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Introduction to Computer-Intensive Methods

of Data Analysis in Biology

This guide to the contemporary toolbox of methods for data analysis will

serve graduate students and researchers across the biological sciences. Modern

computational tools, such as Bootstrap, Monte Carlo and Bayesian methods,

mean that data analysis no longer depends on elaborate assumptions designed

to make analytical approaches tractable. These new ‘computer-intensive’

methods are currently not consistently available in statistical software packages

and often require more detailed instructions. The purpose of this book therefore

is to introduce some of the most common of these methods by providing a

relatively simple description of the techniques. Examples of their application are

provided throughout, using real data taken from a wide range of biological

research. A series of software instructions for the statistical software package

S-PLUS are provided along with problems and solutions for each chapter.
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Preface

Easy access to computers has created a revolution in the analysis of

biological data. Prior to this easy access even “simple” analyses, such as one-way

analysis of variance, were very time-consuming. On the other hand, statistical

theory became increasingly sophisticated and far outstripped the typical

computational means available. The advent of computers, particularly the

personal computer, and statistical software packages, changed this and made

such approaches generally available.

Much of the development of statistical tools has been premised on a set of

assumptions, designed to make the analytical approaches tractable (e.g., the

assumption of normality, which underlies most parametric methods). We have

now entered an era where we can, in many instances, dispense with such

assumptions and use statistical approaches that are rigorous but largely freed

from the straight-jacket imposed by the relative simplicity of analytical solution.

Such techniques are generally termed “computer-intensive” methods, because

they generally require extensive numerical approaches, practical only with a

computer. At present, these methods are rather spottily available in statistical

software packages and very frequently require more than simple “point and

click” instructions. The purpose of the present book is to introduce some of the

more common methods of computer-intensive methods by providing a relatively

simple mathematical description of the techniques, examples from biology of

their application, and a series of software instructions for one particular

statistical software package (S-PLUS). I have assumed that the reader has at least

an introductory course in statistics and is familiar with techniques such

as analysis of variance, linear and multiple regression, and the �2 test. To relieve

one of the task of typing in the coding provided in an appendix to this book,

I have also made it available on the web at http://www.biology.ucr.edu/people/

faculty/Roff.html.
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1

An introduction to
computer-intensive methods

What are computer-intensive data methods?

For the purposes of this book, I define computer-intensive methods as

those that involve an iterative process and hence cannot readily be done except

on a computer. The first case I examine is maximum likelihood estimation, which

forms the basis of most of the parametric statistics taught in elementary

statistical courses, though the derivation of the methods via maximum

likelihood is probably not often given. Least squares estimation, for example,

can be justified by the principle of maximum likelihood. For the simple cases,

such as estimation of the mean, variance, and linear regression analysis,

analytical solutions can be obtained, but in more complex cases, such as

parameter estimation in nonlinear regression analysis, whereas maximum

likelihood can be used to define the appropriate parameters, the solution can

only be obtained by numerical methods. Most computer statistical packages now

have the option to fit models by maximum likelihood but they typically require

one to supply the model (logistic regression is a notable exception).

The other methods discussed in this book may have an equally long history as

that of maximum likelihood, but none have been so widely applied as that of

maximum likelihood, mostly because, without the aid of computers, the

methods are too time-consuming. Even with the aid of a fast computer, the

implementation of a computer-intensive method can chew up hours, or even

days, of computing time. It is, therefore, imperative that the appropriate

technique be selected. Computer-intensive methods are not panaceas: the English

adage “you can’t make a silk purse out of a sow’s ear” applies equally well to

statistical analysis. What computer-intensive methods allow one to do is to apply

a statistical analysis in situations where the more “traditional” methods fail. It is

important to remember that, in any investigation, great efforts should be put
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into making the experimental design amenable to traditional methods, as these

have both well-understood statistical properties and are easily carried out, given

the available statistical programs. There will, however, inevitably be circum-

stances in which the assumptions of these methods cannot be met. In the next

section, I give several examples that illustrate the utility of computer-intensive

methods discussed in this book. Table 1.1 provides an overview of the methods

and comments on their limitations.

Why computer-intensive methods?

A common technique for examining the relationship between some

response (dependent) variable and one or more predictor (independent) variables

is linear and multiple regression. So long as the relationship is linear (and

satisfies a few other criteria to which I shall return) this approach is appropriate.

But suppose one is faced with the relationship shown in Figure 1.1, that is highly

nonlinear and cannot be transformed into a linear form or fitted by a polynomial

function. The fecundity function shown in Figure 1.1 is typical for many animal

species and can be represented by the four parameter (M,k,t0,b) model

F xð Þ ¼ Mð1� e�kðx�t0ÞÞe�bx ð1:1Þ

Using the principle of maximum likelihood (Chapter 2), it can readily be shown

that the “best” estimates of the four parameters are those that minimize the

residual sums of squares. However, locating the appropriate set of parameter

values cannot be done analytically but can be done numerically, for which most

statistical packages supply a protocol (see caption to Figure 1.1 for S-PLUS coding).

In some cases, there may be no “simple” function that adequately describes

the data. Even in the above case, the equation does not immediately “spring to

mind” when viewing the observations. An alternative approach to curve fitting

for such circumstances is the use of local smoothing functions, described in

Chapter 6. The method adopted here is to do a piece-wise fit through the data,

keeping the fitted curve continuous and relatively smooth. Two such fits are

shown in Figure 1.2 for the Drosophila fecundity data. The loess fit is less rugged

than the cubic spline fit and tends to de-emphasize the fecundity at the early

ages. On the other hand, the cubic spline tends to “over-fit” across the middle and

later ages. Nevertheless, in the absence of a suitable function, these approaches

can prove very useful in describing the shape of a curve or surface. Further,

it is possible to use these methods in hypothesis testing, which permits one

to explore how complex a curve or a surface must be in order to adequately

describe the data.
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Table 1.1 An overview of the techniques discussed in this book

Method Chapter

Parameter

estimation?

Hypothesis

testing? Limitations

Maximum

likelihood

2 Yes Yes Assumes a particular statistical

model and, generally, large samples

Jackknife 3 Yes Yes The statistical properties cannot

generally be derived from theory

and the utility of the method

should be checked by simulation

for each unique use

Bootstrap 4 Yes Possiblea The statistical properties cannot

generally be derived from theory

and the utility of the method

should be checked by simulation

for each unique use. Very

computer-intensive.

Randomization 5 Possible Yes Assumes difference in only a

single parameter. Complex designs

may not be amenable to “exact”

randomization tests

Monte Carlo

methods

5 Possible Yes Tests are usually specific to a

particular problem. There may

be considerable debate over the

test construction.

Cross-validation 6 Yes Yes Generally restricted to regression

problems. Primarily a means of

distinguishing among models.

Local smoothing

functions and

generalized

additive

models

6 Yes Yes Does not produce easily

interpretable function coefficients.

Visual interpretation difficult

with more than two predictor

variables

Tree models 6 Yes Yes Can handle many predictor

variables and complex interactions

but assumes binary splits.

Bayesian methods 7 Yes Yes Assumes a prior probability

distribution and is frequently

specific to a particular problem

a
“Possible”¼Can be done but not ideal for this purpose.

Why computer-intensive methods? 3
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Figure 1.1 Fecundity as a function of age in Drosophila melanogaster with

a maximum likelihood fit of the equation F(x)¼M(1�ek(x�t0))e�bx. Data are

from McMillan et al. (1970).

Age (x) 3 4 5 6 7 8 9 10 13 14 15 16 17 18

F 32.1 51.8 66 58 60.5 57.2 49.1 49.3 51.4 45.7 44.4 35.1 35.2 33.6

S-PLUS coding for fit:

# Data contained in data file D

# Initialise parameter values

Thetas <- c(M¼1, k¼1, t0¼1, b¼.04)

# Fit model

Model <- nls(D[,2]~M*(1-exp(-k*(D[,1]-t0)))*exp(-b*D[,1]), start¼Thetas)

# Print results

summary(Model)

OUTPUT

Parameters:

Value Std. Error t value

M 82.9723000 7.52193000 11.03070

k 0.9960840 0.36527300 2.72696

t0 2.4179600 0.22578200 10.70930

b 0.0472321 0.00749811 6.29920
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An important parameter in evolutionary and ecological studies is the rate of

increase of a population, denoted by the letter r. In an age-structured population,

the value of r can be estimated from the Euler equation

1 ¼
X1
x¼0

e�rxlxmx ð1:2Þ

where x is age, lx is the probability of survival to age x and mx is the number of

female births at age x. Given vectors of survival and reproduction, the above

equation can be solved numerically and hence r calculated. But having an

estimate of a parameter is generally not very useful without also an estimate of
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Figure 1.2 Fecundity as a function of age in Drosophila melanogaster with two local

smoothing functions. Data given in Figure 1.1.

S-PLUS coding to produce fits:

# Data contained in file D. First plot observations # Plot points

plot (D[,1], D[,2])

Loess.model <- loess(D[,2]~D[,1], span¼1, degree¼2) # Fit loess model

# Calculate predicted curve for Loess model

x.limits <- seq(min(D[,1]), max(D[,1]), length¼50 # Set range of x

P.Loess <- predict.loess(Loess.model, x.limits, se.fit¼T) # Prediction

lines(x.limits, D.INT$fit) # Plot loess prediction

Cubic.spline <- smooth.spline(D[,1], D[,2]) # Fit cubic spline model

lines(Cubic.spline) # Plot cubic spline curve

Why computer-intensive methods? 5



the variation about the estimate, such as the 95% confidence interval. There are

two computer-intensive solutions to this problem, the jackknife (Chapter 3) and

the bootstrap (Chapter 4). The jackknife involves the sequential deletion

of a single observation from the data set (a single animal in this case) giving

n (¼ number of original observations) data sets of n�1 observations whereas

the bootstrap consists of generating many data sets by random selection (with

replacement) from the original data set. For each data set, the value of r is

calculated; from this set of values, each technique is able to extract both an

estimate of r and an estimate of the desired confidence interval.

Perhaps one of the most important computer-intensive methods is that of

hypothesis testing using randomization, discussed in Chapter 5. This method

can replace the standard tests, such as the �2 contingency test, when the

assumptions of the test are not met. The basic idea of randomization testing is

to randomly assign the observations to the “treatment” groups and calculate

the test statistic: this process is repeated many (typically thousands) times

and the probability under the null hypothesis of “no difference” estimated by the

proportion of times the test statistic from the randomized data sets exceeded the

test statistic from the observed data set. To illustrate the process, I shall relate an

investigation into genetic variation among populations of shad, a commercially

important fish species.

To investigate geographic variation among populations of shad, data on

mitochondrial DNA variation were collected from 244 fish distributed over

14 rivers. This sample size represented, for the time, a very significant output

of effort. Ten mitochondrial haplotypes were identified with 62% being of

a single type. The result was that almost all cells had less than 5 data points

(of the 140 cells, 66% had expected values less than 1.0 and only 9% had expected

values greater than 5). Following Cochran’s rules for the �2 test, it was necessary

to combine cells. This meant combining the genotypes into two classes, the most

common one and all others. The calculated �2 for the combined data set was

22.96, which just exceeded the critical value (22.36) at the 5% level. The estimated

value of �2 for the uncombined data was 236.5, which was highly significant

(P < 0.001) based on the �2 with 117 degrees of freedom. However, because of the

very low frequencies within many cells, this result was suspect. Rather than

combining cells and thus losing information, we (Roff and Bentzen 1989) used

randomization (Chapter 5) to test if the observed �2 value was significantly larger

than the expected value under the null hypothesis of homogeneity among the

rivers. This analysis showed that the probability of obtaining a �2 value as large

or larger than that observed for the ungrouped data was less than one in a

thousand. Thus, rather than being merely marginally significant the variation

among rivers was highly significant.
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Most of the methods described in this book follow the frequentist school in

asking “What is the probability of observing the set of n data x1,x2, . . . , xn given

the set of k parameters �1,�2, . . . , �k?” In Chapter 7 this position is reversed by the

Bayesian perspective in which the question is asked “Given the set of n data

x1, x2, . . . , xn, what is the probability of the set of k parameters �1,�2, . . . , �k?” This

“reversal” of perspective is particularly important when management decisions

are required. For example, suppose we wish to analyze the effect of a harvesting

strategy on population growth: in this case the question we wish to ask is “Given

some observed harvest, say x, what is the probability that the population rate of

increase, say �, is less than 1 (i.e., the population is declining)?” If this probability

is high then it may be necessary to reduce the harvest rate. In Bayesian analysis,

the primary focus is frequently on the probability statement about the parameter

value. It can, however, also be used, as in the case of the James–Stein estimator, to

improve on estimates. Bayesian analysis generally requires a computer-intensive

approach to estimate the posterior distribution.

Why S-PLUS?

There are now numerous computer packages available for the statistical

analysis of data, making available an array of techniques hitherto not possible

except in some very particular circumstances. Many packages have some

computer-intensive methods available, but most lack flexibility and hence are

limited in use. Of the common packages, SAS and S-PLUS possess the breadth of

programming capabilities necessary to do the analyses described in this book.

I chose S-PLUS for three reasons. First, the language is structurally similar

to programming languages with which the reader may already be familiar

(e.g., BASIC and FORTRAN. It differs from these two in being object oriented).

In writing the coding, I have attempted to keep a structure that could be

transported to another language: this has meant in some cases making more use

of looping than might be necessary in S-PLUS. While this increases the run time,

I believe that it makes the coding more readable, an advantage that outweighs

the minor increase in computing time. The second reason for selecting S-PLUS is

that there is a version in the public domain, known as R. To quote the web site

(http://www.r-project.org/), “R is a language and environment for statistical com-

puting and graphics. It is a GNU project which is similar to the S language and

environment which was developed at Bell Laboratories (formerly AT&T, now

Lucent Technologies) by John Chambers and colleagues. R can be considered as a

different implementation of S. There are some important differences, but much

code written for S runs unaltered under R.” The programs written in this book

will, with few exceptions, run under R. The user interface is definitely better in

Why S-PLUS? 7
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S-PLUS than R. My third reason for selecting S-PLUS is that students, at present,

can obtain a free version for a limited period at http://elms03.e-academy.com/

splus/.

Further reading

Although S-PLUS has a fairly steep learning curve there are several excellent text books

available, my recommendations being:

Spector, P. (1994). An Introduction to S and S-PLUS. Belmont, California: Duxbury Press.

Krause, A. and Olson, M. (2002). The Basics of S-PLUS. New York: Springer.

Crawley, M. J. (2002). Statistical Computing: An Introduction to Data Analysis using S-PLUS.

UK: Wiley and Sons.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. New York:

Springer.

An overview of the language with respect to the programs used in this book is

presented in the appendices.

8 An introduction to computer-intensive methods
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2

Maximum likelihood

Introduction

Suppose that we have a model with a single parameter, �, that predicts

the outcome of an event that has some numerical value y. Further, suppose we

have two choices for the parameter value, say �1 and �2, where �1 predicts

that the numerical value of y will occur with a probability p1 and �2 predicts that

the numerical value of y w‘ill occur with a probability p2. Which of the two

choices of � is the better estimate of the true value of � ? It seems reasonable to

suppose that the parameter value that gave the highest probability of actually

observing what was observed would be the one that is also closer to the true value

of �. For example, if p1 equals 0.9 and p2 equals 0.1, then we would select �1 over

�2, because the model with �2 predicts that one is unlikely to observe y, whereas

the model with �1 predicts that one is quite likely to observe y. We can extend this

idea to many values of � by writing our predictive model as a function of the

parameter values, ’(�i)¼pi, where i designates particular values of �. More

generally, we can dispense with the subscript and write ’(�)¼p, thereby allowing

� to take on any value. By the principle of maximum likelihood we select the

value of � that has the highest associated probability, p.

The important element of maximum likelihood estimation (often contracted

to MLE) is that there is a definable probability function that can be used to

generate the likelihood of the observed event. The most frequently used prob-

ability functions are the normal distribution and the binomial distribution.

There are three areas to be considered:

(1) Point estimation. Given some statistical model with k unknown

parameters �1,�2, . . . ,�k how do we use MLE to obtain estimates of

these parameters, denoted as �̂1, �̂2, . . . , �̂k?

(2) Interval estimation. Having the set of estimates �̂1, �̂2, . . . , �̂k is only

marginally useful, because we have no idea whether the estimates are
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likely to be close to or far from the true values. In conjunction with point

estimation we must, therefore, also estimate a confidence region for the

estimates, typically 95%.

(3) Hypothesis testing. In many instances, we are interested in testing

hypotheses about the parameter values: for example, given two data sets

we could test the hypothesis that they have a common mean. Maximum

likelihood provides a mechanism to both compare different parameter

values and to compare different statistical models.

Point estimation

Why the mean?

The underlying distribution of much of statistical estimation is the

normal distribution (Figure 2.1). Under this distribution, the probability of

observing a value, say x, is given by

’ðxÞ ¼ 1

�
ffiffiffiffiffiffi
2�

p e�
1
2

x��
�ð Þ2 ð2:1Þ

where ’(x) is called the probability density function of x. This function is

symmetrical and characterized by two parameters � and �. Anyone who has had a

first course in statistics will recognize these two as the “mean” and the “standard

deviation,” respectively. The mean is a measure of central tendency, and the

standard deviation a measure of spread of the distribution (Figure 2.1). We

typically estimate the parameter � as the arithmetic average

�̂ ¼ 1

n

Xn
i¼1

xi ð2:2Þ

where n is the number of observations and xi is the ith observation. The “hat”

over � indicates that this is an estimate of the true value of �: this is a general

symbol for the estimate of a parameter, but in the case of the average, we

frequently use the symbol �x.

There are actually three measures of central tendency, the arithmetic average,

the mode (the most commonly occurring value), and the median (the value

that divides the sample into two equal portions). Why should we use the

arithmetic average as the estimate of �? The use of the arithmetic average

as the preferred estimate of � can be justified by the fact that it is the

maximum likelihood estimate of �. Suppose we have a sample of n observations

10 Maximum likelihood



x1,x2,x3, . . . ,xi, . . . ,xn: the probability of observing this sequence assuming a

normal probability density function is

L ¼ ’ðx1Þ’ðx2Þ’ðx3Þ . . . ’ðxiÞ . . . ’ðxnÞ ¼
Yn
i¼1

’ðxiÞ ð2:3Þ

where L is the likelihood of observing this particular sequence. We could consider

all possible arrangements of the set of observations, but, as will become obvious,

this does not change the final answer; so for notational convenience, we shall

ignore this minor complication. Writing out the probability density function in

full we have

L ¼
Yn
i¼1

’ðxiÞ ¼
Yn
i¼1

1

�
ffiffiffiffiffiffi
2�

p e�
1
2

xi��

�ð Þ2 ð2:4Þ

Now, according to the maximum likelihood principle we should choose � such

that the likelihood, L, is maximized. To find this value, we could simply vary �̂

and calculate the likelihood, selecting that value at which L is a maximum; how

close we can get to the “best” value depends only upon the step size of our

iteration. In many cases, and this is the reason for the computer-intensive nature

of maximum likelihood estimators, this numerical approach is the only one

available. However, in the present case, we can arrive at an exact solution

by means of the calculus. Recall that to find the maximum or minimum of

F
re

q
u

en
cy

, ϕ
(x

)

X

Figure 2.1 The normal distribution with �¼0 and �¼1.
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a function, we set the derivative of the function equal to zero. It is very

inconvenient to work with derivatives of multiplicative functions. It is much

easier if we take the logarithm of the likelihood. This does not change the result,

because the turning point of the log transform is exactly the same as the

untransformed value, so, taking the natural logs we have

lnðLÞ ¼ n ln
1

�
ffiffiffiffiffiffi
2�

p
� �

�
Xn
i¼1

1

2

xi � �

�

� �2
ð2:5Þ

Differentiating

d lnðLÞ
d�

¼ 0þ
Xn
i¼1

1

2

� �
2

�2

� �
ðxi � �Þ ¼

Xn
i¼1

1

�2
ðxi � �Þ ð2:6Þ

Setting the derivative equal to zero

d lnðLÞ
d�

¼ 0 when
1

�2

Xn
i¼1

ðx� �Þ ¼ 0 ð2:7Þ

After some simple algebraic rearrangement, we arrive at

� ¼ 1

n

Xn
i¼1

xi ð2:8Þ

which is the arithmetic average or mean (note that � is irrelevant). At this point

you may be concerned that we have � exactly equal to the arithmetic average,

whereas previously we asserted that it was only an estimate of � (i.e., �̂). The

reason for the discrepancy is that we have treated the likelihood function as if

it were exactly an algebraic relationship, whereas in any finite sample, the actual

probability of the observed sequence will not be invariably maximal when � is set

equal to the arithmetic average. Suppose we take the extreme lower limit of a

sample, that is, a sample of one; according to the above derivation the parameter

� (mean) is equal to the sample value, which is clearly nonsense, in general.

Consider what happens as the number of observations in the sample increases.

It is intuitively obvious that as n becomes larger and larger, the difference

between the arithmetic average and � becomes smaller and smaller, and

in the limit, when n equals infinity, the arithmetic average is equal to �

(i.e., �̂ ! � as n ! 1). This resolves the problem: the derivation above implicitly

assumes that the sample is very large, and, hence, for small samples the

arithmetic average is only an estimate of � (�̂ or �x, depending upon your

symbolic preference). This is a very important result, because it means that we

cannot ignore the size of the sample. We shall return to this issue in the next

section, “Interval estimation.”

12 Maximum likelihood



Nuisance parameters don’t always disappear

In the previous example, there were two parameters, � and �, and we

were interested only in �. The parameter � in this case is called a nuisance

parameter, because it is of unknown quantity and could make the estimate

uncertain if it does not drop out in the analysis. For the estimation of the mean,

the nuisance parameter does drop out and is thus irrelevant in this instance.

However, this is frequently not the case and we can be left with a joint estimation

problem. Such is the problem when we use maximum likelihood to derive the

best estimator for the second parameter of the normal distribution, the standard

deviation, �, or its square, the variance (�2).

Recall that the log-likelihood, ln(L) of the normal is

n ln
1

�
ffiffiffiffiffiffi
2�

p
� �

�
Xn
i¼1

1

2

xi � �

�

� �2

(Eqn. (2.5)). Expanding this to make the differentiation more obvious gives

lnðLÞ ¼ �n lnð�Þ � n lnð
ffiffiffiffiffiffi
2�

p
Þ �

Xn
i¼1

1

2

xi � �

�

� �2
ð2:9Þ

As before, we differentiate ln(L) and set the result to zero

d lnðLÞ
d�

¼ � n

�
þ
Xn
i¼1

2ðxi � �Þ2
2�3

¼ 1

�
�nþ

Xn
i¼1

ðxi � �Þ2
�2

 !

¼ 0 when

Pn
i¼1 ðx� �Þ2

�2
¼ n

ð2:10Þ

Upon rearrangement we have

�2 ¼ 1

n

Xn
i¼1

ðxi � �Þ2 ð2:11Þ

which is the readily recognized formula for the variance. As previously, the left-

hand side should be indicated as an estimator, �̂2, as it approaches the true value

only as n becomes large. Annoyingly, to estimate the variance we have to know

the exact value of the mean, which we do not. Thus, in this case, the nuisance

parameter, �, inconveniently remains in the estimation formula for �. What can

we do? One possibility is to substitute our estimate of the mean, giving

�̂2 � ð1=nÞPn
i¼1 ðxi � �̂Þ2. Because we know that, unless n is infinitely large, �̂ is

not exactly equal to �, I have denoted this estimate as an approximation. In fact,

it is a biased estimate, which could be problematical for small samples.

Fortunately, this bias can be readily removed by rewriting the formula as

�̂2 ¼ 1

n� 1

Xn
i¼1

ðxi � �̂Þ2 ð2:12Þ
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In many cases, the log-likelihood functions cannot be resolved into such simple,

single-parameter formulae and then one must use numerical methods to locate

the combination of point estimates that maximize the likelihood, and hence are

the maximum likelihood estimators.

These two examples show that our use of the “standard” formulae for the

mean and standard deviation are appropriate from the perspective of maximum

likelihood when the distribution is normal. If the distribution is not normal, then we

can still estimate the mean and standard deviation using these formulae, but

we have no guarantee that they correctly estimate any particular parameter in

the true probability density function.

Why we use least squares so much

Throughout a first course in statistics one comes across the use of “least-

squares” estimation. It is, for example, the foundation of estimation in linear

regression and analysis of variance. As with the commonly used estimators of

mean and variance of a normal distribution, we can justify the use of least-

squares by reference to maximum likelihood. To illustrate this, consider the

simple linear regression equation (Figure 2.2)

y ¼ �1 þ �2xþ " ð2:13Þ

The parameters �1 and �2 are the intercept and slope, respectively. They are

frequently denoted as � and �, with estimated values of a and b, respectively.

x

y

Figure 2.2 A regression line. The line is described by the equation y ¼ �1 þ �2x.

At each point along the line the data are distributed normally as Nð�1 þ �2xi, �Þ.
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To avoid the proliferation of confusing symbols (particularly as � and � are also

used in context of type 1 and 2 errors), I shall use the symbol “�” as the general

symbol for a parameter to be estimated, noting if in specific cases the parameter

typically has another symbol. The term " refers to the essential assumption of

linear regression, namely that the error about the line is normally distributed

with a mean of zero (i.e., �¼0) and an unspecified standard deviation (�). I shall

denote the normal distribution with mean � and standard deviation � as N(�, �).

Thus, in the present example, we would say that " is distributed as N(0, �). Using

this notation, we can write that y is distributed as N(�1þ�2x,�), which is to say

that y is a normally distributed variable with mean �1þ�2x (the value of the line)

and standard deviation � (Figure 2.2). We can now assign a probability to

observing some particular value yi:

’ðyiÞ ¼ 1

�
ffiffiffiffiffiffi
2�

p e�
1
2

yi� �1þ�2xi½ �
�

� �2
ð2:14Þ

Hence the probability or likelihood of observing some sequence y1,y2,y3, . . . ,

yi, . . . ,yn is

L ¼
Yn
i¼1

’ yið Þ ¼
Yn
i¼1

1

�
ffiffiffiffiffiffi
2�

p e�
1
2

yi� �1þ�2xi½ �
�

� �2
ð2:15Þ

As before, and as in general, it is more convenient to work with the natural

logarithms

lnðLÞ ¼ �n lnð�
ffiffiffiffiffiffi
2�

p
Þ � 1

2�2

Xn
i¼1

ð yi � ½�1 þ �2xi�Þ2 ð2:16Þ

According to the principle of maximum likelihood, the best estimates of �1 and �2

are those that maximize the log-likelihood, which will be those values at which

the summation SS ¼Pn
i¼1 ðyi � ½�1 þ �2xi�Þ2 is minimized. This, of course, is the

least squares procedure. Note that, as with the estimation of the mean of the

normal distribution, the variance about the regression line does not enter into

the estimation of the slope (�1) or intercept (�2) of the line. For the sake of

completeness, let us calculate the least squares estimation equations for both

parameters. We have to carry out two differentiations, one with respect to �1

and another with respect to �2

dSS

d�1
¼ �2

Xn
i¼1

ðyi � ½�1 þ �2xi�Þ

dSS

d�2
¼ �2

Xn
i¼1

ðyi � ½�1 þ �2xi�Þxi
ð2:17Þ
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Setting these to zero, and noting that
Pn

i¼1 �1 ¼ n�1, we have the simultaneous

equations

Xn
i¼1

yi ¼ �1nþ �2
Xn
i¼1

xi

Xn
i¼1

xiyi ¼ �1
Xn
i¼1

xi þ �2
Xn
i¼1

x2i

ð2:18Þ

Multiplying the first by
Pn

i¼1 xi, the second by n and subtracting gives the

estimate for �2

�̂2 ¼
Pn

i¼1 ðxi � �xÞðyi � �yÞPn
i¼1 ðxi � �xÞ2 ð2:19Þ

Note that the estimate is a function of the arithmetic means of x and y (for

convenience I have used their usual bar notation, but could have written them as

�̂x and �̂y, respectively). We can use the two simultaneous equations to estimate

�1 or more simply make use of the relationship �1 ¼ �y� �2 �x. These equations

point out the fact that, because they use the same data, the estimates of the two

parameters are not independent of each other. This is a general statement about

multiple estimates from the same statistical model and usually poses no

problem. But suppose we estimate the same regression, say fecundity on body

weight, from a number of different populations and then calculate the

correlation between �̂1 and �̂2, on finding a significant correlation between the

two, we might be persuaded to interpret this to be due to some biologically

meaningful cause, when it probably arises as a statistical artifact.

More on least squares

The maximum likelihood approach to the estimation of the parameters

of the simple linear regression indicates that the least squares approach is

justified. Further, in this instance, exact estimation equations for the two

parameters can be found. Here, I present a more complex example in which there

are several least squares solutions, depending upon the assumption of the error

structure.

Many organisms, particularly fish, grow continuously throughout their lives

but the rate of growth slows with age (Figure 2.3). A growth curve that captures

this behavior is known as the von Bertalanffy growth model (though the

physiological basis von Bertalanffy actually used to derive the curve is fallacious).

Ignoring any source of error or variation, the length at some age t is given by

the relationship

lt ¼ �1ð1� e��2ðt��3ÞÞ ð2:20Þ
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where �1 is the asymptotic length (generally denoted as L1), �2 is the rate of

growth (generally denoted as k), �3 is the hypothetical age at which the length is

zero (generally denoted as t0). Now the above equation can also be written in

terms of the length at two consecutive ages, say t and tþ1

ltþ1 ¼ �1ð1� e��2 Þ þ e��2 lt ð2:21Þ

which suggests a regression method of estimating �1 and �2. The natural

logarithm of the slope of the regression of lt+1 on lt is an estimate of ��2 and

the intercept is an estimate of �1ð1� e��2 Þ. This method is known as the

Ford–Walford method and provides excellent initial estimates of the parameter

values (except for �3). The statistical problem with this method is that the length

at each age successively changes from being the dependent variable (lt+1) to being

the independent variable (lt), which invalidates the basic assumption of linear

regression.
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Figure 2.3 Plot of average length at each age for female Pacific hake, with the

estimated von Bertalanffy curve (Data from Kimura 1980).

Age 1.0 2.0 3.3 4.3 5.3 6.3 7.3 8.3 9.3 10.3 11.3 12.3 13.3

Length 15.4 28.0 41.2 46.2 48.2 50.3 51.8 54.3 57.0 58.9 59.0 60.9 61.8
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How can we use the maximum likelihood method to obtain parameter

estimates of the von Bertalanffy equation (Eq. (2.20))? To use this method we have

to decide how to incorporate ", the normally distributed error term. The simplest

method is to tack it onto the equation in the same manner as in the linear

regression model (for alternate models see Kimura 1980)

lt ¼ �1ð1� e��2ðt��3ÞÞ þ " ð2:22Þ

Now following the method discussed in the previous section, the log-likelihood

function is

lnðLÞ ¼ �n lnð�
ffiffiffiffiffiffi
2�

p
Þ � 1

2�2

Xn
t¼1

ðlt � �1½1� e��2ðt��3Þ�Þ2 ð2:23Þ

It should be readily apparent that the log-likelihood function will be maximized

when, as with the linear regression model, the sum of squares between the

observed (lt) and predicted ð�1½1� e��2ðt��3Þ�Þ values are minimized, i.e., the least

squares solution. Assuming that the variance, �2, is constant, there are two

scenarios to be considered. First, as assumed in the linear regression model, we

can posit that the distribution of individual observations, lt, is N(0,�). Second, we

can focus upon the mean values and posit that the distribution of mean lengths

at a given age is N(0,�). With either scenario, we estimate the parameters using

least squares, but in the first case, we use the individual values, whereas in the

second we use the means. In the above derivation, the variance dropped out:

we obtain the MLE of �2 in the usual manner by taking the partial derivative of

the log-likelihood function (Eq. (2.23)) with respect to �2 and setting this equal to

zero. It is left to the reader to verify that

�̂2 ¼
Xn
t¼1

lt � �̂1½1� e��̂2ðt��̂3Þ�
� �2�

n ð2:24Þ

i.e., the mean residual sum of squares of the best fitting model (the MLE).

However, as with the variance estimate of the normal distribution previously

discussed, the above estimate is biased by the use of the parameter estimates

rather than their true values. To remove this bias, we divide not by n but by

n minus the number of estimated parameters (i.e., n�3 in the present case).

Unlike the linear regression model, there is no exact analytical solution for

the above model and hence one must resort to numerical methods. Fortunately,

virtually every statistical package has a nonlinear fitting routine using least

squares. The curve shown in Figure 2.3 was obtained using the “regression

wizard” in SigmaPlot. The routine failed to converge to a solution when I used

Eq. (2.20), but changing the equation to lt ¼ �1ð1� e��2tþ�03 Þ, which in no way
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alters the structure of the equation (the parameter �03 is merely the product

�2�3), produced the fit shown in Figure 2.3. A similar failure occurred with the

nonlinear routine in SYSTAT but not in S-PLUS (the equation can be fitted using

dialog boxes or the command: nls(LENGTH~b1*(1-exp(-b2*(AGE-b3))),data=D,

start=list(b1=50,b2=.1,b3=.1))). The parameter estimates from S-PLUS when

using the altered equation were identical to those from SigmaPlot, indicating

that when convergence is obtained both packages do get the same solution,

which is not guaranteed, although solutions should always be similar. I could not

get convergence in the SYSTAT routine unless I deleted �3 entirely from the

equation. Because �3 is a very small value (�0.057), its deletion from the equation

changes little, but the message to draw from the three analyses is that different

statistical packages perform differently (and I do not mean to imply that the

ranking in performance can be judged from a single example) and that small

changes to the equation to be fitted can make big differences in the ability of the

routine to converge to a solution.

Generalizing the MLE approach in relation to least squares estimation

Let y ¼ ’ð�1, �2, . . . , �k, xÞ be a model comprising k parameters (e.g., linear

regression has two, the von Bertalanffy function has three) and an independent

variable, x. Assume that the error term, ", is N(0,�) and the observed value yi

can be predicted from

yi ¼ ’ð�1, �2, . . . , �k, xiÞ þ " ð2:25Þ

The log-likelihood function is thus

lnðLÞ ¼ �n lnð�
ffiffiffiffiffiffi
2�

p
Þ � 1

2�2

Xn
i¼1

ðyi � ’ð�1, �2, . . . , �k,xiÞÞ2 ð2:26Þ

The maximum likelihood estimates of the k parameters are obtained by

minimizing the sum of the squared difference between the observed and

predicted values, i.e.,

Minimize
Xn
i¼1

ðObserved value� Predicted valueÞ2 ð2:27Þ

(see, for example, exercise 2.5). But remember, you are making an assumption

about how the variability about the predicted value is distributed! Under the

assumption above, the residuals should be normally distributed with mean

zero and variance �2. Checking this assumption is standard practice in linear

regression analysis and the same methods apply to the general case.
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Leaving normality

The fundamental assumption of the maximum likelihood approach is

that the data are distributed according to a known distribution. This need not be

the normal distribution. Consider the situation in which there are two outcomes:

for example, in a mate selection experiment, a female might be presented with

two choices (e.g., in acoustically orienting animals, two different songs might be

played and the female choice recorded), or in a genetical study there might

be two alleles at a particular locus of interest. Let the probability of the first

outcome be p, in which case the probability of the second is 1� p. Given

two outcomes, the resulting distribution can be described by the binomial

probability function: the probability or likelihood of observing the first outcome

r times in n trials is thus

L ¼ n!

r!ðn� rÞ! p
rð1� pÞn�r ð2:28Þ

Taking the natural logarithms gives a more easily handled equation

lnðLÞ ¼ ln
n!

r!ðn� rÞ!
� �

þ r lnðpÞ þ ðn� rÞ lnð1� pÞ ð2:29Þ

To find the maximum likelihood estimate of p we differentiate ln(L) with respect

to p and set the result to zero:

d lnðLÞ
dp

¼ r

p
� n� r

1� p

d lnðLÞ
dp

¼ 0 when
r

p
¼ n� r

1� p

i:e:, p̂ ¼ r

n

ð2:30Þ

which is the intuitively obvious estimate. Note that I have substituted p̂ for

p in the final equation; it is very important to remember that our estimate

approaches the true value only as the sample size increases.

Multiple likelihoods: estimating heritability using the binomial and MLE

Heritability is a parameter that defines the degree to which offspring

resemble their parents due to the additive effect of genes. It is a parameter that

can be used to predict how much a quantitatively varying trait such as body

weight changes when selection is applied to a population. The predictive

equation, known as the breeder’s equation, is R¼�S, where R is the response

to selection (the difference between the means of the population in each
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generation), � is the heritability (invariably designated as h2: despite this, for

consistency, I shall still use �), and S is the selection differential (the difference

between the population and parental means). Heritability can be estimated after

one generation of selection by rearranging the breeder’s equation to give �¼R/S.

In general, a single generation of selection is insufficient to produce a reliable

estimate, but this problem is ignored here for the purpose of clarity.

There is a class of traits, known as threshold traits, which are peculiar in that

they are manifested as dichotomous traits, but breeding experiments show them

to be determined by the action of many genes. Examples of threshold traits

include twins versus singletons in sheep, certain diseases such as schizophrenia,

the phenomenon of “jacking” in salmon (early maturation at a very reduced size),

wing and horn dimorphism in certain insect species. To account for the

quantitative inheritance pattern in these traits, a threshold model has been

proposed: according to this model there is a continuously distributed trait

termed the liability and a threshold of sensitivity. If the value of the liability lies

above the threshold, one outcome results, whereas if the value lies below the

threshold, the alternate outcome results (Figure 2.4). The liability is assumed to

Liability
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T

Figure 2.4 Illustration of the threshold model. The underlying trait, called the

liability, is normally distributed. Individuals above the threshold, T, display one

morph, whereas individuals below the threshold display the alternate.
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be normally distributed and thus the proportion, p, lying above the threshold

is given by

p ¼ 1

�
ffiffiffiffiffiffi
2�

p
ð1
T

e�
1
2

x��
�ð Þ2dx ð2:31Þ

where the liability is distributed as N(�,�) and T is the threshold value. Without

loss of generality, we can rescale the above by setting �¼1 and T¼0, leaving us

only a single parameter, the mean liability (�) to calculate. If p¼0.5 the mean

liability equals 0, whereas if p¼0.8 the mean liability is equal to �0.84. Suppose

we subject a threshold trait to selection by taking as parents only those of a

designated morph (e.g., only winged individuals in a wing-dimorphic species). We

can arbitrarily designate these individuals as lying above the threshold, in which

case their mean liability is the mean of a truncated normal distribution and is

�þ e�
1
2�

2

p
ffiffiffiffiffiffi
2�

p ¼ �þ ’ð�Þ
p

Letting the number of the designated morph in the parental generation be r0

and the total sample size be n0, we can write the likelihood using the binomial

formula given in Eq. (2.28), which I shall designate as L0.

Using the breeder’s equation we can predict the mean liability in the offspring

generation as

�1 ¼ �0ð1� �Þ þ � �0 þ ’ð�0Þ
p

� �
ð2:32Þ

and hence the predicted proportion of the designated morph. From the selection

experiment, we observe the proportion of the designated morph in each

generation but directly observe neither the mean liability nor the parameter

we wish to estimate, the heritability of the liability. We thus have two parameters

to estimate, the one of interest (heritability) and a “nuisance” parameter (mean

liability of the initial population). As in the parental generation, the likelihood of

obtaining the observed number, r1, of the designated morph from the observed

offspring sample, n1, is given by the binomial example (Eq. (2.28)). Designate this

likelihood L1. We have two likelihoods, L0 and L1. The overall likelihood, L01, is

simply the product of the two likelihoods (sum of the log-likelihoods). Therefore,

we find the combination of �0 and � that maximize ln(L01).

Suppose in the first sample we observe 50 of the designated morph out

of a total of 100 individuals. We then use the designated morph as parents for the

next generation obtaining 68 offspring of the designated morph out of a total

sample of 100 offspring. Thus r0¼50, n0¼100, r1¼68, n1¼100. Estimates of p and
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� can be obtained using the S-PLUS routine nlminb, which allows for restriction

of parameter values, in this case between 0 and 1 (it is possible to use the

unrestricted minimization function nlmin but a warning is issued as the search

routine takes parameter values below zero causing an error in the routine qnorm).

Most packages minimize a function rather than maximize and hence we use the

negative log-likelihood function. Because constants in the likelihood function do

not affect the value of the estimates, as a simplification, these are generally

dropped from the analysis. Suitable S-PLUS coding to estimate p and � is given

in Appendix C.2.1.

The heritability used to generate the numbers for the offspring generation

was 0.6 (giving an expected number of 68 as actually used): the output from

S-PLUS is 0.5000000 for p (which is simply r0/n0) and 0.5861732 for the herit-

ability (� or h2).

Logistic regression: connecting the binomial with regression

Suppose that the probability of an event occurring is a function of some

other variable x. For example, the proportion of insects killed by an insecticide

would be expected to increase with the dosage to which they are exposed

(Figure 2.5). We might be inclined to model this relationship using the simple

additive model, p ¼ �1 þ �2x. The problem with this model is that it does not

restrict p within the required range of 0 to 1, and as can be seen in the example,

the shape of the curve is sigmoidal. This shape is a natural form (but not the only

possibility) when the upper and lower limits are bounded. What we require is a

model in which there is a lower bound to p that is equal to zero and an upper

bound to p of 1. A model that satisfies these requirements is the logistic equation

pi ¼ e�1þ�2xi

1þ e�1þ�2xi
ð2:33Þ

This equation can be linearized by the transformation

ln
pi

1� pi

� �
¼ �1 þ �2xi ð2:34Þ

The left-hand side is termed the logit, and is a contraction of the phrase “logistic

unit.” It is also known as the log odds. Equation (2.34) provides a simple means of

graphically representing the data and crudely estimating the parameter values.

For obvious reasons, the method of maximum likelihood is to be preferred.

To obtain the log-likelihood function, we first note that Eq. (2.29) can be

rearranged as

lnðLÞ ¼ ln
n!

r!ðn� rÞ!
� �

þ n lnð1� pÞ þ r ln
p

1� p

� �
ð2:35Þ
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The log-likelihood function for the logistic is then

lnðLÞ ¼
XN
i¼1

ln
ni!

ri!ðni � riÞ!
� �

� ni lnð1þ e�1þ�2xi Þ þ rið�1 þ �2xiÞ
	 


ð2:36Þ

The summation sign is required because we have N observations, the ith

observation consisting of ri “successes” in ni “trials” (e.g., ri is the number of

individuals killed when ni individuals are subjected to dose i of insecticide).

Estimates of the parameters �1 and �2 are obtained by minimizing ln(L).

Logistic regression can include more than one explanatory variable (e.g., in the

insecticide example we might include body size as a second variable), and is so

widely used thatmost statistical packages include logistic regression as a specific

option and it is only necessary to give the linear component of the model

(note that in SYSTAT the dialog box for logistic regression is named “logit”).
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Figure 2.5 Plot of beetle mortality vs. dose of gaseous carbon disulphide. Solid

line shows fitted curve (see Appendix C.2.2 for coding. Data from Dobson 1983

after Bliss 1935).

Dose 1.69 1.72 1.76 1.78 1.81 1.84 1.86 1.88

N 59 60 62 56 63 59 62 60

R 6 13 18 28 52 53 61 60
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But most programs expect the data to be in the form of one row per individual

with the dependent variable (e.g., mortality) being categorical: in the case of the

beetle data, we would code an individual as 0 if alive and 1 if dead. This is a

convenient method of coding if there are several explanatory variables (e.g., dose

and body size) but is definitely a nuisance for the present example. The data can

still be analyzed in the tabulated form but it is necessary to specify the

log-likelihood function. Programs frequently minimize rather than maximize

functions and hence it is necessary to use minus log-likelihood. SYSTAT calls

the function to be minimized the LOSS function. Because the termPN
i¼1 lnðni!=ðri!ðni � riÞ!ÞÞ is a constant it can be omitted. In SYSTAT one supplies

the model function (e.g., DEATHS=SAMPLE*exp(b1+b2*DOSE)/(1+exp(b1+b2*DOSE)),

where DEATHS is ri, SAMPLE is ni, DOSE is xi, and b1, b2 are �1, �2, respectively)

and the loss function (e.g., LOSS = -(DEATHS*(b1+b2*DOSE)-SAMPLE*LOG(1+exp(b1

+b2*DOSE)))), both of which can be done via dialog boxes. In S-PLUS it is necessary

to write a function and use the nonlinear minimizing routine (see Appendix C.2.2

for coding and for an alternative approach that uses 0,1 data and the general

linear model routine glm, see Appendix C.2.8).

From binomial to multinomial

In many cases, there are more than two possible outcomes (e.g., several

alleles at a locus). Such a distribution is said to be multinomial. Suppose we have

a sample consisting of a set of categories, such as an age sample of animals: using

the multinomial distribution the likelihood for the sample is

L ¼ n!

x1x2 . . . xk
px11 p

x2
2 . . . pxkk ¼ n!Qk

i¼1 xi

Yk
i¼1

pxii ð2:37Þ

where xi is the number of observations in the ith category (e.g., age class) and

pi is the true proportion in the ith class. The log-likelihood function is

lnðLÞ ¼ lnðn!Þ �
Xk
i¼1

lnðxiÞ þ
Xk
i¼1

xi lnðpiÞ ð2:38Þ

To find the maximum likelihood estimates ðp̂1, p̂2, . . . , p̂kÞ, we can proceed by

differentiating and setting the result to zero, but an easier approach is as

follows: the probability of an animal being in age class i is pi and hence the

probability that it is not in age class i is 1� pi. Thus from this perspective

we have a simple binomial distribution, all age classes except age class i being

collapsed into one. Hence the maximum likelihood estimator for age class i is

simply xi/n.
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Combining simulation and MLE to estimate population parameters

Hooded seals are commercially harvested and hence it is essential to be

able to predict the result of particular harvesting strategies on population rates

of increase or decline. To do this analysis, five population parameters are

required:

(1) The number of pups produced at the starting point of the projection

(1945),

(2) The instantaneous rate of natural mortality, M (i.e., probability of

surviving each year is e�M), and

(3) The proportions of 4, 5, and 6-year-old females that breed (none breed

earlier than 3 years and all breed by 7 years).

The available data on hooded seals consisted of age distributions collected

each year from 1972 to 1978. Jacobsen (1984) constructed a simulation model of

hooded seal population dynamics which generated age distributions for the years

1945–1986. Now consider the year 1972: for this year there is an observed

distribution of ages. Taking the simulation to be the model we can construct the

log-likelihood function using the predicted and observed age distributions

lnðL1972Þ ¼ lnðn1972!Þ �
Xk
i¼1

lnðxi,1972Þ þ
Xk
i¼1

xi,1972 lnð pi,1972Þ ð2:39Þ

where n1972 is the number of seals sampled in 1972, xi,1972 is the number of

seals of age i in the 1972 sample and pi,1972 is the proportion of seals of age i

in 1972 predicted by the simulation model. The first two terms are constant

and hence maximizing the log-likelihood is accomplished by maximizing the

third term
Pk

i¼1 xi,1972 lnðpi,1972Þ. Each simulation run with a given combination

of the five unknown parameters will produce a likelihood value. The preferred

combination of parameter values is that which maximizes the log-likelihood.

As previously noted, likelihood values are multiplicative: thus the likelihood

for all the years 1972 to 1978 is L1972�1978¼L1972L1973 . . . L1978, and the preferred

set of population parameters is the set that maximizes
P1978

j¼1972

Pk
i¼1 xi,j lnðpi,jÞ.

Whereas the general principle set out above is correct, the execution

proved troublesome, because different combinations of initial pup production

and natural mortality rate produce almost identical age distributions but

widely divergent population projections (Figure 2.6, Table 2.1). The reason is that

population size is not itself constrained: the observed changing age distribution

can be modeled by an initially small population (1945 pup production) and a low

mortality rate or by a very large initial population and a high mortality rate

(Table 2.1). There is thus a ridge of likelihood values corresponding to a positive

relationship between 1945 pup production and natural mortality. Unfortunately,
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future population trajectories vary very widely (Figure 2.6), from increasing

(hence a sustainable catch rate) to decreasing (hence an unsustainable catch rate).

To constrain the estimates we need at least one population estimate either in the

early years (e.g., between 1945 and 1960) or the later years (e.g., between 1975 and
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Figure 2.6 Predicted pup production estimates of hooded seals in the West Ice for the

years 1945–1986 for three combinations of natural mortality (M) and initial pup

production that have virtually identical, and maximum, likelihood (Table 2.1).

Redrawn from Jacobsen (1984).

Table 2.1 Maximum likelihood estimates of the five parameters (pup production in 1945, natural mortality,

partial recruitment to the breeding stock of females aged 4, 5, and 6 years). Note that the partial recruitment

values change little but that there is a positive correlation between pup production and natural mortality.

Taken from Jacobsen (1984)

Partial recruitment at

Pup production in 1945 Natural mortality 4 years 5 years 6 years Log-likelihood

64350 0.08 0.40 0.74 0.98 �8308

79250 0.10 0.40 0.74 0.97 �8306

98900 0.12 0.41 0.75 0.96 �8304

125500 0.14 0.42 0.75 0.95 �8302

162500 0.16 0.42 0.74 0.94 �8301
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1985): but note that an estimate around 1968 would be of no use, because all the

trajectories converge at that year. Although the maximum likelihood method

in this instance cannot give good estimates of the parameter values, it does

very clearly demonstrate the problem with the available data and indicates the

type of information that is required.

Interval estimation

Method 1: an exhaustive approach

Having an estimate is of little use if we do not also have a measure of

confidence in the estimate. The usual measure is the 95% confidence interval.

How can we calculate this interval for the likelihood estimate? Consider the

likelihood function for a single variable, �, plotted against �. Each likelihood

represents the relative support for the particular value of � that generates this

likelihood. Thus, for example, if the likelihood at �i is 0.1 and that at �j is 0.05, we

can state that �i has twice the support of �j. If we divide throughout by the area

under the distribution, we arrive at a distribution whose total area is equal to 1,

and the 95% confidence region can be approximated by the values of � that cut off

the tails of the distribution at 0.025 and 0.975. Suppose, for example, we wished

to estimate the confidence limits for the mean, the likelihood for a given

value of �, say �j, is

Lð�jÞ ¼
Yn
i¼1

1

�
ffiffiffiffiffiffi
2�

p e�
1
2

xi��j
�

� �2
ð2:40Þ

Because � is the same for all values of �j, we can assign it any value we choose (1 is

the simplest value). Similarly,
ffiffiffiffiffiffi
2�

p
is a constant and hence can be dropped.

Therefore, our modified function, L�ð�jÞ is

L�ð�jÞ ¼
Yn
i¼1

e�
1
2ðxi��jÞ2 ð2:41Þ

Now we calculate L�ð�jÞ between limits that enclose most of the probability

distribution (this can be done by trial and error; it is better to have a very large

range rather than a small range) and iterate using some pre-assigned step length,

so we have a series of equally spaced parameter values, �1,�2, . . . ,�N, where

�1 is the smallest value and �N is the largest. We then divide each L�ð�jÞ by the

sum of all values, giving

L�Sð�jÞ ¼ L�ð�jÞPN
i¼1 L

�ð�iÞ
ð2:42Þ
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We calculate the cumulative sum of the above Lcum,k ¼
Pk

j¼1 L
�
Sð�jÞ, where k

ranges from 1 to N. The upper and lower confidence values are then the values

of � at which Lcum,k¼0.025 and Lcum,k¼0.975, respectively.

The above method is numerically intensive but rigorous in that it makes no

assumption about the actual distribution of the likelihood. It can be extended

to any number of parameters. For example, if there are two parameters to

be estimated (�1,�2), we would vary both parameters and the result would be

a bivariate confidence region.

Method 2: the log-likelihood ratio approach

For large samples, we can make use of the fact that the sampling

distribution of log-likelihood function is approximately

2ðLLð�̂1, �̂2, . . . , �̂kÞ � LLð�1, �2, . . . , �kÞÞ � �2
k ð2:43Þ

where LLð�̂1, �̂2, . . . , �̂kÞ is the log-likelihood at themaximum likelihood estimators

and LL(�1,�2, . . . , �k) is the log-likelihood at the true parameter values. Confidence

regions can be approximated by the set of parameter combinations that lie

�2
k=2 units distant from LLð�̂1, �̂2, . . . , �̂kÞ. Thus, for a model with one param-

eter, the confidence range is given by the two log-likelihoods that give a value

of 1
2�

2
1 ¼ 1:92. To illustrate the procedure, consider the problem of estimating

the heritability of a threshold trait discussed previously. For simplicity, we

shall assume that the initial proportion is 0.5 and we have a single parameter,

� (=h2), for which to provide confidence limits. To obtain the lower and upper

confidence values, a simple approach is as follows (see Appendix C.2.3 for

S-PLUS coding):

Step 1: Find the MLE for � ð¼ �̂Þ
Step 2: Calculate the log-likelihood (i.e., LLð�̂Þ)
Step 3: Iterate over a range of �i (e.g., 0.01–0.99) and for each

calculate LL(�i)

Step 4: Calculate Diff ¼ LLð�̂Þ � LLð�iÞ � 0:5�2
1

Step 5: Find value of �i at which Diff is equal to zero. There will be

two values, corresponding to the upper and lower confidence

limits. These values can be found graphically, as shown in

Figure 2.7, or numerically, as shown in Appendix C.2.3 (also see

exercise 2.8).

For the von Bertalanffy equation, there are four parameters (three �s and �).

With more than two parameters the confidence region cannot be visualized.

To obtain a visual picture, we can proceed as follows, using the von Bertalanffy
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function as an example (see Appendix C.2.4 for coding). The two parameters

of most interest are �1, the asymptotic length, and �2, the growth rate.

Step 1: Find the MLEs for all four parameters, which I shall refer to as

the global MLEs

Step 2: Iterate over a range of values of the two parameters of interest

(�1 and �2)

Step 3: At each iteration find the MLE for �1 and �2, keeping the other

two parameters at their global MLE. Designate these new MLE

values as ��1, �
�
2.

Step 4: Calculate 2ðLLð�̂1, �̂2, �̂3, �̂Þ � LLð��1, ��2, �̂3, �̂ÞÞ � �2
2, where, for the

95% region, �2
2 ¼ 5:991

Step 5: Use a numerical method to construct the contour line

corresponding to zero. This line demarcates the 95% confidence

region (Figure 2.8).

Method 3: a standard error approach

A simple but approximate method of assessing the variability in a

parameter value is to examine the standard errors of the estimates; roughly

speaking, the 95% confidence limits are �2 the standard errors. The variance of

Heritability, θi
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Figure 2.7 Plot of log-likelihood vs. heritability. Dotted line shows the negative of

Diff ¼ LLð�̂Þ � LLð�iÞ � 0:5�2
1, where �i is a heritability estimate. The values at which

Diff = 0 demark the lower and upper 95% confidence interval.
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a parameter is approximately equal to the negative of the inverse of the second

derivative at the maximum likelihood point

�2
� ¼ � @2LL

@�2

� ��1

ð2:44Þ

For example, in the case of the mean of a normal distribution, the variance

of the mean, �2
� (obtained by taking the derivative of Eq. (2.6)) is

�2
� ¼ �

Xn
i¼1

� 1

�2

 !�1

¼ �2

n
ð2:45Þ

and the standard error is thus �=
ffiffiffi
n

p
, which is the well-known formula. When

there are several estimated parameters, the estimation is somewhat more

tricky as it is necessary to invert the matrix of second partial derivatives.

Fortunately, the standard errors of parameter estimates are typically given in the

output from statistical packages, along with an approximate t-test for �¼0,
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Figure 2.8 The 95% confidence ellipse for the estimates Lmax (¼�1) and k (¼�2)

generated by conditioning on t0 (¼�3) and �. Dot shows MLE combination. Coding

that generated the data matrix from which the contour was estimated is given

in Appendix C.2.4.
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computed as �̂=�̂�. The output from S-PLUS for fitting the von Bertalanffy growth

function is shown in Appendix C.2.5. In addition to the standard errors, the

output also includes the correlation matrix: this can be useful to examine the

independence of the parameter estimates. In the present example, the parameter

k(¼�2) is highly correlated with both L1(¼�2), and t0(¼�3) and thus variation in

L1 and k cannot be considered independently, a point made clear by the bivariate

contour interval (Figure 2.8).

Hypothesis testing

There are two basic questions we have to answer having fitted a model:

first, is the model a poor fit to the data, and, second, does the model explain

significantly more variation than a model with fewer parameters? In both cases,

we make use of the chi-square distribution introduced in the previous section.

Testing model fit

The adequacy of a model is defined in relation to a model that has the

same number of parameters as observations and thus completely describes the

data. This model is known as the maximal or saturated model. For example,

consider the log-likelihood function for the mean

lnðLÞ ¼ n ln
1

�
ffiffiffiffiffiffi
2�

p
� �

�
Xn
i¼1

1

2

xi � �

�

� �2
ð2:46Þ

In the saturated model, there are n parameters; that is, each observation has a

different mean equal to the observation (�i¼xi). The log-likelihood for this model

is thus

lnðLÞ ¼ LLSat ¼ n ln
1

�
ffiffiffiffiffiffi
2�

p
� �

ð2:47Þ

More generally, define LLSat as the log-likelihood of the saturated model

with n observations and LLMLE as the log-likelihood at the maximum likelihood

estimated values. Now

D ¼ 2 LLSat � LLMLEð Þ � �2
n�k ð2:48Þ

where k is the number of parameters estimated. D is known as the scaled

deviance (or simply the deviance). If the model fits the data well D will be

smaller than the critical value of �2
n�k.

To illustrate, D for the von Bertalanffy function is

D ¼ 2

2�2

Xn
t¼1

lt � �̂2 1� e��̂2 t��̂3ð Þh i� �2
� �2

n�3 ð2:49Þ
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Because �2 is unknown, we cannot use D directly to test for lack of fit. For the

present data set, in which we have only a single observation per age, we could go

no further. Of course, we can always examine the residual sums of squares to

assess how much variation is accounted for by the fit.

If there are several observations per age, we can approximately test for lack of

fit using amethod suggested by Draper and Smith (1981), which is exact for linear

models. We divide the residual sums of squares into a pure error component

(SSPE) and a lack of fit component (SSLOF)

SSPE ¼
Xn
t¼1

ðmt � 1Þ�̂2
t

SSLOF ¼ SSð�̂1, �̂2, �̂3Þ � SSPE

ð2:50Þ

where mt is the number of observations in age group t, �̂2
t is the estimated

variance within age group t, and SSð�̂1, �̂2, �̂3Þ is the sums of squares at the

maximum likelihood estimators. With no lack of fit

SSLOF=n� 3

SSPE=N � n
� Fn�3,N�n ð2:51Þ

where N is the total sample size (¼Pn
t¼1 mt). Thus if the right-hand side exceeds

the critical point of Fn�3,N�n the model is deemed a poor fit, even though it may

still be a better fit than competing models.

For the models based on the binomial, we are generally in a better situation.

For the logistic model, D can be shown to be (Dobson 1983, p. 77)

D ¼ 2
XN
i¼1

Obsi ln
Obsi
Expi

� �	 

� �2

N�k ð2:52Þ

where Obsi is the observed numbers in the ith category (i.e., observed ri and ni�ri),

Expi is the expected numbers and N�k is the degree of freedom, which is equal to

the number of subgroups minus the number of estimated parameters. For the

beetle data, N¼8 and k¼2, and hence �2
N�k¼12.59. The estimated value of D is

13.66, which indicates that the model does not fit the data very well, although

visually the fit certainly appears quite adequate (Figure 2.5, see Appendix C.2.6

for S-PLUS coding), and clearly better than the simpler alternative of a constant

proportion (an issue discussed in the next section). When the expected value is

equal to zero, D is undefined (ln(0) undefined), and in the present example I added

a very small number to avoid this problem (Appendix C.2.6), though the existence

of the problem suggests that the sample sizes are too small or the model is

inadequate.
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Comparing models

I shall only consider models that have the same structure but differ in

the number of parameters. For example, in the case of the von Bertalanffy

function, we might wish to compare a model with �3 with one without �3

lt ¼ �1ð1� e��2ðt��3ÞÞ vs: lt ¼ �1ð1� e��2tÞ ð2:53Þ

To do so we can make use of the chi-square property of the deviance. For these

two models the deviances are

Dn�3 ¼ 1

�2

Xn
t¼1

lt � �̂F,2 1� e��̂F,2ðt��̂F,3Þ
h i� �2

� �2
n�3

Dn�2 ¼ 1

�2

Xn
t¼1

lt � �̂R,2 1� e��̂R,2t
h i� �2

� �2
n�2

ð2:54Þ

where the subscripts F and R stand for “Full” and “Reduced” model, respectively.

Now, by the additive nature of chi-square, we have Dn�2 � Dn�3 � �2
1. But we still

have the problem of the nuisance �2. By construction of the following ratio,

we can both eliminate this parameter and produce the F-statistic

Dn�2 � Dn�3

Dn�3=ðn� 3Þ � F1,n�3 ð2:55Þ

For models in which the maximum likelihood estimates are found by

minimizing the sums of squares, we can write a general formula for comparing

two models:

ðSSR � SSFÞ=ðF � RÞ
SSF=ðn� FÞ � FF�R,n�F ð2:56Þ

where SSF is the sums of squares of the full model with F parameters, SSR is the

sums of squares of the reduced model with R parameters (F4R). Appendix C.2.7

shows coding to compare the von Bertalanffy model with three vs. two

parameters. The analysis shows that the three parameter model does not fit

significantly better than the two parameter model (F1,10¼0.09, P¼0.767). This is

also evident from the standard error of �3 (t0) given in Appendix C.2.5.

For models other than those for which the maximum likelihood estimates

are obtained by least squares, we can employ the deviances directly

DR � DF

F � R
� �2

F�R ð2:57Þ

34 Maximum likelihood



Suppose, for example, we wished to compare the logistic fit with a constant

proportionmodel. The latter model is equivalent to the logistic model in which �2

is set equal to zero ði:e:, pi ¼ e�1=ð1þ e�1 Þ ¼ constantÞ, that is, a one parameter

model (see Appendix C.2.8 for coding to compare these models). The deviance for

the two parameter model is 13.63 and for the one parameter model it is 287.22:

thus D1�D2¼273.59, to be compared to �2
1 ¼ 3:84, which is obviously highly

significantly different (P40.0001).

In some instances one might wish to compare several samples: for example,

do the means from two separate populations come from the same statistical

population (i.e., the null hypothesis of �1¼�2 versus the alternate hypothesis of

�1 6¼ �2). This is conceptually and mathematically equivalent to comparing

a two parameter model with a one parameter model:

One parameter model �i ¼ �

Two parameter model �i ¼ �þ di�
ð2:58Þ

where di is a “dummy” variable that takes the value 0 for population 1 and 1 for

population 2. The statistic � is estimated by minimizing sums of squares and

hence we can use Eq. (2.56) to compare the two models. The two deviances are

D1 ¼ 1

�2

X2
j¼1

Xn
i¼1

ðxij � �xÞ2 ¼ �2SS1

D2 ¼ 1

�2

X2
j¼1

Xn
i¼1

ðxij � �xjÞ2 ¼ �2SS2

ð2:59Þ

where, for simplicity, I have assumed equal sample sizes. In the two parameter

model there are 2n data points and 2 parameters and thus “n�F” is equal to 2n�2,

and we test the hypothesis that the two parameter model explains significantly

more variance than the one parameter model (i.e., is a better fit to the data) with

the F-statistic

D1 � D2

D1=ð2n� 2Þ ¼
SS1 � SS2
S1=ð2n� 2Þ � F1,2n�2 ð2:60Þ

which the reader will no doubt recognize as the calculation used in a one-way

analysis of variance.

A more complex example is the comparison of two functions that have several

parameters. Consider the problem of comparing two growth curves fitted using

the von Bertalanffy function (Figure 2.9), the two shown corresponding to male

and female curves. The curves could differ in several ways; all three parameters
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might differ between the populations or only one. Suppose we wish to test the

hypothesis that a model in which all three parameters differ fits the data better

than one in which none differ between populations: we proceed in the same

manner as above (Appendix C.2.9 shows the coding using the fitting function

nlmin and C.2.10 shows the coding using the supplied function nls, which fits

a function using least squares. Both methods give identical results and are

presented to illustrate that several routes may be taken to achieve the same test.

Interestingly, nlmin failed to fit the function with dummy variables). First, we fit

the curves separately for the two samples and calculate the combined sums of

squares. Second, we fit a single curve using the combined data. Third, we apply

Eq. (2.60). For the example data set, we have F3,20¼4.7, P¼0.01, indicating that a

model with all three parameters different is to be preferred over a model with

common parameters. This does not indicate that a model with only one or two

common parameters does not fit the data equally as well. From the previous
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Figure 2.9 Plot of average length at each age for male and female Pacific hake, with

the estimated von Bertalanffy curves. Data modified from Kimura (1980).

Age 1.0 2.0 3.3 4.3 5.3 6.3 7.3 8.3 9.3 10.3 11.3 12.3 13.3

Female 15.4 28.0 41.2 46.2 48.2 50.3 51.8 54.3 57.0 58.9 59.0 60.9 61.8

Male 15.4 26.9 42.2 44.6 47.6 49.7 50.9 52.3 54.8 56.4 55.9 57.0 56.0
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analyses, we might suspect that the parameter �3 (¼t0) does not differ between

populations. Therefore, it is reasonable to compare the full model with one

that incorporates a dummy variable for sex but not �3. The full model has

six parameters and the reduced model has four parameters (coding in

Appendix C.2.11). The full model is not significantly better than the reduced

model (F2,22¼0.48, P¼0.63).

Summary

(1) The method of maximum likelihood presumes that one can assign

to a set of observations a probability, or likelihood (L) that is a function

of one or more parameters �1,�2, . . . , the values of which are to be

estimated. The parameter values that maximize the probability of

obtaining the observed data are the maximum likelihood estimates.

It is frequently most convenient to work with the log-likelihood.

(2) In many cases, the probability distribution is based on the normal

distribution, leading to the maximum likelihood estimates being

obtained by minimizing the residual sums of squares, that is

Minimize
Pn

i¼1 ðObserved value� Predicted valueÞ2. Another commonly

occurring situation is that in which there are two outcomes (e.g., alive

or dead) and the likelihood is based on the logistic model.

(3) The two most commonly used methods of estimating confidence limits

are the log-likelihood ratio approach and the standard error approach.

The first method involves five steps:

Step 1: Find the MLE for �

Step 2: Calculate the log-likelihood (i.e., LLð�̂Þ)
Step 3: Iterate over a range of � (e.g., 0.01 to 0.99) and for each

calculate LL(�)

Step 4: Calculate Diff ¼ LLð�̂Þ � LLð�Þ � 0:5�2
1

Step 5: Find value of � at which Diff is equal to zero. There will be two

values, corresponding to the upper and lower confidence limits.

(4) The second method of assessing the variability in a parameter value is to

examine the standard errors of the estimates; roughly speaking, the 95%

confidence limits are �2 the standard error. The variance of a parameter

is approximately equal to the negative of the inverse of the second

derivative at the maximum likelihood point �2
� ¼ �ð@2LL=@�2Þ�1. When

several parameters are estimated, the matrix of second derivatives must

be inverted to obtain the variance–covariance matrix.
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(5) To examine amodel for howwell it conforms to the observed data, define

LLSat as the log-likelihood of the saturated model with n observations and

LLMLE as the log-likelihood at the maximum likelihood estimated values.

The saturated model is that in which the log-likelihood is equal only

to the constant component of the log-likelihood (e.g., for a normal

distribution it would be �n lnð� ffiffiffiffiffiffi
2�

p Þ). Now D ¼ 2ðLLSat � LLMLEÞ � �2
n�k,

where k is the number of parameters estimated. D is known as the scaled

deviance (or simply the deviance). If the model fits the data well D will be

smaller than the critical value of �2
n�k.

(6) To compare two models that have the same structure but differ in the

number of parameters we construct either an F or �2 statistic. For models

in which the maximum likelihood estimates are found by minimizing

the sums of squares, a general formula for comparing two models is

ðSSR � SSFÞ=ðF � RÞ
SSF=ðn� FÞ � FF�R,n�F

For models other than those for which the maximum likelihood

estimates are obtained by least squares, we can generally employ the

deviances directly

DR � DF

F � R
� �2

F�R
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Exercises

(2.1) Using the 10 values of x given below, and assuming a normal

distribution with �¼1, plot the log-likelihoods from �3 to þ3, using a step

interval of 0.1. Compare the estimate of � with the arithmetic average.

�0.793 0.794 �0.892 0.112 1.371 1.417 1.167 �0.531 0.921 �0.577
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Hint: if using S-PLUS, consider the following routines: mean, seq, length, for, max,

plot

(2.2) Show that ð1=nÞPn
i¼1 ðxi � �xÞ2 is a biased estimator of �2 and that an

unbiased estimator is ð1=n� 1ÞPn
i¼1 ðxi � �xÞ2. Hint: There is no loss in generality

in assuming that �¼0, which makes the proof simpler.

(2.3) A frequently used distribution used for sparsely spatially distributed

data (e.g., the distribution of a rare organism) is the Poisson distribution, which

has probability density function pðrÞ ¼ e��ð�r=r!Þ, where p(r) is the probability of r

events occurring (e.g., probability of a sampling unit containing r individuals).

Show that the maximum likelihood estimate of � is equal to (Total number of

individuals counted)/(Total number of sampling units).

(2.4) Generate 20 regression lines using the same probability distribution

and estimate the correlation between �̂1 and �̂2. Assume �1¼0, �2¼1, the error

term is N(0,1), and there are 10 x values evenly spaced from 1 to 10 (i.e., 1,2,3, . . . ,

9,10). Hint for coding: consider using the following routines: for, seq, rnorm, lm,

cor.test

(2.5) Egg production inmany organisms follows a triangular pattern, first

increasing with age and then decreasing. A function suggested by McMillan et al.

(1970) to describe this pattern in the fruitfly is y ¼ �1ð1� e��2ðx��3ÞÞe��4x, where y is

eggs laid on day x. Assuming that errors are normally distributed (as discussed

for the von Bertalanffy function), estimate the four MLE parameters for the

following data set

Day 1.5 3 4 5 6 7 8 11 14

Eggs laid 21.6 63.7 61.6 59.9 53.8 55.5 50.8 31.5 24.4

(2.6) A mate choice experiment is run twice, the first time with a sample

size n1 and the second with a sample size n2. Show that the maximum likelihood

estimate is (r1þr2)/(n1þn2) rather than
1
2[r1/n1þr2/n2].

(2.7) Using the 10 data points from N(0,1) given in question 1 construct a

95% confidence interval using the exhaustive approach method for the mean.

Compare the results with those obtained by the usual method (i.e., � t*SE¼�
2.262*SE). Use a range from �2 to þ2 and a step length of 0.01. Hint for coding:

consider using the following routines: rnorm, mean, var, seq, length, prod, for,

sum, cumsum.

(2.8) Using the above data, estimate the 95% confidence limits using the

log-likelihood ratio approach. Hint: check Appendix C.2.3.
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(2.9) Consider the von Bertalanffy function lt ¼ �ð1� e�kðt�t0ÞÞ, where lt

is length at age t, k and t0 are known constants, and � is an unknown param-

eter to be estimated. Show that the maximum likelihood estimate of the

standard error of � is 1=�2
Pn

t¼1 ð1� e�kðt�t0ÞÞ2. Hint: make use of the second

derivative.

(2.10) The following mean length at age are measured for a particular

species of fish.

Age 1 2 3 4 5 6 7 8 9 10

Length 23.61 43.10 57.54 68.24 76.16 82.03 86.38 89.60 91.99 93.76

Assuming a von Bertalanffy growth curve as in question 7, with k¼0.3 and t0¼
0.05, estimate � and the nuisance parameter �2 using the nls routine in S-PLUS (or

other statistical package). Estimate the standard error of � using the result from

question 7 (Note that �2 is estimated as described in the main text).

(2.11) The table below shows egg production in a second strain of

Drosophila melanogaster. Fit the function y ¼ �1ð1� e��2ðx��3ÞÞe��4x to these data

and test the hypothesis �3¼0

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Eggs laid 54.8 73.5 78 71.4 75.6 73.2 65.4 61.9 61.7 60.1 55.1 50.4 44.3 42.3

List of symbols used in Chapter 2

Symbols may be subscripted

" Error term

� Parameter to be estimated

�̂ Estimate of �

’(�) Function of �

� Standard deviation

�2 Variance

� Mean

�̂ Estimate of �

� Pi (¼3.14 . . .)

