose (Primula veris) and
the cowslip (P. elatior) in more detail. These plants differ in appear-
ance and flavour, emit a different odour, flower at slightly different
periods, have different geographical ranges, and can only be crossed
with much difficulty. However, there are many intermediate forms
between the two plants that are not hybrids. One could argue that
they represent two distinct species, because of their differences and
the difficulty of getting them to interbreed. However, one could also
argue that they merely represent varieties of a single species because
there are intermediate forms that represent a breeding connection
between them. Darwin argued that there is not always a simple dis-
tinction between varieties and species. In his opinion, the distinction
would be especially difficult if an ancestral species was in the process
of splitting into two or more species and the process was incomplete.

From his discussion of variation, Darwin concluded that the char-
acteristics of species are not fixed and could be changed by selection.
He argued that it was possible for a species to change from one form
to another, or divide into two or more daughter species, over the
course of many thousands of generations. His next task was to explain
how selection could occur in nature so that there was a mechanism
for these evolutionary changes.
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2.1.2 Darwin’s theory of natural selection
From his first two chapters, Darwin observed two main facts: (1) that
individuals within a population and a species varied in their char-
acteristics, and (2) much of the variation was heritable (i.e. has a
genetic basis). He went on to discuss competition between individu-
als and species in a process he termed the ‘struggle for existence’. We
can note that his views in this respect had been greatly influenced by
the essay of Thomas Malthus (1826). Darwin noted three additional
facts: (3) all species have the ability to produce more offspring than
are required merely to replace the number of parents, and so pop-
ulations have the power to increase their numbers geometrically or
exponentially; (4) the resources required to sustain organisms are fi-
nite, and they stay relatively constant (i.e. relative to the organism’s
ability to increase) and so there is a limited potential for growth; and
(5) populations display stability in size, relative to what is possible
given their power to increase. From these last three facts, he could
infer or deduce that as there are more individuals produced than can
be supported by the available resources then there must be a fierce
‘struggle for existence’. Put simply, only some of the offspring can
survive to reproduce.

Darwin combined his inference about the struggle for existence
with the first two facts on variation and argued that survival was not
random with respect to variation. Some variants are better able to sur-
vive and produce more offspring than others. As a consequence, the
favoured variants accumulate at the expense of less favoured variants
through the process of natural selection, generation after generation,
and the characteristics of the population may therefore slowly change
over time.

We can see that Darwin’s theory of natural selection was simi-
lar to his uniformitarian views of the earth’s history (see Chapter 1),
because small incremental changes slowly accumulate over vast ge-
ological time spans to produce large changes ultimately. He argued
that eventually the changes in characteristics could be such that a
species might be transformed into a new species, or a species might
be divided to form two or more daughter species. This would explain
how species are replaced by others in the geological record.

Darwin provided various examples of how natural selection could
act to modify the characteristics of a species. He observed, for ex-
ample, that certain plants excrete a sweet juice from certain glands
located in different parts of the plant, perhaps to eliminate some-
thing injurious from their sap. This juice is very attractive to certain
insects. He then supposed that this sweet juice or nectar might be
secreted from the inner bases of the petals of a flower. Insects seek-
ing this nectar as a source of food would get dusted with pollen and
would then transport the pollen from one flower to another, pro-
moting cross-fertilization between different individuals of the same
species. Darwin argued that flowers that had their stamens and pistils
so placed to favour an increased transportation of pollen from one
flower to another would be favoured by natural selection. Likewise,
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insects whose body size, and curvature and length of proboscis pro-
vided improved access to the sources of nectar would also be favoured
by natural selection. In this manner, the characteristics of the insect
and flower might coevolve so that the two species become adapted in
a remarkable way to each other. Coevolution is possible in this case
because the advantages to the two species are mutual. Darwin noted
that natural selection cannot modify the structure of one species for
the good of another species unless there is some advantage to the
first species.

Darwin also argued that natural selection would not act on all
the individuals of a species in the same way. For example, a predator
might eat different prey in different habitats or in different regions of
its geographical range, and be modified accordingly. He reported that
there were two forms of the wolf inhabiting the Catskill Mountains in
the United States, one with a light greyhound-like form that hunted
deer, and the other with a more bulky build with shorter legs that
attacked sheep. Whatever the truth of this matter, it was plausible
to argue that selection is unlikely to mould the characteristics of a
species in the same way throughout the range of a species, and that as
a consequence there would be geographical races or varieties in many
cases. This led to the topic of divergence of form and the possibility
that different species might be related by descent.

2.1.3 Darwin’s theory that all organisms are related
by descent

Natural selection causes populations of individuals to become better
suited to their local environments. This will lead to local varieties
or races within a species because the environment is not uniform
throughout a species’ range. Consequently, these local varieties might
diverge in their characteristics such that each is more suited, or
adapted, to different conditions. Darwin viewed these varieties as
species in the process of formation, or as incipient species. Not all
varieties will become new species, but there is potential for different
varieties to diverge sufficiently from each other and from their com-
mon parent to become distinct species.

Darwin illustrated this using an abstract example in the form of
a diagram (Fig. 2.3), which is the only illustration in his book. He
considered the fate of 11 species (A--L) of a genus over the course
of a long period of time, which he divided into 14 equal periods
(I--XIV). The variation in form of the different types is represented
by the divergence of the dotted lines. First, he imagined that each
time period represented 1000 generations. We see that after the first
1000 generations, species A has produced two fairly well marked vari-
eties, a1 and m1. These two varieties have diverged only slightly from
their common parent (A), and each variety is itself variable. Over the
next 1000 generations the two varieties continue to diverge due to
selection, variety a1 changing to a2 and variety m1 producing two
varieties, namely m2 and s2. In this way we can trace the history of
daughter varieties over time. We can see that species A gives rise to
three distinct varieties (a10, f10 and m10) after ten such time periods
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Fig. 2.3 Darwin’s diagram
representing the descent of species
A–L over 14 time periods (I–XIV).
(From The Origin of Species.)

or 10 000 generations, and eventually after 14 time periods there are
eight distinct varieties that have been formed. Similarly we see that
species I eventually gives rise to six different varieties.

The divergence of the different varieties from one another and
from their parent species may be of sufficient magnitude that some
of them attain the rank of species. Darwin reasoned that if this did
not happen during the course of 14 000 generations, one only had
to suppose that each time period was longer, say 10 000 or 100 000
generations, to increase the likelihood of speciation. Darwin went
on to make two important remarks about this formation of distinct
varieties and species that we have just outlined.

First, he recognized that the process did not have to proceed as
regularly as is shown in the diagram, as divergence or modification
of form does not necessarily occur over time. For example, we can
see that species F persists unchanged throughout the 14 time peri-
ods. Thus, although time is required for divergence or modification
of form to occur through the action of natural selection, the mere
passage of time does not imply that change will occur.

Second, the multiplication of varieties and species from some an-
cestral forms means that other varieties and species become extinct,
because he did not observe an overall increase in diversity over time.
Darwin viewed this in terms of the overall struggle for existence,
where the better-adapted varieties and species out-compete and cause
the extinction of the less-adapted forms. For example if we refer back
to Fig. 2.3, we can envisage that the m-line of varieties of species A
slowly wins in the struggle for existence against species B, C and D
and cause their extinction.

If we return to the issue of the relationship between species and
consider the eight species that are descendants of species A over the
course of many thousands of generations, we can see from Fig. 2.3
that some species are more closely related than others. The three
species marked a14, q14 and p14 have descended from a10 and so are
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more closely related to each other than they are to species b14 and
f14, which have descended from f10. These five species have a5 as a
common descendant and are more distantly related to the remain-
ing three species (o14, e14 and m14). If the divergence between these
three groups of species is sufficiently great, they might be placed
in different genera, or the first two groups might be placed in one
genus and the third group in another genus. One can extend this
argument to have different genera diverging to form new families,
families being modified to form new orders, orders being modified
to form new classes, and so on. In this way Darwin showed that the
classification system could be interpreted as reflecting the different
levels of relationship, so that as one proceeds from phyla to classes,
from classes to orders, from orders to families, from families to gen-
era, and from genera to species the individuals in these taxonomic
groupings become progressively more closely related.

Only in the summary of chapter four does Darwin state explicitly
that all organisms are related by descent, implying that life originated
only once, and makes his famous analogy to a tree of life to represent
the diversity of all living things. He pointed out that the structure
of the tree corresponded to the classification system of Linnaeus.
Thus, the smallest end twigs corresponded to species, which then
joined to form larger twigs corresponding to genera; these linked to
form small branches corresponding to families; and so on through or-
ders, classes and phyla, the latter of which corresponded to some of
the major branches. Finally, the animal and plant kingdoms formed
the main trunks which joined toward their base. If one looks at the
tree as a whole, one would see many dead branches and twigs, which
represent the extinct lines. The whole tree could be related to the
geological timescale if the highest parts corresponded to present-day
organisms, and as you went down the tree you descended to older
and older periods until reaching the oldest original organism at the
bottom.

2.1.4 The logical consequences of Darwin’s theories
In the first four chapters of his book Darwin argued that species
could evolve or change over time; he theorized that the main mech-
anism for this change was the process of natural selection; and
finally he theorized that all species were related by descent. Darwin
then proceeded to consider the various deductions or logical conse-
quences of his two theories in the remaining nine chapters (Figs. 2.1
and 2.2).

In chapter five of The Origin of Species, Darwin considered the ge-
netic basis of his theory of natural selection and had to admit pro-
found ignorance on the subject. He was so confused on this matter
that in later editions of his book he introduced a fatal flaw in his the-
ory by proposing blending inheritance.2 This is incompatible with the

2 Blending inheritance assumes that hereditary substances from the parents merge in
the offspring, and if the parents are different the offspring will be intermediate for
that trait.
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theory of natural selection as some critics were quick to point out. The
following example should make this clear. Imagine a light-coloured in-
sect that relies on its camouflage to escape predation. All is well until
the general colour of the environment becomes darkened as a result
of industrial pollution. At this point it would be advantageous for the
insect to be darker in colour. From time to time darker individuals
would arise through the process of mutation, but if there is blending
inheritance the offspring would be intermediate in colour and the
dark colour would tend to be diluted in succeeding generations be-
cause most of the population is light. With this type of inheritance,
the population can only change to a darker colour through repeated
mutations of dark forms. Therefore it is mutation that is directing the
evolutionary process, not natural selection which merely acts as the
executioner of lightest-coloured individuals. We can see that for nat-
ural selection to direct the evolutionary process it is important that
new variants are inherited in a discrete way, rather than blending
with the existing variants. Thus, in our example, the gene coding for
light body colour must remain distinct from the gene coding for the
new variant of dark body colour. This is known as particulate inheri-
tance. This issue was not solved until Mendel’s work was rediscovered
at the turn of the century, and even then its relevance to Darwin’s
theory would not be generally understood and accepted until much
later. Darwin was clear on one fact, however, that the production
of new variants was random with respect to need, i.e. mutation is
not preferentially inclined toward adaptation. The importance of this
observation will be made clear in the next chapter.

Darwin went on to consider certain difficulties with both of his
theories (The Origin of Species, chapter six). The first concerned the
absence of intermediate forms. If populations gradually changed over
time, where were the intermediate forms? Darwin explained that they
would have been eliminated by the better-adapted forms, but if this
is the case, why don’t we see all of the intermediate forms in the
fossil record? Darwin argued that the absence of most transitional
forms from the geological record was because it was so incomplete.
He was to expound upon this issue at great length in chapters nine
and ten of his book, explaining that the fossil record only included a
minute fraction of all of the organisms that had once lived and that
we had only looked at a small fraction of that record at relatively few
localities around the world. Therefore, the absence of certain types
from the fossil record proved very little.

A second difficulty concerned the evolution of organs of extreme
perfection like the eye. Darwin freely confessed that it seemed absurd
that the human eye, with all its contrivances for adjusting the focus
to different distances, for admitting different amounts of light, and
for the correction of spherical and chromatic aberration, could have
been formed by natural selection. We should remember that every one
of the intermediate steps in its development would need to be better
adapted than the preceding step, otherwise the new variants would
not accumulate by natural selection. Nevertheless, Darwin reasoned
that the eye could have been formed by natural selection because
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numerous transitional forms of the eye are found in other organisms,
and these types of eyes seem to function appropriately for each type
of animal.

Behaviour or instinct was shown in chapter seven to be variable,
just like any other characteristic of the organism, and so was subject
to natural selection. Darwin described a few examples of how complex
behaviours could have developed, or evolved, by this process. However,
there was one particular difficulty to explain, the evolution of sterile
castes in the social insects. How can sterile individuals be selected for
if they do not leave any descendants? Darwin was not certain, but
pointed out that selection occurred at the family or group level as
well as the level of the individual, and perhaps the group was better
off with sterile workers. He was on the right track, but this particular
problem would not be solved until the 1950s (see Chapter 19).

Finally, in chapter eight, Darwin considered the logical conse-
quences of producing new species by natural selection. The process
is a gradual one and so one should not expect a clear distinction
between varieties that can interbreed, and species that cannot inter-
breed. Darwin was able to show that there was a complete gradient
in fertility (or sterility), between populations that could interbreed
totally and those populations that could not interbreed at all. This
gradation between varieties and species is precisely what one would
expect if species evolved through natural selection, but it is difficult
to see how it could be accounted for by special creation.

It may be seen that Darwin’s consideration of the theory of natural
selection in the first eight chapters was not superficial. He had a very
clear picture of its logical constructs, and the necessary consequences
or deductions that could be made from the theory.

Darwin then considered the various facts that were consistent
with his theories that new species arise through the process of natu-
ral selection and that all organisms are related by descent (Fig. 2.2).
Obviously, the process occurs extremely slowly and so the earth must
be extremely old, in contrast to the biblical interpretation. By exam-
ining the geological record (chapters nine and ten) Darwin showed
that sedimentary rocks containing fossils had an accumulated depth
of a few kilometres (see Fig. 1.1). From what was known about sedi-
mentation rates, and the erosion rates of exposed strata, he calculated
that the history of life on earth must span hundreds of millions of
years, which is sufficiently long for the process of natural selection
to create the known variety of life. Although he was in error on some
details, Darwin was correct in his overall interpretation. He showed
that there was a progressive change in the fossil record, with recent
fossils being more like present-day forms than the older, deeper, fos-
sils. Thus, there was a succession of new species and also a logical
progression in the fossil record. For example, the sequence of fish,
amphibians, reptiles and mammals is logical, but a sequence of rep-
tiles, fish, mammals and amphibians is not logical. He observed that
transitional forms were frequently absent, owing to the fragmentary
and incomplete nature of the fossil record, but many links could be
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found and in some cases they had led to a revision of the classifica-
tion of some groups. For example, Cuvier had ranked the ruminants
(even-toed mammals that chew cud which included sheep, giraffes,
deer and camels) and pachyderms (thick-skinned nonruminant mam-
mals which included elephant, rhinoceros and pigs) as the two most
distinct orders of mammals. However, Owen was able to show from
the fossil record that there were numerous intermediate forms be-
tween pigs and camels, and so placed the pigs in a suborder with the
ruminants.

Chapters eleven and twelve of The Origin of Species considered the
geographical distribution of organisms. If species were related by de-
scent, then closely related groups should be in geographical proxim-
ity to one another. Darwin showed that the present distribution of
organisms was more related to geography than to the physical con-
ditions where they occur. If one compares the faunas and floras of
Australia, Africa and South America at the same latitudes, where the
physical conditions are similar, we see that they are completely dif-
ferent even though they show the same sort of adaptation to their
local environments. For example, if we consider succulent plants, the
South American cacti and the African euphorbia are quite distinct
taxonomically but they are superficially very similar in general form.
Similarly, the marsupials (i.e. mammals whose young complete their
development in the mother’s pouch or marsupium) of Australia have
radiated to fill many of the same ecological niches as the eutherians
(i.e. placental mammals) in Africa and South America. The opossum
marsupials of South America are also quite distinct from the numer-
ous types of marsupials in Australia. It is as if there are centres of
creation of various groups so that organisms are most closely related
to those living on the same continent. These facts are consistent with
the theory of common ancestry.

Darwin also showed that the distribution of species was frequently
affected by barriers to dispersal, so that different species often oc-
curred on either side of major rivers, mountain ranges and deserts,
even where the physical conditions were similar. A particularly strik-
ing example is provided by the marine faunas living on either side of
the isthmus of Panama. They are only separated by a few miles and
yet they are quite distinct from each another, with those on the east-
ern side of the isthmus being most closely related to Atlantic faunas
and those on the western side being most closely related to Pacific
faunas, even though the physical conditions that they experience are
virtually identical. Again this makes little sense in terms of special
creation, but is consistent with the theory of common ancestry.

Finally, the distribution of organisms on islands was also instruc-
tive. Remember that Darwin had been led to question the fixity
of species because of his experience on the Galápagos Islands. He
noted that the closest relatives of an island’s inhabitants occurred
on the mainland upwind and upcurrent of the prevailing winds
and water currents. It seemed logical to suppose that the inhabi-
tants had originally been transported by natural means from the
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mainland to the islands, and that they had subsequently diverged
in their characteristics. However, organisms vary in their ability to
migrate and so we find that more distant islands are frequently de-
ficient in certain types of organisms. Darwin noted that amphibians
are absent naturally from all oceanic islands even though they are
present on the mainland, probably because their eggs are killed by
sea water, but that they had been successfully introduced by humans
into Madeira, the Azores and Mauritius. Similarly, terrestrial mam-
mals are absent from oceanic islands which are more than 500 km
from a continent or large continental island, unless they have been in-
troduced by humans. However, bats are found throughout the oceanic
islands because of their greater powers of dispersal through flight.
In conclusion, Darwin observed that closely related species were in
close geographical proximity to each other and that discontinuities
of distribution corresponded to barriers to dispersal. The facts were
in accordance with the theory that all organisms were related by
descent.

Finally, in chapter thirteen, Darwin considered the internal struc-
ture and embryonic development of animals and showed that there
were many facts consistent with the theory of common ancestry. In re-
lated groups of animals, one would expect a similarity of body plans,
with certain structures being modified for different purposes. The
classic example is the forelimbs of vertebrates which have been modi-
fied for flying, swimming, running, digging, grasping, and so on. The
general structure is the same in all cases, and Darwin interpreted this
as revealing a common ancestry. Similarly, the embryos of different
vertebrates tend to be similar early in life because they are related,
and divergence of body form occurs during development, e.g. humans
have gill slits and a post-anal tail during development. This makes no
sense in terms of special creation but is consistent with the theory
that we have descended or evolved from a fish-like ancestor. Likewise,
rudimentary or vestigial organs may reveal ancestry and common de-
scent. The rudimentary hind legs of whales and snakes link them to
four-legged vertebrates, and the appendix in humans is a rudimentary
form of the caecum which is common in other mammals.

Today we could considerably update and amplify on the facts
Darwin presented to support his theories. Some of the gaps in the fos-
sil record have been filled, though many still remain; the movement
of huge landmasses through continental drift has explained many
of the anomalies in the geographical distribution of organisms; we
know considerably more about population genetics; and studies of
comparative biochemistry are also consistent with the view that all
organisms are related by descent.

Darwin concluded his book with a summarizing chapter which
briefly reviewed his arguments. Toward the end of the chapter is a
single sentence which reads ‘Light will be thrown on the origin of
man and his history.’ So in this quiet way, he let it be known that
humans are not excluded from his theories of evolution. Finally, he
ends with the eloquent statement:
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There is a grandeur in this view of life, with its several powers, having
been originally breathed into a few forms or into one; and that, whilst
this planet has gone cycling on according to the fixed law of gravity,
from so simple a beginning endless forms most beautiful and most
wonderful have been, and are being, evolved.

2.2 Darwin’s hesitation to publish, and
the reaction to his theories

One can see from our synopsis of Darwin’s book that he had developed
a very mature pair of theories. Why was he so reluctant to publish?
He wrote an initial sketch in 1842 and revised this into a 230-page
essay on evolution in 1844. Neither was published, although he gave
his wife money and instructions to publish his 1844 essay in the event
of his death, and so he clearly understood the scientific importance of
his work. Soon after writing this essay he made the acquaintance of
Joseph Hooker who was to become the Director of Kew Gardens. For
some reason Darwin felt he could reveal to Hooker that he believed in
the transmutation of organisms, and added that ‘It’s like confessing a
murder.’ He was only half talking in jest and was obviously horrified
at the probable reaction of the scientific establishment to his ideas.
In all likelihood, it was the philosophical content of his theory of
natural selection that he was concerned about. In any case, Darwin
kept his views to himself and a few good friends like Joseph Hooker.

For eight years he worked on the taxonomy of barnacles while
his friends urged him to publish his book on evolution. Darwin was
not tempted because he had seen the reaction to an anonymous
book, written by Robert Chambers (of encyclopaedia fame), called
the Vestiges of the Natural History of Creation which argued for evolu-
tion. Although it was a popular book and sold well, scientists wrote
scathing critiques, much of it justified because there was a lot of poor
science in the book, but it was obvious that they had little sympathy
with the idea of transmutation of species. Eventually, Darwin started
work in 1856 on an enormous book on evolution which would take
many years to complete. He was obviously in no hurry and felt con-
fident that he would not be scooped, in spite of the comments of
his learned friends. You can imagine his horror and despair in 1858
when he received a copy of a manuscript from Alfred Wallace, who
was working in the East Indies, on a theory of natural selection to
account for changes in species. Wallace’s theory was identical in con-
cept to Darwin’s but not as well developed. Wallace asked Darwin
for his comments and to forward it for publication if Darwin consid-
ered it suitable. Darwin was in a quandary; Wallace’s paper should be
published but Darwin was very unhappy that he would not have the
honour of being the first to propose the theory of natural selection.
Lyell and Hooker persuaded Darwin to submit his own paper on nat-
ural selection along with Wallace’s manuscript and so both papers
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were presented at the same time to the Linnean Society. There were
all the makings of a scientific scandal, but Wallace, to his credit, ac-
knowledged Darwin’s precedence and also realized that Darwin had
a much better understanding of the entire subject.

Now Darwin could no longer afford to take his time in publishing
his theories and he worked frantically to publish his work in the fol-
lowing year (1859). The book was titled The Origin of Species by Means
of Natural Selection, or the Preservation of Favoured Races in the Struggle
for Life and was an abstract of a much longer book that he had been
working on for some years, and could be read and understood by any
educated person. The response of the scientific community was gener-
ally favourable. People were convinced that evolution had occurred,
but there was little acceptance of his mechanism of natural selec-
tion. Even his most ardent supporters like Thomas Huxley deserted
him on this point. Indeed, it would take almost 100 years for most
biologists to accept the theory of natural selection, and it is still a
contentious theory for some people. We will examine why this should
be so in the next chapter.



Chapter 3

Understanding natural
selection

The theory of natural selection is deceptively simple. We have seen in
Chapter 2 that Darwin formulated the theory as a sequence of facts
and logical deductions or inferences arising from these facts:

1. Individuals in a population vary in their characteristics, and these
variations1 are heritable (i.e. genetically based) at least in part.

2. New variation is created generation after generation.
3. Parents produce on average more offspring than are needed to

replace them, and so populations have the potential to increase
exponentially. Resources are finite and so will be insufficient to
sustain all offspring in the long term.

4. As a consequence, there will be a struggle for existence, and only
a fraction (often a very small fraction) of the offspring will survive
to reproduce.

5. Survival is not random with respect to variation, and some vari-
ations will be better able to survive and will produce more off-
spring than others. This results in the accumulation of favourable
variations at the expense of variations that are less favoured, gener-
ation after generation. The characteristics of the population slowly
change over time (i.e. evolve).

6. Given sufficient time, the accumulated change will be large, and
over vast geological time periods could account for the production
of all species from a single ancestor.

We will be examining many of these statements in more detail
throughout this book. In this chapter we will amplify these six simple
statements in order to discuss some of the popular misconceptions
about the process of natural selection. In addition, we also need to
clarify the philosophical content of the theory.

1 Darwin used the term ‘variation’ or ‘variations’ to describe the different forms of
a particular characteristic or trait as well as individuals in the population. He did
not use the term ‘variety’ to describe these individual differences because this term
was used to describe the differences between different populations or races of a
species.
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3.1 Some philosophical considerations

Darwin defined the favourableness of a particular variant in terms
of its relative growth rate in the population, with favoured forms be-
ing better able to leave more descendants than forms that are less
favoured (see statement 5 above). Note the phrase ‘better able to’,
which indicates a probability rather than a certainty to the process.
An individual with a favoured variation is not guaranteed to survive
and produce more viable offspring than those with less favourable
variations, it merely has a better chance of doing so. Thus, selection
is stochastic2 not deterministic, and this is why the eminent philoso-
pher of Darwin’s time, John Herschel, did not like the theory of natu-
ral selection and called it ‘the law of higgledy-piggledy’. Many people
still have difficulty comprehending this stochastic nature of natural
selection, but, given enough chances, i.e. if the superior variant is
produced repeatedly over many generations, the result is inevitable,
the superior trait will increase in frequency in the population at the
expense of less favoured traits.

Natural selection involves a statistical bias in the relative rates
of survival from one generation to the next of alternative forms
of the same characteristic or trait. By necessity, the selected entity
must also have a high degree of permanence and a low rate of en-
dogenous change (i.e. a low mutation rate) relative to the bias in
survival (Williams 1966). This is important because if the character
being selected is highly unstable over time, natural selection would
be ineffective. In addition, the selected variation must be genetically
transmitted from one generation to the next.

Natural selection, then, necessitates that selected variants have a
high degree of permanence and be genetically transmitted between
generations via the germ line. These fundamental requirements have
important implications about how selection operates on populations
and at what level (gene, individual or group). In most sexually re-
producing populations, natural selection cannot select for a specific
overall genotype or phenotype because an individual’s genotype and
phenotype are unique (see section 7.5). Simply put, an individual can-
not be selected for because when it dies its genotype and phenotype is
lost and will not be recreated exactly ever again. Thus, individuals in
their entirety are not selected for or against in sexually reproducing
populations, but certain traits are. The same is not true in asexually
reproducing populations because the variation introduced by muta-
tion is not amplified through the process of sexual recombination. In
these populations it is more likely that a specific overall genotype or

2 A stochastic process is one where there are chance effects. For example, if I have equal
numbers of black and white balls in a bag and take out four balls at random I may
pick anywhere from 0 to 4 black balls on any one occasion. However, if I repeat the
process a large number of times, overall I will pick equal numbers of the two types
(see Chapter 8).
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phenotype can be selected. In all populations, however, the gene or
genes that help control the various traits are replicated and transmit-
ted from one generation to the next, and are reasonably permanent
because mutation rates are low (see Chapter 7). For these reasons some
Darwinians consider that selection operates at the level of the gene
rather than the individual, although other Darwinians strenuously
object to this view because selection involves the differential survival
of individuals bearing different variations of traits. To some extent
the argument is one of semantics and in most cases the outcomes of
these two levels of selection are identical. However, the evolution of
altruistic behaviour is best explained if we consider selection at the
level of the gene (see section 19.2). For example, an individual may
risk its life to protect the offspring of another family member. Such
behaviour reduces the fitness of that individual and so one would
expect it to be selected against if selection occurs at the level of the
individual. However, a gene that promotes such behaviour could be
favoured if more copies of the gene are likely to be saved in the off-
spring than are likely to be lost by the individual risking its life. The
argument is complex because it involves the genetic relatedness of the
individuals, and for this reason it is often called kin selection, but in
essence we can explain this type of altruistic behaviour by examin-
ing the relative growth rates of genes in the population rather than
the relative number of descendants of the individual risking its life.

What about selection at the group level, where there is differential
survival of whole groups or populations which differ in their char-
acteristics? Individual selection is normally stronger than group se-
lection because individuals die faster than groups. Consequently, if a
trait is favourable at both the individual and population levels there is
usually no need to invoke group selection arguments for its evolution.
Group selection, however, has been proposed to explain the evolution
of traits where the evolutionary interests of the individual and group
do not necessarily coincide. For example, in the early 1960s the British
ecologist V. C. Wynne-Edwards proposed that many animals limit their
production of offspring and self-regulate their populations so as not
to overeat their food supply, and Konrad Lorenz and others proposed
that animals with lethal weaponry limit their aggressive behaviour
for the good of the species when fighting for mates. We will consider
this last example in more detail in Chapter 19 (section 19.2.3) and here
will simply consider Wynne-Edwards’s group selection argument. He
proposed that populations that self-regulate their density to remain
in balance with the available resources survive, whereas those popu-
lations where there is overproduction of offspring over exploit their
resources and die out. This is an anti-Darwinian argument or theory,
so let us consider the fate of populations that follow the rules of group
selection. Such populations are powerless to prevent the invasion of
individuals that follow Darwinian rules. Such individuals could be
introduced by either mutation or immigration, and they would over-
produce their offspring. As a result, they would reap the benefits by
increasing in frequency by leaving more descendants, but the costs
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would be borne by the whole group or population. It would only be a
matter of time before the whole population obeyed Darwinian rules
of overproduction. Group selection could occur if the species were
subdivided into many small populations of closely related individ-
uals, within which Darwinian mutations would be very rare, but the
populations would also need to be totally isolated from each other
to prevent the spread by migration of any Darwinian mutation that
might arise. Most species don’t have their populations structured in
this way, and so most group selection arguments have been discred-
ited and are generally no longer in vogue. This is not to say that group
selection is impossible. The conditions for its occurrence (loosely de-
scribed above) have been formulated mathematically by Hamilton
(1975), and it has been plausibly proposed that group selection might
explain the reduction of virulence toward their hosts by some en-
doparasites and pathogens (Frank 1996). This is a complex topic
and a full discussion of this subject is beyond the scope of this book.

To return to our discussion of natural selection, newly created
variation must be random with respect to need, i.e. not preferen-
tially inclined toward adaptation. If new variation were usually ad-
vantageous, it would be mutation that was being creative rather than
natural selection. The latter would merely remove those who didn’t
vary in the appropriate way. We will return to this matter again in
Chapter 7. Evolution may be regarded as a mixture of chance (in the
creation of new variants) and necessity (in the working of selection
where inferior variants are slowly weeded out).

Natural selection, then, operates by sifting and sorting these
random variations or mutations, so that over the course of long pe-
riods of time large changes may become evident through the accu-
mulation of a series of small changes generation after generation.
Large changes, however, are not inevitable, as Darwin noted (see
section 2.1.3), because some forms stay remarkably constant over time,
but if change occurs it is relatively slow and cumulative. This is what
is meant by the term gradualism, to distinguish it from another pos-
sible way of evolution where completely new forms are created in a
single step by macromutations. With the exception of polyploidy, we
do not believe that new species or complex new structures are cre-
ated in a single step, but if they were it would be mutation that is
the creative force, not natural selection, which would merely serve
to eliminate the inferior type. Thus, the formation of new species
and complex new structures by natural selection is truly a creative
process because they are gradually formed in a step-by-step manner.
However, the selected variation must be of immediate advantage to
the individual, it will not be selected because it may be of some ad-
vantage in the future. In creating complex forms or structures, each
step along the way must have a selective advantage over the previous
step. Thus, natural selection has no final purpose in mind.

We can summarize the philosophical content of the theory of
natural selection as follows:
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1. Evolution has no purpose. It is simply the struggle of individuals in
populations to survive and to increase the representation of their
genes in the next generation.

2. Evolution has no direction. It does not lead inevitably to higher
things. In particular, the goal of evolution is not to produce
humans. Organisms become better adapted to their local environ-
ment, and that is all.

3. Natural selection is materialistic. Evolution does not require the
action of a deity, and there is no scientific evidence for God. The
remarkable adaptations and structures of organisms have not been
designed by a creator but have been formed in an entirely mecha-
nistic manner.

The opposition of the church to this philosophy was under-
standable. The controversy was bitter and vitriolic at times because
philosophical differences arouse greater passions than scientific or
theoretical differences. Darwin’s two theories were completely at odds
with the general belief in Victorian England in the literal truth of
the Bible, that the universe had been created and designed by God
for humankind. The controversy continues to this day, with most of
the criticism being directed towards the theory of natural selection
rather than the idea of evolution.

We will now examine various questions, criticisms and miscon-
ceptions about natural selection. It is important that we ask such
questions, and deal with the criticisms, otherwise we run the risk
of the theory becoming a dogma. I should make two things clear,
however, about the discussion in the remainder of this chapter. First,
it is not intended as an attack on religion. I know that many stu-
dents think that there is a conflict between Darwinian evolution and
their religious belief, but this should not be the case. I profess to
be a Christian, but my religious belief is a spiritual matter and not
subject to scientific study, whereas my scientific training leads me
to conclude that evolution is the only possible explanation for the
observed diversity of life.

Second, the following discussion is not designed to persuade ar-
dent antievolutionists and creationists to abandon their beliefs be-
cause, like most of us who hold strong convictions about one thing
or another, they appear to be immune to rational argument. Rather
it is intended to help open-minded students answer some of the com-
mon arguments against evolution. Further details may be found in
Futuyma (1982), Strahler (1987) and Rennie (2002).

3.2 Is natural selection a valid scientific theory?

It has been claimed that natural selection is a tautology, i.e. a circular
argument of the form: ‘Evolution is the survival of the fittest; the
fittest are those that survive.’ However, as Naylor and Handford (1985)
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and others have pointed out the logical argument of natural selection
is anything but circular. As indicated at the beginning of this chapter,
the argument for natural selection takes the form: a statement of
facts regarding the variability of populations, a statement of facts
regarding population growth and the resources necessary to sustain
this growth potential, followed by logical inferences or deductions
based on these facts. If either the facts or the inferences are incorrect,
then the theory is false.

In a similar vein, it has also been claimed that the theory of natu-
ral selection is unscientific because it cannot be disproved, and in the
words of one critic ‘can explain everything, and therefore, nothing’.
The scientific method relies on the ability to test, and potentially fal-
sify, the constructs and predictions of theory. In the case of natural
selection there are numerous ways in which the theory can be, and
has been, tested. We can see if the basic constructs of the theory are
true. Do populations vary in their characteristics and does this vari-
ation have a genetic basis, at least in part? Is new variation created
every generation by copying errors in the duplication of DNA in the
germ cell line? Is this new variation random with respect to need, i.e.
is not preferentially inclined toward adaptation? Do populations have
the potential to increase exponentially? None of these statements has
to be true, but repeated observation has shown that they are, and so
in this respect the theory of natural selection has passed repeated
testing.

There are other consequences of the theory that can also be tested.
For example, we saw in the last chapter (section 2.1.4) that natural
selection cannot work if there is blending inheritance, as proposed by
Darwin, but requires particulate inheritance (i.e. the genetic coding
for particular attributes remain discrete). The type of inheritance was
shown to be particulate in 1865 by Gregor Mendel but it was not until
the turn of the century that his work was rediscovered.

Another consequence of evolution by natural selection is that it
requires a very old earth in order for there to be sufficient time to
create the diversity of life. In 1862, the physicist William Thomson
(later Lord Kelvin) theorized that the earth had started as a molten
mass and had been cooling ever since. He calculated that the age of
the earth was probably 98 million years, and the absolute range of
possible ages was between 25 and 400 million years. This was a serious
blow to Darwinian evolution, and Thomson was quick to point it out.
At the turn of the century, however, it was the eminent physicist
who was proved to be wrong when it was discovered that radioactive
materials produce heat when they decay. This discovery drastically
lengthened the estimates of the age of the earth. Today, it is believed
that the earth is approximately four and one-half billion years old (i.e.
4.5 × 109 years), and so there has been sufficient time for evolution
to have occurred by natural selection. In any case, the point has been
made. We can test the theory of natural selection in many ways and
so it is a valid scientific theory.
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3.3 The argument from design

Many people, whether religious or not, believe that we are part of
some grand design or purpose. Such an idea is very understandable
because it is very comforting to believe that somewhere there is some-
one in control, and for many people it gives their lives a sense of
meaning. I suspect most of us harbour such thoughts to some extent.
Darwin certainly did, but he was clear that his theory could not be
interpreted in this way.

The argument from design is frequently associated with the the-
ologian William Paley, whose 1802 book, Natural Theology, or Evidences
of the Existence and Attributes of the Deity Collected from the Appearances
of Nature, had so impressed Darwin by its logic during his time at
Cambridge. Paley begins his argument with the following famous
anecdote. Suppose one was crossing a heath and kicked against a
stone and asked how it came to be there. One might answer that it
might always have been there, but if one had kicked against a watch
it would be foolish to answer the same question in the same way
because the watch obviously had a maker that had designed it to
measure time. Paley extended this logic to the works of nature and
concluded that there are many natural contrivances which have been
designed, eyes for seeing, wings for flying, and so on. So he argued:

There cannot be design without a designer; contrivance, without a
contriver; order without choice; arrangement, without anything capable
of arranging; subserviency and relation to a purpose, without that
which could intend a purpose; means suitable to an end, and executing
their office in accomplishing that end, without the end ever having
been contemplated, or the means accommodating to it. Arrangement,
disposition of parts, subserviency of means to an end, relation of
instruments to a use, imply the presence of intelligence and mind.

Paley concluded that one can see that the works of nature have
been designed and, therefore, there must be a deity who has designed
the world for humans. His argument was enormously influential on
the church and British society and inspired the writing of some beau-
tiful hymns. If we consider some of the stanzas of ‘All things bright and
beautiful’, written by Cecil Frances Alexander (1823--95) the general
sentiment is eloquently expressed.

All things bright and beautiful,
all creatures great and small,
all things wise and wonderful,
the Lord God made them all.

Each little flower that opens,
each little bird that sings,
he made their glowing colours,
he made their tiny wings.
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And in verse 7:

He gave us eyes to see them,
and lips that we might tell
how great is God almighty,
who has made all things well.

It is comforting to think that we are surrounded by the works of
God, who has designed things for us: animals and plants for us to eat,
provide material for our clothing, housing and medicinal needs; beau-
tiful, sweet-scented flowers for our enjoyment; singing birds; and a
whole world of fascinating organisms that inspire us with their won-
derful adaptations to one way of life or another. There are, however,
some theological puzzles in this view of the world. Just the other day
at church I was listening to the minister talk to the children about
God’s world. He talked of pretty flowers and beautiful birds, and other
animals and plants that provide our daily needs. ‘It is easy to under-
stand why God created them,’ he said, and the children agreed. ‘But
why did God create mosquitos?’ This question simply resulted in puz-
zled frowns, and the minister and the children could find no answer.
The minister told the children to ask their Sunday School teacher
to see if they could provide any answer. Well, I was teaching them
that day and I wish that I could relate how I gave an inspired answer,
involving Darwinian evolution suitable for six- and seven-year-old chil-
dren. The reality is that I hoped they would forget to ask, but of course
they didn’t! I simply told them that mosquitos don’t make much sense
from a human point of view, but from the viewpoint of a mosquito,
humans make a lot of sense as a source of food. The children seemed
unimpressed by my argument.

Without meaning to, my minister touched the Achilles heel of
Paley’s argument from design. If one accepts that an omnipotent
deity has created the world in which we live to every last detail,
then one must question the goodness of the creator. Thousands of
babies are born each year with severe birth defects. Is this ‘good’
design? Let us consider one such genetic disease to make our point.
The sickle-cell trait confers an advantage to individuals heterozygous
for the trait because it confers a resistance to malaria, a highly adap-
tive characteristic in regions of the world where malaria is endemic.
However, it condemns a large proportion of those individuals who are
homozygous for the trait to an early death from complications aris-
ing from the distortion of the red blood cells. If we were designing
a way to protect people from malaria, would we consider it morally
justified protecting a proportion of the population at the expense of
another portion of the population? I do not think so. We can, how-
ever, explain the evolution of the sickle-cell trait by means of natural
selection, because that process is blind to the morality of conferring
an increased fitness to one portion of the population at the expense
of another portion.

Similarly, although we may be impressed with the apparent design
of some organs, like the eye, other features of our anatomy leave
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much to be desired. Our lungs branch off from our alimentary canal
and, as a result, it is common for people to choke to death when
some particle of food blocks the trachea. Surely, it would be much
better to have our breathing apparatus and alimentary canal totally
separate from one another from a design point of view. The poor
design is easily explained by evolution, because we are betrayed by
our ancestry. Lungs evolved as outgrowths from the gut in certain
fish, which swallowed air to provide additional oxygen to what could
be supplied by the gills, enabling them to survive in stagnant water.
There was no need for a rapid ventilation mechanism for the lungs
in these fish because their oxygen requirements were less than ours,
and so the problem of blocking the passage to the lungs was not so
critical.

Darwin was to answer Paley’s logic in his 1862 book, On the Various
Contrivances by which British and Foreign Orchids Are Fertilized by Insects.
The word ‘contrivances’ in the title was no accident: Darwin showed
that orchids use all sorts of devices (contrivances) to encourage fertil-
ization by insects. There seems to be no overall plan; there just seems
to be a series of ad hoc solutions to ensure fertilization. This is what
we might expect from natural selection as by chance one mechanism
or another is used to promote fertilization by insects.

Michael Ghiselin (1969) has shown that the argument from design
is a fallacy owing to a confusion of the words ‘purpose’ and ‘function’.
He provides an amusing example to show the absurdity of the logic.
Imagine two gentlemen playing Russian roulette with a revolver with
one bullet in the cylinder. They take turns spinning the cylinder,
pointing the gun at their head, and pulling the trigger, until one
is dead and the other can claim the prize. Now the revolver has a
particular function in this game. It also has a particular purpose,
but this has little to do with what the gun was originally designed
for, i.e. its original purpose. But imagine a naive observer interpret-
ing this differently. The revolver clearly has a purpose to decide a
game of chance, and is obviously beautifully ‘designed’ for the game.
The observer concludes that revolvers were designed to play games of
Russian roulette. The logic may seem impeccable but we know the
conclusion is incorrect. In fact, the revolver is simply functioning to
help decide a game of chance. We could have used the gun for other
functions, not intended in the original design, such as using the han-
dle to crack open nuts or to knock a nail into a wall. The problem,
then, is when we use the word ‘purpose’ we automatically tend to link
it with the word ‘design’, which implies a designer or somebody who
had that purpose in mind, whereas when we use the word ‘function’
we don’t.

So beware of confusing the two words when dealing with the nat-
ural world. We may think that an organ has a particular purpose; for
example, the purpose of eyes is to see. This implies that they were
designed with this purpose in mind, presumably by God. If this were
so, we might expect some unity of design. However, if we look at
the variety of light sensing structures, including eyes, in the animal
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kingdom we see a vast array of types ranging from simple light spots
that can detect light, to complex structures that can form an im-
age (Dawkins 1996). It appears that different opportunities have been
seized by different groups in a random way, just as we would predict
from evolution by natural selection. Far better, then, to think of eyes
having a particular function, rather than purpose.

3.4 Explaining the seemingly impossible

Critics of the theory of evolution by means of natural selection fre-
quently make comments like ‘it is impossible for the human eye to
have evolved by chance’, or ‘for hummingbirds to have evolved by
chance would be just as likely as for a chimpanzee to type the com-
plete works of Shakespeare’, or ‘it is just as likely that a hurricane
driving through a junkyard would assemble a Boeing 747 by chance’.
How do we answer this type of criticism?

What the critics mean by evolution by chance is not clear. On
the one hand, our understanding of natural selection is that it is a
chance affair as to what opportunities, in the form of new variants,
arise and are utilized during evolution. On the other hand, however,
selection itself is anything but random because the favoured variants
must be better adapted than other forms. The main confusion of this
type of criticism, however, is that it implies that complex structures
or organisms arise in a single step. It envisions that in one generation
there is no eye and in the next a fully functional eye, or that a new
type of bird like the hummingbird arises in one generation. Of course
we do not believe this. Natural selection operates on a series of very
small changes and slowly accumulates their effects generation after
generation. The eye or hummingbird was created slowly over many
thousands of generations.

The power of cumulative selection is astonishing. Richard Dawkins
in his 1986 book, The Blind Watchmaker, has a marvellous illustration
of the difference between single step, and cumulative selection. He
looked at the probability of typing the works of Shakespeare at ran-
dom. To make the problem more manageable he selected a single
sentence -- METHINKS IT IS LIKE A WEASEL -- from an exchange be-
tween Hamlet and Polonius in the play Hamlet. Now Dawkins didn’t
have a tame chimpanzee to type at random and so used his 11-month-
old daughter instead. Not surprisingly, she failed to type the sentence
correctly. We can calculate her chance of typing the sentence cor-
rectly by choosing letters at random. Again, to simplify the problem
we will imagine a keyboard of only 27 characters: 26 letters of the
alphabet and a space. The chance of typing the first letter correctly
is one in 27, and the chance of typing the first two letters correctly is
(1/27) × (1/27) or one in 729. The chance of typing all 28 characters
in the sentence correctly (a space is a character) is (1/27)28 or approx-
imately one in 10 000 000 000 000 000 000 000 000 000 000 000 000 000,
which, as we all know, is one in ten thousand million million million
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million million million! Obviously, the chance of typing this single
sentence by randomly selecting characters from the keyboard is so low
as to be practically impossible, and we should remember that the real
chance is much lower than this because most keyboards have more
than 100 characters, not 27. If we programmed a super fast computer
to type 28 characters at random, it would still take an astronomical
number of years to type this one sentence correctly. So it is effectively
impossible to type at random the complete works of Shakespeare. The
critics are correct.

Now instead of single step selection, let us see the effects of cu-
mulative selection. We program a computer to select a sequence of
28 characters at random (only allowing the 26 letters of the alpha-
bet or a space to be selected). The first sequence is almost certainly a
meaningless jumble of letters and spaces. The computer is then pro-
grammed to ‘breed’ from this sequence by duplicating the sequence
generation after generation, but with a certain chance error (we can
call it mutation) in the copying of each character. The computer se-
lects by keeping the correct letters or spaces as they occur at random,
and so they progressively accumulate, generation after generation,
until the correct sequence is reached.

You can play this game, or a slight variation of it, by logging on
to the Populus program.3 Then you select Games and Woozleology
(instructions on how to use the program is provided when you log
on to the program). Instead of the sentence used by Dawkins, the
programmers have used METHINKS IT IS A WOOZLE. When I ran the
game, I obtained the following sequence:

Generation 1 G ZFJZF YGJRQXVKZS IVINPGDJ
4 CDHVKJKZ BEDASRFOOM AMJSBU D
8 OHHFQTKC QLIGS RLKE ACXITHMJ

17 GOHYHNKS XGUGS LIKE ALTOA QQ
41 IUNLINKS EMSLS LIKE A LOVZQA
80 YUTPINKS IT YS LIKE A WOQZPJ

125 METHINKS IT IS LIKE A WOOZLE

I didn’t have a single correct character in the first try, but generation
after generation the correct characters accumulate and one sees the
correct phrase being evolved in a sequential way. It took about one-
tenth of a second in this case, which tells a great deal about the
evolution of faster computers because it took Dawkins’s computer
about 11 seconds to evolve the sentence in just 43 generations.

We see that what is effectively impossible to create in a single
step is very feasible with cumulative selection. In some respects this
simple game mimics the process of natural selection but, as the critics
will be quick to point out, in other ways it doesn’t. For one thing,
evolution does not have a long-term goal or target, as we have in this
example, and in addition it is difficult to visualize the significance

3 You may download Populus 3.4 from the Internet by accessing www.cbs.umn.edu/
software/populus.html.
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Fig. 3.1 The ‘leaf ’ in the centre
of the collection of dead leaves is a
grasshopper. (Photograph by the
author.)

of the intermediate steps. Remember that each step on the path to a
complex structure must have a selective advantage over the previous
step, and so we really do need to answer questions of the sort ‘What
good is half an eye?’

Let us consider the evolution of natural things that we consider
to be perfect, or nearly so. We will look at four examples and show
that the approach to solving the riddle of perfection is similar in each
case. The first example considers one of the many cases of mimicry.
I was walking in a National Park in Zimbabwe, looking for signs of
small mammals, when I noticed a set of insect footprints leading to
what I thought was a dead leaf. As I stooped to turn over the leaf
to see what was hiding underneath I realized that the leaf was, in
fact, a grasshopper (Fig. 3.1). One can see that it has a spectacular
resemblance to certain fallen leaves. It would be a keen-eyed insecti-
vore that spotted this potential prey item, and it is obvious that the
camouflage is highly adaptive for survival. Not only does this insect
mimic fallen leaves almost to perfection, it also times its life cycle
so that the adult appears at the beginning of the dry season when a
fallen leaf doesn’t appear out of place.

If we only looked at this single insect we might consider its
mimicry to be miraculous, but if we examine a wide range of
grasshoppers we would find a wide range of ‘attempts’ at camouflage,
some good and others much less impressive. Two further examples
are provided (Figs. 3.2 and 3.3). In fact, even a modest degree of cam-
ouflage provides some protection from being eaten. Perhaps in the
evolutionary history of our mimicker of dead leaves it began by be-
ing brown in colour. Slowly the shade of colouring was selected to
match the colour of certain common dead leaves. The shape of the
body and legs was slowly modified to resemble the twisted shape of
the leaf, and so on. Little by little the perfectness of the resemblance
could be improved, and each step would provide the owner with just
a little more protection from predators than its relatives and so it
would be selected by natural selection.
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Fig. 3.2 This dead grasshopper
was so well camouflaged that after
placing it on the lawn I could not
find it in order to take its
photograph. I had to wait until a
trail of ants led me to it, but not
before they had consumed part of
the body. (Photograph by the
author.)

Fig. 3.3 A more conventional
and to most people a less
spectacularly camouflaged
grasshopper. Nevertheless, on an
appropriate background this too is
extremely difficult to see.
(Photograph by the author.)

Our next example is to explain how our eyes could have evolved.
For many people it is incomprehensible how such a complex organ
could have evolved little by little. They cannot imagine how less-than-
perfect eyes can have any adaptive or selective value. However, if we
look at the range of light-detecting organs in molluscs, a phylum
which has a wide array of such structures, we can obtain some clues
as to the probable evolutionary path in developing such a complex
structure (Fig. 3.4). Some of the simplest structures are innervated
pigment cells called light spots that can detect light (Fig. 3.4a). The
light spot functions to tell the animal if it is light or dark and the an-
imal can adjust its activities to the general pattern of light. This may
be all that is required in a sessile, filter-feeding species. One possible
next step is to have an invagination or infolding of the pigment cells
(Fig. 3.4b) which may provide some protection to the light-detecting



46 UNDERSTANDING NATURAL SELECTION

Fig. 3.4 Possible stages in the
evolution of eyes as found in
molluscs, a phylum whose various
groups show different needs for
vision and a wide range of
light-gathering organs. (From
Strickberger, Evolution, Copyright
c© 1990: Jones and Bartlett

Publishers, Sudbury, MA.
Reprinted with permission.)

structure. This change also improves light detection in two ways. First,
the cells are more concentrated and so there is a better ability to de-
tect variation in light intensity, and second, there is some ability to
detect the direction of light because light rays coming from one side
will stimulate cells on the opposite side of the invagination. Animals
with this type of ‘eye’ may be more mobile and can move appropri-
ately in relation to changes in light intensity. As the invagination and
number of light-sensitive cells increases the eye can begin to function
more and more efficiently as a pinhole camera in which images are
formed on the pigmented layer (Fig. 3.4c). A fairly sophisticated eye of
this type is found in Nautilus and allows the animal to search actively
for food. The next logical step is where the water-filled cavity is re-
placed by a transparent cellular fluid to protect the pigmented layer,
or retina, from injury (Fig. 3.4d). There is a further development along
this line in other molluscs, in which the eye is covered by a layer of
transparent skin, providing further protection, and some of the cel-
lular fluid hardens into a primitive convex lens which improves the
focusing of light on the retina (Fig. 3.4e). Finally, the complex eye,
which is found in squids and octopus, is similar in structure to ours
in that there is a cornea, an adjustable iris to vary the amount of
light entering the eye, and a lens to focus the light on the retina
(Fig 3.4f ). These animals are predators and their eyes enable them to
locate their prey. What is clear from this series of eyes in the mol-
luscs is that there is a logical sequence of functional eyes from the
more simple to the complex. The eyes function in rather different
ways, and as they become more complex allow the development of
an active way of life.

It is likely that the evolution of the vertebrate eye followed a sim-
ilar path to what I have described for the molluscs. The evolution of
eyes is a complex subject. They have evolved independently no fewer
than 40 times, and probably more than 60 times, and there are many
different types. An interesting account of the different types of eyes
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and the way in which they probably evolved is given in Dawkins’ 1996
book, Climbing Mount Improbable.

Our last two examples look at the molecular level of organiza-
tion. Michael Behé (1996) has revived the argument from design in
his book Darwin’s Black Box. Behé agrees that arguments for the evo-
lution of complex structures like the eye, in the manner I have just
described, are plausible when considered at that level of organization,
but he believes that these arguments fail when one considers these
structures at the molecular level of organization. Behé’s argument is
simple. First, there are many biochemical pathways and molecular
structures that are irreducibly complex, such that if a part of them
were missing they would be non-functional. Second, their complexity
cannot be evolved by combining different parts from various areas in
the cell because the different parts wouldn’t fit together properly, the
intermediate steps of doing this wouldn’t function, and so they could
not be selected for by natural selection. Behé’s concludes that these
irreducibly complex structures and pathways must have been created
by an intelligent designer, presumably God. Behé’s arguments have
been refuted in detail by Kenneth Miller (1999), and I will briefly use
just two of Miller’s arguments here.

First, are the biochemical pathways and molecular structures of
cells irreducibly complex as Behé claims? Consider Behé’s example
of the microtubule structure of cilia. If we examine a cross section
of a cilium we see an outer ring of 9 doublet microtubules around
a central core of 2 single microtubules. Behé implies that this 9 +
2 arrangement of microtubules is universal in eukaryotes, and that
this arrangement is necessary for them to function, i.e. they are ir-
reducibly complex. However, as Miller (1999) points out, this arrange-
ment of microtubules is not universal and many other arrangements
occur, among them a 9 + 0 arrangement in the sperm of the eel
(Anguilla), a 6 + 0 arrangement in the protozoan Lecudina tuzetae and
a 3 + 0 arrangement in another protozoan, Diplauxis hatti. All of these
arrangements of microtubules are functional, and one can readily
imagine the level of complexity of microtubule arrangement being in-
creased in a step-by-step manner through evolution. Clearly, the 9 + 2
arrangement of microtubules in cilia is not irreducibly complex, and
Miller (1999) goes on to consider examples of biochemical pathways
that are also not irreducibly complex as claimed by Behé.

Second, is it possible to evolve a complex system by combining dif-
ferent parts from different sources? Consider the lac-operon system
that regulates the use of lactose sugar as an energy source in cells
(Fig. 3.5). To simplify matters I will only consider the operation of
the system in the absence of glucose. When there is no lactose, a
repressor gene (lacI) produces a repressor protein that binds with
the operator (O) and prevents transcription of the three structural
genes (lacZ, lacY and lacA). When lactose is available, some will leak
into the cell, although the cell membrane is largely impermeable to
lactose. Some of the lactose molecules are converted to allolactose by
the enzyme �-galactosidase (apparently there is some residual activity
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Fig. 3.5 The utilization of lactose
as controlled by the lac-operon
(simplified). The sequence of genes
in the operon are the promoter
(P) to the regulatory gene (lacI)
followed by its terminator (t), and
the promoter (P) and operator (O)
of the three structural genes, lacZ,
lacY and lacA, followed by their
terminator (t). For explanation of
the system see text.

of the lacZ gene even when the structural genes are switched off ) and
the allolactose molecules combine with the repressor proteins and
modify their shape so that they can no longer bind with the oper-
ator. This effectively switches on the gene and three enzymes are
produced: lacY produces lac-permease which brings lactose into the
cell from outside, lacZ produces �-galactosidase which hydrolyses this
lactose into glucose and galactose (and the latter is converted into
glucose by another enzyme from a different gene), and lacA produces
another enzyme whose function is not clear. If the concentration of
lactose falls again, the repressor protein molecules are not blocked
and so the gene is switched off. This provides us with an example of
a biochemical pathway that is sufficiently complex to see if it could
evolve through natural selection. The essential elements are: (1) a sys-
tem to switch the gene on or off in relation to the concentration
of lactose, (2) the production of an enzyme to convert lactose into
glucose and galactose, and (3) the production of another enzyme to
make the cell membrane permeable to lactose.

Barry Hall (1983) performed a series of experiments on the bac-
terium Escherichia coli to see whether this organism could replace the
lac-operon system if it were disabled. He did this by deleting the
lacZ gene so that no lactose could be utilized by the cell, and then
provided lactose as an energy source. At first the cultures couldn’t
utilize lactose, but before long mutant strains appeared that could
utilize the lactose. How was this possible? Studies showed that a sin-
gle point mutation was occurring in the �-galactosidase gene (ebgA)
located in the evolved �-galactosidase (ebg) operon, which is not re-
lated to the lac-operon. The normal, wild-type �-galactosidase from
this gene cannot hydrolyse lactose, but the mutation allowed it to do
so. In most cases the mutated gene was always active, but in some of
the bacteria a mutation in the regulatory gene (ebgR) regulated the
activity of the ebgA gene according to the concentration of lactose.
Thus, some bacteria evolved a system that incorporates the first two
essential elements of the lac-operon in another gene.

This all seems perfect, but the bacteria cannot utilize the lactose
unless it can enter the cell. To this point Hall had been inducing
the production of lac-permease artificially to bring the lactose into



EXPLAINING THE SEEMINGLY IMPOSSIBLE 49

the cell. However, some of the cells that had evolved to utilize both lac-
tose and lactulose (another �-galactoside sugar), as a result of a second
point mutation in the ebgA gene, produced a form of �-galactosidase
that naturally converted some of the lactose to allolactose, and this
switched on the lac-operon to produce lac-permease in the normal
way. Thus, the last essential element of the lactose utilizing system
has been partially developed.

What this set of experiments demonstrates is that it is possible to
evolve complex systems by the accumulation through natural selec-
tion of random mutations. Moreover, we see the modified lac-operon
and the mutated ebg-operon interacting to form a system that has all
the essential elements of a highly regulated system to utilize lactose
as an energy source. The evidence does not support Behé’s assertion
that this is impossible.

This brings me to the final point I wish to make. We have seen
that one frequently obtains clues as to how perfect, or nearly per-
fect, structures have evolved when one makes a comparative survey
of these structures in other groups of organisms. Dawkins in his 1996
book makes a powerful metaphor for what confronts the person who
wonders how such exquisitely adapted organ systems and organisms
might have been created, and that is Mount Improbable. We reach the
base of the mountain and are confronted by enormously high, sheer
cliffs, and our object (the eye, or whatever else we wonder about) is
at the top. Some travellers stay at the base of the cliffs, staring at the
lofty object, and conclude that it is impossible to reach such heights
without divine intervention, because they believe that the structure
must be formed in a single step. Others question how such complex
things could have developed, but by searching further find on the
other side of the mountain gentle sloping paths that can be travelled
step by step until the summit is reached. No divine intervention is
necessary. There are other peaks on Mount Improbable where it is
possible to find intermediate types, or totally different types, of the
structure we are interested in. The organisms on these peaks usually
cannot cross from one peak to another, only the traveller, diligently
making a map of the whole mountain, can show the most likely paths
these organisms have followed in their evolutionary history.

We will explore this Darwinian view of life in the rest of this book
as we consider the way populations grow, either in isolation or in the
presence of other populations, as we examine basic population genet-
ics, and finally when we consider certain aspects of animal behaviour.





Part II
Simple population
growth models and
their simulation

This part of the book provides an introduction to some simple mathe-
matical models that describe the growth of populations, and Quattro
Pro and Excel spreadsheet programs are used to simulate these pop-
ulations. The emphasis is on making a quantitative assessment of
the consequences of Darwin’s ‘overproduction of offspring’ and some
aspects of ‘the struggle for existence’.

Two basic types of population growth models are described. First,
the consequences of Darwin’s ‘overproduction’ of organisms are con-
sidered in Chapter 4, and described in mathematical terms using the
geometric and exponential growth models. These models assume that
there are no limits to the numbers of organisms and show that all
populations growing in this manner will soon exhaust the earth’s
resources. Second, in Chapter 5 we look at one aspect of Darwin’s
‘struggle for existence’, intraspecific competition, which occurs when
a population grows in an environment of finite size. This form of
growth is described using the logistic, or sigmoid, growth model,
which has some rather restrictive assumptions. This basic model is
then modified to assess the effects of time lags and environmental
variation on the form of population growth. The models are applied
to laboratory and field data show how they relate to reality.

Many population phenomena can be described by recurrence equa-
tions, which can be used repeatedly to describe a population through
a series of generations. For example, the number of individuals in
the present generation is related in some way to the number in the
previous generation, which in turn is related to the number in the
generation before that, and so on. Thus, once we know how the state
of one generation is related to the next, we can use a single equation
repeatedly to estimate the state of a series of generations, providing
the relationship does not change. Spreadsheet programs, like Quattro
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Pro or Excel, are ideal for simulating simple population phenomena
because the cells of spreadsheets can be linked to each other in much
the same way that the states of different generations are linked. This
will be demonstrated as the various growth models are simulated
using either Quattro Pro or Excel. It is important that you try the
simulations yourself, because you will learn some very basic skills
that should be useful to you for a variety of purposes.



Chapter 4

Density-independent growth
and overproduction

Darwin noted that on average parents produce more offspring during
their lifetime than are needed to replace themselves, and so popula-
tions have the potential to increase in number. This fact is one of
the cornerstones of his theory of natural selection and we can ask
why organisms should have this characteristic? Why should there be
an overproduction of offspring? Perhaps the easiest way to answer
this question is to consider the fate of populations which do not
have this characteristic. Obviously, if individuals cannot fully replace
themselves, the population will decline to zero and be eliminated.
Populations adopting an exact replacement strategy suffer the same
fate, because there is always a chance that some individuals will die
before they reproduce and so these populations will decline to extinc-
tion as their reproductive base shrinks. Thus, although natural selec-
tion can select for any reproductive rate, providing that rate leaves
the most descendants, only those populations where there is an over-
production of offspring survive over the long term, the others are
eliminated.

We can conclude that overproduction is one of the necessary con-
ditions for the long-term survival of populations, allowing them to
compensate for pre-reproductive losses and to recover from reductions
in population size. We can make similar arguments for the long-term
survival of variation in the population. There must be overproduc-
tion of copies of specific variants if they are to survive and not be
eliminated from the population, and we should bear these facts in
mind when we consider the production of new variation by mutation
in Chapter 7 and the selection of different variants in Chapters 10
to 12.

Thus, organisms produce more offspring than are required to re-
place themselves, and as a consequence populations have the poten-
tial to increase in numbers. In this chapter we will look at two simple
models of population growth in which the rate of growth remains
constant, in order to understand the consequences of this type of
growth.
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4.1 Introducing density-independent growth

In our mathematical models, population size is denoted by the sym-
bol N and we use subscripts to indicate the size of the population
at different times. So Nt is the size of the population at time t, N1

and N2 the sizes of the population at times 1 and 2, and so on. By
convention we use N0 (i.e. size of the population at time 0) to indicate
the starting time of population growth. We also use the symbols �

and δ to denote changes in population size.
The units of time, t, will vary according to the type of organism

we are studying. For rapidly growing populations like bacteria, t may
be in minutes; whereas for many trees and vertebrates, t may be mea-
sured in years. We use the symbols � and δ to denote intervals of
time.

Most of us recognize that the series 1, 2, 4, 8, 16, 32, 64, etc., forms
an exponential or geometric series. What is the difference in these
two terms? Exponential growth is where the population is measured
at any point in time, whereas geometric growth is where the popula-
tion is measured at fixed discrete time intervals. Thus, they amount
to the same thing, the only difference being whether we measure
time continuously or at discrete intervals.

4.2 Growth at discrete time intervals:
geometric growth

A population may change in size over a discrete time interval as a
result of four factors: birth, death, immigration and emigration. If we
simplify things by considering a closed population where there is no
immigration or emigration we can see that the change in population
size over a time interval (�N/�t) is equal to the number of births
(B) less the number of deaths (D) during that same time interval, as
shown in the following expression:

�N

�t
= B − D (Exp. 4.1)

The change in population size as well as the number of births (B)
and deaths (D) are related to the size of the population, N, and the
rates per capita (i.e. rates per individual) are determined by dividing
through by the population size, N, at the start of �t to obtain the
following:

(�N/�t)

N
= B

N
− D

N
(Exp. 4.2)

However, the birth rate (B/N) minus the death rate (D/N) is equal to
the per capita, or per individual, rate of increase, Rm, and so Exp. 4.2
can be rewritten as:

(�N/�t)

N
= Rm (Exp. 4.3)
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Table 4.1 The relationships between population size (N ), change in population size (�N/�t ), and the popu-
lation rate of increase (Rm) for two populations that are growing geometrically

Population A: multiplication rate, λ, = 2 Population B: multiplication rate, λ, = 3

Time (t) N �N/�t (�N/�t)/N = Rm N �N/�t (�N/�t)/N = Rm

0 1 2 − 1 = 1 1/1 = 1 1 3 − 1 = 2 2/1 = 2
1 2 4 − 2 = 2 2/2 = 1 3 9 − 3 = 6 6/3 = 2
2 4 8 − 4 = 4 4/4 = 1 9 27 − 9 = 18 18−9 = 2
3 8 16 − 8 = 8 8−8 = 1 27 81 − 27 = 54 54−27 = 2
4 16 etc. etc. 81 etc. etc.
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increase, Rm. Data as in Fig. 4.2.

This can be rearranged to form our first equation:

�N

�t
= Rm N (Eqn 4.1)

This equation shows that the change in population size is directly
proportional to population size, provided the growth rate per capita,
Rm, remains constant (Fig. 4.1). We will use this equation in section 4.4
as a basis for the development of the exponential growth model.
Meanwhile, we can show that the mathematical relationship de-
scribed by Eqn 4.1 is correct by looking at two geometric series in
Table 4.1, where the population either doubles or triples each time
period.

Let us now develop an equation to predict the future size of the
population. Population size after one time step will equal the origi-
nal population size plus the change in number, which is expressed
mathematically by the following expression:

N1 = N0 + �N

�t
(Exp. 4.4)

Substituting Eqn 4.1 for �N/�t and setting N = N0, Exp. 4.4 is
modified to:

N1 = N0 + Rm N0 (Exp. 4.5)
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This reduces to:

N1 = N0(1 + Rm) (Exp. 4.6)

The multiplication rate, λ, from one time period to the next is
N1/N0, and therefore

N1 = N0λ (Exp. 4.7)

A comparison of Exps. 4.6 and 4.7 reveals that

λ = 1 + Rm (Exp. 4.8)

Thus, the multiplication rate, λ, can be considered to be made
up of two parts: the value 1 representing the population size at the
start of the time interval, and the value of the rate of increase per
capita (or individual), Rm, over the time interval, �t. We can see that
this relationship is consistent if we look at the values of λ and Rm

in Table 4.1. If the birth rate exceeds the death rate, then Rm > 0
and λ > 1 and the population will increase in size; if the birth and
death rates are equal, then Rm = 0 and λ = 1 and the population will
stay the same size; and if the death rate exceeds the birth rate, then
Rm < 0 (i.e. it will be negative) and λ < 1 and the population will
decrease in size.

From Exp. 4.7 we see that the population size after two time steps
is

N2 = N1λ (Exp. 4.9)

and substituting Exp. 4.7 for N1 in Exp. 4.9 yields:

N2 = N0λλ = N0λ
2 (Exp. 4.10)

We can do this for successive time steps to show that the general
case is provided by the following equation:

Nt = N0λ
t (Eqn 4.2)

The size of the population at fixed intervals of time can now be pre-
dicted (Fig. 4.2) provided we know the starting number, N0, and there
is a constant multiplication rate, λ, during each time interval, �t.
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The time intervals, �t, may be arbitrarily defined (one week, 10 days,
20 minutes, etc.), or may correspond to the natural generation time
of the organism.

Many students will have found this section on the geometric
growth model to be rather unsatisfying. You may follow the logic
of the algebraic proofs, but at the end it all seems so abstract. What
does it all mean, what should one remember, and how can one apply
the model? To help answer these questions, we will now consider two
examples of the use of the model.

Example 4.1 A bacterial population has a doubling time of 20 minutes
(has a λ of 2). Starting with a population of 10 bacteria, what would be the
potential population size after 12 hours?

We can use Eqn 4.2 to solve this problem, where N0 = 10, λ = 2
and t = 3 × 12 = 36 (there are three 20-minute periods per hour).
Thus, Nt = 10 × 236 = 687 194 767 360.

Example 4.2 An insect population is observed to increase from 6 to 15
individuals over a two-week period. What will be the population size after
10 weeks ( from time 0) if the multiplication rate stays the same?

First, we determine the value of the multiplication rate (λ) which
is equal to 15/6 = 2.5 for a period of two weeks. Then we calculate the
number of time intervals, t, which is equal to 10/2 = 5 (the number
of two-week periods in 10 weeks). Finally, we use Eqn 4.2, setting N0 =
6, and solve for Nt. Thus, Nt = 6 × 2.55 = 585.9, or 586 individuals.

4.3 Simulating geometric growth

We can simulate the form of population growth we have just de-
scribed using a spreadsheet program. This achieves two things: it en-
ables us to use the various equations and graph the results quickly
so that we have a visual representation of the various relationships,
and it also introduces us to the power of using spreadsheets to simu-
late all sorts of population models. It is important that you do these
simulations yourself, not just read about them in this book. The in-
structions provided (see Appendix 4.1 at the end of this chapter) are
suitable for users of either Quattro Pro or Excel, but other spreadsheet
programs follow a similar logic.

Our simulation of geometric growth produces two graphs (Figs. 4.1
and 4.2) which show the form of the relationships of Eqns 4.1 and
4.2, respectively. If we look at the form of growth over time it looks as
if the population is growing at a faster and faster rate (Fig. 4.2) even
though the growth rate remains constant. This is because the change
in population size is linearly related to population size (Fig. 4.1), and
so as the population grows larger in size, the increase in size grows
proportionately. We will return to this point later.

The model of geometric growth that we have just described and
simulated has one quirk. The value of the multiplication rate (λ) is
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linked to the discrete time step, �t, and if we change the value of
�t we cannot change the value of λ by simple scaling. For example,
imagine we studied a bacterial population at 20-minute intervals and
determined that the population was doubling each time step, i.e.
λ = 2. If we wished to model the population at 10-minute intervals, λ

would not equal 1 (i.e. half of 2) because this would indicate that the
population is not growing at all. The method of converting λ from
one time interval to another is developed in the next section at the
end of the exponential growth model.

4.4 Continuous growth through time:
exponential growth

If we make the time intervals infinitesimally small in our discrete
growth model, Eqn 4.1 is modified to the following differential equa-
tion:

δN

δt
= rm N (Eqn 4.3)

The expression δN/δt represents the change in population size at
an instant of time, and is the tangent to the population growth curve
at population size N. The slope of the tangent is rm, which is the
instantaneous rate of increase, sometimes called the intrinsic rate of
natural increase or the Malthusian parameter after Thomas Malthus.
The value of rm is equal to the instantaneous birth rate minus the
instantaneous death rate, i.e. rm = b − d. The value of Rm in our
discrete growth model converges to the value of rm as we make the
time steps, �t, smaller and smaller. Thus, rm is the growth rate per
capita, just like Rm, only the time scale is different.

To predict population size at any time t , i.e. Nt, we integrate
Eqn 4.3 following the rules of calculus. This is a trivial exercise for
anyone familiar with the rules of integral calculus, but is unintelligi-
ble for those who are not. Do not worry if you don’t know calculus. All
we are doing by integrating an equation is to add up all of the small
changes within defined limits. In this case we add up the infinites-
imally small changes in population size from time 0 (our starting
time) to time t. When this is done, the integral form is:

Nt = N0ermt (Eqn 4.4)

This equation is the same as the formula for compound interest,
where N0 is the principle sum invested, rm is the rate of interest, and
Nt is the balance after time t. We can also note that Eqn 4.4 is similar
in form to Eqn 4.2 (Nt = N0λ

t), and describes the same form of growth
that is illustrated in Fig. 4.2. A comparison of Eqns 4.2 and 4.4 reveals
that

erm = λ (Eqn 4.5)

and taking the logarithm of both sides of this equation gives:

rm = lnλ (Eqn 4.6)
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The value of rm can be easily scaled from one set of time units to
another. For example, if the value of rm is 0.1 per day, then the rmvalue
per week is 0.1 × 7 = 0.7. In order to convert the multiplication rate,
λ, from one timescale to another, however, one must first calculate
the rmvalue equivalent to λ , make the conversion, and then convert
the new rm value back to the new λ using Eqn 4.5. Thus, if λ per
week is 2 and we wish to know the λ per day, we first calculate rm

per week (= ln2 = 0.6931), then divide this by 7 to obtain rm per day
(0.6931/7 = 0.0990), and finally convert this value back to λ per-day
(e0.099 = 1.104). Ecologists tend to use rm rather than λ , because it is
very easy to compare the growth rates of different species that have
been measured using different time scales. Population geneticists,
however, use λ in their models because they are usually considering
the growth of genotypes on a per-generation basis.

Finally, we will derive one last pair of equations. If we take the
logarithm of both sides of Eqns 4.4 and 4.2, we obtain the following:

ln(Nt ) = ln(N0) + rmt (Eqn 4.7)

ln(Nt ) = ln(N0) + ln(λ)t (Eqn 4.8)

These two equations are equivalent. They show that the logarithm
of population size changes linearly through time if the populations
are growing exponentially or geometrically. Thus, we can see if a
population is growing exponentially by plotting the logarithm of
population size over time. If it conforms to a straight line the popu-
lation is growing exponentially and the intrinsic rate of increase, rm,
is given by the slope of the graph (Fig. 4.3).

Let us consider two more examples to show how to apply the
exponential growth equations.

Example 4.3 A certain species of rat breeds continuously and has an esti-
mated rate of natural increase (rm) of 0.0143 per day. A small number invade
a garbage dump where living conditions are ideal. How long will it take the
population to double in size?

First, rearrange Eqn 4.4 ( Nt = N0ermt ) to Nt /N0= ermt . If the popu-
lation doubles in size, Nt/N0 = 2. Taking the logarithm of both sides
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Fig. 4.3 Exponential and
geometric growth of a population
plotted on logarithmic scale using
the same values as in Fig. 4.2.
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of the rearranged equation we have ln 2 = 0.6931 = 0.0143 × t, and
so t = 48.47 or approximately 48 days.

Example 4.4 A continuously growing population was observed to double in
size every three days. Calculate the multiplication rate (λ) per day and per
week.

The λ per three days = 2. To calculate the λ at other timescales
use Eqns 4.5 and 4.6. From Eqn 4.6 we see that rm per three days =
ln(2) = 0.6931, and so the rm per day = 0.6931/3 = 0.2310, and the
rm per week is 7 × 0.2310 = 1.6173. Then use Eqn 4.5 to calculate the
λ per day = e0.2310 = 1.26, and the λ per week = e1.6173 = 5.04.

4.5 Simulating exponential growth

We will now continue with our simulation exercise (see Appendix 4.2
at the end of this chapter) to include the continuous time model.
When you do this, you will see that the plot of Eqn 4.7 (and it would
be the same for Eqn 4.8) conforms to Fig. 4.3. In addition, we can show
that the geometric growth model is a special case of the exponential
growth model.

4.6 The population bomb

Populations can increase to astounding numbers when there are no
limits on growth (i.e. growth continues at an exponential rate). We
often talk of the population bomb because the process of exponential
or geometric population growth resembles that of an atomic bomb,
in which an atom splits and the fragments go on to split more atoms
leading to a chain reaction and an explosion. The explosion in num-
bers of organisms takes place more slowly than an atomic explosion
but the result is just as inevitable. A few examples will make this
clear.

Our spreadsheet simulations show that a single individual will
give rise to 1024 individuals after 10 generations of doubling. After
another 10 generations the population will be 1 048 576 individuals
(220), and half of this total will have been added in the last gener-
ation. Bacteria, such as E. coli, can divide (double) every 20 minutes
and so a population can potentially double 72 times a day. Thus, a sin-
gle individual can potentially increase to approximately 4.722 thou-
sand million million million individuals during the course of one
day!

I was reading in a local paper that the female housefly (Musca do-
mestica) can lay 75--150 eggs at a time, and lays up to 800 in its month-
long life. The eggs hatch into maggots within a day and the larvae
reach their full size in about five days. They pupate for a few days,
and when they emerge they begin mating almost immediately. Their
generation time is about two weeks, and so the offspring of a female
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Fig. 4.4 Growth of the breeding
population of merlin falcons in
Saskatoon from 1970 to 1982,
(a) on an arithmetic scale, and
(b) on a logarithmic scale. (Data
from Oliphant and Haug 1985.)

are producing their own offspring before the female’s reproductive
life is over. There will be about seven generations of flies during a
typical summer in Canada. We can estimate the potential production
of a pair of flies, one male and one female, during a summer. We
set λ as 400, assuming a 50 : 50 sex ratio (a female will give rise to
400 female offspring), t is 7, and N0 is 2. Using Eqn 4.2, the estimated
population size at the end of the summer is 3 276 800 000 000 000 000,
or approximately 3.28 million million million flies.

Some populations increase much more slowly. For example,
Charles Darwin calculated that a pair of elephants would take ap-
proximately 750 years to produce a population of 19 million. We can
go on making such calculations, some more impressive than others,
and they may be useful if we wish to sell disinfectant, fly swatters or
elephant traps. The point is, however, that unlimited growth is not
sustainable, and we will look at the limits to growth in a preliminary
way in the next chapter. For now we will look at some examples of
exponential growth that have been observed in nature.

4.7 Examples of exponential growth

In the city where I live (Saskatoon, Saskatchewan), there was a dra-
matic increase in the breeding population of the merlin falcon (Falco
columbarius) throughout the 1970s and early 1980s. This increase has
been documented by Oliphant and Haug (1985). The arithmetic plot of
the numbers of breeding pairs from 1970 to 1982 appears not to have
a smooth exponential growth form (Fig. 4.4a), but a logarithmic plot
of the numbers reveals that growth was approximately exponential
during this time period (Fig. 4.4b). Note that by exponential growth
we mean that the growth rate is approximately constant. The aver-
age intrinsic rate of natural increase, rm, over the 13-year period was
0.236, giving an average yearly multiplication rate (er ) of 1.266, or an
average increase of almost 27% per year.

Several factors have combined to make this population increase
possible. The prairie--parkland area of Canada has few suitable
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Fig. 4.5 Growth of a pheasant
population on Protection Island
from 1937 to 1943, (a) plotted on
an arithmetic scale, and (b) on a
logarithmic scale. The latter is
compared to an exponential series
(straight dotted line). (Data from
Lack 1967.)

nesting habitats for merlins, but Saskatoon is located on the
South Saskatchewan River where merlins occur naturally. The urban
population was probably started from this source. Merlins do not
build their own nests but take over old nests of American crow (Corvus
brachyrhynchos) or black-billed magpie (Pica pica). In Saskatoon these
birds nest almost exclusively in large mature spruce trees that are
older than 30 years. Thus, the seeds of the merlin invasion were set
decades before 1970. Merlins thrive in the urban habitat because there
is a large urban prey population of house sparrows (Passer domesticus).
Once merlins established themselves in the city it is believed that
the majority of new nests were established by birds fledged from city
nests because the immigration of new birds from surrounding areas
was limited. However, only the older parts of the city have mature
spruce trees suitable for nesting. All of the nests found during the
study period were located within a core area of 35 km2 in the city,
which in the early 1980s had a total area of 122 km2. One can predict
that as spruces begin to mature in newer neighbourhoods, and these
areas are invaded by crows and magpies, then the merlin population
will expand into these areas.

A second example is provided by a population of pheasants
(Phasianus colchicus) that were introduced onto Protection Island off
the coast of Washington State (Lack 1967). The population was a closed
one because the island was too far from the mainland for pheasants
to fly in or out. Eight pheasants were introduced in 1937 and by the
spring of 1943 the population had increased to nearly 2000 birds,
aided by the fact that there was abundant food on the island, and
there were no bird predators. An arithmetic plot of population size
appears to resemble an exponential growth series (Fig. 4.5a), and one
can estimate the average intrinsic rate of increase from 1937 to 1943
from the logarithmic plot of the numbers (Fig. 4.5b). A careful ex-
amination of the logarithmic plot (Fig. 4.5b) suggests that there is a
curvilinear relationship through time (the dashed line) and that the
growth rate was gradually declining over time, possibly as a response
to declining food resources. Unfortunately, we will never know for
certain because the experiment was abruptly terminated when the
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United States Army set up a training camp on the island and shot all
the pheasants.

There are undoubtedly many other examples of populations
showing approximately exponential forms of growth for a period,
particularly for introduced species that have been spectacularly suc-
cessful in their new home. One can think of the prickly pear cactus
(Opuntia) introduced into Australia, South Africa and the Hawaiian
Islands, the rabbit (Oryctolagus) introduced to Australia, and the many
species of fish that have been introduced to provide freshwater fish-
ing throughout the world. In most of these cases there are inadequate
records to document the precise growth forms of the various intro-
ductions.

4.8 Problems

To check your understanding of this chapter, try the following problems. A
summary of equations is provided in Box 4.1, and the answers to the
problems may be found in the ‘Solutions to problems’ section at the end of
the book.

1. A moth has an annual life cycle. One population was observed to increase
from 5000 to 6000 individuals in one year. Predict the size of the
population after three years (from the starting population of 5000),
assuming no change in the rate of growth.

2. The human population increased from approximately 600 million to 900
million between ad 1700 and 1800. Calculate the value of rm and λ per
year assuming exponential growth.

3. A small population of kudu (Tragelaphus strepsiceros), introduced into a
reserve area which is being rehabilitated for wildlife, is observed to
increase 15% on average every year. Approximately how many years will it
take for the population to double in size?

4. The value of rm for a rat population is 0.14 per week. Starting with a
population of 24 rats, what will be the approximate population size after
65 days assuming exponential growth?

Box 4.1 Summary of equations

Discrete (geometric) growth model

�N
�t

= RmN (Eqn 4.1)

Nt = N0λ
t (Eqn 4.2)

ln(Nt ) = ln(N0) + ln(λ)t (Eqn 4.8)

Rm = B
N

− D
N

(Exp. 4.3)

Rm = λ − 1 (Exp. 4.9)
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Continuous time (exponential) growth model

δN
δt

= r m N (Eqn 4.3)

Nt = N0ermt (Eqn 4.4)

ln(Nt ) = ln(N0) + r mt (Eqn 4.7)

r m = b − d

erm = λ (Eqn 4.5)

r m = ln(λ) (Eqn 4.6)

Note that the per capita (i.e. per individual) rate of increase (Rm) is measured over
the entire duration of the time step �t , whereas the intrinsic rate of increase (r m)
is the per capita rate of increase measured over an infinitesimally small time step.
In both cases they equal the per capita births less the per capita deaths, but they
relate to different time frames.

In some texts, the multiplication rate (λ) is given the symbol R , so be careful
when you compare equations from different sources.

5. A population increases fivefold over a four-week period. What is the value
of λ per day assuming exponential growth?

6. It is estimated that by 1959 the world’s human population was
2 907 000 000 with an overall birth rate of 36 per 1000 people per year
and a death rate of 19 per 1000 people per year. What was the expected
increase in population size in 1959?

7. In 1959 the human population of the world increased by approximately
50 million from 2 907 000 000. (a) Calculate the value of rm per year to
four decimal places, assuming exponential growth; and (b) if the average
death rate was 19 per thousand people per year, what was the average
birth rate in 1959.

Appendix 4.1 Simulation of geometric growth

Open Quattro Pro or Excel. The spreadsheet consists of a table with
the columns labelled A, B, C, etc. and the rows numbered sequentially.
We use the system as a programmable calculator which stores and dis-
plays the results in tabular and graphic forms. Do the following steps:

1. To give our simulation a title, type Simulation of Geometric and
Exponential Population Growth in the A1 cell of the spreadsheet.

2. Type Multiplication rate (lambda) = in A3 and enter the value 2
in D3.

3. Type Geometric Growth Model in B6
4. Enter the various column headings for our model in rows 8 and 9

of columns A--D, as shown in the diagram below. Adjust the column
width to accommodate the text and centre the text in the cell to
enhance its presentation. This is done by clicking the appropriate
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buttons on the toolbar in Quattro Pro or by clicking format in
Excel.

A B C D

8 Time Popn size Change (Nt+1 − Nt)/Nt

9 (t) Nt (Nt+1 − Nt) Rm

5. To keep track of time enter 0 (zero) in A10 (our starting time);
then type = A10+1 in A11 and then copy A11 to cells A12 to A21.
This creates a sequence of numbers from 0 to 11 in column A.
We have created a simple formula, to add 1 to the value of the
preceding cell in the column and enter the sum in the current
cell. Note that when we copied the formula to succeeding cells in
the column the spreadsheet program automatically adjusted our
formula, from A10 + 1 in cell A11 to A11 + 1 in the A12 cell, and
so on.

6. To calculate population size first enter one in cell B10 (our starting
number N0; then type = B$10∗$D$3ˆ A11 in B11 and copy B11 to
cells B12 to B21. The formula in cell B11 represents Eqn 4.2. $B$10
is the value of N0 and we use the $ sign before the column and
row values to stop the spreadsheet from adjusting these values
when we copy the cell to other cells. Similarly we fix the value of
λ (lambda) using the term $D$3 (which should equal 2 if we did
step 2 correctly), but the value of the power t in the equation is
denoted by ˆ A11 because this needs to adjust through time. If we
have done step 6 correctly, you should see the familiar geometric
series 1, 2, 4, 8, 16, . . . , 2048 in column B. Our equation or formula
is correct.

7. To calculate �N/�t type = B11 -- B10 in C10 and then copy C10 to
cells C11 to C20 (not C21). You will see the same sequence of num-
bers as in column B. Don’t worry about this because the numbers
will vary when we change the value of λ in cell D3.

8. Calculate Rm in column D by typing = C10/B10 in cell D10 and copy-
ing D10 to cells D11 to D20. We should see the value 1 throughout
the column if we have done everything correctly. Note that this
calculation uses a simple rearrangement of Eqn 4.1.

9. To graph the results of our simulation click onto the histogram
button on the power bar and move the cursor down and insert
the chart below the tabulated results of the spreadsheet by left
clicking the mouse. In Quattro Pro, a clear rectangle will appear
and another row will appear on the toolbar. Look for the row of
histogram buttons on the row below the one you have just used.
Find the one which indicates it is to add or revise cells to be plotted
and click on that. You can now create a graph by inserting the
correct series to be plotted. In Excel, ChartWizard will appear and
you will follow the steps as outlined in 10.
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10. First graph population size through time, as predicted by Eqn 4.2.
In Quattro Pro, type A10 . . A20 for the x-axis, type B10 . . B20 in
the 1st: series, then click OK. Title the graph Geometric growth,
label the x-axis Time (t) and the y-axis Popn. Size (Nt). When you
click OK the graph will be complete and should look something
like Fig. 4.2. In Excel, move your cursor to outline cells A10 to B20
and follow the instructions as outlined in step 10, only using the
titles as indicated for Quattro Pro in step 11. Your graph should
resemble Fig. 4.2.