D Deviance

F Number of parameters in the full model

L Likelihood
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LL Log-likelihood

L1 Asymptotic length (von Bertalanffy equation)

MLE Maximum likelihood estimate(s)

N Total number of observations ¼Pn
i¼1 mi

� �
N(�,�) Normal distribution with mean � and standard deviation �

P Probability

R Response to selection or number of parameters in reduced

model

S Selection differential

SS Residual sums of squares

T Threshold value in heritability model

d Dummy variable

h2 Heritability

k Number of parameters or growth rate (von Bertalanffy

equation)

l Length (von Bertalanffy equation)

m Number of observations in a subgroup

n Number of observations or number of subgroups

p Probability

p̂ Estimate of p

r Number of “successes” in a set of binomial trials

t Age (von Bertalanffy equation)

t0 Hypothetical length at age 0 (von Bertalanffy equation)

x Observed value

�x Mean value of x

y Observed value (typically a function of x)

�y Mean of y
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3

The jackknife

Introduction

The jackknife was invented by Quenouille (1949) as a means of elimi-

nating bias in an estimate. Tukey (1958) suggested that Quenouille’s method

could be used as a non-parametric means of estimating the mean and variance of

an estimate, and coined the term “jackknife,” to signify an all-purpose statistical

tool. The jackknife has proven to be invaluable in the estimation of parameters

for which standard techniques are unsatisfactory. However, at the outset it must

be recognized that this method is not without assumptions and should not

be used without justification, either from a theoretical or numerical analysis.

In this chapter, I shall describe the jackknife method, first in a very general sense

and then by a series of examples taken from the biological literature.

The jackknife: a general procedure

Point estimation

Suppose we wish to estimate some parameter �. To do so using the

jackknife method, we first estimate � according to the appropriate algorithm

(e.g., we might be estimating the coefficients in a linear regression, in which case

the algorithm could be the least squares regression method): let this estimate

be �̂. Next we delete a single datum from the data set. This datum could be a

single observation or it could be a group of observations (e.g., in a genetical

analysis there might be n families, each consisting of m individuals, and the

datum to be dropped is a family rather than an individual). Using the remaining

n�1 observations, we recalculate the estimate of �: let this estimate be denoted

as �̂�1. Now we calculate the quantity called the pseudovalue

S1 ¼ n�̂ � ðn� 1Þ�̂�1 ð3:1Þ
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We return the deleted datum back into the data set, delete the next obser-

vation and calculate the second pseudovalue (S2). This operation is repeated until

each datum has been deleted and the corresponding set of n pseudovalues are

calculated. The jackknife estimate, ~�, is the mean of the pseudovalues

~� ¼ 1

n

Xn
i¼1

Si ¼ �̂ � n� 1

n

Xn
i¼1

�̂�i ð3:2Þ

The above is called the delete-one jackknife. By deleting more than one

observation each time, higher order jackknife estimates can be constructed:

these have rarely been used and I shall restrict discussion to the delete-one

jackknife and refer to it simply as the jackknife.

Interval estimation

An estimate of the standard error (SE) of � is given by the standard error

of the pseudovalues

SEð ~�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nðn� 1Þ
Xn
i¼1

ðSi � ~�Þ2
s

ð3:3Þ

Assuming that the pseudovalues are normally distributed, confidence limits on �

can be computed as

~� � t�=2; n�1SEð ~�Þ ð3:4Þ

where t�/2,n�1 is the value that is exceeded with probability �/2 for the

t distribution with n�1 degrees of freedom.

Hypothesis testing

Hypothesis testing using the jackknife derives immediately from the

assumption that the pseudovalues are normally distributed. For two samples one

can use the t distribution or analysis of variance. For several samples analysis

of variance is appropriate. For example, as described below, one can use the

jackknife to estimate a population rate of increase, r (in this case the symbol r is

so well entrenched in the literature that I shall use it instead of �). Suppose we

had several populations for which we had jackknife estimates: we might wish to

ask if there is an overall difference among the populations, which could be done

by a oneway ANOVA of the pseudovalues. What is particularly useful about the

analysis of the pseudovalues is that one can introduce several independent

variables in the analysis. In the above example, the rate of increase might have

been estimated for several species at each geographic location. We can then ask
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if there are differences with respect to population, species or an interaction

between the two.

Several parameters might be estimated simultaneously using the jackknife.

An example, discussed below, is the estimation of the components of a variance–

covariance matrix. Rather than doing multiple tests on the individual estimates,

we can take a multivariate approach by using multivariate analysis of variance

on the pseudovalues. In short, the jackknife is potentially a highly flexible and

general approach to both estimation and hypothesis testing.

Examples of the use of the jackknife

The jackknife of the mean

To more fully understand the rationale of the jackknife, it is instructive

to examine the pseudovalues of the jackknife estimate of the mean, �x. Deletion

of the ith observation gives

Si ¼ n�x� ðn� 1Þ�̂�i ð3:5Þ

Now, the mean value after deletion of the ith observation is

�̂�i ¼ 1

n� 1

Xn
j¼1

xj � xi

 !
ð3:6Þ

Rearranging gives

xi ¼
Xn
j¼1

xj � ðn� 1Þ�̂�i ð3:7Þ

But

Xn
j¼1

xj ¼ n�x ð3:8Þ

and hence the pseudovalue is

xi ¼ n�x� ðn� 1Þ�̂�i ¼ Si ð3:9Þ

Thus, in this case we recover the value of the ith observation from the mean

and the ith value removed. This may not impress the reader since xi was what

we deleted: but if there is not the simple linear relationship between the ith

observation and ~��i, then this will not be the case. In essence, the jackknife turns
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the estimation problem into a problem of the estimation of mean and variance of

a normal distribution, for which we have well established methods. The trick is

to ensure that the transformation actually does this. In some cases, theoretical

justification can be advanced but in many, if not most, it will be necessary

to resort to simulation modeling to check the method. The strength of the

method is its extreme simplicity.

Variance components

A common objective, particularly in genetic studies, is the estimation of

variance components. Three questions that should be answered to justify the use

of the jackknife in this case and in general are: first, does the jackknife give a

correct estimate for the variance; second, is the estimated 95% confidence

interval correct in that the true value lies above the upper value 2.5% of the time

and the true value lies below the lower confidence value 2.5% of the time;

and third, can the pseudovalues be used in hypothesis testing?

The jackknife estimate of confidence limits of the variance can be shown to be

incorrect but a log transformation does produce appropriate limits, at least for

large sample sizes (Miller 1974; Manly 1997). Whether it does so for small sample

sizes can only be decided by simulation. Before examining the question of

transformations, let us examine the jackknife on the untransformed statistic.

Many statistical packages now have routines for doing the delete-one jackknife

where each row represents a datum to be deleted (the question of jackknifing

when the unit consists of multiple lines is addressed below). Appendix C.3.1

provides the coding for the S-PLUS case in which there are 10 observations per

sample. The first set of lines generate 1000 sets of 10 random normal values with

mean zero and unit standard deviation: these data are stored in a matrix X, with

each column representing a single sample. The second group of lines iterate over

these replicates calculating the jackknife mean and SE of the estimated variance

and storing the results in the matrix Output. The final group of lines calculates

the upper and lower confidence limits for each sample and determines in

how many cases the true value lies outside the limits. Not unexpectedly, the

grand mean of the jackknife estimates, 1.009637, is an unbiased estimate of

the true variance. However, the confidence limits are incorrect. We require

that the upper confidence limit be less than the true value in 2.5% of cases,

whereas the jackknife estimated upper limit is less than the true value in 13.3%

of the replicates. Thus the jackknife estimated upper limit is too low. The

opposite problem occurs with the lower confidence limit. We require that

the lower confidence limit be greater than the true value in 2.5% of cases,

whereas the jackknifed estimated lower limit is greater than the lower value in

Examples of the use of the jackknife 45



only 0.1% of the replicates. The confidence limits estimated from the jackknife

are too small (86.6% rather than 95%) and shifted downwards.

To test the efficacy of the log transformation, we need to alter three lines:

replace var(x) with log(var(x)) and instead of testing the limits against 1, test

them against 0 (because log(1)¼0). The result is better in that the lower and upper

percentiles are now 1.5 and 95.9%, respectively (instead of the required 2.5 and

97.5%). Thus, the correct value is included in 93.4% of the replicates but the

limits are not symmetrical. This exercise illustrates the very important point that

an analysis of the performance of an estimation procedure should not look

simply at the overall confidence region but should examine both the upper and

lower limits.

The jackknife does appear to provide an unbiased estimate of the variance

in the above example. We now consider whether it can be used to test for

a difference between two variances given that the null hypothesis of equal

variances is true (coding in Appendix C.3.2). Given a type 1 error of 5% we expect,

as the samples are drawn from the same population, that a difference should be

declared significant in 5% of the replicates. The actual percentage of significant

differences obtained was 3.5%, which is close to but still significantly different

from the expected 5% (�2¼4.737, degrees of freedom [df]¼1, P¼0.03). Using the

log transformation produced 6.3% significant differences, which is marginally

non-significantly different from the expected 5% (�2¼3.558, df¼1, P¼ 0.0593).

Using the untransformed data gives a test that is conservative, whereas using the

transformed data gives a test that for all practical purposes is quite satisfactory,

though slightly too liberal in declaring significance.

We now move to a more useful task for the jackknife, that of estimating

and testing variation among variance–covariance matrices. The estimation of

variance–covariance matrices is of particular interest to evolutionary biologists,

because two suchmatrices are required to predict the evolution ofmultiple traits.

As discussed in Chapter 2, the response to selection, R, for a single trait is given by

R¼h2S, where h2 is the heritability of the trait and S is the selection differential

(the difference between the mean of the population and the mean of the parents

contributing to the next generation). Heritability is the ratio of additive genetic

variance to the total phenotypic variance, h2 ¼ �2
A=�

2
P . Selection on two traits

must take into account not only selection acting directly upon a trait but

also indirect selection resulting from genes that contribute to the expression

of both traits, the latter selection producing a correlated response. Using matrix

notation, the response to selection for two traits (R1,R2) can be written as

R1

R2

� �
¼ �2

A11 �A12
�A21 �2

A22

� �
�2
P11 �P12

�P21 �2
P22

� ��1
S1
S2

� �
ð3:10Þ
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where the first matrix contains the additive genetic variances (diagonal) and

covariances (off-diagonal) and the second contains the phenotypic variances

and covariances. Extension to more than two traits is immediate and obvious.

The above equation is written in shorthand as R¼GP�1S, where G is the genetic

variance–covariance matrix and P is the phenotypic variance–covariance matrix.

The prediction of evolutionary response requires not only estimates of the

variances and covariances, but also the associated standard errors to place

confidence bounds errors on the predicted response. Knapp et al. (1989) inves-

tigated the utility of the jackknife in predicting the response to selection for

a single trait (i.e., R¼h2S). The data comprised a set of simulated families. The

response to selection was predicted first using all families to estimate heritability

(the estimation of heritability is discussed in the following section); pseudovalues

for the response to selection were then created by deleting sequentially entire

families, recomputing heritability, and thence the predicted response from

which the pseudovalue of the response could be calculated. Note that, in this

case, the basic unit of deletion is not an individual observation but a group

of observations: it is important to consider carefully what is the unit of deletion,

because use of the incorrect unit will generate incorrect standard errors. The

families simulated here represent full-sib families (i.e., each family has a single

sire and dam that contribute to no other families. Contrast this with a half-sib

structure in which a sire is mated to several dams, leading to both full-sib and

half-sib relationships). Both untransformed and log transformed values were

used. In both cases, the confidence regions about the predicted response (both

80 and 95% were examined) were not significantly different from the stated

coverages. So far as I know, the analysis of multivariate response to selection has

not been done, though the results for the single trait case are encouraging.

A commonly considered issue is whether two or more covariance matrices are

the same. Differences in the genetic covariance matrix, the G matrix, could arise

as a result of selection or genetic drift (i.e., variation resulting from random

sampling of genes in small populations). Several methods have been proposed

to test for differences [reviewed in (Roff 1997, 2000)]. The jackknife provides a

possible solution (Roff 2002). The procedure, illustrated in Table 3.1, is as follows:

for each group, calculate the G matrix, which typically can be done using

standard statistical methods. Next, delete in turn one sampling unit (e.g., for

a full-sib design it would be a single family and for a half-sib design it would

be a single sire group), and calculate the pseudovalues according to the usual

jackknife procedure. As shown in Table 3.1, the final data matrix can be arranged

such that the columns comprise the pseudovalues of each covariance (note that

the variance is included as it is the covariance of a variable with itself) and the

rows are the results for the deletion of a given family (so the ith row, jth column
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Table 3.1 A sample output data file of pseudovalues calculated for a full-sib experiment involving two species

(GF, GP). Two traits are shown, femur length and head width, which generate two variances and one

covariance. In the first sample (GF) there are 43 families and hence 43 pseudovalues for each component

covariance. The second sample (GP) contains 39 families and hence 39 pseudovalues per component covariance

Pseudovalues for

Variance Covariance

Omitted Familya Femur Head Femur�Head Species

1 1.1621 0.1588 0.4342 GF

2 �0.0157 �0.0241 �0.0627 GF

� 0.1549 0.0174 0.0564 GF

� � � � �
43 1.0667 0.2455 0.5204 GF

1 �0.0760 �0.0113 �0.0267 GP

2 0.5166 0.2222 0.3307 GP

3 0.0987 0.1981 � GP

� � �0.0708 �
39 �0.1624 �0.0419 0.07 (0.03) GP

Meansb (SE) by species 0.17 (0.06) 0.04 (0.01) 0.09 (0.03) GF

0.23 (0.07) 0.05 (0.01) GP

Reproduced from (Roff 2002).
aThe ith pseudovalue, Si, is computed as Si ¼ n�̂ � n� 1ð Þ�̂�i, where �̂ is the statistic calculated

using the full data set, �̂�i, is the statistic calculated using the full data set minus the ith data

point (family), and n is the sample size (number of families: n¼43 or 39).
bThe jackknife estimate, ~�, is calculated as ~� ¼Pn

i¼1 Si=n and the standard error, SE, as

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Si � ~�
� ��=½n n� 1ð Þ� �q

. The means from the jackknife were the same (to two decimal

places) as the estimates obtained using the entire data set (n¼43 or 39). The results from

the MANOVA analysis are as follows:

Source SS df MS F P

Univariate F-Tests

Femur 0.083 1 0.083 0.454 0.502

Error 14.617 80 0.183

Head 0.010 1 0.010 0.310 0.579

Error 2.650 80 0.033

FXH 0.003 1 0.003 0.418 0.520

Error 0.575 80 0.007

Statistic Value F-Statistic df Prob

Multivariate Test Statistics

Wilkes’ Lambda 0.985 0.391 3, 78 0.760

Pillai trace 0.015 0.391 3. 78 0.760

Hotelling–Lawley trace 0.015 0.391 3. 78 0.760

Both univariate and multivariate tests indicate a non-significant difference.
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is the pseudovalue for the jth covariance for the sample with the ith family

deleted. This procedure is readily implemented in S-PLUS. It is important to

remember that the grouping variable (FAMILY in this instance) is categorical, and

so is best coded as a character variable to avoid accidentally entering it into the

analysis as a continuous variable (this is true for a number of statistical packages

and a good rule to follow is to use character variables for any categorical

variable). The general steps for jackknifing when the basic datum to be deleted is

a group are as follows:

(1) Assign a character variable to each group: for example, if there are three

families in the data, these could be coded as 1, 2, 3 provided that they are

designated as character variables and not numeric variables (so A, B, C

would be better). Coding does not have to be sequential: so 1, 7, 3 would

do as well.

(2) Calculate statistic for the entire data set.

(3) Iterate through the groups, deleting one group at each iteration.

Suppose that there are n groups with the group designators stored

in a vector called “Group.Designator.” The data are stored in a file

(a dataframe in S-PLUS) called “Data” and the group designator is in a

column labeled “Group.” Let the data minus one of the groups be called

“Data.minus.one.” A simple coding sequence for S-PLUS is

for (i in 1:n)

{

Ith.Group 5- Group.Designator[i]

Data.minus.one 5- Data[Data$Group!=Ith.Group,]

Insert Lines that calculate and store the pseudovalue

}

Coding for the estimation of the genetic variance--covariance matrix is shown

in Appendix C.3.3. Having calculated the set of pseudovalues for two or more

data sets, one can investigate whether there are significant differences among

the matrices and if these are statistically associated with other factors, such

as environmental variables. To illustrate this approach, I shall consider data on

the amphipod, Gammarus minus.

Gammarus minus is a common amphipod species of karst areas throughout

the central and eastern United States. Fong (1989) and Jernigan et al. (1994)

compared the G matrices of four populations in west Virginia: (1) a population

from Benedict’s Cave; (2) a population from Davis Spring, which resurges from

Benedict’s Cave; (3) a population from Organ Cave; and (4) a population

from Organ Spring, which resurges from Organ Cave. The two caves and their
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associated springs are in two separate drainage basins and the cave popula-

tions are assumed to have been derived from the stream populations. For the

present analysis, I use eight morphological characters, comprising one measure

of overall size (head width), three measures of eye structure and four measures

of antennal length. The populations do not differ much in overall size, but

individuals from cave populations have a reduced number of ommatidia, smaller

eyes, and larger antennal components than those from the spring populations.

These differences are consistent with the hypothesis of adaptive evolutionary

change in the cave populations, selection favoring an increase in tactile sensory

organs and a loss of ocular sensory organs.

With respect to the genetic correlations, Fong (1989) found a significant corre-

lation between the two cave populations and between the two spring populations

but not between populations in the same drainage basin. This result suggests

that genetic correlations are more related to habitat (cave or spring) than to

history (common ancestry). This hypothesis can be addressed by using the G

matrix pseudovalues calculated for the four populations in a two-way MANOVA.

Differences among G matrices can arise simply as a function of scale effects

if the groups being compared differ markedly in size. In the present analysis,

I transformed all variables to a log scale, which eliminated the large differences

in phenotypic variances. The two-way MANOVA shows a highly significant effect

of habitat and drainage basin but no significant interaction (Table 3.2).

To determine which trait covariances contribute most to the variation we can

examine the results of univariate tests, keeping in mind that individual signifi-

cance levels are inflated because of multiple tests. The univariate tests are used

to see if there is a pattern of variation rather than isolating specific covariances.

A clear pattern does emerge for the differences associated with habitat, with

covariances involving eye length or antennal components generally being

“significant” (P50.05; Table 3.3). In contrast, there are only three “significant”

(P50.05) univariate tests for the effect of drainage basin, all involving eye length.

This difference between habitat and drainage basin indicates that much greater

differences arise between habitats than between populations within the same

Table 3.2 A two-way MANOVA examining the influence of habitat (Cave, Spring) and drainage basin

on the G matrices of four populations of the amphipod Gammarus minus. From (Roff 2002)

Wilkes l Approx F df P

Habitat 0.538 3.770 36, 158 50.0005

Basin 0.671 2.154 36, 158 0.001

Habitat�Basin 0.766 1.341 36, 158 0.114
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drainage basin. These results support Fong’s conclusion that habitat is more

important than history in G. minus in molding genetic variation.

The above example illustrates the method of using the jackknife to address

questions of variation among variance--covariance matrices, but it is still

necessary to demonstrate that the method is valid. Under the null model of

no difference between two G matrices, the Jackknife-MANOVA method should

declare the two matrices to be different with a probability of 5%. To test this,

I generated populations (see Appendix C.3.4 for simulation) by using identical

covariances for each population (but differing among traits) and subjected these

to the MANOVA method of analysis. To roughly match typical sample sizes

(i.e., those used in Begin et al. 2004) I used populations of 50 full sib families with

10 offspring per family. The actual values of the heritabilities and correlations

should make no difference under the null hypothesis: thus, under the

null hypothesis, 5% of simulations should produce significant probabilities.

Table 3.3 Univariate tests of the G matrix elements in the amphipod Gammarus minus. Probabilities

associated with habitat are shown above those associated with drainage basin. Probabilities less than 0.05

are shown in bold

Head Ommat EyeL EyeW Ped1 Ped2 Flag2 Nf1

Head (Habitat) 0.679 0.236 0.055 0.396 0.045 0.051 0.150 0.285

(Basin) 0.370 0.744 0.209 0.776 0.302 0.237 0.373 0.593

Ommat (Habitat) 0.151 0.457 0.797 0.168 0.320 0.361 0.351

(Basin) 0.577 0.087 0.122 0.124 0.367 0.594 0.929

EyeL (Habitat) 0.562 0.029 0.016 0.012 0.020 0.021

(Basin) 0.008 0.048 0.023 0.062 0.162 0.292

EyeW (Habitat) 0.000 0.801 0.789 0.888 0.998

(Basin) 0.271 0.087 0.143 0.416 0.831

Ped1 (Habitat) 0.011 0.007 0.02 0.029

(Basin) 0.085 0.103 0.258 0.418

Ped2 (Habitat) 0.011 0.021 0.030

(Basin) 0.143 0.277 0.436

Flag2 (Habitat) 0.011 0.021

(Basin) 0.565 0.749

Nf1 (Habitat) 0.141

(Basin) 0.928

From Roff (2002).

Head¼head width, Ommat¼number of ommatidia in the compound eye, EyeL¼eye length,

EyeW¼eye width, Ped1¼length of the peduncle of the first antennae, Ped2¼Length of the

peduncle of the second antennae, Flag2¼length of the flagellum of the second antennae,

Nf1¼number of flagellar segments of the first antennae.
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I used a range of parameter values: as all gave the same result, I combined the

data to estimate the probability. Out of 2100 simulations, 4.7% were found to be

significant, which is not significantly different from the predicted 5% (�2¼ 0.49,

df¼ 1, P¼ 0.48). Thus, with regard to type I errors, the Jackknife-MANOVAmethod

appears to be valid, at least for this data set. Further simulations are necessary

to determine if the method breaks down with smaller sample sizes and to

determine the power of the test.

The estimation of ratios: variances and covariances

The estimation of ratios is a particular area in which the jackknife can

be very useful. Arvesen and Schmitz (1970) studied the use of the jackknife

for the estimation of variance component ratios, specifically the F statistic.

They showed both from theory and simulation that the jackknife could be used

provided the estimate was log-transformed. Expanding on this result, they

suggested that the standard error of heritability could also be estimated using

the jackknife, though again they suggested that the estimate be transformed.

Finally, Arvesen and Schmitz (1970) considered the estimation of the genetic

correlation for which they could not derive an appropriate transformation but

suggested that Fisher’s z transformation might be appropriate. Knapp et al. (1989)

and Simons and Roff (1994) checked the efficacy of the jackknife in estimating

the mean and variance of the heritability (Appendix C.3.4 describes the model

used by Simons and Roff).

As explained previously, in the case of the genetic analysis of full sibs, the

jackknife is performed on the individual families rather than the individuals.

This presents some technical difficulties in terms of implementation. One

approach is outlined in Appendix C.3.3, in which the jackknife is performed

“manually” (i.e., not using the routine “jackknife”). An alternate method is to

make each row a separate family with individuals occupying different columns.

Suppose, for example, the data set consisted of 20 families and 5 individuals per

family. The data matrix would be set up with 20 rows and 10 columns, the first

5 columns containing the family code and the last 5 columns containing the

data. This data set can then be converted into a two column data set in which

the first column contains the family codes and the second column contains the

data. Coding for this is illustrated in Appendix C.3.5.

Using the transformation gives confidence intervals somewhat closer to the

correct values than the untransformed values (Figure 3.1). The performance of

the untransformed estimate improves with the number of families (the lowest

sample size is lower than would typically be recommended). In contrast to these

results, the untransformed estimate performs better with respect to bias than

the transformed estimate (Figure 3.1). The bias is particularly bad when the true
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heritability is less than 0.2. Overall, it would appear that the untransformed

estimator is better, provided that a sufficient number of families is used. Simons

and Roff (1994) compared the performance of the jackknife using untransformed

estimators with the approximate parametric estimate of the standard error.

The jackknife estimate was closer to the true heritability than the ANOVA

estimate but the difference was minor (the third decimal place). However, there

was a difference in the coverage, with the jackknife estimate giving an overall

coverage generally closer to the desired 95% (Figure 3.2). Further, the parametric

estimate gave a lower limit that was consistently less than the jackknife method
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Figure 3.1 Simulation analysis of jackknife estimation of heritability in a full-sib

design. Top panel shows the probability (¼coverage) that the true value of heritability

lies within 95% confidence limits estimated by using the jackknife; 	¼20 families

per sample, g¼60 families per sample, m¼100 families per sample. Bottom panel

shows the bias in the estimates (	¼untransformed, m¼transformed) as a function of

the true heritability. Data from Knapp et al. (1989).
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and well below the required 0.025. Contrarily, the jackknife estimate gave

an upper limit consistently lower than the parametric estimate.

Roff and Preziosi (1994) tested the jackknife method for the estimation of

phenotypic and genetic correlations. We found that the method produced excel-

lent results for both the estimation of the parameter values and the estimated

95% confidence limits.

The estimation of ratios: ecological indices

Frequently, ecologists describe population processes or states with an

index. Not untypically, there are a number of proposed indices and, equally, not

untypically, the statistical properties of these indices are not clear. The jackknife

may provide a means of estimating these indices and their associated standard

errors, though this should not be assumed. As an example, I shall consider

measures of niche overlap. We desire to calculate the niche overlap of two

sympatric species that utilize a set of n resources, the utilization of the ith

resource by the first species being pi (¼ the proportion of total resources used) and

the utilization by the second species being qi. Four proposed indices are:

(1) Coefficient of community (C1): C1 ¼
Pn

i¼1 minðpi, qiÞ
(2) Morisita’s index (C2): C2 ¼ 2

Pn
i¼1 piqi=ð

Pn
i¼1 p

2
i þ

Pn
i¼1 q

2
i Þ

(3) Horn’s index (C3): C3 ¼ ðPn
i¼1 ðpi þ qiÞ logðpi þ qiÞ �

Pn
i¼1 pi log pi�Pn

i¼1 qi log qiÞ=2 log 2
(4) Euclidean distance (C4): C4 ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðpi � qiÞ2=2

q
.
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Figure 3.2 A comparison of the estimated confidence 95% limits using either a

parametric estimator (ANOVA) of heritability or the jackknife method. The overall

coverage should be 0.95, the upper limit at 0.975 (upper dashed line) and the lower

limit at 0.025 (lower dashed line). Data from Simons and Roff (1994).
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Mueller and Altenberg (1985) compared the jackknife with the delta method,

which is a commonly used analytical method to approximate expected values

and their variances (the method is outlined in detail in Lynch and Walsh

[1998, pp. 807--21]). To compare these two methods (and also the bootstrap,

which is discussed in the next chapter), Mueller and Altenberg carried out a

number of different simulations. First, they considered two resource categories

(i.e., species 1 utilized one resource with a probability p1 and the alternate with a

probability 1� p1, whereas species 2 utilized one resource with a probability q1

and the alternate with a probability 1� q1). Twenty-five different combinations

were used (all pairwise combinations of p1¼ 0.1, 0.2, 0.3, 0.4, or 0.5, and q1¼ 0.15,

0.35, 0.55, 0.75, or 0.95). For each combination 200 replicates were made using the

following protocol: (1) Draw a sample of n observations (n¼ 20, 60 or 200) from

which p1 and q1 are calculated; and (2) calculate the estimates and their

associated confidence region using the jackknife and delta methods. There are

two questions to be addressed: first, which method has a smaller bias and

a standard error closer to the correct value, and second, is either useful? Being

a “better” estimator doesn’t make it an adequate or acceptable estimator!

In all cases, the jackknife estimate had a smaller bias and generally a more

accurate confidence region than the delta estimate. Similar results were obtained

for two multiple category examples tested (e.g., set of p is 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

0.1, 0.1, 0.1, 0.1 and set of q is 0.4, 0.3, 0.1, 0.1, 0.05, 0.01, 0.01, 0.01, 0.01). However,

whereas the performance of the jackknife was better than the delta method it

still produced confidence limits somewhat smaller than required (Table 3.4).

The estimation of ratios: population parameters

An important parameter in both ecology and evolution is the rate of

increase, r. In an unstructured population (or one with a stable age distribution)

Table 3.4 Summary of analysis of niche overlap statistics with the multiple categories given in the text.

Data from Mueller and Altenberg (1985)

% Bias Coveragea

Index Delta Jackknife Delta Jackknife

C1 19.5 6.5 0.85 0.93

C2 16.4 2.6 0.91 0.87

C3 22.1 3.5 0.61 0.92

C4 8.0 0.4 0.86 0.93

aProportion of times true value fell inside the estimated 95% confidence limits.
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in which there is no density dependence, population growth is exponential

and can be described by the equation, Nt¼N0e
rt, where Nt is population size

at time t. With density-dependence, it is necessary to introduce a term that causes

the growth rate to decline with density. One such formulation is the logistic

equation, Nt¼K/(1þec�rt), where K is the carrying capacity and c is a constant.

In both models, the parameter r plays a prominent role. The estimation of r from

an age-structured population is done by solving the Euler equation

1 ¼
X�
i¼0

e�rilimi ð3:11Þ

where � is the last age, li is the probability of surviving to age i and mi is

the number of female births at age i. Equation (3.1) can be solved numerically

but estimating confidence limits is problematical. Meyer et al. (1986) proposed the

jackknife and tested its utility with simulation of two different hypothetical

populations (Table 3.5). In the first population, there was no mortality until

Table 3.5 The life histories of five females taken from the computer simulations of two hypothetical

cladoceran populations. Underlined values indicate that the individual died in the next time interval

Number of offspring produced

Hypothetical Population 1 Hypothetical Population 2

Age 1 2 3 4 5 1 2 3 4 5

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0

7 0 0 12 8 0 0 0 0 0 0

8 4 0 0 0 0 10 0 0 11

9 0 0 10 0 12 0 8 0

10 11 8 0 8 0 0 0 7

11 0 0 9 0 0 10 0 0

12 9 0 0 9 12 0

13 0 11 8 0 0 8

14 0 0 0 0 0

15 15 0 9 14 10

. . . . . .

28 0 0 0 10 0

Modified from Meyer et al. (1986).
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age 28 at which time all individuals died, whereas in the second there was a

relatively heavy mortality. Offspring (males and females are not distinguished as

the simulation was of a clonal species) were assigned to females according to the

following rules: (1) no reproduction before age 7; (2) a brood period of 2 or 3 days

(equal probability); and (3) a brood size that was normally distributed about

the mean brood size of 10 offspring and a coefficient of variation of 0.25.

Each population consisted of 100 animals from which 10 females were taken at

random and the rate of increase, r, calculated using Eq. (3.1). A jackknife estimate

was made by sequential deletion of individual females from the sample. For each

population, 1000 replicates were made. For the long-lived population, the true

population value was 0.374 as was also the mean of the jackknifed estimates.

The estimated 95% confidence limits included the true value in 94.4% of the

replicates. Similarly, excellent results were obtained for the short-lived popula-

tion, the true value of r being 0.313 compared to the mean jackknife estimate

of 0.311. The estimated 95% confidence limits included the true value

in 96.5% of the replicates.

Estimating ratios or products from two separate samples

In ecology, there are cases in which a statistic is the ratio or product

of two variables from different samples: for example, population growth

rate is the ratio of population size at two times. The jackknife can be used to

generate estimates and confidence intervals but the technique differs from

the usual implementation as there are two different samples. It is termed a

weighted jackknife estimator. Let the true ratio of the two random variables

from samples X and Y be �R and the estimate be �̂R, with nX and nY observations

in X and Y, respectively. The weighted jackknife proceeds by first creating

pseudovalues by deleting one observation from sample X,

SXi ¼ �̂R � ðnX þ nY Þ
nX

ðnX � 1Þð�̂�Xi � �̂RÞ ð3:12Þ

where ~��Xi is the estimate of �R obtained by deleting the ith observation from

sample X. Similarly, we create pseudovalues by single deletions from sample

Y: let the pseudovalue generated by deletion of the jth observation from Y be SYj.

We now have a total of nXþ nY pseudovalues (nX values of SX and nY values of SY),

which, for simplicity, I shall label as Si where i goes from 1 to N (¼ nXþ nY). The

jackknife estimate of �R is the mean of S, which is also algebraically equivalent to

~�R ¼ nY �̂R � ðnY � 1Þ
nY

XnY
j¼1

SYj ð3:13Þ
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The jackknife estimate of the standard error is

SEð ~�RÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NðN � 2Þ
XN
i¼1

Si

vuut ð3:14Þ

Note the 2 in the denominator, rather than 1 as given for the usual standard error

estimate (Eq. (3.3)). For further discussion on the estimation of ratios and

products using the jackknife, see Buonaccorsi and Liebhold (1988).

Estimating parameters of nonlinear models

In the previous chapter, the problem of estimating the parameter values

in a nonlinear model such as the von Bertalanffy equation was tackled using the

maximum likelihood approach. An alternative is the jackknife. To illustrate its

use in this situation, I shall consider the simplified von Bertalanffy equation

lt ¼ �1ð1� e��2tÞ ð3:15Þ

where lt is length at age t (I have simplified the equation by assuming that

the initial length can be set at zero). To generate suitable data, I simulated

a population consisting of five age groups (1, 2, 3, 4, and 5) and drew from this

population five individuals from each age group, the length of the ith individual

in age group t, lt,i, being generated by the expression lt,i¼ lt þ "t,i, where "t,i is

a random variable specific to this individual (see Appendix C.3.6 for coding).

I set the true values at �1¼ 100 and �2¼ 1 and used three error distributions, all

with zero mean: (1) a random normal with a mean of zero and standard deviation

of 10 (this is the one shown in Appendix C.3.6); this error distribution satisfies

the assumption for the maximum likelihood method; (2) a uniform distribution

from �5 to þ5 (in S-PLUS, Error 5- runif(n, min¼-5, max¼5); and (3) a random

normal in which the standard deviation increased proportionally with age

(in S-PLUS, Error 5- rnorm(n, 0, Age*2)).

The jackknife estimates were estimated as follows (Appendix C.3.7). First, the

parameters were estimated by minimizing the residual sums of squares (i.e., the

method of least squares), which is the same approach as taken for the maximum

likelihood method. Next, one individual was deleted and the parameters

estimated by least squares and thence the pseudovalue computed. This process

was repeated for all 25 individuals to produce the required 25 pseudovalues from

which the jackknifed estimates were made. The results shown in Appendix C.3.7

for the single simulated data set indicate that the jackknife estimates closely

match those from maximum likelihood.

For each error distribution, I generated 1000 replicates (Appendix C.3.8).

The mean values of the parameter estimates were very close to the true
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values, showing no evidence of significant bias (Table 3.6). However, whereas

the jackknife 95% confidence limits closely approximated the correct value

(i.e., enclosed the true value in 95% of cases), the maximum likelihood estimates

(MLE) performed relatively poorly for the proportionally increasing error (last

two columns in Table 3.6). The jackknife limits tended to be somewhat skewed

with the upper limit being higher than 2.5% and the lower limit lower than 2.5%:

this was true for the MLE with random normal error, not with uniform error,

and varied with the parameter being estimated with proportionally increasing

error (Table 3.6). Overall, the performance of the jackknife estimator was superior

to that of the maximum likelihood estimator. Of course, if one knew that

the variance increased in proportion to the age, one could include this in the

maximum likelihood procedure. The superiority of the jackknife is that it is

relatively robust to the underlying error distribution.

The next question to address is whether the jackknife is a suitable method

for comparing parameter values. To answer this question, I generated two

samples from the same distribution and compared the parameter values in two

ways: first, by pairwise comparison of the parameters (e.g., in the present case I

compared the two �1 values and the two �2 values) using either a t-test or ANOVA,

and second I compared all parameters simultaneously using MANOVA.

The latter test is important because the estimates are likely to be correlated,

as indeed is indicated by the maximum likelihood output in Appendix C.3.7.

Table 3.6 Results of parameter estimation by the jackknife (Jack.) and maximum likelihood estimate (MLE)

methods for 1000 replicate simulations of the von Bertalanffy growth function. See text for details of

simulation

Mean P5LCa P4UCb Coveragec

Parameter MLE Jack. MLE Jack. MLE Jack. MLE Jack.

Random normal error

�1 100.14 99.89 0.014 0.013 0.033 0.037 0.953 0.950

�2 1.011 0.998 0.006 0.004 0.037 0.044 0.957 0.952

Uniform error

�1 99.99 99.97 0.022 0.027 0.019 0.029 0.959 0.944

�2 1.002 1.001 0.023 0.027 0.031 0.037 0.946 0.936

Proportionally increasing error

�1 100.03 99.91 0.049 0.018 0.064 0.038 0.887 0.944

�2 1.003 1.001 0.005 0.014 0.013 0.023 0.982 0.963

aProportion of replicates in which the true value fell below the lower 95% confidence limit.
bProportion of replicates in which the true value fell above the upper 95% confidence limit.
cProportion of replicates in which the true value fell within the 95% confidence limits.
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The proportion of significant differences obtained from 1000 replicated pairs of

data sets was 0.041 for all three comparisons, which is not significantly different

from the expected 0.05 (�2¼ 1.71, df¼ 1, P¼0.1916). Using the proportionally

increasing error variance produced 4.5% significant differences, which is also not

significantly different from the expected 5%.

In conclusion, for nonlinear models the jackknife method appears to be

an excellent alternative to the maximum likelihood method and is superior

when the assumptions of MLE are not met. It cannot be assumed that the method

will be valid for all nonlinear models and such models should be subject to the

simulation analysis outlined above. The method is valid for the von Bertalanffy

function (this study) and has also been shown to work for the Michaelis--Menten

function (Oppenheimer et al. 1981; Matyska and Kovar 1985), suggesting that

it will be generally applicable.

Checking the jackknife by bootstrapping the data

In all the cases so far investigated, the efficacy of the jackknife was

examined by specifying the statistical model and producing simulated data. For

example, suppose we wish to simulate data to test the estimation of parameter

values in a function such as the von Bertalanffy growth curve. One way to proceed

is to generate a set of random ages between the minimum and maximum ages

(note that previously I used a fixed sampling scheme of five individuals for each of

five ages). Next, a set of error terms is created based on the normal distribution

with amean of zero, and these are added to the truemean value for each age using

the function (Appendix C.3.9). In some instances, it may be difficult to define

the model and an alternate method of simulating data is necessary. One method

that is very simple to implement is use of an observed data set as the true

population and then generate samples by drawing at random with replacement

from the population. The true value of the parameter(s) of interest is equal to the

value obtained from the original data set. Such sampling with replacement can

be done with a single call in S-PLUS (Appendix C.3.9). Mueller (1979) used this

bootstrap approach in his examination of the estimation of Nei’s genetic distance.

Of interest to evolutionary biologists is the question of the genetic difference

between populations. Genetic variation can be measured by allelic frequency

differences at a large number of loci but it would be desirable to compress these

data into a single statistic that measures how far apart, genetically speaking,

are the two populations. One such statistic is Nei’s genetic distance, D,

D ¼ �ln

Pn
i¼1

Pmi

j¼1 p1ijp2ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Pmi

j¼1 p
2
1ij

Pn
i¼1

Pm
j¼1 p

2
2ij

q
0
B@

1
CA ð3:16Þ
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where n is the number of loci, mi is the number of alleles at the ith locus and p1ij,

p2ij are the frequencies of the jth allele at ith locus in populations 1 and 2,

respectively. An estimate of D, D
_

, is made by substituting the observed allelic

frequencies (as D is the standard symbol I retain it here rather than using �).

No maximum likelihood estimator is available and the estimate is known to be

biased when the number of loci sampled is small. Mueller (1979) investigated the

utility of the delta and jackknife methods to estimate D and its SE. He solved

the problem of generating realistic distributions of allelic frequencies by using

an observed data set as the hypothetical population. From this set of data

he drew n loci at random with replacement to generate a sample from the

population. Because, the original data set is designated as the true population,

the value of D estimated from the observed data set using Eq. (3.6) is the true

value of the simulated population. Mueller selected three disparate data sets for

study (D¼ 0.0157, 0.499, and 1.08) and from each drew 5, 15, or 30 loci.

As expected, the delta method produced biased estimates (Table 3.7), with the

bias decreasing with the number of loci sampled (also as expected). The jackknife

bias was considerably smaller than that obtained with the delta method and

acceptably small when 15 or more loci were sampled (Table 3.7). The estimated

confidence intervals are virtually identical for the two estimation methods

and both are too small when the number of loci sampled was 5 or 15 and for

one population for all three sample sizes (D¼ 0.0157, Figure 3.3). These results

suggest that use of either the jackknife or delta method depends, in this instance,

upon the true distribution of allelic frequencies. The reduction in bias of the

jackknife gives this method the edge but one would be advised to use simulation

Table 3.7 Bias (%) in the Jackknife ~DJ

� �
and Delta ðD̂DÞ methods of estimating Nei’s

genetic distance. Simulations based on bootstrapping of three observed data sets

(see text for details)

True D Number of loci Bias in ~DJ Bias in D̂D

0.0157 5 0.0072 7.95

0.0157 15 0.122 2.2

0.0157 30 0.135 1.26

0.499 5 17.4 23.6

0.499 15 0.066 5.7

0.499 30 0.17 2.7

1.08 5 86.4 143.0

1.08 15 3.35 9.32

1.08 30 0.33 3.32

Examples of the use of the jackknife 61



to ensure the correct behavior of the estimator for a particular data set. The

bootstrap Monte Carlo method described here can readily be used to generate

the appropriate samples.

Summary

(1) The jackknife method proceeds by calculating the set of pseudovalues by

sequential deletion of an observation (which might be a set of data as

in the deletion of entire families in some genetical analyses) from the

data set as given in Eq. (3.2).

(2) The jackknife estimate is the mean of the pseudovalues.

(3) The standard error (SE) of the estimate is estimated by the standard error

of the pseudovalues.

(4) In some cases, a transformation of the estimate may improve the

performance of the jackknife estimator.

(5) Hypothesis testing proceeds on the assumption that the pseudovalues

are normally (or t) distributed.

(6) It cannot be assumed the jackknife will work in all circumstances and its

reliability should be checked by simulation.

(7) Simulation of the data can be accomplished either by use of the

specified statistical model or by bootstrapping the observed data set

(Appendix C.3.9).
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Figure 3.3 Proportion of cases in which true value of Nei’s genetic distance fell

within the estimated 95% confidence limits. Data from Mueller (1979).
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Exercises

(3.1) Generate 100 values from a normal distribution with mean

zero and unit variance (i.e., N(0,1)). Jackknife the variance, test for nor-

mality of the pseudovalues (using the Shapiro--Wilkes test or other suitable

test) and plot a histogram of the pseudovalues. (Hint: see Appendices C.3.1

and C.3.2.)

(3.2) Fit a linear regression to the data listed below using least squares

regression and the jackknife. Test the hypothesis that the slope and inter-

cept equal 0. Test the hypothesis that the slope equals 1 and the intercept

equals 0.

x 1.63 4.25 3.17 6.46 0.84 0.83 2.03 9.78 4.39 2.72 9.68 7.88 0.21 9.08 9.04 5.59 3.73 7.98 3.85 8.18

y 2.79 3.72 4.09 5.89 0.75 –0.13 1.76 8.44 5.15 2.16 9.88 6.95 0.03 7.50 9.92 5.37 3.79 7.18 3.37 7.81

(3.3) Using the above data calculate the jackknifed correlation coefficient

and test the hypothesis �¼0. Do the analysis using no transformation and

also using Fisher’s z,

z ¼ 1

2
ln

1þ r

1� r

� �

(3.4) Generate 1000 correlations using the following coding.

set.seed(1) # Set seed for random number generator

n 5- 1000 # Number of points

x5- runif(n,0,10) # Construct X values evenly spaced from 1 to 10

error 5- rnorm(n, mean=0, sd=1) # Generate error term

y 5- x + error # Construct Y values

xy 5- cbind(x,y) # Data set to be examined
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Calculate the pseudovalues for the untransformed correlation and for Fisher’s z

transformation. Examine the statistics, test for normality, and plot the data. Is

the transformation useful?

(3.5) The table below shows the number of eggs laid by 20 female

Drosophila of the indicated ages. Estimate the parameters of the function

Eggs ¼ �1ð1� e��2AgeÞe��3Age using both MLE and the jackknife.

Ind 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Age 1 3 2 4 1 1 2 5 3 2 5 4 1 5 5 3 2 4 2 5

Eggs 58 70 72 65 57 56 71 59 71 70 60 65 57 59 61 70 71 65 70 60

(3.6) Using the bootstrap method of simulating data, generate a

sample of 10 observations from the data given in question 3.3, calculate the

pseudovalues, test for normality and compare the results with the results from

question 3.3.

List of symbols used in Chapter 3

" Error term

� Parameter to be estimated

�̂ Estimate of �
~��i Estimate of � with the ith datum removed

~� Jackknife estimate (¼mean of pseudovalues)

� Standard deviation

C Resource utilization index

D Nei’s genetic distance

G Genetic variance--covariance matrix

K Carrying capacity

MLE Maximum likelihood estimate(s)

N Population size or Total number of observations

N(�,�) Normal distribution with mean � and standard deviation �

P Probability

Si ith pseudovalue

SE(.) Standard error of term in parentheses

X Data matrix

c Constant

li Survival to age i
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mi Number of female offspring at age i

n Number of observations or number of subgroups

p Allelic frequency or proportion of resources used

r Rate of increase of a population

t Age

x Observed value

�x Mean value of x
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4

The bootstrap

Introduction

In Chapter 3, I introduced the idea of using an observed distribution

as a descriptor of a hypothetical distribution in order to test the efficacy of a

statistical method. The bootstrap method takes a similar approach, in that it

attempts to generate point estimates and confidence limits by taking random

samples from the observed distribution. The underlying rationale behind the

method is that the observed distribution is itself an adequate descriptor of the

true distribution. The term bootstrap was given by Efron (1979) and derives from

the saying “to pull oneself up by one’s bootstraps,” which refers to accomplishing

something seemingly impossible by one’s own efforts (supposedly from the book

Adventures of Baron Munchausen by Rudolph Erich Raspe, though I have not been

able to find the incident in my copy).

Suppose that our observed data consisted of a huge number of observations:

in this case, it is clear that sampling from this distribution is equivalent to

sampling from the original distribution. Herein lies the rub -- if the sample is not

huge then the observed distribution might be a poor descriptor. This is

particularly true if the statistic to be estimated is very sensitive to outliers and

the underlying distribution is skewed. The hope by many that a sample as small

as 20 observations is an adequate representation of the underlying distribution is

probably folly in the extreme (I have seen bootstrapping on samples as small as

five, which is getting somewhat absurd). I cannot stress strongly enough that

the bootstrap technique should not be used without theoretical or empirical

verification that, in the particular circumstance proposed, it does actually work.

I shall follow the same route as in the previous chapter, presenting first an

overview of the methods and then a series of examples illustrating the strengths

and weaknesses of the approach, as well as its implementation.
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Point estimation

Standard estimate

The bootstrap is not really a method for point estimation, as this is

accomplished by the statistic that is itself to be bootstrapped and the

bootstrap does not remove bias, as can the jackknife. However, if it fails in this

regard, it is likely to fail in the more important issue of estimating confidence

limits.

The basic steps in the bootstrap are as follows: suppose we have a set of

n observations from which we estimate a parameter (or set of parameters) y, the

estimate being denoted as �̂. To generate a bootstrap sample we randomly sample

with replacement n observations from our original data set and calculate the

estimate of y, this bootstrap estimate being denoted ��1. We repeat this procedure

B times generating B bootstrap replicates (��1, �
�
2, �

�
3, . . . , �

�
B). From this set of

estimates we estimate the statistics of interest, generally the point estimate

and its confidence limits. There are several alternatives for both.

The simplest bootstrap point estimate is the mean of the bootstrap

replicates, y�,

�� ¼ 1

B

XB
i¼1

��i ð4:1Þ

Bias-adjusted bootstrap estimate

If �̂ is a biased estimate of y, then y� will itself be biased, because it

estimates �̂ rather than y. The bias of �̂ is defined as

�̂Bias ¼ �̂ � � ð4:2Þ

which can be estimated by

Est ð�̂BiasÞ ¼ �� � �̂ ð4:3Þ

Therefore, we can compute a bias-adjusted bootstrap estimate, ��A, as follows:

rearranging Eq. (4.2) gives � ¼ �̂ � �̂Bias and substituting the estimate of the bias

(Eq. (4.3)) gives

��A ¼ 2�̂ � �� ð4:4Þ

For other bias correction methods, see Efron and Tibshirani (1993) and Davison

and Hinkley (1999).
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Interval estimation

There are a number of ways to estimate confidence intervals, from

the very simple SE method to the relatively complex accelerated bias-corrected

percentile method. The different methods do not give the same interval,

particularly if the distribution is highly skewed. A priori it is difficult to decide

which might be the best method and one generally will have to resort to

simulation. The number of replications for any single estimate typically places

no strain on computer time, but verifying the behavior using simulation can

definitely require very large amounts of computer time. Coding to calculate these

different intervals is provided later in the examples section. To calculate a SE

requires less replicates than the other methods discussed in this section (50--200)

but in general 1000 replications are suggested (it is the default in the bootstrap

routine of S-PLUS).

Method 1: standard error approach

If we can assume that the bootstrap estimator is normally distributed (or

at least approximately so), we can estimate the 95% confidence interval as �2 SE

of the estimate (to be precise �1.96SE, Figure 4.1). If B is small then the t value

with B�1 degrees of freedom should be used instead of 1.96, but the bootstrap is

so likely to be unreliable for such small samples that this is hardly worth

Bootstrap values
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Figure 4.1 Standard error approach to estimate 95% bootstrap confidence interval.

The distribution is assumed to be normal and the SE computed directly from the

bootstrap distribution (bootstrap values are standardized to zero mean and unit

variance).
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considering. The SE of the estimate is estimated by the standard deviation

of the bootstrap replicates

SEð�̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B� 1

XB
i¼1

ð��i � ��Þ2
vuut ð4:5Þ

Method 2: first percentile method

The distribution of bootstrap replicates is a descriptor of the distribution

of the parameter(s) of interest. Therefore, rather than assuming normality, we

can use the distribution itself to assign lower and upper confidence intervals

(Figure 4.2). We rank the bootstrap replicates from lowest to highest; assuming

no ties, we find the lower limit by moving down the column until we locate the

Bootstrap values
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Figure 4.2 Percentile method of estimating 95% bootstrap confidence interval. The

interval is selected to include 2.5% on the left and 2.5% on the right sides of the

distribution (upper panel). To find these values the bootstrap values are ranked and

the cumulative frequency curve constructed as shown in the lower panel.
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bootstrap replicate value at which 2.5% of the replicates lie above the value.

To locate the upper limit, we move down until 97.5% of the values lie above

the bootstrap replicate value. If the distribution is symmetrical (e.g., normal,

uniform), then the limits will be symmetric about the bootstrap estimate,

otherwise they will be asymmetric.

Method 3: second percentile method

The first percentile method bootstraps the original data whereas in this

method the attempt is to bootstrap the error distribution, the rationale being

that any estimate is composed of the true value plus error (i.e., �̂ ¼ � þ ", where e

is distributed in some fashion). The bootstrap distribution of errors is found by

calculating the usual bootstrap replicate and then estimating the bootstrap

replicate error as

"�i ¼ ��i � �̂ ð4:6Þ

The upper and lower values for the errors are found in the same manner

as in the first percentile method and these are subtracted from the estimate

�̂ � "U < � < �̂ þ "L ð4:7Þ

where eU is the upper limit for the error and eL is the lower limit (the “odd”

arrangement in the above equation stems from the definition of the errors

given in Eq. (4.6)).

Method 4: bias-corrected percentile method

The foregoing methods suffer from the same problem as the standard

bootstrap estimator, namely that the initial sample is, to a greater or lesser

degree, a biased sample of the distribution, i.e., these methods assume that �� � �̂

and �̂ � � are distributed about zero. To correct for this bias, we assume that there

exists some transformation, say f ( ), that normalizes the two quantities about a

mean of z0s, where s is the standard deviation of the distribution,

f ð��Þ � f ð�̂Þ � Nðz0�, �Þ and f ð�̂Þ � f ð�Þ � Nðz0�, �Þ ð4:8Þ

What is useful about this assumption is that we do not have to actually estimate

the function, merely assume that it exists. We proceed using the following steps

(Figure 4.3):

(1) The value of z0 is the value of z, the abscissa of the standard normal

distribution, corresponding to the proportion of replicate bootstrap
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Bootstrap values

Figure 4.3 Bias-corrected percentile method of estimating 95% bootstrap confidence

interval. The upper panel shows the distribution of bootstrap values (dotted line) and

its cumulative distribution (solid line). The lower panel shows the standard normal

distribution and the values to be estimated from it. The cross-hatched area and the

solid area on the right tail is equal to the proportion of bootstrap replicates that are

greater than the observed values, pð��i > �̂Þ, and z0 is the value on the abscissa

corresponding to this proportion. The proportion corresponding to p(z52z0 � 1.96)

is labeled pð��L Þ. The lower 95% confidence limit for the bootstrap estimate, ��L , is

found by reading of the bootstrap value that corresponds to this proportion on

the cumulative frequency curve (upper panel). The upper 95% confidence limit,

��U , is found similarly.
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estimates (��i ) that exceed the observed estimate, �̂. For example, if this

proportion is 0.4013 then z0¼0.25.

(2) For the standard normal distribution, the upper and lower confidence

limits are �z�/2 to þ z�/2, where � is the type 1 error probability. Thus for

the 95% confidence limit þ z�/2¼1.96. For the transformed distribution,

we can write the confidence region as

�z�=2 < f ð�̂Þ � f ð�Þ þ z0 < z�=2 ð4:9Þ

Rearranging this gives the confidence region for f (y) as

f ð�̂Þ þ z0 � z�=2 < f ð�Þ < f ð�̂Þ þ z0 þ z�=2 ð4:10Þ

Now here comes the elegant part: what we want to do is to find the

bootstrap value that corresponds to the right and left sides of the

inequality signs, i.e., for the upper confidence value we wish to find

the value of y� for which the probability of observing f (y�) is less than

f ð�̂Þ þ z0 þ z�=2. Letting the upper confidence value for y� be ��U and the

probability be p ��U
� �

we have

pð��UÞ ¼ Prob f ð��UÞ < f ð�̂Þ þ z0 þ z�=2

n o

¼ Prob f ð��UÞ � f ð�̂Þ þ z0 < z0 þ z�=2 þ z0

n o

¼ Prob z < 2z0 þ z�=2

 �

ð4:11Þ

(3) The upper confidence bound for the bootstrap is the bootstrap value that

corresponds to this probability in the cumulative frequency distribution

of the bootstrap values (Figure 4.3).

(4) The lower confidence bound, ��L , is found in a similar manner using

pð��L Þ ¼ Prob z < 2z0 � z�=2

 � ð4:12Þ

Method 5: accelerated bias-corrected percentile method

The above method makes the assumption that the standard deviation of

f ð�̂Þ is a constant. However, standard deviations frequently increase with the

value of the parameter and hence it might be more reasonable to assume that

f ð�̂Þ is an increasing function of f (y). The accelerated bias-corrected percentile

method approaches this assumption by making the more limited assumption

that f ð�̂Þ is a linear function of f (y), namely, s ¼ 1 þ af (y). This addition leads
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to a more complex algorithm for computing the confidence bounds that involves

the jackknife. The procedure is as follows:

(1) Calculate z0 as in the bias-corrected percentile method.

(2) Estimate a by jackknifing the original data set and applying the equation

a ¼
Pn

i¼1 ð ~� � ~��iÞ3
6
Pn

i¼1 ð ~� � ~��iÞ2
� �1:5 ð4:13Þ

(3) Estimate pð��UÞ and pð��L Þ using the equations

pð��UÞ ¼ Prob z <
z0 þ z�=2

1� aðz0 � z�=2Þ þ z0

� �

pð��L Þ ¼ Prob z <
z0 � z�=2

1� aðz0 � z�=2Þ þ z0

� � ð4:14Þ

(4) Read off the relevant bootstrap values using the cumulative frequency

function of bootstrap values. This method is termed “BCa” in S-PLUS.

Method 6: percentile-t-method

The previous percentile methods may be sensitive to skewed distribu-

tions and the distribution of bootstrap values may not, in this case, correctly

mimic the true distribution. A proposed method to overcome this deficiency is

the percentile-t-method, which transforms the bootstrap values into what is

hoped to be a statistic that has t distribution. To use this method, it is necessary

to be able to calculate a SE for the parameter being estimated. Assuming this

to be true, the transformed bootstrap replicate, T�i is given by

T�i ¼ ��i � �̂

�̂��i
ð4:15Þ

where �̂��i is the estimated SE of ��i . If there exists no analytical method for

estimating this SE it can be estimated either by bootstrapping the bootstrap

replicate or by the jackknife. Clearly, there is considerable computational effort

required in this method! From the distribution of T�i values, we find the lower

and upper values that satisfy the required confidence limits; for example, for

the 95% confidence limits find the values of T�i that are 2.5 and 97.5% above

the lowest value. Letting these values be TL and TU, we estimate the confidence

interval of the parameter as

��L ¼ �̂ � TL�̂�̂

��U ¼ �̂ � TU �̂�̂
ð4:16Þ
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where �̂�̂ is an estimate of the SE of �̂. Because of the very large computational

effort required when the SE cannot be estimated except by bootstrapping the

bootstraps, Tibshirani (1988) developed an alternate procedure known as the

variance-stabilized bootstrap-t. Whereas the percentile-t-method may require

25000 bootstraps the variance-stabilized method can require as few as 3500

evaluations.

There are other methods of estimating confidence limits but, in general, the

only way to decide which method is appropriate is to carry out a simulation

analysis. Unfortunately, the performance of the different methods, as will be

shown by the examples discussed later, can vary dramatically.

Hypothesis testing

The bootstrap is not used much for hypothesis testing and some caution

should be exercised in determining the appropriate method. A simple test for

y¼ C is to see if C is contained within the estimated confidence limits. In general,

assuming normality, we would construct the t-statistic t ¼ j�̂ � Cj=��̂, where

��̂ is an estimate of the SE of �̂. One might be tempted to then use the statistic

t ¼ |y� � C|/SE (y�). However, this test does not take into account the variability

that is inherent in the fact that the bootstrap estimate is an estimate from an

estimate. A more reasonable approach is to compare the difference between the

bootstrapped value and the estimate against the scaled difference between

the estimate and the hypothesized value

t�i ¼ j��i � �̂j
�̂��i

vs: t ¼ j�̂ � Cj
�̂�̂

ð4:17Þ

For each bootstrap replicate, the statistic t�i is calculated and compared with t.

The probability under the null hypothesis (H0: y ¼ C) of obtaining the observed

value, P, is then estimated as

P ¼ nt�i >t

n
ð4:18Þ

where nt�
i
>t is the number of cases in which t�i > t. A simpler test is to compare

only the numerators,

d� ¼ j��i � �̂j vs: d ¼ j�̂ � Cj ð4:19Þ

A potential problem with d� is that it can be very sensitive to the variation in

the sample, with outliers playing a perhaps overly important role. Of course,

one can examine the distribution for potential problems.
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The bootstrap can be applied to test hypotheses on multiple popula-

tions but a better approach is a randomization test, as discussed in the next

chapter.

Examples of the use of the bootstrap

Bootstrapping the mean

Bootstrapping to obtain an estimate of the mean is useful both to

illustrate the implementation of the method and to highlight some of the

restrictions. Bootstrap procedures, like the jackknife, are becoming part of

standard statistical packages, although some packages are better than others

with respect to flexibility. The S-PLUS module is particularly good in this regard

as it stores the bootstrap replicates and hence permits the estimation of types

of estimates not given directly by the routine.

Appendix C.4.1 shows coding to generate 30 random normal values (N(0,1)),

produce 1000 bootstrap values and then output the statistics computed by the

routine “bootstrap.” The distribution of bootstrap replicate values is, unsurpris-

ingly, not significantly different from normal (Shapiro--Wilkes Normality Test,

W ¼ 0.9987, P ¼ 0.6771, Figure 4.4). The output includes the bootstrap estimate,

the SE, and percentiles estimated using Methods 2 (first percentile method,

termed the “Empirical Percentiles” in the output) and 5 (accelerated bias-

corrected percentile method, termed “BCa Confidence Limits” in the output).

Bootstrap replicate values
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Figure 4.4 Distribution of 1000 bootstrap replicate estimates of the mean from an

initial sample of 30 observations drawn from a normal distribution with mean zero

and unit variance. Normal distribution superimposed using observed mean and

variance.
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The limits using the SE (Method 1, �1.96 SE) are shifted downwards relative to

either other estimate (�0.4352 to 0.2939 vs. �0.4257 to 0.2971 and �0.4179 to

0.3105).

To test the efficacy of these different methods, I generated 500 data sets of

10 and 30 observations each and computed the confidence limits for these using

250 bootstrap replicates (this is less than the generally recommended 1000 for

the percentile methods but given the normality of the bootstrap in the present

case the lower number should be sufficient. See Appendix C.4.2 for coding). Using

either the uncorrected or bias-corrected estimate, a one-sample t-test showed no

overall bias in the estimates (P ¼ 0.371 and 0.399, respectively). For a sample size

of 30, the SE method gave the overall confidence limit closest to the desired 95%

(94.8%), but all three were acceptable (93.8 and 94% for the other two, Table 4.1).

There appears to be a tendency for the lower limit to be somewhat optimistic

(instead of excluding 2.5%, the three methods excluded 3.2, 4, and 3.8%).

A sample size of 30 is not an unreasonable size to mimic a symmetric

distribution such as the normal distribution but what happens if the size is

reduced? With a sample size of 10, the bootstrap performed very poorly, with

the t-tests indicating bias (P ¼ 0.046 and 0.042 for the uncorrected and bias-

corrected estimate, respectively) and the confidence limits being excessively

small (91, 90, and 88% for the three methods, Table 4.1). Increasing the number

of bootstrap replicates to 1000 decreased the bias (P ¼ 0.1417 and 0.1412 for

the uncorrected and bias-corrected estimate, respectively), but did not improve

the estimate of the confidence intervals (now 89, 88, and 89%). Similarly reduced

confidence limits have been found when estimating the mean from a log-normal

distribution, though a bimodal distribution tended to produce limits slightly

too large (Table 4.2).

Take-home message: “the bootstrap cannot compensate for poor sampling!”

Table 4.1 Summary of coverage for three methods of bootstrap estimation (Method 1 ¼ SE, Method 2 ¼ EP,

Method 5 ¼ BCa) of the mean and variance from a normal distribution with mean zero and unit variance

Lower limit Upper limit Overall coverage

Parameter Na SE EP BCa SE EP BCa SE EP BCa

Mean 10 0.046 0.050 0.044 0.044 0.050 0.048 0.910 0.900 0.808

30 0.032 0.040 0.038 0.020 0.022 0.022 0.948 0.938 0.940

Varianceb 10 0.002 0.002 0.034 0.234 0.232 0.164 0.764 0.766 0.802

30 0.006 0.018 0.068 0.094 0.088 0.048 0.900 0.894 0.884

aSample size.
b1000 bootstrap replicates, otherwise 250.
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Bootstrapping the variance

Whereas the mean is normally distributed, the distribution of variance

estimates is skewed, as can be illustrated by bootstrapping the variance estimate

in the previous example. As expected, the distribution of replicates is more

skewed than for the mean, and is significantly different from normal (W ¼
0.9827, P50.001), though the deviation is actually not particularly pronounced

(Figure 4.5). The observed estimate is 1.031 and the standard bootstrap estimate

is 0.9851. The three estimated confidence limits are quite disparate: 0.452--1.518

(SE method), 0.520--1.571 (empirical percentile method), and 0.644--1.889

Table 4.2 Overall coverage for various methods of bootstrap estimation of 95% confidence limits for

several different statistical models. From Mooney and Duval (1993)

Method Mean of a log-normal Mean of a bimodal OLS regressiona

Parametricb 0.920 0.970 0.937

Standard error (1) 0.809 0.957 0.924

First percentile (2) 0.916 0.961 0.928

Bias-corrected (4) 0.916 0.959 0.923

Percentile-t (6) 0.941 0.969 0.949

aOrdinary least squares regression with skewed error term.
bConfidence limits set as mean �t0.025SE, where SE is the parametric SE and t0.025 ¼ 2.064

(24 df). In all cases the sample size was 25.

Figure 4.5 Distribution of 1000 bootstrap replicate estimates of the variance from

an initial sample of 30 observations drawn from a normal distribution with mean

zero and unit variance. Normal distribution superimposed using observed mean

and variance.
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(BCa method). The results from the analysis of 500 replications using 1000

bootstraps to estimate confidence limits for each simulated data set indicates

that the confidence limits are too small (Table 4.1), but there is little difference

among the three methods. The problem of excessively small confidence limits is

considerably exacerbated when the sample size is reduced to 10 (Table 4.1) and

the method is quite unacceptable. This should come as no surprise really,

as a sample size of 10 simply has very little information about the variance. The

message to be reiterated throughout this chapter is that the bootstrap can only

deal with the information contained in the sample and if the sample is small

then in all likelihood the bootstrap will perform poorly. How “small” is “small”

can, in general, only be decided by a simulation analysis. It is essential to test

the efficacy of the bootstrap before using it!

More on sample size and confidence intervals: the Gini coefficient

In ecological research, much interest has been focused on size

hierarchies. An index used to assess size inequality is the Gini coefficient of

inequality defined as

� ¼
Pn

i¼1 ð2i� n� 1Þxi
n2�

ð4:20Þ

where xi is the size of the ith individual after all individuals have been ranked

by size (smallest to largest) and � is the population mean. An unbiased estimate

of this coefficient is (Damgaard and Weiner 2000)

�̂ ¼
Pn

i¼1 ð2i� n� 1Þxi
n2 �x

� �
n

n� 1

� �
ð4:21Þ

Obviously, the distribution of the data can vary enormously, and hence a

general method of estimating the confidence limits is highly desirable. Dixon

et al. (1987) tested the bootstrap approach using three simulated distributions:

uniform, log-normal, and truncated normal (Appendix C.4.3 gives sample

coding for a uniform distribution. Note that there is a typographical error

in the equation given by Dixon et al.). For these distributions, it is possible to

find analytical expressions for the expected value of the Gini coefficient (see

note in Table 4.3) and hence evaluate the estimated confidence limits.

Confidence limits were estimated using a variety of percentile methods and,

as all gave more or less the same results, Dixon et al. present only the results

for the empirical percentile method (Method 2). The results mirror

those already observed for the mean and the variance, namely that the

78 The bootstrap



confidence limits are too small unless the sample size is large, in this case 250

(Table 4.3).

Yet more on sample size and the bootstrap: not all bootstraps are created equal

We have already found that not all bootstraps behave optimally and that

sample size is a critical element (Tables 4.2 and 4.3). This pattern is particularly

well illustrated by the analysis of Cordell and Carpenter (2000) on the estimation

of a risk parameter. The mapping of loci associated with susceptibility to disease

for which the actual mode of inheritance is unknown is commonly done using

affected-sib-pair linkage methods. Three parameters are typically estimated by

these methods: the probabilities that an affected-sib-pair share 0, 1, or 2 alleles

identical by descent (which means that they were derived from the same

mutational event) at a disease locus. Two methods of determining confidence

limits based on asymptotic theory have been proposed, termed the profile

likelihood method and the multivariate normal approximation. While such

methods are valid for “large” samples (and what is meant by “large” is not clear)

they may fail on “small” samples. Using simulation modeling, Cordell and

Carpenter tested the efficacy of these two methods and compared them to nine

possible bootstrap methods (Table 4.4). A total of 1000 simulations were run from

which we expect 50 “significant” results by chance for any given method.

Rearrangement of the goodness of fit formula for �2 gives the acceptable range

Table 4.3 Overall coverage using the percentile bootstrap method for the Gini coefficient from simulated

populations [Adapted from Dixon et al. (1987)]

Sample size

Distribution of data Gini coefficient 20 100 250

Uniform (1,19)a 0.30 0.918 0.954 0.943

Log-normal (0,0.54)b 0.30 0.851 0.925 0.952

Truncated normal (0,1)c 0.41 0.925 0.927 0.939

Log-normal (0,1)b 0.52 0.782 0.879 ——

a(a,b) ¼ minimum value, maximum value.
bGenerate y from a normal distribution, N(�,s) and transform x¼exp(y).
cGenerate a random normal deviate, N(�,s) and accept if value greater than zero.

Analytical Population Gini coefficients:
aUniform: (b�a)/[3(bþa)].
bLog-normal: 2�(s/

p
2)�1, where �(x) is the cumulative normal.

cTruncated-normal: 4�(0)þp
2�3¼p

2�1.
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in coverage to be 0:95� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðð3:84Þð0:95Þð0:05Þ=1000Þp ¼ 93.7--96.4%. At a sample

size of 50, none of the methods give acceptable coverage, either being too small

or too large (Table 4.4). The profile likelihood method and one bootstrap method

are acceptable given a sample size of 100. Six bootstrap methods are acceptable

when the sample size is increased to 200 and 500, though not the same six

for the two sample sizes. No method is consistently acceptable but there is a

tendency for the more complex bootstrap methods to perform better than the

simpler ones. Without prior simulation, the poor performance of the methods

at the lower sample sizes would not be known. To use such methods without

verification runs the very real risk of using a method that in the particular

circumstance produces wildly optimistic confidence limits (e.g., results for the

first three bootstrap methods at a sample size of 50).

The bootstrap can produce confidence limits that are too large: an example

from niche overlap

In the previous chapter, we considered four measures of niche overlap

and the ability of the jackknife to estimate the parameters and their confidence

Table 4.4 Percentage coverage for nine different bootstrap methods of estimating the probability that an

affected-sib-pair share no alleles identical by descent. The results for the other two parameters (probability of

one or two alleles shared) are qualitatively similar

Sample size

Method 50 100 200 500 Referencea

Non-studentized pivotal (1)b 70.8 74.9 88.4 94.4 Efron (1981)

Bootstrap-t (6) 79.8 85.1 95.4 96.3 Efron (1981)

Variance stabilized bootstrap-t 70.8 85.1 95.2 95.7 Tibshirani (1988)

Percentile (2) 99.2 90.8 92.6 94.9 Efron and Tibshirani (1993)

Bias-corrected percentile (4) 78.5 90.4 92.8 94.5 Efron (1982)

Bias-corrected and accelerated (5) 76.7 93.1 94.3 94.9 Efron (1987)

Test-inversion bootstrap 97.4 96.5 95.9 96.5 Carpenter (1999)

Studentized test-inversion bootstrap 97.2 96.0 95.5 96.7 Carpenter (1999)

Bootstrap profile likelihood 97.8 93.6 95.6 95.6 Carpenter (1998)

Profile likelihood 98.2 95.5 92.1 95.7 Cordell and Olson (1997)

Multivariate normal approximation 99.5 90.7 92.8 94.6 Cordell and Olson (1997)

Taken from Cordell and Carpenter (2000). Bold font indicates values not significantly different

from the expected 0.95.
aPaper describing the method.
bNumbers in parentheses give the number for the methods described in this chapter.
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intervals. Mueller and Altenberg (1985), the authors of this study, also examined

the utility of the bootstrap in a single case, that in which there are two resources,

two species and two types of individuals within each species. Type I individuals

of species 1 select the first resource with probability 0.80, whereas type II

individuals of species 1 select this resource with probability 0.15. The pro-

babilities for species 2 are reversed, so type I individuals select the resource with

probability 0.15 and type II with probability 0.80. The proportion of type II

individuals in the population is PII. Because the possibility of two types of

individuals in the population is not incorporated in the niche overlap indexes,

Mueller and Altenberg termed PII a contamination.

The four niche overlap measures, considered were

(1) Coefficient of community (C1): C1 ¼
P2

i¼1 minðpi, qiÞ
(2) Morisita’s index (C2): C2 ¼ 2

P2
i¼1 piqi=

P2
i¼1 p

2
i

P2
i¼1 q

2
i

� �
(3) Horn’s index (C3): C3 ¼

P2
i¼1 ðpi þ qiÞ logðpi þ qiÞ �

P2
i¼1 pi log pi�

�
P2

i¼1 qi log qiÞ=2 log 2
(4) Euclidean distance (C4): C4 ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2
i¼1 ðpi � qiÞ2=2

q
.

The data were generated as follows: the first 10 individuals of each species

were sampled, the probability of a type II individual sampled being PII. A simple

way to do this is to generate a uniform random number between 0 and 1; if this

number is less than PII the individual is designated as type II. The individual

was then assigned 20 resource items dependent upon the resource utilization

probabilities. Suppose, for example, a type I individual of species 1 was first

selected; 20 random numbers are generated and the number of cases in which

the random number is less than 0.80 totaled. This number represents the

number of resource 1 items selected by this individual. The frequencies of

resource 1 for the ith individuals of the two species can be written as two

vectors xi,1, xi,2, xi,3, . . . , xi,10 and yi,1, yi,2, yi,3, . . . ,yi,10, where x denotes species 1

and y denotes species 2. The original sample consists of two matrices with the

rows representing individuals and the columns the resource items. A bootstrap

replicate was formed by selecting 10 individuals (rows) with replacement

from the two species matrices. For each individual, a sample of 20 resource

items were chosen using the observed probability (e.g., for the ith individual of

species 1 it would be xi). A total of 1000 bootstrap replicates were so generated.

The bias-adjusted bootstrap estimate was calculated and 95% confidence

intervals calculated using the bias-corrected percentile method. To determine

the actual confidence limits 1000 runs were made for three values of PII.

The results of this simulation analysis are summarized in Table 4.5: in all

cases the amount of bias was very small, even though in some cases it was
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statistically significant. In the absence of any contamination (PII¼0), the

jackknife gave correct confidence limits whereas the bootstrap produced

confidence limits that were too large, enclosing approximately 99% rather than

95%. On the other hand, when there was contamination by a second type in the

population, the jackknife consistently underestimated the confidence region

but the bootstrap gave valid limits! The problem is how in a real circumstance

does one determine the presence of contamination.

Bootstrapping when the unit is not the individual observation

In all the examples so far the data set has consisted of a single vector.

In some cases, one might wish to bootstrap a data set in which the units to be

bootstrapped themselves contain individual observations. An example is the

estimation of quantitative genetic parameters. Recall that for the full sib design

(e.g., N families with n individuals per family), the appropriate resampling unit is

the family. The easiest method to do this is to use the blocking design described

in Appendix C.3.6, replacing the “jackknife” routine with “bootstrap (Data,

H2.estimator, B¼1000, trace¼F).” This example can also serve to illustrate the

extreme caution one should use in adopting the bootstrap method. I generated

bootstrap estimates for a small sample consisting of 16 families with four

individuals per family, given a true heritability of 0.8 (see Appendix C.3.5 for

coding to generate such data). To assess the accuracy of the bootstrap estimate

and its estimated SE, I ran the simulation 100 times using 100 bootstraps per

run to estimate the bootstrap estimate and SE (a suitable number for the SE

Table 4.5 The percent bias, and overall coverage for the jackknife ( ~CI) and bootstrap (C�
I ) estimators of four

indexes of niche overlap. As the results for the coefficient of community were identical to the Euclidean

distance, only the former is shown. Adapted from Mueller and Altenberg (1985)

% bias % bias % bias

Estimator PII¼0 Coverage PII¼0.10 Coverage PII¼0.25 Coverage

~C1 0.1 0.955 0.1 0.727 0.0a 0.656

C�1 0.4 0.989 0.3 0.954 0.4 0.951

~C2 0.1 0.956 0.0a 0.722 0.7* 0.644

C�2 0.5 0.985 0.2 0.949 0.3 0.954

~C3 0.0a 0.952 0.6* 0.728 0.7* 0.659

C�3 0.1 0.985 0.0a 0.950 0.1 0.955

*Bias significant.
a0.0 ¼ 50.05.
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estimate but low if using the percentile methods). Both an estimate of herit-

ability and its SE can be made using least squares methods (or restrictive

maximum likelihood, which are identical given the balanced design used in the

simulation) and these perform well, the mean estimate not being significantly

biased (one-sample t-test, t ¼ 0.7585, df ¼ 99, P ¼ 0.4499, Table 4.6). On the other

hand, the bootstraps performed very poorly. Both the standard and the bias-

adjusted estimates are significantly biased (one-sample t-tests, t¼ 3.1433, df¼ 99,

P ¼ 0.0022 for the standard bootstrap estimate; t ¼ 3.8338, df ¼ 99, P ¼ 0.0002),

with the standard being biased upwards and the bias-adjusted being biased

downwards (Table 4.6. This is also indicated by the confidence limits on the

100 mean estimates)! Further, the estimated SE of the standard bootstrap

are biased downwards, as has been observed in the previous examples for the

bootstrap with small sample size. The bias in the bootstrap estimates leads to

the estimated 95% intervals being smaller (85 and 82%).

The results for the jackknife are shown for comparison: in this case there

is no bias in the estimate but the SE estimates tend to be underestimated

(Table 4.6). The underestimate by the jackknife appear to be somewhat less

severe than for the bootstrap, an observation frequently made when the two are

compared: e.g., estimation of species number using presence and absence data

(Mingoti and Meeden 1992) and species richness measures (reviewed in Hellman

and Fowler 1999). For the estimation of population growth rate, discussed in

the previous chapter, both the jackknife and bootstrap performed about equally

well (Meyer et al. 1986).

Table 4.6 Comparison of heritability estimates using the standard (maximum likelihood) formula ( ĥ
2
),

the jackknife (~h
2
) the standard bootstrap (h2�) and the bias-adjusted bootstrap (h2�

A ). See text for details

of simulation

Statistica ĥ2 ~h2 h2� h2�A

mean 0.779 0.780 0.877 0.680

SEb 0.278 0.262 0.246 0.312

EstðSEÞc 0.267 0.285 0.213 0.213

LCLd 0.723 0.728 0.823 0.618

UCLe 0.834 0.832 0.926 0.742

Coverage 0.93 0.87 0.85 0.82

aBased on 100 runs of the simulation.
bStandard deviation of the 100 estimates.
cMean of the 100 estimated SE using either the standard formula or bootstrap.
dLower 95% confidence limit.
eUpper 95% confidence limit.
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Bootstrapping to estimate several parameters: linear regression

Thus far we have considered only single estimates, but in many cases

we would wish to determine several parameters simultaneously. A simple

example is linear regression, in which we wish to estimate both the intercept (y1)

and the slope (y2). First, we shall investigate the situation in which the

assumption of normal distribution of errors applies, i.e., y ¼ y1 þ y2x þ e, where

e is a normal distribution with mean zero and standard deviation s. Second, we

shall examine the situation in which the error distribution has a mean of zero

but is highly skewed. A convenient distribution to use is the gamma distribution,

which has two parameters, called shape and rate (an alternate parameter is

called “scale,” and is simply the inverse of rate). “Shape” is a parameter that

governs the skew (skewness¼2/
p
shape), while “rate” is proportional to the

inverse of the mean, which is equal to shape/rate. By varying the shape

parameter, we can generate distributions that range from almost normal to very

highly skewed (Figure 4.6). The one used in the present example was moderately

skewed with shape equal to 2 (Appendix C.4.4, Figure 4.7).

The simulation was run with a sample size of 300 (Figure 4.7) and a sample size

of 30 (Table 4.7). For the larger sample size, the least squares and jackknife

estimates and SE are essentially identical. The bootstrap gives an intercept

estimate (y1) that is twice as large in magnitude as obtained with the other two

methods, but the true value of zero is still contained within the confidence

limits. Overall, regardless of the error distribution there is no reason to use

anything other than the least squares estimate, which is obviously considerably

easier to calculate. The situation changes little when the sample size is drastically
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Figure 4.6 Three gamma distributions showing the effect of changing the shape

parameter (rate parameter¼2).
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reduced to 30, though the SE of the jackknife and bootstrap estimates are larger

than those obtained with least squares. To see if the least squares confidence

intervals are adequate, I made 1000 runs for both normal- and gamma-

distributed errors (see Appendix C.4.5 for coding. Note that I have used the

“by” routine rather than a loop. Thus, I first generate the entire data set (30000

points) and then analyze by subsets of 30. This is more efficient than looping).

For the normally distributed errors, the estimated 95% confidence limits

enclosed the true values of the intercept (y1) and slope (y2) with probabilities

0.953 and 0.94, which is perfectly satisfactory. For the gamma distributed errors,

the corresponding probabilities are 0.949 and 0.95, which is also perfectly

satisfactory. Even with the extremely skewed gamma distribution shown in

Figure 4.6 (shape¼0.5), the probabilities are still 0.94 and 0.962!

Mooney and Duval (1993) carried out a similar analysis using a gamma

distribution with a shape parameter of 3 and a sample size of 25 (Table 4.2,

column labeled “OLS regression”). Instead of bootstrapping the values x and y,

Table 4.7 Least squares (LS), jackknife ( Jack.) and bootstrap (Boot.) estimates of linear regression coefficients

(Equation, y¼y1þy2xþe). The true regression coefficients were y1¼0, y2¼0.2 and the error distribution

(e) was either normal with mean 0 and s ¼ 0.5, or a gamma distribution with shape and rate parameters

equal to 2

y1 y2

Method Estimate SE Estimate SE

Normal, Sample size ¼ 300

LS –0.0093 0.0665 0.1990 0.0107

Jack. –0.0093 0.0668 0.1990 0.0106

Boot. –0.0180 0.0662 0.1990 0.0101

Gamma, Sample size ¼ 300

LS –0.0535 0.0809 0.2095 0.0130

Jack. –0.0535 0.0814 0.2095 0.0130

Boot. –0.0538 0.0801 0.2095 0.0121

Normal, Sample size ¼ 30

LS –0.0637 0.2037 0.2054 0.0328

Jack. –0.0640 0.2216 0.2054 0.0338

Boot. –0.0587 0.1935 0.2017 0.0317

Gamma, Sample size ¼ 30

LS –0.0945 0.2462 0.1973 0.0397

Jack. –0.0945 0.2670 0.1973 0.0413

Boot. –0.0813 0.2548 0.1946 0.0445
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they use the bootstrapped residuals in the following manner. First, the least

squares regression was fitted to the data, giving

ŷi ¼ �̂1 þ �̂2xi ð4:22Þ

where ŷi is the predicted value of yi. Second, the residuals were calculated as

"̂i ¼ yi � ŷi ð4:23Þ

and the residuals calculated. Second, 25 bootstrap residuals were drawn from the

set of observed residuals. These bootstrap residuals were added to the vector

of estimated values of y

y�i ¼ ŷi þ "̂�i ð4:24Þ

where "̂�i is the ith bootstrap residual. Finally, the bootstrap estimates of the

intercept and slope were obtained by regressing y� on the x. Unfortunately,

Mooney and Duval do not give the number of simulated runs made, nor whether

the estimated coverages differ from the required 0.95. The results for least

squares method (labeled “parametric” in Table 4.2) at 0.937 are very close to 0.95,

but the first three bootstrap methods appear to underestimate the confidence

region. The percentile-t method clearly gives appropriate coverage (0.949). The

excellent coverage obtained using linear regression suggests that in only few

cases of linear regression estimation will the bootstrap approach merit the effort

required, particularly as one cannot be assured that the percentile-t method

will generally work.

In summary, these results illustrate the considerable robustness of least

squares regression to departures from normality. The use of either the jackknife

or bootstrap approaches is not warranted in most cases of linear regression.

Bootstrapping to estimate several parameters: nonlinear regression

In the previous chapter, we explored the use of maximum likelihood

and the jackknife to estimate parameter values and their associated SE of the

two-parameter von Bertalanffy equation

lt ¼ �1ð1� e��2tÞ ð4:25Þ

where lt is the length at age t. As before, to generate suitable data, I simulated

a population consisting of five age groups (1, 2, 3, 4, and 5) and drew from

this population five individuals from each age group, the length of the ith

individual in age group t, lt,i, being generated by the expression lt,i¼ ltþet,i, where

Examples of the use of the bootstrap 87



et,i is a random variable specific to this individual (see Appendix C.3.6 for coding).

I set the true values at y1¼100 and y2¼1 and used three error distributions, all

with zero mean: (1) A random normal with mean zero and standard deviation

of 10 (this is the one shown in Box 3.7). This error distribution satisfies the

assumption for the maximum likelihood method. (2) A uniform distribution

from �5 to þ5 (in S-PLUS, Error <- runif(n, min=-5, max= 5), and (3) a random

normal in which the standard deviation increased proportionally with age (in

S-PLUS, Error <- rnorm(n, 0, Age*2)). The analysis showed that the MLE approach

and jackknife were equivalent for the first two error distributions but that

the jackknife performed better for the third type of error distribution. How

well does the bootstrap perform?

The first issue to be decided is how to generate bootstrap values. One method

is to select at random from the 25 individuals. However, this will result in a data

set that is unbalanced relative to the original, because the bootstrapped data

set will not generally contain five observations per age group (this is also an issue

in the linear regression analysis discussed in the last section). An alternate

approach in this circumstance is to bootstrap the residuals. For the present

analysis, I have used the standard bootstrap, because it is very much easier

to implement and there is no indication that bootstrapping the residuals is

superior. Coding to bootstrap the von Bertalanffy function is given in Appendix

C.4.6, and in Appendix C.4.7, I show one method of generating multiple

samples to determine the actual coverage. One feature worth bringing the

reader’s attention to is the use of the “write” function. I found that the fitting

routine (nls) would, on some interactions, fail to converge, which led to the

program halting without saving any of the data. To avoid this, I had the program

write the data directly to a text file at each cycle. This both saves the data as it is

computed and reduces the memory demands of S-PLUS. Use of the option

“append¼T” means that multiple runs can be made without having to do any

housekeeping on the file.

With a normal error distribution, the confidence limits on the two parameters

using the SE approach (Method 1) were 0.96 and 0.94 (504 simulations), which is

adequate. However, both the MLE and jackknife approaches also performed

adequately for this type of error distribution and hence there would be little

reason to use the computationally more intensive bootstrap. The situation that is

more interesting is that in which the error variance increased with age, in which

case the MLE approach didn’t perform satisfactorily but the jackknife produced

confidence limits reasonably close to 0.95 (0.944 and 0.963 for the first

and second estimates, respectively); neither is significantly different from the

required 0.95 (�2¼0.7579, df¼1, P¼0.3840; �2¼3.5579, df¼1, P¼0.0593). On the

other hand, the bootstrap on the first parameter gave a coverage of 0.9321
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(781 simulations), which is significantly different from the required 0.95

(�2¼5.2457, df¼1, P¼0.0220), while the bootstrap on the second parameter

gave a coverage of 0.9398, which is not significantly different from the required

0.95 (�2¼1.7037, df¼1, P¼0.1918). It is possible that use of one of the percentile

methods would produce a better fit to requirement. The fit is certainly very

close and much better than the MLE method (which were 0.887 and 0.982,

respectively, see Table 3.6). However, given the relative ease with which the

jackknife can be fitted, there seems little reason to use the bootstrap, except as a

check for consistency.

The bootstrap as a hypothesis testing method

Consider the problem of comparing the mean from two populations,

presumed to differ only in this parameter. Suppose the observations x1, x2, x3, . . . ,

xi, . . . ,xn are distributed with probability P(y), where y is the mean of the

distribution. The usual approach to this problem is to find a transformation that

normalizes the distribution and then compare the means of the transformed

variables or to compare the untransformed distributions using a non-parametric

test such as the Mann--Whitney test. However, neither of these methods actually

tests for a difference between the means. To illustrate, assume that the

underlying distribution is log-normal, and that we have two samples, labeled

x and y: in this case

log xi � Nð�x, �
2Þ, log yi � Nð�2, �

2Þ ð4:26Þ

The hypothesis that we wish to test is

H0: �x ¼ �y ð4:27Þ

But if we use a log transformation, which normalizes our data, the actual

hypothesis under test is

HL
0 : �x ¼ �y ð4:28Þ

Now y is related to � according to

� ¼ e�þ
1
2�

2 ð4:29Þ

Thus, a test of differences between �x and �y is not directly a test for

differences between yx and yy. If the variances are the same (i.e., �2
x ¼ �2

y ), then the

tests are equivalent, but if they differ then it is possible to reject H0 even if we

cannot reject HL
0. We can, of course, test for a difference between the variances,

but it would be better to have a test that does not rely upon this intermediate
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step and, in any case, even if the variances are different, we would still wish to

test for differences between means. Two such tests were proposed by Zhou et al.

(1997), one being based on a likelihood approach and the other on the bootstrap.

The likelihood test was termed the Z-score method and can be developed from the

following considerations:

As discussed in Chapter 2, the ML estimators for �x and �y are, respectively

�̂x ¼ 1

nx

Xnx
i¼1

log xi and �̂y ¼ 1

ny

Xny
i¼1

log yi ð4:30Þ

and the unbiased estimates of �2
x and �2

y are, respectively

�̂2
x ¼ S2x ¼

1

nx � 1

Xnx
i¼1

ðlog xi � �̂2
xÞ2 and �̂2

y ¼ S2y ¼
1

ny � 1

Xny
i¼1

ðlog yi � �̂2
y Þ2

ð4:31Þ
The null hypothesis that we wish to test is H0: yx¼yy, and this is equivalent to

testing H0: log yx¼log yy, or in terms of the log-normal distribution,

H0: �x þ 1

2
�2
x ¼ �y þ 1

2
�2
y ð4:32Þ

Zhou et al. (1997) proposed the Z-score statistic

Z ¼
�̂y þ 1

2 S
2
y

� �
� �̂x þ 1

2 S
2
x

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x
nx

þ 1

2

S4x
nx � 1

	 
� �
þ S2y

ny
þ 1

2

S4y
ny � 1

	 
� �s ð4:33Þ

Provided nx and ny are sufficiently large, under the null hypothesis, H0: yx¼yy,

Z will be normally distributed with a mean of zero and unit standard deviation,

i.e., N(0,1).

The proposed bootstrap test is the t statistic method (Eq. (4.17)). We proceed

by the following steps

(1) Estimate the observed t statistic by

tobs ¼
�̂x � �̂y

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x
nx

þ S2y
ny

s ð4:34Þ

(2) Estimate the grand mean, �̂G,

�̂G ¼ 1

nx þ ny

Xnx
i¼1

xi þ
Xny
i¼1

yi

 !
ð4:35Þ
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(3) Transform the two samples so that they have a common mean

Xi ¼ xi � �̂x þ �̂G, Yi ¼ yi � �̂y þ �̂G ð4:36Þ

(4) Sample with replacement nx values of Xi and ny values of Yi.

(5) Compute the two bootstrap means X�
1, Y

�
1 and form the bootstrap t

t�1 ¼ X�
1 � Y�

2

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S�21,X
nX

þ S�21, Y
nY

s ð4:37Þ

where S�21;X, S
�2
1;Y are the estimated variances for the two bootstrap

samples.

(6) Repeat steps 4 and 5 B times to obtain t�1, t
�
2, t

�
3, . . . , t

�
B

(7) The estimated probability, Pest, under the null hypothesis of obtaining

a value of t�i greater than tobs is

Pest ¼ number of times t�i > tobs
B

ð4:38Þ

To test the two methods Zhou et al. (1997) ran simulations with five different

scenarios in which the data were drawn from two log-normal distributions with

different means and variances on the transformed scale, but which had the

same means on the original scale: for example in scenario 1, �x ¼ 1:1, �2
x ¼ 0:4

and �y ¼ 1:2, �2
y ¼ 0:2, giving means on the untransformed scale of 1.1þ0.4/2¼

1.3 and 1.2þ0.2/2¼1.3. For each parameter combination, they used five sampling

levels (25, 50, 100, 200, and 400). In addition to the bootstrap and Z-score methods

Zhou et al. (1997) also tested for a difference using the standard t-test on the

untransformed data (this test can be justified on the grounds of the central limit

theorem from which it can be inferred that even though x and y may not be

normally distributed their means (yx and yy) will be at least closer to normal).

Given that the means of the two distributions were the same, an appropriate

statistical test will declare a significant difference with a probability of

0.05 (Type 1 error rate). All three tests typically declare too many significant

differences (Figure 4.8). For the t-test and the bootstrap, there is a strong corre-

lation between � and the parameter combination (r2¼0.83 and 0.79, respectively)

but not between � and sample size (r2¼0.05 and 0.02, respectively). The

Z-score method is weakly correlated with both the parameter combination

and the sample size (r2¼0.21 in both cases). Most importantly, the Z-score method

is consistently the best method and the estimated � never deviates much from

0.05 (Figure 4.8). On the other hand, both the t-test and the bootstrap can deviate
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Type 1 error using bootstrap

Type 1 error using bootstrap
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Figure 4.8 The estimates of type 1 error rate (based on 10000 simulations) of the

bootstrap and Z-score (top panel); bootstrap and t-test (bottom panel) methods

when testing two log-normal distributions with the same mean. Five parameter

configurations were used (see Table below) and five sample sizes for each design

(25, 50, 100, 200, and 400). There was little effect of sample size (see text) and these

are not distinguished in the plot.

Design Symbol �x �2
x �y �2

y

1 	 1.1 0.4 1.2 0.2

2 & 1.05 0.5 1.2 0.2

3 ~ 1.0 0.6 1.2 0.2

4 ! 2.5 1.5 3 0.5

5 ^ 1.2 0.4 1.2 0.4
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far too much to be acceptable. Interestingly, the bootstrap performs worse than

the t-test!

If the data were not log-normally distributed, the performance of the Z-score

method would decline, whereas that of the t-test or bootstrap might not, at least

to the same degree. Whether the bootstrap would ever exceed the performance of

the t-test remains to be demonstrated. The important point is that one should not

presume the performance of the bootstrap but perform the necessary simula-

tions to examine its behavior.

Bootstrapping phylogenies: the problem of deciding what a bootstrap

actually measures

In complex measures, the definition of just what a bootstrap is actually

measuring may not be entirely clear. This is well illustrated by the problem of

phylogenetic tree construction. A major area of research in evolutionary biology

is the analysis of phylogenetic relationships, that is how extant and extinct

species are related by evolutionary descent. A simple example of a phylogenetic

tree is shown in Figure 4.9. Four species are analyzed in this example, e.g., lemur

(species A), human, chimpanzee, and gorilla. Species A, the lemur, is called an

outgroup, defined as a species (or group of species) that is closely related to the

species being studied and used to differentiate between shared derived and

ancestral derived features. The object is to construct a tree that represents the

evolutionary transitions among the species, the outgroup being used to

designate ancestral characters. At the first evolutionary transition following

the split from A we could have B (as shown) or C or D. For the present purposes

we do not need to consider how the “best” tree is constructed (for a simple

description see Futuyma, 1998) only that such a decision can be made. The

question arises as to the confidence we can actually have in this tree. Felsenstein

(1985) suggested the use of the bootstrap to derive confidence intervals for each

node of the phylogeny. The method proposed by Felsenstein is illustrated in

Figure 4.10.

The data set consists of a series of taxa (A,B,C,D) that form the rows of

a matrix and a series of characters (1 through 10) that form the columns. The

characters can be morphological traits, behavioral traits or, most often today,

DNA sequence data. We could bootstrap these data by taking cells at random

(with replacement) from the original data matrix, but Felsenstein argued that the

appropriate bootstrap replicate is made by taking entire characters (i.e.,

columns). The argument rests upon the proposition that each character “evolved

independently from the others according to a stochastic process that has among

its parameters the topology and branch lengths of the underlying phylogeny”

(Felsenstein 1985, p. 784).
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In Figure 4.10, four possible bootstrap replicates are shown: note that, because

of sampling with replacement, characters can appear more than once in a

replicate or even not at all. From each matrix the “best” phylogenetic tree is

constructed, as shown in Figure 4.9. It is possible, as shown in Figure 4.9, that

several trees may be “equally-likely.” From the set of replicate phylogenies, a final

bootstrap tree is produced most typically using a rule such as the 50% majority

Figure 4.9 A simple, illustrative example of the use of the bootstrap to analyze

phylogenetic relationships. The top tree shows the “best” tree obtained from the

observed data. Organism “A” is the outgroup, which means that it is basal to all other

species and is not included in the bootstrap analysis. The first, second, and fourth

bootstrap replicates each produced two equally-likely trees, whereas the third

replicate produced only one. The bootstrap consensus tree was produced using a 50%

majority rule, which means that only clades that occurred in at least 50% of all trees

are considered. The bootstrap “support” (57) for the transition between B and C–D is

equal to the number of trees with this transition (4) divided by the total number of

trees (7) multiplied by 100 (to give a percentage). Figure redrawn from Soltis and

Soltis (2003).
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rule. In the example, the bootstrap consenus tree has a split that divides B from

the clade C--D. This division occurs in 57% of the bootstrap phylogenies and is

used as a measure of the confidence we have in this node of the phylogeny. The

use of the bootstrap to analyze phylogenies has proved outstandingly popular,

as can be judged by the observation that Felsenstein’s paper promoting the

procedure has received more than 7000 citations. But what does this bootstrap

“support” actually represent?

Felsenstein (1985, p. 786) concluded that “Bootstrapping provides us with a

confidence interval within which is contained not the true phylogeny (my italics),

but the phylogeny that would be estimated on repeated sampling of many

characters from the underlying pool of characters. As such it may be misleading

if the method used to infer phylogenies is inconsistent.” Suppose, for example,

we used traits that are analogous rather than homologous (i.e., traits due to

convergent evolution, such as the wings of insects and birds, rather than due to

common descent, such as the wings of birds and bats), then it is conceivable to get

a tree that has very high bootstrap support but is simply wrong. The use of many

characters may avoid this problem. Molecular data can indeed provide a large

data base but the problem could still arise if we are using themolecular data for a

single gene: in this case we may be examining the evolutionary history (which

could involve convergent evolution and hence analogy) of the gene and not

necessarily that of the species. These issues are certainly well known, and I raise

them here to illustrate the important point that the bootstrap cannot solve the

problem of an incorrect biological assumptions or poor data. Felsenstein

suggested that if a grouping occurs in 95% of the bootstraps then it can be

taken to be significant: note again that he is not saying that this is the “true”

phylogeny only that it occurs more frequently than expected by chance given

the observed distribution of characters.

The issue of what the bootstrap proportion (e.g., 0.57 for B and C--D split

in Figure 4.9) actually means was taken up by Hillis and Bull (1993, p. 183)

who noted that it is necessary to distinguish three concepts: “repeatability,”

“accuracy,” and “precision.” The precision of a bootstrap “is the degree to which

bootstrap proportions based on a finite set of pseudovalues are expected to

match the values that would be obtained from an infinite set of pseudovalues,”

whereas accuracy is “the probability that a specified group is contained in the

true phylogeny,” and repeatability is “the probability that a specified group will

be found in an analysis of an independent sample of characters.” Felsenstein’s

interpretation of the bootstrap proportions is that they are measures of

repeatability (Hillis and Bull 1993, p. 183). Precision is easily taken care of,

since it requires simply a large enough sample. Accuracy and repeatability are

different matters entirely.

96 The bootstrap



Hillis and Bull (1993, p. 187) made the observation that “Although boot-

strapping was introduced as a measure of repeatability, bootstrap results

commonly are interpreted as a measure of accuracy (e.g., in a framework of

hypothesis testing).” Using simulations, Hillis and Bull examined the relation-

ship between the bootstrap support and the actual probability of obtaining the

correct phylogeny. The answer depended on the type of phylogeny; for some

phylogenies the bootstrap support underestimated the accuracy, with a

bootstrap support of 70% corresponding to a probability of 95% that the clade

is real, whereas in other types of phylogenies the bootstrap can overestimate the

accuracy. Hillis and Bull (1993, p. 192) concluded that “The strong positive

relationship between high bootstrap proportions and phylogenetic accuracy does

indicate a use for bootstrapping. However, bootstrap results should not be

interpreted directly as estimates of either repeatability or accuracy under most

conditions. They are poor estimates of repeatability and are usually very

conservative estimates of accuracy . . . The values cannot be directly compared

among studies.”

Felsenstein and Kishino (1993) responded to the challenge of determining why

Bull and Hillis obtained the results that they did and showed that the problem

lay not in the bootstrapping procedure per se but rather the equating of the

bootstrap proportion with accuracy. In summary, Felsenstein and Kishino (1993,

p. 199) suggested that “when systematists see the group of interest occur a

fraction P of the time among the bootstrap samples, that they should regard 1�P

as a conservative assessment of the probability of getting that much evidence

favoring the group if it is not present . . .For example, when the group is seen to

have P¼0.85, that much evidence favoring the group would be expected less

than 15% of the time if the group were not on the true tree.” Efron et al. (1996)

further examined the issue and produced a better estimate of the error, though

requiring the more elaborate and extensive bootstrap methodology of the

accelerated bias-corrected percentile method (Method 5).

Summary

(1) A bootstrap replicate consists of taking from a sample of size n, the same

number of observations, by random selection with replacement. The

parameter(s) of interest are computed in the same manner as with the

original sample. The process is repeated a large number of times

(typically 200 for the estimation of SE and 1000 for the estimation of

confidence intervals) and the set of bootstrap estimates used to estimate

the mean and confidence interval of the parameter(s) of interest.
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(2) The bootstrap estimate, ��, is the mean of the bootstrap replicates. This

estimate is biased and the simplest bias-adjusted estimate, ��A is

��A ¼ 2�̂ � ��.
(3) The SE of the estimate is estimated by the standard deviation of the

bootstrap replicates.

(4) Confidence intervals can be estimated by a variety of approaches but

there is no way, in general, of deciding which method, if any, is

appropriate, except by simulation.

(5) Small samples typically, but not invariably, result in bootstrap

confidence intervals that are smaller than required. What is considered

“small” can only be decided by simulation analysis.

(6) The bootstrap can be used for hypothesis testing but care should be

exercised in setting up the test statistic.

Further reading

Davison, A. C. and Hinkley, D. V. (1999). Bootstrap Methods and their Applications.

Cambridge: Cambridge University Press.

Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. Society for

Industrial and Applied Mathematics, Philadelphia.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York: Chapman

and Hall.

Manly, B. F. J. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology.

New York: Chapman and Hall.

Mooney, C. Z. and Duval, R. D. (1993). Bootstrapping: A nonparametric approach to statistical

inference. Newbury Park: Sage Publications.

Exercises

(4.1) Generate 100 values from a normal distribution with mean zero

and unit variance (i.e., N(0,1)). Bootstrap, using the default of 1000 bootstrap

replicates, the median, output the summary statistics from bootstrap, test for

normality of the replicates (using the Shapiro--Wilkes test or other suitable test)

and plot a histogram of the bootstrap replicates.

(4.2) Fit a linear regression to the data listed below using least squares

regression and the bootstrap. Using the unstandardized differences, test

the hypothesis that the slope and intercept equal to 0. Test the hypothesis
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that the slope equals 1 and the intercept equals 0. Compare the results to the

parametric test.

x 1.63 4.25 3.17 6.46 0.84 0.83 2.03 9.78 4.39 2.72 9.68 7.88 0.21 9.08 9.04 5.59 3.73 7.98 3.85 8.18

y 2.79 3.72 4.09 5.89 0.75 �0.13 1.76 8.44 5.15 2.16 9.88 6.95 0.03 7.50 9.92 5.37 3.79 7.18 3.37 7.81

(4.3) Using the above data calculate the bootstrap correlation coefficient

and test the hypothesis �¼0.96. Use Fisher’s z transformation, z ¼ 0:5 ln 1þr
1�r

� �
.

Compare the results with the parametric test.

(4.4) Use the coding below to generate a sample of 20 correlated points

in which the error distribution is a gamma distribution with shape and rate

parameters equal to 2 and a mean of 0. Test the hypothesis �¼0 using the

bootstrap and parametric tests (see question 3). Which result do you think is

the more reliable?

# Set seed for random number generator

set.seed(0)

n <- 20 # Number of points

# Construct normal distribution of x values

x <- rnorm(n,0,1)

shape <- 2 # Set shape parameter

rate <- shape # Set rate parameter

# Calculate mean of gamma distribution

mu <- shape/rate

# Generate error term with mean zero

error <- rgamma(n,shape,rate)-mu

y <- 0.5*x + error # Construct y values

Corr.df <- data.frame(cbind(x,y)) # Put in a single dataframe

(4.5) Generate 10000 data sets using the same protocol as in question 4.4.

For each set calculate r and use the data to determine the probability

of obtaining a value of r that is greater in magnitude than zero. Use coding

in question 4.4 to generate ten data sets and analyze these using both the

parametric and bootstrap tests. Which appears to be the better test in this

circumstance?
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(4.6) The table below shows the number of eggs laid by 20 female

Drosophila of the indicated ages. Estimate the parameters of the function

Eggs ¼ �1ð1� e��2AgeÞe��3Age using the bootstrap. Compare your results to

those of the MLE and the jackknife, previously calculated (Exercise 3.4).

Ind 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Age 1 3 2 4 1 1 2 5 3 2 5 4 1 5 5 3 2 4 2 5

Eggs 58 70 72 65 57 56 71 59 71 70 60 65 57 59 61 70 71 65 70 60

(4.7) Generate 10 data points from a normal distribution with

mean 4 and unit variance. Compute the coefficient of variation, CV. Use the

bootstrap to estimate the standard deviation. Check the answer by generating

10000 data sets, estimating the CV and computing the standard deviation

of the resultant data set. Compare the bootstrap results with the simulation

results.

(4.8) The following data were gathered on the size of a particular species

within a community:

x : 2, 10, 10, 11, 14, 15, 16, 18, 18, 18

Calculate the Gini coefficient for these data and use the simplified

method of hypothesis testing (Eq. (4.19)) to compare Gini coefficients ranging

from 0.2 to 0.4 with the observed. Compare your results with the confidence

limits from the bootstrap.

List of symbols used in Chapter 4

Symbols may be subscripted

E Error term

"�i Estimate of the ith bootstrap error

y Parameter to be estimated

�̂ Estimate of y

�̂Bias Bias in estimate

��i Estimate from the ith bootstrap replicate

y� Bootstrap estimate

~��i Estimate of y with the ith datum removed

~� Jackknife estimate

� Mean
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� Standard deviation

�̂��
i

Estimate of SE of tth bootstrap replicate

B Number of bootstrap replicates

C Resource utilization index, or constant

Z Z-score statistic

MLE Maximum Likelihood Estimation

N(�,s) Normal distribution with mean � and standard deviation s

P Probability

S2x Estimate of variance of x

T�i Value of ith transformed bootstrap replicate

SE(.) SE of term in parentheses

a constant in accelerated bias-corrected percentile method

d Absolute difference between parameter estimate and

hypothesized value

d�i Absolute difference between parameter estimate and ith

bootstrap estimate

lt Length at age t

n Number of cases

p, q In niche overlap indexes, proportion of resources used

t Student’s t

x Observed value

�x Mean value of x

y Observed value

z Abscissa of the standard normal distribution
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5

Randomization and
Monte Carlo methods

Introduction

Monte Carlo methods are used extensively in this book to generate

models with which to illustrate or test particular statistical models or ap-

proaches. A Monte Carlo model is one in which there are one or more random

components, e.g., the model y¼xþ", where " is some randomly distributed

variable. Kendall and Buckland (1982) define the Monte Carlo method as

a method that denotes “the solution of mathematical problems arising in a

stochastic context by sampling experiments . . . the solution of any mathematical

problem by sampling methods: the procedure is to construct an artificial

stochastic model of the mathematical process and then to perform sampling

experiments on it.” In this chapter, I restrict my attention to the use of a Monte

Carlo model to test a given statistical hypothesis. Randomization and the

bootstrap can be considered as particular forms of the Monte Carlo method

but their extensive and increasing use promote them to statistical methods in

their own right. Monte Carlo models tend to be “tailor-made” for the particular

problem under study, whereas the bootstrap and randomization methods can be

more readily generalized, as illustrated in the last chapter by the routines now

available on many computer software packages. Therefore, I shall first discuss

randomization and then Monte Carlo techniques in general.

Randomization is first and foremost a technique for hypothesis testing,

though it is possible to use it to construct confidence limits. Because of the few

constraints it places upon the data, randomization is an extremely useful

method. However, as with all statistical methods, it is not a panacea for bad

data and its limitations must be recognized. The general principle underlying

randomization is that if the data under study come from a common population

then the observed statistic will be no different from that obtained if the data
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were assigned at random to the groups making up the data set. By comparing the

observed statistic with that from many randomized data sets, we can estimate

the probability of obtaining a statistic as deviant as that obtained from the

original data. A limitation of the method should immediately strike the reader:

if the observed data come from several statistical populations that differ in more

than one parameter (e.g., both mean and variance) then the randomization

procedure cannot work. This is a problem that is not peculiar to randomization:

the standard t-test, for example, assumes that two populations differ in no

more than the mean. The general approach to testing by randomization, and

the construction of confidence intervals, can be most readily understood by

considering a specific example, namely the difference between two means.

Following this discussion, I shall present a variety of examples to illustrate the

general utility of randomization and the factors that need to be considered in

setting up the test.

Randomization – general considerations for hypothesis testing

An illustration of the approach: testing the difference between two means

Consider the problem of testing for a difference between two means.

Randomization can specifically address the issue of a difference between two

means in the case of both normal and non-normal distributions, subject to the

restriction that a difference in means is the only difference between the two

distributions. The parametric t-test compares two means under the assumption

of a normal distribution of means, whereas the non-parametric Mann--Whitney

test is a test of differences in central tendency, which for a highly skewed

distribution will be the median, not a test for differences in the mean.

In comparing two means, the null hypothesis is

H0: �1 ¼ �2 or H0: �1 � �2 ¼ 0 ð5:1Þ

Thus, under the null hypothesis it should make no difference how we distribute

the observations between the two groups. The randomization test is constructed

as follows, assuming that the two distributions differ only, if at all, in their means:

(1) Compute a statistic that measures the difference between the two

means. Several possible candidates are available:

(a) the absolute difference between the two means

(b) the t-statistic

(c) the difference between the residuals of the two groups,

ri,k ¼ xi,k � �xk, where ri,k is the ith residual from the kth (k ¼ 1, 2)
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group, xi,k is the ith observation in the kth group, and �xk is themean

of the kth group.

(2) Distribute the observations at random between the two groups. Suppose,

for example, the original two groups are (1.2, 3.2, 4.4, 4.2) and (2.2, 5.5,

3.0, 3.1); a randomized data set might be (3.2, 5.5, 2.2, 4.2) and (1.2, 4.4,

3.0, 3.1). Note that this procedure differs from the bootstrap in that

sampling is done without replacement (hence the alternate name for

a randomization test is a permutation test).

(3) Repeat step 2 a large number of times, say N.

(4) Count up the number of cases, say n, in which the statistic from the

randomized data set is larger than that from the original data.

(5) Estimate the probability, P, under the null hypothesis of obtaining

a deviation as large or larger than observed as

P ¼ nþ 1

N þ 1
ð5:2Þ

The “extra” 1 is required because the observed value is itself a sample

and hence should be counted, though clearly if N is very large then

the extra 1 is not critical.

(6) If P50.05, the observed difference is declared to be unlikely under the

null hypothesis and the null hypothesis is rejected in favor of the

alternate that the means are different.

S-PLUS coding to do a randomization test for two means is shown in Appendix

C.5.1. To make up the original sample, 20 data points are generated from a

normal distribution, N(0,1), and randomly assigned to two groups. Given that

these data really did come from the same distribution, we would expect that a

test for a difference between two means to give a significant result only 5% of the

time. The test statistic used in the present example is the absolute difference

between the two means, but the other possible statistics can be readily program-

med into the routine that calculates the statistic. Though, as will be seen in

later examples, the estimated probability can depend upon the test statistic

chosen, in the present case simulations have shown that all three statistics

have the same performance (Manly 1997, pp. 105--7). In 5000 randomizations

more than 50% of the data sets generated absolute differences greater than

observed: thus we have no reason to reject the null hypothesis (see output in

Appendix C.5.1). It is possible in S-PLUS to use the bootstrap routine to do

a randomization test (Appendix C.5.2): it is generally faster to use this routine

whenever possible.
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How many samples are required?

In general, we are interested in distinguishing a probability as small

as 0.05 from a larger value. An approximate and simple way of estimating the

relevant sample size required is to consider the standard error (SE) on the

estimated probability: from the binomial we have

SEðP̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ð1� P̂Þ

N

s
ð5:3Þ

where, for simplicity, I have absorbed the “extra” 1 into N. We require that

P̂ þ 2SEðP̂Þ < 0:05: Figure 5.1 shows such values for a range of N and P̂. One

thousand randomizations will generally be sufficient to determine significance

unless P is close to 0.05, in which case one might have to increase the number of

randomizations to as many as 10000. Of course, if the actual P is substantially

larger than 0.05, many fewer randomizations will be required. In principle,

one could set up the analysis in a sequential manner, first estimating P based

Number of permutations (N )

E
st

im
at

ed
 P

Figure 5.1 Contour plot showing the approximate upper confidence value as a

function of the number of permutations and the estimated probability. Contours

show the value of P̂ þ 2SEðP̂Þ. Values lying above the 0.05 contour line are “not

significant” given the stated number of permutations.
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on say 100 randomizations and then estimating the required number using a

rearrangement of Eq. (5.3)

N ¼ 4P̂ð1� P̂Þ
ð0:05� P̂Þ2 ð5:4Þ

If P̂ is much greater than 0.05 the above equation is superfluous, although if P̂ is

reasonably close to 0.05 (say 0.1) it would be worthwhile to increase the number

of randomizations to 500 to ensure that the estimate is stable. Appendix C.5.3

shows the coding to calculate the required number using the previous data set

but changing the expected mean of the second group by increasing the values in

the second group by 1. The estimated P using 100 randomizations is 0.0297, which

is not significantly less than 0.05, as indicated by the required N of 280. The

probability from the parametric two-sample t-test is 0.039. In this case, increasing

the sample size to 500 is necessary. One can simply do 400 more randomizations,

changing the starting seed and then combining the result with the initial 100

(not necessary in present case, because the computational time is insignificant).

In fact, withN¼ 500, P̂ ¼ 0:051 896 21which certainly requires further randomiza-

tions to verify the correct P. Using N ¼ 5000 gives P̂ ¼ 0:046 790 64 and a required

N in excess of 17000! Further increasing N to 10000 gives P̂ ¼ 0:043 595 64,

which using Eq. (5.3) gives a SE of the estimate as 0.00204. Thus, the larger

number of randomizations indicates that the P value is significant but marginal

(it should be noted that one cannot simply keep increasing the sample size

until, by chance, a significant result is found). In general, unless each

randomization is very time consuming, I recommend commencing with 1000

randomizations.

Randomization -- interval estimation

Method 1: estimating the standard error from the randomization procedure

The primary function of randomization is hypothesis testing but it

is useful on many occasions to provide, in addition to a probability, an

estimate of the standard error, or confidence interval. Manly (1991) suggested

a protocol for estimating the confidence interval that requires a large number

of extra randomizations. The object is to find the two constants, Low and

High, that when subtracted from one of the groups produces a probability

of 0.025 (the lower and upper values of the 95% confidence interval). This

is done by trial and error, which means running a separate set of randomi-

zations for each “guess.” To illustrate this method Manly used data on the
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mandible lengths of male and female golden jackals (here shown in ranked

order),

Males: 107,110,111,112,113,114,114,116,117,120

Females: 105,106,107,107,108,110,110,111,111,111

A standard t-test of these data indicates a highly significant difference (t¼3.48,

df¼18, P¼0.0026 for a two-tailed test but P¼0.0013 for a one-tailed test based

on the hypothesis that males will be larger than females) and a 95% confidence

region for the difference of 1.91--7.69. Based on 10000 randomizations, the

estimated probability for a two-tailed test is 0.0038, confirming the results of

the t-test.

With a calculation that can be accomplished very fast, as is the case for the

two-sample t-test, the confidence limits can be quickly found by iteration: the

upper panel in Figure 5.2 shows a search using a large increment and only 1000

randomizations per value and the lower panel shows the results of a refined

search using 10000 randomizations per value (see Appendix C.5.4 for coding,

producing the data used in the lower panel). From the lower panel in Figure 5.2,

the upper confidence value can be estimated as 7.72, but the lower confidence

value presents some difficulty, because the curve is not “smooth.” The reason for

the lack of smoothness is in part due to the fact that different randomizations

will produce slightly different values and, in the present case, a consequence

of the original data containing a relatively large number of the same values

(e.g., 111 in the female data), which results in randomized data sets that have

the same average difference (this is demonstrated more in detail later). Taking

the midpoint of the intersection of the Low curve with the 0.025 line gives a value

of 1.9. Thus, the 95% confidence region from the randomization procedure is

1.90--7.72, which compares favorably to the parametric estimate of 1.91--7.69

(using his randomization method, Manly obtained a region 1.92--7.72, which

is consistent with the results presented here).

Garthwaite (1996) modified the procedure to reduce the number of randomi-

zations but the number of randomizations is still large and the algorithm

is rather complex. Here, I present three approximate but simple methods of

estimating the SE using only the original set of randomizations. For this purpose

I shall use, in addition to the jackal data, two other data sets. The first set

is that analyzed by Garthwaite on the effect of malaria on the stamina of the

lizard Sceloporis occidentalis, stamina being measured as the distances 15 infected

and 15 uninfected lizards could run in two minutes:

Infected: 16.4,29.4,37.0,23.0,24.1,25.0,16.4,29.0,36.7,28.7,30.2,21.8,37.0,20.3,28.3

Uninfected: 22.2,34.8,42.0,32.9,26.4,31.0,32.9,38.0,18.4,27.5,45.5,34.0,46.0,24.5,28.7
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Figure 5.2 Illustration of Manly’s method of estimating the lower (Low) and upper

(High) confidence limits using randomization. The upper panel shows the results over

a wide range and 1000 permutations per value. The lower panel shows a refined

search using 10000 permutations per value. Dotted lines show estimated values

for the confidence interval.
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Analysis using a two-tailed t-test reveals a marginally non-significant dif-

ference between the two groups (t¼1.9658, df¼28, P¼0.0593). The estimated

probability from 10000 randomizations is 0.0563, which is very close to

that obtained with the parametric test. The method of Garthwaite produces

a slightly smaller confidence interval and a SE than the parametric method

(Table 5.1).

The second data set, consisting of two samples, each of size 20, was generated

from two gamma distributions, both with shape parameter¼rate parameter¼3,

but with one incremented by 0.5 (Figure 5.3). Thus, the two samples drawn from

these distributions differ only in their means. To determine the true distribution

of the mean differences between two samples, I generated 10000 samples

from which the SE could be directly estimated. Despite the high skew in the

parent populations (upper panel, Figure 5.3) the distribution of mean differences

is remarkably normal. A t-test on the single sample indicates a significant

Table 5.1 Estimates of the SE and 95% confidence limits (LC¼ lower, UC¼upper) for the difference in

stamina between infected and uninfected Sceloporus occidentalis

Method SE LCa UC

Lizard data

Parametric 2.85 –0.23 10.95

Garthwaite 2.80b –0.30 10.69

Normal approximation 2.73 –0.23 10.95

Average percentile 2.72 –0.21 10.93

Percentile 2.72b –0.29 10.87

Gamma-distributed data

True valuea 0.18 0.16 0.86

Parametric 0.22 0.08 0.93

Normal approximation 0.20 0.09 0.92

Average percentile 0.21 0.07 0.94

Percentile 0.21b 0.07 0.94

Jackal data

Parametric 1.38 1.91 7.69

Manly 1.38b 1.90 7.72

Normal approximation 1.45 1.76 7.84

Average percentile 1.62 1.40 8.20

Percentile 1.62b 1.40 8.20

aThe sign is arbitrary and depends on which mean is subtracted.
b“Average” SE estimated by (UC�LC)/([2][1.96]).
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difference between the groups (mean difference¼0.504, t¼2.4172, df¼38,

P¼0.0205) and 10000 randomizations give an almost identical probability of

0.0186. The estimated SE from the parametric analysis is slightly larger than the

correct value (0.22 vs. 0.18, Table 5.1) and the confidence region is thus larger

than the correct width (Table 5.1).
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Figure 5.3 Probability density plots of two gamma distributions (upper panel)

differing only in their mean value (scale parameter¼rate parameter¼3, with 0.5

added to rightmost distribution). Lower panel shows the distribution of 10000

simulated data sets comprising the mean difference between 20 samples drawn

from each of the two gamma distributions. Solid curve shows fitted normal curve.
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Method 2: normal approximation

A very simple procedure is to assume that the parameter of interest, �,

is normally distributed so that �/SE is normally distributed with unit variance.

Under this scenario, we can estimate the SE by

EstðSEÞ ¼ �̂

x
ð5:5Þ

where x is the value of the abscissa on the normal curve giving a probability of

P̂=2 (Roff and Bradford 1996). If the original sample is relatively small, the

appropriate value of x using the t distribution can be used. Coding for this and

the next two procedures is shown in Appendix C.5.5.

The necessary assumption of this method, that the data be normally distri-

buted, can be readily examined using the randomized values. The estimated SE

for the lizard data is smaller than that obtained by Garthwaite but the confidence

region is virtually identical to the parametric estimate and shifted relative

to Garthwaite’s estimate (Table 5.1). For the gamma-distributed data the normal

approximation is almost the same as estimated by the parametric method,

and slightly larger than the true value (Table 5.1). This method appears

to overestimate the SE for the jackal data and produce an enlarged confidence

interval (Table 5.1).

Method 3: average percentile method

This method is similar to Method 2 in that it estimates the SE but

differs from Method 2 in that it avoids the normality assumption by using the

randomized distribution directly. We wish to find a value C0.95 such that when

added or subtracted from the observed difference generates a probability of 0.05.

To locate this value, we sort the set of 10000 absolute values of the randomized

replicate differences into ascending order and find the value that is at the 95%

point in the sorted list. We find the value of t corresponding to 0.025 with

the appropriate degrees of freedom (e.g., 28 for the lizard data) and estimate

the SE as

Est ðSEÞ ¼ C0:95
t0:025,df

ð5:6Þ

Assuming that the distribution is symmetrical, the lower and upper confidence

limits (LC and UC, respectively) are estimated as

LC ¼ �̂ � C0:95, UC ¼ �̂ þ C0:95 ð5:7Þ
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For both the lizard data and the gamma-distributed data, the estimates of SE and

confidence limits are virtually identical to those obtained with Method 2 but for

the Jackal data, the SE estimate appears to be overestimated and the confidence

range too broad (Table 5.1).

Method 4: percentile method

This method follows the same rationale as Method 3 except that the

upper and lower limits are found separately. To locate these values, we sort the

set of 10000 values of the randomized replicate differences into ascending order

and find the values that are at the 2.5% and at the 97.5% points in the sorted list.

The confidence limits are then

LC ¼ C0:025 þ �̂, UC ¼ C0:975 þ �̂ ð5:8Þ

The SE can be approximated as (UC�LC)/(2t0.025,df). The results using this method

are more or less the same as Method 3 (Table 5.1).

In summary, for the three data sets examined here the normal approximation

appears to be the most satisfactory of the three approximate methods. If very

accurate estimates are required then the values obtained from this approach

can be used as starting points in the more computationally intensive method

suggested by Manly.

Examples illustrating randomization tests

Single-factor (one-way) analysis of variance

Analysis of variance is remarkably robust to the assumption of normality

(Sahai and Ageel 2000, pp. 85--6) but if normality cannot be established then the

possibility that the results are incorrect cannot be excluded. Randomization can

be used to verify or replace the results of the parametric analysis. Remember,

however, that randomization makes the assumption that the component distributions differ

in no more than their means. If there is departure from equal variances then the

randomization test may be in error. This issue is taken up in the next section:

here I shall assume that the distributions differ only in the mean and could be

non-normal.

Although one might use the mean squares as the test statistic rather than the

F value, there are two reasons why this is not recommended. First, use of the

F-statistic permits an immediate comparison with the parametric analysis

(i.e., differences between the two analyses cannot be attributed to differences in

the statistic used) and, second, simulation suggests that the F-statistic generally

produces amore powerful test than themean squares (Gonzalez andManly 1998).
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Randomization can be done on the original data or the residuals: again,

simulations suggest that the use of the original data is sufficient.

To illustrate the randomization method of one-way ANOVA, I shall use an

empirical data set comprising the monthly consumption (milligrams of dry

biomass) of ants by eastern horned lizards (data from Manly 1997):

Month Observations

June: 13, 105, 242

July: 2, 8, 20, 59, 245

August: 40, 50, 52, 82, 88, 233, 488, 515, 600, 1889

September: 0, 5, 6, 21, 18, 44

Analysis of variance of these data indicates no significant effect of month on

ant consumption (F3,20¼1.64, P¼0.21). However, a Kruskall--Wallis test does

indicate a significant effect (�2¼11.0, df¼3, P¼0.012). Inspection of the residuals

suggests considerable lack of normality (Figure 5.4), that is confirmed using

Lilliefor’s test (P 50.0001). Given the small number of observations, the lack of

normality is disturbing (with large sample sizes even small deviations from

normality, that do not affect the ANOVA test, can be detected) and casts doubt

on the ANOVA.

Inspection of the data also suggest that there may be heteroscedasticity

(variances are: June, 13279; July, 10416; August, 319724; September, 258).

Ignoring this for the time being, we shall test for variation among groups

using a randomization test with F as the test statistic and randomization of the

original data. Two different methods of coding for this test are presented in

Appendices C.5.6 and C.5.7. Appendix C.5.6 gives a very general method that is set

in a framework that could be transported to another language such as FORTRAN.

The data set consists of two columns, amount eaten and month. Randomization

of the observations, but not the months (which would be redundant) is done

using a loop and at each iteration the F statistic is calculated and stored.

Appendix C.5.7 shows a somewhat different approach in that the observations

are randomized and stored N times (the number of randomizations), leading to

a data file consisting of three columns: an index number giving the rando-

mization number (note that the first entry is the original data), the month data

(replicated without randomization), and the observations. The F-statistics are

then calculated using the “by” routine of S-PLUS. This method is slightly

faster than the first method: for 999 replications the first method took 64s,

whereas the second took 55s.
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The randomization gives a probability of 0.2 (the slight differences in the

outputs of the two methods of coding is due to differences in the randomization

procedure. In the first method, randomization is repeated on the previously

randomized data set, whereas in the second it is always done on the original data.

This makes no conceptual difference), which is pleasingly close to that obtained
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Figure 5.4 Frequency distributions (histograms and fitted normal curves) for the

residuals from the fitted ANOVA model to the monthly consumption of ants by

horned lizards. Top panel shows residuals using untransformed data. Bottom panel

shows residuals using log(xþ1) transformation.
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from the ANOVA. On the other hand, the lack of a difference between groups

could be due to a confounding influence of heteroscedasticity: inspection of the

data certainly suggests that the variances differ substantially (in order of months

the variances are: 13279, 10416, 319724, 258). The obvious approach at this

point is to seek a transformation that would reduce or eliminate the differences

among the variances. A log(xþ1) transformation appears to do the trick, the

variances of the transformed observations being, respectively, 0.407, 0.545, 0.325,

0.339. The ANOVA now indicates highly significant variation among groups

(F3,20¼6.08, P¼0.004), and the residuals are not significantly different from

normal (Figure 5.4, Lilliefors test, P¼0.429). From 4999 randomizations of the

log transformed data the estimated probability is 0.0026, which, as before, is

pleasingly close to that obtained from the ANOVA. In this example, there really

is no need to resort to a randomization test, only to transform the data. The

important message is that randomization itself has assumptions and these must

be respected. We now turn to data in which we know that the only differences

are due to differences in the mean.

I generated three groups of size 10 from an exponential distribution (p(x)¼
e(�x/�)/�, x40), all three with an initial mean, �, of one (in S-PLUS, x 5 rexp(10,

rate=1)). To the last group I added a constant, thereby changing only its location.

In the first example, I added 0.8: an analysis of variance indicated no significant

difference among the groups (F2,27¼2.73, P¼0.083), whereas the randomization

test gave P¼0.035). For the second example, I added 1.0 to the third sample: the

ANOVA indicated a marginal value of P¼0.0442, whereas the randomization test

gave a highly significant value of P¼0.012. In these two cases, the randomization

test is to be preferred.

In Chapter 2, I introduced the concept of the threshold trait in genetics

(Figure 2.4) and the estimation of the heritability of liability from a selection

experiment. Heritability of liability may also be estimated from full-sib (offspring

with the same mother and father) families. The liability cannot itself be meas-

ured except in as much as it manifests itself in the dichotomous phenotype. The

problem is then to measure the heritability of the underlying liability from the

presence/absence appearance in the siblings. The heritability of any quantitative

trait can be estimated from a one-way analysis of variance on full-sib data as twice

the intra-class correlation coefficient (assuming no non-additive effects),

t ¼ MSAF �MSAP
MSAF þ ðk� 1ÞMSAP

ð5:9Þ

where MSAF is the mean square among families (among groups), MSAP is the

mean square among progeny (within groups), and k is the adjusted number per
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family if the number per family varies (k ¼ ðT �P
ni=TÞ=ðN � 1Þ, T is the total

number of individuals, ni is the number in the ith family and N is the number

of families). With a threshold trait, the problem is to estimate the heritability of

the underlying trait from the relative proportion of the two phenotypic classes

among full-sibs. We proceed in two steps: first we compute the intraclass corre-

lation using the 0, 1 data of the manifested phenotypes, and second convert this

to the heritability of the trait on the underlying liability scale by the formula

h2 ¼ 2t
pð1� pÞ

z2
ð5:10Þ

where p is the proportion of a designated morph in the population (which morph

is chosen is entirely arbitrary. The proportion p is estimated as the average

proportion across all families,
P

pi/N), and z is the ordinate on the standardized

normal curve corresponding to a probability p. For further discussion of

threshold traits, see Roff (1997).

Because a dichotomous trait is necessarily coded as 0, 1, it is clearly not

normally distributed. Thus, a randomization approach can be an important

supplement in the testing of the significance of the heritability estimate. If only

a single cage is employed per full-sib family, it is impossible to separate effects

due to familial causes from effects due to a common environment. Therefore,

at least two cages per family should be used and a nested ANOVA employed

to separate cage effects from family effects. In an analysis of wing dimorphism

(¼a long-winged [macropterous] morph capable of flight and a short-winged

[micropterous] flightless morph) in the cricket Gryllus firmus I used three methods

(Roff, unpublished):

(1) a nested ANOVA using all individuals categorized as 0 (¼macropterous)

or 1 (micropterous).

(2) a one-way ANOVA using the mean proportion per cage (2 estimates per

family, both the raw proportions and arcsine square-root transformed

values were used: the results did not differ).

(3) a randomization test conducted as follows. First, the heritability was

computed by pooling the two cages per family. Next, cages were paired

at random and the heritability computed for this sample: 999 such

randomized heritabilities were computed. The probability of obtaining a

value of h2 as large or larger than that observed was estimated by the

proportion of heritabilities from the randomized set plus the observed h2

that were as large as or larger than the observed value. A somewhat

better method would have been to compute the heritability using the

nested ANOVA for each set rather than pooling the cages.
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Sixteen different comparisons were made (proportions differ between the

sexes, two rearing environments, and 8 lines, Table 5.2). The three methods of

statistically testing for differences attributable to family (nested ANOVA, one-way

ANOVA, randomization) give very similar results, despite the fact that in some

cases the proportions are close to 0 or 1, producing a highly skewed distribution.

In 13 of the 16 tests, all three methods indicate highly significant variation

among families. All three tests indicate no significant effect due to family in L1

female offspring or S1 male offspring. Phenotypic variation is low (proportion

macropterous, p¼0.92 and 0.03, respectively) in both cases, and hence the lack of

significance probably reflects the low power of the tests under these conditions.

In one case, S2 females, the nested ANOVA indicates no significant vari-

ation among families (P¼0.113), while the other two tests indicate significant

variation (P50.001 and P¼0.039 for the ANOVA and randomization methods,

respectively). As with the previous cases, phenotypic variability is very low

Table 5.2 Probability values from three methods of statistical analysis for an effect of family on the

distribution of macroptery (¼ long-winged, as opposed to the alternate morph, microptery, which is short-

winged) in G. firmus (A¼one-way ANOVA, R¼randomization, NA¼nested ANOVA)

Env.a Lineb Sex pc A R NA

15/25 L1 F 0.92 0.350 0.578 0.820

15/25 L1 M 0.77 50.001 0.004 50.001

15/25 C1 F 0.74 50.001 0.006 50.001

15/25 C1 M 0.53 0.002 0.002 0.001

15/25 L2 F 0.91 0.013 0.016 0.002

15/25 L2 M 0.79 0.030 0.017 0.006

15/25 C2 F 0.60 50.001 0.001 50.001

15/25 C2 M 0.30 50.001 0.001 50.001

17/30 S1 F 0.08 0.002 0.003 0.002

17/30 S1 M 0.03 0.622 0.430 0.618

17/30 C1 F 0.50 0.001 0.001 50.001

17/30 C1 M 0.27 50.001 0.001 50.001

17/30 S2 F 0.04 50.001 0.039 0.113

17/30 S2 M 0.02 50.001 0.009 0.008

17/30 C2 F 0.53 50.001 0.001 50.001

17/30 C2 M 0.38 50.001 0.001 50.001

aEnv¼Environment, where A/B, A¼photoperiod (number of hours/day of light),

B¼temperature (8C).
bL¼line selected for increased proportion macropterous, S¼line selected for decreased

proportion macroptery, C¼control line. The number refers to replicate (2 per line).
cProportion macropterous.
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(proportion macropterous, p¼0.04). These results suggest that the analysis of

variance is very robust to fairly extreme skew. Nevertheless, a randomization test

is a useful additional test.

Analysis of variance and the question of how to randomize

The above nested randomization test raises an important point with

respect to the level of randomization. For a nested design, we could either

randomize all individuals or randomize the nesting variable (cages in this

example). The null hypothesis is that there are neither effects of cage nor family.

However, there could easily be both family and cage effects, or any combination of

the two. My interest was in determining the presence of family effects primarily:

therefore, I considered it more conservative to randomize over cages rather

than individuals, because the latter procedure might confound the two effects.

The issue of how to randomize is particularly acute for complex analyses of

variance designs, the simplest being the two-way ANOVA. There are two primary

ways in which the data could be randomized: (1) randomize observations across

all cells, or (2) randomize only across rows or columns. The argument here is that

the testing of interaction is not really possible with randomization, because

randomization as carried out in the first method confounds effects. From

a simulation study, Gonzalez and Manly (1998) concluded that for small data sets

randomizing across all cells and using the F-statistic is generally appropriate.

To illustrate this, I ran the following set of simulations. Twenty data points were

generated, distributed across two treatments, with two levels in each treatment:

individual observations were generated using the formula xijk¼T1iþT2jþ (T1i)

(T2k)þ", where xijk is the kth observation in the ith level of treatment T1 and the

jth level of treatment T2, and " is an exponentially distributed error term

(therefore, non-normal) with mean 1. The levels within each treatment were set

at 1 and 2: thus an observation at level 1 in treatment T1 and level 2 in treatment

T2 was determined as x12k¼1þ2þ (1)(2)þ"¼5þ". Various combinations of effects

were simulated by setting one or more of the treatments to zero (e.g., x12k¼1þ
2þ (0)(1)(2)þ"¼3þ" simulates the situation in which there is no interaction).

The results of this study show that the randomization tests are virtually identical

to the ANOVA results (Table 5.3), even though the error variance was far from

normal. These results indicate, as in the case of the heritability of threshold

traits, that analysis of variance is remarkably robust to the assumption of

normality: in fact, despite my attempts, I could not create a circumstance

in which the analysis of variance failed and produced different results from

the randomization test. This does not mean that the randomization test is not

required in this case: given that the assumptions of ANOVA are not fulfilled,

one cannot be assured that the results will be correct.
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Anderson and ter Braak (2003) undertook a detailed study of randomization

tests for multi-factorial analyses of variance. They define two types of random-

ization tests, exact randomization tests and approximate randomization tests.

An exact randomization test for any term in an ANOVA model satisfies two

conditions: (1) the units that are randomized are identified by the denominator

mean-square of the F-ratio appropriate to the test used by the conventional

ANOVA and (2) randomizations are restricted to occur within the levels of terms

of either smaller order or of the same order as the term being tested. Main effects

are first order effects, two-way interactions are second order effects etc. These two

conditions can be illustrated by reference to three types of ANOVA: one-way

ANOVA, nested ANOVA, and a two-way mixed-model ANOVA (Figure 5.5).

In a one-way ANOVA, there is only a single factor (A) and hence only a single

main effect and a single F-test, FA¼MSA/MSR, where MS refers to “mean square”

and R is the residual term. The exchangeable units are thus the individual

samples and there are no restrictions on the redistribution of units. In a

two-factor, nested ANOVA the fixed effect, here factor A, is tested using the

F-statistic, FA¼MSA/MSB and thus the exchangeable units are the components

of factor B (e.g., the cages in the heritability experiment described above). These

units can be exchanged as shown in Figure 5.5. The nested effect, here factor B,

is tested by FB(A)¼MSB/MSR. The exchangeable units are thus the basic sampling

elements (e.g., the individuals within the cages in the liability experiment) but

the problem is that there is no way to redistribute these units without also

potentially affecting the effect of factor A. Therefore, no exact randomization

test is possible with factor B. In the case of a two-way mixed model ANOVA

Table 5.3 Results of a simulation examining the probabilities from a two-way analysis of variance (P) and

a randomization test (R). One hundred randomizations were performed for each test

P(T1) P(T2) P(T1�T2)

Model P R P R P R

T1þT2þT1*T2þ" 50.01 50.01 0.76 0.83 50.01 50.01

T1þT2þ0*T1*T2þ" 0.31 0.44 50.01 0.01 0.35 0.50

50.01a 50.01 50.01 0.02 0.80 0.84

T1þ0*T2þT1*T2þ" 50.01a 50.01 0.01 0.01 0.76 0.83

50.01 50.01 50.01 50.01 0.12 0.09

50.01 50.01 0.17 0.18 0.10 0.14

0*T1þT2þT1*T2þ" 0.05 0.07 50.01 50.01 0.76 0.80

T1þ0*T2þ0*T1*T2þ" 0.31 0.29 0.35 0.38 0.44 0.50

aDifferent random number seeds: 2, 20, 10.
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the fixed effect, here identified as factor A, is tested using FA¼MSA/MSA�B, the

random effect, B, is tested with FB¼MSB/MSR and the interaction with FA�B¼
MSA�B/MSR. Now, as with the nested ANOVA, it is not possible to redistribute the

sampling elements necessary to test B, or the interaction, without also

potentially altering the effect due to A and thus no exact randomization test

for B or the interaction is possible. If randomization of sampling elements is

restricted to within the levels of B (Figure 5.5) then an exact randomization test

for A is possible.

Figure 5.5 Diagrammatic illustration of how exact permutation tests can be

constructed for one-way ANOVA (top panel), nested ANOVA (middle panel) and

two-way mixed-model ANOVA. The arrows indicate the types of permissible

permutations. Modified from Anderson and ter Braak (2003).
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Even if an exact randomization test is possible, there may be too few

observations to make such a test have reasonable power. In this case, and in those

cases in which exact tests are not possible, an approximate test can be carried out

by doing a randomization test by permuting all observations. Where exact and

approximate tests are possible, it is advisable to do both and compare the results.

For example, in the case of the nested ANOVA do an exact test for factor A

followed by an approximate test of both A and B: if the results of the two tests

disagree then one would suspect that the approximate test is confounded.

Anderson and ter Braak (2003) ran a simulation for the nested ANOVA case with

four different error distributions: normal N(0,1), uniform (1,10), log-normal and

a cubed exponential. For each combination of sample size and error distribution

1000 simulations were run and the number of “significant” tests recorded.

A correct test should produce a significant result with a probability of 0.05: with

1000 runs the confidence region is 0.036--0.064 (i.e., 36 and 64 “significant”

results). The exact randomization test for factor A never produced probabilities

outside the confidence region, whereas the regular ANOVA and the approximate

test based on randomization across both levels did produce several probabilities

when the error distribution was highly skewed (Figure 5.6). Anderson and

ter Braak also tested the use of the residuals but in this case the results were

worse than with the raw data. Nevertheless, based on their simulations of other

types of ANOVAs, they recommend using residuals rather than the raw data and

provide tables showing how such residuals should be calculated for different

types of two-way and three-way ANOVA designs.

The question of balance

A particularly serious concern in the analysis of variance is the issue

of unbalanced designs, for in this case the significance tests lack theoretical

justification (Shaw and Mitchell-Olds 1993). Several solutions to this have been

proposed but none is general, whereas randomization does present a general

approach. To illustrate a typical case in which a data set might be unbalanced,

Shaw and Mitchell-Olds (1993) examine hypothetical data from an experiment

on the effects of conspecifics on the height of a set of plants. They consider two

treatments (e.g., no conspecifics or a fixed number of conspecifics) and also the

potential effect of initial plant height, recorded as a two-group categorical

variable: thus the appropriate statistical test is a two-way ANOVA. Even though

the researchers may have begun the experiment with equal numbers per cell

there is likely to be a loss of individuals, leading to unequal representation per

cell, as shown in Table 5.4. Different answers are obtained, depending on the type

of sums of squares used (Table 5.5). With type I sums of squares the answer

depends upon the order in which variables are entered into the model: in the
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present example, factor A is significant whichever order is used but factor B

is marginally non-significant if entered second and highly non-significant

if entered first (Table 5.5). In contrast, order does not matter for type III sums

of squares: use of this method gives the same answer as type I sums of squares

Table 5.4 Example hypothetical set of unbalanced data in a two-way

analysis of variance. Data from Shaw and Mitchell-Olds (1993)

Factor B (No. of conspecifics)

Factor A (Initial size class) 0 1

1 50 57

57 71

85

2 91 105

94 120

102

110

ANOVA
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Figure 5.6 Plot of type I error rates, based on 1000 simulations, for three statistical

methods of testing for the main effect in a nested ANOVA. Results exact (grey) and

approximate (black) randomization tests are plotted against the normal-theory F-test.

Data taken from Anderson and ter Braak (2003). The axes show the proportion of

cases deemed “significant” by the corresponding test. Simulations producing

values to the left or below the dotted lines produce too few “significant” values,

whereas those to the right or above the solid lines produce too many “significant”

values. Symbols designate error distributions; 	 normal N(0,1), g uniform (1, 10),

m log-normal, and n exp(1)3.
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with factor A entered first. The general view is that type III sums of squares

are preferable, but there is still doubt as to the validity of the estimated

probabilities.

To do a randomization test on the above hypothetical data, we should retain

the same structure in that each cell should contain the same number of obser-

vations as in the original data: this ensures that any effect due to the imbalance

is maintained throughout the randomization process. For a two-way ANOVA,

the data are coded in three columns as shown in Appendix C.5.8 and the

randomization is accomplished by only randomizing the data column (the

coding shown in C.5.8 might not appear to be the most efficient but use of

“ssType¼3” seems to disrupt other coding. Run time is still only about three

minutes for 1000 iterations). The intriguing results of the randomization tests

is that they generate almost exactly the same probabilities as obtained from

the ANOVA test (Table 5.5). From this we can infer that the ANOVA is actually

quite robust, at least in this instance, to the imbalance in the data. On the other

hand, randomization gives us no help in deciding which is the best sums of

squares to use (in a completely balanced design the answer does not depend on

Table 5.5 Analysis of the data shown in Table 5.4, using either type I or type

III sums of squares. In the case of type I sums of squares the order of inclusion

matters and hence two ANOVA tables are presented for this analysis. Also

shown is the probability, Prand, estimated from 1000 randomizations

(Appendix C.5.6)

Source df SS F P Prand

Type I SS with factor A entered first

Factor A 1 4291.2 40.17 0.0004 0.002

Factor B 1 590.2 5.52 0.051 0.049

A�B 1 11.4 0.11 0.753 0.731

Error 7 747.7

Type I SS with factor B entered first

Factor B 1 35.3 0.33 0.583 0.550

Factor A 1 4846.0 45.37 0.0003 0.001

A�B 1 11.4 0.11 0.753 0.749

Error 7 747.7

Type III SS

Factor A 1 4807.9 45.01 0.0003 0.001

Factor B 1 597.2 5.59 0.050 0.061

A�B 1 11.4 0.107 0.753 0.770

Error 7 747.7
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the sums of squares used -- an ideal statistical test would have the same property

for unbalanced data).

Testing for homogeneity of variances

Whereas analysis of variance is quite robust to the assumption of

normality, theory suggests that it will be very sensitive to inequality of variances,

particularly if sample sizes vary among cells (Sahai and Ageel 2000, pp. 86--8).

It is thus important to determine homogeneity of variances. A test that appears

to work well and is relatively robust to non-normality is Levene’s test (Conover

et al. 1981; Manly 1997). Levene’s test consists of transforming within cells using

the transformation

x�ij ¼ xij � �xi
�� �� or x�ij ¼ xij �Mi

�� �� ð5:11Þ

where xij is the jth observation in the ith cell, �xi is the mean of the ith cell and

Mi is the median of the ith cell. Coding to apply Levene’s test using the

cell means is given in Appendix C.5.9: the file resulting from this analysis

can be subjected to a randomization test by modification of the coding in

Appendix C.5.6 or C.5.7. Applying Levene’s test and its randomized version to the

data on ant consumption by horned lizards indicates a marginal effect by both

tests (Appendix C.5.9), showing how difficult it is to identify even gross difference

in variances as being significant.

More on homogeneity: the �2 test

A frequently used statistical routine is the �2 contingency test. However,

the use of this distribution is strictly valid only with reasonably large samples:

Cochran (1954) suggested that a reasonable rule of thumb is that no expected

frequency should be less than 1.0 and that less than 20% of the expected

frequencies should be less than 5.0. When data do not conform to these criteria

the usual solution is to group data, most often by considering only the relative

frequency of the most common type. Such a procedure necessarily loses

information and should be avoided if at all possible.

To illustrate the problem and its solution we shall examine data on mito-

chondrial DNA variation among different populations of the American shad

(Alosa sapidissima). From 14 separate rivers, Bentzen et al. (1988) identified

10 different mitochondrial DNA genotypes (Table 5.6).

The total number of fish sampled was 244, many genotypes being at very

low frequency. Of the 140 cells, 92 (66) have expected values less than 1.0 and

only 13 (9.3) have expected values greater than 5.0. Thus, following Cochran’s

rules, to use the �2 test it is necessary to combine cells. Only the most frequent

genotype is represented at reasonably high frequency in all samples, and hence,
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following the usual procedure, we would combine all the rare genotypes. Now

no cells have an expected value less than 1.0, and less than 20 (17.8) have expected

values less than 5.0. The calculated �2 for the combined data set is 22.96, which

just exceeds the critical value (22.36) at the 5% level. The estimated value of

�2 for the uncombined data is 236.5, which is highly significant (P5 0.001) based

on the �2 with 117 degrees of freedom. However, this result is suspected because

of the very low frequencies within many cells.

Rather than combining cells and thus losing information, we can use ran-

domization to test if the observed �2 value is significantly larger than expected

under the null hypothesis of homogeneity among the rivers. A description of the

algorithm used is illustrated in Figure 5.7 and the necessary coding is given

in Appendix C.5.10. None of the �2 values obtained from the 999 randomizations

of the data set exceed the observed �2, the largest value obtained being only 175.