11. Next graph the relationship between the change in population
size (�N/�t) and population size (N), as predicted by Eqn 4.1,
by following step 9 again. In Quattro Pro, type B10 . . B20 for
the x-axis but don’t press Enter. Instead, move the cursor to the
1st: series and type C10 . . C20, then click OK. A graph will ap-
pear. Now find the button to add titles and click on that. Label
your graph by typing Change in N vs. N in the Title box, Popn.
Size (N) in the x-axis box, and Change in N in the y-axis box.
When you click OK the graph will be complete and should be
similar to Fig. 4.1. In Excel, move your cursor to outline cells B10
to C20 and enter this series in step 1 of ChartWizard; in step 2
click on XY Scatter; in step 3 select format 2; ignore step 4; and
in step 5 add the titles as outlined for Quattro Pro above. The
final graph should resemble Fig. 4.1. The slope of the relation-
ship is Rm, the value of which is indicated in column D of the
spreadsheet.

12. Our simulation model of geometric growth is complete. Now
change the value of λ and see that the spreadsheet automati-
cally recalculates the values of the dependent variables and plots
the new values on the two graphs. Set in cell D3 equal to 1.5
and note that the population grows more slowly than when λ

equalled 2, and that Rm = 0.5. If λ = 0.9 we see that the popu-
lation declines in a geometric fashion and now Rm equals −0.1,
because the death rate exceeds the birth rate. Note that the forms
of the relationships remain constant even though the values of
the variables Nt, Rm and so on change as λ changes. You may see
that λ always equals 1 + Rm, as shown in Exp. 4.9, or to express
this another way Rm = λ − 1.

13. Save your spreadsheet, because we will use it again later.

Appendix 4.2 Simulation of exponential growth

1. Open your simulation program for geometric growth.
2. Add the various headings by typing Exponential Growth Model

in F6, Popn. Size in F8, Nt = N0ert in F9, and ln(Nt) in G9.
3. Type rm= in F3 and then enter the formula = ln($D$3) in G3. If

the value of λ in cell D3 is 2, then rm should equal 0.693147 in
cell G3.
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4. To calculate population size in column F input the same start-
ing value as for geometric growth in F10, i.e. = $B$10. Then
enter the formula equivalent to Nt = N0ermt in F11, which
is =$F$10∗EXP($G$3∗A11), and copy F11 to cells F12 to F20. The
exponential series in column F is identical to the geometric series
in column B and so there is no need to graph this simulation.

5. To calculate the logarithmic values of Nt in column G enter the
formula = ln(F10) in G10 and then copy this to cells G11 to G20.

6. Now create a graph of ln(Nt) over time to simulate Eqn 4.7. You
may need to refresh your memory of how to do this by looking
over steps 9 and 10 in the simulation of geometric growth. Your
chart should use cells A10 . . A20 in the x-axis, and cells G10 . . G20
in the y-axis. Your graph should be similar to Fig. 4.3 and you can
see that the logarithm of population size changes linearly over
time.

7. Finally, we can explore the relationship between the discrete time
model of geometric growth and the continuous time model of ex-
ponential growth. In some respects they give identical results, but
if we set λ equal to 2 we can see that the value of Rm equals 1
whereas the value of rm equals 0.6931. This is because Rm is the
growth rate over a discrete time period whereas rm is an instan-
taneous rate. If we reduce the time steps to shorter and shorter
intervals, rm converges to the value of rm. We can simulate this by
progressively reducing the value of λ in cell D3. Various values are
shown below and they indicate that the discrete time model is a
special case of the continuous time model.

λ rm Rm rm/Rm

1.500 0.40547 0.500 0.8109
1.100 0.09531 0.100 0.9531
1.010 0.00995 0.010 0.9950
1.001 0.00100 0.001 1.0000

8. Save your program and exit Quattro Pro or Excel.



Chapter 5

Density-dependent growth, and
the logistic growth model

Organisms have a phenomenal potential for increase in numbers
when there are no limits to growth. We may enjoy calculating this
potential, but don’t worry that if we leave the house for a few days we
will return to find bacteria many metres deep over the kitchen coun-
ters, or if we lock up our summer cabin and inadvertently enclose
a female housefly that we will return next spring to find trillions of
her offspring buzzing about the place. We recognize that there are
insufficient resources to sustain such growth because we live in a
finite world, and although we see many instances of population in-
crease we know that there are limits to the size they may eventually
reach.

This chapter will focus on developing models which describe how
population growth may be influenced by population density through
the effects of intraspecific competition for resources. As populations
increase in density, the resources needed to sustain them become
limiting. For example, barnacles may cover the entire surface of a
rock until there is no more space available for further growth of the
population. Similarly, cavity nesting birds may have the size of the
breeding population limited by the availability of suitable holes in
trees. The basic premise of our models is that the realized growth
rate will decline as population density increases.

5.1 Logistic growth model

The logistic growth model modifies the exponential growth equation
δN/δt = rmN by making the growth rate per capita, r, a function of
density, f(N). Thus:

δN

δt
= r N (Exp. 5.1)

And

r = f (N ) (Exp. 5.2)



LOGISTIC GROWTH MODEL 69

To determine the form of this function we assume that there
are sufficient resources to sustain a stable population density of K
individuals, called the carrying capacity of the population. The max-
imum growth rate per capita is equal to rm, which is the growth
rate when there are no effects of density (i.e. growth is exponential).
When all individuals are identical, each individual uses 1/K of the
resources and reduces the maximum growth rate, rm, by 1/K. Thus,
N individuals reduce rm by N/K. This relationship is expressed in the
following way:

r = rm

(
1 − N

K

)
(Eqn 5.1)

This equation shows that the growth rate per capita, r, is depen-
dent on the population density (N). In populations where there is a
large carrying capacity (K) and N is small, r approximates rm, its value
when there are no density-dependent effects. As the population den-
sity (N) increases to the carrying capacity (K), the value of r steadily
decreases until at the carrying capacity it equals zero and the popu-
lation stops growing. If N exceeds K, then r becomes negative and the
population will decline.

By substituting Eqn 5.1 in Exp. 5.1, we obtain the logistic growth
equation, first derived by the French mathematician Verhulst (1838),
and independently derived by the American demographers Pearl and
Reed (1920):

δN

δt
= rm N − rm

N 2

K
(Eqn 5.2)

Equation 5.2 is frequently presented in two other equivalent
forms:

δN

δt
= rm N

(
1 − N

K

)
or

δN

δt
= rm N

(
K − N

K

)
(Eqn 5.2a)

One interpretation of Eqn 5.2 is that the rate of increase of the
population (δN/δt) is equal to the biotic potential, i.e. the potential for
exponential growth (rmN), minus the resistance to growth that is cre-
ated by the population itself, i.e. density-dependent effects (rmN2/K).
This latter term can be considered to be a measure of intraspecific
competition and is one component of what Darwin termed the ‘strug-
gle for existence’.

To express population density as a function of time, Eqn 5.2 is in-
tegrated following the rules of integral calculus to give the following
complex equation:

Nt = K

1 +
(

K

N0
− 1

)
e−rmt

(Eqn 5.3)

This equation shows that the population density at time t(Nt ) is
related to the starting population size (N0), the carrying capacity (K)
and the intrinsic rate of natural increase (rm) in a complex way. How-
ever, if we wish to calculate rm from a logistic growth curve, where
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we know the population densities at three points (N0, Nt and K), it is
easier to do this if Eqn 5.3 is rearranged to:

−rmt = ln

{
K − Nt

[(Nt K − Nt N0)/N0]

}
(Eqn 5.4)

The following are examples of how these equations may be
applied.

Example 5.1 The growth of a laboratory culture of Paramecium was ac-
curately predicted by the logistic growth equation. If the equilibrium density
(K) is 400 individuals per ml, and the intrinsic rate of natural increase (rm)
is 0.7 per day, what is the predicted density of individuals after 10 days in a
culture started with 5 individuals per ml?

Use Eqn 5.3 to solve this. The value of e−0.7 × 10 = 0.000912, and
this is multiplied by (400/5 − 1 = 79) to obtain 0.072. Add one to
this value (= 1.072), and then divide the sum into 400 to obtain the
answer of 373 individuals per ml (rounded to the nearest integer).

Example 5.2 A population of songbirds has an equilibrium density of 31
breeding pairs per hectare. A population was introduced into a new area at a
density of one breeding pair per hectare and reached a density of 12 breeding
pairs per hectare after 10 years. What is the intrinsic rate of natural increase
(rm) assuming that the population is growing logistically?

Use Eqn 5.4 and set t = 10, K = 31, Nt = 12 and N0 = 1. The answer
is 0.294 per year.

Example 5.3 What is the realized rate of increase per capita when there
are 12 breeding pairs per hectare in the population in example 5.2?

Use Eqn 5.1 to calculate this, where rm = 0.294 per year, N = 12
and K = 31. The answer is approximately 0.180 per year. Note that r
does not appear in Eqns 5.2 to 5.4. This is because these equations
automatically calculate r from the rm, N and K values.

5.2 Simulating logistic growth

The predictions of Eqns 5.1 to 5.3 may be investigated by completing
a spreadsheet simulation (see Appendix 5.1). You may need to refresh
your memory about how to do various operations by checking Appen-
dices 4.1 and 4.2. The completed simulation provides graphs that are
similar to Figs. 5.1 to 5.3.

The logistic model of population growth predicts that populations
attain a stable carrying capacity (K). The form of growth is S-shaped
for populations starting at a density below that of the carrying ca-
pacity (Fig. 5.1), and so it is sometimes called sigmoid growth. The
precise shape of the curve depends on the starting density (N0) and
the final density or carrying capacity (K). The steepness of the curve
is directly proportional to the value of the intrinsic rate of increase
(rm). Population densities never overshoot the carrying capacity and
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so the growth curves have a smooth shape. This indicates a perfect
adjustment of the per capita (i.e. per individual) growth rate, r, as the
density changes.

Simulations show that populations starting at densities above the
carrying capacity approach the carrying capacity more rapidly than
populations starting at densities below the carrying capacity. This is
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because the inhibition to population growth (term rmN2/K in Eqn 5.2)
is related to the square of the population density.

An examination of the S-shaped growth curve suggests that the
population grows at its fastest rate at intermediate densities. This
observation is confirmed when the population growth rate is plotted
as a function of population density (Fig. 5.2). The maximum increase
in numbers always occurs at half the carrying capacity (i.e. K/2).

The growth rate per capita, or the intrinsic rate of increase (rm) as
it is called, remains constant in exponential growth (Chapter 4). In
contrast, the growth rate per capita (r) in the logistic growth model
declines linearly as the density increases (Fig. 5.3). When the density
is zero, r is equal to rm because there are no effects of density, and r
declines to zero when the density reaches the carrying capacity (K).
At densities above the carrying capacity, r is negative. Assuming no
immigration or emigration, the population adjusts the value of r in
relation to density by altering the birth and death rates, and a stable
equilibrium (N = K) is reached at a density where the birth rate is
equal to the death rate.

The model has many unrealistic assumptions. It assumes that all
individuals are identical, but in reality they vary in size, age, sex and
genotype. These factors affect birth and death rates, and the use of
resources, and so we cannot expect rm and K to be constants. The
model also assumes that individuals adjust their birth and death
rates (i.e. r) instantaneously as the population changes in size, but in
reality there will be time lags to any such response. Finally, it assumes
that the environment is constant, but environments change over the
course of time and this is another reason why we cannot expect rm

and K to be constants.
Let’s now relax some of the restrictive assumptions of the model

to see how the form of growth may change.

5.3 Time lags

The logistic growth equation assumes that there is an instantaneous
and continuous adjustment of the growth rate as the population
changes in density, hence the smooth form to logistic growth curves
(Fig. 5.1). It seems likely, however, that most populations have time
lags in the way that they adjust their birth and death rates in rela-
tion to population density. For example, many species lay eggs which
hatch independently of the parent, and so the birth rate cannot be ad-
justed if the population density changes between the times of laying
and hatching of the eggs. In this case, the birth rate is related to the
density at the time of egg deposition, not the time of hatching, and
the time lag will correspond to the length of the incubation period.
Similarly, when young are born, they are usually much smaller than
adults. As they grow in size, they require more resources and the
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death rate may adjust as a consequence. In this case the time lag
will be related to the developmental period of the young in some
way.

There are various models to simulate time lags in logistic growth,
but we will only consider one of them. The discrete version of
the logistic model describes population growth by the following
equation:

Nt+1 = Nt + rm Nt

(
1 − Nt

K

)
(Eqn 5.5)

If you subtract Nt from both sides of Eqn 5.5 it can be seen that
this equation is analogous to the logistic equation of 5.2a, except that
there is a built-in time lag of one time step because the population
size at time t + 1 depends on the population size at time t. As the
time lag is a constant, the response of the model depends solely on
the intrinsic rate of increase (rm).

5.3.1 Simulating time lags: a discrete version of
the logistic growth model

A discrete version of the logistic growth model may be simulated by
adding to the spreadsheet simulation we have developed for logistic
growth (see Appendix 5.2).

The behaviour of the model is surprisingly complex. At low val-
ues of rm, it behaves like the simple logistic model and smoothly
approaches the carrying capacity in the familiar S-shaped pattern of
growth (Fig. 5.4a). When rm attains a value of about 1.1, the popu-
lation first overshoots and then undershoots the carrying capacity
in a series of damped oscillations. These oscillations are barely evi-
dent at first, but become more noticeable as rm gets larger (Fig. 5.4b).
When rm is greater than 2.0, the population begins to oscillate about
the carrying capacity in a stable two-point cycle (Fig. 5.4c). The cycle
rapidly becomes more and more complex as rm increases from 2.449
to 2.57, until at values above 2.57 the population fluctuates around
the carrying capacity in a chaotic manner (Fig. 5.4d).

The growth of populations starting at similar, but not identical,
densities are almost identical at low values of rm (Fig. 5.4a,b,c), but
once the fluctuations become chaotic, the two populations diverge
from one another over time (Fig. 5.4d). Also note that when the pop-
ulation fluctuates around the carrying capacity (K) the average pop-
ulation size is less than K, because populations above the carrying
capacity decline more rapidly in size than populations below the car-
rying capacity increase in size.

What does all this mean? For populations that grow in a series of
steps, like many annual insects and plants, their form of growth may
not appear to be logistic even when their birth and death rates are
density dependent. Their form of growth depends on the value of rm,
which will be high for many of these species, and so we might expect
their densities to be chaotic from one year to the next. However, there
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Fig. 5.4 Behaviour of the
discrete logistic growth model for
a population with different values
of rm and a carrying capacity (K ) of
50. Solid lines indicate a population
starting at a population size of 1,
and stippled lines indicate a
population starting at a population
size of 1.1. See text for details.

are limits to the size of these fluctuations, and we may still be able
to detect density dependence. We will consider this aspect when we
come to apply the models.

5.4 Varying the carrying capacity

The carrying capacity is not constant because the environment varies
both seasonally and from year to year. How do populations respond?
From our analysis of time lags we can obtain an understanding of
how populations will respond, because there will be an inevitable
lag in the population’s response to changes in the carrying capacity.
How a population reacts will depend on its intrinsic rate of increase
(rm). Populations with high rm values, such as many species of small
mammals and insects, have a short time lag and so will tend to track
the fluctuations in K. In contrast, populations with low rm values, such
as large mammals, have longer time lags and so react more slowly.
They will vary less than the variation in carrying capacity, and will
tend to persist at a density that is lower than the overall average of K.



ANALYSING POPULATION GROWTH 75

Remember that fluctuations in density are asymmetrical about K, and
that the mean density is below K (Fig. 5.4c,d). Excellent introductions
to this topic are provided by May (1976) and Gotelli (1995).

5.5 Analysing population growth

5.5.1 Yeast
One might anticipate that laboratory cultures of unicellular organ-
isms are likely to exhibit a form of growth that is approximately lo-
gistic, because the conditions necessary for growth, and consequently
the carrying capacity, can be held constant, and any time lags are
likely to be short. Yeast is often presented as a classic case of logistic
growth in textbooks (Fig. 5.5), and it may be seen that the logistic
growth curve provides an excellent fit to these data (Table 5.1).

5.5.2 Fitting the logistic growth curve
How do we fit a logistic growth curve to these data? A reasonable fit
can be made in the following way. First, we can rearrange Eqn 5.3 to
the following expression:

ln

(
K − Nt

Nt

)
= a − rmt (Exp. 5.3)

In this expression, a = ln(K/N0 − 1). If we plot the values for the
left-hand side of the equation (i.e. y values) versus t (i.e. x values), the
points should lie more or less on a straight line. We can then estimate
a (the y-intercept) and rm (the slope of the line) by fitting a linear
regression. The trick is to estimate K correctly. Initially K is estimated
by seeing where the slope levels off. We can then systematically alter
K and see which value gives the best fit to the data. The procedure is
described in Appendix 5.3 if you wish to try your hand at curve-fitting.
I used this method to fit a logistic curve to the data in Table 5.1 (see
Fig. 5.5). My estimates were K = 664.3, a = 4.2017 and rm= 0.5384,
which compare very favourably to the estimates by Pearl (1927) of
K = 665, a = 4.1896 and rm = 0.5355.
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Fig. 5.5 Growth of a population
of yeast cells (see Table 5.1 for
data) showing the fit of a logistic
growth curve. (Data from Carlson
(1913), cited in Pearl 1927.)
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Table 5.1 Growth of a yeast population in culture. The biomass (units not
provided) of yeast was measured at hourly intervals

Time (hours) Yeast biomass

0 9.6
1 18.3
2 29.0
3 47.2
4 71.1
5 119.1
6 174.6
7 257.3
8 350.7
9 441.0

10 513.3
11 559.7
12 594.8
13 629.4
14 640.8
15 651.1
16 655.9
17 659.6
18 661.8

Source: Data from Carlson (1913), cited in Pearl (1927).

5.5.3 Paramecium
The growth of Paramecium caudatum does not describe such a near-
perfect logistic growth form as yeast, although the pattern of growth
is S-shaped (Fig. 5.6). It is also not as straightforward as before to fit the
logistic growth model to these data because the population appears
to fluctuate around the carrying capacity K. We cannot calculate the
value of ln[(K−Nt) /Nt] when Nt is larger than K because we are trying
to take the logarithm of a negative number. This happens by day 11
in the data presented (Table 5.2 and Fig. 5.6). What do we do? The so-
lution is to trim the data so that we only use the data up to, but not
including the day on which Nt exceeds K. We then use these trimmed
data to fit the growth curve as we did for yeast. Using the data
for days 0 to 10 in Table 5.2 provides a reasonable fit (Fig. 5.6) when
K = 202, a = 5.1 and rm = 0.74.

The growth form of Paramecium suggests that the population may
be oscillating about the carrying capacity. There are two possible
reasons for this. There may be a time lag operating, although the
value of rm does not suggest this would result in sustained oscillations
(see section 5.3). Alternatively, the population may be responding to
periodic fluctuations in the environment (i.e. a variable K), such as
the addition of food at fixed intervals.
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Table 5.2 Growth of Paramecium caudatum population in the medium of
Osterhout. Density (number of individuals in 0.5 ml of medium) represents
the mean of four different cultures started simultaneously

Day Density

0 2
2 10
3 10
4 11
5 21
6 56
7 104
8 137
9 165

10 194
11 217
12 199
13 201
14 182
15 192
16 179
17 190
18 206
19 209
20 196
21 195
22 234
23 210
24 210
25 180

Source: Data from Table 3 in Appendix I of Gause (1934).
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Fig. 5.6 Growth of Paramecium
caudatum in laboratory culture
(see Table 5.2 for data) showing
the fit of a logistic growth curve.
(Data from Gause 1934.)
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Fig. 5.7 Increase in the number
of breeding pairs of merlins in
Saskatoon, Canada from 1970 to
1995, with a fitted logistic growth
curve. (Data from Oliphant and
Haug 1985 and Lieske 1997.)
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5.5.4 Merlins
In Chapter 4, we saw that the merlin population in Saskatoon, Canada
increased approximately exponentially from one to 16 breeding pairs
during the period 1970 to 1982. If the population had continued to
increase exponentially at the same rate, there would have been 365
breeding pairs in 1995. In fact, only 28 pairs were recorded, which
is not surprising in view of the limitation on suitable nest sites and
food availability.

The number of breeding pairs was recorded during the 26-year
period and it can be seen that population growth was approximately
logistic during this time (Fig. 5.7). It is unlikely that the carrying
capacity (K) will remain constant, however, because the availability of
nest sites, which are almost always located in mature spruce trees,
will change as landowners cut down and replace old trees, and as
trees mature in newer neighbourhoods.

5.5.5 Winter moth
Our next example considers the winter moth (Operoptera brumata) in
Wytham Wood near Oxford, England where they were studied from
1950 to 1968 (Varley et al. 1973). The density of adult moths fluctuated
erratically during this period (Fig. 5.8) and it would seem pointless
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trying to fit a logistic growth curve to such data, unless one at-
tempted to fit the time-lag model where there are chaotic fluctuations
(section 5.3.1).

Varley and his co-workers conducted a detailed study of the pop-
ulation dynamics of this species to try to understand the key factors
that governed its density. They concluded that the observed variation
in winter moth density (Fig. 5.8) was a result of a complex interac-
tion of destabilizing factors at the time of egg hatching, and sta-
bilizing factors during the pupal stage. The weather at the time of
egg hatching, and the synchrony between egg hatch and the opening
of the leaf buds (on which the emerging larvae feed), were critical
to the survival of the emerging larvae. If the weather was good, and
if the hatching of the eggs coincided with the opening of the leaf
buds, larval survival was good; if not, there was a poor survival of
larvae. Larval densities were more variable than egg densities, and so
the population was being pushed away from an equilibrium density,
i.e. the factors were destabilizing. In contrast, after the mature larvae
pupated in the soil they were subjected to predation by small mam-
mals and various ground beetles, and the proportion of pupae eaten
increased as pupal density increased, i.e. predation was directly den-
sity dependent. Adult densities were less variable than pupal densities
and so predation tended to stabilize the population density.

The question is, can we detect density dependence from these
census data of adult density or not? We will use a quick method of
doing this, which has some statistical problems, but relates well to
the theory of logistic growth. From our analysis of logistic growth, we
know that the growth rate per capita (r) is inversely related to popula-
tion density (Fig. 5.3) if growth is density dependent. The r values are
calculated for each year, by taking the natural logarithm of the mul-
tiplication rate (λ) from one year to the next, and these are plotted
against population density (Fig. 5.9). An overall inverse relationship is
observed between the per capita growth rate and population density
(Fig. 5.9), which suggests that density-dependent factors are operating
on this population.
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5.5.6 Maximum sustainable yield
The largest rate of increase in numbers occurs at half the carrying
capacity (K/2) for those populations that are growing logistically
(see Fig. 5.2). This feature has been utilized to optimize the har-
vest of certain fisheries to maximize the sustainable yield. The ob-
jective is to harvest the population until it reaches K/2 and then
maintain the population at that density by harvesting the yield,
i.e. the increase in numbers or biomass (δN/δt). However, in most
cases we do not know what the carrying capacity is or whether the
population is growing logistically. It can be shown that if popula-
tion growth is S-shaped, there is a relationship between the catch,
representing the yield (δN/δt), and the fishing intensity, which can
be related to population density (N). This relationship describes a
parabola which is similar to our theoretical relationship illustrated in
Fig. 5.2.

The theory has been applied to certain fisheries with varying de-
grees of success (see Krebs 1994). There have been many cases where
its application has led to the collapse of the fishery, primarily because
of overfishing. Once one drives the fishing parabola over the crest of
the yield parabola, continued heavy fishing rapidly drives the popu-
lation to lower densities and consequently to low recruitment levels.
The problem is particularly acute where there is a variable carrying
capacity, because it is difficult to define the harvest parabola and one
should therefore always underestimate the sustainable yield in such
cases. This is often politically unacceptable even though the conse-
quences of overfishing are disastrous in the long term. Once a fishery
has collapsed, its recovery is by no means assured even when fishing
levels are reduced.

5.6 Summary and conclusions

The logistic growth curve describes the growth of a population of identical
individuals, that are growing in a constant environment of defined limits or
size, and which are able to adjust their growth rates instantaneously as they
utilize the fixed resources of the environment. The model describes an
S-shaped form of growth to a stable carrying capacity, K, which depends on
the characteristics of the population and the amount of resources available
in the environment, and the steepness of the curve depends on the per
capita rate of increase, r.

The restrictive assumptions of the model may be relaxed to analyse how
factors such as time lags and a variable environment affect the form of
population growth. These analyses show that time lags have surprisingly
little effect on the form of population growth for populations with low r
values, but that population densities oscillate more and more, and may
become unpredictable (or chaotic), as r increases to high values. The
response of populations to environmental variation (affecting K) are also
influenced by r. Populations with high r values track the changes in
environment, whereas populations with low r values tend to average the
environmental fluctuations over time.
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The basic model has great heuristic value in spite of its restrictive
assumptions because it can be used as a basis to investigate the pattern of
population growth. Departures from the idealized S-shaped form of growth
may be analysed to determine if they are related to internal factors, such as
time lags, or external factors, such as a variable environment.

5.7 Problems

The summary of equations (Box 5.1) should help you with the following
problems. You will also need to remember the equations relating to
exponential growth (Box 4.1).

1. Compare the relationship between (a) the rate of increase per capita (r)
and density (N), and (b) the population rate of increase (δN/δt) and density
(N), for the exponential and logistic growth models.

2. (a) You set up a colony of worms to sell to local fishermen. Starting with
only five individuals, you are delighted to find that they have
increased to 1044 individuals after one month (28 days). What is the
value of rm per day assuming exponential growth?

(b) Using the information in part (a) calculate the expected size of the
population after 15 weeks (from the original starting time) assuming
a constant rate of increase per capita (rm).

(c) You have dreams of becoming a millionaire but your hopes are
dashed when you discover that there are only 2500 worms after 15
weeks and their numbers stay approximately constant thereafter.
Calculate the value of rm assuming logistic growth.

(d) Why are the values of rm different in parts (a) and (c)?
(e) What is the maximum sustainable daily harvest for this population if

you assume logistic growth?
3. A population takes 10 days to double in size from 20 to 40 individuals.

How long will it take to double in size again if (a) it grows exponentially,
or (b) it grows logistically and K = 100?

4. (a) The growth of a microbial population was found to be accurately
predicted by the logistic growth equation. If the equilibrium density
of cells (K) is 5.0 × 106 cells per ml, what is the predicted density

Box 5.1 Summary of equations for logistic growth

r = r m

(
1 − N

K

)
(Eqn 5.1)

δN
δt

= r m N
(

1 − N
K

)
= r m N − r m

(
N2

K

)
= r m N

(
K − N

K

)

(Eqn 5.2)

Nt = K

1 +
(

K
N0

− 1
)

e−r mt

(Eqn 5.3)

−r mt = ln
[

K − Nt

((Nt K − Nt N0)/N0)

]
(Eqn 5.4)



82 APPENDIX 5.1

after 3 hours in a culture started with a density of 2 × 103 cells per
ml if the intrinsic rate of natural increase is 0.29 per hour?

(b) What is the maximum sustainable yield per hour for this population?
(c) How long will it take to start harvesting at the maximum sustained

rate starting from the density given in part (a)?

Appendix 5.1 Simulating logistic growth

1. Open your spreadsheet and give your simulation a title of Logistic
(Sigmoid) Population Growth

2. Enter the constants we need for the model by typing rm = in
A3 and entering the value of 0.5 in B3, and typing K = in A4 and
entering the value of 50 in B4.

3. Enter the following column headings in rows 8 and 9 of columns
A--E. You will need to adjust the width of some of the columns.
Row 8: In column A Time, in B Density (1), in C delta N, in D f(N)
and in E Density (2).
Row 9: In column A (t), in B Nt (1), in C (Nt+1− Nt), in D r = rm-rm

N/K and in E Nt (2)
4. Enter the starting time of 0 (zero) in A10; then enter = A10+1 in

A11 and copy A11 to cells A12 to 35 to create a sequence of times
from 0 to 25.

5. Enter 1 in B10 (equals N0); then type = $B$4/(1+($B$4/$B$10-1)∗

EXP(-$B$3∗A11)) in B11 and copy B11 to cells B12 to B35. This
formula represents Eqn 5.3.

6. Type = $ B$3∗B10∗(1-B10/$B$4) in C10 and copy C10 to cells C11
to C35. This formula represents Eqn 5.2a.

7. Type = $B$3-$B$3∗B10/$B$4 in D10 and copy D10 to cells D11 to
D35. This formula represents Eqn 5.1.

8. To examine population growth where N0 is greater than K, enter
99 in E10; then enter = $B$4/(1+($B$4/$E$10-1)∗EXP(-$B$3∗A11))
in E11 and copy E11 to cells E12 to E35. This formula represents
Eqn 5.3.

9. Make three graphs of the following relationships. (You may need
to refresh your memory of how to do this by checking steps 9 and
10 in Appendix 4.1.)
(a) Population density (N) over time (t). Enter two y-series:

B10 . . B35 and E10 . . E35; the x-series is A10 . . A35. The
graph of the first y-series should be similar in form to Fig. 5.1.

(b) Change in density (δN/δt) versus density (N). The y-series is
C10 . . C35 and the x-series is B10 . . B35. Your graph should
be similar to Fig. 5.2.

(c) Per capita growth rate (r) versus density (N). The y-series is
D10 . . D35 and the x-series is B10 . . B35. Your graph should
be similar to Fig. 5.3.

10. Before you leave your simulation you should change the constants
rm and K and see that the general shape of the relationships does
not change. Note that if K exceeds the value of 99 the second
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series of density in column E will not be starting from above K.
In this case, adjust the value of E10.

11. Save the spreadsheet because we will return to it later.

Appendix 5.2 Simulating a discrete form of the
logistic growth model

1. Open your saved spreadsheet for the logistic growth model.
2. Enter column labels: Discrete and model in rows 8 and 9 of col-

umn F, and Discrete and model (2) in rows 8 and 9 of column G.
3. Enter starting population sizes of 1 and 1.1 in cells F10 and G10,

respectively.
4. Enter = F10+$B$3∗F10∗(1-F10/$B$4) in F11 and copy to cells F12

to F35 and Cells G11 to G35. This formula is equivalent to Eqn 5.5.
5. Graph population size over time. There will be two y-series:

F10 . . F35, and G10 . . G35, and the x-axis is A10 . . A35.
6. Progressively increase the value of rm from the existing value of

0.5 to at least 2.8. The results will surprise you. You should obtain
a sequence of graphs similar to those presented in Fig. 5.4.

7. When you have finished, save and close your spreadsheet.

Appendix 5.3 Fitting logistic growth curves to data

1. Open your spreadsheet and title your program appropriately.
2. Type Trial K = in A3 and the value 665 in B3.
3. Starting in row 5, label column A Time, column B Observed N,

column C ln((K-N)/N), column D Estimated N and column E Error.
4. Below your column labels do the following:

(a) In column A enter your sequence of time values from 0 to 18
(see Appendix 4.1).

(b) In column B enter the corresponding N values (biomass) from
Table 5.1.

(c) Type = LN(($B$3 − B7)/B7) in C7 (assuming that the starting
time 0 is in row 7); then copy C7 to cells C8 to C25.

(d) In Quattro Pro click Tools, Numeric Tools, Regression. The In-
dependent variable is A7 . . A25, the Dependent variable is
C7 . . C25, and the Output is B27. Click OK, and your program
will calculate a regression of ln[(K − N )/N] against t. The Con-
stant in E28 is the estimate of a, and the x Coefficient in D34
is − rm. In Excel click Tools, Data Analysis, Regression; the y
values are C7:C25, the x values are A7:A25, and enter B27 for
Output range. In the output of the regression statistics the
Intercept = a and the x variable = rm. If Data Analysis does
not appear as an option when you click Tools, select Add-Ins
and then check the Analysis Tools box. Then try again.
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(e) In Quattro Pro Type = $ B$3/(1+EXP($E$28+$D$34∗A7)) in D7
and copy D7 to cells D8 to D25. This calculates our expected
values of N for K = 665, using a rearranged form of Eqn 5.2. In
Excel, substitute C43 for E28, and C44 for D34 in the formula.

(f) Type = (B7 D7)ˆ 2 in E7 and copy E7 to cells E8 to E25. This
squares the deviations between our observed and expected N
values and is a measure of how different they are. Highlight
cells E7 to E26 and click on � in the tool bar. The total of the
squared deviations will appear in E26.

5. Make a note of the value of E26 (this is a measure of our goodness
of fit to the data) and also of your trial K value. Now systematically
alter your K value in B3. When you do this, only the values in
column C will change. Each time you alter K you will have to repeat step
4(d) to fit a new regression. Note your new values of K and E26. If the
value of E26 increases, reverse the direction of your modification
of K. I made the following changes in K, starting from the value of
665: 664, 663, 664.5, 664.6, 664.4, 664.3, 664.2, and back again to
664.3 my best fit.

6. You may wish to graph both the observed and estimated N values
over time to see how well your logistic growth curve fits the data
(see Appendix 4.1 for procedure).

7. Save your program if you wish to use it again.



Part III
Population genetics
and evolution

There are two conditions that are necessary for evolution to occur.
First, the characteristics of an organism must vary in the population,
and that variation must be related to differences in survival or re-
productive success. Second, the variation must also have a genetic
basis, at least in part. As a consequence, evolution changes the gene
frequencies of populations. In Part I, we noted that Darwin made
a strong argument that natural selection was the main force driv-
ing evolution. However, the gene frequencies in populations can also
be changed by other forces, such as mutation, migration, and even
chance, and so we need to assess the importance of these factors on
the evolution of populations.

The main purpose of the following eight chapters is to make a
quantitative assessment of the various factors that affect the gene
frequencies of populations. How do we measure the allelic and geno-
typic frequencies in populations, and how are they affected by sexual
reproduction (Chapter 6)? How does genetic variation arise in popula-
tions and how is it maintained (Chapter 7)? How are gene frequencies
in populations affected by mutation (Chapter 7), chance (Chapter 8),
migration (Chapter 9) and selection (Chapters 10 to 12)? What are the
relative strengths of these factors and how do they interact with one
another (Chapter 13)? Thus, we will try to make an objective assess-
ment of Darwin’s theory of evolution by natural selection to see if it
is supported by the theory of population genetics. It is assumed that
the reader will have an elementary knowledge of Mendelian genetics.





Chapter 6

Gene frequencies and
the Hardy–Weinberg principle

Population genetics considers how the frequencies of alternative
states of genes in populations are maintained or changed from gener-
ation to generation. First, however, it is important that we understand
the terms that are used; otherwise, it is easy for beginners to become
confused. It is also important to know how the terms will be used in
this book, because many of the terms are not used consistently in the
wider literature.

6.1 Terminology

The following should clarify how the various terms introduced in this
chapter are used throughout the book.

phenotype The morphological, physiological, behavioural or biochem-
ical characteristic of an individual, or a group of individuals in a
population. Typically, the term refers to a single characteristic, such
as body colour or blood group type, but can also refer to more than
one characteristic. Almost invariably, there is more than one phe-
notype for a given characteristic. For example, there may be both
short and tall plants in a population.

genotype This is the genetic constitution of an individual, or a group
of individuals in a population, which is related by simple Mendelian
rules to the phenotype. The theory in this book mainly considers
genes with just two different alleles in the population, e.g. A and
B, so that there will be just three different genotypes, AA, AB and
BB. These will result in three different phenotypes if there is no
dominance, but only two if there is dominance. If genotypes AA and
AB give rise to the same phenotype, A is considered to be dominant
to B, and if AB and BB give the same phenotype, B is considered
dominant to A. Theory relating to multiple genes and alleles is
considered in Chapter 12.

locus This is a site on a chromosome and we will consider a gene to
occupy a particular locus.
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Table 6.1 The frequencies of M--N blood groups in a New York City black population

Phenotype (blood group) M MN N Total

Genotype MM MN NN
Number in sample 119 242 139 500
Genotypic frequency 0.238 = P 0.484 = H 0.278 = Q 1.0 = P + H + Q
Number of alleles M 238 242 0 480

520

}
= 1000

N 0 242 278
Allelic frequency M 0.48 = p

N 0.52 = q

Source: Data from Mourant et al. (1976).

gene The definition of this term is complicated because it is used in
different contexts. A gene can be considered to occupy a particular
locus on a chromosome and code for a particular characteristic of
the organism, such as body colour. There may be alternative states,
or alleles (see next definition), of the gene. For example, there may
be two alleles for flower colour, one coding for red flowers and the
other for white flowers. However, the term gene is often used as a
synonym for allele, although I have tried to avoid this in this book.
For example, we may talk of the gene for cystic fibrosis, or some
other genetic disease, but only one form of the gene (i.e. one allele)
gives rise to that particular phenotype.

allele One of the alternative states of a gene. An individual may have
only one type of allele, in which case it is said to be homozygous
for that particular gene or trait, or an individual may have two
different alleles (assuming we are dealing with diploid organisms)
and is said to be heterozygous for that gene.

6.2 Frequencies of alleles, genotypes and
phenotypes

We can understand the relationship between the frequencies of alle-
les, genotypes and phenotypes in populations by considering a simple
example (Table 6.1).

It may be seen that each of the three genotypes gives rise to a
different blood group because there is no dominance (the two alleles,
M and N, are said to be codominant). The blood groups were screened
in a sample of 500 individuals from the population, and it is a simple
matter to calculate the genotypic frequencies in the population from
the results. The frequency (P) of MM is 119/500 = 0.238; the frequency
(H) of MN is 242/500 = 0.484; and the frequency (Q) of NN is 139/500 =
0.278. Note that P + H + Q = 1. Similarly, it is easy to calculate the
allelic frequencies. The frequency (p) of M is (238 + 242)/1000 = 0.48
(or (2P + H)/2); and the frequency (q) of N is (278 + 242)/1000 = 0.52
(or (2Q + H)/2), because each individual has two alleles. Note that
p + q = 1.
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We can summarize these relationships for a system of two alleles
and three genotype as follows:

Genotypic frequency P = nP /N

H = nH /N

Q = nQ /N

and P + Q + H = 1 (Exp. 6.1)

where N is the number of individuals in the sample, and the number
of individuals of each genotype are nP, nH and nQ. Similarly:

Allelic frequencies p = P + 1

2
H (Exp. 6.2)

q = Q + 1

2
H (Exp. 6.3)

and p + q = 1 (Exp. 6.4)

In this example each genotype corresponds to a different pheno-
type and so the genotypic and phenotypic frequencies are the same.
If one allele is dominant over the other, there will only be two phe-
notypes. If one cannot distinguish the heterozygous individuals from
the homozygous dominant individuals, the estimation of the allelic
frequencies becomes less accurate (see section 6.4.1). The estimation
of allelic frequencies where there are three or more alleles can also
be troublesome (see Hartl and Clark 1989).

6.3 The Hardy–Weinberg principle

Shortly after the rediscovery of Mendel’s work, people began to specu-
late about its implications for the genetic structure of populations. It
was suggested that as dominant characteristics assumed a 3 : 1 ratio
in classic Mendelian crosses, this meant that any dominant character
or phenotype should eventually appear in 75% of the population. This
apparent consequence of Mendelian genetics was clearly not true for
certain dominant traits, like bradydactyly (stubby fingers) in humans,
which remained extremely rare, and so some scientists questioned the
very foundation of Mendelian genetics. These misconceptions were
brought to the attention of a Cambridge University mathematician,
G. H. Hardy, and a German clinical physician, W. Weinberg (pro-
nounced Vineberg), who showed independently that dominance per se
had no effect on allelic frequencies, and furthermore that allelic fre-
quencies would not change as a result of sexual reproduction. Their
elegant proofs for populations breeding at random, published in 1908,
formed the basis of the new field of population genetics.

The Hardy--Weinberg principle can be stated as follows: In a large
population where there is no genetic drift,1 and in the absence of selection,
migration and mutation, the allelic frequencies remain constant from genera-
tion to generation. If mating is random, the genotypic frequencies are related

1 Genetic drift is the chance change in allelic frequencies as a result of sampling error
(see Chapter 8).
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Fig. 6.1 Punnett square showing
the Hardy–Weinberg genotypic
frequencies generated by random
mating when the frequency of the
A1 allele (p) is 0.6 and the
frequency of the A2 allele (q) is 0.4.

to the allelic frequencies by the square expansion of allelic frequencies. Thus,
for autosomal genes in diploid organisms in which there are two al-
leles with frequencies p and q, the frequencies of the three genotypes
are predicted by the formula (p + q)2 = p2 + 2pq + q2. Furthermore,
for autosomal genes the equilibrium genotypic frequencies at any given lo-
cus are attained in a single generation providing there is no overlapping of
generations.

The principle can be demonstrated most simply by a Punnett
square diagram (Fig. 6.1), which represents the union of gametes by
random mating of an entire breeding population. A single gene locus
is shown, with two alleles (A1 and A2) with frequencies of p and q. The
random combination of these alleles in sexual reproduction results
in the genotypic frequencies of p2 for A1A1, 2pq for A1A2 and q2 for
A2A2. Thus, the genotypic frequencies for a two-allele system are as
follows:

p2 + 2pq + q2 = 1 (Eqn 6.1)

The allelic frequencies do not change as a result of this reproduc-
tion. We can see from Fig. 6.1, or from Exp. 6.2, that the frequency
(p1) of A1 after one generation of random breeding is given by:

p1 = p2 + 1

2
(2pq )

= p2 + pq

= p(p + q )

But p + q is equal to 1. Therefore, p1 is equal to p, which is the
original frequency of the A1 allele. In a similar fashion we can show
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Fig. 6.2 The Hardy–Weinberg
genotypic frequencies at a gene
locus with two alleles as a function
of the frequency (q) of the A2

allele. Note that the heterozygotes
are most common at intermediate
allelic frequencies (between 0.33
and 0.67).

that the frequency of the A2 allele in the offspring equals q. Thus,
when there is random breeding, the allelic frequencies stay constant
from generation to generation.

It is a simple matter to relate the genotypic frequencies to the al-
lelic frequencies using Eqn 6.1 (Fig. 6.2). For example, if the frequency
of the A2 allele (q) is 0.3 then genotype A2A2 has a frequency of q2

(0.32 = 0.09), genotype A1A2 has a frequency of 2pq (2 × 0.7 × 0.3 =
0.42), and genotype A1A1 has a frequency of p2 (0.72 = 0.49). It may
be seen from Fig. 6.2 that heterozygotes are most common at inter-
mediate allelic frequencies.

6.3.1 Neutral equilibrium
The Hardy--Weinberg equilibrium is a neutral equilibrium. This means
that the allelic and genotypic frequencies do not change because of
random mating, but if some other force, such as selection or migra-
tion, changes the frequencies of the alleles to new values, the geno-
typic frequencies automatically shift according to the formula p2 +
2pq + q2. Thus, the genotypic frequencies do not return to their previ-
ous values but are defined by the new allelic frequencies. If no other
force is applied, the population will remain at this new equilibrium.
This neutral equilibrium differs from a stable equilibrium, like the
carrying capacity K in logistic growth, because the latter returns to a
fixed equilibrium value (K) if disturbed.

6.4 Applying the Hardy–Weinberg principle to
autosomal genes with two alleles

The Hardy--Weinberg principle is elegant, but how useful is it? It all
seems so idealistic: random breeding, no evolutionary forces such as
selection or mutation operating, no overlapping of generations, and
so on. Let us consider some of these apparently idealistic conditions
when we apply the principle, and see how useful it can be.
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Table 6.2 The frequencies of M--N blood groups using the data from Table 6.1, assuming that M is dominant
to N for the purposes of illustration

Phenotype (blood group) M N Total

Genotype MM + MN NN
Number in sample 361 139 500
Frequency in sample 0.722 0.278 1.0
Theoretical frequency p2 + 2pq q2 p2 + 2pq + q2 = 1
Estimated allelic frequency of N =

√
(q2) =

√
(0.278) = 0.5273

Estimated allelic frequency of M = 1 − q = 1 − 0.5273 = 0.4727

6.4.1 Estimating allelic frequencies when one allele is
dominant to another

In section 6.2, we learned how to estimate allelic frequencies from
the genotypic frequencies (see Exps. 6.2 and 6.3). However, if one al-
lele is dominant to the other, and we cannot distinguish between
the homozygous dominant and heterozygous individuals, we have to
estimate the allelic frequencies in another, less accurate, way. To il-
lustrate this, we will use the M--N blood group data from Table 6.1,
but imagine that the M allele is dominant to the N allele.

If there were dominance, we would observe two phenotypes, M
and N. The M phenotype would include both the MM and MN geno-
types, and so there would be 119 + 242 = 361 of this phenotype (see
Table 6.1). The frequencies of the two phenotypes are 361/500 = 0.722
and 139/500 = 0.278. We cannot estimate the frequency of M alleles
directly because some individuals of phenotype M have both M and
N alleles. However, phenotype N consists of a single genotype, and
if we assume random breeding this has a theoretical frequency of
q2 in the population, according to the Hardy--Weinberg equilibrium
(Eqn 6.1). Consequently, we can estimate the allelic frequency (q) of N

as
√

(q2) and this gives us an estimate of 0.5273. The allelic frequency
(p) of M is 0.4727 from the relationship p = 1 -- q (a transformation
of Exp. 6.4).

These estimates are very similar to those based on the en-
tire sample (Table 6.2), and the two sets of estimates only dif-
fer by approximately 1.5%. However, the error increases as the fre-
quency of the homozygous recessive individuals becomes lower in
the population.

6.4.2 Random mating
It is important to understand that when we talk of random mating,
we do not mean promiscuous mating, we only mean that mates are
chosen without regard to the genotype at the gene locus being con-
sidered. It is possible for mating to be random with respect to some
traits and, simultaneously, to be non-random with respect to other
traits. In humans, for example, mating appears to be random with re-
spect to blood groups and many enzyme systems, but is non-random
with respect to skin colour, height and IQ.
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Table 6.3 Comparison of observed and expected numbers of M--N phenotypes, assuming random
breeding, in a sample of 500 individuals (data from Table 6.1)

Blood group MM MN NN Total

Observed number 119 242 139 500
Expected number 115.2 249.6 135.2 500
χ2 value (119−115.2)2

115.2 + (242−249.6)2

249.6 + (139−135.2)2

135.2 = 0.4635
df = 3 − 2 = 1 P = 0.5

We can see how well the genotypic frequencies in a population
correspond to the expected Hardy--Weinberg frequencies by looking
at the data from our first example (Table 6.3). The expected number
for each genotype was calculated by multiplying the expected fre-
quencies of p2 + 2pq + q2 by the total number of the sample. Thus
the expected number of the MM genotype is 0.482 × 500 = 115.2, and
so on. It may be seen that the observed and expected numbers are
in close agreement. This is not too surprising when we consider that
most people live, choose a mate, reproduce, and so on without ever
knowing their MN blood type. Thus, mates are chosen without regard
to blood type and so breeding is random with respect to blood type.

How different would the observed and expected numbers have to
be before we considered them to be significantly different? We can
make a statistical comparison of the two sets of numbers using the
chi-squared test (χ2-test), a standard procedure that is explained in
virtually any textbook on statistics. In our example, the χ2 value is
0.4635, with one degree of freedom (we lose two degrees of freedom
because the total numbers and the allelic frequencies are the same in
the observed and expected series). The probability is about 0.5, which
is not significant (see below). We can conclude, therefore, that mating
is random with respect to the M--N blood groups in this population.

The χ2 test gives an objective way of assessing the agreement be-
tween the observed and expected results. As the difference between
the observed and expected results gets larger, the χ2 value also gets
larger. When it reaches 3.84 or higher (df = 1), and the probability
(P) becomes 0.05 or lower, we can conclude that the observed and
expected results are significantly different from one another. At this
point we consider that the population is not in Hardy--Weinberg equi-
librium, i.e. is not breeding at random with respect to the character
in question.

6.4.3 Violation of strict assumptions
The Hardy--Weinberg principle is not very sensitive to certain viola-
tions of the assumptions. For this reason, we cannot say that there is
no selection, mutation, etc. if we find that the genotypic frequencies
conform to the expected values. Let us consider two examples to show
this.

Sickle-cell anaemia is prevalent in tropical Africa where there is a
high incidence of malaria. Humans from this area have two forms of
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Table 6.4 Frequencies of haemoglobin types in samples of 287 infants and 654 adults in Tanzania

Frequency
Genotype AA AS SS Total of S allele

Observed number of
infants

189 89 9 287 0.1864

Expected H–W numbers 190 87 10 287
χ2 value = 0.15; df = 1; P > 0.5

Observed number of
adults

400 249 5 654 0.1980

Expected H–W numbers 420.7 207.7 25.6 654
χ2 value = 25.8; df = 1; P < 0.001

Source: Data from Allison (1956).

haemoglobin: a normal form, A, and a sickle form, S. The three geno-
types have the following characteristics: AA has ‘normal’ haemoglobin
and red blood cells; SS individuals have abnormal haemoglobin and
their red blood cells have a characteristic sickle shape; and heterozy-
gous AS individuals have red blood cells that assume a sickle shape
only when the blood is deoxygenated. Homozygous SS individuals
mainly die an early death from a wide variety of disorders (see
Chapter 7), but heterozygous (AS) individuals have a resistance to
malaria and survive better than ‘normal’ individuals in areas where
malaria is prevalent. Thus, there are strong selection pressures oper-
ating on this gene system.

Samples of a Tanzanian population show that the infant genotypes
are in Hardy--Weinberg equilibrium but the adults are not (Table 6.4).
There are fewer homozygotes than expected in adults because AA
individuals have a higher death rate from malaria than other geno-
types and SS individuals have a high death rate from the effects of
sickle-cell anaemia, and consequently there are more heterozygotes
than expected because they are at a selective advantage. The surviv-
ing adults mate at random with respect to this gene and the fertility
of the different genotypes is equal. Consequently, the genotypes of
the next generation of children occur at Hardy--Weinberg frequen-
cies because this equilibrium is attained in a single generation (see
section 6.3). Selection is operating, but the genotypic frequencies of
the young are in Hardy--Weinberg equilibrium.

The second example concerns the rare Tay--Sachs disease, a disor-
der involving lipid metabolism which results in the accumulation of
a specialized type of lipid known as ganglioside in the nerve cells.
Tay--Sachs is a recessive disorder that is lethal in early childhood.
There is no known cure. The disease occurs at an incidence of about
1 in 550 000 births in the non-Jewish Canadian population (it has
a higher incidence in Jews who originally came from Europe). The
homozygous ‘normal’ individuals (AA) and heterozygous individuals
(Aa) are generally indistinguishable, although heterozygous individ-
uals can be detected by screening a certain enzyme in the blood.
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According to the Hardy--Weinberg principle, the frequency of the ho-
mozygous recessive (aa) in the population is q2. Assuming random
breeding, we can estimate the frequency of the Tay--Sachs allele as fol-
lows: q2 = 1/550 000 = 0.000 001 82, therefore q = √

(0.000 001 82) =
0.001 348. Are we justified in making this assumption of random
breeding? The answer is probably yes. It is unlikely that AA and Aa in-
dividuals are aware of their condition relative to this gene locus, and
so mating within this segment of the population is probably random
with respect to Tay--Sachs. It is true that the homozygous recessive
individuals cannot breed, but this is such a trivial proportion of the
population that it can safely be ignored.

We can estimate the frequency of heterozygous individuals, who
are carriers of Tay--Sachs, using the formula 2pq. This gives us a fre-
quency of 0.002 693 or approximately 1 in 371 individuals in the popu-
lation. It may surprise you that the number of carriers is so high con-
sidering that the incidence of the disease is so low (1 in 550 000). This
reveals another interesting implication of the Hardy--Weinberg prin-
ciple, which is that rare alleles exist mainly in heterozygous rather
than homozygous individuals in the population. The ratio of recessive
alleles in heterozygotes to those in homozygous recessives = pq/q2 =
p/q; but p is approximately 1 when q is very small, therefore p/q ≈
1/q. In our example of Tay--Sachs, this approximation gives us a ra-
tio of approximately 742 which is very similar to the more precise
calculation of 741 (calculated from pq/q2).

6.5 Complications

We will briefly consider how the Hardy--Weinberg principle applies to
situations other than autosomal genes with two alleles.

6.5.1 Multiple alleles
The Hardy--Weinberg principle can easily be extended to include three
or more alleles at a gene locus. The number of possible genotypes
increases as the number of alleles increases. This is illustrated for
an autosomal gene with three alleles, with frequencies of p, q and r
(Fig. 6.3).

It may be seen that there are six possible genotypes with the fol-
lowing set of frequencies: A1A1 = p2, A1A2 = 2pq, A1A3 = 2pr, A2A2 =
q2, A2A3 = 2qr, and A3A3 = r2. If the alleles are all codominant, the
calculation of the allelic and genotypic frequencies is straightforward,
but if certain alleles are dominant to others it becomes more compli-
cated to solve. For example, in the ABO blood group system, A and B
are codominant, but are dominant to O. Thus, if we set A = A1, B =
A2, and O = A3, we can see from Fig. 6.3 that blood type A has a phe-
notypic frequency of p2 + 2pr, blood type B a frequency of q2 + 2qr,
blood type AB a frequency of 2pq, and blood type O a frequency of r2.
Although we can estimate the frequency of the O allele as

√
(r2), we

cannot estimate the frequencies of the A and B alleles directly, and
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Fig. 6.3 The relationship
between the allelic frequencies (p,
q and r) and the resulting genotypic
frequencies (A1A1, A1A2, A1A3,
etc.) when there is random mating
between individuals carrying a gene
with three alleles.

have to use a maximum likelihood procedure (see Hartl and Clark
1989 for more details).

6.5.2 Sex-linked genes
In the case of sex-linked genes, individuals of the heterogametic sex
have a single allele, whereas individuals of the homogametic sex have
two alleles, the same as autosomal genes. Let us consider the situa-
tion where the heterogametic sex (XY) is male and the homogametic
sex (XX) is female. If the allelic frequencies are the same in both
males and females, the equilibrium genotypic frequencies are estab-
lished in a single generation, like the autosomal genes. However, if
the allelic frequencies are different between males and females, the
allelic frequencies in the two sexes will undergo a series of damped
oscillations about the overall allelic frequency (i.e. of the two sexes
combined), and the genotypic frequencies will also oscillate. To as-
sess the effects of this instability, let us consider an extreme exam-
ple where a population starts with an allelic frequency of qf = 1
in the females and qm = 0 in the males. The allelic frequency in
the males in any subsequent generation will be the allelic frequency
of the females in the preceding generation, because all of their al-
leles are derived from those females. The allelic frequency in the
females, however, will be the arithmetic average of qf and qm of
the preceding generation, because half of their alleles are derived
from the males and half from the females from the previous gen-
eration. The result is a series of oscillations which rapidly dampen
until the equilibrium frequency q = 0.67 is attained by both sexes
(see Fig. 6.4). In most cases, however, the difference between the al-
lelic frequencies of the males and females would be much smaller
than this and would probably attain equilibrium within two or three
generations.
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Fig. 6.4 Random mating for a
sex-linked gene, showing the
approach to equilibrium of the
allelic frequencies for each sex,
when the starting allelic frequency
is 1 (= qf) for females and
0 (= qm) for males.

6.5.3 Multiple loci
The Hardy--Weinberg principle can also be extended to deal simultane-
ously with more than one locus of genes. Similar to the situation with
sex-linked genes, however, an equilibrium will not be reached in a sin-
gle generation if the genotypes are not in equilibrium. A simple exam-
ple will make this clear. Imagine that we start a population with two
genotypes: A1A1B1B1 and A2A2B2B2. In the next generation there will
be only three possible genotypes: A1A1B1B1, A1A2B1B2 and A2A2B2B2

in a 1 : 2 : 1 ratio. Thus, the genotypes A1A1B2B2, A2A2B1B1, etc. are not
produced immediately, but they occur in subsequent generations of
random mating and the genotype frequencies converge to a stable
equilibrium after about seven generations. However, if the loci are
linked, this reduces the amount of recombination between the two
genes and slows the approach to equilibrium. The tighter the linkage
between two gene loci, the longer it takes to reach equilibrium.

6.5.4 Non-random mating
If mating is non-random and the mating system is unrelated to the
allelic frequencies being considered (i.e. one allele or another is not
favoured in the mating process), the allelic frequencies and genotype
ratios will remain stable from generation to generation. However, the
equilibrium genotypic frequencies will differ from those predicted by
the Hardy--Weinberg principle. In the case where like tend to breed
with like, called assortative mating, homozygotes have a higher fre-
quency, and heterozygotes a lower frequency, than what would be pre-
dicted by the Hardy--Weinberg equilibrium. This type of mating does
not lead to a change in allelic frequencies. If there is a preference for
different phenotypes to mate with each other, called disassortative
mating, heterozygotes increase in the frequency at the expense of ho-
mozygotes. These facts are intuitively obvious. What is not obvious,
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however, is that disassortative mating leads to a change in allelic fre-
quencies. Rarer alleles are favoured because the rarer phenotype has
a better chance of mating than the commoner phenotype; it is easier
for them to find a dissimilar mate. As a result, the frequency of the
rarer allele increases so that the allelic frequencies become similar.
This has been observed in some plants with self-sterility mechanisms
based on multiple alleles, which coexist at approximately equal fre-
quencies in the population (see Falconer and Mackay 1996).

6.6 Summary and conclusions

The frequencies of the alleles, genotypes and phenotypes relating to a
particular trait, such as blood type or flower colour, are determined by
calculating their proportions in the total breeding population. Sexual
reproduction does not usually lead to a change in these frequencies,
provided the type of mating remains constant. When mating is random, the
genotypic frequencies have a characteristic relationship to the allelic
frequencies for autosomal genes, called the Hardy--Weinberg ratio, which
remains constant from generation to generation provided there are no other
forces operating on the system. Departures from the characteristic
Hardy--Weinberg ratio may indicate that mating is not random, or that
there is some other factor such as selection that is changing the allelic
frequencies. The Hardy--Weinberg ratio or equilibrium is attained in a single
generation for a single autosomal gene, but may take several generations to
attain if a trait is determined by more than one gene, or by a sex-linked
gene. There are two types of non-random mating. When like tend to breed
with like (assortative mating), the proportion of homozygotes is higher, and
the heterozygotes are lower, than that predicted by the Hardy--Weinberg
equilibrium. When different phenotypes prefer to mate with each other
(disassortative mating), the proportion of heterozygotes is higher than that
predicted by the Hardy--Weinberg equilibrium, and this type of mating
changes the allelic frequencies until they are all similar to one another.

6.7 Problems

1. The rhesus (Rh) blood factor in humans is controlled by three tightly
linked genes with two basic categories of alleles: R, which produces an
antigen on the surface of red blood cells, and r, which does not. The R
allele is dominant, and the RR and Rr genotypes are said to be rhesus
positive (Rh+). The frequency of the R allele is 0.9 in a Caucasian
population. Assuming that mating is random with respect to this factor,
(a) what is the frequency of heterozygous individuals in the population,
and (b) what fraction of rhesus positive people are heterozygous?

2. The following frequencies of M--N blood groups were collected on a
sample of 203 Guatemalan Indians (data from Mourant et al. 1976): MM
112, MN 74, and NN 17. Calculate the expected Hardy--Weinberg
equilibrium frequencies of these genotypes. Do they conform to what is
observed?
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3. Spooner et al. (1973) studied the amylase locus in Friesian milk cows. The
genotypic distribution of the milk herd was BB 86, BC 402 and CC 74. Is
the distribution of genotypes in Hardy--Weinberg equilibrium? How can
you account for these results given that the genotypic frequencies of
young calves conform to the Hardy--Weinberg equilibrium?

4. The frequency of cystic fibrosis, an autosomal recessive condition causing
severe respiratory problems, is approximately 1 in 2000 live births. What
is the frequency of heterozygous carriers, assuming random mating?

5. In the peppered moth (Biston betularia) there is a carbonaria allele
(C) which codes for a dark body colour and which is dominant to the
typica allele (c) which codes for a light, speckled body colour. In one
population that was surveyed, 96% of the moths were dark coloured.
Assuming random mating, what is the frequency of the carbonaria allele
in the population?



Chapter 7

Mutation and the genetic
variation of populations

There must be genetic variation for evolution to occur. Mutation is
the ultimate source of genetic variation, which is amplified by re-
combination during sexual reproduction. Mutations will only play a
role in evolution if they are heritable. In most organisms this means
that only the mutations occurring in the germ line leading to the
production of gametes may have evolutionary consequences.

7.1 Gene mutations

The word mutation may refer to any change in the genetic material,
ranging from a change to a single base pair in DNA, to changes in the
structure and number of chromosomes. The discussion of mutation
and genetic variation in this book will only consider mutations within
a gene, and this gene mutation can be simply thought of as a change
in the sequence of DNA. In principle the DNA must be sequenced to
detect a mutation, but in practice most mutations are identified and
named by their phenotypic effects.

The simplest kind of gene mutation is the substitution of one base
pair by another. These point mutations, as they are called, may result
in the replacement of one amino acid by another, but in many cases
there is no change in the amino acid because of the redundancy of
the genetic code (Fig. 7.1). In the example of isoleucine, two of the
three substitutions in the third position do not result in a change of
amino acid. Where there is no change in amino acid (called a silent
mutation) one might expect there to be no effect on the organism.
This is usually the case, but there are situations where silent mu-
tations influence gene expression and the fitness of an organism by
changing the secondary structure (i.e. folding) of DNA (see Hartl and
Clark 1989).

Where there is a change in amino acid, the effect is very variable.
It depends partly on the degree of difference between the chemical
properties of the substituting amino acid and the original amino
acid. In isoleucine (Fig. 7.1), for example, three of the possible new
amino acids, arginine, lysine and threonine, have chemical properties
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Fig. 7.1 Point mutations,
showing the effect of substitutions
at the three positions in the
messenger RNA codon for the
amino acid isoleucine (see text).

that differ sharply from isoleucine, and so potentially could affect the
function of a gene. It also depends, however, on where the substitu-
tion takes place, and whether the substitution affects the active site
of an enzyme or the secondary structure of the protein being coded
for. Thus, in some cases there is no discernible effect on the func-
tion of the protein product, but in other cases there are profound
effects on the protein product and on the physiology of the organ-
ism. Examples of changes of a single amino acid leading to severe
genetic disorders in humans, include phenylketonuria, albinism and
sickle-cell anaemia. In the mutation of sickle-cell anaemia, a point
mutation substitutes adenine for thymine at a critical point in the
DNA molecule. This changes the normal codon from CTT (or CTC) to
CAT (or CAC), and the corresponding codon on the messenger RNA
molecule is changed from GAA (or GAG) to GUA (or GUG). The result
is that the sixth amino acid in the 146-chain of amino acids in the
� chain of the haemoglobin molecule is changed from glutamic acid
to valine (Fig. 7.2).

This seemingly inconsequential change results in an abnormal
haemoglobin which, in the homozygous condition, causes the red
blood cells to assume a characteristic sickle shape. The sickle shape
of the red blood cells causes them to clump and interfere with blood
circulation. This leads to local failures in blood supply, causing such
things as heart failure, brain damage and subsequent paralysis, kid-
ney damage and failure, lung damage promoting susceptibility to
pneumonia, etc. The body destroys the sickle cells more rapidly than
normal red blood cells, and this leads to anaemia, weakness and
lassitude, poor physical development and impaired mental function.
There is also an increase in bone marrow activity which may result in
the characteristic ‘tower’ skull shape. The sickle cells also collect in
the spleen, causing enlargement and fibrosis of the spleen. It is not
surprising that individuals homozygous for this condition have poor
juvenile survival rates. The mutation is maintained in the population
in malarial areas because heterozygous individuals have a resistance
to malaria (see Chapter 11).
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Valine Histidine Leucine Threonine Proline
Glutamic

acid
Glutamic

acid
Normal

Valine Histidine Leucine Threonine Proline Valine
Glutamic

acid
Sickle- cell
anaemia

Fig. 7.2 The first seven amino
acids in the � chain of human
haemoglobin showing the
substitution of valine for glutamic
acid. This results in a severe
condition in the homozygous state
known as sickle-cell anaemia.

Some base substitutions create stop codons, called nonsense mu-
tations, which usually destroy the function of the gene product, be-
cause protein synthesis ends before the complete polypeptide chain
is formed. Similar effects are usually produced by the deletion or
the insertion of a base pair in the DNA molecule, because all of the
codons ‘downstream’ of that point will be incorrect and will code
for the wrong amino acids. Such insertions or deletions are called
frameshift mutations.

In addition to single point mutations, there are many other ways
in which the sequence of base pairs in the DNA molecule of a gene can
be changed. Those interested in learning more about the range of pos-
sible mutations are referred to Futuyma (1998). It should be clear that
there is an extraordinary variety of possible gene mutations, which
may have either inconsequential or dramatic phenotypic effects. We
should also stress, however, that mutations alter pre-existing charac-
teristics and do not create entirely new structures. For example, we see
mutations modifying the pentadactyl limb of the vertebrates into legs
for walking, wings for flying, and fins for swimming, etc., not the cre-
ation of entirely new developmental structures for these functions.

7.2 The randomness of mutations

Mutations are considered to be accidental, undirected, random or
chance events, but we should clarify what we mean by using these
descriptors. Mutations are accidental or chance events in the sense
that they are rare exceptions to the precise copying of DNA during
replication. However, mutations are not totally random because some
mutations occur more frequently than others, and genes may mutate
in a particular way at a particular frequency. For example, we may
know that a particular allele mutates to another allele at a frequency
of 1 per 100 000 individuals per generation. However, even though the
mutation rate may be predictable, we cannot predict which individual
will mutate in a particular way.

The Darwinian view of evolution is that mutations are random
or undirected, relative to the needs of the organism. In other words,
mutations occur independently of whether they help or harm an or-
ganism in the environment in which it lives. Most mutations will be
harmful because organisms have been selected over countless gener-
ations to suit, or fit, their environment. Very occasionally a mutation
may increase the probability of survival of that genotype in subse-
quent generations. These favourable mutations are not considered to
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Fig. 7.3 Diagram to show the
clumped distribution of mutant
forms (represented by shaded
cells) in offspring in the
experiment of Luria and Delbrück.
(After Futuyma 1998.)

be adaptive responses of the organism to the environment, but rather
are fortuitous accidents that proved to be adaptive after the event.

At one time, however, there were many scientists, particularly bac-
teriologists, who held the Lamarckian view that environments could
induce favourable mutations. This was because it had been known for
a long time that bacterial cultures, when confronted with a bacteri-
cide, regularly gave rise to new genetic strains that could cope with
these adverse environments. However, experiments on bacteria in the
1940s and 1950s effectively killed this neo-Lamarckian viewpoint, and
supported the Darwinian position.

Salvador Luria and Max Delbrück (1943) looked at the origin of
mutations conferring phage (i.e. viral) resistance in bacteria. They es-
tablished a large number of genetically identical bacterial cultures,
starting with a single cell that was not phage resistant, and allowed
them to grow to a constant population size. The cultures were then
plated on individual agar plates covered with a bacteriophage. This
treatment killed almost all the bacteria, but some colonies survived
because individual cells had developed mutations for phage resistance
during the growth of each culture. Consequently, the number of resis-
tant cells, and therefore mutations, in each culture could be counted.
To simplify the argument, let us imagine that after four generations
of binary fission, the final size of each culture was 16 cells (Fig. 7.3)
which were then exposed to the bacteriophage. Luria and Delbrück
reasoned that if the mutations conferring phage resistance occurred
at any point in the history of the cultures, many cultures would have
0 mutations (none survived), some cultures would have 1 mutation,
some 2, others 4, and still others 8 (Fig. 7.3). Consequently, the number
of mutations per culture would exhibit a clumped distribution, rather
than an even or random distribution, around the mean number of
mutations per culture. Statistical analysis showed that the muta-
tions had a clumped distribution, which indicates that the major-
ity of the mutations had occurred before exposure to the phage.
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Thus, the mutation for phage resistance was a fortuitous preadap-
tation1 rather than a response to the phage environment.

A second experiment by Joshua and Esther Lederberg (1952)
showed even more directly that advantageous mutations occur with-
out the organism being exposed to the environment in which they
are favoured. They used a technique known as replica plating. They
spread cultures of Escherichia coli that had never been exposed to peni-
cillin onto ‘master’ agar plates without penicillin. Each cell on these
plates gave rise to a distinct colony of cells. They then used a stamp
covered with velvet cloth to transfer a sample of cells from each colony
on the master plates to new ‘replica’ agar plates containing the an-
tibiotic penicillin. A few colonies appeared on these replicate plates
that were resistant to penicillin. Because the transferred cells on the
replica plates had the same spatial arrangement as the parental cells
on the master plates, they were able to identify which parental colony
had given rise to the resistant colonies. When they tested the resis-
tance of the colonies on the master plates, only those colonies that
had given rise to resistant colonies were resistant to penicillin. This
proved that the mutations for penicillin resistance had occurred be-
fore exposure to penicillin.

These classic experiments, and many other experimental results,
have convinced biologists that mutations are random rather than
directed by environmental need. In 1988, however, the controversy
was revived by John Cairns and colleagues at Harvard University, who
employed non-lethal selective agents (specific nutrients required for
growth and reproduction) on E. coli rather than the lethal selective
agents (viruses and antibiotics) used in the classic experiments (Cairns
et al. 1988). For example, when a strain of lac− bacteria, that cannot
utilize lactose as a source of carbon, was put in a medium where lac-
tose was the only source of carbon they were not killed but entered
a resting phase. However, some cells mutated to the lac+ strain in
a pattern that they claimed could not be accounted for by random
mutation, and they concluded that these mutations must have been
directed or induced by the lactose environment. Similarly, Barry Hall
of the University of Rochester, New York, worked on a strain of E. coli
that had defects in two genes coding for enzymes needed to break
down the amino acid tryptophan (Hall 1990). When he grew the bac-
teria in a tryptophan-based medium he discovered that some bacteria
developed the required mutations in both genes and so could utilize
the medium. The surprise was that the pair of mutations occurred 100
million times more often than expected from the mutation rates of
the individual genes. These, and other similar claims of advantageous
mutations being induced by the environment have been reviewed
by Sniegowski and Lenski (1995), and they have convincingly demon-
strated that these results can be explained by the orthodox Darwinian
view that mutations are random with respect to need.

1 A preadaptation is where an organism or part of an organism is well suited to live in
a particular set of conditions it has yet to encounter.
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7.3 Mutation rates and evolution

Mutation rates are very low, typically ranging from 10−4 to 10−9 per
cell per replication (Table 7.1). The mutation rates of bacteria and
other microorganisms appear to be lower than those of large multi-
cellular organisms, but the latter include somatic mutations during
early development and so they are artificially elevated. One should
also be aware, when comparing mutation rates, that the specificity of
different mutations varies widely. In some cases the mutation involves
a specific base pair substitution in the DNA molecule (for example,
sickle-cell anaemia), whereas in other cases there may a variety of
mutations that deactivate a gene but because they give rise to the
same phenotypic expression they are grouped together as a single
type of mutation.

Table 7.1 Mutation rates of specific genes in various organisms (from a variety of sources)

Organism/character Rate Units

Bacteriophage – T2
Lysis inhibition 1 × 10−8 Per gene per replication
Host range 3 × 10−9

Bacteria – Escherichia coli
Lactose fermentation 2 × 10−7 Per cell per division
Resistance to T1 phage 3 × 10−8

Streptomycin resistance 4 × 10−10

Algae – Chlamydomonas reinhardi 1 × 10−6 Per cell per division
Streptomycin resistance

Fungi – Neurospora crassa
Inositol requirement 8 × 10−8 Mutant frequency among
Adenine independence 4 × 10−8 asexual spores

Corn – Zea mays
Shrunken seeds 1 × 10−5 Per genome per sexual generation
Sugary seeds 2 × 10−6

Fruit fly – Drosophila melanogaster
Eyeless 6 × 10−5 Per genome per sexual generation
White eye 4 × 10−5

Brown eye 3 × 10−5

Mouse – Mus musculus
Piebald coat colour 3 × 10−5 Per genome per sexual generation
Dilute coat colour 3 × 10−5

Humans – Homo sapiens
Normal to haemophilia A 3 × 10−5 Per genome per sexual generation
Normal to albino 3 × 10−5

Normal to Huntington disease 1 × 10−6
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The average mutation rate per locus per generation is estimated
to be 10−6 to 10−5 as measured by phenotypic effects (Futuyma 1998).
Let us consider the evolutionary implications of this level of mutation
rates by examining how gene frequencies change in populations as a
result of mutation pressure.

7.3.1 Non-recurrent mutation
If just a single new allele is created by mutation in the whole popula-
tion, its chance of survival is very small even if it is advantageous. This
is because there will be a single heterozygous individual in the popu-
lation carrying this allele, and there is always a chance that it may not
survive to reproduce, or if it does reproduce that the copies of this al-
lele may not be passed on to the next generation. This low probability
of survival will continue, generation after generation, as long as the
allele remains at a very low frequency in the population. Indeed, in
an infinitely large population, if the gene is selectively neutral, i.e. is
neither advantageous nor disadvantageous compared to other alleles,
its probability of survival is zero over the long term. In small popula-
tions, the chance of survival is increased because its initial frequency
is much higher. For example, in a diploid population of 10 individuals
the frequency of the allele is 1 in 20, or 0.05. Thus, novel mutations
may occasionally lead to abrupt changes in the gene frequency of
small populations, provided there is no selection against the allele.

7.3.2 Recurrent, non-reversible mutation
How quickly can gene frequencies change as a result of observed mu-
tation rates? We will consider this question at first by ignoring the
possibility of reverse mutations. Imagine that an allele A1 mutates to
another allele A2 at a rate of µ per individual per generation. Let the
allelic frequencies of A1 = p and A2 = q, and their initial frequencies
equal p0 and q0. The change in allelic frequency over one generation
is:

�q = q1 − q0 (Exp. 7.1)

But this is a result of allele A1 (at frequency p0) mutating at a rate
of µ to allele A2. Therefore:

�q = µp0 (Exp. 7.2)

Expressions 7.1 and 7.2 are equivalent, and so:

q1 − q0 = µp0 (Exp. 7.3)

But p0 = 1 − q0, and substituting this for p0 in Exp. 7.3 we obtain:

q1 − q0 = µ(1 − q0) (Exp. 7.4)

This may be rearranged to:

q1 = µ + (1 − µ)q0 (Exp. 7.5)
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Similarly, we can show that in the second generation:

q2 = µ + (1 − µ)q1 (Exp. 7.6)

Substituting Exp. 7.5 for q1 in Exp. 7.6 results in:

q2 = µ + (1 − µ) × [µ + (1 − µ)q0] (Exp. 7.7)

which rearranges to:

q2 = µ + (1 − µ)µ + (1 − µ)2q0 (Exp. 7.8)

Note how Exps. 7.5 and 7.8 compare to one another. We can con-
tinue to develop this equation to predict q, generation after genera-
tion, to show that the general case after n generations is predicted
by:

qn = µ + (1 − µ)µ + (1 − µ)2µ + · · · + (1 − µ)nq0 (Exp. 7.9)

Mathematically, Exp. 7.9 is equivalent to:

qn = 1 − (1 − µ)n + (1 − µ)nq0 (Exp. 7.10)

We can factor and rearrange this expression to:

(1 − µ)n = 1 − qn

1 − q0
= pn

p0
(Exp. 7.11)

This expression may be rearranged to obtain our first predictive
equation:

pn = p0(1 − µ)n (Eqn 7.1)

This equation may be used to see how rapidly the frequency of A1

is reduced as it mutates to A2. If we start with a frequency of A1 = 1,
and use an average mutation rate (µ) per gene per generation of
1 × 10−5, we find that after one generation the frequency of the A1

allele will reduce to 0.999 99. After 100 generations the frequency will
reduce to 0.999, and after 1000 generations the frequency will reduce
to 0.99. Thus, it will take 1000 generations to reduce the frequency
of the allele by approximately 1%! It takes 70 000 generations before
the frequency of the A1 allele is reduced to 0.497, or approximately
half its initial value.

The conclusion from these calculations is obvious. Normal muta-
tion rates can only produce very slow changes in allelic frequencies,
and it takes many thousands of generations to change these frequen-
cies by appreciable amounts. Thus, mutation pressure by itself can
only cause large changes in the allelic frequencies of populations
over vast periods of time. We have also ignored the possibility of re-
verse mutations, and these will obviously slow the rate of change still
further. We will consider this complication next.
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7.3.3 Recurrent, reversible mutation
Consider the following situation where a wild-type allele (the com-
mon form of the allele) A1 is mutating to A2 (the mutant form) at a
rate u per generation, and A2 is mutating back to A1 at a rate v per
generation. If the initial allelic frequency of A1 is p and that of A2 is q,
the change in allelic frequency after one generation is:

�q = up − vq (Exp. 7.12)

The situation will lead to an equilibrium, in which the change in
A1 to A2 is exactly balanced by the change in A2 to A1. In this case
�q = 0 (there is no change in allelic frequencies) and up̂ equals vq̂ ,
where p̂ and q̂ represent equilibrium values. Thus:

p̂u = q̂v (Exp. 7.13)

This rearranges to:

p̂

q̂
= v

u
(Eqn 7.2)

Thus, if the forward mutation rate (u) is ten times the value of
the reverse mutation rate (v) the frequency of the A1 allele (p) will be
one-tenth that of the A2 allele (q). Setting p = 1 − q in Exp. 7.11 and
rearranging the modified expression we obtain:

q̂ = u

u + v
(Eqn 7.3)

What can we conclude from these last two equations? First, al-
though Eqn 7.2 sometimes predicts the frequencies of the two alleles
in the population, more commonly it does not. We know from ob-
servation that forward mutation rates, u, are usually higher than the
reverse mutation rates, v. Consequently, Eqn 7.2 predicts that the fre-
quency, p, of the wild-type allele should be less than the frequency, q,
of the mutant form, but this is not usually the case. We can conclude,
therefore, that the equilibrium frequencies of such genes are not usually the
product of mutation rates alone; other factors, especially selection, are usually
more important.

Second, if there is a change in mutation rates by radiation, chem-
ical mutagens, etc., Eqn 7.3 shows that the equilibrium allelic fre-
quency, q, (and consequently p) will not change unless the forward
mutation rate, u, is changed differently from the reverse mutation
rate, v.

7.4 Genetic variation of populations

As population geneticists began to consider the genetic structure
of populations, two different models slowly developed. The classical
model was the first to be developed, and was predominantly the view-
point of the mathematical theoreticians and some of the laboratory
geneticists. They believed that most gene loci were homozygous for
the wild-type allele because natural selection had purged alleles of
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Classical model

  A+   B+   C+   D+   E+ F2   G+   H+ . . . . . Z+

A+ B+  C+   D+ E+   F+  G+ H+ . . . . . Z+

  A+   B+   C+   D+   E+   F+   G+   H+ . . . . . Z+

A+ B+  C+   D+ E+  F+   G+ H+ . . . . . Z+

Balance model

A3   B   C   D2 E1 F4   G   H2   I  . . . . Z3

A1   B   C   D2 E3 F2   G   H2   I . . . . Z3

�� �� �� �� ���

  A2   B   C D1 E1 F4   G H3   I  . . . . Z2

  A2   B   C   D2 E2 F3   G   H2   I . . . . Z2

Fig. 7.4 The genetic variation of populations as proposed by the classical and balance
hypotheses. One pair of homologous chromosomes from two individuals is represented
for each model. Capital letters denote gene loci, and numbers represent different alleles
with the wild-type allele of the classical model being represented by a + sign. In the
balance model, heterozygous gene loci within an individual are shown in bold type, and
polymorphic gene loci within the population are indicated by � (see text).

lower fitness from the population, i.e. only the fittest alleles survived
(Fig. 7.4). Occasionally, there would be a mutant allele. In most cases,
these mutants would be purged from the population by natural selec-
tion, but in the rare case when the mutant allele was more fit than
the wild-type allele, it would increase in frequency and eventually the
mutant form would become the new wild-type allele.

An alternative hypothesis, the balance model, took longer to de-
velop and represented the views of ecological geneticists (geneticists
looking at wild populations) and some laboratory, experimental ge-
neticists. They believed that a large proportion of the gene loci in a
population were polymorphic, i.e. there was more than a single allele
present in the population, and that individuals were heterozygous at
many gene loci (Fig. 7.4). Initially it was proposed that the high level
of heterozygosity was maintained by heterozygote superiority, i.e. het-
erozygotes were the most advantageous genotypes in the population.
Later many different mechanisms were proposed to explain how the
high level of genetic diversity in the population was maintained. For
example, different alleles might be at a selective advantage in differ-
ent environments, and so could be maintained in populations living
in variable environments. There could also be frequency-dependent
selection, where the selective advantage or disadvantage of a given
phenotype might depend on its frequency in the population. The
main point, however, of the hypothesis was that selection maintained
high levels of genetic diversity in populations.

From the 1930s to the 1960s, biologists concerned with the genetic
structure of populations belonged to one or other of these two camps.
Either they believed in the classical hypothesis, which considered that
natural selection purged the population of most genetic variation, or
they believed in the balance hypothesis which considered that natural
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Fig. 7.5 A diagram of a gel
electrophoresis apparatus. The
buffers conduct electricity and
provide a specific pH, and protein
samples placed in the sample slots
move according to their electrical
charge and molecular weight.

selection maintained a large genetic diversity within the population.
Note that the two views have different evolutionary consequences. If
populations conform to the classical model, by and large individual
populations do not respond to fluctuations in environmental con-
ditions over time by changing their genetic structure. In addition, if
there is an environmental change that requires a genetic response
for the population to survive, for example the evolution of a resis-
tant strain to pesticides or drugs, the population usually has to wait
until the right mutation appears. In contrast, if populations conform
to the balance model there is a large genetic diversity maintained
within the population. Consequently, it is more probable that a resis-
tant strain may already be present and so the population can respond
more quickly to novel environmental changes. In addition, allelic fre-
quencies will change in response to changes in the environmental
conditions.

The controversy could not be resolved until the genetic diversity
of populations could be measured. This was first made possible in the
late 1960s using electrophoresis. This procedure utilizes the fact that
most proteins have a different electrical charge in relation to their
mass, and so will move at different rates through a suitable medium
(usually a starch or polyacrylamide gel) if an electrical charge is ap-
plied across the medium (Fig. 7.5). Small samples of blood, or ground-
up tissue, from different individuals are placed in slots near the edge
of a gel and an electrical current is applied across the gel for sev-
eral hours. The gel is then stained for specific enzymes by soaking
it in a solution containing the substrate for the enzyme, along with
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Fig. 7.6 Variation in two
enzymes of the brown snail (Helix
aspersa). The upper system is
variable for two alleles (F and S)
and the lower system is variable
for three alleles (S, M and F). The
genotypes are indicated above and
below the gel for the Lap-1 and
Lap-2 enzymes, respectively, for
the nine individuals analysed. (From
Selander 1976, with permission.)

a dye that precipitates where the enzyme-catalysed reaction occurs.
A dark band will appear in the gel marking the position of the en-
zyme. If there is more than one form of the enzyme (called allozymes)
because of amino acid substitutions, and if they carry different elec-
trical charges, they will appear at different points on the gel (Fig. 7.6).
Thus, it is possible to screen the genetic variation of specific gene loci
in a population by looking at the protein product of the gene. This
method does not detect all genetic diversity, because base substitu-
tions which do not change in amino acids are not detected, but it
is a way of screening a major proportion of the genetic diversity of
populations. When a large number of individuals in a population are
screened, the genetic diversity is measured in two ways: the average
proportion of loci that are heterozygous in an individual, and the av-
erage proportion of loci that are polymorphic in the population (i.e.
have two or more alleles detected).

The results of such electrophoretic surveys revealed a large
amount of genetic variation in most populations (Table 7.2), and
seemed to unequivocally support the balance model rather than the
classical model. Most invertebrates appear to be highly polymorphic
whereas the reptiles, birds and mammals are only about half as vari-
able, and the fish and amphibia are intermediate in their variability
on average (Table 7.2). No genetic variability has been detected in the
northern elephant seal (Mirounga angustirostris) and the self-fertilizing
snail (Rumina decollata). The elephant seal almost became extinct at
the turn of the century, and the lack of genetic variability has been
postulated as the result of the population’s small size at that time,
resulting in the fixation of alleles due to genetic drift (see Chapter 8).
There have been many attempts to find patterns in the genetic vari-
ation of populations but the results are inconsistent. For example,
there appears to be no relationship between genetic variability and
environmental variability.

When the genetic diversity of populations was beginning to be
assessed by electrophoretic methods in the late 1960s, a new theory
was developed to account for protein polymorphism. This was the
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Table 7.2 Genetic variation at allozyme loci in animals and plants

Mean proportions of loci

Number of Average number Polymorphic per Heterozygous per
Taxon species examined of loci per species population individual

Insects
Drosophila 28 24 0.529 ± 0.030 0.150 ± 0.010
Others 4 18 0.531 0.151
Haplodiploid

waspsa
6 15 0.243 ± 0.039 0.062 ± 0.007

Marine
invertebrates

9 26 0.587 ± 0.084 0.147 ± 0.019

Marine snails 5 17 0.175 0.083
Land snails 5 18 0.437 0.150
Fish 14 21 0.306 ± 0.047 0.078 ± 0.012
Amphibians 11 22 0.336 ± 0.034 0.082 ± 0.008
Reptiles 9 21 0.231 ± 0.032 0.047 ± 0.008
Birds 4 19 0.145 0.042
Rodents 26 26 0.202 ± 0.015 0.054 ± 0.005
Large mammalsb 4 40 0.233 0.037
Plantsc 8 8 0.464 ± 0.064 0.170 ± 0.031

aFemales are diploid, males haploid.
bHuman, chimpanzee, pigtailed macaque and southern elephant seal.
cPredominantly outcrossing species (i.e. not self-fertilizing).
Source: From Selander (1976) with permission.

neutral mutation--random drift theory of Kimura, who proposed that
most of the different alleles of a gene are selectively neutral. Thus,
most protein polymorphism is invisible to natural selection, in con-
trast to the selectionist argument of the balance hypothesis. With
the demise of the classical model of genetic variation, the classical--
balance controversy has been replaced by the neutralist--selectionist
argument. Indeed, it has been suggested that the neutralist theory
is simply a resurrection of the dead classical theory in a modified
form.

Where does this leave us or, in the more blunt words of the average
student, which theory is correct? Unfortunately, there is no neat and
tidy ending to this story. The balance model considers that genetic
variability is maintained in the population in a variety of ways by
selection, whereas the neutral gene model considers that most of the
observed genetic variability is neutral as far as natural selection is
concerned. It may seem easy to prove one theory or the other but the
fact is that it is impossible to test or discriminate between these two
theories in any clear-cut way.