Thus, we conclude that, far from being marginally significant, the heterogeneity

among samples is highly significant (P 5 0.001). The cumulative frequency

distribution of �2 values from the randomized set is an almost perfect match to

the predicted cumulative frequency distribution of �2 values (Figure 5.8).

Figure 5.8 also shows the results of an analysis of a second data set, that by

Avise et al. (1987) on mtDNA variation in Atlantic and Gulf Coast populations of

the hardheaded catfish (Ariusfelis). Because of extremely low sample sizes, Avise

et al. (1987) combined different genotypes into two clusters and combined

Table 5.6 Distribution of mitochondrial genotypes of shad sampled from

14 separate rivers. Data from Bentzen et al. (1988)

River Mitochondrial genotypes

1 13 15 1 0 0 0 0 0 0 0

2 8 0 2 5 2 1 0 0 0 0

3 8 0 0 2 0 1 2 0 0 0

4 11 4 0 1 1 0 0 0 0 0

5 9 1 0 1 7 0 0 1 1 0

6 12 2 3 0 2 0 2 0 0 1

7 11 1 0 0 5 0 1 1 0 0

8 17 0 0 0 3 0 0 1 0 0

9 10 0 0 0 1 0 0 0 0 0

10 12 1 1 2 0 0 1 1 1 0

11 6 0 3 0 1 0 0 0 0 0

12 12 0 0 2 0 0 0 0 3 0

13 16 0 0 4 0 0 0 0 1 0

14 7 0 0 0 0 0 0 0 0 0
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different geographic sites into Gulf or Atlantic categories (i.e., two “genotypes”

and two “sites”). Even in this radical lumping, one of the four cells contained

only three fish and two of the cells contained expected values less than 5.

The probability obtained using the randomization method is 0.26 and from

the tabulated values P¼0.16. Because of the low sample sizes and restricted

In doing the randomization we must keep the row and column totals constant.  This can be
achieved by the following algorithm.  Let nij be the number of observations in the ith row of
the jth column, and let the total number of observations be N.  We create a matrix, M with
two columns and N rows, and into each column we enter the row by column coordinates for
every observation, with, for example, the first column containing the row coordinates and the
second column the column coordinates.  For example suppose our initial data matrix, is 2×2
consisting of two genotypes (G1, G2) and two sites (S1, S2) with entries:

Site Genotype
G1       G2

Row totals

S1 1 2 3

S2 2 0 2

Column totals 3 2 5

The required 5×2 M matrix (with label headings superimposed for clarity) would be

There are five entries, each entry denoting a single cell entry.  Thus the total number in cell
2,1 (row, column) is equal to the number of entries “2,1” in M.  To create a randomized
matrix we randomize one of the columns of the M matrix and then count up entries to
construct the new matrix.  Thus, for example, suppose we randomize the “column” entries of
the M matrix to get the sequence 1, 2, 1, 2, 1.  The “new” M matrix and data matrix would be

Coding to do the above procedure is given in Appendix C.5.  Note that in the coding I use two
vectors rather than a single M matrix.

1   1

2   2

2   1

1   2

1   1

[r   c]

1   1

2   1

2   1

1   2

1   1

[r   c]

⇒ 2  1
1  1

Figure 5.7 Description of algorithm to randomize cell entries in �2 contingency test.
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number of cells, the cumulative distribution of �2 is distinctly stepped

(Figure 5.8), but it closely corresponds to the cumulative �2 distribution.

Roff and Bentzen (1989) analyzed four other data sets in addition to the

two above, and in all four cases found that the probability obtained from the
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Figure 5.8 Cumulative frequency distributions of �2 from the randomized data set

and the theoretical �2 distribution. Upper panel shows data from mtDNA in shad

(data from Bentzen et al. 1988) and lower panel shows data on mtDNA variation in the

hardheaded catfish (Data from Avise et al. 1987).
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standard �2 test qualitatively matched the probability obtained from the ran-

domization. This should not be taken as sufficient grounds to rely upon the

standard test, because its behavior is uncertain at low sample sizes. It does

suggest that a preliminary analysis with the standard test should give a good

indication of the results of the randomization test.

Linear and multiple regression: dealing with non-normal errors

Regression is known to be very robust to failure of the assumptions of

a normal distribution of errors, but randomization testing makes fewer assump-

tions about the error distribution and in this sense can provide a useful check.

The obvious method of randomization is to randomly pair the X and Y values.

Other methods of randomization, such as randomization of residuals seem to

give the same answer in most cases.

Manly (1997) suggested that the use of randomization in regression can be

justified on one of three grounds: (1) the X, Y pairs are separate independent

random samples from a population in which all possible pairings are equally

likely, (2) the data come from an experiment in which the X values are randomly

assigned to experimental units and the Y values have the same distribution for

all values of X, and (3) if it is assumed that if X and Y are independent then all

possible pairing can occur. The crux of these three justifications is that under the

null hypothesis all possible pairings are equally likely.

Randomization of linear regression coefficients is readily accomplished (see

Appendix C.5.11, note that one can either use the coefficients as the test statistics

or the t values; in the coding shown, the coefficients are used) but its utility

is likely to be rather small except in those cases in which errors are grossly

non-normal or extreme. Randomization testing can also be applied to testing

multiple regression, in which case the dependent observations are randomized

with respect to the multiple dependent variables. An alternative to randomizing

the observations is to randomize the residuals, as suggested by ter Braak (1992).

In this approach, the model is fitted to the data, the residuals are extracted, and

then these used in place of the dependent variable in the randomization process.

Simulations suggest that this method does not improve the performance of the

randomization test and may in some cases reduce its power.

To demonstrate that the usual parametric test and randomization test

can give different answers (Manly 1997), following a model suggested by Kennedy

and Cade (1996), produced twenty “observations” on independent variables

X1, X2, and the dependent variable Y using the following algorithm:

(1) 19 values of X1 were drawn from a uniform distribution between 0 and 3.

(2) The 20th data point of X1 was set at the extreme value of 33.
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(3) 20 values of X2 were drawn from a uniform distribution between 0 and 3.

(4) Y values were calculated from Y¼3X1þ"3, where " was a random error

taken from an exponential distribution.

A plot of Y on each variable separately suggests that there is something amiss

with the error structure, one point lying far above the fitted regression line of

Y on X1 (Figure 5.9). Rather surprisingly, given that we know how the data were

generated, the error variance about X2 appears to increase with X2. A multiple

regression analysis using least squares indicates that the overall model is highly

significant and that there is a highly significant effect due to X1 but not due to X2

(Table 5.7). A stepwise regression analysis retains both variables in the model.

However, an analysis of the residuals from the fitted model shows a highly

significant deviation from normality (both Lillifor’s test and Shapiro--Wilkes test

give P5 0.0001). Given the relatively small number of observations, the failure to

Residuals
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Figure 5.9 The upper panel shows the plots of Y vs. X1 and X2, using the simulated

data of Manly (1997). Solid lines show fitted regression lines. Lower panel shows

the distribution of the residuals from the fitted multiple regression equation and

the superimposed best fit normal distribution.
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conform to the normal distribution should be taken as strong evidence that

the data do not conform to the assumptions of least squares regression.

Applying the randomization test to the above data produces a qualitatively

identical result, except that the significance levels are reduced (Table 5.7).

Randomization of the residuals indicates no significant effects! To examine

which of these methods of analysis is most appropriate, Manly ran the following

simulation: he constructed twenty sets of observations by taking the twenty error

values (E1, E2, . . . , E20) and creating Y using Yi¼�1X1iþ�2X2iþEj, where Ej is an error

value drawn at random (without replacement) from the error set. When �1 and �2

both equal zero a correct test will detect a significant effect with a probability

of 0.05. Only the randomization of the observations produced the correct number

of “spurious” significant probabilities (Table 5.7). When one or both of the slopes

differed from zero, the least squares analysis typically gave more significant

tests when the null hypothesis was not true (i.e., more power, Figure 5.10).

These analyses suggest that, in the present case, when the null hypothesis is true,

randomization is the preferred method, but it is less powerful than the least

squares method. Which method is to be preferred depends upon which type of

error is most important.

Correlation and regression: dealing with the problem of non-independence

Regression is quite robust to the distribution of residuals but the

entire principle of hypothesis testing breaks down when the dependent and

independent variables are not independent. A very common case in which this

Table 5.7 Results of analysis of the multiple regression model described in the text and the analysis of

the results of applying three methods of analysis to 5000 simulated data sets

Probability

Method �1 �2 Full model

Analysis of single data seta

Least squares analysis 0.0015 0.1054 0.0017

Randomization of residuals 0.0510 0.0984 0.0510

Randomization of Y 0.0274 0.01152 0.0074

Analysis of 5000 simulated data sets with �1¼�2¼0b

Least squares analysis 0.052 0.024c 0.054

Randomization of residuals 0.071 0.041 0.056

Randomization of Y 0.051 0.053 0.050

a5000 randomizations.
b100 randomizations per analysis.
cNumbers in bold indicate values significantly different from 0.05 for simulation.
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occurs is when a researcher, for example, asks if some variable, such as fecundity

(y) varies as a function of per unit mass, i.e., does fecundity per gram of salmon

vary with salmon size (x)? This violates the basic assumption of linear regression,

because it is equivalent to regressing the reciprocal of the independent variable

on itself, i.e., y/x vs. x. One way to avoid this problem is to regress fecundity on

size (y vs. x, or some suitable transformation) and then examine the resulting

equation with respect to variation on a per unit mass basis. An example discussed

in Roff (1997, p. 136) is egg size and body size in birds: for passerines (song birds)

egg mass, y, is related to body mass, x, according to the equation y¼0.258x0.73.

This equation tells us that egg mass increases with body mass but it is perhaps

not immediately clear how the relative egg size varies. The correlation between

the two variables (on a log scale to linearize the relationship) is 0.96, which

is sufficiently high that algebraic manipulation of the regression equation is

reasonable. Dividing both sides by bodymass gives relative eggmass¼0.257x�0.27,

which immediately shows that relative egg mass is declining with body mass.

Passerine body weights range from about 4g to 1200g, giving a variation in

relative egg mass from 18 to 4% (for non-passerines the range is even larger, with

a humming bird producing an egg that is 29% of its body size but an ostrich

producing an egg that is only 2% of its body size). To test if the relationship
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Figure 5.10 Summary of power analysis of simulation model of the multiple

regression model Yi¼�1X1iþ�2X2iþEj (see text for further explanation); 	: tests on
�1 in models in which �1 4 0; g: tests on �2 in models in which �2 40; and m: tests

on the overall multiple regression model in which at least one slope was greater

than zero.

Examples illustrating randomization tests 131



between relative egg size and body size is significant (which it clearly is in

this case), we cannot employ the usual linear regression or correlation analysis.

A very simple solution is to use randomization, where we randomize that

component of the dependent variable that is not contained within the dependent

variable (e.g., in the present example, we randomize absolute egg and body size

and then compute relative egg size for each randomized data set). By this process

the “built-in” relationship between the two variables is taken into account.

A more complex version of the above problem arose in a study of song sharing

in the passerine, the American redstart (Shackell et al. 1988). Males of this species

divide their song repertoire according to functional situations. Prior to and

during the arrival of females, each male sings one particular song repetitively in

preference over the others. The details of this song vary considerably among

males, particularly with respect to the last three phones of the song. The question

Shackell et al. (1988) wished to address was “do neighboring birds tend to sing the

same song?” They measured 15 components of the last three phones (Figure 5.11)

and to reduce the problem of non-independence among measures within the

same phone they used the first principal component of each phone. The null

hypothesis is that there is no correlation between neighbors in their song

components. A simple test of this hypothesis is to calculate the correlation

between the songs of all the birds and their neighbors. The problem is that there

is a lack of independence between the two variables. Consider bird x with

neighbor y: bird x appears first as an independent variable and bird y as

a dependent variable, but then bird x also appears as a dependent variable,

because it is neighbor to bird y (Figure 5.11)!

The expected value of the regression coefficient is, in fact, negative. This can be

demonstrated as follows. The distribution of birds on the x-axis is obviously

the ascending ranking of birds. Consider now the first bird; all of its neighbors

have larger values. Similarly the neighbors’ values of the last bird on the x-axis

must be less than his. For the second bird on the x-axis only 1 value at most,

that of the first bird, can be less than his. Similarly, for the second-to-last bird

only, the last bird can have a larger value. Thus, there must be a bias towards

higher values at the low end on the x-axis and low values at the high end.

This problem of lack of independence was solved by randomization, namely,

estimating, via simulation, the probability of observing by chance alone a corre-

lation coefficient as large as or larger than that obtained from the data. Shackell

et al. constructed 5000 randomized sets from each data set (1982 and 1984).

From these, the null distribution of the correlation coefficient was generated for

each year (note that because of the use of principal components the correlation

coefficient is equal to the regression coefficient). Each randomized data set has

to satisfy two requirements. First, if bird i is neighbor to bird j, bird j must be

132 Randomization and Monte Carlo methods



neighbor to bird i. Second, the frequency distribution of the number of

neighbors/bird must remain the same (for a description of the appropriate algo-

rithm see Shackell et al. 1988). For the 1982 data set, the randomization procedure

indicated that the expected correlation was approximately �0.03. Although the

expected value of the correlation is negative as predicted, the bias is small.

For both data sets (1982, 1984) the randomization procedure indicated a

significant correlation for LP-1 but not the other two components (Table 5.8).

Further analysis showed that the significant correlation arose from the single
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Figure 5.11 Spectrograms of phone variables used in analysis of redstart song.

Phones are designated as last (LP), next-to-last (LP-1) and second-to-last (LP-2). Measured

variables: (a) maximum frequency, (b) minimum frequency, (c) duration of phone,

(d) interval between phones, (e) proportion of total duration spent in upward sweep in

frequency, and (f) number of inflection points. Lower panel shows the distribution of

LP-1 in 1982, with the least squares regression line.
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variable labeled “f” in Figure 5.11. Thus, Shackell et al. were able to conclude that

indeed the songs on neighboring redstarts do resemble each other more than

expected by chance. This particular analysis illustrates the great utility of the

randomization approach, for in this case the use of the parametric statistics is

clearly not valid.

Comparing distance matrices: the Mantel test

Ecologists frequently deal with spatially distributed data, such as density

per quadrat, as illustrated in Figure 5.12. Visual examination of these data

suggests that there is a pattern to the distribution, with high counts tending to

be clustered. One way to examine the data is to compare the two matrices

comprising the spatial distance between points and the difference in measured

values (Z in Figure 5.12). Denoting these as Mx and My, respectively, we have

Mx ¼

0 x12 . . . x1n

x21 0 . . . x2n

. . . . . . . . . . . .

xn1 xn2 . . . 0

2
66664

3
77775 My ¼

0 y12 . . . y1n

y21 0 . . . y2n

. . . . . . . . . . . .

yn1 yn2 . . . 0

2
66664

3
77775

Note that xij¼xji and that the diagonal elements are obviously zero. To compare

the above two matrices we could use the Pearson product moment correlation,

pairing up corresponding elements across the two matrices and omitting points

either above or below the diagonal, as these are simply duplicate values (lower

plot Figure 5.11). Practically, to carry out such a test we first reorder the matrices

into two vectors, composed of the above- or below-diagonal elements of the two

matrices:

Vx ¼ x12 x13 . . . x23 x24 . . . xðn�1Þðn�2Þ xðn�1Þðn�1Þ
� �

Vy ¼ y12 y13 . . . y23 y24 . . . yðn�1Þðn�2Þ yðn�1Þðn�1Þ
� �

Taking the results of the parametric analysis at face value, the correlation is

highly significant (r¼0.160, n¼435, P50.01), but, because the data clearly fail to

Table 5.8 Correlations between neighbors using the first principal component of LP-2, LP-1 and LP.

Taken from Shackell et al. (1988)

Principal

component

1982 correlation

between neighbors P

1984 correlation

between neighbors P

LP-2 0.0082 0.425 0.2637 0.034

LP-1 0.3749 0.005 0.2665 0.031

LP 0.2722 0.028 0.0782 0.238
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Figure 5.12 The upper plot shows the hypothetical spatial distribution of data, such

as counts per quadrat. There are a total of 30 paired points, making a 30�30 matrix of

distances and difference measures (in this case simply the absolute difference). These

two matrices, called “Distance” and “Difference,” can be calculated using the coding

shown in Appendix C.5.12. Lower plot shows plot of the absolute differences against

distance. Solid line shows fitted regression.
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satisfy the assumptions of the test, such a result cannot be so taken. The solution,

called the Mantel test, is to use randomization to generate many estimates of r

and calculate the proportion of cases in which robservedj j > rrandomj j, where robserved

is the correlation from the observed data set and rrandom is the correlation from a

randomized data set. The Mantel test is easily accomplished by first converting

the matrices into the vectors, Vx and Vy, and then treating the data in the same

manner as in the regression problem (Appendix C.5.13). For the hypothetical

data, the Mantel test indicates a highly significant correlation between the two

measures (P¼0.004). Dietz (1983) examined several other measures of association

and found that Spearman’s rho or a variant of Kendall’s tau, both non-parametric

measures of association, had higher power for highly skewed distributions than

the Pearson product-moment correlation and was very similar when the data

were not skewed. Spearman’s rho is readily incorporated by replacing each vector

with its ranks and then proceeding as before.

Comparing matrices: other tests

In some cases we may be interested in comparing matrices that have the

same units: for example, the matrix of phenotypic or genetic variances and

covariances of two different populations or species. TheMantel test has been used

for such a purpose but it has several disadvantages. First, it is a test of correlation

between matrices but not of equality of matrices: matrices may be correlated

and equal, correlated and proportional, correlated but not proportional or

uncorrelated (Figure 5.13). Second, the Mantel test does not take into account

the variability that may be inherent in the matrix entries; for example, there

can be considerable variance in the estimates of the genetic variances and

covariances.

We can extend the randomization procedure to take into account

sampling variation. Consider the question of comparing two phenotypic

variance--covariance matrices (hereafter, referred to simply as covariances). The

null hypothesis is that the two sets of covariances come from the same statistical

population. Note that we do not assume that they have the same means.

However, for the randomization procedure, it is necessary to transform the

values such that the corresponding trait means are equal. Under the null

hypothesis, the individuals could have come with equal probability from either

population: therefore, a randomized data set is created by randomly assigning

individuals to the populations and then calculating the new matrices (if the trait

means had not been equalized prior to the randomization then the covariances

would differ by virtue of different means). In this case, the individual traits

are retained as a unit, the individual being the unit of randomization. If we were

136 Randomization and Monte Carlo methods



comparing genetic covariance matrices the unit of randomization would be

the families. It is important to keep in mind what is being tested.

After construction of the two randomized matrices the test statistic (plausible

candidates are discussed below) is determined, and compared with the observed

value. The entire process is repeated, say, 4999 times and the probability

of obtaining the observed result under the null hypothesis estimated from the

proportion of times the statistic from the randomized data sets exceeds that

from the observed data set.

There are a number of alternate test statistics, each being sensitive to

particular characteristics of matrix structure:

(1) Mantel test: is one candidate and its limitations have already been

discussed.

(2) Maximum likelihood (Anderson 1958; Shaw 1991): this test proceeds in

three stages, (a) calculate the elements of the two matrices separately

using maximum likelihood: let the log-likelihoods of these be LL1 and

LL2, and the combined log-likelihood be LL1,2, (b) calculate the elements

of the matrix under the null hypothesis that the data come from the

same population: let the log-likelihood so calculated be designated

LL0, (c) the log-likelihood ratio for comparing the two hypotheses is

2(LL1,2�LL0) and is tested against the �2 distribution with one degree of
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Figure 5.13 Diagrammatic illustration of four possible ways in which two matrices

can covary.
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freedom, (d) the foregoing test is sensitive to deviations from multi-

variate normality and hence a randomization test is a useful addition.

This can be done by randomizing the data as described above and recal-

culating the log-likelihoods and using 2(LL1,2�LL0) as the test statistic.

(3) Flury hierarchy (Flury 1988; Phillips and Arnold 1999): this extends

the maximum likelihood approach by comparing the structure of the

matrices using the principal components (Figure 5.14). As with the

previous approach, the analysis can proceed using maximum likelihood

or by randomization.

(4) T method (Willis et al. 1991; Roff et al. 1999): A very simple test in which

we compare the sum of the absolute differences between the matrix

elements, i.e.,

T ¼
XC
i¼1

�̂i1 � �̂i2

��� ��� ð5:12Þ

where, as above, the matrix has been written in vector format with �̂ij

the estimate of �̂i of the jth matrix (j¼1, 2), and C is the number of

distinct elements in each matrix (¼0.5n[nþ1], where n is the number of

rows and columns). An alternative would be to use the squared differ-

ence, which would be consistent with a least squares approach (I have

not found the results to differ).
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Figure 5.14 Schematic view of the Flury hierarchy for two covariance matrices

consisting of two traits. The ellipses represent the covariance structure with the axis

orientation denoting the principal components and the spread of the ellipses along

each axis the eigenvalues. The analysis proceeds from right to left (equality to

unrelated structure). With more than two matrices another possible finding is for

some but not all PCs to be common.
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(5) Jackknife-followed-by-MANOVA (Roff 2002; Roff et al. 2004): This has

been discussed in Chapter 3. Randomization can be used either at

the start, thereby producing a randomization of the entire process, or by

randomizing the pseudovalues between the two sets, thereby producing

a randomization test of the MANOVA component.

(6) Reduced major axis regression (Roff 2000): consider the model

�i1 ¼ Aþ B�i2 ð5:13Þ

which assumes a linear relationship between the elements of the two

matrices. There is no a priori reason why the elements should be so

related but empirically this is a frequent observation. While the above

model suggests a linear regression approach, the specification of

dependent and independent variables is arbitrary, and simple linear

regression is excluded because there will be variance in both dependent

and independent variables. If, as will generally be the case for the

comparison of covariances, this variation is approximately the same

along both axes then we could use reducedmajor axis (RMA) regression.

Under the null hypothesis A¼0 and B¼1, and, therefore, deviations

are assessed by comparing |Aobs| with |Arandom|, whereas deviations of B

are assessed by comparing |Bobs�1| with |Brandom�1|. A non-significant

A but significant B indicates that the matrices are proportional and the

proportionality constant is significantly different from 1. If both A and B

are significant the elements of the two matrices are linearly related but

not proportional.

Testing for density-dependence

An issue that has long plagued ecologists is the detection of density-

dependence in populations. First, what is meant by density-dependence? Let the

population sizes at two consecutive time periods be Nt and Ntþ1. The rate of

increase in the population is given by Ntþ1/Nt. Ratios are always rather difficult to

work with and so we take logs, giving the rate of increase (on a log scale) to be

ln(Ntþ1)�ln(Nt), which for simplicity I shall denote as dt¼xtþ1�xt. Density

dependence is defined to occur when dt is a function of xt. A simple model of

density-dependence is

xtþ1 ¼ r þ �xt þ " ð5:14Þ

where r is termed a drift parameter and accounts for long-term density-

independent changes in population size, � is a coefficient describing negative

density-dependence (�51) and " is an independent random variable with mean
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zero. Pollard and Lakhani (1987) suggested the following randomization method

for testing the null hypothesis �
1: (1) For the observed data set calculate

the correlation between d and x, say robs. (2) Randomize the vector of d and

recalculate the correlation to produce a randomized value of the correlation,

say rrand. (3) From the set of randomized correlations estimate, the probability

of obtaining a value of robs as small or smaller than observed. This test is

simply a one-tailed randomization test of the correlation coefficient. A number

of other tests have been proposed but simulations have shown that this

test performs best (Holyoak 1993). The above test can be modified to take into

account nonlinear relationships between population size and growth rate,

a popular model being the log-linear functional relationship xtþ1¼rþ�Ntþ"

(Saitoh et al. 1999).

Monte Carlo methods: two illustrative examples

In the first example, we observe two individuals of a plant species that

are some distance d apart (Figure 5.15). The area that could be occupied by a plant

of this species is shown as the surrounding circle. A question we might wish

to answer is, “are the two individuals further apart (i.e., show interference)

than expected by chance?” To answer this question we could proceed as follows:

(1) pick two points within the circle at random and determine the distance

between them, (2) repeat this procedure a large number of times (say N) and

record the number of times the distance between the randomly placed points

(say n) exceeds that observed, (3) estimate the probability of obtaining a dis-

tance as great or greater than that observed as (nþ1)/(Nþ1). For an example of

Monte Carlo methods applied to spatial patterning see, for example, Couteron

et al. (2003).

In the second example, we measure the body size of two animal species that

we suspect might show character displacement (Figure 5.15). The question we

wish to address is, “Are the two animals further apart in morpho-space (here

a single body size measure) than might be expected by chance?” To answer this

question we proceed in the same manner as in the previous example, in this case

selecting points within some fixed interval. Studies addressing the size-ratio

question are considered in greater detail below.

The above two examples are very simple but highlight the components of

this approach, namely, (1) we have a set of observed measurements, (2) we

have a theoretical model that can be used to generate the set of measurements

under the null hypothesis, (3) as with randomization, we estimate the required

probability by comparing the observed data with the randomly generated data.

Monte Carlo models are generally tailored to a specific hypothesis and, thus far,
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have tended to use a variety of techniques for assessing significance. There is,

however, a very general approach first introduced by Besag and Clifford (1989)

that can remedy this situation, though there remain cases in which alternate

approaches will be easier. I shall begin by considering such a case, namely the

Figure 5.15 Two hypothetical examples in which Monte Carlo methods could be

employed. In the upper figure, we wish to test the hypothesis that the distance

between the two plants (left-side) is greater than expected by chance. In the lower

figure, we wish to test the hypothesis that the ratio in size between the two

co-occurring species (left-side) is greater than expected by chance. In both cases,

we generate pairs of points within the allowable space (right-side) and use the

distribution of distances/ratios so generated to estimate the probability of obtaining

a distance/ratio as large or larger than observed.
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question of validating models in step-wise regression. Following this, I introduce

the Generalized Monte Carlo test. Thereafter, to illustrate the diversity of

questions that can be addressed and approaches hitherto used, I consider some

Monte Carlo models that have been used in ecological studies.

Validating step-wise regression

In an analysis of the Canadian lynx cycle Arditi (1989) obtained three

“contending” regression models for lynx abundance:

Model 1: Y¼0.43X1 � 0.65X2þ0.61X3 R2¼0.64

Model 2: Y¼0.43X1 � 0.67X2þ0.43X3þ0.37X4 R2¼0.75

Model 3: Y¼0.34X1 � 0.47X2þ0.46X3þ0.38X5 – 0.33X6 R2¼0.79

where X1, . . . ,X6 are weather factors (e.g., average temperature during a parti-

cular month, lagged to take into account lags in population response). These

three equations were the result of stepwise examination of a data set in which

there were a possible 120 (24 months � lags of 0--4 years) predictor variables!

These three models could be evaluated using the cross-validation technique

described in the next chapter. However, whereas this approach would allow one

to decide among the three models it would not tell one if the particular subset

regression is statistically significant, because in this case such an enormous

number of equations were examined that it is possible that the final models are

a consequence of a type I error. To evaluate this possibility, Arditi constructed a

Monte Carlo model in which (a) the weather data were retained as observed,

thereby preserving their structural relationships, and (b) constructing a set of

lynx abundances by randomly sampling from a log-normal distribution with

the constraint that the sequence of abundances were serially correlated with the

same value as observed in the real data. For each randomly constructed data set,

Arditi used stepwise regression to select the best 3, 4, and 5 variable models and

compared their R2 with the observed. For the analyses using all 120 predictor

variables the observed value of R2 was not significantly greater than expected by

chance (P40.2 in all three models, Table 5.9). Arditi also considered analyses

in which the number of predictor variables was reduced: in all cases the

same stepwise regressions were obtained using the observed data set and for

the smallest set of predictor variables the observed R2 was significantly larger

than expected (P50.03 in all three models, Table 5.9). These results point out the

necessity of carefully selecting the predictor variables: Arditi notes that lags

longer than 2 years make no sense on biological grounds, which makes one

wonder why they were selected in the first place as possible predictor variables.
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As Arditi (1989, p. 33) himself notes, “The practice of ‘blindly’ offering all sorts

of variables, under the assumption that the procedure will automatically select

the relevant ones, must be avoided.”

Generalized Monte Carlo significance tests

To illustrate the generalized Monte Carlo approach, I shall consider

the question of whether a set of body size ratios are larger than expected by

chance, and thus (perhaps) indicative of competitive displacement. The specific

situation to be analyzed is shown in Figure 5.16: there are four species in

the community under study and a possible pool of 20 species that the researcher

deems could be members of the community. To obtain an index of the

community-wide ratio the species are ranked according to size and the three

pairwise ratios calculated: 13/7, 39/13, and 100/39. Because of the large differ-

ences in size and because ratios generally do not have well-behaved distributions,

the researcher uses the mean of the log of the ratios, which is equivalent to

using the geometric mean, GM ¼ antilog ð1=3Þ P4
i¼2 logðxiÞ �

P3
i¼1 logðxiÞ

� �� �
. This

measure has an interesting property: it depends only upon the two extreme sizes,

GM¼antilog ((1/3)[log(x3)�log(x1)])! The fact that the intervening size ratios only

play a role in so far as they determine the divisor (1/3 in this case) is unsettling

and perhaps argues against this measure of size ratio. So, the sometimes poor

distributional properties of ratios notwithstanding, the researcher decides to use

the arithmetic mean instead, which we shall denote as �̂Obs (for the present

purpose the importance lies not in the particular statistic chosen, only that one

is chosen). The probability of obtaining a mean ratio as large or larger than that

observed, P, could be obtained by generating N communities of four species

selected at random, without replacement from the species pool and for each

calculating the mean ratio for each such community, say �̂i, for the ith random

Table 5.9 Results of the Monte Carlo test of lynx data described in text. Shown is the proportion of cases in

which, for a given combination, the R2 from the Monte Carlo model equaled or exceeded the observed R2.

Estimates based on 2000 simulations per combination. Modified from Arditi (1989)

Predictor variables Model

Months Lags Total 1 2 3

24 0–4 120 0.393 0.252 0.258

24 0–2 72 0.213 0.108 0.108

12 0–2 36 0.067 0.027 0.021

8 0–2 24 0.026 0.007 0.004
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Figure 5.16 A simple illustration of the generalized Monte Carlo method applied to

body size ratios. The upper plot shows four hypothetical desert rodents (based on

Figure 1 of Bowers and Brown 1982). The observed series of body masses is 17, 13, 39,

100 and the possible hypothetical species pool from which these four species could

have come is shown on the bottom left (20 species ranging from 2 through 100 g). The

total number of stepwise random sequences is 1001. A random number is drawn

which places the observed sequence at position 165, which for simplicity is here

denoted as position 0. Two series of sequences, denoted the Monte Carlo sequences,

beginning from the observed sequence (¼Monte Carlo sequence #0) are generated by

stepwise replacement of one species selected at random from the Monte Carlo

sequence with a randomly selected species from the species pool, subject to the

restriction that the same species cannot appear twice in any single Monte Carlo

sequence. In one “direction” 164 steps are made whereas in the other “direction”

836 steps are made. At each step, the relevant statistic is calculated and the required

probability estimated by comparing the observed value with the values from the

Monte Carlo sequences.
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community: then, as usual, P is estimated as P ¼ ½nð�̂i 
 �̂ObsÞ þ 1=ðN þ 1Þ�, where

nð�̂i 
 �̂ObsÞ is the number of times �̂i 
 �̂Obs and N is the total number of random

communities.

In the present case, the randomization method is easy because it is opera-

tionally easy to sample without replacement from the species pool. However,

there are cases in which this may not be easily accomplished. One such

circumstance is shown in Figure 5.17: there are six islands (A, B, C, D, E, F) and

on each island there occurs a maximum of four species from some assumed

“guild,” taxon or group of species that the researcher suspects might be

so similar that competitive interactions could structure the islands-wide

community, i.e., the sets of species occurring on the islands is not a random

Figure 5.17 A hypothetical matrix describing the distribution of four species on six

islands. The four unit patterns within the circles or square of the observed matrix

denote those components of the matrix that can be permuted while keeping

marginal totals constant. A single step Monte Carlo change is made by selecting one

of these components at random (e.g., the one in the square) and permuting the

entries as shown. This produces the Monte Carlo matrix which now has six possible

changes. This process is repeated in a “forward” and “backward” direction to produce

a series of communities with which the hypothesis that the observed community is

randomly constructed can be tested.
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assembly of species. Each random community must satisfy the requirement that

the marginal totals remain the same (i.e., the number of species per island and

the number of occurrences of each species remain constant), which places

a severe constraint on the number of permissible combinations. It can be

shown that all possible combinations can be formed by permuting the

four unit pattern highlighted in Figure 5.17. Thus, a random community could

be formed by randomly selecting and permuting a large number of such

four unit patterns (each randomization may itself create more possible

randomization patterns). While such a process would create random commu-

nities it would also be very time consuming. An easier approach is given by the

generalized Monte Carlo method which requires only single step changes for

each community. To illustrate this approach we shall first return to the size

ratio problem.

Besag and Clifford (1989) noted that a particular statistic (such as the observed

mean size ratio), say �̂Obs, can be viewed as one in a series of single step Monte

Carlo changes. Let the number of steps in the series be Nþ1 (1001 in Figure 5.16):

we first assign �̂Obs to a position within this series by selecting a random

number between 1 and N, say M (¼164 in Figure 5.16). Next, we make a single

change at random to the data and recompute the required statistic, say �̂1: in the

present case, this would mean swapping species between the species pool and

the observed sequence (no duplication of species is allowed and thus sampling

is without replacement). This single step process is repeated N�M times to give

a “forward” sequence (�̂1, �̂2, �̂3, . . . , �̂N�M). Similarly, the single step process is

done M times giving a “backward” sequence (�̂�1, �̂�2, �̂�3, . . . , �̂�M: “forward” and

“backward” are used for convenience and refer to two sequences commencing for

the specified number of steps from the observed sequences). We now estimate the

probability that the observed statistic is significantly larger (or smaller) than

expected in the same manner as for the randomization procedure. This method

is known as the serial method (Besag and Clifford 1991). An alternate method is

called the parallel method; because it is typically more computer intensive

and less efficient than the serial method (Manly 1993), it will not be considered

here. To ensure that the results are not due to the particular sequence generated,

the serial generalized Monte Carlo test should be repeated by generating a series

of random “starting” positions. The set of probabilities so obtained can be used

to estimate the mean and SE of the probability.

The above approach is particularly useful for cases, such as the community

structure case shown in Figure 5.17. In this particular case, there are problems

with identifying species exhibiting interactions that structure the community:

this issue is taken up in the next section.
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Community assembly rules

Perhaps one of the largest, and certainly one of the most contentious,

areas of ecological study in which Monte Carlo models have been used to test

statistical hypotheses is that of community structure. A variety of questions

have been addressed, which can be arranged roughly into the three categories of

niche overlap, species co-occurrence and the size structure of communities.

To illustrate the disparity in approaches, I shall consider the latter two (for papers

dealing with niche overlap see, for example, Joern and Lawlor 1980; Lawlor 1980;

Cole 1981; Kochmer and Handel 1986; Tokeshi 1986; Vitt et al. 2000). It is not my

intent to enter the debate that continues on the merits of one particular null

model over another but to present an overview of the types of models used to

highlight the care with which null models and their tests must be constructed

(for general discussions refer to Strong 1982; Harvey et al. 1983; Strong et al. 1984;

Connor and Simberloff 1986; Losos et al. 1989; Pleasants 1990).

Patterns of species co-occurrences

The general approach has been to reallocate species (individuals) to

islands (patches) keeping the total number per island and/or number of species

occurrences constant (Table 5.10). Gotelli (2000) provides a general analysis of the

consequences of different sets of assumptions. Several different indexes and tests

have been proposed: the best is to compare the observed index against the

randomized value using the same method as for randomization. Manly (1995)

has advocated keeping both row and column totals constant as this reflects

inherent constraints on the species dispersal capabilities and the island

characteristics. As a test statistic he proposed

S ¼
XR
i¼1

XR
j¼1

ðOij � EijÞ2
R2

ð5:15Þ

where Oij is the observed number of times that species i co-occurs with species j,

Eij is the expected number based on the null model and R is the total number

of species. Because, by definition, Oii � Eii ¼ 0, it is not necessary to specify i 6¼ j

in the above equation. The probability of obtaining a value of S as large, or

larger, than that observed is estimated from the set of S values obtained from the

generalized Monte Carlo method. Interactions between particular species

pairs can be tested to find those particular pairs that deviate more than expected

by chance: to account for multiple comparisons these individual tests must

be Bonferroni-corrected.
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Size structure and community organization

The general conceptual model used is that of a linear array of body size

or somemorphological structure (Figure 5.16). The null model is that the position

on the size axis is random. To construct the null model, the general procedure is

to (1) construct a pool of candidate species, (2) draw from the pool the requisite

number of species, (3) calculate the required statistic, (4) repeat 2 and 3 a large

number of times to generate the sampling distribution of the statistic, and

(5) compare the observed value of the statistic with the sampling distribution to

obtain a probability of observing the event. The actual statistic used to compare

observed and predicted values varies widely and there appears to be no consensus

on the best method (Table 5.11). The disparity in approaches can be readily

appreciated by a brief overview of the methodologies of several studies:

Body size in desert rodents (Bowers and Brown 1982)

The list of candidate species was restricted to those which occurred at

a frequency greater than 5% in a sample. Many samples were drawn from a

particular desert (three deserts were studied) and the overall frequency of species

calculated. The expected frequency of observed pairs of species was then calcu-

lated as the product of the observed relative abundances. This differs from other

analyses in that species are not being allocated to the sample from a candidate

list. The Monte Carlo aspect of the analysis comes in the testing procedure.

Species pairs were assigned to one of two categories, 41.5 ratio or 51.5 ratio:

thus we have a 2�2 matrix with the columns being body size ratio and the rows

the presence or absence of co-occurrence of every possible specie pairs. Testing for

heterogeneity in the association was done using �2. The problem with this test in

this circumstance is that there is a lack of independence because any given

species appears multiple times. Bowers and Brown used simulation to determine

the distribution of �2 values under the null hypothesis of random association (the

reader is referred to the article for the specifics of the simulation).

Island birds (Strong 1979)

Synthetic island avifaunas were constructed by randomly selecting

species from a candidate list of mainland species, taking no account of relative

abundances. Species were ranked and adjacent size ratios calculated. The obser-

ved size ratios were compared with the simulated data by three tests, all of

which essentially compare the expected numbers above and below the predicted

mean (Table 5.11). Hendrickson (1981) repeated the test using the median.

Brandl and Topp (1985) used the same approach to analyze size variation in

carabid beetles of Central Europe.
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Island birds (Case et al. 1983)

Synthetic avifaunas for the West Indies were formed by randomly

assigning the observed number of species to each island from a candidate list

that took into account frequency of occurrence in the West Indies. Thus,

for example, if a species occurred on k islands it would be represented k times in

the candidate list. The analysis was also done using a list from the mainland.

Both size differences and ratios between adjacent pairs were used, with the test

being a comparison of the expected and observed numbers above and below the

median.

Bird-eating hawks (Schoener 1984)

Avifaunas of species pairs, trios, and quartets were constructed using the

list of all bird-eating hawks (47 species). Schoener then computed all possible size

ratios: for pairs there is one possible set, whereas for trios there are two (adjacent

pairs and pairs with an intervening species) and for quartets there are three (pairs

separated by 0,1, and 2 intervening species). Schoener compared the difference

in cumulative frequency between observed and predicted under four different

scenarios (“uncorrected,” “corrected” for geographic range, “corrected” for

species occurrence in several sets, “corrected” for ratios between the same

species).

Proboscis length in North European bumblebee communities (Ranta 1982a)

The species pool was made up of all North European bumblebee species

and species selected either at random or only from the list of “abundant” species.

Proboscis lengths were ranked and adjacent size ratios computed. The observed

distribution of ratios was compared to the simulated data using a t-test.

Proboscis length of bumblebees in Europe and North America

(Hanski 1982)

Hanski used the same approach as Ranta to construct the random

communities but used an index of average overlap (see footnote to Table 5.11).

He estimated the probability of obtaining an index as small or smaller than the

observed index using the distribution from the simulated data set. He then

combined the probabilities from different communities using Fisher’s method

to obtain an overall probability.

Summary

(1) Randomization, or permutation, is primarily a hypothesis testing

method, though it can be used to generate confidence intervals.
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(2) A randomization test consists of first calculating a statistic (or set

of statistics), �obs from the observed set of data. Under the null model of

no difference the data are then randomly reallocated to the groups and

the statistic(s) recalculated, �rand. This process is repeated to produce

a large number of values of �rand. The probability of obtaining a value

of �obs as large or larger under the null hypothesis is then estimated as

P¼ (nþ1)/(Nþ1), where n is the number of �rand greater than or equal

to �obs and N is the number of randomizations.

(3) The number of randomizations required depends upon how close P is

to 0.05. Typically one should commence with 1000 randomizations,

increasing this number if the estimated confidence limits about P

include 0.05. The required number can be roughly estimated from

N ¼ 4P̂ð1� P̂Þ=ð0:05� P̂Þ2.
(4) The results of randomization tests frequently match those of their

parametric equivalent. While this indicates that parametric tests are

remarkably robust to a deviation from their underlying assumptions,

it should not be taken as indicating that such tests can be substituted

for randomization tests. Without theoretical justification or detailed

simulation analysis, we cannot know under what circumstances the

parametric tests will fail. Therefore, whereas the parametric tests

provide an approximate first test, they should be accompanied by the

appropriate randomization procedure.

(5) Monte Carlo methods are similar to randomization and bootstrap

methods except that randomized data sets are constructed using

a specified null model. Typically these models are designed for a very

specific test. The generalized Monte Carlo significance test permits

a general approach to Monte Carlo testing and can considerably reduce

the number of computations required.

Further reading

Crowley, P.H. (1992). Resampling methods for computation-intensive data

analysis in ecology and evolution. Annual Review of Ecology and Systematics, 23,

405--48.

Edgington, E.S. (1987). Randomization Tests. New York: Marcel Dekker, Inc.

Manly, B.F.J. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology.

New York: Chapman and Hall.

Potvin, C. and Roff, D. (1996). Permutation tests in ecology: A statistical panacea?

Bulletin of the Ecological Society of America, 77, 359.
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Exercises

(5.1) Using the data shown below do a t-test to compare the two means.

Compare the results with a randomization test using first t as the test statistic

and then the mean difference.

x �0.79 0.79 �0.89 0.11 1.37 1.42 1.17 �0.53 0.92 �0.58

y �0.88 �0.17 �1.16 �1.23 2.14 0.86 1.36 �1.46 0.74 �2.15

(5.2) Using the data below, test for a linear regression between y and x

using least squares regression and randomization. Test the hypothesis that the

slope and intercept equal 0. Test the hypothesis that the slope equals 1. Compare

the results to the parametric test.

x 1.63 4.25 3.17 6.46 0.84 0.83 2.03 9.78 4.39 2.72 9.68 7.88 0.21 9.08 9.04 5.59 3.73 7.98 3.85 8.18

y 2.79 3.72 4.09 5.89 0.75 �0.13 1.76 8.44 5.15 2.16 9.88 6.95 0.03 7.50 9.92 5.37 3.79 7.18 3.37 7.81

Note: To use randomization to test the slope against some specified

value, say �0, we observe that under the null hypothesis, �¼�0 and hence

z¼y��0x will be independent of x. Therefore, we regress z on x and test for

a significant regression.

(5.3) A commonmethod of testing for a difference between two variances

is the variance ratio test. Letting the two estimated variances be s21 and s22,

where s21 > s22 an F-statistic is calculated as F ¼ s21=s
2
2. Use this test on the data

below and also compare the variances using randomization by (a) using F as

the test statistic and (b) the difference between the two variances as the test

statistic.

x �0.06 �1.51 1.78 0.91 0.05 0.53 0.92 1.75 0.73 0.57 0.17 0.31 0.66 0.01 0.16

y 1.86 0.44 0.59 0.18 �0.59 �1.16 1.01 �1.49 1.62 1.89 0.10 �0.44 �0.06 1.75 1.74

(5.4) The data below show a time series of population counts over

a 30 year time period

1, 1, 6, 1, 3, 11, 15, 10, 9, 18, 21, 33, 40, 45, 44, 48, 44, 39,

40, 36, 46, 48, 50, 58, 60, 73, 83, 94, 99, 102

Use the method of Pollard and Lakhani (1987) to test for positive density-

dependence.

(5.5) A hypothesis frequently encountered in the literature is that

survival decreases with density. In particular this hypothesis has been advanced
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for the survival of chicks in relation to clutch size. This has led some researchers

to plot survival vs. clutch size. However, survival is calculated as number of

surviving chicks/clutch size and hence there is a clear lack of independence

between the two variables. Use randomization to test the hypothesis that survival

decreases with clutch size in the data given below. Compare your results with

the parametric analysis.

Clutch size: 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 6

N surviving: 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 2, 3

(5.6) Is there evidence of an effect of factor A, B or their interaction on X?

Factor A 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2

Factor B 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2

X 13, 9, 9, 8, 9, 16, 16, 14, 11, 7, 13

(5.7) Repeat the analysis of the data given in question (5.6) but this time

randomize the treatment combinations rather than X. Does it make a difference?

(5.8) The amphipod Gammarus minutus occurs in streams both within and

outside of caves. These populations are genetically distinct. The data below show

measurements of three measures of eye structure, the number of ommatidea, the

width and length of the eye. A reasonable hypothesis is that the eyes of

individuals from the population within the cave will be different (smaller but

here we consider a two-tailed test) from those outside the cave. To test this the

researcher uses a multivariate analysis of variance, obtaining the output:

***Multivariate Analysis of Variance Model ***

Short Output:

Call:

mANOVA (formula=cbind (OMMATIDI, EYE. L, EYE. W)~ HABITAT,

data=GammarusData, na.action=na.exclude)

Terms:

HABITAT Residuals

Deg. Of Freedom 1 33

1 out of 3 effects not estimable

Estimate effects may be unbalanced

Analysis of Variance Table:

Df Pillai Trace approx. F num df den df p-value

HABITAT 1 0.85125 59.1333 3 31 0

Residuals 33
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Because of the message “Estimated effects may be unbalanced”, the output

is questionable. Therefore, a randomization analysis is necessary to confirm the

mANOVA results. Using the approach shown in Appendix C.5.8 conduct the

analysis.

OMMATIDI EYE.W EYE.L HABITAT

5 71 48 CAVE

4 70 47 CAVE

4 71 50 CAVE

8 91 62 CAVE

4 62 41 CAVE

3 82 51 CAVE

2 78 40 CAVE

3 74 49 CAVE

6 100 61 CAVE

5 92 60 CAVE

6 82 50 CAVE

4 52 50 CAVE

4 66 43 CAVE

3 82 51 CAVE

6 92 63 CAVE

6 89 51 CAVE

6 72 51 CAVE

5 74 51 CAVE

7 92 56 CAVE

4 78 56 CAVE

16 150 80 RESURGENCE

18 150 80 RESURGENCE

17 141 79 RESURGENCE

12 118 73 RESURGENCE

16 133 78 RESURGENCE

16 145 79 RESURGENCE

26 198 91 RESURGENCE

16 140 80 RESURGENCE

11 121 64 RESURGENCE

21 183 100 RESURGENCE

14 130 75 RESURGENCE

16 138 80 RESURGENCE

18 143 80 RESURGENCE

22 148 80 RESURGENCE

20 151 78 RESURGENCE
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List of symbols used in Chapter 5

Symbols may be subscripted

" Error term

� Parameter

� Mean

A Intercept of major axis regression

B Slope of major axis regression

C (1) Amount to be added/subtracted from estimate to obtain

upper/lower confidence value.

(2) Number of distinct elements in a matrix

E Expected number of species co-occurrences

GM Geometric mean

LC Lower confidence value

M Median or matrix

MS Mean square

N (1) Number of permutations. (2) Population size

O Observed number of species co-occurrences

P Probability

R (1) Total number of species. (2) Probability from randomiza-

tion test

S Manly’s test statistic for species co-occurrence

SE Standard error

T Symbol for T method of matrix comparison

T1, T2 Coefficients in ANOVA simulation

UC Upper confidence value

V Vector

X, Y Observation

k Group designator

n Number of cases in which statistic from randomized data

exceeds observed

r (1) Residual. (2) Drift parameter in density-dependence

analysis

x, y Observed values
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6

Regression methods

Introduction

Regression is probably one of the most powerful tools in the data

analysis package of the biologist, particularly when considered within the very

broad framework of general linear models. Nevertheless, there are a number

of problems with the approach that can be resolved by the use of computer-

intensive methods. The most difficult problem, and that which is the focus of the

present chapter, is the problem of determining which variables to include in a

regression and how to include them. For example, should a predictor variable, X,

be entered simply as X or would a better fit be obtained using a polynomial form

such as X2, or even amore general function, which wemight not have any a priori

reason to formulate? With a single predictor the problem is not very acute,

because one can plot the data and visually inspect the pattern of covariation

with the response variable, Y. But suppose the pattern is clearly non-linear and

none of the usual transformation methods (e.g., log, square-root, arcsine, etc.)

linearizes the data: the computer intensive methods outlined in this chapter can

be used to both describe the pattern of covariation and to test its fit relative to

other models. With multiple predictors the situation can be very problematic

if the predictors are complex functions or there are non-linear interactions

between predictors.

In this chapter, I shall consider four approaches: first, the use of cross-

validation to decide among several competing models when different stepwise

methods of including or excluding predictors are used. Secondly, I examine

several methods, called local smoothing functions, of describing a response as a

function of one or two predictors for data sets in which no functional form can be

assigned on biological grounds. Thirdly, I introduce generalized additive models

as a solution to dealing with the situation in which the predictor variables may

be unknown functions. Finally, I consider the use of tree models to tease

apart complex interactions where linear regression methods are unlikely to

157



be appropriate. The range of models considered in this chapter by no means

exhausts the computer-intensive approaches to regression problems but they

provide an overview of the variety of methods available and should alert the

reader to the advantages of taking alternate approaches to regression.

Cross-validation and stepwise regression

The problem of multiple, contending models

Consider the results of the following hypothetical experiment designed

to investigate the effects of inbreeding (the breeding between close relatives) and

morphology on the reproductive capacity of female sand crickets. The response

variable is ovary weight, which is an excellent index of fecundity, and the

predictor variables are the inbreeding coefficient (F, which varies between 0

and 1), head width (HW) and wing morph (long-winged or short-winged). The two

morphological traits are included because previous experiments have shown that

both of these affect fecundity. Using a multiple regression approach, we can

specify the full or saturated model as

yi ¼ �0 þ �1F þ �2Morphþ �3HW

þ �4ðFÞðMorphÞ þ �5ðFÞðHWÞ þ �6ðMorphÞðHWÞ
þ �7ðFÞðMorphÞðHWÞ

ð6:1Þ

The above model contains seven parameters or variables, rather than the three

measured variables (F, Morph, HW). This model is highly significant (Table 6.1) but

individual analyses of the terms indicates that not all contribute significantly

to a reduction in residual variance.

However, the individual tests do suggest that all three predictor variables are

statistically important. On the other hand, all variables are highly significantly

correlated, although in no case is the correlation very large (the high level of

significance comes from the very large sample size). The question one would like

to answer is “Does a model that has fewer parameters account for the

relationship between ovary weight and the predictor variables equally as well?”

Three general approaches are typically taken to address this question. All three

approaches involve the addition and/or elimination of model components and

are frequently referred to as a group as stepwise regression, although the three

types are specifically called backward deletion, forward selection, and stepwise

regression. Backward deletion proceeds by first putting all terms in the model

and then sequentially deleting those terms that do not contribute significantly to

the regression. Forward selection works in the opposite direction, beginning with
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a model with the single predictor variable that accounts for most of the variance.

Addition of components to the model proceeds by the sequential addition of

a variable within the remaining set and stops when the addition no longer

satisfies an input criterion. In both these methods, a variable that is eliminated

from (backwards deletion) or added to (forward selection) the model is not

considered in future tests. In stepwise regression, the inclusion or deletion of any

of the parameters can occur at each step. The procedure commences with an

Table 6.1 Analysis of multiple regression equations with ovary weight as the response variable and

predictor variables, F (inbreeding coefficient), Morph (0 or 1), and HW (head width). Hypothetical data for

the sand cricket. Left side shows fit for the saturated model. Right side shows results of different stepwise

procedures (* ¼ variable retained) using the default parameters in SYSTAT (SY) and S-PLUS (Sþ)

Backwards Forwards Both

Effect �̂i |t| P SY Sþ SY Sþ Sþ

F �13.292 2.949 0.0033 � � � � �
Morph �1.061 2.233 0.0260 � � � � �
HW �0.001 0.774 0.4395 � � �
(F)(Morph) 13.518 2.994 0.0029 � � �
(F)(HW) 0.029 2.958 0.0032 � � �
(Morph)(HW) 0.002 2.576 0.0103 � � � � �
(F)(Morph)(HW) �0.030 3.038 0.0025 � � �
R2 for each of the stepwise models ¼ 0.41 0.41 0.39 0.39 0.41

Analysis of variance for regression

Source df Mean-square F P

Regression 7 0.3652 45.51 50.00001

Residual 463 0.0080

Pairwise correlations

(correlations below diagonal, P values above)

Ovary wt F Morph HW

Ovary wt 50.0001 50.0001 50.0001

F �0.449 50.0001 50.0001

Morph 0.216 0.180 0.0014

HW 0.443 �0.420 �0.147
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initial model, such as the saturated model, but then sequentially adds or deletes

terms until some criterion is satisfied. The decision to include or exclude a term

in any of the three methods is based on some measure of the additional decrease

in residual variance accounted for by the relevant variable. For example, SYSTAT

uses the probability value, with the default value set at 0.15, whereas S-PLUS

uses the change in Akaike’s information criterion (AIC),

AIC ¼ �2LLmax þ 2k ð6:2Þ

where LLmax is the maximum log-likelihood and k is the number of parameters.

For a regression model, the log-likelihood (Chapter 2) is

LLmax ¼ constant� N

2
ln �2 �

PN
i¼1 ðŷi � yiÞ2

2�2
ð6:3Þ

where �2 is the error variance, ŷi is the predicted value of yi (sum of squared

differences ¼ residual sums of squares) and N is the number of observations. If,

as is usually the case, �2 is unknown we use its estimate �̂2 ¼PN
i¼1 ðŷi � yiÞ2=N

and AIC is thus

AIC ¼ constantþ N ln

PN
i¼1 ðŷi,k � yiÞ2

N

 !
þ 2k ð6:4Þ

where ŷi,k is the predicted value for the model with k parameters. The change in

AIC with the addition of a parameter is

�AIC ¼ N ln

PN
i¼1 ðŷi,kþ1 � yiÞ2

N

 !
� N ln

PN
i¼1 ðŷi,k � yiÞ2

N

 !
þ 2 ð6:5Þ

The change in the value of AIC used to stop the stepping process is arbitrary and,

as with the SYSTAT approach, the default value in S-PLUS is liberal, the reasoning

being that it is better to include marginal effects rather than omit potentially

contributing variables.

The results of applying these three types of stepwise regression to the cricket

data is shown in Table 6.2; what is immediately apparent is that there is neither

agreement between statistical packages nor among the three stepwise regression

methods. Forwards addition produces the simplest model whereas the backwards

and stepwise methods include all but one (SYSTAT) or all (S-PLUS) of the

parameters. The two “simple” models obtained from forwards addition account

for 39% of the variance whereas the other models all account for 41% of the

variance. Which model should one choose? In general, what we are interested in

is the ability of the model to predict values not used in the construction of the
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model, otherwise the model has no generality. One solution is to compare the

performance of the models using cross-validation.

Cross-validation

In this method, a portion of the data is set aside and the remainder is

used to estimate the regression. This regression equation is then used to predict

the values of the data points set aside: fit is judged by the correlation bet-

ween the predicted and observed values in the “new” data set. The data set used

to fit the model is known as the training set and that used to test it is called

the testing set. There are three approaches to cross-validation:

(1) Holdout method: the data set is split into two parts as described above.

(2) K-fold cross validation: the data set is split into k subsets of

approximately equal size and the cross-validation performed k

times using each subset once as the testing set. This procedure can be

accomplished as follows, using, as an example, 10-fold cross-validation:

first generate a sequence of integers from 1 to 10. Repeat this

sequence until all data rows have been accounted for (thus the last

row could be indexed by an integer other than 10). If the data were

originally sorted in some manner, the sequence of integers should be

randomized to ensure that each subset is a random sample from

the data. Iterate across the integer values deleting the data with

the selected integer index from the data: the deleted data is the testing

set. Fit the model to the remaining data (the training set) and use

the function so estimated to predict the values for the testing set.

Calculate the correlation between predicted and observed data within

the testing set.

Instead of dividing the data set into k parts one can also take out

a kth portion at random from the data set to use as the testing set,

and then repeat this procedure k times, or even more.

(3) Leave-one-out cross-validation: this is the extreme case of K-fold cross-

validation in which a single observation is omitted and thus the whole

process repeated N times (the number of cases in the data set).

There is no real guide as to which method is the best, except that the holdout

method is probably the worst because it provides only a single example of cross-

validation. K-fold validation using either approach (i.e., division into k parts or

a kth part k times) seems most reasonable, with the testing set being 10–20%

of the training set. For small sample sizes, the leave-one-out method may be

the only practicable solution.
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In the present case, I used a randomly selected 10% of the data to be the testing

set and repeated this 1000 times. To implement this type of cross-validation

we can proceed as follows (coding in Appendix C.6.1):

(1) Randomly select 10% of the data set to use as the test set.

(2) Fit the simplest and most complex models (in other cases different

models could be selected) to the remaining 90% of the data.

(3) For each model, calculate the predicted values for the test set and

compute the two residual sums of squares
PN

i¼1 ðŷi,k � yiÞ2. Retain these

values as pairs.

(4) Repeat the above steps a large number of times (e.g., 1000).

(5) Because, the paired residual sums of squares come from the same

training and testing sets, the set of paired residual sums of squares

can be compared using a paired t-test.

Application of this procedure to the cricket data shows that the more complex

model produces significantly worse predictions than the simpler model (see

output in Appendix C.6.1). A plot of the paired residual sums of squares shows

that in eight cases there were extreme outliers from the full model (Figure 6.1):

deletion of these from the analysis does not change the conclusions (paired t-test,

t ¼ �3.5178, df ¼ 991, P ¼ 0.0005). Interestingly, the results for the training set

for these eight cases gives no indication of the extreme deviation in prediction

(an example is provided in Figure 6.1).

As shown by the above example, cross-validation provides a simple means of

distinguishing between competing models in those cases in which step-wise

regression results differ depending on the particular protocol adopted. As will be

shown elsewhere in this chapter, cross-validation is a general tool for the

comparison of different models. It may be also used to assess the fit of a given

model, by comparing the R2 of the fitted model with that for the R2 between

observed and predicted values of the testing set (see locally weighted regression

smoothing and Appendix C.6.3).

Local smoothing functions

One predictor variable

The simplest case to consider is that in which there is a single response

variable and a single predictor variable. This is the simple linear regressionmodel

yi ¼ �0 þ �1xi þ " ð6:6Þ
where " is the error variance, assumed to be normally distributed with a mean

of zero and a standard deviation that is constant across the range of measure-

ments (i.e., " is distributed as N(0,�)). We have already discussed the use of
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randomization to deal with the problem of non-normal errors. Here, I am

concerned with the second assumption of linear regression, namely that the

equation is actually linear. Suppose that we have evidence that the line is not

linear (a common method to detect non-linearity is to include a quadratic term):

what options are available to describe the relationship? One option that we have

already discussed in all previous chapters is the use of a nonlinear equation, e.g.,

the logistic equation. Another is the use of a polynomial regression. The use of a

nonlinear or polynomial equation is probably the most appropriate route to take

if one has a reason to propose a particular equation or can find an equation that

fits the data. On the other hand, it could arise that there is no a priori model

or no clear empirical nonlinear model that is suitable, a situation that could

arise if the shape of the curve is complex.

R
S

S
 f

o
r 

F
u

ll 
m

o
d

el

RSS for "simple" model

Fitted value Predicted value

O
b

se
rv

ed
 v

al
u

e

O
b

se
rv

ed
 v

al
u

e

Figure 6.1 Results of cross-validation analysis of cricket data described in text.

Top panel shows the 1000 pairwise comparisons of the residual sums of squares (RSS)

for the two models. The lower plots show the results for a single comparison in which

an extreme outlier occurred (Left plot: results for the training set. Right plot: results

for test set. 	¼ “simple” model, �¼ full model).
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Consider, for example the curve shown in Figure 6.2. This curve could

represent some diurnal activity pattern, a relationship between some fitness

measure and a trait, the time course of development or an evolutionary sequence

in species numbers within a taxon. The curve is clearly not linear, is not suitable

for a polynomial fit and there is no obvious nonlinear model (the curve is

actually formed from two Gaussian functions, as described in the figure caption).

To fit a smooth curve through the data, we can adopt one of the number of

smoother algorithms, the ones to be discussed here being: (1) locally weighted

regression smoothing (loess), (2) locally weighted regression smoothing with

cross-validation (super-smoothing), and (3) the cubic spline.

Locally weighted regression smoothing

This is also known as loess, a name chosen by analogy with the fine

deposit of silt laid down along a river valley, which itself forms a surface. This

method, as with all the methods, fits a curve to a local set of points, which I shall

refer to as the window, and creates a continuous curve by moving the window,

point by point, through the entire data range. To describe this method, I shall

assume that errors are normally distributed: under this assumption the local

curve can be fitted using least squares regression. It is possible to drop this

assumption and use a robust fit (the option family¼“symmetric” in S-PLUS) but

the general principle is the same as with the least squares fit.

Consider the expanded portion of the curve shown in the lower plot of

Figure 6.2 and focus upon the point x0. We define a neighborhood as the set of

points falling within a specified distance from x0, this distance being determined

by the user-determined value of span. This window could be defined as a

particular distance or, as in S-PLUS, as a percentage of the total data set; in the

example the number of data points in the window is 10% of the total. Suppose

there are nþ1 points in the neighborhood: these are ranked in ascending order

according to their absolute distance from the focal point x0 (column 2, Table 6.2).

Next, we compute the distance between x0 and each other point as a fraction of

the maximum distance (column 3 in Table 6.2) and assign a weight to each point

that is a function of this relative distance, the weight decreases as the relative

distance increases, with the furthest point (and all points outside the window)

receiving a weight of zero. A weighted least squares regression function is then

calculated using the estimated weights and data points: this regression can

either be linear or quadratic, which allows for local curvature. Having calculated

the function, say f (x), the predicted response value at x0 is calculated as f (x0).

This procedure is applied to all values of x and the response function plotted by

connecting the predicted values.
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Figure 6.2 Hypothetical function to illustrate the use of smoothing routines when

linear and nonlinear regression approaches are not workable. The function was

generated using the sum of two Gaussian curves.

set.seed(1) # Set random number seed

n <- 100 # Sample size

Curves <- matrix(0,n,5) # Matrix for data

x <- seq(5,20,length=n) # values of x

Curves[,1] <- x # Store x

error <- rnorm(n,0,0.06) # Errors

Curves[,2] <- dnorm(x, 10,1 )+ dnorm(x,12,1) # Curve

Curves[,3] <- dnorm(x, 10,1 )+ dnorm(x,12,1)+error # Add error to curve
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The fit between the observed points and the loess curve depends upon the span

and the degree of the function (linear or quadratic). Decreasing the span and

increasing the degree will get a “better” fit in the sense that the curve will pass

through more points but this can lead to gross overfitting, whereby the curve is

being fitted to the error about the true line. On the other hand, span values that

are too large or a degree that is too small (i.e., linear rather than quadratic) can

give very poor fits. These points are illustrated in Figure 6.3 in which is plotted

three fits. The first fit shows the result of using a span of 1 (i.e., 100% of data points

are used at each data point) and a degree of 1 (see Appendix C.6.2 for coding to

produce fits). A measure of the amount of smoothing is given by the equivalent

number of parameters (ENP), which equals 2.3 in this fit. The equivalent number

of parameters is defined as

ENP ¼
PN

i¼1 VarianceðŷiÞ
�2

ð6:7Þ

where N is the number of observations, ŷi is the ith predicted value, and �2 is the

error variance (it is calculated as the sum of the squared elements of the hat

matrix). A measure of fit is the usual R2, which is here 0.36, though the fit is quite

abysmal! The lack of fit is also shown by the plot of residuals on predicted values,

which shows a highly non-linear pattern (lower plot in Figure 6.3). Changing from

a linear local fit to a quadratic local fit produces a somewhat better fit (R2 ¼ 0.58),

but the distribution of residuals with respect to the predicted values is still

unacceptable. Keeping the quadratic fit and decreasing the span to 0.3 produces

an acceptable fit (R2¼ 0.92) and an acceptable distribution of residuals (rightmost

plot of Figure 6.3). Note that the smoothing function tends to overfit the points

lying beyond x ¼ 14.

Table 6.2 Illustration of the method of fitting a locally weighted regression function. The values of the

predictor variable, x are ranked according to the distance from the focal point, x0

Predictor

variable

Ranked distances,

di

Relative distance,

Di

Weight,

Wi

x0 d0 ¼ |x0�x0| ¼ 0 D0 ¼ d0/dmax ¼ 0 W0 ¼ ð1� D3
0Þ3 ¼ 1

x1 d1 ¼ |x0�x1| D1 ¼ d1/dmax W1 ¼ ð1� D3
1Þ3

x2 d2 ¼ |x0�x2| D2 ¼ d2/dmax W2 ¼ ð1� D3
2Þ3

� � � �
� � � �
xi di ¼ |x0�xi| Di ¼ di/dmax Wi ¼ ð1� D3

i Þ3
� � � �
� � � �
xn dn ¼ |x0�xn| ¼ dmax Dmax ¼ dmax/dmax Wmax ¼ ð1� D3

maxÞ3 ¼ 0
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As with multiple regression, increasing the number of equivalent parameters

by decreasing the span will increase the amount of variance accounted for,

though the amount may not be more than expected by chance. There is no simple

means of deciding when a fit is as good as can be expected but it is at least

possible to compare two models using an approximate analysis of variance test.

An approximate F-statistic can be constructed from (see Chapter 2 “Comparing

models”)

F ¼ ðRSSðnÞ � RSSÞ=ð	ðnÞ1 � 	1Þ
RSS=	1

ð6:8Þ

where RSS(n) is the residual sums of squares of the null model, RSS is the residual

sums of squares of the alternate model and the 	s play a similar role to the

degrees of freedom. However, the degrees of freedom for the F-statistic are more

complex functions of the 	s and the reader is referred to Cleveland et al. (1992,

p. 369) for their definition and a description of their calculation. The test is

available in S-PLUS using the routine anova.loess(model1, model2, test¼“F”) or

simply anova(model1, model2), where model1 and model2 are the two fitted models

(e.g., L. smoother1 in Appendix C.6.2). Comparing fits with span ¼ 0.3 and 0.2

gives the output:

anova.model

Model 1:

loess(formula = Curves[, 3] ~ Curves[, 1], span = 0.3, degree = 2)

Model 2:

loess(formula = Curves[, 3] ~ Curves[, 1], span = 0.2, degree = 2)

Analysis of Variance Table

ENP RSS Test F Value Pr(F)

1 9.8 0.29954 1 vs 2 1.38 0.23467

2 14.6 0.27289

There is thus no premium in decreasing the span to 0.2. Increasing the span to

0.4 gives

anova.model

Model 1:

loess(formula = Curves[, 3] ~ Curves[, 1], span = 0.3, degree = 2)

Model 2:

loess(formula = Curves[, 3] ~ Curves[, 1], span = 0.4, degree = 2)

Analysis of Variance Table

ENP RSS Test F Value Pr(F)

1 9.8 0.29954 1 vs 2 3.23 0.030976

2 7.6 0.32990
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which suggests that the model with a span of 0.3 is a statistically better fit than

that with a span of 0.4.

An alternative method to assess the fit is cross-validation, as described above.

Coding for K-fold cross-validation for the loess model is given in Appendix C.6.3.

For the loess model selected above as being satisfactory, there is, in general,

a good correspondence between the multiple R for the training set and that

obtained from the testing set (see output in Appendix C.6.3). In one set,

that indexed by 5, the correspondence is poor, with the multiple correlation

obtained using the testing set being only 0.185. This illustrates the need to do

several cross-validation runs, as a single run could itself be an outlier.

Super-smoothing

In the foregoing method, the span is kept constant, which may not be

optimal. For example, in a region of little curvature a large span will produce

a good fit. Equally, when the error variance is high a large span is to be preferred

as it prevents over-fitting. The super-smoother approach uses local leave-one-out

cross-validation to adjust the size of the span as the window is passed over the

data range. In S-PLUS, the fit using the super-smoother can be obtained with the

routine supsmu. Applying the super-smoother to the hypothetical data produces

a fit that is virtually indistinguishable from that produced by the loess fit

(Figure 6.4) giving us confidence that the loess fit is quite acceptable.

The cubic spline

In the previous two methods, the fitted function was estimated

pointwise: a somewhat different approach to fitting a smooth curve through

a set of data is to fit a series of polynomials. It has been found that sufficient

flexibility in the amount of curvature required can be achieved by using third

order polynomials, hence the term “cubic.” The word “spline” referred originally

to thin flexible rods used by draughtsmen to draw smooth curves and thus the

term “cubic spline” is a smooth curve constructed using a “virtual” flexible rod

that is mathematically described by a third order polynomial. The curve is

constructed of a set of third-order polynomials that change at a series of control

points called knots. To prevent the curve from having sharp changes at the

knots, the polynomials are constrained to have matching first and second order

derivatives at the knots. The cubic splines are estimated using the penalized

residual sum of squares, PRSS,

PRSS ¼
XN
i¼1

ðyi � f ðxiÞÞ2 þ l
ð
ðf 00ðtÞÞ2dt ð6:9Þ

where N is the number of data points, f (xi) is a cubic polynomial and l

is a smoothing parameter that corresponds, conceptually though not

Local smoothing functions 169



mathematically, to span in the loess function. The value of l can be found by

trial and error or by cross-validation. The cubic spline is available in S-PLUS as

the routine smooth.spline. Using the default cross-validation approach to the

estimation of l gave the fit to the hypothetical data shown in Figure 6.4: as with

the super-smoother, the cubic spline fit is indistinguishable from the loess fit.

While there is little to choose in terms of fit among the three methods (and

also several others not discussed here), I recommend the loess method, because it

permits an easy comparison among models and has a method for calculating

Figure 6.4 A comparison of three smoothing functions. See caption to Figure 6.2 for

coding. Dotted line ¼ true function; Dashed line ¼ loess fit, solid line in top panel ¼
super-smooth fit, solid line in bottom panel ¼ cubic spline fit.

170 Regression methods



confidence regions about the curves. Schluter (1988) suggested the use of the

bootstrap method for the calculation of such regions but the validity of this

approach has yet to be verified by simulation. Given the ease with which the three

models can be implemented, it is preferable to try all three to see if the fitted

curve is consistent across methods.

Two predictor variables

The easiest approach to deal with one response variable and two or

more predictor variables is multiple regression. Provided that the terms are

indeed additive, this is an appropriate strategy. However, there are a large

number of possible functional relationships with two predictor variables: for

example, y ¼ �0 þ �1x1 þ �2x2, y ¼ �0 þ �1x1 þ �2x2 þ �3x1x2, y ¼ �0 þ �1x1 þ �2x
2
2,

y ¼ �0 þ �1x
2
1 þ �2x2 þ �3x1x2, etc. With a single predictor, the general shape of the

relationship can be discerned by plotting the response variable on the predictor

variable and using one of the local regression models described in the previous

section. Such functions are available for three-dimensional (3D) plots. Here,

I shall discuss the multivariate extension of the loess method described above.

To illustrate the approach, I shall use an example later used in the description of

regression tree analysis: there are two predictor variables, X1 (e.g., temperature)

and X2 (e.g., habitat structure), and a response variable Y (e.g., density) that is

determined according to the following rules:

if X1 < 17 then Y ¼ 5þ "1

if X1 > 17 and X2 < 10 then Y ¼ 10þ "2

if X1 > 17 and X2 > 10 then Y ¼ 20þ "3

where "1 is N(0,2), "2 is N(0,4), "1 is N(0,8). In the absence of the error terms ("1, "2,

"3), the response variable, Y, is a step function (Figure 6.5): the error terms tend to

smooth out the relationship. One hundred data points were generated using the

above rules (see Figure 6.5 for the coding) and examined by stepwise regression

with the most complex (full or saturated) model being Y ¼ �0 þ �1X1 þ �2X2 þ
�3(X1)(X2). Regardless of the stepwise procedure adopted, the best fitting model

was the full model Y ¼ �7.536 þ 0.786X1 � 4.311X2 þ 0.275(X1)(X2). The predic-

ted surface of this model captures the general shape of the true function but

necessarily omits the steeply changing gradients (Figure 6.5).

Before subjecting the data to a local smoothing routine, it is useful to plot the

data as a 3D surface “as is”: because most 3D routines require an equally spaced

grid of points on the x,y surface (X1,X2 in this case), this will generally require

using some sort of interpolation or extrapolation. The surface so generated for

the density data is quite rugged but does give some hints of curvature (Figure 6.6).