For those who are interested in learning more about the neutral--
selectionist controversy, a very readable account is given in Merrell
(1981). For our purpose, however, we only need to know that most pop-
ulations have a high level of genetic diversity and it is not necessary
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to know how this diversity is maintained. We will now go on and
consider some aspects of how genetic variation accumulates in popu-
lations and certain consequences of the observed genetic diversity.

7.5 Mutations and variability

We can estimate how long it takes for mutations to accumulate to
the observed levels of genetic diversity in populations by considering
two examples, humans and Drosophila (Box 7.1).

It is estimated that the human genome consists of approximately
35 000 gene loci, whereas Drosophila have about 10 000 gene loci. Elec-
trophoretic methods suggest that 0.067 (6.7%) of the gene loci are het-
erozygous in humans, and the corresponding estimate in Drosophila
is 0.15 (15%). If this is the case, the number of heterozygous gene
loci in humans and Drosophila is 2345 and 1500, respectively. The av-
erage mutation rate per gene locus per generation is estimated to be
between 10−6 and 10−5 (section 7.3), and using the higher of these
estimates the average number of mutations (M) per zygote is calcu-
lated to be 0.7 in humans and 0.2 in Drosophila (M = number of gene
loci × number of alleles per locus (2 in diploid organisms) × aver-
age mutation rate per locus per generation). These estimates change
to 0.07 in humans and 0.02 in Drosophila using the lower average
mutation rate. On an individual basis, the ratio of the existing vari-
ation (i.e. heterozygous gene loci) to potentially new variation being
introduced through mutation is measured in the thousands (3350
for humans and 7500 for Drosophila). We cannot use this ratio to esti-
mate the minimum number of generations required to build up this
level of variation because variation is incorporated on a population-
wide basis, not an individual basis. As we shall see, large populations
have an enormous capacity to produce mutations; however, most of
the new mutations are either lost by chance (see section 7.3.1) or are
purged from the population by natural selection. The observed level

Box 7.1 Mutation and variability

Estimated parameter Humans Drosophila
Number of gene loci 35 000 10 000
Percentage heterozygous gene loci 6.7% 15%
Number of heterozygous gene loci 2345 1500
Average mutation rate per locus per generation 1 × 10−5 1 × 10−5

Average number of mutations per zygote 35 000 × 2 × 10−5 = 0.7 10 000 × 2 × 10−5 = 0.2
Ratio of existing variation to new variation introduced

each generation (per individual)
2345/0.7 = 3350 1500/0.2 = 7500

Total population size 6 × 109 1 × 108

Number of new mutations per generation 0.7 × 6 × 109 = 4.2 × 109 0.2 × 1 × 108 = 2 × 107

Number of new mutations per locus per generation 4.2 × 109/35 000 = 120 000 2 × 107/10 000 = 2000
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of genetic variability in most populations has probably accumulated
over the course of thousands of generations. Clearly, if the level of
genetic variability is considerably reduced for some reason, it will
require many thousands of generations of mutation to restore the
genetic diversity of the population.

The frequency of mutation may also be calculated on either a pop-
ulation or a per locus basis (Box 7.1). The world human population
is of the order of 6 billion, and Drosophila populations are estimated
to be of the order of one hundred million individuals. Previously,
we computed the average number of mutations per individual (i.e.
zygote) per generation at approximately 0.7 for humans and 0.2 for
Drosophila. The total number of mutations occurring in these popula-
tions is the product of these two estimates, giving values of 4.2 billion
for humans and 20 million for Drosophila. If we divide these values by
the number of gene loci we can compute that the average number of
new mutations per gene locus is approximately 120 000 in humans
and 2000 in Drosophila. Thus, the potential to create new variation by
mutation is enormous, and we should not be surprised at the speed
at which some populations develop a resistance to the novel poisons
we have produced in our efforts to eradicate them. Obviously, popu-
lation size is an important variable, and more abundant species have
more potential to change than rare species.

Finally, how is the genetic diversity created by mutation amplified
by sexual recombination? We have estimated that there are about
2345 heterozygous gene loci in the average person. Thus, theoretically
each individual has the potential to produce 22345, or approximately
10706, genetically different gametes. In practice we do not produce
quite this variety of gametes because many gene loci are linked and
move together during meiosis. Even so, the number of genetically dif-
ferent gametes is truly astronomical and it is almost impossible that
any two gametes will be genetically identical. We can conclude that
all individuals in the population are genetically unique, except in the
rare case of identical twins where the zygote has split into two during
development. We would reach the same conclusion for most sexually
reproducing organisms, and so we can think of such populations be-
ing made up of an infinite variety of genetically unique individuals.
In the next chapter, however, we will see how small population size
can have a profound effect on the level of genetic variability.

7.6 Summary and conclusions

Mutations change the sequence of bases in the DNA molecule, and this may
lead to a change in phenotype. Mutations are random with respect to the
needs of the organism, and so may be favourable, neutral or
disadvantageous in terms of selection. Mutation rates are extremely low, of
the order of 1 in 10 000 to 1 in 10 billion (109) per cell per replication, and
consequently they can only cause extremely slow changes in the
characteristics of populations unless aided by some other force, such as
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selection. Almost all populations contain a large amount of genetic
variation. Typically, 5--15% of the genes in an individual are heterozygous,
with the result that no two gametes will be genetically identical and so in
most sexually reproducing populations all the individuals are genetically
unique. At the population level, typically 20--60% of the genes are
polymorphic, and this huge reservoir of genetic diversity means that
populations can respond genetically to adapt to changes in the environment.



Chapter 8

Small populations, genetic drift
and inbreeding

In randomly breeding populations, the allelic and genotypic frequen-
cies remain constant from generation to generation and are predicted
by the Hardy--Weinberg principle, provided there is no mutation,
migration or selection, and the population is infinitely large (see
Chapter 6). Population size is finite, however, and many species are
structured into several more or less discrete populations (subpopula-
tions or demes) which may be quite small in size. As a consequence
there will be changes in allelic frequencies from generation to gener-
ation because of sampling error in the production of gametes.

What do we mean by sampling error? Consider a game of coin-
tossing in which there is an equal chance of obtaining heads or tails.
However, if we toss a coin repeatedly, there is not a sequence of heads,
tails, heads, tails, and so on ad infinitum, but rather a random se-
quence in which there are groupings of heads and tails. Consequently,
we would not be surprised if there were not exactly half heads and
half tails in a small sample of coin tosses. We would expect the pro-
portion of heads and tails to be distributed in some way around
50%.

Consider the results of a coin-tossing experiment (Fig. 8.1). When
the coin was tossed 20 times, the percentage of heads ranged from
25% to 75% in individual trials, and the average across all trials was
49.55%. When the coin was tossed 200 times, the percentage of heads
ranged from 42.5% to 57.5%, and the average across all trials was 50%.
Obviously, the larger sample provided a much better representation
of the expected 50% chance of obtaining heads in a coin toss.

We can relate our coin-tossing experiment to chance changes in
the allelic frequencies in small populations, arising from sampling
error of the gametes, in the following way. If a gene has two alleles,
A and a, with equal frequencies in the population (i.e. p = q = 0.5),
this is analogous to our coin-tossing game where heads and tails have
equal chances of occurring. If there was a constant population size, N,
of 10 individuals there would be 2N = 20 gametes needed to produce
the next generation, and this is equivalent to 20 coin tosses. One
can see from Fig. 8.1 that the frequency of an allele might change,
as a result of sampling error, from 0.5 to a value between 0.25 and
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Fig. 8.1 The results of a
coin-tossing experiment in which a
coin is tossed either 200 times
(solid histogram) or 20 times
(clear histogram). The perfect
distribution of heads is 50%.
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Fig. 8.2 Diagrammatic representation of a breeding line of fixed population size (N),
derived from a founding population of infinite size. Any number of such breeding lines
can be established from the founding population, and all would start with identical allelic
frequencies.

0.75 in one generation. If the population size were 100, and 2N = 200,
the potential change in allelic frequency would be smaller, but would
still fluctuate around a value of 0.5. The distribution of sample values
around the mean is predicted by the binomial theorem, and so we
can use this mathematical approach to predict how allelic frequencies
will change as a result of sampling error. This random fluctuation in
allelic frequency is called genetic drift.

8.1 Genetic drift in idealized populations

We will first consider the process of genetic drift in idealized ran-
domly breeding populations of constant size, where there is no
mutation, migration or selection, and there is no overlapping of gen-
erations. We will relax these assumptions later.

Consider what happens at a single gene locus, with two alleles
with frequencies p0 and q0 in the founding base population, from
which samples of 2N gametes (or alleles) are drawn at random to
establish a series of populations, or lines, of N breeding individuals
(Fig. 8.2). After one generation, the average allelic frequency q across
all lines (i.e. in all populations combined) will be equal to that in
the base population q0, but the q1 values in the individual popula-
tions will be distributed around this average value with a variance of
p0q0/2N. This is the binomial variance of sample means.
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As all lines had the same initial allelic frequency, q0, this is also
the variance of (q1 − q0) which is the change in allelic frequency (�q).
Consequently, we can predict the expected change in allelic frequency
(�q) after a single generation of drift in terms of its variance (σ 2):

σ 2
�q = p0q0

2N
(Eqn 8.1)

Thus, the process of genetic drift leads to a dispersion of allelic
frequencies around an average value, and the variance of this disper-
sion is predicted by Eqn 8.1. The square root of the variance gives the
standard deviation (s):

s =
√

p0q0

2N
(Eqn 8.2)

When there is a large number of equal-sized populations, the dis-
tribution of allelic frequencies around the mean will correspond to
a normal distribution, in which case 68.27% of the q1 values are ex-
pected to lie within one standard deviation of the mean (q̄ = q0),
95.45% within two standard deviations of the mean and 99.73% within
three standard deviations of the mean. This allows us to predict if a
particular change in allelic frequency (�q) might be a result of genetic
drift.

In the next (second) generation the sampling process is repeated,
but as there is now a range of allelic frequencies in the different
lines this leads to further variation or dispersion of allelic frequencies
around the mean. Thus, the variance in allelic frequencies among
lines is compounded each generation, and after t generations this
variance equals:

σ 2
�q = p0q0

[
1 −

(
1 − 1

2N

)t]
(Eqn 8.3)

The derivation of this equation will not be dealt with here because
it involves a consideration of the inbreeding aspects of genetic drift,
which is not covered until the end of this chapter. What this equation
predicts is that the variance in allelic frequency increases at a slower
and slower rate as the number of generations increases, and attains a
maximum value of p0q0. For example, if p0 = 0.4, the variance of the
allelic frequency will approach a value of 0.24 when t is very large.

A simulation of the process of genetic drift shows the dispersion in
allelic frequencies over the course of many generations and how this
is affected by population size (Fig. 8.3). The allelic frequencies in the
different lines fluctuate independently of one another, and individu-
ally they diverge from the initial base frequency (q0 = 0.5) over time.
The small populations showed a greater variation in allelic frequen-
cies than the larger populations. This is exactly what we would expect
from Eqn 8.1 which shows that the variation in allelic frequency is
inversely related to population size (N).

To this point we have only considered a single gene locus, but
we could make exactly the same sort of observation about different
gene loci within a single line. Thus, the different lines in Fig. 8.3
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Table 8.1 A comparison of the expected and observed range of frequencies after one generation of sampling
error in the coin-tossing experiment illustrated in Fig. 8.1

Observed percentage of
observations within

Standard deviation (s) expected range in
from Eqn 8.2 Expected range of allelic frequencies coin-tossing experiment

N = 10, and p = q = 0.5
s = 0.1118 68% between 0.3882 and 0.6118 77%

2 × s = 0.2236 95% between 0.2764 and 0.7236 98%
3 × s = 0.3354 99% between 0.1646 and 0.8354 100%

N = 100, and p = q = 0.5
s = 0.03535 68% between 0.4647 and 0.5354 65%

2 × s = 0.0707 95% between 0.4293 and 0.5707 95%
3 × s = 0.1061 99% between 0.2939 and 0.6061 100%
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) N = 100 Fig. 8.3 Computer simulation of

changes in allelic frequency as a
result of genetic drift. Six
populations with an initial allelic
frequency (q0) of 0.5 and
population sizes (N) of 10 or 100
individuals were followed for 25
generations.

could represent the allelic frequencies of six different gene loci in
one line, instead of one gene locus in six lines, provided they are not
tightly linked to one another. This represents another way in which
the different lines diverge from one another.

We can see how well Eqns 8.1 to 8.3 predict the changes in al-
lelic frequencies as a result of genetic drift by applying them to the
results of our coin-tossing experiment (Fig. 8.1) and our computer sim-
ulation (Fig. 8.3). The variance in allelic frequency (q) for a sample size
(N) of 10 is predicted to be 0.0125 using Eqn 8.1. The observed values
were 0.0106 for the coin-tossing experiment and 0.0154 for the com-
puter simulation. Similarly, for a sample size (N) of 100 the predicted
variance is 0.00125 and the observed values were 0.00142 for both
the coin-tossing experiment and the computer simulation. Thus, the
observations are reasonably well predicted by Eqn 8.1.

In the case of Eqn 8.2 the results of our computer simulations are
not very useful because we only have six replications of each sample
size, but we can use the results of the coin-tossing experiment because
there were 100 independent trials. It may be observed from Table 8.1
that there is a reasonable correspondence between the expected and
observed distribution of values.

Finally, Eqn 8.3 predicts that the variance in allelic frequency
will increase over time, depending on the initial frequency and the
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Fig. 8.4 Variance in allelic
frequencies among lines in the
computer simulation of genetic
drift for N = 10 in Fig. 8.3. The
points represent the observed
values and the smooth line is the
expected variance as calculated by
Eqn 8.3.

population size (N). Figure 8.4 shows the predicted and observed vari-
ance of q over time for a population size of 10 individuals. It may be
seen that the predicted values provide a good fit to the data, and that
the variance increases at a slower and slower rate over time.

The variance of q among lines reaches a maximum value because
q can only decrease to zero or increase to one. When one allele is lost
(q = 0), the other allele becomes fixed (p = 1) in the population, and
all individuals have the same genotype with respect to that gene, and
so there is a limit to the dispersive process. One can see in Fig. 8.3
that three of the six lines became fixed during the 25 generations of
drift when the population size (N) was 10. The fixation of alleles is
proportional to their initial frequencies. If the frequency of the two
alleles is initially the same, i.e. p0 = q0 = 0.5, the frequency of fixation
of the two alleles will be the same, but if one allele has a frequency
p = 0.9 and the other a frequency q = 0.1, p will become fixed nine
times more frequently than the other allele (q).

We can summarize the consequences of genetic drift in the ab-
sence of other evolutionary forces as follows:

1. Allelic frequencies fluctuate at random, independently of one an-
other in different populations or demes. The alleles of different
loci within a population also fluctuate independently of one an-
other, provided the loci are not linked to one another.

2. Thus, different populations or demes diverge in allelic frequencies
and become genetically distinct from one another. The genetic di-
versity of all populations combined is increased compared to the
situation where all individuals could interbreed freely within a
single population.

3. Eventually, given enough time, a single allele will become fixed at
each gene locus. The probability that a specific allele will eventu-
ally become fixed is equal to the frequency of the allele.

4. Thus, there is a reduction of genetic variation within a popula-
tion or deme. There is an increase in the proportion of homozy-
gotes at the expense of the heterozygotes. This may lead to an
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increase in the incidence of deleterious recessive traits (which are
only expressed in homozygous individuals), leading to a reduction
in viability.

5. The rate at which these events occur is inversely related to popu-
lation size. The smaller the population, the faster the process of
genetic drift.

8.2 Effective population size

So far we have considered genetic drift as if it is simply the total size
of the population that is important. In reality, however, it is the size
and structure of the breeding component of the population that is
important, and so we need to know the effective population size, Ne.
This is usually much less than the total population size for a variety
of reasons. For example, in species that are subdivided into more or
less discrete populations or demes, a proportion of each deme may
consist of juveniles and non-breeding adults, or some animals have
skewed sex ratios where only a small fraction of the dominant males
breeds successfully. In large continuous populations, like those of the
boreal forest, the overall population may number in the millions and
be spread over thousands of kilometres, but individuals breed with
those within a certain neighbourhood, the size of which will depend
on the dispersal of gametes (i.e. pollen) in plants or of juveniles in an-
imals. In this situation, the overall population consists of a series of
overlapping breeding neighbourhoods containing the effective breed-
ing populations.

We will consider two examples of factors that influence effective
population size. We will not concern ourselves with the derivation of
the appropriate equations. Those who are interested in this topic are
referred to Falconer and Mackay (1996).

8.2.1 Unequal numbers of males and females
If the population consists of Nm breeding males and Nf breeding fe-
males, the effective population size is given by:

Ne = 4Nm Nf

Nm + Nf
(Exp. 8.1)

Now consider a population of 100 zebra living in a small nature
reserve. Approximately half of the population may consist of juveniles
and other non-breeding individuals, and the remaining 50 breeding
animals have an average harem structure of one male to four females.
Thus, Nm is 10 and Nf is 40. Using Exp. 8.1, the effective population
size, Ne, equals 32, or approximately one-third of the total population
size. Note that in this example we have simplified the problem of
dealing with overlapping of generations (see Falconer and Mackay
1996).
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8.2.2 Unequal numbers in successive generations
If the population size varies dramatically from generation to genera-
tion, the effective population size is the harmonic mean of the num-
bers in each generation. Over a period of t generations, therefore:

1

Ne
= 1

t

(
1

N1
+ 1

N2
+ 1

N3
+ · · · + 1

Nt

)
(Exp. 8.2)

The generations with the smallest numbers carry the greatest
weight, because the process of genetic drift is greatest in small pop-
ulations. The effects of genetic drift are not reversed or eliminated
when the population increases in size again. Consider an insect where
the breeding population decreases in size by an order of magnitude
each generation from 10 000 to 10 individuals, and then increases in
size by an order of magnitude each generation until it reaches its
original size, i.e. the values of N1 to N7 are 10 000, 1000, 100, 10, 100,
1000, and 10 000. When we apply Exp. 8.2, we find that the effective
population size (Ne) over these seven generations is approximately 57.

This example shows that populations that undergo a severe re-
duction in size, where genetic drift becomes an important factor, do
not lose the effects of genetic drift when the population grows to a
much larger size where genetic drift is unimportant. The reason for
this will be explained when we consider inbreeding in section 8.5.
This phenomenon is called a genetic bottleneck. A particularly inter-
esting type of bottleneck occurs when a new population is formed by
a small number of migrants or founders, and the resulting genetic
drift is called a founder effect.

Further details on the calculation of effective population size may
be found in Falconer and Mackay (1996). In addition to unequal num-
bers of males and females and fluctuations in population size, one
needs to consider variation in the number of progeny per parent, the
effect of overlapping generations, and the exclusion of closely related
matings (e.g. self-fertilization). The amount of information required
is considerable, so it perhaps not surprising that there are relatively
few estimates of effective population size (Ne) in natural populations.
However, in many cases the effective population size is within the
range where genetic drift could be important (see section 8.5). For
example, Ne has been estimated to be 10 or less in the house mouse
(Mus musculus), between 82 and 114 for deer mice (Peromyscus manicu-
latus) in southern Michigan, between 46 and 112 in the leopard frog
(Rana pipiens) in Minnesota, and about 10 in ash trees (Fraxinus).

8.3 Empirical examples of genetic drift

Peter Buri made a classic experimental study of genetic drift on brown
eye colour in Drosophila melanogaster (Buri 1956). He started 107 pop-
ulations, each with eight males and eight females, that were het-
erozygous for two alleles (bw and bw75) so that the two alleles had an
initial frequency of 0.5. Every generation, each line was propagated
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Fig. 8.5 Distribution of allelic
frequencies in 19 consecutive
generations among 107 lines of
Drosophila melanogaster, each with
16 individuals. (From Buri 1956,
with permission.)

by selecting eight flies of each sex at random and transferring them
to a fresh vial. The three genotypes were distinguishable from one
another and so he could directly count the number of bw75 alleles in
each generation. This could range from 0 if the allele was lost (and
bw became fixed) to 32 if bw75 became fixed (16 flies × 2 alleles).

The frequency of the bw75 allele varied rapidly among the popula-
tions or lines (Fig. 8.5). Fixation occurred from the fourth generation
onwards for either the bw75 allele or the bw allele. By the nineteenth
generation, fixation had occurred in more than half the lines, with
30 lines losing the bw75 allele and 28 lines fixing the bw75 allele.

The results matched what was expected from the theory of ge-
netic drift. First, the allelic frequencies in each population tended to
diverge more and more from the initial frequency of 0.5 (i.e. there
was dispersion of allelic frequencies among lines as shown in Figs. 8.5
and 8.6a), but the overall allelic frequency for all subpopulations
combined changed little from the initial allelic frequency of 0.5
(Fig. 8.6b).

Second, there was an increase in homozygotes and a correspond-
ing decrease in heterozygotes as the various lines became fixed for
one allele or the other (Fig. 8.7). However, the rate of drift was higher
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Fig. 8.7 The observed reduction
of heterozygotes (circles) in all
lines of Drosophila shown in Fig. 8.5,
compared to the theoretical
frequency (line) calculated for an
effective population size of 9
individuals. (From Buri 1956, with
permission.)

than expected for a population size of 16 individuals and Buri esti-
mated that the effective population size was approximately nine. This
simply means that on average there were nine breeding individuals
each generation, and the other seven individuals did not produce
offspring.

The increase in homozygotes, and consequently of the expres-
sion of deleterious recessive traits, is demonstrated in many isolated
human populations, and for this reason medical geneticists regularly
concentrate their work on such populations. For example, in certain
isolated alpine villages in Italy the frequency of albino individuals in
a village may be several percent, although the frequency in the gen-
eral population is usually less than 0.000 1%. In other villages there
may be remarkably high frequencies of deaf-mutes, of blind people,
or of individuals with one or other type of mental deficiency, all of
which are governed by recessive alleles (Bodmer and Cavalli-Sforza
1976). Other human groups isolate themselves because of religious
beliefs, and in some of these groups there may be a high incidence of
genetic disease. These are frequently linked to what is called founder
effects.
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8.3.1 Founder effects
When a population is founded by a small number of colonists they
will not carry a perfect sample of alleles from the parental popula-
tion, and will lose some genetic variation compared to the parental
population. This change in allelic frequencies and genetic variation
will be augmented by genetic drift until such time as the population
increases to a large size.

In most cases it is the uncommon alleles in the parent popula-
tion that are lost, but on occasion an uncommon allele may be in-
cluded in the founding population and be at a much higher frequency
than usual, even if it has deleterious effects. A spectacular example is
Ellis--van Creveld syndrome, a rare form of dwarfism with polydactyly
(a sixth finger), which is associated with Old Order Amish living in
Lancaster County, Pennsylvania. During the 1960s, there were 43 cases
of this syndrome in the approximately 8000 Amish living in that lo-
cality, approximately as many as were found in the rest of the world!
The syndrome occurs in individuals homozygous for this trait and
is a semi-lethal trait. Most individuals with this condition die soon
after birth, but milder cases may reach adulthood and a few indi-
viduals may have children. A survey in 1964 revealed 43 people with
the syndrome out of 8000 Amish, and so the genotypic frequency
(q2) is 43/8000. The allelic frequency of the recessive allele (

√
q2) was

estimated as
√

(43/8000) = 0.0733, or approximately 1 in 14 of the
population.

All the Lancaster County families with the Ellis--van Creveld syn-
drome trace their ancestry back to a Mr and Mrs Samuel King who
immigrated in 1744. The recessive allele was almost certainly present
in one of these founders in heterozygous form. If the allele was only
present in Mr or Mrs King, the frequency among the founding popula-
tion would have been about 1 in 400, because about 200 Amish people
moved to Pennsylvania between 1720 and 1770. In any case, its fre-
quency was not likely to be as high as its estimated value in 1964 of 1
in 14. Most probably the frequency increased because of genetic drift.
It is known that the Kings and their descendants had larger families
than others in the community and, as a consequence, the frequency
of the deleterious allele ‘drifted’ to higher values, particularly in the
early generations when the population was much smaller.

Another example is provided by populations of plains zebra
(Equus quagga antiquorum) introduced into small nature reserves in
KwaZulu-Natal, South Africa (Bowland et al. 2001). Wildlife officials
noticed that these small populations of zebra had almost identical
striping patterns, were smaller in size, and had higher mortality
rates and numbers of stillbirths, compared with the large popula-
tion in the Umfolozi Game Reserve from which they were derived.
There was concern about inbreeding, and so the genetic diversity of
the introduced and parent populations were assessed by two stan-
dard methods, the electrophoresis of allozymes and the variation in
DNA polymerase chain reaction -- randomly amplified polymorphic
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Table 8.2 Genetic diversity as assessed by PCR-RAPD technique and allozyme electrophoresis for four populations
of zebra. Animals were introduced from the Umfolozi Game Reserve into the three other areas 22 to 25 years ago

Umfolozi Game Vernon Crookes Albert Falls Harold Johnson
Reserve Nature Reserve Nature Reserve Nature Reserve

Years isolated – 25 25 22
Number of founders – 19 12 8
Population size 2000 110 50 9
DNA analysis (105 loci)

Number of polymorphic 41 38 30 21
loci

Percentage polymorphism 39 36 29 20
Percentage of – 3 10 19

polymorphism lost

Allozyme electrophoresis
Percentage heterozygosity 12.3 12.9 12.1 12.8
Percentage of polymorphic 28.1 28.1 28.1 28.1

loci
Mean number of alleles per 1.3 1.3 1.3 1.3

locus

Data from Bowland et al. (2001).

DNA using the (PCR-RAPD) technique. The results are summarized in
Table 8.2.

The DNA analysis revealed a reduced genetic diversity in the small
introduced populations, and the reduction in genetic diversity was
inversely related to the size of the founding population as well as the
current population size. This suggests that both founder effects and
continuing genetic drift are important factors. However, the allozyme
electrophoresis study did not support the DNA analysis because it
failed to detect any reduction in genetic diversity! The reason for
this is not clear. The authors point out that it would be possible to
maintain the level of polymorphism (as detected by DNA analysis)
close to the parental population in Umfolozi by reintroducing small
numbers of animals periodically to each population. This migration
would override the effects of genetic drift, as explained in section 8.4.
Similar observations of reduced genetic diversity have been made on
other African ungulates in small reserves, including blue wildebeest
(Connochaetes taurinus) by Grobler and Van der Bank (1993), and impala
(Aepyceros melampus) by Grobler and Van der Bank (1994).

8.3.2 Genetic bottlenecks
An electrophoretic survey of allozymes in the northern elephant seal
(Mirounga angustirostris) revealed no variation in any of the 24 loci
studied (Bonnell and Selander 1974). This is unusual because most
natural populations are highly polymorphic. The lack of genetic diver-
sity is attributed to the population experiencing a genetic bottleneck.
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Historical records show that the population, which numbered tens of
thousands of individuals in the mid nineteenth century, was hunted
almost to extinction so that the population was reduced to about 20
individuals in the 1890s. The population has since recovered to about
30 000 seals. Although a genetic bottleneck is the most obvious ex-
planation for the lack of genetic diversity in the northern elephant
seal, it is not the only possible explanation. One would require a pre-
bottleneck assessment of genetic diversity to be certain that genetic
diversity had been lost by the dramatic reduction in population size.

Bouzat et al. (1998) measured the pre-bottleneck diversity in their
study on the greater prairie chicken (Tympanuchus cupido) in Illinois.
There were thought to have been millions of these birds in Illinois
in the 1860s, but loss of their natural habitat led to a precipitous
decline in population size to approximately 25 000 birds in 1933, to
2000 in 1962, 500 in 1972, 76 in 1990, and to less than 50 in 1993.
Today there is a single population in Jasper County, Illinois although
there are still large western populations of this species in Kansas,
Minnesota and Nebraska. The DNA from museum specimens collected
in the 1930s and 1960s, when the population was much larger than
at present, was compared to that of the present Illinois population
as well as the populations in Kansas, Minnesota and Nebraska. The
number of alleles at six loci was estimated for these populations. The
mean number of alleles per locus was similar in the pre-bottleneck
Illinois population and the large western populations, although some
alleles were unique to the different populations, but the mean num-
ber of alleles in the present Illinois population was only about 71%
of the pre-bottleneck estimate. The missing alleles were almost all at
low frequencies (<0.09) in the other large populations. All these ob-
servations are consistent with the argument that genetic bottlenecks
lead to a loss of genetic variation.

8.4 Genetic drift in relation to mutation,
migration and selection

We have seen that genetic drift is a dispersive process in which the
allelic frequencies fluctuate at random. However, our description of
this dispersive process has assumed that the systematic processes1 of
mutation, migration and selection are absent. We will now consider
the conditions whereby these systematic processes may override or
negate the effects of genetic drift.

Changes in allelic frequency will be governed primarily by genetic
drift if, and only if:

Nex � 1 (Eqn 8.4)

1 Systematic processes like mutation, migration and selection change the allelic frequen-
cies in a particular, predictive direction. In contrast, the dispersive process of genetic
drift causes the allelic frequencies to change at random. Although the magnitude of
the change can be predicted, one cannot predict the direction of change.
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where Ne is the effective population size, x represents the mutation
rate (�), the migration rate (m) or the selection coefficient (s), and
the symbol � means ‘much less than’ (Ayala and Valentine 1979).
If Nex is approximately equal to or greater than 1, the changes in
allelic frequency will be determined for the most part by systematic
processes. We can now assess the effects of genetic drift relative to
the other evolutionary processes.

The average mutation rate per gene locus per generation is esti-
mated to be 10−5 or lower (Chapter 7). If we use this upper estimate in
Eqn 8.4, we can see that Ne would have to be at least 100 000 for mu-
tation to dictate changes in allelic frequency (i.e. 100 000 × 10−5 = 1).
Thus, mutation can only arrest the dispersive process of genetic drift,
and prevent fixation, in extremely large populations.

If the migration rate (m) is 1% (or 0.01) and the effective population
size is 100 individuals, then Nem = 1, and so the allelic frequency
will change toward the frequency in the population from which the
migrants come. Indeed, a single migrant every fourth generation is
sufficient to prevent fixation, whatever the size of the population.
Thus, a small amount of interchange between populations or demes
prevents them from diverging too far from one another.

Similarly, very small selection pressures are sufficient to direct
the dispersive process in favour of a particular allele in all but the
smallest populations. For example, if Ne is 100 individuals, a selection
pressure of 0.01 against the disadvantageous allele (which would be
difficult for us to measure except in ideal circumstances) would be
sufficient to prevent the disadvantageous allele from being fixed by
genetic drift. Thus, genetic drift will not overcome the effect of even
modest selection pressures, and the latter will direct the change in
allelic frequency.

In general terms, we can see that genetic drift may be important
in small populations and may cause small populations to diverge in
their allelic frequencies to some degree. This divergence will be held
in check by any migration between populations, and may also be
directed by selection for or against particular alleles.

8.5 Inbreeding

In bisexual organisms, every individual has two parents, four grand-
parents, eight great grandparents, and so on. Theoretically, if we go
back t generations, an individual may have 2t ancestors in that gen-
eration. Consequently, the potential number of ancestors increases
geometrically as we go back in time, but because real populations
are finite we can infer that all individuals are related to some extent,
i.e. have ancestors in common.

The degree of relatedness between individuals will be affected by
population size. Imagine a population that has a constant population
size of 1 000 000 individuals. If we go back 20 generations, each in-
dividual could potentially have more ancestors than the size of the
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population (220 = 1 040 576). In reality, the number of ancestors 20
generations back would almost certainly be less than this because of
matings between relatives, but even so we would expect all individ-
uals in the population to be interrelated after about 20 generations.
If the population had a constant size of 1000 individuals, however,
we would expect all individuals to be related after 10 generations
(210 = 1024) following the same line of reasoning. Thus, the smaller
the population, the more recent are the common ancestors, and so
individuals in small populations are more closely related to each
other (all other things being equal) than are individuals in large
populations.

Matings between relatives, or inbreeding, is a form of assortative
mating, which results in an increase in homozygotes and a decrease
in heterozygotes, i.e. a change in genotypic frequencies, but not of
allelic frequencies (see section 6.5.4).

The increase in homozygosity resulting from inbreeding may have
adverse consequences because of the increased expression of delete-
rious recessive traits. An example of this is provided by the study
of Ralls et al. (1979) on zoo populations. The young of parents that
were inbred to some extent, generally had much lower survival rates
than non-inbred young, born to parents brought in from the wild
(Table 8.3), assuming that the latter were not related. This study
demonstrates that small captive populations of animals require ge-
netic management, and the same might be said of small populations
in small nature reserves (see section 8.3.1).

8.5.1 Quantifying inbreeding
If two alleles at any locus originate from the replication of the same
strand of DNA in a previous generation, they are said to be identical
by descent, or autozygous. If not, they are said to be independent in
descent, or allozygous. This does not imply that the alleles in all ho-
mozygous individuals are autozygous because it is possible that they
arose from separate mutations. Identity by descent provides us with
a measure of inbreeding, called the coefficient of inbreeding (F), which
is the probability that the two alleles at a single locus are related
by descent. If one goes back far enough, all alleles are related by de-
scent, so in practice F is calculated for the population or individual
by comparing it to a base population one or more generations before.
The base population is considered to have an F value of zero.

We will examine the use of this measure from three different
perspectives, to learn more about inbreeding and also genetic drift,
because the two processes are closely related.

First, we can use the genotypic frequencies to measure the coef-
ficient of inbreeding (F) for a population. If there is no inbreeding,
F = 0, and the genotypic frequencies would be in Hardy--Weinberg
equilibrium, i.e. p2 + 2pq + q2 at a locus with two alleles (see
Chapter 6). In a fully inbred population, F = 1, all the alleles are
autozygous, and so there are no heterozygotes and the genotypic
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Table 8.3 Juvenile mortality of inbred and non-inbred young of 16 species of ungulates

Species Non-inbred young Inbred young

Lived Died Lived Died

Indian elephant 11 2 2 4
Zebra 20 7 3 2
Pygmy hippopotamus 139 45 23 28
Muntjac 18 4 12 6
Eld’s deer 13 4 0 7
Père David’s deer 15 2 19 3
Reindeer 19 10 9 12
Giraffe 11 3 2 3
Kudu 10 4 8 3
Sitatunga 15 1 31 28
Sable 18 4 3 7
Scimitar-horned oryx 35 2 0 5
Wildebeest 6 1 29 12
Dik-dik 10 7 7 8
Dorcas gazelle 36 14 17 25
Japanese serow 52 21 27 35

Source: Reprinted with permission from Ralls et al. Science 206: 1101--3. Copyright c© 1979
American Association for the Advancement of Science.

frequencies will be p + 0 + q. In intermediate cases of inbreeding, the
fraction of the population that is autozygous is F (and these can only
be homozygous individuals), and the remainder (1 − F) of the popu-
lation is allozygous. If we split the genotypic frequencies into their
autozygous and allozygous components we obtain the following:

Genotype Allozygous Autozygous Genotypic frequency

A1A1 p2(1 − F ) + pF = D
A1A2 2pq (1 − F ) = H
A2A2 q 2(1 − F ) + q F = D

The reader can confirm that when F = 1, the frequencies reduce
to those noted before. Where F is greater than zero, there is a de-
crease of heterozygotes and an increase in homozygotes compared
to the expected Hardy--Weinberg proportions, and this expresses in
a quantitative manner our fourth general conclusion of genetic drift
(section 8.1).

We can use the reduction in heterozygosity to obtain a measure
of inbreeding for a population, as shown in the following example.

Example 8.1 The genotypic frequencies at one gene locus in a self-
fertilizing species of grass were observed to be 0.55 AA, 0.07 Aa and 0.38 aa.
What is the coefficient of inbreeding in this population, assuming that geno-
typic frequencies are determined by the pattern of breeding?
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A B

C D

O

Full-sib mating

A B

C D E

F

HG

O

Complex pedigree

Path      Contribution to F

CAD          (0.5)3 = 0.125

CBD           (0.5)3  = 0.125
                                 ------

F = 0.25

Path     Contribution to F

GDH        (0.5)3  = 0.125

GFEH      (0.5)4  = 0.0625

GDBEH   (0.5)5  = 0.03125

GFCADH (0.5)6  = 0.015625
                                -----------

F = 0.234375

Fig. 8.8 Path analysis and
calculation of inbreeding
coefficients for a full-sib mating and
a complex pedigree (see text).

We have shown that when there is inbreeding the frequency of
heterozygotes is predicted by the equation H = 2pq(1 − F), which
may be rearranged to F = (2pq − H)/2pq. Note that as the level of
inbreeding (F) increases, the observed frequency of heterozygotes (H)
decreases from that predicted by the Hardy--Weinberg equilibrium
(i.e. 2pq). The allelic frequencies, p and q, may be calculated from
the genotypic frequencies. Thus, p = 0.55 + 1/2(0.07) = 0.585, and
similarly q = 0.415. The expected frequency of heterozygotes, based on
the Hardy--Weinberg equilibrium, is calculated as 2 × 0.585 × 0.415 =
0.48555, which is considerably higher than the observed value of 0.07.
The coefficient of inbreeding is easily calculated as F = (0.48555 −
0.07)/0.48555 = 0.8558.

It is also possible to estimate the inbreeding coefficients of individ-
uals, rather than of the population, from their pedigrees or genealo-
gies. To explain the basis of the method, we will consider a full-sib
mating between the offspring of A and B (Fig. 8.8), and calculate the
coefficient of inbreeding for individual O, assuming that the grand-
parents A and B are not inbred. To do this, we need to calculate the
probability of a gene being autozygous, i.e. identical by descent, from
each of the grandparents. More concretely, what is the probability of
individual O having a genotype of A1A1 or A2A2 where both copies
have been derived from a single allele in one of the grandparents?

For the sake of simplicity, let each of the grandparents be genotype
A1A2. First, we calculate the probability (Pr) of individual O having a
genotype A1A1 from grandparent A as follows:

Pr (A1 transmitted via C) = (0.5)(0.5) = 0.25
Pr (A1 transmitted via D) = (0.5)(0.5) = 0.25
Therefore, Pr (genotype A1A1 in O) = (0.25)(0.25) = 0.0625.

In a similar fashion, we can calculate the probability of individ-
ual O having a genotype A2A2 from grandparent A to be also 0.0625.
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Therefore, the probability of individual O being either genotype A1A1

or A2A2 derived from grandparent A is the sum of these two proba-
bilities, i.e. 0.0625 + 0.0625 = 0.125.

We can use the same reasoning to calculate that the probability of
individual O being either genotype A1A1 or A2A2 derived from grand-
parent B is also 0.125. Thus, the inbreeding coefficient for individual
O is 0.125 from grandparent A and 0.125 from grandparent B, for a
total coefficient of inbreeding FO of 0.25.

This all seems very involved and difficult. Fortunately, there is a
simpler way of doing this calculation, although the logic is less easy
to understand. First, we trace all the possible pathways between the
parents of individual O and their common ancestors. In our full-sib
mating example they are CAD and CBD, where the common ances-
tor is underlined. We then count the number of steps in each chain
(n) and the inbreeding due to the common ancestor in each path
is (0.5)n. Thus, in our example it is (0.5)3 = 0.125 for each grand-
parent, A and B, for a combined inbreeding coefficient of 0.25 for
individual O.

Example 8.2 Calculate the inbreeding coefficient of individual O using the
complex pedigree in Fig. 8.8.

The common ancestors of individual O are D, E, B and A. Using
the procedure we have just outlined, the inbreeding coefficients due
to the various common ancestors are calculated as follows:

Pathway Number of steps Inbreeding coefficient

GDH (3) (0.5)3 = 0.125
GFEH (4) (0.5)4 = 0.0625
GDEH (5) (0.5)5 = 0.03125
GFCADH (6) (0.5)6 = 0.015625

The overall coefficient of inbreeding for individual O is the sum
of these inbreeding coefficients, or 0.234375.

This example shows that recent common ancestors contribute
more to the overall inbreeding coefficient than common ancestors
further back in time. This is not unexpected, but demonstrates in a
different way that small populations will be more inbred than larger
populations because on average their common ancestors will be more
recent.

Finally, we will examine inbreeding from a third perspective to
shed more light on the effects of founder populations and genetic
bottlenecks. When we individually identify the four alleles in two
parents and allow them to breed truly at random (i.e. they can self-
fertilize as well as breed with each other), we see that four out of
the 16 (or 1/2N) possible combinations of alleles in the zygotes are
identical by descent in the first generation of offspring.
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Parents: A1A2 × A3A4

Gametes: A1 A2 A3 A4

A1 A1A1 A1A2 A1A3 A1A4

A2 A1A2 A2A2 A2A3 A2A4

A3 A1A3 A2A3 A3A3 A3A4

A4 A1A4 A2A4 A3A4 A4A4

Thus:

F1 = 1

2N
(Exp. 8.3)

In the second generation, individuals that are identical by de-
scent can arise in two ways. The probability of new inbreeding by
self-fertilization is again 1/2N. The remaining proportion of the pop-
ulation (1 − 1/2N) carries alleles that are independent in origin as
a result of breeding in the present generation, but may be iden-
tical in origin because of inbreeding in the previous generation.
Thus:

F2 = 1

2N
+

(
1 − 1

2N

)
F1 (Exp. 8.4)

The same argument applies to subsequent generations and so the
inbreeding coefficient in generation t is:

Ft = 1

2N
+

(
1 − 1

2N

)
Ft−1 (Eqn 8.5)

Note that the inbreeding coefficient is made up of two parts, new
inbreeding as a result of self-fertilization (1/2N) plus inbreeding from
previous generations. If there is no self-fertilization, however, there
are no alleles identical by descent from the preceding generation. This
simply shifts the replication one generation further back, so that new
inbreeding results from the replication of genes in the grandparents
and previous inbreeding results from the replication of genes in the
great-grandparents and previous generations.

Equation 8.5 illuminates why the founder effect and genetic bottle-
necks have such long-lasting effects on populations. When a popula-
tion is reduced to a small size, inbreeding and genetic drift affect the
genetic structure of the population. If the population subsequently
increases to a size where new inbreeding and genetic drift are trivial,
the effects of this inbreeding do not disappear because the effects
from previous generations, (1 − 1/2N)Ft−1, still remain. The loss of
genetic variation through genetic drift, and the level of heterozygos-
ity reduced by inbreeding, may be restored to some extent by mu-
tation or more quickly by the immigration of different alleles from
neighbouring populations. We will consider how migration between
different populations influences their differentiation in the next
chapter.
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8.6 Summary and conclusions

In small populations, allelic frequencies will either increase or decrease
purely by chance, in a process called genetic drift. These changes in allelic
frequencies occur independently of one another in different gene loci
(provided they are not linked) and in different populations, so that different
populations diverge and become genetically distinct from each other.
Genetic drift is larger in small populations compared to large populations,
and given enough time a single allele will become fixed at each gene locus
provided that no other factors are operating. This reduction in genetic
diversity within small discrete populations leads to an increase of
homozygotes at the expense of heterozygotes. The effective population size
that causes genetic drift may be much smaller than the total population
size, and is related to the size of the breeding population during the course
of its history, the sex ratio, and various other factors. Even though genetic
drift may presently be insignificant, given the current size of a population,
its effects may still be evident from past events, either from a founder
effect, if the population was founded by a few migrants, or a genetic
bottleneck, if the population was reduced to a small size at some point. The
effects of genetic drift are countered by migration between populations, and
may be directed by selection.

Inbreeding also occurs in small populations because individuals are
more closely related than they are in large populations. Like genetic drift,
inbreeding also increases homozygotes at the expense of heterozygotes, but
it does not lead to a change in allelic frequencies. The degree of inbreeding
may be calculated from the reduction of heterozygotes, or from the
pedigrees of individuals. Finally, the theory of inbreeding helps explain why
the founder effect and genetic bottlenecks have such long lasting effects on
the genetic structure of populations.



Chapter 9

Migration, gene flow and the
differentiation of populations

Ecologists and population geneticists view migration in very different
ways. To the ecologist, migration is the movement of individuals or
sometimes whole populations from one area to another. The move-
ments often occur on an annual or seasonal basis, like the birds that
overwinter in tropical and subtropical areas and then migrate north
to breed in Holarctic regions during the spring or summer, or the cari-
bou (Rangifer tarandus) herds that overwinter in the northern boreal
forest and migrate north to calve on the tundra during the summer
months. The movements may also be part of the life cycle, like in the
Pacific sockeye salmon (Oncorhynchus nerka) that hatch in the head-
streams of the rivers, move to the lower reaches of the rivers to feed,
and then between the ages of three and seven years move to feed in
the oceans before migrating back to their place of birth where they
spawn and die. Ecologists seek to understand why animals migrate.
Are they moving to take advantage of food resources that become
available at different times and places, or is there some other ex-
planation? Many of these migrations are spectacular and may cover
huge distances, but to the population geneticist the issue is not how
far they may have moved but whether there has been a movement
of genes from one population to another. In other words, they are
concerned about gene flow. There are many examples of animals that
migrate thousands of kilometres but show an astonishing fidelity to
the area where they were born and raised. In such cases the degree of
gene flow may be extremely low, even though the individuals range
over vast distances. What is important, then, is not how far individ-
uals move or migrate, but how far they move or disperse from the
site of their birth to where they produce their offspring and how this
relates to the spatial structure of populations.

In the last chapter we noted that many organisms have a patchy
distribution, where there are more or less discrete populations or
demes. Examples include aquatic organisms in ponds and lakes, or-
ganisms restricted to patches of woodland, and the fauna and flora
on oceanic islands. Gene flow between these populations can be mod-
elled using island models and stepping-stone models. Other organisms
have a continuous distribution over large areas, such as trees in a
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forest, grasshoppers in grasslands, and benthic organisms on the
ocean floor. In these types of populations, each individual is the
centre of a neighbourhood in which the probability of mating, and
therefore of gene flow, declines with distance from the centre. The
population as a whole consists of overlapping neighbourhoods, and
gene flow can be modelled using isolation by distance or neighbourhood
models (Wright 1969).

This chapter explores the consequences of gene flow, and how it
interacts with genetic drift and selection, by analysing the various
models of this process.

9.1 Island models

If individuals move with equal probability among all discrete popula-
tions, the situation conforms to the basic island model. We need only
consider a single population in the development of the model, and
can then extend it to include as many populations as are necessary.

Let a large population receive a proportion, m, of new immigrants
each generation (where m = the immigration rate). The other individ-
uals (1 − m) in the population are ‘natives’. If the allelic frequency of
natives is q0, and that of the immigrants is qm, the frequency of the
allele after one generation of immigration will be:

q1 = (1 − m)q0 + mqm (Eqn 9.1)

This equation rearranges to:

q1 = m(qm − q0) + q0 (Exp. 9.1)

The change in allelic frequency over one generation (�q = q1 − q0)
is easily derived as:

�q = m(qm − q0) (Exp. 9.2)

Thus, if there are no other evolutionary forces operating (i.e.
mutation, genetic drift or selection), the change in gene frequency
as a result of migration depends on the immigration rate (m) and
the difference in allelic frequency between the immigrants and na-
tives. This should be intuitively obvious. The immigration rate only
includes those immigrants that successfully breed and mix their al-
leles into the native population’s gene pool, which means that it can
be difficult to measure immigration rates directly because we are not
concerned with the immigrants that do not breed.

Marker genes (i.e. alleles which differ markedly in frequency be-
tween two populations) can sometimes be used to obtain the measure
of the migration rate, m, between two populations. In order to use
this approach we need know how the allelic frequencies change after
a given number of generations, as well as the allelic frequency of the
migrants. The predictive equations are developed as follows. First, we
rearrange Eqn 9.1 to:
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q1 = q0 − mq0 + mqm (Exp. 9.3)

The difference in allelic frequency between the local, resident,
population and the immigrants after one generation is q1 − qm, and
is calculated by subtracting qm from both sides of Exp. 9.3:

q1 − qm = q0 − mq0 + mqm − qm (Exp. 9.4)

which factors to:

q1 − qm = (1 − m)(q0 − qm) (Exp. 9.5)

and rearranges to:

q1 = (1 − m)(q0 − qm) + qm (Exp. 9.6)

After two generations of migration, Eqn 9.1 modifies to:

q2 = (1 − m)q1 + mqm (Exp. 9.7)

Substituting Exp. 9.6 for q1 in Exp. 9.7 and rearranging yields:

q2 = (1 − m)2(q0 − qm) + qm (Exp. 9.8)

Thus, the difference in allelic frequency between the local popu-
lation and immigrants after two generations is:

q2 − qm = (1 − m)2(q0 − qm) (Exp. 9.9)

This expression bears an obvious relationship to Exp. 9.5, and so
we can infer that after t generations of migration:

qt − qm = (1 − m)t (q0 − qm) (Eqn 9.2)

This equation may be rearranged to estimate the migration rate
(m):

m = 1 −
(

qt − qm

q0 − qm

) 1
t

(Eqn 9.3)

We can use these equations in different ways. Three examples
should make this clear.

Example 9.1 Estimation of migration rates (m)
Slaves were brought to the United States, mainly from West Africa,
about 300 years ago. Since that time, Americans of African and
Caucasian descent have been mixing their gene pools. This can
be regarded as a one-way migration of alleles from Caucasian to
African-American populations because individuals of mixed racial an-
cestry are regarded as African-Americans. Consequently, the allelic
frequency in the local Caucasian population in the United States rep-
resents the value of qm, because this is the group supplying the mi-
grants. The original allelic frequency, q0, in the African-American pop-
ulation can be estimated from populations in West Africa, and qt is
the allelic frequency in the present-day African-American population.
The number of generations (t) of racial mixing is estimated to be 10.

The frequencies of the Fya allele of the Duffy blood groups were
zero in West Africa (q0 = 0); 0.045 in African-Americans in Georgia
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Table 9.1 Estimates of the allelic frequencies of various blood groups in a slave-originating area in West
Africa, and for African-American and Caucasian populations in one city in Georgia

African-Americans Caucasians
Allele West Africa (Claxton, Georgia) (Claxton, Georgia) Migration rate (m)a

R0 0.630 0.533 0.022 0.017
R1 0.066 0.109 0.429 0.013
R2 0.061 0.109 0.137 0.095
r 0.248 0.230 0.374 −0.013
A 0.156 0.145 0.241 −0.012
B 0.136 0.113 0.038 0.026
M 0.474 0.484 0.507 0.035
S 0.172 0.157 0.279 −0.013
HbS 0.090 0.043 0.000 0.071

aThe migration rate from the Caucasian to the African-American population has been
estimated using Eqn 9.3.
Source: Data from Adams and Ward (1973).

(= qt); and 0.422 in the Caucasian population in Georgia (= qm). If
we substitute these values in Eqn 9.3, and set t = 10, we obtain an
estimate of the migration rate (m) of 0.011 per generation. This implies
an immigration rate of alleles from the Caucasian population to the
African-American population of about 1% per generation.

The validity of this estimation method is questionable. If we use
the allelic frequencies of other blood groups (Table 9.1), it may be
seen that there is a wide variation in the positive values, and there
are some negative values, which are not consistent with the model
of migration that we are using. Some of the negative values may be
a result of genetic drift. In the case of the sickle-cell (HbS) allele,
the high value of apparent migration (7.1%) is known to represent
a combination of both migration and selection. The allele is being
selected against because as malaria has been eradicated in the United
States, the allele is no longer advantageous in the heterozygous con-
dition. The problem, however, is that it is impossible to know which
are the ‘good’ genetic markers, i.e. alleles not subject to selection
or genetic drift. Moreover, allelic frequencies vary throughout West
Africa, and in the white and black populations in different areas of
the United States. Consequently, it is not clear which allelic frequen-
cies we should be using. All we can say is that the evidence suggests
a low level of interbreeding between the two groups.

Example 9.2 Estimating the number of generations of migration
A farmer sows a small area of pasture to a pure line of white-flowered
sweet clover (q = 0). All the other farms in the neighbourhood
have large areas of pasture planted with homozygous yellow-flowered
sweet clover (q = 1.0). How many generations will it take for the
white-flowered area to have an allelic frequency of 0.5 for yellow flow-
ers if the migration rate is 0.05 per generation?
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The original allelic frequency of the ‘native’ population was zero,
i.e. q0 = 0, and eventually reaches a frequency (qt) of 0.5, after an
unknown number of generations (t) of immigration by migrant with
an allelic frequency (qm) of 1.0. Substituting these values in Eqn 9.2, we
obtain (0.5 − 1.0) = (1 − 0.05)t × (0 − 1.0). This reduces to 0.5 = 0.95t,
and the logarithm of both sides yields −0.6931 = −0.0513 × t. Conse-
quently, the number of generations (t) is 13.51, or approximately 14.

Example 9.3 Estimating allelic frequencies after several genera-
tions of migration
Three equal-sized populations, A, B and C, with allelic frequencies
of 0.2, 0.4 and 0.6, migrate according to the island model with a
migration rate of 0.1 per generation. What are the expected allelic
frequencies after 10 generations?

The allelic frequency of migrants (qm) is the average of the allelic
frequencies of the donor populations, and so for population A is (0.4 +
0.6)/2 = 0.5, and similarly for populations B and C are 0.4 and 0.3,
respectively. Equation 9.2 is used to calculate qt for each population
separately, and for population A, qt = (1 − 0.1)10 × (0.2 − 0.5) + 0.5 =
0.3954. Similarly, populations B and C have values of 0.4 and 0.4046.
The average allelic frequency after 10 generations remains at 0.4, and
the three populations are steadily converging to this average allelic
frequency. We should note two points when making these types of
calculations. First, if the populations are of unequal size we need to
weight the allelic frequencies of the donor populations accordingly
when calculating qm values; and second, the populations actually con-
verge on their values of qm, rather than the average allelic frequency
across all populations, because we are not readjusting the qm values
over time. The solution to this problem is dealt with next.

9.2 Simulation of island model and general
conclusions

It is simple to simulate the island model to show how migration
affects allelic frequencies by using Eqn 9.1 in an iterative fashion
to calculate the allelic frequencies generation after generation (see
Appendix 9.1). Populations converge to an allelic frequency equal to
the average allelic frequency across all populations (Fig. 9.1). We can
conclude that gene flow has the effect of making populations become
genetically uniform, and that this process becomes more powerful as
the migration rate increases. We have already shown that migration
is a very powerful factor limiting the differentiation of populations as
a result of genetic drift (section 8.4), but how effective is it countering
the effects of selection?

To answer this question consider a situation where all of a main-
land insect population possess wings but the insects are wingless
on an offshore island because those with wings tend to be blown
away on the strong prevailing winds (Fig. 9.2). In the absence of
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Fig. 9.1 The change in allelic
frequencies resulting from
migration between four
populations according to the island
model.
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Fig. 9.2 A schematic diagram
showing the balance of
immigration (m) of an allele and
selection (s) against that allele in an
island population (see text).

migration, all of the island population would be wingless, i.e. q0 = 0,
because of selection, but how would this change if there is immi-
gration of winged forms from the mainland? We can ignore migra-
tion from the island to the mainland because the island insects are
wingless.

The joint effects of selection and migration can be assessed by de-
termining the equilibrium frequency of wing alleles (q̂ ) of the island
population where the loss of alleles by selection is exactly balanced
by the gain of these alleles by migration from the mainland. This may
be predicted by the following equation:

s p̂q̂2

1 − s q̂2
= m(qm − q̂ ) (Exp. 9.10)

The gain of alleles by immigration over one generation is shown
on the right-hand side of the equation, and is derived from Exp. 9.2.
The loss of alleles by selection is shown on the left-hand side of
Exp. 9.10, and is modified from Eqn 10.5, which assumes that the
allele for wings is recessive to wingless.

We can simplify Exp. 9.10 by noting that the left-hand side of
the equation is approximately s p̂q̂2 because the value of s q̂2 in the
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denominator is so small, and that the right-hand side of the equation
equals mp̂ because qm = 1 and so 1 − q̂ = p̂. After cancelling terms
and rearranging the simplified equation we obtain:

q̂ ≈
√(m

s

)
(Exp. 9.11)

To see what this predicts, assume that m = 0.01 and s = 0.25. Our
predicted equilibrium frequency of wing alleles (q̂ ) = 0.2, and so a 1%
immigration rate of wing alleles results in 20% of the alleles for this
trait in the population even though there is a fairly strong selection
against them. Remember, however, that as wings are recessive in this
example only 4% (q̂2) of the population will have wings. If the im-
migration rate (m) increased to 0.1, the equilibrium value for wing
alleles (q̂ ) is predicted to be 0.6325, and 40% of the population would
have wings. Although different cases of dominance (see Chapter 10)
would change the precise values calculated in this example, we would
still draw the same general conclusion that gene flow is also a pow-
erful factor limiting the differentiation of populations as a result of
selection.

9.3 Stepping-stone model

The spatial distribution of many populations does not conform to
the island model we have just considered. In most cases, individuals
will tend to migrate to populations that are closest to them, so the
spread of genes takes place in a stepping-stone fashion from a central
source. Let’s examine how this affects the genetic structure of a group
of populations.

The simplest stepping-stone model is a linear model, which repre-
sents a sequence of populations (1, 2, 3, 4, . . . , n) along an environmen-
tal gradient. Examples include populations at increasing altitudes on
a mountain, or populations along the shoreline of an estuary where
the salinity varies in relation to location. There are various ways in
which the model can be envisioned, but we will construct our model
as shown diagrammatically in Fig. 9.3.

In this model we need to modify Eqn 9.1 for each population
(1, 2, 3, . . . , n). For example, using the notation for migration in

1 2 3

m12

m32

m23 m34

m21 m43

Fig. 9.3 Diagrammatic representation of a one-dimensional stepping-stone model
along an environmental gradient. Each of the sequence of populations (2, 3, 4, etc.)
exchanges migrants with the populations on either side. Between any two populations
the exchange of migrants is balanced (i.e. m12 = m21), but the migration rates can vary
along the sequence of populations.
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Fig. 9.4 The effects of migration
on the allelic frequencies of a linear
sequence of populations where the
frequencies at either end of the
chain (i.e. populations 1 and 9) are
held constant at different
frequencies as a result of selection.
The migration rates are either held
constant between all populations
(solid symbols) or are reduced
between populations 4 and 5 and 5
and 6 (open circles).

Fig. 9.3, the allelic frequency for population 2 after one generation of
migration is:

q1 = [1 − (m21 + m23)]q0 + m12qm1 + m32qm3 (Exp. 9.13)

The allelic frequency of population 2 in the previous generation
(i.e. prior to migration) is denoted by q0, and the rate of loss of these
alleles by migration to populations 1 and 3 is denoted by m21 and
m23, respectively. The increase of these alleles by immigration from
populations 1 and 3 is denoted by m12qm1 and m32qm3 , respectively,
where qm1 and qm3 are the allelic frequencies of populations 1 and 3
prior to migration. Thus, migration is the only factor changing the
allelic frequencies, and Exp. 9.13 is modified in an appropriate way
for each population.

The simulation of this model is described in Appendix 9.2. In our
simulation, the allelic frequencies of the populations at each end of
the series are held constant by selection and the migration rates be-
tween any two populations are equal, i.e. m12 = m21 and m23 = m32,
although this may not be the case in reality. However, the migration
rates can vary between different pairs of populations, i.e. m12 and m21

may be greater or less than m23 and m32. If selection maintains the al-
lelic frequencies at different values at opposite ends of a sequence of
populations, the allelic frequencies of the intermediate populations
will fall on a gradient between these two values, depending on the
migration rates. If the migration rates are similar among all popula-
tions, the gradient will be linear, but if there are regions where there
are low levels of migration there will be abrupt changes in allelic
frequencies at these points (Fig. 9.4).

We can conclude that gene flow limits the differentiation of ad-
jacent populations and that abrupt changes in the characteristics
of populations will be associated with geographical features that
severely reduce the movement between populations.

Geographical trends in allelic frequencies, or morphological fea-
tures, of populations are known as clines. In reality, the intermedi-
ate populations on such clines are unlikely to have their allelic fre-
quencies determined solely by migration rates. Other factors, such as
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selection pressure and possibly genetic drift, will also have an effect.
However, migration does have an effect because steep regions on a
cline are often associated with barriers to movement.

McNeilly (1968) studied the copper tolerance in Agrostis tenuis
around a copper mine in Britain and clearly demonstrated the in-
teraction between gene flow and selection. As expected, the grass had
developed a high tolerance to copper at the mine site, but copper-
tolerant individuals are at a disadvantage to non-tolerant individu-
als in non-polluted areas and so copper tolerance tends to be low
outside of the mine sites. The mine was located at the bottom of
a steep-sided glacial valley that funneled the wind so that for most
of the flowering season of the grass the wind blew in the same di-
rection. McNeilly showed that there was a very sharp cline of cop-
per tolerance on the upwind side of the mine, but copper tolerance
spread a long way downwind of the mine, presumably because of
the spread of wind-borne pollen. In addition, the copper tolerance
of adults was higher than that of seedlings on the upwind side of
the mine site, because of the inflow on non-tolerant genes, but down-
wind of the mine the seedlings had a higher tolerance to copper than
the adult population because there was selection against tolerant
individuals.

In the linear stepping-stone model, each population exchanges mi-
grants with two populations on either side of it (Fig. 9.3). It is possible
to extend this model to a two-dimensional model in which each pop-
ulation exchanges migrants with four populations surrounding it,
i.e. each population is in contact with a neighbouring population in
each of the four quadrants. This type of model is rather more compli-
cated to simulate, but gives results that are similar to the isolation-by-
distance or neighbourhood models that we briefly mentioned at the
start of this chapter. We will not simulate either of these two mod-
els, and will conclude that the overall effect of gene flow between
and within populations is to make them more genetically uniform
and limit the spatial differentiation of populations resulting from
genetic drift and selection.

9.4 Problems

1. The frequency of G6PD deficiency in West Africa is 0.176, in
African-Americans in Georgia is 0.118, and in the Caucasian population
in Georgia is 0. Estimate the average migration rate (m) from Caucasians
to Afro-Americans assuming there have been 10 generations of
interbreeding between the two populations.

2. Four neighbouring populations of equal size have allelic frequencies of
0.2, 0.5, 0.8 and 0.9 and migrate according to the island model with m =
0.05. What are the expected allelic frequencies after five generations?

3. An island population of butterflies has an allelic frequency of 0.75 and
the allelic frequency of the surrounding mainland population is 0.25 for
the same allele. How many generations will it take for the island
population to reach a frequency of 0.55 if the migration rate is 0.05?
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Appendix 9.1 Simulating the island model

1. Open your spreadsheet and enter the title, Island Model, in A1.
2. Enter m = in cell A3, and a value of 0.1 in cell B3.
3. Enter titles in row 5 of columns A to E as follows: In A Time, B

Popn. 1, in C Popn. 2, in D Popn. 3, and in E Popn. 4.
4. Enter starting values of 0, 0.2, 0.4, 0.6, and 0.8 in row 6 of columns

A to E.
5. In column A generate times from 1 to 30 in cells A7 to A36 (see

Appendix 4.1 step 5).
6. In cell B7 enter formula: = (1-$B$3)*B6 + $B$3*(C6+D6+E6)/3.

This is equivalent to Eqn 9.1, with qm calculated as an average
of the donor populations. Enter modified versions of this formula
in C7, D7 and E7. (E.g. the formula for C7 is: = (1-$B$3)*C6 + $B$3*
(B6+D6+E6)/3). Then copy cells B7 to E7 to cells B8 to E36.

7. Graph the changes in allelic frequency over time (see Appendix 4.1
step 9). The x axis is A6 . . A36, the 1st series is B6 . . B36, the 2nd
series is C6 . . C36, the 3rd series is D6 . . D36, and the 4th series
is E6 . . E36. Label the axes appropriately to obtain a graph similar
to Fig. 9.1.

8. Change the migration rate in cell B3 and see how the slope of the
graphs changes.

9. Save your work and exit.

Appendix 9.2 Simulating the stepping-stone model

1. Open your spreadsheet and type the title, Stepping-stone model,
in A1.

2. In row 4, type m values = in column A, and then the value 0.2 in
cells B4 to J4.

3. In row 5 type Popn in B5 and copy to cells C5 to J5.
4. In row 6 type Time in A6, and the integers 1 to 9 in cells B6 to J6.
5. In column A generate times from 0 to 200 in cells A7 to A207 (see

Appendix 4.1 step 5).
6. In column B enter the allelic frequency of 0.9 in B7 and then copy

this to cells B8 to B207. Similarly, in column J enter the allelic
frequency of 0.1 in J7 and copy this value to cells J8 to J207. The
allelic frequencies are now fixed at different values at opposite
ends of the sequence of populations. Finally, copy B7 to cells C7
to I7 to provide a starting allelic frequency for each of the nine
populations.

7. In cell C8 enter the formula: =(1-(B$4+C$4))*C7+B$4*B7+ C$4*D7.
This is equivalent to Exp. 9.10. Copy C8 to cells D8 to 18 to calculate
the allelic frequencies after one generation of migration. Finally,
copy cells C8 to 18 to all cells through to C207 to 1207.
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8. Graph the changes in allelic frequency after 200 generations of mi-
gration in relation to the sequence of populations (see Appendix
4.1 steps 9 and 10). The x axis is B6 . . J6, and the 1st series is
B207 . . J207. Label the axes appropriately to obtain a graph like
Fig. 9.4.

9. The allelic frequencies of populations 1 to 9 should lie on a linear
series from 0.9 for population 1 to 0.1 for population 9. Now vary
the migration rate (m) between certain pairs of populations. For
example, if you reduce the migration rate for populations 4 and
5 (reduce m to 0.05 or 0.01) you will obtain a graph similar to the
dashed line in Fig. 9.4. You will discover that wherever you reduce
the migration rate between two populations (simulating a barrier
to dispersal) there is a sudden shift in allelic frequency between
adjacent populations.

10. Save your worksheet and exit.



Chapter 10

Quantifying natural selection:
haploid and zygotic selection
models

Natural selection occurs where there is heritable variation in a pop-
ulation and where there are differences in survival and fecundity
associated with this variation. Thus, in order for natural selection
to operate there must not only be phenotypic variation, there must
also be an underlying genotypic variation. The relationship between
phenotype and genotype can be very complex (see Schlichting and
Pigliucci 1998) but we will confine ourselves to simple situations
where there is a one-to-one mapping of genotype to phenotype, or
to cases of complete dominance. Genotypes, and thereby alleles, leav-
ing the most descendants will tend to increase in frequency in the
population through the process of natural selection. You will note
that this last statement is not absolute, because if the heterozygous
genotype leaves the most descendants, the proportions of the various
genotypes may remain constant from one generation to the next (see
section 11.2.2).

The various equations that quantify natural selection are largely
developed intuitively by the use of empirical examples. For those who
are interested, the mathematical details of the derivations are con-
fined to a few text boxes and an appendix, but it is not necessary
to be able to derive the equations yourself in order to understand
them. Simulations are used to analyse and show the predictions of
the equations, but their application to the natural world is left until
Chapter 11.

First, however, we need to define a few terms before we learn how
to quantify them.

10.1 Defining fitness and selection

Absolute fitness is a measure of the growth rate of a genetically de-
fined group within a population over the course of one or more gen-
erations. Thus, the fitness of an allele or a genotype depends on the
number of copies in descendants in succeeding generations, and is
measured by the multiplication rate, λ, of the allele or genotype, as
defined for population growth in Chapter 4. Normally, however, we
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Table 10.1 Calculation of the fitness of genotypes. Genotypes A, B and C may be haploid or diploid, although
the calculations for diploid genotypes are not strictly correct (see example 11.3, section 11.1.2)

Genotypes

A B C Total

Number of individuals generation 0 50 60 40 140
Number of individuals generation 1 100 90 40 230
Multiplication rate per generation (λ) 100/50 = 2 90/60 = 1.5 40/40 = 1
Relative fitness (W ) 2/2 = 1 1.5/2 = 0.75 1/2 = 0.5
Selection coefficient (1−W = s) 1 − 1 = 0 1 − 0.75 = 0.25 1 − 0.5 = 0.5

are more interested in fitness relative to other genotypes or alleles,
called relative fitness (W ), because natural selection is the differential
reproduction or survival of types.

The procedure for calculating fitness is shown in Table 10.1. First,
the average multiplication rate per generation (λ) is calculated for
each genotype (i.e. λA, λB, etc.). Then, the relative fitness (WA, WB, etc.)
of each genotype is calculated relative to a reference genotype, which
by convention is the genotype with the highest growth rate. Finally,
the selection coefficient (sA, sB, etc.) operating on each genotype is
defined as the difference between the relative fitness of a genotype
and that of the reference genotype, which has a value of 1.0. Conse-
quently, s = 1 − W and W = 1 − s. Note that the selection coefficient
can range in value from 0, which will be the case for the reference
genotype, to 1.0, which indicates a completely lethal genotype (i.e.
with λ = 0).

10.2 Selection in action

Selection occurs throughout the life of an organism, as well as dur-
ing the production of offspring. In organisms with a haploid life cycle
(e.g. bacteria and some microorganisms), or in asexually reproducing
organisms (e.g. many plants, aphids, and even a few vertebrates), fit-
ness may be simply partitioned into two components: the probability
of a genotype’s survival from birth to reproduction, and the average
production of offspring per individual of a genotype, or its fecundity.

Sexually reproducing species do not produce exact copies of them-
selves. They produce haploid gametes, and genetic information from
two different individuals combine during reproduction to produce
diploid zygotes for the start of the next generation. Such organisms
have a life cycle that alternates between a haploid and a diploid phase.
Either the haploid phase is dominant (e.g. many fungi and algae, and
mosses) or the diploid phase is dominant (e.g. flowering plants and
most animals). The overall fitness is determined by a combination of
different components of selection that occur during the haploid stage
(gametic selection) and the diploid phase (zygotic selection). For example,
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Table 10.2 The frequency of two genotypes, A and B, and the change in
frequency (�q) of the inferior genotype (B), in a population where genotype
A quadruples each generation and genotype B doubles each generation

Population size Frequency of genotype

Time (t) Genotype A Genotype B A (=pt) B (=qt) �q

0 1 99 0.0100 0.9900 −0.0098
1 4 198 0.0198 0.9802 −0.0190
2 16 396 0.0388 0.9612 −0.0359
3 64 792 0.0748 0.9252 −0.0644
4 256 1584 0.1391 0.8609 −0.1051
5 1024 3168 0.2433 0.7557 −0.1484
6 4096 6336 0.3926 0.6704 −0.1712
7 16 384 12 672 0.5639 0.4361 −0.1573
8 65 536 25 344 0.7211 0.2789 −0.1168
9 262 144 50 688 0.8380 0.1620 −0.0739

one genotype may have a lower viability of the offspring than another
genotype, but this reduction in fitness may be compensated in whole
or in part by the genotype having a higher fecundity. The different
components of selection, such as gamete viability, fertilization suc-
cess, mating success of adults, etc., will not be described here. They
are difficult to measure individually and we will not be using them in
our selection models. Readers who wish to learn more about specific
components of selection are referred to Futuyma (1998).

There are many different models of selection which are appropri-
ate for different situations. We will start with the simplest models
and gradually build in the complications.

10.3 Modelling haploid selection

This is the simplest model of selection. Each genotype is independent
of the others, and so the growth of each genotype can be measured
directly. This model may be applied to organisms with haploid life
cycles, such as bacteria and certain microorganisms, and can also
be applied to organisms that reproduce asexually, whether they are
haploid or diploid, although in the latter case we might refer to phe-
notypes rather than genotypes.

Consider the example illustrated in Table 10.2, in which genotype
A has a multiplication rate twice that of genotype B. Obviously, the
relative fitness of B is half that of A (WB = λB/λA = 2/4 = 0.5), and the
selection coefficient against genotype B (sB = 1 − WB) is also 0.5. It is
a simple matter to calculate the growth and frequency of each geno-
type, and also the change in genotypic frequency (�q), generation by
generation. If we set the relative fitness of the superior genotype to
1 and that of the less fit genotype to 1 − s (= W ), we can develop a
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Box 10.1 Quantifying haploid selection with two
genotypes

Consider a population with two genotypes, A and B, with initial frequencies of p
and q and relative fitness of 1 and 1 − s, respectively. Their frequencies after one
generation of selection are calculated by multiplying the initial frequency of each
genotype by its relative fitness. Thus:

Genotype

A B Total population

Initial frequency p q p + q = 1
Relative fitness (W ) 1 1 − s
Frequency after one

generation
p q (1 − s) p + q (1 − s) = 1 − sq

The frequency of genotype B after one generation of selection is:

q1 = q (1 − s)
1 − sq

(Exp. 10.1)

The change in frequency (�q) over one generation is q1 − q. Substituting
Exp. 10.1 for q1 we obtain:

�q = q (1 − s)
1 − sq

− q (1 − sq )
1 − sq

(Exp. 10.2)

This simplifies to:

�q = −sq (1 − q )
1 − sq

(Eqn 10.1)

This equation predicts the change in frequency of the genotype (B) over a
single generation. To predict the genotypic frequency (q) after several generations
of constant selection we need to sum these changes over the required number of
generations. If the selection coefficient (s) is very small, then �q will also be small
and approximates δq/δt, and the denominator (1 − sq) is almost equal to 1.0.
Consequently, we can estimate q after t generations by integrating the numerator,
following the rules of integral calculus, which is equivalent to adding up all of the
small changes over t generations. The solution is:

qt = q0

q0 + (1 − q0)est
approx. (Exp. 10.3)

To simplify the calculation of the selection coefficient (s) or the number of
generations (t) required to change the frequency from q0 to qt , this expression
may be rearranged to:

st = ln
[

q0(1 − qt )
qt (1 − q0)

]
approx. (Exp. 10.4)

Note that Exps. 10.3 and 10.4 are only accurate when s is small (0.01 or less).
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general formulation of how genotypic frequencies change from one
generation to the next. This is developed algebraically in Box 10.1 for
the inferior genotype to produce the following equation:

�q = −sq (1 − q )

1 − sq
(Eqn 10.1)

This equation provides an exact prediction of the change in allelic
or genotypic frequency for any selection coefficient (s), and this can
be confirmed by substituting the values for s and q in the equation for
any of the generations in Table 10.2. Note that the values are negative,
because the inferior genotype declines in frequency.

To make predictions over several generations we need to add up
or integrate these changes generation by generation. We can do this
by using Eqn 10.1 in an iterative fashion (see Appendix 10.2), which
gives exact solutions, or we can integrate a simplified form of the
equation to obtain Exps. 10.3 and 10.4 (see Box 10.1). These are stan-
dard equations (see Hartl and Clark 1989) that provide approximate
predictions for qt, s or t, after many generations of constant selection.
They are only accurate if the selection coefficient (s) is small (0.01 or
less), and the error increases rapidly as s increases in value. They give
very inaccurate estimates of the various parameters for our example
in Table 10.2. Expression 10.3 estimates qt = 0.5238 after nine gener-
ations of selection, when s = 0.5 and q0 = 0.99, rather than the true
value of 0.1620, and Exp. 10.4 estimates the selection coefficient (s) =
0.6931 when t = 9, q0 = 0.99, and qt = 0.1620, rather than the true
value of 0.5.

It is tempting to assume that it is always better to use the exact
iterative simulation method (Appendix 10.2), but if s is very small
you might have to do thousands of iterations to show much change
in genotypic frequency. In this situation it would be better to use the
analytical method, because it provides reasonably accurate solutions.
So when should one switch from one method to the other? Fortu-
nately, there is an alternative analytical method that gives exact solu-
tions for all parameters.1 The formal derivation of Eqns 10.2 and 10.3
is complex (see Appendix 10.1), but they are relatively easy to use.

qt = q0

q0 + (1 − q0)(1 − s )−t
(Eqn 10.2)

[ln(1 − s )] t = ln

[
qt (1 − q0)

q0(1 − qt )

]
(Eqn 10.3)

If we apply these equations to the example in Table 10.2 we find that
both equations calculate exact values for qt, s and t when the correct
values for the other terms in the equation are substituted.

1 When simulating haploid selection (Appendix 10.1) I noticed that Exp. 10.4 calculated
a value for the selection coefficient, s, equal to the true value of −ln (1 − s), or −
ln (W ). It was a simple matter to modify Exps. 10.3 and 10.4 to obtain Eqns 10.2 and
10.3, which provide exact solutions for all parameters. Professor Jacek Banasiuk of
the University of Natal, Durban, formally derived these equations from Eqn 10.1 (see
Appendix 10.1).
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Fig. 10.1 (a) Change in
frequency (�q) of the inferior
genotype in relation to the
frequency (q) of the genotype in
the population, as a result of
selection (s). (b) Change in
genotypic frequencies over time as
a result of selection.

The simulation of haploid selection, described in Appendix 10.2,
shows that Eqns 10.1, 10.2 and 10.3 provide exact solutions or pre-
dictions, whatever the selection coefficient. However, Exps. 10.3 and
10.4 only provide reasonably accurate estimates when the value of s is
very low. Thus, the simulation confirms our assessment of the models
so far. The simulation also helps us make some general conclusions
about haploid selection, which are listed in the following section.

10.3.1 Conclusions
1. Equation 10.1 shows that the change in frequency of genotypes

depends not only on the selection coefficient (s), but also on
the frequencies of the two genotypes (note that p = 1 − q)
in a complex way. An examination of Table 10.2 shows that
genotypic frequencies change most rapidly at intermediate val-
ues of p and q, and change slowly when one genotype or the
other is at a low frequency. The simulation of haploid selection
(Appendix 10.2) confirms this observation (Fig. 10.1a). It may also
be seen that the frequency of the advantageous genotype increases
sigmoidally, whereas the disadvantageous genotype decreases sig-
moidally (Fig. 10.1b). There is an obvious relationship between these
observations and logistic growth (see Chapter 5).

2. Thus, the frequency of a new advantageous mutation in the pop-
ulation will only increase slowly at first. Its survival is precarious
while it remains at a low frequency, because it may be lost by
chance from the population (see Chapter 7).

3. It is the relative growth rates of genotypes that are important in de-
termining the genotypic frequencies, not the actual growth rates.
Thus, if the multiplication rates (absolute fitness) of genotypes A
and B are respectively, 4 and 2, or 1 and 0.5, or 0.9 and 0.45, the
change in genotypic frequencies over time will be identical because
the relative fitness of genotype B (WB) is 0.5 in each case.

4. The overall absolute fitness of the population (λ) steadily increases
as the frequency of the superior allele or genotype increases in the
population (Fig. 10.2). Thus, selection serves to increase the overall
fitness of the population.
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fitness (λ) over time for a
population represented by two
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multiplication rates of 2 and 1,
respectively, and starting with one
individual of genotype A and 99
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10.4 Zygotic selection models

Zygotic selection models are developed in exactly the same way as
the basic haploid selection model. They are more complex because
the growth rates of different genotypes are not independent of each
other and so it is more difficult to calculate their growth rates and
relative fitness. We will leave this problem until Chapter 11 when we
apply the models to actual data. We also have to take into account the
effects of dominance, and we will illustrate how we do this by consid-
ering four examples that correspond to different cases of dominance
(Table 10.3).

Many insects use camouflage to reduce the risk of predation
populations by birds, which act as a powerful selective agent on
body colour by preferentially eating those insects that least resem-
ble the background colour of their environment. This is illustrated
in Table10.3, where the phenotype with the highest relative fitness
or growth rate is the one that matches the colour of the vegetation.
In Cases B and E (Table 10.3) there are two codominant alleles, A1

and A2, and the three genotypes give rise to green, olive and brown
phenotypes. Early in the growing season the insects are living in a
lush green environment, and selection occurs against both the olive
and brown phenotypes, with the selection against olive being exactly
half that against brown. This conforms to the relative fitness of our
Case B model. Later in the season the vegetation becomes darker and
now the olive individuals have the best camouflage (Case E). The olive
individuals increase in frequency because of the selection against the
two homozygous phenotypes (green and brown), and this conforms
to our Case E model of heterozygote superiority.

In Cases C and D (Table 10.3) the allele for green is completely dom-
inant to brown and so there are only two phenotypes. Early in the
growing season the insects are living in a lush green environment,
and there is selection against the homozygous recessive brown types
(Case C). Late in the season, however, the vegetation dries and becomes
brown, and now it is the brown insects that are better camouflaged
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Table 10.3 Zygotic selection on the body colour of an insect as a result of differential predation by birds (see
text). The fitness of genotypes is calculated as shown in Table 10.1, and selection is always against the A2 allele,
which has a frequency of q

Case B No dominance, selection against A2 allele
Colour of vegetation Green
Phenotype Green Olive Brown
Genotype A1A1 A1A2 A2A2

H–W equilibrium frequency p2 2pq q2

Numbers in generation 0 25 50 25
Numbers in generation 1 28 50 22
Absolute fitness, λ 1.12 1.0 0.88
Relative fitness, W 1.0 0.893 0.786
Model relative fitness 1 1 − 1/2s 1 −s

Case C Complete dominance, selection against recessive
Colour of vegetation Green
Phenotype Green Brown
Genotype A1A1 + A1A2 A2A2

H–W equilibrium frequency p2 + 2pq q2

Numbers in generation 0 75 25
Numbers in generation 1 84 16
Absolute fitness, λ 1.12 0.64
Relative fitness, W 1.0 0.57
Model relative fitness 1 1 1 − s

Case D Complete dominance, selection against dominant
Colour of vegetation Brown
Phenotype Brown Green
Genotype A1A1 A1A2 + A2A2

H–W equilibrium frequency p2 2pq + q2

Numbers in generation 0 16 84
Numbers in generation 1 25 75
Absolute fitness, λ 1.5625 0.8929
Relative fitness, W 1.0 0.57
Model relative fitness 1 1 − s 1 − s

Case E Heterozygote superiority
Colour of vegetation Olive
Phenotype Green Olive Brown
Genotype A1A1 A1A2 A2A2

H–W equilibrium frequency p2 2pq q2

Numbers in generation 0 28 50 22
Numbers in generation 1 20 60 20
Absolute fitness, λ 0.71 1.2 0.91
Relative fitness, W 0.595 1 0.758
Model relative fitness 1 − s1 1 1 − s2



154 QUANTIFYING NATURAL SELECTION

Table 10.4 Summary of zygotic selection equations. Selection is always against the A2 allele, which has a
frequency of q, and in Case E selection also occurs against the A1 allele

Fitness of genotypes
Change in A2 allele Change in A2 allele

A1 A1 A1 A2 A2 A2 over one generation over many generations

Case B No dominance, selection against A2

When s � 1, approximate solution:

1 1 − 1/2s 1 − s �q = −1/2 spq
1−sq (Eqn 10.4) st = 2ln

[
q0(1−qt )
q1(1−q0)

]
(Eqn 10.8)

When s = 1 (i.e. lethal)
qt = q00.5t (Eqn 10.9)

t = ln(qt /q0)
ln 0.5

(Eqn 10.10)

Case C Complete dominance, selection against recessive
When s � 1, approximate solution:

1 1 1 − s �q = −spq 2

1−sq 2 (Eqn 10.5) st = q0−qt
q0qt

+ ln
[

q0(1−qt )
qt (1−q0)

]
(Eqn 10.11)

When s = 1 (lethal)
qt = q0

1+tq0
(Eqn 10.12)

t = 1
qt

− 1
q0

(Eqn 10.13)

Case D Complete dominance, selection against dominant
1 1 − s 1 − s �q = −sp2q

1−2sq+sq 2 (Eqn 10.6) When s � 1, approximate solution:

st = q0−qt
(1−qt )(1−q0) + ln

[
q0(1−qt )
qt (1−q0)

]
(Eqn 10.14)

Case E Heterozygote superiority
1 − s1 1 1 − s2 �q = +pq (s1 p−s2q )

1−s1 p2−s2q 2 (Eqn 10.7) q̂ = s1
s1+s2

(Eqn 10.15)

and increase in frequency, and so there is selection against the dom-
inant (green) type (Case D). Note that Cases C and D are mirror im-
ages of each other, and that to conform to the model we switch
the labelling of the alleles so that the inferior allele always has a
frequency of q.

How do these different cases of dominance influence how the
allelic frequencies change as a result of selection? A complete list
of equations is presented in Table 10.4, and although it looks quite
formidable a quick review will reveal that it is simple to use.

The left-hand column lists the relative fitness of genotypes in the
four cases that we developed in Table 10.3. In the next chapter we
will show how to match the various studies to these four cases.

The middle column of equations (i.e. Eqns 10.4 to 10.7) shows how
the A2 allele changes in one generation of selection for each case.
These equations are developed in a similar way, and this is shown for
Eqn 10.4 in Box 10.2. Note that in Cases B, C and D the equations are
negative, and this is because the A2 allele is at a disadvantage to the
other allele and so it will decline until it is eliminated, unless other
forces intervene. Equation 10.7 is positive because neither allele is
eliminated. Case E leads to a stable equilibrium of allelic frequencies,
and this occurs when the term (s1p − s2q) in the numerator equals
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Box 10.2 Zygotic selection – Case B: No dominance
selection against A2

Genotypes

A1A1 A1A2 A2A2 Total population

Initial
frequencies

p2 2pq q2 p2 + 2pq + q2 = 1

Fitness 1 1 − 1/2s 1 − s
Frequency after

selectiona

p2 2pq(1 − 1/2s) q2(1 − s) 1 − sq

aDetermination of total after selection: Total=p2+2pq(1−1/2s)+
q2(1 − s), which expands to p2 + 2pq − spq + q2 − sq2. But p2 +
2pq + q2 = 1, and so the total = 1 − spq − sq2. But p = 1 − q
and so the last expression expands to 1 − sq(1 − q) − sq2 or 1 −
sq + sq2 − sq2, which simplifies to 1 − sq.

The frequency of the A2 allele after one generation of selection is:

q1 = q 2(1 − s) + 1/2[2pq (1 − 1/2s)]
1 − sq

(Exp. 10.16)

The change in allelic frequency over one generation of selection �q = q1−q.
Therefore:

�q = q 2(1 − s) + 1/2[2pq (1 − 1/2s)]
1 − sq

− q (1 − sq )
1 − sq

(Exp. 10.17)

Expanding this expression and setting pq = q − q2 we obtain:

�q = q 2 − sq 2 + q − q 2 − 1/2spq − q + sq 2

1 − sq
(Exp. 10.18)

This simplifies to:

�q = −1/2spq
1 − sq

(Eqn 10.4)

zero. If the equilibrium frequencies are denoted p̂ and q̂ , at equilib-
rium s2q̂ = s1 p̂, but p̂ = 1 − q̂ , and so s2q̂ = s1 + s1q̂ . This equation
may be rearranged to Eqn 10.15 in the third column of Table 10.4,
and shows that the equilibrium value of the allelic frequencies de-
pends on the relative selection pressures against the two homozygote
genotypes.

The remainder of the third column of Table 10.4 (Eqns 10.8 to
10.14) shows how the A2 allele declines in frequency over many
generations of selection in the various cases. Presently, we only have
exact solutions when the A2 allele is lethal (i.e. s = 1), and these are
developed in Box 10.3 for Cases B and C. In Case D, the carriers of a
lethal allele would all die, and the allele would be eliminated in a
single generation. For lower selection pressures we integrate the nu-
merators of Eqns 10.4 to 10.6, as outlined in Box 10.1 for Exp. 10.4, and
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Box 10.3 Speed of evolutionary change with lethal alleles
(s = 1) in Cases B and C

Case B No dominance

Genotypes

A1A1 A1A2 A2A2 Total population

Initial frequencies p0
2 2p0q0 q0

2 1
Fitness 1 0.5 0
Frequency after

selectiona

p0
2 p0q0 0 1 − q0

a Determination of total after selection: Total = 1 − p0q0 − q0
2, or

1 − (1 − q0)q0 − q0
2 (as p0 = 1 − q0), which expands to 1 − q0 +

q0
2 − q0

2 or 1 − q0.

The frequency of A2 after one generation:

q1 =
1/2p0q0

1 − q0
(Exp. 10.19)

But p0 = (1 − q0), therefore:

q1 =
1/2(1 − q0)q0

1 − q0
= 1/2q0 (Exp. 10.20)

Similarly,

q2 = 1/2q1 = (1/2)(1/2)q0 = 0.52q0 (Exp. 10.21)

Thus, the frequency of A2 after t generations of selection is:

qt = 0.5t q0 (Eqn 10.9)

which may be rearranged to estimate the number of generations to effect a given
change in allelic frequency:

t = ln (qt/q0)
ln 0.5

(Eqn 10.10)

Case C Complete dominance, selection against recessive

Genotypes

A1A1 A1A2 A2A2 Total population

Initial frequencies p0
2 2p0q0 q0

2 1
Fitness 1 1 0
Frequency after

selection
p0

2 2p0q0 0 1 − q0
2

The frequency of A2 after one generation of selection is:

q1 =
1/2(2p0q0)
1 − q0

2
= p0q0

(1 − q0)(1 + q0)
(Exp. 10.22)
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But p0 = (1 − q0), therefore:

q1 = (1 − q0)q0

(1 − q0)(1 + q0)
= q0

1 + q0
(Exp. 10.23)

Similarly after two generations:

q2 = q1

1 + q1
=

q0

1 + q0

1 + q0

1 + q0

= q0

1 + 2q0
(Exp. 10.24)

and after three generations of selection:

q3 = q0

1 + 3q0
(Exp. 10.25)

and so after t generations of selection:

qt = q0

1 + tq0
(Eqn 10.12)

Rearranging Eqn 10.12 to determine the number of generations to effect a
given change in allelic frequency results in:

t = 1
qt

− 1
q0

(Eqn 10.13)

the resulting equations (10.8, 10.11 and 10.14) provide approximate
solutions for the speed of selection.

We will show how to use these equations in the next chapter.
Zygotic selection is simulated in Appendix 10.3, and the exercises
there should aid your understanding of this type of selection, and
help us make the following summary and conclusions.

10.4.1 Conclusions
1. Equations 10.4 to 10.7 show that the change in allelic frequency

(�q) is related to the selection coefficient, allelic frequency (q)
and dominance in a complicated way. These relationships are
illustrated in Fig. 10.3.

2. Where heterozygotes have the highest fitness (Case E), �q is nega-
tive at high values of q and positive at low values of q Fig. 10.3b. This
means that the allelic frequency will either increase or decrease
to a stable equilibrium depending on the initial allelic frequency.
Equation 10.15 predicts an equilibrium frequency (q̂ ) of 0.4 when
s1 = 0.2 and s2 = 0.3, and this is confirmed in Fig. 10.3b.

3. In Cases B, C and D, where one allele is favoured over another, the
change in allelic frequency (�q) is either exactly half (Case B) or
approximately half (Cases C and D) that of haploid selection (com-
pare Eqns 10.1 and 10.4). The shape of the curves (Fig. 10.3a) may
be explained as follows. In Case C, where selection occurs against
homozygous recessives, the recessive alleles in heterozygous indi-
viduals are protected against selection. Consequently, the greatest
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Table 10.5 The number of generations (t) required to change the frequency of the favoured allele (p) by a
given amount when the selection intensity, s, is 0.01. Values calculated by iteration from Eqns 10.4 to 10.6

Change in allelic frequency (p)
No dominance Dominant favoured Recessive favoured

From To (Case B) (Case C) (Case D)

0.001 0.01 459 231 90150
0.01 0.10 477 249 9 238
0.10 0.25 219 132 704
0.25 0.50 219 176 308
0.50 0.75 219 309 176
0.75 0.90 219 709 132
0.90 0.99 480 9 238 249
0.99 0.999 462 90 150 231

Source: After Crow (1986).
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Fig. 10.3 (a) Change in allelic frequency (�q) in relation to the allelic frequency (q)
when subjected to a selection pressure of 0.1 for Cases B, C and D (see Table 10.3). (b)
The change in allelic frequency (�q) in relation to the allelic frequency (q) in the case of
heterozygote superiority (Case E).

change in allelic frequencies occurs at high values of q where there
is a greater proportion of recessive homozygotes in the population.
In fact, �q is at a maximum when q = 0.67 (Fig. 10.3a). In Case
D, where selection is against the dominant, there is no protection
against selection of the disadvantageous allele and so the maxi-
mum change in allelic frequencies occurs at low values of q when
q = 0.33 (Fig. 10.3a). When there is no dominance (Case B), the
maximum value of �q occurs at an allelic frequency (q) of 0.5, as
in gametic selection.

4. The approximate solutions to estimate the speed of evolutionary
change (Eqns 10.8, 10.11 and 10.14 in Table 10.4) show that s × t is a
function of the initial and final allelic frequencies. Consequently,
the time (t) required to change the allelic frequency by a given
amount is inversely related to the selection coefficient (s). Thus, if
the selection pressure is doubled, it will halve the time required
to change the allelic frequency by a given amount.

5. The speed of the directional changes in allelic frequencies in Cases
B, C and D are shown in Fig. 10.4, and also in Table 10.5 where it is
more obvious that Cases C and D are mirror images of each other.
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Fig. 10.4 The change in
frequency over time of the
favoured allele (pt) for three
conditions of dominance: Case B,
no dominance; Case C, dominant
favoured (selection against
recessive); and Case D, recessive
favoured (selection against
dominant).

The allelic frequency of 0.001 in Table 10.5 seems quite low, but
it only represents the occurrence of a single allele or mutation
in a population of 500 individuals (remember that the number of
alleles in a population is 2N). In a population of 100 000 individuals,
a single favourable mutation would have a frequency of 0.000 005
and would increase even more slowly, particularly in Case D where
the recessive is favoured.

6. The change in allelic frequencies is sigmoidal (Fig. 10.4), similar to
haploid selection (Fig. 10.1b), and so the changes occur fastest at in-
termediate allelic frequencies. This illustrates Fisher’s fundamental
theorem of natural selection, which states that the rate of evolu-
tion (i.e. increase in fitness) is proportional to the genetic variance
of the population (Fisher 1930). This makes intuitive sense, because
if a population consists of mainly one type of allele there is little
genetic variation for natural selection to work on and so it is dif-
ficult to change. However, if the alleles occur in equal numbers
there is much more genetic variation, and if they differ in fitness
selection can alter their frequency more easily. This is when p =
q = 0.5 in haploid selection (Fig. 10.1a) and the increase in fitness
of the population as a whole is illustrated in Fig. 10.2. The same
is true for zygotic selection when there is no dominance (Case B,
Fig. 10.3a), but where there is dominance the recessive allele has
the same fitness as the dominant in the heterozygous state, and
this distorts the curve so that the peak change is shifted to q = 0.33
or 0.67 (see point 3). Nevertheless, the change in allelic frequencies
still follows Fisher’s fundamental theorem.

7. The sigmoidal change in allelic frequencies when one allele is ad-
vantageous to another has two important results. First, the survival
of an advantageous mutation is extremely precarious when it is at
a low frequency in the population (see section 7.3), and this situa-
tion occurs for many generations, particularly when the favoured
allele is recessive (Case D). Second, an advantageous allele is slow
to become fixed in the population, particularly if it is dominant
(Case C), and so a disadvantageous allele may be maintained in a
population by relatively small opposing pressures of mutation or
migration (gene flow).
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10.5 Using selection models

These models assume that allelic frequencies change as a result of se-
lection on the gene in question, and not because of other forces, such
as mutation, migration, genetic drift, or even selection on another
gene that is linked to the gene we are observing. For this reason, the
models are best used when the gene in question has a major effect
on fitness, and other causes for changes in the allelic frequencies
are trivial in comparison. We will see that this is frequently the case
when we look at the application of the models in the next chapter.

Appendix 10.1 Derivation of haploid selection
equations

The effects of haploid selection over many generations can be accu-
rately predicted as follows. The formal derivation of Eqns 10.2 and
10.3 was developed by Jacek Banasiak, University of Natal, Durban.

In Box 10.1 we derived Eqn 10.1:

�q = q1 − q = −sq (1 − q )

1 − sq
(Eqn 10.1)

We can rewrite this equation in the form of a recurrence equation:

qt − qt−1 = −sqt−1(1 − qt−1)

1 − sqt−1
(Exp. 10.5)

This simplifies to:

qt = qt−1(1 − s )

qt−1(1 − s ) + 1 − qt−1
(Exp. 10.6)

As WB = (1 − s), this is equivalent to:

qt = qt−1WB

qt−1WB + 1 − qt−1
(Exp. 10.7)

Introducing an unknown function (fn) where:

qt = ft

1 + ft
(Exp. 10.8)

Substituting this in Exp. 10.7 gives:

ft

1 + ft
=

(
ft−1

1 + ft−1

)
WB(

ft−1

1 − ft−1

)
WB + 1 −

(
ft−1

1 + ft−1

) (Exp. 10.9)

This simplifies to:

ft = WB ft−1 (Exp. 10.10)

We can see from the development of Eqn 4.2 in Chapter 4 that
this forms a geometric sequence with the solution:

ft = WB
t f0 (Exp. 10.11)
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in which f0 is the initial frequency of genotype B. If we rearrange
Exp. 10.8 we can show that ft = qt/(1 − qt). Substituting this expression
in Exp. 10.11 we obtain:

qt

1 − qt
= WB

(
q0

1 − q0

)
(Exp. 10.12)

Expression 10.12 simplifies to:

qt = q0WB
t

1 − q0 + q0WB
t (Exp. 10.13)

But WB = 1 − s, and substituting this expression gives:

qt = q0(1 − s )t

1 − q0 + q0(1 − s )t
(Exp. 10.14)

which simplifies to:

qt = q0

q0 + (1 − q0)(1 − s )t
(Eqn 10.2)

We can rearrange Eqn 10.2 to:

−[ln (1 − s )]t = ln

[
q0(1 − qt )

qt (1 − q0)

]
(Exp. 10.15)

which bears an obvious relationship to Exp. 10.4, in which the se-
lection coefficient (s) is equal to −[ln(1 − s)] in Exp. 10.15. We may
further simplify Exp. 10.15 to:

ln [1 − s ]t = ln

[
qt (1 − q0)

q0(1 − qt )

]
(Eqn 10.3)

We should emphasize that Eqns 10.2 and 10.3 provide accurate
estimates of qt, s and t, whereas the more conventional Exps. 10.3
and 10.4 provide inaccurate estimates of these parameters.

Appendix 10.2 Simulating haploid selection

This simulation examines the predictions of the various equations
to gain a better understanding of the process. Consider a simple sit-
uation where there are two genotypes, A and B, where genotype A
quadruples each generation (i.e. λA = 4) and genotype B doubles each
generation (i.e. λB = 2). As growth is geometric, we can simulate pop-
ulation sizes in future generations using Eqn 4.2. The two genotypes
have a relative fitness of WA = 1.0 (by definition), and WB = λB/λA =
2/4 = 0.5. The selection coefficient against genotype B remains con-
stant over time, and sB = 1 − WB = 1 − 0.5 = 0.5.

1. Open your spreadsheet and enter the title Haploid Selection Model
in A1.

2. In row 3 of columns D and E type Genotype A and Genotype B. In
row 4 type Absolute Fitness (lambda) = in column A, and enter
the values 4 (for genotype A) and 2 (for genotype B) in columns
D and E. In row 5 type Selection coefficient (sB) = in column A,
and enter the equation = 1 − E4/D4 in column E. This equation
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represents sB = 1 − WB, where WB = λB/λA. The value for the
selection coefficient against genotype B should equal 0.5.

3. In rows 8 and 9 type the following headings in each column (you
may have to alter column width): Column A: Time and (t); column
B: # Genotype and A; column C: # Genotype and B; column D:
Freq. of A and (pt); column E: Freq. of B and (qt); column F: delta
q; leave a blank column; column H: ABS(delta q) and ABS (Eq.10.1)
(note we will be calculating the absolute value of �q for the pur-
poses of graphing); column I: (qt) and Eq. 10.2; column J: sB and
Eq. 10.3; column K: (qt) and Exp. 10.3; and in column L: sB and
Exp. 10.4. These last five columns are for the purpose of check-
ing the predictions of the haploid selection models. Leave a blank
column and in column N type popn fitness and (lambda).

4. Next we simulate the growth of the two genotypes according to the
laws of geometric growth and calculate the genotypic (or allelic)
frequencies and the change in frequency from these data. Do the
following:
(a) In column A enter times from 0 to 20 in rows 10 to 30 (see step

5 in Box 4.1).
(b) In column B enter a population size of 1 in B10; then type =

$B$10*$D$4ˆA11 in B11 and copy to cells B12 to B30. This equa-
tion is equivalent to Eqn 4.2.

(c) Similarly, in column C enter a starting population size of 99 in
C10; then type = $C$10*$E$4ˆA11 in C11 and copy to cells C12
to C30.

(d) In cell D10 type = B10/(B10+C10) and copy this cell to cells D11
to D30; and in cell E10 type = C10/(B10+C10) and copy this cell
to cells E11 to E30. These formulae calculate the frequencies of
genotype A (p) and genotype B (q).

(e) In cell F10 type = E11-E10 and copy this cell to cells F11 to F29.
This calculates �q.

5. We can now check to see if the various equations of haploid se-
lection predict these observations. In columns H to L enter the
following equations:
(a) In H10 type = $E$5*E10*(1-E10)/(1-$E$5*E10) and copy to H11

to H30. This is equivalent to Eqn 10.1.
(b) In I10 type = $E$10/($E$10+(1-$E$10)*(1-$E$5)-A10) and copy to

cells I11 to I30. This is equivalent to Eqn 10.2.
(c) In J11 type = 1-((E11*(1-$E$10)/($E$10*(1-E11)))ˆ(1/A11) and copy

to cells J12 to J30. This is equivalent to Eqn 10.3 that has been
rearranged to solve for s.

(d) In K10 type = $E$10/($E$10+(1-$E$10)*@EXP($E$5*A10)) and
copy to cells K11 to K30. This is equivalent to Exp. 10.3.

(e) In L11 type = (@LN(($E$10*(1-E11))/(E11*(1-$E$10))))/A11 and
copy to cells L12 to L30. This is equivalent to Exp. 10.4 that
has been rearranged to solve for s.

6. If you have done step 5 correctly, the values of �q in column
H match the observed values in column F, except they are posi-
tive rather than negative; the values of qt in column I equal the
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observed values in column E; and the value of sB in column J equals
the value in E5. Systematically alter the value of λB in cell E4 and
note that these relationships hold true in all cases. Thus, this hap-
loid selection model provides exact solutions. Note, however, that
the values in column K deviate more and more from the true values
as the number of generations increases, and that the value in col-
umn L is equal to −ln(1 − s). Obviously, the approximation method,
detailed in Box 10.1, gives poor predictions when s is large. System-
atically alter the value of λB in cell E4, so that it approaches the
value of cell D4, and note that the approximate values approach
the true values as s decreases.

7. Finally in N10 type = (B11+C11)/(B10+C10) and copy to cells N11 to
N29. This calculates the multiplication rate, λ, for the population
from one generation to the next, which is a measure of the overall
fitness of the population.

8. We will now graph some of the relationships in order to under-
stand the model a little better (see steps 9 and 10 in Appendix 4.1).
The various graphs are discussed in the text.
(a) First construct a graph of �q (cells H10 . . H30) against q (the

x-series is either E10 . . E30 or I10 . . I30). You should obtain a
graph similar to Fig. 10.1a (set E4 to 2) which you can label in
a similar way. Note that �q is highest at intermediate values
of q, although the curve is skewed slightly to the right with a
peak at q = 0.6. If you progressively increase E4 from 2 to 3 you
will see that the shape of the curve becomes more symmetrical
with the peak �q at q = 0.5.

(b) Next graph the genotypic frequencies pt (D10 . . D30) and qt

(E10 . . E30) against time (x-series is A10 . . A30). You should
obtain a graph similar to Fig. 10.2. Note that the genotypic fre-
quencies either increase or decrease sigmoidally. The genotypic
frequency qt is predicted by Eqn 10.2.

(c) Finally, graph the overall multiplication rate or fitness, λ, of the
population (N10 . . N29) against generation time (the x-series is
A10 . . A29). You should obtain a graph similar to Fig. 10.2,
which shows that fitness increases over time.

9. Close and save your simulation.

Appendix 10.3 Simulating zygotic selection

The purpose of this simulation exercise is to examine the predictions
and relationships between the various equations listed in Table 10.4
in order to make some general conclusions about zygotic selection.
The various conclusions are listed in section 10.4.1, and so you may
wish to refer to this section once you have completed different stages
of the simulation.

1. Open your spreadsheet and title your simulation.
2. First we will examine the relationship of �q versus q. Enter the

following:
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In A4: Selection coefficient against A1A1genotype (s1) = and
enter 0.2 in G4.

In A5: Selection coefficient against A2A2 genotype (s2) = and
enter 0.3 in G5.

In A6: Selection coefficient against A2 allele (s) = and enter 0.1
in G6.

In A9: Freq. A2 and in B9: Change in frequency of A2 allele
(delta q)

In A10: (q) and in C10 to F10: Case B, Case C, . . . , Case E
3. Now make the following calculations:

(a) In cells A11 to A31 enter allelic frequencies (q) of 0 to 1 in 0.05
increments.

(b) In C11 type: = (0.5*$G$6*(1-A11)*A11)/(1-$G$6*A11) and copy C11
to cells C12 to C31. This represents Eqn 10.4.

(c) In D11 type: = ($G$6*(1-A11)*A11ˆ2)/(1-$G$6*A11ˆ2) and copy to
cells D12 to D31. This represents Eqn 10.5

(d) In E11 type: = ($G$6*(1-A11)ˆ2*A11)/(1-2*$G$6 *A11 +$G$6*
A11ˆ2) and copy to cells E12 to E31. This represents Eqn 10.6.

(e) In F11 type = ((1-A11)*A11*($G$4*(1-A11)- $G$5*A11))/(1-$G$4
*(1-A11)ˆ2 -$G$5*A11ˆ2) and copy to cells F12 to F31. This repre-
sents Eqn 10.7.

4. The equations in step 3 are equivalent to the equations in Table
10.4, but we have calculated the absolute values of �q in Cases
B to D by omitting the negative sign at the start of the relevant
equations.

5. Graph the absolute values of �q versus q for Cases B to D in the
usual manner. The x-series is A11 . . A31 and your y-series are
C11 . . C31; D11 . . D31 and E11 . . E31. Your graph should be simi-
lar to Fig. 10.3a. Make a similar graph for Case E, which should be
similar to Fig. 10.3b. These relationships are discussed in section
10.3.2.

6. We will now examine the speed of evolutionary change. Enter the
following:
(a) In A35: Starting allelic frequency (q0) = and enter the value

0.99 in cell D35.
(b) In A36: Selection coefficient (s) = and enter the value 0.1 in

cell D36.
(c) In A38: Generation; in B38: Allelic frequency (qt); and in E38:

Allelic frequency (pt)
(d) In A39: (t); in B39 to D39: Case B . . Case D; and in E39 to G39:

Case B . . Case D.
7. Now make the following calculations:

(a) In column A enter times from 0 to 1000 in cells A40 to A1040.
(Use an equation!)

(b) Enter = $D$35 in cells B40, C40 and D40 and = 1-B40 . . 1-D40
in cells E40 to G40. The entries in cells B40 to D40 are the q0

values for Cases B to D, and the entries in cells E40 to G40 are
the p0 values because p = (1 − q).
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(c) Type: = B40-(0.5*$D$36*E40*B40)/(1-$D$36*B40) in B41; type =
C40-($D$36* F40*C40ˆ2)/(1-$D$36*C40ˆ2) in C41; and type =
D40-($D$36*G40ˆ2*D40)/(1-2*$D$36*D40+ $D$36*D40ˆ2) in
D41. These formulae calculate the frequencies of the disad-
vantageous allele (q) for the first generation of Cases B, C and
D, by combining the frequency of the allele in the starting
generation with the value of �q calculated by Eqns 10.4 to
10.6.

(d) Copy cells B41 . . D41 to B42 . . D1040 to calculate qt values
for 1000 generations of selection. Then copy cells E40 . . G40 to
cells E41 . . G1040 to calculate the corresponding pt values.

8. Make a graph of the pt values versus generation time (t) where the
x-axis is A40 . . A1040, and the y-axes are E40 . . E1040, F40 . . F1040
and G40 . . G1040. The resulting graph should resemble Fig. 10.4.
You will see that the speed of incorporation of a favoured allele
(pt) is varies greatly for the different cases of dominance. This is
discussed further in section 10.4.1. Change the initial frequency
of q0 from 0.99 to 0.995 and note that there is almost no change
in the allelic frequencies in Case D. Now progressively reduce q0

and see that the favoured allele is fixed more and more rapidly,
until at q0 = 0.8 it is most rapidly fixed in Case D. You can also
affect the speed of change by altering the value of s. Return to
your original values of 0.99 for q0 and 0.1 for s.

9. To determine the utility of the approximation equations in Table
10.5 do the following:

(a) Type: Case B in I60, Case C in J60, Case D in K60, and true
value in L60.

(b) Type: st = in H61, s = in H62, t = in H63; then = $D$36 in L62
and 100 in L63.

(c) Type = 2*@LN(B40*E140/(B140*E40)) in I61; = (C40-C140)/
(C40*C140)+ @LN (C40*F140/(C140*F40)) in J61; and =
(D40-D140)/(G140*G40)+ @LN(D40 *G140/(D140*G40)) in K61.
These formulas represent Eqns 10.8, 10.11 and 10.14 in
Table 10.4.

(d) Finally, type: = I61/$L$63 in I62 and copy to cells J62 and K62,
and type = I61/$L$62 in I63 and copy to cells J63 and K63.

(e) You will see that the estimates are approximately 4--11% in error
when s = 0.1, but if we reduce s to 0.01 the error is <1%.

10. Now save and close your spreadsheet.



Chapter 11

Applying zygotic selection
models to natural systems

Before we can apply the range of equations describing zygotic selec-
tion to natural populations, we must be able to estimate the fitness
of the different genotypes. This can be difficult to do in practice.

11.1 Estimating fitness and selection

We will consider three basic methods of calculating fitness for natu-
ral populations. A more complete discussion of these and some addi-
tional methods may be found in Johnson (1976).

11.1.1 Direct calculation of partial-generation
selection coefficients

Frequently, survival or viability is measured over part of the life cycle.
If we use this information to estimate fitness for our selection model,
we assume that the other components of fitness, such as number of
viable offspring, are the same for the different genotypes. In other
words, we are assuming that the coefficients we calculate for part of
the life cycle, i.e. the partial-generation coefficients, are the same as
those for the full life cycle (full-generation coefficients). It should be
recognized that these estimates are only approximations.

Example 11.1 A sample of newly weaned mice was marked just prior to
the winter, and the following spring, when they had reached reproductive age,
they were live-trapped to estimate their pre-reproductive survival. Other evi-
dence suggested that the different genotypes did not differ in their fertility
or fecundity during their brief reproductive lives. Calculate the relative fit-
ness and selection coefficients of the different genotypes from the following
data.

Phenotype Long tail Medium tail Short tail
Genotype A1A1 A1A2 A2A2 Total
No. weaned 25 50 25 100
No. reproducing 20 30 10 60
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We can directly calculate the survival rates from birth to repro-
ductive age for each genotype as follows: A1A1 = 20/25 = 0.8, A1A2 =
30/50 = 0.6, and A2A2 = 10/25 = 0.4. The genotype with the highest
survival rate has the highest absolute fitness and so the relative fitness
and selection coefficients for the different genotypes can be calcu-
lated directly. Relative fitness: WA1A1 = 0.8/0.8 = 1, WA1A2 = 0.6/0.8 =
0.75, WA2A2 = 0.4/0.8 = 0.5. Selection coefficients: sA1A1 = 1− WA1A1 =
0, sA1A2 = 1− WA1A2 = 0.25, sA2A2 = 1− WA2A2 = 0.5.

Thus, short-tailed mice only have half the chance of reaching re-
productive age compared to long-tailed mice, and mice with medium-
length tails. This corresponds to Case B where there is no dominance
with respect to fitness.

Example 11.2 Bishop (1972) estimated daily death rates and survival rates
for two phenotypes of the peppered moth (Biston betularia) by placing frozen
moths on their natural resting sites on tree trunks and observing the number
eaten by birds after one day of exposure. At one locality, Sefton Park, 42 of
the 56 carbonaria phenotype survived for one day, whereas only 39 of the
56 typica phenotype survived over the same time period. What is the relative
fitness of typica to carbonaria?

The daily survivorship of adults is estimated to be 39/56, or 0.6964,
for typica and 42/56, or 0.75, for carbonaria. Thus, the relative fitness
of typica to carbonaria would appear to be 0.6964/0.75, or 0.9286. How-
ever, the true relative fitness of the two phenotypes is not calculated
as simply as this. If we follow the number of survivors of the two
phenotypes, assuming constant daily survival rates of 0.6964 for typ-
ica and 0.75 for carbonaria, we find that the ratio of the two morphs
varies over time as follows:

Time (days) 0 1 2 3
Surviving typica 56 39 27.16 18.92
Surviving carbonaria 56 42 31.50 23.63
Ratio of survivors 1.0 0.9286 0.8622 0.8007

If we had measured their survival over two days instead of one
day the ratio would have been 0.8622, rather than 0.9286, and so the
relative fitness appears to be declining with time. What do we do? If
the daily survival rates are constant, the adult populations decline ex-
ponentially (Fig. 11.1a). In Chapter 4 we noted that exponential series
are linear when the logarithm of the numbers is plotted versus time,
and this is true for our survivorship series (Fig. 11.1b). The ratio of
the two slopes provides us with the true measure of relative survival
rates (they are actually instantaneous survival rates analogous to our
rm values in exponential growth). Thus, the relative fitness of typica
to carbonaria is actually −0.2877/−0.3618, or 0.795 (Fig. 11.1b). Fortu-
nately, there is a simpler way of calculating this. The relative fitness
is provided by the ratio of the natural logarithms of the two survival
rates (i.e. ln(0.75)/ln(0.6964) = −0.2877/−0.3618 = 0.795). We would



168 APPLYING ZYGOTIC SELECTION MODELS

1 2 3 4
0

20

40

60
(a)

carbonaria

typica

Days since release

N
u

m
b

er
 o

f 
su

rv
iv

o
rs

1 2 3 4
0

1

2

3

4

5
(b)

slope = -0.2877

slope = -0.3618

Days since release

L
n

 N
u

m
b

er
 o

f 
su

rv
iv

o
rsFig. 11.1 The number of

survivors each day after release of
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of the peppered moth (Biston
betularia) where the daily survival
rate is 0.6964 for typica and 0.75
for carbonaria. (a) On an arithmetic
scale, and (b) on a logarithmic
scale.

have obtained the same value if we had estimated the survival rates
over two or more days, and you may check this by using the values
for different days in the table above (there will be some minor fluc-
tuations because of rounding errors in the calculation of numbers of
survivors).

Thus, the true adult survival rate of adult typica is only 79.5%
that of adult carbonaria, and the selection coefficient against typica is
1 − W, which is 1 − 0.795 = 0.205. If we assume that the different
genotypes have equal fecundity, and equal egg and larval survival
rates, the adult survival rates provide an approximation of the fitness
of the different genotypes and phenotypes.

11.1.2 Indirect calculation of fitness using
Hardy–Weinberg ratios

This approach is best used when we can measure the proportions or
numbers of the different genotypes from one generation to the next.
We use the Hardy--Weinberg law to allow for the effects of recombi-
nation, assuming random mating. A simple example will make this
clear.

Example 11.3 The following data were collected for a population of an-
nual flowers in two successive years. Calculate the relative fitness of the three
genotypes.

Phenotype (flower colour) Red Pink White
Genotype R1R1 R1R2 R2R2 Total

Number in year 1 270 410 180 860
Number in year 2 350 444 180 974

1. First calculate the allelic frequencies in the first year. The frequency
of the red allele (p) is (270 + 1/2(410))/860, or 0.5523, and the fre-
quency of the white allele (q) is 1 − p, or 0.4477.

2. Then calculate the expected numbers of different flower colours in
the second year, assuming they are in Hardy--Weinberg equilibrium
(i.e. random mating).
Red = p2 × total year 2 = (0.5523)2 × 974 = 297.13
Pink = 2pq × total year 2 = 2 × 0.5523 × 0.4477 × 974 = 481.67
White = q2 × total year 2 = (0.4477)2 × 974 = 195.20
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3. We can now calculate the true multiplication rates, λ, for the dif-
ferent genotypes by comparing the observed numbers to the ex-
pected numbers calculated in step 2.
Red λR1R1 = Observed/Expected = 350/297.13 = 1.1779
Pink λR1R2 = 444/481.67 = 0.9218
White λR2R2 = 180/195.20 = 0.9221

4. It is now a simple matter to calculate the relative fitness of each
genotype:
Red WR1R1 = 1.0 (by definition, because it has the highest λ)
Pink WR1R2 = 0.9218/1.1779 = 0.7826
White WR2R2 = 0.9221/1.1779 = 0.7828

We can make three observations about this example. First, it ap-
proximates to a Case D selection model, where there is selection
against the dominant allele (see Table 10.2). The white allele is domi-
nant with respect to fitness because white and pink individuals have
approximately the same fitness. Selection is against the dominant be-
cause the fitness of these two genotypes is lower than that of red
individuals. Second, we see in this example that dominance with re-
spect to fitness is different than that with respect to flower colour
(where there is no dominance). This is an example of pleiotropy. In
our selection models we are only concerned about dominance with
respect to fitness. Third, if we had simply calculated the growth rates
of the different genotypes without allowing for the effects of random
breeding between genotypes, we would have obtained erroneous re-
sults (λ for red flowers = 350/270 = 1.2963, λ for pink flowers =
444/410 = 1.0829, and λ for white flowers = 180/180 = 1.0).

A cautionary note
Great care must be taken if this method is used to calculate partial-
generation coefficients. In Example 11.1, we had the following data:

Genotype A1A1 A1A2 A2A2 Total
Number weaned 25 50 25 100
Number after selection 20 30 10 60

We can calculate the relative fitness of the different genotypes using
genotypic frequencies as follows:

Genotype A1A1 A1A2 A2A2

Frequency at birth 0.25 0.5 0.25
Frequency after selection 0.333 0.5 0.167
Absolute fitness, λ 1.333 1.0 0.667
Relative fitness, W 1.0 0.75 0.5

These are all simple direct calculations because we do not have
to allow for any recombination between genotypes when we are only
considering survival. You will note that we obtain the same estimates
as in Example 11.1.
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Now imagine instead that we only had frequency data after selec-
tion, and had assumed that before selection the genotypic frequencies
were in Hardy--Weinberg equilibrium. We would calculate the allelic
frequencies (A1 (p) = 0.5833 and A2 (q) = 0.4167), and then calculate
the expected Hardy--Weinberg genotypic frequencies based on this in-
formation (i.e. A1A1 = p2, A1A2 = 2pq and A2A2 = q2. Our results
would be as follows:

Genotype A1A1 A1A2 A2A2

Observed frequency 0.333 0.5 0.167
Expected (H–W) frequency 0.3403 0.4861 0.1736
λ = observed/expected 0.9796 1.0286 0.96
Relative fitness, W 0.9524 1.0 0.9333

This suggests heterozygote superiority (Case E), even though selec-
tion only occurred against the A2 allele. What have we done incor-
rectly? The expected Hardy--Weinberg frequencies were calculated as-
suming that the allelic frequencies were the same as those occurring
before selection, but p prior to selection was 0.5 whereas after selec-
tion it was 0.5833. This difference in frequency leads us to erroneous
conclusions. We can only apply this method to partial-generation data
if the allelic frequencies remain the same before and after selection,
i.e. are in equilibrium, and this only occurs when there truly is het-
erozygote superiority.

11.1.3 Calculating selection over many generations
using selection models.

In this method we observe a systematic change in phenotypic or geno-
typic frequencies over a known number of generations. We then apply
the appropriate model from Chapter 10 and use it to calculate the ave-
rage selection coefficient, and hence fitness, of the various genotypes.

Example 11.4 A snail with an annual life cycle has either brown or green
shells in which brown is completely dominant to green. Over a prolonged
period of drought the frequency of green-shelled snails is observed to decrease
from about 81% of the population to 49% over a period of five years. What is
the relative fitness of green- to brown-shelled snails?

We can represent this information as follows:

Phenotype Brown Green

Genotype BB Bb bb
Initial frequency 0.19 0.81
Frequency after five generations 0.51 0.49

Selection is occurring against green snails because they are declin-
ing in frequency. Thus, the green allele has a frequency of q. As green
is the homozygous recessive genotype, its frequency is q2 according
to the Hardy--Weinberg equilibrium. Consequently, we can estimate
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the initial allelic frequency, q0, as
√

0.81 = 0.9, and qt after five gen-
erations as

√
0.49 = 0.7.

Selection is occurring against the recessive, and so it is most likely
that we have Case C -- complete dominance, selection against the re-
cessive. We can use Eqn 10.11 (see Table 10.3) to obtain an approximate
solution for s. If we substitute the values for q0 and qt that we have
derived, we obtain: s × 5 = 0.3175 + 1.3499, and so the selection co-
efficient (s) is approximately 0.3335. The relative fitness of green to
brown snails is, therefore, 1− s, or 0.6665.

Note, that when you apply any of the models applying to Cases B,
C or D then q0 must be larger than qt. If it is not, then you have made
a mistake somewhere.

11.2 The application of zygotic selection models
to natural selection

Examples of natural selection abound in nature. We will look at four
examples to show how the single-locus zygotic selection models can
shed light on the process of natural selection. The various equations
are found in Table 10.4.

11.2.1 Industrial melanism
One of the most thoroughly studied cases of evolutionary change
involves an evolutionary response by a whole variety of insects and
spiders to man-made pollution from the burning of coal. The smoke
changed the colour of tree trunks from a general light colour to
a dark brown because of the deposition of soot and the killing of
the light-coloured crustose and foliose lichens by sulphur dioxide.
In response, many insects and spider populations changed over time
from a light body colour to a dark melanic form, a process called
industrial melanism. It is significant that many species exhibiting this
type of response rely on their cryptic coloration to avoid predation.
The various species tend to rest in exposed places during the day and
so are vulnerable to predation.

The best-studied case of industrial melanism involves the peppered
moth (Biston betularia) which is common in England (Fig. 11.2). Prior
to the Industrial Revolution, during the eighteenth and nineteenth
centuries the common form of this moth had a light speckled col-
oration, called typica. The first known melanic form, called carbonaria,
was caught at an unknown locality prior to 1811 and exists in a col-
lection at Oxford University. Another carbonaria was collected in 1848
in Manchester by a local lepidopterist and is the only carbonaria in
his collection, so we can assume that this form of the moth was
rare at that time because insect collectors prize unusual varieties.
The melanic form increased rapidly in frequency in the Manchester
area, until by 1890, it made up more than 90% of the population.
This dark form of the moth appeared to spread by migration from
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Fig. 11.2 Two peppered moths
(Biston betularia) rest on the dark
bark of a tree in a highly polluted
area near Liverpool (top) and on
the light-coloured, lichen coated
bark of a tree in an unpolluted area
of rural Wales (below). The
melanic, or carbonaria, form is
better camouflaged in polluted
areas and the light, or typica, form
is better camouflaged in unpolluted
areas. (From Bishop and Cook
1975, with permission.)

the Manchester area and rapidly became the dominant type in the
industrial areas of Britain.

Work by Mendelian geneticists established that body and wing
colour were controlled by a single gene with multiple alleles. The
typica form is a pale speckled colour, which blends well with many
lichens. It is recessive to a series of darker speckled forms, called insu-
laria, which are relatively rare and tend to occur in slightly polluted
areas. Finally, the coal-black carbonaria is dominant to all other forms.
In the following account we will ignore the insularia forms and dis-
cuss the evolution of industrial melanism in B. betularia as though it
only involved two alleles: carbonaria which is dominant to typica.

In 1924, J. B. S. Haldane (one of the major theoreticians in popula-
tion genetics along with Ronald Fisher in England and Sewall Wright
in the United States) showed that there must have been a strong
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selection pressure to cause such a rapid change in the frequencies
of the carbonaria and typica morphs. He estimated that the frequency
of carbonaria in the Manchester area had changed from about 1%
in 1848 to 99% in 1898, i.e. had changed from being rare to almost
the entire population in about a 50-year period. This change had oc-
curred in 50 generations because there is only a single generation of
the moth each year. We can follow Haldane’s approach by laying out
the available information as follows:

Phenotype carbonaria typica

Genotype CC Cc cc
Frequency in 1848 1% = 0.01 0.99 = q0

2 q0 = (
√

0.99 or 0.995)
Frequency in 1898 99% = 0.99 0.01 = qt

2 qt = (
√

0.01 or 0.10)

Selection is occurring against the recessive allele because the fre-
quency of typica is declining over time. Haldane reasoned that the
change in allelic frequencies corresponded to a case of complete dom-
inance with selection against the recessive (Case C in our system), and
so could use an equation equivalent to Eqn 10.11 to obtain an approx-
imate estimate of the selection coefficient, s, against the typica allele.
When the appropriate values of q0, qt and t are inserted in Eqn 10.11,
we have:

s × 50 = 0.995 − 0.1

0.995 × 0.1
+ ln

[
0.995(1 − 0.1)

0.1(1 − 0.995)

]

The solution is s = 0.3297, and the relative fitness of typica to
carbonaria (W) is (1 −s), or approximately 0.67.

For those who are interested in historical accuracy, Haldane used a
variant of this model in which the relative fitness of typica = 1.0, and
the relative fitness of the carbonaria was 1 + s. Thus he considered the
change in allelic frequencies to be a result of the relative advantage
of carbonaria rather than the disadvantage of typica. This is easily
calculated as the reciprocal of our estimate of the relative fitness of
typica, i.e. 1/0.67 = 1.4925, or approximately a 50% advantage of the
carbonaria form.

Haldane’s estimate of selection appeared to have little impact on
the thinking of evolutionary biologists and population geneticists
over the next three decades. The general assumption was that se-
lection coefficients were small, of the order of 0.001, and that evolu-
tionary changes occurred slowly. The other problem was that Haldane
did not know the reason for the change in body colour in the pep-
pered moth.

Approximately 30 years later, Kettlewell (1955, 1956) reported the
results of field experiments on the survival of adult B. betularia in a
polluted wood near Birmingham and a non-polluted wood in Dorset,
England. He released marked individuals of both morphs, and then
with the aid of light traps recaptured as many as possible a few
days later (Table 11.1). His results showed that there was a strong
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Table 11.1 Results of field experiments on the survival of adult Biston betularia

carbonaria typica

Polluted wood near Birmingham Released 154 64
Recaptured 82 16
Survival rate 0.5325 0.25
W (no correction) 1 0.4695
s (no correction) 0 0.5305
W (corrected)a 1 0.4546
s (corrected) 0 0.5454

Non-polluted wood in Dorset Released 473 496
Recaptured 30 62
Survival rate 0.0634 0.1250
W (no correction) 0.5074 1
s (no correction) 0.4926 0
W (corrected)a 0.7540 1
s (corrected) 0.2460 0

aCorrected values calculated from the ratio of the logarithm of survival rates (see Example
11.2).
Source: Kettlewell (1956).

selection for carbonaria and against typica in polluted areas and a
strong selection for typica and against carbonaria in non-polluted ar-
eas. Moreover, he observed that differential survival of the two morphs
was linked to differential predation of the resting moths by various
species of birds. These birds mainly ate the less cryptic moths, i.e. the
pale typica in polluted areas and the black carbonaria in unpolluted
areas.

Initially his results were greeted with scepticism. Evolutionists
‘knew’ that selection coefficients were much lower than he had esti-
mated, ornithologists did not believe that birds were capable of eating
the numbers of moths that Kettlewell claimed, and lepidopterists
had never observed birds eating cryptic moths in the wild. Unde-
terred, Kettlewell repeated his experiments and, with the help of Niko
Tinbergen, filmed birds eating the resting moths. He quickly con-
verted the sceptics into believers.

Kettlewell and other researchers have mapped the distribution
of the different morphs in different areas of Britain (Fig. 11.3), and
showed that carbonaria was largely confined to the polluted industrial
areas and that typica was most common in the rural, unpolluted areas.
The discrepancy of carbonaria being the most common form in the
rural areas of Norfolk and Lincolnshire was explained by the fact
that these areas were downwind of the industrial Midlands.

The distribution of melanic moths is not entirely predicted by dif-
ferential predation by birds. For example, carbonaria used to make up
at least 95% of the population in the industrial Liverpool--Manchester
area of north-western England, and the percentage of this form
declined as one proceeded to the south-west into unpolluted areas
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Fig. 11.3 Frequencies of the
different morphs of the peppered
moth (Biston betularia) at various
localities in Britain. (Reprinted
from Genetic Consequences of
Man-Made Change (eds. J. A.
Bishop and L. M. Cook), Lees,
D. R. Industrial melanism: genetic
adaptation of animals to air
pollution, pp. 129–76, Copyright
1981, with permission from
Elsevier Science.)

of Wales (Fig. 11.3). The fitness of typica relative to carbonaria, at var-
ious points along this cline, was calculated from the differential
survival of adult moths as a result of bird predation (Bishop 1972;
see Example 11.2). The expected distribution of the two morphs did
not fit the observed distribution along this cline (Fig. 11.4). There are
two discrepancies: first, typica should have been eliminated from the
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Fig. 11.4 Decrease in the
observed (circles) and predicted
(line) percentage of carbonaria in
the population of Biston betularia
with distance from Sefton Park,
Liverpool. The predicted values
are based on the relative survival
rates of adult moths and allowing
for the migration between adjacent
areas. (Simplified data set from
Bishop 1972.)

industrial areas of Liverpool and Manchester because selection is so
strong, and secondly, carbonaria was much more frequent than ex-
pected in the non-polluted areas.

It is possible that migration might explain why typica was not elim-
inated from the industrial areas, because a few adult males migrate
several kilometres and the industrial areas are downwind from the
non-polluted areas making immigration of typica more likely. We can
use our models of selection and migration to help us assess the like-
lihood of this factor being responsible for the maintenance of typica
in industrial areas. If typica stabilizes at a frequency of 0.04 (i.e. 4%) in
Sefton Park, we can calculate its expected reduction in frequency over
one generation of selection by using Eqn 11.2 (i.e. Case C -- complete
dominance, selection against the recessive). This decrease should be
balanced by an increase in the frequency of the typica allele resulting
from immigration, given by Exp. 9.2, if this factor is solely responsi-
ble for maintaining the frequency of typica at 0.04 in the population.
Thus:

spq2

1 − sq2
= m(qm − q0) (Exp. 11.1)

The selection coefficient (s) against typica in this locality was calcu-
lated as 0.205 (see Example 11.2). The frequency of the typica allele (q)
is

√
0.04, or 0.2, which is also the frequency (q0) because it has stabi-

lized in the population, and p = 1−q, or 0.8. The allelic frequency of
migrants (qm) is estimated by assuming that 10% of the migrants are
typica, because most areas within 10 km of Sefton Park have at least
90% carbonaria. So qm is

√
0.1, or 0.3162. If we substitute these values

in Exp. 11.1, we can calculate the migration rate, m, that would be
required to maintain this balance. Thus:

0.205 × (1 − 0.2) × 0.22

1 − 0.205 × 0.22
= m(0.3162 − 0.2)

This gives us an estimate of m = 0.057, which suggests that a
migration rate of close to 6% would be required to maintain typica at
an equilibrium frequency of 4% in the population. However, estimates
of migration rates using mark-and-recapture methods are of the order
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of 1% or 2%, and so although migration may play a role, it is unlikely
to be the only factor involved.

It is also possible that heterozygote superiority might account for
the maintenance of typica in polluted areas, because there is some ex-
perimental evidence that heterozygotes survive better than homozy-
gotes during the larval stage of development. We can assess the effect
of this factor by considering a general model of selection in polluted
areas as follows:

Phenotype carbonaria typica

Genotype CC Cc cc
Relative fitness

(bird predation)
1 1 1 − s

Relative fitness
(larval survival), 1 − s1

1 − s1 1 1 − s1

Overall fitness 1 − s1 1 1 − s2

(where s2 = s + s1)

Selection coefficients acting on different stages of the life cycle
are additive, and so can be combined to obtain an estimate of overall
fitness of the different genotypes. The situation conforms to Case E,
described by Eqn 10.15, in which the equilibrium frequency (q̂ ) is 0.2,
selection as a result of bird predation (s) is 0.205, as noted previously.
If we substitute these values in Eqn 10.15, we can obtain an estimate
of s1:

0.2 = s1

s1 + (0.205 + s1)

Thus, s1 is 0.068, which corresponds well to the estimates of het-
erozygote advantage, of between 5% and 15%, determined by Clarke
and Sheppard (1966). Consequently, it is quite possible that heterozy-
gote superiority maintained typica at a low frequency in industrial
areas.

Toward the other end of the cline, carbonaria occurred much more
frequently then expected (Fig. 11.4). Migration is unlikely to be im-
portant in maintaining this discrepancy because carbonaria would be
migrating against the prevailing winds. Similarly, if we consider our
general model of heterozygote superiority:

Phenotype carbonaria typica

Genotype CC Cc cc
Relative fitness (bird predation) 1 − s 1 − s 1
Relative fitness (larval survival) 1 − s1 1 1 − s1

Overall fitness 1 − s2 1 − s 1 − s1

We can see that s1 must be larger than s in order for heterozygotes
to be at an advantage, otherwise typica would have an overall fitness
equal to, or greater than, the heterozygotes. However, the selection
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coefficient against carbonaria (s) resulting from differential bird pre-
dation was as high as 0.55 at some localities on the cline, and so it is
extremely unlikely that differential larval survival (s1) is of this mag-
nitude. Consequently, carbonaria is not maintained in non-polluted
areas by heterozygote superiority.

So how is carbonaria maintained in some non-polluted areas in
the face of an apparent strong selection by birds? The most likely
explanation is that the method of calculating selection pressures, by
observing the relative adult survival of the two phenotypes on ex-
posed tree trunks, is too simplistic. This treats the environment as
if it is uniform, and assumes that all moths select the same resting
sites. Thus, in unpolluted areas it is as if all of the resting places for
moths are light in colour. This is not the case. It has been shown that
moths placed in the shaded area below a branch have a better chance
of survival than those placed in exposed areas of the tree trunk
(Majerus 1998), and this difference in survival is especially marked
for carbonaria. Thus, there are resting sites in unpolluted areas where
the melanic forms are cryptic. If the moths tended to select the appro-
priate patches in which to rest, we could have frequency-dependent
selection. For example, if the ratio of dark to light resting places was
5 : 95, we might expect carbonaria to comprise 5% and typica 95%, of
the population. Selection against carbonaria would vary according to
its frequency in the population, in relation to the availability of suit-
able cryptic resting sites. Majerus (1998) suggested that the selection
of resting sites by moths needs to be studied to understand, and bet-
ter estimate, the predation selection pressure against the different-
coloured adults.

Finally, the overall pattern of the distribution of the two moths
has changed dramatically over the last few decades. During the 1950s,
the government enacted legislation to introduce smokeless fuels to
decrease air pollution. The once grimy, dark industrial regions have
slowly changed. No longer is soot covering the trees, and the regrowth
of lichens is favouring the pale-coloured forms even in industrial
areas. For example, in one garden area in West Kirby, just outside
Liverpool, 93% of the population of peppered moths was black in
1959, but the proportion had reduced to 84% by 1976 and to 33% by
1990. We can determine the approximate selection pressures involved
as follows:

Phenotype carbonaria typica

Genotype CC Cc cc
Frequency 1959 0.93 0.07 = p2 Thus, p = 0.2646

and q = 0.7354
Frequency 1976 0.84 0.16 = p2 Thus, p = 0.4

and q = 0.6
Frequency 1990 0.33 0.67 = p2 Thus, p = 0.8185

and q = 0.1815
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We can see that selection is occurring against the carbonaria allele
(C) which has a frequency of q (in our models the inferior allele always
has a frequency of q). The expected Hardy--Weinberg frequency of
the carbonaria genotype is q2 + 2pq and so q cannot be solved for
directly. The typica genotype has a frequency of p2, which allows us
to estimate the frequency of p, and hence q (because q = 1 − p). The
situation conforms to Case D (complete dominance, selection against
the dominant) and so we can use Eqn 10.14 to obtain approximate
estimates of s. Our estimates of selection against carbonaria are 0.1115
from 1959 to 1976, 0.2279 from 1976 to 1990, and an overall value of
0.164 from 1959 to 1990. We would anticipate that selection would be
slow at first, and then accelerate as the effects of the clean-up of the
environment became more and more evident, and these estimates are
consistent with this observation.

In summary, air pollution during the Industrial Revolution
changed the colour of tree trunks from a light colour to black.
Moths, like B. betularia, responded genetically to these changes during
the nineteenth century. A black mutant phenotype, called carbonaria,
rapidly became the most common form in industrial areas, while the
light typica phenotype maintained its predominance in non-polluted
areas. It was believed initially that these changes were the result of
differential selection by birds, which preferentially ate light-coloured
moths in industrial areas and dark-coloured moths in unpolluted ar-
eas, and simple selection models were used to analyse these changes.
Further studies have revealed that the genetic changes are more com-
plex than this, and that migration and larval survival might also be
important. Clean-air legislation has reduced the level of air pollution
to the extent that the typica phenotype is now favoured even in in-
dustrial areas. If present trends continue, the moth population will
conform to the situation that was once found in pre-industrial times.

11.2.2 Sickle-cell anaemia
We saw in Chapter 7 (section 7.1) that the S form of haemoglobin,
resulting from a single point mutation from the ‘normal’ A form
of haemoglobin, produces drastic consequences. The majority of the
homozygous SS individuals die an early death from a complex of dis-
orders, known as sickle-cell anaemia, whereas heterozygous AS indi-
viduals are resistant to malaria. Haemoglobin S exists in a balanced
polymorphism with ‘normal’ haemoglobin A, in areas of endemic
malaria such as tropical Africa.

The selective forces involved in maintaining this polymorphism
may be calculated from data provided by Allison (1956), who screened
287 infants and 654 adults in an area of Tanzania (Table 11.2). Ideally,
infants would be screened at birth, and the survival of those same
individuals would be followed to adulthood. However, dividing the
adult by the infant genotypic frequencies gives a measure of differen-
tial survival, and hence fitness, of the different genotypes. It is a sim-
ple matter to calculate the relative fitness of each genotype, assuming
that the different genotypes are equally fertile. This is unlikely, but
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Table 11.3 Frequency of haemoglobin genotypes in Tanzania and calculations of their fitness

Genotype

AA AS SS Total Frequency of S allele

Number of infants 189 89 9 287
Number of adults 400 249 5 654
Frequency in infants 0.6585 0.3101 0.0314 0.1864
Frequency in adults 0.6116 0.3807 0.0076 0.1980
Absolute fitness 0.9288 1.2277 0.2420
Relative fitness 0.7565 1 0.1971
Selection coefficient s1 = 0.2435 s2 = 0.8029

Source: Allison (1956).
we will ignore the problem here. The situation conforms to Case E --
heterozygote superiority, in which there is a strong selection against
homozygous SS due to complications arising from sickle-cell anaemia
(see Chapter 7), and a smaller selection against homozygous AA result-
ing from the effects of malaria. This results in a stable polymorphism
in which the frequencies of the two alleles and the three genotypes
remain constant from generation to generation.

A stable polymorphism will only be maintained in the presence
of malaria. There is no malaria in North America, where Africans
were transported as slaves, and the incidence of sickle-cell anaemia
has been reduced. After ten generations there has been about a 7% de-
crease in the S or HbS allele each generation (see Table 9.1). Probably a
decrease of about 1--2% per generation is a result of migration of Cau-
casian alleles into the African-American population (see Chapter 9),
but the majority of the reduction is undoubtedly the result of strong
selection against the S allele.

11.2.3 Eugenics
It is tempting to believe that one can improve the fitness of human
populations by preventing those with deleterious genetic traits from
having offspring. This type of policy is misguided, not only because it
involves a clash between individual and societal rights, but because
the results are simply not worth the effort involved, as the following
fictitious example should make clear.

Example 11.5 A dictator of a small country is angered to learn that there
is one four-toed individual for every 10 000 people in what he considers to be
his genetically superior nation. He orders that all four-toed individuals must
be sterilized at birth and asks his Minister of Health to inform him when
the incidence drops to below one in 1 000 000 people, at which point it would
effectively be eliminated from his nation. How long would this take, knowing
that the trait for four-toes in humans is controlled by a single recessive gene,
and that there are approximately four generations per century?

The incidence of the four-toed trait is one per 10 000 (= 10−4),
which is q0

2, and the target frequency is one per 1 000 000 (10−6)
which is qt

2. The dictator has made the four-toed genotype lethal,
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i.e. s = 1, and so we need to solve Eqn 10.2 in order to solve for the
number of generations (t). Thus:

t = 1

qt
− 1

q0
where qt = √

10−6 or 10−3, and q0 = √
10−4 or 10−2

The solution is t = 1000 − 100, or 900 generations. At four gen-
erations per century, it will take 900/4 = 225 centuries, or 22 500
years to reach the incidence the dictator desires. This assumes, of
course that there are no mutations to the four-toed allele during this
time.

The reduction in frequency of a recessive allele occurs slowly, even
when it is lethal. Many of the deleterious traits that people would like
to eliminate from the population, because of the pain and suffering
they cause, are likely to have a high selection against them, and so
increasing the selection pressure to 1.0 (i.e. making it lethal) will not
change things very much. These traits are probably held at a low
incidence in the population by a balance of mutation and selection,
which we will now consider.

11.2.4 The balance between selection and mutation
Consider the situation where highly deleterious traits may be main-
tained in a population by recurrent mutation. As fast as deleterious
alleles are being removed by selection, they are being replaced by
mutation. The development of the appropriate equations (Eqns 11.1
to 11.3) is given in Box 11.1. These equations show that the deleteri-
ous allele will be maintained at an equilibrium frequency (q̂ ), which
is related to a certain ratio of the mutation rate (u) and selection
coefficient (s). In Case D, the equilibrium is expressed in terms of
the heterozygotes (H) because homozygotes of the deleterious allele
seldom, if ever, occur in the population. To see how to use these
equations, consider the following example.

Example 11.6 In a classic study of achondroplasia (short-limbed dwarfism)
Mørch (1941) noted 10 infants with this condition out of 94 075 births over a
30-year period in Denmark. Eight of these 10 achondroplastic individuals had
normal parents. Looking at records covering a period of many years, he noted
that 108 individuals with achondroplasia had produced a total of 27 offspring,
whereas 457 of their normal siblings produced a total of 582 offspring.

The relative fitness of achondroplasia may be calculated from
these data as follows:

Phenotype Achondroplasia Normal
Average number 27/108 = 0.25 582/457 = 1.2735

of offspring
Relative fitness (W) 0.25/1.2735 = 0.1963 1
Selection coefficient 1 − 0.1963 = 0.8037

Achondroplasia is a dominant mutation, and so we must use Eqn
11.3 to estimate the mutation rate (u). We may note that all of the



182 APPLYING ZYGOTIC SELECTION MODELS

Box 11.1 Balance of selection and mutation

The decrease in allelic frequency (q) as a result of selection (Eqns 10.4, 10.5 and
10.6) is balanced by the increase in allelic frequency as a result of recurrent, re-
versible mutation (Exp. 7.12), where u is the forward mutation rate (p to q) and
v is the reverse mutation rate. Note that s =1, or nearly so, and the frequency of
the deleterious allele (q) will be very small.

Case B – no dominance
1/2spq
1 − sq

= up − v q (Exp. 11.2)

If we make two trivial sacrifices of error, we can simplify the equation con-
siderably. First, 1 − sq is approximately 1 because q is very small, and vq can be
eliminated for the same reason. Thus:

1/2spq = up (Exp. 11.3)

This simplifies to:

q̂ = 2u
s

(Eqn 11.1)

We can derive the equations for Cases C and D following the same kind of
reasoning.

Case C – complete dominance, selection against recessive

q̂ =
√

u
s

(Eqn 11.2)

Case D – complete dominance, selection against dominant

Ĥ = 2u
s

(Eqn 11.3)

In these three equations, q̂ = the equilibrium frequency of the deleterious
allele, H = the equilibrium frequency of heterozygotes, u = the mutation rate of
the deleterious allele from the ‘normal’ allele, and s = the selection coefficient
against the inferior genotype.

achondroplastic individuals are heterozygous because homozygotes
for this condition are lethal. Thus, the frequency of heterozygotes (H)
is 10/94 075, or 0.000 106. Substituting this, and the selection coeffi-
cient determined above, in Eqn 11.3 we obtain:

0.000 106 = 2u

0.803 7

This provides an indirect estimate of the mutation rate (u) of
4.3 × 10−5. We can also calculate the mutation rate directly, because
eight of the achondroplastic individuals in the 94 075 births were
the result of new mutations, i.e. had normal parents. This gives a
direct estimate rate (u) of 8/(94 075 × 2), or 4.3 × 10−5 (note that
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the number of alleles available for mutation is twice the number of
newborns because we are diploid). The exact match of the two esti-
mates is fortuitous because they are both subject to large errors. For
example, if all 10 of the individuals with achondroplasia had been
born to normal parents, the direct estimate of the mutation rate
of achondroplasia would have been 5.3 × 10−5. Similarly, if the 108
achondroplastic individuals had produced slightly more or fewer off-
spring, the selection coefficient, and hence the indirect estimate of
the mutation rate from Eqn 11.3, would have been different.

If we applied the principle of eugenics to this situation, and were
able to make s = 1, the equilibrium level of heterozygotes in the pop-
ulation would be reduced to 0.000 085 from 0.000 106 (assuming the
mutation rate is 4.3 × 10−5). This is two fewer cases of achondroplasia
per 100 000 of the population, and so eugenics has little impact when
there is already a strong selection pressure against the condition.

Finally, it is unwise to use Eqn 11.2 to obtain an indirect estimate
of the mutation rate when there is selection against recessives. This
is because the equilibrium state is only approached very slowly, and
so the observed frequency of the allele may not be the equilibrium
frequency. It takes hundreds of generations to reach equilibrium in
large populations, and unless s = 1 it is unlikely that selection pres-
sures will remain constant over this period. Equilibrium is reached
much faster in small populations, but in this situation the frequency
of the mutant allele is subject to genetic drift while in the heterozy-
gous state. In addition, inbreeding can greatly change the equilibrium
value, because the proportion of homozygotes is increased (see Crow
1986).

11.3 Summary and conclusions

Several examples are provided of ways to calculate the relative fitness of
different phenotypes over part of a generation, a single generation, or over
many generations for natural populations. The methods should be used
carefully, because they all are based on assumptions that may or may not be
realistic.

During the Industrial Revolution, many insects and spiders responded
genetically to the effects of air pollution by incorporating a rare dark
mutant form into the population so that it became the dominant
phenotype in industrial areas. The simple zygotic selection model has
helped us understand some of the complexities of these genetic changes.

Sickle-cell anaemia demonstrates how heterozygote superiority can
account for the maintenance of an allele that is extremely disadvantageous
in the homozygous state.

Zygotic selection models also show how the policy of eugenics, which
tried to improve the fitness of human populations by preventing those with
deleterious genetic traits from having offspring, is truly misguided. In many
cases, such deleterious traits are held at stable levels in the population by a
balance of mutation and selection.
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11.4 Problems

The equations listed in Table 10.4 and Box 11.1 are used to solve the
following problems.

1. A grasshopper has its body colour controlled by a single gene with two
codominant alleles, G and B. The following information was collected by
sampling at random at a single locality.

Phenotype Green Olive Brown
Genotype GG GB BB Total
Number in generation 1 6 284 1172 1462
Number in generation 2 4 244 952 1200

(a) Calculate the relative fitness (W) and selection coefficient (s) for each
genotype.

(b) What is the equilibrium frequency of the brown allele (B)?
2. In Biston betularia, the carbonaria form is dominant to typica. The fitness of

the typica was estimated to be 0.67, relative to carbonaria in industrial
areas of Britain.
(a) How long would it take for carbonaria to change from 10% to 90% of

the population, assuming no change in selection pressure and only
one generation of moths each year?

(b) The population consisted of 36% carbonaria in 1924. If the breeding
population had remained stable at 5000 individuals, when was the
carbonaria allele first introduced into the population? You may
assume that the allele was first introduced by a single mutation.

3. The oak eggar moth (Lasiocampa quercus) exhibits industrial melanism but
is unusual in that the melanic form, carbonaria, is recessive to typica. In
one industrial area, the frequency of the melanic form increased from
50% to 90% of the population over a ten-year period.
(a) What is the selection coefficient against typica, assuming that there is

one generation of moths each year?
(b) Using the selection coefficient calculated in part (a), how long would

it have taken for the carbonaria allele to have increased from a
frequency of 0.01 to 0.1, and how long would it have taken if
carbonaria had been dominant to typica?

(c) Adult survival was estimated by placing 50 frozen specimens of each
phenotype on tree trunks and seeing how many were eaten by birds
during the course of one day. A total of 29 carbonaria and 24 typica
were not eaten, i.e. ‘survived’ the day. What is the selection against
typica, and how does it compare with your answer from part (a)?

4. An annual flower has either red (genotype RR or Rr) or pink (genotype rr)
flowers. A total of 270 flowers was counted in one area, of which 180
individuals had red flowers and 90 individuals had pink flowers. Five
years later, a search of the same area revealed 227 red-flowered and 85
pink-flowered plants.
(a) Calculate the selection coefficients (s) against pink flowers, assuming

that the change in allelic frequency was the result of selection.
(b) What will be the equilibrium frequency of the pink allele (r),

assuming no change in selection pressure?
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(c) Electrophoresis revealed that 118 of the red flowers were
heterozygous in the first sample, and 156 of the red flowers were
heterozygous in the second sample. Further studies revealed that the
relative fitness of the heterozygotes was intermediate between the
two homozygotes. Using this additional information, calculate a
more accurate estimation of the selection coefficient (s) for pink
flowered plants than was possible in part (a).

5. In Dactylis glomerata, as in many other grasses, there is a recessive
mutation for chlorophyll deficiency which is lethal when homozygous
(the plants have no chlorophyll).
(a) A population is started with only heterozygous plants. How many

generations will it take until only one in 100 plants is heterozygous?
(b) The mutation rate to the chlorophyll deficiency allele is 4.3 × 10−4.

What is the expected equilibrium frequency of this recessive allele,
assuming a balance of mutation and selection?

(c) In fact the population stabilized at a frequency of about 0.14 for the
recessive allele. Of 184 plants tested, 132 were found to be
homozygous dominant and 52 were heterozygous for this trait. What
is the relative fitness of the three genotypes?

6. Tay--Sachs disease is a degenerative neurological disorder. Individuals who
exhibit this trait are homozygous, and die by the time they are two or
three years old. There is no known cure. Heterozygous individuals
(carriers) do not suffer from the disorder. The disease occurs at an
incidence of about one in 550 000 births in the non-Jewish Canadian
population, but at an incidence of approximately one in 3600 births in
the Canadian Jewish population.
(a) Compare the frequency of carriers of this disease in the Jewish and

non-Jewish Canadian populations.
(b) Estimate the mutation rate of Tay--Sachs from normal individuals for

the two populations, assuming a balance between mutation and
selection. Comment on the difference in your two answers.

(c) If the mutation of normal to Tay--Sachs alleles is ignored, how long
will it take for the frequency of Tay--Sachs in Jewish Canadians to
drop to the frequency observed in non-Jewish Canadians, given that
there are approximately four generations per century?



Chapter 12

Polygenic inheritance,
quantitative genetics
and heritability

So far we have considered characters determined by a single gene
with two alleles, occurring in sharply contrasting states, which can
have a major affect on the fitness of the organism. In some cases
we are justified in modelling selection in this manner, but in many
cases, probably the majority, we are not. It is possible to expand the
basic theory to consider characters determined by two gene loci, but
this approach is no longer useful when we consider characters that
are determined by many genes. In these cases we may observe a gen-
eral relationship between parent and offspring, which suggests that
there is an underlying genetic basis to the trait, but we usually do
not know how many genes are involved or how they interact. In ad-
dition, we may also be aware that the environment influences the
trait to some extent. Consequently, in order to study these traits we
examine their variability, and attempt to dissect this variation into
its genetic and environmental components. This type of analysis is
called quantitative genetics.

We can consider three types of quantitative traits (Hartl and Clark
1989):

1. Meristic traits, in which the phenotype is expressed in discrete, in-
tegral classes. Examples include litter size or number of seeds pro-
duced per individual, number of flower parts, and kernel colour
in wheat.

2. Continuous traits, in which there is a continuum of possible phe-
notypes. Examples include height, weight, oil content, milk yield,
human skin colour, and growth rate. In practice, similar pheno-
types are often grouped together into classes for the purposes of
analysis.

3. Discrete traits, in which an individual either does or does not ex-
press the characteristic. Multiple genetic and environmental fac-
tors combine to determine the risk or liability of expressing the
trait. It is assumed that the liability has to be greater than some
threshold before the trait is expressed. Examples include diabetes
and schizophrenia in humans.
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Proportions: 1/64 15/64 15/64 6/64 1/64

No. red alleles: 1 2 3 4 5 6

Phenotype:  White Increasing redness  Dark red

20/646/64

0

Fig. 12.1 Kernel colour in the F2

generation of a cross between a
white and a dark red variety of
wheat. The colour difference is
assumed to be due to three gene
loci, and each red allele is denoted
• and each white allele is denoted
◦. The 64 possible combination of
alleles are grouped into the seven
possible phenotypes, which occur
in the proportions shown.

12.1 Polygenic inheritance

Quantitative traits are influenced by many genes, called polygenes,
each one of which contributes a small amount to the variation of a
character. The first genetic analysis of a quantitative trait was made
by the Scandinavian geneticist Nilsson-Ehle, in 1909. He studied red
versus white kernel colour in wheat, and showed that there are three
gene loci governing this trait. There are red alleles (R1, R2 and R3)
and white alleles (W1, W2 and W3) at each locus, and there is no
dominance in their effects. The alleles act in an additive manner,
so that as the number of red alleles increases the intensity of the
red colour increases, or conversely as the number of white alleles in-
creases the intensity of the red colour decreases. Nilsson-Ehle crossed
a homozygous white (denoted ◦◦◦◦◦◦) with a homozygous dark red
strain (denoted ••••••) and the kernels of the F1 were an intermedi-
ate red colour (genotype ◦•◦•◦•). The F1 individuals can produce 23 =
8 different types of gametes, and the F1 × F1 cross will produce 8 ×
8 = 64 unique combinations of these alleles in the F2 generation. As
there is no dominance there are 7 possible phenotypes correspond-
ing to 0 to 6 red alleles, which occur in a 1 : 6 : 15 : 20 : 15 : 6 : 1 ratio
(Fig. 12.1).

We have considered a meristic quantitative trait in this example.
It remains meristic because there is little environmental effect on
kernel colour, and the alleles of the different genes act in a purely
additive manner. Consequently, there are only seven discrete pheno-
types. However, had the environment affected kernel colour, and if
the alleles of the three different genes affected redness by slightly
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Fig. 12.2 Hypothetical
continuous distribution of kernel
colour in wheat. The
proportions of the different
genotypes remain the same as in
Fig. 12.1, but environmental and
other genetic effects blur the
distinction between different
genotypes (see text).

different amounts, the boundaries between the phenotypes would
become blurred so that there would be more or less a continuum in
kernel colour from white to dark red. In this case, the distribution of
kernel colour would follow a smooth curve (Fig. 12.2) following the
general shape of the histogram in Fig. 12.1. To analyse such a con-
tinuous distribution of kernel colour we might arbitrarily group the
colours into seven classes which would be related in some way to the
number of red alleles per individual. Thus, we can see that there is
really no distinction between the first two types of quantitative traits
(i.e. meristic and continuous).

12.2 Partitioning phenotypic variation into
different components

The first attempt to partition phenotypic variation into its genetic
and environmental components was made by East (1916) who began
his experiments on the flower length of Nicotiana longiflora in 1912.
We will use his data in the following two subsections to show how
phenotypic variation can be partitioned into its various components.
Our method of analysis is kept simple for obvious reasons, and you
should be aware that it is not applicable in all situations. Some of the
difficulties will be briefly mentioned as we develop our analysis, but
for now let us consider our use of the similarity between parent and
offspring to measure the genetic basis of a trait. Behavioural traits
may be genetically transmitted from parent to offspring but may also
be modified or taught by the parents, and our method of analysis does
not distinguish between these two modes of transmission. A more
complex example is provided by the body weight of eutherian mam-
mals. An individual’s body weight at the time of weaning depends on
the body weight of the parents (genetic transmission), its weight at
birth and the amount of milk it receives, which are influenced by the
nutritional status of the mother and the litter size or number of sib-
lings (transmission of maternal and sibling environmental effects).
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Fig. 12.3 Breeding experiments
on flower length in Nicotiana
longiflora. (Data from East 1916.)

Geneticists use a variety of methods to overcome these difficulties
and more accurately partition the phenotypic variance into its differ-
ent components (see Falconer and Mackay 1996), but they are more
complex and are beyond the scope of this text.

12.2.1 Genetic and environmental components
The phenotypic variance can be calculated in a straightforward man-
ner, described in any statistics text, as the average of the squared
deviations about the mean phenotypic value. Phenotypic variation
is divided into its genetic and environmental components by assum-
ing that these sources of variation are additive. If this is the case,
the total phenotypic variance (VP) equals the fraction of the pheno-
typic variance that is a result of genetic differences between indi-
viduals (VG) plus the fraction of the phenotypic variance resulting
from differences in the environmental conditions to which individu-
als were exposed (VE). Symbolically this is written:

VP = VG + VE (Eqn 12.1)

East partitioned the variation in flower length in the following
way. He crossed homozygous long-flowered plants with homozygous
short-flowered plants, and the resulting F1 plants, which were genet-
ically identical to one another, had flowers of intermediate length
(Fig. 12.3). There was no genetic variation (i.e. VG = 0) in either of
the parental varieties or the F1 offspring, and so the observed vari-
ance within these groups (VP) equals the environmental variance, VE.
The average variance of these three groups, VE, equalled 5.2 for East’s
data.

East then made a cross of F1 individuals to produce the F2 gener-
ation. The alleles inherited from the two parental strains segregated,
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and so the total phenotypic variance of the F2 was made up of both
genetic and environmental variation. The total phenotypic variance
(VP) of the F2 offspring was 40.5. The genetic variance (VG) can then
be calculated by rearranging Eqn 12.1 as VG = VP − VE, which gives a
value of 35.3.

In summary, by analysing East’s data on the phenotypic varia-
tion of flower length in Nicotiana, it is possible to partition the to-
tal phenotypic variation (VP = 40.5) into its environmental (VE = 5.2)
and genetic (VG = 35.3) components by assuming that these sources
of variation are additive. Thus, in the F2 generation approximately
87% of the variation was genetically based and 13% environmental
based.

We can make two general points about this partitioning of phe-
notypic variation. First, the amount of variation (VP) and the rela-
tive strengths of the genetic and environmental effects are not fixed
entities. We may note that the value of VG varied from zero, when
the crosses were between genetically identical plants, to 35.3 for the
F1 × F1 cross, and it would be different again for crosses between other
genotypes. In addition, if the plants had been grown in a more hetero-
geneous environment we would expect to see VE increase for obvious
reasons. Moreover, for some traits there can be genotype--environment
interaction where some genotypes do better in some environments,
and other genotypes do better in others. Consequently, the overall
phenotypic variation and the relative importance of the genetic and
environmental components vary according to the environment and
the precise genetic make-up of the population.

Second, our partitioning of phenotypic variation does not give an
unequivocal answer to the old genetics-versus-environment or ‘nature-
versus-nurture’ debate. In our example of flower length it looks as
though it is more important to have the ‘right’ genes rather than
environment if we want a flower of a specific length. However, if
we only had an inbred line with low genetic diversity, the reverse
might be true. The debate has been highly emotional at times, and
the opposing sides have often taken extreme positions, claiming
either that only genetic variation is important (genetic determinism)
or that the environment (nurture) is all-important. In reality it is
a mixture of these two components that determines phenotypic ex-
pression, although their relative importance can vary. However, as we
have seen, their relative importance is not fixed and so the debate
continues without final resolution for some people. We will look at
two examples of this debate in more detail, in section 12.6 of this
chapter and in Chapter 19 (section 19.1).

12.2.2 Partitioning the components of genetic variation
The genetic variance (VG) is also made up of a number of components.
These components include the additive effects of all of the alleles
that affect the trait, the dominance effects between alleles within
gene loci, and epistatic interactions between different gene loci that
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modify the additive effects. To help us understand how the additive,
dominance and epistatic effects can influence the genetic variance,
consider the following hypothetical series:

Genotype aabb Aabb AAbb AABb AABB

1. Additive effect
Phenotypic score 0 1 2 3 4

2. Dominance effect
Phenotypic score 0 2 2 4 4

3. Dominance plus
epistatic effect
Phenotypic score 0 0 0 4 4

Imagine that this corresponds to a situation similar to that of ker-
nel colour in wheat (section 12.1), but there are only two gene
loci involved and the red alleles are represented by capital letters.
When there are purely additive effects, the red colour intensifies in a
stepwise fashion (0--4) as each red allele is added. Now imagine that
the red allele is completely dominant to white, as shown in the second
example. The intensity of the red colour would be the same whether
one or both alleles of a gene coded for red, and the phenotypic scores
would be modified as shown. Finally, in the third example we can
imagine that the A allele only exerts its effect in the presence of al-
lele B, and so there would be a further modification of phenotypic
scores as shown.

Thus, it is necessary to partition the genetic variance, VG, into the
various components as follows:

VG = VA + (VD + VI) (Eqn 12.2)

in which VA is the variance due to the additive effects of alleles,
VD is the variance due to dominance effects between alleles and VI

is the variance due to epistatic interactions between the genes that
affect the trait. In practice, it is difficult to separate VD and VI and
consequently they are often grouped together as non-additive genetic
variation.

The additive genetic variance (VA) is the main cause of the resem-
blance between parents and their offspring, and between relatives.
We can obtain a measure of this relationship by drawing a graph of
the mean phenotypic score of offspring against the mean phenotypic
score of their parents. Ideally, the parents should be mated at random
when constructing these graphs, which can then be used to calculate
VA (see below). If we consider our example of flower length in Nico-
tiana, and use the data from crosses from the F2 generation provided
in East (1916), we obtain the following relationship between parent
and offspring (Fig. 12.4).
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Fig. 12.4 The relationship of
flower length between parents and
offspring in Nicotiana longiflora.
(Data from East 1916.)

The slope of the regression tells us how much the offspring re-
semble their parents, or what is called the heritability in the narrow
sense (h2

N) of the trait.1 Thus, if the offspring have the same average
phenotypic score as their parents, the slope of the regression (h2

N)
will be 1.0, and if there is no relationship in the phenotypic scores
of parents and their offspring, then h2

N = 0. Obviously, the higher
the heritability (or slope of the regression) the larger the additive ge-
netic component. The relationship between heritability (h2

N), additive
genetic variance (VA) and phenotypic variance (VP) is given by:

h2
N = VA

VP
(Eqn 12.3)

From East’s data (Fig. 12.4) we see that h2
N = 0.8348 for flower

length in Nicotiana. In section 12.2.1, we noted that VP = 40.5, and so
we can estimate VA as 0.8348 × 40.5 = 33.8 by rearranging Eqn 12.3.
We have previously estimated the genetic variance (VG) as 35.3, and
so from Eqn 12.2 we can estimate the non-additive genetic variance
(VD + VI) as 35.3 − 33.8 = 1.5.

This completes our partitioning of the phenotypic variation into
its various genetic and environmental components, and the results
are summarized in Table 12.1. The genetic variance (VG) is the sum of
the additive and non-additive genetic variances, and equals 35.3, or
87% of the total phenotypic variance.

12.3 Heritability

We have just seen that heritability in the narrow sense (h2
N) is the

proportion of the total phenotypic variation that is a result of additive
genetic variation (Eqn 12.3). You should also be aware that there is
another measure of heritability, called heritability in the broad sense

1 The degree of genetic determination, or heritability, of a trait is symbolized as h2

because it was first calculated as the square of the partial correlation coefficient (i.e.
path coefficient) between the parental genotypes and the offspring’s phenotype (see
Feldman 1992).
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Table 12.1 Partitioning of the variation of flower length in Nicotiana longi-
f lora. The components are expressed in terms of their variance and as per-
centages of the total phenotypic variance

Variance Percentage

Phenotypic variance VP 40.5 100
Additive genetic variance VA 33.8 83
Non-additive genetic variance VD + VI 1.5 4
Environmental variance VE 5.2 13

Source: Data from East (1916).

(h2
B) which is equal to VG/VP. We will not consider this measure any

further, and wherever heritability is referred to in this chapter it
means heritability in the narrow sense.

The term heritability has unfortunate connotations, and is fre-
quently misunderstood, particularly by non-biologists. Many people
believe it is a fixed property for a particular trait, and think that a
character is genetically determined to a certain extent and is modified
by the environment by some other, usually small, amount. This is not
the case. Heritability is simply a ratio of two variances, and is only
applicable to the population and environment in which it was mea-
sured. We can understand this if we expand Eqn 12.3 to:

h2
N = VA

VG + VE
(Exp. 12.1)

The value of h2
N is changed if we change the genetic constitution

of the population because the variance of at least one of the genetic
components will be altered. For example, if we had estimated the
heritability of flower length for either of the two parental populations
of Nicotiana we would have obtained values of 0 (zero), instead of
the value of 0.8348 estimated in section 12.2.2. This is because there
is no genetic variation (VG and VA = 0) in these two homozygous
populations, and all of the variation is a result of environmental
variation (VE). Similarly, changes to the environment can also change
the value of h2

N. For example, height might have a high heritability
for a population of plants grown under very uniform conditions, but
if we grew the same genetic stock in an area where the soil and water
conditions were extremely variable, the heritability would be lowered
because the environmental variance (VE) would increase.

Bearing this in mind when we compare the heritabilities of differ-
ent characteristics, we find that the heritability of trivial, apparently
unimportant characteristics is frequently high, whereas the heritabil-
ity is usually low for characteristics that are closely related to fit-
ness (Table 12.2). This is because selection on trivial characters will
probably be low or non-existent, and so natural selection tolerates
large genetic variability in these characteristics. However, there will be
strong selection pressures on traits that play a vital role in the fitness
of an organism, and so generally there will be much less genetic
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Table 12.2 Approximate values of the heritability of various characters in
certain domestic animal and plant species. Traits closely related to fitness
(e.g. calving interval, eggs per hen, litter size of swine, yield and ear number
of corn) tend to have low heritabilities

Species and trait h2
N

Cattle
Wither height 0.60
Milk protein percentage 0.55
Feed efficiency 0.35
Milk yield 0.30
Calving interval 0.25

Poultry
Egg weight 0.55
Body weight 0.50
Albumen content 0.40
Age of sexual maturity 0.35
Eggs per hen 0.10

Swine
Back-fat thickness 0.60
Body length 0.53
Feed efficiency 0.35
Daily gain in weight 0.30
Litter size 0.15

Corn (Zea mays)
Husk extension 0.67
Plant height 0.53
Ear height 0.45
Ear number 0.20
Yield 0.13

Source: Data from Hartl and Clark (1989).

variation because the inferior genotypes will be eliminated from the
population.

Plant and animal breeders are interested in the heritabilities of dif-
ferent characteristics because the higher the heritability, the greater
the response to selection. This leads us to our next topic where we
consider the effect of selection on quantitative characters.

12.4 Response to selection

How do quantitative characters respond to selection? In many cases
they will change, and we can illustrate this over two generations of
selection using an abstract example (Fig. 12.5). The phenotypic score
is arbitrary, and could correspond to such traits as the amount of
oil in a seed, plant height, the degree of resistance to a particu-
lar insecticide, or body weight. We apply systematic selection to in-
crease the size of the character in question. In the original population
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Fig. 12.5 Two generations of
selection for increased size of a
trait with a heritability of 0.5. The
individuals selected to be the
parents of the next generation are
stippled (see text).

(Fig. 12.5a) we can see that the overall phenotypic mean of the
parental population (ȲP) is 3 units, and the group of individuals se-
lected as parents of the next generation have an overall mean (ȲS) of
5 units.

The intensity of selection, or selection pressure, being applied is
called the selection differential (S), and is measured as the difference
between the mean of the selected parents (ȲS) and the mean of all
the individuals in the parental population (ȲP). Thus:

S = ȲS − ȲP (Eqn 12.4)
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In our example we can see that S = 5 − 3, or 2 phenotypic units.
The response (R) to this selection differential is shown in Fig. 12.5b,

and may be measured as the difference between the mean of the
progeny (ȲR) and the mean of the parental population (ȲP). Thus:

R = ȲR − ȲP (Eqn 12.5)

In our example, R = 4 − 3, or 1 phenotypic unit.
We can also predict the response (R) of the population from the

equation:

R = h2
NS (Eqn 12.6)

On reflection, this last equation should be intuitively obvious. The
heritability (h2

N) is a measure of the similarity of the progeny to their
parents, and if we multiply this by the selection differential (S) we can
predict the overall change in the phenotype (or response, R). In our
example, R = 0.5 × 2, or 1 phenotypic unit, which is the same as
that predicted by Eqn 12.5. Thus, the overall phenotypic score will
change, or in this case increase because R is positive, by 1 phenotypic
unit. The average phenotypic score of the progeny should be one unit
larger than the mean score of the parents, i.e. 3 + 1 = 4, which is
what we observe.

When we repeat the operation, we see that after a second genera-
tion of selection at the same intensity (S = 2), the average phenotypic
score of the population has increased by one more unit and now is 2
units larger than the original population (Fig. 12.5c). Thus, the pop-
ulation responds to selection generation after generation, and the
response is directly related to the heritability (h2

N) and the selection
differential (S) being applied. If the heritability had been lower, the re-
sponse to selection would have been lower. For example if h2

N was 0.25
and S = 2 units, the mean phenotypic score would have increased by
0.25 × 2 or 0.5 units each generation, rather than the 1 unit observed
in Fig. 12.5. Note, that unless the heritability = 1.0, the mean pheno-
typic score of the progeny will lie somewhere between the phenotypic
score of those selected as parents (ȲS) and the overall phenotypic score
of the parental population (ȲP). This slipping back toward the overall
mean is known as regression (toward the mean).

12.5 Empirical examples of selection of
quantitative characters

Perhaps the best example of controlled, long-term selection is an ex-
periment on the oil content of corn seed. The experiment was started
in 1896 (even before the rediscovery of Mendel’s laws) at the Illinois
Experimental Station using a base population of 163 corn ears with
oil contents ranging from 4% to 6%. Two experimental lines were
started, one selecting for high oil content and the other for low oil
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Fig. 12.6 Selection for high and
low oil content in the seed of corn
(Zea mays). The high line was
formed from the 24 ears highest in
oil content and the low line from
the 12 ears with the lowest oil
content in an initial population of
163 corn ears. Two additional lines
of reverse selection were started
in generation 46. (Reprinted from
Dudley, J. W., in Proceedings of the
International Conference on
Quantitative Genetics) (eds. E.
Pollock, O. Kempthorne and T. B.
Bailey), pp. 459–73, Copyright
1977, with permission of Iowa
State University Press.)

content and the results of the first 78 generations of selection are
shown (Fig. 12.6).

It did not take long for the oil content of the two lines to be
well outside of the original range of oil content. The low line has
changed less than the high line because you cannot have an oil con-
tent of below zero. A careful examination of the trends shows that
the rate of change was fastest during the first 10 to 20 generations of
selection, but the lines are still diverging and so the additive genetic
variance has still not been exhausted. Presumably, at some stage all
the individuals within a line will come to have the same genotype for
oil content, and the heritability (h2

N) will be zero because there is no
additive genetic variance (VA). At this point there will be no further re-
sponse to artificial selection unless there are new mutations affecting
oil content. Heritability has declined to about one-third of its initial
value in both lines (Table 12.3), but will take some time to decline
to zero because there are at least 20 genes that affect oil content.

Selection is not always directional, it is often against the phe-
notypic extremes and intermediate phenotypes have higher fitness.
Such selection is called stabilizing selection, because no change may
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Table 12.3 The heritability of oil content in corn seed after different num-
bers of generations of selection in the Illinois corn experiment illustrated
in Fig. 12.6

Heritability of oil content

Generations High line Low line

1 – 9 0.32 0.50
10 – 25 0.34 0.23
26 – 52 0.11 0.10
53 – 76 0.12 0.15

Source: Reprinted from Dudley, J. W. in Proceedings of the Inter-
national Conference on Quantitative Genetics (eds. E. Pollock, O.
Kempthorne and T. B. Bailey), pp. 459--73, Copyright 1977,
with permission of Iowa State University Press.

be seen in the phenotypic score generation after generation, even
though there may be strong selection pressures on the character in
question. A good example of this type of selection is seen in human
birth weights (Fig. 12.7), where there is strong selection against large
and small babies and the average birth weight is similar to the opti-
mum predicted from infant mortality. A similar pattern of stabilizing
selection is seen in clutch size in birds (see Chapter 16) where inter-
mediate clutch sizes give rise to largest number of survivors.