A loess generated surface using a degree of one (see Appendix C.6.4 for the coding)
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Figure 6.6 The three dimensional plots of density data. Top plots show plot produced

from an equally spaced grid of X1, X2 using interpolation of the original data.

Lower plots show surfaces generated using loess with either degree¼1 (middle)

or degree ¼ 2 (bottom). Left-hand plots use 100 data points and right-hand plots

use 1000 data points.
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shows the same pattern as found with the multiple linear regression model,

though it appears to be slightly superior in not showing a rise towards the

minimum values of X1, X2. Using a degree of two (quadratic surface) gives a

visually better fit though in this case there appears to be some over-fitting at the

highest values of X1 and X2. The two fits can be compared using the approximate

F-statistic described previously (Appendix C.6.5). The quadratic fit produces a

significantly better fit than the linear model (Appendix C.6.5). This is shown very

clearly in the rightmost plots in Figure 6.6 which were produced using 1000

generated data points.

Generalized additive models

One predictor variable

An investigation into possible non-linearities in a relationship can be

time consuming if one has to examine a range of transformations or polynomials

of the predictor variables. An alternate approach is presented by generalized

additive models. The generalized additive model for a single predictor variable

is given by

y ¼ �0 þ sðxÞ ð6:10Þ

where the function s(x) is a smoother such as a loess function. Generalized

additive models extend the standard linear regression equation by replacing the

coefficient, �1 (Eq. (6.6)) by a smooth function. As with the local smoothing

methods, the prime function of generalized additive models is to explore the

nature of relationships. Consider the set of data points plotted in Figure 6.7.

Although there is a clear linear relationship between the two variables there is

also a visually discernible nonlinear component. The equation actually used to

generate the data was y ¼ 10þ
ffiffiffiffiffiffiffi
x�1

p
� xþ e0:2x þ ’ðxÞ þ ", where " is the error

term distributed as N(0,1) and ’ðxÞ ¼ 0:4e�
1
2 0:995xð Þ2 . A generalized additive model

can be fit using any of the smoothing routines discussed previously. Here, I use

the loess method, invoked in S-PLUS by gam(y~x, data=Data), where “Data” is the

data frame containing the data. The residual sums of squares is 214.11 with 4.22

degrees of freedom used in the fit. In comparison, a linear fit to the data gives

a residual sums of squares of 293.85 with 2 degrees of freedom used in the fit.

We can construct an approximate F-statistic in the usual manner as

F4:21�2, 200�2:21 ¼ ð293:85� 214:11Þ=ð4:21� 2Þ
214:11=ð200� 4:21Þ ¼ 32:99 ð6:11Þ

which is highly significant (P ¼ 5.17�10�14). This test can be automatically

carried out in S-PLUS by invoking the anova routine (e.g., Fit <- gam(y~lo(x),
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Figure 6.7 A comparison of a generalized additive and a quadratic regression model

fitted to two hypothetical data sets. Data generated using coding shown below, with

full analysis and output in Appendix C.6.6.

set.seed(1) # initiate random number generator

n <- 200 # Sample size

X <- runif(n, 0.1,10) # values of X

# Y values for first example

error <- rnorm(n,0,1) # error terms

Y <- 10+(1/sqrt(X))+exp(0.2*X)-X+pnorm(0.005*X,1)+error

# Y values for second example

error <- rnorm(n,0,20) # error terms

Y <- 5+95*(1-exp(-1*X))^5 + error
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data=Data); anova(Fit)). Also shown in Figure 6.7 is the fit achieved using a

quadratic polynomial; there is very little to distinguish the two curves and in this

instance one would certainly prefer the quadratic equation, because of the more

rigorous statistical basis. Such is not the case with the second example, created

from a four parameter Chapman equation y ¼ 5 þ 95(1�e�x)5 þ ", where " is

distributed as N(0,20). The quadratic fit indicates a declining response at high

values of x (Figure 6.7); this is not visually justified from the distribution of

points, and one would be likely to seek an asymptotic function, which could be

tedious. The generalized additive model produces an excellent fit to the data,

clearly indicates a non-linear component, and is significantly better than the

quadratic fit (coding and output in Appendix C.6.6).

With a single predictor variable, the generalized additive model offers

relatively little advantage over more “traditional” methods (transformations or

polynomials) but when there are a number of predictor variables the number of

possible alternative models greatly increases and generalized additive models

can be very useful.

Several predictor variables

The extension to more than a single predictor variable is relatively

straightforward, the general equation for k predictor variables being

y ¼ �0 þ sðx1Þ þ sðx2Þ þ . . .þ sðxkÞ ð6:12Þ

To illustrate the analysis, I shall use the two models considered in the previous

section, y ¼ 15þ
ffiffiffiffiffiffiffi
x�1
1

p
� x1 þ e0:2x1 þ ’ðx1Þ þ 95ð1� e�x2 Þ5 þ ", where " is distrib-

uted as N(0,5). The 3D pattern so created could represent population density

as a function of two environmental or geographic variables (Figure 6.8).

The interpolated perspective plot of the 400 data points generated (20 by

20 evenly spaced grid, assuming the highly unusual case of a perfectly executed

experimental design) is very rugged and a clear pattern is not readily discernible,

but a plot of the response variable on each predictor variable suggests a negative

relationship with X1 and an asymptotic relationship with X2 (middle row,

Figure 6.8). These data suggest three possible models: (1) X1 constant, X2

nonlinear, (2) X1 linear, X2 nonlinear, (3) X1 and X2 nonlinear. We commence by

fitting the simplest model using the loess fitting routine (the data are in a file

called “Curves”)

Model.1 <- gam(Y~lo(X2), data=Curves)

anova(Model.1)
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The relevant output is

Df Npar Df Npar F Pr(F)

(Intercept) 1

lo(X2) 1 2.4 20.40267 2.095264e-010

There is a highly significant effect attributable to the nonlinear component.

We next fit the second model, entering X1 as a linear predictor and compare the

two models

Model.2 <- gam(Y~X1+lo(X2), data=Curves)

anova(Model.1, Model.2, test="F")

which produces

Analysis of Deviance Table

Response: Y

Terms Resid. Df Resid. Dev Test Df Deviance F Value Pr(F)

1 lo(X2) 395.6118 12363.14

2 X1 þ lo(X2) 394.6118 11056.36 þX1 1 1306.783 46.64028 3.236633e-011

The addition of X1 produces a highly significant reduction in the residual sums of

squares. Finally we compare models 3 and 2

Model.3 <- gam(Y~lo(X1)+lo(X2), data=Curves)

anova(Model.2, Model.3, test="F")

giving

Analysis of Deviance Table

Response: Y

Terms Resid. Df Resid. Dev Test Df Deviance F Value Pr(F)

1 X1 þ lo(X2) 394.61 11056.36

2 lo(X1) þ lo(X2) 392.22 10859.78 1 vs. 2 2.39 196.58 2.97 0.04299

There is a marginally significant nonlinear effect attributable to X1. Because

these tests are approximate, this result should be viewed cautiously. A plot of the

partial fits for the generalized additive model for the two predictors suggests that

the fits are reasonable and that the two effects are relatively independent (which

they are). A multivariate loess plot broadly matches the deterministic surface

(cf. top and bottom 3D plots in Figure 6.8).
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Tree models

Multiple regression is limited by the assumption of additivity in the

model (which includes polynomial and interaction terms). Provided that this

assumption is upheld, multiple regression is a very useful statistical tool.

However, when there are a large number of variables, or the likelihood that

variables interact in complex ways, multiple regression may either not be able

to discern the patterns in the data or may produce misleading answers. An

alternative approach that is not as restrictive as multiple regression is that of

classification and regression tree analysis. These two methods differ only in that

in classification trees the endpoint is a category, such as a species, whereas in

regression trees the endpoint is a predicted value such as nest density, body size,

etc. The general aim of these methods is to produce a binary tree in which each

node of the tree represents a binary division of the data present at that node,

determined by some statistical criterion such as least squares. The terminal

nodes are called leaves, the initial split is called the root node and the number of

leaves is called the size of the tree. Each node is considered separately and all the

available predictor variables are analyzed; thus, for example, at the first split the

data may be best divided according to some predictor variable X1, while at a

subsequent node the best split of the data passing through that node may be

accomplished using some other predictor variable, say X2. Regression trees were

first developed in the context of hypothesis generating routines rather than

hypothesis testing routines. However, as will be shown, the use of randomization

can turn them into hypothesis testing machines in the same manner as stepwise

regression. Tree based models have a number of important attributes: they are

easy to interpret when the predictors consist of both categorical and continuous

variables, they are invariant to monotone transformations of the predictor

variables, they can capture non-additive behavior, and they allow very general

interactions between predictor variables. As illustrated in Table 6.3, tree models

can be applied to a wide variety of biological questions.

How to split

At each node, tree models seek to maximize the probability of correctly

assigning the response variable into two divisions. The majority of methods use

a one-step look-ahead, which means that the statistic (such as least squares)

is minimized (or maximized) only with respect to the node under scrutiny.

The basic perspective of the classification tree is the multinomial distribution

whereas that of regression trees is some continuous distribution such as the

normal. Both of these models can be illustrated by a single example, the

extinction probability of New Zealand avifauna as a function of body mass.
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This model is discussed in detail later in this chapter; here, I present a simplified

extract consisting of a single split (and reduced data set). In Table 6.4, 16 species

of New Zealand birds are listed, some of which became extinct prior to the

colonization of New Zealand by Europeans. Alongside each species is given the

status as a categorical variable (“Extinct” or “Extant”), its status as a numerical

variable (probability of extinction ¼ 1 or 0), and its adult body mass. The birds

have been ranked in the order of body size, beginning with the smallest. The

object is to split the birds into two groups, based on their body mass, that

maximizes the likelihood of assigning an individual to the correct group.

Under the classification model framework, the likelihood of observing the two

Table 6.3 Examples illustrating the use of regression tree analysis to address biological phenomena

in which there may be a large number of interacting factors

Title Reference

Ixodes ricinus (Acari: Ixodidae) infestation on roe deer

(Capreolus capreolus) in Trentino, Italian Alps

Chemini et al. (1997)

Modelling the effects of environmental conditions on

apparent photosynthesis of Stipa bromoides by

machine learning tools

Dalaka et al. (2000)

Using regression trees to identify the habitat preference

of the sea cucumber (Holothuria leucospilota) on

Rarontonga, Cook Islands.

Dzeroski and Drumm (2003)

Genetic markers applied in regression tree prediction models. Hizer et al. (2004)

Isolation vs. extinction in the assembly of fishes

in small northern lakes

Magnuson et al. (1998)

Probability of infestation and extent of mortality associated

with the Douglas-fir beetle in the Colorado Front Range

Negron (1998)

Tree regression analysis on the nesting habitat

of smallmouth bass

Rejwan et al. (1999)

Predicting invasions of woody plants introduced

into North America.

Reichard and Hamilton

(1997)

A comparison of estimated proportional hazards models

and regression trees.

Segal and Bloch (1989)

Stand and neighbourhood parameters as determinants

of plant species richness in a managed forest.

Skov (1997)

Spatial distribution of developmental egg ages within

a herring Clupea harengus spawning ground

Stratoudakis et al. (1998)

Catches per unit of effort of bigeye tuna: A new analysis

with regression trees and simulated annealing.

Watters and Deriso (2000)
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Table 6.4 A hypothetical example demonstrating how the best split at a node in regression tree analysis is

calculated. The data consist of 16 species of New Zealand birds ranked according to body mass. “Observed

extinction” is a categorical or binary numerical variable giving the probability of being extant (0 or 1). In

the table, the species are divided into two groups at a body mass of 975g, with species below this threshold

given a predicted probability of being extinct of 1 and species above the threshold a value of 0. The

probabilities and sample sizes to compute DL þ DRj jand GL þ GRj j for the classification model are shown in

the lower table. The far right column shows the data necessary to calculate the deviances for the regression

tree model

Observed extinction

Species Categorical Numerical (yj) Body mass (g) ðyj � �̂jÞ2

Malacorhynchus scarletti Extant 0 800 0.04a

Larus dominicanus Extinct 1 850 0.64a

Mergus australis Extant 0 900 0.04

Egretta alba Extant 0 900 0.04

Corvus moriorum Extant 0 950 0.04

Best split is here

Botaurus poiciloptilus Extinct 1 1000 0.033b

Anas superciliosa Extinct 1 1000 0.033

Podiceps cristatus Extinct 1 1100 0.033

Stictocarbo punctatus Extinct 1 1200 0.033

Catharacta skua Extinct 1 1950 0.033

Biziura delautouri Extant 0 2000 0.669b

Phalacrocorax varius Extinct 1 2000 0.033

Phalacrocorax carbo Extinct 1 2200 0.033

Morus serrator Extinct 1 2300 0.033

Leucocarbo carunculatus Extant 0 2500 0.669

Leucocarbo chalconotus Extinct 1 2500 0.033

Predicted

Observed Extinct Extant

Extinct 9/11¼0.82 1/5¼0.20

Extant 2/11¼0.18 4/5¼0.30

a�̂1for this split¼1/5¼0.2. The two deviances are thus (0�0.2)2¼0.04 and (1�0.2)2¼0.64
b�̂2 for this split is 9/11. The two deviances are thus (1�9/11)2¼0.033 and (0�9/11)2¼0.669.
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groups at some given split, L, is proportional to (see “Leaving normality” in

Chapter 2)

L / prð1� pÞn�r ð6:13Þ

where r and n�r are the numbers in the two groups and p is the probability

that the response variable falls into this category. There will usually be more

than a single split and hence more than two leaves. In this case, the above

equation can be expanded to (see “From binomial to multinomial” in

Chapter 2)

L /
YNLeaves

i¼1

YNClasses

j¼1

p
nij
ij ð6:14Þ

where NLeaves is the number of leaves, NClasses is the number of classes (this will

depend upon the number of categories into which the response variable is

divided. For example, if there were three categories, say species A, species B,

species C, then NClasses¼3. In the present example, NClasses¼2), nij is the

observed number in class j within leaf i and pij is the probability. Recall that

a comparison of models under the maximum likelihood framework can be

accomplished by using the log-likelihood ratio of the likelihoods of the two

models (see “Method 2: the log-likelihood ratio approach” in Chapter 2). This

suggests the following approach to decide where to split. The deviance for a

tree, D, is defined as

D ¼ �2
XNLeaves

i¼1

XNClasses

j¼1

nij lnðpijÞ ð6:15Þ

Now consider some node, which we label k. Prior to any division at this node,

the deviance at this node, Dk is

Dk ¼ �2
XNClasses

j¼1

nkj lnðpkjÞ ð6:16Þ

The deviance of the two groups after the kth node is split is the sum of the

deviances within each division

DL þ DR ¼ �2
XNClasses

j¼1

nLj lnðpLjÞ þ
XNClasses

j¼1

nRj lnðpRjÞ
 !

ð6:17Þ
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where L and R refer to the split to the left and right, respectively. The reduction

in deviance is thus

Dk � DL þ DRð Þ ¼ �2
XNClasses

j¼1

nkj lnðpkjÞ þ 2
XNClasses

j¼1

nLj lnðpLjÞ þ
XNClasses

j¼1

nRj ln pRj
� � !

¼ �2
XNClasses

j¼1

nLj lnðpkjÞ þ
XNClasses

j¼1

nRj ln pkj
� � !

þ 2
XNClasses

j¼1

nLj lnðpLjÞ þ
XNClasses

j¼1

nRj ln pRj
� � !

¼ 2
XNClasses

j¼1

nLj ln
pLj
pkj

� �
þ nRj ln

pRj
pkj

� �� �

ð6:18Þ
The optimum split is where the reduction in deviance is the greatest (this is

consistent with the principal of maximum likelihood). As we do not know the

true value of the probabilities, we estimate these using the observed proportions

p̂kj ¼ nkj
N

, p̂Lj ¼ nLj
NL

, p̂Rj ¼ nRj
NR

ð6:19Þ

where N is the total number of observations (assuming no missing values) and

N¼NLþNR. Substituting in Eq. (6.18) gives

Dk � ðDL þ DRÞ ¼ 2
XNClasses

j¼1

nLj lnðnLjÞ þ nRj lnðnRjÞ � nkj lnðnkjÞ
"

þN lnðNÞ � NL lnðNLÞ � NR lnðNRÞ

 ð6:20Þ

At any node, the value of Dk is constant and hence the split point can also be

found by minimizing |DRþDL|.

Two alternate rules for deciding where to split a node are based on the idea

of minimizing the average impurity. The first of these is the entropy or

information index

E ¼
XNLeaves

i¼1

XNClasses

j¼1

pij lnðpijÞ ð6:21Þ

This differs from the deviance by only a constant and hence will produce the

same split.

The second is the Gini index, which before the kth node is split is

Gk ¼ 1�
XNClasses

j¼1

p2j

 !
ð6:22Þ
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The reduction in average impurity is then

Gk � GL þ GRð Þ ¼ 1�
XNClasses

j¼1

p2kj � 1�
XNClasses

j¼1

p2Lj þ 1�
XNClasses

j¼1

p2Rj

 !

XNClasses

j¼1

p2kj � 1�
XNClasses

j¼1

p2Lj�
XNClasses

j¼1

p2Rj

 ! ð6:23Þ

As before, the split point can be found by minimizing |GL þ GR|.

To find the optimal split, the data are ranked in ascending (or descending)

order as shown in Table 6.4. We move down the rows and calculate the

required statistic at each division; the table shows the division at a body

mass intermediate between rows 5 and 6. The two relevant statistics are

estimated as

DL þ DRj j ¼ �2 ð9Þ lnð0:82Þ þ ð2Þ lnð0:18Þ þ ð1Þ lnð0:2Þ þ ð4Þ lnð0:80Þ
 � ¼ 15:43

GL þ GRj j ¼ � 2� 0:822 � 0:182 � 0:202 � 0:802
� � ¼ 0:62

ð6:24Þ

Plotting these statistics vs. the split point shows that this particular split gives the

lowest value in both cases (Figure 6.9) and thus, for the classification model

this split is optimal.

An alternate way of viewing these data is as a regression tree model in which

species are given probabilities of being extinct (1¼extinct and 0¼extant).

Figure 6.9 Plot of deviances vs. split point for the hypothetical example using the

extinction data shown in Table 6.4.
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As a species is either extinct or extant it can only be assigned a numerical value of

0 or 1. However, at any leaf, the mean value represents the probability of being

extinct. In this case, we can view this model as a regression problem with

binomial errors, though in the more general case we would assume a normally

distributed error term. The obvious candidate to calculate the splits from the

regression perspective is the sums of squares. We define the deviance at a node as

Dk ¼
Xnk
j¼1

ðyj � �jÞ2 ð6:25Þ

where nk is the number of observations at the kth node, yj is the jth observation of

the response variable within this group and �j is the mean. As before, we can

form a binary split at this node and define two deviances

DL þ DR ¼
XnL
j¼1

ðyLj � �LÞ2þ
XnR
j¼1

ðyRj � �RÞ2 ð6:26Þ

We select the split such that Dk� (DLþDR) is maximized, which is to say that we

minimize |DLþDR|. As in least square estimation, we replace the unknown mean

with its estimate (designated as �̂ or �y) and hence minimize

DL þ DR ¼
XnL
j¼1

ðyLj � �̂LÞ2þ
XnR
j¼1

ðyRj � �̂RÞ2 ð6:27Þ

For the extinction example, the sums of squares is minimized between rows 5

and 6 (Figure 6.9), as found using the classification approach.

To illustrate the regression tree model when the data are continuous and

there is more than a single predictor variable, I shall use the example previously

given in the discussion of the multivariate loess fit. Consider an organism whose

nesting requirements are determined by two components of its environment, say

X1 and X2. The interaction of these components is illustrated by the binary tree

shown in Figure 6.10 (this example is inspired by an analysis of the nesting

habitat of smallmouth bass given by Rejwan et al. 1999). If the value of X1 is

less than 17 then the response variable, Y, has the value of 5, whereas if X1

is greater than 17 then the response variable depends upon the value of the

second variable, X2. If X2 is less than 10 then Y takes the value 10, otherwise Y

equals 20. The variable X1 could be temperature and X2 could be habitat

structure. The interaction of these two habitat components produces the stepped

3D surface shown in the lower left of Figure 6.10. To make the situation more

realistic, I generated values of Y based on the binary tree and added random
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normal variables with means of zero and standard deviations that increased with

nest density (i.e., 2, 4, 8 for nest densities of 5, 10, 20, respectively; coding given

in Figure 6.5). The rationale for using the sums of squares is that the variance

at each leaf is the same (i.e., within each leaf the data are distributed as N(�i, �):

the foregoing model violates this assumption but appears a more reasonable

assumption for real data. Plotting the simulated points on the two predictor

variables produces patterns that are not readily discernible, though the plot

of Y on X1 does suggest an abrupt change at about X1¼17.

To find the appropriate split at the root node, we proceed as follows

(Figure 6.11):

(1) Rank all the values of X1.

(2) Divide the data set into two parts, beginning at the first value of X1, and

calculate the deviance, D (sums of squares) for the two parts

D ¼
Xn
i¼1

ðyi � �y1, nÞ2 þ
XN
i¼nþ1

ðyi � �ynþ1,NÞ2 ð6:28Þ

(3) where n is the last row in the first group, yi is the response variable

in the ith row, �y1, n is the mean value of y in the first groups (�̂j in

Figure 6.11 Plot of deviance vs. split point for the first node using the data illustrated

in Figure 6.10.
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the extinction example), N is the total number of observations

and �ynþ1,N is the mean value in the second group. The optimal split

point for X1 is the value of X1 that minimizes the deviance (i.e., least

squares).

(4) The process is repeated for X2.

(5) The predictor variable chosen is the one that gives the smallest

deviance. In the present example this is X1.

The process of splitting can continue until there is only one observation per

node or the data are entirely homogeneous at a node. By default, in S-PLUS

the splitting continues until the node is homogeneous or there are less than

5 observations to be split. A regression tree can be constructed using a dialogue

box in S-PLUS or the coding shown in the caption to Figure 6.12. The lengths of

the branches correspond to the reduction in deviance, it can be seen that

although there are 13 terminal nodes (leaves) most of the reduction in deviance

occurs in the first three branches (some branching is so close that the text merges

together and cannot be separated close to the split points), which corresponds to

the method by which the data were constructed (Figure 6.12).

Tree pruning: the cost-complexity measure

As the number of splits is increased, the deviance declines but the rate

of decline becomes increasingly smaller (Figure 6.13). In the present example,

there is very little decrease after three terminal nodes. It is desirable to have

a more objective means of determining when to stop adding nodes or when

to stop pruning. Breiman et al. (1984) developed a method for pruning trees to

a given size that gives the smallest deviance of all possible pruned trees (to

anticipate: it is possible that an optimal tree for a given size is not possible

as can be seen by the lack of size 11 in Figure 6.12, in which case S-PLUS

selects the next larger possible tree). Pruning is based on minimizing the cost-

complexity measure,

DkðT0Þ ¼ DðT0Þ þ kSizeðT0Þ ð6:29Þ

where D(T 0) is the deviance for the subtree T 0, k is the cost-complexity parameter,

and Size(T 0) is the number of terminal nodes on the given subtree. A plausible

measure for k is an approximation to Akaike’s information criterion, k ¼ 2�̂2,

where �̂2 is the estimated variance within the leaves, which can be equated to the

residual mean deviance in the full model. In our example, �̂2¼10.71 (see caption

to Figure 6.12), giving k¼21.42. In S-PLUS, the tree that satisfies the cost-

complexity measure can be found as shown in Figure 6.14. Although the number
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of terminal nodes is reduced from 13 to 8, there are still far more than actually

used to generate the data. This illustrates the general finding that the cost

complexity measure tends to be too generous and to over-fit.

Tree pruning: cross-validation

The technique employed here (as implemented by S-PLUS) is 10-fold

cross-validation. The data set is to randomly split into 10 equal components,

1 retained for testing and the other 9 combined to generate the model.

Figure 6.12 Regression trees fitted to hypothetical data from Figure 6.10. Top plot

shows the fully fitted tree (nodes too crowded to display text properly). Coding in

S-PLUS to generate tree and text (text output not shown).

Tree <- tree(Y~X1+X2, data=Data.df) # Data in file called Data.df

Tree # Print out results

summary (Tree) # Output summary of tree

plot(Tree); text(Tree) # Plot tree with value at splits

Summary output

Regression#tree:

tree(formula = Y�X1 + X2, data = Data.df)

Number of terminal nodes: 13

Residual mean deviance: 10.71 = 931.5/87

Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

�11.6500 �1.7130 0.1132 0.0000 1.5780 9.4700
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Testing is done by calculating the deviance using the estimated tree as the

predictor. Tree size is varied (in S-PLUS by varying k) and deviances calculated

for each value. The set used for testing is then incorporated into the esti-

mation set and one of these set aside for testing: thus this procedure yields

10 cross-validation results, which can then be averaged. The result can then

be plotted as deviance vs. tree size. As a further test, the whole procedure

can be repeated to yield more estimated curves. In principle, the deviance

should be minimal at the best tree size. Results of applying the cross-

validation routine 10 times to the present data set are shown in Figure 6.15

(coding in Appendix C.6.7): in 7 runs the best model had 3 terminal nodes

and in 3 runs it had 4 terminal nodes. Taking the integral average to be

3 gives the tree shown in Figure 6.16. This tree agrees very well with the

actual tree used to construct the data.

Tree pruning and testing: a randomization approach

The foregoing methods allow one to construct and prune a tree

according to a particular criterion but the question remains whether the tree

Figure 6.13 Deviance vs. the size of the tree (¼ number of terminal nodes ¼ leaves)

for the hypothetical example. In S-PLUS a similar graph can be produced by the

coding

Tree <- tree(Y~X1+X2, data=Data.df) # Generate tree

Tree.pruned <- prune.tree(Tree) # prune tree

plot(Tree.pruned) # Plot deviance as a function of tree size

Tree.pruned$size # Output tree size

Note that there is no deviance for size ¼ 11. This arises because of the method of

pruning the tree (see text for further details).
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Figure 6.14 Regression tree fitted to hypothetical data from Figure 6.10 using the

cost-complexity measure. Coding in S-PLUS to generate tree and text (text output

not shown):

Tree <- tree(Y~X1+X2, data=Data.df) # Data in file called Data.df

Prune.Tree <- prune.tree(Tree, k¼21.42) # Produce pruned tree

summary(Prune.Tree) # Output text results

plot(Prune.Tree); text(Prune.Tree) # Plot tree

Figure 6.15 Cross-validation applied to the hypothetical example discussed in the

text (coding to generate data given in Appendix C.6.7).
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is statistically significant. We can use randomization to answer this question.

Specifically, we can use randomization to test the tree generated by the above

procedure. The null hypothesis is that there is no relationship between the

response and predictor variables. We can test this hypothesis by randomly

permuting the response variable, fitting a tree, and comparing the residual

deviance from this tree with that from the observed data set. Tree fitting can be

done using the given size of the tree as the default tree size (3 in this example):

using the cost-complexity measure to prune the tree to the required size does not

ensure that this size can be achieved. A conservative test is to use the tree that is

the next larger if the desired size cannot be formed (this is the default for S-PLUS).

Applying this test to the present data (Appendix C.6.8) shows that none of

the randomized data sets fit the data as well or better than the observed data

(note that the test is the probability of the residual deviance from a randomized

data set being as small or smaller than the observed deviance). Most fitted trees

had 3 terminal nodes, although one was as large as 10.

Putting it all together: the extinction of the avifauna of New Zealand

To illustrate the principles outlined in the previous sections, I shall

present an analysis of data on the causes of extinction in the avifauna of

New Zealand described in Roff and Roff (2003).

The large-scale extinction of the avifauna of New Zealand in the centuries

following the colonization of the islands by the Maori is probably the best

documented case of extinction caused by the direct or indirect actions of a stone-

age people. The most frequently cited example is the extinction of the moas but

numerous other taxa, including geese, ducks, rails, petrels, and passerines also

became extinct in the period between Maori colonization and European contact.

Figure 6.16 A comparison of the tree used to generate the data for the example

analyzed in the text (upper) and the tree obtained from cross-validation (lower).
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On the North Island, there were 109 species prior to the Maori colonization of

which 34 (31%) were extinct by 1770 (the time of European colonization). Of the

118 species on the South Island 37 (31%) were extinct by 1770. A wide variety of

birds were exterminated: all eleven moas, most petrel species, some penguins,

waterfowl, birds of prey, rails, and several passerines. This very disparate set

of species lost suggests a variety of causes was responsible.

Frequently cited candidates as primary causes of extinction of the

New Zealand avifauna are direct hunting by the Maori, destruction of the

habitat by the Maori, and the impact of the pacific rat, Rattus exulans, through

predation and/or habitat alteration. While it is accepted that the pacific rat was

introduced into New Zealand by the Maoris, the exact date of introduction

remains controversial. Climate has been discounted as unimportant, except in

so much as it caused local reorganization of communities.

A fundamental problem in the analysis of patterns is that of erecting and

testing hypotheses after inspection of the data. For example, visual inspection

of the list of extinct and extant taxa suggests that flightless forms have a higher

probability of extinction than volant (flight capable) forms. However, after such

an inspection it is not statistically valid to then test this hypothesis using the

same data, though of course it is typically the only data we have. What is required

is a method of objectively finding patterns given a suite of potential candidate

characteristics. The problem is that the factors underlying extinction probability

may differ between taxa in highly non-linear manners. For example, birds laying

small eggs may be more vulnerable to pacific rat predation (one, but not the only,

possible impact of the pacific rat) than those laying large eggs, whereas large

birds may be invulnerable to rat predation but be a focus of human hunting.

Regression tree analysis is ideally suited to addressing this question and Roff

and Roff (2003) used the technique to discern the factors that correlate best with

the probability of extinction in the New Zealand avifauna prior to European

contact. Here, I concentrate on the extinction patterns in the North Island,

though the same pattern was found also in the South Island. The response

variable is the probability of extinction coded as 0 or 1 for each species. We

considered 7 possible predictor variables; body mass, egg length, flight capability

(volant or flightless), habitat type (3 classes), nesting site (4 classes), nest density

(2 classes), and food (3 classes).

The fully fitted tree had 11 terminal nodes. A plot of the deviance vs. the

number of terminal nodes shows a marked decrease in deviance up to 8 terminal

nodes but further splitting produced little change in the model fit (Figure 6.17).

The mean residual deviance was 0.06 giving a value of k of 0.12: pruning the tree

using this value did not remove any terminal nodes. Figure 6.18 shows the result

of applying 10 runs of the cross validation routine: there is considerable scatter
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but the optimal size appears to be 8 terminal nodes. To get a better fix on this

value, I ran 50 runs of the cross-validation routine, which gave an optimal tree

size of 8, whether one uses the mean, median or mode of the 50 values (see lower

graph in Figure 6.18). Ninety randomizations of the response variable produced

no tree of size 8 (or next largest) that had a smaller deviance than found in the

observed data set. Hence, we can conclude that the fitted tree with 8 terminal

nodes is significantly different from the null model.

This “best-fit” tree includes 3 of the 7 predictor variables: body mass, flight

ability, and nesting site (a ¼ in a cavity within the ground or in a fallen log etc. –

e.g., petrels, kiwis; b ¼ on the ground but not in a cavity – e.g., terns, most ducks;

c ¼ arboreal – e.g., most passerines, egrets, and herons; d ¼ in a cavity not on the

ground – e.g., some parrots. The analysis separated nesting site “a” from the rest;

see Figure 6.19). The terminal and near-terminal nodes split the data according to

body size and these can be grouped into four sets: leaves 1–3, leaves 4–5, leaves

6–7 and leaf 8 (Figure 6.19). Within each of these sets, we can investigate the

relationship between extinction probability and body size using a continuous

function such as logistic regression.

In the case of the grouping of nodes 1, 2, and 3, we added a quadratic term

to test for the presence of a decreasing probability at the largest body masses

(Roff and Roff 2003). Model fit was tested using log-likelihood (Chapter 2).

The quadratic termwas not significant (�2
1 ¼ 1.06, P¼ 0.30) and was dropped from

Figure 6.17 Deviance vs. tree size from the regression tree analysis of the extinction

of the avifauna of New Zealand. The dashed line indicates the region (3–5) over which

no optimal tree could be fitted.
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the model. The model involving body mass was highly significant for all three

groupings (nodes 1, 2, 3: �2
1¼7.32, P¼0.007; nodes 4 and 5: �2

1¼10.67, P¼0.001;

nodes 6 and 7: �2
1¼9.68, P¼0.002). In agreement with the regression

tree analysis, the probability of extinction declines with body mass for two

groupings and increases with body mass for the third (Figure 6.20). The final

regression tree with the terminal node logistic regressions is shown pictorially

in Figure 6.20.

Figure 6.18 Top plot shows the results of 10 runs of the cross-validation routine for

the New Zealand avifauna data. Bottom plot shows the distribution of the optimal

tree size from 50 runs of the cross-validation routine.

Tree models 195



Summary

(1) A recurring problem with multiple regression is that of finding the

best-fitting model. Stepwise regression methods frequently arrive at

different solutions. Cross-validation can be used to distinguish among

competing models.

(2) In cross-validation a portion of the data is set aside and the remainder

used to estimate the regression. This regression equation is then used

to predict the values of the data points set aside; the fit can be judged

by the correlation between the predicted and observed values in the

“new” data set.

(3) There are three “types” of cross-validation: the holdout method, K-fold

cross-validation and leave-one-out cross-validation. Given a reasonable

sample size K-fold cross-validation is to be preferred.

(4) In the absence of an a priori function or an obvious phenomenological

form, the form of a function can be estimated using a local smoothing

function such as loess, super-smoothing or the cubic spline.

Figure 6.19 The final pruned regression tree for the New Zealand avifauna data.

At each terminal node (leaf) is shown the probability of extinction and the sample

size. For discussion, the terminal nodes are labeled 1–8. BM ¼ body mass in grams.
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(5) Differences among fitted models can be assessed approximately by

use of an F-test or by cross-validation.

(6) Generalized additive models extend the standard linear regression

equation by replacing the coefficients of the regression equation by

a smooth function.

(7) As with smoothing functions, generalized additive models can be

compared using either an F-test or cross-validation.

(8) Tree models are particularly useful when there are many predictor

variables and their interactions may be complex. The general aim of

these methods is to produce a binary tree in which each node of the

tree represents a binary division of the data present at that node,

determined by some statistical criterion such as least squares.

Figure 6.20 A pictorial summary of the regression tree analysis of the New Zealand

avifauna data (redrawn from Roff and Roff 2003).
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(9) Tree pruning can initially be done using the cost-complexity measure

combined with cross-validation.

(10) A randomization test can be used to determine if the regression tree

accounts for more variation than expected by chance.
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Exercises

(6.1) Use the data below to compare by an F-test the two regression

models, y ¼ �0 þ �1x vs. y ¼ �0 þ �1x þ �2x
2

# 1 2 3 4 5 6 7 8 9 10

x 0.33 0.85 0.63 1.29 0.17 0.17 0.41 1.96 0.88 0.54

y 1.27 0.19 1.32 1.09 �0.06 �0.93 �0.10 2.48 1.53 �0.26

# 11 12 13 14 15 16 17 18 19 20

x 1.94 1.58 0.04 1.82 1.81 1.12 0.75 1.60 0.77 1.64

y 3.94 1.56 �0.18 1.72 4.15 1.03 0.62 1.75 0.11 2.30

(6.2) Use the data in question 6.1 to compare the two models y ¼ �0 þ �1x

and y ¼ �0 þ �1x
2 using leave-one-out cross-validation.
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(6.3) Use 10-fold cross-validation to examine the fit of the regression

model y ¼ �0 þ �1x þ �2x
2 to the data generated by the coding

set.seed(1)

n <-100

x <-runif(n,0,2)

error <-rnorm(n,0,1)

y <-x^2 +error

(Hint: consult Appendix C.6.1.)

(6.4) In a study of introgression between two salmonid species the

following data were collected on the environmental characteristics of the

streams from which the samples were taken and the surrounding forest. Forward

and backwards stepwise regression give different models. Which model is the

better predictor? Because of the relatively low number of observations, use

100 runs in which the testing set consists of 20% of the data. (Hint: consult

Appendix C.6.1.) Is there any evidence of overfitting by the “better” model

(Hint: modify coding in Appendix C.6.1 to calculate r2 for single models)?

INTR. INDEX S. LENGTH FOREST S. COND S. ABLE S. TEMP

0.54 25.3 70.7 0.8 0.30 17.0

0.41 25.3 70.7 0.8 0.30 18.1

0.37 8.0 90.4 0.2 1.00 13.6

0.26 55.6 79.5 1.2 0.27 11.2

0.48 27.4 84.8 0.9 0.57 17.5

0.03 81.8 26.5 1.0 1.00 14.6

0.03 228.5 62.5 1.0 1.00 10.8

0.05 45.0 20.2 0.3 0.41 10.6

0.06 97.2 46.7 1.5 0.51 17.8

0.34 311.2 51.3 1.3 0.14 12.6

0.23 28.8 81.0 2.7 1.00 12.6

0.06 36.0 45.9 1.4 0.59 12.2

0.31 80.5 29.0 1.7 1.00 17.3

0.03 343.2 50.0 2.2 1.00 10.8

0.30 113.2 87.8 2.8 0.27 11.9

0.30 33.1 83.5 0.8 1.00 13.7

0.35 102.0 65.2 1.0 0.18 19.1

0.00 618.6 70.2 1.4 1.00 12.6

0.25 16.9 38.5 2.0 1.00 14.4

0.16 101.2 77.3 1.7 1.00 15.3
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0.08 151.4 24.1 1.9 1.00 10.2

0.04 58.0 64.5 1.1 1.00 17.2

0.13 24.8 19.7 4.3 1.00 16.8

0.02 86.8 54.8 1.2 1.00 13.9

0.04 32.2 46.0 1.2 1.00 11.0

0.09 581.1 35.4 0.8 0.24 12.6

0.05 262.6 18.4 1.7 1.00 13.3

0.02 618.6 70.2 1.4 0.39 13.8

0.03 80.2 55.1 2.1 1.00 16.7

0.11 122.7 48.7 1.0 0.67 11.4

0.04 41.6 71.7 0.7 1.00 14.3

INTR. INDEX¼introgression index, S. LENGTH¼stream length, FOREST¼
index of forest quality, S. COND¼ stream conductivity, S. ABLE¼index of stream

quality, S. TEMP¼stream temperature.

(6.5) Fit two loess functions to the data in Q6.1, using span¼0.2,

degree¼1 and span¼1, degree¼1. Does the former model give a significantly

better fit to the data? (Also try plotting the data and the residuals making use

of the coding given in Appendix C.6.2).

(6.6) The number of data points in Q6.1 is too few to do 10-fold cross-

validation. There is sufficient to do 3-fold cross-validation. Using the coding in

Appendix C.6.3 as a guide, do 3-fold cross-validation.

(6.7) Modify the coding used in Q6.5 to randomly select one-third of the

data as the test set and perform 100 cross-validations. Compare the r2 between

predicted and observed with the multiple R2 from the fit on the training sets.

(6.8) Use the following generalized additive models to analyze the data

in the table below:

(1) All predictor variables entered as functions.

(2) X1 entered as a linear function.

(3) X1 not entered.

# X1 X2 X3 Y # X1 X2 X3 Y

1 1 9 2 90 16 5 0 3 44

2 4 9 9 813 17 3 0 2 11

3 3 8 0 86 18 7 9 0 111

4 6 2 0 11 19 3 2 3 35

5 0 5 1 29 20 8 6 5 167

6 0 4 0 7 21 5 2 7 368
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7 2 7 2 81 22 8 4 1 20

8 9 0 9 761 23 4 6 4 117

9 4 0 0 9 24 3 5 3 51

10 2 3 8 536 25 1 0 9 732

11 9 6 1 44 26 2 5 6 260

12 7 4 3 77 27 5 3 6 226

13 0 2 3 40 28 8 3 3 64

14 9 1 7 350 29 8 3 1 24

15 9 5 9 773 30 9 4 3 67

(6.9) The tree diagram shown below gives the factors that govern the

probability of extinction in a group of birds.

FlightlessVolant

<1 kg> 1 kg

0.121.00

Egg > 65mmEgg < 65mm

0.00

Nest Type CNest types A, B, D

0.800.25

1                       2                                            3                      4                           5

A hypothetical data set of 1000 species was constructed using the above

tree assuming 50% in each binary category (flight capability ¼WING, nest type ¼
NEST). A binary habitat category was also created that was unrelated to the

probability of extinction. Body and egg sizes were drawn from uniform random

distributions. The appropriate coding is

set.seed(1)

N <- 1000 # Number of species

# Create a vector with 50% 0s and 50% 1s

M <- N/2

Dummy <-c(rep(0,M),rep(1,M))

# Create vectors for the three binary variables with a randomized

# Dummy

Wing <- sample(Dummy) # 0¼flightless, 1=volant
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Nest <- sample(Dummy) # 0 nest type A,B,D, 1 = C

Habitat <- sample(Dummy) # Not connected to survival

# Create vectors of egg size and body size from random uniform

# distribution

Egg <- runif(N,0,130) # 0 < 65 , 1 > 65 egg size

Body <- runif(N,0,2) # 0 < 1kg, 1 > 1kg

# Create expected response vector

P <- matrix(0,N,1)

# Cycle through conditions

for ( i in 1:N)

{

if(Wing[i]==0 & Body[i]<1) P[i] <- 0.12

if(Wing[i]==0 & Body[i]>=1) P[i] <- 1

if(Wing[i]==1 & Egg[i] > 65) P[i] <- 0

if(Wing[i]==1 & Egg[i] <= 65 & Nest[i] == 0) P[i] <- 0.25

if(Wing[i]==1 & Egg[i] <= 65 & Nest[i] == 1) P[i] <- 0.80

}

# Now test to see if species is extinct or extant

# Generate uniform random numbers 0-1 to see if species survives

Prand <- runif(N,0,1)

for ( i in 1:N){if (Prand[i] < P[i] )P[i] <- 1 else P[i] <- 0}

# Combine variables into a single dataframe

Q7.Data <- data.frame(Wing,Egg,Body,Nest,Habitat,P)

Use regression tree analysis to determine the “best” tree. Use the response

variable as a numeric variable (setting it as a factor gives the same answer. The

advantage in using P as a numeric is that the leaves give the predicted

probabilities of extinction). Compare the “best” tree with the one used to

construct the data. Are they different? Be careful in your assessment: consider

how the tree given above would look if the first division was as in the output.

Hint: Use the following steps

Step 1: Create tree and plot deviance against possible tree sizes

Step 2: Cross-validation of tree to find optimal size (Appendix C.6.6)

Step 3: Randomization test for tree with 8 leaves (Appendix C.6.7).

List of symbols used in Chapter 6

Symbols may be subscripted

	 Parameter that plays the same role as degrees of freedom in

approximate F-statistic.
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" Error term

� Parameter

� Mean

� Standard deviation

�2 Variance

’( ) Function

AIC Akaike’s information criterion

D Deviance

E Entropy or information index

ENP Equivalent number of parameters

G Gini coefficient

L Likelihood

LLmax Maximum log-likelihood

N Sample size

PRSS Penalized residual sums of squares

RSS Residual sums of squares

X1, X2 Variables

f ( ) Function

k (1) Number of parameters, (2) Number of divisions in

cross-validation

P Probability

r, n Number in two groups at tree node

s(x) Smoother function

x, y Observations
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7

Bayesian methods

Introduction

The approaches we have examined thus far belong to a school called the

frequentist school. Frequentists use the likelihood function to calculate the

probability of observing a particular set of data for a given value of the statistic,

that is, given some set of observations, say x, the frequentist approach is to

calculate the probability of occurrence of the observed data for some given

statistic �. Symbolically, this is written as P(x|�), that is “the probability of x

given �.”

The Bayesian approach is different in that it reverses the probability state-

ment and asks “what is the probability of � given x,” which can be written as

P(�|x). To apply the Bayesian approach we require a prior probability

distribution for the statistic �. The current data are then used to modify this

probability, thereby forming a posterior probability distribution. Where

frequentists and Bayesians disagree is the case in which there is no prior

probability, though as we shall see this disagreement in many cases is actually

rather insignificant.

Both approaches can be useful in gaining a perspective on a set of data,

in particular, the Bayesian approach can be highly informative in cases of

decision making. For example, a physician may ask “what is the probability that

this patient actually has a disease given that she has a set of symptoms that occur

in 99% of people with the disease?” This seemingly simple question can have a

surprising answer in that it is possible for the probability that a person with the

symptoms has the disease may be very low. This example is discussed later in

a more general context concerning the correct assignment of species given

some observable characteristic. The difficulty with the Bayesian approach is in

assigning the prior probability and operationally in calculating the posterior

probability. In this chapter, I shall present some simple examples to illustrate the
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Bayesian approach and then somemore complex “real-life” examples to illustrate

further the utility of the method and the problems of its implementation.

Derivation of Bayes’ theorem

To understand the Bayesian perspective, we begin by considering

conditional probability. Thus far, we have only considered the case in which

P(A)¼p, that is, the probability of event A is p. We now consider the conditional

probability P(A|B)¼p, which in words is “given that event B is observed, the

probability of observing event A is p.” Quite clearly, this is a different statement

from the former (P(A)¼p) and the value of p will be different. We can represent

this situation as a Venn diagram in which A and B are intersecting circles within

the universal set (Figure 7.1). Now, given that B is observed, B represents the

entire set of possible outcomes, and the probability of A is the proportion of the

area of B contained within the circle (set) labeled A, which by simple geometry is

PðA Bj Þ ¼ PðA \ BÞ
PðBÞ ð7:1Þ

where P(A\B) is the conventional means of denoting the intersection of A and B.

Rearranging Eq. (7.1) to give the probability of A and B

PðA \ BÞ ¼ PðA Bj Þ PðBÞ ð7:2Þ

Figure 7.1 A diagrammatic representation of the occurrence of event A relative to

event B. The outer circle represents all possible events (by convention called the

universal set). The proportion of occurrences of B is shown by the inner grey circle.

Event A is the hatched inner circle and the intersection of A and B, denoted by A \ B,

is the joint event A and B.
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which must also be equal to

PðA \ BÞ ¼ PðB Aj Þ PðAÞ ð7:3Þ

So now we can write Eq. (7.1) as

PðA Bj Þ ¼ PðB Aj Þ PðAÞ
PðBÞ ð7:4Þ

The denominator can itself be written as a set of conditional probabilities

PðBÞ ¼ PðB Aj Þ PðAÞ þ PðB AC
�� Þ PðACÞ ð7:5Þ

where “AC” is the conventional method of denoting “not A.” Substituting

in Eq. (7.4) gives Bayes’ Theorem

PðA Bj Þ ¼ PðB Aj Þ PðAÞ
PðB Aj Þ PðAÞ þ PðB AC

�� Þ PðACÞ ð7:6Þ

The term P(A) is the prior probability and P(A|B) is the posterior probability, that

is, after event B is observed the probability of A can be updated based on this

observation. The above can be extended to more than two possible events and

in the terminology generally adopted in this book rewritten as

Lð� xj Þ ¼ Lðx �j Þ Pð�ÞÐ
Lðx �j Þ Pð�Þd� ð7:7Þ

where � is the statistic of interest, x is the set of observations and L(�) is the

likelihood function (it is perhaps better to call it the loss function as, in principle,

one does not have to use the likelihood, though this is the general approach),

and P(�) is the prior probability for �.

Two simple Bayesian models

A simple classification problem

This is the more “ecological” version of the example presented in the

introduction. Suppose a fraction pA of species A possess a characteristic B. In the

population of non-A species, the fraction of species that possess characteristic

B is pAC . Given that we have in our hand an organism that has characteristic B,

what is the probability that it belongs to species A, which is to say, P(A|B)?

The probability of A, P (A), is the proportion of species A in the fauna. Hence,

the probability of non-A species, P(AC) is 1�P (A). The probability of characteristic B
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given that the species is A, P(B|A), is pA, and the probability of characteristic B

given that the species is not A, P(B|AC), is pAC . From these data, we can write

PðA Bj Þ ¼ pAPðAÞ
pAPðAÞ þ pAC 1� PðAÞ½ � ð7:8Þ

The above equation is not particularly impressive until one realizes that it tells us

that even if 99% of species A has the characteristic B, the probability that a

randomly chosen species from the population with characteristic B is actually

species A can be very small (Figure 7.2). This arises because the probability of A

given B has to take into account the proportion of A in the population and the

proportion of non-A that bear character B: when only 1% of the fauna is species A

and 50% of other species also bear the characteristic B then the probability that

a randomly chosen species with character B is species A is only 0.02 (Figure 7.2).

Figure 7.2 Contour plot showing the probability of a randomly selected species

bearing characteristic B being species A when the probability of species A showing

the character is 0.99. Letting the horizontal and vertical axes be x and y,

respectively, the equation used is

PðA Bj Þ ¼ 0:99x

0:99xþ yð1� xÞ
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Estimating the mean of a normal distribution

First, we shall consider the problem of estimating the mean, �, given that

the variance is known (say �2). Recall from Chapter 2 that the likelihood of

observing a value x from a normal distribution is given by

Lðx �j Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2��

p e�
1
2

x��
�ð Þ2 ¼ ’ðx� �, �Þ ð7:9Þ

We shall assume that the prior probability distribution is also normal with mean

(�0) and variance, (�2
0 ). The unfixed parameters of the prior probability

distribution are known as hyperparameters. Using Bayes’ theorem, we can

compute the likelihood value for � given the observation x as

Lð� xj Þ ¼ ’ðx� �, �Þ ’ð� � �0, �0ÞÐ
’ðx� �, �Þ ’ð� � �0, �0Þd� ð7:10Þ

The numerator is the product of two exponential equations and after some

algebra can be written as

Lð� xj Þ / ’ð� � �1, �1Þ ð7:11Þ

where �1¼ðð1=�2
0Þ=�0 þ ð1=�2ÞxÞ=ðð1=�2

0Þ þ ð1=�2ÞÞ, ð1=�2
1Þ¼ð1=�2

0Þ þ ð1=�2Þ. The

inverse of the variance is termed the precision and hence, the Bayes’ estimate

of themean is equal to a weighted average of the prior mean and the observation,

where the weights are the prior and data precisions. An interesting way of

looking at the result is to rewrite the posterior mean as

�1 ¼ x� ðx� �0Þ �2

�2 þ �2
0

�1 ¼ �0 þ x� �0ð Þ �2
0

�2 þ �2
0

ð7:12Þ

Any single data point is itself an estimate of the mean � and hence the above

equations emphasize that the data estimate of � is “shrunk” towards the prior

mean (bottom equation) or adjusted towards the observed value by the observed

datum (top equation).

The above result can be applied to multiple observations by treating �x

as a single observation:

Lð� x1, x2, . . . , xnj Þ ¼ Lð� �xj Þ / ’ð� � �n, �nÞ ð7:13Þ

where �n ¼ ðð1=�2
0Þ�0 þ ðn=�2Þ�xÞ=ðð1=�2

0Þ þ ðn=�2ÞÞ, ð1=�2
nÞ ¼ ð1=�2

0Þ þ ðn=�2Þ.
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The application of the above formulae requires that we supply values for the

parameters of the prior. This is discussed in detail in the next section but it

is worth noting here that it is the issue of “subjectivity” in the decision of the

prior that troubles many researchers.

Deciding on the prior distribution

Noninformative priors

The simplest assumption that can be made about the prior is that all

values are equally likely: such a prior is termed a noninformative, vague or

indifferent prior. In the case of the normal distribution, this means letting the

variance go to infinity. While this is an improper prior (in the sense that it does

not have a unit integral), it can be justified by the use of limits and gives a proper

posterior, which is consistent with the likelihood approach. The assumption of

a uniform noninformative prior has disturbed many non-Bayesians, particularly

as it can arise that a one-to-one transformation, which should not affect

the answer, can change the effect of the prior (for a relatively accessible

mathematical discussion on this issue refer to pp. 48–52 in Press (1989). This has

lead to searches for noninformative priors that are invariant under transforma-

tion. For example, suppose � is a binomial variable. By definition, the parameter

space is 0–1 and the noninformative, uniform prior is P(�)¼1. (Throughout the

remainder of this chapter, I shall use the function P(•) to denote the prior.) Three

other priors that have been proposed are: P(�)¼ ��1 (1��)�1, P(�)/ [�(1��)]�
1
2, and

P(�) / ��(1��)(1��) (Berger 1985, p. 89). All are reasonable, and if it makes a

difference as to which is used then there is something wrong with the model,

because the prior is clearly not noninformative!

Using a noninformative prior for the estimation of the mean of a

normal distribution based on a single observation leads simply to the simple

likelihood

Lð� xj Þ ¼ ’ðx� �, �Þ ð7:14Þ

The posterior distribution for a given � ¼ 0.5 is shown in Figure 7.3.

Natural conjugate priors

For some probability distributions, there are “natural” priors in the

sense that the probability distributions suggest at least the form of the prior

distribution. The class of priors that have the same parametric form as the

posterior distribution are known as conjugate priors. These priors are frequently
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selected because of their convenient mathematical properties with respect to

solving the Bayesian formula. For example, if the case in which we are interested

follows the binomial distribution (e.g., the simple classification problem given

earlier) the likelihood function is

Lð�Þ ¼ nCx�
xð1� �Þn�x ð7:15Þ

where n is the number of observations and x is the number of “successes.” This

likelihood can be written in the form of a beta distribution

Lð�Þ ¼ �xð1� �Þn�xÐ
�xð1� �Þn�xd�

¼ �xð1� �Þn�x

Bðxþ 1, n� xþ 1Þ ð7:16Þ

Figure 7.3 Posterior probabilities for the estimation of the mean of a normal

distribution based on a known variance, a single observation x and naı̈ve

noninformative or informative priors. S-PLUS coding is

x <- 1.5 # Value of x

sd <- 0.5 # �

Posterior1 <- dnorm(x,Theta,sd) # Unscaled posterior

Posterior1 <- Posterior1/sum(Posterior1) # Scaled posterior

plot(Theta, Posterior1) # Plot

mu0 <- 1 # �0

mu1 <- (mu0+x)/2 # �0

sd1 <- 0.5/sqrt(2) # �1

Posterior2 <- dnorm(Theta,mu1,sd1) # Unscaled posterior

Posterior2 <- Posterior2/sum(Posterior2) # Scaled posterior

plot(Theta, Posterior2)
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where B(x,n) is a beta function. By Bayes’ theorem, we have

Lð� xj Þ ¼
nCx�

xð1� �Þn�xPð�ÞÐ
nCx�xð1� �Þn�xPð�Þd� ð7:17Þ

where P(�) is the prior probability distribution. Given a prior set of experiments

in which x0 “successes” in n0 trials were observed, we could take the prior to

be the likelihood

Pð�Þ ¼ Lð�Þ ¼ �x0 ð1� �Þn0�x0

Bðx0 þ 1, n0 þ 1Þ ð7:18Þ

Now, we do not have prior values for x0 and n0 and hence, we use two arbitrary

parameters �, �, permitting them to take positive noninteger values and rewrite

the formula as

Pð�Þ ¼ Lð�Þ ¼ ���1ð1� �Þ��1

Bð�, �Þ , � > 0, � > 0 ð7:19Þ

The useful feature of this distribution is that it is very flexible with a shape that

ranges from a bell-shaped distribution through a uniform distribution to a

U-shaped distribution (Figure 7.4). Further, because it has the same parametric

form as the likelihood of the observed data, the posterior distribution is readily

obtained analytically

Lð� xj Þ / �xð1� �Þn�x���1ð1� �Þ��1

Lð� xj Þ / �xþ��1ð1� �Þn�xþ��1
ð7:20Þ

Table 7.1 gives examples of other natural conjugate priors.

Naı̈ve Informative

It may be that we can use information or make an assumption to more

precisely define the prior distribution and reduce the number of parameters in

the posterior probability function. For example, in the estimation of the mean of

a normal distribution, we might assume that �¼�0, that is, the variances of the

prior and posterior distributions are the same. Given this, the mean and variance

of the posterior distribution is

�1 ¼
1
�20

� �
�0 þ 1

�2

� �
x

1
�20

� �
þ 1

�2

� � ¼ �0 þ x

2

1

�2
1

¼ 1

�2
0

þ 1

�2
¼ 2

�2

ð7:21Þ
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The posterior distribution is still normal, but with a different mean and variance:

Lð�� xj Þ ¼ ’ð� � �1, �1Þ ð7:22Þ

To apply this model, we require �0. For illustrative purposes, I have assumed

�0¼1. The new observation shifts the mean and reduces the variance of the

posterior probability distribution (Figure 7.3).

Figure 7.4 Probability densities for the beta distribution for various values of �

and �. In S-PLUS, a curve can be generated using the coding:

x <- seq(0.01,0.99,.01) # Generate proportions

alpha <- 24 # Set alpha

beta <- 25 # Set beta

y <- dbeta(x,alpha,beta) # Generate densities

plot(x,y) # Plot data

Table 7.1 Some natural conjugate priors (from Press 1989)

Sampling distribution Natural conjugate prior

Binomial “Success” probability is beta

Negative binomial “Success” probability is beta

Poisson Mean is gamma

Exponential with mean l�1 l is gamma

Normal with known variance but unknown mean Mean is normal

Normal with known mean but unknown variance Variance is inverted gamma
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Hierarchical Bayesian

In the foregoing analysis, I assumed that both �0 and �0 were known:

in general, the parameters of the prior distribution are unlikely to be known.

There are two possible routes to solving this problem. First, andmost simply, they

can be estimated from the data, in which case the estimator is known as an

Empirical Bayes’ estimator. Second, we can address the prior probability in the

same manner as the posterior probability, namely via Bayes’ theorem, in which

case the estimator is termed Hierarchical Bayesian. Prior probabilities for the

parameters of the prior are termed hyperpriors. The general approach is

relatively straightforward but the implementation can be horrendously complex

and involve considerable numerical simulation.

In the case of estimating the mean of a normal distribution, we have two

unknown hyperpriors, �0 and �0. For simplicity, I shall assume that these two

parameters are independent. Under independence, the joint probability density

function can be written as the product of two separate functions, p(�0,�0)¼
(�0)p2(�0). This allows us to construct a prior that is itself a conditional

probability distribution, a hyperprior. The prior distribution on � is

Pð�Þ ¼
ð
Lð� �0, �0j Þ p1ð�0Þ p2ð�0Þd�0 d�0 ð7:23Þ

where L(�|�0,�0)¼L(�)¼’(����0,�0). The above equation states that the joint

likelihood (prior) is obtained by integrating over the probability distributions

of �0 and �0. The posterior distribution can now be written as

Lð� xj Þ ¼
ð
Lð� xj ,�0, �0Þ p1ð�0 xj Þ p2ð�0 xj Þd�0 d�0 ð7:24Þ

To obtain the probability functions p1 and p2 we again make use of Bayes’

theorem

pið
 xj Þ ¼ Lðx 
j Þ pið
ÞÐ
Lðx 
j Þ pið
Þd
 ð7:25Þ

where 
 is either �0 or �0. We are now left with the question of deciding upon the

distribution functions for �0 and �0 and the likelihood function. The latter has

actually already been defined as normal and so

Lðx �0, �0j Þ ¼ ’ðx� �0, �0Þ ð7:26Þ

Given appropriate choices for the probability functions p1 and p2, it may be

possible to arrive at an analytical solution, but in many cases one may have to
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resort to numerical methods. To illustrate the procedure, suppose, based on prior

information, we assign to each unknown parameter (�0 and �0) four possible

values and probabilities of these values as shown in Table 7.2. We are quite sure

about the value of �0 but only moderately confident in our estimate of �0.

Because the two parameters are independent of each other, there are a total of

16 combinations, with the probability of a particular combination, given the

value of x, being determined by Eq. (7.25)

Lð�0, �0 xj Þ ¼ ’ðx� �0, �0Þ p1ð�0Þ pð�0ÞP
’ðx� �0, �0Þ p1ð�0Þ pð�0Þ ð7:27Þ

where the summation is taken over the 16 combinations. The result of the

calculations shows that the combination �0¼1.0, �0¼0.50 is overwhelmingly

the most likely. To obtain the posterior distribution for � we select a value of �,

calculate the likelihood for the given values of �0, �0, and x and sum over all

16 combinations

Lð� xj Þ ¼
X

Lð� �0, �0, xj ÞLð�0, �0 xj Þ ð7:28Þ

The prior probabilities are then obtained by dividing through by the overall sum

(Appendix C.7.1).

Further examples of Bayesian analyses

Effects of different priors: the difference between two means

The data consists of two samples of sizes ni with means �xi(i¼1,2). The

issue under investigation is the difference between the two means, �1 and �2 and

hence, we are interested in the distribution of �¼�1��2. The likelihood function

Table 7.2 Probability values for assumed values of �0 and �0 and the associated likelihoods for the

16 combinations given an observed value of x¼1.5

�0¼ 0.0 0.5 1.0 3.0

p1(�0)¼ 0.1 0.2 0.5 0.2

�0 p2(�0) L(�0, �0|x¼1.5)

0.25 0.01 10�10 4.1�10�6 0.0042 2�10�10

0.30 0.05 9.5�10�8 2.0�10�4 0.0319 1.9�10�7

0.50 0.90 0.0031 0.0747 0.8371 0.0061

0.75 0.04 0.0011 0.0067 0.0327 0.0022
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for each population, subscripted as i (¼1,2) can be written as (Chapter 2)

Lðxi �ij Þ ¼ ’ðxi � �i, �iÞ ð7:29Þ

Assuming the prior to be normal and, in the absence of information to the

contrary, that there is a common mean, �0, and variance, �2
0 , the likelihood for

the mean of each population is

Lð�iÞ ¼ ’ð�i � �0, �0Þ ð7:30Þ

The prior distribution for the difference between the two means is therefore

Pð�Þ ¼ ’ð0� �, �0
ffiffiffi
2

p
Þ ¼ ’ð�, �0

ffiffiffi
2

p
Þ ð7:31Þ

The likelihood function of X ¼ �x1 � �x2 conditional on � is

LðX �j Þ ¼ ’ðX � �, �Þ ð7:32Þ

where �2 ¼ �2
1

n1
þ �2

2

n2
. What we wish to calculate is the likelihood of � conditional

on X ¼ �x1 � �x2

Lð� Xj Þ ¼ ’ðX � �, �Þ ’ð�, �0
ffiffiffi
2

p ÞÐ
’ðX � �, �Þ ’ð�, �0

ffiffiffi
2

p Þd�
¼ ’ðY � �, VÞ

ð7:33Þ

where Y ¼ 2�2
0X

2�2
0 þ �2

and V2 ¼ 2�2
0�

2

2�2
0 þ �2

.

The problem is now to decide upon the prior distribution. Using a

noninformative prior gives the posterior probability to be ’(X��, �), i.e.,

Lð� Xj Þ ¼ ’ðX � �, �Þ ð7:34Þ

A researcher is likely to be interested not so much in the probability of a

difference of � but that the difference is equal to or greater than �, which is simply

the cumulative normal. For example, suppose the observed difference between

the two samples is 1.5 units and the samples are large enough that the two

variances can be substituted in the above formula (say �¼0.5), then the posterior

probability of a difference at least as large as � is
Ð
’ 1:5��

0:5

� �
dx (Figure 7.5). Given

some knowledge of what constitutes a biologically significant difference the

researcher can decide if such a difference has a “high” probability. Suppose a

difference of 2 units were considered biologically important, the probability of a

difference at least as large as 2 is approximately 0.16, which many researchers

would certainly consider a value that cannot be considered “insignificant.”

Rather than using a noninformative prior, we can use a naı̈ve informative

prior by assuming that the two variances in Eqs (7.31) and (7.32) are equal
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(both are variances of the difference between two means), i.e., �2 ¼ 2�2
0 .

Substituting for the mean and variance in Eq. (7.33) gives

Y ¼ 2�2
0X

2�2
0 þ �2

¼ �2X

�2 þ �2
¼ 0:5X

V2 ¼ 2�2
0�

2

2�2
0 þ �2

¼ �2�2

�2 þ �2
¼ 0:5�2

ð7:35Þ

which leaves us with only the “known” �2 (as before, say �¼0.5). The posterior

distribution is now

Lð� Xj Þ ¼ ’
0:5X � �

�
ffiffiffiffiffiffiffi
0:5

p
� �

ð7:36Þ

The probability of obtaining a difference at least as large as 2 is now 0.0002,

which is highly unlikely (Figure 7.5). Thus, a simple change in the assumption

about two parameters produces a dramatic difference in the assessment of

the probability of a difference between the two groups. This emphasizes the

Figure 7.5 Posterior probability distributions for a difference between two

normally distributed variables using a noninformative prior (��), or a naı̈ve

informative prior (�� �� ��). The data for the naı̈ve noninformative were generated

using S-PLUS coding

Theta <- seq(0,3,0.01) # Vector of theta values

cum <- pnorm(1.5-Theta, 0, 0.5) # Cumulative probability

plot(Theta, cum) # Plot data

216 Bayesian methods



importance of very carefully evaluating the premises underlying the probability

distributions.

Thus far, in this example, we have assumed a prior in which the means and

variances of the two normal distributions are the same (�1 and �2 had a common

normal distribution). Whereas this might be an appropriate null hypothesis,

a more general assumption to make in the face of no knowledge is that they

could have come from two different normal distributions. The prior now consists

of the mixture of two normal distributions, which is itself normal with mean �

and variance 
2, but for which there is uncertainty about the parameter values.

To incorporate this complexity into the estimation procedure, we must take

a hierarchical Bayesian approach. Assuming that these two parameters are

independent, the joint probability density function can be written as the

product of two separate functions, p(�,
)¼p1(�) p2 (
). The prior distribution on

�1 and �2 is

Pð�1, �2Þ ¼
ð
Lð�1, �2 �, 
j Þ p1ð�Þ p2ð
Þd�d
 ð7:37Þ

where L(�1,�2|�,
)¼L(�1|�,
)L(�2|�,
), which is the product of the likelihoods

given in Eq. (7.30) for given � and 
. The above equation states that the joint

likelihood (prior) is obtained by integrating over the probability distributions

of � and 
. The posterior distribution is

Lð�1, �2 x1, x2j Þ ¼
ð
Lð�1, �2 x1, x2j ,�, 
Þ p1ð� x1, x2j Þ p2ð
 x1, x2j Þd�d
 ð7:38Þ

and the cumulative probability that we are interested in can now be written as

ð
gð� Xj Þp1ð� x1, x2j Þp2ð
 x1, x2j Þd�d
 ð7:39Þ

where gð� Xj Þ ¼ Ð Lð� Xj Þ. The cumulative probability does not depend upon

p1(�|x1, x2) but is a function of p2(
|x1, x2). To obtain the latter, we again make

use of Bayes’ theorem

p2ð
 x1, x2j Þ ¼ Lðx1, x2 
j Þ p2ð
ÞÐ
Lðx1, x2 
j Þ p2ð
Þ d
 ð7:40Þ

and make use of the two conditional probabilities

Lðx1, x2 
j Þ ¼
ð
Lðx1, x2 �, 
j Þp1ð�Þd�

Lðx1, x2 �, 
j Þ ¼
ð
Lð�x1, �x2 �1, �2j ÞLð�1, �2 �, 
j Þd�1d�2

¼
Y2
i¼1

’
�xi � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
2 þ �2
i Þ=ni

p
 ! ð7:41Þ
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Substituting in Eq. (7.40), we arrive at

p2ð
 x1, x2j Þ ¼
Q2

i¼1 ’
�xi��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
2þ�2i Þ=ni
p
� �

p2ð
Þ
Ð Q2

i¼1 ’
�xi��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
2þ�2i Þ=ni
p
� �

p2ð
Þd

ð7:42Þ

It is still necessary to assign a functional form to p2(
) and values to �1 and �2.

Once this is done the posterior probability can be calculated. The important

message to be gained from this example is that the construction of the prior, even

in a very simple case, can become quite complex and still require assumptions on

distributions and parameter values that can be challenged. This is not meant

to denigrate the Bayesian approach merely to make clear that its assumptions

must always be clearly stated, particularly with respect to the construction

of the prior distribution.

Sequential Bayes’ estimation: survival estimates

Suppose we are interested in estimating the probability associated with

some binomial event such as survival. We subject n Daphnia to an encounter with

a predator, such as a stickleback and find that there are x survivors. As discussed

in Chapter 2, the likelihood for this situation is

Lð�Þ ¼ nCx�
xð1� �Þn�x ð7:43Þ

where � is the probability of “survival” at each trial. The observed value of � is

8/10¼0.8. In the absence of any prior information, we make the usual Bayesian

assumption that � is equally likely to lie between zero and 1, i.e., it has a uniform

prior. The prior probability is then a constant equal to 1 (for a uniform pro-

bability distribution between 0 and 1, we have
Ð
c d� ¼ 1, c�½ �10¼1). The posterior

distribution is then given by

Lð� 8j Þ ¼
10C8�

8ð1� �Þ2Ð
10C8�8ð1� �Þ2d� ð7:44Þ

The posterior probability distribution can be readily obtained by numerical

methods (Appendix C.7.2. I introduce these methods here, because in most cases

the distributions are too complex to be solved by analytical means, though the

above could be). The posterior distribution is simply the likelihood function

scaled so that the cumulative probability sums to 1. The information we have

in this equation is the same as we arrive at using the likelihood (Figure 7.6).

Suppose we repeat the experiment and obtain x¼2, applying the Fisher

exact test we find a significant difference between the two trials (P¼0.023).

218 Bayesian methods



At this point, we cannot combine the data and wemust consider each experiment

separately. But suppose in the second trial we obtain x¼5, which is not

significantly different from the first experiment (P¼0.3498). We can apply Bayes’

theorem using the previous posterior distribution as our prior, we have

Lð� 5j Þ ¼
10C5�

5ð1� �Þ5 10C8�
8ð1� �Þ2Ð

10C5�5ð1� �Þ5 10C8�8ð1� �Þ2d�
/ �13ð1� �Þ7

ð7:45Þ

which is simply the scaled likelihood for the combined data (i.e., L(�|13) using

a uniform prior. Figure 7.6). The difference between the frequentist and Bayesian

approaches is that the Bayesian approach focuses upon the posterior probability

as a source for decision making whereas the frequentist perspective is typically

on confidence intervals and hypothesis testing as the basis for decision making.

As I stated above, and wish to strongly emphasize, both approaches have their

merits and there is no reason not to analyze the data from both perspectives.

An application of sequential Bayes’ estimation: population estimation using

mark-recapture

Suppose we wish to estimate the number of animals in a closed

population (no immigration or emigration). One method is the method of “mark-

recapture,” in which an initial sample of size M is taken, the animals marked

Figure 7.6 Posterior probabilities for the survival probability estimate �, obtained

using a binomial likelihood function. The first posterior was obtained from x¼8 (8/10)

and the second was obtained from the second set of trials in which x¼5 (5/10)

using the first posterior as the new prior.
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and released and the population then resampled at random, the second sample

of n animals comprising m marked animals. Assuming equal catchability,

no births and no deaths between the two samples

M

N
¼ m

n
ð7:46Þ

where N is the population size. Rearranging the above gives the Lincoln or

Petersen estimate of population size

N̂ ¼ Mn

m
ð7:47Þ

Assuming that sampling can be modeled by the binomial (the hypergeometric

distribution is a plausible alternate because sampling is done without

replacement), we can write the likelihood of obtaining m marked animals

in a sample of n

Lð� mj Þ / nCm�
mð1� �Þn�m ð7:48Þ

where �¼M/N. We are interested in estimating the population size N. Given that

M is known, then for any given � the population size is also given and we can

write

LðN mj Þ / nCm�
mð1� �Þn�m ð7:49Þ

where N¼M/�. As before, in the absence of any information we assume a

uniform distribution of population sizes, with the smallest being no less than

the total number of unique animals sampled, Mþn�m. If further samples are

taken, the process can be repeated with the preceding posterior distribution

taken as the prior. Unlike the previous example, because the number of

marked animals changes between sampling (assuming that all animals

captured are marked before being released), the true value of � changes at

each resampling.

Figure 7.7 shows the results of applying this model to simulated data in which

the actual population size was 10000 “animals” and the number sampled and

recaptured as given in the figure caption (coding given in Appendix C.7.3). Unlike

several “traditional methods,” the sequential Bayes’ method does not under-

estimate the population size (Gazey and Staley 1986), and gives comparable

95% confidence limits (Table 7.3). Bayes’ estimation has been applied to more

complex mark-recapture scenarios (e.g., Casteldine 1981; George and Robert

1992; Madigan and York 1997; Bartolucci et al. 2004).
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Table 7.3 Population estimates from mark-recapture methods applied to a simulation model in which

population size remained stable at 10000 animals. Modified from Gazey and Staley (1986)

Estimator Estimated N 95% interval

Schnabel 8688 5256�25035

Modified Schnabel 8019 4964�16814

Schumacher and Eschmeyer 8498 5596�17652

Bayesian (mean) 10355 5650�18600

Figure 7.7 Sequential posteriors for a simulated mark-recapture analysis of

a population of 10000 “animals.” Mark-recapture history shown in table below,

coding given in Appendix C.7.3.