12.6 Intelligence, race and societal class

In recent decades there has been a controversy about the reasons for
differences in IQ (intelligence quotient) scores between different seg-
ments of society, particularly in North America. For example, Jensen
(1969) and Herrnstein and Murray (1994) have presented overwhelm-
ing evidence that the average IQ scores of people of different colour,
and of different socioeconomic classes, are very different. The issue
they raise can be stated quite simply: does the low IQ in some racial
groups, or in some lower socioeconomic classes, have a genetic or
an environmental basis? Thus, we are examining an example of the
classic nature (i.e. genes) versus nurture (i.e. environment) debate. In
the following discussion we will concentrate on racial differences, be-
cause the arguments apply equally to socioeconomic class differences
and, in any case, there is frequently a strong association between race
and socioeconomic class.

How do we define intelligence? It is highly questionable whether
IQ scores give an unbiased and total assessment of intelligence be-
cause some things, such as musical skills, are not correlated with IQ.
However, IQ tests do evaluate a large range of skills, and the scores cor-
relate reasonably well with the scholastic success of Caucasians, and
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Fig. 12.7 Stabilizing selection for
human birth weight (histogram).
Early mortality, shown by the
points around a fitted curve, is
lowest near the mean birth weight.
(From The Genetics of Human
Populations, by L. L. Cavalli-Sforza
and W. F. Bodmer c© 1971 by
W. H. Freeman and Company.
Used with permission.)

so they may serve an educational purpose. The form of the present
IQ tests was developed soon after 1900 by Alfred Binet, a French
psychologist, to identify schoolchildren who would be likely to have
difficulty at school. The Binet test was revised in 1916 at Stanford
University, and subsequently revised again in 1937 and 1960. It is the
standard IQ test in North America.

Interestingly, the 1916 Stanford--Binet test indicated that boys had
higher IQs than girls. This was interpreted as a bias favouring males,
because of their different experiences, rather than any innate ten-
dency for males to be more intelligent than females. The test was
revised to exclude questions where one sex or the other performed
better, and so present tests give almost identical IQ distributions for
males and females. It is interesting that there has been no successful
attempt to eliminate questions where there are different scores for
other different racial, cultural or socioeconomic groups.

The test involves answering a large number of questions. The an-
swers are scored and the scores are summed for each individual. These
scores are transformed into an IQ test score for each individual by a
process of standardization, in which the mean for a large population
has a value of 100 and the standard deviation for the population is 15.
Thus, the population has a normal distribution of IQs, such that 67%
of the population has IQ scores between 85 and 115, 95% of the popula-
tion has IQ scores between 70 and 130, and 99% of the population has
IQ scores between 55 and 145. Naturally, different tests are given to
children of different ages. The results of different tests over short time
intervals are similar, but the correlation between tests declines as the
time interval increases. Some studies have shown that individual IQs
vary little between the ages of 2 and 18, but other studies show that



200 QUANTITATIVE GENETICS

they vary over this time period. For example, one study of Swedish
schoolchildren showed that the IQs of students tested at 12 years of
age increased by an average of 11 points at the end of high school, if
they had been subjected to a demanding curriculum. Thus, IQ scores
are not perfectly stable with age, and can be increased with appro-
priate schooling.

There have been many studies to determine the heritability of IQ
scores to assess the genetic and non-genetic aspects of this measure.
However, there are problems if one uses the parent--offspring regres-
sion technique (see Fig. 12.4) because relatives reared together cannot
provide data that discriminate between genetic transmission of the
trait and environmental transmission from parent to child. These es-
timates of heritability are likely to be too high because ‘good’ genes
and ‘good’ environments are likely to be highly correlated with one
another. Better estimates can be made by using the technique of esti-
mating the correlations between monozygotic twins that have been
reared apart.2 There are four such studies providing estimates of 0.86
(Cyril Burt), 0.77 (J. Shields), 0.73 ( Juel-Nielson), and 0.69 (Newman,
Freeman and Holzinger). These give a combined estimate of 0.81,
which is where the widely quoted estimate of 80% for the heritability
of IQ has been derived. However, we now know that Burt’s data are
fraudulent (he made up most of his data) and Shield’s data are less
than ideal because over two-thirds of his sample were raised by close
relatives. The remaining two estimates are based on small sample
sizes, and so their combined estimate of 0.71 is rather uncertain. Fi-
nally, studies based on the results of adopted children have provided
estimates of between 0.45 and 0.65. Thus, the claim that IQ is 80%
heritable is certainly an inflated estimate, and more reasonable esti-
mates would be somewhere in the range of 45% to 70%, or even lower
(Feldman 1992). However, as we will see, the precise range of heritabil-
ity estimates for IQ does not impair our ability to evaluate whether
the differences between groups have a genetic or an environmental
basis.

Numerous studies have shown that the average IQ of blacks in the
USA is 10 to 20 points (average 15 points) below that of US whites
(Fig. 12.8). If we ignore the question of how the authors of these stud-
ies defined ‘white’ and ‘black’ people, this represents a considerable
difference between the two groups, equivalent to one standard devia-
tion of the distribution of white IQs. Similarly, the average IQ of peo-
ple in lower socioeconomic classes is below that of people in higher
economic classes.

How do we explain these differences? A group comprising mainly
psychologists, called hereditarians, argues that the difference be-
tween groups is largely genetic in origin. In their view, one’s IQ
is mainly innate, and no amount of environmental change will

2 Monozygotic twins may be defined as: two individuals that develop by the division and
separation of a single fertilized egg into two genetically identical parts (i.e. identical
twins).
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Fig. 12.8 The difference in IQ
between idealized samples from
blacks and whites in the United
States. The mean IQ is shown
above the curves for each of the
two groups.

eradicate the difference between groups. In case you think that this
is merely a racist argument for the genetic superiority of Caucasians,
you should be aware that at least one hereditarian, William Rushton
of the University of Western Ontario, shows that the average IQ of peo-
ple of Asian origin is higher than that of Caucasians. On the other
hand, many biologists have argued that the differences are mainly
due to environmental factors, together with cultural biases in the IQ
test questions that favour whites.

The hereditarians’ main argument is that the difference in IQ be-
tween the two racial groups is mostly genetic in origin, because IQ has
a high heritability in both blacks and whites. In other words, heredi-
tarians believe that IQ is mainly genetically determined (as much as
80%), and so this must be the reason for the difference between the
two groups. This is a fallacious argument as the following ‘thought
experiments’ make clear.

Imagine we have a population of dogs which vary greatly in size,
and may be black, grey or white (the black and white alleles are
codominant). Note that this imaginary genetic system for body colour
is simply to make it easy to create pure-breeding groups of black
or white dogs. Dog size is a polygenic trait with a heritability of
0.8, and there is no association between dog size and colour. In the
first experiment we take a group of young white puppies and feed
them on a rich diet. At adulthood, these dogs have a body length
that is normally distributed with a mean of 100 cm and a standard
deviation of 15 cm. The same is true with the offspring of these dogs.
We also take a group of young black puppies and feed them on a
reduced diet. At adulthood, these dogs have a body length that is
also normally distributed, but with a mean of 85 cm and a standard
deviation of 15 cm. The same is true for their offspring. The slope
of the parent--offspring regression for body length was 0.8 (= h2

N) in
both groups, but the regression line for black dogs was below that of
the white dogs. Obviously, we would attribute the difference in size
between the two groups of dogs to the difference in their diets, i.e.
environmental factors, even though dog size has a high heritability.
Thus, even though the variation in dog size within each group was
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mainly due to additive genetic effects (i.e. VA is 80% of VP), this was
not the reason for the difference between the two groups. We can also
note that dog size had nothing to do with their colour, even though
white dogs were significantly larger than black dogs.

In the second imaginary experiment, we select a group of white
dogs for increased size, and simultaneously select a group of black
dogs for smaller size. After a few generations of selection we observe
that the two groups have diverged in average size. We then take the
two groups and grow them in the same area, thereby eliminating
potential environmental differences between them. We are not sur-
prised that the white dogs are larger on average than the black dogs,
and would attribute this difference to genetic differences in the two
lines. As a result of the selective process, we might find that the
heritability of dog size was reduced to approximately 0.3 in each of
the two lines (see Table 12.3). Thus, even though the variation in
dog size within each group was mainly a result of a combination of
non-additive genetic effects and environmental effects, the difference
between the two groups had a genetic basis.

These imaginary experiments demonstrate that there is no foun-
dation to the hereditarian argument: that if IQ has a high heritability,
the differences in IQ scores between different population groups must
have a genetic basis. However, even though we have shown that the
main hereditarian argument is based on a fallacy, this does not set-
tle the question as to whether the difference in IQ between groups
has an environmental or a genetic basis. This requires more direct
evidence.

Three types of evidence suggest that most of the difference be-
tween groups is a result of environmental factors.

1. Studies that compare the IQ of different races usually have poorly
matched samples. The samples not only differ in race, but also dif-
fer in socioeconomic status, the type of schooling available to the
children, and so on. Thus, differences between groups could be a
result of associated environmental differences rather than racial
differences. Nichols and Anderson (1973) reduced some of the envi-
ronmental differences in their study by comparing different ethnic
groups of children whose parents had the same occupations, edu-
cation and income (socioeconomic status). They tested two samples
of seven-year-old children of blacks and whites in the United States:
one group of high socioeconomic status from Boston, and one
group of relatively low socioeconomic status from Baltimore and
Philadelphia. The Boston whites and blacks had mean IQs of 104.2
and 100.0, respectively, and the Baltimore--Philadelphia whites and
blacks had mean IQs of 95.3 and 91.2, respectively. Thus, the 10 to
20 point difference in IQ between blacks and whites, found in
most studies (see above), was effectively reduced to about 4 points
simply by stratifying the sample design so that potential racial dif-
ferences were not confounded by differences arising as a result of
socioeconomic factors.



INTELLIGENCE, RACE AND SOCIETAL CLASS 203

2. If the hereditarian view is correct, children of black and white
parents should have IQs intermediate between the two groups,
but this is not the case. There was no difference in the average
IQ of illegitimate children of black and white American service-
men and German women after the Second World War. Similarly,
Tizard (1974) found that mixed-race and white English children
who had spent part of their early life in institutions had sim-
ilar IQ scores, although those of the mixed-race children were
marginally higher. Finally, the IQ of children of mixed marriages
is reported to correlate more with the IQ of the mother than the
father, suggesting that cultural traits transmitted to the child dur-
ing infancy and early childhood are important, because it is the
mother who normally has the major influence on the child at this
stage.

3. Evidence for environmental effects transmitted by the adoptive
parents is also provided by children adopted soon after birth. The
effects are quite general and apply equally to the question of racial
differences in IQ as well as differences in IQ related to socioeco-
nomic class. A study by Skodak and Skeels (see Bodmer and Cavelli-
Sforza 1976) tested the IQs of 100 children, born to white, unmar-
ried mothers from lower classes, that were adopted into middle-
class families. The children’s IQs showed a higher correlation with
those of the biological mothers than with their adoptive parents,
showing a strong genetic effect on IQ. However, the average IQ of
the biological mothers was 85 whereas the average for the children
was 107. The IQ of the biological fathers was unknown, but it is
unlikely that all of the 22 point difference was from that source.
Probably the increase in IQ was related mainly to the favourable
academic environment offered by the foster homes. Finally, a study
of black children adopted by white families in Minnesota showed
that they had IQs similar to those of white controls, which suggests
that there are no genetic differences in IQ between the races.

From this discussion, we can conclude that the hereditarian argu-
ment, which states that differences in IQ between different popula-
tion groups is mainly a result of genetic differences among groups,
is based on a misunderstanding of quantitative genetic theory. The
available evidence suggests that most, if not all, of the differences
among groups are a result of environmental influences.

What if we had discovered that much of the difference in IQs be-
tween groups had a genetic basis? Would the genetic fatalism of the
hereditarians, and the belief that group differences in IQ cannot be
changed, be justified? The simple answer is no. Consider the case of
phenylketonuria, a genetic disease which, among other effects, causes
severe mental retardation. At one time there was no treatment for the
condition, and in the 1960s it accounted for almost 1% of all severely
retarded patients in institutions. Phenylketonuria is a metabolic
defect resulting from the absence of an enzyme called phenylala-
nine hydroxylase, which converts the amino acid phenylalanine to
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tyrosine. The phenotypic effects of the condition, only expressed in
homozygous recessive individuals, are the result of an excess of pheny-
lalanine and its derivatives. The genetic condition can be treated by
restricting the dietary intake of phenylalanine. Individuals that are
identified soon after birth with the condition, before the classical
phenotypic effects are expressed, and who adopt a rigorously con-
trolled diet can live a normal life. Treatment will not reverse the
effects of the disease once they have been expressed. Note, however,
that phenylketonuria has a close to 100% heritability, and yet an en-
vironmental change (of diet) can effectively abolish its effect on IQ.

Finally, my vigorous attack on the hereditarian position of ascrib-
ing the differences in average IQ between racial groups to genetic
differences may have led some to conclude that there is no genetic
basis to IQ and that only the environment is important. However, al-
though appropriate mental stimulation is necessary to develop our
IQ to its full potential, some of us will have a higher IQ than others.
We cannot all be as clever as Albert Einstein or Madame Curie, our
genetic constitution is also important.

12.7 Summary

When a trait is determined by many gene loci there may be a continuum or
a very large number of possible phenotypes. The phenotypic variation of
polygenic traits can be partitioned into environmental and genetic
components, and the latter further partitioned into additive, dominance
and epistatic genetic effects, by suitable breeding experiments.

The response to selection is positively correlated with the proportion of
the overall phenotypic variation (VP) that is determined by the additive
genetic effects (VA). The measure VA/VP is called the heritability in the
narrow sense of a trait, and when a trait is subjected to intense selection its
heritability decreases as inferior alleles are eliminated. This probably
explains why traits that are closely related to fitness tend to have low
heritabilities, whereas trivial characters tend to have high heritabilities.

The relationship between IQ and race is examined in some detail as an
example of the genes versus environment debate. The hereditarian
argument that the differences in IQ between groups must have a genetic
basis (because the heritability of the trait is high) is shown to be based on a
misunderstanding of quantitative genetic theory. The available evidence
suggests that most, if not all, of the differences between groups are the
result of environmental influences. However, the genetic constitution of
individuals has a strong effect on IQ.

12.8 Problems

1. Two highly inbred lines of mice are crossed and give a variance of 2.5
units in tail length in the F1 generation. The variance in the F2

generation is 12.5 units, and the parent--offspring regression for tail
length is 0.75.
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(a) What is the heritability (h2
N) for tail length?

(b) Partition the variance (VP) of the F2 generation into the following
components: VE, VG, VA and (VD+VI).

(c) If the overall average tail length of hybrids is 80 cm, what will be the
average tail length of the offspring of parents with tail lengths of 88
and 92 cm? What would your answer be if the average tail length of
the parents had been 70 cm?



Chapter 13

Population genetics: summary
and synthesis

In the previous seven chapters, we have examined various factors that
influence the allelic frequencies in the gene pools of populations. It
is easy to become mired in the details and lose sight of the broad,
overall picture. The purpose of this chapter is to summarize how ge-
netic variation is developed, maintained and directed in populations,
a process which we call microevolution, so that we can develop an
overview and general understanding of the interrelationships of the
various factors or processes. The scheme that we will be following is
summarized in Fig. 13.1.

Evolution can be considered to be a two-step process: first, the pro-
duction of genetic variation by mutations and genetic recombination
and, second, an ordering of that variation by natural selection which
may be influenced by processes such as genetic drift and migration.

13.1 Mutations

Genetic variation is originally created by mutations, which cause
changes in the precise sequence of DNA in the chromosomes.
Mutation by itself is not an important driving force of evolutionary
change because mutations causing the same phenotypic change oc-
cur at very low frequencies, somewhere in the order of 1 × 10−5 to
10−8 per gamete. It would take many thousands of generations to ef-
fect a substantial change in allelic frequency as a result of mutation
pressure alone (see Chapter 7). Mutation creates genetic variation in
a non-directed fashion, i.e. mutations are not created in relation to
their need. For example, mutations conferring resistance to a partic-
ular insecticide are just as likely to occur in populations not affected
by the pesticide as they are in populations that are being exposed to
the pesticide. Most mutations are detrimental and are quickly elim-
inated by selection, others are neutral (i.e. the mutant form of the
allele has the same fitness as the ‘normal’ form of the allele), and
a few mutations are beneficial. However, the chance of a mutation
surviving and becoming incorporated into the gene pool is extremely
small, even when it is beneficial. Mutations with small phenotypic
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effects are more likely to survive than those that have large effects
on the organism, because organisms are generally well suited to their
surroundings and large changes in their characteristics are likely to
be detrimental.

The prevailing neo-Darwinian view is that only the mutations oc-
curring in the germ cells are important in evolution, because they
are transmitted from one generation to the next whereas somatic
mutations are lost when the individual dies.

Most species maintain a large genetic variability in their popula-
tions. Typically, about 5% to 15% of the genes are heterozygous in
single individuals, and approximately 20% to 50% of the genes are
polymorphic within a population or species (see Chapter 7). It is un-
certain how this level of genetic variation is maintained. Some con-
sider that the variation is largely maintained by a balance of selective
forces, where some alleles are favoured in some situations and other
alleles are favoured in other situations (the balance hypothesis). Oth-
ers believe that most of the variation is neutral with respect to natural
selection, i.e. different alleles of the same gene have the same fitness
(the neutral gene hypothesis).

It takes many thousands of generations to develop high levels of
genetic diversity in populations because mutation rates, which create
the diversity, are so low. If genetic diversity is considerably reduced for
any reason, it will require many thousands of generations of mutation
to restore it to its original level.

Species with large levels of genetic variation are more likely to
adapt to, and tolerate, changes of environment than species with low
levels of genetic variation. We should also recognize that abundant
species also create an enormous number of mutations each genera-
tion (see Chapter 7) and so may also have a better ability than rare
species to withstand changes in the environment. However, what is
important is the appropriate type of genetic variation, rather than ge-
netic variation per se. For example, the American chestnut (Castanea
dentata) was once one of the dominant trees in the eastern forests
of North America, but its lack of resistance to the introduced ori-
ental chestnut blight from China resulted in its total elimination
from North America. In contrast, efforts to eradicate or control the



208 POPULATION GENETICS: SUMMARY AND SYNTHESIS

European rabbit (Oryctolagus cuniculus) in Australia, by introducing the
Myxoma virus (which causes a disease called myxomatosis, a form of fi-
brous skin cancer), failed because of the evolution of resistance. When
the virus was first introduced in 1950 there was an epidemic which
killed an estimated 99.8% of the rabbits, but a year later only 90% of
the rabbits were killed by the virus, and seven years after that, fewer
than 30% were killed. The reduction in mortality was a result of a
reduced virulence of the virus, as well as an increased immunity to
the virus in the rabbits.

13.2 Genetic recombination

In sexually reproducing organisms, during the process of meiosis and
the subsequent production of a zygote from two gametes, there is a
recombination of alleles. This occurs every generation. By itself, this
does not cause evolution, i.e. change allelic frequencies, as shown by
Hardy and Weinberg (see Chapter 6). However, it amplifies genetic vari-
ation to produce virtually an infinite variety of different genotypes
and phenotypes, such that every individual is genetically unique in
most populations (see Chapter 7).

This amplification of genotypic and phenotypic variation is con-
siderably reduced by two factors that are internal to the organism.
They are chromosome structure and gametic selection.

13.2.1 Chromosome structure
Different genes do not recombine totally at random because they are
linked together structurally to form chromosomes. Genes on the same
chromosome tend to move together into the gamete, and the closer
they are positioned on the chromosome, the more likely it is that
the same combination of alleles of different genes will stay together.
There may also be structural changes in the sequence of genes, called
inversions, which inhibit crossovers, i.e. prevent the random recom-
bination of alleles of different genes.

There is increasing evidence that genes influencing the same char-
acter, or a very favourable combination of genes, are frequently very
closely linked and so rarely recombine, or they are protected from
recombination by being part of an inversion. A good example of this
is provided by the butterfly Papilio memnon which occurs in six forms,
each of which mimics a different distasteful butterfly (Turner 1984).
There are five tightly linked genes that control the shape of the hind
wing, the colours of certain patches on the fore and hind wings, and
the colour of the abdomen. The alleles of these five genes do not re-
combine at random but occur in specific sets, or ‘supergenes’, that
are responsible for the appearance of the six different mimics.

Thus, it is possible that the chromosome structure, including the
number of chromosomes as well as the sequence of genes on the
chromosomes, has evolved to protect favourable groupings of alleles
of different genes from recombination to a greater or lesser extent.
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13.2.2 Gametic selection
Normally, heterozygous individuals produce two types of gametes
with equal frequency. Their alleles recombine at random with the
alleles of other genes, except for tightly linked genes, in the forma-
tion of the zygote. Sometimes, however, this doesn’t happen: there is
a bias in favour of one of the alleles such that most of the resulting
zygotes only contain one of the alleles. Thus, the heterozygous geno-
type behaves almost as if it were homozygous for one of the alleles.
There are various ways in which this can happen.

One mechanism, called meiotic drive or segregation distortion,
occurs during meiosis. When the alleles segregate into different ga-
metes, more than half the gametes contain one of the alleles because
the other cells do not develop normally into a gamete. This mecha-
nism may be difficult to distinguish from differential viability. The
viability of a gamete may be dependent on the presence or absence
of certain alleles, and this creates a bias in the allelic frequencies in
the gametes at the time of fertilization. Finally, an allele may affect
the swimming speed of the sperm, or the rate at which a pollen tube
grows toward the ovum. Such characteristics of the gametes affect
their fertilization success, and the offspring may favour one allele
rather than another.

In summary, mutation and genetic recombination are responsi-
ble for the production of genetic variation but there are internal
constraints on the amplification of genetic diversity through sexual
recombination. We will now discuss the powerful external forces that
limit genetic diversity and perhaps mould it in certain directions.

13.3 Chance effects: genetic drift and inbreeding

In the vast majority of species, the gene pool does not consist of a
single group of freely interbreeding individuals. Rather, there is a spa-
tial distribution of organisms such that a species consists of a num-
ber of more or less discrete populations. Individuals seldom breed
totally at random and tend to restrict the number of possible mating
partners. For example, sessile individuals breed more commonly with
their neighbours than with distant individuals for obvious reasons.
The subdivision of the gene pool into populations and the restriction
of mating partners within populations mean that the effective popu-
lation size of breeding individuals is usually considerably lower than
the overall numbers of a species or a population.

Allelic frequencies can change as a result of chance effects, or
‘sampling errors’, and this change is inversely related to the effective
population size. Such changes are trivial in large breeding groups of
individuals, but may be large in small breeding groups. Consequently
small populations show greater changes in allelic frequencies than
larger populations. There is a randomness to the change in allelic
frequencies. They may increase or decrease, and the changes for most
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genes are independent of one another (see Chapter 8). This process,
called genetic drift, is a dispersive process in that the allelic frequen-
cies of different populations tend to diverge from one another over
time. This leads to spatial variation in allelic frequencies both be-
tween and within populations, so that the overall genetic diversity
is increased. However, within any breeding unit the change in allelic
frequency may lead to the loss of one or more of the alleles, a process
called fixation, and so there may be a loss of genetic diversity on a
more local scale. This leads to an increase in homozygosity and in-
breeding, and the individuals in a breeding unit become genetically
more closely related. There are many examples of reduced genetic
variation in small populations (see Chapter 8).

If a population is started by a small number of individuals mov-
ing to a new area (founder effect), or if a population is reduced to
a small size at some point in its history (genetic bottleneck), the
chance effects may be extremely large and there can be a consider-
able reduction in genetic diversity. The consequences of this remain
with the population for thousands of generations, because as we have
seen (section 13.1) the development and incorporation of new genetic
variation into the gene pool is a very slow process.

Chance effects can increase the overall genetic diversity among
populations, but decrease genetic variation within populations. These
effects are strongly modified by both migration and selection.

13.4 Migration: gene flow

The tendency for genetic drift to cause spatial heterogeneity in the
gene pool is counteracted by migration. Indeed, spatial variation in
allelic frequencies, however it is caused, is reduced or limited by gene
flow through the process of migration. It is important to remember
that the only migrants of importance are those that breed with the
receiving populations. Obviously, if an individual moves from one
population to another but does not breed, it ultimately has no effect
on the local gene pool. The effect of migration on receiving popu-
lations depends on how different the migrant genotypes are from
the mean of the population and also on the migration rate. Where
migration rates are high the populations become more uniform, but
in regions where the migration rates are very low there may be sud-
den changes in the characteristics of neighbouring populations (see
Chapter 9). Thus, migration is a key factor influencing the geograph-
ical variation of species.

13.5 Natural selection

The genetic variability that is created by mutation and enhanced by
genetic recombination, and subsequently influenced by genetic drift
and migration, is subjected to natural selection which directs changes
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in the gene pool such that populations become more suited to their
local environments. Selection acts in a mechanical way, such that
genotypes1 leaving the most breeding descendants tend to increase
in frequency, whereas genotypes leaving fewer breeding descendants
tend to decrease in frequency. Genotypic frequencies do not always
change in response to natural selection, however, because as our the-
ory and examples have shown in Chapters 10 to 12, it is possible
for natural selection to be operating without any resulting change
in the allelic or genotypic frequencies (e.g. heterozygote superiority
in zygotic selection, and stabilizing selection in polygenic systems).
Thus, selection can serve to maintain gene frequencies at some point
as well as to change them.

The spread of favoured recessive alleles in populations is extremely
slow when they occur at low frequencies (see Table 10.5). For example,
imagine a single favourable mutation occurring in a population of
500 individuals. Its starting frequency is 1/(2 × 500) = 0.001, and
it would take 90 150 generations to increase its frequency to 0.01
at a selection pressure (s) of 0.01. If selection remained constant, it
would take an additional 10 250 generations, or a total of 100 400
generations from the original mutation, to reach a frequency of 0.5,
at which point it would start to become the most common allele in
the population. This is illustrated in Fig. 13.2a.

If the population were subdivided into ten subpopulations of 50
individuals (see Fig. 13.2b), the starting frequency of a favourable mu-
tation in one of the subpopulations would be 1/(2 × 50) = 0.01, and
it would only require 10 250 generations to increase to a frequency
of 0.5 in that subpopulation (Table 10.5). However, while the allele
was increasing in frequency, there would be migration between sub-
populations (from population 0 to neighbouring populations 1, and
then to their neighbouring populations 2, and so on, as shown in Fig.
13.2b). It would only require two to four steps before the favourable
gene was transferred to every subpopulation. At a migration rate of

1 Here we are using the term genotype only to refer to that of a specific character or
trait, and so we are only considering a single gene or a relatively small number of
genes that affect the specified trait. Selection will operate on the different alleles to
change their frequencies and hence the frequencies of the genotypes (see section 3.1).
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one individual per subpopulation per generation (i.e. 1/50 = 0.02) this
would only require a few hundred generations before the favourable
allele was introduced to all subpopulations. Thus, all subpopulations
would reach a frequency of 0.5 for the favourable allele in less than
11 000 generations after the favourable mutation, or about ten times
faster than a single breeding unit of the same size (Fig. 13.2a). We can
see that if a population is subdivided into smaller breeding units, a
combination of selection and migration can increase the speed at
which favourable mutations are incorporated into the population,
compared to the action of selection on a single large freely breeding
population. Clearly, the structure of populations can have an impor-
tant effect on their evolution.

Selection acts to make populations more suited to their local en-
vironments, and so we expect there to be geographical variation in
species because environments vary geographically. However, unlike
the geographical variation induced by genetic drift, in which there
are random changes in allelic frequencies, the allelic frequencies
determined by natural selection are directed according to the local
environments. Thus, we expect patterns in the characteristics of pop-
ulations determined by natural selection that are quite different from
those determined by genetic drift. For example, if a species relies on
camouflage to avoid predation we expect there to be a ‘fit’ between
body colour and the predominant colour of its environment. A good
example of this is provided by the peppered moth (Biston betularia),
which was discussed at length in Chapter 11. Such species tend to
be darker in areas where the background colour is dark, and lighter
where the background colour is light. This suggests that selection has
a stronger effect than genetic drift, and this conclusion is supported
by the available theory (see Chapter 8).

It is important to realize that the way in which a population
adapts to changes in the environment depends chiefly upon the char-
acteristics that it already possesses. Populations are betrayed by their
ancestry. For example, imagine a plant adapting to a more arid envi-
ronment in which the dry season becomes progressively longer. This
situation could develop because either the climate changes over the
long term (a temporal change in environment) or the plant may be
invading more arid environments (a spatial change in environment).
If the plant evades the rigours of the dry season by losing its leaves
and becoming dormant, it will probably evolve longer periods of dor-
mancy and perhaps show a more rapid growth pattern during the
wet season. However, if the plant retains its leaves during the dry
season and reduces evaporation by having narrow leaves with a thick
cuticle, it may evolve even narrower leaves with thicker cuticles. It
will not switch from one strategy to the other. Similarly, if the num-
ber of predators on a species increases, or if the predators become
more efficient at finding and killing the species, natural selection
will favour an improvement in pre-existing traits. Thus, species that
escape predation by running away may become faster and more agile,
those that rely on camouflage to escape detection may become even
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more cryptic, those that depend on being distasteful to avoid being
eaten may become even more unpalatable, and so on.

True novelty, then, is rare in evolution. Natural selection tends
to be conservative because it creates change in a step-by-step manner,
rather than by sudden leaps. Sewall Wright proposed an adaptive land-
scape model, in which genetic drift interacts with natural selection to
allow sudden changes in genotype. He envisioned a multidimensional
genetic landscape where there are local peaks in fitness correspond-
ing to particular complexes of alleles (Fig. 13.3). The peaks may have
different heights, i.e. different levels of fitness. It would not be pos-
sible for natural selection by itself to move a population from one
peak to another because it would have to cross a genetic region of
lower fitness. Sewall Wright envisioned that small populations could
make this shift because of chance changes in allelic frequencies. Per-
haps a few individuals move to establish a population elsewhere, or
a population is reduced to a small number of individuals. Whatever
the reason for the small population size, if the population is suffi-
ciently small there can be new combinations of alleles occurring by
chance and perhaps one of these combinations might be at the base
of another peak in the genetic landscape. If so, natural selection will
modify the allelic frequencies to move the population up the new
adaptive peak until it reaches the top. If the population has a higher
level of fitness than previously it may expand and perhaps replace
the parent population through a process of gene flow and selection.

13.6 Summary

We have considered how the effects of mutation, chance events, migration
and selection are integrated to change gene frequencies both within
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populations and between populations of a species. Such evolutionary
changes are frequently referred to as microevolution. The power and the
speed at which this level of evolution can occur are particularly well
illustrated by the evolution of resistance to drugs in bacteria, to insecticides
in insects, and to herbicides in many plants. However, such evolutionary
responses are by no means assured and species or populations can face
extinction as a result. On the other hand, where the environment fluctuates
around a long-term mean, the characteristics of populations may well
remain stable, with only minor fluctuations, because of stabilizing selection.
Such microevolutionary changes allow populations and species to modify
their characteristics in response to changes in the environment.

This synthesis of population genetics and Darwin’s evolutionary theories
is known as the Modern Synthesis, and one of its tenets is that
microevolutionary changes accumulate over vast geological time spans and
result in macroevolutionary differences among organisms, i.e. the major
differences distinguishing higher taxa. Not everyone subscribes to this
position. Most geneticists believe that microevolution can explain
macroevolution, but there are many palaeontologists who oppose this point
of view and who believe that speciation and major phyletic changes involve
different processes. We will not pursue this controversy in this book, and
instead will return to the topic of population ecology in the next section.



Part IV
Demography

In Chapters 4 and 5, we examined different models of population
growth where the structure of the population, in terms of age or size,
was constant or unimportant and so could be ignored. However, we
are well aware that such factors as sex and age have profound effects
on the chances of an individual dying, or producing offspring, and so
we need to incorporate some of these factors into our growth models.
These vital statistics of populations are called demographics, and the
study of these statistics is called demography.

First, the pattern of mortality in relation to age is examined and
quantified in Chapter 14. These age-specific death rates are combined
with the age-specific birth rates in the following chapter to calcu-
late the exponential growth rates of populations. Some populations
with more complex growth characteristics cannot be modelled by
the basic equations, and so matrix models of population growth are
also introduced because they can be used to describe the growth
of any population. Finally, Chapter 16 considers how the pattern of
age-specific birth and death rates might have evolved by natural selec-
tion, followed by a brief review of the evolution of life-history traits
of organisms.





Chapter 14

Life tables and age-specific
death rates

This chapter considers how an individual’s chance of dying is influ-
enced by its age and sex. After a preliminary discussion about age-
specific death rates, we will review the various ways of constructing
life tables, which tabulate the information on age-specific death rates
in an orderly way, and finally we will compare some of the life tables
of different species of mammals and birds.

14.1 Age-specific death rates

We can develop our understanding of age-specific death rates by con-
sidering the work of Peter and Rosemary Grant on the large cac-
tus (ground) finch (Geospiza conirostris), in the Galápagos archipelago.
During the period 1978--83 they marked 1244 nestlings and followed
their subsequent survival year by year. The nestlings could not be
sexed, and they made the reasonable assumption that half were male
and half were female. Only 27 of the 622 female nestlings survived
for one year, 20 for two years, 13 for three years, and so on, until all
the females were dead by seven years of age (see Table 14.1 for full
data set). If we plot the number of survivors versus age (Fig. 14.1) we
obtain the shape of the survivorship curve.

The heavy early mortality obscures the shape of the curve beyond
the first year of age. We can deal with this problem by plotting the
number of survivors on a logarithmic scale (Fig. 14.2). Plotting the
data this way has an added advantage because the slope of the graph
gives us a measure of the age-specific death rates, i.e. the steepness
of the curve is directly related to the mortality rate. Thus, we can see
that the mortality rate is highest during the first year of life, declines
to its lowest rate between one and two years of age, and thereafter
generally increases with age.

The age-specific death rates, or mortality rates (qx), are calculated
directly from the census information (Table 14.1) as follows. Only 27 of
622 female nestlings (age 0) survived for one year, and so 595 females
died during the first year of life. The mortality rate is 595/622 = 0.957
for this period, which shows that approximately 96% of the females



218 LIFE TABLES AND AGE-SPECIFIC DEATH RATES

Table 14.1 Life table for the large cactus (ground) finch (Geospiza conirostris) on Genovesa Island for females
of known age, banded as nestlings and known to have fledged in the years 1978--83

Number at Number Probability Fraction Probability Mean
Age interval start of dying in of survival dying in of dying in expectation
(years) interval interval from birth interval interval of life
(x) (Sx) (Dx) (lx) (dx) (qx) (ex)

0–1 (622) 595 1.000 0.957 0.957 0.61
1–2 27 7 0.043 0.011 0.259 2.06
2–3 20 7 0.032 0.011 0.350 1.60
3–4 13 7 0.021 0.011 0.538 1.19
4–5 6 4 0.010 0.006 0.667 1.00
5–6 2 1 0.003 0.002 0.500 1.00
6–7 1 1 0.002 0.002 1.000 0.50
7–8 0 – 0 – – –∑ = 622

∑ = 1.000

Source: From Table 3.2 of Grant and Grant (1989).
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Fig. 14.1 Survivorship of female
Geospiza conirostris. (Data from
Grant and Grant 1989.)

1 2 3 4 5 6 7
1

10

100

1000

Age (years)

N
u

m
b

er
 o

f 
su

rv
iv

o
rs
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Geospiza conirostris plotted on a
logarithmic scale. (Data from
Fig. 14.1.)
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Fig. 14.3 Age-specific mortality
rates of female Geospiza conirostris.
(Data from Grant and Grant 1989.)
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Fig. 14.4 Survivorship of male
and female Geospiza conirostris that
were banded as nestlings during
the period 1978–83. (Data from
Table 3.2 in Grant and Grant
1989.)

die before they are one year old. Similarly, only 20 of the 27 one-year-
old females survived to two years of age, and so 7 died during that
period. The mortality rate for females in their second year of life (i.e.
aged one to two years) is 7/27 = 0.259. When the mortality rates are
plotted against age (Fig. 14.3), it may be seen that the mortality rate is
U-shaped with age, and conforms to our assessment of mortality rates
from the semi-logarithmic plot of the survivorship curve (Fig. 14.2).

To facilitate the comparison of different survivorship curves, they
are started with the same number of individuals. We do this by con-
verting the number of survivors at each age to an lx series, which is
the probability at birth of surviving to a particular age. This is done
by dividing the number of survivors at each age by the number of
individuals at birth (i.e. aged 0), and the resulting series will start
at 1.0 at birth and decline with age (Table 14.1). Frequently, the lx
series is multiplied by 100 or 1000, converting the series to 100lx or
1000lx so that the number of survivors appears as whole, rather than
fractional, numbers at each age.

Male and female survivorship are compared (Fig. 14.4), noting that
males can be distinguished from females once they are one year old.
Females survived better than the males during their first year of life,
but once they reached one year of age males had lower mortality
rates than females (Fig. 14.4). The net effect was that males survived
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Fig. 14.6 Survivorship of the
1976 and 1980 cohorts of female
Geospiza conirostris plotted by year.
(Data from Fig. 14.5.)

better than females and this difference was consistent when the co-
horts of different years were compared (Grant and Grant 1989). This is
unusual, because females survive better than males in most species.

The survival of cohorts born in different years can be very dif-
ferent. For example, the 1980 cohort of females seem to have a
much shorter lifespan than the 1976 cohort (Fig. 14.5). However, if
we compare the survivorship of the two cohorts by year rather than
age (Fig. 14.6) we see that the survivorship curves are similar in shape.
When Fig. 14.6 is compared to the yearly environmental conditions
we can separate the age-specific mortality effects from the effects of a
fluctuating environment. There was a heavy mortality in both cohorts
during the first year of life, and this seemed to be quite consistent
across all cohorts (Grant and Grant 1989). The mortality rate during
the second year of life was higher for the 1976 cohort than the 1980
cohort because there was a drought in 1977 and the availability of
food was reduced, whereas conditions were favourable in 1981. During
the period 1982--6, both cohorts showed a similar increase in mortal-
ity rates which was thought to be related to the increasing density of
birds (which reached peak densities in 1983) and also to the El Niño
event of 1982--3 and the following severe drought of 1984--5 (Grant
and Grant 1989). When we make this type of comparison, we can
see that the difference in survivorship of the two cohorts was almost



CONSTRUCTING LIFE TABLES 221

1

10

100

1000

Human

Squirrel

Turtle

Relative age

10
00

l x
Fig. 14.7 Survivorship curves for
Caucasian males in the United
States during the period 1939–41
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certainly related to differences in the environmental conditions that
they experienced.

14.1.1 Types of survivorship curves
Survivorship curves, i.e. lx series, are often arranged into three main
types, and when the lx series is plotted on a logarithmic scale, the
three types have the following characteristics:

Type I The slope of the survivorship curve increases with age, i.e.
age-specific mortality rates increase with age. A good exam-
ple of this is provided by human populations in ‘developed’
countries (Fig. 14.7).

Type II The slope of the survivorship curve is constant, and so age-
specific mortality rates are constant. An example is shown
by Belding’s ground squirrel (Spermophilus beldingi) (Fig. 14.7).

Type III The slope of the survivorship curve decreases with age, i.e.
age-specific mortality rates decrease with age. An exam-
ple is provided by the snapping turtle (Chelydra serpentina)
(Fig. 14.7). More extreme examples are provided by many
long-lived trees that produce a prolific number of seeds.

Few species have survivorship curves that conform exactly to these
‘ideal’ types. For example, the survivorship curve of the large cac-
tus finch (Geospiza conirostris) shows a heavy juvenile mortality rate
(Type III) but the adult mortality rate generally increases with age
(Type I). We will discuss these ‘ideal’ survivorship curves again in
Chapter 15.

14.2 Constructing life tables

Death rates vary with both the sex and age of an individual, and they
are also affected by the environment. We keep track of these statistics
in a very orderly way, but demographers are optimistic people and
so rather than talking of death tables they develop life tables, and use
survivorship data rather than age-specific death rates in growth models.
To see how life tables are developed we will initially consider the
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example of one of Darwin’s finches from the Galápagos archipelago
that we have discussed already (Table 14.1).

1. The first column is an age interval (x), the duration of which will
depend on the organism being studied. Usually the time intervals
are of equal duration, but occasionally some of the oldest-aged or-
ganisms are grouped together and the interval may be indicated
as, for example, >15 years. Frequently the age interval is only in-
dicated by the start of the interval, i.e. 0, 1, 2, 3, etc.

2. The second column shows the number of survivors (Sx) at the start
of the age interval. In our example the first number is in parenthe-
ses because the precise number of nestling females is uncertain.
A total of 1244 nestlings was banded but they were impossible to
sex at this stage. It was assumed that half were male and half fe-
male. The survivorship of the females was followed until they had
all died by the end of their seventh year of age. Note that it is
common for there to be some uncertainty about the number of
individuals in the first age class. For example, we may estimate
the number of eggs laid by a fish by counting the number of eggs
in adult females and assuming that all are laid.

3. The third column shows the number of individuals dying (Dx)
within each age class. This is easy to compute if the number of
survivors at the start of each age class is known. The number dy-
ing in the first age class is 622 − 27 = 595; the number dying in
the second age class is 27 − 20 = 7, and so on. Symbolically, this
is calculated as Dx = Sx − Sx+1. We can check our arithmetic by
summing the total dying in all age classes. This should equal the
number alive at the start of the first age class.

4. To make it easier to compare life tables with very different starting
numbers, the number of survivors is converted to a probability of
survival series, lx, by dividing the number of survivors, Sx, at each
age by the number alive at the start of the first age class. Thus,
l0 = 622/622 or 1.0, l1 = 27/622 or 0.043, l2 = 20/622 or 0.032,
and so on. Some demographers calculate 100lx or 1000lx series so
that one starts with 100 or 1000 individuals and the following
number of survivors will appear as whole rather than fractional
numbers.

5. The dx series is calculated in exactly the same way as the Dx series
(column 3) by using the data in column 4. Symbolically, this is
calculated as dx = lx − lx+1, and so d0 = 1.0 − 0.043 or 0.957, d1 =
0.043 − 0.032 or 0.011, and so on. Some of the values in Table 14.1
appear to be incorrect because of rounding errors.

6. The sixth column computes the probability of dying, or the mor-
tality rate (qx), during each age interval. This is calculated by either
Dx/Sx or dx/lx. Thus, q0 = 595/622 or 0.957, q1 = 7/27 or 0.259, and
so on.

7. Finally, the mean life expectancy (ex) is calculated for different ages
in the last column. This is estimated by summing the number of
survivors in age class (x) and older age classes, and dividing this
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sum by the number of survivors in age class (x). This estimate as-
sumes that all individuals alive at the start of an age class survive to
the end of that age class and then die. The correction is simple, we
subtract half of the value of the age interval (x) because we assume
that mortality occurs evenly throughout each age interval. Symbol-
ically, this may be stated as ex = ((Sx + Sx+1 + Sx+2 . . . Sn)/Sx) − 0.5x,
where Sn is the number in the oldest age class. Thus, E0 =
[(622 + 27 + 20 + 13 + 6 + 2 + 1)/622] − 0.5, or 0.61 years, E1 =
[(27 + 20 + 13 + 6 + 2 + 1)/27] − 0.5, or 2.06 years, E2 = [(20 +
13 + 6 + 2 + 1)/20] − 0.5, or 1.6 years, and so on. It may surprise
you that the mean expectation of life can increase with age. This
happens when there is a sharp decrease in mortality rates.

The development of a life table to tabulate information on age-
specific death rates is a simple exercise, provided we have either the
initial survivorship data (i.e. Sx series) or ages at death (i.e. Dx series).
We will now look at the different ways of obtaining this information
and developing life tables. Some have rather restrictive assumptions,
and the different types of life tables are applied to different situa-
tions.

14.2.1 Cohort (horizontal or generation) life tables
In this type of life table the survival of a known group of organisms,
called a cohort, is followed from birth to the time when they are
all dead. The method is typically applied to plants and sessile an-
imals that are not very long-lived, because they are relatively easy
to keep track of and resample during their life. It is difficult to ap-
ply to animals which disperse, because dispersal may be confused
with mortality. Cohort life tables were used to construct the survivor-
ship curves for Belding’s ground squirrel (Fig. 14.7) and for Geospiza
conirostris (Figs. 14.5 and 14.6). However, the example that we have
just considered (Table 14.1) is a composite cohort life table, because
the cohorts of different years have been combined to give an average
life table for the group. Cohort life tables can be applied to popula-
tions at any phase of population growth, i.e. the populations could
be increasing or decreasing, or be stationary in size.

14.2.2 Static (stationary or time-specific) life tables
It may be impractical to construct a cohort life table for organisms
that are very long-lived, such as elephants and many species of trees,
or for highly mobile animals such as many ungulates. Instead, infor-
mation is collected at a single point in time, which is considered to
be representative of the population over a much longer time period.
Life tables are constructed using three types of information.

1. Time-specific or vertical life tables
This method avoids the time problem caused by long-lived species by
estimating the survival of individuals of known age during a single
time interval. Age-specific death rates are calculated independently
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Table 14.2 Time-specific life table data for the human female population of Canada in 1980

Deaths in Annual Number dying
Age class Number in each age class mortality rate Survivorship in 1980
(years) each age class in 1980 (1000qx) (1000lx) (1000dx)

0–1 173 400 1 651 9.52 1000 9.52
1–4 685 900 340 0.5 990.5 0.49
5–9 876 600 218 0.25 988.5 0.25

10–14 980 300 234 0.24 987.3 0.24
15–19 1 164 100 568 0.49 986.1 0.48
20–24 1 136 100 619 0.54 983.7 0.54
25–29 1 029 300 578 0.56 981.0 0.55
30–34 933 000 662 0.71 978.3 0.69
35–39 739 200 818 1.11 974.8 1.08
40–44 627 000 1 039 1.66 969.4 1.61
45–49 622 400 1 664 2.67 961.4 2.57
50–54 615 100 2 574 4.18 948.5 3.97
55–59 596 000 3 878 6.51 928.7 6.04
60–64 481 200 4 853 10.09 898.5 9.06
65–69 423 400 6 803 16.07 853.2 13.71
70–74 325 600 8 421 25.86 784.6 20.29
75–79 235 100 10 029 42.66 683.2 29.14
80–84 149 300 10 824 72.50 537.4 38.96
85 and above 119 200 18 085 151.72 342.6 51.98

Source: Data from Statistics Canada (1982), cited from Krebs (1985).

for each age-class for the same period of time, hence the time-specific
label, and the estimates are combined to develop the full life ta-
ble. The life table for Caucasians males (Fig. 14.7) was developed us-
ing this method, and a partial life table for the female population
of Canada in 1980 is developed to illustrate the application of this
method (Table 14.2).

Each age group was counted in 1980, and a tally was made of
the number of deaths in the same age groups. Note that the method
depends on reliably estimating the age of all individuals, as well as
the timing of their deaths. The annual mortality rates (qx) during 1980
were estimated by dividing the number of deaths by the number of
females in each age group (e.g. for age class 0--1, qx = 1651/173 400
or 0.00952). These values were multiplied by 1000 to obtain a 1000qx

series (e.g. for age class 0--1, 1000qx = 0.00952 × 1000 or 9.52). The
1000dx series was calculated using the relationship 1000dx = 1000qx ×
1000lx/1000 (e.g. for age class 40--44, 1000dx = 1.66 × 969.4/1000 or
1.61). The initial 1000lx value is 1000, and other values were calculated
by taking the 1000lx value of the previous age class and subtracting
from it the 1000dx value multiplied by the number of years in the
previous age class (the 1000dx values are annual estimates because it
is the annual mortality rate that has been estimated). For example, to
calculate the 1000lx for age class 75--9, we use the 1000lx value of the
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Table 14.3 Life table for Dall mountain sheep (Ovis dalli) in Mount McKinley (now Denali)
National Park, Alaska

Number Number surviving Probability of Number Mean
Age class dying in at start of survival from dying in Mortality expectation
(years) age class age class birth age class rate of life
(x) (Dx) (Sx) (lx) (dx) (qx) (ex)

0–1 121 608 1.000 0.199 0.199 7.1
1–2 7 487 0.801 0.012 0.014 7.7
2–3 8 480 0.789 0.013 0.017 6.8
3–4 7 472 0.776 0.012 0.015 5.9
4–5 18 465 0.765 0.030 0.039 5.0
5–6 28 447 0.735 0.046 0.063 4.2
6–7 29 419 0.689 0.048 0.069 3.4
7–8 42 390 0.641 0.069 0.108 2.6
8–9 80 348 0.572 0.132 0.230 1.9
9–10 114 268 0.441 0.188 0.425 1.3

10–11 95 154 0.253 0.156 0.617 0.9
11–12 55 59 0.097 0.090 0.932 0.6
12–13 2 4 0.007 0.003 0.500 1.0
13–14 2 2 0.003 0.003 1.000 0.5
14–15 0 0 0.000 0.000 – –

Source: Data from Murie (1944), as used by Deevey (1947).

previous age class (784.6), and subtract from it the number dying each
year in the previous age class (20.29) multiplied by 5 (the number of
years in that age class). This gives a value of 784.6 − (20.29 × 5) or
683.2. In this manner, the complete life table is constructed.

2. Stationary life tables based on the ages at death
within a population

This method was first applied by Edward Deevey (1947), who used
Olaus Murie’s (1944) data on Dall mountain sheep (Ovis dalli) in Mount
McKinley (now Denali) National Park in Alaska. Murie collected 608
skulls and estimated their age from the size of their horns. Conse-
quently, he could estimate the age of death of 608 animals (see Dx

column of Table 14.3). Deevey used this information to construct a
life table based on the following reasoning. All 608 animals must
have been alive at birth, and so this would be the starting number in
the Sx column. The 121 animals dying in the first year of life would re-
duce the number of survivors to 487 at age 1, and similarly the seven
animals dying in the second year of life would reduce the number
of survivors to 480 at age 2, and so on. Deevey reconstructed the sur-
vivorship (Sx) series in this way and was then able to calculate the
remainder of the life table in the usual way. The pattern of survivor-
ship and age-specific mortality rates is illustrated in Figs. 14.8 and
14.9.
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Fig. 14.8 Survivorship curves for
Dall sheep (Ovis dalli) and the
Himalayan thar (Hemitragus
jemlahicus), calculated in Tables
14.3 and 14.4. (Data from Deevey
1947 and Caughley 1966.)
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Fig. 14.9 Comparison of
age-specific mortality rates for Dall
sheep and Himalayan thar. (Data
from Deevey 1947 and Caughley
1966.)

This type of life table is based on some very restrictive assump-
tions. We must be able to age the skulls accurately, and we must
also assume that the survival of the skulls shows no bias with age.
For example, if the skulls of animals dying during their first year of
life are destroyed (e.g. by weathering, by predators, or by scavengers)
more rapidly than the skulls of older animals they would be under-
represented in our sample and our estimates of the age-specific death
rates would be inaccurate. We also assume that the population is sta-
tionary in size (hence the name, stationary life table), so that births
exactly balance the deaths. If the population were increasing in size,
the younger age classes would be over-represented in our sample; if
the population were declining in size the older age classes would be
over-represented in our sample; and if the population had first in-
creased and then decreased prior to our sampling, the intermediate
age classes would be over-represented in our sample. It is possible
to correct population increase or decrease (see Caughley 1977), but
this assumes that the population is either increasing or decreasing
exponentially and that a stable age structure has developed. For a
long-lived species like the Dall sheep, this would require a constant
rate of population growth for at least two decades which seems most
unlikely. It is obvious that one needs to be very careful when applying
this method, and one requires a great deal of information about the
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Table 14.4 Partial life table for female Himalayan thar (Hemitragus jemlahicus) in New Zealand, constructed
from the age structure of the population

Age class Frequency Adjusted Probability of survival Number dying
(years) in sample frequency from birth in age class Mortality rate
(x) (Sx) (lx) (dx) (qx)

0–1 – 205a 1.000 0.533 0.533
1–2 94 95.83 0.467 0.006 0.013
2–3 97 94.43 0.461 0.028 0.061
3–4 107 88.69 0.433 0.046 0.106
4–5 68 79.41 0.387 0.056 0.145
5–6 70 67.81 0.331 0.062 0.187
6–7 47 55.20 0.269 0.600 0.223
7–8 37 42.85 0.209 0.054 0.258
8–9 35 31.71 0.155 0.046 0.297
9–10 24 22.37 0.109 0.036 0.330

10–11 16 15.04 0.073 0.026 0.356
11–12 11 9.64 0.047 0.018 0.382
12–13 6 5.90 0.029
Older <5

a Calculated from adjusted frequencies and mx values.
Source: From Caughley (1966).

population to be sure that the basic assumptions are not violated too
severely.

3. Stationary life tables based on the age structure
of the population

If the population is not changing in size, i.e. is stationary, births
balance the deaths and the age structure of the population is the
same as the survivorship (Sx) series. It is assumed that individuals
can be aged accurately, and that an unbiased sample of the popula-
tion can be obtained. If the population is increasing or decreasing
exponentially and has attained a stable age distribution, it is possi-
ble to derive the stationary age distribution (see Caughley 1977), but
these conditions seem unlikely to be true for long-lived populations as
we have already noted. It should be clear that however we determine
the age structure of the population, even if it means killing a sample
from the population, the ages represent the survivorship (Sx) series.
There have been instances where an investigator has assumed that
the age structure represents the ages at death, i.e. the Dx series, be-
cause the animals were killed by the sampling method (see Caughley
1966).

An example of this type of life table is shown in Table 14.4 for an
ungulate, the Himalayan thar (Hemitragus jemlahicus), in New Zealand.
Caughley (1966) obtained samples of the population, made by hunters,
and the animals were aged by the growth rings on their horns. He
made various checks to confirm that sampling was random and that
the data were consistent with a stationary population. Caughley had
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to deal with one problem that is common when applying this method:
the observed frequency of females in some age classes is larger than
the frequency in younger age classes. Note that the number of fe-
males appears to increase between one and three years of age, and
then again between four and five years of age (Table 14.4). There are
two logical explanations for such patterns: the increases may be a
result of sampling error, or they may be real because of fluctuations
in population size. For example, if the population had declined dra-
matically in size during the three- to four-year period prior to taking
the sample, we would expect there to be more three- to four-year-
old females than younger-aged animals. However, Caughley found no
evidence for any changes in population size during this period and
explained the fluctuations on the basis of sampling error. Caughley
fitted a polynomial function to the observed frequencies to ensure
that the numbers either declined or stayed the same from one age to
the next. This procedure provided the adjusted frequencies in Table
14.4, and the number of newborns was estimated from fecundity data
(see Chapter 15). The life table could then be constructed in the usual
way. The pattern of survivorship and the age-specific mortality rates
are shown in Figs. 14.8 and 14.9.

14.3 Comparison of life tables

The shape of the survivorship curve can vary considerably (section
14.1.1). However, if we compare the survivorship curves of humans
(Fig. 14.7), and Dall sheep and the Himalayan thar (Fig. 14.8), we may
see that they are similar in general shape, although the last two
species exhibit heavier early mortality. The similarity of the general
shape of these survivorship curves is remarkable, given the uncer-
tainties in the construction of the life tables of the sheep and thar
because of the very restrictive assumptions on which they are based
(see section 14.2.2).

Perhaps the pattern of the age-specific mortality rates with age is
more informative, and this is shown for Dall sheep and the Himalayan
thar in Fig. 14.9. Their mortality rates are U-shaped with age, being
high at birth, then declining to a minimum at about the time of pu-
berty, and thereafter generally increasing with age. You may remem-
ber that similar U-shaped curves were observed for the large cactus
finch (Fig. 14.3) and for Canadian human females (Table 14.2). Caugh-
ley has proposed that these age-specific mortality curves of mammals
are typically U-shaped, and we will discuss how this shape may have
evolved in Chapter 16.

14.4 Constructing life tables using a spreadsheet

The development of a life table from the appropriate Sx or Dx series
is a simple exercise, but is somewhat tedious when there is a large
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number of age classes. We can perform the calculations very effi-
ciently using a spreadsheet, and in Chapter 15 we will extend the
table to include age-specific reproductive rates and to calculate the
growth rate of age-structured populations. The method of calculating
life tables from either survivorship (Sx) data or age at death (Dx) data
is outlined in Appendix 14.1.

The two life tables that you have calculated in your spreadsheet
may be used to examine most types of life table data by simply
substituting either the Sx or Dx series in the appropriate columns.
We will go on to examine age-specific reproductive data in the next
chapter so that we can calculate the growth rates of age-structured
populations.

Appendix 14.1 Constructing life tables using
a spreadsheet

1. Title your spreadsheet Life Tables; in A3 type A. Based on survivor-
ship (cohort or stationary); and in columns A to G of row 4 type
the following headings: Age, No. alive, No. dying, lx, dx, qx, and
ex. You may wish to centre these headings.

2. Enter 0 (zero) in cell A5, and the sequence of ages 1 to 15 in cells A6
to A20. Then in column B (cells B5 to B20) enter the survivorship
series from the second column of Table 14.4. You will need to enter
two extra zeros to complete the column. This provides us with our
starting information for the life table.

3. We calculate the Dx series in column C as follows: Enter = B5--B6
in C5 and copy C5 to cells C6 to C20. In C21 type = @SUM(C5..C20)
or use the � function on the toolbar to do the same function. The
sum should equal the starting number in cell B5.

4. Calculate:
(a) the lx series by typing = B5/$B$5 in D5, and copying D5 to cells

D6 to D20. Check to see that you have the same values as those
in Table 14.4.

(b) the dx series by typing = D5--D6 in E5, and copying E5 to cells
E6 to E20.

(c) the qx series by typing = E5/D5 in F5, and copying F5 to cells
F6 to F20.

(d) the ex series by typing = @SUM(D5..$D20)/D5-0.5 in G5, and copy-
ing G5 to cells G6 to G20. Our life table is now complete.

5. Now type: B. Based on age at death (stationary) in A28, and then
copy the block A4..G21 and paste to A29. The life table has been
replicated and we will modify it as follows:
(a) Copy the Dx series (column 2) of Table 14.3 into column C (cells

C30..C45).
(b) Enter = C46 in cell B30 (the starting value in the survivorship

series equals the total number of deaths), then type = B30--C30
in B31, and copy B31 to cells B32 to B45. You will have to do
this a few cells at a time.
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(c) Click on cell D30. Change the formula B30/$B$5 to B30/$B$30,
and copy D30 to cells D31 to D45.

(d) Click on cell G30 and change $D$20 in the formula to $D$45,
and then copy the revised formula to cells G31 to G45. The
second life table is now complete.

6. Make two graphs, one showing the lx series versus age, and the
other of the qx series versus age. They should resemble Figs. 14.8
and 14.9.

7. Save your spreadsheet.



Chapter 15

Age-specific reproduction and
population growth rates

Conceptually, it is a simple matter to estimate age-specific birth rates.
The total number of live offspring produced by samples of females in
different age classes is documented, and then the age specific birth
rates (Bx) are calculated by dividing the total number of live offspring
produced by the sample of females in each age class by the sample
size of females in that age class. Thus, if a sample of 30 two-year-
old females gave birth to 120 live offspring during the course of the
year, the age-specific birth rates of females in age class 2--3 would be
120/30, or 4.0. In practice, however, it may be difficult to estimate
the number of live births. For example, some species of fish lay more
than 1 000 000 eggs per female, and it may be extremely difficult to
assess what proportion of the eggs are fertilized, i.e. are viable, under
natural conditions. Other animals are secretive, and so one cannot
observe the number of live births directly. In these cases, a sample
of the population may be collected to measure the proportion of the
population that is reproductively active in each class and to count
the number of eggs, or embryos, or placental scars per female so that
age-specific birth rates may be calculated. However, the problem of
determining the viability of the offspring at birth still remains.

15.1 Calculating population growth rates from
age-specific birth and death rates

One might anticipate that population growth rates would be difficult
to calculate from age-specific mortality and birth rates. In practice,
however, there are some simple ways of doing this, although some of
the calculations may be somewhat tedious. Conventionally, we sim-
plify the problem by calculating the growth rate of the female seg-
ment of the population. In effect we assume that the growth rate
of the males will be the same, and in most cases this is appropriate
because there is a characteristic sex ratio for the population (which
may change with age).
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Table 15.1 Age-specific survival (lx) and live female births per female of age x (mx) for Uinta ground squirrels
(Spermophilus armatus) in a lawn habitat in Utah, before and after the approximate halving of population density.
The population growth parameters are also calculated (see text)

Pre-reduction Post-reduction
Age (years)
(x) lx mx lxmx x lxmx lx mx lxmx x lxmx

(1) (2) (3) (2) × (3) (1) × (2) × (3) (2) (3) (2) × (3) (1) × (2) × (3)

0 1.000 0.00 0.000 0.000 1.000 0.00 0.000 0.000
0.75 0.292 1.96 0.572 0.429 0.359 1.75 0.628 0.471
1.75 0.128 2.73 0.349 0.612 0.190 2.76 0.524 0.918
2.75 0.041 2.73 0.112 0.308 0.089 2.76 0.246 0.676
3.75 0.013 2.73 0.035 0.133 0.041 2.76 0.113 0.424
4.75 0.000 – – – 0.019 2.76 0.052 0.249
5.75 0.009 2.76 0.025 0.142
6.75 0.000

—— —— —— ——
� = R0 = 1.069 � = 1.482 � = R0 = 1.589 � = 2.881

T = 1.386 T = 1.813
rc = 0.048 rc = 0.255
rm = 0.049 rm = 0.282

Source: Data from Slade and Balph (1974).

In order to calculate the growth rate of females, we need to cal-
culate the number of live female births per female for each age class
(mx) rather than the age-specific birth rates (Bx) as calculated in the
introduction. In most cases we assume a 50 : 50 sex ratio at birth, and
so the mx values are half the Bx values. Thus, in our example above,
the mx value would be 2.0.

To illustrate how population growth rates (r) are calculated from
age-specific data, we will examine a study on the Uinta ground squir-
rel (Spermophilus armatus) by Slade and Balph (1974). They captured
and marked every individual in the study area and observed their ac-
tivity from observation towers. During the first few years of the study
(1964--8), the population was left undisturbed and data were collected
on the age-specific birth and death rates. Then the population density
was approximately halved during the period 1968--71, and the effects
of this reduction on the population’s vital statistics were monitored.
Some of their results are presented in Table 15.1, where the method
of combining the information on birth and death rates to calculate
population growth rates is outlined.

The production of new females for each age class is calculated
by multiplying the survivorship (lx) by the fecundity (mx). In effect,
this details the average production of female offspring for each age
class during a female’s life. The sum of the lxmx series estimates the
net reproductive rate, R0, for the population, which is the average
production of female offspring per female during her lifetime. Prior to
the reduction of population density, the average female entering the
population produced 1.069 female offspring before she died, whereas
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after the population density was halved, a female replaced herself
with 1.589 female offspring before she died, a substantial increase
(Table 15.1).

The net reproductive rate (R0) is a measure of the multiplication
rate, λ, per generation (see Chapter 4). It should be obvious that where
R0 = 1.0, the population is just replacing itself and is neither increas-
ing nor decreasing, i.e. is stationary; where R0 > 1 the population is
increasing in size; and where R0 < 1 the population is decreasing in
size. In order to calculate a growth rate, r, per unit time we need to be
able to estimate the generation time. There are two basic methods of
calculating population growth rates from demographic data, which
we will now describe.

15.1.1 The capacity for increase, rc
The first, and simplest method can be developed in the following way.
In Chapter 4 we showed that for populations with constant growth
rates, r, the population size at time t(Nt) is predicted by the following
equation (Eqn 4.4):

Nt = N0ert (Exp. 15.1)

After one generation, where t = T (the generation time) Exp. 15.1
becomes:

NT = N0erT (Exp. 15.2)

Rearranging Exp. 15.2 and taking the logarithm of both sides we
obtain:

ln

(
NT

N0

)
= rT (Exp. 15.3)

But NT/N0 = R0 and so substituting this in Exp. 15.3 and rearrang-
ing gives:

rc = ln (R0)

T
(Eqn 15.1)

where rc is the capacity for increase, and R0=�lxmx. If we can estimate
the generation time (T), then we can calculate the value of rc. One
method of doing this is to calculate the average age at which the
females produce their offspring (i.e. the mean age of the lxmx series).
For example, if the lxmx values for a population were 2 for one-year-old
females, 4 for two-year-old females and 2 for three-year-old females,
and were zero for all other ages, it would be obvious that the mean
generation time based on this method would be 2 years. When the
production of offspring is not so symmetrically distributed around a
mean age, the mean age is calculated by weighting the production of
offspring by the age at which they are produced (i.e. sum the xlxmx

series), and dividing that value by the number of offspring produced
(i.e. the sum of the lxmx series). Symbolically, this is represented by
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the following equation:

T = �xlxmx

�lxmx
(Eqn 15.2)

This estimates an average parental age at which all the offspring
are born, and is equivalent to what would happen if all of the off-
spring were born to females at that age. You can check that this
equation gives the correct estimates of the generation times for our
example above, and for the populations in Table 15.1.

The rc values for the Uinta ground squirrel population, before and
after reduction in density, are given in Table 15.1. We can estimate
the multiplication rates per year (λ) by taking the exponents of these
estimates. The multiplication rate was 1.049 for the pre-reduction pop-
ulation and 1.29 for the post-reduction population. Obviously, as our
estimates of R0 above showed, the pre-reduction population was al-
most stationary because a multiplication rate of 5% per year is very
low. Slade and Balph suspected that excess individuals emigrated to
the surrounding habitat types because these had negative growth
rates (i.e. were decreasing). Once the population density was halved,
however, the population responded by dramatically increasing the
multiplication rate to 29% a year, and this was achieved by a marked
increase in survivorship and longevity, and not by an increase in age-
specific birth rates (Table 15.1).

15.1.2 The intrinsic rate of natural increase, rm, and the
Euler equation

The second, and more accurate, method for estimating the growth
rates of age-structured populations makes use of the Euler equation,
which was first developed in the eighteenth century by the Swiss
mathematician Leonhard Euler in his analysis of human demogra-
phy, and was independently derived by Alfred Lotka, at the begin-
ning of the twentieth century, who showed the equation’s utility for
demographers. The basic equation is as follows:

1 =
∞∫

0

e−rmxlxmxδx (Eqn 15.3)

and its equivalent discrete form is given by:

1 =
∞∑
0

e−rmxlxmx (Eqn 15.4)

The reasoning behind this development of Eqn 15.4 may be fol-
lowed if we consider the worked example in Table 15.2. In this ex-
ample, the population growth rate (rm) is judged to be approximately
0.1. Our first step is to calculate the number of individuals that would
have been born at previous time steps if the population growth rate
(rm) was 0.1 (see column 2). For the previous times 1, 2, . . . , x, this is
equal to e−0.1, e−0.2, . . . , e−rx, which is equivalent to 1/λ, 1/λ2, . . . ,
1/λx, and readers should confirm this for themselves if they are not
convinced. Essentially, this develops a series of births in succeeding
time steps, that increase exponentially from 0.6703 to 1.0, at a growth
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Table 15.2 A numerical example to illustrate the development of the Euler equation shown in Box 15.1. The
population growth rate (rm) is 0.1, and the survivorship (lx) and fecundity (mx) series are as shown.

(1) (2) (3) (4)
Time (x) Number of Number of individuals Number of offspring
previous individuals surviving to born to surviving
to time 0 (t0) born at time x lx time 0 mx individuals at time 0

0 1.0 1.0 l0 = 1.0 0 0
1 e−0.1 = 0.9048 0.8 (2) × 0.8 = 0.7238 0.5 (3) × 0.5 = 0.3619
2 e−0.2 = 0.8187 0.6 (2) × 0.6 = 0.4912 1.0 (3) × 1.0 = 0.4912
3 e−0.3 = 0.7408 0.4 (2) × 0.4 = 0.2963 0.4 (3) × 0.4 = 0.1185
4 e−0.4 = 0.6703 0.2 (2) × 0.2 = 0.1341 0.21 (3) × 0.21 = 0.0282
5 0 0 0 0 0

� = 0.9998

rate of 0.1. Our next step is to develop the age structure of the popu-
lation (see column 3). Of the 0.9048 individuals born in the previous
time step, only 80% survive to the present time (0), and so the pro-
portion in age class 1 is 0.9048 × 0.8 = 0.7238. Thus, the population
age structure is given by the series in column 2 (which assumes ex-
ponential growth at a rate of 0.1 per time step) multiplied by the
lx series (which corrects for the survivorship of the different aged
individuals). Our final step is to calculate the overall production of
offspring at time 0, by multiplying the age structure of the popula-
tion in column 3 by the mx series, and then summing the resulting
series in column 4. The total of 0.9998 is sufficiently close to 1.0 (the
number of individuals born at time 0 in column 2) to assume that
the population growth rate (rm) is 0.1.

It may be apparent that the form of the Euler equation is unusual.
If we insert the correct value of rm into the equation, as we did in the
example shown in Table 15.2, and do the necessary calculations, we
find that the summation of the values for the different age classes is
equal to 1.0. However, it is rm that we are trying to calculate, and so
in practice we have to insert trial values for rm until we hit on the
correct one. The procedure of how to do this will be explained later
(section 15.2).

15.1.3 Comparison of rc and rm
Most authorities consider that rc is simply an approximation for rm,
but there is a precise relationship between the two estimates that
has been elucidated by Laughlin (1965). If there is no overlapping of
generations, such as seen in annual plants and many insects, rc =
rm. However, where there is overlapping of generations and the pop-
ulation has a stable age distribution (see section 15.3.2), the true rate
of population growth is given by rm and rc is an underestimate. This
is because for a population with a stable age distribution, the gener-
ation time (T) is overestimated by Eqn 15.2. The difference between
rm and rc becomes greater as the growth rate (r) increases. We can
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see this in our example of the Uinta ground squirrel (Table 15.1). The
pre-reduction value of rc (0.048) is only about 2% lower than the value
of rm (0.049), whereas for the post-reduction population, rc (0.255) is
approximately 10% lower than the rm value (0.282).

It should be emphasized that populations will only grow at a rate
of rm when they have attained a stable age distribution (the age dis-
tribution when all age classes are increasing in number at the same
rate). If a population with overlapping generations is introduced into
a new area and increases in number, or if a population has been sta-
tionary for a time and then starts to increase in number, the rate of
increase during the initial phase will be closer to rc than rm. This is
because it takes time for the population to attain a stable age distri-
bution.

15.2 Calculating age-structured population growth
rates using spreadsheets

The calculation of rc and rm is quite simple using a spreadsheet
program. For the purposes of this exercise, we will modify the
pre-reduction demographic statistics for the Uinta ground squirrel
(Table 15.1) so that breeding occurs at yearly intervals from birth. It
will be important to have equal-spaced age classes when we extend the
spreadsheet in section 15.4. The modified demographic statistics for
our spreadsheet are as follows:

Age lx mx

0 1.000 0
1 0.292 1.96
2 0.128 2.73
3 0.041 2.73
4 0.013 2.73
5 0.000 –

The development of the spreadsheet is described in Appendix 15.1.
It is a simple matter to extend the spreadsheet to include more age
classes, and preparing spreadsheets reduces much of the tedium of
calculating population growth rates from age-specific birth and death
rates.

15.3 Matrix models

During the 1940s, matrix models1 were independently developed
for age-structured populations by Bernardelli, Lewis, and Leslie (see

1 These matrix models use matrix algebra to calculate and analyse population demo-
graphics (see Searle 1966).
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Fig. 15.1 Hypothetical life cycle
of a plant with three life stages.
The probability of remaining in a
particular stage is indicated by the
P values; the probability of
developing or growing from one
stage to the next is indicated by
the G values; and sexual
reproduction to produce seeds is
indicated by F1 and vegetative
reproduction is indicated by F2.

Caswell 2001). These matrix models were seldom used by ecologists
until the 1970s, but are now commonly used to analyse the demo-
graphics of populations. Our purpose here is not to worry about ma-
trix algebra per se, but to show why these models are important.

So far, we have used the age-specific birth and death rates to cal-
culate the growth rate of a population. For many organisms this is an
appropriate approach, but for other organisms it is not. For example,
many insects go through a series of developmental stages (egg, larva,
pupa and adult) that vary in duration according to food availability,
temperature and moisture. In some plants and fish, the capacity for
sexual reproduction may be more influenced by size and developmen-
tal stage than by chronological age. Thus, an immature, intermediate-
sized plant or fish may be a fast-growing juvenile or a stunted ‘adult’.
Finally, some organisms reproduce both sexually and asexually, and
these two types of reproduction may produce offspring at different
life stages (e.g. seeds and semi-independent shoots). In cases such as
these, it may be difficult or impossible to calculate the growth rate
of the population using the more conventional Euler equation, but it
is relatively simple to develop a stage or size-classified matrix model.

If we consider the life cycle of the plant that is illustrated in
Fig. 15.1, we can note the following. In one time period, a proportion
(P1) of the seeds may remain dormant, a proportion (G1) of the seeds
germinate to develop into immature plants, and the remaining seeds
die. Similarly, a proportion (P2) of the immature plants may remain
in an immature state, a proportion (G2) develops into mature plants,
and the remainder die. Finally, a proportion (P3) of the mature plants
survives to the next time period, and may either reproduce sexually
to produce seeds (F1) or reproduce asexually to produce immature
plants (F2). To define how individuals in this population move from
one state to another, we develop a transition matrix that is shown in
Table 15.3.

A careful comparison of Table 15.3 and Fig. 15.1 reveals that the
probability of moving from one stage to another is fully described
by this simple matrix. Later we will show how such a matrix can be
solved to obtain rm, and any of the other growth statistics that may
be required. Before we do this, however, we will see how to apply the
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Table 15.3 Transition matrix defining the movement of individuals from
one stage to another for the hypothetical plant population illustrated in
Fig. 15.1

From stage:

Seeds Immature Mature plant

To stage: Seeds P1 0 F1

Immature G1 P2 F2

Mature plant 0 G2 P3

matrix model to the age-structured populations that were considered
in sections 15.1 and 15.2.

15.3.1 A matrix model of age-structured population growth
The model consists of a transition or population projection matrix [A]
which defines how the population moves from one age class to an-
other (see above). Matrix [A] is often referred to as a Leslie matrix (after
one of the originators of the method), and is a k × k square matrix
where k is equal to the number of age classes in the population. We
will consider a simple case of a population with just three age classes
to see how the matrix is defined. The model takes the form:

n(t+1) = [A] × n(t) (Eqn 15.5)

This is a symbolic way of saying that the number (n) in each age
class at time t + 1 is equal to the transition matrix [A] pre-multiplying
the number in each age class at time t (the previous time step). We
can expand this equation to show the form of the matrix for age-
structured populations where there are three age classes:




n1

n2

n3


 (t + 1) =




F1 F2 F3

P1 0 0
0 P2 0







n1

n2

n3


 (t) (Eqn 15.6)

where n1, n2 and n3 are the numbers in the three age classes at times
t and t + 1; F1, F2 and F3 are the fertility coefficients for the three
age classes; and P1 and P2 are the probabilities of surviving from age
class 1 to 2 and age class 2 to 3, respectively.

Before we show how the Fi and Pi parameters are estimated from
the life-table information we need to see how the numbers in each
age class are calculated by Eqns 15.5 and 15.6. The numbers in each
age class at time t + 1 are related to the numbers in each age class at
time t according to the parameters in the transition matrix [A]. The
values are calculated following the rules of matrix algebra, which
need not concern us here, and for Eqn 15.6 they are:

n1(t + 1) = F1n1(t) + F2n2(t) + F3n3(t)

n2(t + 1) = P1n1(t) + 0 × n2(t) + 0 × n3(t)

n3(t + 1) = 0 × n1(t) + P2n2(t) + 0 × n3(t)
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Table 15.4 Age-specific survival probabilities (Pi) and fertilities (Fi) for the Leslie matrix, calculated from the
modified life table information for the Uinta ground squirrel in section 15.2 (see text)

Age (x) lx mx Age class (i) Pi = l i/li-1 Fi = miPi

0 1.000 0
1 0.292/1.000 = 0.292 1.96 × 0.292 = 0.572

1 0.292 1.96
2 0.128/0.292 = 0.438 2.73 × 0.438 = 1.197

2 0.128 2.73
3 0.041/0.128 = 0.320 2.73 × 0.320 = 0.874

3 0.041 2.73
4 0.013/0.041 = 0.317 2.73 × 0.317 = 0.866

4 0.013 2.73
5 0/0.013 = 0 0 × 0 = 0

5 0 0

Thus, at time t + 1: n1 is equal to the sum of the offspring pro-
duced by all the age classes during the previous time step t; n2 is
equal to n1 at the previous time step multiplied by the probability of
survival from the first to the second age class; and n3 is equal to n2 at
the previous time step multiplied by the probability of survival from
the second to the third age class. You will note that there is no P3n3(t)
term in the equation, and this is because none of these individuals
survives to time t + 1. It should also be obvious that it is easy to
expand the matrix to include more age groups.

The parameters in the Leslie matrix are estimated differently for
different situations (see Caswell 2001), and we will only consider the
easiest situation to understand, which is for seasonal breeders that
are censused immediately after the birth of the young.

Birth-pulse populations with post-breeding census
Imagine studying a population that breeds just once a year and that is
censused for survival (lx) and fertility (mx) statistics just after the birth
of the young. The modified Uinta ground squirrel data (see section
15.2) correspond to this situation, and the survival probabilities (Pi)
and fertilities (Fi) are calculated in Table 15.4.

Survival (lx) and fertility (mx) were assessed at six points of time
(ages of 0 to 5 years), and so there are five age classes (i). The age
classes in the matrix model correspond to the intervals between the
census times. The probability of survival from one age class to the
next (Pi) is simply the lxvalue at the start of the age class divided into
the lx value at the start of the following age class. Thus:

Pi = li
li−1

(Eqn 15.7)

Females produce their young at the end of an age class, because
this is a post-breeding census. The Leslie matrix, however, calculates
the number of young by multiplying the fertility by the number of
females at the start of the age class. We correct for this by multiplying
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the mx values by the probability of survival (Pi) during the time inter-
val when we calculate the fertility coefficients (Fi):

Fi= mi Pi (Eqn 15.8)

The resulting transition or Leslie matrix may be constructed from
Table 15.3 as follows:

A =




0.572 1.197 0.874 0.866 0
0.292 0 0 0 0
0 0.438 0 0 0
0 0 0.320 0 0
0 0 0 0.317 0




This information may be used to simulate the growth of the pop-
ulation using the matrix model.

15.3.2 Simulating the matrix model of population growth
The procedure for simulating this form of population growth is de-
scribed in Appendix 15.2, using the parameters calculated in Table
15.4 and the transition matrix we have just derived. We can make the
following observations about this form of growth.

A graph of the numbers in each age class over time (Fig. 15.2)
shows that after some initial fluctuations, they all grow at the same
exponential rate. At this point, a stable age distribution has developed
(see step 6 in Appendix 15.2), and the growth rate, r, has stabilized at
the value of rm that is calculated by the Euler equation.

Now if we return to our initial example of a hypothetical plant,
imagine that we were able to obtain the following set of estimates
for the various parameters in the transition matrix described in
Table 15.3.

Seeds Immature Mature

Seeds P1 = 0.01 0 F1 = 25
Immature G1 = 0.1 P2 = 0.2 F2 = 0.05
Mature 0 G2 = 0.3 P3 = 0.4
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The estimates are annual ones, and so we see that only 1% of the
seeds survive from one year to the next whereas 10% germinate. Of
the resulting immature plants, 20% remain in that condition from
one year to the next and 30% develop into mature plants. The mature
plants have an annual survival rate of 40%, produce an average of
25 seeds each, and about 5% produce immature plants by layering.
From this information it would be difficult to guess if the popula-
tion were increasing or decreasing, and we cannot apply the Euler
equation to this set of data. However, we can easily calculate the pop-
ulation growth rate by following the matrix method (see steps 7 to
9 in Appendix 15.2). What we find is that the population has a po-
tential growth rate of approximately 13% per year (λ = 1.1325) and
rm = 0.124. If we subsequently found that the plant had a relatively
stable population size we would need to refine some of our estimates.
Indeed, we could do a sensitivity analysis to determine which of the
parameters had the largest effect on population growth. For example,
if the germination rate were actually between 6% and 7%, instead
of 10%, we would find that the population showed a slight increase
in number when G1 = 0.07 but a slow decrease in number when
G1 = 0.06. Obviously, this would be a crucial parameter to measure
as accurately as possible.

The matrix model can be used to calculate not only population
growth rates, such as λ and rm, but also the stable age distribution,
and the reproductive value (see Chapter 16). Readers who are inter-
ested in finding out more about matrix models are referred to Caswell
(2001) and Gotelli (1995).

15.4 Summary

This chapter has concentrated on the mechanics of calculating growth rates
for populations where the birth and death rates vary with age. There are
three basic methods. The first is a simple modification of the exponential
growth from Chapter 4, and it calculates the capacity for increase, which is
a reasonably accurate measure of the growth rate of slowly growing
populations. The second method is more accurate when a growing
population achieves a stable age distribution, and is based on the Euler
equation. Finally, the third method is a matrix model that is extremely
flexible and can be used to calculate the growth of any population, even
those with unusual characteristics that cannot be analysed by the first two
methods.

In the next chapter we will explore the patterns in the age-specific birth
and death rates, and also the growth rates of different species, to try and
understand the evolutionary forces that shape these parameters and other
life-history characteristics of organisms.

15.5 Problems

1. The following pattern of mortality was observed in a fictitious mammal.
Of the newborn females, half survived for one year, 10% survived for two
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years, 3.75% survived for three years, 1.5% survived for four years, and
none survived for five years. Breeding occurred once a year, and
immediately following the breeding season the age-specific reproductive
rates were determined from the fresh placental scars of females of
known age. One-year-old females had an average of 2.8 placental scars per
female, two-year-old females had an average of 4.0 placental scars per
female, and older females had an average of 4.8 placental scars per
female. There was a 50 : 50 sex ratio at birth.
(a) Calculate the values of rc and rm for this population.
(b) Determine the transition or Leslie matrix for this population.
(c) Suppose a population with an excess of males was started with 10

one-year-old females and 20 two-year-old females just prior to
breeding. Calculate the number of females in each age class over the
next three years.

Appendix 15.1 Calculating growth rates for
age-structured populations

1. Title your spreadsheet: Calculating growth rates for age-
structured populations in A1.

2. Type trial rm = in E3, then in row 5 of columns A to G type the
following headings:
Age (x) lx mx lxmx xlxmx e−rx e−rxlxmx

3. In columns A to C enter the demographic statistics from the table
in section 15.2. Then enter the appropriate formulas to calculate
lxmx and xlxmx in columns D and E. For example, D6 is = B6*C6
and E6 is = A6*D6.

4. Type: Sum in E13 and G13, and R0 =, T =, and rc = in C14 to C16.
5. Enter the formula = @SUM(D6..D11) in D14, and copy to cells E14

and G14. In the latter case an error message will appear because
column G has not been completed. Exit this message, because a
total will be calculated when you complete step 6. The formulas
will automatically adjust to the correct summations. Also enter
the formula = E14/D14 in D15, and the formula = @LN(D14)/D15 in
D16. If you have done everything correctly, you will have estimated
R0 = 1.06918, T = 1.635 786, and rc = 0.040 893.

6. Now calculate rm by first entering a trial value in F3 of 0.041 (a
value a little higher than rc). Enter the appropriate formulas in
columns F and G. For example in column F, F6 is = 1/@EXP($F$3*A6)
and G6 is = F6*D6. If everything is done correctly, the value of the
sum in cell G14 = 1.000 356.

7. Now adjust the trial value of rm in F3 to try and make G14 = 1.0
exactly, or to whatever level of accuracy is deemed sufficient. To
reduce the value of G14 you increase the value of rm in F3. Thus,
if we make F3 = 0.0411, G14 = 1.000195; if F3 = 0.0412, G14 =
1.000034; and if F3 is 0.0413, G14 = 0.999873. Clearly, rm is between
0.0412 and 0.0413.
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8. Save your spreadsheet because we will extend it to include a matrix
projection of population growth.

Appendix 15.2 Simulation of the matrix model

1. Open your spreadsheet for age-structured population growth
(developed in Appendix 15.1).

2. First calculate the parameters for the matrix model. Enter the
headings: For Matrix Model in H4, and Pi and Fi in H5 and I5.
Then enter the formula: = B7/B6 in H7 and copy to cells H8 to
H11, and = C7*H7 in I7 and copy to cells I8 to I11. These equations
correspond to Eqns 15.7 and 15.8. The calculated values for each
age class should correspond to those in Table 15.3.

3. To simulate the numbers in each age class:
(a) Enter the following headings: In C19 type Number in age class

(i); in G19 type Total; in A20 type Time (t); in cells B20 to F20
type i = 1, i = 2 . . . i = 5; and in cells G20 to I20 type Nt,
lambda, and r.

(b) Then enter times of 0 to 20 in cells A21 to A41, and initialize
the starting number in each age class by entering the value of
1 in cells B21 to F21.

(c) Enter the formula: = B21*$I$7+C21*$I$8+D21*$I$9+E21*$I
$10 in B22. This calculates the number of newborns entering
age class 1 by summing the production of offspring produced
by each age class during the previous time step. Then enter the
formulas: = B21*$H$7 in C22, = C21*$H$8 in D22, = D21*$H$9
in E22, and = E21*$H$10 in F22. Finally, copy the formulas in
row 22 to rows 23 to 41. This calculates the number in each age
class for 20 time steps.

4. In G21 calculate the total population size by using the formula =
SUM(B21 . . F21) and copy this to cells G22 to G41. Then calculate
the multiplication rate, λ, for each time step by typing the formula
= G22/G21 in H22 and copying it to cells H23 to H41. The rate
of increase (r) is calculated for each time step using the formula
= LN(H22) in I22 and copying it to cells I23 to I41. You will see
that both λ and r stabilize at values of 1.042083 and 0.041221,
respectively (assuming you have done everything correctly). If you
insert this r value in cell F3 you will see that this gives us the exact
rm value because the sum of the e−rxlxmx values is exactly equal to
1 (in G14).

5. Now graph the results by clicking the Chart button and create
a line chart with the x-series as A21 to A41, and five y-series of
B21 . . B41, C21 . . C41, . . . , F21 . . F41 to show the numbers
in each age class. Plot the y-values on a logarithmic scale. In
Quattro Pro right-click your chart on the notebook sheet, left-
click Edit, position pointer (arrow) on y-axis and double click,
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select Log scale, and finally click OK. In Excel left-click your chart,
double-click the y-axis, click Scale, then click logarithmic scale,
and finally click OK. Your graph should resemble Fig. 15.2, where
each age class eventually increases at the same rate.

6. Calculate the proportion in each age class by typing the for-
mula = B21/$G21 in K21 and then copying this to rows 21 to
41 of columns K to O. You will see that the proportions stabilize
and remain constant over time.

7. We can now consider a more complex transition matrix, such
as the one that we developed for a hypothetical plant. In B44
enter Transition Matrix for hypothetical plant, and in cells B45
to D45 enter Seed Immature Mature, and then enter the same
three labels in cells A 46 to A48. Then enter the following values
for the transition matrix: 0.01 in B46 (= P1), 0 in C46, 25 in D46
(= F1), 0.1 in B47 (= G1), 0.2 in C47 (= P2), 0.05 in D47 (= F2), 0 in
B48, 0.3 in C48 (= G2), and finally 0.4 in D48 (= P3).

8. Next, in columns A to D of row 50 enter the following head-
ings: Time (t), Seed, Immature, Mature, and then in rows
49 and 50 of column F Mature lambda, and finally rm in
G50. Then enter times of 0 to 50 in rows 51 to 101 of col-
umn A, starting numbers of 1 in B51 to D51, and enter
the following formulae: = B51*$B$46+C51*$C$46+ D51*$D$46
in B52, = B51*$B$47+C51*$C$47+D51*$D$47 in C52, and =
B51*$B$48+C51*$C$48+D51*$D$48 in D52. These formulae do
the matrix calculations. Copy cells B52, C52 and D52 to all cells
up to B101, C101 and D101. In F52 type = D52/D51 to calculate λ,
and then = LN(F52) in G52 to calculate r. Copy F52 and G52 to all
cells up to F101 and G101.

9. You will see that λ stabilizes at 1.132542, and r stabilizes at
0.124465. You can graph the results by following the instructions
in step 5, and you can also calculate the proportion in each state
by following the instructions in step 6. You can also see the effect
of changing some of the values in the transition matrix, for ex-
ample, by progressively lowering the germination rate in cell B47
to 0.06.

10. When you have finished, close and exit your spreadsheet.



Chapter 16

Evolution of life histories

If different phenotypes have different age-specific birth and death
rates, their growth rates, and hence their fitness (see Chapter 10) will
vary. Thus, natural selection shapes both the survivorship (lx) and
fecundity (mx) curves, and we will look at this particular aspect of
evolution in this chapter. However, the life-history characteristics of
organisms also include such traits as body size, size of the offspring
at birth, the degree of parental care provided to the young, and so
on, and consequently our review will also consider some of these
life-history traits.

A simplistic view of natural selection would suggest that all or-
ganisms should adopt an ideal life history in which they live as long
as possible, start to reproduce at an early age, reproduce frequently,
and produce a vast number of offspring which have a high rate of
survival. However, even a cursory look at the life-history traits of dif-
ferent organisms shows that this is not the case in nature. Consider
the following three examples of large, long-lived organisms.

Adult blue whales (Balaenoptera musculus) are about 27 metres long,
weigh about 150 tonnes, and may live for about 80 years. After a
gestation period of about one year, females normally produce a sin-
gle, well-developed offspring that weighs as much as an adult ele-
phant. The young calves suckle for about a year, and are provided
with considerable parental care and protection during their early
life. Their survival is quite high. Females begin breeding during their
teenage years and produce calves at intervals of about four years, al-
though in the last few decades this interval has been approximately
halved in response to the severe reduction of population size in this
species.

The American elm (Ulmus americana) may reach a height of 38 me-
tres, weigh more than 100 tonnes, and live for well over 100 years.
Large trees produce several hundreds of thousands of seeds each year,
so that an individual tree may produce several million seeds during
the course of its life. The seeds are small, weighing much less than
1 gram, and their survival as well as the survival of any seedlings
is extremely poor. Their poor survival may explain why the adults
produce so many seeds each year, because survival to the stage of
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a mature tree is dictated to a large extent by the appearance of
openings in the forest by the falling of mature canopy trees. Such
events occur infrequently, consequently an individual’s chance of re-
placement is improved if it produces many seeds over a great many
years.

The Chinese species of bamboo, Phyllostachys bambusoides, lives for
about 120 years without reproducing, and then all populations flower,
set a prolific amount of seed, and die within one year. Like the elm,
their seeds are small and have a low survival rate. Remarkably, trans-
planted stocks of this species in Japan, England, the United States and
Russia reproduce at the same time as the native species in China. The
generation cycle seems to be genetically programmed and is not ap-
parently influenced by local environmental conditions.

These three examples of large, long-lived organisms show consider-
able variation in their age-specific reproductive rates. The blue whale
produces one offspring every four years, the American elm produces
thousands of offspring each year, and the bamboo reproduces prolifi-
cally only at the end of its life. Clearly, if we had considered all types
of organisms, we could have shown a much wider array of life-history
traits. We might ask, why don’t these life histories converge in their
characteristics and conform to the ideal life history noted at the be-
ginning of this chapter? One possibility is that organisms have a finite
amount of energy at their disposal, and energy used for one purpose,
such as growth, repair or maintenance, cannot be used for another
purpose, such as reproduction. Consequently, there are trade-offs be-
tween different life-history traits. For example, the number and sizes
of offspring are frequently inversely correlated, and selection may
favour one or other of these traits, but not both simultaneously. In
orchids, selection has favoured an increase in the number of seeds,
with some species producing as many as 1 billion (109). This has been
achieved at the expense of size, because each seed is about the size of
a fungal spore. In contrast, in the coconut palm (Cocos nucifera), selec-
tion has favoured increased seed size at the expense of seed number.
They produce only a few nuts weighing several kilograms each year.
We will be examining some of these dichotomies in life-history traits
to try to understand how they may be adaptive in different situations
or environments.

16.1 Evolution of age-specific death rates

It is not obvious how the shape of the survivorship (lx) curve can be
shaped by natural selection. We have seen in Chapters 10 to 12 that
the survival of an individual may depend on its genotype or pheno-
type, but why its chances of survival should necessarily be related to
age is not obvious. To understand why this might be so, we must first
digress to consider the reproductive values of individuals at different
ages.
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16.1.1 Reproductive value
How much does one individual contribute in terms of the number
of individuals in the next generation? It is intuitively obvious that a
young female, just entering her period of breeding, will be likely to
contribute more to population growth than a female near the end
of her reproductive life, because we not only consider the immediate
production of offspring but also include the offspring that a female
may produce later in life. Consequently, a young female will probably
produce more offspring during the course of her life than a very old
female. We measure this contribution of individuals to the future
growth of the population by means of the reproductive value (vx),
where x represents the age of the individual. The reproductive value
is defined as the relative number of female offspring that remain to
be born to each female of age x, and how it contributes to the number
of individuals in the next generation (Fisher 1930).

The reproductive value of an individual of age x(vx) is estimated
relative to the reproductive value of a newborn (v0) by the following
formula:

vx

v0
=

∞∑
y=x

e−rylymy

e−rxlx
(Eqn 16.1)

For the moment we will not explain the form of this equation
because this can be made more obvious when we consider a specific
example. However, what is being summed is the number of offspring
that will be produced by a female from the age of x to the end of her
life (denoted by the infinity sign). The term y is used to label all the
ages the female passes through from x till she dies. By convention, v0

is made equal to 1.0, and so Eqn 16.1 is equal to vx.
In order to understand this equation we will consider a specific

example of red deer (Cervus elaphus) on the island of Rhum in Western
Scotland (Lowe 1969). The basic data and calculation of reproductive
values for this population are presented in Table 16.1.

Lowe developed a static life stable by reconstructing the age struc-
ture of females from age one onwards, based on their ages at death in
the population (see section 14.2.2). The relative number of survivors in
each age class was calculated by setting the number of one-year-olds
(S1) to 1000. The number of newborn females that these females would
produce was calculated from the age-specific fertility (mx) data, and
theoretically a one-year-old female would produce exactly 1316.142 fe-
male offspring during the course of her life. This is the value of S0.
The lx series was calculated from the Sx series in the usual manner
(Chapter 14). This method of constructing the life table assumes a sta-
tionary population, and so we should not be surprised that �lxmx =
1.0 (i.e. R0 = 1, and r = 0).

In this example, the e--rxlxmx series is the same as the lxmx series,
and the e--rxlx series is the same as the lx series (Table 16.1). This is
because we have a stationary population (r = 0), and so e--rx = e0,
or 1.0. Thus, for static populations the e--rx terms in Eqn 16.1 disappear,



248 EVOLUTION OF LIFE HISTORIES

Table 16.1 Demographic data for female red deer on Rhum in 1957

Age (x) Sx lx mx lxmx e-rxlxmx e-rxlx vx qx

0 1316.142a 1.000 0 0 0 1.000 1.000 0.240
1 1000 0.760 0 0 0 0.760 1.316 0.137
2 863 0.656 0 0 0 0.656 1.525 0.098
3 778 0.591 0.311 0.184 0.184 0.591 1.692 0.108
4 694 0.527 0.278 0.147 0.147 0.527 1.548 0.121
5 610 0.463 0.302 0.140 0.140 0.463 1.445 0.138
6 526 0.400 0.400 0.160 0.160 0.400 1.325 0.160
7 442 0.336 0.476 0.160 0.160 0.336 1.101 0.192
8 357 0.271 0.358 0.097 0.097 0.271 0.774 0.493
9 181 0.138 0.447 0.061 0.061 0.138 0.820 0.674

10 59 0.045 0.289 0.013 0.013 0.045 1.145 0.136
11 51 0.039 0.283 0.011 0.011 0.039 0.990 0.176
12 42 0.032 0.285 0.009 0.009 0.032 0.858 0.190
13 34 0.026 0.283 0.007 0.007 0.026 0.708 0.265
14 25 0.019 0.282 0.005 0.005 0.019 0.578 0.320
15 17 0.013 0.285 0.004 0.004 0.013 0.435 0.471
16 9 0.009 0.284 0.002 0.002 0.009 0.284 1.000
17 0 0 0 0 0 0∑ = 1.000

aCalculated from
∑

Sxmx from age 1 onwards.
Source: Data from Lowe (1969).

and the reproductive value (vx) is equal to the production of female
offspring by a female over the remainder of her life, divided by the
lx value. For static populations, then, Eqn 16.1 can be simplified to:

vx =

∞∑
y=x

lymy

lx
(Eqn 16.2)

The reproductive value at birth (v0) is 1.0, whereas for three-year-
old females vx is 1/0.591 = 1.692 (Table 16.1). On average both of these
females produce the same number of offspring, but the three-year-old
female has a higher reproductive value than at birth because she has
survived the pre-reproductive period (only 0.591 of the females at
birth will do so) and so is more likely to produce offspring.

The reproductive value of a female increases from birth until she
reaches puberty at three years of age, after which the reproductive
value generally declines with age (Fig. 16.1). There is generally an in-
verse relationship between reproductive values and age-specific mor-
tality rates, and this is particularly evident with the peculiar kink
in both curves for eight- and nine-year-old females. Lowe (1969) at-
tributed the marked increase in the mortality rate of these females
to ‘highly selective age specific mortality factors’. However, there are
other possible explanations. This is a static life table for the deer in
1957, and possibly events eight and nine years prior to 1957 could
have produced the apparent increase in age-specific mortality. For
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example, if reproduction were poor in 1948 and 1949, or if there was
a high mortality of newborns in those two years, there would be fewer
females entering the population. The result would be an apparent
increase in the age-specific mortality rate of eight- and nine-year-old
females, because of a violation of the basic assumptions on which the
life table is constructed. Now the issue here is not the exact shape
of the qx curve, although one suspects that it does not really have
a sudden kink in the middle. What is important is that there is a
relationship between the shape of the vx and qx curves, and we will
return to this point in section 16.1.2.

For populations that are either increasing or decreasing in size, we
need to calculate reproductive values using Eqn 16.1 rather than Eqn
16.2. In populations that are increasing in size, offspring that are born
later will contribute less to the gene pool and to future population
growth than offspring currently being born, because they will be
entering a larger breeding population. These offspring are discounted
by a factor of e-ry, where r is the growth rate of the population and
y is how far in the future the offspring will be born. Similarly, in
a declining population, offspring born at a future date are worth
relatively more than the current offspring, because they are entering
a population that will be smaller. The value of these offspring will
also be augmented by a factor of e-ry, which is equivalent to ery because
the value of r is negative in this case. The calculations are somewhat
tedious, but are simple to do using a spreadsheet. This could be done
by modifying the spreadsheet described in Appendix 15.1.

In conclusion, reproductive values vary with age. The effect of
natural selection is greatest when it operates on ages with high re-
productive values, because selection against these individuals has a
large effect on the growth rate and, therefore, the fitness of the pop-
ulation. Where possible, selection should favour shifting mortality
from ages with high reproductive values to those with lower repro-
ductive values.

16.1.2 Evolution of death rates
In Chapter 14, it was noted that in some mammals the mortality
is high just after birth, decreases to a minimum around the age of
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puberty, and thereafter steadily increases with age. Fisher (1930) noted
an inverse relationship between age-specific mortality rates and repro-
ductive values in humans, and suggested that the U-shaped mortality
curve with age was moulded by natural selection, according to the
magnitude of the reproductive value. To examine why this might be
so, consider a fictitious example based on the data for red deer (sec-
tion 16.1.1). Imagine that the mortality rate is constant with respect
to age, except for the oldest age class where all the individuals die.
In this case, the reproductive values increase from birth to the age
of puberty, remain almost constant for a few years as the increase in
fertility with age approximately compensates for mortality, and then
steadily decline after six years of age (Fig. 16.2). How might this dome-
shaped curve of reproductive value influence the mortality rate?

Consider the part of the curve to the right of its peak. Detri-
mental traits expressed at ages with peak reproductive values have a
very large effect on fitness. Natural selection should favour a delay in
the expression of such deleterious traits, because mortality would be
transferred to those with lower reproductive values, and so the over-
all fitness of the population would increase. The same is true at all
ages where the reproductive value declines with increasing age. Thus,
modifier genes delaying the expression of deleterious genes would
have a selective advantage over those advancing their expression. It
is theorized that ‘late’ modifier genes accumulate in the population,
and lead to increasing mortality rates with age after the age of peak
reproductive value. Analogous arguments can be applied to benefi-
cial genetic traits, but in this case there should be an accumulation
of modifier genes that advance the expression of such characters to
earlier ages.

Reproductive values increase with age in the part of the curve
to the left of the peak values. There is no advantage to delaying the
effects of deleterious traits for these young females, unless they can be
delayed until after the age of peak reproductive value. Why should
mortality rates decrease from birth to puberty or, conversely, why
should the mortality rates increase toward the time of birth? There
are two obvious reasons why the mortality rate should be high soon
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after birth. First, the change from living as an embryo in an amniotic
sac inside of the mother to being a free-living individual may not
be successfully accomplished (e.g. young with a problem that impairs
their locomotion could live successfully as an embryo, but have a
high risk of death after birth). Second, if the mother dies while she
is still nursing, her young are also likely to die. In the latter case, the
dependency of the young on the mother for food decreases as they
age, because weaning does not take place at an instant of time but is
a gradual process. The effect of both of these causes of mortality is
to have a declining risk of mortality as the young grow older. Thus,
the decrease in mortality rates with age prior to puberty is likely to
have very different causes than the increase in mortality rates after
puberty in mammals.

It is difficult to understand the evolution of age-specific death
rates. More recent theoretical studies by Hamilton (1966) and
Charlesworth (1980) have cast doubt on Fisher’s theoretical relation-
ship between natural selection and reproductive values. These devel-
opments are beyond the scope of this book and readers interested in
this topic are referred to Rose (1991). The point of this discussion,
however, is to show that survivorship curves, or age-specific mortality
rates, can be subjected to natural selection.

16.2 Evolution of age-specific fertility

There are three aspects of reproductive rates that we will consider.
First, should litter sizes be small or large? Second, should an organism
breed once (semelparity) or repeatedly (iteroparity)? And third, should
an organism start to reproduce early or later in life?

16.2.1 Number of offspring
How many offspring should an organism produce during one breed-
ing event? In our introduction to this chapter we saw that there is an
enormous range of possibilities, from a single offspring in the blue
whale to about 1 billion (109) seeds in some orchids. Individuals that
produce the largest number of descendants have the greatest fitness,
and so we might expect that all organisms should produce many off-
spring. Consequently, we need to explain why some species produce
so few offspring.

David Lack, a British ornithologist, proposed that ‘The number of
eggs in the clutch has been evolved to correspond with that from
which, on the average, the most young are raised’ (Lack 1968, p. 5).
This has become known as Lack’s hypothesis, and it has also been
applied to other animals that provide parental care to their young.
In birds where the young remain in the nest, Lack proposed that the
limit is set by the amount of food which the parents can bring for
their young, and he tested his hypothesis in a classical study on Swiss
starlings (Sturnus vulgaris). In many ways, birds are ideal to test this
hypothesis. It is relatively easy to count the number of eggs a bird
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Table 16.2 Post-fledgling survival in relation to brood size for Swiss starlings (Sturnus vulgaris) banded
as young

Egg stage Recovered young >3 months after fledging

Brood Number of Percentage Average number
size broods Number of eggs Number recovered per brood Relative
(1) (2) (1) × (2) = (3) (4) (4) × 100/(3) (4)/(2) fitnessa

1 65 65 0 0 0 0
2 164 328 6 1.83 0.0366 0.34
3 426 1 278 26 2.03 0.0610 0.57
4 989 3 956 82 2.07 0.0829 0.77
5 1 235 6 175 128 2.07 0.1036 0.96
6 526 3 156 53 1.68 0.1008 0.94
7 93 651 10 1.54 0.1075 1.00
8 15 120 1 0.83 0.0667 0.62
9 2 18 0 0 0 0

10 1 10 0 0 0 0
Total 3516 15 757 306

aRelative fitness in terms of the average number of recovered young per brood.
Source: Data from Lack (1948).
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Fig. 16.3 Proportions of broods
and young recovered more than
three months after fledging in
relation to brood size for Swiss
starlings (Sturnus vulgaris). The
relative fitness is defined in terms
of the average number of young
recovered per brood. (Data from
Lack 1948.)

lays, band the young that hatch in the nest, and then to recapture
the young after fledging to estimate their relative survival in relation
to clutch size. Some of Lack’s data on Swiss starlings are presented in
Table 16.2 and Fig. 16.3.

Lack studied more than 3500 broods, which were approximately
normally distributed around a clutch size of 5, with a mean of 4.5,
assuming a 1 : 1 correspondence between clutch and brood size. More
than 15 000 chicks that were produced from these clutches and 306
were recaptured three months or more after fledging. The recovered
young were also approximately normally distributed around a clutch
size of 5, with a mean of 4.75 at this stage. Thus, a large clutch size did
not necessarily result in more young being produced. For example, the
production of offspring per brood was similar for those with clutches
of 3 and 8 eggs (Table 16.2). The failure of large broods to produce
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Table 16.3 Nestling weights in grams of 15-day-old starlings in relation
to brood size

Brood of 2 Brood of 5 Brood of 7

Mean Range Mean Range Mean Range

88.0 87.5–88.5 77.6 72.5–83.0 71.4 66.0–77.0

Source: Data from Lack (1948).

more offspring was probably related to the undernourishment of the
young (Table 16.3).

According to Lack’s hypothesis the most common clutch size of
5 should produce the most offspring per brood, but we can see
(Fig. 16.3) that on average, a clutch size of 7 produced the most num-
ber of recovered young, closely followed by a clutch size of 5 and then
6. These results suggest that the optimum clutch size, based on the
production of surviving young per brood, should be slightly larger
than is observed. Thus, these data do not appear to support Lack’s hy-
pothesis unequivocally. It is interesting to note, however, that Lack
ensured the support of his hypothesis by combining the data for
clutch sizes of 7 and 8, thereby reducing their fitness to less than
that calculated for a clutch size of 5.

The testing of Lack’s hypothesis is not as simple as it may seem.
In Lack’s study of Swiss starlings, fewer than 2% of the young were
recovered and this small sample size means that we cannot reject
or accept Lack’s hypothesis with any degree of confidence. This is
not a criticism of Lack’s study; rather it is a statement that most
ecological studies do not provide ideal data. Another way of testing
Lack’s hypothesis is to add eggs or chicks to normal-sized broods and
see if they can be successfully raised. Such studies have produced
mixed results. Some species seem incapable of successfully raising
enlarged broods, whereas other species do appear to be successful
in rearing enlarged broods that are bigger than the most common
clutch size. The question is, why haven’t these latter species evolved
to increase their clutch size?

There are many possible answers to this question but we will con-
sider just two of them. First, clutch size is not solely determined
by the genotype but also by environmental factors (Chapter 12).
Hypothetically, for example, the genotype for a clutch size of 5 in the
Swiss starling might result in an actual clutch size of 3--7 eggs de-
pending on the environmental variance (VE). Other genotypes might
display similar variation, so there could be considerable overlap in
the phenotypic expression of different genotypes for clutch size. In
this situation we would have to calculate the number of offspring
produced by the frequency distribution of clutches resulting from
each genotype (e.g. clutches of 1--5 eggs for the three-egg genotype,
clutches of 2--6 eggs for the four-egg genotype, and so on) in order
to determine the production of each genotype. Mountford (1968) has
shown that it is possible for a clutch size of 5 to be selected for, even
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Fig. 16.4 Predicting the optimal
brood size from a combination of
adult mortality and the production
of offspring (equivalent to fitness)
from a single brood. The optimum
brood size lies at the intersection
of the adult mortality and relative
fitness curves (see text).

though it does not fledge the largest number of young, if the number
of offspring produced by the frequency distribution of eggs resulting
from this genotype is greater than that produced by the frequency
distribution of clutches of other genotypes. In this case it would be
virtually impossible to test Lack’s hypothesis.

A second explanation considers the lifetime production of young
by females with different clutch sizes. If adult mortality increases
with clutch size, it may be advantageous to produce a lower clutch
size if the lifetime reproductive success is increased. For example,
suppose a female that raises six young survives on average for four
breeding seasons, for a lifetime production of 24 young, whereas a
female that raises five young survives on average for five breeding
seasons, for a lifetime production of 25 young. Obviously, the latter
strategy should be favoured by natural selection. The general analysis
of this is shown in Fig. 16.4. The optimum brood size is determined by
the highest point of intersection of the functions for relative fitness
and adult mortality. Where there is no relationship between adult
mortality and brood size (A), the mortality curve will intersect the
curve of relative fitness at its peak, and will support Lack’s hypothesis.
However, if the adult mortality rate increases with brood size (B), the
intersection of the two curves is to the left of the peak of the relative
fitness curve, and so a lower brood size is favoured. Unfortunately, it
is difficult to relate adult mortality to brood size, and so there are
few studies of this relationship in birds. The mortality rate of adult
female blue tits (Parus caeruleus) does increase with brood size (Nur
1984), and so this second explanation is a plausible reason why some
bird species seem to lay smaller clutches than the optimum indicated
by the production of a single brood.

If we consider the lifetime production of offspring by females, it is
obvious that we need to consider both the frequency of reproduction
as well as litter size.

16.2.2 Frequency of reproduction: annual and
perennial strategies

The issue of whether an organism should breed once or repeatedly
was first examined by Lamont Cole (1954), who compared the growth
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rates of annual and perennial plant populations. For an annual plant,
the number of individuals (NA) at time t + 1 is equal to the number
of individuals in the previous year (time t) multiplied by the number
of seeds they produced (BA), assuming that they all germinate, which
is equivalent to the following expression:

NA(t + 1) = BA NA(t) (Exp. 16.1)

The multiplication rate of the annual is:

λA = NA(t + 1)

NA(t)
= BA (Exp. 16.2)

Similarly, for a perennial plant with a seed production of BP and
an adult survival rate of sA, the number of individuals (NP) at time
t + 1 is given by:

NP(t + 1) = BP NP(t) + sA NP(t) (Exp. 16.3)

And the multiplication rate of the perennial is:

λP = NP(t + 1)

NP(t)
= BP + sA (Exp. 16.4)

If the annual and the perennial have the same multiplication rate
(i.e. λA= λP) or fitness, we can see from Exps. 16.2 and 16.4 that:

BA = BP + sA (Exp. 16.5)

If sA = 1 we have an immortal perennial, and so sA is less than
1 in the real world. Thus, an annual will have a higher growth rate
than a perennial, or will be equivalent to an immortal perennial,
if it produces just one more seed than the perennial. Cole reasoned
that it would require far less energy to produce one more seed than to
produce the structures necessary for the plant to survive from year to
year, i.e. to be a perennial. So he asked, why aren’t all plants annuals?

This question became known as Cole’s paradox, and it was almost
20 years before it was solved by Eric Charnov and William Schaffer
(1973). Their solution is very simple. Expression 16.5 assumes that
all of the seeds produced by annuals and perennials survive. If we
include seedling or juvenile survival rates (sj), Exp. 16.5 is modified
to:

sj BA = sj BP + sA (Exp. 16.6)

And if we divide through by sj, Exp. 16.6 becomes:

BA = BP + sA

sj
(Exp. 16.7)

Expression 16.7 predicts that an annual has to produce sA/sj more
offspring than a perennial to match its growth rate. Now it is easier
to see how an annual strategy might be favoured in some circum-
stances and a perennial strategy favoured in other circumstances.
For example, if the ratio sA/sj is large, because juvenile survival
is poor compared to adult survival, the perennial strategy may be
favoured, whereas if juvenile survival is high an annual strategy may
be favoured. This is only true when juvenile survival is the same in
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both the annual and perennial species, which may be a reasonable
assumption when an organism reaches an evolutionary watershed
where it might adopt an annual or a perennial strategy. However, if
we make the assumption that the juvenile survival of annuals (sjA) is
lower than that of a perennial (sjP), because they have a larger number
of offspring, Exp. 16.7 becomes modified to:

BA = sjP

sjA
BP + sA

sj
(Exp. 16.8)

Now the situation is more complicated. If a species can increase
the ratio of sjP/sjA by investing more in each offspring, a perennial
strategy may be favoured, but if a species can sufficiently increase
the production of offspring (BA) an annual strategy will be favoured.
What is obvious from Exps. 16.7 and 16.8 is that annual species should
produce more offspring than perennials in a single breeding event,
and the difference may be particularly large if the juvenile survival
rate is much lower in annuals compared to perennials.

16.2.3 Generation times: when to start breeding
The growth rate and fitness of an organism depends on how many
offspring it successfully produces. It also depends on the age at which
offspring are produced, because an individual that produces offspring
early in its life has a higher growth rate than an individual that
produces its offspring later in life, even though the two individuals
may produce the same number of offspring. In the last chapter we saw
that the rate of increase (r) may be predicted by the simple equation:

r = ln(R0)

T
(Eqn 15.1)

The replacement rate (R0) is determined by the age-specific pattern
of survival (lx) and fertility (mx), and T is the generation time. If we
take the logarithm of both sides of this equation and plot the known
values of r, R0 and T for different organisms we obtain a graph similar
to Fig. 16.5.

This graph demonstrates that generation time (T) generally has a
much larger influence on the growth rate (r), and therefore fitness,
than the replacement rate (R0). For example, if we hold the generation
time constant and increase the replacement rate from 2 to 100 000
we can see that there is only about a tenfold increase in the rate
of increase (r). However, if we hold the replacement rate constant, a
similar 50 000-fold increase in the generation time would reduce the
rate of increase by a factor of 50 000, because r and T are inversely
related (see Eqn 15.1). Thus, it would seem obvious that to maximize
its fitness, an organism should breed as soon as possible rather than
delay its breeding until later in life. Many organisms don’t follow
this obvious solution, however, and so we must examine the types of
advantages that may be gained by having a long generation time.

First, our conclusion that extremely large changes in the replace-
ment rate (R0) only produce relatively small changes in the intrinsic
rate of natural increase (r) is only valid for replacement rates of 2 or
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Fig. 16.5 Relationship between
generation time (T ), the
replacement rate (R0), and the
intrinsic rate of natural increase (r).
(From Smith, F. E. 1954, In Boell,
E. J. (ed.) Dynamics of Growth
Processes. Copyright c© 1954,
renewed 1982. Reprinted by
permission of Princeton University
Press.)

more. It is not valid for organisms with replacement rates between
1 and 2. For example, suppose an organism was able to increase its
R0 value from 1.1 to 1.2 by small increases in fertility or survivorship.
The intrinsic rate of natural increase would increase from 0.0953 to
0.1853, i.e. by a factor of 1.9. Thus, in evolutionary terms, it might pay
organisms with low rates of increase to expend energy on improving
survival and increasing litter size or the number of breeding attempts,
rather than to expend energy on rapid growth and development to
enable them to breed at an earlier age.

Second, generation time increases with the increase in body
size (Fig. 16.6), and there may be many advantages associated with
larger body size. For example, larger organisms may have fewer
predators, they are typically better able to withstand changes in
the physical environment, and they have better powers of move-
ment than smaller organisms. Consequently, they may be better
able to exploit certain environments that are too harsh for small-
sized organisms. Thus, there may be selection pressures against re-
ducing the generation time if it results in a reduction of body
size.
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Fig. 16.6 Relationship between
body length (i.e. size) and
generation time for a wide variety
of organisms. (From Bonner, J. T.
1965, Size and Cycle. Copyright c©
1965. Reprinted by permission of
Princeton University Press.)

We have observed that there is a wide range of generation times
and that larger organisms have longer generation times than smaller
organisms. However, the rate of population growth is inversely related
to generation size and so we can conclude that large organisms will
typically have lower population growth rates than smaller organisms.
Our next step is to consider the life-history characteristics of organ-
isms in a holistic way, rather than by considering each character in
isolation, in an effort to understand how organisms may be suited to
different environments and ways of life.

16.3 Life-history strategies: r- and K-selection

Robert MacArthur and Edward O. Wilson (1967) proposed that the
population density, in relation to the density that can be sustained
by the environment (K), may be an important selective force on life-
history traits. They imagined that some populations are maintained at
low population densities for much of their history (because of catas-
trophic mortality from events like fire, frosts, drought and habitat
disturbance) and so their population growth is generally not lim-
ited by lack of resources. The best strategy for such populations is
to maximize their rate of increase (r) by producing large numbers of
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Table 16.4 Correlates of r- and K-selected populations

Condition r-selection K-selection

1. Climate or physical
conditions

Variable and/or unpredictable;
uncertain

Fairly constant and/or
predictable; more certain

2. Mortality Often catastrophic, non-directed,
density independent

More directed, density
dependent

Survivorship Often Type III (see Chapter 14) Usually Types I & II (Chapter 14)
3. Population size Highly variable in time; usually

well below carrying capacity;
unsaturated communities;
recolonization each year

Fairly constant in time; at or near
carrying capacity; saturated
communities; recolonization not
necessary

Intra- and interspecific
competition

Variable, often lax Usually keen

4. Colonizing ability Large Small
5. Selection favours High rmax Greater competitive ability

Rapid development Slower development
Early reproduction (short
generation time)

Delayed reproduction (long
generation time)

Small body size Large body size
Semelparity (single
reproduction)

Iteroparity (repeated
reproduction)

Short lifespan, usually less than
one year

Long lifespan, usually more than
one year

Source: After Pianka (1970) and Wilson (1975).

offspring at an early age, and so they can be considered to be r-
selected. In contrast, K-selected populations are able to maintain their
population densities near to the carrying capacity (K), and their off-
spring face strong competition for the available resources. In these
circumstances, selection favours investing energy into fewer offspring
in order to increase their chance of survival. Their analysis was ex-
tended by Eric Pianka (1970) and he proposed a larger suite of life-
history traits that are characteristic of the two strategies (Table 16.4).

The concept of r- and K-selection should not be taken too literally,
but it can be a useful way to bring some sort of order to the enormous
diversity that exists in the life histories of organisms. For example, if
we compare the life-history traits of multimammate rats and red deer
we can gain some appreciation of their life-history strategies based on
the correlates listed in Table 16.4.

I have studied the multimammate rat (Mastomys natalensis) in west-
ern Uganda. It lives in grassland areas and the populations can vary
considerably in density. These small mammals weight about 50 g and
may live for as long as a year, but most die within six months of birth.
During the rains when food is abundant they will breed repeatedly,
but they stop breeding during the dry season. Thus, their population
density is related to rainfall. Females produce an average of 12--13
young at intervals of three to four weeks. The young disperse after
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weaning, and they may start to breed within four to six weeks of birth
during the rainy season. Populations can rapidly increase in number
under favourable conditions. During the dry season the numbers de-
cline as food becomes scarce, but this is an opportunistic species that
migrates into burnt grassland areas vacated by other species. They are
the dominant species for the first two months after a fire, but they are
not good competitors, and their numbers decline as the grass regrows
and other small mammals invade the area. It may be seen that these
rodents have many of the features of r-selected species described in
Table 16.4.

In contrast, red deer have much more stable populations, and so
there is little point in having a high population growth rate. These
large animals (adults weigh 100--200 kg or more, depending on the
subspecies) live for 15--20 years and females do not start breeding until
they are three years of age (see Table 16.1). They breed repeatedly but
produce on the average fewer than one young per year (see mx values
in Table 16.1). The young are provided with considerable parental
care. The life-history features of this species fit the pattern described
for K-selected species in Table 16.4.

We should recognize that organisms do not always fit so neatly
into the r- or K-selected categories because the selective forces that
shape their life-history traits are not just of two types, i.e. either
favouring high population growth rates with a high turnover rate
of the population, or favouring low population growth rates with a
low turnover rate of the population. For example, we noted in the in-
troduction that elm trees are large, long-lived, and breed repeatedly
(K-selected traits) but they also produce vast numbers of small seeds
(r-selected traits). This particular set of life-history traits makes sense
when one considers the life cycle of the elm and many other trees.
Mature individuals in the canopy of forest or woodland need to be
large in order to compete for light and space. The population may re-
main remarkably constant in size for many decades because the death
of large canopy trees is infrequent. Individuals may die if they suc-
cumb to attacks by pathogens, but frequently their death is the result
of disturbances by strong winds or fires which are irregular in occur-
rence. In any case, the ability of seedlings to become established and
grow into large individuals depends on the death of mature individu-
als which create gaps in the canopy. These occurrences are infrequent
and unpredictable. It makes no sense for such trees to produce few,
very large seeds, because seedlings, whether small or large, cannot
compete with canopy trees until the latter are removed. It is better to
produce large numbers of small seeds that can be dispersed widely,
and which may be at the right place at the right time to take advan-
tage of gaps created in the canopy by the falling of large trees. Thus,
part of the life cycle has K-selected traits, and part has r-selected traits.

There are other unusual combinations of life-history traits. For ex-
ample, the periodic cicadas (Magicicada) live in the ground for 13 or 17
years and then entire populations emerge at the same time to repro-
duce. Similarly, the bamboos live for many years (for about 120 years
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in the case of Phyllostachys bambusoides) before the entire population
flowers, set seeds, and dies. What is striking about these species is
that they have long generation times, and yet they are semelparous
(breed once), and the populations are highly synchronized in their
life cycle. It has been suggested that the long generation time allows
individuals to grow to a large size before breeding, which enables
them to produce more offspring. The unusual degree of synchrony,
where the entire population reproduces at the same time, allows a
population to swamp the ability of predators to cause catastrophic
mortality at a critical stage of the life cycle. The critical stage is the
adult in the case of cicadas, and the seed in the case of the bamboos.
Several other hypotheses, however, have been suggested to account
for these unusual combinations of life-history traits (see Karban 1997
and Yoshimura 1997).

A different set of selection pressures may account for a similar
grouping of characteristics in the Pacific sockeye salmon (Oncorhynchus
nerka). Between the ages of three and seven years, individuals migrate
from the streams and rivers where they grew up to the oceans where
they feed and grow rapidly in size. At the age of seven years they re-
turn to their birth place, breed, and die. Again, we have an unusual
combination of semelparity with large size and long generation time.
In this case, however, there may be selection for large size, and conse-
quently delayed reproduction, because the cost of migrating upstream
is high, and larger fish can swim faster than smaller fish. Larger fish
also produce more offspring.

It is claimed that comparisons and interpretations of this sort
are rather trivial, and in some respects they are. Many ecologists are
very critical of the concept of r- and K-selection (see Roff 1992 and
Stearns 1992 for reviews) and its popularity has waxed and waned
over the years. There is little doubt that it does not represent real-
ity, because the life-history characteristics of most organisms do not
fit neatly on the r--K continuum. Indeed, considering the extraordi-
nary diversity of life forms it would be remarkable if their life-history
traits could be explained so simply. In addition, attempts to confirm
the theory experimentally, by keeping laboratory populations of pro-
tozoa (Luckinbill 1979) and fruit flies (Taylor and Condra 1980) in
uncrowded conditions to select for r-selected traits, or in crowded
conditions to select for K-selected traits, were not always successful.
Even so, as we have already noted, it can be a helpful way to look
at life-history traits provided that we do not take our analyses too
literally.

16.4 Summary

There is considerable variation in the life-history characteristics of
organisms, and the question is how they may have been shaped by natural
selection. The contribution that an individual makes to the future growth of
a population, i.e. its reproductive value, varies with age, and it has been
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suggested that natural selection will favour traits that reduce the death
rates of individuals with high reproductive values, even at the expense of
increasing the death rate of those with lower reproductive values. This
premise is explored to explain how the shape of the mortality curve with
age might have evolved in mammals.

Reproductive rates are examined from three perspectives. First, how
many offspring should be produced at each breeding event? The evolution
of clutch size in birds is considered to see if they correspond with that from
which, on average, the most young are raised (Lack’s hypothesis). A brief
review shows that both juvenile and adult mortality in relation to clutch
size are important determinants of clutch size. Second, should an organism
breed once or repeatedly? A theoretical analysis shows that the juvenile
survival is important in ‘deciding’ which strategy to follow, but annual
species should produce more offspring than perennial species. Third, should
an organism breed at an early age or delay its breeding? A review of the
evidence suggests that organisms that produce large numbers of offspring
should breed as early as possible, whereas those that produce few offspring
should delay breeding if they grow to a larger size and become more
competitive.

In reviewing the various aspects of reproductive rates, a general pattern
of various traits becomes apparent, which are usually referred to as
life-history strategies. One such scheme, the r- and K-selection concept, is
briefly considered. Although it does not represent reality, it can be a helpful
way to look at the enormous diversity that exists in the life histories of
organisms.



Part V
Interactions
between species,
and the behaviour
of individuals

In this last section of the book, we consider two different aspects
of population biology. First, we examine some aspects of the interac-
tions between different species. There are many ways in which species
interact -- symbiosis, commensalism, competition, predation, etc. --
but we will only consider competition (Chapter 17) and predation
(Chapter 18) because of space limitations. These two types of interac-
tions have a very powerful effect on what Darwin termed ‘the struggle
for existence’. Thus, it is likely that these two processes apply power-
ful selective forces on the characteristics of organisms. It will also be
observed that in many cases, the behaviour of individuals plays an
important role in these interactions.

Behaviour is considered in Chapters 19 and 20, and we return
to some of the issues that Darwin raised in the fourth and seventh
chapters of his book, The Origin of Species. After discussing the genetic
basis of behaviour at the start of Chapter 19, the problem of altruistic
behaviour is considered. In this type of behaviour, some individuals
appear to reduce their fitness to help other individuals, and the most
extreme example of this is the existence of sterile castes in insects.
This type of behaviour appears contrary to the theory of natural se-
lection, which states that only those traits that improve the fitness
of an individual can evolve in populations. Hamilton’s resolution of
this difficulty to the theory of natural selection is briefly described,
and the chapter concludes with a description of game theory models
which analyse the presence of different behaviours in populations.
Chapter 20 looks at sexual selection, which Darwin introduced as a
type of selection that differed from natural selection, and goes on to
consider the various mating systems of animals. This completes our
Darwinian view of population biology.





Chapter 17

Interspecific competition and
amensalism

The word ‘competition’ is used in everyday language, and so we all
have a feeling for what it means. We tend to think of competition
as an active process in which individuals are striving for a common
goal, and trying to outdo each other so that there are winners and
losers. In the biological world, individual organisms struggle to ob-
tain the resources necessary for living, such as water, light and food,
and we can think of this struggle as involving both intraspecific and
interspecific competition. Darwin talked of these processes in terms
of the ‘struggle for existence’ in the development of his theory of
natural selection.

17.1 Defining competition

How do we define competition so that we can study the process in a
rigorous way? Many ecologists prefer an operational definition that
gives us a way of measuring whether competition is occurring or
not. Following this logic, I will modify the definition of Emlen (1973)
and define competition as follows: Competition occurs when two or more
individuals or species experience depressed fitness (reduced r or K) attributable
to their mutual presence in an area. Thus, in simple terms, competition is
defined in terms of a mutual inhibition of growth. We have informally
used this definition to define and measure intraspecific competition
in Chapter 5 (section 5.1), and we will see that it is easy to extend the
logistic growth model to include interspecific competition.

There is also a one-sided interaction between species termed amen-
salism, where there is a negative effect on one species but no effect
on the other species. A favourite example of this type of interaction
is allelopathy between plants, where toxic metabolites produced by
one species inhibit the growth of the other species but there are no
reciprocal negative effects. Nevertheless, the production of the toxic
metabolites undoubtedly costs the producers something, although
this may be extremely difficult to measure, and so amensalism is
best characterized as a form of one-sided competition.
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In theory, there is a clear distinction between interspecific com-
petition and amensalism. In interspecific competition both species
inhibit each other’s growth, whereas in amensalism only one species
has its growth inhibited by the other. In practice, however, it may
be difficult to discriminate between cases of highly asymmetrical
competition and amensalism because of our limited ability to de-
tect low levels of inhibition. There are many cases where one species
is much more affected than the other and where it is extremely
difficult to detect any measurable negative effects on the stronger
competitor. These cases of asymmetrical competition will appear to
be amensal. Similarly, we may also have difficulty detecting inter-
specific competition when it is weak, and in these cases might con-
clude that there is no interspecific competition between two or more
species. Bearing these difficulties in mind, Connell looked at 98 re-
ciprocal tests of competition between pairs of species, where the
response of the addition or removal of individuals of each species
on the abundance of the other was noted. No interaction was ob-
served for 44 pairs of species, there were reciprocal negative effects
for 21 pairs, but only one species appeared to be inhibited in 33
pairs of species (Connell 1983). It would appear that amensalism is
the most common form of competition, although many of 33 one-
sided interactions were probably very asymmetrical forms of com-
petition. Similarly, even though competition was not detected be-
tween 44 pairs of species it might be more prudent to conclude
that the effects of interspecific competition in these cases were in-
significant compared to other factors influencing the growth of these
populations.

17.2 Types of competition

Interspecific competition can be broadly categorized into two types,
exploitation and interference, following a scheme first proposed by Park
(1954).

Exploitation competition (also called resource competition and scramble
competition) occurs when there is a utilization of common resources,
such as light, nutrients, water, nest sites and food, by different in-
dividuals or species. Space is also an important resource for sessile
organisms, primarily terrestrial plants, and aquatic, mainly marine,
organisms. Utilization of a resource by one individual or species pre-
vents its utilization by another, and if the resource is in limited sup-
ply, the consequent reduction in its availability leads to a reduction
in the r or K of other individuals or species. There are two things
to note about this form of competition. First, it is an indirect effect
because the inhibitory or competitive effects result purely from the
reduced availability of a resource. Second, the resource must be lim-
iting if competition is to occur. For example, most terrestrial organ-
isms utilize oxygen, but this resource is not limiting in the terrestrial
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environment and so there is no competition between organisms for
this resource.

Interference competition (also called contest competition) occurs when
organisms impede the access of others to a resource, even if the re-
source is not in short supply. Interference usually involves chemical
or behavioural interactions between organisms prior to the utiliza-
tion of a resource. Note that this type of competition involves a di-
rect effect of an organism on its competitors. Where resources are
spatially fixed, resources may be defended by territorial behaviour,
which denies access to the resources to conspecifics and sometimes
other species. Where the territories of different species overlap, there
may be behavioural interactions which lead to the reallocation of re-
sources, such as a cheetah giving up its prey if confronted by a leopard
or lion. Similarly, some species produce chemical growth inhibitors,
which reduce the growth rates of other species and so inhibit their
ability to exploit resources. Flour beetles condition their food with
chemicals, and the growth of competitors is inhibited when they in-
gest the food. In this case there is a complex interweaving of both the
exploitation and interference forms of competition, and their effects
are not easily separated.

Competition can be a difficult interaction to study, because species
can affect each other’s growth in so many ways. This is illustrated by
the following two examples.

Dung beetles (mostly Scarabaeidae) use the excrement of large ver-
tebrates as food for themselves and their offspring. Different species
exploit the patches of dung in different ways. Some species rapidly
remove dung and roll it away to bury (the rollers); other species re-
move dung from the underside of the pat and bury it in their tunnels
constructed beneath the dung (the tunnellers); and a third group of
species live and breed in the dung patch (the dwellers) (Doube 1991).
There may be intense intraspecific and interspecific competition be-
tween dung beetles (Hanski and Cambefort 1991) because dung may
be a very ephemeral resource. Anderson and Coe (1974) counted 16 000
dung beetles arriving at a 1.5-kg pile of elephant dung in East Africa,
and all of the dung was buried by tunnellers or taken away by rollers
in two hours! In these situations, there is intense exploitation com-
petition, and I have observed a similar situation in rollers utilizing
buffalo dung in Meru National Park, Kenya (Fig. 17.1 top).

On one occasion I awoke at dawn to find several buffalo pats on
our lawn, where a herd of buffalo had been feeding overnight. Soon
dung beetles began arriving from all directions, attracted by the smell
of the excrement, and within two hours all of the dung had been re-
moved, largely by rollers (Fig. 17.1 bottom). The activity of the rollers
was frantic, and the intense exploitation of the dung meant that
those that arrived early obtained dung, and those that arrived later
usually got none. There was also interference competition, as late ar-
rivals tried to steal from those who had a ball of dung. It was not clear
to me what factors determined the success of these fights. In some
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Fig. 17.1 Fresh buffalo dung
(top) in which two dung beetles
are starting to make their dung
balls, and a roller (bottom) taking
its dung ball away to be buried.
(Photographs by the author.)

cases the results of the fights were farcical. Two individuals would
be fighting over a ball of dung, and while they were so occupied
a third individual would arrive and steal it, leaving the two combat-
ants fighting over nothing. Normally, however, one of the combatants
would win, and Heinrich and Bartholomew (1979) have shown that
in Kheper laevistriatus the winners are larger and have a higher body
temperature, which allows them to move faster and overcome their
opponent. In a similar way, size is also important in interspecific com-
petition between rollers (Hanski and Cambefort 1991). However, very
small balls of dung are not worth stealing by large species of rollers,
and so interspecific interference only occurs between species that are
not too dissimilar in size.

Competition between plants can be much more subtle. Many
plants produce chemical substances that inhibit the germination and
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growth of other plants (Whittaker 1970). This phenomenon, called
allelopathy, may be categorized as a form of interference competi-
tion or amensalism. McPherson and Muller (1969) have studied al-
lelopathy in chamise (Adenostoma fasciculatum) in the hard chaparral1

of California. There was almost no herbaceous undergrowth in the
chamise stands studied by McPherson and Muller, and they showed
that this was a result of chemical inhibition. Chamise produces a
water-soluble material which accumulates on the surface of their
leaves during dry periods. When it rains, this substance is washed
off, and is carried to the soil where it inhibits the growth and ger-
mination of many plants, including its own species. The chaparral is
susceptible to fire, which not only destroys the source of the chemi-
cal inhibitor but also appears to break it down in the soil. Following
a fire there is a rapid germination of plants, and a rich herbaceous
layer is formed. Gradually, however, as the chaparral shrubs regen-
erate or grow, the allelopathic mechanisms reassert themselves. The
growth and germination of new plants are inhibited, and the herba-
ceous plants decline in abundance. Allelopathy appears, therefore, to
have a major effect on the structure of this plant community.

What generalizations can we make from these two examples? First,
the competitive interactions may be highly visible and obvious, as
was the case in dung beetles. The exploitation of dung may be so
rapid that it is easy to demonstrate a limitation of the resource. If
females don’t obtain dung, they cannot lay their eggs and the birth
rate is reduced. However, if the density of dung beetles was low, it
would be more difficult to show a limitation of the resource and a
reduction in the growth rate (r). The intensity of competition may be
increased either by increasing the density of beetles, if the resource
stays constant, or by decreasing the amount of dung, if the num-
ber of beetles stays constant. Thus, it is the population density per
unit of resource that is important when determining the intensity of
competition.

Second, the competitive process may be extremely subtle, as in
the case of allelopathy. It took many careful experiments to show
how chamise inhibited the germination and growth of other species,
even though the inhibition was almost total. Thus, it may be easier
to study the effect of competition, i.e. the inhibition of growth of one
species by another, rather than the mechanism involved. This is why
we have defined competition in terms of its effects.

Third, competition between individuals and species is often ex-
tremely asymmetrical, and may vary through time. For example, we
can see an inhibition of herbaceous plants by chamise, but the in-
hibition of chamise by herbaceous plants may be non-existent in
old chaparral stands and extremely difficult to show in chaparral
stands after a fire. In the latter situation, herbaceous plants might

1 Chaparral is a vegetation type of evergreen, small-leaved shrubs, that occurs in Mediter-
ranean climates.
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slow the regeneration and growth of chamise by their utilization of
light, water and soil nutrients, but I suspect that the effects would
be relatively small and difficult to show.

17.3 The Lotka–Volterra model of interspecific
competition

In the mid-1920s, a simple mathematical model of interspecific com-
petition was independently derived by Alfred James Lotka, a physical
chemist in the United States who was interested in modelling biolog-
ical processes, and Vito Volterra, an Italian mathematician. Volterra
had been asked to model the process by his daughter, Luisa, an ecolo-
gist, and her fiancé, Umberto d’Ancona, who was a marine biologist.
The model is now called the Lotka--Volterra competition model. The
model is a simple extension of the logistic growth model (Chapter 5)
for a pair of species, which are designated as N1 and N2. When the
two species are growing independently, their population growth is
reduced by intraspecific competition as follows:

δN1

δt
= r1 N1

(
K 1 − N1

K 1

)
(Exp. 17.1)

δN2

δt
= r2 N2

(
K 2 − N2

K 2

)
(Exp. 17.2)

These equations are simple modifications of Eqn 5.2a. When the
two species grow together the growth rate of each species is further
reduced by the presence of the other, i.e. by interspecific competition.
Lotka and Volterra modified the above two expressions as follows:

δN1

δt
= r1 N1

(
K 1 − N1 − αN2

K 1

)
(Eqn 17.1)

δN2

δt
= r2 N2

(
K 2 − N2 − βN1

K 2

)
(Eqn 17.2)

We are familiar with most of the terms in this pair of equations.
The carrying capacities of the two species are denoted by K1 and K2,
the rates of population increases are denoted by r1 and r2, and the
densities of the two species are denoted by N1 and N2. The coeffi-
cients α and β (called competition coefficients) are new to us, and as
they are a key feature of the model we need to understand what they
represent. In simple terms, α is a coefficient to make the individuals
of species 2 equivalent to individuals of species 1, in terms of their
effect on the population growth of species 1. For example, if each in-
dividual of species 2 had the same effect as 2.5 individuals of species
1 on the growth of species 1, α would equal 2.5. Similar reasoning
shows that β is a coefficient to make the individuals of species 1
equivalent to individuals of species 2, in terms of their effect on the
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Fig. 17.2 Graphical
representation of the zero
isoclines of two species in the
Lotka-Volterra competition model.
The arrows show the direction of
population growth for each species
at various combination densities of
the two species.

population growth of species 2. We can express these relationships as
follows:

α = effect of one unit of sp. 2 on the growth of sp. 1

effect of one unit of sp. 1 on the growth of sp. 1
(Exp. 17.3)

β = effect of one unit of sp. 1 on the growth of sp. 2

effect of one unit of sp. 2 on the growth of sp. 2
(Exp. 17.4)

Normally the units are individuals, in which case the competition
coefficients are a measure of the relative importance per individual
of interspecific and intraspecific competition. However, in some cases
the species are measured by biomass or volume, and we would use
these measures to compare the effects of competition.

To determine the outcome of competition between the two species,
Eqns 17.1 and 17.2 must be solved simultaneously. We do this by de-
termining the equilibrium population densities when the two species
reach their combined saturation densities and there is no further
growth, i.e. when δN1/δt and δN2/δt = 0. This occurs when the nu-
merator of the terms in parentheses in Eqns 17.1 and 17.2 equal zero.

Thus, when δN1/δt = 0, K1 − N1 − αN2 = 0, and this may be
rearranged to show us that at equilibrium:

N1 = K 1 − αN2 (Eqn 17.3)

Similarly,

N2 = K 2 − βN1 (Eqn 17.4)

Equations 17.3 and 17.4 can be represented graphically (Fig. 17.2) as
zero isoclines,2 which represent the densities of the two species when
there is no further population growth. The graphs and equations
make intuitive sense. If species 2 is not present, species 1 will grow
to its carrying capacity, K1, but its equilibrium density is reduced
as species 2 (N2) increases in density. We can see from Eqn 17.3 that
N1 will decline to zero when αN2 = K1, and so this occurs when
N2= K1/α. Similar reasoning shows us that species 2 will grow to K2

in the absence of species 1 (i.e. N1 = 0), and will decline to zero when

2 A zero isocline represents a set of conditions where there is no growth, i.e. r= 0,
which in the case of interspecific competition occurs when a species is at its saturation
density.
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Table 17.1 Growth parameters for Saccharomyces cerevisiae and Schizosaccharomyces kephir when cultured under
aerobic and anaerobic conditions

Competition Relative alcohol
K r coefficient production

Aerobic conditions
Saccharomyces (sp. 1) 9.80 0.287 69 α = 1.25 1.25
Schizosaccharomyces (sp. 2) 6.9 0.189 39 β = 0.85 0.80

Anaerobic conditions
Saccharomyces (sp. 1) 6.25 0.215 29 α = 3.05 2.08
Schizosaccharomyces (sp. 2) 3.0 0.043 75 β = 0.40 0.48

Source: 1932 data from Gause (1934).

N1 = K2/β. In addition, each species can increase in density when
the combined densities of the two species occur to the left of its zero
isocline, but will decline in density when the combined densities of
the two species occur to the right of its zero isocline (Fig. 17.2).

17.3.1 Five cases of competition
The equilibrium densities have been determined separately for each
species, but the equilibrium density of species 1 depends on the equi-
librium density of species 2, and vice versa. To understand the com-
bined dynamics of the two species we combine the two graphs, and
discover that there are five possible combinations of the two isoclines,
which represent five possible outcomes of competition as predicted
by the Lotka--Volterra equations.

Cases 1 and 2: Competitive dominance, and elimination of
one species by another
The great Russian biologist Gause used the approach of Lotka and
Volterra to investigate competition between two species of yeasts, Sac-
charomyces cerevisiae and Schizosaccharomyces kephir (= S. pombe), in the
early 1930s. First, he grew the two species separately and fitted a lo-
gistic growth curve to estimate the r and K values for each species
(see Chapter 5). Then the two species were grown together, and he
estimated the competition coefficients, α and β, by the way in which
the growth curves were modified. He did this for cultures grown in
anaerobic and aerobic conditions and obtained the following results
given in Table 17.1.

If we use these data to predict the outcome of competition
(Fig. 17.3), under aerobic conditions the model predicts that Saccha-
romyces will eliminate Schizosaccharomyces, because it has the higher
growth characteristics (r and K values) and the competition coeffi-
cients of the two species are similar. Under anaerobic conditions,
however, it is predicted that Schizosaccharomyces will eliminate Saccha-
romyces, because its increased competitive ability (α is much greater
than β) more than compensates for its inferior growth characteristics
(r and K values). In each case, the zero isocline of one species lies to



THE LOTKA–VOLTERRA MODEL 273

Aerobic conditions

5 10
0

5

10

K1/α

K1

K2

K2/β

Saccharomyces (N1)

S
ch

iz
os

ac
ch

ar
om

yc
es

(N
2

Anaerobic conditions

5 10
0

1

2

3

4

K2

K2/β

K1/α

K1

Saccharomyces (N1)

S
ch

iz
os

ac
ch

ar
om

yc
es

(N
2
))

Fig. 17.3 The outcome of
competition between
Saccharomyces cerevisiae (solid line)
and Schizosaccharomyces kephir
(dotted line) grown under aerobic
and anaerobic conditions, as
predicted by the Lotka–Volterra
model. Arrows show the predicted
growth of the two species. (Data
from Gause 1934.)

the right of the other (Fig. 17.3) and so it can continue to increase
in density at the expense of the other species and should eventually
eliminate it. In fact, however, neither species was eliminated because
the two species went into a resting stage as they approached their
combined saturation densities.

Now my objective is not to show that the Lotka--Volterra model is
useless. I could have selected an example that supports the prediction
of the model. We can make, however, the following observations from
Gause’s work. First, if you tried to predict the outcome of competi-
tion from the data in Table 17.1, without drawing the zero isoclines,
I suspect that you would guess incorrectly. Most people expect Saccha-
romyces to win under both sets of conditions because it consistently
has the higher r and K values, although others expect Schizosaccha-
romyces to win because it always has the higher competition coeffi-
cient. The model predictions, therefore, are not always very obvious.
Second, a change in conditions can alter the outcome of competition,
and so one species may be a superior competitor to another under
some conditions but be an inferior competitor under other condi-
tions. Finally, Gause’s work on yeast is interesting because it is one of
the few cases where the process of competition has been quantified.
Gause grew his yeast with an excess of sugar, and so this should not
have been limiting to growth. However, growth was inhibited by the
increasing concentration of alcohol, and Gause showed that under
aerobic conditions both species were inhibited to the same degree
by alcohol. He calculated the relative production of alcohol per unit
volume of the two species and showed that they corresponded to the
competition coefficients of the two species when grown under aerobic
conditions (Table 17.1). Gause concluded that competition between
the two species grown in aerobic conditions is entirely regulated
by their relative alcohol production. The competitive interaction ap-
pears to be more complex under anaerobic conditions. Saccharomyces
appears to inhibit Schizosaccharomyces purely by the production of al-
cohol (the competition coefficient of 0.4 is approximately equal to its
relative alcohol production of 0.48 -- see Table 17.1), but Schizosaccha-
romyces produces 2.08 times as much alcohol per unit volume than
Saccharomyces but inhibits the growth of the latter species 3.05 times
as much. Gause postulated that other products, such as carbon diox-
ide, were also involved in the competitive process.
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Table 17.2 Percentage of cultures where Tribolium con-
fusum eliminated T. castaneum when cultured at different
temperatures and relative humidity

Relative humidity

Temperature 30% 70%

24 ◦C 100% 71%
29 ◦C 87% 14%
34 ◦C 90% 0%

Source: Data from Park (1962).
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Fig. 17.4 (a) The outcome of competition between Tribolium confusum (solid line) and
T. castaneum (dotted line) when grown at 24 ◦C and 70% relative humidity, as predicted
by the Lotka–Volterra model. Two growth trajectories are shown by arrows. (b) The
observed outcome of competition between the two species when started at different
densities. Starting densities of cultures won by T. confusum are indicated by circles, and
those won by T. castaneum are indicated by crosses. (Data from Park 1962.)

Case 3: Either species can eliminate the other when grown in
the same conditions
Competition between different species of flour beetles has been exten-
sively studied by Park, Mertz, Dawson, and others. They are ideal ex-
perimental animals, because they are small, about 4--5 mm in length
as adults, and can complete their entire life cycle in small containers
of flour. They can be counted by sieving the flour, and it is possible to
do well-replicated experiments by keeping several containers in con-
trolled environment chambers. In one such series of experiments,
Park (1962) studied the growth of single and mixed species popula-
tions of Tribolium confusum and T. castaneum at different temperatures
and humidity (Table 17.2). Tribolium confusum always eliminated T. cas-
taneum at 24 ◦C and 30% relative humidity (Case 1), whereas at 34 ◦C
and 70% relative humidity T. castaneum always eliminated T. confusum
(Case 2). However, at intermediate temperatures and humidity either
species can eliminate the other, although T. confusum wins more fre-
quently at lower humidity and temperatures and T. castaneum wins
more frequently at higher humidity and temperatures (Table 17.2).

If we consider the interaction at 24 ◦C and 70% relative humidity,
the carrying capacity of T. confusum (K1) was 220 and of T. castaneum
(K2) was 340, and the competition coefficients were α = 1 and β = 2.2,
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Fig. 17.5 Outcome of
competition between Rhizopertha
(solid line) and Oryzaephilus
(dotted line), as predicted by the
Lotka–Volterra model. Arrows
show the predicted growth of the
two species from different
combinations of their densities.
(Data from Crombie 1945.)

enabling us to draw the zero isoclines for this interaction (Fig. 17.4a).
It may be seen that the model predicts that either species can win
depending on their initial densities and relative rates of increase.

Park grew cultures starting with different combinations of den-
sities of the two species (Fig. 17.5) and showed that a species would
always eliminate the other if the starting densities were weighted
in its favour. However, there was a region of intermediate densities,
which he called an indeterminate zone, where it was not possible to
predict with certainty the winning species. In this region, stochastic
(chance) events probably determined which species increased faster
than the other, so that it would overwhelm and eventually eliminate
the other species.

The process of competition between these two species is complex.
There is the exploitation of the flour by the two species, but this is af-
fected by the production of growth inhibitors by each species, which is
difficult to quantify. There are also predation and cannibalism of eggs
and pupae by the larvae and adults. Each species prefers to eat the
eggs and pupae of the other species, and it is likely that this mutual
predation dominates the competitive interaction. Park considered
that this mutual predation was a type of interference competition.

The Lotka--Volterra model correctly predicts the outcome of com-
petition between these two species. Noting the conditions for Case 3
from the intercepts of the two isoclines (Fig. 17.6), we see that K1 >

K2/β and so β > K2/K1, and that K2 > K1/α and so α > K1/K2. Interspe-
cific competition is usually stronger than intraspecific competition in
Case 3.

Case 4: Coexistence of the two species at a stable
equilibrium density
Two species will coexist in stable equilibrium when each species in-
hibits its own growth more than it inhibits the growth of the other
species, i.e. intraspecific competition is stronger than interspecific
competition in both species. An example of this type of competition is
provided by the flour beetles Oryzaephilus and Rhizopertha, when they
are grown in cracked wheat (Crombie 1945).
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Fig. 17.6 Predicted outcome of
competition between Paramecium
aurelia and P. caudatum according
to the Lotka–Volterra model.
(Data from Gause 1934.)

In one set of experiments, the carrying capacities were 330 for
Rhizopertha (K1) and 440 for Oryzaephilus (K2), and the competition co-
efficients were α = 0.235 and β = 0.12. The predicted outcome of
competition between these two species is shown in Fig. 17.6, and this
reflects what is observed. Apparently, the larvae of Rhizopertha live,
feed and pupate inside the cracks in the grains of wheat, whereas
the larvae of Oryzaephilus live and feed on the surface of the grain.
The adults of both species live and feed on the surface of the grain.
The difference in feeding habits of the larvae, and probably a re-
duced level of predation by Oryzaephilus on the eggs and pupae of
Rhizopertha, allows the two species to coexist in stable equilibrium.
The importance of reducing pupal predation has been demonstrated
in competition between Tribolium confusum and Oryzaephilus. Tribolium
always eliminated Oryzaephilus in flour cultures, but when the flour
was ‘seeded’ with capillary tubes there was stable coexistence of the
two species. The smaller species, Oryzaephilus, could pupate in the
capillary tubes and so was protected from predation.

The conditions for Case 4 may be inferred from the intercepts
of the zero isoclines. We see that K1 < K2/β and so β < K2/K1, and
K2 < K1/α and so α < K1/K2. Normally, the effects of intraspecific
competition are greater than those of interspecific competition.

Case 5: Coexistence at a range of equilibrium densities
When α = K1/K2 and β = K2/K1 the zero isoclines of the two species
are coincidental (Fig. 17.6), and the model predicts that the two species
can coexist at a range of densities, depending on their initial densities
and relative growth rates. Many consider that this case is impossible,
but we will consider one example because it reveals a fundamental
flaw in the basic Lotka--Volterra model.

Gause (1934) examined competition between Paramecium aurelia
and P. caudatum which appears to conform to this situation (Table 17.3).
Although the Lotka--Volterra model predicts that the two species will
coexist, P. caudatum was eliminated from the mixed species cultures
by about day 16. The main reason for the displacement of P. caudatum
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Table 17.3 Growth parameters for Paramecium aurelia and P. caudatum cul-
tivated separately and together in buffered medium with a ‘half-loop’ con-
centration of bacteria

Parameter Paramecium aurelia Paramecium caudatum

Carrying capacity K1 = 105 K2 = 64
Intrinsic rate of

increase
r1 = 1.1244 r2 = 0.7944

Competition
coefficient

α = 1.64 β = 0.61

Source: Data from Gause (1934).

by P. aurelia is related to the daily sampling of the cultures to estimate
their densities. To quote from Gause (1934):

The biomass of every species was decreased by 1/10 daily. Were the
species similar in their properties, each one of them would again
increase by 1/10, and there would not be any alteration in the relative
quantities of the two species. However, as one species grows quicker
than another, it succeeds not only in regaining what it has lost but also
in seizing part of the food resources of the other species. Therefore,
every elementary movement of the population leads to a diminution in
the biomass of the slowly growing species, and produces its entire
disappearance after a certain time.

Gause’s observation makes a great deal of sense. Populations are
reduced by predation and various forms of disturbance, and their
ability to recover from these reductions undoubtedly influences the
outcome of competition between species. However, the Lotka--Volterra
model only uses the carrying capacities (K) and the competition coef-
ficients (α and β) to predict the outcome of competition, so it would
be useful to modify the model so that the growth rates (r) can also
influence the outcome.

17.3.2 Complicating the model: introducing
a removal factor

Slobodkin (1961) modified the basic Lotka--Volterra model by includ-
ing a non-selective removal factor (m), and showed that the relative
growth rates of the two species may be important in determining the
outcome of competition. He modified Eqns 17.1 and 17.2 by removing
a proportion (m) of each population at each time step, and obtained
following pair of equations:

δN1

δt
= r1 N1

(
K 1 − N1 − αN2

K 1

)
− mN1 (Eqn 17.5)

δN2

δt
= r2 N2

(
K 2 − N2 − βN1

K 2

)
− mN2 (Eqn 17.6)

If the removal factor is selective, such as a predator eating more
of one species than the other, we can still make it conform to our
model by making the appropriate reduction to the growth rate, r,
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Fig. 17.7 Competition between
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equations and intercepts are
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of the species with the higher removal rate. We now have a three-
dimensional model in which the numbers of species 1 (N1) and species
2 (N1) vary according to the removal rate (m) as well as the compet-
itive interaction between the two species (Fig. 17.7). We determine
the outcome of competition in exactly the same way as for the sim-
ple Lotka--Volterra model, by calculating the equilibrium conditions
when δN1/δt and δN2/δt = 0. When, δN1/δt = 0 Eqn 17.5 can be rear-
ranged as:

N1 = K 1

(
1 − m

r1

)
− αN2 (Exp. 17.5)

Three zero isoclines can then be derived from this expression as
follows: when m = 0, N1 = K1 − αN2, which conforms to the simple
Lotka--Volterra model; when N2 = 0, N1 = K1(1 − m/r1); and when
N1 = 0, N2 = (K1/α)(1 − m/r1). Similarly, the intercepts on the three
axes are derived as follows: when N2 and m = 0, N1 = K1; when N1 and
m = 0, N2 = K1/α; and when N1 and N2 = 0, m = r1 (see Fig. 17.7). The
zero isoclines and intercepts for species 2 are derived in the same way.
The three isoclines for each species define the edges of their isoplanes,
which are described by Exp. 17.5 and the analogous expression for
species 2.

The model is illustrated for Case 5 where species 1 has the higher
growth rate (Fig. 17.7). When there is no removal factor operating
(m = 0) the model reverts to the basic Lotka--Volterra model, as shown
on the back panel of the graph. However, when there is a removal
factor operating (i.e. m > 0) the zero isoplane of species 1 lies outside
of that of species 2, and so the model predicts that species 2 will
be eliminated. Thus, Slobodkin’s modification of the model neatly
explains Gause’s observations for P. aurelia and P. caudatum because
P. aurelia has the higher growth rate (see Table 17.3).

The inclusion of a removal factor in Case 5 changes the outcome
of competition to favour the species with the highest growth rate
(r) so that it excludes the other species. The same is true for Cases 3
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Fig. 17.8 Diagram showing the
relationship between interspecific
competition between species 1
(solid lines) and species 2 (dotted
lines), the intrinsic rate of natural
increase (r), and a non-specific
removal factor (m). The zero
isoclines are shown at different
removal rates in figures (a), (b) and
(c) to the right. See text for
discussion.

and 4 but only at high removal rates. At low removal rates the cases
remain unchanged, although the relative density of the species with
the higher growth rate, or the proportion of times it wins the com-
petitive encounter increases as the removal rate increases. For Cases
1 and 2, where one species or the other always wins the competitive
interaction, the inclusion of a removal factor can lead to interesting
outcomes if the inferior competitor has the higher rate of increase.
This is illustrated for Case 2, where species 2 wins in the absence
of a removal factor (Fig. 17.8). A careful examination of the figure re-
veals that at removal rates less than A1 the outcome of the interaction
remains unchanged because the zero isoplane of species 2 lies beyond
that of species 1 (Fig. 17.8a). At removal rates higher than B1 species
1 wins because of its higher growth rate (Fig. 17.8c). At removal rates
between A1 and B1, however, the two zero isoplanes intersect along
the locus AB and so the two species are in equilibrium where the
superior competitive ability of species 2 is balanced by the superior
growth rate of species 1. The question is whether the equilibrium is
stable, as in Case 4, or unstable, as in Case 3. The situation corre-
sponds to an unstable equilibrium, as shown in Fig. 17.8b where the
intersection of the zero isoclines corresponds to Fig. 17.4a. Thus, at in-
termediate removal rates either species can win the interaction, and
the winner depends on the initial densities. Whether the equilibrium
is stable or unstable depends on the relative slopes of the two zero
isoclines in the absence of a removal factor.

Slobodkin (1961) provided experimental verification of the predic-
tion that a non-specific removal factor can promote coexistence of
two species when there is competitive exclusion in the absence of
a removal factor. He performed experiments on green hydra (Hydra
viridissima) and brown hydra (H. littoralis). In the absence of a removal
factor brown hydra were invariably eliminated by the green because
the latter had a supplemental energy source from their symbiotic
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green algae. However, if a fixed percentage of newborn animals of
each species was removed, the two populations stabilized and coex-
isted for the duration of the experiment. Similarly, he noted that
the azuki bean weevil (Callusobruchus chinensis) always eliminated the
southern cowpea weevil (C. quadrimaculatus) when the two were main-
tained on azuki beans, but if a parasitic wasp (Neocatolaccus mame-
zophagus) is added to the cultures, both species coexisted indefinitely
(Utida 1953). The wasp shows no preference between the two weevils.

We can make the following general conclusions from the
Lotka--Volterra model and its modification by Slobodkin. Two species
will probably coexist if interspecific competition is low relative to in-
traspecific competition, whereas if interspecific competition is high
relative to intraspecific competition one species will be eliminated by
the other. These general predictions may be modified by the relative
carrying capacities of the two species. The introduction of a removal
factor, such as predation or physical disturbances such as wave or ice
scouring, can either promote or reduce the likelihood of coexistence
depending on the balance of competitive ability and rates of popula-
tion increase. At low dilution rates the ability of a species to maintain
itself against its competitors is highly dependent on its competitive
ability, but as the removal rate increases the competitive interactions
become progressively less important and it is the population growth
rate (r) that becomes more important. At intermediate removal rates,
the competitive advantage of one species may be balanced by the
higher growth rate of the other species and coexistence may be pos-
sible. Thus, the selection pressures on the various characteristics of
the population will probably vary in different environments. Similar
conclusions were reached when we considered the evolution of life
histories in Chapter 16 (see Table 16.4).

To help you better understand these attempts to model competi-
tion we will now proceed to simulate competitive interactions using
Slobodkin’s modification of the Lotka--Volterra model.

17.4 Simulating competition between two species

The procedure for making a spreadsheet simulation of Slobodkin’s
modification of the basic Lotka--Volterra competition model is out-
lined in Appendix 17.1. In this simulation, the zero isoclines are com-
puted according to the dilution rate (m), and so they will change in
relation to m as shown on the right-hand side of Fig. 17.8. When you
have completed the first simulation, do the following exercises:

1. Using the anaerobic data from Table 17.1 with m = 0 gives us
a situation which corresponds to Case 2, where species 2 wins
(Schizosaccharomyces in this case). However, we see that r1 > r2 and
so the outcome of competition should swing in favour of species 1
when there is a removal rate operating. For example, set m = 0.02
(cell B7) and see that species 1 wins the interaction. So far what
we are observing is analogous to what is illustrated in Fig. 17.8,
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where the superior competitor wins at low removal rates and the
species with the highest intrinsic rate of natural increase wins at
high removal rates. The question is, what happens at intermediate
removal rates? Progressively change m from 0.012 to 0.014 and note
that at the lower value species 2 wins, and at the higher value
species 1 wins (you may wish to simulate this over more time
increments). We can see from the intersection of the zero isoclines
that in the intermediate region it corresponds to Case 3.

2. Work through the various data sets in section 17.2.1 to see how the
model deals with the various cases. You should obtain graphs that
correspond to those presented in Figs. 17.3 to 17.6. You will have
to enter your own r values for those cases where none is provided.
You can also vary m to see the effect of the removal rate on the
various competitive interactions.

17.5 The utility of the Lotka–Volterra
competition model

The utility of a model may be judged in two ways. It may help us
understand a system or process, and it may have a predictive capa-
bility. Ideally, it does both of these things. On this basis we can ask
whether the basic Lotka--Volterra competition model and Slobodkin’s
modification of it are useful or not.

There is no simple answer to this question. Some authors consider
the model to be successful in broad terms in spite of its limitations
(e.g. Begon and Mortimer 1986). If we consider the qualitative predic-
tions of the basic and modified model (see the end of section 17.2.2
for details) we see that they make intuitive sense, and it is helpful
to understand that the outcome of competition between two species
depends not only on their characteristics but also on external mor-
tality factors. However, the models assume that the individuals of a
species are all equivalent, and the carrying capacities and competi-
tion coefficients are also constant, which is extremely restrictive. For
these reasons, the models are best applied to unicellular organisms
and adult insects, which vary little in size, growing under controlled
conditions. Thus, our choice of examples in section 17.2.1 was no ac-
cident. In most of these cases the model predicted the outcome of
competition quite accurately, but not in the case of yeast because the
cells entered a resting phase and stopped growing. The assumptions of
the model also imply that the inhibitory effects of both intraspecific
and interspecific competition are linear functions of density (i.e. the
zero isoclines are straight lines). This was shown not to be the case
in competition between two species of Drosophila (Ayala et al. 1973).
The authors of this study were able to modify the basic model to
produce appropriately curved isoclines which predicted the outcome
of competition exactly. We should note that the basic Lotka--Volterra
model made the correct qualitative prediction of coexistence in the
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experiments of Ayala et al. (1973), but the modified equations were
necessary to estimate the equilibrium densities of the two species.

The main criticism of the basic or modified model, however, is
that it has limited predictive capabilities when applied to real ecosys-
tems (Keddy 1989). Environments vary both spatially and over time,
and so carrying capacities and competition coefficients will also vary.
In addition, in many cases the body size or age class structure of
the population can also have a profound influence on its competitive
ability, and this can also vary considerably over time. These varia-
tions of environmental conditions and population structure mean
that prediction of a stable coexistence at a fixed set of densities is
unlikely, although they may still coexist. Similarly, one species may
tend to eliminate another species in one set of environmental condi-
tions, but the reverse may occur in a different set of environmental
conditions, with the result that the two species may oscillate in den-
sity as the environment fluctuates. Obviously, things are a lot more
complicated in the real world. Nevertheless, the basic model was suc-
cessfully fitted to field observations of great tits (Parus major) and blue
tits (P. caeruleus) to explain their coexistence (Dhondt 1977), and was
also applied to the field experiment of Brown and Davidson (1977) to
examine possible competition between ants and rodents in the desert
of Arizona.

The last example points to another problem of the Lotka--Volterra
model. The basic model deals with the interaction between a pair of
species, and so Brown and Davidson (1977) simply grouped all ants
and all rodents to use the model in their analysis of competition be-
tween these two taxa. However, if we wish to analyse the competition
between many species in real ecosystems we need to measure the
competitive effects between each pair of species. For example, in a
community of 10 species a total of 102 − 10 = 90 competition coeffi-
cients and 10 carrying capacities would have to be determined to use
the model. Clearly, it can only be applied to very simple systems.

We have not exhausted the complications and difficulties of ap-
plying the model to multiple species, but the case has been made,
the Lotka--Volterra model has a limited ability to analyse competition
in the majority of communities or ecosystems and so we will use a
different approach in the next section. Nevertheless, the model is use-
ful in showing that the outcome of competition between species is
related to the balance of intraspecific and interspecific competition,
the carrying capacities of the species and the reduction of population
densities by external factors such as predation and disturbance.

17.6 Interspecific competition and
community structure

Interspecific competition between pairs of species results in one
species eliminating the other, or both species coexisting at reduced
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Fig. 17.9 Hypothetical
exploitation curve of a population
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densities. Consequently, when we consider communities of organisms
that potentially compete for a common set of resources we can an-
ticipate that their competitive interactions might be important in
determining the structure of the community.

17.6.1 The ecological niche
The subject of how communities of organisms exploit a common set
of resources is intertwined with niche theory. This is a vast subject
and will only be dealt with superficially here. For those who would
like to delve more into the subject of the niche I recommend that you
read Pianka (1988) and Whittaker and Levin (1975). For our purpose
we can consider that an organism’s niche is defined by where it lives,
which can be progressively described in terms of its regional, habi-
tat and microhabitat distribution, and also the resources it requires,
which can be described in terms of what, where, and how it acquires
those resources.

An organism is only adapted to exploit part of the environment
and its niche is made up of many dimensions, what it eats, where
it nests or lays its eggs, the environmental conditions it tolerates,
and so on. This exploitation can be plotted as an exploitation curve
(Fig. 17.9), which reflects the variation in resource use by the popula-
tion. Some of this variation occurs within an individual, and some
occurs between different individuals. The shape of the curve is deter-
mined by the interaction of many selective forces. Intraspecific compe-
tition selects to broaden the niche of a population so that it becomes
more generalized as population density increases, but this tendency
is usually opposed by interspecific competition, which tends to select
for a more efficient utilization of the resources through the evolu-
tion of specializations. Similarly, a generalist strategy is favoured if
resources are scarce, whereas the opposite is true if resources are
abundant.

17.6.2 Niche evolution and community structure
Let us consider what might happen when two similar species compete
for a common set of resources in the same area or habitat. Imagine
that the two species are insectivorous birds that overlap considerably
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Fig. 17.10 (a) Species A and B
exhibit strong interspecific
competition because they overlap
considerably in their use of a
common resource such as food.
Natural selection may promote a
divergence in their resource
requirements (b) resulting in the
reduction of interspecific
competition and allowing for the
coexistence of the two species.

in the sizes of insects they are adapted to catch and eat. If the effects
of interspecific competition are stronger than those of intraspecific
competition, the Lotka--Volterra theory predicts that one species will
eliminate the other. However, a different outcome of the competitive
interaction is also possible over the course of many generations of
interaction. Let the resource or niche dimension in Fig. 17.10a repre-
sent the range of sizes of the insect food available. Both species eat
a range of different-sized insects, with species A eating smaller-sized
insects on average than species B. If the between-individual variation
in diet has a genetic basis, natural selection may occur. Individu-
als of species A that eat smaller insects than average will face less
competition and so will tend to increase in frequency in the popu-
lation, and similarly individuals of species B that eat larger insects
than average will increase in frequency. Thus, the two species will
tend to diverge in their characteristics so that their resource require-
ments overlap less. If interspecific competition becomes less than in-
traspecific competition, the two species can coexist (Fig. 17.10b). The
way in which this divergence occurs depends on the availability of
the different sizes of insects. If there were few larger-sized insects
available, species B would not shift in that direction and so most of
the shift in resource use would have to occur in species A. The se-
lection pressure also depends on the relative abundance of the two
species. For example, if species B was attempting to invade an area
inhabited by species A its abundance would probably be less and so
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the selection on species B would be stronger than the selection of B
on species A. In this case it would be species B that would shift its
resource use.

We can envision similar processes leading to a series of bird species
that are specialized to feed on different size classes of insects. The de-
gree of specialization that is possible will depend on the availability
of resources. If insects are very abundant, it may be possible to spe-
cialize on a narrow size class, but if they are more scarce the feeding
niche would have to be broader in order to obtain sufficient resources
to sustain the population. However, we have only considered one way
in which the birds can diversify their feeding niches. They can also
diversify their feeding niches by feeding in different places. For exam-
ple, we might have birds feeding on much the same sizes of insects,
but one species may be searching through leaf litter to find the in-
sects concealed there, another may only take insects on the wing,
and yet another may glean insects from the foliage of trees. Thus,
the feeding niches may overlap considerably in one dimension, such
as food size, but be separated on another dimension, such as food
location. This packing of species is illustrated in two dimensions in
Fig. 17.11, where the first niche dimension represents food size and
the second niche dimension represents feeding location. All of these
methods of feeding require specific adaptations of beak morphology,
flying ability, and other aspects of behaviour. If these feeding special-
izations are largely driven by the need to avoid or reduce interspecific
competition, we can see that interspecific competition has consider-
able evolutionary consequences.
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Table 17.4 The niche relations among eight species of Ducula and Ptilinopus fruit pigeons in New Guinea
lowland rain forest

Ratio of body
mass to body

Body mass of next
Fruit size consumed (mm) Feeding location

Species mass (g) species in guild 7 20 30 40 Branch size Branch location

Ducula pinon 802 × × Large Central
1.35

D. zoeae 592 × ×
1.43

D. rufigaster 414 × ×
1.63

Ptilinopus 245 × ×
perlatus

1.50
P. ornatus 163 × ×

1.33

P. superbus 123 × ×
1.62

P. pulchellus 76 ×
1.55 ↓ ↓

P. nanus 49 × Small Peripheral

Source: After Diamond (1973).

A good example of niche separation in relation to feeding habits is
provided by Jared Diamond’s work on a fruit-eating guild of pigeons
in New Guinea (Table 17.4). The eight species of coexisting pigeons
form a graded size sequence over a 16-fold range in body mass, and
the larger species feed on larger fruits than the smaller species. A
particular fruit tree may attract up to four consecutive members of
the guild, but the smaller species feed on the peripheral, smaller
branches and so there is some spatial separation of feeding location
(Table 17.4).

Each species weighs approximately 1.5 (range 1.33 − 1.65) times
the next pigeon in the sequence, and this represents an unusually
tight packing of species in relation to food resources or, expressed
in another way, an unusually narrow set of niches. More typically,
where food is less abundant and there are fewer competing species,
the size ratios are approximately 2 or even higher, indicating that the
food niches are broader than those of the New Guinea fruit pigeons.
Diamond (1973) calculated the size ratios in several guilds of birds
in New Guinea and found they were never less than 1.33 or greater
than 2.73. Species with similar habits with a weight ratio of less than
1.33 are too similar to coexist and must segregate spatially. For ex-
ample, the cuckoo-shrikes Coracina tenuirostris and C. papuensis occur
in different habitats on New Guinea where their average weights are
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Fig. 17.12 Distribution of
coniferous trees in relation to
elevation (shown as continuous
distributions on graph) and
moisture (shown below graph as
the mean and one standard
deviation) on north-facing slopes in
the Santa Catalina and Pinaleño
Mountains, Arizona. The tree
species are indicated by genus and
species initials: Juniperus deppeana,
Pinus cembroides, P. chihuahuana,
P. ponderosa, Pseudotsuga menziesii,
Pinus strombiformis, Abies concolor,
A. lasiocarpa, Picea engelmanni.
(From Whittaker, Lenin, and Root
1973, American Naturalist,
University of Chicago Press, with
permission.)

73 g and 74 g respectively, but they often coexist in the same tree
on New Britain, where their respective weights are 61 g and 101 g.
If the weight ratio exceeds 2.73 a medium-sized bird with a weight
ratio of about 1.65 can invade and coexist with both the large and
small species, so that there would be a sequence of three rather than
two species. The regularity of the size sequences in these guilds of
birds strongly suggests that the organization of these communities is
not random, and it also fits with the predictions of niche theory that
were first developed by Hutchinson (1959). He noted that if a linear
measure, such as bill length, is used to grade the feeding niches of a
guild, the ratios of consecutive species usually range between 1.1 and
1.4 and average 1.26, and these measures correspond to the cube root
of the body mass comparisons.

Such regularities in the distribution of species may also be ob-
served along habitat gradients. A good example is provided by the
study of Whittaker et al. (1973) on coniferous trees in relation to an
altitude and a moisture gradient (Fig. 17.12). The various species form
a broadly overlapping sequence in relation to altitude, and their peaks
in abundance are approximately evenly spaced. This in itself indicates
that the structure of these tree communities is not haphazard or ran-
dom, but what is particularly interesting is that where species overlap
in their altitudinal distribution, they separate in relation to a mois-
ture gradient with some species occurring in drier areas and others
occurring in more moist areas (Fig. 17.12). Once again these obser-
vations are in accordance with our niche theory, with the niches of
the different tree species being distinct from each other when viewed
along two habitat gradients.
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17.6.3 Including the effects of predation
Community structure may also be influenced by predation or other
factors that reduce the abundance of species because this reduces
interspecific competition (see section 17.3.2). Darwin was well aware
of this fact and noted the following in the chapter on ‘The struggle
for existence’ in The Origin of Species:

If turf which has long been mown, and the case would be the same
with turf closely browsed by quadrupeds, be let to grow, the more
vigorous plants gradually kill the less vigorous, though fully grown
plants; thus out of twenty species growing on a little plot of mown turf
(three feet by four) nine species perished, from the other species being
allowed to grow up freely.

Later in the same chapter Darwin noted that cattle grazing prevented
the successful invasion by Scots fir into an area of heath in the south
of England. In one square yard of the heath he counted 32 little trees
that had been browsed by cattle and prevented from growing into
mature plants. Parts of the heath had been enclosed, eliminating the
grazing effects of cattle, within the last ten years of his study. The
fir trees were growing so thickly and profusely in the enclosed areas
that not all would survive due to intraspecific competition. Thus, pre-
dation can affect community structure directly and not just by the
reduction of interspecific competition.

The effects of grazing were rigorously studied by Tansley and
Adamson in the 1920s (see Harper 1977), who placed enclosures to
exclude grazing by rabbits on an area of very diverse chalk grass-
land. Within six years the diverse grassland community changed to
a much more uniform grassland dominated by Bromus erectus (called
Zerna erecta by Tansley and Adamson). In a later study, Hope-Simpson
showed that when rabbits were excluded for longer periods, the veg-
etation slowly changed still further to become dominated by shrubs.
These experiments predicted the changes that were to occur some
decades later when myxomatosis decimated the British rabbit popu-
lation in the years following 1954. Grazing is a complicated process
(Harper 1977) and the effects will vary according to the type of vegeta-
tion, the type of grazer, and the intensity and selectiveness of grazing.
For example, cattle feed on taller vegetation by rolling their tongues
around the plant and pulling, and may uproot the plant if it is not
well rooted. Their feeding tends to be less selective than grazers like
horses and rabbits that essentially clip the vegetation with their teeth.
Nevertheless, grazing can completely change the structure of the veg-
etation community by preventing taller species from overshadowing
and crowding out shorter plants. If grazing is at intermediate rates it
may lead to an increase in floral diversity, but if it is absent or if it
is very intense there may be a reduction of species diversity.