Sample n M M

1 34 50 0

2 42 84 1

3 43 125 0

4 40 168 1

5 32 207 0

6 56 239 1

7 42 294 1

8 44 335 4

9 56 375 3

10 44 428 1
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Empirical Bayes’ estimation: the James–Stein estimator of the mean

There are many circumstances in which we wish to estimate some

character of an organism but have a relatively small sample size, which

results in a large uncertainty in the estimate. For example, suppose we wish to

estimate the mean clutch size of a particular species of bird, say species A,

belonging to taxon B. We have a sample for species A giving an empirical

mean of �̂A but considerably more data on the taxon as a whole; sufficient in

fact that, excluding A, we can state that mean clutch size in taxon B is normally

distributed as N(�, �2), which for convenience we shall rescale such that

the variance is unity, N(�, 1). Assuming that we have no reason to suspect that

species A is not a representative species of the taxon, we can use the distribution

within the taxon as the prior distribution to modify our assessment of the mean

clutch size of species A. The relevant formula has already been derived in the

estimation of the mean of a normal distribution (Eqs. (7.10–7.12)): our Bayesian

assessment of the mean clutch size of species A, treating the mean as a single

datum is

�A ¼ �þ ð�̂A � �Þ �2
A

1þ �2
A

¼ �þ ð�̂A � �Þ 1� 1

1þ �2
A

� � ð7:50Þ

We do not know the value of �2
A but an unbiased estimate of 1=ð1þ �2

AÞ is

n� 2Pn
i¼1 ð�̂i � �iÞ2

ð7:51Þ

where �i is the mean of the ith species and �̂i is its observed estimate.

Substitution of (7.51) in Eq. (7.50) gives

�A ¼ �þ ð�̂A � �Þ 1� n� 2Pn
i¼1 ð�̂i � �iÞ2

 !
ð7:52Þ

The above is an example of a James–Stein estimator (for a mathematical

discussion of this estimator in a general setting see Efron and Morris 1973: for

a more readable account see Efron and Morris 1977). The above estimator

assumes that the true means, �i are known, which, in general, will not be the

case. As an approximation, we can replace �i by the grand mean, � ¼P
�i=n,

which can be estimated by the empirically derived value
P

�̂i=n (Efron and

Morris 1973). This gives the estimate

�A ¼ �̂þ ð�̂A � �̂Þ 1� n� 3Pn
i¼1 ð�̂i � �̂Þ2

 !
ð7:53Þ

222 Bayesian methods



where n�2 in the numerator has been replaced by n�3 to take into account the

estimation of one parameter. I have assumed in the above that species A is not

included in the overall mean estimate: in fact, we can include all species in the

overall mean and perform the estimation on each species independently, though

this can be criticized as confounding the prior and posterior probabilities.

Efron and Morris (1973) applied the above approach to the estimation of

batting averages of 18 major league baseball players. Such data might represent

survival rates among different species of a taxon, or parasitism rates (an example

discussed below). To test the efficacy of the maximum likelihood estimator

(MLE) and the James–Stein estimator, Efron and Morris determined the batting

averages for these players based on the first 45 times at bat �̂i, i ¼ 1, 2, 3, . . . ,18ð Þ
and compared predictions based on these data with the batting averages

achieved in the remainder of the season (roughly 300 more times at bat). The

maximum likelihood predictions are the averages calculated from the original

data. To determine the James–Stein estimates, the data, being proportions, were

first arc-sine transformed, which gave approximately unit variance. Estimates

were then made using Eq. (7.53) with �̂ being estimated using the entire data

set. The resulting equation was

�i ¼ 0:209�̂i � 2:59 ð7:54Þ

Efron and Morris compared the total squared prediction errorsP ð�̂i, predicted � �̂i, observedÞ2
� �

of the two estimators using the transformed

values: the MLE the total squared prediction error was 17.56 but for the James–

Stein estimator it was only 5.01. However, we might ask if the estimates were in

fact any good at all, that is, “Is there a significant correlation between the

predicted estimate and the observed value?” Because the James–Stein estimate is

a simple coding transformation of the data, the correlation between the observed

and predicted values is the same for both estimates, though the estimate of the

slope and intercept changes. The correlation in the present case is not significant

(r¼0.34, P¼0.167) and the two regression equations are

Y ¼ �2:68þ 0:18XMLE

Y ¼ �0:38þ 0:89XJames�Stein

ð7:55Þ

where Y is the actual observed batting averages and X is the predicted. Thus

although the correlation is not improved by the James–Stein estimator, and the

estimates are still poor predictors of future averages, the actual relationship

between observed and predicted is improved in the sense of being closer to a

1:1 ratio: this is shown in Figure 7.8 using the back-transformed values.
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Predictive distributions: the estimation of parasitism rate in cowbirds

A similar approach as above was taken by Link and Hahn (1996) for the

estimation of parasitism of nests by cowbirds. The basic data set was observations

on the rates of parasitism in 26 host species. Instead of working with the normal

distribution, Link and Hahn used the binomial distribution and derived an

empirical Bayes’ estimate directly from this. Before describing this study, we

need to consider predictive distributions, which are concerned with predicting

observable events rather than parameters, which cannot themselves be observed.

Let the likelihood of observing x be a function of a single parameter � and

be denoted as L(x|�) with prior density P(�). The posterior density for the

n observations x1, x2, . . . ,xn is

Lð� x1, x2, . . . , xnj Þ /
Yn
i¼1

Lðxi �j ÞPð�Þ ð7:56Þ

Wewish to predict a new observation y. As previously derived in the discussion on

hyperpriors, the predictive density for y is

pðy x1, x2, . . . , xnj Þ ¼
ð
Lðy �j ÞLð� x1, x2, . . . , xnj Þd� ð7:57Þ

Figure 7.8 Plot of observed batting averages on values predicted using the average of

45 previous values (maximum likelihood estimate) or the James–Stein estimate based

on these 45 values. Data from Efron and Morris (1973).
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To illustrate the above in the context of the study of Link and Hahn (1996),

recall that the posterior likelihood for an estimate of the proportion � using the

natural conjugate prior for the binomial is (Eq. (7.20))

Lð� xj Þ / �xþ��1ð1� �Þn�xþ��1

Bð�, �Þ ð7:58Þ

where �, � are the parameters of a beta distribution, x is the observed number of

“successes” and n the number of observations. The likelihood of observing y

successes in a sample of size N is

Lðy �j Þ ¼ NCy�
yð1� �ÞN�y ð7:59Þ

Using Eq. (7.57), the predictive density of y is

pðy xj Þ ¼
ð1
0

NCy�
yð1� �ÞN�y �

xþ��1ð1� �Þn�x���1

Bðxþ �, n� xþ �Þ d�

¼
NCy

Bðxþ �, n� xþ �Þ
ð1
0

�xþ��1þyð1� �Þn�x���1þN�yd�

¼
NCyBðxþ yþ �, N � yþ n� xþ �Þ

Bðxþ �, n� xþ �Þ

ð7:60Þ

which is known as the probability mass function of a beta binomial

distribution. Now we can, without loss of generality, redefine � and � as

�¼�þx and �¼n�xþ� and write the formula in terms of the probability of y

successes in N trials

pðy;NÞ ¼
NCyBðyþ �, N � yþ �Þ

Bð�, �Þ ð7:61Þ

The importance of this distribution in the present case is that it permits the

empirical estimation of the two parameters � and �. With respect to parasitism

by cowbirds, the above is the probability of selecting a host species at random

from the list of N species and finding y parasitized nests. As with the James–Stein

estimator discussed in the previous section, we estimate � and � from the data.

Let the observed proportion of parasitized nests for species i be �̂i ¼ xi=ni, where xi

is the number of parasitized nests and ni is the number of nests examined. Then

approximate estimates are

�̂ ¼ �̂
�̂ð1� �̂Þ

�̂2
�

 !

�̂ ¼ ð1� �̂Þ �̂ð1� �̂Þ
�̂2
�

� 1

 ! ð7:62Þ
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where �̂ ¼PN
i¼1 �̂i=N and �̂2

� ¼ 1
N

PN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂ið1� �̂iÞ=ni

q
. The posterior probability of

observing a parasitism rate in the ith species given an observed rate of �̂i is thus

Lð�i �̂i
��� Þ ¼ �xiþ��1ð1� �Þni�xiþ��1

Bð�þ xi, �þ ni � xiÞ ð7:63Þ

The expected value of �i given �̂i, Eð�i �̂i
��� Þ, has the extraordinarily simple formula

Eð�i �̂i
��� Þ ¼ �̂þ xi

�̂þ �̂þ ni

¼ �̂

�̂þ �̂

 !
�̂þ �̂

�̂þ �̂þ ni

 !
þ �̂i

ni

�̂þ �̂þ ni

 ! ð7:64Þ

There is relatively little change in estimated parasitism rates, except where

sample sizes are very small (Figure 7.9). Unlike the formula given in the last

section for themean, because of ni, the above formula is a nonlinear function and

ranking is not preserved. Perhaps the most dramatic change is that parasitism on

the wood thrush, which ranked 8th in the original rankings moves up to the first

rank (Figure 7.9), a move that can be attributed to the large sample size for the

wood thrush and the low sample sizes of those previously ranked higher.

Hypothesis testing in a Bayesian framework: the probability of extinction from

sighting data

Suppose, we have two competing models for which we can attach

posterior probabilities L0(�0|x) and L1(�1|x). An obvious measure of how well

model 1 fares in relation to model 2 is the simple ratio

BF ¼ L0ð�0 xj Þ
L1ð�1 xj Þ ð7:65Þ

which is known as the Bayes’ factor. Unlike hypothesis testing in a frequentist

framework, there is no generally accepted Bayes’ factor for which a hypothesis is

accepted or rejected. The principle use of the Bayes’ factor is to weigh the

evidence in favor of onemodel or the other. We can write Bayes’ factor in terms of

competing hypotheses H0 and H1 by noting that the probability that H0 is true

given some observation x is by Bayes’ theorem

LðH0 xj Þ ¼ Lðx H0j ÞPðxÞ
Lðx H0j ÞPðxÞ þ Lðx H1j Þð1� PðxÞÞ ð7:66Þ

where P(x) is the prior probability for x. The particular value of the Bayes’ factor

depends on which hypothesis is used as the numerator, it is generally easier to
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consider ratios greater than 1, and thus the likelihoods should be arranged

accordingly, which involves no loss of generality. What ratio provides strong

evidence for the hypothesis in the numerator? Blau and Neely (1975, p. 141) note

that a ratio of 10:1 “is ordinarily taken as showing a real difference in plausibility,

while 100 denotes strong preferences.”

Figure 7.9 Correspondence between the average parasitism rates by cowbirds on

other species and the Empirical Bayes’ (EB) estimators. Numbers show sample sizes for

each species (	 < 10, � 
 10). Data from Link and Hahn (1996).
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To illustrate this approach, I shall use the Bayesian analysis presented by

Solow (1993) of extinction probability estimated from sighting data. The data set

to be modeled consists of sightings of the Caribbean monk seal since 1915, the

last sighting occurring in 1952. Taking the sighting in 1915 as the beginning of

the series gives four sightings (1922, 1932, 1948, and 1952) denoted as x1, x2, x3,

x4¼x. The likelihood of observing n¼4 sightings in X years (1915–1992) is a

Poisson process with some undetermined rate �. Labeling the hypothesis that the

monk seal is not extinct as H0, we can write the likelihood for these sightings as

Lðx H0j Þ ¼
ð1
0

Lðx �j ÞdPð�Þ

¼
ð1
0

�ne��TdPð�Þ
ð7:67Þ

Solow used the noninformative prior dP(�)¼d�/� (0���1). The alternate

hypothesis, H1 is that the monk seal became extinct in the period xn to X

(1952–1992). Letting the time at extinction be xE, we have

Lðx H1j Þ ¼
ðX
xn

Lðx xEj ÞdPðxEÞ ð7:68Þ

The likelihood of x given xE is equal to

Lðx xEj Þ ¼
ð1
0

�ne��xEdPð�Þ ð7:69Þ

As with �, Solow assumed the noninformative prior, dP(xE)¼dxE/X (0�xE�X).

Integration of the above gives the Bayes’ factor to be

BF ¼ n� 1

ðX=xnÞn�1 � 1
¼ 3

ð77=37Þ3 � 1
¼ 0:37 ð7:70Þ

Inverting this ratio gives 2.7, a result that can be worded as “the likelihood

that the Caribbean monk seal is extinct, given the particular set of observations,

is 2.7 times the likelihood that it is not extinct.” Does this ratio provide strong

evidence for the continued existence of the Caribbean monk? On the basis of

the 10:1 criterion, we cannot distinguish between these alternatives. How long

would we have to go without sightings until a ratio of 10:1 is achieved? From

Eq. (7.69) the answer is 116 years (2031).
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There is a “classical” hypothesis test for these two hypotheses, namely that the

probability of not making a sighting given that the subject is not extinct is (xn/X)
n,

which gives a probability of 0.053 (Solow 1993). This test gives a marginal

rejection of the null hypothesis that the Caribbean monk seal is not extinct.

Failure to see the seal in 78 years gives P¼0.05 and a probability of 0.01 is given

by the failure to observe a seal in 117 years.

Summary

(1) In the previous chapters of this book, analyses were based upon

the probability statement P(x|�), which is to say, “the probability of x given

parameter �.” Using the maximum likelihood principle, an estimate of � can be

obtained. Hypotheses can be similarly tested under this framework. The Bayesian

perspective reverses the statement giving P(�|x), which is to say “the probability

of � given x,” shifting the focus of enquiry to the probability distribution of the

parameter. A Bayesian analysis relies upon Bayes’ theorem, L(�|x)/ L(x|�)P(�),

where L(�|x) is the posterior (likelihood) probability and P(�) is the prior

probability.

(2) The principle difficulty in Bayesian analysis is the selection of the prior.

In the absence of any information, a noninformative prior is typically selected.

For some probability distributions there are prior distributions, called natural

conjugate priors, that have the useful property that they have the same

parametric form as the proposed likelihood making it relatively easy to

analytically derive the posterior distribution. A reduction in complexity of the

problem can sometimes be achieved by making assumptions on the relationships

between parameters, giving what Deely (2004) refers to as naı̈ve informative

priors. The most general approach to the construction of priors involves

a hierarchical approach with the prior distribution itself being derived from

a Bayesian analysis: these priors are called hyperpriors.

(3) A Bayesian analysis can be applied sequentially, with the preceding

posterior used as the new prior. Two examples, presented in this chapter (survival

estimates and population estimation by mark-recapture) are based on the

analysis of the binomial distribution.

(4) The parameters of the prior distribution may be estimated from the data,

the resulting estimate being called an empirical Bayes’ estimator. The

application of the James–Stein estimator can be done using the available data.

(5) The ratio of two posterior probabilities is known as the Bayes’ factor and

can be used to distinguish between competing hypotheses. A factor of 10 is

considered by many to be good evidence for a difference between the models and

a factor of 100 is very strong evidence.
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Exercises

(7.1) Snails parasitized by a particular nematode show a characteristic

“malaise” which is detectable by a behavioral test in 97% of infected snails.

However, other factors can also cause this behavior and it is found that 67% of

noninfected snails exhibit the behavior. Assuming that the proportion of

noninfected snails in the population is 83%, what is the probability that a snail

that exhibits the behavior is infected?

(7.2) A general distribution used for rare occurrences is the Poisson

distribution L xð Þ ¼ �x

e�x!
, where L(x) is probability of x occurrences given a mean

of �. Assuming a uniform prior for � between 0 and c what is the posterior

probability for �?

(7.3) From prior information, the value of c in the above question is

estimated to be 0.1. In the present sample one occurrence is noted. Using an

interval of 0.001, plot the posterior distribution. Does it appear sensible? Repeat

the analysis assuming no upper bound for c (Hint: Take the maximum value of

� to be 10).

(7.4) The data below show the mean values for five bird species

normalized to a mean of 0 and variance of 1. Each sample consists of the mean

of five individuals. Use an empirical Bayesian approach to “better” estimate these

values. Are the new estimates an improvement?

Species # 1 2 3 4 5 6 7 8 9 10

True value �1.88 �1.02 �0.36 �0.13 �0.04 �0.03 0.00 0.01 0.34 1.21

Observed �3.85 �1.74 1.74 0.32 4.10 �1.47 1.80 2.03 1.81 0.46

(7.5) The coding below was used to generate the data in the preceding

question. Use it to explore the consequences of the distribution of species not

being normal. Is this an important assumption?
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# Seed for random number generator

set.seed(0)

nspecies <- 10 # Number of species

nsample <- 5 # Sample size per species

N <- nspecies*nsample # Total sample size

# Create vector of species values

Species.means <- rnorm(nspecies, mean=0, sd=1)

Species <- sort(Species.means) # Sort and store values

# Replicate species means to total sample size

Species.means <- sort(rep(Species, nsample))

# Set up index for By routine

Index <- sort(rep(seq(1, nspecies),nsample))

# Creates individual values from normal with mean = Species. means

# and sd=5

Species.values <- rnorm(N,Species. means,sd=5)

# combine

Data0 <- data.frame(Index, Species.means, Species.values)

# Calculate means per species

Obs <- unlist(by(Data0, Data0[,1], function (Data0)

mean(Data0[,3])))

# sums of squares

sum.var <- (nspecies-1) *var(Obs)

# Grand mean

GM <- mean(Obs)

# EB estimates

EB.estimate <- GM +(Obs-GM) *(1-(nspecies-3)/sum.var)

# Bind for data set

Data <- cbind(Species, Obs,EB.estimate)

# Print SS using obs means and SS using EB estimates

print(c(sum((Data[,1]-Data[,2])^2), sum((Data[,1]-Data[,3])^2)))

List of symbols used in Chapter 7

�, � Parameters in the beta function

� Parameter

�2 Variance

’(x��, �) Probability density for normal with mean � and

standard deviation �

� Mean

�̂ Estimate of �

List of symbols used in Chapter 7 231




 Symbol standing for either � or �

BF Bayes’ Factor

B(�, �) Beta function

L(�) Likelihood given parameter �

L(x|�) Likelihood of x given �

M Number of marked animals in first sample

N Population size

N̂ Estimate of N

PðA \ BÞ Probability of A and B

P(AC) Probability of “not A.” Upper case P is also used

primarily in this chapter to denote the prior

probability

P(x|�) Probability of x given �
nCx x!/[n!(n�x)!]

X �x1 � �x2

XMLE, XJames–Stein Estimated values

m Number of marked animals in samples subsequent

to the first

n Sample size

p Probability or probability function

pA Probability of A

x Observed value

�x Observed mean
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Appendix A

An overview of S-PLUS methods
used in this book

Data storage methods

There are three storage methods in S-PLUS pertinent to the programs

in this book.

Data frames

These are “matrices” in which columns can be of varying types. For

example, one columnmight be a numeric and anothermight be a character. They

are equivalent to the general data sets in most statistical packages, spreadsheets,

graphics packages, etc. Consider the following example data frame, which I shall

call “Data,” consisting of three columns, labeled X, Y, and GROUP:

X Y GROUP

1 7 A

2 9 B

4 10 C

3 2 D

The entries in a data frame can be accessed by several methods. Suppose we

wish to access the datum denoted in bold in the above data frame, we can use

Data$Y[2]or Data[2,2]. All of the values in column 2 can be accessed by Data$Y or

Data[,2]. Functions that require data in several formats (e.g., ANOVA where the

dependent variable is numeric and the independent variable is categorical)

require data frames but those that do not may be able to use either data frames

or matrices (e.g., linear regression).
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Matrices

A matrix can contain data of only one type (e.g., all numeric). The

usual way to access elements of a matrix is to specify their row and column

number, thus X[3,5] means the element in matrix X occupying the cell on

row 3 and column 5. A vector is simply a matrix consisting of a single row

or column.

Lists

A list consists of the concatenation of objects of different classes. Their

primary relevance in the programs presented in this book is that the output of

statistical functions can be saved in the form of a list. To obtain a relevant

variable it is necessary to access the appropriate component of the list. For

illustration, consider a one-way analysis of variance using data contained in

a data frame named data.df. The dependent variable is labeled X (numeric)

and treatment is labeled GROUP (factor). The command

ANOVA.model 5- aov(X~GROUP, data=data.df)

produces an ANOVA object fromwhich the ANOVA table can be constructed using

the summary command, stored in a new object ANOVA.S

ANOVA.S 5- summary(ANOVA.model,ssType=3)

Typing ANOVA.S produces the output

4 ANOVA.S

Type III Sum of Squares

Df Sum of Sq Mean Sq F Value Pr(F)

GROUP 1 0.18212 0.182116 0.130879 0.7191101

Residuals 48 66.79133 1.391486

Suppose we need the mean squares and degrees of freedom to calculate

variance components, we can extract this information from the object ANOVA.S.

To determine the names of the list items in ANOVA.S we type names(ANOVA.S),

which gives

[1] "Df" "Sum of Sq" "Mean Sq" "F Value" "Pr(F)"

The first list item is the degrees of freedom "DF", which can be accessed by

typing ANOVA.S$Df, producing the response

4 ANOVA.S$Df

GROUP Residuals

1 4
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To access the mean squares, we can type ANOVA.S$"Mean Sq" or ANOVA.S$Mean

(the shortened version is permitted, because there is no semantic conflict with

other component names). The variance component among groups is given

by MSGROUP �MSResidualsð Þ=25, where MS denotes means squares. This can be

calculated directly in S-PLUS by

(ANOVA.S$Mean[1]-ANOVA.S$Mean[2])/25

Assigning and comparing values

S-PLUS differs from many other packages in how values are assigned to

the variables. To set, for example, the variable X equal to 5, we use X 5- 5, rather

than X¼5. The equal sign is used to assign data within function calls: thus to

generate 10 random normal deviates with a mean of zero and a standard

deviation of 1 we use the function rnorm, passing the information as rnorm(n=10,

mean=0,sd=1).

Some symbols for logical operators are also “non-standard:”

Symbol Function

5 Less than

4 Greater than

5¼ Less than or equal to

4¼ Greater than or equal to

¼ ¼ Equal to

!¼ Not equal to

Some examples

(1) Assign a value, 5, to a variable named X1:

X1 5- 5

(2) Assign three values, 5, 3, and 9, to a vector named Xvector:

Xvector 5- c(5,3,9)

(3) Assign three values, 5, 3, and 9, to a 3�1 (rows by columns) matrix

named Xmatrix.1:

Xmatrix.1 5- matrix(c(5,3,9),nrow=3,ncol=1)
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(4) Assign six values, column 1¼5, 3, 9, column 2 ¼ 2, 4, 1 to a 3�2 matrix

named Xmatrix.2:

# Note that rows are filled first

Xmatrix.2 5- matrix(c(5,3,9,2,4,1),3,2)

(5) Generate 25 random normal deviates with mean zero and standard

deviation¼1 and place in Xnormal:

Xnormal 5- rnorm(n=25,mean=0,sd=1)

(6) Assign the 8th entry of Xnormal to a variable named y:

# Note that positions in datasets are denoted by square brackets

y 5- Xnormal[8]

(7) Assign the value from cell 2, 1 (row, column) of Xmatrix2 to a variable

named y:

y 5- Xmatrix.2[2,1]

(8) Generate two sets of 25 random normal deviates, both with zero mean

and unit SD and assign column-wise to matrix called DATA

X1 5- rnorm(n=25,mean=0,sd=1)

X2 5- rnorm(n=25,mean=0,sd=1)

DATA 5- matrix(c(X1,X2),ncol=2)

(9) Generate two sets of 25 random normal deviates, both with zero mean

and unit SD and assign column-wise to a data frame called DATA.DF.

Note that the columns will be automatically labeled X1 and X2.

X1 5- rnorm(n=25,mean=0,sd=1)

X2 5- rnorm(n=25,mean=0,sd=1)

DATA.DF 5- data.frame(X1,X2)

(10) Generate two sets of 25 random normal deviates, both with unit SD but

different means of 0 and 0.5 (mean¼ and SD¼ can be omitted). Assign

both to data frame called data.df consisting of two columns, the first

containing the 50 data points and the second column indicating group

membership (1 or 2).

X 5- c(rnorm(25,0.5,1),rnorm(25,0.0,1))

GROUP 5- c(rep(1,times=25),rep(2,times=25))

data.df 5- data.frame(X,GROUP)
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(11) Simulate the linear regression model Y ¼ a þ bX þ ", where a ¼ 2, b ¼ 3

and " is a random normal deviate with mean zero and SD¼10. Use

20 equally spaced predictor values from 1 to 20. Place data in two vectors

called X.lin and Y.lin.

X.lin 5- seq(from=1, to=20, length=20) # X values

error 5- rnorm(20,0,10) # Vector of errors

Y.lin 5- 2 + 3*X +error # Y values

Manipulating data

(1) Calculate the mean of Xnormal:

mean(Xnormal)

(2) Calculate the mean of column 2 of Xmatrix.2 (two methods shown)

mean(Xmatrix.2[1:3,2])

mean(Xmatrix.2[,2])

(3) Select all values in Xnormal that are greater than zero and assign

to y:

y 5- Xnormal[Xnormal40]

(4) Find the number of values in Xnormal:

length(Xnormal)

(5) Find the number of values in Xnormal that are greater than zero:

length(Xnormal[Xnormal40])

(6) Find the number of values in the 2nd column of Xmatrix.2 that are

greater than 1:

y 5- Xmatrix.2[,2] # Assign column to y

length(y[y41]) # Find number 4 1

(7) Apply a two-sample t-test to data in DATA.DF, comparing X1 with X2

(alternate methods shown):

t.test(DATA.DF$X1,DATA.DF$X2)

t.test(DATA.DF[,1],DATA.DF[,2])
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Output

Standard Two-Sample t-Test

data: DATA.DF[, 1] and DATA.DF[, 2]

t = -1.1368, df = 48, p-value = 0.2613

alternative hypothesis: difference in means is not equal to 0

95 percent confidence interval:

�1.0501346 0.2915413

sample estimates:

mean of x mean of y

�0.100205 0.2790916

(8) Compare groups in data.df using a oneway ANOVA and type 3 sums of

squares. First convert group membership value in data.df to a factor.

Note the use of “�” in the ANOVA model description, this is the general

means of indicating relationships in function formulae.

data.df 5- convert.col.type(data.df, "GROUP", "factor")

ANOVA.model 5- aov(X~GROUP, data=data.df)

summary(ANOVA.model,ssType=3)

Output

Type III Sum of Squares

Df Sum of Sq Mean Sq F Value Pr(F)

GROUP 1 0.18212 0.182116 0.130879 0.7191101

Residuals 48 66.79133 1.391486

(9) Perform a linear regression analysis using X.lin and Y.lin

Lin.Model 5- lm(Y.lin~X.lin)

summary(Lin.Model)

Output

Call: lm(formula = Y ~ X)

Residuals:

Min 1Q Median 3Q Max

�16.23 �6.459 2.202 3.347 14.41

Coefficients:

Value Std. Error t value Pr(4|t|)

(Intercept) -1.1979 3.8007 -0.3152 0.7562

X.lin 3.0854 0.3173 9.7245 0.0000

Residual standard error: 8.182 on 18 degrees of freedom
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Multiple R-Squared: 0.8401

F-statistic: 94.57 on 1 and 18 degrees of freedom, the p-value is

1.37e-008

Correlation of Coefficients:

(Intercept)

X.lin -0.8765

(10) Extract the regression coefficients from the above results (2 methods

shown)

Lin.Model$coeff

Lin.Model[1]

Output

(Intercept) X.lin

�1.197929 3.085367

(11) Extract the slope

Lin.Model$coeff[2]

Output

X.lin

3.085367
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Appendix B

Brief description of S-PLUS
subroutines used in this book

General routines such as “log”, “print” etc. are omitted. Arguments set at

the default values are not displayed. For a complete description, see the language

reference section in S-PLUS.

anova(Model) Compute an ANOVA table for Model

anova(Model1, Model2, test¼“F”) Compare Model1 and Model2

aov(formula, data¼) Fit an analysis of variance model using formula on data

as.numeric(x) returns a vector like x, but with storage mode “double,” if x is a

simple object of mode “numeric.” Otherwise, as.numeric returns a numeric

object of the same length as x and with data resulting from coercing the elements

of x to mode “numeric.”

bootstrap(data=, statistic, B=, trace=F) Performs bootstrap for observations

in data= using the statistic specified by statistic. The number of replicates is B

and trace determines printing of replicate number during computation.

by(X, Indices, function) Split dataset X by Indices and apply function to each

part.

c Concatenates objects into a vector or a list (e.g., c(0.5, 0.2)).

cbind() Returns a matrix that is pieced together, column-wise, from several

vectors and/or matrices.

ceiling() Creates integers from floating point numbers by going to the next

larger integer.

chisq.test(x, correct=F) Chi-square contingency test using x. Apply Yates

correction if correct=T

choose(n,k) Is the binomial coefficients, n!/(k!(n�k)!)

contourplot(Z � X�Y, data¼, at¼0, xlab¼“X”, ylab¼“Y”) Contour plot of Z on X,

Y. In above example, a single contour line of zero (at¼0) is drawn.
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convert.col.type(target¼X, column.spec¼, column.type¼) Converts column(s),

column.spec, in a 1- or 2-dimensional dataset, X, to a particular data type,

column.type.

cor(X, Y, na.method ¼ “omit”) Returns the correlation of a vector or the

correlation matrix of a data matrix. Missing values can be omitted or the

calculation set to “fail.”

dimnames Returns or changes the dimnames attribute of an array.

dnorm(x, mean¼0, sd¼1) Density for the normal distribution with mean and

standard deviation parameters mean and sd.

factor(x) Makes x a factor.

fitted(Model) Extract fitted values from Model.

floor(x) Converts x to smallest integer � x.

gam(formula, data¼) Fit a generalized additive model according to formula

using supplied data.

is.random States or changes whether or not a factor is considered random by

the varcomp function.

jackknife(data=, statistic) Jackknife the observations given by data ¼, using

the statistic specified by statistic.

length(X) Returns an integer that describes the length of the object, X, e.g., if X

is a vector or matrix length(X) is the number of elements in X.

lines(x, y) Add lines to current plot.

lm(formula, data¼) Fit linear regression using observations in data and

equation given by formula.

loess(formula, span¼, degree¼) Fit a local regression model using formula

with given span and degree.

manova(formula, data¼) Produces a fit byMANOVA according to formula using

data¼.

matrix(data, nrow¼, ncol¼) Creates a matrix. data is a vector containing the

data values for the matrix (if a single value, such as 0, is given the matrix is filled

with this value). Missing values (NAs) are allowed. nrow is the number of rows.

ncol is the number of columns.

mean(X) Mean of X (missing values are allowed).

menuTable(varnames¼, data¼, print.p¼ F, save.name¼) Calls the table

function to tabulate variables, varnames, in data set designated by data ¼,

with the result not printed out (print.p¼F) and saved as specified by save.name¼.

ncol(X) Gives the number of columns of matrix X.

nrow(X) Gives the number of rows of matrix X.

nlmin(F,V) Finds a local minimum of a nonlinear Function, F, using a general

quasi-Newton optimizer, given a vector, V, of starting values. Examples: C2.2,

C2.4, C2.6, C2.7, C2.8, C2.9.
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nlminb(F, V, L, U) Local minimizer for smooth nonlinear functions subject to

bound-constrained parameters. F is the function, V a vector of starting values, L

the lower bound and U the upper bound. Examples: C2.1, C2.3.

nls(F, data¼D, start¼list(. . . .)) Fits a nonlinear regression model via least

squares. The errors are assumed Gaussian and independent with constant

variance. F is the function, D is the data matrix, start is a vector of starting values.

Examples: C2.10, C2.11.

numerical.matrix(x) Convert x into a numerical matrix.

pchisq(q, df) Quantile for the chi-square distribution.

pf(q, df1, df2) Cumulative probability for the F distribution.

pnorm(x, mean¼, sd¼) Probability for the normal distribution with mean and

standard deviation parameters mean and sd.

pointwise(Model, coverage¼0.95) Computes pointwise confidence limits (cov-

erage ¼) for predictions computed by the function predict.

predict(Model, newdata) Predict values using newdata and fitted Model.

predict.loess(Model, newdata) Returns the surface values of local regression

surfaces and/or standard errors.

prune.tree(Model, best¼) Cost-complexity pruning of fitted tree Model. The

final size of the tree can be specified by best.

qnorm(x, mean¼, sd¼) Quantile for the normal distribution with mean and

standard deviation parameters mean and sd.

qt(p, df) Quantile for t distribution for given p and df degrees of freedom.

rep(X, times¼) Replicates the input X a certain number of times (or to a certain

length, argument not shown).

residuals(Model) Extract residuals from Model.

rgamma(n, shape¼, rate¼) Generate n gamma-distributed variables with

parameters shape and rate.

rnorm(n, mean¼, sd¼) Generates n random normal deviates with specified

mean and standard deviation.

runif(n, min¼, max¼) Generates n random uniform deviates betweenmin and

max.

sample(X, size¼, replace¼T) Produces a vector of length size of objects

randomly chosen from X. If replace¼T sampling is done with replacement.

scatter.smooth(X, Y, span¼, degree¼) Produces a scatter plot and adds a

smooth curve using the loess fitting method.

seq(from¼, to¼, by¼, length¼) Creates a vector of evenly spaced numbers. The

start, end, spacing, and length of the sequence can be specified.

set.seed(i) Puts the random number generator in a reproducible state, thereby

allowing the production of the sequence of random numbers. i is an integer

between 0 and 1023.
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sort(X) Sort vector X into ascending order.

sum(X) Returns the number that is the sum of all of the elements of all of the

arguments. Missing values may optionally be removed before the computations.

summary Provides a synopsis of an object. Classes which already have methods

for this function include: aov, aovlist, data.frame, factor, gam, glm, lm, loess,

mlm, ms, nls, ordered, terms, tree.

supsmu(x, y) Supersmoothing routine for x, y.

tree(formula, data¼) Fit a regression or classification tree to data.

t.test(X, Y) Performs a two sample t-test between numeric vectors X and Y. One

sample, paired t-test, or a Welch modified two-sample t-test are also possible.

unlist Returns a vector or a list which is the result of simplifying the recursive

structure of the input list.

varcomp(formula, data¼, method¼) Estimation of variance components using

the model, formula, with data¼, andmethod¼ (restrictive maximum likelihood

in examples in this book).

write(X, file¼, ncolumns¼, append¼ T) Write data X to ascii file file¼,

consisting of ncolumns. If append¼ T data appended to file, otherwise the file

is overwritten.
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Appendix C

S-PLUS codes cited in text

S-PLUS codes discussed in the text. Codes are delineated by Chapter and

number; e.g., C.2.3. refers to Chapter 2, code set 3. In many cases, part or all of the

calculations can be performed via the dialog boxes (which are not available in R).

A WORD file containing this appendix is available at http://www.biology.ucr.edu/

people/faculty/Roff.html. Comments, suggestions and questions can be sent to

Derek.Roff@ucr.edu.

C.2.1 Calculating parameter values for a threshold model

# Set up function to calculate negative of the log likelihood (minus

# constants)

# THETA is a vector containing the two parameters to be estimated.

# THETA[1] is p, THETA[2] is the heritability

# r is a vector containing the two values of r

# n is a vector containing the two values of n

LL <- function(THETA)

{

# Calculate log likelihood for the initial sample

L0 <- r[1]*log(THETA[1])+(n[1]-r[1])*log(1-THETA[1])

# Calculate the initial population mean of the liability m0
mu0 <- qnorm(THETA[1],0,1)

# Calculate the mean liability of the offspring m1

mu1 <- mu0*(1-THETA[2])+THETA[2]*(mu0+dnorm(mu0,0,1)/THETA[1])

# Calculate predicted proportion, p2, of the designated morph in the offspring

p2 <- pnorm(mu1,0,1)

# Calculate log likelihood (minus constants) for the second sample

L1 <- r[2]*log(p2)+(n[2]-r[2])*log(1-p2)
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# Return negative of the sum of the two log “likelihoods”

return (-(L0+L1))

}

# Main Program

# Set values for r and n

r <- c(50,68)

n <- c(100,100)

# Set initial estimates for THETA

THETA <- c(0.8,0.1)

# Call minimization routine setting lower and upper limits to 0.0001 and

# 0.999, respectively

min.func <- nlminb(THETA, LL,lower=0.0001, upper=0.9999)

# Print out estimates

min.func$parameters

Output

min.func$parameters

0.5000000 0.5861732

C.2.2 Estimation of parameters of a simple logistic curve

For an alternative approach using the routine glm see C.2.8.

# Data (see Figure 2.5) are in a matrix or data frame called D.

# Col 1 is dose (x), col 2 is n, col 3 is r

Dose <- c(1.69,1.72,1.76,1.78,1.81,1.84,1.86,1.88)

n <- c(59,60,62,56,63,59,62,60)

r <- c(6,13,18,28,52,53,61,60)

D <- data.frame(Dose,n,r)

# Define function LL that will calculate the loss function

# b is a vector with the estimates of y1 and y2

LL <- function(b){-sum(D[,3]*(b[1]+b[2]*D[,1])-D[,2]*log(1+exp(b[1]+

b[2]*D[,1])))}

b <- c(-50, 20) # Create a vector with initial estimates

min.func <- nlmin(LL, b) # Call nonlinear minimizing routine

min.func$x # Print out estimates

Output

min.func$x

�60.10328 33.93416
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C.2.3 Locating lower and upper confidence limits for heritability

of a threshold trait given offspring data

# Set up function to calculate negative of the log likelihood (omitting

# constants)

LL <- function(h2)

{

# Calculate the mean liability of the offspring m1

mu1 <- mu0*(1-h2)+h2*Parental.mean

# Calculate predicted proportion, p2, of the designated morph in the offspring

# using library routine pnorm

p2 <- pnorm(mu1,0,1)

# Calculate log likelihood for the offspring sample using the library routine

# dbinom

L1 <- log(dbinom(r, n, p2))

# Return negative of the log-likelihood

return (-L1)

}

# MAIN PROGRAM

# Set values for r and n, the offspring sample

r <- 68

n <- 100

# Set initial proportion and calculate the mean liability

p <- 0.5

mu0 <- qnorm(p,0,1)

# Calculate Parental mean

Parental.mean <- mu0+dnorm(mu0,0,1)/p

# Set initial estimates for h2

h2 <- 0.5

# Call minimization routine setting lower and upper limits to 0.0001 and

# 0.999, respectively

min.func <- nlminb(h2, LL, lower=0.0001, upper=0.9999)

# Save estimate

MLE.h2 <- min.func$parameters

# Calculate Log-Likelihood at MLE

Global.LL <- -LL(MLE.h2)

# Create a function to square Diff so that minima are at zero

Limit <- function(h2){(Global.LL+LL(h2)-0.5*3.841)^2}

# Find lower limit by restricting upper value below MLE.h2

h2 <- 0.01
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min.func <- nlminb(h2, Limit, lower=0.0001, upper=0.9999*MLE.h2)

# Save estimate

Lower.h2 <- min.func$parameters

# Find upper limit by restricting lower value above MLE.h2

h2 <- 0.99

min.func <- nlminb(h2, Limit, lower=1.0001*MLE.h2, upper=0.9999)

# Save estimate

Upper.h2 <- min.func$parameters

# Print out results

print(c(Lower.h2,MLE.h2,Upper.h2))

Output

print(c(Lower.h2, MLE.h2, Upper.h2))

0.2685602 0.5861735 0.9097963

C.2.4 95% confidence interval for parameters Lmax and k of the von

Bertalanffy equation conditioned on t0 and variance

# Data are in file called D (see Figure 2.3)

# Col 1 is Age, Col 2 is length of females, which is the only sex analyzed here

Age <-c(1.0,2.0,3.3,4.3,5.3,6.3,7.3,8.3,9.3,10.3,11.3,12.3,13.3)

Length <-c(15.4,28.0,41.2,46.2,48.2,50.3,51.8,54.3,57.0,58.9,59,60.9,61.8)

D <-data.frame(Age, Length)

# Create function to calculate sums of squares for three variable parameters

LL <- function(b) {sum((D[,2]-b[1]*(1-exp(-b[2]*(D[,1]-b[3]))))^2)}

# Calculate parameters for all three parameters

b <- c(60, 0.3, -0.1) # Set initial estimates in vector b

min.func <- nlmin(LL,b) # Find minimum sums of squares

MLE.b <- min.func$x # Save estimates

t0 <- MLE.b[3] # Set t0 to its MLE value

n <- nrow(D) # Get sample size n

var <- LL(min.func$x)/n # Calculate MLE variance, called var

# Calculate log-likelihood at MLE and subtract 1/2 chi-square value for k=2

Chi.Contour <- (-n*log(sqrt(2*pi*var))-(1/(2*var))*LL(min.func$x))-

0.5*(5.991)

# Condition on var and t0

# Create a matrix with values of Lmax and k, the two parameters of interest

# Set number of increments

Nos.of.inc <- 20
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# Set values of Lmax

Lmax <- rep(seq(from=58,to=64,length=Nos.of.inc), times=Nos.of.inc)

# Set values of k

k <- rep(seq(from=0.25,to=0.35,length=Nos.of.inc), times=Nos.of.inc)

k <- matrix(t(matrix(k,ncol=Nos.of.inc)), ncol=1)

# Place Data in cols 1 and 2 of matrix Results

Results <- matrix(0,Nos.of.inc*Nos.of.inc,3)

Results[,1] <- Lmax

Results[,2] <- k

# Set number of cycles for iteration

Nreps <- Nos.of.inc*Nos.of.inc

for (I in 1:Nreps)

{

# Calculate LL for this combination

LL.I <- (-n*log(sqrt(2*pi*var))-(1/(2*var))*LL(c(Results[I,1],

Results[I,2],t0)))

# Subtract Chi.Contour this from value

Results[I,3] <- Chi.Contour - LL.I

}

# Now plot contour

contourplot(Results[,3]~Results[,2]*Results[,1], at=0, xlab="k",

ylab="Lmax")

C.2.5 Output from S-PLUS for von Bertalanffy model fit

using dialog box

*** Nonlinear Regression Model ***

Formula: LENGTH ~ Lmax * (1 - exp(- k * (AGE - t0)))

Parameters:

Value Std. Error t value

Lmax 61.2333000 1.2141000 50.435300

k 0.2962530 0.0287412 10.307600

t0 -0.0572662 0.1753430 -0.326595

Residual standard error: 1.69707 on 10 degrees of freedom

Correlation of Parameter Estimates:

Lmax k

k -0.843

t0 -0.544 0.821
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C.2.6 Estimation of parameters of a simple logistic curve and

calculation of the deviance

# Data are in a matrix or data frame called D (see C.2.2 for data)

# Col 1 is dose (x), col 2 is n, col 3 is r

# Define function LL that will calculate the loss function

# b is a vector with the estimates of y1 and y2

LL <- function(b){-sum(D[,3]*(b[1]+b[2]*D[,1])-D[,2]*log(1+exp(b[1]

+b[2]*D[,1])))}

b <- c(-50, 20) # Create a vector with initial estimates

min.func <- nlmin(LL, b) # Call nonlinear minimizing routine

b <- min.func$x # Save estimates

# Create function to calculate expected frequencies

Expected <- function(x) {exp(b[1]+b[2]*x)/(1+ exp(b[1]+b[2]*x))}

# Calculate expected frequencies

Exp.Freq <- Expected(D[,1])

# Create vectors with observed and expected cell numbers

# Add 0.0000001 to observed values to prevent undefined logs

r.obs <- D[,3]+0.0000001

n.minus.r.obs <- (D[,2]-D[,3])+0.0000001

r.exp <- Exp.Freq*D[,2]

n.minus.r.exp <- (1-Exp.Freq)*D[,2]

# Calculate Deviance

Deviance <- (r.obs*log(r.obs/r.exp)+n.minus.r.obs*log(n.minus.r.obs/

n.minus.r.exp))

# Print out estimate and Deviance

print(c(b, 2*sum(Deviance)))

Output

print(c(b, 2 * sum(Deviance)))

�60.10328 33.93416 13.63338

C.2.7 Comparing a 3-parameter with 2-parameter von Bertalanffy

model using nlmin routine

For an alternative approach using the nls routine see C.2.10 and C.2.11.

Data are in file called D (see Figure 2.3 and C.2.4 for actual data).
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# Set up function to calculate sums of squares for 3 parameter model

LL.3 <- function(b) {sum((D[,2]-b[1]*(1-exp(-b[2]*(D[,1]-b[3]))))^2)}

# Calculate parameters for all three parameters

b <- c(60, 0.3, -0.1) # Initial estimates

min.func <- nlmin(LL.3,b) # Call nlmin

MLE.b3 <- min.func$x # Save Estimates

SS.3 <- LL.3(min.func$x) # Save Sums of squares

# Set up function to calculate sums of squares for 2 parameter model

LL.2 <- function(b) {sum((D[,2]-b[1]*(1-exp(-b[2]*D[,1])))^2)}

# Calculate parameters for all two parameters

b <- c(60,0.3) # Set initial values

min.func <- nlmin(LL.2,b) # Call nlmin

MLE.b2 <- min.func$x # Save Estimates

SS.2 <- LL.2(min.func$x) # Save Sums of squares

n <- nrow(D) # Get sample size n

F.value <- (SS.2-SS.3)/(SS.3/(n-3)) # Compute F value

P <- 1 - pf(F.value, 1, n-3) # Compute probability

# Print out results

MLE.b3

MLE.b2

print(c(F.value, P))

Output

MLE.b3

61.21610737 0.29666467 -0.05492771

MLE.b2

60.9913705 0.3046277

print(c(F.value, P))

0.09273169 0.76697559

C.2.8 Comparing one (¼ constant proportion) and two parameter

logistic model

Two alternative methods are given. The first uses the data as shown

in Figure 2.5, whereas the second converts the data set to the outcome

for each individual (0,1 data) and then uses glm to fit the model and test for

significance.
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# Data are in a matrix or data frame called D. See Figure 2.5 for data.

# Function to calculate LL for 2 parameter model

LL.2 <- function(b){-sum(D[,3]*(b[1]+b[2]*D[,1])-D[,2]*

log(1+exp(b[1]+b[2]*D[,1])))}

# Function to calculate LL for 1 parameter model

LL.1 <- function(b){-sum(D[,3]*(b[1]*D[,1])-D[,2]*log(1+exp(b[1]*

D[,1])))}

# Function to calculate predicted proportion

Expected <- function(x) {exp(b[1]+b[2]*x)/(1+exp(b[1]+b[2]*x))}

# Function to calculate Deviance

D.fit.function <- function()

{

Exp.Freq <- Expected(D[,1]) # Expected frequencies

# Add small amount to avoid zeros

r.obs <- D[,3]+0.0000001

# Add small amount to avoid zeros

n.minus.r.obs <- (D[,2]-D[,3])+0.0000001

r.exp <- Exp.Freq*D[,2]

n.minus.r.exp <- (1-Exp.Freq)*D[,2]

return(2*sum(r.obs*log(r.obs/r.exp)+n.minus.r.obs*log(n.minus.r.

obs/n.minus.r.exp)))

}

# Calculate stats for 2 parameter model

b <- c(-50,20) # Initial estimates

min.func <- nlmin(LL.2,b) # Call nlmin

b <- min.func$x # Extract final estimates of b

D.2 <- D.fit.function() # Calculate deviance

# Calculate stats for 1 parameter model

b <- 30 # Initial estimate

min.func <- nlmin(LL.1,b) # Call nlmin

b[1] <- min.func$x # Estimate

# Set b[2]=0 before using deviance function

b[2] <- 0

D.1 <- D.fit.function() # Calculate deviance

n <- nrow(D) # Calculate n

D.value <- (D.1-D.2)V # Calculate “D”
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P <- 1-pchisq(D.value,1) # Compute probability

print(c(D.value, P)) # Print out results

Output

print(c(D.value, P))

273.5865 0.0000

Alternative approach using glm and 0, 1 data

Successes <- D[,2]-D[,3] # Calculate a vector giving n-r for each row

Outcome <- NULL # Set up vector to take 0,1 data

# Iterate over rows making a vector with appropriate numbers of 0s and 1s

for (i in 1:nrow(D))Outcome <- c(Outcome,rep(0,Successes[i]),

rep(1,D[i,3]))

# Create a vector of doses for each individual

Dose <- rep(D[,1],D[,2])

D <- data.frame(Dose,Outcome) # Convert to dataframe

# Use glm to fit logistic model

Model <- glm(Outcome~Dose,data=D, family=binomial)

# Print out summary stats

summary(Model)

Output

Call: glm(formula = Outcome ~ Dose, family = binomial, data = D)

Deviance Residuals:

Min 1Q Median 3Q Max

�2.474745 �0.5696173 0.2217815 0.4297788 2.373283

Coefficients:

Value Std. Error t value

(Intercept) �60.10328 5.163413 �11.64022

Dose 33.93416 2.902441 11.69159

(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance: 645.441 on 480 degrees of freedom

Residual Deviance: 374.872 on 479 degrees of freedom

Number of Fisher Scoring Iterations: 5

Correlation of Coefficients:

(Intercept)

Dose �0.9996823
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C.2.9 Comparing two von Bertalanffy growth curves (males and

females) using nlmin function

For an alternative approach using the nls routine see C.2.10 and C.2.11.

Data are in file called D. See Figure 2.9 for data: the actual form of the data matrix

is three columns, col 1 ¼ age, col 2 ¼ female length, col 3 ¼ male length.

Age <- c(1.0,2.0,3.3,4.3,5.3,6.3,7.3,8.3,9.3,10.3,11.3,12.3,13.3)

Female.L <- c(15.4,28.0,41.2,46.2,48.2,50.3,51.8,54.3,57.0,58.9,59,60.9,61.8)

Male.L <- c(15.4,26.9,42.2,44.6,47.6,49.7,50.9,52.3,54.8,56.4,55.9,

57.0,56.0)

D <- data.frame(Age, Female.L, Male.L)

# Set up function to calculate sums of squares for 3 parameter von Bertalanffy

# model

LL.3 <- function(b) {sum((length-b[1]*(1-exp(-b[2]*(Age-b[3]))))^2)}

# Calculate parameters for Females, which are in col 2

# Create age and length vectors for function

length <- D[,2]

Age <- D[,1]

b <- c(60,0.3,-0.1)

min.func <- nlmin(LL.3,b)

b.Female <- min.func$x # Save MLE estimates

SS.F <- LL.3(min.func$x) # Store sums of squares at MLE

# Calculate parameters for Males, which are in col 3

length <- D[,3]

b <- c(60, 0.3, -0.1)

min.func <- nlmin(LL.3,b)

b.Male <- min.func$x # Save MLE estimates

SS.M <- LL.3(min.func$x) # Store sums of squares at MLE

SS <- SS.F+SS.M # Calculate total SS

# Now Calculate parameters assuming no difference

Age <- c(D[,1],D[,1])

length <- c(D[,2],D[,3])

b <- c(60, 0.3, �0.1)

min.func <- nlmin(LL.3,b)

b.both <- min.func$x # Save MLE estimates

SS.FM <- LL.3(min.func$x) # Store sums of squares at MLE

n <- nrow(D) # Get sample size n
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F.value <- ((SS.FM�SS)/(6-3))/(SS/(2*n�6)) # Compute F value

P <- 1 - pf(F.value,3,2*n-6) # Compute probability

# Print out results

print(c(b.Female,b.Male))

b.both

print(c(F.value, P))

Output

print(c(b.Female, b.Male))

61.21610737 0.29666467 -0.05492771 56.47060501 0.37243270 0.14277098

b.both

58.70733949 0.33307408 0.04991537

print(c(F.value, P))

4.7376264 0.0117886

C.2.10 Comparing two von Bertalanffy growth curves (males and

females) using nls function

Two different methods are presented below. The first extracts the

necessary information to perform the test, whereas the second uses the S-PLUS

function anova to perform the model comparison.

Data are in file called D (see Figure 2.9). The data are stored in three columns:

col 1 ¼ AGE, col 2 ¼ LENGTH, col 3 ¼ Sex (0 ¼ female, 1 ¼ male).

# Create data set

Age <- c(1.0,2.0,3.3,4.3,5.3,6.3,7.3,8.3,9.3,10.3,11.3,12.3,13.3)

Female.L <- c(15.4,28.0,41.2,46.2,48.2,50.3,51.8,54.3,57.0,58.9,59,60.9,61.8)

Male.L <-c(15.4,26.9,42.2,44.6,47.6,49.7,50.9,52.3,54.8,56.4,55.9,57.0,56.0)

LENGTH <- c(Female.L,Male.L)

AGE <- rep(Age, times=2)

n <- length(Age)

Sex <- c(rep(0, times=n), rep(1, times=n))

D <- data.frame(AGE, LENGTH, Sex)

# Fit von Bertalanffy function using dummy variable Sex (=0 for female,

# 1 for male)

Model <- nls(LENGTH~(b1+b4*Sex)*(1-exp(-(b2+b5*Sex)*(AGE-

(b3+b6*Sex)))), data=D, start=list(b1=60,b2=0.1,b3=0.1,b4=0,b5=0,

b6=0))

b.separate <- Model$parameters # Save parameter values

SS <- sum(Model$residuals^2) # Save residual sums of squares
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# Fit model assuming no difference between males and females

Model <- nls(LENGTH~b1*(1-exp(-b2*(AGE- b3))), data=D,

start=list(b1=60,b2=0.1,b3=0.1))

b.both <- Model$parameters # Save parameter values

# Save residual sums of squares

SS.FM <- sum(Model$residuals^2)

n <- nrow(D) # Get sample size n

F.value <- ((SS.FM-SS)/(6-3))/(SS/(n-6)) # Compute F value

P <- 1 - pf(F.value, 3, n-6) # Compute probability

# Print out results

b.separate

b.both

print(c(F.value, P))

Output

b.separate

b1 b2 b3 b4 b5 b6

61.21511 0.2966925 -0.05478805 -4.745226 0.07577554 0.1976811

b.both

b1 b2 b3

58.70635 0.3331111 0.05006876

print(c(F.value, P))

4.7376262 0.0117886

Alternative coding using the anova function to compare models (results are

identical)

# Fit von Bertalanffy function using dummy variable Sex (=0 for female,

# 1 for male)

Model.1 <- nls(LENGTH~(b1+b4*Sex)*(1-exp((b2+b5*Sex)*(AGE-(b3

+b6*Sex)))), data=D, start=list(b1=60,b2=0.1,b3=0.1,b4=0,b5=0,b6=0))

# Fit model assuming no difference between males and females

Model.2 <- nls(LENGTH~b1*(1-exp(-b2*(AGE- b3))), data=D,

start=list(b1=60,b2=0.1,b3=0.1))

# Compare models

anova(Model.1,Model.2)

Output

Analysis of Variance Table

Response: LENGTH
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Terms Resid. Df

1 (b1+b4*Sex)*(1-exp(-(b2+b5*Sex)*(AGE-(b3+b6*Sex)))) 20

2 b1*(1-exp(-b2*(AGE-b3))) 23

RSS Test Df Sum of Sq F Value Pr(F)

1 49.50852 1

2 84.69146 2 -3 -35.18293 4.737626 0.0117886

C.2.11 Comparing von Bertalanffy growth curves with respect

to y3 (¼t0), assuming differences between the sexes in

other parameters

Two different methods are presented below. The first extracts the

necessary information to perform the test, whereas the second uses the S-PLUS

function anova to perform the model comparison.

Data are in file called D (see Figure 2.9 and C.2.10). The data are stored in three

columns:

col 1 ¼ AGE, col 2 ¼ LENGTH, col 3 ¼ Sex (0 ¼ female, 1 ¼ male).

# Fit von Bertalanffy function using dummy variable Sex (=0 for female,

# 1 for male)

Model <- nls(LENGTH~(b1+b4*Sex)*(1-exp(-(b2+b5*Sex)*(AGE-(b3+

b6*Sex)))), data=D, start=list(b1=60,b2=0.1,b3=0.1,b4=0,b5=0,b6=0))

b.separate <- Model$parameters # Save parameter values

SS <- sum(Model$residuals^2) # Save residual sums of squares

# Fit model assuming no difference between males and females in t0

Model <- nls(LENGTH~(b1+b4*Sex)*(1-exp(-(b2+b5*Sex)*(AGE))), data=D,

start=list(b1=60,b2=0.1,b4=0,b5=0))

b.both <- Model$parameters # Save parameter values

# Save residual sums of squares

SS.FM <- sum(Model$residuals^2)

n <- nrow(D) # Get sample size n

F.value <- ((SS.FM-SS)/(6-4))/(SS/(n-6)) # Compute F value

P <- 1 - pf(F.value, 2, n-6) # Compute probability

# Print out results

b.separate

b.both

print(c(F.value, P))
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Output

b.separate

b1 b2 b3 b4 b5 b6

61.21511 0.2966925 -0.05478805 -4.745226 0.07577554 0.1976811

b.both

b1 b2 b4 b5

60.99053 0.3046447 -4.083912 0.04157999

print(c(F.value, P))

0.4794997 0.6260291

Alternative coding using the anova function to compare models

(results are identical)

# Fit von Bertalanffy function using dummy variable Sex (=0 for female,

# 1 for male)

Model.1 <- nls(LENGTH~(b1+b4*Sex)*(1-exp(-(b2+b5*Sex)*(AGE-(b3+

b6*Sex)))), data=D, start=list(b1=60,b2=0.1,b3=0.1,b4=0,b5=0,b6=0))

# Fit model assuming no difference between males and females in t0

Model.2 <- nls(LENGTH~(b1+b4*Sex)*(1-exp(-(b2+b5*Sex)*(AGE))),

data=D, start=list(b1=60,b2=0.1,b4=0,b5=0))

# Compare models

anova(Model.1,Model.2)

Output

Analysis of Variance Table

Response: LENGTH

Terms Resid Df

1 (b1+b4*Sex)*(1-exp(-(b2+b5*Sex)*(AGE-(b3+b6*Sex)))) 20

2 (b1+b4*Sex)*(1-exp(-(b2+b5*Sex)*(AGE))) 22

RSS Test Df Sum of Sq F Value Pr(F)

1 49.50852 1

2 22 51.88246 2 -2 -2.373932 0.4794997 0.6260291

C.3.1 An analysis of the Jackknife analysis of the variance using 1000

replicated data sets of 10 random normal, N(0, 1), observations per

data set

Note that the S-PLUS jackknife routine does not compute the jackknife

estimate (only the mean of the delete-one estimates, called replicates). The

pseudovalues can be calculated from the components of the routine.
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set.seed(0) # Initialize random number seed

nreps <- 1000 # Set number of replicates

Output <- matrix(0,nreps,4) # Create matrix for output

n <- 10 # Sample size

Y <- rnorm(nreps*n,0,1) # Create nreps*n random normal values

X <- matrix(Y,10,nreps) # Put values into matrix with nreps columns

Tvalue <- qt(0.975,9) # Find appropriate t value for 95%

for (I in 1:nreps) # Iterate over nreps

{

x <- X[,I] # Place data into vector

# Jackknife data in Ith column of X

Out <- jackknife(data=x, var(x))

Pseudovalues <- n*Out$obs-(n-1)*Out$replicates # Calculate pseudovalues

# Store jackknife mean of variance

Output[I,1] <- mean(Pseudovalues)

Output[I,2] <- sqrt(var(Pseudovalues)/n) # Store jackknife SE

}

Output[,3] <- Output[,1] + Tvalue*Output[,2] # Generate upper 95% limit

Output[,4] <- Output[,1] - Tvalue*Output[,2] # Generate lower 95% limit

N.upper <- length(Output[Output[,3]<1,3]) # Find number that are < 1

N.lower <- length(Output[Output[,4]>1,4]) # Find number that are > 1

# Print out results

print(c(mean(Output[,1]),N.upper/nreps, N.lower/nreps))

Output

print(c(mean(Output[, 1]), N.upper/nreps, N.lower/nreps))

1.009637 0.133000 0.001000

C.3.2 Testing for differences between the variances of two data

sets using the jackknife

In this simulation, the null hypothesis is true, both samples of

10 observations per sample being drawn from a normal population with mean

zero and unit standard deviation, N(0,1).

# Initialize random number seed

set.seed(0)

nreps <- 1000 # Set number of replicates

n <- 10 # Sample size per population
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Output <- matrix(0,nreps,1) # Create matrix for output

# Put values in matrix with nreps cols

X <- matrix(rnorm(nreps*n,0,1),n,nreps)

# Put values in matrix with nreps cols

Y <- matrix(rnorm(nreps*n,0,1),n,nreps)

for (I in 1:nreps) # Iterate over nreps

{

x <- X[,I] # Place data into x vector

Out.x <- jackknife(data=x, var(x)) # Jackknife data in x

# Calculate pseudovalues

x.pseudovalues <- n*Out.x$observed-(n-1) *Out.x$replicates

y <- Y[,I] # Place data into y vector

Out.y <- jackknife(data=y, var(y)) # Jackknife data in y

# Calculate pseudovalues

y.pseudovalues <- n*Out.y$observed-(n-1) *Out.y$replicates

# Perform t test

Ttest <- t.test(x.pseudovalues, y.pseudovalues)

Output[I] <- Ttest$p.value # Store probability

}

# Calculate proportion

p <- length(Output [Output[,]<0.05])/nreps

p

Output

p

0.035

C.3.3 Estimating the pseudovalues for the genetic variance –

covariance matrix for full-sib data

The data consists of a set of full sib families (Data), generated using the

program in C.3.4. The program uses MANOVA to compute the genetic variance --

covariance matrix, here called Gmatrix. An identifier code is appended so that

several data sets can be combined and the combined data set then analyzed using

the MANOVA approach outlined in the text. Pseudovalues are stored in a matrix

called Pseudovalues.

# The following two constants are set according to the particular data set

Nos.of.Traits <- 2 # Number of traits

k <- 10 # Number in each family
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# Note also that the group designator is labeled FAMILY

# Number of (co)variances

Nos.of.Covariances <- (Nos.of.Traits^2 +Nos.of.Traits)/2

# Create matrix for Genetic (co)variances

Gmatrix <- matrix(0,nrow=Nos.of.Traits,

ncol=Nos.of.Traits)

# Create matrix for G matrix estimated with one less group

Gmatrix.minus.i <- matrix(0,nrow=Nos.of.Traits,

ncol=Nos.of.Traits)

# Create matrix to take pseudovalues

Gmatrix.Pseudo <- matrix(0,nrow=Nos.of.Traits,

ncol=Nos.of.Traits)

# Set value of identifier variable

Identifier <- 1

# The Group designator is here labeled FAMILY. Ensure that FAMILY columns are

# set as character

Data <- convert.col.type(target = Trait.df,

column.spec = list("FAMILY"),

column.type = "character")

# Extract Family codes (= Group designator)

menuTable(varnames = "FAMILY", data = Data, print.p=F,

save.name ="Family.Sizes")

# Set up matrices for storage of genetic pseudovalues

Nos.of.Families <- length(Family.Sizes$FAMILY)

# Add extra col added for population identifier

Pseudovalues <- matrix(0,Nos.of.Families,

Nos.of.Covariances+1)

# Do MANOVA on entire data set

Data.manova <- manova(cbind(Trait.X,Trait.Y) ~ FAMILY, data=Data)

Data.ms <- summary(Data.manova) # Calculate sums of squares

# Calculate variance components as given on page 43 of Roff (1997)

MS.AF <- data.frame(Data.ms$SS[1])/(Nos.of.Families -1)

MS.AP <- data.frame(Data.ms$SS[2])/

(Total- Nos.of.Families)

# Genetic variance-covariance matrix

Gmatrix <- 2*(MS.AF-MS.AP)/k
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# Now Jackknife the data

for (i in 1:Nos.of.Families)

{

# Name of ith family

Ith.Family <- Family.Sizes[i,1]

# Delete family from data

Data.minus.one <- Data[Data$FAMILY!=Ith.Family,]

# Do MANOVA on reduced data set

Data.manova <- manova(cbind(Trait.X,Trait.Y)

~ FAMILY, data=Data.minus.one)

Data.ms <- summary(Data.manova)

MS.AF <- data.frame(Data.ms$SS[1])/(Nos.of.Families-2)

MS.AP <- data.frame(Data.ms$SS[2])/(Total-Nos.of.Families)

# Genetic variance-covariance matrix

Gmatrix.minus.i <- 2*(MS.AF-MS.AP)/k

Gmatrix.Pseudo <- Gmatrix*Nos.of.Families - Gmatrix.minus.i*

(Nos.of.Families-1)

# Add pseudovalues to output matrix using diagonal elements and one set of

# covariances

Jtrait <- 0

for (Irow in 1:Nos.of.Traits) {

for (Icol in Irow:Nos.of.Traits){

Jtrait <- Jtrait+1

Pseudovalues[i,Jtrait] <- Gmatrix.Pseudo[Irow,Icol]}}

Pseudovalues[i,Jtrait+1] <- Identifier

}

# Output information

print(c(Identifier, Nos.of.Families,k)

print(Gmatrix) # Observed G matrix

Output

print(c(Identifier, Nos.of.Families, k))

1 100 10

print(Gmatrix)

numeric matrix: 2 rows, 2 columns.

FAMILY.Trait.X FAMILY.Trait.Y

Trait.X 0.7981739 0.3943665

Trait.Y 0.3943665 0.4970988
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C.3.4 Simulating data sets in which two characters are inherited

according to a quantitative genetic algorithm

Assuming a full-sib pedigree structure, two trait values can be generated

by the equations

Xi,j ¼ ax,i

ffiffiffiffiffiffiffiffi
1

2
h2x

r
þ bx,i,j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Yi,j ¼ rAax,i
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where Xi,j, Yi,j are the trait values for the jth individual in family i, ax,i, ay,i are

random standard normal values, N(0, 1), common to the ith family; bx,i,j,by,i,j are

random standard normal values, N(0, 1) of the jth individual from the ith family;

h2X, h
2
Y are the heritabilities of each trait; rA is the genetic correlation between the

two traits; rE is the “environmental” correlation between the traits, calculated

from the phenotypic correlation, rP, as rE ¼ ðrP � 1
2 hXhY Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2 h
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2 h
2
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If only a single trait is required, use only the equation for trait X. For more details

see Simons and Roff (1994).

# Create a population with two traits

# Nos.of Families = Number of families

# k = Number in family

# H2X, H2Y = Heritabilities

# rg, rp, re = Genetic, phenotypic and environmental correlations

# Total = Total number of individuals

# Initialize random number seed

set.seed(0)

Nos.of.Families <- 100

k <- 10

H2X <- 0.5

H2Y <- 0.5

rg <- 0.5

rp <- 0.5

re <-(rp-0.5*rg*sqrt(H2X*H2Y))/sqrt((1-0.5*H2X)*(1-0.5*H2Y))

if(re > 1) re <- 0.99 # Rounding error can generate this

Total <- k* Nos.of.Families
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# Set up random normal values

a.xi <- matrix(rep(rnorm(Nos.of.Families,0,1),k),Total,1)

b.xij <- matrix(rnorm(Total,0,1),Total,1)

a.yi <- matrix(rep(rnorm(Nos.of.Families,0,1),k),Total,1)

b.yij <- matrix(rnorm(Total,0,1),Total,1)

# Compute required constants

Tx1 <- sqrt(0.5*H2X)

Tx2 <- sqrt((1-.5*H2X))

Ty1 <- rg*sqrt(0.5*H2Y)

Ty2 <- sqrt(0.5*H2Y*(1-rg^2))

Ty3 <- re*sqrt(1-0.5*H2Y)

Ty4 <- sqrt((1-re^2)*(1-0.5*H2Y))

# Generate vector of family codes

FAMILY <-matrix(rep(seq(1,Nos.of.Families,1),k),Total,1)

# Generate values of traits X and Y and store in Trait

Trait.X <- a.xi*Tx1 + b.xij*Tx2

Trait.Y <- a.xi*Ty1 + a.yi*Ty2 + b.xij*Ty3 + b.yij*Ty4

# Convert Trait to a data.frame for analysis

Trait.df <- data.frame(FAMILY, Trait.X, Trait.Y)

# Convert Family codes into characters

Trait.df <- convert.col.type(target = Trait.df, column.spec = list

("FAMILY"), column.type = "character")

C.3.5 Coding to estimate heritability for a full sib design using the

routine “jackknife”

Data are in a file called Data. To illustrate the structure, suppose that

there are 10 families with 4 individuals per family, with families labeled “1”,“2”,

“3”, . . . , “10”.

Cols with family codes Cols with data for each family

1 1 1 1 1 0.7 0.5 0.6 0.3 0.1

2 2 2 2 2 0.2 0.5 0.9 0.3 0.2

. . . . . . . . . .

10 10 10 10 10 0.1 0.6 0.4 0.8 0.9

# Function to convert data into two column format with Family code in column 1

# and data in col 2 and calculate h2

H2.estimator <- function(d)
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{

# d is in block format First convert it to two column format

# Find number of rows. This is necessary because of jackknife routine

Nos.of.rows <- nrow(d)

Nos.of.cols <- ncol(d)

# Set up constants setting range for variables

n1 <- Nos.of.cols/2

n2 <- n1+1

n3 <- n1*2

# Set up 2 column matrix to take data

D <- matrix(0,Nos.of.rows*n1,2)

# Now pass data to matrix D

D[,1] <- d[,1:n1]

D[,2] <- d[,n2:n3]

# Convert Data to a data.frame for analysis

D.df <- data.frame(D)

# Convert Family codes into factors

D.df <- convert.col.type(target = D.df, column.spec = list("D.1"),

column.type = "factor")

# Make Family a random effect for varcomp procedure

is.random(D.df) <- c(T,F)

# Call varcomp to estimate variance components

Model <- varcomp(D.2~D.1, data=D.df, method="reml")

# Calculate heritability

h2.reml <- (2*Model$variances[1])/sum(Model$variances)

return(h2.reml)

}

# Call jackknife routine

H2.jack <- jackknife(data=Data, H2.estimator)

n <- nrow(Data) # Find number of rows

# Calculate pseudovalues

Pseudovalues <- n*H2.jack$obs-(n-1) *H2.jack$replicates

print(c(mean(Pseudovalues), sqrt(var(Pseudovalues)/n))

C.3.6 Generation of data following the von Bertalanffy function

These lines generate a dataframe “Data” with three columns. Column 1

contains an identifier for each individual, column 2 contains the ages, and

column 3 contains the simulated size at that age.
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# Generate data

set.seed(1) # Set seed for random number generator

# Create 5 age groups with 5 individuals in each

Age <- rep(seq(1:5),5)

n <- length(Age) # Find total number of individuals

# Create a vector with individual names

Ind <- seq(1:n)

# Create vector of random normal errors N(0,10)

Error <- rnorm(n,0,10)

# Generate length at age AGE

Y <- 100*(1-exp(-1*Age)) +Error

Data <- data.frame(Ind,Age,Y) # Bind 3 vectors, convert to dataframe

C.3.7 Jackknife estimation of parameter values for von Bertalanffy

data generated by coding shown in C.3.6

Two methods are shown. The first uses explicit coding whereas the

second uses the S-PLUS jackknife routine. Note that the S-PLUS jackknife routine

does not compute the jackknife estimate (only the mean of the delete-one

estimates, called replicates). The pseudovalues can be calculated from the

components of the routine.

# Estimate parameter values by least squares using all data

Out <- nls(Y~b1*(1-exp(-b2*Age)), data=Data,

start=list(b1=50, b2=.5))

B.obs <- Out$parameters # Store parameter estimates

# Create matrix for storage of pseudovalues

Pseudovalues <- matrix(0,n,2)

# Jackknife the data

for (i in 1:n)

{

Data.minus.one <- Data[Data$Ind!=i,] # Data set minus one individual

# Estimate parameter values by least squares using the reduceddata

Out.pseudo <- nls(Y~b1*(1-exp(-b2*Age)), data=Data.minus.one,

start=list(b1=50, b2=.5))

B <- Out.pseudo$parameters # Store parameter estimates

Pseudovalues[i,] <- n*B.obs-(n-1)*B # Calculate pseudovalue

}

# Print out statistics for MLE estimators

summary(Out)
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# Print means and SEs for jackknife estimates

print(c(mean(Pseudovalues[,1]), sqrt(var(Pseudovalues[,1])/n))) # b1

print(c(mean(Pseudovalues[,2]), sqrt(var(Pseudovalues[,2])/n))) # b2

Output

summary(Out)

Formula: Y ~ b1 * (1 - exp(- b2 * Age))

Parameters:

numeric matrix: 2 rows, 3 columns.