The effects of predation on community structure have also been
convincingly demonstrated for an invertebrate community inhabit-
ing the rocky intertidal sea coast area in Washington State in North
America (Paine 1966, 1974). The community mainly consists of sessile
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or sedentary species, including chitons, limpets, mussels (Mytilus),
whelks (Thais), goose-necked and acorn barnacles, and the starfish
(Pisaster). Thais preyed on Mytilus and acorn barnacles, but Pisaster
preyed on all species in the community. If Pisaster was selectively re-
moved from the community, the number of species decreased from 15
to eight because Mytilus increased in abundance and slowly crowded
out many of the other species. It appears that the top predator re-
duced the competition for space in this intertidal community in
much the same way as grazers prevent taller species from overshad-
owing and crowding out smaller species in grassland. As we will see
in the next chapter, top predators frequently select the most abun-
dant prey species, switching from one species to another as they vary
in density, and this also can lead to a greater diversity of prey species
coexisting in a community. The effects of predator--prey interactions
and the interspecific competition effects between prey species are
inextricably intertwined in terms of their impacts on community
structure.

17.7 Summary

Where there is interspecific competition each species reduces the growth
potential of the other(s) and so there is a mutual reduction of fitness. If the
inhibition of growth is completely one-sided, the interaction is called
amensalism.

Competition occurs either indirectly through species exploiting
resources, which are in short supply, required by other species, or directly by
species interfering with other species and reducing their access to resources.

The Lotka--Volterra model of interspecific competition predicts that
species can coexist if the effect of interspecific competition is much lower
than intraspecific competition, but if the reverse is true, or if one species is
a much better competitor than the other, coexistence is not possible and
only one species will survive the interaction.

If there are removal factors operating, which keep the species below
their carrying capacities, the rates of population growth influence the
outcome of competition. At high removal rates, the species with the higher
growth rate will win, whatever the relative competitive abilities of the two
species, but at intermediate removal rates there may be coexistence if the
superior competitive ability of one species is balanced by the higher growth
rate of the other species.

Competition may be important in determining the structure of
communities. There are regular patterns in the distribution of species with
similar habits living in the same general area, such that they are subtly
adapted to live in different microhabitats or tend to require slightly different
resources. These differences in ways of life are called niches, and we believe
that they have evolved largely as a result of intra- and interspecific
competition and predation pressures. The niches represent a series of
adaptations and so an organism’s biochemical, physiological, morphological
and behavioural attributes have evolved to ‘fit’ its niche. For example, birds
feeding on different-sized insects in different ways (in mid-air, in leaf litter,
gleaned off surfaces, etc.) differ in the size and shapes of their beaks, flying
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ability or agility, and other aspects of their behaviour. If we look for
evidence of continuing direct competition between the various species we
will find that it is likely to be low relative to intraspecific competition
because of the separation of niches. Indeed the separation of niches may be
such that it is difficult to demonstrate interspecific competition in many
cases. Nevertheless, we consider that the ghosts of interspecific competition
linger on (Connell 1980) and are reflected to some degree by the patterns of
niches and the structures of communities that presently exist.

17.8 Problems

1. Brown and Davidson (1977) examined the possible competition for seeds
between rodents and ants in a desert in Arizona by means of a field
experiment. In unmanipulated areas (i.e. controls) there was an average
of 318 ant colonies and 122 rodents per plot. In two plots, where the
rodents were trapped out and then excluded by mesh fences, the average
number of ant colonies increased by 71% to 543, and in two other plots,
where the ants were killed with insecticide, the mean number of rodents
increased by 18% to 144. In two other plots where both ants and rodents
were excluded the seed biomass increased by 24% to 5.12 kg from 4.13 kg
on the control plots.
(a) Do these results confirm that ants and rodents are competing for

seeds? Are there alternative explanations for these results?
(b) Assuming that there is interspecific competition, calculate the

approximate interspecific competition coefficients for the two species.
2. Competition was studied between two species of protozoa. When grown

separately, the carrying capacities were 70 individuals per ml for
Paramecium caudatum and 11 individuals per ml for Stylonychia mytilus.
When grown together the inhibitory effect of Stylonychia on Paramecium
(α) was 5.5, and for Paramecium on Stylonychia (β) was 0.12.
(a) The two species coexisted. Is this outcome of competition predicted by

the Lotka--Volterra model?
(b) When grown under slightly different conditions, the carrying

capacity of Stylonychia increased to 20 individuals per ml and the
inhibitory effect of Paramecium on Stylonychia (β) increased to 0.2.
Otherwise, the characteristics of the two species did not change.
Predict the outcome of competition using the Lotka--Volterra model.

(c) The actual outcome of competition in part (b) was that Paramecium
eliminated Stylonychia. Account for this observation, given that the
intrinsic rates of natural increase per day (r) were 1.1 for Paramecium
and 0.26 for Stylonychia, and that the cultures were monitored by
removing one-tenth of the culture on a daily basis.

Appendix 17.1 Simulating interspecific competition

1. Enter a title for your spreadsheet in A1, and then in rows 3 to
7 of column A type: SPECIES 1; r1=; K1=; Alpha=; m=; and in
rows 3 to 6 of column D type: SPECIES 2; r2= ; K2=; Beta=. Then
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enter the values from Table 17.1 (Anaerobic conditions) in the
appropriate places in columns B and E. Your value for m is 0 (zero).

2. In columns A to E of row 9 type the following headings: Time
(t); N1; delta N1; N2; and delta N2. To start with, we program the
spreadsheet to draw the zero isoclines, and you may wish to re-
mind yourself of this by typing These/ rows draw/ the zero/ iso-
clines/ and reset in rows 10--14 of column A (the breaks between
rows are indicated by / marks. Then enter=$B$5*(1-$B$7/$B$4)
(= K1) in B10 and 0 (zero) in D10; 0 (zero) in B11 and =($B$5/$B$6)*
(1-$B$7/$B$4) in D11; 0 (zero) in B12 and =$E$5*(1-$B$7/$E$4) in
D12; =($E$5/$E$6)* (1-$B$7/$E$4) in B13 and 0 (zero) in D13; and
finally 0 (zero) in both B14 and D14. These zero isoclines are calcu-
lated in relation to the removal rate, m.

3. (a) Enter 0 (zero) in A15, then enter =A15+1 in A16 and copy to
cells A17--A50 to obtain a time series of 0--35.

(b) Enter 1 as starting values in cells B15 and D15, then enter
=B15+D15 in B16 and=D15+E15 in 16, and copy cells B16 and
D16 to B17--50 and D17--50.

(c) Then enter =($B$4*B15/$B$5)*($B$5-B15-$B$6*D15)-$B$7*B15 in
C15, and =($E$4*D15/$E$5)*($E$5-D15-$E$ 6*B15)-$B$7*D15 in
E15. These equations represent Eqns 17.5 and 17.6. Copy cells
C15 and E15 to cells C16--50 and E16--50.

4. You have now completed the simulation for 35 time steps. If more
time steps are required, the values in row 40 can be copied for as
many rows as you wish. Now make two graphs of the simulation.
First make an x--y plot where the x-series is B10 . . B50, and the
y-series is D10 . . 50. You will obtain a graph similar to the right-
hand graph of Fig. 17.4. Label the axes as N1 and N2. Second, make a
graph of population size versus time, and so the x-axis is A15 . . A50,
and the 1st series B15 . . B50 and the 2nd series is D15 . . D50.

5. Follow the exercises as laid out in the text. When you have finished,
save and exit the spreadsheet.



Chapter 18

Predation

We typically think of predators as animals that kill and eat other ani-
mals, such as lions eating zebra, or spiders eating flies. These are true
predators that consume prey animals to obtain food for their own sur-
vival and reproduction. However, there are other types of predators
that have some but not all of the features of true predators. These
include parasitoids, which are hymenopterans or dipterans that are
free-living in the adult stage, but whose larvae live in or on other
arthropods (usually insects), doing little harm at first but eventu-
ally consuming and killing the host just prior to pupation. There are
also plant and animal parasites that live in an obligatory relationship
with another species, and harm their hosts, but usually do not kill
it. Then there are animals that eat plants, the herbivores. Seed-eating
herbivores act like true predators, because they consume all of their
‘prey’. Others act rather like parasites, because they live in close as-
sociation with the plant and derive their nourishment from it (e.g.
aphids). However, the majority of herbivores only consume a part of
the plant, and their detrimental effects can be very variable. Partial or
complete defoliation of a plant may have a large effect on the plant’s
fitness, by reducing its growth rate and seed production, and possi-
bly leaving the plant more vulnerable to attack by plant pathogens.
For some pasture plants, however, a moderate amount of grazing may
have beneficial effects, by preventing the invasion of taller plants that
would overshadow and eliminate the shorter pasture plants.

Although the four categories above are distinct, they have many
features in common and so we will be using the words predation and
predator in a general sense. Generally, predator and prey populations
influence each other’s growth, and so their growth is coupled in some
way. There have been many attempts to model the growth of predator
and prey populations, and we will examine some of them in this
chapter.

18.1 The Lotka–Volterra model of predation

In addition to modelling interspecific competition, Alfred Lotka and
Vito Volterra also independently modelled the growth of predator and
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prey populations in the mid-1920s. They argued that the growth of
the prey (H) and predator (P) populations could be described by the
following pair of equations:

δH

δt
= rH − aHP (Eqn 18.1)

δP

δt
= cHP − dP (Eqn 18.2)

where r is the intrinsic rate of natural increase of the prey, H is the
number of prey, P is the number of predators, a being the attack rate
of the predators, c is the conversion rate or efficiency of converting
prey biomass into predator offspring, and d is the death rate of the
predators.

When we examine these equations, we soon see that they include
some peculiar features or assumptions.

1. The prey population (Eqn 18.1) grows exponentially in the absence
of predation (i.e. when aHP = 0, δH/δt = rH). It would seem more
reasonable to describe the growth of the prey population in the
absence of predation by the sigmoid growth equation.

2. The number of deaths due to predation (aHP) is a constant fraction
of the product of predator and prey densities, and so would be the
same if there were 100 prey and 1 predator or 100 predators and
1 prey. It is as if the predators and prey move about at random,
in which case their encounter rate would be the product of their
densities, and a constant fraction (a) of these encounters results in
predation. We will see later that the form of this function varies
according to such factors as the hunger or degree of satiation of a
predator.

3. The rate of increase of the predator (Eqn 18.2) is directly linked
to the efficiency of converting prey biomass into predator off-
spring (note that cHP is proportional to aHP), and so there are
no other limits to predator growth, such as territoriality (i.e.
space).

4. The death rate (d) of the predator is also constant, and it would
seem more reasonable to make it a function of the amount of food
eaten.

Both Lotka and Volterra were probably aware of many of these
shortcomings, but they deliberately developed these equations to ob-
tain a desired result. To determine the outcome of their predation
model, we follow the approach used to analyse their competition
model. First, we derive the zero isoclines, i.e. the equilibrium popula-
tion sizes when the predator and prey populations are not changing
in size. For the prey population, when δH/δt = 0, aHP = rH, which
simplifies to:

P = r/a (Exp. 18.1)

Thus, the number of predators (P) required to hold the prey pop-
ulation in equilibrium is related to the growth rate of the prey
and the attack rate of the predator rather than prey density, which
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Fig. 18.1 Predator and prey zero
isoclines as predicted by the
Lotka–Volterra predator–prey
model. Arrows show the changes
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seems unrealistic. If the number of predators is greater than r/a
the prey population will decrease in size, and if the number of
predators is less than r/a the prey population will increase in size
(Fig. 18.1).

Similarly, for the predators δP/δt = 0 when cHP = dP, which sim-
plifies to:

H = d/c (Exp. 18.2)

Thus, the predator population is held in equilibrium by a fixed
number of prey, irrespective of predator density, which also seems
unrealistic. If the number of prey is greater than d/c the predator
population will increase in size, and if the number of prey is less
than d/c the predator population will decrease in size (Fig. 18.1).

The two zero isoclines intersect at right angles when the two
graphs are superimposed (Fig. 18.2), and the model predicts that there
will be sustained oscillations in the numbers of prey and predators
(Fig.18.3). The predator oscillations lag one-quarter of a cycle behind
the prey, so that the change in predator numbers at any time reflects
the change in prey numbers in the preceding quarter of the cycle
(Fig. 18.2).

Lotka and Volterra concluded that these oscillations were a di-
rect consequence of the interaction between the two species. How-
ever, in view of the rather strange assumptions of the model, there
is good reason to believe that they constructed it in a form that
would give rise to sustained oscillations. We are not sure why they
did this, but perhaps they were aware of the sustained oscillations
in lynx (Felis lynx) and snowshoe hare (Lepus americanus) populations



SIMULATING THE LOTKA–VOLTERRA MODEL 295

Prey

Predators

Time (t)

N
um

be
r

Fig. 18.3 Sustained oscillations
of predator (solid line) and prey
(dotted line) populations according
the Lotka–Volterra model.

that occurred in Canada, revealed by the Hudson Bay records of
pelts of these animals from the 1820s onwards (Elton and Nicholson
1942).

We will simulate the Lotka--Volterra predation model to show
these oscillations, and to illustrate another peculiar feature of the
model.

18.2 Simulating the Lotka–Volterra
predation model

If you follow the procedure for simulating the model, as outlined
in Appendix 18.1, the resulting graphs do not resemble Figs. 18.2
and 18.3. This is because we converted the differential Eqns 18.1
and 18.2, which are for infinitesimally small time steps, into dif-
ference equations with a time step of one unit. This was done for
our other simulations in previous chapters, and our approximations
have been acceptable, but this time we find that the model is very
sensitive to time lags. There is an exponential function (rH) in Eqn
18.1, which results in the explosive increase of the prey. The im-
pact of predators on prey numbers occurs after too long of a time
increment (i.e. there is a long time lag), and so the predator--prey
oscillations increase in amplitude extremely rapidly. Do the follow-
ing exercises to make the simulation resemble the Lotka--Volterra
model more closely, and to explore some of the features of the
model.

1. The differential equations can be better approximated by making
smaller time increments for our calculations, and this is done by
reducing the value of the time step (δt) in cell E3. For example,
change the value of E3 from 1 to 0.1, which is equivalent to taking
10 time steps to calculate each step in our original simulation.
When you do this, you obtain a series of oscillations which increase
in amplitude, but more slowly than in our initial simulation. Now
decrease the value of the time step (E3) to 0.01, which is equivalent
to taking 100 time steps to calculate each time step in our initial
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simulation. You will see that in this case you obtain sustained
oscillations that are very nearly stable. If we further decreased the
value of the time step (δt), we could approximate the differential
equations even more closely, but we would require many more
time steps to see the results.

2. Now vary your starting values in cells B10 and C10 and see that
there is a unique oscillation associated with each pair of starting
values. If we set the values of H and P to the values given in cells
F10 and G10, there are no oscillations. Now increase these starting
values by one to obtain small oscillations. The oscillations increase
in amplitude the greater the difference between the starting values
and the values in F10 and G10. Thus, the Lotka--Volterra model
predicts that the amplitude of the oscillations in predator and prey
numbers is determined by the initial numbers of the predator and
prey.

3. What happens if a non-specific mortality factor, such as a pesti-
cide, increases the mortality rate of both the predator and prey
populations? In this case, the value of r decreases in Eqn 18.1 and
the value of d increases in Eqn 18.2. To explore this situation, first
set the value of B10 to 50 and the value of C10 to 10. Check the
oscillation in numbers of both the predator and prey populations,
and note that the prey zero isocline (P in cell F10) has a value of
20, and the predator zero isocline (H) has a value of 40, assuming
that you are using the last set of parameters in exercise 1. Now
decrease the value of r from 0.5 to 0.45, then 0.4, and finally to 0.2
(in cell E4) and at the same time increase the value of d from 0.6
to 0.66, then 0.72, and finally to 0.96 (in cell E7). This simulates an
increase in the mortality rate of both populations. In response, the
prey zero isocline declines in value and the predator zero isocline
increases in value, and the net effect is that the average size of
the prey population increases and the average size of the predator
population decreases. Thus, the model predicts that if the growth
rate of the prey population is reduced there is a corresponding de-
crease in the size of the predator population, whereas if the death
rate of the predator is increased there will be an increase in the
average size of the prey population.

18.3 Laboratory experiments

Gause (1934) was inspired by the theoretical work of Lotka and
Volterra on the interactions between species. He tested the predic-
tions of their predator--prey model, just as he had tested the predic-
tions of their model for interspecific competition. He used two ciliate
protozoans; Paramecium caudatum as the prey and a suctorian Didinium
nasutum as the predator (Fig. 18.4).

In the first experiment (Fig. 18.4a), Gause introduced a few Parame-
cium into an oat medium, which contained bacteria on which the
Paramecium fed, and two days later introduced a few Didinium which



LABORATORY EXPERIMENTS 297

(a) Homogeneous microcosm
without immigration

0

20

40

60

80

100

120

Prey

Predator

Time (days)

N
um

be
r

(b) Heterogeneous microcosm
without immigration

0

20

40

60

Prey

Predator

Time (days)

N
um

be
r

(c) Homogeneous microcosm with
immigrations

5 10 15 20
0

20

40

60

Prey

Predator

Time (days)

N
um

be
r

Fig. 18.4 A schematic
representation of the results of
Gause’s experiments in the
interaction between Paramecium
caudatum (prey) and Didinium
nasutum (predator). (Data from
Gause 1934.)

fed on the Paramecium. The results were always the same, and ap-
peared to be independent of the size of the microcosm. The Parame-
cium rapidly increased in numbers at first, but once Didinium was
introduced and began to increase in number, the Paramecium were
quickly devoured. Eventually all the Paramecium were eaten, and then
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the Didinium starved and perished. The best that one may claim is a
single oscillation in numbers of the predator and prey. Gause con-
cluded that there was no innate periodic oscillation in numbers of
Paramecium and Didinium in this simple system.

Gause then introduced a prey refuge for the Paramecium, in the
form of a sediment that Paramecium could enter and not the Didinium
(Fig. 18.4b). The Didinium rapidly consumed all of the Paramecium swim-
ming in the medium, but could not eat those in the sediment. The
predators starved for lack of food, after which the Paramecium emerged
from the sediment and took over the whole of the microcosm. Again,
there was no series of oscillations.

Finally, Gause established a simple microcosm, in which one
Paramecium and one Didinium were introduced every third day. This
was to simulate immigration from other populations of these species.
In this situation there were sustained oscillations in the numbers of
predators and prey (Fig. 18.4c).

Gause (1934) concluded that the oscillation of predator and prey
was not an innate characteristic of the interaction between the two
species, but depended on movement of prey and predators from one
part of the system to another. He envisioned that predators and prey
‘played’ a gigantic game of hide-and-seek in the real world. A local
patch of prey would build up its numbers before being discovered
by a predator population which would rapidly decimate the prey
population and might even exterminate it. Before this happened, how-
ever, the prey population would have dispersed emigrants to start new
populations elsewhere, and they in turn would build up their num-
bers before being discovered by the predator. Thus, one can think of
local oscillations, which may be very extreme and might result in
the local extermination of both prey and predator, but if the species
were sufficiently widespread, the interaction between the two species
could persist and overall the numbers of the two species would vary
much less.

Huffaker (1958) and Huffaker et al. (1963) conducted a classical se-
ries of experiments with a prey mite, Eotetranychus sexmaculatus, which
feeds on the skins of oranges, and a predator mite, Typhlodromus occi-
dentalis. Trays of oranges, with various portions of their surface areas
exposed, were presented as food for the prey mites and the predatory
mites were introduced to feed on the prey mites. In simple systems
the results were similar to those observed by Gause for ciliate pro-
tozoa. There was a single oscillation where either the prey and the
predatory mites became extinct (similar to Fig. 18.4a), or a few prey
mites survived and eventually recovered their population size (similar
to Fig. 18.4b). The lack of persistence of the predator--prey system was
not altered by simply increasing the size of the system. If the prey was
given a dispersal advantage over the predator, by providing launch-
ing platforms from which they could disperse on silken strands (the
predatory mites cannot disperse using this method), the predator--
prey system persisted for longer periods. For example, a 120-orange
‘universe’ persisted for more than seven months, during which time
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there were three classical predator--prey oscillations (Huffaker 1958),
and a 252-orange ‘universe’ persisted for 490 days and was only ter-
minated because a viral disease reduced the prey mites to a level that
was insufficient to maintain the predatory mite population. Thus,
Huffaker’s results tend to support the Gause’s conclusions. The ex-
perimental ‘universe’ was populated by several subpopulations which
were out of phase with one another. Provided the prey could disperse
faster than the predator, the overall population could be maintained,
even though individual subpopulations became extinct as a result of
predation.

Similar results were also obtained by Pimental (1961), Pimental
et al. (1963) and Pimental and Stone (1968) using the housefly (Musca
domestica) as prey, and a hymenopteran parasite, Nasonia vitripennis, as
the predator. Nasonia feeds on body fluids from both the adult and
pupal stages of the prey, which is frequently killed by these attacks. A
‘universe’ was constructed, consisting of a number of interconnected
chambers in which subpopulations of Musca and Nasonia could de-
velop, and from which they could disperse to other chambers. The
host--parasite oscillations became more sustained the larger and more
complex they made the experimental system. If they provided a dis-
persal advantage to the prey, by placing baffles between chambers
which slowed the movement of Nasonia but not Musca, the system
also persisted longer. Interestingly, as the experiment progressed, the
prey (Musca) became increasingly resistant to parasitism by Nasonia,
and the latter became less virulent.

These experiments tended to support Gause’s conclusions that
predator--prey oscillations are not an innate feature of their inter-
action but are a result of the spatial distribution of prey populations
and the relative powers of dispersal of the predator and prey. Imag-
ine several subpopulations of prey increasing in size. Sooner or later
they are discovered by predators that build up their subpopulations
in response, and which eventually cause a decrease in size of the prey
subpopulations, i.e. an oscillation. The predators may exterminate the
prey subpopulation before dispersing to find other prey subpopula-
tions, or they may disperse when the prey subpopulation reaches a
size when it is no longer profitable to hunt them. Meanwhile, some
of the prey will have dispersed to start new subpopulations, and so
there is a game of hide-and-seek with the predator one step behind
the prey.

While this may happen in some predator--prey systems, it is cer-
tainly not universal. In some cases, there are regular oscillations of
predator and prey. For example, the parasitoid wasp Heterospilus proso-
pidis and the bean weevil (Callusobruchus chinensis) (its host) oscillated
for six years in a small experimental system (Utida 1957). In other
cases, the predator and prey appear to have little effect on each other’s
density. For example, tawny owls (Strix aluco) feed on wood mice (Apode-
mus sylvaticus) and bank voles (Clethrionomys glareolus). Large changes in
prey density appear to have no effect on the density of the owls, al-
though their breeding is affected (Southern 1970). Clearly, what is
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Fig. 18.5 The predator and prey
zero isoclines as proposed by the
Rosenzweig and MacArthur
graphical model. Arrows indicate
the changes in the numbers of prey
and predators. Compare to
Fig. 18.1.

needed is an approach that will allow us to model a wide variety of
predator--prey interactions to allow for, and explain, these different
outcomes. One such model is the graphical model of Rosenzweig and
MacArthur (1963). This model is of immediate appeal to most stu-
dents because there are no mathematical equations; rather it makes
arguments for the shape of the predator and prey zero isoclines on
logical grounds, and then infers the outcome of different predator--
prey interactions.

18.4 The Rosenzweig and MacArthur graphical
model of predation

You will recall that the Lotka--Volterra model predicts that the prey
zero isocline is a horizontal line (Fig. 18.1). Rosenzweig and MacArthur
(1963), however, argued that the prey zero isocline should be dome-
shaped (Fig. 18.5) based on the following line of reasoning. If the
prey population was growing according to the logistic equation, the
predator population would have to consume the increase in the prey
population, as predicted by Eqn 5.2, to hold the population in check.
This increase of the prey population has a parabolic shape in rela-
tion to prey density (Fig. 5.2), and so this should be the shape of the
prey zero isocline. Thus, the largest number of predators could be
sustained at half the carrying capacity (K/2) of the prey population,
and higher and lower prey densities could sustain fewer predators.
Even if prey population growth is not exactly logistic, it is likely that
the largest increase in size occurs at intermediate densities, and so
the prey zero isocline would still be dome-shaped.

Similarly, the predator zero isocline is unlikely to be a vertical
straight line, as predicted by the Lotka--Volterra model, because a fixed
number of prey cannot keep a predator population at equilibrium at
all predator densities. Rosenzweig and MacArthur argued that the
predator zero isocline would slope up and to the right to reach the
carrying capacity of the predator (Fig. 18.5). They reasoned that there
would be a minimum prey density required to support a predator
population (the intercept on the prey axis), and increasing compe-
tition between predators as their density increases would require a
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Fig. 18.6 Predator–prey
interactions according to the
Rosenzweig and MacArthur
graphical predation model. The
predator exploits the prey
population at high (a), intermediate
(b) and low (c) population
densities (see text). The + and −
symbols indicate whether the
populations are increasing or
decreasing, and the first symbol
refers to the prey and the second
to the predator population.

greater prey density to sustain them. The steepness of the curve would
depend on the intensity of the competition between predators. The
carrying capacity of the predator is usually set by something other
than prey density, such as the availability of nest sites.

When the zero isoclines of the Rosenzweig and MacArthur model
are combined there are different outcomes, depending on how they
intersect one another (Fig. 18.6). There are three types of predator--prey
oscillations predicted by the graphical model. If the predator doesn’t
exploit the prey until the prey is near its carrying capacity, there
will be damped oscillations (Fig. 18.6a), reaching a stable equilibrium
at the intersection of the two zero isoclines. If the predator exploits
the prey at intermediate prey densities and the two zero isoclines
intersect at the peak of the prey zero isocline, there are sustained os-
cillations (Fig. 18.6b) similar to those predicted by the Lotka--Volterra
model. Finally, if the predator can exploit the prey population at
very low prey densities, the oscillations increase in amplitude and
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(a) (b)Fig. 18.7 Limiting the amplitude
of oscillations (a) by the provision
of a prey refuge where the prey
are protected from predation, or
(b) by limiting the carrying capacity
of the predator. Symbols as
explained in Fig. 18.6.

ultimately result in the extinction of either the predator or both the
prey and predator (Fig. 18.6c).

Unstable interactions of the predator and prey can be stabilized
either by providing the prey with a refuge where they are protected
from predation, or by reducing the carrying capacity of the predator
(Fig. 18.7). It may be seen that these changes to the system serve to
impose a limit on the amplitude of the predator--prey oscillations,
and so the systems may be sustained indefinitely.

18.5 The functional response of predators

So far we have focused on trying to explain the coupled oscillations
of predator and prey numbers that are frequently, but not always,
observed. We can think of this as a preliminary look at the numerical
response of the predator to changes in prey density, as well as the
response of the prey to changes in predator density. The predator--prey
interaction can also be studied in terms of the functional responses
of the predator to changes in prey density, first described by Solomon
(1949), and to changes in predator density. The functional responses
determine how the number of prey attacked per predator changes in
relation to both prey density and predator density. These functional
responses are influenced by the characteristics of both the predator
and the prey and have been investigated in detail by Crawford Holling
(1959a, 1959b, 1961, 1963, 1964, 1965, 1966), whose terminology will
be followed here.

18.5.1 Functional responses of predators to
changes in prey density

This type of functional response examines how the number of prey
eaten per predator changes in response to changes in prey density.
There are a variety of possible responses of this sort, and Holling
has classified them into four types (Fig. 18.8), which we will discuss
in turn to identify the particular components (i.e. predator and prey
characteristics) that determine the form of these relationships.
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Fig. 18.8 The four types of
functional responses of predators
to changes in prey density. (After
Holling 1961.)

The Type 1 response
The number of prey attacked or eaten per predator increases linearly
as the prey density increases, and then abruptly levels off at some
upper limit (Fig. 18.8). This is a form of response that is typical of
filter feeders. At low prey densities, the number of prey eaten by a
predator is determined by the filtering rate, the exposure time (i.e.
time spent feeding) and the prey density. If the filtering rate and time
exposed remain constant, the number eaten will double if the prey
density doubles because it is just as easy to filter two prey items as
it is to filter one. However, as the prey density increases, at some
point the ingestion rate reaches its maximum capacity and the re-
sponse abruptly levels off, presumably by alteration of the filtering
rate. Holling considered the time required to ingest the food to be
equivalent to a component called ‘handling time’, which in this case
only exerts its effect at high prey densities. Holling concluded that
there were three basic components which determined the form of
the functional response: the exposure time (the duration of feeding
activities) and the searching rate (i.e. the filtering rate in this case),
which operated at low prey densities, and at higher prey densities
there was the sudden addition of the third component of handling
time.

The Type 2 response
As the prey density increases, the number of prey attacked per preda-
tor increases at a slower and slower rate until it eventually levels off
(Fig. 18.8). This is a very common form of functional response, which
is also determined by three basic components; the exposure time,
the searching rate and the handling time. The first two components
are defined in a similar way as in the Type 1 response. The handling
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time, however, includes the time to pursue, subdue and eat each prey
item individually, as well as the time the predator takes to prepare
itself to look for more prey. As prey density increases, more prey is
consumed, and more of the exposure time is taken up by the han-
dling time, until at high prey densities the predator spends all of its
time handling prey (i.e. number of prey eaten × handling time =
the exposure time). This description is accurate for an insatiable
predator, and has been observed for the belostomatid bug Lethocerus
attacking tadpole larvae. In most cases, however, the function will
level off below this theoretical limit because the predator becomes
satiated. Holling added a fourth component, hunger, to account for
this, and proposed that this component could be included by mak-
ing the handling time a function of hunger. As the predator becomes
more and more satiated, the handling time becomes longer, because
the predator takes longer to consume the prey and prepare itself to
look for more prey. The result is that the curve will level off below
that of an insatiable predator, but the general form of the response
is not altered.

The Type 3 response
This response resembles a sigmoid growth curve, where the number
of prey attacked per predator increases at an increasing rate at low
prey densities, but at a decreasing rate at higher densities until it
levels off (Fig. 18.8). The last part of the curve, where the slope is
decreasing, is explained in the same way as the Type 2 response. The
first part of the curve, where the slope is increasing, is explained
by changes in the behaviour of the predator which increase their
efficiency of attacking the prey. There are several aspects of predator
behaviour that may change, and we will consider these in turn.

First, there may be a change in behaviour which Holling has called
the stimulation of searching by prey discovery. When a predator dis-
covers a particular prey item, it frequently changes its behaviour to
search actively for that type of prey. For example, in a cage where
there are twigs on the floor, captive birds pay little attention to
the floor after an initial exploration of the cage environment. If ge-
ometrid caterpillars, which resemble twigs, are placed on the floor
of the cage, on discovering this prey item the birds will immediately
start to search through the twigs looking for further prey. At low prey
densities they may lose interest because their search is not rewarded,
but as the prey density increases they discover further prey items
before they lose interest, and so this activity is reinforced. This activ-
ity may also include the development of a systematic search pattern,
so that the predators become more effective in searching through
an area. In addition, the predators may also develop a search image
where they become better at locating camouflaged or concealed prey.
The net effect of these changes in behaviour is that the searching rate,
and the ability to locate prey, increase as the prey density increases.
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Fig. 18.9 (a) Predator switching
by guppies given a choice of feeding
on fruit flies or tubificid worms;
and (b) showing the speed at
which the switch occurs when the
proportion of tubificids increases
from 0.2 to 0.8 at three-day
intervals. (From Murdoch and
Oaten 1975, with permission.)

Second, with practice the predator becomes better at capturing
and subduing its prey. Thus, the more a particular prey item is at-
tacked and eaten, the more efficient and successful the predator be-
comes at eating that type of prey. As a consequence, the proportion of
successful attacks increases, thereby increasing the attack rate, and
the handling time decreases, which leaves more time to search for fur-
ther prey. Again, these changes in behaviour are related to changes
in prey density.

Finally, as the density of the prey increases, it may pay a preda-
tor to switch from a less abundant prey type to the more abundant
prey type. This is known as predator switching and will also result
in a Type 3 response. In order to switch from one type of prey to an-
other, the predator may have to learn a new set of search, attack and
subduing skills like those we have just discussed. The switch in prey
preference is shown for guppies (Poecilia reticulata) given a choice of
fruit flies (Drosophila) and tubificid worms as prey (Fig. 18.9).

The Type 4 response
The first part of the curve may correspond to any of the previous types
of functional responses, and so we are solely concerned with the re-
duction of the number of prey attacked or eaten that is sometimes
observed at high prey densities (Fig. 18.8). There are four possible rea-
sons for this reduction. First, in the case of filter feeders with a Type 1
functional response, the filtering mechanism may be swamped and
become clogged at extremely high prey densities. Consequently, the
predator may spend time cleaning and freeing its filtering apparatus
and so spend less time feeding. Second, predators may become con-
fused, or less able to focus on an individual prey item, when there
are many prey to choose from. For example, when goldfish (Carassius
auratus) try to attack an individual Daphnia in dense swarms, they
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become confused and distracted by other Daphnia that enter their line
of vision, and eat less prey than when fewer Daphnia are present. Simi-
larly, one of the functions of fish schooling is to make it more difficult
for predators to single out individuals for attack. Third, some prey
may co-operate or share the load of looking out for potential preda-
tors and warning others of their presence. For example, large herds
of ungulates are less vulnerable to attack by lion than small groups
because they are more likely to detect the predator and take appro-
priate evasive action. Finally, large numbers of prey may intimidate
or even be able to defend themselves against attack by some preda-
tors. For example, buffalo (Synceros caffer) have been known to drive
off and even kill a lion (Panthera leo) that is trying to attack them.

18.5.2 Functional response of predators to changes in
predator density

A second type of functional response concerns how the number of
prey eaten per predator changes in response to changes in predator
density. Holling identified two such responses (Fig. 18.10) which we
will discuss in turn.

Competition for food increases as the density of the predators
increases and results in a decrease in the number of prey eaten or
attacked per predator (Fig. 18.10a). There are two components of this
competition: exploitation and interference (see section 17.2). Exploita-
tion means that prey consumed by one predator are unavailable to
another, and similarly parasites and parasitoids find less unexploited
prey to attack as the predator density increases. Interference competi-
tion can have stronger effects and include such activities as predators
fighting for the same prey item, or predators establishing feeding ter-
ritories to defend rich sources of food. Such behaviour reduces the
time available for searching for prey with the result that fewer prey
are eaten as the density of the predator increases.

There are some cases in which the number of prey eaten per preda-
tor increases at low predator densities, but then decreases once the
predator density increases beyond a certain density because of the
increasing competition between predators (Fig. 18.10b). The initial in-
crease probably occurs in most of the social carnivores that hunt prey
which are difficult to capture and kill. For example, the adult females
in a pride of lions co-operate with one another when they hunt large
ungulates. They may attack the same prey individual from different
directions so that the prey is less able to defend itself, and in some
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cases a lion may steer potential prey towards an area where other
members of her pride are lying in ambush. In this way, a large pride
will be more successful than a small pride when attacking animals
like buffalo, wildebeest or kudu. Wolves also co-operate when hunting
for caribou, moose and elk, by taking turns at leading when tracking
their prey through snow in winter, thereby reducing individual fa-
tigue, and by attacking the prey from different directions when they
finally corner them.

The initial increase in the rate of predation may also be a result of
group stimulation. For example, a bird feeding on small invertebrates
on the seashore, or on worms in an area of lawn, may be observed by
other birds which are then attracted to feed in the same area. What
this does is to increase a predator’s area of perception, because the
predator may not only detect prey directly but may detect prey by
observing the behaviour of other predators. An extreme example of
this effect is provided by vultures (Accipitridae) which change their
flight to a very characteristic circling pattern when they detect a dead
or dying animal. This attracts other vultures which circle in a cluster
which is visible for very long distances. In the case of a dead elephant
a few hundred vultures may gather before descending to feed. One
may ask why the vultures display this behaviour and why an individ-
ual doesn’t discretely fly down and feed on the dead animal. There
are two reasons for this. Some species of vultures are unable to open
up a carcass to feed, and so they attract a species that will do this
for them. However, there is also safety in numbers, because once a
vulture has gorged itself on meat it is unable to fly until the meal is
digested and becomes vulnerable to attack by other predators.

18.6 Predation and evolution: prey characteristics
that reduce the risk of predation

Predators tend to select prey types that are easy to catch and sub-
due, and avoid prey types that are distasteful or noxious in some way.
Thus, predation acts as a powerful selective force on the character-
istics of prey, which have responded by evolving a whole variety of
ways to reduce the risk of predation. Predation, however, is only one
of a whole range of selective forces operating on prey populations.
Selection balances the risks and benefits of the different selective
pressures, which may oppose each other at times. For example, prey
may have to increase the risk of predation in order to feed themselves
and not starve to death. Consequently, we need to keep this sort of
balance in mind and avoid looking at prey characteristics from the
single perspective of reducing the risk of predation. It is easy to reach
false conclusions, and so where possible it is important to test if the
characteristic really does reduce the risk of predation. The following
review is not exhaustive, and the various defence mechanisms could
have been grouped in other ways.
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1. Hiding. Some prey avoid detection by living in holes or crevices.
Some may live all of their life concealed in this way, but others
may need to emerge from their hiding place in order to feed. Ex-
amples include many small mammals that live in burrows in the
ground, fish that live in crevices in coral reefs, shellfishes that
live in sediment and insects that live under the bark of trees. Of
course, these animals may live in such places for reasons other
than avoiding predation. For example, insects may be feeding on
the living cambium layer that lies immediately beneath the bark,
and small mammals can create a warm microclimate in their bur-
rows, which reduces the amount of energy they need to consume
in order to keep a constant body temperature. Concealment does
not provide total protection against predation, because some preda-
tors are adapted to search out these types of prey. For example, the
body-shapes of snakes and weasels allow them to enter the burrow
systems of small mammals and attack the prey there, and the
beaks of some birds are adapted to allow them to search through
sediments for shellfish, or to penetrate bark to discover the insects
hiding there. However, this method of concealment does reduce
the potential range of predators to which the prey are exposed.

2. Camouflage. Prey may hide in another way, by using camouflage
to avoid detection. It is a very effective method, as the following
experience demonstrates. I was carefully scouring the ground look-
ing for signs of small mammals in Kenya when I almost stepped on
a black-faced sandgrouse (Eremialector decoratus) incubating its eggs
(Fig. 18.11). It took off at the last second, thoroughly scaring this
potential predator, who had no idea of its presence. The disruptive

Fig. 18.11 Black-faced
sandgrouse on nest. Inset: a pair of
sandgrouse showing disruptive
coloration. (Photographs by the
author.)
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Fig. 18.12 Selection of
background colour by 12 white
moths in Merrit, British Columbia.
Eleven of the 12 moths chose the
white stripe on the bright red van.
(Photograph by Vanessa Bourhis,
with permission.)

coloration of this bird helps to break up its body outline so that
it blends with its surroundings, and its concealment is aided by
keeping perfectly still.

The evolution of camouflage was briefly considered in
Chapter 3, and the strong selection pressure on body colour in
the peppered moth (Biston betularia) as a result of bird predation
was documented in Chapter 11. In this last example, we noted that
birds selected the most conspicuous individuals as they rested on
the trunks of trees, with the result that in polluted areas most of
the moths were black, whereas in non-polluted areas most of the
moths were a light, speckled colour. The use of crypsis to avoid
detection also requires appropriate behaviour. Prey must select ap-
propriately coloured backgrounds to match their body colour, and
may even have to orient themselves so that patterns of markings
on the body match the direction of background marks (e.g. hori-
zontal lines on birch bark). One can test to see if prey exhibit this
appropriate behaviour by presenting a choice of backgrounds to
see which ones are selected. An unintentional experiment of this
sort is illustrated in Fig. 18.12. It is also important that cryptic prey
remain stationary or move very slowly during daylight, otherwise
they become more noticeable to predators. Many cryptic prey space
themselves out so that they are more difficult to find. If a predator
accidentally discovers a well-camouflaged item of prey, it has less
chance of finding another if they are well spaced, compared to the
situation where the prey are clumped together.

There is a tendency to concentrate on spectacular examples of
camouflage where detection is exceedingly difficult. However, we
should recognize that even relatively poor camouflage may reduce
the risk of predation, because predators do not have perfect vision
and cannot scan all of their surroundings with equal efficiency.
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3. Warning coloration. Some species appear to advertise their pres-
ence with bright body colours. These may be examples of warn-
ing coloration, called aposematic coloration, that signal to preda-
tors that the organism is toxic, noxious or distasteful. This sug-
gests that distasteful species are more likely to be conspicu-
ously coloured than cryptic species, and indeed in one exper-
iment where different coloured insects were fed to Cercopithe-
cus monkeys only 17.8% of 101 cryptic insects were distasteful,
whereas 83.9% of aposematic insects were distasteful (Carpenter
1921).

Warning colorations are typically sharply contrasting stripes of
yellow and black, blue and red, orange and green, or some other
combination of these colours, and are very effective in deterring
attacks by many predators. Once a predator is stung by a wasp,
or eats a brightly coloured insect that causes it to vomit, it very
quickly learns to avoid similarly coloured organisms. Other preda-
tors may learn to avoid such noxious prey by observing the reaction
of the unlucky predator.

The rapid learning of avoidance of distinctively coloured prey
has been demonstrated by feeding birds flour-and-lard ‘caterpillars’
that are either red or blue in colour. The birds will eat both colours
equally, but if quinine is added to the red ‘caterpillars’ the birds
rapidly learn to avoid eating the distasteful red type. Moreover,
if the ‘caterpillars’ are all made half red and half blue, the birds
carefully eat the blue half and leave the red half of the ‘caterpillar’.

If the warning colorations of different species are similar,
the load of educating predators may be shared between them.
Predators are also less likely to be confused, and should make
fewer errors in selecting palatable prey compared to the situation
where they are presented with a wide variety of warning colours.
Consequently, it is advantageous for noxious species to resemble
each other, at least in general coloration, and this convergence is
known as Müllerian mimicry. The similar striping and buzzing of
wasps and bees is a well-known Müllerian complex. A predator that
has been stung by a wasp will avoid other species of wasps, as well
as avoiding similarly coloured bees.

Although aposematic coloration is an effective predator deter-
rent, there are predators that specialize in eating these noxious
types of prey. For example, the bee-eaters of Africa, southern Asia
and Australia are a group of birds that eat Hymenoptera, and are
insensitive to their stings. Similarly, grosbeaks in North America
can eat the monarch butterfly (Danaus plexippus), because they are
insensitive to the noxious cardiac glycosides they contain, whereas
other species of birds will vomit and show other signs of distress
if they eat them. Obviously, predators that can break this form of
predator defence have little difficulty in finding their prey, and the
latter must rely on other predator defences to reduce the risks of
predation by these specialists.
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Table 18.1 The results of an experiment on Batesian mimicry. Toads were either first offered stinging hon-
eybees followed by palatable droneflies (experimental group) or only offered droneflies (control group). Both
groups were also offered mealworms. The number and percentage eaten, and the number rejected are shown
for each food item

Alternative food
Model (honeybees) Mimic (droneflies) (mealworms)

Eaten Rejected Eaten Rejected Eaten Rejected

Experimental toads 36 (45%) 44 26 (43.3%) 34 140 0
Control toads – – 110 (75.5%) 30 140 0

Source: From Brower and Brower (1966).

4. Batesian mimicry. There is another form of mimicry, called Bate-
sian mimicry, where a palatable species (the mimic) closely resem-
bles a noxious species (the model). This is a case of false adver-
tising. Examples of this form of mimicry include hover flies that
mimic wasps, and the classic case of the viceroy butterfly (Limenitus
archippus) which mimics the unpalatable monarch butterfly. Sev-
eral experiments have shown that such mimics have a reduced
risk of predation because the predators confuse them with nox-
ious species (the models). For example, Brower and Brower (1966)
first offered stinging honeybees to a group of toads, and then
offered the same experimental group of toads a mimic (drone-
flies). A control group of toads was only offered the mimic (drone-
flies). Both groups of toads were also offered an alternative prey
type of mealworm. The results clearly show that the mimic is
eaten less if the predator had previous experience with the model
(Table 18.1).

In Batesian mimicry, the mimic obtains protection from pre-
dation at the expense of the model, because if a naive predator
first encounters the mimic it may later attack the model believing
it to be palatable. Typically, the mimic resembles the model very
closely in coloration, form and general habits. If it is not a good
mimic, predators will learn how to distinguish it from the model,
and there is little point in resembling an unpalatable species if
it does not occur at the same time and place as the model. The
density of the mimic will also be influenced by that of the model.
If a mimic is more abundant than the model, it will receive less
protection than if it is less abundant than the model. In one exper-
iment, birds were presented with mimics and models in different
proportions. When only 10% of the prey was distasteful (the model),
the predation of the mimics was reduced by 20% compared to the
controls, where all prey were mimics, but when 40% of the prey
was distasteful, the predation of the mimics was reduced by 80%.
The degree of protection provided by the model will also depend
on how noxious the model is. If a model is extremely noxious, it
will protect a large population of mimics because once a predator
has experienced the model it will be very reluctant to try eating
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Fig. 18.13 The tortoise retreats
into its shell when threatened
where it is safe from attack by
most predators. (Photograph by
the author.)

anything that resembles it, but if the model merely tastes some-
what unpleasant a predator may well try eating others to see if
they are more pleasant.

5. Anatomical defences. Large size makes some animals almost invul-
nerable to true predators, although not to parasitic attacks. There
are no natural predators of adult African elephants (Loxodonta
africana), other than humans, and it would be a foolhardy lion that
would attempt to attack an animal this size. Similarly, the presence
of weapons, such as horns, antlers and large canine teeth, can de-
ter a predator from attacking. For example, a colleague of mine
observed a leopard (Panthera pardus) preparing to attack a feeding
adult warthog (Phacochoerus aethiopicus) in western Uganda. At the
last moment, the warthog became aware of the leopard and turned
to face it. The leopard abandoned its attack, presumably because
of the risk of severe injury from the canine tusks of the warthog.

Other prey rely on more passive means to deter predators, such
as the armour of tortoises (Fig. 18.13), spines in such animals as
the sea urchins and the porcupine, and the thorns of plants. Some
animals appear to take advantage of the protection afforded by the
thorns of plants, to live in an area which cannot be penetrated by
certain types of predators (Fig. 18.14).

6. Behavioural defences: vigilance. So far we have considered a var-
iety of ways in which prey can reduce the likelihood of attack.
However, once a predator initiates an attack, the prey can reduce
the success of the attack, and evade capture in a variety of ways.
One common response is to take evasive action by running, flying
or swimming away. To do this, prey must be vigilant, using their
senses to detect a predator early in its attack so that they have suffi-
cient time to escape. We might expect vigilance to be related to pre-
dation pressure. It makes sense that vigilance would be low where
there is little risk of predation, compared to situations where the
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Fig. 18.14 The lesser bushbaby
(Galago senegalensis) is protected
from attack by raptors by living in
thorny Acacia thickets.
(Photograph by the author.)
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Fig. 18.15 Vigilance of impala
and wildebeest in low and high
predator conditions three to five
months after the reintroduction of
lion and cheetah which created the
high predator condition. (Data
from Hunter and Skinner 1998.)

risk of predation is high, because the time spent in being vigilant
might be more profitably employed in feeding or other activities.
Luke Hunter studied the relationship between predation pressure
and vigilance in two African ungulates, impala (Aepyceros melampus)
and wildebeest (Connochaetes gnou), in the Phinda Resource Reserve
in northern KwaZulu--Natal, South Africa. The Reserve was estab-
lished in 1990, and predation pressure was low because lion and
cheetah (Acinomyx jubatus) had been absent from the area for at
least four decades, and other large predators had been kept at very
low levels by hunting. In 1992, lions were reintroduced in March
and cheetah were reintroduced in May into half of the Reserve.
Hunter monitored the vigilance of the ungulates from August to
December in both halves of the Reserve, and observed that vigi-
lance approximately doubled during this time in the area where
lion and cheetah had been reintroduced, but remained constant
in the other half of the Reserve where these predators were absent
(Fig. 18.15).
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We might also expect the vigilance of individual animals to
be related to herd or group size, because as the size of the group
increases overall vigilance can be maintained even though each
individual spends less time scanning for predators. Hunter noted
a negative correlation between individual vigilance behaviour and
group size for impala and wildebeest at both predation levels. How-
ever, group size was not the reason for the difference in vigilance
between high and low predation levels (Fig. 18.15) because group
size was very similar in both areas. We might also expect that an-
imals on the edge of the herd would be more vigilant than those
near the centre of the herd, because they would be more likely
to fall victim to a predator. Again, this was shown to be the case
(Hunter and Skinner 1998), with animals at the front of the herd
showing the highest degree of vigilance.

Although Hunter showed that individual vigilance increased
as the predation pressure increased, as the group size became
smaller, and as individuals were closer to the edge of the herd,
it still remains to be proven that these changes in vigilance lead
to a reduction in the success of attacks by predators. Kenward
(1978) conducted an experiment on pigeons to show the effects of
group size and overall vigilance on predation success by goshawks
(Accipiter gentilis). He released a hungry, trained goshawk at a set
distance from wild flocks of woodpigeons (Columba palumbus). As
expected, the larger the flock, the sooner the pigeons detected the
goshawk and took flight, reducing the probability of the goshawk
making a successful attack. Thus, the risk of predation was re-
duced by increased group size, because of an overall increase in
vigilance.

7. Behavioural defences: alarm calls. Many animals that live in
groups give an alarm call when they detect a predator, to alert the
other members of the group. This raises two questions: wouldn’t
the individual’s chance of escape be better if it didn’t warn other
members of the group, and why draw attention to yourself, par-
ticularly to a predator, by giving an alarm call? These questions
can be answered by considering the example of Belding’s ground
squirrel, which gives specific alarm calls to identify different types
of predators. What follows applies to aerial predators and not to
ground predators. When an individual sees a hawk approaching, it
gives the hawk alarm call as it escapes, and all the other members
of the colony sprint for the nearest burrow. If an individual had
not alerted other members of the colony as it escaped, it would
have become more obvious to an aerial predator as the only moving
target compared to the situation where all members of the colony
madly dashed for cover. Thus, giving an alarm call actually helps
to disguise the caller, as it joins the mass confusion of rushing to
a burrow. In fact, Sherman (1985) has shown that callers are less
likely to be captured by a predator than non-callers, presumably
because they have a head start on the non-callers. Obviously, it
pays to be vigilant.
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8. Behavioural defences: group living. Living in groups also may
also reduce an individual’s chance of being attacked. We saw in
section 18.5.1 that although the number of prey attacked per
predator generally increases with prey density, the probability of
an individual being attacked only increases with prey density in
part of the Type 3 response (i.e. where the slope of the curve is
increasing with prey density). In all other cases, the chance of an
individual being attacked declines as the prey density increases,
and this is also true in the Type 3 functional response beyond
a certain prey density. We can think of this as a dilution effect,
where the capacity of a predator is swamped by the large num-
ber of prey. We saw in Chapter 16 that the highly synchronized
reproduction of bamboos and certain cicadas has been proposed
as a predator-swamping mechanism.

Animals may aggregate for purely selfish reasons, in what
Hamilton has called the ‘selfish herd’. The selfish herd principle
is where an individual improves its own survival at the expense
of other members of the group. Such aggregations may be quite
temporary in order to improve an individual’s chance of survival
at a critical stage in an organism’s life. For example, Adélie pen-
guins (Pygoscelis adeliae) have to ‘run the gauntlet’ of leopard seals
(Hydrurga leptonyx) when they leave the ice to go out to sea to feed.
The leopard seals tend to swim close to the edge of the ice, and
so the penguins typically gather in groups at the edge of the ice
and then jump en masse into the water when they swim to their
feeding grounds. The leopard seals can only eat a few penguins
in such a short time, and so most members of the group escape.
To conform to the selfish herd principle, an individual should try
to be in the centre of the group of penguins entering the water
because the first and last individuals presumably have a lower
chance of survival. Similarly, in herds of African ungulates one
might expect individuals to avoid being at the edge of a herd
where the risk of predation by large carnivores is greatest.

9. Behavioural defences: mimicking the behaviour of a noxious
species. There are cases where the prey may suddenly mimic a
noxious species if the predator gets very close, which may so
startle the predator that it abandons it attack, giving the prey
time to escape. I have observed this type of behaviour in a plated
lizard (Gerrhosaurus sp.) in Zimbabwe. Normally, if the lizard is
approached, it will run away and escape long before you get very
close to it. However, if you surprise the lizard it wriggles just like a
snake, causing one to step back in alarm, at which point it rapidly
runs away. I was repeatedly fooled by one individual in this way,
and found it very difficult not to recoil in alarm.

10. Behavioural defences: attacking the predator. Even when a preda-
tor successfully captures its prey it may not necessarily eat it.
Some prey use chemical deterrents when attacked. For example,
the bombardier beetle (Brachinus sp.) sprays a boiling mixture of
hydroquinones and hydrogen peroxide at predators. Similarly, the
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skunk (Mustelidae) emits a very powerful odour which has much
the same effect as teargas. Other prey may try to fight off an at-
tack by a predator using whatever weapons they may have, such
as teeth, horns, antlers and hooves. Whilst many such attempts
are futile, the scars on some survivors show that this method of
last resort is occasionally successful.

11. Behavioural defences: diverting the attack. Some prey escape be-
ing consumed by misdirecting predators so that they attack a
non-vital part of the body. Some fish and butterflies have false
eyes or heads at the tail end of the body, and if this part of the
animal is attacked it gives the prey a chance to escape. Some
lizards use their tail as a decoy. It may be brightly coloured to
attract attention, and the tail may break off and wriggle on the
ground when the animal is attacked. This attracts the predator’s
attention very effectively, giving the animal time to escape.

As this brief survey shows, prey have evolved a wide range of meth-
ods to reduce the risk of being eaten by predators. At the same time,
predators have evolving ways of increasing their chances of catching
and eating their prey, but that is another story. Thus, there is a co-
evolution of predator and prey, where each improvement in predator
avoidance by the prey leads to enhanced prey-capture skills by the
predator.

18.7 Summary

The numerical responses of the predator--prey interaction was modelled
independently by Lotka and Volterra, and their model showed that there
would be sustained oscillations in the numbers of predators and prey. This
prediction was tested by several researchers on different experimental
systems, and they found that sustained oscillations would only occur if
there were several subpopulations of prey whose powers of dispersal were
greater than that of the predator. Prey populations increase when predators
are absent or at a low level, but as the predator population increases it
reduces the prey to the point of extinction forcing the predator to move
elsewhere for food. Before this happens, however, some of the prey migrate
to start a new population which will increase in density until it is found by
the predator and the cycle starts again.

A review of predator--prey systems in nature, however, shows that not all
of these systems oscillate, and those that do oscillate may have stable,
damped, or unstable oscillations. The Rosenzweig and MacArthur graphical
model provides a more versatile analysis of a wide range of numerical
responses of predator--prey interactions, and reveals that prey refuges and
low carrying capacities of predators help stabilize this response.

The predator--prey interaction can also be analysed in terms of the
number of prey eaten per predator (the functional response), and how this
relates to both predator and prey densities. This functional response of
predators to their prey is very variable, and is related to the behaviour of
both predators and their prey.
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Predation exerts a powerful selective force on the characteristics of their
prey, and a survey is made of the wide range of ways in which prey attempt
to reduce the risk of being eaten.

Appendix 18.1 Simulating the Lotka–Volterra
predation model

1. Title your spreadsheet in cell A1. Then in cells A3 to A7 type the
following: time step (dt) = in A3, rate of increase of prey (r) = in
A4, attack rate of predators (a) = in A5, conversion rate of prey
to predators (c) = in A6, and death rate of predators (d) = in A7.
Then enter the following values for these parameters in cells E3 to
E7: 1 (one) in E3, 0.5 in E4, 0.025 in E5, 0.015 in E6, and 0.6 in E6.

2. In row 9 of columns A to G enter the following titles: Time (t) in
A9, Prey (H) in B9, Pred (P) in C9, delta H in D9, delta P in E9, P =
r/a in F9 (the prey zero isocline), and H = d/c in G9 (the predator
zero isocline).

3. Now set up the spreadsheet as follows:
(a) Enter 0 (zero) in A10, and the formula = A8+$E$3 in A11. This

creates a counter for a series of time steps.
(b) Enter a starting value of 40 in B10, and the formula = B9+D9

in B11.
(c) Enter a starting value of 40 in C10, and the formula = C9+E9

in C11.
(d) Enter the formula = ($E$3*B9-($E$4*B9*C9))*$E$3 in D10 and

copy to D11. This simulates Eqn 18.1 multiplied by a time step,
and the following step (e) simulates Eqn 18.2 multiplied by a
time step.

(e) Enter the formula = ($E$5*B9*C9 − ($E$6*C9))*$E$3 in E10 and
copy to E11.

(f) Enter the formula = $E$3/$E$4 in F10. This calculates the prey
zero isocline (P) from Exp. 18.2 and the following step (g) cal-
culates the predator zero isocline (H) using Exp. 18.4.

(g) Enter the formula = $E$6/$E$5 in G10.
(h) Copy row 11 (columns A--E) to rows 12 to 2010 to calculate 2000

time steps.
4. Now make two graphs. The first of the number of predators

(y-series = C10..C2010) versus the number of prey (x-series =
B10..B2010), similar to Fig. 18.2; and the second of the number
of prey (1st y-series = B10..B2010) and predators (2nd y-series =
C10..C2010) versus time (x-series = A10..A2010), similar to Fig. 18.3.

5. The graphs do not look like Figs. 18.2 and 18.3. To see why, read
section 18.2 and complete the exercises as outlined. When you have
finished, save and exit your spreadsheet.



Chapter 19

Animal behaviour, natural
selection and altruistic traits

In chapter six of The Origin of Species, Darwin showed that behavioural
traits are evolutionary adaptations that have evolved by means of
natural selection in just the same way as morphological and physio-
logical traits. For this to be true, two conditions are necessary. First,
variation in behaviour must be related to differences in survival or
reproductive success, and second there must be a genetic basis to this
variation in behaviour, at least in part.

It is not difficult to see that variation in behaviour can influence
survival and reproductive success. For example, the success of lions
in catching and eating animals like wildebeest (Connochaetes spp.) or
zebra (Equus spp.) depends partly on their ability to stalk and get suf-
ficiently close to the herd so that they are able to catch and bring
down an animal when they make their final attack. If their hunting
technique is good, they may be successful, but if they have a poor
hunting technique they will probably see their intended prey escape
before they can reach them and will go hungry as a consequence. On
the other hand, the flight response of wildebeest and zebra depends
on their ability to detect the lions before they attack, and this re-
quires constant vigilance as we saw in Chapter 18. The least vigilant
individuals, and those that are slow to respond when predators are
detected, are the ones that are most likely to be killed in an attack.
We can imagine that high levels of vigilance are adaptive in areas
where there are high levels of predation, but may be disadvantageous
in areas of very low predation, because animals with lower levels
of vigilance may eat more and have better energy reserves to with-
stand periods of drought, or may produce more offspring on average.
Thus, the survival value of behaviour may depend on the environment
in the same way that the cryptic colour of Biston betularia depends on
the background colour of the environment (Chapter 11). The question
is, however, whether this variation in behaviour between individuals
has any genetic basis.
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19.1 The genetic basis of behaviour

Variation in behaviour, both within and between populations, can be
subjected to genetic analysis in exactly the same way as morpholog-
ical and physiological traits. In some cases, there are more or less
discrete classes in the pattern of behaviour, which suggests that the
behaviour is coded for by one or two genes. For example, individual
Drosophila melanogaster larvae move different distances when they are
feeding, and it has been possible to create genetically uniform strains
that either move a lot (the ‘rovers’) or a little (the ‘sitters’). When
adults of these two strains were crossed, the larvae of the F1 gen-
eration were all rovers. When the adults of the F1 generation were
crossed, the larvae of the F2 generation occurred in a 3 : 1 ratio of
rovers to sitters (de Belle and Sokolowski 1987). These results are ex-
actly what is expected for a simple Mendelian trait where the sitter
phenotype is recessive to the rover phenotype.

The hygienic cleaning behaviour of honeybees provides a more
complex example of genetic control of a behavioural trait. There is
a bacterial disease, called American foulbrood, that infects the lar-
vae and kills the pupae of the European honeybee (Apis mellifera).
One strain of honeybees, called Brown, developed a resistance to this
disease, because the worker bees uncapped the cells containing dead
pupae and removed their bodies. This behaviour prevented the spread
of this infection in the colony. Walter Rothenbuhler investigated the
genetic basis of this behaviour by crossing hygienic bee colonies of
the Brown strain, with unhygienic colonies of the Vanscoy strain.
This was done by artificial insemination of the queens. His results
are very clear (Fig. 19.1). When he crossed the hygienic Brown strain
with an unhygienic strain, the resulting colonies were all unhygienic,

(hygienic)     (unhygienic)
   uurr  UURR

All unhygienic
        UuRr

F1 generation

Test cross  Brown x  F1 generation
(hygienic)         (unhygienic)
   uurr     UuRr

uurr      uuRr          Uurr         UuRr
uncap      uncap          remove   unhygienic
remove      only    only

6         9       6             8no. of colonies

Fig. 19.1 Genetic analysis of
hygienic behaviour in honeybees.
Uncapping (u) is recessive to
non-uncapping behaviour, and
removal behaviour (r) is recessive
to the non-removal of dead larvae.
(After Rothenbuhler 1964.)
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Fig. 19.2 Selection for high and
low sensitivity (i.e. reactivity) to
alarm substance in the zebra fish
(Brachydanio rerio). (Data from
Gandolfi 1972.)

which suggests that hygienic behaviour is recessive to unhygienic be-
haviour. When he performed a test cross by backcrossing the F1 gen-
eration with the Brown strain, he produced four types of colonies in
a 1 : 1 : 1 : 1 ratio (Fig. 19.1). The 1 : 1 : 1 : 1 ratio was very approximate
because he only produced a total of 29 colonies. Approximately one-
quarter of the colonies were hygienic, because they uncapped and
removed the dead pupae, another quarter of the colonies would un-
cap the infected cells but would not remove the dead pupae, another
quarter would remove the dead pupae if the infected cells were un-
capped for them, and the final quarter of the colonies would neither
uncap, nor remove, dead pupae and so were unhygienic. These results
are exactly what one would expect if the hygienic behaviour was con-
trolled by two unlinked genes, one for uncapping behaviour, and the
other for removal behaviour.

In many instances, however, the variation in behaviour is of a more
continuous nature because there are not discrete classes of behaviour.
Such behaviours are more likely to be polygenic traits which can be
modified by appropriate selection experiments (see Chapter 12). An
example of selection on a behavioural trait of this type is provided
by the flight response of zebra fish (Brachydanio rerio) to a specific
alarm substance (Gandolfi 1972). The latter is a chemical, contained
in deep epidermal cells of many fish, which is released if the skin
is broken, such as when the fish is attacked by a predator. Several
species of fish exhibit a fright reaction to this chemical, and flee the
area to avoid danger. The sensitivity to this alarm substance varies in
the population, with some individuals showing a response to very low
concentrations of the substance and others only responding to higher
concentrations. In four generations of selection, Gandolfi developed
two lines, which were either highly sensitive to the alarm substance
(high reactivity line) or only showed a response at concentrations
more than 1000-fold higher (Fig. 19.2)

The genetic basis of behaviour has been documented in thousands
of similar examples of genetic analysis. Some people are troubled by
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the idea that behaviour is controlled to some extent by genes. This
is particularly true for human behaviour because there is a fear that
such information will be misunderstood and misused. The idea that
behaviours are solely determined by genes is called genetic determinism,
and this idea has been used to argue for the genetic superiority of
certain races, social classes, and the male gender. Recall the issue of
race and IQ, which we discussed in Chapter 12. We saw that the hered-
itarians believe that there are differences in IQ between races that are
determined by genetic differences, and so cannot be altered. One can
then use this line of reasoning to justify providing inferior educa-
tion to certain ‘inferior’ races. This was done with devastating effects
by the Nationalist government in South Africa during the apartheid
years, and so the fears are well justified.

Can we say that behaviour is solely genetically determined when
we show a genetic basis to the variation in the pattern of behaviour?
The simple answer is no. Genes may influence behaviour, but so does
the environment. For example, the movements of the rover and sitter
larval phenotypes of Drosophila are not fixed. If we lowered the tem-
perature, or put them in a medium which was more difficult to
move through, they would probably move less. Indeed, it is possible
that there are environmental conditions where the two phenotypes
would behave in the same way. Similarly, the hygienic behaviour of
honeybees is only expressed if the hive is infected by a disease that
kills the larvae. Otherwise there is no need to uncap and remove
pupae. Clearly, then, behaviour is the result of a complex interaction
between genetic and environmental factors. Our main purpose, how-
ever, for demonstrating a genetic basis to the variation of behavioural
traits is to show that they can evolve through the process of natural
selection.

19.2 Behaviours that appear contrary to
the theory of natural selection

One of the difficulties to the theory of natural selection that Darwin
noted (in chapter six of The Origin of Species) is the presence of sterile
castes in the social insects (bees, wasps, ants and termites). How can
natural selection favour the evolution of individuals that leave no
offspring? Darwin had no solution to this problem, but he believed
it had something to do with selection at the level of the family (all
the individuals in a nest), rather than at the individual level. He
was on the right track, but it would take just more than 100 years
before the problem of sterile castes, an extreme form of altruism,
was eventually solved. By altruism, we mean an action or behaviour
performed by an individual which benefits another individual at some
apparent cost to the fitness of the altruist. I say apparent cost, because
as we will see there are different ways of measuring the fitness of an
individual.
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Table 19.1 Coefficients of relatedness (r) between relatives.

Relationship r Relationship r

Parent–offspring 0.5 Full siblings 0.5
Grandparent–grandchild 0.25 Half-siblings 0.25
Uncle/aunt–niece/nephew 0.25 Cousin–cousin 0.125

19.2.1 The evolution of altruistic behaviour
How do we account for behaviours where someone risks their life to
save someone else? To begin with, consider one of the many versions
of an apocryphal story about J. B. S. Haldane. He is drinking a beer
in a pub when he is asked by a friend if he would risk his life to save
someone from drowning. Haldane makes some calculations on the
back of an envelope, and then declares: ‘If I had a one in ten chance
of drowning but saved the life of my child I would save five copies of
genes for this behaviour for each loss of my genes. I would save fewer
copies of such genes in more distant relatives, but the trait could
evolve in small groups of closely related people.’ Whatever the truth
of this story, Haldane did write an article in the New Biologist making
similar statements in 1953.

Haldane’s argument is rather simple, and is key to our understand-
ing of the evolution of altruistic behaviour. First, we need to know
how we are genetically related to different relatives. This is given by
the coefficient of relatedness (r), which is the probability of two indi-
viduals possessing the same rare allele by inheriting it from a recent
common ancestor. For example, if I inherited this rare allele from
one of my parents, I would have a 50% chance of passing it on to
any one of my children because I am heterozygous for the trait and
only half of my germ cells carry the trait. My children would also
have a 50% chance of passing on this allele to their children, and so
the coefficient of relatedness between me and my grandchildren is
0.5 × 0.5 = 0.25. Similarly, my brothers and sisters would have a 50%
chance of inheriting this allele from our common parents, and so
the coefficient of relatedness between me and my full siblings is 0.5.
Like me, they have a 50% chance of passing the allele on to their chil-
dren, and so the coefficient of relatedness between me and my nieces
and nephews is 0.5 × 0.5 = 0.25. Various coefficients of relatedness
between relatives are given in Table 19.1.

Now imagine that the rare allele is for an altruistic behaviour,
such as risking my life to save a relative. If I saved one of my offspring
and died doing so, the frequency of the altruistic trait would decline
because the probability of my child carrying the trait is only 0.5.
If I saved two of my offspring and died doing so, the frequency of
the altruistic trait would not change because the frequency of alleles
in the next generation is given by r × 2, which is 0.5 × 2, or 1.0.
Continuing the argument, if I saved three of my children and died
doing so, the frequency of the altruistic trait would increase, because
there would be r × 3, which is 0.5 × 3, or 1.5 copies of the allele on
average in the next generation. However, to be strictly accurate in our
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calculations, we should calculate both the probability of my dying in
the attempt of saving my children, and the probability of my saving
the life of the child. Thus, as Haldane calculated, if I had a one chance
in ten of dying but was always successful in saving my children, it
would pay to try to save even one child, because there would be five
such altruistic alleles saved in the children for each one lost in the
parent. To summarize, the altruist should be willing to risk his or her
life if the number of genes that are identical by descent (see section
8.5.1) is expected to increase in future generations as a result of his
or her actions.

We used the measure of identity by descent to calculate the coef-
ficient of inbreeding in section 8.5.1, and may wonder how the two
coefficients are related. In fact, the contribution of a single ancestor
to the coefficient of inbreeding to one of its descendants is exactly
half the coefficient of relatedness between them. For example, in
section 8.5.1 we calculated the coefficient of inbreeding between one
grandparent and its grandchild to be 0.125, and we see that the co-
efficient of relatedness between them is 0.25 (Table 19.1). Inbreeding,
however, increases the proportion of alleles identical by descent, and
this increases the likelihood of evolving altruistic behaviour, which
is one reason why Haldane concluded it could evolve in small groups
of closely related people.

In the example described above, I improved my direct fitness by
saving my offspring, which increased the frequency of the altruistic
trait, although it does not seem so purely altruistic any longer. How-
ever, I can make exactly the same argument if I save the lives of my
brothers and sisters, because I have the same coefficient of related-
ness with them as I have with my children. Thus, I can increase the
frequency of an altruistic trait in a population not only by leaving
more direct descendants, but also by helping my kin to leave more
descendants.

The act of saving a child from drowning is instinctive, rather than
a calculated action where one computes the chances of increasing
the number of genes identical by descent in the population. Haldane
observed that the genes for altruistic behaviour could only have a
chance of spreading in the population if the person risking their life
was closely related to the drowning child, which only occurs in small
human populations where there is inbreeding.

W. D. Hamilton (1964) developed Haldane’s idea more formally
to show the conditions under which an altruistic trait can evolve.
He showed that the overall fitness of an individual, which he
termed inclusive fitness, is the sum of the direct fitness by produc-
ing one’s own offspring, and indirect fitness, where relatives pro-
duce additional offspring as a result of being helped by the indi-
vidual’s actions. The inclusive fitness of an individual is calculated as
follows:

Direct fitness = N1 × r = fD (Exp. 19.1)
Indirect fitness = (N2 × r) + (N3 × r) . . . etc. = fI (Exp. 19.2)
Inclusive fitness = fD + fI (Exp. 19.3)
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Table 19.2 Calculation of indirect fitness (fI), direct fitness (fD), and inclusive fitness for the first two years of
life for male pied kingfishers exhibiting different behaviours

First year Second year Inclusive fitness

Behaviour in first year NH r fi N0 r s m fd fi + fd

Primary helper 1.8 × 0.32 = 0.58 2.5 × 0.5 × 0.54 × 0.60 = 0.41 0.99
Secondary helper 1.3 × 0.00 = 0.00 2.5 × 0.5 × 0.74 × 0.91 = 0.84 0.84
Delayer 0.0 × 0.00 = 0.00 2.5 × 0.5 × 0.70 × 0.33 = 0.29 0.29

Symbols: NH, number of extra young produced by helped parents; No, number of offspring;
r, coefficient of relatedness between the male and NH or No; s, probability of surviving
from year 1 to year 2; m, probability of finding a mate in year 2.
Source: From Reyer (1984).

where N1 is the number of direct offspring, N2, N3, etc. are the num-
bers of additional offspring produced by relatives because of the in-
dividual’s help, and r is the coefficient of relatedness between the
individual and the various offspring. This latter measure is neces-
sary to express the various offspring in identical genetic units, so
that they can be simply added together. Obviously, helping a dis-
tant relative produce additional offspring is less valuable to me,
in terms of the survival of my genes, than if I produced my own
offspring.

We can use Hamilton’s concept of inclusive fitness to study why
altruistic behaviours might occur in a population, and this is best
illustrated using a specific example. The pied kingfisher (Ceryle rudis)
in Africa is a colonial nester, and males outnumber females, so many
cannot obtain a mate. Only about 5% of the yearling males obtain
a mate, and the remainder adopt one of three strategies. Some be-
come primary helpers, and provide considerable help to their moth-
ers by bringing food to her and her nestlings, as well as by at-
tacking predatory snakes and mongooses. Other males become sec-
ondary helpers of unrelated, or distantly related, nesting pairs, but
they provide much less help than the primary helpers. The remain-
ing excess males, called delayers, provide no help to nesting pairs
and simply wait until the next year to try to obtain a mate. Thus,
there appears to be two levels of altruistic behaviour, one providing
considerable help to close relatives, and one providing less help to
non-relatives or very distant relatives. In addition, there is a more
selfish type of behaviour on the part of the delayers. The survivors
of these non-breeding yearling males then try to breed in their sec-
ond year. The benefits and costs of these three strategies were mea-
sured by Heinz-Ulrich Reyer (1984), and his results are presented in
Table 19.2.

The number of extra young produced (NH) by parents with primary
or secondary helpers was determined by comparing these categories
with parents who had no helpers. The average coefficient of related-
ness between the primary helpers and the extra young they help to
produce was 0.32, because in some cases the young were full siblings
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Table 19.3 Direct, indirect and inclusive fitness for male pied kingfishers during the first two years of life

Gain in fitness

Status Year Direct (fD) Indirect (fI) Inclusive (fD + fI)

First-year breeder 1 0.96 0 0.96
2 0.80 0 0.80

Total 1.76 0 1.76

Primary helper 1 0 0.45 0.45
2 0.42 0.20 0.62

Total 0.42 0.65 1.09

Secondary helper 1 0 0.04 0.04
2 0.87 0.01 0.88

Total 0.87 0.05 0.92

Delayer 1 0 0 0
2 0.30 0 0.30

Total 0.30 0 0.30

Source: From Reyer (1990).

(r = 0.5) and in others one of the original parents had died before
the second brood and so the young were half-siblings (r = 0.25). Reyer
initially estimated that the secondary helpers gained no indirect fit-
ness in their first year, because he thought they were unrelated to the
extra young they helped raise, i.e. r = 0. He subsequently modified
this value to <0.05, because some of the secondary helpers helped
distant relatives, but even so, their indirect fitness is considerably
lower than that of the primary helpers. Table 19.2 also suggests that
males not breeding in their first year only increase their overall fit-
ness by breeding in their second year. This is not the case, as some
of the helpers continued to help in their second year. Reyer (1990)
calculated a more complete set of estimates for the various strategies
adopted by yearling males, which are presented in Table 19.3.

We can now begin to understand the breeding strategies of male
pied kingfishers. Breeders have the highest fitness (Table 19.3), but
only a very small percentage of males (approximately 4.7%) can adopt
this strategy in their first year because there aren’t enough females. If
breeding becomes possible, because of the appearance of an unmated
female after the breeding season has started or because a breeding
male dies, then helper males immediately give up their helper sta-
tus and try to become breeders. Reyer observed helpers switching to
breeders three times during his study.

The direct fitness of both primary and secondary helpers was
higher than that of the delayers, because the latter have a much lower
probability of finding a mate. Thus, it pays directly to display this ap-
parently altruistic behaviour. Overall, however, the direct fitness of
primary helpers is only about half that of secondary helpers, because
they have a lower survival rate and a lower probability of finding a
mate (Table 19.2). Secondary helpers probably have a higher survival
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rate because they provide much less help to the parents, and they have
a higher probability of finding a mate because many of them breed
with the female they helped in the previous year. Primary helpers
do not mate with the female they help because she is their mother,
and they appear to avoid incestuous matings. The reduction in direct
fitness of primary helpers relative to secondary helpers is more than
offset by the gain in indirect fitness, with the result that the inclu-
sive fitness of primary helpers is marginally higher than that of the
secondary helpers.

Reyer’s study is interesting because it shows that behaviour that
appears to be altruistic can become established in a population under
certain conditions. If only a small proportion of the population can
breed directly, it may pay the non-breeders to enhance the breeding
potential of those that breed, because their inclusive fitness is higher
than those that do not help (the delayers). Of particular interest, how-
ever, is the observation that the reduction in direct fitness of primary
helpers, relative to secondary helpers, is more than offset by the gain
in indirect fitness. We can take this last observation a step further. If
an individual’s direct fitness is decreased to zero, because of a gene
for sterility, but this reduction is more than offset by a resulting gain
in indirect fitness, the gene for sterility would increase in the popula-
tion! This concept provided the key to begin to explain the evolution
of sterile castes in insects.

19.2.2 The evolution of sterile castes in insects
Many insects are eusocial, where different types of individuals, called
castes, co-operate to produce offspring. A colony may consist of a
single queen that produces all the offspring for the group, some males
that may mate with a new queen but do no work, and various sterile
castes of females. The latter may gather food to feed other members
of the colony, they may tend and raise the young, or act as guards or
soldiers to protect the colony. Clearly, the sterile castes have no direct
fitness, because they do not produce offspring directly, but they can
have an indirect fitness by helping to raise the queen’s offspring. What
factors allow this system to evolve?

One factor that is important is the coefficient of relatedness (r)
between the sterile females and the offspring they help raise. The
latter are their sisters because they have all been produced by the
same queen. Normally, full siblings have an r value of 0.5 (Table 19.1),
but in the Hymenoptera (ants, bees and wasps) the males are haploid
and the females are diploid. If the female mates with a single male,
her female offspring (i.e. sisters) will have a coefficient of relatedness
of 0.75, because they will all receive the same set of genes from the
father (100%) and on average will share 50% of their genes from the
mother. In the Hymenoptera, sisters are more closely related to each
other (r = 0.75) than they are to their offspring (r = 0.5). Thus, a
female can increase her inclusive fitness more by helping a fertile sis-
ter produce additional offspring than she can by producing her own
offspring! Perhaps this is the reason why eusociality is so common
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Fig. 19.3 Male Defassa
waterbuck (Kobus defassa) can use
their horns as lethal weapons.
(Photograph by the author.)

in the Hymenoptera compared to other groups of animals that have
more conventional methods of sex determination.

We have considered an ideal case where the queen has mated
with a single male. Frequently, however, the queen mates with sev-
eral males and so the coefficient of relatedness may be much lower
than 0.75. Indeed, in the termites and the naked mole rat (Hetero-
cephalus glaber), which are also eusocial, the males and females are
both diploid and so the coefficient of relatedness between full sib-
lings will only average 0.5. Clearly, there are other factors that are
also involved in the evolution of sterile castes. Readers who are inter-
ested in this topic are referred to Alcock (1998) who provides a very
nice overview.

So far we have considered altruistic behaviour in terms of actively
helping other members of the population. We will now consider be-
haviours where individuals limit the harm they do to others in the
population, even though at first sight it may seem that such restraint
would not be to their benefit.

19.2.3 Limiting aggressive behaviour
The evolution of ritualized, non-injurious behaviour in many animal
contests puzzled biologists for a long time. Animals may be defending
an extremely valuable resource, such as a rich feeding territory or a
breeding territory, and yet contests for the resource seldom escalate to
all out conflict. If we look at the weaponry of some animals (Fig. 19.3)
it is clear that they could use it to injure their opponents, sometimes
with lethal consequences. Typically, however, they appear to practice
restraint, and merely push and grapple with their opponent in a trial
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Fig. 19.4 Ritualized fighting
between male Grant’s gazelle
(Gazella granti) over a breeding
territory. (Photograph by the
author.)

of strength (Fig. 19.4). At the end of an encounter, the loser retreats
and the winner either watches it leave or chases it off. There are
frequent opportunities for the victor to deliver a coup de grâce, but
this is seldom if ever taken.

Until the 1960s, the accepted argument for this type of behaviour
was that it was ‘for the good of the species’. Essentially, this was
a non-Darwinian, group selection argument, which stated that it is
advantageous to the group or species to limit fighting and the chance
of severe injury. In the early 1970s, George Price and John Maynard
Smith collaborated to show that it could also be advantageous to the
individual to practice restraint, and so this type of behaviour could
be explained in a manner that is consistent with Darwin’s theory of
natural selection.

Maynard Smith and Price (1973) developed a general model of an-
imal contest behaviour that involved game theory. Game theory is a
branch of mathematics that analyses the decisions made by two or
more individuals, where the outcomes depend on what individuals
and their opponents choose to do. For those people who are not famil-
iar with this mathematical approach the results seem rather artificial
at first. For this reason I will slowly develop the model and endeavour
to explain the purpose of the exercise at each step.

The basic Hawk--Dove model
This model considers that a population of individuals will adopt
one of two behavioural strategies when trying to claim a valuable
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Table 19.4 Pay-off matrix for the basic Hawk--Dove game where
B is the benefit to the victor of a contest, C is the cost of injury
from fighting, and D is the cost of the aggressive displays of doves

Against

Hawk Dove

Hawk a = (B − C )
2

b = B
Pay-off to

Dove c = 0 d = B
2

− D

resource. An individual may make an aggressive display towards an
opponent to try and drive it away, but if attacked will retreat and flee
without injury (Dove strategy). Or it may attack an opponent, even at
the risk of a serious injury (Hawk strategy). We assume that there is
a genetic basis to the individual’s behaviour. The model assigns costs
and benefits to the various contests between individuals. Let B = the
benefit to the victor (i.e. the value of the food or mating opportunities
acquired), let C = the cost of injury from fighting, and let D = the
cost of the aggressive display made by doves. We can now calculate a
pay-off matrix for all the combinations of encounters between Hawks
and Doves (Table 19.4).

What happens when a Hawk attacks a Hawk? If we assume that
they are evenly matched and so will win half of the time, the average
pay-off (a) for each encounter is half of the benefits less the cost of
injury, i.e. (B − C)/2. If a Hawk meets a Dove it always wins, and so the
Hawk obtains all of the benefits (B) at no cost for its pay-off (b) while
the Dove obtains nothing as its pay-off (c) in these encounters. Finally,
when two evenly matched Doves meet, each will win half of the time,
and so the average pay-off (d) is half of the benefits (B/2), less the
cost of displaying (D). Note the difference in pay-off calculations for
encounters between Hawks (a) and between Doves (d). In encounters
between Hawks, only the loser risks injury and so the average cost of
injury (C) is halved, whereas both Doves display in encounters between
Doves.

Now that we have determined the pay-offs for the various encoun-
ters we can assign various values to B, C and D and look at the overall
results. Although these values will be somewhat arbitrary, we will
see that there is some logic to their relative value. We will look at a
couple of examples to show what we mean.

Example 19.1 When the cost of injury (C) is low relative to the
benefit (B)
In this example let B = 50, C = 25 and D = 10. Note that C < B, and
that D < C. When we use Table 19.4 to calculate the pay-off matrix
we obtain the following:
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Against

Hawk Dove

Hawk 12.5 50
Pay-off to

Dove 0 15

Even though a population composed purely of Doves has a greater
average pay-off or fitness (15) than a population composed purely of
Hawks (12.5), a population of Doves cannot withstand an invasion
by Hawks because the latter will receive a pay-off of 50 because it
always wins. Moreover, a Dove cannot invade a population of Hawks
because it will always lose in an encounter with a Hawk (pay-off = 0).
Thus, in this set of circumstances it pays to be a Hawk, and selection
would favour the Hawk strategy, which is called an evolutionarily
stable strategy or ESS.

If this was the case, the population would adopt the Hawk strategy
(Doves would be selected against), fighting would escalate, and the
cost of injury would increase. At some point the cost of injury would
exceed the benefits, and we will examine this state of affairs in our
next example.

Example 19.2 When the cost of injury (C) exceeds the benefits (B)
In this example let B = 50 (as before), C = 100 and D = 10. When we
calculate the payoff matrix using Table 19.4, we obtain the following:

Against

Hawk Dove

Hawk −25 50
Pay-off to

Dove 0 15

A population composed purely of Doves can still be invaded by a
Hawk, because the average pay-off to the Hawk (50) is greater than the
average pay-off between Doves (15). Similarly, a population of Hawks
can be invaded by a Dove because even though the average pay-off
to the Dove is 0, it is still greater than the average Hawk--Hawk pay-
off of −25. This suggests that the population will stabilize at some
intermediate frequency of both Hawks and Doves.

To determine the equilibrium frequencies of Hawks and Doves,
let the frequency of Hawks equal p and the frequency of Doves equal
1 − p. We can compute the average pay-off for the Hawks and Doves
by multiplying their average pay-off per encounter by the frequency
of their opponents. Thus, the average pay-off for Hawks is −25p + 50
(1 − p), which reduces to 50 − 75p, and the average pay-off for Doves
is 0p + 15(1 − p), which reduces to 15 − 15p.

At equilibrium, the average pay-off or fitness of the two strategies
should be the same, and so the average pay-off for Doves should equal
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Table 19.5 Pay-off matrix for the Hawk--Dove--Bourgeois game. The pay-
offs a, b, c and d are given in Table 19.4

Against

Hawk Dove Bourgeois

Hawk a b (a + b)/2
Pay-off to Dove c d (c + d )/2

Bourgeois (a + c)/2 (b + d )/2 (b + c)/2

the average pay-off for Hawks. In this case, 15 − 15p = 50 − 75p, which
reduces to 60p = 35, and so the frequency of Hawks (p) = 35/60 or
7/12. Obviously, the frequency of Doves (q) = 5/12.

The equilibrium between the two strategies could be achieved in
one of two ways. If the behaviour of individuals is fixed, there should
be seven Hawks for every five Doves, but individuals could adopt the
Hawk or Dove strategies in a 7 : 5 ratio. It seems unlikely that in-
dividuals would adopt such different strategies at random; rather
they would vary their strategy according to their perceived chance
of winning an encounter, or according to the value of the resource
they would lose. We will now look at an extension of the Hawk--Dove
model that begins to take such factors into account.

The Hawk--Dove--Bourgeois model
In this model individuals adopt one of three strategies. They may
adopt the Hawk or Dove strategy that we have already considered, or
they may adopt the Bourgeois strategy. In this strategy, the individual
acts as a Dove or a Hawk according to the circumstances. For example,
it may adopt a Hawk strategy if it perceives that it is bigger and
stronger than its opponent, or adopt a Dove strategy if it is smaller
and weaker than its opponent. For the moment we will ignore the
problem of what it should do if it is equally matched to its opponent.
Alternatively, or in addition, it may adopt a Hawk strategy if it is the
owner of a resource (e.g. a breeding territory), and a Dove strategy
if it is an intruder. For the sake of simplicity, we will assume that
it adopts the Hawk strategy half the time and the Dove strategy the
other half of the time. Now part of the pay-off matrix conforms to
the basic Hawk--Dove model in Table 19.4, and so we can simply add
on the interactions with the Bourgeois individuals (Table 19.5).

When a Hawk meets a Bourgeois, half the time the latter is playing
a Hawk, in which case its pay-off is a, and half the time it is playing
Dove, in which case its pay-off is b. Thus, the average pay-off to the
Hawk will be (a + b)/2.

When a Dove meets a Bourgeois, half the time the latter is playing
a Hawk, in which case the pay-off to the Dove is c, and half the time
it is playing a Dove, in which case its pay-off is d. So on average, the
pay-off to the Dove will be (c + d)/2.



332 BEHAVIOUR, NATURAL SELECTION AND ALTRUISTIC

When a Bourgeois meets a Hawk, it adopts the Hawk strategy half
the time and receives a pay-off of a, and the other half of the time it
adopts a Dove strategy and receives a pay-off of c. On average, then,
it receives a pay-off of (a + c)/2.

When a Bourgeois meets a Dove, it adopts a Hawk strategy half
the time and receives a pay-off of b, and half the time it adopts a
Dove strategy and receives a pay-off of d. Consequently, on average it
receives a pay-off of (b + d)/2.

Finally, when the Bourgeois meets another Bourgeois, half the
time it acts as a Hawk and its opponent like a Dove, and so the pay-
off is b, and half the time it acts as a Dove and its opponent like a
Hawk, and so its pay-off is c. On average, then, the pay-off in these
encounters is (b + c)/2.

If we use the values for B, C and D in the second example, and
apply the Hawk--Dove--Bourgeois pay-off matrix from Table 19.5, we
obtain the following:

Against

Hawk Dove Bourgeois

Hawk −25 50 12.5
Pay-off to Dove 0 15 7.5

Bourgeois −12.5 32 25

This matrix indicates that Bourgeois is the best behavioural strategy
to follow. A population of Bourgeois has an average pay-off (fitness)
of 25, whereas a population of Hawks has an average pay-off of −25,
and a population of Doves has an average pay-off of 15. A popula-
tion of Bourgeois cannot be invaded by Hawks because the Hawk will
only receive a pay-off of 12.5 compared to the Bourgeois 25, and sim-
ilarly cannot be invaded by Doves because the latter’s pay-off is only
7.5. A population of Hawks, with an average pay-off of −25, can be
successfully invaded by both Doves (pay-off = 0) and Bourgeois (pay-
off = −12.5). Similarly, a population of Doves, with an average pay-off
of 15, can be successfully invaded by both Hawks (pay-off = 50) and
Bourgeois (pay-off = 32.5). Thus, Bourgeois is an ESS.

Relating the Hawk--Dove--Bourgeois model to the real world
Territorial disputes between male speckled wood butterflies (Pararge
aegeria) in England (Davies 1978) may be related to the Hawk--Dove--
Bourgeois model. Approximately 60% of the males defend patches
of sunlight on the woodland floor, and the remaining males patrol
the canopy. When one of the patrolling males enters a territory, the
resident male approaches the intruder and the two butterflies per-
form a spiral flight, lasting three to four seconds, after which the
resident returns to the sunspot and the intruder leaves. The resident
always wins, as can be shown by removing a male from a territory and
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replacing it with another male. When the former owner returns to
his former territory, he always loses against the new owner. Thus, the
owner of a territory always adopts a Hawk strategy and the intruder
always adopts a Dove strategy. If two males were introduced to the
same territory where there was no owner, each of the males acted as
though he were the owner and a protracted spiral flight followed (i.e.
both males acting as Bourgeois).

A study of the same species in Sweden revealed that the winner
in territorial disputes between males in dense spruce forests was not
always the owner of the territory (Wickman and Wicklund 1983). If a
male temporarily left his territory unattended, he would frequently
regain his territory if it had been taken over by an intruder, unlike the
observations of Davies. Why does the behaviour of this species vary?
It is suggested that the benefit (B) of holding a territory in England is
not very high because sunspots are numerous. The cost (C) of forcing
a resident male from a territory is high and so the Bourgeois strategy
is favoured. In contrast, there are few sunspots on the forest floor in
Sweden and the resource is more valuable (B is high relative to C)
and so a Hawk strategy is favoured. The factors that help determine
which males win in the disputes over territories are not known, but
it is likely that a combination of body size and body temperature are
important, as was determined in the contests between dung beetles
described in Chapter 17.

As it stands, the Hawk--Dove--Bourgeois model has only a crude
resemblance to reality in most cases. Nevertheless, it does point us in
the direction of understanding why it may be in an animal’s interest
not to escalate a contest into an all-out attack. Animals use a number
of signals to gauge the strength of an opponent, which may influence
their decision whether to escalate a contest or not. For example, body
sizes are correlated with the deepness of the croak in frogs, the rate
of roaring in male red deer (Cervus elaphus) and the loudness and rate
of bugling in elk (C. canadensis). The sizes of deer antlers and ungulate
horns are also related to body size. In some cases, such as the North
American bison (Bison bison) and African sable antelope (Hippotragus
niger), males walk parallel to one another as if assessing each other’s
condition and size. When there is a large discrepancy in size, the
smaller individual usually terminates the confrontation at this stage
of initial assessment. If the individuals are more evenly matched, the
interaction may escalate to a physical contest. In ungulates, this usu-
ally takes the form of head-to-head shoving or butting, where the
antlers or horns are interlocked. Again, if there is a large discrep-
ancy in strength between the contestants, the weaker individual may
break off the match and usually is allowed to escape unscathed. How-
ever, when the two individuals are evenly matched, the contests can
become violent with a high chance of injury. For example, fighting
between red deer stags on the island of Rhum resulted in an esti-
mated 23% of the stags showing some sign of injury during the rut,
and up to 6% were permanently injured. Thus, the cost of injury may
be very real and very high.
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Fig. 19.5 Territorial behaviour
and ritualized fighting in topi
(Damaliscus lunatus). Territorial
males stand on termite mounds
(top); when they are challenged
(centre) the territorial male has
the advantage of height; the
intruder has been knocked to his
knees in the clash of heads
(bottom) and retires from the
contest. (Photographs by the
author.)
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In some cases, the owners of territories may have an advantage
over intruders, even when they are relatively evenly matched in size
and strength. For example, in some areas of East Africa, territorial
topi (Damaliscus lunatus) stand on termite mounds so that intruders
have to approach uphill (Fig. 19.5). As a result, the resident nearly
always wins these encounters, and at times it appears as though the
intruder expects to be smashed to its knees. Of course, the habit of
standing on termite mounds may have additional benefits, such as
giving the individual a better vantage point to spot predators.

Why challenge a territorial male if there appears to be a low
chance of winning a contest? One possibility is that a male may look
big and strong, but may be weak because it is sick, or it may have
become injured in a previous fight. Providing a male can initiate a
contest and then withdraw, should the resident prove to be bigger and
stronger, before it escalates into a full-scale battle, this strategy can
be a successful one. This strategy also protects against the evolution
of false signals, because sooner or later the signaller has to back up
his claim of superior strength. Thus, the evolution of larger weapons,
without the necessary strength and size to use them, is doomed to
failure.

This brief review of altruism, sterile castes, and limits to aggres-
sion shows that it is possible to explain their evolution in ways that
are consistent with Darwin’s theory of natural selection.



Chapter 20

Sexual selection and
mating systems

In addition to his theory of natural selection, Darwin also proposed
a theory of sexual selection to account for certain types of sexual
dimorphism (Darwin 1859). He was trying to explain the evolution
of secondary sexual characteristics, like the tail of the peacock. The
huge ornamental tail in this species appears to be maladaptive, in
the sense that it increases the chances of the individual being eaten
by a predator by making it harder for the males to fly away, and so is
not readily explained by the theory of natural selection. Darwin went
on to develop his theory of sexual selection more fully in one of his
later books, The Descent of Man and Selection in Relation to Sex (1871).

In this chapter we will look at the basic reasons for sexual com-
petition, go on to consider sexual selection, and finally make a brief
survey of some of the different types of mating systems in animals. In
a sense, we are completing a circle. We started this book by looking
at Darwin’s theory of natural selection, and we will end it by looking
at a particular type of selection, namely sexual selection.

20.1 Sexual conflict and competition

In sexual reproduction, the interests of males and females may con-
flict with one another. There may also be competition within mem-
bers of one sex for the reproductive services of the other. The seeds
of this conflict and competition lie in the evolution of anisogamy.
It is generally assumed that the gametes were all similar in the
primitive condition (i.e. isogamy), but gradually two types of gametes
evolved (i.e. anisogamy) in most evolutionary lines. Male gametes, or
sperm, gradually evolved to become smaller, more mobile, and rela-
tively short-lived. They are energetically relatively cheap to produce
and are usually produced in vast numbers. In contrast, the female
gametes, or eggs, gradually evolved to be larger, less mobile, and rel-
atively long-lived. They are much more expensive to make and so are
usually produced in smaller numbers.

The difference in energetic costs of producing eggs and sperm is
believed to form the basis for many of the differences between males
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Table 20.1 Sexual selection as a consequence of anisogamy in idealized males and females

Characteristic Males Females

1. Gametes Small, very numerous, cheap
to produce

Large, few in number,
expensive to make

2. Parental investment Low High
3. Potential reproductive rate High Low
4. How to maximize

individual fitness
Mate with as many females as
possible

Select a male of the highest
quality

5. Consequences of efforts
to maximize fitness

Competition between males
for mates, high variation in
reproductive rates

Selection among potential
mates, low variation in
reproductive rates
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Fig. 20.1 In the fruit fly
(Drosophila melanogaster) the males
increase their reproductive success
by increasing the number of
matings, but females do not
increase their reproductive success
by mating with more males. (Data
from Bateman 1948.)

and females. The fact that males can produce enormous numbers of
sperm means that they can increase their reproductive potential and
fitness if they mate with several females. Females, on the other hand,
produce relatively few eggs and so it is generally not advantageous
for them to mate with many males. Rather, it is to their advantage
to be very selective in the choice of their mate. Thus, there is a fun-
damental difference in the ‘ideal’ reproductive strategy of males and
females. Males will compete to mate with as many females as possi-
ble, and if some males are successful it means that other males will
be unsuccessful and so there will be a large variation in the repro-
ductive potential of different males. Females should be selective in
their choice of mates, choosing those with superior phenotypes and,
presumably, superior genotypes. Most females will mate and so there
will be less variation in their reproductive potential. There will also
be selection pressure on them to care for their progeny to improve
the survival of their offspring. This difference in overall strategy of
the two sexes is illustrated in Table 20.1.

Bateman (1948) provided evidence for sexual selection in a classic
series of experiments on Drosophila melanogaster. Males increased their
individual fitness by mating with more females, whereas females did
not increase their fitness by mating with more males (Fig. 20.1). He
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Fig. 20.2 Frequency of matings
by male and female fruit flies
(Drosophila melanogaster), in
experiments where three to five
flies of each sex were caged
together. (Data from Bateman
1948.)

0 5 10 15 20

0

25

50

75

lek B (N = 10)

lek C (N = 20)

Individual males

P
er

ce
n

ta
g

e 
co

p
u

la
ti

o
n

sFig. 20.3 Variation in male
mating success in two leks of
white-bearded manakins (Manacus
manacus trinitatis). Males are
ranked in order of mating success.
(Data from Lill 1974.)

also showed that males had a higher variation in reproductive success
than females, as measured by the number of mates (Fig. 20.2). It may
be seen that several males were not able to mate whereas other males
were able to obtain two, three, or even four different mates, provid-
ing convincing evidence of competition between males for mates. In
contrast, very few females did not mate, and most mated with only
one or two males.

There is convincing evidence that females exercise choice when se-
lecting mates. For example, Lill (1974) studied small, frugivorous birds,
called white-bearded manakins (Manacus manacus trinitatis), living in
primary and secondary tropical forest in the West Indies. Groups
of six to 50 males display on areas, called leks, to attract mates.
Each male vigorously defends and displays on a small cleared area,
15--90 cm in diameter, that are spaced apart from each other, but oth-
erwise provide no resources for the female. Females can select which
male they wish to mate with, and Lill showed that certain males
mate frequently and many not at all, particularly on the larger leks
(Fig. 20.3).

In summary, the differences in selection pressures in the two sexes
lead to a differential allocation of resources with respect to reproduc-
tion. Females allocate most of their reproductive effort to producing
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relatively few, large gametes which receive considerable parental care.
Much less effort is put into the mating process. In contrast, males
produce enormous numbers of very small gametes and allocate con-
siderable effort to the mating process, competing with other males
for access to mates. Much less effort is put into parental care of the
offspring.

20.2 Sexual dimorphism and sexual selection

There are striking morphological differences between the sexes in
many species of animals, a phenomenon that is called sexual dimor-
phism. In mammals where the males fight for breeding territories
(Chapter 19), males are frequently larger than females, and this size
difference reaches an extreme in elephant seals where the males are
about three times heavier than females. In contrast, some male spi-
ders have a body mass that is less than one hundredth of the female
(Fig. 20.4). We are not certain why this should be the case. It has been
suggested that their small size reduces their risk of being eaten by
the female, but it has also been suggested that they can increase their
fitness by maturing at an earlier age when they are smaller in size.
This tendency would be counterbalanced, however, by the fact that
males fight each other to breed with the female, and it is usually the
largest male that wins these contests.

Many males have weapons which may be absent in the females,
for example antlers in deer. In other cases, both sexes may possess
weapons but they are emphasized in the males, for example, the ca-
nine teeth in some primates and the horns of some ungulates. The
sexes may be differentially coloured, and typically it is the male that
is the more brightly coloured.

The reason for a particular sexual dimorphism may be uncer-
tain, as we have already noted in some spiders. In other cases, the

Fig. 20.4 Sexual dimorphism of
body size in the Saint Andrew’s
cross spider (Argiope sp.). The large
female is accompanied by two
males. (Photograph by the author.)
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advantage of the difference between the sexes is obvious. For exam-
ple, female fecundity in many insects and fishes is positively corre-
lated with body size and, as a result, the females are larger than the
males. In this case, the sexual dimorphism is explained by natural
selection. However, in many cases sexual dimorphism may be a result
of sexual selection, which is defined as differential reproduction as a
result of variation in the ability to obtain mates. This may occur in
two different ways:

1. Same-sex contests. Individuals of one sex compete or fight with
one another for mating opportunities. This favours the evolution
of traits that are likely to improve an individual’s success in a
confrontation, such as large size, increased strength, weapons, and
specific threat signals. This is called intrasexual selection.

2. Mate preference by the opposite sex. Traits of one sex are selected
for by the mating preferences of the other sex. This favours the
evolution of conspicuous colours, exotic structures like enlarged
tail feathers, and behavioural displays, including vocal calls, that
provide information about the quality of a mate. This is called
intersexual selection.

In most cases (see Table 20.1), the same-sex contests are between
males, and it is female choice or preference that selects the traits of
the males. However, as we will see, there are cases of so-called sex
role reversal where the opposite is true, because it is the male who
provides parental care for the young, rather than the female.

20.2.1 Same-sex contests: intrasexual selection
In the European common toad (Bufo bufo), there is strong evidence
for intrasexual selection of body size in the males. Breeding occurs
over a period of a few days, and males outnumber the females. Conse-
quently, there is considerable competition among the males to clasp
the females from behind in a mating position called amplexus, until
the female spawns. Most females are intercepted by males before they
reach the ponds, and at this stage there is little size selection of the
males (Fig. 20.5). However, by the time the females spawn, two to four
days after reaching the water, most of the females mate with larger
males (Fig. 20.5), which suggests that the smaller males have been
displaced by their larger rivals. This was convincingly demonstrated
by a simple experiment where a female was placed in a bucket with
both a large and a small male. In 41 replicates of this experiment,
18 large and 23 of the small males were in amplexus after a period
of five minutes. However, 24 hours later, 10 of the 23 small males
had been displaced by the larger male, whereas none of the 18 larger
males had been displaced by their smaller rivals (Halliday 1993). This
shows that larger males have a better chance than small males of
successfully mating with a female.

One might predict that male toads would be larger than the fe-
males because of this intrasexual selection, but the opposite is the
case. Presumably, the selection for larger body size in females is
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stronger than in the males, and it is suggested that larger females
are selected by natural selection because they produce more offspring
than smaller females.

Frequently, however, intrasexual selection for larger body size re-
sults in the males being larger than the females. For example, vari-
ation in the degree of sexual dimorphism of different species of
seals and other pinnipeds is correlated with the size of their harem
(Fig. 20.6). Species where the two sexes are similar in size tend to
be monogamous, but as the size of the harem increases the males
become increasingly larger than the females. It appears as though
males that increase their investment in fighting ability are rewarded
with increased chances of mating.

Mature males may also have weapons, such as horns in beetles,
reptiles, and ungulates (Fig. 19.3), tusks in anurans and certain mam-
mals, and spurs in some arthropods and birds. These weapons may
be reduced or absent in the females, suggesting that they may have
been emphasized by sexual selection. Horns and antlers are certainly
used by male ungulates when fighting for breeding territories (see
19.2.3), and removal of antlers in male reindeer (Rangifer tarandus)
and red deer reduces their fighting ability and dominance status and
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Table 20.2 Mating success in long-tailed widowbirds subjected to different tail treatments (see text). The
mean number of active nests (± standard deviation) per territory is given for nine males in each of the four
treatments, before and after treatment. The difference in number of active nests showed that males with
elongated tails attracted significantly more females than those with shorter tails

Shortened Control I Control II Elongated

Before treatment 1.33±1.118 1.56±1.130 1.44±2.068 1.67±1.500
After treatment 0.44±0.727 0.89±1.054 0.44±1.014 1.89±1.764
Difference −0.89 −0.67 −1.00 0.22

Source: Data from Andersson (1982).
so presumably affects their mating success. Thus, there is evidence
for intrasexual selection for these weapons. The issue is complicated,
however, because the size of the weapons is usually strongly correlated
with body size, and so they may also be used as signals of potential
strength and condition to male rivals. It is also possible that females
use these signals as a basis for mate choice, although this remains to
be shown (Andersson 1994).

20.2.2 Mate preference by the opposite sex:
intersexual selection

Typically, mate choice is made by the female (Table 20.1), and Darwin
suggested that this type of selection could account for the ornamen-
tal plumage of birds. One of the first field tests of this hypothe-
sis was by Andersson (1982) who studied the long-tailed widowbird
(Euplectes progne). The males of this species are remarkable in that
their tail is often more than half a metre long, and they are highly
conspicuous as they fly over their breeding territories. The females
are inconspicuous, and nest within the male territories. Andersson
tested the effects of tail length on the ability of males to attract fe-
males. Early in the breeding season he mapped the territories of 36
males, and assigned them at random to one of four treatment groups.
He counted the number of active female nests within each territory,
and they were similar in all four groups (Table 20.2). In one group
(short) the tails were cut to about 14 cm in length, and the removed
feathers were glued to the tail feathers of another group of males
(long), thereby elongating their tails by 20--30 cm. There were two
control groups. One control (control I) had the tail feathers cut and
glued back on to restore the original length, the other group (control
II) was only marked to identify them. After this treatment, the males
with elongated tail feathers attracted significantly more females than
the other treatments (Table 20.2), which supports Darwin’s theory of
female choice.

If males with longer tails attract more females, why don’t the
males have even longer tails? It is suggested that the advantage of
obtaining more mates by growing a longer tail is counterbalanced by
the cost, perhaps by increased predation because males with longer
tails fly more slowly. Thus, the intersexual selection for increased tail
length is probably opposed by natural selection.
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1986 and Rosenqvist 1990.)

In some pipefishes, the females transfer the eggs to males, which
brood the embryos on their ventral body surface and supply nutri-
ents to the offspring. Females can produce broods more rapidly than
the males can raise them, and so males are likely to be the limiting
resource in terms of female reproduction. On this basis we can expect
a reversal of sex roles, with the males showing a stronger selection
of females as mates compared to the selection of males by females.

Mate selection has been studied in two species of pipefish, Syng-
nathus typhle and Nerophis ophidion (Berglund et al. 1986, Rosenqvist
1990). In S. typhle, female fecundity increases with body size, and
males have a brood pouch and so larger males can carry more off-
spring. There is no sexual dimorphism of body size, but both sexes
prefer larger mates with females showing the strongest preference
(Fig. 20.7). In N. ophidion, males have no special brood pouch but carry
the offspring on their ventral side. There is no correlation between
male body size and brood size, but female fecundity increases with
body size. Interestingly, females are larger than the males and males
prefer females of larger body size. When female body size was held
constant, males preferred females with large ornamental skin folds,
which may be an indicator of their dominance ranking, and they also
preferred females with the largest area of blue nuptial colours, which
is a reliable indicator of female fecundity (Fig. 20.7).

In pipefish, males do not appear to invest more energy than fe-
males in the offspring, although the cost to the males in terms of
reduced growth and increased mortality has not been taken into ac-
count in making these estimates. Even so, the difference in reproduc-
tive rates between the sexes, where the females can produce young
almost twice as fast as the males can care for them, seems to explain
adequately the basis of sexual selection in these two species.

20.2.3 Combined effects of intra- and intersexual selection
The effects of intra- and intersexual selection may augment each
other. A good example of this is seen in the northern elephant
seal (Mirounga angustirostris), which has the largest harem size in the
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pinnipeds, with as many 50 individuals in a harem (see Fig. 20.6). Fe-
males leave the sea once a year to give birth on the beach, and also
to mate. Because suitable beaches are scarce, it is possible for males
to control a harem of females provided they are sufficiently strong
to fight off other males. The fights between males are very violent,
and only the largest and strongest are able to form a harem. These
alpha males, comprising less than 10% of the males, fertilize nearly
90% of the females. Other males are able to mate, but at a much
lower frequency, and their mating attempts are often interrupted by
a more dominant male. Clearly, there is strong intrasexual selection
for increased body size in males, but there is also intersexual se-
lection because females protest more frequently if a male of lower
dominance and size attempts to mate with them (Fig. 20.8b). These
protests attract the attention of higher-ranking males of greater body
size, and the frequency of interrupted mating attempts also increases
(Fig. 20.8a).

20.2.4 Sexual selection versus natural selection
Although we have treated sexual selection as though it is distinct
from natural selection, the two processes are not fundamentally dif-
ferent. Natural selection increases fitness by improving survival and
the number of offspring produced, whereas sexual selection increases
fitness by increasing mating success and, presumably, the production
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of more offspring. In addition, sexual selection always acts differen-
tially on the two sexes, whereas natural selection may operate equally
on males and females, although not necessarily so.

When we considered sexual selection on tail length in the long-
tailed widowbird, it was postulated that natural selection countered
the effects of sexual selection and prevented the runaway selection
for longer and longer tails in the males. This brings us to the ques-
tion of why certain traits should be exaggerated by sexual selection.
In some cases one can see the utility of the selection. Traits like
body size and breeding coloration may be correlated with the fecun-
dity of a mating partner. But what is the utility of extremely long
tails in male widowbirds or the huge fantail of the peacock (Pavo
spp.)? There are various hypotheses to account for such traits. One
hypothesis is that males with emphasized traits may provide direct
benefits to the female or her offspring. Perhaps such males may be
able to hold a superior territory in terms of size or quality, or may
provide superior parental care. This hypothesis may be able to ac-
count for some cases of sexual selection where there is a pair bond
between the males and females for part or all of the breeding sea-
son, but in many cases (e.g. lek mating systems) the male has no
further contact with the female after mating. In this case any bene-
fits must be indirect. One hypothesis of indirect benefits is that the
traits are arbitrary in nature. Once females begin to prefer males in
which certain traits are emphasized, there will be runaway selection
provided the traits are heritable. Selection drives the system to em-
phasize the traits more and more, providing female choice remains
constant, because females prefer breeding with males with the most
emphasized traits and will produce sons with similar characteristics
who have an increased chance of mating. Once the female choice, i.e.
the emphasized trait, carries an ecological cost, the effects of sexual
selection will be counterbalanced by natural selection and the traits
may stabilize at some intermediate value. Another hypothesis of in-
direct benefits postulates that the emphasized traits are indicators of
genetic quality. The emphasized traits are linked to, or are expressed
in the presence of, other genes which have a direct positive effect
on fitness. In other words, males with such traits have ‘good genes’
which will be passed on to the offspring. We will not deal here with
the evidence supporting the different hypotheses. Interested readers
are referred to excellent discussions of this topic by Alcock (1998),
Andersson (1994), Cronin (1991) and Futuyma (1998).

20.3 Animal mating systems

There are many mating systems in animals. Some, like the cnidarians
(hydroid polyps, corals and jellyfish), release their gametes into the
water, and fertilization occurs more or less at random. I say more
or less at random, because some sperm may swim faster than others
and so will be more likely to fertilize the eggs, and it is possible
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that eggs may even be selective when it comes to fertilization by
different sperm. Nevertheless, males can effectively mate with many
females and similarly females can mate with many males. Other an-
imals practice monogamy, in which males and females have a single
mating partner. However, this too may vary. A pair of swans (Cygnus
olor) may breed together for 15 years, and less than 1% of the pairs
break up each year. They have a lifelong pair bond. House martins
(Delichon urbica), however, while monogamous during the raising of
a single brood, will mate again at random, and so the break up of
pairs is close to 100%. They practice serial monogamy, which pro-
duces much the same effect as polygamy in terms of their offspring.
Polygamy may be of two types: polygyny, in which several females mate
with a single male, and polyandry, in which several males mate with
a single female. Here too there is variation because some polygamous
species establish pair bonds during the breeding season and others do
not. The mating system within a species is not necessarily constant.
For example, individuals of the common dunnock or hedge sparrow
(Prunella modularis) may practice monogamy, polygyny or polyandry
all within the same population! Thus, it is not easy to have a nice
tidy classification of mating systems.

The purpose of this section is to examine three basic types of
mating systems: polygyny, polyandry and monogamy, to see if we can
understand their determinants. We can expect polygyny where males
invest little and the females invest a lot in raising the progeny, and
polyandry when the males invest more in parental care than the
females, and there may be monogamy where the parental investment
of the two sexes is more equal (see section 20.1).

20.3.1 Polygyny
Polygyny occurs in a variety of ways. In female defence polygyny, the
males monopolize a group of females directly, and attack other males
that try to mate with their harems. In resource defence polygyny, the
males defend territories that contain resources for the females. Males
with the richest territories, in terms of resources, attract the most
females. Finally, in lek polygyny, the males establish small territories
that contain no resources for the female other than the breeding
male. Males display on their territories, and females select their mate.
The advantage to successful males is obvious in these three types of
polygyny, but it is less obvious why females might choose to share a
male with other females. We will examine this problem as we briefly
discuss each of these types of polygyny.

Female defence polygyny
When females in breeding condition occur in defensible clusters,
males compete for these clusters. We have already considered the
example of the elephant seal in section 20.2.3. Females cluster on
suitable beaches, and provide an opportunity for males to establish
territories and prevent other males from mating with the females,
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Fig. 20.9 Male impala (Aepyceros
melampus) and harem.
(Photograph by the author.)

with variable degrees of success. The size of the harem is directly
related to the size of the male and his fighting ability.

In some species of ungulates the females occur in large herds,
perhaps as a defence against predation (see Chapter 18). This also
presents an opportunity for males to monopolize a group of females
and maintain a harem. This is seen in species like impala (Fig. 20.9)
and red deer. The male’s success in this breeding strategy depends
not only on his ability to compete with rival males, but also on his
ability to control the movement of the females. From the female’s
perspective, the advantage to polygyny stems from the advantages of
group living, in terms of increased survivorship for herself and her
offspring. She is also assured of mating with a male of high genetic
quality, because only the strongest males are able to maintain such a
harem.

In some cases, the females seem to have little choice in the matter.
The male marine isopod Paragnathia formica digs a burrow, into which
he drags a large number of females that he captures. He sits at the
entrance to the burrow and can prevent the females from leaving and
can also prevent rival males from entering.

Resource defence polygyny
Male red-winged blackbirds (Agelaius phoeniceus) establish territories
in the spring, typically in areas of emergent vegetation in wetlands.
Males that have the largest territories, containing the most suitable
vegetation for nesting, attract the most females. Non-territorial males
do not breed. Experienced males tend to have better territories and
provide more food to the offspring than other males (Searcy 1979). In
this case there is a pair bond between the male and the females for
the duration of the breeding season.

Where the females live on the male territories and the male pro-
vides some degree of parental care (e.g. red-winged blackbirds), why
would a female choose polygyny rather than monogamy? Presumably
the answer to this question will depend on the degree to which a fe-
male’s fitness is reduced by sharing the male with other females (C),
compared to the reduction in fitness by moving to mate with a lone
male on a lower-quality territory (PT, the polygyny threshold). This is
the basis of the simple polygyny threshold model of Orians (1969),
who proposed that if PT is greater than C, the female should choose
polygyny. The model assumes that females can accurately assess the
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costs and benefits of the various choices and that the males (and
females) are not being deceitful.

It is not easy to test the polygyny threshold model because it
is difficult to identify and measure the critical resources (i.e. PT
and C), to measure female fitness, and to identify the true mating
choices faced by females. For these reasons many experimental tests
of the model are difficult to interpret and do not always support
the model. Contrary to expectations, there seems to be no cost (C)
to females in polygynous relationships in some populations of the
red-winged blackbird (Searcy and Yasukawa 1989). Presumably the
polygynous males are able to compensate, by providing additional
resources to the females. In contrast, studies of the pied flycatcher
(Ficedula hypoleuca) have shown that there is a cost to second females in
polygynous relationships, because females in monogamous relation-
ships have a higher fitness than females in polygynous relationships
(Alatalo et al. 1981, Alatalo and Lundberg 1984).

If females in monogamous relationships have higher fitness, why
do females enter polygynous relationships? One obvious reason is that
unmated males may be unavailable. However, in the case of the pied
flycatcher, Alatalo and his co-workers have suggested that the females
are deceived by the males. In this species, males maintain territories
that contain a tree with a nest hole for the female. Polygynous males
have more than one breeding territory which may be several hundred
metres apart in the forest. It is suggested that females do not know
that a male already has a mate, and the secondary female settles
down and breeds only to receive little help from her mate. There
is conflicting evidence about whether the secondary female knows
about the primary female (see Andersson 1994). Whatever the case,
polygynous males have a higher fitness than monogamous males,
because the combined fitness of his females is greater than the fitness
of single females. Thus, polygynous males achieve their advantage at
the expense of both mates, but sometimes it is the male that is being
deceived.

Recent studies using genetic fingerprinting to reveal the parentage
of offspring of similar species to those just discussed are revealing a
much more complicated story (K. Wiebe, pers. comm.). There are cases
of polygyny and monogamy as expected, but there are also many cases
where either part or all of the offspring are related to the female but
not the male (i.e. the female is deceiving the male), cases where some
of the offspring are not related to either parent (i.e. both parents are
deceived by another female), and a few cases of polyandry where a
female lays eggs in two nests and leaves most of the cost of raising
her offspring to two different males. Clearly, there appears to be a
complex of mating strategies operating which will require detailed
studies to decipher.

In some species there is no pair bond between the sexes. For ex-
ample, male topi (Damaliscus lunatus) (Fig. 19.5) establish territories,
and in some areas they select areas of grass that are unusually green
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which probably gives an indication of the richness of grazing. Females
tend to visit males on greener territories (Balmford et al. 1992), and
so the owners of these territories have more chances of mating. The
females, however, do not spend large amounts of time feeding on the
male territories, and so this type of polygyny is not very different
from lek polygyny.

Lek polygyny
In some cases the males do not defend or control either resources
or females. Instead, males in breeding condition come together in
groups called leks where they defend a very small territory. The ter-
ritories simply provide a site where the males can display, and mate
with any females that visit them. After copulation, the female de-
parts and has no further contact with the male. In many cases, there
is a strong selection of the males by females (Fig. 20.3) and so leks
have been extensively studied to try and identify the basis for this
selection.

In a lek system where the male does not provide any parental care,
what is the advantage to the female? One advantage is that she can
select her mate and may be able to use various traits as indicators of
male quality. For example, in Jackson’s widowbird (Euplectes jacksoni, a
close relative of the long-tailed widowbird, discussed in section 20.2.2,
which practices resource-based polygyny), the males form leks and
dance around displaying themselves. Females select males that jump
more frequently, and who have the longest tails. In most cases, how-
ever, it is not clear why the females choose to mate with so few males
on a lek. It has been suggested that females copy each other, and that
certain dominant males are able to provide more protection from ha-
rassment from undesirable males than other males.

What is the advantage of the lek system for males, particularly in
those species where few males do most of the mating? It has been
suggested that larger aggregates of males attract more females than
smaller aggregates of males, and so the chances of obtaining a mate
might be increased. Although larger leks attract more females in the
Uganda kob (Kobus kob) (Deutsch 1994), the chances of obtaining a
mate are not increased because the relationship is a linear one and
so the number of females per male remains constant with lek size.
However, the chances of dominant males obtaining matings might
be increased. In one species of birds, the ruff (Philomachus pugnax),
mating success does increase with lek size, up to a point, but then re-
mains constant with further increases in lek size (Widemo and Owens
1995).

The highly skewed mating success of individual males (Fig. 20.3) is
probably not as great as it appears, because lek composition does not
remain constant over time. In the case of the Uganda kob, a male can
only remain as part of the lek for a few days before it must leave and
build up its strength for another session. This turnover of individuals
means that the variation in the lifetime reproductive success of the
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males is probably much smaller than the variation that is observed
over a single breeding season.

20.3.2 Polyandry
In this rare mating system, females have a long-term mating rela-
tionship with more than one male, because the males provide much
of the parental care. We saw one example of this in certain pipefish
(section 20.2.2), and it represents a reversal of roles from the more
common polygynous mating systems.

Another example of this type of breeding system is found in the
American jacana or lily trotter (Jacana spinosa), which live on lily-
covered lakes. Each female defends a large territory within which are
several smaller male territories. Each male defends a floating nest
and raises the young. The female mates with all of the males, lays
her eggs in each nest, and defends her harem of males from other
females. The females are much larger than the males, and are domi-
nant over them.

In this type of breeding system the advantages to the female are
obvious. She is emancipated from incubating the eggs and providing
direct care for the young, and so she has a much higher reproductive
potential than would otherwise be the case. The advantages to the
male of this mating system are less obvious. He might be raising off-
spring that he has fathered, but he is undoubtedly also raising young
fathered by other males because the female mates with all of the
males in her harem. The male has no way of discriminating between
eggs he may have fertilized and those that have been fertilized by
other males. Consequently, selection will favour a male caring for a
clutch of eggs, which may contain some eggs fertilized by himself,
and not disrupting the breeding effort of other males who may be
raising young that he has fathered. The male has little opportunity
to mate with other females because he is dominated by his mate, and
abandoning the nest would expose it to the risk of predation, which
is particularly high in this species.

20.3.3 Monogamy
Until recently, it was estimated that 90% of birds were monogamous
and that this type of mating system was more common among birds
than any other group of animals. It was proposed that this is because
both the eggs and the chicks of most species require considerable
parental care. Eggs need to be incubated and protected from preda-
tion, and the chicks need to be fed and kept warm and protected.
Males that help the female provide parental care may produce more
offspring than those that do not. Thus, birds seemed to fit the general
model in which similar parental investment in the offspring selects
for monogamy.

Since the development of DNA fingerprinting, by which it is possi-
ble to determine the parentage of young, the common perception of
monogamous birds co-operating to raise their offspring has had to be
revised. In several supposedly monogamous species, both males and
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females may mate with other individuals. For example, it has been
estimated that about 30% of the offspring of swallows are not the
progeny of the ostensible father. Such high levels of bastard offspring
(to use the vernacular to describe the offspring that are unrelated
to the ‘father’), resulting from extra-pair copulations, are common
in birds that live in colonies, such as seabirds, swallows, bee-eaters,
herons and sparrows (Birkhead and Møller 1992). Apparently, the close
proximity of these birds’ nests provides considerable opportunity for
extra-pair copulations. This mating with neighbouring females might
have been predicted for males, because if a male can induce more
than one female to raise his offspring he can improve his fitness, as in-
dicated in Table 20.1. However, careful study has shown that this sort
of behaviour is not just the result of certain males forcing themselves
on other females, the females also practise deceit. To investigate the
factors affecting female mating patterns, researchers have performed
plastic surgery on the males to make them either more or less phys-
ically attractive to the females. For example, if the tail fork of male
swallows is made asymmetrical, they are less attractive to females,
and if the tail fork is made slightly longer and more symmetrical such
males are highly attractive to females. Such research has shown that
females are more likely to mate with another male if their partner
is subordinate, younger, and is physically unattractive. These females
choose to have extra-pair copulations with males that are dominant,
older, and more physically attractive. It appears that females may be
attempting to select mates of higher quality, even though they are in
what is assumed to be a monogamous relationship.

In mammals only the female feeds the young, both during gesta-
tion and during the period of lactation after birth. Any male care,
in terms of protecting young from predators, transporting young, or
providing food is trivial by comparison. So the argument that both
parents should have more or less equal investment in the raising of
their offspring cannot be used to explain the existence of monogamy
in about 5% of mammalian species.

A phylogenetic analysis of the evolution of monogamy in mam-
mals (Komers and Brotherton 1997) suggests that it occurs when
females are solitary and have small, exclusive ranges, which allows
males to monopolize them. It is in the interest of males to mate and
guard a single female, rather than risk enlarging their territories to
include two or more females, because the incidence of male intrud-
ers would be much higher. He can, therefore, have a higher degree
of confidence of his paternity of the offspring, and avoids the risk
of raising offspring fathered by an intruding male. An example of a
monogamous mammal is the dik-dik (Madoqua kirki) (Fig. 20.10).

20.4 Conclusions

An individual’s abilities to attract mating partners, to breed suc-
cessfully and to produce and raise offspring are obviously vital
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Fig. 20.10 Monogamous dik-dik,
Madoqua kirki, on their common
territory (above) and a territorial
dispute between two neighbouring
males (below). (Photographs by
the author.)

components of its fitness. In this brief review of the behaviour of
reproduction we have seen that the interests of males and females,
in terms of individual fitness, frequently do not coincide. Typically,
the males seek to mate with as many females as possible to maxi-
mize their fitness, whereas females try to obtain mates of high qual-
ity and try to obtain the exclusive attention of the male in order to
maximize their fitness. When the male provides most or all of the
parental care of the offspring, the roles are reversed. Both of these
mating strategies are not as pure as was once thought, because ge-
netic fingerprinting has shown that supposedly polygynous species,
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for example, also include individuals practicing polyandry. There are
numerous cases of apparent monogamy where both sexes co-operate
extensively in raising their young, but even here genetic analysis has
shown that both parents can practise deceit on the other in order to
increase their individual fitness. Thus, our understanding of mating
strategies is rapidly being revised. Finally, sexual selection tends to be
emphasized in species that are mainly polygynous and polyandrous,
and so these species tend to be more sexually dimorphic than species
that are mainly monogamous.



Chapter 21

Epilogue

We have come to the end of a journey during which we have intro-
duced the four main areas of population biology. By now you will
be realizing that a full understanding of the subject requires a grasp
of the basic principles of evolution, population genetics, population
ecology and behavioural ecology. A true synthesis of these areas is
demanding because there are so many connections to be made as
we shift between genetics, ecology and behaviour, and then try to
make sense of it all from a Darwinian perspective. Nevertheless, it
is important to attempt some form of synthesis because we will ob-
tain a much more complete understanding of whatever process or
phenomenon we are studying. Consider the following two examples.

First, the interaction between predators and their prey. There are
numerous models of the growth of predator and prey populations
that try to explain how predators affect the numbers and growth of
their prey populations, and vice versa. Although these models help
us to understand something about this type of interaction, a lot of
questions remain. Why do some predators switch from eating one
type of prey to another, and why can one predator limit the numbers
of its prey but another cannot? Answers to these types of questions
requires knowledge of an array of different factors. For example, the
behaviour of both predators and their prey affect who is eaten and at
what rates; the rates of energy acquisition versus energy expenditure
may vary for different prey items, and predators may vary their diet
accordingly; and genetic variation amongst the prey may make some
more susceptible to predation than others. In summary, as we look
at the system from different perspectives we obtain a much better
picture of the system as a whole.

Second, an integrated approach is also important in the study of
small populations. We may have a good theoretical understanding of
the genetics of small populations, including genetic drift, inbreed-
ing, gene flow or migration between populations, and the effects of
selection, but this does not explain why the populations are small.
Are there ecological factors, such as fragmentation of suitable habi-
tat or the presence of superior competitors that keep the numbers
low, or are there behavioural factors, such as social structure, that
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limit the size of the breeding population? Until we integrate these
different perspectives of the biology of these types of populations,
our understanding of the system as a whole will be very limited.

This book makes many connections between the different areas
of population biology and achieves a modest level of integration of
the subject, but a true synthesis has not been realized. There are two
reasons for this. First, this is an introduction to the subject and one
needs to know the basics of all areas before a more effective synthesis
can be made. Second, it also reflects the present way that we investi-
gate this area of biology. Most studies still look at things from one or
two perspectives, because of the constraints of time and the expertise
of the individual. In future, I hope there will be many more integrated
group studies that look at populations from several perspectives si-
multaneously. I believe that our approach will have to change if we
are going to make much more headway in our understanding of the
biology of populations.

There are many other interesting topics in population biology,
not covered in this text, that can be explored. For example, the sub-
ject of island biogeography is well introduced by Wilson and Bossert
(1971) and Gotelli (1995), metapopulation biology is covered by Hanski
(1999), and many areas of behavioural ecology are superbly introduced
by Krebs and Davies (1993). I urge you to continue your journey to ex-
plore these other topics in population biology, as well as to explore
to a greater depth the areas we have already covered. You will gain
new insights about nature during your endeavours. Remember that
the basic principles you have learned are not just things that we
read about in books, but we can see them operating in the world
around us if we take the time to look. So perhaps as you rake up
the seeds from a neighbour’s elm tree or swat mosquitoes as you laze
on the verandah you can think of ‘overproduction of offspring’, or
as you combat weeds in the garden you can reflect on the powers of
dispersal and the competitive ability of different plants. For deeper
understanding, talk to those who are doing research in the area of
populations, your professors and their graduate students, to find out
what they are studying and how they are changing our understand-
ing of the subject. As you learn more about population biology, the
more you will come to realize the truth that ‘There is a grandeur in
this view of life . . .’ (Darwin 1859).





Glossary

This glossary attempts to help the reader by explaining what I mean by
many of the more specialist words used throughout the text. Note that these
meanings are used in the context of population biology and so may have
somewhat different meanings when used elsewhere. In addition, some of
the terms are explained more fully in the text.

abiotic Non-living. Usually applied to the physical and chemical features of
an organism’s environment.

adaptation Any change in feature of an organism that enables it to survive
and reproduce in its environment better than if it lacked the feature.

adaptive landscape A graph of the average fitness of a population in
relation to genotypic frequency. Peaks on the landscape correspond to
genotypic frequencies with a high average fitness, valleys to genotypic
frequencies with low average fitness.

additive effect The effect of an allele on a character when it measures half
the phenotypic difference between homozygotes for that allele
compared to homozygotes for a different allele; i.e. heterozygotes are
exactly midway between the phenotypic scores of the two homozygotes.

additive genetic variance The part of the genetic variance in a character
that is attributable to the additive effects of alleles.

allele One of the alternative forms of a gene with a DNA sequence that
differs from other forms of that gene. Normally, alleles are recognized
by their phenotypic effects.

allelic frequency The occurrence of a specified allele in a population
relative to all alleles at that gene locus. Expressed as a proportion
(between 0 and 1) or a percentage (between 0 and 100).

allozyme One of several forms of an enzyme coded for by different alleles
at a gene locus.

altruism Behaviour that decreases the chances of survival or reproduction
of an individual (i.e. decreases its fitness) while increasing those of
another individual of the same species.

amensalism An interaction between two organisms or species in which
one adversely affects the second but the second has no effect on the
first. For example, some plants produce chemicals that inhibit the
growth of other plants adjacent to them.

aposematic Coloration or markings that serve to warn would-be predators
that the individual is poisonous, foul-tasting or dangerous, for example,
the yellow and black stripes on a wasp or bee.

artificial selection Selection by humans of a chosen trait in a captive
population, usually of a domesticated species. It differs from natural
selection in that fitness (i.e. whether it is selected to breed the next
generation) is defined in terms of the chosen trait, rather than
determined by the entire genotype.

assortative mating The tendency to mate with others of like phenotype or
genotype, for example, tall individuals preferentially mating with tall
individuals. This will increase the proportion of homozygous individuals
in the population. See disassortative mating.
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autosome A chromosome other than a sex chromosome.
bacteriophage A virus that is parasitic within a bacterium; each phage is

specific to one type of bacterium.
balance theory The theory that most genetic variation is maintained in

the population by a balance of selective forces, with the result that most
evolution is directed by natural selection. See neutral theory.

Batesian mimicry The resemblance of a palatable animal (the mimic)
to a noxious animal (the model) that is avoided by predators because
of its warning coloration. For example, hover flies mimic noxious
wasps.

biotic Living. Usually applied to the influences of other organisms (as prey,
competitors, predators or pathogens) as part of an organism’s
environment.

blending inheritance An early erroneous theory that assumed that
hereditary substances from parents merged in their offspring. Compare
to Mendelian inheritance or particulate inheritance.

bottleneck A severe, but short-lived, reduction in population size. The
genetic variation in the population is severely reduced by genetic drift
when the size of the population is small.

carrying capacity The maximum population size of a species that can be
sustained indefinitely by a given habitat or area. Symbol K.

catastrophism The theory that changes in the earth’s crust have resulted
chiefly from sudden violent events some thousands of years ago, and
that there is little change occurring at present. Compare to
uniformitarianism.

character A trait, feature or property of an organism.
chromosome A structure in the cell nucleus that carries the genetic

material (DNA) bound to various proteins. The genes or alleles are
arranged in a sequence along the structure, and the position of each
gene is called a locus.

cline A gradient in the mean value of a trait or in the allelic frequency in
a population over a geographic transect. For example, the salt tolerance
of a species may decline as one moves upstream from the mouth of an
estuary.

codominance The situation in which both alleles of a gene are fully
expressed in the phenotype. For example, pink flowers may be the
phenotype of a plant with one allele for red flowers and the other allele
for white flowers.

coefficient of relatedness The probability of two individuals possessing
the same rare allele by inheriting it from a recent common ancestor. In
general, it is the proportion of alleles among two individuals that are
identical by descent.

coevolution The joint evolution of two or more interacting species where
each evolves in response to selection imposed by the other(s). For
example, the beak in seed-eating birds may be thickened to crack the
hard seed coat of seeds. This selects for seeds with harder seed coats,
which in turn selects for birds with even thicker bills.

cohort A group of individuals born at the same time in a population.
cohort life table A life table constructed by monitoring the survival or

death of a cohort of individuals. Compare with static life table.
competition An interaction between individuals of the same or different

species whereby resources used by one are unavailable to others, which
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results in a mutual depression of fitness (reduced growth rate or
carrying capacity).

Darwinism Darwin’s two theories of evolution: that all species are derived
from other species and so have a common ancestor; and that the main
mechanism of evolutionary change is natural selection.

deme A local population, usually small, in which the individuals breed
randomly with each other.

demography A study of the processes that change the size of a population,
i.e. birth, death and dispersal.

density dependence The tendency for the growth rate of the population to
be affected by population density. Typically, the death rate of the
population increases, or the birth rate decreases, as the density of the
population increases.

deterministic There is a fixed outcome that can be predicted exactly from
a given set of initial conditions. Compare with stochastic.

diploid Having two sets of chromosomes and genes, one from the mother
and one from the father. Compare with haploid and polyploid.

disassortative mating The tendency to mate with a different phenotype or
genotype. For example, some plants with long styles preferentially mate
with plants with short styles. This mating tendency increases the
proportion of heterozygous individuals in the population. See
assortative mating.

dispersal The movement of individuals from one locality to another.
DNA Deoxyribonucleic acid; the molecule that controls inheritance.
dominance In genetics, the extent to which an allele produces the same

phenotype when it is heterozygous compared to when it is homozygous.
An allele (A) is said to be (completely) dominant if the phenotype of the
heterozygotes (Aa) is the same of the homozygotes (AA). Dominance is
incomplete if the heterozygous phenotype is close to, rather than
identical with, the homozygote of the dominant type. Compare with
codominance and recessive.

electrophoresis The movement of charged particles in a fluid or gel under
the influence of an electric field. In studies of genetic variation in
populations, the technique has been used to distinguish between
different proteins (and therefore alleles) which differ in motility because
the molecules vary in size and electric charge.

environment The complex of external abiotic and biotic factors that may
affect the function or activity of a population, organism or part of an
organism such as a gene. Note that the environment of a gene will
probably include other genes within the organism.

epistasis The interaction between two or more gene loci on the phenotype
or fitness such that the joint effect of the genes differs from the sum of
the effects of each gene locus taken separately.

equilibrium An unchanging condition, e.g. of population size or genetic
composition. See stable equilibrium, unstable equilibrium and neutral
equilibrium.

evolution The change in a lineage of populations between generations. The
change is normally documented by a change in genotypic or phenotypic
frequencies.

evolutionarily stable strategy (ESS) Usually a heritable behaviour which, if
adopted by most of the population, cannot be improved upon by any
other strategy and so will become established by natural selection.
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exploitation Competition where the use of resources by individuals
reduces the level of the resources and causes adverse effects on other
individuals (competitors) using those resources. The resources must be
limiting if competition is to occur.

exponential growth The growth of a population where the individual, or
per capita, rate of increase remains constant. The time it takes a
population to double in size remains constant, whatever the size of the
population.

fecundity The number of gametes, fertilized eggs, seeds or live offspring
produced by an individual.

fitness The average reproductive success of an entity from one generation
to the next, in which the entity may be an allele or genotype (where the
genotype is for a specific trait). Frequently the fitness is expressed as a
relative fitness where the average contribution of the allele or genotype
to the next generation is compared with that of another allele or
genotype (normally the superior type).

fixation The process by which an allele becomes fixed in the population
when it becomes the only allele of a gene, i.e. achieves a frequency of
1 or 100% in the population.

founder effect The loss of genetic variation when a new isolated
population is formed by a very small number of individuals from a
larger population.

frequency-dependent selection Selection where the fitness of a genotype
or phenotype depends on its frequency in the population.

functional response The relationship between a predator’s consumption
rate of prey (i.e. the number of prey eaten per predator) and either prey
density or predator density.

gene A functional unit of heredity, which in this book may be considered
to be a sequence of nucleotides in the DNA molecule coding for either
part or all of a protein, residing at a particular locus on a chromosome.

gene flow The movement of alleles into the gene pool of a population
from one or more other populations. For this to happen, there must be
immigration of individuals from other populations, and these
individuals must successfully breed with the resident population.

genetic drift Random changes in the frequencies of alleles or genotypes
within a population due to sampling error in the gametes.

genome The complete set of genes or genetic material in a cell or
organism.

genotype The set of genes of an individual organism represents its overall
genotype, but more frequently the term is used to denote the genetic
composition at a specified gene locus or group of loci.

gradualism The proposal that large changes in a phenotype are the result
of the accumulation of many small changes.

group selection The differential survival of whole populations as a result
of differences among them of one or more characteristics.

guild A group of species that exploit a type of environmental resources in
a similar way.

habitat The place where an organism lives.
haploid A cell (usually a gamete) or organism with only one set of genes or

chromosomes, and so there is only one allele at each gene locus.
Hardy--Weinberg ratio The ratio of genotypic frequencies in a randomly

mating population where there is no mutation, selection or drift
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operating. The Hardy--Weinberg ratio for a gene with two alleles (A and
a, with a frequencies of p and q) and three genotypes (AA, Aa, and aa) is
p2 AA: 2pq Aa: q2 aa. The ratio is a neutral equilibrium and may be
changed by the action of mutation, selection and drift.

herbivore An animal that consumes plants. Some consume the entire
plant (e.g. seed-eaters and grazers of phytoplankton) and act like true
predators, others act like parasites in the way that they obtain their
nourishment from a plant (e.g. aphids), but most herbivores attack a
large number of plants and only consume part of the plant without
killing it.

heritability The proportion of the variance among individuals in a trait
that is attributable to differences in genotype.

heterogametic The sex with two different sex chromosomes. In mammals,
this is the male sex which has sex chromosomes XY. See homogametic.

heterozygote An individual with two different alleles at a gene locus.
heterozygote superiority The situation is which, at a gene locus, the

heterozygote has a higher fitness than either homozygote. Also called
heterozygote advantage.

homogametic The sex with two of the same kind of sex chromosomes. In
mammals, this is the female sex which has sex chromosomes XX. See
heterogametic.

homozygote An individual with two copies of the same allele at a gene
locus.

identical by descent Two or more copies of an allele are identical by
descent if they have been derived from a single copy of the allele in a
common ancestor.

inbreeding Relatives interbreed more frequently than if mates were
chosen at random in a population.

inclusive fitness The fitness of a gene or genotype measured by the
number of copies of genes identical by descent that are passed on to the
next generation both directly by an individual as well as indirectly by its
relatives as a result of the individual’s actions. Thus, if an individual has
two offspring on average, and by the provisioning of extra food helps a
sibling produce one additional offspring on average, it will have an
inclusive fitness of 1.25 (a direct fitness of 1.0, because each of its two
offspring share half of its genes with its parent, and an indirect fitness
of 0.25, because the additional offspring produced by its sibling have
half of its genes in common with the one parent which in turn has half
of its genes in common with its sibling). See kin selection.

interference Competition between organisms where one prevents another’s
use of resources contained in the area. This is typically achieved by
behavioural and chemical interactions.

intrinsic rate of natural increase The per capita rate of increase of a
population with a stable age distribution when there is no inhibition of
growth by intraspecific competition.

isocline A line on a graph along which the population has the same rate
of growth.

iteroparity A life history where individuals reproduce more than once
during their lifetime. Compare with semelparity.

kin selection A form of selection in which the fitness of an allele is
increased through altruistic acts to relatives (kin), which increases their
reproductive success and results in more copies of the allele (which have
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descended from a common ancestor and so are identical by descent)
being passed on to the next generation. See inclusive fitness.

K-selection The selection of life-history traits that favour a population of
organisms staying close to the carrying capacity in a stable environment.
The traits include large size, delayed reproduction, iteroparity, the
production of few offspring with much parental care, a long lifespan,
and a strong competitive ability. Compare with r-selection.

Lamarckism The theory of inheritance proposed by Jean-Baptiste de
Lamarck which suggested that changes acquired during an organism’s
life could be inherited. Commonly referred to as inheritance of acquired
characteristics.

lek A group of male territories that are vigorously defended for the
purpose of sexual display and mating.

life table A table of statistics relating to survival, life expectancy and
mortality in relation to age for a specified population.

locus The position on a chromosome occupied by a specific gene.
logistic growth A form of population growth in which the per capita rate

of growth decreases linearly with increasing population density. The
resulting growth curve is S-shaped and is frequently called a sigmoid
growth curve.

macroevolution Evolution on a large scale, where the phenotypic changes
are sufficiently great that new genera or higher taxa originate.

mean The average of a number of values; e.g. the mean of 4, 5 and 9 is
(4 + 5 + 9)/3 = 6.

Mendelian inheritance The mode of inheritance of diploid species, in
which heritable information is encoded within genes that are passed
unchanged from parent to offspring, except on rare occasions when a
mutation occurs. At each gene locus in an individual there are two
alleles, one from the father and one from the mother, and these two
alleles are usually represented equally in the individuals gametes.

microevolution Usually small evolutionary changes within a population or
species.

migration In population genetics is used as a synonym for gene flow
among populations; and in other contexts refers to the movement of
individuals or whole populations from one area to another and may not
involve gene flow.

mimicry Where one species resembles another because it is advantageous
to do so. See Batesian mimicry and Müllerian mimicry.

Modern Synthesis The synthesis of Darwin’s theory of natural selection,
Mendelian inheritance and population genetics. Also called
neo-Darwinism.

modifier gene A gene that modifies the phenotypic expression of genes at
one or more loci.

monogamy A mating system where both males and females have a single
mating partner.

Müllerian mimicry A type of mimicry where two noxious species evolve
the same general pattern of warning coloration. For example, some bees
and wasps have a similar yellow and black striping on their bodies.

mutation A random change in the sequence of nucleotides in the DNA
molecule. The source of genetic variation.

natural selection The differential survival from one generation to the next
of alternative forms of traits or entities, with the result that organisms
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in the population that are best adapted to the local environment
increase in frequency relative to less well-adapted forms generation after
generation.

nature versus nurture A debate about whether the phenotype is mainly
the result of genetic factors (nature) or environmental effects (nurture).
The debate is frequently heated when dealing with behavioural traits,
particularly those of humans.

neutral alleles Alleles at the same locus that have the same fitness.
neutral equilibrium An unchanging state or condition, such that if the

state is changed to a new position it remains at that point unless
subject to some external force.

neutral theory The theory that most genetic variation is neutral with
respect to fitness with the result that most evolution at the molecular
level occurs by genetic drift. See balance theory.

niche Where and how the individuals of a species live. It is defined by
location of the habitat where a species lives, and what, where and how
it obtains the resources necessary for its survival.

parasite An organism that obtains its nutrients from another organism,
causing harm to their host but usually not killing it.

parasitoid An insect whose larval stage lives in or on another animal,
initially doing little harm but eventually killing its host. May be
regarded as being intermediate between a parasite and a true
predator.

parthenogenesis Reproduction without the egg being fertilized, i.e. the
asexual reproduction of females.

particulate inheritance The transmission from parent to offspring of
discrete units or factors that help determine the characteristics of an
organism. Consistent with Mendelian inheritance, but contrasts to
blending inheritance.

phenotype The morphological, physiological, behavioural, biochemical and
other properties of an organism resulting from an interaction of the
genotype and environment. Typically, a specific subset of characteristics
is referred to.

pleiotropy The effect of a gene on two or more unrelated characteristics.
Poisson distribution Frequency distribution for a number of items per

unit area or number of events per unit time, when the number occurs
at random.

polyandry A system of mating in which a female has more than one male
mate.

polygamy A system of mating in which an animal has more than one mate
of the opposite sex.

polygenic traits A character whose variation is influenced in whole or in
part by the allelic variation at several gene loci.

polygyny A mating system in which males mate with more than one
female.

polymorphism The presence in the population of more than one allele at
a gene locus. It also refers to phenotypic variation of a trait within a
population.

polyploid The presence of more than two entire sets of chromosomes in
an individual.

population A group of organisms, that usually reproduce sexually and
share a common gene pool. They usually occupy a more or less defined
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locality, and the individuals interact more with each other than they do
with individuals of other populations of the same species.

population genetics The study of the processes that affect gene or allelic
frequencies.

preadaptation A feature of an organism that by chance allows an organism
to exploit a new niche or environment.

predation The consumption of one living organism (the prey) by another
(the predator).

predator An organism that consumes other living organisms. They can be
divided into true predators, herbivores, parasites and parasitoids.

prey An organism that is killed and eaten by a predator.
quantitative trait A character showing continuous variation in a

population because it is polygenic.
race In biology, a poorly defined term for a localized set of populations

with a phenotype that is distinct from other populations of the species,
and is often used in the same sense as subspecies. In humans, the term
is often used but is less clear because there is a continuum between the
various so-called distinct phenotypes or races.

random mating The probability of mating with individuals of specified
genotypes or phenotypes equals the frequency of those genotypes or
phenotypes in the population.

recessive An allele (a) is completely recessive to an alternative allele (A) if
the phenotype of the heterozygote (Aa) is the same as the homozygote
(AA) of the alternative (dominant) allele and different from the
homozygote (aa) of the recessive allele. An allele may be partly, rather
than completely, recessive: see codominance, dominance.

recombination The exchange of DNA between pairs of chromosomes,
called crossing over, during cell division in the production of gametes.
This process causes a mixing or recombination of alleles so that
offspring have a different combination of alleles and traits from their
parents.

reproductive rate The number of offspring produced by an individual per
unit time (which is defined).

reproductive value The expected relative contribution of an individual to
the number of individuals in the next generation of the population,
from a specified age of the individual to the end of its life.

r-selection The selection of life-history traits which result in an ability to
increase rapidly in numbers. The traits include small size, early
reproduction, semelparity, large numbers of offspring, and a short
lifespan. Compare with K-selection.

resource Something that is consumed or used by an organism, such as
food, water and nesting sites.

selection A synonym of natural selection.
selection coefficient The difference between the mean relative fitness of a

specified genotype and that of a reference genotype, which is usually the
genotype with the highest fitness and given a value of 1.

semelparity A life history where individuals, particularly females,
reproduce only once during their lifetime. Compare with iteroparity.

sex chromosome A chromosome that influences sex determination.
sexual reproduction The production of offspring by the fusion of two

different gametes containing genetic material, one from the father and
one from the mother.
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sexual selection The differential production of offspring because of
variation in the ability to obtain mates. The selection occurs either
through competition between members of one sex, usually the males,
for the chance to breed with the other sex, or through members of
one sex, usually the females, choosing certain members of the opposite
sex.

sigmoid curve An S-shaped curve, e.g. logistic growth curve.
species Members of a group of populations that actually or potentially

interbreed with each other under natural conditions This is the
biological species concept. In the case of fossils and asexual species, the
term is used to denote groups of individuals that look similar, i.e. a
phenetic species concept.

stabilizing selection Selection that promotes keeping a trait constant, by
selecting against extremes of the phenotype and where an intermediate
value of the phenotype has the highest fitness.

stable equilibrium An unchanging state of population size or gene
frequency, such that if displaced from that state will return to the
equilibrium condition.

standard deviation The square root of the variance.
static life table A life table constructed from the age structure or age at

death of individuals in a population determined at a single moment of
time. Compare with cohort life table.

stochastic Randomly determined; a property having a random probability
pattern around some particular value that may be analysed statistically
but cannot be determined exactly.

subspecies A group of populations of a species that share distinctive
features and live in a different geographical area from other subspecies.

survivorship The probability of a newborn individual living to a particular
age.

survivorship curve A plot of survivorship (on the vertical axis) against age
(on the horizontal axis). The survivorship is frequently plotted on a
logarithmic scale.

territory An area or volume defended by an individual or a group of
individuals, from which other individuals, usually of the same species,
are excluded.

true predator An animal that kills and consumes other animals (their
prey) more or less immediately after attacking them.

uniformitarianism The theory that changes in the earth’s crust during
geological time have resulted from the action of continuous and
relatively uniform natural processes like uplifting, erosion and
sedimentation.

unstable equilibrium An unchanging state of population density or allelic
frequency, but if the system is disturbed it moves away from the
equilibrium value.

variance A measure of variation calculated by the average squared
deviation of observations from their arithmetic mean. Symbolized σ 2 or
s2, it is calculated by the formula [�( x̄ − xi)2]/(n--1), where x̄ is the mean
of the observations, xi is the value of each individual observation, and n
is the number of observations.

vestigial A rudimentary or atrophied state of an organ or part of the body,
as a result of reduction through evolution from a more elaborate,
functional state in an ancestor.
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wild type The most common allele in wild populations, assuming there is
one. Other alleles of the gene are termed mutations.

zero isocline An isocline along which the rate of population growth is
zero.

zygote The cell formed by the union of a male and female gamete through
the process of sexual reproduction.



Solutions to problems

CHAPTER 4

1. The λ per year = 6000/5000 = 1.2, and so the rm per year = ln (1.2) =
0.18232 (using Eqn 4.6). The population size after three years can
be estimated using either Eqn 4.2 (Nt = 5000 × 1.23 = 8640) or
Eqn 4.4 (Nt = 5000 × e0.18232 × 3 = 8639.96, or 8640).

2. The λ per century = 900 million/600 million = 1.5, and so the rm

per century = ln(1.5) = 0.4055 (using Eqn 4.6). The rm per year =
0.4055/100 = 0.00405. The λ per year can be calculated, using
Eqn 4.5, as e0.00405 = 1.004, or approximately 0.4% per year.

3. A 15% increase per year = λ of 1.15 per year. When the popula-
tion doubles in size, Nt/N0 = 2. If we rearrange Eqn 4.2, we can
see that 2 = λt. Taking the logarithm of both sides (i.e. ln(2) =
ln(λ)t) we find 0.6931 = 0.14t, and so t = 4.96, or approximately
5 years.

4. First convert the rm per week to rm per day so that rm and t are in
the same time units. So, rm of 0.14 per week is equivalent to rm =
0.14/7 = 0.02 per day. Then use Eqn 4.4 to estimate Nt, setting
N0 to 24, rm to 0.02, and t to 65. The answer is approximately
88 rats.

5. The multiplication rate (λ) over a four-week period is 5. Using
Eqn 4.6 we calculate the rm per four weeks as ln(5) = 1.6094. The rm

per day is 1.6094/28 = 0.0575, and we may use Eqn 4.5 to calculate
the λ per day (λ = e0.0575 = 1.059).

6. There are two possible answers. If we consider the birth rate =
36/1000 = 0.036 and the death rate = 19/1000 = 0.019 to rep-
resent instantaneous rates, then rm = 0.036 − 0.019 = 0.017 per
year. Using this value in Eqn 4.4 and setting N0 = 2 907 000 000 and
t = 1, we calculate Nt as 2 956 841 452. The increase in population
size is 2 956 841 452 − 2 907 000 000 = 49 841 452. However, if we
consider the birth and death rates to represent finite rates then
Rm = 0.017 per year. From this point of view, we can calculate
λ = 1 + Rm = 1.017 using Exp. 4.8, and so rm = ln(1.017) = 0.01686.
Using this value in Eqn 4.4 gives us an answer of 2 956 419 000
and so the increase in number = 49 419 000. Either answer is
acceptable.

7. (a) The population increased from N0 = 2 907 000 000 to Nt =
2 957 000 000 during a one-year period (t = 1). If we use
Eqn 4.4, 2 957 000 000 = 2 907 000 000 × er. To solve for rm, di-
vide through by 2 907 000 000 and take the logarithm of both
sides of the equation. The answer is rm = 0.0171.

(b) We know that rm = b − d. Using our answer for rm in part (a) we
may see that 0.0171 = b − 0.019, and so b = 0.0171 + 0.019 =
0.0361.
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Fig. S1 Answer to question 1,
Chapter 5.

CHAPTER 5

1. The relationships are described in Fig. S1. Note that the units on
the x and y axes are entirely arbitrary. The per capita rate of in-
crease remains constant in exponential growth but declines lin-
early with increasing density in logistic growth (Fig. S1a). The
change in population size increases proportionately with the in-
crease in population size in exponential growth, but attains a
maximum value at half the carrying capacity (i.e. K/2) in logistic
growth (Fig. S1b).

2. (a) Use Eqn 4.4. Set N0 = 5, Nt = 1044 and t = 28 days. The answer
is 0.1908 per day.

(b) Again using Eqn 4.4, and setting N0 = 5, rm = 0.1908 and t =
7 × 15 = 105 days, we can solve it for Nt. The answer is approx-
imately 2 509 722 214 individuals!

(c) Using Eqn 5.4, and setting K = 2500, N0 = 5, Nt = 1044 and
t = 28 days, we can solve it for rm. The answer is 0.21 per day.
Note that to estimate rm you need to know the population size
at three points, N0, Nt and K.

(d) If the population is growing logistically, the answer in part (c)
is the correct value of rm. Equation 5.4 automatically adjusts for
the reduction in r by density dependent effects. Part (a) gives
the value of r corresponding to a population density some-
where between 5 and 1044 in Fig. S2. There has already been
some suppression of the growth rate during the first month of
growth as a result of density-dependent effects.

(e) Using any of the variants of Eqn 5.2, set K = 2500, N = K/2 =
1250 (this is where δN/δt is a maximum) and rm = 0.21, and
solve the equation for δN/δt. The answer is 131.25 or approxi-
mately 131 individuals per day.

3. (a) 10 days because the doubling time stays constant in exponen-
tial growth. (b) First, use Eqn 5.4 and solve it for rm by setting
t = 10, K = 100, N0 = 20 and Nt = 40. The value of rm is 0.0981
per day. Use Eqn 5.4 again, but set Nt = 80 and rm = 0.0981,
and solve it for t. The value of t is 28.26 days, which is the time
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Chapter 5.

it takes the population to grow from 20 to 80 individuals. Our
final answer is 28.26 − 10 = 18.26 days.

4. (a) Substitute K = 5 × 106, N0 = 2 × 103, t = 3 and rm = 0.29 in
Eqn 5.3. The answer is 4.77 × 103.

(b) The maximum sustained yield (δN/δt) is possible when N = K/2.
We set N = K/2 in Eqn 5.2 and solve it for δN/δt. The maximum
sustained yield is approximately 3.6 × 105 cells per ml per hour.

(c) We can use Eqn 5.4, setting rm = 0.29, K = 5 × 106, N0 = 2 ×
103 and Nt = K/2 = 2.5 × 106. The solution is approximately
27 hours.

CHAPTER 6

1. (a) Using Eqn 6.1, the expected frequency of heterozygotes is 2pq,
which is 2 × 0.9 × 0.1 = 0.18.

(b) The total proportion of rhesus positive people in the population
is p2 + 2pq, which is 0.92 + 2 × 0.9 × 0.1 = 0.81 + 0.18 = 0.99.
Therefore, the fraction of these people that are heterozygous
is 0.18/0.99 = 0.1818.

2. The expected frequency of the M allele is 0.734, and of the N al-
lele is 0.266. Using the expected Hardy--Weinberg equilibrium fre-
quencies of p2 + 2pq + q2 and multiplying by the sample size of
203, the expected frequencies are 109.4 MM, 79.3 MN and 14.4 NN.
These look very similar to the observed results. One may calculate
a χ2 value of 0.89 for these data (see section 6.4.2), which is not
significant. We can conclude, therefore, that the population is in
Hardy--Weinberg equilibrium and that mating is random.

3. Using a similar procedure to question 1, the frequency of the B
allele is 0.5107, and of the C allele is 0.4893. The expected equi-
librium frequencies are 146.6 BB, 280.9 BC and 134.6 CC. These
are very different to the observed values and so the milk herd is
unlikely to be in Hardy--Weinberg equilibrium. The χ2 value for
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these data is 104.5, which is considerably higher than the value of
3.84 which denotes a significant difference between the observed
and expected frequencies. We can see that the observed numbers
of homozygous individuals (BB and CC) are less than the expected
number. As the young calves were in the expected Hardy--Weinberg
proportions this suggests that there is an increased mortality of ho-
mozygous individuals as they grow from calf to adult, i.e. a strong
selection against homozygous individuals.

4. The expected frequency of recessives in the population is q2 which
is observed to be 1 in 2000 or 0.0005. The frequency of the recessive

allele for cystic fibrosis (q) is
√

(0.0005) = 0.02236. The frequency
of carriers is 2pq = 2 × 0.97764 × 0.02236 = 0.0437. Taking the
reciprocal of this value, we see that the frequency of carriers in
the population is 1 in 22.9 or approximately 1 in 23 individuals.

5. The dark-coloured phenotype is made up of two genotypes, CC and
Cc, corresponding to frequencies of p2 and 2pq (if the frequency
of the C allele is symbolized by p) or q2 + 2pq (if the frequency of
the C allele is symbolized by q). We cannot estimate the frequency
of the C allele directly because the dark phenotype is made up of
two genotypes, but we can estimate the frequency of the c allele
from the proportion of light-coloured individuals in the popula-
tion because they are homozygous recessive, cc (see section 6.4.1).
If 96% of the population is dark, then 4% are light coloured, and
this represents a frequency of 4/100 = 0.04. This represents p2 or q2

(see above), and so the frequency of the c allele in the population

is
√

(0.04) = 0.2. Therefore, the frequency of the carbonaria allele
(C) is 1 − 0.2 = 0.8.

CHAPTER 9

1. Using Eqn 9.3, set qt = 0.118, q0 = 0.176, qm = 0 and t = 10. The
answer (m) = 0.039.

2. First calculate qm for each population: for population 1 = (0.5 +
0.8 + 0.9)/3 = 0.7333, for population 2 = (0.2 + 0.8 + 0.9)/3 =
0.6333, for population 3 = (0.2 + 0.5 + 0.9)/3 = 0.5333, and for
population 4 = (0.2 + 0.5 + 0.8)/3 = 0.5. Then use a rearranged
Eqn 9.2 to calculate the following:

When q0 = 0.2, qt = (1 − 0.05)5(0.2 − 0.7333) + 0.7333 = 0.3206
q0 = 0.5, qt = (1 − 0.05)5(0.5 − 0.6333) + 0.6333 = 0.5302
q0 = 0.8, qt = (1 − 0.05)5(0.8 − 0.5333) + 0.5333 = 0.7397
q0 = 0.9, qt = (1 − 0.05)5(0.9 − 0.5) + 0.5 = 0.8095.

3. Use Eqn 9.2 and set qt = 0.55, q0 = 0.75, qm = 0.25 and m =
0.05. We obtain: 0.3 = 0.95t × 0.5, which simplifies to 0.95t =
0.6. The logarithm of both sides of the equation yields −0.0513 ×
t = −0.5108, and so t = 9.96, or approximately 10 generations.
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CHAPTER 11

1. (a) You cannot calculate the relative fitness independently for each
genotype. You must account for breeding both within and be-
tween genotypes by making the assumption of random mating.
Follow the steps laid out in Example 11.3. First, calculate the
allelic frequencies from the numbers of the three genotypes in
generation 1. Thus:

Frequency of allele G = [6 + 1/2(284)]/1462, or 0.1012

Similarly, the frequency of allele B = 0.8988.
Then, calculate the expected numbers of the three genotypes
based on the expected Hardy--Weinberg ratios (p2 + 2pq +
q2). Thus, GG = 0.10122 × 1200, or 12.3, GB = 2 × 0.1012 ×
0.8988 × 1200, or 218.3, and BB = 0.89882 × 1200, or 969.4.

The absolute fitness is calculated from the ratios of Ob-
served/Expected, and the relative fitness and selection coeffi-
cients are calculated as follows:

Genotype Absolute fitness Relative fitness (W ) Selection (s)

GG 4/12.3 = 0.3252 0.3252/1.1177 = 0.2910 1 − 0.2910 = 0.7090 = s1

GB 244/218.3 = 1.1177 1.1177/1.1177 = 1 1 − 1 = 0
BB 952/969.4 = 0.9821 0.9821/1.1177 = 0.8787 1 − 0.8787 = 0.1213 = s2

(b) From Eqn 10.15 q̂ = 0.709

0.709 + 0.1213
, or 0.8539.

If you are confused as to which selection coefficient is s1 and
which is s2 in the equation, note that we expect the frequency
of the brown allele to be higher than the green allele because
selection is less against the brown allele.

2. (a) It is wise to lay out the information as follows:

carbonaria typica

Genotype CC Cc cc
Starting frequency 0.10 0.90 = q0

2 So q0 =
√

0.9 or 0.9487
Final frequency 0.90 0.10 qt =

√
0.1 or 0.3162

We can see that the frequency of typica is declining and so the
frequency of the allele is q and the frequency of the recessive
genotype is q2. The starting and final allelic frequencies are
easily calculated as shown. We know that for typica W = 0.67,
and so the selection coefficient against typica is 1 − 0.67 = 0.33.

To calculate the number of generations (t) to effect the change
in allelic frequencies we use Eqn 10.11, because the situation
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conforms to Case C -- complete dominance, selection against
the recessive. Thus:

0.33t = 0.9487 − 0.3162

0.9487 × 0.3162
+ ln

[
0.9487(1 − 0.3162)

0.3162(1 − 0.9487)

]

This has a solution of t = 17.6, or approximately 18 years.
(b) If the frequency of carbonaria is 0.36, then the frequency of

typica (q2) is 0.64 in 1924. Thus, the allelic frequency (q) is 0.8
in 1924. The frequency of the carbonaria allele when it was first
introduced was 1/(2 × 5000), or 0.0001. Thus, the frequency
of the typica allele would have been 0.9999 at that time. If we
substitute these values into Eqn 10.11, we obtain:

0.33t = 0.9999 − 0.8

0.9999 × 0.8
+ ln

[
0.9999(1 − 0.8)

0.8(1 − 0.9999)

]

The solution is t = 24.5 years, and so the carbonaria allele was
introduced into the population around the turn of the century.

3. (a) The information is as follows:

typica carbonaria

Genotype CC Cc cc
At start 0.5 0.5 = p0

2 so p0 =
√

0.5 or 0.7071 and
q0 = 0.2929

10 years
later

0.1 0.9 pt =
√

0.9 or 0.9487 qt = 0.0513

We cannot calculate q directly because the frequency of the
dominant typica phenotype is q2 + 2pq, which cannot be solved.
We can see that the frequency of the carbonaria genotype is in-
creasing and the frequency is equal to p2. Therefore, we calcu-
late p first, and then q (= 1 − p).

The situation conforms to Case D -- complete dominance, selec-
tion against the dominant, and so we need to use Eqn 10.14 to
solve for s as follows:

10s = 0.2929 − 0.0513

0.9487 × 0.7071
+ ln

[
0.2929(1 − 0.0513)

0.0513(1 − 0.2929)

]

With the solution of s = 0.24.
(b) We should note that we are provided with the frequency of an

allele and not the frequency of a genotype. The frequency of
the carbonaria allele increases from 0.01 to 0.1, and so the frequ-
ency of the typical allele decreases from 0.99 (= q0) to 0.9 (= qt).

For Case D we use Eqn 10.14, setting s = 0.24. The solution is t =
385 years.

For Case C we use Eqn 10.11. The solution is 10.4 years.
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One may see that favourable dominant alleles increase much
faster than favourable recessive alleles when they are at low
frequencies.

(c) The survival rate of carbonaria is 0.58, and that of typica is 0.48.
Taking the ratio of the logarithms of these survival rates (see
Example 11.2) gives a relative fitness for typica of 0.7422, and
so s = 1 − 0.7422, or approximately 0.26. We can see that this
is very similar to the selection coefficient based on differential
predation of the two phenotypes by birds.

4.

Flower colour Red Pink
Genotype RR Rr rr Total
Starting numbers 180 90 270
Numbers after 5 years 227 85 312
Frequency at start 0.67 0.33 q0 =

√
0.33 or 0.5773

Frequency after 5 years 0.7276 0.2724 qt =
√

0.2724 or 0.5220

(a) This conforms to Case C -- complete dominance, selection
against the recessive. Use Eqn 10.11, setting t = 5. The solu-
tion is s = 0.0814.

(b) The equilibrium frequency is zero, because the frequency of
the pink allele will continue to decline until it is eliminated.

(c) We can obtain a more accurate direct estimate of allelic fre-
quencies. The frequency of q0 = 0.5519, and qt = 0.5224. We
now have a situation conforming to Case B because it is stated
that the relative fitness of the heterozygotes is intermediate be-
tween those of the two homozygotes. Consequently, we must
use Eqn 10.8 to solve for s. The solution is s = 0.0475.

5. (a) At the start, q0 = 0.5 (half the alleles of the heterozygous
plants), and qt = 1/200 = 0.005 (there is a single chlorophyll-
deficient allele in 100 × 2 alleles). Using Eqn 10.13 we find the
solution is 198 generations.

(b) We use Eqn 11.2, and set u = 4.3 × 10−4, and s = 1. The solution
is q̂ = 0.0207.

(c)

Phenotype Normal Heterozygous Lethal

Genotype AA Aa aa
Observed numbers 132 52 0
Frequency of A (p) = 0.8587
Frequency of a (q) = 0.1413
Expected numbers 135.7 44.7 3.7
Absolute fitness 0.9729 1.1646 0
Relative fitness (W) 0.8354 1 0
Selection coefficient s1 = 0.1646 s2 = 1
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The allelic frequencies are calculated from the observed fre-
quencies of the genotypes. We can then calculate the expected
genotypic frequencies, assuming they are in Hardy--Weinberg
equilibrium. The absolute fitness of each genotype is then cal-
culated from the ratio of Observed/Expected values.

6. (a)

Non-Jewish Canadian Jewish Canadian
q2 = 1/550,000 1/3600
q = 1.35 × 10−3 1.67 × 10−2

Carriers (2pq) = 2.69 × 10−3 3.28 × 10−2

= 1 in 371 1 in 31

(b) From Eqn 11.2 we can see that u = q̂ when s = 1. Therefore,
we estimate u = 1.82 × 10−6 for non-Jewish Canadians, and
u = 2.74 × 10−4 for Jewish Canadians. There is no particular
reason why the mutation rates should be so different in the
two groups. This illustrates the dangers of using Eqn 11.2 to
estimate mutation rates (see section 11.2.4). The increased inci-
dence of Tay--Sachs disease in the Jewish population is probably
related to founder effects in Ashkenazi Jews (see Chapter 8).

(c) We use Eqn 10.13, setting qt and q0 from the values given in part
(a). The solution is 681.6 generations, or 17 040 years. This shows
that if the equilibrium frequency of the disadvantageous allele
is changed for any reason, it will take a long time to reach the
equilibrium predicted from a balance between mutation and
selection. This emphasizes why it is inadvisable to use Eqn 11.2
to estimate mutation rates.

CHAPTER 12

1. (a) Heritability is equal to the parent--offspring regression coeffi-
cient, i.e. h2

N = 0.75.
(b) The phenotypic variance of the F1 generation is equal to VE

because all of the individuals are genetically identical (VG =
0). Thus, from Eqn 12.1 VE = 2.5. The overall variance of the
F2 generation is VP = 12.5. Therefore, from Eqn 12.1, VG =
VP − VE, or 12.5 − 2.5, or 10.0. From Eqn 12.3, VA = 0.75 ×
12.5, or 9.375. Finally, from Eqn 12.2, (VD + VI) = VG − VA, or
10 − 9.375, or 0.625.

(c) The overall phenotypic mean of the parental population, YP, is
80 cm. The parents selected to breed the next generation have
an average tail length, YS, of 90 cm. The selection differential
is calculated using Eqn 12.4, so S = 90 − 80, or 10 cm. The
response to selection is predicted from Eqn 12.6, so R = 10 ×
0.75, or 7.5 cm. We can now estimate the average tail length
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of the offspring using a modification of Eqn 12.5 (YR = R + YP)
so YR = 7.5 + 80, or 87.5 cm. If the average tail length of the
parents had been 70 cm, we can follow the same steps to show
that S = −10 cm, R = −7.5 cm and YR = 72.5 cm. Note that
there is a regression in the phenotypic scores of the offspring
toward the overall mean of the parental population.

CHAPTER 15

1. (a) We obtain the following lx and mx series for these data:

Age lx mx

0 1.0000 0
1 0.5000 1.4
2 0.1000 2.0
3 0.0375 2.4
4 0.0150 2.4
5 0 0

We then calculate R0 = 1.026 (following the procedure in Table
15.1), the generation time (T) = 1.4756 (using Eqn 15.2) and
rc = 0.01739 (using Eqn 15.1). Equation 15.4 gives a value for rm

of 0.01746. This value is best calculated using your spreadsheet.
(b) Using Eqns 15.7 and 15.8, and following the procedure outlined

in Table 15.2 we obtain the following survival probabilities (Pi)
and fertility coefficients (Fi):

Age class 1 Pi Fi

1 0.5 0.7
2 0.2 0.4
3 0.375 0.9
4 0.4 0.96
5 0 0

The corresponding Leslie matrix is:


0.7 0.4 0.9 0.96 0
0.5 0 0 0 0
0 0.2 0 0 0
0 0 0.375 0 0
0 0 0 0.4 0




(c) At the start the numbers in each age class are:
n1 = 10
n2 = 20
n3 = 0
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n4 = 0
n5 = 0

At time 1, the numbers are calculated as:
n1 = 10 × 0.7 + 20 × 0.4 + 0 × 0.9 + 0

× 0.96 + 0 × 0 = 15
n2 = 10 × 0.5 = 5
n3 = 20 × 0.2 = 4
n4 = 0
n5 = 0

At time 2, the numbers are:
n1 = 15 × 0.7 + 5 × 0.4 + 4 × 0.9 + 0

× 0.96 + 0 × 0 = 16.1
n2 = 15 × 0.5 = 7.5
n3 = 5 × 0.2 = 1
n4 = 4 × 0.375 = 1.5
n5 = 0

Finally, at time 3, the numbers in each age class are:
n1 =16.1 × 0.7 + 7.5 × 0.4 + 1 × 0.9 + 1.5

× 0.96 + 0 × 0 = 16.61
n2 = 16.1 × 0.5 = 8.05
n3 = 7.5 × 0.2 = 1.5
n4 = 1 × 0.375 = 0.375
n5 = 1.5 × 0.4 = 0.6.

CHAPTER 17

1. (a) The results are consistent with the definition of interspecific
competition whereby each species inhibits the growth of the
other. The presence of each taxon appears to reduce the abun-
dance of the other, and when both groups are removed there is
an increase in the abundance of seeds (the resource being ex-
ploited by both groups of animals). However, there are only two
replicates of each treatment and control, and so it is possible
that the results reflect environmental variability rather than a
response to the removal of taxa. If there were more replicates,
we would have more confidence in the results, provided they
show the same trends.

(b) Let ants be taxon 1 and rodents taxon 2. Then K1 = 543
and K2 = 144, and the equilibrium densities are N1 = 318
and N2 = 122. We can now use Eqns 17.3 and 17.4 to solve for
α and β. Thus, N1 = K1 − αN2, and so 318 = 543 − α122, with
the solution α = 1.84. Similarly, N2 = K2 − βN1 and so 122 =
144 − β318, with the solution β = 0.069.

2. (a) First, determine the zero isoclines. For Paramecium (species 1) the
x-intercept is K1 = 70, and the y-intercept is K1/α = 70/5.5, or
12.7. Similarly, for Stylonychia the y-intercept is K2 = 11, and the
x-intercept is K2/β = 11/0.12, or 91.7. Draw a graph of the zero
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isoclines (Fig. S3). It may be seen that the model predicts the
observed coexistence of the two species.

(b) The zero isocline of Paramecium (species 1) is unchanged, but
for Stylonychia (species 2) the y-intercept is now 20 and the
x-intercept is 20/0.2 = 100. Now when we draw the zero iso-
clines (Fig. S4) we see that the model predicts that Stylonychia
will out-compete and eliminate Paramecium.

(c) The model predicts that Stylonychia wins against Paramecium, but
the reverse was observed. We note that the superior competitor
(Stylonychia) has the lower growth rate (r), so the situation could
resemble that illustrated in Fig. 17.8, where the species with
the higher growth rate (Paramecium) has the advantage at high
removal rates (m). This can be confirmed by using your simula-
tion model and substituting the appropriate values for the two
species with m = 0.1.
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