Value Std. Error t value

b1 96.77800 2.58364 37.45810

b2 1.11909 0.13374 8.36766

Residual standard error: 8.4837 on 23 degrees of freedom

Correlation of Parameter Estimates:

b1

b2 -0.693

print(c(mean(Pseudovalues[, 1]), sqrt(var(Pseudovalues[, 1])/n)))

96.620969 2.871182

print(c(mean(Pseudovalues[, 2]), sqrt(var(Pseudovalues[, 2])/n)))

1.1034496 0.1563441

Alternative method using the jackknife routine

PSEUDOVALUES <- matrix(0,n,2)# Create matrix to take pseudovalues

# Use jackknife routine to calculate required elements

Out.jack <- jackknife(data =Data, nls(Y~b1*(1-exp(-b2*Age)),

data=Data, start=list(b1=50, b2=.5))$parameters)

# Calculate pseudovalues

for (i in 1:2)PSEUDOVALUES[,i] <- n*Out.jack$obs[i]-(n-1)*Out.jack

$replicates[,i]

# Output results

print(c(mean(PSEUDOVALUES[,1]),sqrt(var(PSEUDOVALUES[,1])/n),

mean(PSEUDOVALUES[,2]),sqrt(var(PSEUDOVALUES[,2])/n)))

C.3.8 Analysis of parameter estimation of the von Bertalanffy

function using the jackknife and MLE methods

# Generate data

set.seed(1) # Set seed for random number generator
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# Create 5 age groups with 5 individuals in each

Age <- rep(seq(1:5),5)

n <- length(Age) # Find total number of individuals

Ind <- seq(1:n) # Create a vector with individual names

nreps <- 1000 # Set number of replicates

Output <- matrix(0, nreps,8) # Create a matrix to store output

for (irep in 1:nreps) # Iterate across replicates

{

Error <- rnorm(n,0,10)# Create vector of random normal errors N(0,10)

Y <- 100*(1-exp(-1*Age))+Error # Generate length at age AGE

# Bind 3 vectors, convert to dataframe

Data <- data.frame(cbind(Ind,Age,Y))

# Jackknife estimation

Pseudovalues <- matrix(0,n,2) # Create matrix to take pseudovalues

# Use jackknife routine to calculate required elements

Out.jack <- jackknife(data=Data, nls(Y~b1*(1-exp(-b2*Age)),

data=Data, start=list(b1=50, b2=.5))$parameters)

# Calculate pseudovalues

for (i in 1:2)Pseudovalues[,i] <- n*Out.jack$obs[i]-(n-1)*Out.jack

$replicates[,i]

# Store means and SEs of the jackknife estimates

Output[irep,1:2] <- c(mean(Pseudovalues[,1]),

sqrt(var(Pseudovalues[,1])/n))

Output[irep,3:4] <- c(mean(Pseudovalues[,2]),

sqrt(var(Pseudovalues[,2])/n))

# Store means and MLE standard errors

# Here is one possible way to calculate SE

D <- matrix(Out$R,2,2)

SE <-sqrt((sum(Out$residuals^2)/(n-2))*solve(t(D)%*%D))

# Here is an alternate method using summary(Out)

x <- summary(Out)

SE <- x$parameters[,2]

Output[irep,5:8] <-c(B.obs[1],SE[1],B.obs[2],SE[2])

}

# Calculate coverage probabilities

# over is the proportion that lie above the upper confidence limit

# under is the proportion that lie below the lower confidence limit

# coverage is the proportion lying within the confidence limits

# M is the matrix containing the data
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# Theta is the true value of the parameter

CL.stats <- function(M,I,t.value,Theta,n.cols,n.reps)

{

over <- length(M[(M[,I]+t.value*M[,I+1])<Theta,])/n.cols

under <- length(M[(M[,I]-t.value*M[,I+1])>Theta,])/n.cols

coverage <- (n.reps-(over+under))/n.reps

return(c(mean(M[,I]),over/n.reps,under/n.reps,coverage))

}

# Print out stats. Results shown in Table 3.6

TV <- qt(0.975, n-1) # Get t value

CL.stats(Output,1,TV,100,8,nreps) # Jackknife estimate of Lmax (=100)

CL.stats(Output,3,TV,1,8,nreps) # Jackknife estimate of k (=1)

CL.stats(Output,5,TV,100,8,nreps) # MLE estimate of Lmax

CL.stats(Output,7,TV,1,8,nreps) # MLE estimate of k

C.3.9 Generation of random data sets from the von Bertalanffy

function using either a statistical model or bootstrapping an

observed data set

Random generation using statistical model Y ¼ �1 1� e��2�Age� �þ ",

where y1 ¼ 100, y2 ¼ 1, Age varies from 1 to 5, and " is N(0, 1).

# Random generation using a particular statistical model

# set seed for random number generator

set.seed(1)

# Generate 25 integer ages between 1 and 5 from uniform probability

# distribution

Age <- ceiling(runif(25, 0,5))

# Generate 25 random normal variables N(0,10)

error <- rnorm(25,0,10)

Y <- 100*(1-exp(-1*Age))+error # Generate lengths at age

# Concatenate to make a single file

Data <- data.frame(Age,Y)

Random generation using bootstrap approach. Suppose the observed data are in

file Data

# Random generation using a bootstrap approach

# Observed data are in data file called Data.

# For simplicity I use the file generated above
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# Generation using splus subroutine sample

Data.random <- sample(Data, replace=T)

The above generates a sample equal in size to the original. For different sized

samples it is easiest to do it by separate columns, using the same set of random

numbers

# Generate 100 bootstrap samples from data set Data

set.seed(1) # set seed for random number generator

Age.sample <- sample(Data[,1],100,replace=T)

set.seed(1) # reset seed for same set of random numbers

Y.sample <- sample(Data[,2],100,replace=T)

Data.random <- cbind(Age.sample, Y.sample)

C.4.1 Coding to generate 30 random normal values, generate 1000

bootstrap values and determine basic statistics

set.seed(0) # Set seed for random number generator

x <- rnorm(30,0,1) # Generate sample of 30 data points

# Call bootstrap routine, using routine mean to generate statistic “mean”

boot.x <- bootstrap(x, mean, B=1000, trace=F)

# Output stats

summary(boot.x)

# Calculate bias-corrected estimate

Bias.corrected.estimate <-2*boot.x$observed-boot.x$estimate[2]

Bias.corrected.estimate # Print out estimate

Output

Number of Replications: 1000

Summary Statistics:

Observed Bias Mean SE

mean -0.06844 -0.0022 -0.07064 0.186

Empirical Percentiles:

2.5% 5% 95% 97.5%

mean -0.4257 -0.376 0.2398 0.2971

BCa Confidence Limits:

2.5% 5% 95% 97.5%

mean -0.4179 -0.3541 0.2423 0.3105
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Bias.corrected.estimate

Mean

mean -0.06623903

Notes: Observed ¼ sample mean ¼ �̂

Bias ¼ �� � �̂

Mean ¼ ��

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

999

P1000
i¼1 ð��i � ��Þ2

q
BCa ¼ Accelerated bias-corrected percentile method

C.4.2 Coding to generate 500 samples of size 30 from N(0,1)

to test bootstrap method of estimating the mean

set.seed(0) # Set seed for random number generator

nreps<- 500 # Set number of replicates

Out<- matrix(0,nreps,8) # Create matrix to store output

for (i in 1:nreps) # Iterate over replications

{

# Generate sample of 30 data points

x <- rnorm(30,0,1)

boot.x <- bootstrap(x,mean,B=250, trace=F) # Call bootstrap routine

y <- summary(boot.x) # Generate stats

# Store stats

# Bootstrap estimate of mean

Boot <- as.numeric(unlist(boot.x$estimate[2]))

# Bootstrap estimate of SE

SE <- as.numeric(unlist(boot.x$estimate[3]))

Out[i,1] <- Boot-1.96*SE # Lower 2.5% using SE

Out[i,2] <- Boot+1.96*SE # Upper 2.5% (97.5%) using SE

Out[i,3] <- y$limits.emp[1] # Lower 2.5% using empirical percentile

Out[i,4] <- y$limits.emp[4] # Upper 2.5% (97.5%)using Emp percentile

Out[i,5] <- y$limits.bca[1] # Lower 2.5% using BCa bootstrap

Out[i,6] <- y$limits.bca[4] # Upper 2.5% (97.5%) using BCa bootstrap

Out[i,7] <- Boot # Bootstrap estimate

Out[i,8] <- as.numeric(2*unlist(boot.x$observed))-

as.numeric(unlist(boot.x$estimate[2])) # Bias-corrected bootstrap

}

p1 <- length(Out[Out[,1]>0,])/(8*nreps)# L confidence limit excludes zero

p2 <- length(Out[Out[,2]<0,])/(8*nreps)# U confidence limit excludes zero

p3 <- length(Out[Out[,3]>0,])/(8*nreps)# L confidence limit excludes zero
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p4 <- length(Out[Out[,4]<0,])/(8*nreps)# U confidence limit excludes zero

p5 <- length(Out[Out[,5]>0,])/(8*nreps)# L confidence limit excludes zero

p6 <- length(Out[Out[,6]<0,])/(8*nreps)# U confidence limit excludes zero

SE.Prob <- p1+p2 # Overall confidence limit for SE method

Percentile.Prob <- p3+p4 # Overall confidence limit for percentile method

BCa.prob <- p5+p6 # Overall confidence limit for BCa method

# One sample t test for difference from zero

t.test(Out[,7])

t.test(Out[,8])

print(c("SE method", p1,p2, SE.Prob))

print(c("E P method", p3,p4, Percentile.Prob))

print(c("BCa method", p5,p6, BCa.prob))

Output

One-sample t-Test

data: Out[, 7]

t = 0.8956, df = 499, p-value = 0.3709

One-sample t-Test

data: Out[, 8]

t = 0.8441, df = 499, p-value = 0.399

Method Lower P Upper P Overall P

"SE method" "0.032" "0.02" "0.052"

"EP method" "0.04" "0.022" "0.062"

"BCa method" "0.038" "0.022" "0.06"

C.4.3 Coding to bootstrap the Gini coefficient of inequality

Note that the vector z must be inside the function because the acceler-

ated bootstrap routine uses the jackknife and hence the size of vector z is not

constant.

set.seed(0) # Set seed for random number generator

x <- runif(25,0,19) # Generate 25 data points from uniform distribution

# Function to calculate Gini coefficient

Gini <- function(d)

{

g <- sort(d)

# Because of jackknife in BCa method it is necessary to have the following

# two lines within the function
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n <- length(g) # Number of observations

z <- seq(1:n) # Generate vector of integers from 1 to n

return(2*sum(z*g)/(n^2*mean(g))-(n+1)/n)# Gini coefficient

}

boot.x <- bootstrap(x,Gini,B=1000, trace=F) # Call bootstrap routine

summary(boot.x) # Generate stats

Output

Number of Replications: 1000

Summary Statistics:

Observed Bias Mean SE

Gini 0.2873 -0.005916 0.2814 0.03863

Empirical Percentiles:

numeric matrix: 1 row, 4 columns.

2.5% 5% 95% 97.5%

Gini 0.2125 0.222 0.3465 0.3579

C.4.4 Coding to generate data for linear regression with normal

or gamma distribution of errors and estimate parameters using

least squares, jackknife, and bootstrap

set.seed(0) # Set random number seed

# Function is y = 0.0 + 0.2*x

# Set up dataframe for data

n <- 300 # Sample size

Data <- matrix(0,n,2) # Create matrix

dimnames(Data) <- list(NULL,c("x","y")) # Set up column names

Data <- data.frame(Data)

# Generate regression data with x = 1,2,3 … 10 with 30 points for each x

Data$x <- rep(seq(1,10), times=30)

# Generate error terms with mean zero using a normal or gamma function

# Alternate error terms. 2nd used here

# error <- rgamma(n,shape=2,rate=2)-1 # gamma error with mean zero

error <- rnorm(n,0,0.5) # normal distributed error

# Now generate y

Data$y <- 0+0.2*Data$x+error

# Fit model

fit.lm <- lm(y~x,Data)

summary(fit.lm)
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# Generate jackknife estimates

Jack.lm <- jackknife(Data,coef(lm(y~x,Data)))

summary(Jack.lm)

# Generate bootstrap estimates

Boot.lm <- bootstrap(Data, coef(lm(y~x,Data)), B=100, trace=F)

summary(Boot.lm)

Output

> summary(fit.lm)

Call: lm(formula = y ~ x, data = Data)

Residuals:

Min 1Q Median 3Q Max

�1.61 -0.345 0.0192 0.368 1.51

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -0.009 0.067 -0.140 0.889

x 0.199 0.011 18.568 0.000

Residual standard error: 0.533 on 298 degrees of freedom

Multiple R-Squared: 0.536

F-statistic: 345 on 1 and 298 degrees of freedom, the p-value is 0

Correlation of Coefficients:

(Intercept)

x -0.886

> # Generate jackknife estimates

Jack.lm <- jackknife(Data, coef(lm(y ~ x, Data)))

> summary(Jack.lm)

Call:

jackknife(data = Data, statistic = coef(lm(y ~ x, Data)))

Number of Replications: 300

Summary Statistics:

Observed Bias Mean SE

(Intercept) -0.0093 0.00011905 -0.0093 0.06681

x 0.1990 -0.00004197 0.1990 0.01061

Empirical Percentiles:

numeric matrix: 2 rows, 4 columns.

2.5% 5% 95% 97.5%

(Intercept) -0.01835 -0.01508 -0.003727 -0.0003836

x 0.19768 0.19797 0.200091 0.2003331
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Correlation of Replicates:

(Intercept) x

(Intercept) 1.0000 -0.8872

x -0.8872 1.0000

> # Generate bootstrap estimates

Boot.lm <- bootstrap(Data, coef(lm(y ~ x, Data)), B = 100, trace = F)

> summary(Boot.lm)

Call:

bootstrap(data = Data, statistic = coef(lm(y ~ x, Data)), B = 100, trace = F)

Number of Replications: 100

Summary Statistics:

Observed Bias Mean SE

(Intercept) -0.0093 -0.008702 -0.0180 0.06622

x 0.1990 0.002514 0.2015 0.01011

Empirical Percentiles:

numeric matrix: 2 rows, 4 columns.

2.5% 5% 95% 97.5%

(Intercept) -0.1433 -0.1345 0.09437 0.1201

x 0.1803 0.1838 0.21747 0.2201

BCa Confidence Limits:

numeric matrix: 2 rows, 4 columns.

2.5% 5% 95% 97.5%

(Intercept) -0.1384 -0.1241 0.1166 0.1238

x 0.1774 0.1785 0.2134 0.2174

Correlation of Replicates:

(Intercept) x

(Intercept) 1.0000 -0.8471

x -0.8471 1.0000

C.4.5 Coding to simulate 1000 linear regression data sets, analyze

by least squares and test for 95% coverage

set.seed(0) # Set random number seed

# Function is y = 0.0 + 0.2*x

# Set up dataframe for data

n <- 30 # Sample size

nreps <- 1000 # set up iterations

Est <- matrix(0,nreps,4) # Output matrix for estimates

Total.rows <- n*nreps # Total number of rows
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Data <- matrix(0,Total.rows,3)

# Column names

dimnames (Data) <- list(NULL,c("x","y","Index"))

Data <- data.frame(Data) # Convert to data frame

# Generate index

Data$Index <- rep(seq(1,nreps), times=n)

Data$Index <- sort(Data$Index)

# Generate regression data with x evenly distributed between 1 and 10

Data$x <- rep(seq(1,10), times=3*nreps) # 3 data points per x value

# Generate error terms with mean zero using a normal or gamma function

error <-rgamma(Total.rows,shape=2,rate=2)-1

# error <-rnorm(Total.rows,0,0.5)

# Now generate y

Data$y <- 0+0.2*Data$x+error

# Fit model using Index to split data set

Output <- by(Data, Data$Index, function(Data)summary(lm(y~x,data=Data)))

Output <- unlist(Output) # Unlist for storage

# Assign values of Estimates to matrix Est

# Estimates start in positions 37,38,39,40 and then the next are +60 places

J <- 37-60

for (i in 1:nreps)

{

J <- J+60

Est[i,1] <- Output[J] # Intercept

Est[i,2] <- Output[J+1] # slope

Est[i,3] <- Output[J+2] # SE Intercept

Est[i,4] <- Output[J+3] # SE slope

}

# Calculate coverage

Est <- data.frame(Est) # Convert to data frame

# Convert cell entries from character to numeric

Est <- convert.col.type(target=Est,column.spec= "@ALL", column.type =

"double")

# Calculate number that do not include true value

# Number of UC < 0

Upper.intercept <- nrow(Est[Est[,1]+ 2.048*Est[,3]<0,])

# Number of LC > 0

Lower.intercept <- nrow(Est[Est[,1]- 2.048*Est[,3]>0,])

# Number of UC < 0

Upper.slope <- nrow(Est[Est[,2]+ 2.048*Est[,4]<0.2,])
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# Number of LC > 0

Lower.slope <- nrow(Est[Est[,2]- 2.048*Est[,4]>0.2,])

# Coverage

1-sum(Upper.intercept+Lower.intercept)/nreps

1-sum(Upper.slope+Lower.slope)/nreps

C.4.6 Coding to generate von Bertalanffy growth data and fit model

by bootstrapping least squares estimates of parameters

# Generate data

set.seed(1) # Set seed for random number generator

# Create 5 age groups with 5 individuals in each

Age <- rep(seq(1:5),5)

n <- length(Age) # Find total number of individuals

# Create vector of random normal errors N(0,10)

Error <- rnorm(n,0,10)

Y<- 100*(1-exp(-1*Age))+Error # Generate length at age AGE

Data <- data.frame(Age,Y) # Bind 2 vectors, convert to dataframe

# Set up function to Estimate parameter values by least squares

VonBert <- function(D)

{

Out <- nls(Y~b1*(1-exp(-b2*Age)), data=D, start=list(b1=50, b2=.5))

Ts <- matrix(c(Out$parameters[1],Out$parameters[2]))

# store parameters

return(Ts) # Return parameter values

}

Boot.Bert <- bootstrap(Data, VonBert, B=1000, trace=F)

summary(Boot.Bert) # Output bootstrap results

Output

Number of Replications: 1000

Summary Statistics:

Observed Bias Mean SE

VonBert1.1 96.778 0.05060 96.829 2.7435

VonBert2.1 1.119 0.01665 1.136 0.1549

Empirical Percentiles:

2.5% 5% 95% 97.5%

VonBert1.1 91.79 92.7469 101.635 102.746

VonBert2.1 0.88 0.9099 1.415 1.474
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BCa Confidence Limits:

2.5% 5% 95% 97.5%

VonBert1.1 92.0940 92.8333 101.822 102.903

VonBert2.1 0.8802 0.9115 1.417 1.477

Correlation of Replicates:

VonBert1.1 VonBert2.1

VonBert1.1 1.000 -0.723

VonBert2.1 -0.723 1.000

C.4.7 Coding to generate multiple samples of the

von Bertalanffy growth function and fit by bootstrap

# Initiate random number generator

set.seed(1)

# Set up function to generate data set

Growth.Data <- function()

{

# Create 5 age groups with 5 individuals in each

Age <- rep(seq(1:5),times=5)

# Number of individuals in a sample

n <- 25

# Find total number of individuals

Total.rows <- length(Age)

# Create vector of random normal errors N(0,10)

Error <- rnorm(Total.rows,0,10)

Y <- 100*(1-exp(-1*Age))+Error # Generate length at age AGE

# Bind 2 vectors, convert to dataframe

D <- data.frame(Age,Y)

return(D)

}

# Set up function to Estimate parameter values by least squares

VonBert <- function(D)

{

Out <- nls(Y~b1*(1-exp(-b2*Age)), data=D, start=list(b1=50, b2=.5))

# store parameters

Ts <- matrix(c(Out$parameters[1], Out$parameters[2]))

return(Ts) # Return parameter values

}
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# Set up Bootstrap function

Bootstrap.VonBert <- function(I)

{

D <- Growth.Data() # Call routine to create growth data

# Call bootstrap routine

b <- bootstrap(D, VonBert, B=100, trace=F)

# Extract estimates and SEs

Est <- c(unlist(b$estimate[2]), unlist(b$estimate[3]))

print(c(I,Est)) # Print output as simulation proceeds

return(Est) # Return estimates and SEs

}

# Do Nreps runs passing output to text file Data.txt

nreps <- 100

for (Ith.rep in 1:nreps)

{

X <- Bootstrap.VonBert(Ith.rep) # Do bootstrap and store in Out

# For safety write to text file

write(t(X), file="Data.txt", ncolumns=4, append=T)

Coding to analyze Data.txt

# Read in data from text file called Data.txt

Est <- read.table("Data.txt", row.names=NULL, header=F)

# Calculate number that do not include true value

nreps <- nrow(Est) # Number of replicates

# Number of UC < 100

Upper.Theta.1 <- nrow(Est[Est[,1] +2.069*Est[,3]<100,])

# Number of LC > 100

Lower.Theta.1 <- nrow(Est[Est[,1]- 2.069*Est[,3]>100,])

# Number of UC < 1

Upper.Theta.2 <- nrow(Est[Est[,2]+ 2.069*Est[,4]<1,])

# Number of LC > 1

Lower.Theta.2 <- nrow(Est[Est[,2]- 2.069*Est[,4]>1,])

# Coverage

P.Theta.1 <- 1-(Upper.Theta.1+Lower.Theta.1)/nreps

P.Theta.2 <- 1-(Upper.Theta.2+Lower.Theta.2)/nreps

print(c(nreps,P.Theta.1,P.Theta.2))# Output results

Output

781.0000 0.9321 0.9398
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C.5.1 A randomization test of a difference between two means

For an alternative approach see C.5.2.

# Generate two normally distributed sets of data

# Initialize the random number generator

set.seed(20)

n <- 10 # Set the number per sample

M <- 2*n # Total sample

Data <- rnorm(M,0,1) # Generate M random normal deviates

# Create group indices

Group.Index <- matrix(c(rep(1,n), rep(2,n)),M,1)

# Calculate observed average absolute difference between the two groups

Obs.abs.diff <- abs(mean(Data[Group.Index==1])�mean(Data

[Group.Index!=1]))

# Routine to calculate the required statistic - here the diff between two means

# Group is the vector with the indexes for each group

# X is the vector of data

# Index is the value of one of the indexes

# Obs is the absolute observed difference

Diff <- function(Group, X, Index, Obs)

{

R.Group <- sample(Group,replace=F) # Generate random randomization

# Mean difference

d <- mean(X[R.Group==Index])-mean(X[R.Group!=Index])

d <- abs(d)-Obs

return(d)

}

# Iterate over randomizations

N <- 5000 # Number of randomizations

# Set up matrix to store differences

Difference <- matrix(0,N)

for (Irep in 1:N)

{

Difference[Irep] <- Diff(Group.Index,Data,1,Obs.abs.diff)

}

# Now calculate proportion greater than obs difference

n.over <- sum(Difference>=0)

P <- (n.over+1)/(N+1) # Remember to add 1 for observed value

print(c(Obs.abs.diff,P))
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Output

print(c(Obs.abs.diff, P))

[1] 0.2341589 0.5006999

C.5.2 Using the S-PLUS bootstrap routine to do a randomization test

# Generate two normal distributed data

# Initialize the random number generator

set.seed(20)

n <- 10 # Set the number per sample

M <- 2*n # Total sample

# Generate N random normal deviates

Data <- rnorm(M,0,1)

# Create group indices

Group.Index <- matrix(c(rep(1,n), rep(2,,n)),M,1)

# Routine to calculate the required statistic� here the diff between two means

Diff <- function(Group, X, Index){mean(X[Group==Index])�mean(X[Group!=

Index])}

# samp.permute in “bootstrap” gives sampling without replacement

N <- 5000 # Number of randomizations

Meanboot <- bootstrap(Group.Index, Diff(Group.Index,Data,1),

sampler= samp.permute, B=N)

# Calculate number of randomizations in which absolute difference >

# than observed

n.over <- sum(abs(Meanboot$replicates) >= abs(Meanboot$observed))

P <- (n.over+1)/(N+1)# Remember to add 1 for observed value

P # Print P

C.5.3 Estimation of the required sample size for

a randomization test of a difference between two means

# Coding to compare two means

# Generate two normally distributed data sets

set.seed(20) # Initialize random number generator

n <- 10 # Set sample size for each group

M <- 2*n # Total sample size

Data <- rnorm(M,0,1) # Generate M random normal deviates

n1 <- n+1 # Set starting row for group 2

Data[n1:M] <- Data[n1:M] + 1 # Add 1 to group 2
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# Create group indices

Group.Index <- matrix(c(rep(1,n), rep(2,,n)),M,1)

# Calculate observed average absolute difference

Obs.abs.diff <- abs(mean(Data[Group.Index==1])�mean(Data

[Group.Index!=1]))

# Routine to calculate the required statistic� here the diff between two means

Diff <- function(Group, X, Index){mean(X[Group==Index])�
mean(X[Group!=Index])}

N <- 100 # Number of randomizations

Meanboot <-bootstrap(Group.Index, Diff(Group.Index,Data,1), sampler=

samp.permute, B=N)

n.over <- sum(abs(Meanboot$replicates) >= abs(Meanboot$observed))

P <- (n.over+1)/(N+1) # Remember to add 1 for observed value

# Calculate required number

N.req <- 0

if (P<0.05) N.req <- 4*P*(1-P)/(0.05-P)^2

print(c(Obs.abs.diff, P, N.req))

Output

print(c(Obs.abs.diff, P, N.req))

0.76584108 0.02970297 279.83343248

C.5.4 Estimation of the probabilities for differing values of

High and Low for the jackal data. See Figure 5.2 for output

# Routine to calculate the required statistic � here the difference between

# two means

Diff <- function(Group, X, Index){mean(X[Group==Index])-

mean(X[Group!=Index])}

# Put data into two vectors, one identifying the group the other with the data

Group.Index <- c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2)

Data <- c(107,110,111,112,113,114,114,116,117,120,105,106,

107,107, 108,110,110,111,111,111)

# Store the male values

Data.store <- matrix (Data[1:10],10)

N <- 10000 # Number of randomizations

set.seed(0) # Initialize random number seed

nreps <- 10 # Set number of estimates to calculate

High <- 7.5 # Set initial value for upper value

Low <- 1.6 # Set initial value for lower value
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PC <- matrix(0,nreps,4) # Set up matrix to store output

for (i in 1:nreps)# Iterate over values of Low and High

{

High <- High+0.05 # Increment High

PC[i,1] <- High # Store High in column 1

Low <- Low+0.05 # Increment Low

PC[i,3] <- Low # Store Low in column 3

# Randomization test

Data[1:10] <- Data.store[1:10]�High # Subtract High from males

Meanboot <- bootstrap(Group.Index,Diff(Group.Index,Data,1),

sampler=samp.permute,trace=F,B=N)

# Calculate number <= observed

n.over <- sum(Meanboot$replicates <= Meanboot$observed)

PC[i,2] <- (n.over+1)/(N+1) # Store P for High in column 2

# Randomization test

Data[1:10] <- Data.store[1:10]-Low # Subtract Low from males

Meanboot <- bootstrap(Group.Index,Diff(Group.Index,Data,1),

sampler= samp.permute,trace=F,B=N)

# Calculate number <= observed

n.over <- sum(Meanboot$replicates >= Meanboot$observed)

PC[i,4] <- (n.over+1)/(N+1) # Store P for Low in column 4

# Print P

print(PC[i,])

}

C.5.5 Estimation of the standard error, SE,

using three approximate methods

# Create Lizard data set

Males <- c(16.4,29.4,37.1,23,24.1,24.5,16.4,29.1,36.7,28.7,

30.2,21.8,37.1,20.3,28.3)

Females <- c(22.2,34.8,42.1,32.9,26.4,30.6,32.9,37.5,18.4,27.5,

45.5,34,45.5,24.5,28.7)

n <- length(Males)

Stamina <- c(Males,Females)

Group <- c(rep(1, times=n), rep(2, times=n))

Lizard.data <- data.frame(Stamina, Group)

# First do randomization test on lizard data

Data <- Lizard.data$Stamina # Column containing data

Group.Index <- Lizard.data$Group # Column giving group number

# Routine to calculate the required statistic - here the diff between two means
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Diff <- function(Group, X, Index){mean(X[Group==Index])-mean(X

[Group!=Index])}

set.seed(20) # Initialize random number

N <- 10000 # Number of randomizations

# Randomization test

Meanboot <- bootstrap(Group.Index,Diff(Group.Index,Data,1),

trace=F,sampler=samp.permute,B=N)

Lizard.Output <- Meanboot$replicates # Store replicates

# Calculating SE using normal approximation

# Observed mean difference

xobs <- abs(Meanboot$observed)

df <-length(Data)-2 # degrees of freedom

# Output from randomizations

N <- length(Lizard.Output)

n.over <- sum(abs(Lizard.Output) >= xobs) # Number exceeding xobs

P <- (n.over+1)/(N+1) # Estimated P

# Calculate x from t distribution

x.abscissa <- qt(P/2,df)

SE1 <- abs(xobs/x.abscissa) # Estimate SE

t.value <- abs(qt(0.025,df)) # Compute t value

U1 <- xobs+t.value*SE1 # Upper confidence bound

L1 <- xobs-t.value*SE1 # Lower confidence bound

print(c(xobs,P,SE1,L1,U1)) # Output

# Calculating SE using Average percentile method

# Absolute values of randomized values

D1 <- abs(Lizard.Output)

D.sorted <- sort(D1) # Sort into ascending order

Upper <- 0.95*length(D1) # Calculate upper 95% point

C <- D.sorted[Upper] # Find value at this point

t.value <- abs(qt(0.025,df)) # Compute t value

SE2 <- C/t.value # SE

U2 <- xobs+C # Upper confidence value

L2 <- xobs-C # Lower confidence value

print(c(C,SE2,L2,U2)) # Output

# Calculating SE using Percentile method

D.sorted <- sort(Lizard.Output) # Sort into ascending order

Upper <- 0.975*length(D1) # Calculate 97.5% point

CU <- D.sorted[Upper] # Find value at this point

Lower <- 0.025*length(D1) # Calculate 2.5% point

CL <- D.sorted[Lower] # Find value at this point
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t.value <- abs(qt(0.025,df)) # Compute T value

U3 <- CU+xobs # Upper confidence value

L3 <- CL+xobs # Lower confidence value

SE3 <- (U2-L2)/(2*t.value) # SE

print(c(CL,CU,,SE3,L3,U3)) # Output

Output

print(c(xobs, P SE1, L1, U1))

5.36 0.05649435 2.694143 �0.1587019 10.8787

print(c( C, SE2, L2, U2))

5.5066667 2.6882677 �0.1466667 10.8666667

print(c(CL, CU, SE3, L3, U3))

�5.5066667 5.4666667 2.6785040 �0.1466667 10.8266667

C.5.6 Randomization of one-way analysis of variance

of ant consumption data

set.seed(0) # Set seed for randomization

# Enter data

X.data <- c(13,242,105,8,59,20,2,245,515,488,88,233,50,600,82,40,

52,1889,18,44,21, 5, 6, 0)

Month <- c("Jn","Jn","Jn","J","J","J","J","J","A","A","A","A",

"A","A","A", "A","A","A","S","S","S","S","S","S")

Group <- factor(Month) # Convert months to factor

N <- 1000 # Set number of randomizations

F.replicate <- matrix(0,N,1) # Set up matrix to take permuted Fs

for (Iperm in 1:N) # Iterate over N randomizations

{

# Note that on the first pass the F stats for original data calculated

# Bind 2 variables into dataframe

Data <- data.frame (Group,X.data)

# One-way anova.

Model <- aov(Data[,2]~Data[,1], data=Data)

Model.summary <- summary(Model, SSType=3) # Do analysis

F.value <- Model.summary$F[1] # Extract F value

F.replicate[Iperm] <- F.value # Store F value

# Permute set of observations

X.data <- sample(X.data)

}

P <- mean(F.replicate >= F.replicate[1]) # Calculate P

print(c(F.replicate[1],P))# Output original F and P
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Output

print(c(F.replicate[1], P))

1.643906 0.196000

Output from analysis of variance

Df Sum of Sq Mean Sq F Value Pr(F)

Month 3 726695 242231.6 1.643906 0.2110346

Residuals 20 2947024 147351.2

C.5.7 Randomization of one-way analysis of variance

using “by” routine of S-PLUS

set.seed(0) # Initialize random number

X.data <- c(13,242,105,8,59,20,2,245,515,488,88,233,50,600,82,40,

52,1889,18,44,21, 5, 6, 0)

Month <- c("Jn","Jn","Jn","J","J","J","J","J","A","A","A","A",

"A","A","A", "A","A","A","S","S","S","S","S","S")

Group <- factor(Month) # Convert months to factor

Perm.data <- X.data # Initiate collection of data

N <- 999 # Number of randomizations

Total <- N+1 # N + initial data results

# Produce N randomizations of data

for (i in 1:N){Perm.data <- c(Perm.data,sample(X.data))}

# Now add index and group membership

Perm.Group <- rep(Group,Total) # Replicate N+1 times

n <- length(X.data)) # Size of data set

Perm.Index <- sort(rep(seq(1:Total),n)) # Produce N+1 indices

# Set up matrix to take permuted Fs

F.replicate <- matrix(0,Total,1)

# Bind three vectors together

d <- data.frame (Perm.Index,Perm.Group,Perm.data)

# Use by routine to do N+1 anovas and store result in object ANOVA

ANOVA <- by(d, d$Perm.Index, function(d) summary(aov(Perm.data~

Perm.Group, data=d)))

F.replicate <- matrix(0,Total,1) # Set up matrix to take permuted Fs

# Extract F values from ANOVA object

for (i in 1:Total)

{

a <- unlist(ANOVA[i])

F.replicate[i] <- a[7]

}

294 S-PLUS codes cited in text



P <- mean(F.replicate >= F.replicate[1]) # Calculate P

print(c(F.replicate[1],P)) # Output original F and P

Output

print(c(F.replicate[1], P))

1.643906 0.175000

Output from analysis of variance

Df Sum of Sq Mean Sq F Value Pr(F)

Month 3 726695 242231.6 1.643906 0.2110346

Residuals 20 2947024 147351.2

C.5.8 Randomization testing a two-way analysis of variance

Data are in a matrix of three columns, the original results presented in

the left-hand table below. To produce a randomized data set while keeping cell

counts the same we randomize only the data column, X, giving, for example,

the data set shown in the right-hand table.

Factor A Factor B X

1 0 50

1 0 57

1 1 57

1 1 71

1 1 85

2 0 91

2 0 94

2 0 102

2 0 110

2 1 105

2 1 120

Factor A Factor B X

1 0 110

1 0 50

1 1 85

1 1 94

1 1 105

2 0 57

2 0 120

2 0 102

2 0 71

2 1 91

2 1 110

# Coding to do a two-way anova

# Create data set

Data <- c(50,57,57,71,85,91,94,102,110,105,120)

Factor.A <- c(1,1,1,1,1,2,2,2,2,2,2)

Factor.B <- c(0,0,1,1,1,0,0,0,0,1,1)

Groups <- data.frame(Factor.A, Factor.B)

# Ensure that variables are factors

Groups[,1] <- factor(Groups[,1])

# Ensure that variables are factors

Groups[,2] <- factor(Groups[,2])

Obs.model <- aov(Data~Groups[,2] # Initial ANOVA *Groups[,1])
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# Specify Type 3 SS

Obs.results <- summary(Obs.model, ssType=3)

# Function to get F statistics from two-way anova

ANOVA<- function(Groups,Data)

{

Model <- aov(Data~Groups[,2]*Groups[,1])

Fs <- summary(Model,ssType=3)$"F Value" # Type III sums of squares

return(c(Fs[1],Fs[2],Fs[3]))

}

# Do randomization

N <- 1000 # Number of randomizations

F.values <- matrix(0,N,3) # Set up matrix to take F values

for (iperm in 1:N) # Iterate through randomizations

{

# Note that first pass is on original data

F.values[iperm,] <- ANOVA(Groups,Data)

Data <- sample(Data) # Randomize data vector

}

# Print out results

Obs.results

for (i in 1:3)

{print(c("Random P for ",i," = ", mean(F.values[,i]>= F.values[1,i])))}

Output

Type III Sum of Squares

Df Sum of Sq Mean Sq F Value Pr(F)

Groups[, 1] 1 4807.934 4807.934 45.00908 0.0002752

Groups[, 2] 1 597.197 597.197 5.59061 0.0500130

Groups[, 1]:Groups[, 2] 1 11.408 11.408 0.10679 0.7533784

Residuals 7 747.750 106.821

"Random P for " "1" " = " "0.001"

"Random P for " "2" " = " "0.061"

"Random P for " "3" " = " "0.77"

C.5.9 Levene’s test for homogeneity of variances

# Calculating Levene’s test

# Enter data

Month <- c(“Jn”,“Jn”,“Jn”,“J”,“J”,“J”,“J”,“J”,“A”,“A”,“A”,“A”,“A”,

“A”,“A”,“A”,“A”,“A”,“S”,“S”,“S”,“S”,“S”, “S”)
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Ants.eaten <- c(13,242,105,8,59,20,2,245,515,488,88,233,50,600,

82,40,52,1889,18,44,21,5,6,0)

Ant.data <- data.frame(Month,Ants.eaten)

# Function to calculate absolute differences from means within groups

Levene <- function(x){abs(x-mean(unlist(x)))}

# Calculate absolute differences between group means and observations

Abs.diffs <- by(Ant.data$Ants.eaten, Ant.data$Month, Levene)

# Combine group designator "Group" with Absolute differences

Abs.diffs <- unlist(Abs.diffs) # Remove list structure

# Sort Month to correspond with “by results”

Month <- sort(Month)

# Combine into columns

Data <- data.frame(Month,Abs.diffs)

# Do ANOVA

summary(aov(Data$Abs.diffs~Data$Month, data=Data))

Output

Df Sum of Sq Mean Sq F Value Pr(F)

Data$Month 3 639142 213047.4 2.857091 0.06284734

Residuals 20 1491359 74567.9

Results from randomization test (Use “Data” file and coding in C.5.6 or C.5.7)

print(c(F.replicate[1], P))

2.857091 0.052600

C.5.10 �2 contingency analysis by randomization

set.seed(3) # Initialize random number seed

# Get data and convert to matrix

Data.File <- numerical.matrix (Shad.data)

n <- sum(Data.File) # Find total sample size

nos.of.rows <- nrow(Data.File) # Find number of rows

nos.of.cols <- ncol(Data.File) # Find number of columns

rows <- NULL # Set up vector for row entries

cols <- NULL # Set up vector for column entries

# Construct row and column vectors (= M matrix)

for (irow in 1: nos.of.rows) # Iterate over rows

{

for(icol in 1:nos.of.cols) # Iterate over columns

{

rows <- c(rows, rep(irow,Data.File[irow,icol])) # Row entries
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cols <- c(cols,rep(icol,Data.File[irow,icol])) # Column entries

}}

obs.chi<- chisq.test(Data.File, correct=F) # Test on original data

# Create function to reconstruct data matrix from M matrix and do test

# n.rows = number of rows, n.cols = number of columns,

# r.s, c.s = vectors corresponding to columns of M matrix, m = number of entries

Chi.random <- function(r.s,c.s,n.rows,n.cols,m)

{

# Randomized data matrix

M.random <- matrix(0,n.rows,n.cols)

for (i in 1:m){M.random[r.s[i],c.s[i]] <- M.random[r.s[i],c.s[i]]+1}

chi <- chisq.test(M.random, correct=F) # Chi-square test

return(chi$statistic) # Return chi-square value

}

N <- 1000 # Number of permutations

Chi.replicate <- matrix(0,N,1) # Set up matrix to take permuted Fs

for (Iperm in 1:N) # Iterate over N permutations

{

# Note that on the first pass the Chi2 value for original data calculated

# Extract Chi value

Chi.value <- Chi.random(rows,cols,nos. of.rows,nos.of.cols,n)

Chi.replicate[Iperm] <- Chi.value # Store Chi value

# Randomize column vector

cols <- sample (cols)

}

P <- mean(Chi.replicate >= Chi.replicate[1]) # Calculate P

obs.chi # Chi2 on original data

print(c(Chi.replicate[1],P)) # Output original F and P

Output

obs.chi

Pearson’s chi-square test without Yates’ continuity correction

data: Data.File

X-square = 236.4939, df = 117, p-value = 0

> # Chi2 on original data

print(c(Chi.replicate[1], P))

236.4939 0.0010

There were 11 warnings (use warnings() to see them)

Warnings are given from the routine chisq.test and refer to the small sample

size in cells. These warnings can be ignored.

298 S-PLUS codes cited in text



C.5.11 Randomization analysis of intercept and slope in

linear regression on generated data

set.seed(4) # Initialize random number seed

x <- runif(20,0,1) # Generate 20 uniform random numbers

y <- x + rnorm(20,0,1) # Generate 20 random normal, N(0,1) and add to x

# Routine to fit linear regression and extract coefficients

Lin.reg <- function(x.data,y.data){coef(lm(y.data~x.data))}

# Calculate regression stats for observations

obs.regression <- summary(lm(y~x))

# Use bootstrap routine to do permutations

N <- 1000 # Number of permutations

Meanboot <- bootstrap(x, Lin.reg(x,y), sampler=samp.permute, B=N,

trace=F)

# Calculate number of permutations in which absolute difference > than

# observed intercept

n.over.a <- sum(abs(Meanboot$replicates[,1]) >= abs(Meanboot

$observed[1]))

# Slope

n.over.b <- sum(abs(Meanboot$replicates[,2]) >= abs(Meanboot$observed

[2]))

Pa <- (n.over.a+1)/(N+1) # Remember to add 1 for observed value

Pb <- (n.over.b+1)/(N+1) # Remember to add 1 for observed value

obs.regression # Print observed regression stats

print(c(Pa,Pb)) # Print P

Output

obs.regression

Call: lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

�1.642 -0.6467 0.07469 0.6928 1.423

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.2758 0.3814 0.7231 0.4789

x 0.9142 0.7241 1.2625 0.2229

Residual standard error: 0.8685 on 18 degrees of freedom

Multiple R-Squared: 0.08135

F-statistic: 1.594 on 1 and 18 degrees of freedom, the p-value is 0.2229

Randomization analysis of intercept and slope in linear regression 299



Correlation of Coefficients:

(Intercept)

x -0.8607

> # Print observed regression stats

print( c(Pa, Pb))

0.8811189 0.2147852

C.5.12 Coding to create distance and difference matrices

shown in Figure 5.12

Spatial.data contains the following data

2 2 0 0 0

1 2 0 0 5

2 0 0 0 6

0 1 0 5 7

0 1 0 5 4

0 0 0 3 5

# First create three column matrix

# Col 1 contains "x" coordinate

# Col 2 contains "y" coordinate

# Col3 contains data

Nrows <- 6 # Number of rows

Ncols <- 5 # Number of columns

N <- Nrows*Ncols

M <- matrix(0,N,3)

Row <- 0 # Set up row counter

for (irow in 1:Nrows){ # Iterate over rows

for (icol in 1:Ncols){ # Iterate over columns

Row <- Row+1 # Increment row counter

M[Row,1] <- irow # Save x coordinate

M[Row,2] <- icol # Save y coordinate

M[Row,3] <- Spatial.data[irow,icol] # Save data

}}

# Now form matrix of distances and differences using data in matrix

# Spatial.data

Distance <- matrix(0,N,N) # Distance matrix

Difference <- matrix(0,N,N) # Difference matrix

for (irow in 1:N){ # Iterate over x coordinates

for (icol in irow:N){ # Iterate over y coordinates
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Distance[irow,icol] <- sqrt((M[irow,1]-M[icol,1])^2+(M[irow,2]-

M[icol,2])^2)

Difference[irow,icol] <- abs(M[irow,3]-M[icol,3])

}}

C.5.13 The Mantel Test

# Coding for Mantel Test using data shown in Figure 5.12 and C.5.12

set.seed(1) # Initialize random number

Mx <-Distance # Enter X matrix

My <- Difference # Enter Y matrix

# Function to Convert matrix into vector excluding duplicate elements

Vector <- function(M)

{

n <- nrow(M) # Number of rows and columns

V <- NULL # Set up vector

# Iterate over cols

for (i in 1:n)

{

# Iterate over rows

for(j in i:n){if(i!=j)V <- c(V,M[i,j])} # Accumulate data

}

# Note that diagonal is excluded. In some cases it may be included

return(V)

}

Vx <- Vector(Mx) # Create vector x

Vy <- Vector(My) # Create vector y

N <- 1000 # Number of permutations

# Use bootstrap routine to do permutations using cor

Meanboot <-bootstrap(Vx, cor(Vx,Vy), sampler=samp.permute, B=N,

trace=F)

# Calculate number of permutations in which absolute difference > than

# observed

n.over <- sum(abs(Meanboot$replicates) >= abs(Meanboot$observed))

# Remember to add 1 for observed value

P <- (n.over+1)/(N+1)

print(c(Meanboot$observed,P)) # Print observed correlation and P

Output

print(c(Meanboot$observed, P))

0.1598842 0.003996004
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C.6.1 Cross-validation of two multiple regression equations using

10% of the data set as the test set

set.seed(1) # Set random number seed

Data <- Cricket.Data # Pass data to file Data

Nreps <- 1000 # Number of randomizations

n <- nrow(Data) # Find number of rows in data set

# Create an index vector in ten parts

Index <- rep(seq(1,10), length.out=n)

Data <- cbind(Data,Index) # Combine Data and index vector

Last.col <- ncol(Data) # Last column for index

# Function to determine residual sums of squares

# D=Data; I=Index value; K=col for Index; R=col for obs. value; Model=model

# object

SS <- function(D,I,K,R,Model)

{

Obs <- D[D[,K]==I,R] # Observed value

# Predicted value using fitted model

Pred <- predict (Model,D[D[,K]==I,])

return(sum((Obs-Pred)^2)) # Residual sums of squares

}

# Matrix for residual sums of squares

RSS <- matrix(0,Nreps,2)

for (i in 1:Nreps) # Iterate over randomizations

{

Index <- sample(Index) # Randomize index vector

# Place index values in last col of Data

Data[,Last.col] <- Index

# Compute model objects Note that Last.col is the column for the index

# values

Model1 <- lm(OVARY.WT~F.coef+MORPH+HEAD.WTH:MORPH, data=Data

[Data[,Last.col]!=1,])

Model2 <- lm(OVARY.WT~HEAD.WTH*F.coef*MORPH, data=Data

[Data[,Last.col]!=1,])

RSS[i,1] <- SS(Data,1,Last.col,1,Model1) # Store RSS for Model 1

RSS[i,2] <- SS(Data,1,Last.col,1,Model2) # Store RSS for Model 2

}

t.test(RSS[,1], y=RSS[,2],paired=T) # Do paired t test

print(c(mean(RSS[,1]), mean(RSS[,2]))) # Print means
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Output

data: RSS[, 1] and RSS[, 2]

t = -3.1672, df = 999, p-value = 0.0016

alternative hypothesis: mean of differences is not equal to 0

95 percent confidence interval:

�0.04489097 -0.01054436

sample estimates:

mean of x - y

�0.02771766

C.6.2 Coding to fit a smoothed function using the loess routine.

Coding to generate plots given but output not shown

# Generate data for plots in Figure 6.12

set.seed(1) # Set random number seed

n <- 100 # Sample size

Curves <- matrix(0,n,5) # Matrix for data

x <- seq(5,20,length=n) # values of x

Curves[,1] <- x # Store x

error <- rnorm(n,0,0.06) # Errors

Curves[,2] <- dnorm(x, 10,1)+ dnorm(x,12,1) # Curve

Curves[,3] <- dnorm(x, 10,1)+ dnorm(x,12,1)+error # Add error to curve

# Fit function using loess

SPAN <- 0.3 # Set span value

DEG <- 2 # Set degrees (1 or 2)

# Fit loess model

L.smoother1 <- loess(Curves[,3]~Curves[,1], span=SPAN, degree=DEG)

# Calculate predicted curve with standard errors

# Set range of x

x.limits <- seq(min(Curves[,1]), max(Curves[,1]),length=50)

# Prediction model

P.model <- predict.loess(L.smoother1, x.limits, se.fit=T)

C.INT <- pointwise(P.model, coverage=0.95) # Calculate values

Pred.C <- C.INT$fit # Predicted y at x

Upper <- C.INT$upper # Plus 1 SE

Lower <- C.INT$lower # Minus 1 SE

plot(Curves[,1], Curves[,3]) # Plot points

lines(Curves[,1], Curves[,2], lty=2) # Plot true function
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lines(x.limits,Pred.C) # Plot loess prediction

lines(x.limits,Upper,lty=4) # Plot plus 1 SE

lines(x.limits,Lower,lty=4) # Plot minus 1 SE

Fits<- fitted(L.smoother1) # Calculate fitted values

Res<- residuals(L.smoother1) # Calculate residuals

# Plot residuals on fitted values with simple loess smoother

scatter.smooth(fitted(L.smoother1),residuals(L.smoother1),

span=1, degree=1)

# Output basic stats for smoothed function

summary(L.smoother1)

Output

summary(L.smoother1)

Call:

loess(formula = Curves[, 3] ~ Curves[, 1], span = SPAN, degree = DEG)

Number of Observations: 100

Equivalent Number of Parameters: 9.8

Residual Standard Error: 0.05831

Multiple R-squared: 0.92

Residuals:

min 1st Q median 3rd Q max

�0.1357 -0.03365 -0.003501 0.03404 0.1517

C.6.3 Coding for 10-fold cross-validation of loess fit

# Generate data as shown in Figure 6.2

set.seed(1) # initiate random number generator

n <- 100 # sample size

Curves <- matrix(0,n,2) # Matrix for data

x <- seq(5,20,length=n) # values of x

error <- rnorm(n,0,0.06) # errors

Curves[,1] <- x

# add error to curve

Curves[,2] <- dnorm(x, 10,1) + dnorm(x,12,1)+error

# Generate indexes for cross validation.

# Note that because data are created sequentially index is also randomized

Index <- sample(rep(seq(1,10), length.out=n))

# Do ten-fold cross validation

for (i in 1:10)
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{

Data <- data.frame (Curves[Index!=i,]) # Select subset of data

CV.data <- data.frame (Curves[Index==i,]) # Store remainder

# Fit model

L.smoother <- loess(X1.2~X1.1, data=Data, span=0.3,degree=2)

# Multiple r for fitted values

R2 <- summary(L.smoother) $ covariance

# Calculate predicted curve

Predicted <- predict.loess (L.smoother, CV.data)

# Calculate correlation between predicted and observed

r <- cor(CV.data[,2], Predicted, na.method="omit")

print(c(i,r^2, R2)) # Print predicted and observed multiple R

plot(CV.data[,2],Predicted) # Plot not shown

}

Output First column is index number, second column is r2 for fit to excluded

data, third column is fit for the original model

[1] 1.0000000 0.9441238 0.9223947

[1] 2.0000000 0.9317727 0.9236801

[1] 3.0000000 0.9173710 0.9226224

[1] 4.0000000 0.9558029 0.9225427

[1] 5.0000000 0.1852531 0.9328380

[1] 6.0000000 0.8964556 0.9292294

[1] 7.0000000 0.9436588 0.9231652

[1] 8.0000000 0.9102181 0.9250648

[1] 9.0000000 0.9553580 0.9211906

[1] 10.0000000 0.8396268 0.9322675

C.6.4 Coding to fit loess curve to multivariate data

# Generate data plotted in Figure 6.5

set.seed(1) # Initialize random number

N <- 100 # Number of data points

X1 <-runif(N,15,19) # Generate values of X1

X2 <-runif(N,0,20) # Generate values of X2

# Nest density at these sites

Y <- matrix(0,N) # Set up matrix for Y values

for (i in 1:N)

{

if(X1[i]<17) Y[i] <- 5 + rnorm(1,0,2) # error N(0,2)
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if(X1[i]>=17 & X2[i] < 10) Y[i] <- 10 + rnorm(1,0,4) # error N(0,4)

if (X1[i] >= 17 & X2[i] >= 10) Y[i] <- 20 + rnorm(1,0,8) # error N(0,8)

}

# Plot perspective surface using interpolation (top row in Figure 6.5)

persp(interp(X1,X2,Y), xlab="X1", ylab="X2", zlab="Y")

Data <- data.frame(Y,X1,X2) # create datafile

# Fit loess function using quadratic

Density <- loess(Y~X1*X2, data= Data, degree=2)

# Generate equally spaced grid (20x20) for plot of loess-generated surface

X1.predict <- rep(seq(from=min(X1), to=max(X1), length=20),

times=20)

X2.predict <- sort(rep(seq(from=min(X2), to=max(X2), length=20),

times=20))

# Convert to data frame

X.predict <- data.frame (X1.predict,X2.predict)

# Predict Y

# Concatenate X1,X2 values

X.predict <- cbind(X1.predict,X2.predict)

dimnames(X.predict) <- list(NULL, c(“X1”,“X2”)) # Add names to columns

X.predict <- data.frame(X.predict) # Convert to data frame

Density.predict <- predict.loess (Density, X.predict)

# Set X1 for persp

X1 <- seq(from=min.X1, to=max.X1, length=20)

# Set X2 for persp

X2 <- seq(from=min.X2, to=max.X2, length=20)

# Convert predicted values into matrix

Z <- matrix(Density.predict,20,20)

# Plot loess plot

persp(X1.predict,X2.predict,Z,xlab="X1", ylab="X2", zlab="Y")

C.6.5 Comparison of two fitted loess surfaces using density data

# Generate data plotted in Figure 6.5

set.seed(1) # Initialize random number

N <- 100 # Number of data points

X1 <-runif(N,15,19) # Generate values of X1

X2 <-runif(N,0,20) # Generate values of X2

# Nest density at these sites

Y <- matrix(0,N) # Set up matrix for Y values
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for (i in 1:N)

{

if(X1[i]<17) Y[i] <- 5 + rnorm(1,0,2) # error N(0,2)

if(X1[i]>=17 & X2[i] < 10) Y[i] <- 10 + rnorm(1,0,4) # error N(0,4)

if (X1[i] >= 17 & X2[i] >= 10) Y[i] <- 20 + rnorm(1,0,8) # error N(0,8)

}

Data <- data.frame(Y,X1,X2)# Concatenate data into dataframe

# Do fits and compare

Density1 <- loess(Y~X1*X2, data= Data, degree=1) # Fitted with degree 1

Density2 <- loess(Y~X1*X2, data= Data, degree=2) # Fitted with degree 2

# Output result for 1st fit

Density1

# Output result for 2nd fit

Density2

anova(Density1,Density2) # Compare with anova

Output

Call:

loess(formula = Y ~ X1 * X2, data = Data, degree = 1)

Number of Observations: 100

Equivalent Number of Parameters: 4.8

Residual Standard Error: 5.043

Multiple R-squared: 0.54

Call:

loess(formula = Y ~ X1 * X2, data = Data, degree = 2)

Number of Observations: 100

Equivalent Number of Parameters: 9.2

Residual Standard Error: 4.458

Multiple R-squared: 0.67

> anova(Density1, Density2)

Model 1:

loess(formula = Y ~ X1 * X2, data = Data, degree = 1)

Model 2:

loess(formula = Y ~ X1 * X2, data = Data, degree = 2)

Analysis of Variance Table

ENP RSS Test F Value Pr(F)

1 4.8 2358.0 1 vs 2 6.15 0.000074947

2 9.2 1743.1
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C.6.6 Coding to produce plots and fitted curves to the

Chapman equation shown in Figure 6.7, with testing of fits.

Text output but not plots shown

# Generate data

set.seed(1) # initiate random number generator

n <- 200 # Sample size

X <- runif(n, 0.1,10) # values of X

error <- rnorm(n,0,20) # error terms

Y <- 5 + 95*(1-exp(-1*X))^5 # Chapman curve

Y <- Y + error # Add error term

# Deterministic curve (error = mean=0)

X.zero <- seq(min(X), max(X), length=n) # Set X values

# Calculate deterministic value

Y.zero <- 5 + 95*(1-exp(-1*X.zero))^5

# Combine X and Y into data frame

Data <- data.frame(X,Y)

# Fit GAM to X, Y

Fit.gam <- gam(Y~lo(X), data=Data)

# Fit linear (Fit.lin) and then quadratic (Fit.quad) regressions

Fit.lin <- lm(formula = Y ~ X, data = Data, na.action = na.exclude)

Fit.quad <- lm(formula = Y ~ X + X^2, data = Data, na.action = na.exclude)

# Calculate predicted value using quadratic fit

pred.y <- predict(Fit.quad)

d <- data.frame(X, pred.y) # Convert to data frame

# sort data to produce sequence for line plot

newd <- sort.col(target=d, columns.to.sort="@ALL", columns.to.

sort.by="X", ascending=T)

# Plot results with quadratic fit on first plot

plot(X,Y) # Original data

lines(X.zero, Y.zero) # Deterministic curve

lines(newd[,1], newd[,2]) # Quadratic fit

plot(Fit.gam, residuals=T, se=T,rug=F) # GAM fit

# Output Results

anova(Fit.gam) # Fit of GAM model

summary(Fit.lin) # Fit of linear regression

summary(Fit.quad) # Fit of quadratic

anova(Fit.quad,Fit.gam) # Compare quadratic and GAM models
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Output (summarized)

>anova(Fit.gam)

DF for Terms and F-values for Nonparametric Effects

Df Npar Df Npar F Pr(F)

(Intercept) 1

lo(X) 1 2.2 72.17551 0

>summary(Fit.lin)

Call: lm(formula = Y ~ X, data = Data, na.action = na.exclude)

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 31.1040 3.6782 8.4564 0.0000

X 8.8805 0.6428 13.8155 0.0000

Residual standard error: 27.51 on 198 degrees of freedom

Multiple R-Squared: 0.4908

F-statistic: 190.9 on 1 and 198 degrees of freedom, the p-value is 0

>summary(Fit.quad)

Call: lm(formula = Y ~ X + X^2, data = Data, na.action = na.exclude)

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -5.5812 4.1689 -1.3388 0.1822

X 31.9984 2.0013 15.9887 0.0000

I(X^2) -2.3082 0.1937 -11.9160 0.0000

Residual standard error: 21.03 on 197 degrees of freedom

Multiple R-Squared: 0.7041

F-statistic: 234.4 on 2 and 197 degrees of freedom, the p-value is 0

>anova(Fit.lin, Fit.quad)

Analysis of Variance Table

Response: Y

Terms Resid. Df RSS Test Df Sum of Sq F Value Pr(F)

1 X 198 149894.1

2 X + X^2 197 87108.9 +I(X^2) 1 62785.15 141.9909 0

>anova(Fit.quad, Fit.gam)

Analysis of Variance Table

Response: Y

Terms Resid. Df RSS Test Df Sum of Sq F Value Pr(F)

1 X + X^2 197.0000 87108.94

2 lo(X) 195.7897 82594.88 1 vs. 2 1.210328 4514.059 8.840986 0.001830153
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C.6.7 Coding to generate regression tree and perform

cross-validation

# Coding to generate the data shown in Figure 6.5

set.seed(1) # Initialize random number

N <- 100 # Number of data points

X1 <-runif(N,15,19) # Generate values of X1

X2 <-runif(N,0,20) # Generate values of X2

# Nest density at these sites

Y <- matrix(0,N)# Set up matrix for Y values

for (i in 1:N)

{

if (X1[i]<17) Y[i] <- 5 + rnorm(1,0,2) # error N(0,2)

if (X1[i]>=17 & X2[i] < 10) Y[i] <- 10 + rnorm(1,0,4) # error N(0,4)

if (X1[i] >= 17 & X2[i] >= 10) Y[i] <- 20 + rnorm(1,0,8) # error N(0,8)

}

Data.df <- data.frame(X1,X2,Y)# Concatenate into dataframe

# Coding to generate regression tree and perform cross-validation

set.seed(1) # Initiate random number

Tree <- tree(Y~X1+X2,Data.df) # Create tree

plot(Tree); text(Tree) # Plot tree with text

Pruned.Tree <- prune.tree(Tree) # Prune tree

plot(Pruned.Tree) # Plots deviance against size

Size <- NULL # set up Size vector

gtotal <- NULL # set up matrix for output data

# Iterate over 10 cross-validations

for (i in 1:10)

{

Tr <-cv.tree(Tree, prune.tree) # Apply cross-validation routine

plot(Tr) # Plot results

# Make matrix with 2 cols, dev & size

g <- cbind(Tr$dev,Tr$size)

gtotal <- cbind(gtotal,g) # Save data for later plotting

g <- data.frame(g) # Convert to data frame and sort

g1 <- sort.col(target=g, columns.to.sort="@ALL",

columns.to.sort.by=list("g.1"),ascending=T)

# Store size for smallest deviance

Size <- c(Size,g1[1,2])

}
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Size # Print best Size for the ten runs

# Get the integer value of mean Size

Avg.Size <- floor(mean(Size))

# Use Avg.Size to prune tree

Tree.pruned <- prune.tree (Tree, best=Avg.Size)

summary(Tree.pruned) # Output results

Tree.pruned$size # Output possible tree sizes

plot(Tree.pruned);text(Tree.pruned) # plot tree

Output (plots not shown)

# Print best Size for the ten runs

Size

3 3 3 3 3 4 4 4 3 3

# Use Avg.Size to prune tree

summary(Tree.pruned)

Regression tree:

snip.tree(tree = Tree, nodes = c(2., 6., 7.))

Number of terminal nodes: 3

Residual mean deviance: 13.83 = 1342 / 97

C.6.8 Function to perform randomization test of a given

regression tree

# Function to perform randomization

Tree.Random <- function(formula, data, Ypos, Ibest, N.Rand=100)

{

# Check that a tree of required size actually exists for the real data

Random.tree <- tree(formula, data) # Calculate tree

# Prune tree

R1 <- prune.tree (Random.tree, best=Ibest)

R1.summary <- summary(R1) # Summary data

if(R1.summary$size!=Ibest) stop("A tree of this size cannot be fitted

to data")

# Matrix to store deviances

Deviances <- matrix(0,N.Rand)

# Matrix to store actual sizes used

Sizes <- matrix(0,N.Rand)

nrows <- nrow(data) # Number of rows in data
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# Iterate over randomizations

for (i in 1:N.Rand)

# Note that on first pass there is no randomization

{

Random.tree <- tree(formula, data) # Calculate tree

# Prune tree

R1 <- prune.tree (Random.tree, best=Ibest)

R1.summary <- summary(R1) # Summary data

Deviances[i] <- R1.summary$dev # Store deviances

# Store number of terminal nodes

Sizes[i] <- R1.summary$size

data[,Ypos] <- data[sample(nrows),Ypos] # Randomize y

}

# Calculate P

P <- length(Deviances [Deviances<=Deviances[1]])/N.Rand

SE <- sqrt(P*(1-P)/N.Rand) # Calculate SE

print("Probability of random tree having smaller deviance (SE)")

print(c(P, SE)) # Output P and SE

print("Summary of sizes actually used in randomization")

print(summary(Sizes)) # summary data of sizes

}

# ***********************************

# Call to function

# Description of parameters in order:

# Model statement, e.g., Y ~ X1 + X2

# Data file, e.g., Data.df, which is the dataframe created in C.6.7

# Column for Response variable, e.g., Ypos = 3

# Size of tree to compare, e.g., Ibest = 3

# Number of randomizations, e.g., N.Rand=100

Tree.R <-Tree.Random(Y~X1+X2, Data.df, Ypos=3, Ibest=3, N.Rand=100)

Output

[1] "Probability of random tree having smaller deviance (SE)"

[1] 0.010000000 0.009949874

[1] "Summary of sizes actually used in randomization"

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.00 3.00 4.00 4.24 5.00 12.00
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C.7.1 Calculation of posterior probabilities for a normal mean

based on prior distributions of the mean and variance and

a single observation, x

For clarity, I have used looping, though in most circumstances this will

be inefficient.

# Set up parameter values

mu0 <- c(0,0.5,1,3) # m0

Pmu0 <- c(.1,.2,.5,.2) # p1(�0)

sigma0 <- c(.25,.3,.5,.75) # m0

Psigma0 <- c(0.01,0.05,0.9,0.04) # p2(�0)

x <- 1.5 # x

# Calculate matrix of prior probabilities for m0 and �0 based on x

Px <- matrix(0,4,4) # Set up matrix for data

# Iterate over the 16 combinations

for (mu in 1:4)

{

for (sigma in 1:4)

{

Px[sigma,mu] <- dnorm(x,mu0[mu],sigma0[sigma])*Pmu0[mu]*Psigma0

[sigma]

}

}

Denom <- sum(Px)

Px <- Px/Denom

# Now iterate over values of theta

Theta <- seq(0,3,0.01) # Vector of theta values

n <- length(Theta) # Length of vector

sd <- 0.5 # �

Posterior <- matrix(0,n,1) # Set up matrix for posterior

# Iterate over all combinations. Note that theta does not require a loop

for (mu in 1:4)

{

for (sigma in 1:4)

{

sd1 <- 1/((1/sigma0[sigma]^2)+ (1/sd^2)) # �1

# m1

mu1 <- sd1*((1/sigma0[sigma]^2) *mu0[mu]+(1/sd^2)*x)

P <- dnorm(Theta,mu1,sd1)*Px[sigma,mu] # P given m0,�0
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Posterior <- Posterior + P # Posterior

}}

sum(Posterior)

plot(Theta, Posterior)
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C.7.2 Bayesian analysis of binomial data

Note that the area under the curve is based on a frequency polygon with

bin width 0.001.

# Function to calculate likelihood)

Likelihood <- function(theta,x,n) {choose(n,x)*theta^x*(1-theta)

^(n-x)}

Theta <- seq(0,1,0.001) # Vector of theta values

L1 <- Likelihood(Theta,8,10) # Likelihoods

# Approximate area under the curve

Area <- sum(L1)

Posterior <- L1/Area # Posterior probabilities

# Find maximum probability for scaling plot

Max.Prob <- max(Posterior)

# Plot scaled posterior probability

plot(Theta, Posterior/Max.Prob)

# Calculate new posterior based on further observation of x=5, n=10

Prior <- Posterior # New prior

# Likelihoods x Prior

L2 <- Likelihood (Theta,5,10)*Prior

# Approximate area under the curve
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Area <- sum(L2)

Posterior <- L2/Area # Posterior probabilities

# Find maximum probability for scaling plot

Max.Prob <- max(Posterior)

# Plot scaled posterior probability

plot(Theta, Posterior/Max.Prob)

C.7.3 Sequential Bayesian analysis of mark-recapture data

# Function to calculate probability of m marked in sample of n

Recaptures <- function(theta,n,m) {choose(n,m)*theta^m*(1-theta)

^(n-m)}

# Get data elements

n <- c(34,42,43,40,32,56,42,44,56,44)

M <- c(50,84,125,168,207,239,294,335,375,428)

m <- c(0,1,0,1,0,1,1,4,3,1)

# Analyze First sample

Nmin <- 500 # Lowest N

Npop <- seq(Nmin, 30000, by=100) # Values of N used

Nvalues <- length(Npop) # Find number of N

# Set up matrix to take posterior probabilities

Posterior <- matrix(0,Nvalues,10)

Theta <- M[1]/Npop # Vector of theta values

# Binomial probabilities

Prob <- Recaptures (Theta,n[1],m[1])

Posterior[,1] <- Prob/sum(Prob) # Posterior probabilities

# Now iterate over remaining nine samples

for (i in 2:10)

{

# Vector of theta values

Theta <- M[i]/Npop

# Binomial probabilities

Prob <- Recaptures(Theta,n[i],m[i])

# Posterior probabilities

Posterior[,i] <- Prob*Posterior[,i-1]

# Posterior probabilities

Posterior[,i] <- Posterior[,i]/sum(Posterior[,i])

}

# Plot all 10 curves

plot(rep(Npop,10),Posterior[,])
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Appendix D

Solutions to exercises

Because of differences among computers, probabilities from

randomization and bootstzap routines may vary slightly.

Solutions to Chapter 2

Question 2.1

The following is S-PLUS coding to do the exercise.

# The following two lines actually generated the X values

set.seed(1) # Initialize random number generator

x <- rnorm(10,0,1) # Generate 10 normal deviates

# The following is the coding for calculating LL and plotting

Mean.X <- mean(X) # Calculate mean of data set

# Generate a sequence of mu values from -3 to +3

mu <- seq(from=-3, to=3, by=0.1)

n <- length(mu) # Get the length of mu

# Create a matrix to store log-likelihoods

LL <- matrix(0,n,1)

constant <-log(1/sqrt(2*pi)) # Calculate constant

# Calculate log-likelihoods for each value of theta

for (i in 1:n){LL[i] <- sum(constant-.5*(X-mu[i])^2)}

# Find maximum value and Concatenate mu and LL

Out <- matrix(c(mu,LL), nrow=n, ncol=2)

LLmax <- max(LL) # Find maximum LL

mu.LL <- Out[Out[,2]==LLmax] # Find mu corresponding to this value

# Print results

Mean.X

mu.LL

# Plot data

plot(mu,LL, xlab="mu", ylab="log-Likelihood", cex=1)
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Output

Mean.X

0.2989654

mu.LL

0.30000 -13.13142
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Question 2.2Pn
i¼1 ðxi � �xÞ2 ¼Pn

i¼1 x
2
i � n�x2. As � ¼ 0, then, letting E(x) refer to the

“expected value of x” we have EðxiÞ ¼ 0, Eð�xÞ ¼ 0, Eðx2i Þ ¼ �2, Eð�x2Þ ¼ �2=n.

Therefore, E
Pn

i¼1 ðxi � �xÞ2� �¼ n�2� �2 ¼ðn� 1Þ�2 and so E ð1=nÞPn
i¼1 ðxi � �xÞ2� �

¼ððn� 1Þ=nÞ�2, which is less than �2 and hence is a biased estimate of �2.

This bias can obviously be removed by dividing by 1/(n � 1).

Question 2.3

The likelihood is L ¼Qm
i¼1 e

��ð�ri=ri!Þ, wherem is the number of sampling

units, and ri is the number observed in the ith sampling unit. Taking logs gives

LL ¼Pm
i¼1 ð�� þ ri ln � � ln riÞ. Differentiating, ðdLL=d�Þ ¼Pm

i¼1 �1þ ri=�ð Þ ¼
�mþPm

i¼1 ðri=�Þ, and setting the result to zero gives (dLL/d�) ¼ 0 when

� ¼ ð1=mÞPm
i¼1 ri.

Question 2.4

The following coding is relatively slow but easy to follow. Note that there

is a highly significant correlation between the estimated intercept and slope.

To produce the same result each time, the program is run the random number

generator is seeded using set.seed.

# Set up vectors for intercept A and slope B

A <- matrix(0,20,1)

B <- matrix(0,20,1)
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# Construct X values evenly spaced from 1 to 10

X <- seq(from=1, to=10)

set.seed(1) # Set seed for random number generator

for (irep in 1:20) # Iterate over 20 samples

{

Error <- rnorm(10, mean=0, sd=1) # Construct error term

Y <- X + Error # Construct Y values

Model <- lm(Y~X) # Calculate regression coefficients

# Store coefficients

A[irep] <- Model$coefficients[1]

B[irep] <- Model$coefficients[2]

}

cor.test(A,B) # Test correlation between A and B

Output

cor.test(A, B)

Pearson’s product-moment correlation

data: A and B

t = -7.4259, df = 18, p-value = 0

alternative hypothesis: true coef is not equal to 0

sample estimates:

cor

�0.8682804

Question 2.5

Using the S-PLUS nonlinear regression dialog box

*** Nonlinear Regression Model ***

Formula: Eggs ~ b1 * (1 - exp( - b2 * (Day - b3))) * exp( - b4 * Day)

Parameters:

Value Std. Error t value

b1 107.613000 15.2729000 7.04598

b2 0.829793 0.2745190 3.02272

b3 1.173820 0.1019500 11.51370

b4 0.103955 0.0168184 6.18103

Residual standard error: 3.53335 on 5 degrees of freedom

Correlation of Parameter Estimates:

b1 b2 b3

b2 -0.887

b3 -0.534 0.758

b4 0.965 -0.798 -0.455
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Question 2.6

Equation 2.28 can be readily expanded to include two trials: L ¼Q2
i¼1

ni !
ri!ðni�riÞ! p

ri ð1� pÞni�ri . Taking log, lnðLÞ ¼P2
i¼1 ln ni !

ri !ðni�riÞ!
� �

þ ri lnðpÞ þ ðni � riÞ lnð1� pÞ
� �

.

Differentiate and set the result to zero to find the MLE, d lnðLÞ
dp ¼P2

i¼1
ri
p

�P2
i¼1

ni�ri
1�p ¼ 1

p

P2
i¼1 ri � 1

1�p

P2
i¼1 ni�

P2
i¼1 ri

� � ¼ R
p � N�R

p , where R ¼ r1þr2 and N ¼
n1þn2. Now

d lnðLÞ
dp ¼ 0 when R

p � N�R
p ¼ 0, which upon rearrangement gives p̂ ¼ R=N,

as required.

Question 2.7

The parameter to be estimated is � and is designated as mu in the coding

# Generate 10 normally distributed random numbers

# Set seed to make runs repeatable

set.seed(1)

Xobs <- rnorm(10,0,1)

Mean.X <- mean(Xobs) # Calculate mean of data set

SE.X <- sqrt(var(Xobs)/10) # Calculate SE by usual means

# Calculate lower and upper confidence values

lower <- Mean.X-2.262*SE.X

upper <- Mean.X+2.262*SE.X

# Generate a sequence of mu values from -2 to +2

mu <- seq(from=-2, to=2, by=0.01)

n <- length(mu) # Get the length of mu

L <- matrix(0,n,1) # Create a matrix to store likelihoods

# Calculate likelihoods for each value of mu

for (i in 1:n){L[i] <- prod(exp(-.5*(Xobs-mu[i])^2))}

Total <-sum(L) # Sum all likelihoods

# Divide by Total to make likelihoods sum to 1

L <- L/Total

Cum.L <- cumsum(L) # Calculate vector of cumulative sums

# Concatenate mu and Cum.L for easy reading

Out <- matrix(c(mu,Cum.L), nrow=n, ncol=2)

# print out lower, mean and upper estimates of usual formula

print(c(lower,Mean.X,upper))

Output

print(c(lower, Mean.X, upper))

�0.3705279 0.2989654 0.9684587

Examination of the file Out gives �0.330 and 0.910 for the lower and

upper limits, which is reasonably close to the values estimated using the usual
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formula. The two sets of estimates will approach each other as the sample size

is increased.

Question 2.8

Coding is based on that given in Appendix C.2.3

# Set up function to calculate negative of the log likelihood (omitting

constants)

LL <- function(mu)

{

# Calculate log likelihood for the sample omitting constant

L1 <- -(1/2)*sum((Xobs-mu)^2)

# Return negative of the log-likelihood

return (-L1)

}

# Main Program

set.seed(1)

Xobs <- rnorm(10,0,1)

mu <- 0.0 # Set initial estimates for Mean

min.func <- nlmin(LL,mu) # Call minimization routine

MLE.mu <- min.func$x # Save estimate

Global.LL <- -LL(MLE.mu) # Calculate Log-Likelihood at MLE

# Create a function to square Diff so that minima are at zero

Limit <- function(mu){(Global.LL+LL(mu)-0.5*3.841)^2 }

# Find lower limit by restricting upper value below MLE.mu

mu <- -1

min.func <- nlminb(mu, Limit, lower=-10, upper=MLE.mu-0.1)

Lower.mu <- min.func$parameters # Save estimate

# Find upper limit by restricting lower value above MLE.mu

mu <- 1

min.func <- nlminb(mu, Limit, lower=MLE.mu+0.01, upper=10)

Upper.mu <- min.func$parameters # Save estimate

# Print out results

print(c(Lower.mu,MLE.mu,Upper.mu))

Output

print(c(Lower.mu, MLE.mu, Upper.mu))

�0.3207926 0.2989654 0.9187234

Using the standard error gives -0.37 to 0.97
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Question 2.9

For simplicity let Ct ¼ ð1� e�kðt�t0ÞÞ. The log-likelihood function is

LL ¼ �n lnð� ffiffiffiffiffiffi
2�

p Þ � 1
2�2

Pn
t¼1 �C

2
t . The second differential with respect to LL is

� 1
�2

Pn
t¼1 C

2
t . Therefore the standard error of � is �2

P2
t¼1 C

2
t

� ��1
.

Question 2.10

# Set up dataframe for data

Age <- seq(1:10)

Length <- c(23.61,43.10,57.54,68.24,76.16,82.03,86.38,89.60,91.99,

93.76)

D <- data.frame(matrix(c(Age,Length),nrow=10))

# Data are contained in dataframe D

k <- 0.3

t0 <- 0.05

# Fit von Bertalanffy function

Model <- nls(D[,2]~b1*(1-exp(-k*(D[,1]-t0))), data=D, start=list

(b1=60))

# Save Estimate as Theta

Theta <- as.numeric(Model$parameters)

# Calculate predicted values

D.fit <- Theta*(1-exp(-k*(D[,1]-t0)))

# Calculate squared difference between observed and expected

D.fit2 <- (D[,2]-D.fit)^2

# Find number of observations

n <- nrow(D)

# Calculate estimate of sigma (residual standard error)

sigma.est <- sqrt(sum(D.fit2)/(n-1))

# Calculate estimate of standard error for Theta

Sigma.Theta <- sqrt(sigma.est^2*(sum((1-exp(-k*(D[,1]-t0)))^2))^-1)

# Output results

summary(Model)

print(c(sigma.est, Theta, Sigma.Theta))

Output

summary(Model)

Formula: D[, 2] ~ b1 * (1 - exp( - k * (D[, 1] - t0)))

Parameters:

Value Std. Error t value

b1 98.4992 0.152934 644.064

Residual standard error: 0.366283 on 9 degrees of freedom
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> print(c(sigma.est, Theta, Sigma.Theta))

0.3662833 98.4991562 0.1529339

Question 2.11

Using nls routine in S-PLUS (Appendix C.2.10)

# Enter data

Eggs <- c(54.8,73.5,78,71.4,75.6,73.2,65.4,61.9,61.7,60.1,55.1,50.4,44.3,42.3)

Day <- c(1,2,3,4,5,6,7,8,9,10,11,12,13,14)

D <- data.frame(Day,Eggs)

# Fit four parameter Drosophila model

Model <- nls(Eggs~b1*(1-exp(-b2*(Day-b3)))*exp(-b4*Day), data=D,

start=list(b1=100,b2=0.5,b3=1,b4=0.1))

# Store results

Four.Parameter.Model <- Model

# Save residual sums of squares

SS.4 <- sum(Model$residuals^2)

# Fit model assuming b3=0

Model <- nls(Eggs~b1*(1-exp(-b2*Day))*exp(-b4*Day), data=D,

start=list(b1=100,b2=0.5,b4=0.1))

# Store results

Three.parameter.Model <- Model

# Save residual sums of squares

SS.3 <- sum(Model$residuals^2)

# Get sample size n

n <- nrow(D)

# Compute F value

F.value <- ((SS.3-SS.4)/(4-3) )/(SS.4/(n-4))

# Compute probability

P <- 1 - pf(F.value, 1, n-4) # p-value of stat

# Print out results

summary(Four.Parameter.Model)

summary(Three.parameter.Model)

print(c(F.value, P))

Output

summary(Four.Parameter.Model)

Formula: Eggs ~ b1 * (1 - exp( - b2 * (Day - b3))) * exp( - b4 * Day)

Parameters:

Value Std. Error t value

b1 103.8250000 7.40431000 14.022200
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b2 0.6794940 0.20532000 3.309430

b3 -0.2321230 0.32006400 -0.725242

b4 0.0608795 0.00714721 8.517940

Residual standard error: 2.80399 on 10 degrees of freedom

Correlation of Parameter Estimates:

b1 b2 b3

b2 -0.873

b3 -0.670 0.922

b4 0.971 -0.808 -0.603

> summary(Three.parameter.Model)

Formula: Eggs ~ b1 * (1 - exp( - b2 * Day)) * exp( - b4 * Day)

Parameters:

Value Std. Error t value

b1 100.0260000 4.32433000 23.13100

b2 0.8543150 0.09022010 9.46923

b4 0.0574262 0.00488552 11.75440

Residual standard error: 2.73403 on 11 degrees of freedom

Correlation of Parameter Estimates:

b1 b2

b2 -0.837

b4 0.945 -0.757

> print(c(F.value, P))

0.4579748 0.5139206

Hypothesis that �3 ¼ 0 cannot be rejected. Note that the confidence range for

�3 in the four parameter model considerably overlap zero.

Solutions to Chapter 3

Question 3.1

set.seed(0) # Set random number seed

n <- 100 # Number of replicates

x <- rnorm(n,0,1) # n random normal values

X.jack <- jackknife(data=x, var(x)) # Jackknife the data

# Create pseudovalues see appendix C.3.2

Pseudovalues <- n*X.jack$observed-(n-1)*X.jack$replicates

shapiro.test(Pseudovalues) # Test for normality

hist(Pseudovalues, probability=T) # Plot data
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Output

Shapiro-Wilk Normality Test

data: Pseudovalues

W = 0.7305, p-value = 0
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Question 3.2

The data were created using the model y ¼ x þ ", where " is N(0, 1).

Here are the lines used to create the data

set.seed(1) # Set seed for random number generator

n <- 20 # Number of points

x <- runif(n,0,10) # Construct uniform X values

error <- rnorm(n, mean=0, sd=1) # Generate error term

y <- x + error # Construct Y values

# Next lines answer questions asked

# Calculate regression coefficients

Model <- lm(y~x)

Obs.b <- matrix(Model$coefficients,2) # Store coefficients

# Create matrix to store pseudovalues

Pseudovalues <- matrix(0,n,2)
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# Create individual values

ind <- seq(1,n)

D <- data.frame(ind,x,y) # concatenate data

for (i in 1:n)

{

D.minus.i <- D[D$ind!=i,] # Delete ith row

# Fit model

Model.minus.i <- lm(D.minus.i$y~D.minus.i$x)

# Pick out coefficients

b.minus.i <- matrix(Model.minus.i$coefficients,2)

Pseudo.b <- n*Obs.b-(n-1)*b.minus.i # Create pseudovalue

Pseudovalues[i,] <- Pseudo.b # Store pseudovalues

}

summary(Model) # Print out results for least squares

# Print out Jackknife values

print(c(mean(Pseudovalues[,1]), sqrt(var(Pseudovalues[,1])/n)))

print(c(mean(Pseudovalues[,2]), sqrt(var(Pseudovalues[,2])/n)))

t.test(Pseudovalues[,1],mu=0) # t test intercept = 0

t.test(Pseudovalues[,2],mu=1) # t test slope = 1

t.test(Pseudovalues[,2],mu=0) # t test slope = 0

Alternative coding using jackknife routine

# Next lines answer questions asked

D <- data.frame(ind,x,y) # concatenate data

# jackknife estimation

Jack.Data <- jackknife(data=D, lm(y~x,data=D)$coef)

# Extract delete-one replicates

Replicates <- matrix(Jack.Data$rep,n,2)

# Create Pseudovalues

Pseudovalues <- matrix(0,n,2)

for ( i in 1:2){Pseudovalues[,i] <- n*Jack.Data$obs[i]-(n-1)

*Replicates[,i]}

# Print out Jackknife values

print(c(mean(Pseudovalues[,1]), sqrt(var(Pseudovalues[,1])/n)))

print(c(mean(Pseudovalues[,2]), sqrt(var(Pseudovalues[,2])/n)))

t.test(Pseudovalues[,1],mu=0) # t test intercept = 0

t.test(Pseudovalues[,2],mu=1) # t test slope = 1

t.test(Pseudovalues[,2],mu=0) # t test slope = 0
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Output (summarized)

summary(Model)

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0927 0.3111 0.2979 0.7692

x 0.9332 0.0522 17.8877 0.0000

Residual standard error: 0.7338 on 18 degrees of freedom

Multiple R-Squared: 0.9467

F-statistic: 320 on 1 and 18 degrees of freedom, the p-value is 6.554e-013

# Print out Jackknife values

[1] 0.07761845 0.32774423

[1] 0.93522574 0.06224435

# t test intercept = 0

One-sample t-Test

data: Pseudovalues[, 1]

t = 0.2368, df = 19, p-value = 0.8153

alternative hypothesis: mean is not equal to 0

# t test intercept = 0

One-sample t-Test

data: Pseudovalues[, 2]

t = -1.0406, df = 19, p-value = 0.3111

alternative hypothesis: mean is not equal to 1

# t test slope = 1

t.test(Pseudovalues[, 2], mu = 0)

One-sample t-Test

data: Pseudovalues[, 2]

t = 15.0251, df = 19, p-value = 0

alternative hypothesis: mean is not equal to 0

Question 3.3

# Lines that generated the tabulated data

# Set seed for random number generator

set.seed(1)

n <- 20 # Number of points

# Construct X values evenly spaced from 1 to 10

x <- runif(n,0,10)

error <- rnorm(n, mean=0, sd=1) # Generate error term
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y <- x + error # Construct Y values

xy <- cbind(x,y) # Data set to be examined

# Jackknife the correlation coefficient

Jack.r <- jackknife(data=xy, cor(xy[,1],xy[,2]))

# Pseudovalues

Pseudovalues <- n*Jack.r$observed-(n-1)*Jack.r$replicates

Jack.r # Output

t.test(Pseudovalues, mu=0) # t test for = 0

# Repeat using the z transformation

Jack.r <- jackknife(data=xy, 0.5*log((1+cor(xy[,1],xy[,2]))/

(1-cor(xy[,1],xy[,2]))))

Pseudovalues <- n*Jack.r$observed-(n-1)*Jack.r$replicates

Jack.r

t.test(Pseudovalues, mu=0)

Output

Untransformed estimate

Number of Replications: 20

Summary Statistics:

Observed Bias Mean SE

Param 0.973 0.001111 0.9731 0.008788

One-sample t-Test

data: Pseudovalues = 110.5965, df = 19, p-value = 0

alternative hypothesis: mean is not equal to 0

95 percent confidence interval: 0.9535018 0.9902877

sample estimates: mean of x

0.9718947

Transformed estimate

Number of Replications: 20

Summary Statistics:

Observed Bias Mean SE

Param 2.146 0.04788 2.148 0.1672

One-sample t-Test

data: Pseudovalues = 12.5489, df = 19, p-value = 0

alternative hypothesis: mean is not equal to 0

95 percent confidence interval: 1.748053 2.447894

sample estimates: mean of x

2.097973
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Question 3.4

# Jackknife the correlation coefficient

Jack.r <- jackknife(data=xy, cor(xy[,1],xy[,2]))

Pseudovalues1 <- n*Jack.r$observed-(n-1)*Jack.r$replicates

hist(Pseudovalues1) # Plot histogram

# Repeat using the z transformation

Jack.r <- jackknife(data=xy, 0.5*log((1+cor(xy[,1],xy[,2]))/

(1-cor(xy[,1],xy[,2]))))

Pseudovalues2 <- n*Jack.r$observed-(n-1)*Jack.r$replicates

hist(Pseudovalues2) # Plot histogram

# Concatenate two files

Pseudovalues <- data.frame(cbind(Pseudovalues1,Pseudovalues2))

# Calculate basic statistics

# Note that this is the command issued by the dialog box and recovered from the

history window

menuDescribe(data = Pseudovalues, variables = "<ALL>", grouping.

variables = "(None)", max.numeric.levels = 10, nbins = 6, min.p = T, first.

quant.p = F, mean.p = T, median.p = T, third.quant.p = F, max.p = T, nobs.

p = T, valid.n.p = T, var.p = T, stdev.p = T, sum.p = F, factors.too.p = T,

print.p = T, se.mean.p = T, conf.lim.mean.p = F, conf.level.mean = 0.95,

skewness.p = T, kurtosis.p = T)

# Test for normality

shapiro.test(Pseudovalues[,1])

shapiro.test(Pseudovalues[,2])

*** Summary Statistics for data in: Pseudovalues ***

X1.1 X1.2

Min: 6.932995e-002 -6.66044450

Mean: 9.462771e-001 1.79419576

Median: 9.521449e-001 1.85103918

Max: 1.106372e+000 3.32400503

Total N: 1.000000e+003 1000.00000000

Variance: 8.307094e-003 0.76286892

Std Dev.: 9.114326e-002 0.87342367

SE Mean: 2.882203e-003 0.02762008

Skewness: -2.260647e+000 -2.28551313

Kurtosis: 1.309023e+001 13.34630679

# Test for normality

Shapiro-Wilk Normality Test

data: Pseudovalues[, 1] W = 0.8599, p-value = 0

data: Pseudovalues[, 2] W = 0.8583, p-value = 0
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The transformed values (right) are clearly more normally distributed than the

untransformed values. Both are significantly different from normal according to

the Shapiro–Wilk test. It is not clear if the deviation from normality is sufficient

to discount the jackknife in this situation. Further simulations are required,

particularly with respect to confidence intervals and hypothesis testing.

Data  <- data.frame(cbind(ind,x,y)) # Concatenate to make a single file 
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Question 3.5

The actual model used was Eggs¼�1ð1�e��2AgeÞe��3Ageþ", where �1¼100,

�2¼1, �3¼0.1 and " is N(0, 1). The data were generated using the following coding

# set seed for random number generator

set.seed(1)

n <- 20 # Number of observations

# Generate 20 integer ages using uniform probty dist

x <- ceiling(runif(n,0,5))

# Generate 20 random normal variables N(0,1)

error <- rnorm(n,0,1)

y <- 100*(1-exp(-1*x))*exp(-.1*x) +error # Generate eggs

y <- floor(y+0.5) # set to nearest integer

# Generate individual identifiers

ind <- seq(1,n)

# Concatenate to make a single file

Data <- data.frame(cbind(ind,x,y))

# Coding not using the jackknife routine of S-PLUS to fit MLE and jackknife is

# Fit Drosophila model

Model <- nls(y~b1*(1-exp(-b2*x))*exp(-b3*x), data=Data,

start=list(b1=50,b2=0.5,b3=.5))

Obs.Model <- Model # Store results

# Store estimated parameters

Obs.b <- matrix(Model$parameters)
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# Create matrix to store pseudovalues

Pseudovalues <- matrix(0,n,3)

for (i in 1:n)

{

# Delete ith x and y values

Data.minus.i <- Data[Data$ind!=i,]

Model <- nls(y~b1*(1-exp(-b2*x))*exp(-b3*x),data=Data.minus.i,

start=list(b1=50,b2=0.5,b3=.5))

b.minus.i <-matrix(Model$parameters,3) # Pick out coefficients

Pseudo.b <- n*Obs.b-(n-1)*b.minus.i # Create pseudovalue

Pseudovalues[i,] <- Pseudo.b # Store pseudovalues

}

# Print out results for least squares

summary(Model)

# Print out Jackknife values

print(c(mean(Pseudovalues[,1]), sqrt(var(Pseudovalues[,1])/n)))

print(c(mean(Pseudovalues[,2]), sqrt(var(Pseudovalues[,2])/n)))

print(c(mean(Pseudovalues[,3]), sqrt(var(Pseudovalues[,3])/n)))

Alternative coding using the jackknife routine of S-PLUS

# Create function to fit data to equation using nls

# Note that variables are assumed to be called x and y

Model <-function(data)

{

Fit <- nls(y~b1*(1-exp(-b2*x))*exp(-b3*x),data=data,start=list

(b1=50,b2=0.5, b3=.5))

return(Fit$param)

}

# jackknife estimation

Jack.Data <- jackknife(data=Data, Model(Data))

# Extract delete-one replicates

Replicates <- matrix(Jack.Data$rep,n,3)

for ( i in 1:3)

{

# Create Pseudovalues

Pseudovalues <- n*Jack.Data$obs[i]-(n-1)*Replicates[,i]

print(c(mean(Pseudovalues),

sqrt(var(Pseudovalues)/n)) ) # Print out mean and SE

}

Model(Data) # Output stats from model fit to all data
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Output (order differs between coding alternatives)

summary(Model)

Formula: y ~ b1 * (1 - exp( - b2 * x)) * exp( - b3 * x)

Parameters:

Value Std. Error t value

b1 101.948000 2.83085000 36.0131

b2 0.973440 0.04228580 23.0205

b3 0.105853 0.00598384 17.6898

# Print out Jackknife values

101.47614 2.88243

0.97701871 0.04457281

0.10479458 0.006226638

Question 3.6

# Generate Original data

set.seed(1) # set seed for random number generator

n <- 20 # Number of observations

# 20 integer ages from uniform probability distribution

Age <- ceiling(runif(n,0,5))

# Generate 20 random normal variables N(0,1)

error <- rnorm(n,0,1)

Eggs <- 100*(1-exp(-1*Age))*exp(-.1*Age) +error # Generate eggs

Eggs <- floor(Eggs+0.5) # set to nearest integer

# Produce a bootstrap sample

n <- 10 # Reset n

# set seed for random number generator

set.seed(1)

x <- sample(Age,size=n,replace=T) # Sample with replacement from Age

# reset seed for random number generator to get same run

set.seed(1)

# Sample with replacement from Eggs

y <- sample(Eggs,size=n,replace=T)

ind <- seq(1:n) # Generate individual identifiers

Data <- data.frame(cbind(ind,x,y)) # Concatenate to make a single file

# Coding not using the jackknife routine of S-PLUS to fit MLE and jackknife is

# Fit Drosophila model

Model <- nls(y~b1*(1-exp(-b2*x))*exp(-b3*x), data=Data, start=list

(b1=50,b2=0.5,b3=.5))
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Obs.Model <- Model # Store results

# Store estimated parameters

Obs.b <- matrix(Model$parameters)

# Create matrix to store pseudovalues

Pseudovalues <- matrix(0,n,3)

for (i in 1:n)

{

Data.minus.i<- Data[Data$ind!=i,] # Delete ith x and y values

Model <- nls(y~b1*(1-exp(-b2*x))*exp(-b3*x),data=Data.minus.i,

start=list(b1=50,b2=0.5,b3=.5))

b.minus.i <- matrix(Model$parameters,3) # Pick out coefficients

Pseudo.b <- n*Obs.b-(n-1)*b.minus.i # Create pseudovalue

Pseudovalues[i,] <- Pseudo.b # Store pseudovalues

}

# Print out results for least squares

summary(Obs.Model)

print(c(mean(Pseudovalues[,1]), sqrt(var(Pseudovalues[,1])/n)))

# Print out Jackknife values

print(c(mean(Pseudovalues[,2]), sqrt(var(Pseudovalues[,2])/n)))

# Print out Jackknife values

print(c(mean(Pseudovalues[,3]), sqrt(var(Pseudovalues[,3])/n)))

# Print out Jackknife values

shapiro.test(Pseudovalues[,1]) # Test for normality

shapiro.test(Pseudovalues[,2]) # Test for normality

shapiro.test(Pseudovalues[,3]) # Test for normality

Alternative coding using the jackknife routine of S-PLUS

# Fit Drosophila model

# Create function to fit data to equation using nls

# Note that variables are assumed to be called x and y

Model <- function(data)

{

Fit <- nls(y~b1*(1-exp(-b2*x))*exp(-b3*x), data=data,start=list

(b1=50,b2=0.5,b3=.5))

return(Fit$param)

}

Jack.Data <- jackknife(data=Data, Model(Data))

# jackknife estimation

Replicates <- matrix(Jack.Data$rep,n,3)

# Extract delete-one replicates
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for ( i in 1:3)

{

Pseudovalues <- n*Jack.Data$obs[i]-(n-1)

*Replicates[,i] # Create Pseudovalues

# Print out mean and SE

print(c(mean(Pseudovalues), sqrt(var(Pseudovalues)/n)) )

print(shapiro.test(Pseudovalues)) # Test for normality

}

Model(Data) # Parameter estimates for full data

Output (slightly different order for each alternative)

> summary(Model)

Formula: y ~ b1 * (1 - exp( - b2 * x)) * exp( - b3 * x)

Parameters:

Value Std. Error t value

b1 103.104000 2.90365000 35.5084

b2 0.957489 0.03960900 24.1735

b3 0.107605 0.00652165 16.4997

# Print out Jackknife values

98.981087 7.299615

0.98535813 0.07911545

0.09784679 0.01672593

Shapiro-Wilk Normality Test

data: Pseudovalues[, 1] W = 0.6508, p-value = 0.002

data: Pseudovalues[, 2] W = 0.7688, p-value = 0.006

data: Pseudovalues[, 3] W = 0.6044, p-value = 0.0001

The lack of normality arises from the conversion of Eggs to the nearest integer

Solutions to Chapter 4

Question 4.1

set.seed(0) # Set random number seed

n <- 100 # Number of replicates

x <- rnorm(n,0,1) # n random normal values

X.Boot <- bootstrap(data=x, median(x)) # Bootstrap the data

# Create vector of replicates

Replicates <- X.Boot$replicates

Replicates.df <- data.frame(Replicates) # Create data frame

summary(X.Boot) # Print results

shapiro.test(Replicates) # Test for normality

hist(Replicates, probability=T) # Plot data
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Output

Number of Replications: 1000

Summary Statistics:

Observed Bias Mean SE

Param 0.1517 0.0303 0.182 0.1197

Empirical Percentiles:

2.5% 5% 95% 97.5%

Param -0.02264 -0.01038 0.3441 0.4078

BCa Confidence Limits:

2.5% 5% 95% 97.5%

Param -0.03375 -0.02345 0.324 0.3405

shapiro.test(Replicates)

Shapiro-Wilk Normality Test

data: Replicates

W = 0.9617, p-value = 0
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Question 4.2

The data were created using the model y ¼ x + ", where " is N(0, 1).

Possible coding to solve problem:

# Data are in dataframe called Linear.data.df

x <- c(1.63,4.25,3.17,6.46,0.84,0.83,2.03,9.78,4.39,2.72,9.68,7.88,

0.21,9.08,9.04,5.59,3.73,7.98,3.85,8.18)

y <- c(2.79,3.72,4.09,5.89,0.75,-0.13,1.76,8.44,5.15,2.16,9.88,

6.95,0.03,7.50,9.92,5.37,3.79,7.18,3.37,7.81)

Linear.data.df <- data.frame(x,y)
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# Bootstrap data

Boot.LS <- bootstrap(Linear.data.df, coef(lm(y~x,Linear.data.

df)),B=1000)

Replicates <- Boot.LS$replicates # Store replicates

Obs.intercept <- Boot.LS$observed[1] # Observed intercept

Obs.slope <- Boot.LS$observed[2] # Observed slope

# Set up function for testing hypothesis

P.Test <- function(Predicted,Observed,Datafile,Col)

{

# Difference between obs and predicted

Diff <- abs(Observed-Predicted)

# differences between observed and predicted

Diff.Boot <- abs(Datafile[,Col]-Observed)

# Probability

P <- length(Diff.Boot[Diff.Boot Diff])/length(Diff.Boot)

return(P)

}

# Test for intercept = 0

P.intercept <- P.Test(0,Obs.intercept, Replicates,1)

P.slope0 <- P.Test(0,Obs.slope,Replicates,2) # Test for slope = 0

P.slope1 <- P.Test(1,Obs.slope,Replicates,2) # Test for slope = 1

# Output results

summary(Boot.LS)

print(c(P.intercept, P.slope0, P.slope1))

Output

Number of Replications: 1000

Summary Statistics:

Observed Bias Mean SE

(Intercept) 0.09087 0.014585 0.1055 0.31571

x 0.93370 -0.001995 0.9317 0.05794

Empirical Percentiles:

2.5% 5% 95% 97.5%

(Intercept) -0.4489 -0.3710 0.6742 0.794

x 0.8146 0.8317 1.0279 1.047

BCa Confidence Limits:

2.5% 5% 95% 97.5%

(Intercept) -0.4194 -0.3437 0.7181 0.8364

x 0.8174 0.8342 1.0308 1.0495
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Correlation of Replicates:

(Intercept) x

(Intercept) 1.0000 -0.8649

x �0.8649 1.0000

> print(c(P.intercept, P.slope0, P.slope1))

0.775 0.000 0.261

Parametric test

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0909 0.3111 0.2921 0.7736

x 0.9337 0.0522 17.8943 0.0000

Question 4.3

# Data are in dataframe called Linear.data.df

# Do bootstrap

Boot.Cor <- bootstrap(Linear.data.df, cor(x,y),B=1000)

Replicates <- Boot.Cor$replicates # Store replicates

# Create vector of transformed values

z.replicates <- 0.5*log((1+Replicates)/(1-Replicates))

Obs.r <- Boot.Cor$observed # Observed correlation

# Set up function for testing hypothesis

P.Test <- function(Predicted,Observed,z.file)

{

# Transform observed values

z.obs <- 0.5*log((1+Observed)/(1-Observed))

# Transform predicted value

z.pred <- 0.5*log((1+Predicted)/(1-Predicted))

# Difference between observed and predicted

Diff <- abs(z.obs-z.pred)

# Differences between observed and predicted

Diff.Boot <- abs(z.file-z.obs)

# Probability

P <- length(Diff.Boot Diff.Boot>Diff])/length(Diff.Boot)

return(P)

}

# Test for r = 0.96

P.r <- P.Test(0.96,Obs.r,z.replicates)

# Do parametric test

n <- nrow(Linear.data.df) # Sample size
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SE.z <- sqrt(1/(n-3) ) # Standard error of z

z.pred <- 0.5*log((1+0.96)/(1-0.96)) # Predicted z

z.obs <- 0.5*log((1+Obs.r)/(1-Obs.r)) # Observed z

z <- abs((z.obs-z.pred)/SE.z) # z

P.z <- 1-pnorm(z, mean=0, sd=1) # Proportion of normal above z

# Output results

print(c(Obs.r, P.r, z, P.z))

Output

print(c(Obs.r, P.r, z, P.z))

0.9730251 0.221 0.8258512 0.2044443

Note excellent agreement between bootstrap results and parametric test.

Question 4.4

The data in Corr.df can be analyzed using the coding given in the

previous question by replacing Linear.data.df with Corr.df and 0.96 with 0.0.

Output

print(c(Obs.r, P.r, z, P.z))

0.4325173 0.064 1.908953 0.02813406

There is considerable difference between the two probabilities. Reliability can

only be assessed by simulation, as done in the following question.

Question 4.5

Coding is as follows:

# Set seed for random number generator

set.seed(0)

n <- 20 # Number of points

z.values <- matrix(0,nrow=10000) # Set up matrix for z values

Obs.r <- 0.0 # Set observed r

Obs.z <- 0.5*log((1+Obs.r)/(1-Obs.r)) # Calculate observed z

# Iterate over 10000 replicates

for (i in 1:10000)

{

x <- rnorm(n,0,1) # Construct normal x values

shape <- 2 # Set shape parameter

rate <- shape # Set rate parameter

mu <- shape/rate # Set mean

# Generate error term with mean zero
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error <- rgamma(n,shape,rate)-mu

y <- 0.5*x+error # Construct Y values

r <- cor(x,y) # Calculate r

z.values[i] <- 0.5*log((1+r)/(1-r)) # Calculate Fisher’s z

}

mean(z.values <Obs.z) # Find proportion less than Obs.z

Output

mean(z.values < Obs.z)

0.005

The proportion of cases in which r is less than zero is 0.005 and hence, the tests

in question 4 should give such a low probability. The parametric analysis actually

gives a value closer to the correct one. Testing for r¼0 on 10 data sets gave the

following results

print(c(Obs.r, P.r, z, P.z)) Closest test

0.3463173 0.257 1.489484 0.06817992 bootstrap

0.507786 0.002 2.307876 0.01050303 bootstrap

0.4929078 0.085 2.22604 0.01300574 parametric

0.4341699 0.074 1.917342 0.02759724 parametric

0.6701658 0.002 3.344021 0.0004128681 parametric

0.6194449 0.038 2.985557 0.001415314 parametric

0.7875485 0 4.390874 5.644794e-006 bootstrap

0.6127475 0.031 2.941048 0.001635521 parametric

0.5172109 0.023 2.360579 0.009123207 parametric

0.6551209 0.002 3.233412 0.0006116045 parametric

The parametric test P was closest to expected in seven of the ten runs and thus

appears to be the better method in this case.

Question 4.6

The actual model used was Eggs ¼ �1ð1� e��2AgeÞe��3Age þ ", where

�1¼100, �2¼1, �3¼0.1 and " is N (0, 1). The data were generated using the

following coding

set.seed(1) # set seed for generator

n <- 20 # Number of observations

# 20 integer ages, uniform probty

x <- ceiling(runif(n,0,5))

# Generate 20 random normal variables N(0,1)

error <- rnorm(n,0,1)
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# Generate eggs

y <- 100*(1-exp(-1*x))*exp(-.1*x)+error

y <- floor(y+0.5) # set to nearest integer

# Generate individual identifiers

ind <- seq(1,n)

# Concatenate to make a single file

Drosophila.df <- data.frame(cbind(ind,x,y))

# The following coding does the bootstrap

# Set up function to estimate parameters

Model.drosophila <- function(D)

{

Model <-nls(y~b1*(1-exp(-b2*x))*exp(-b3*x), data=D,

start = list(b1=50,b2=0.5,b3=.5))

b <-matrix(Model$parameters,3) # Pick out coefficients

return (b)

}

# Bootstrap

Boot.LS <- bootstrap(Drosophila.df, Model.drosophila(Drosophila.df) ,

B=1000)

Boot.LS # Print output

Output

Number of Replications: 1000

Summary Statistics:

Observed Bias Mean SE

Param1.1 101.6021 0.0962219 101.6983 2.680841

Param2.1 0.9778 0.0013379 0.9792 0.041636

Param3.1 0.1050 0.0001486 0.1051 0.005742

Method b1(SE) b2(SE) b3(SE)

Bootstrap 101.70 (2.68) 0.979 (0.042) 0.105 (0.006)

MLE 101.95 (2.83) 0.973 (0.042) 0.106 (0.006)

Jackknife 101.48 (2.88) 0.977 (0.044) 0.105 (0.006)

Question 4.7

set.seed(1)

n <- 10
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x <- rnorm(n,4,1)

cv <- sqrt(var(x))/mean(x)

cv

Boot.cv <- bootstrap(x, sqrt(var(x))/mean(x),B=1000, trace=F)

Boot.cv

Boot.cv$parameters

# Generate 10,000 samples to get estimate of SE

nreps <- 10000

CV.replicate <- matrix(0,nreps)

for (i in 1:nreps)

{

x <- rnorm(n,4,1)

CV.replicate[i] <- sqrt(var(x))/mean(x)

}

# CV

summary(Boot.cv)

sqrt(var(CV.replicate))

mean(CV.replicate)

Output

Summary Statistics:

Observed Bias Mean SE

Param 0.2177 -0.01205 0.2057 0.02855

Empirical Percentiles:

2.5% 5% 95% 97.5%

Param 0.1358 0.1527 0.2454 0.2513

BCa Confidence Limits:

2.5% 5% 95% 97.5%

Param 0.1747 0.1839 0.2607 0.2643

sqrt(var(CV.replicate))

[,1]

[1,] 0.0624759

mean(CV.replicate)

[1] 0.2450466

Question 4.8

The data were generated using

set.seed(0)

n <- 10
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a <- 1

b <- 19

Y <- runif(n,a,b) # Generate n uniform random numbers

X <- floor(sort(Y+0.5)) # Sort Y into ascending sequence

The following coding from C.4.3 addresses the question

# Function to calculate Gini coefficient

Gini <- function(d)

{

g <- sort(d)

# Because of jackknife in BCa method it is necessary to have the following

# two lines within the function

n <- length(g) # Number of observations

z <- 2*seq(1:n)-n-1 # Generate “numerator”

return((n/(n-1))*sum(z*g)/(n^2*mean(g))) # Gini coefficient

}

boot.x <- bootstrap(X,Gini,B=1000, trace=F) # Call bootstrap routine

summary(boot.x) # Generate stats

# Set up testing procedure

# Initial value of Gini coefficient

H0 <- 0.05

inc <- .01 # Increment

Hmax <- 0.4 # Maximum value

while(H0 <Hmax ) { # Increment over values

b <- unlist(boot.x$estimate[2]) # Get bootstrap estimate

di <- abs(boot.x$replicates-b) # Calculate di vector

d <- abs(b-H0) # Calculate d

dd <- di-d # Compare values

print(c(H0,length(dd[dd>0])/1000)) # print H0 and the probability

H0 <- H0+inc # Increment H0

}

Output

Number of Replications: 1000

Summary Statistics:

Observed Bias Mean SE

Gini 0.2155 -0.008927 0.2066 0.07537

Empirical Percentiles:

2.5% 5% 95% 97.5%

Gini 0.0875 0.1036 0.3513 0.3637
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BCa Confidence Limits:

2.5% 5% 95% 97.5%

Gini 0.1185 0.1274 0.4262 0.4725

H0 P

0.050 0.027

0.060 0.054

0.070 0.065

0.080 0.087

0.090 0.106

� � � �� � � � �� � � �� � � � ��
0.350 0.057

0.360 0.032

0.370 0.017

0.380 0.014

0.390 0.014

Solutions to Chapter 5

Question 5.1

# Input data

x <- c(-0.79,0.79,-0.89,0.11,1.37,1.42,1.17,-0.53,0.92,-0.58)

y <- c(-0.88,-0.17,-1.16,-1.23,2.14,0.86,1.36,-1.46,0.74,-2.15)

set.seed(1) # Initialize random number

group <- c(rep(1,10), rep(2,10)) # Set up group identity vector

Data <- c(x,y) # Concatenate x and y

# Do a t-test

Test <- t.test(Data[group==1], Data[group==2])

# Do N permutations of Data

N <- 1000 # Number of permutations

Meanboot <- bootstrap(group,t.test(Data[group==1], Data[group==2])

$statistic, sampler=samp.permute, B=N, trace=F)

# Calculate number of permutations in which absolute difference > than

# observed

n.over <- sum(abs(Meanboot$replicates) >= abs(Meanboot$observed))

P <- (n.over+1)/(N+1) # Remember to add 1 for observed value

Test # Print out results of paired t test on original data

P # Print P from randomizations
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Standard Two-Sample t-Test

data: Data[group == 1] and Data[group == 2]

t = 0.9256, df = 18, p-value = 0.3669

alternative hypothesis: difference in means is not equal to 0

95 percent confidence interval:

�0.6272868 1.6152868

sample estimates:

mean of x mean of y

0.299 �0.195

> # Print out results of randomization estimate of P

P

0.3656344

To use the mean difference change call to bootstrap to

Meanboot <- bootstrap(group,t.test(Data[group==1], Data[group==2],

paired=T)$estimate, sampler=samp.permute, B=N, trace=F)

The estimated P using this statistic is P ¼ 0.3876124.

Question 5.2

Use the coding given in C.5.12 substituting given data for x and y.

Output for linear regression on data

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0909 0.3111 0.2921 0.7736

x 0.9337 0.0522 17.8943 0.0000

Residual standard error: 0.7335 on 18 degrees of freedom

Multiple R-Squared: 0.9468

F-statistic: 320.2 on 1 and 18 degrees of freedom, the p-value is 6.513e-013

Randomization results based on 1,000 permutations

print(c(Pa, Pb))

1.000000000 0.000999001

Testing for a slope of 1.

This is readily accomplished by creating a vector z, z ¼ y � x and changing

the following two lines.
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# Calculate regression stats for observations

obs.regression <- summary(lm(z~x))

Meanboot <-bootstrap(x, Lin.reg(x,z), sampler=samp.permute, B=N, trace=F)

Linear Regression results

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 0.0909 0.3111 0.2921 0.7736

x -0.0663 0.0522 �1.2706 0.2201

Residual standard error: 0.7335 on 18 degrees of freedom

Multiple R-Squared: 0.08231

F-statistic: 1.614 on 1 and 18 degrees of freedom, the p-value is 0.2201

Randomization statistics

print(c(Pa, Pb))

0.8141858 0.2237762

Question 5.3

Coding to do F ratio test and randomization based on F ratio

x <- c(-0.06, -1.51, 1.78, 0.91, 0.05, 0.53, 0.92, 1.75, 0.73, 0.57, 0.17,

0.31, 0.66, 0.01, 0.16)

y <- c(1.86, 0.44, 0.59, 0.18, -0.59, -1.16, 1.01, -1.49, 1.62, 1.89, 0.10,

-0.44, -.06, 1.75, 1.74)

# For the purposes of randomization we must set means to common value, say zero

x <- x-mean(x)

y <- y-mean(y)

Data <- c(x,y) # Concatenate the two groups

Group <- c(rep(1,15),rep(2,15)) # Create group membership

# Function to find F value in F ratio test

F.ratio <- function(Index,X, df1,df2)

{

vx <- var(X[Index==1])

vy <- var(X[Index==2])

return( max(vx/vy,vy/vx))

}

# Maximum F from observed data

obs.Fratio <- F.ratio(Group,Data,14,14)

Pobs <-(2*(1 - pf(obs.Fratio, df1, df2))) # P from parametric test

N <- 1000 # Number of permutations

Meanboot <- bootstrap(Group, F.ratio(Group,Data,14,14), sampler=samp.

permute, B=N,trace=F)
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# Calculate number of permutations in which absolute difference > than

# observed

n.over <- sum(abs(Meanboot$replicates) >= abs(Meanboot$observed))

P <- (n.over+1)/(N+1) # Remember to add 1 for observed value

print(c(Pobs,P)) # Print P from parametric test and randomization

print(c( Pobs, P ))

0.1916366 0.1688312

Using the difference between the two variances produces a probability of

0.1428571, which is close to that obtained using the F ratio.

Question 5.4

set.seed(5) # Initiate random number

# The following lines generate the data given in the question

# The population follows logistic growth

x <- matrix(0,30,1)

error <- runif(30,-40,40)

for ( i in 1:30){x[i] <- trunc(100/(1+exp(1-0.5*i))+error[i])}

# Do Pollard and Lakhani test

xlog <- log(x) # Take logs

# calculate the differences

d <- c(x[2:30],1)-x # Last entry is a dummy to keep lengths the same

d <- d[1:29] # Discard dummy

xd <- x[1:29]

# Use bootstrap routine to do permutations

N <- 1000 # Number of permutations

Meanboot <-bootstrap(xd, cor(xd,d), sampler=samp.permute, B=N,

trace=F)

# Calculate number of permutations in which difference > than observed

n.over <- sum(Meanboot$replicates <= Meanboot$observed)

P <- (n.over+1)/(N+1) # Remember to add 1 for observed value

# Parametric test

cor.test(xd, d, alternative="less", method="pearson")

P # Print P

Output

Pearson’s product-moment correlation

data: xd and d

t = -4.5061, df = 27, p-value = 0.0001

Solutions to Chapter 5 345



alternative hypothesis: coef is less than 0

sample estimates:

cor

�0.6551566

Randomization P

0.000999001

Both methods of analysis give comparable results.

Question 5.5

The coding in the previous question is readily adapted to address this

question.

set.seed(1)

clutch <- c(1,1,2,2,2,3,4,4,4,5,5,6)

n.survs <- c(1,1,1,1,1,2,2,2,3,1,2,3)

survival <- n.survs/clutch

# Use bootstrap routine to do permutations

N <- 1000 # Number of permutations

Meanboot <- bootstrap(clutch, cor(survival,clutch), sampler=samp.

permute, B=N, trace=F)

# Calculate number of permutations in which difference > than observed

n.over <- sum(Meanboot$replicates <= Meanboot$observed)

# Remember to add 1 for observed value

P <- (n.over+1)/(N+1)

cor.test(clutch, survival,

alternative="less", method="pearson") # Parametric test

P # Print P

Output

Pearson’s product-moment correlation

data: clutch and survival

t = -2.7481, df = 10, p-value = 0.0103

alternative hypothesis: coef is less than 0

sample estimates:

cor

�0.6559505

Randomization P

0.01298701

The results from both methods of analysis indicate that survival declines with

clutch size.
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Question 5.6

The data were constructed using

set.seed(5)

Group1 <- c(1,1,1,1,1,2,2,2,2,2,2)

Group2 <- c(1,1,2,2,2,1,1,1,1,2,2)

Group <- cbind(Group1,Group2)

Groups <- Group

Groups[,1] <- factor(Groups[,1])

Groups[,2] <- factor(Groups[,2])

Data <- matrix(11,1)

Data <- Group[,1]+5*Group[,2]+Group[,1]*Group[,2]+rexp(11)

Data <- trunc(Data)

There is considerable imbalance in the data and the error term is exponen-

tially distributed and hence, the anova results are suspect. Using the coding given

in C.5.8 gives the following results for the data set

Type III Sum of Squares

Df Sum of Sq Mean Sq F Value Pr(F)

Groups[, 2] 1 6.537415 6.537415 10.98286 0.0128699

Groups[, 1] 1 0.463768 0.463768 0.77913 0.4066967

Groups[, 2]:Groups[, 1] 1 0.280702 0.280702 0.47158 0.5143594

Residuals 7 4.166667 0.595238

"Random P for " "1" " = " "0.017"

"Random P for " "2" " = " "0.379"

"Random P for " "3" " = " "0.474"

As found in the analysis given in the text, there is little difference between the

anova and randomization tests.

Question 5.7

This can be done by randomizing one of the group vectors. It makes

no difference if X is also randomized:

for (iperm in 1:N)

{

F.values[iperm,] <- ANOVA(Groups,Data)

Data <- sample(Data)

Group1 <- sample(Group1)

Group <- cbind(Group1,Group2)

Groups <- Group
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Groups[,1] <-factor(Groups[,1])

Groups[,2] <-factor(Groups[,2])

}

Output

Type III Sum of Squares

Df Sum of Sq Mean Sq F Value Pr(F)

Groups[, 2] 1 6.537415 6.537415 10.98286 0.0128699

Groups[, 1] 1 0.463768 0.463768 0.77913 0.4066967

Groups[, 2]: Groups[, 1] 1 0.280702 0.280702 0.47158 0.5143594

Residuals 7 4.166667 0.595238

[1] "Random P for " "1" " = " "0.01"

[1] "Random P for " "2" " = " "0.31"

[1] "Random P for " "3" " = " "0.39"

The results do change and appear to give a lower P-value in two cases. The

overall conclusion is not changed and only more extensive simulation could

show if the effect is consistent.

Question 5.8

# Create vector with habitat categories

Group <- GammarusData$HABITAT

manova.model <- manova(cbind(OMMATIDI,EYE.L,EYE.W) ~ Group,

data = GammarusData)

Obs.results <- summary(manova.model) # Results for observed data

# Create function to do manova and extract F value

manova.F <- function(Group,GammarusData)

{

manova.model <- manova(cbind(HEAD,OMMATIDI,EYE.L,EYE.W)~Group,

data =GammarusData)

summary(manova.model)$Stats[6]

}

# Do randomization

N <- 1000 # Number of permutations

F.values <- matrix(0,N,1) # Set up matrix to take F values

for (iperm in 1:N) # Iterate through permutations

{

# First pass is on original data

F.values[iperm] <- manova.F(Group, GammarusData)
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Group <- sample(Group) # Randomize data vector

}

# Print out results

Obs.results

print(c("Random P = ", mean(F.values>= F.values[1])))

Output

Obs.results

Df Pillai Trace approx. F num df den df P-value

Group 1 0.85125 59.1333 3 31 0

Residuals 33

print(c("Random P = ", mean(F.values >= F.values[1])))

"Random P = "."0.001"

None of the F-statistics from the randomized data set exceeded the observed

value.

Solutions to Chapter 6

Question 6.1

The data were generated using

set.seed(1)

x <- runif(20,0,2)

error <- rnorm(20,0,1)

y <- x^2 +error

The analysis can be done as follows:

# Compare linear and quadratic fits

lin.fit <- lm(y~x) # linear fit

quad.fit <- lm(y~x+x^2) # Quadratic fit

anova(lin.fit,quad.fit, test="F") # Comparison

Output

> anova(lin.fit, quad.fit, test = "F")

Analysis of Variance Table

Response: y

Terms Resid. Df RSS Test Df Sum of Sq F Value Pr(F)

1 x 18 10.29661

2 x + x^2 17 9.46891 +I(x^2) 1 0.8277026 1.486016 0.2394812

Solutions to Chapter 6 349



The simple linear regression model is sufficient, even though the actual model

was quadratic.

Question 6.2

Possible coding is

# Generate data

set.seed(1)

x <- runif(20,0,2)

error <- rnorm(20,0,1)

y <- x^2 + error

# Create index

Index <- seq(1:20) # Set up index

Data <- cbind(x,y,Index) # Combine data

Data <- data.frame(Data) # Make into data frame

RSS <- matrix(0,20,2) # Create matrix for residual sums of squares

for (i in 1:20) # Iterate over index

{

Data.training <- Data[Index!=i,] # Create training set

lin.fit <- lm(y~x, data=Data.training) # Fit linear model

quad.fit <- lm(y~x^2, data=Data.training) # Fit quadratic model

# Calculate residual sums of squares for the left-out data

RSS[i,1] <-(lin.fit$coeff[1]+lin.fit$coeff[2]*Data[i,1]

- Data[i,2])^2

RSS[i,2] <-(quad.fit$coeff[1]+quad.fit$coeff[2]*Data[i,1]^2

-Data[i,2])^2

}

t.test(RSS[,1], y=RSS[,2], paired=T) # Paired t test

print(c(mean(RSS[,1]), mean(RSS[,2]))) # Output means

Output (only relevant portions shown)

Paired t-Test

data: SS[, 1] and SS[, 2]

t = 0.4168, df = 19, p-value = 0.6815

print(c( mean(SS[, 1]), mean(SS[, 2])))

0.6546031 0.6193718

The quadratic fit gives a lower RSS but not significantly.
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Question 6.3

Coding

set.seed(1)

n <- 100

x <- runif(n,0,2)

error <- rnorm(n,0,1)

y <- x^2 +error

Curves <- matrix(0,n,2) # Matrix for data

Curves[,1] <- x

Curves[,2] <- y

# Create index for cross validation.

# Note that because data is created sequentially index is also randomized

Index <- sample(rep(seq(1,10), length.out=n))

# Do ten-fold cross validation

# Set up matrix to store r^2 values for ( i in 1:10)

Corr.store <- matrix(0,10,2)

{

# Select subset of data

Data <- data.frame(Curves[Index!=i,])

CV.data <- data.frame(Curves[Index==i,]) # Store remainder

Model <- lm(X1.2 ~ X1.1+X1.1^2, data=Data)

# Multiple r for fitted values

R2 <- summary(Model)$r.squared

Corr.store[i,1] <- R2 # Store R2

# Calculate predicted curve

Predicted <- predict.lm(Model, CV.data)

# Calculate correlation between predicted and observed

r <- cor(CV.data[,2], Predicted, na.method="omit")

Corr.store[i,2] <- r^2 # Store r^2

print(c(i,r^2, R2)) # Print predicted and observed multiple R

}

print (c(mean(Corr.store[,1]),mean(Corr.store[,2]))) # Print mean r^2

Output

[1] 1.0000000 0.8516866 0.5947113

[1] 2.0000000 0.5038258 0.6247513

[1] 3.0000000 0.8110234 0.6060138

[1] 4.0000000 0.5069817 0.6294819

[1] 5.0000000 0.5321204 0.6245366
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[1] 6.0000000 0.5201748 0.6222061

[1] 7.0000000 0.8017032 0.5797304

[1] 8.0000000 0.7014673 0.6014567

[1] 9.0000000 0.5414010 0.6224561

[1] 10.0000000 0.4151990 0.6283841

> print(c(mean(Corr.store[, 1]), mean(Corr.store[, 2])))

[1] 0.6133728 0.6185583

In this example, there is an excellent correspondence between the two r2

values, indicating that the proposed model does not overfit.

Question 6.4

To compare the two models using cross validation alter the coding of

C.6.1, thus

set.seed(1) # Set random number seed

Data <- Multiple.regression.example # Pass data to file Data

Nreps <- 100 # Number of randomizations

# Column of response (dependent) variable

obs.col <- 1

Kfold <- 5 # Set value for Kfold

...............................

...............................

...............................

...............................

Model1 <-lm(INTR.INDEX ~ FOREST + S.ABLE + S.LENGTH, data=Data

[Data[,last.col]!=1,])

Model2 <-lm(INTR.INDEX ~ S.LENGTH + FOREST + S.ABLE + S.TEMP, data= Data

[Data[,last.col]!=1,])

Output (modified)

Paired t-Test

data: RSS[, 1] and RSS[, 2]

t = 1.6225, df = 99, p-value = 0.1079

alternative hypothesis: mean of differences is not equal to 0

print(c(mean(RSS[, 1]), mean(RSS[, 2])))

[1] 0.1106308 0.1069008

There is no significant difference between the two models.
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To examine each equation separately modify coding as follows (bold shows

modifications)

set.seed(1) # Set random number seed

Data <- Multiple.regression.example # Pass data to file Data

last.col <- ncol(Data)+1 # Find number of columns

obs.col <- 1 # Observed column

# Number of randomizations

Nreps <- 100

Kfold <- 5 # Set Kfold number

# Find number of rows in data set

n <- nrow(Data)

# Create an index vector in Kfold parts

Index <- rep(seq(1,Kfold), length.out=n

# Combine Data and index vector

Data <- cbind(Data,Index)

# Function to determine correlations

# D=Data; I=Index value; K=col for Index; R=col for obs. value; Model=model

object

SS <- function(D,I,K,R,Model)

{

Obs <- D[D[,K]==I,R] # Observed value

# Predicted value using fitted model

Pred <- predict(Model,D[D[,K]==I,])

R2 <- cor(Obs,Pred)^2

return(R2) # r^2 between prediction and observation

}

Rsquare <- matrix(0,Nreps,2) # Matrix for r^2

for (i in 1:Nreps) # Iterate over randomizations

{

Index <- sample(Index) # Randomize index vector

# Place index values in last col(last.col) of Data

Data[,last.col] <- Index

# Compute model objects note that last.col is the column for the index values

Model <- lm(INTR.INDEX ~ S.LENGTH+FOREST+S.ABLE+S.TEMP,

data=Data)

Rsquare[i,1] <- summary(Model)$"r.squared" # r^2 for fitted model

# Store r^2 for pred vs obs

Rsquare[i,2] <- SS(Data,1,last.col,obs.col, Model)

}

summary(Rsquare[,1]); summary(Rsquare[,2])
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Output (for above model)

> summary(Rsquare[, 1])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.558015 0.558015 0.558015 0.558015 0.558015 0.558015

> summary(Rsquare[, 2])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0004780 0.4213802 0.6046154 0.5679942 0.7396240 0.9538082

There is no substantial evidence that the four-parameter model overfits the

data.

Question 6.5

Coding

# Generate data

set.seed(1)

x <- runif(20,0,2)

error <- rnorm(20,0,1)

y <- x^2 + error

Data <- data.frame(x,y) # Combine data & make into data frame

# Create function to plot data

# Note that data are assumed to be cols 1 and 2

Model.Plot <- function(Loess.model,Data, xlimits)

{

P.model <- predict.loess(Loess.model, x.limits, se.fit=T)

C.INT <- pointwise(P.model, coverage=0.95) # Calculate values

Pred.C <- C.INT$fit # Predicted y at x

Upper <- C.INT$upper # Plus 1 SE

Lower <- C.INT$lower # Minus 1 SE

plot(Data[,1], Data[,2]) # Plot points

lines(x.limits,Pred.C) # Plot loess prediction

lines(x.limits,Upper,lty=4) # Plot plus 1 SE

lines(x.limits,Lower,lty=4) # Plot minus 1 SE

Fits <- fitted(Loess.model) # Calculate fitted values

Res <- residuals(Loess.model) # Calculate residuals

# Plot residuals on fitted values with simple loess smoother

scatter.smooth(fitted(Loess.model),residuals(Loess.model),

span=1, degree=1)

}
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Lin1.smooth <- loess(y~x, data=Data, span=.2, degree=1)

Lin2.smooth <- loess(y~x, data=Data, span=1, degree=1)

summary(Lin1.smooth)

summary(Lin2.smooth)

anova(Lin1.smooth, Lin2.smooth)

# Plot data

x.limits <- seq(min(Data[,1]),max(Data[,1]),length=20) # Set range of x

par(mfrow=c(2,2),pty="")

Model.Plot(Lin1.smooth,Data,xlimits)

Model.Plot(Lin2.smooth,Data,xlimits)
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Output (summary output not included)

> anova(Lin1.smooth, Lin2.smooth)

Model 1:

loess(formula = y ~ x, data = Data, span = 0.2, degree = 1)

Model 2:

loess(formula = y ~ x, data = Data, span = 1, degree = 1)

Analysis of Variance Table

ENP RSS Test F Value Pr(F)

1 12.1 4.3000 1 vs 2 0.4 0.9114

2 2.3 9.7171

There is no significant increase in variance accounted for decreasing the

span to 0.2.
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Question 6.6

# Generate data

set.seed(1)

x <- runif(20,0,2)

error <- rnorm(20,0,1)

y <- x^2 + error

Data <- data.frame(x,y) # Combine data & make into data frame

# Add index for cross validation.

# Note that because data is created sequentially index is also randomized

Index <- data.frame(sample(rep(seq(1,3), length.out=20)))

# Do three-fold cross validation

for ( i in 1:3)

{

Data.i <- Data[Index!=i,] # Select subset of data

CV.data <- Data[Index==i,] # Store remainder

# Fit model

L.smoother <- loess(y~x, data=Data.i, span=1,degree=1)

# Multiple r for fitted values

R2 <- summary(L.smoother) $covariance

# Calc predicted curve

Predicted <- predict.loess(L.smoother, newdata=CV.data)

# Calculate correlation between predicted and observed

r <- cor(CV.data[,2], Predicted, na.method="omit")

print(c(i,r^2, R2)) # Print predicted and observed multiple R

}

Output

[1] 1.0000000 0.2064643 0.8032626

[1] 2.0000000 0.6640947 0.6813835

[1] 3.0000000 0.9060839 0.6559848

The correlation between predicted and observed is not very high and

considerably less than suggested by the multiple R for the fitted values.

Question 6.7

Line changes indicated in bold.

# Generate data

set.seed(1)
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x <- runif(20,0,2)

error <- rnorm(20,0,1)

y <- x^2 + error

Data <- data.frame(x,y) # Combine data & make into data frame

# Add index for cross validation.

# Note that because data is created sequentially index is also randomized

Index <- sample(rep(seq(1,3), length.out=20))

# Do three-fold cross validation

MultR <- matrix(0,100,2)

for ( Irep in 1:100)

{

Index <- sample(Index)

Data.i <- Data[Index!=1,] # Select subset of data

CV.data <- Data[Index==1,] # Store remainder

# Fit model

L.smoother <- loess(y~x, data=Data.i, span=1, degree=1)

# Multiple r for fitted values

R2 <- summary(L.smoother) covariance

# Calc predicted curve

Predicted <- predict.loess(L.smoother, newdata=CV.data)

# Calculate correlation between predicted and observed

r <- cor(CV.data[,2], Predicted, na.method="omit")

MultR[Irep, <- c(r^2,R2)

}

t.test(MultR[,1], MultR[,2],paired=T)

plot(MultR[,1], MultR[,2],cex=1.05, xlab="r^2 between predicted and

observed", ylab="R^2 for training set")

Output

Paired t-Test

data: MultR[, 1] and MultR[, 2]

t = �3.9504, df = 99, p-value = 0.0001

alternative hypothesis: mean of differences is not equal to 0

95 percent confidence interval:

�0.15021839 �0.04976847

sample estimates:

mean of x - y

�0.09999343
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There is a highly significant difference between the two values but the

magnitude of the difference is slight. There is a curious negative relationship

between the two correlations.
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Question 6.8

The data were created using the coding

set.seed(1)

X1 <- floor(runif(30,0,10))

X2 <- floor(runif(30,0,10))

X3 <- floor(runif(30,0,10))

error <- rnorm(30,0,10)

Y <- 2*X1+floor(X2^2+exp(X2/10)+X3^3+error)

Data <- cbind(X1,X2,X3,Y)

Data <- data.frame(Data)

The appropriate sequence of gam functions is

Model.1 <- gam(Y~lo(X1)+lo(X2)+lo(X3), data=Data)

anova(Model.1)

Model.2 <- gam(Y~X1+lo(X2)+lo(X3), data=Data)

anova(Model.2, Model.1, test="F")

Model.3 <- gam(Y~lo(X2)+lo(X3), data=Data)

anova(Model.3, Model.2, test="F")

Output

> anova(Model.1)
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DF for Terms and F-values for Nonparametric Effects

Df Npar Df Npar F Pr(F)

(Intercept) 1

lo(X1) 1 3 0.7593 0.5322555

lo(X2) 1 3 9.3432 0.0007132

lo(X3) 1 3 528.1886 0.0000000

This analysis suggests that there is no non-linear component to X1.

> Model.2 <- gam(Y ~ X1 + lo(X2) + lo(X3), data = Data)

> anova(Model.2, Model.1, test = "F")

Analysis of Deviance Table

Response: Y

Terms Resid. Df Resid. DevTest Df F Value Pr(F)

1 X1 + lo(X2) + lo(X3) 20.05509 3458.405

2 lo(X1) + lo(X2) + lo(X3) 17.05387 3143.790 1 vs. 2 3.001222 0.5686566 0.6432204

This analysis supports the former test and indicates that the non-linear

component of X2 is not significant.

> Model.3 <- gam(Y ~ lo(X2) + lo(X3), data = Data)

> anova(Model.3, Model.2, test = "F")

Analysis of Deviance Table

Response: Y

Terms Resid. Df Resid. Dev Test Df Deviance F Value Pr(F)

1 lo(X2) + lo(X3) 21.05509 4355.890

2 X1 + lo(X2) + lo(X3) 20.05509 3458.405 +X1 1 897.4851 5.204463 0.03358977

The above analysis indicates that there is a significant contribution of X1

to the model.

Question 6.9

Response variable as a numeric

Step 1: Create tree and plot deviance against possible tree sizes

Tree.1 <- tree(P~Wing+Egg+Body+Nest+Habitat, data=Q7.Data)

Tree.pruned <- prune.tree(Tree) # prune tree

plot(Tree.1); text(Tree.1) # Plot full tree

plot(Tree.pruned) # Plot deviance vs size

Tree.pruned$size # Text of sizes used in deviance plot
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Output

Tree.pruned$size

[1] 38 37 34 32 29 28 24 21 19 18 17 13 12 9 8 5 4 3 1

|Body<0.998354

Egg<65.6133
Wing<0.5

Egg<51.6801Egg<29.1165Egg<16.5719Habitat<0.5Body<0.385218Egg<41.4818Egg<47.0124Body<0.756934Egg<56.6692Egg<63.8953Body<0.786678Nest<0.5

Egg<48.6309Body<0.854313Egg<52.6365Body<0.860731Body<0.257392Body<0.192035

Wing<0.5Egg<112.722Egg<96.3733Egg<93.2667Body<0.138029Body<0.199727Egg<120.277Body<0.50069
Wing<0.5

Egg<64.1201

Nest<0.5

Body<1.34743Body<1.61184Egg<36.4488Body<1.48076Body<1.56847

0.032260.090910.600000.230800.000000.272700.000000.000000.666700.066670.400000.60000
0.028570.333300.600000.153800.846200.200000.937500.40000

0.333300.042550.400000.000000.600000.000000.625000.055560.00000

1.00000

0.000000.333300.600000.080000.950000.600000.92000

0.00000

size

de
vi

an
ce

50
10

0
15

0
20

0

1 10 20 30

57.00 8.20 1.10 0.89 0.88 0.61 0.42 0.27 0.19

The above tree differs from the “true” tree in that the root node is split

according to body size not flight capability. The deviance appears to stop

declining markedly at about 10 leaves, which is considerably more than the 5

of the “true” tree. Note that a trees of size 2, 6, 7, etc. are not possible according

to the cost-complexity measure. Also note that HABITAT never used.

Step 2: Cross-validation of tree to find optimal size (C.6.7)

Line changed from C.6.7

Tree <- tree(P~Wing+Egg+Body+Nest+Habitat, data=Q7.Data) # Create tree

Output (trimmed for presentation. Graphical output not shown.)

> # Print best Size for the ten runs

> Size

[1] 8 8 8 8 8 8 8 8 8 8

> # Output results

summary(Tree.pruned)

Regression tree:

snip.tree(tree = Tree, nodes = c(29., 18., 28., 5., 19., 8.))

Variables actually used in tree construction:

[1] "Body" "Egg" "Wing" "Nest"

Number of terminal nodes: 8

Residual mean deviance: 0.06066 = 60.18 / 992
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Pruned.Tree$size

[1] 38 37 34 32 29 28 24 21 19 18 17 13 12 9 8 5 4 3 1

All 10 cross-validation runs give an optimal size of 8.

Step 3: Randomization test for tree with 8 leaves (C.6.8)

The call to the function is

Tree.R <-Tree.Random(P~Wing+Egg+Body+Nest+Habitat, Q7.Data, Ypos=6,

Ibest=8, N.Rand=100)

Output

[1] "Probability of random tree having smaller deviance (SE)"

[1] 0.010000000 0.009949874

[1] "Summary of sizes actually used in randomization"

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.00 8.00 11.00 12.49 14.25 53.00

Only one (the observed tree) produced a deviance as small or smaller than the

observed. Reject null hypothesis of no relationship. The final tree is

|
Body < 1.0

Egg < 65.6
Wing < 0.5

Nest < 0.5

Wing < 0.5

Egg < 64.1

Nest < 0.5

0.14

0.15 0.80

0.06

1.00

0.12 0.91

0.00

At first glance, the above tree looks quite different from the “true” tree.

However, if we rewrite the “true” tree commencing with a body size split we get

(branch lengths of arbitrary lengths)
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Body < 1

Wing < 0.5

1.00
  4

Egg < 65

Nest < 0.5

0.25                 0.80
   1      2

0.00
  3

Egg < 65

Wing < 0.5

Nest < 0.5

Wing < 0.5

0.12         0.25              0.80
  5               1                    2

0.12          0.00
  5                3

The above tree is very similar to that obtained using the regression tree

model, the principle differences being (1) probabilities for leaf #1 are

underestimated (0.15 and 0.12 when the correct value is 0.25) and (2) one

node (where P¼0.06) should be split according to wing morph. These results

illustrate the fact that the same tree can be constructed in a variety of different

manners.

Solutions to Chapter 7

Question 7.1

Using the terminology given in the section “A simple classification

problem” we have

Probability of showing character, B, if infected¼pA¼0.97

Probability of showing the character if non-infected¼pAC ¼0.67

Proportion of infected snails in population ¼ P(A) ¼ 1�0.83 ¼ 0.17

Proportion of non-infected snails in population¼1�P(A)¼0.83

Probability of being infected given that the snail shows the characteristic

¼P(A|B)¼ ((0.97)(0.17)/(0.97)(0.17)þ (0.67)(0.83))¼0.2287

Question 7.2

Lð� xj Þ ¼ ð�xe��=ðx!cÞ= Ð :10 �xe��=ðx!cÞd�Þ ¼ ð�xe��=
Ð :1
0 �xe��d�Þ. Note that

the range of � is restricted to 0�0.1.
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Question 7.3

Lð� 1j Þ ¼ �e��Ð :1
0 �e��d�

Coding to generate data is

theta <- seq(from=0, to=.1, by=.001)

Prob <- theta*exp(-theta)

Prob <- Prob/sum(Prob)
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The probability distribution is very odd, with the probability increasing until

0.1 and then, because of the prior, dropping to zero. This strongly suggests that

there is a problem with the prior probability.

Iterating from �¼0 to �¼10 produces a much more sensible curve, further

suggesting that the initial prior is in error, or the most recent data are in error,

or the two data sets represent different circumstances.
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Question 7.4

�̂ ¼ 0:52,
X5
i¼1

ð�̂i � �̂Þ2 ¼ 48:088

�i ¼ �̂þ ð �̂i � �̂Þ 1� n� 3P5
i¼1

ð �̂i � �̂Þ2

0
BB@

1
CCA ¼ 0:52þ ð �̂i � 0:52Þ 1� 2

48:09

� �

�i ¼ 0:498þ 0:958 �̂i

Species # 1 2 3 4 5 6 7 8 9 10

True value �1.88 �1.02 �0.36 �0.13 �0.04 �0.03 0.00 0.01 0.34 1.21

Observed �3.85 �1.74 1.74 0.32 4.10 �1.47 1.80 2.03 1.81 0.46

EB estimates �3.22 �1.41 1.56 0.35 3.58 �1.18 1.61 1.81 1.63 0.47

There is a reduction in the sum of squared-errors (38.24 using the observed

values and 28.29 using the EB estimators).
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AIC 160, 188

ANOVA 53

avifauna extinction in

New Zealand 192--5

backward deletion 158

Bayesian approach 204

empirical Bayes’ estimator

213

estimating mean of normal

distribution 208

hyperparameters 208

precision 208

examples 214

different priors 214--18

sequential Bayes’

estimates 218--19

application on popula-

tion estimation 219

James–Stein

estimator 222

estimation of batting
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estimation of parasitism
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predictive distribution

224
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distribution 225

hierarchical Bayesian 213

models 206
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distribution 204, 211

variance 211

prior distribution 209

indifferent (see

noninformative)

native informative 211

natural conjugate

prior 209

noninformative 209, 228

properposterior 209

vague (see

noninformative)

variance 211

prior probability

distribution 204

Bayes’ theorem 205, 206

Bayesian methods 204

Bayesian perspective 7

beta distribution 210, 225

bias-adjusted estimate 67

binomial distribution 9

binomial probability function

20

bootstrap method 66

bootstrapping phylogenies

93--7

accuracy 96

bootstrap proportion 96

precision 96

repeatability 96

traits 93

bootstrapping the mean 75

bootstrapping the variance

77

Miche overlap example 80

to estimate several

parameters 84

linear regression

parameters 84

nonlinear 87

bootstrapping 60

Breeder’s equation 20, 22

central tendency 10

measures of 10

arithmetic average 10, 12

mode 10

median 10

community structure 147

size and organization 149

bird eating hawks 151

bumblebees 151

desert rodents 149

island birds 149

species co-occurrence

pattern 147

computer-intensive methods

1, 2, 6

bootstrap 3, 6

jackknife 3, 6
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computer-intensive methods

(cont.)

Monte Carlo method 3

Bayesian methods 3

cross-validation 3

tree models 3

randomization 3, 6

conditional probability 205

cross-validation 157, 158, 161

holdout method 161

multiple contending

models 158

cubic spline fit 2, 169

knots 169

PRSS 169

delete-one jackknife 43

delta method 55, 61

density-dependence 139

drift parameter 139

error structure assumption 16

estimating heritability 272

estimating parameters of

nonlinear models 58

jackknife 58

MANOVA 59

pair wise comparison/

ANOVA 59

estimating pseudovalues 268

estimation of ratios 54

ecological indices 54

from two separate samples

57

population parameters 55

Euler equation 5, 56

examples 112

ANOVA 112--18

comparing matrices 136

Flury hierarchy 138

I method 138

jackknife-followed-by-

MANOVA 138

linear and multiple

regression 128

Mantel test 134, 137

maximum likelihood 138

multifactorial ANOVA 119

nested ANOVA 116

reduced major axis

regression 139

song sharing in passerines

132

fecundity function 2

Ford–Walford method 17

forward selection 158

frequentist school 204

generalizing MLE 19

generalized additive models

157

one predictor variable 174

several predictor variables

176

genetic correlation 50

genetic variation 60

Gini co-efficient 78

heritability estimation 20, 46,

115

hypothesis testing 10, 32, 43,

74, 89, 226

likelihood test 90

Z-score method 90, 91

Bayes’ factor 226

extinction probability from

sighted data 228

lack of fit 33

maximal model 32 (see

saturated model)

saturated model 32

scaled deviance (see

deviance)

interval estimation9,28,43,68

accelerated bias corrected

percentile method 72

bias corrected percentile

method 70

exhaustive approach 28--9

first percentile method 69

log-likelihood approach

29--30

percentile t-method 73, 87

second percentile method

70

standard error approach

30--2, 68

jackknife 42

comparison with data

method 55

of the mean 44

response to selection 47

variance components

estimation 45, 46

jackknife analysis

differences between

variances of 2 data

sets 267

using 1000 replicated data

sets 266

jackknife estimation

of parameter values

274

James–Stein estimator 7

least squares estimation 1, 14

Levene’s test 124

�2 contingency test 124

likelihood 9

linear regression analysis 1

local smoothing functions

157, 162, 171

loess fit 2, 164

amount of smoothing 166

degree of function 166

ENP 166

neighborhood 164

overfitting 166

span 164

window 164

log transform 12
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logistic regression 23, 24

log odds 23

logit/logistic unit 23

MANOVA 51

maximum likelihood

estimation 1, 3

mean 1, 10, 12

Monte Carlo method 102

definition 102

examples 140

generalized Monte Carlo

test 142

parallel method 146

serial method 146

significance test 143

multinomial distribution

25

multiple likelihoods 20

multivariate normal

approximation 79

Nei’s genetic distance 60

nonlinear regression

analysis 1

normal distribution 9, 10

nuisance parameter 13

OLS regression 86

one-predictor variable 162

Pearson product moment

correlation 134

permutation test

(see randomization)

interval estimation 106

average percentile

method 111

estimating confidence

interval 106

estimating standard error

106

normal approximation

111

percentile method 112

point estimation 9, 10, 42,

67

population parameters,

estimation of 26

principle of maximum

likelihood 9, 11, 15,

18

probability density function

10, 11

profile likelihood method 79

randomization 102, 104

difference between two

means 103

limitation 103

randomization tests

approximate 119

exact 119

regression 157

residual sums of squares 2

SAS 7

simulating data sets when

two characters are

inherited 271

S-PLUS 2, 7, 23, 160, 168

nlmin 23

nlminb 23

qnorm 23

user interface 7

S-PLUS codes 253

95% CI for parameters of

von Bertalanffy

equation 256

calculating parameter

values for threshold

model 253

calculation of deviance 258

comparing one and two

parameter logistic

model 259

comparing two VB growth

curves

nlmin 262

nls 263

with respect to 3 265

comparing using nlmin

routine 258

estimating parameter of a

simple logistic curve

254, 258

locating confidence limits

for heritability

of a threshold

trait 255

von Bertalanffy model fit

257

S-PLUS methods 242

data storage methods

242

ANOVA object 243

ANOVA table 243

assigning and comparing

values 244

data frame 242

degree of freedom 243

determine names of list

items 243

list 243

manipulating data 246

matrix 243

mean squares 243, 244

S-PLUS subroutines 249

standard deviation 10

standard estimate 67

stepwise regression 159 (see

also cross-validation)

Canadian lynx 142

validating 142

supersmoothing 169

SYSTAT 25, 160

loss function 25

trait 21, 115

dichotomous trait 116

threshold trait 21, 115

transformation 52
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tree models 157

classification trees 179

deviance 182, 188

node 179

root 179

terminal 179

pruning 188

cost-complexity measure

188

cross-validation 189

randomization 190

regression tree analysis 179,

185, 193

size 179

splitting 179

entropy/information

index 183

gini index 183

one-step look-ahead 179

two predictor variables 171

variance 1

variance–covariance matrix

44

von Bertalanffy equation

sigmaPlot 18

S-PLUS 19, 23

SYSTAT 19

von Bertalanffy growth model

16, 18, 30--2
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